
Survival Techniques for Computer Programs
Martin Rinard

MIT Computer Science and Artificial Intelligence Laboratory
Singapore-MIT Alliance

32 Vassar Street, 32-G744
Cambridge, MA 02139

Abstract— Programs developed with standard techniques often
fail when they encounter any of a variety of internal errors. We
present a set of techniques that prevent programs from failing
and instead enable them to continue to execute even after they
encounter otherwise fatal internal errors. Our results indicate
that even though the techniques may take the program outside
of its anticipated execution envelope, the continued execution
often enables the program to provide acceptable results to their
users. These techniques may therefore play an important role in
making software systems more resilient and reliable in the face
of errors.

I. I NTRODUCTION

One of the primary reasons that software systems fail is
that one of their components encounters an internal error
and stops executing. Another important source of failures is
exhaustion of resources. The usual consequence of these kinds
of failures is that the software system becomes unable to
provide acceptable service to its users.

One standard response to this situation is to attempt to
eliminate as many errors as possible from the program.
Traditional approaches have included debugging tools that
help programmers locate the root cause of the unaccepable
behavior [20]. More recently many researchers have focused
on dynamic and static analyses that may provide insight into
various aspects of the behavior of the program or flag errors
in the program [14], [7], [19], [16], [9], [28], [27], [23], [15],
[12], [17], [18].

In this paper we discuss an alternative and complementary
approach — namely, techniques that enable programs to
survive various internal errors and continue to execute [25],
[24], [10], [11], [22]. Ideally, the continued execution will
enable the program to provide acceptable, if in some cases
degraded, service to its users. In comparison with standard
approaches, which focus on detecting errors, this approach
has several advantages:

• Acceptable Behavior for New Errors: It may enable
a deployed program to continue to execute acceptably
without human intervention even when it encounters
a previously unknown and otherwise fatal error. This
advantage may be especially important for hard real-time
programs that control unstable physical phenomena —
if the program stops executing, the larger system will
usually encounter a disastrous failure.

• Reduced Programmer Effort: It may eliminate the
need to invest the programmer time and effort otherwise
required to find and eliminate the error that caused the

program to fail. This property may become especially
important when the original development team has moved
on to other projects or is unavailable for some other
reason.

• Fewer Introduced Errors: Any time a programmer
modifies the program, there is a substantial chance that
the modification may introduce new errors. Even if the
modification is correct, it may still damage the design
of the program. Techniques that allow programs to au-
tomatically recover from internal errors without source
code modifications may therefore result in systems with
fewer errors and better design.

Our focus is on enabling the program to productively
continue regardless of any internal errors it may happen to
encounter. We have developed a range of techniques, each
suited to a specific class of errors:

• Failure-Oblivious Computing: Failure-oblivious com-
puting is designed to enable programs to survive other-
wise fatal addressing errors. The basic idea is to perform
bounds checks for each access to memory. If the program
attempts to perform an out of bounds write, the technique
simply discards the write, thereby preventing any corrup-
tion of unrelated data. If the program attempts to perform
an out of bounds read, the technique manufactures a
new value, hands it back to the program as the result
of the read, and the program continues to execute along
its normal execution path. The net result is that out of
bounds accesses no longer cause the program to throw
an exception or terminate.

• Cyclic Memory Allocation: Programs with memory
leaks may fail because they exhaust the available memory
resources. There is a simple strategy that is guaranteed to
eliminate any memory leak — simply create a fixed-size
buffer to hold objects allocated at the leaking site, then
allocate objects cyclically out of that buffer. Instead of
growing as the program executes, the amount of memory
required to hold objects allocated at that site is fixed at the
size of the buffer when the program begins its execution.
It is possible to generalize this technique to eliminate
other kinds of resource leaks such as file handle leaks.

• Bounded Loops: Infinite loops are another form of
resource exhaustion - the infinite loop consumes the
program counter resource, preventing flow of control
from reaching other parts of the program. It is possible
to eliminate infinite loops by simply imposing an upper

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4396105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


bound on the number of iterations that any loop is allowed
to execute. One way of obtaining such bounds is to per-
form several training executions of the program running
on several inputs, observe the number of iterations that
each loop executes, then bound the number of iterations
for each loop at some function of the largest number of
iterations observed during the training executions.

