

Global Data Computation in a Dedicated Chordal Ring

Xianbing WANG1 and Yong Meng TEO1,2

1 Singapore-MIT Alliance, National University of Singapore
2 Department of Computer Science, National University of Singapore

 Abstract — Existing Global Data Computation (GDC)
protocols for asynchronous systems are designed for fully
connected networks. In this paper, we discuss GDC in a
dedicated asynchronous chordal ring, a type of un-fully
connected networks. The virtual links approach, which
constructs t+1 (t<n) process-disjoint paths for each pair of
processes without direct connection to tolerate failures (where t
is the maximum number of processes that may crash and n is
the total number of processes), can be applied to solve the GDC
problem in the chordal but the virtual links approach incurs
high message complexity. To reduce the high communication
cost, we propose a non round-based GDC protocol for the
asynchronous chordal ring with perfect failure detectors. The
main advantage of our approach is that there is no notion of
round, processes only send messages via direct connections and
the implementation of failure detectors does not require
process-disjoint paths. Analysis and comparison with the virtual
links approach shows that our protocol reduces the message
complexity significantly.

Index Terms — data computation, chordal rings, perfect

failure detector.

I. INTRODUCTION
n a distributed computation, a Global Data (GD) is a
vector with one entry being filled with an appropriate

value proposed by the corresponding process. The problem
of computing a global data and providing each process
with a copy, defines the Global Data Computing (GDC)
problem [4, 8]. The problem can be more precisely
defined as: In a distributed system with n processes, let
GD[0..n−1] be a vector data with one entry per process and
let vi denotes the value provided by pi to fill its entry of the
global data. The GDC problem consists of building GD
and providing a copy of it to each process. Let GDi denotes
the local variable of pi to contain the local copy of GD. The
problem is formally specified by a set of four properties as
following. Let ⊥ be a default value that will be used

instead of the value v

X.B. Wang is with the Department of Computer Science, School of

Computing, 3 Science Drive 2, National University of Singapore,
Singapore 117543, and Singapore-MIT Alliance, 4 Engineering Drive 3,
National University of Singapore, Singapore 117576, and is on leave from
Computer center, School of Computer, Wuhan University, China 430072
(e-mail: wangxb@comp.nus.edu.sg).

Y.M. Teo is with the Department of Computer Science, School of
Computing, 3 Science Drive 2, National University of Singapore,
Singapore 117543, and Singapore-MIT Alliance, 4 Engineering Drive 3,
National University of Singapore, Singapore 117576 (e-mail:
teoym@comp.nus.edu.sg).

j when the corresponding process pj
fails prematurely. These properties are [8]:
• Termination: Eventually, every correct process pi

decides a local vector GDi.
• Validity: No spurious initial value. ∀i: if pi decides GDi

then (∀j: GDi[j]∈{vj, ⊥}).
• Agreement: No two processes decide different Global

Data. ∀i,j: if pi decides GDi and pj decides GDj then
(∀k: GDi[k] = GDj[k]).

• Obligation: If a process decides, its initial value belongs
to the Global Data. ∀i: if pi decides GDi then (GDi[i] =
vi).
According to the well-known FLP consensus

impossibility result [6], the GDC problem has no
deterministic solution in an asynchronous distributed
system with process crash failures. To circumvent the
impossibility problem, perfect failure detectors defined by
Chandra and Toueg [3] is used in a GDC protocol to
tolerate crash failures (when a process crashes, it stops
prematurely and remains crashed forever) for
asynchronous distributed systems [8]. The GDC protocol
proposed in [8] terminates in min(2f + 2, t + 1)
asynchronous computation rounds where f is the number of
processes actually crash in an execution. The GDC
protocol is extended to improve the lower bound to min(f +
2, t + 1, n) in [4]. However, both GDC protocols are based
on an assumption that there is a communication channel
connecting each pair of processes and channels are reliable.
This means the distributed systems are fully connected.

In this paper, we show the first step to solve the GDC
problem in a type of un-fully connected networks: chordal
rings. Chordal rings introduce link redundancy to improve
the reliability of ring networks. With alternate paths
between processes, the network can sustain several
processes and links failures. A chordal ring Cn 〈d1, d2, …,
dk〉 of size n and a chord structure 〈d1, d2, …, dk〉 is a ring
Rn consisting of n processors {p0, p1, …, pn−1}, in which
each processor is connected to other processors at distance
(calculated in clockwise direction) d1, d2, …, dk, n − dk, …,
n − d2, n − d1 by additional incident chords [14]. Figure 1
shows a chordal ring, C16 〈4〉. Rings and complete graphs
are chordal rings, denoted as Cn 〈 〉 and Cn 〈2, 3, …, ⎣n /
2⎦〉, respectively.

