
 
 

 

  
Abstract – Electrostatics interaction plays a very important 

role in almost all biomolecular systems.  The Poisson-
Boltzmann equation is widely used to treat this electrostatic 
effect in an ionic solution.  In this work, a simple mixed 
discrete-continuum model is considered and boundary 
element method is used to solve for the solution. 
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1. INTRODUCTION 
Electrostatics interaction plays a very important role in 
almost all biomolecular systems.  Some of the areas where 
electrostatics has been very useful include protein 
structural stability, enzyme catalysis, biomecular 
recoginition and biomolecular encounter rates [1].  Thus, 
there is a need for an accurate modelling and simulation of 
the biomolecular electrostatiscs. 

There are few methods to simulate a biomolecule in an 
ionic solution.  In this paper, a mixed discrete-continuum 
approach based on combining a continuum description of 
the macromolecules and solvent with a discrete description 
of the atomic charges is adopted [2].  Instead of 
considering the non-linear Poisson-Boltzmann equation, 
the linearized Poisson-Boltzman equation is considered by 
assuming that the electrostatic energy of the ions is much 
lesser than their thermal energy [3]. 

The boundary element method is used to solve for 
solution of the equations generated from the above model.  
It is the preferred method as it treats the infinite domain 
and point charges more naturally, and is able to reduce the 
dimensional of the problem by one. 

The next section briefly discusses the mixed discrete-
continuum model and the boundary integral equations 
formulation.  Then, numerical solutions and some sample 
2D computational result are presented.  Finally, some of 
the future investigations are discussed. 

 

 
 

2. PROBLEM FORMULATION 

2.1 Mixed Discrete-continuum Model 
Fig. 1 shows a simplified mixed discrete-continuum 

model for the problem. Region 1Ω  corresponds to the 
interior of the molecule and region 2Ω  corresponds to the 
surrounding solvent. 

In region 1Ω , the electrostatic potential is governed by a 
Poisson equation. 
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where 1ϕ  is the electrostatic potential, rr is an evaluation 

position, kr
r

 is the location of the point charge, kq  is the 

strength of the point charge, cN  is the number of point 
charges, and 1ε  is the dielectric constant in 1Ω . 

In region 2Ω , Debye-Hückle theory suggests that the 
electrostatic potential should satisfy a nonlinear Poisson-
Boltzmann equation.  This equation can be linearized under 
the assumption that the electrostatic energy of the ions is 
much lesser than their thermal energy.  The linearized 
Poisson-Boltzmann is also a Helmholtz equation. 
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where 2ϕ  is the electrostatic potential, Dκ  is the reciprocal 
of the Debye length and 2ε  is the dielectric constant in 

2Ω . 

 
Fig. 1: The mixed discrete-continuum model 
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2.2 Boundary Integral Equations Formulation 
The fundamental solution to equations (1) and (2) are 
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By applying the direct formulation of the boundary 
integral equations to equations (1) and (2), we obtain 

The integral equation for region 1Ω  is 
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The integral equation for region 2Ω  is 
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where nr  is the outward pointing normal as shown in Fig. 
1, S  is the boundary surface separating 1Ω  and 2Ω , and 
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The potential 1ϕ  and 2ϕ  must satisfy the following 
boundary conditions. 
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where or S∈
r . 

Substitute (7) and (8) into (5) and (6), we obtain 
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Equations (9) and (10) can be used to compute 1ϕ  and 

1

n
ϕ∂

∂
 on the boundary surface S . 

 

 

3. NUMERICAL SOLUTION 

3.1 Discretization Method 
A standard piecewise-constant centroid collocation 

scheme is used to discretize (9) and (10).  The boundary 
surface S  is discretized into N  elements jS  and the 

midpoint of each element ir
r  is chosen as the collocation 

point.  This results in the following 2N system of 
equations. 
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where 
jS∫ corresponds to an integration over jth element.  

 

4. COMPUTATIONAL RESULTS 
In this paper, the problem being considered has a 

cylindrical geometry.  Therefore, the original 3D problem 
can be simplified into a 2D problem.  The simulation 
results for 2 test cases are presented below.  First, a 
hypothetical cylindrical molecule with a unit charge at the 
centre of the molecule is considered.  It is then followed by 
considering a hypothetical cylindrical molecule with a unit 
dipole around the centre of the molecule. 
 

4.1 Potential of a hypothetical cylindrical molecule 
with a unit charge 

A hypothetical cylindrical molecule of radius a  with a 
unit charge located at the centre of the molecule in a 
solution is simulated. The case where 1 1ε = , 2 20ε =  and 

1/D aκ =  is considered.  The potential at the radial 
distance 0.5Cr a= , 0.9Cr a= , Cr a= and 1.1Cr a=  is 
tabulated in Table 1. 
 

4.2 Potential of a hypothetical cylindrical molecule 
with a unit dipole 

A hypothetical cylindrical molecule of radius a  with a 
unit dipole around the centre of the molecule in a solution 
is simulated. The case where 1 1ε = , 2 20ε =  and 

1/D aκ =   is considered.  The locations of the unit dipole 
and the locations of the point where the potential is to be 
evaluated is shown in Fig. 2.  The values of these 
potentials are tabulated in Table 2. 
 



 
 

 

 
N  (Number of elements) Potential 

50 100 200 
0.5Cr a=  0.1168367 0.1169774 0.1170018 

0.9Cr a=  0.0232880 0.0234282 0.0234527 

Cr a=  0.0096749 0.0096089 0.0095776 

1.1Cr a=  0.0058682 0.0058344 0.0058170 
Table 1: Potential of a hypothetical cylindrical molecule 
with a unit charge 
 
 

 
Fig. 2: Location of the unit dipoles and the points where 
the potential is to be evaluated 
 
 

N  (Number of elements) Potential 
50 100 200 

0.5Cr a=  0.0494663 0.0495021 0.0495109 

0.9Cr a=  0.0083473 0.0084118 0.0084278 

Cr a=  0.0031264 0.0031237 0.0031231 

1.1Cr a=  0.0015498 0.0015483 0.0015480 
Table 2: Potential of a hypothetical cylindrical molecule 
with a unit dipole 
 
 

5. CONCLUSION 
In this paper, a 2D numerical simulation to the mixed 

discrete-continuum model of the biomolecular 
electrostatics based on boundary integral equation 
approach is presented.  Some computational results are 
presented to show the effectiveness of such model.  More 
work is required to extend the simulation to the 3D case 
which allows the simulation of a real biomolecular 
structure.  However, the tradeoff is that the problem size 
will become much larger.  Thus, it is necessary to develop 
a faster and more memory-efficient numerical algorithm. 
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