• Data Structure Repair: Many programs rely on their
data structures to satisfy key consistency properties.
When errors cause these data structures to become in-
consistent, it can be difficult for the program to continue
successfully. Data structure repair is a technique that de-
tects and eliminates any violations of the key consistency
properties. It can enable programs to execute successfully
in the face of otherwise fatal data structure corruption
errors.

One potential issue with all of these techniques is that they
keep the program executing, but in a way that the programmer
almost certainly did not anticipate. This raises the possibility
that the program may exhibit unanticipated or unacceptable
behavior. We investigate this issue empirically by applying
these techniques and observing the resulting behavior of the
program.

II. FAILURE-OBLIVIOUS COMPUTING

The basic idea behind failure-oblivious computing is to
transform the program so that it simply ignores any memory
errors and continues to execute normally. Specifically, if the
program attempts to read an out of bounds array element
or use an invalid pointer to read a memory location, the
implementation can simply (via any number of mechanisms)
manufacture a value to supply to the program as the result
of the read, and the program can continue to execute with
that value. Similarly, if the program attempts to write a value
to an out of bounds array element or use an invalid pointer
to write a memory location, the implementation can simply
discard the value and continue. We call a computation that
uses this strategy afailure-obliviouscomputation, since it is
oblivious to its failure to correctly access memory.

Our current implementation of this technique uses a com-
piler to perform this transformation. For languages such as
Java, whose implementations already perform the required
bounds checks, it is straightforward to replace the out of
bounds exception code with the code that discards writes or
manufactures values for reads as appropriate. For languages
such as C, whose implementations typically do not perform
bounds checks, it may possible to build on a special imple-
mentation that already has the checks built in [29], [26]. In
our case, we used such a compiler to obtain a failure-oblivious
version of C.

It is not immediately clear what will happen when a program
uses this strategy to execute through a memory error. We
therefore obtained some C programs with known memory
errors, and observed the execution of failure-oblivious versions
of these programs. Here is a summary of our observations [25],
[24]:

• Acceptable Continued Execution:We targeted memory
errors in servers that correspond to security vulnerabilities

as documented at vulnerability tracking web sites [5],
[4]. All of these servers share a common computational
pattern: they accept a request, perform the requested
computation, send the result back to the requestor, then
proceed on to service the next request.
For all of our tested servers, failure-oblivious computing
1) eliminates the security vulnerability and 2) enables
the server to execute through the error to continue on to
successfully process subsequent requests.

• Acceptable Performance: Failure-oblivious computing
entails the insertion of dynamic bounds checks into the
compiled program. Previous experiments with C com-
pilers that generate code containing bounds checks have
indicated that these checks usually cause the program to
run less than a factor of two slower than the version
without checks, but that in some cases the program may
run as much as eight to twelve times slower [29], [26].
Our results are consistent with these previous results.
Note that many of our servers implement interactive com-
putations for which the appropriate performance measure
is the observed pause times for processing interactive re-
quests. For all of our interactive servers, the application of
failure-oblivious computing does not perceptibly increase
the pause times.

An obvious question is why failure-oblivious computing
produced these results.

A. Reason for Successful Execution

Memory errors can damage a computation in several ways:
1) they can cause the computation to terminate with an
addressing exception, 2) they can cause the computation to
become stuck in an infinite loop, 3) they can change the flow
of control to cause the computation to generate a new and
unacceptable interaction sequence (either with the user or with
I/O devices), 4) they can corrupt data structures that must be
consistent for the remainder of the computation to execute
acceptably, or 5) they can cause the computation to produce
unacceptable results.

Because failure-oblivious computing intercepts all invalid
memory accesses, it eliminates the possibility that the com-
putation may terminate with an addressing exception. It is
still possible for the computation to infinite loop, but we
have found a sequence of return values for invalid reads that,
in practice, appears to eliminate this problem for our server
programs. Our servers have simple interaction sequences —
read a request, process the request without further interaction,
then return the response. As long as the computation that
processes the request terminates, control will appropriately
flow back to the code that reads the next request and there will
be no unacceptable interaction sequences. Discarding invalid
writes tends to localize any memory corruption effects. In
particular, it prevents an access to one data unit (such as
a buffer, array, or allocated memory block) from corrupting
another data unit. In practice, this localization protects many
critical data structures (such as widely used application data
structures or the call stack) that must remain consistent for the
program to execute acceptably.