Existing GDC protocols designed for fully connected
systems can be used to solve the GDC problem in un-fully
connected systems by adopting a virtual links solution to
achieve reliable communication despite possible faults in

I

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4396088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

any pair of processes without direct connection. The virtual
links approach was initially proposed to solve consensus
problem (a consensus problem is for a group of processes
to achieve agreement in distributed systems with failures, a
GDC problem can be regarded as a special consensus
problem in which processes are required to agree on a
global data.) for un-fully connected networks [12, 18], in
which k-connected networks are considered. G(V, E)
represents a undirected graph G with its vertex set V and
edge set E, where an edge eij ∈ E is a unordered pair (vi vj),
and vi, vj ∈ V. A vertex cut of G(V, E) is a subset Vc ⊂ V,
such that G − Vc has more than one component. G is said to
be a k-connected graph if min | Vc | = k. According to
Menger’s theorem, G is k-connected iff there exists k
disjoint paths between any two vertices of G, and there is
no intermediate vertex on these k disjoint paths which will
appear twice [18]. The virtual links solution is to establish
a virtual link for each pair of processes by constructing t +
1 disjoint paths between the two processes, which is a
method of achieving reliable communication despite
possible faults in relaying processes [12], then the
consensus problem in the k-connected topology can be
solved by existing consensus protocols designed for fully
connected systems. How to construct disjoint paths to
establish virtual links can be found in [16].

1
2

3

4

5

6

7

8

0

15

14

13

12

11

10 9
Figure 1. C16 〈4〉 Chordal Ring

An un-fully connected chordal ring, Cn 〈d1, d2, …, dk〉
with 2k different chords, is a (2k + 2)-connected networks,
because Cn 〈d1, d2, …, dk〉 is still a connected graph after
deleting any 2k + 1 nodes. The dedicated chordal ring
considered in this paper is Cn 〈2, …, ⎣(t + 1) / 2⎦ 〉 which is
a (2⎣(t + 1) / 2⎦)-connected networks, where t (2 < t < n −
1) is the number of failures that can be tolerated. If t is 1,
the considered chordal ring is Cn 〈 〉, and when t is 2, the
considered chordal ring is Cn 〈2〉. In this model, when t ≥ n
− 2 and n is even, Cn 〈2, …, ⎣(t + 1) / 2⎦ 〉 is fully
connected; when t ≥ n − 3 and n is odd, Cn 〈2, …, ⎣(t + 1) /
2⎦ 〉 is fully connected. We can establish virtual links for
each pair of processes in the dedicated un-fully connected
chordal ring, then the GDC problem in the dedicated
chordal ring can be solved by the round-based GDC

protocols in [8, 4].
The shortcoming of the virtual links approach is the high

message complexity incurred. In each round, the number of
messages increases significantly because it relies on the use
of disjoint-paths. In the asynchronous systems, another
important issue is how to implement failure detectors.
There are two methods: 1) use virtual links for each pair of
processes to detect each other’s crash by adopting
traditional implementation scheme [3]; 2) use gossip-style
failure detection service [15], after a process detect one
neighbor’s crash, it multicasts the crash information to all
its neighbors. It is obvious that both methods incur many
redundant messages.

To reduce the message overhead, we propose a non
round-based GDC protocol for the dedicated asynchronous
chordal ring that has no notion of round, processes only
send messages via direct connections and the
implementation of failure detectors does not require
process-disjoint paths. Non round-based GDC protocol is
first introduced in [17] for fully connected asynchronous
distributed systems with perfect failure detectors. In this
paper, we propose a protocol where every process just
needs to detect its neighbor’s failures and is not required to
multicast failures. Analysis and comparison with virtual
links solution shows that our protocol reduces the message
complexity significantly.

The rest of this paper is organized as follows. Section II
introduces the system model. Section III describes our
proposed non-round GDC protocol for the dedicated
asynchronous chordal ring. In section IV we present the
correctness proof of the proposed protocol. Section V
analyzes the message complexity and compares it with the
virtual links solution. Section VI concludes the paper with
a discussion of future works.

II. SYSTEM MODEL
An asynchronous chordal ring Cn 〈2, …, ⎣(t + 1) / 2⎦ 〉

consist of n processes tolerating at most t failures, ∏={p0,
…, pn−1}, where 2 < t < n − 1. When t is 1, the chordal ring
is Cn 〈 〉, and when t is 2, the chordal ring is Cn 〈2〉. There is
no shared memory in the system and processes exchange
messages by ring edges and chords. Channels are reliable,
i.e., no spurious messages, no loss and no corruption but
need not be FIFO. Moreover, process speeds and
communication delays are arbitrary. For any pair of
processes pi and pj, they are neighbors of each other if
there is a ring edge or a chord connecting pi and pj. We
denote the set of all neighbors of pi as ∏i.

The failure model considered is the crash failure model.
When a process crashes, it definitely stops its activity and
does nothing else [11]. In the asynchronous chordal rings,
each process pi is equipped with a failure detector module.
This module provides pi with a set of variables called
suspectedi that contains the identities of the neighbors that
is assumed to have crashed. Process pi can only read this

set of variables, which is continuously updated by the
module. If pj ∈ suspectedi, we say that “pi suspects pj”.
Otherwise, pi regards pj as an alive neighbor. According to
the quality of guesses made by failure detector modules,
eight classes of failure detectors can be defined [3]. In this
paper, we use perfect failure detector [2, 8], in which no
guess is mistaken. It is defined by the following properties:
• Completeness: Eventually, every process which crashes

is suspected by every correct process.
• Accuracy: No process is suspected before it crashed.