The remaining issue is the potential production of unaccept-
able results. Manufacturing values for reads clearly has the
potential to cause a subcomputation to produce an incorrect
or unexpected result. The key question is how (or even if)
the incorrect or unexpected result may propagate through the
remaining computation to affect the overall results of the
program.

All of our initially targeted memory errors eventually boil
down to buffer-overrun problems: as it processes a request,
the server allocates a fixed-size buffer, then (under certain
circumstances) fails to check that the data actually fits into
this buffer. An attacker can exploit this error by submitting a
request that causes the server to write beyond the bounds of the
buffer to overwrite the contents of the stack or heap, typically
with injected code that the server then executes. Such attacks
are currently the most common source of exploited security
vulnerabilities in modern networked computer systems [1].
Estimates place the total cost of such attacks in the billions of
dollars annually [2].

Failure-oblivious computing makes a server invulnerable to
this kind of attack — the server simply discards the out of
bounds writes, preserving the consistency of the call stack and
other critical data structures. For two of our servers the mem-
ory errors occur in computations and buffers that are irrelevant
to the overall results that the server produces for that request.
Because failure oblivious computing eliminates any addressing
exceptions that would otherwise terminate the computation,
the server executes through the irrelevant computation and
proceeds on to process the request (and subsequent requests)
successfully. For the other servers (in these servers the memory
errors occur in relevant computations and buffers) , failure-
oblivious computing converts the attack request (which would
otherwise trigger a dangerous, unanticipated execution path)
into an anticipated invalid input which the server’s standard
error-handling logic rejects. The server then proceeds on to
read and process subsequent requests acceptably.

One of the reasons that failure-oblivious computing works
well for our servers is that they have short error propagation
distances — an error in the computation for one request
tends to have little or no effect on the computation for
subsequent requests. By discarding invalid writes, failure-
oblivious computing isolates the effect of any memory errors
to data local to the computation for the request that triggered
the errors. The result is that the server has short data error
propagation distances — the errors do not propagate to data
structures required to process subsequent requests. The servers
also have short control flow error propagation distances: by
preventing addressing exceptions from terminating the compu-
tation, failure-oblivious computing enables the server to return
to a control flow path that leads it back to read and process
the next request. Together, these short data and control flow
propagation distances ensure that any effects of the memory
error quickly work their way out of the computation, leaving
the server ready to successfully process subsequent requests.

B. Scope

Our expectation is that failure-oblivious computing will
work best with computations, such as servers, that have

short error propagation distances. Failure-oblivious computing
enables these programs to survive otherwise fatal errors or
attacks and to continue on to execute and interact acceptably.
Failure-oblivious computing should also be appropriate for
multipurpose systems with many components — it can prevent
an error in one component from corrupting data in other
components and keep the system as a whole operating so
that other components can continue to successfully fulfill their
purpose in the computation.

Until we develop technology that allows us to track results
derived from computations with memory errors, we anticipate
that failure-oblivious computing will be less appropriate for
programs (such as many numerical computing programs) in
which a single error can propagate through to affect much of
the computation. We also anticipate that it will be less appro-
priate for programs in which it is acceptable and convenient
to terminate the computation and await external intervention.
This situation occurs, for example, during development —
the program is typically not producing any useful results
and developers with the ability and motivation to find and
eliminate any errors are readily available. We therefore see
failure-oblivious computing as useful primarily for deployed
programs whose users 1) need the results that the program
produces and 2) are unable or unwilling to tolerate failures or
to find and fix errors in the program.

III. C YCLIC MEMORY MANAGEMENT

The most straightforward application of cyclic memory
management applies tom-bounded allocation sites (an alloca-
tion site is a location in the program, such as a call tomalloc
or a new construct, that allocates memory), which satisfy the
property that, at any time during the execution of the program,
the program accesses at most only the lastm objects allocated
at that site. For such allocation sites, the memory manager can
simply allocate a buffer large enough to holdm of the objects
allocated at that site. For each allocation, it simply returns the
next object in the buffer, wrapping around when it reaches the
end of the buffer.

To use cyclic memory management, the memory manager
must somehow findm-bounded allocation sites and obtain
a boundm for each such site. Our implemented technique
findsm-bounded sites and estimates the boundsm empirically.
Specifically, it runs an instrumented version of the program on
a sequence of sample inputs and records, for each allocation
site and each input, the boundm observed at that site for
that input. Note that in any single execution, every allocation
site has a boundm (which may be, for example, simply the
number of objects allocated at that site). If the sequence of
observed bounds stabilizes at a valuem, we assume that the
allocation site ism-bounded and use cyclic allocation for that
site.

One potential concern is that the boundm observed while
processing the sample inputs may, in fact, be too small: other
executions may access more objects than the lastm objects
allocated at the site site. In this case the program may overlay
two different live objects in the same memory, potentially
causing the program to generate unacceptable results or even
fail.



To evaluate our technique, we implemented it and applied
it to several sizable programs drawn from the open-source
software community. We obtained the following results [22]:

• Memory Leak Elimination: Several of our programs
contain memory leaks atm-bounded allocation sites.
Moreover, some of these memory leaks make the pro-
grams vulnerable to denial of service attacks — certain
carefully crafted requests cause the program to leak mem-
ory every time is processes the request. By presenting the
program with a sequence of such requests, an attacker can
cause the program to exhaust its address space and fail.
Our technique is able to identify these sites, apply cyclic
memory allocation, and effectively eliminate the memory
leak (and the denial of service attack).

• Accuracy: We evaluate the accuracy of our empirical
bounds estimation approach by running the programs on
two sets of inputs: a training set (which is used to estimate
the bounds) and a larger validation set (which is used to
determine if any of the estimated bounds is too small).
Our results show that this approach is quite accurate: the
validation runs agree with the training runs on all but
one of the 160 sites that the training runs identify asm-
bounded.

• Reliability: We also performed a long-term test of the
reliability of two of our programs (Squid and Pine)
by installing them as part of our standard computing
environment. In several months of usage, we observed
no deviations from the correct behavior of the programs.

• Impact of Cyclic Memory Allocation: In all but one
of the programs, the bounds estimates agree with the
values observed in the validation runs and the use of
cyclic memory allocation has no effect on the observable
behavior of the program (other than eliminating memory
leaks). Even for the one program with a single bounds
estimation error, the resulting overlaying of live objects
has no effect on the externally observable behavior of the
program during our validation runs. Moreover, an analysis
of the potential effect of the overlaying indicates that it
will neverimpair the overall functionality of the program.

• Bounds Reduction Effect:To further explore the poten-
tial impact of an incorrect bounds estimation, we artifi-
cially reduced the estimated bounds at eachm-bounded
site withm > 1 and observed the effect that this artificial
reduction had on the program’s behavior. In some cases
the reduction did not affect the observed behavior of the
program at all; in other cases it impaired some of the
program’s functionality. But the reductions never caused a
program to fail and in fact left the program able to execute
code that accessed the overlaid objects to continue on to
acceptably deliver the remaining functionality.

A. Squid

We illustrate how our technique works by discussing its
application to the Squid Web proxy cache [6]. Squid supports
a variety of protocols including HTTP, FTP, and, for manage-
ment and administration, SNMP. We performed our evaluation
with Squid Version 2.4STABLE3, which consists of 104,573
lines of C code.

Squid has a memory leak in the SNMP module; this memory
leak makes squid vulnerable to a denial of service attack [3].
Our training runs indicate that the allocation site involved in
the leak is anm-bounded site withm=1. The use of cyclic
allocation for this site eliminates the leak.

For Squid, the training runs find a total of threem-bounded
allocation sites withm greater than one. To better evaluate the
potential effects that might result from an incorrect estimate
of the boundsm, we artificially reduce reduce the bounds at
these sites, run the program, and observe the results.

The first site we consider holds metadata for cached HTTP
objects; the metadata and HTTP objects are stored separately.
When we reduce the boundm at this site from 3 to 2, the
MD5 signature of one of the cached objects is overwritten by
the MD5 signature of another cached object. When Squid is
asked to return the original cached object, it determines that
the MD5 signature is incorrect and refetches the object. The
net effect is that some of the time Squid fetches an object even
though it has the object available locally; an increased access
time is the only potential effect.

The next site we consider holds the command field for the
PDU structure, which controls the action that Squid takes in
response to an SNMP query. When we reduce the boundm
from 2 to 1, the command field of the structure is overwritten
to a value that does not correspond to any valid SNMP query.
The procedure that processes the command determines that
the command is not valid and returns a null response. The net
effect is that Squid is no longer able to respond to any SNMP
query at all. Squid still, however, processes all other kinds of
requests without any problems at all.

The next site we consider holds the values of some SNMP
variables. When we reduce the boundm from 2 to 1, some
of these values are overwritten by other values. The net effect
is that Squid sometimes returns incorrect values in response
to SNMP queries. Squid’s ability to process other requests
remains completely unimpaired.

These results illustrate that if cyclic memory allocation
overlays live data, the program may lose part of its function-
ality. Nevertheless, the technique enables Squid to continue to
execute to provide its users with the remaining functionality.
In particular, cyclic memory allocation eliminates the memory
leak that otherwise makes Squid vulnerable to a denial of
service attack.

B. Usage Scenarios

Our results indicate that cyclic memory allocation with
empirically estimated bounds may provide a simple, intrigu-
ing alternative to the use of standard memory management
approaches form-bounded sites. It eliminates the need for
the programmer to either explicitly manage allocation and
deallocation or to eliminate all references to objects that the
program will no longer access. Unlike previously proposed
approaches [18], [13], [8], [14], [7], [19], [16], [9], [28],
that simply identify leaks and rely on the programmer to
modify the program to eliminate any detected memory leaks,
it automatically eliminates the leak without the need for any
programmer intervention. Unlike approaches that analyze ob-
ject reachability to reason indirectly about memory leaks [18],



[13], [14], [7], [19], [16], [9], [28]; it reasons about the
accesses that the program performs and is therefore capable of
recognizing and eliminating leaks even when the leaked object
remains reachable. It is therefore appropriate for both garbage
collected languages and languages with explicit memory man-
agement. One particularly interesting aspect of our results is
the indication that it is possible, in some circumstances, to
overlay live objects without unacceptably altering the behavior
of the program.

We anticipate that our technique will be prove to be most
useful for eliminating leaks in deployed programs, especially
when the original developers are not easily available or respon-
sive. Because it is automatic, the technique can successfully
eliminate leaks without requiring anyone to understand and
modify the program. It is also possible to apply the technique
directly to stripped binaries, making it possible to eliminate
leaks even when there is no realistic possibility of under-
standing the program or modifying its source. In this kind
of scenario, it is hard to imagineany technique that requires
programmer intervention successfully eliminating the leak.

During active development, programmers may prefer to use
the extracted memory access information to find leaks that they
then eliminate by modifying the program source. Or, if they
convince themselves that the boundsm are accurate, they can
simply use cyclic memory management at the corresponding
allocation sites. Note that this last alternative can significantly
reduce the programming burden — it eliminates the need
for the programmer to explicitly deallocate objects allocated
at m-bounded allocation sites (if the program uses explicit
allocation and deallocation) or to track down and eliminate all
references to objects that the program will not access in the
future (if the program uses garbage collection).

C. Other Resource Leaks

It is, of course, possible for programs to leak other resources
such as file descriptors or processes. These kinds of leaks
can have equally disabling effects — a program that exhausts
its supply of file descriptors may be unable to write an
output file or create a socket to write a result to a client;
a server that exhausts its supply of processes may be unable
to spawn a thread to service an incoming request. It would
be straightforward to generalize the memory leak elimination
technique in this paper to eliminate these kinds of resource
leaks as well — the program could respond to its inability
to allocate a new file descriptor or process by simply reusing
an existing file descriptor or process. Potential options include
cyclic and least-recently-used reallocation.

D. Risk/Reward Analysis for Unsound Transformations

To take a broader perspective, the research suggests that the
field may well benefit from exploring a new class of program
transformation techniques that trade off soundness in return for
other benefits (such as the elimination of memory leaks). In
such cases, as with any engineering tradeoff, one must perform
a risk/reward analysis to determine if the reward outweighs
the risks. Our results indicate that the risks for cyclic memory
allocation are apparently quite small. Specifically, they indicate

that the bounds estimation technique is quite accurate and that
the consequences of overlaying live data are usually not too
serious. In contrast, the rewards can be significant. Specifically,
cyclic memory allocation can eliminate memory leaks that
could otherwise limit the lifetime of the program and leave
it vulnerable to denial of service attacks. Our expectation is
that, over time, researchers will develop many other unsound
program transformations for which the rewards (potentially
far) outweigh the risks.

IV. B OUNDED LOOPS

The basic idea behind bounded loops is to eliminate the
possibility that the program counter may get trapped in an
infinite loop and fail to move on to service other parts of
the program that need to execute for the program to produce
acceptable results.

One way to eliminate this possibility is to simply bound
the maximum number of iterations any loop is allowed to
consume. One way to obtain the bounds is to observe previous
terminating executions of the loop and apply a safety factor
— in other words, keep track of the maximum number of
iterationsi each loop has been previously observed to execute,
then bound the number of permitted loop iterations atc × i
for some appropriate constantc.

Note that some programs contain a few loops that are
intended to execute without any specific bound on the number
of iterations. The main event-processing loop in many servers,
for example, usually executes without any specific bound. For
such loops, the programmer can simply provide an annotation
that indicates that the loop should be given whatever number
of annotations it wishes without bound.

The remaining question is what bound to use for loops that
have no previously observed bound. While there are a variety
of strategies one can imagine using, it seems likely that the
number of iterations is likely to be correlated throughout the
program. So one reasonable bound might, for example, be the
sum over all the loops in the program of the largest number of
observed iterations for that loop multiplied by an appropriate
constant.

V. DATA STRUCTUREREPAIR

The previously discussed techniques (failure-oblivious com-
puting, cyclic memory allocation, and bounded loops) are
designed to apply to virtually any program in a relatively
program-independent manner. Data structure repair, however,
depends heavily on the data structure consistency constraints
in the particular program to which it is applied. Our basic
approach is to therefore take a specification of the desired
data structure consistency properties and enforce that speci-
fication. Note that our goal is not necessarily to restore the
data structures to the state in which a (hypothetical) correct
program would have left them (although in some cases our
system may do this). Our goal is instead to deliver repaired
data structures that satisfy the basic consistency assumptions
of the program, enabling the program to continue to operate
successfully within its designed operating envelope.



A. Basic Technical Approach

Our approach involves two data structure views: a concrete
view at the level of the bits in memory and an abstract view
that models the data structures as sets of objects and relations
between the objects in those sets [10], [11]. The abstract
view facilitates both the specification of higher level data
structure constraints (especially constraints involving linked
data structures) and the reasoning required to repair any
inconsistencies.

Each specification contains a set of model definition rules
and a set of consistency constraints. Given these rules and
constraints, our tool automatically generates algorithms that
build the model, inspect the model and the data structures
to find violations of the constraints, and repair any such
violations. The repair algorithm operates as follows:

• Model Translation: It applies the model definition rules
to obtain the abstract model of the data structures.

• Inconsistency Detection:It evaluates the constraints in
the context of the model to find consistency violations.

• Disjunctive Normal Form: It converts each violated con-
straint into disjunctive normal form; i.e., a disjunction of
conjunctions of basic propositions. Each basic proposition
has a repair action that will make the proposition true. For
the constraint to hold, all of the basic propositions in at
least one of the conjunctions must hold.

• Model Repair: The algorithm selects a violated con-
straint, chooses one of the conjunctions in that con-
straint’s normal form, then applies repair actions to all of
the basic propositions in that conjunction that are false.
A repair cost heuristic biases the system toward choosing
the repairs that perturb the existing data structures the
least.

• Concrete Repair: The repair algorithm applies goal-
directed reasoning to the model definition rules to come
up with a set of modifications to the concrete data
structures. This set of modifications implements the syn-
thesized model repairs.

• Repeat: Note that the repair actions for one constraint
may cause another constraint to become violated. The
algorithm therefore repeats the above steps until there
are no more violations.
To ensure that the repair process terminates, our technique
preanalyzes the set of constraints to ensure the absence
of cyclic repair chains that might result in infinite repair
loops. If a specification contains cyclic repair chains,
the tool attempts to prune conjunctions to eliminate the
cycles.

We have applied this technique to several programs. In
general, we have found that it enabled these programs to
execute successfully through otherwise fatal errors. We next
discuss some of our experience with two of these programs.

B. AbiWord

AbiWord is a full-featured word processing program avail-
able at www.abisource.com. It consists of over 360,000 lines
of C++ code, and can import and export many file formats
including Microsoft Word documents. It uses a piece table

data structure to internally represent documents. The piece
table contains a doubly-linked list of the document fragments.
A consistent piece table contains a reference to both the
head and the tail of the doubly linked list of document
fragments. A consistent fragment contains a reference to the
next fragment in the list and a reference to the previous
fragment in the list. Furthermore, a consistent list of fragments
contains both a section fragment and a paragraph fragment. We
developed a specification for the piece table data structure. Our
specification consists of 94 lines, of which 70 contain structure
definitions.

To reduce specification overhead, we developed a structure
definition extraction tool that uses debugging information in
the executable to automatically generate the structure defini-
tions. This tool works for any program that can be compiled
with Dwarf-2 debugging information. For AbiWord, we used
this tool to automatically generate all of the data structure
definitions. The total specification effort for this application
therefore consisted of 24 lines of model definition rules and
model constraints.

A bug in version 0.9.5 (and all previous versions) of
AbiWord causes AbiWord to attempt to append text to a
piece table which lacks a section fragment or a paragraph
fragment. This bug is triggered by importing certain valid
Microsoft Word documents, causing AbiWord to fail with a
segmentation violation when the user attempts to load the
document. We obtained such a document and used our system
to enhance AbiWord with data structure repair as described in
this paper. Our experimental results show that data structure
repair enables AbiWord to successfully open and manipulate
the document. Further inspection reveals that loading this
document causes AbiWord to attempt to append text to an
(inconsistent) empty fragment list. Our repair algorithm detects
the attempt to append text to the empty list and repairs the
inconsistency by adding a section fragment and a paragraph
fragment, breaking any cycles in the fragment list, connecting
the fragments using theirnext fields, pointing theprev field
of each fragment to the previous fragment, and redirecting the
head pointer to the beginning of the list and thetail pointer
to the end of the list. The result of this repair is that AbiWord
is able to successfully append the text to the list and continue
on to read and edit Word documents without the loss of any
information. Without repair, AbiWord fails as it attempts to
read in the document.

C. Parallel x86 emulator

The parallel x86 emulator is a software-based x86 emulator
that runs x86 binaries on the MIT RAW machine [21]. The
x86 emulator uses a tree data structure to cache translations
of the x86 code. To efficiently manage the size of the cache,
the emulator maintains a variable that stores the current size
of the cache. A bug in the tree insertion method, however,
causes (under some conditions) the cache management code
to add the size of the inserted cache item to this variable twice.
When this item is removed, its size is subtracted only once.
The net result of inserting and removing such an item is that
the computed size of the cache becomes increasingly larger



than the actual size of the cache. The end result is that the
emulator eventually crashes when it attempts to remove items
from an empty cache.

We developed a specification that ensures that the computed
size of the cache is correct. Our specification consists of 110
lines, of which 90 contain structure definitions. When the
repair system applies this specification to an instruction cache
with an inconsistent size, the net effect is to use redundant
information to recompute the correct size of the instruction
cache. We tested the impact of this repair by running the gzip
compression program on the x86 emulator. Without repair,
the emulator stops with a failed assertion. With repair, the
emulator successfully executes gzip.

VI. SYNERGY

We have observed that there is a significant amount of syn-
ergy that develops when the techniques are deployed together.
Specifically, we have observed that the continued execution
after the application of one kind of error recover technique
may contain other kinds of errors. So it is often beneficial to
apply the techniques together so that the program does not
recover from one kind of error only to fail when it encounters
another kind of error.

Cyclic memory allocation provides an interesting example
of how the techniques may interact. Overlaying objects can
easily cause the program to attempt to access out of bounds
memory locations or infinite loop. Applying techniques that
allow the program to recover from both of these kinds of errors
makes the application of cyclic memory management much
more robust [22].

VII. C ONCLUSION

Programs developed with standard techniques remain re-
markably brittle in the face of faults. We have described a
set of techniques that enable programs to continue to execute
through such errors. While these techniques may take the
program out of its anticipated operating envelope, our results
show that they often make it possible for the program to
continue on to provide acceptable results to its users. These
techniques may therefore become a key component of future
reliable and resilient software systems.

ACKNOWLEDGEMENTS

The research presented in this paper was supported, in part,
by the Singapore-MIT alliance, DARPA award FA8750-04-2-
0254, and NSF grants CCR00-86154, CCR00-63513, CCR00-
73513, CCR-0209075, CCR-0341620, and CCR-0325283.

REFERENCES

[1] CERT/CC. Advisories 2002.www.cert.org/advisories.
[2] CNN Report on Code Red.www.cnn.com/2001/TECH/internet/08/08/code.red.II/.
[3] CVE-2002-0069. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2002-0069.
[4] SecuriTeam website.www.securiteam.com.
[5] Security Focus website.www.securityfocus.com.
[6] Squid Web Proxy Cache website. http://www.squid-cache.org/.
[7] W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic,

programming errors.Software - Practice and Experience, 2000.

[8] T. Chilimbi and M. Hauswirth. Low-overhead memory leak detection
using adaptive statistical profiling. InProceedings of the 11th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, October 2004.

[9] A. Chou. Static Analysis for Bug Finding in Systems Software. PhD
thesis, Stanford University, 2003.

[10] B. Demsky and M. Rinard. Automatic detection and repair of errors in
data structures. InProceedings of the 20th Annual Conference on Object-
Oriented Programming Systems, Languages and Applications, Anaheim,
CA, October 2005.

[11] B. Demsky and M. Rinard. Data structure repair using goal-directed
reasoning. In27th International Conference on Software Engineering,
St. Louis, MO, May 2005.

[12] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-specific, programmer-written compiler extensions.
In Proceedings of the 6th USENIX Conference on Operating Systems
Design and Implementation, 2000.

[13] Cal Erikson. Memory leak detection in c++.Linux Journal, (110), June
2003.

[14] D. Evans. Static detection of dynamic memory errors. InProceedings of
the ACM SIGPLAN 1996 Conference on Programming Language Design
and Implementation, June 1996.

[15] Ovidiu Gheorghioiu, Alexandru Salcianu, and Martin Rinard. Inter-
procedural compatability analysis for static object preallocation. In
Proceedings of the 30th Annual ACM Symposium on Principles of
Programming Languages, January 2003.

[16] B. Hackett and R. Rugina. Region-based shape analysis with tracked lo-
cations. InProceedings of the ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL’05), January 2005.

[17] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A
system and language for building system-specific, static analyses. In
Proceedings of the SIGPLAN ’02 Conference on Program Language
Design and Implementation, 2002.

[18] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. InProceedings of the Winter USENIX Conference, 1992.

[19] D. Heine and M. Lam. A practical flow-sensitive and context-sensitive
C and C++ memory leak detector. InProceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and
Implementation, June 2003.

[20] Mark A. Linton. The evolution of dbx. InUSENIX Summer Technical
Conference, pages 211–220, 1990.

[21] M. B. Taylor et al. The Raw microprocessor: A computational fabric
for software circuits and general-purpose programs. InIEEE Micro,
Mar/Apr 2002.

[22] H. Nguyen and M. Rinard. Using cyclic memory allocation to eliminate
memory leaks. Technical Report MIT/LCS/TR-1008, Laboratory for
Computer Science, Massachusetts Institute of Technology, 2005.

[23] Ran Shaham, Eran Yahav, Elliot K. Kolodner, and Mooly Sagiv. Es-
tablishing Local Temporal Heap Safety Properties with Applications to
Compile-Time Memory Management. InThe 10th Annual International
Static Analysis Symposium (SAS ’03), June 2003.

[24] M. Rinard, C. Cadar, D. Dumitran, D. Roy, and T. Leu. A dynamic
technique for eliminating buffer overflow vulnerabilities (and other
memory errors). InProceedings of the 2004 Annual Computer Security
Applications Conference, Tucson, Arizona, December 2004.

[25] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and Jr. W. Beebee.
Enhancing server availability and security through failure-oblivious
computing. InProceedings of the 6th Symposium on Operating Systems
Design and Implementation, San Francisco, CA, December 2004.

[26] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer Overflow
Detector. InProceedings of the 11th Annual Network and Distributed
System Security Symposium, February 2004.

[27] R. Shaham, E. Kolodner, and M. Sagiv. Automatic removal of array
memory leaks in java. InProceedings of the International Conference
on Compiler Construction (CC ’00), March-April 2000.

[28] Y. Xie and A. Aiken. Context- and path-sensitive memory leak detection.
In Proceedings of ESEC/FSE 2005, September 2005.

[29] Suan Hsi Yong and Susan Horwitz. Protecting C Programs from Attacks
via Invalid Pointer Dereferences. InProceedings of the 9th European
software engineering conference held jointly with 10th ACM SIGSOFT
international symposium on Foundations of software engineering, 2003.