How to realize the perfect failure detector is mentioned
in [8].

III. THE NON ROUND BASED PROTOCOL

A. Underlying Principle
The underlying principle of the protocol is shown in

Figure 2. Initially, each process creates and sends two
messages to collect votes from other processes. One
message is sent in the clockwise direction, called RIGHT
message, and another is sent in the anti-clockwise
direction, called LEFT message. Each process resends
received messages in the same direction after exchanging
information with these messages (each process maintains a
local GD, and every message carries a copy of the local
GD’, when a message arrives on a process, the process
combines the two GDs. The pseudocode for the exchange
progress is: For each i (0 ≤ i ≤ n −1) if GD’[i] ≠ ⊥ then let
GD[i] = GD’[i] endif; let GD’ = GD;). When one message
returns to its creator, the message must have traversed all
correct processes. When a process detects that the two
messages created by itself return, it decides its local GD
and sends its decision to all alive neighbors, then
terminates the algorithm.

 The path of message(i, LEFT)

The path of message(i, RIGHT)

Message received
in anti-clockwise

Message received
in clockwise

Resends Message to
leftaliveprocessi, and
resends all LEFT
messages if
leftaliveprocessi changes

Resends Message to
rightaliveprocessi, and
resends all RIGHT
messages if
rightaliveprocessi changes

Decides as soon as it detects
two returning messages and
sends the decision to all
alive neighbors

 Pa

 Pb Pj

 Pi

Figure 2. Proposed Non Round-based Protocol

In our approach, a message needs to traverse other

processes one by one in the ring. When ⎣(t + 1) / 2⎦ or
more than ⎣(t + 1) / 2⎦ consecutive processes have crashed,
some alive processes may have been skipped when the

message is resent if the chordal ring is not fully connected.
In this case, to traverse these skipped processes, a reverse
traversal is needed for the message. Figure 3 shows the
reverse traversal, in which each process only has four
neighbors. pi detects that pi+1 and pi+2 crashed, pi sends a
RIGHT message m to neighbor pi−2. In this case, m skips
many correct processes. m will be resent in the clockwise
direction in order to traverse all skipped correct processes.
Message m being resent to traverse pj, the alive process
closest to pi, is called a reverse traversal. In a reverse
traversal, message m is called a reverse message.
Otherwise, it is called a regular message. The process pi is
the reverse causer, and those alive processes been skipped
are in the reverse range. The crash of these consecutive
processes, such as crash of pi+1 and pi+2 in the above
example is called a reverse trigger. To reduce the message
overhead and save time, when pi−2 resends m in reverse
direction after exchanging information with m, it sends m
to an alive neighbor, pi−4, in reverse direction, which is
close enough to pi. When pj detects there is no alive
neighbor between pj and pi in the reverse range, it ends the
reverse traversal and starts resending the regular message.
 The path of regular messages

The path of reverse messages
Point to the next process that should
be traveled

 pi−2

 pi−1

 pj

 pi−4

 pi−3

 pi+2

 pi+1

 …

pi detects both neighbors, pi+1 and
pi+2, in newsuspecti. Add (k,
RIGHT) to messagelisti , exchange
information, and resend (k, GDk

m,
suspectk

m, RIGHT, i, −1) to pi−2.

pi−2 detects the message
skipped many processes. A
reverse traversal occurs.
Add (k, RIGHT, i−4, i) to
reverse_messagelist,
exchange information, and
resend (k, GDk

m, suspectk
m,

RIGHT, i−2, i) to pi−4.

Reverse
trigger

pi−4 choose an alive neighbor
closest to pi in anti-clockwise,
i.e., ph. Add (k, RIGHT, h, i)
to reverse_messagelist,
exchange information, and
resend (k, GDk

m, suspectk
m,

RIGHT, i−4, i) to ph.

pj detects no alive neighbor
can be chosen. The reverse
traversal ends. Add (k,
RIGHT) to messagelistj,
exchange information, and
resend (k, GDk

m, suspectk
m,

RIGHT, j, −1) to
rightaliveprocessj.

pi

Figure 3. Reverse Message Traversal

B. Data Structures and Definitions
Before introducing the protocol and its correctness

proof, the following data structures are introduced.
• ID, every process maintains an integer number as its

identity, i.e., the ID of pi is i. Without losing generality,
in this paper we assume all processes are arranged in a
ring with ascending IDs in clockwise direction (Figure
1). Thus, p(i+1) mod n is at clockwise to pi.

• GDi
p, the local GD maintained by process pi. It is an n-

size vector which contains the values proposed by
processes and exchanges information with each visiting
message; GDi

p[j] is used to contain the proposed value
of the process pj. Initially, GDi

p contains only vi, as {⊥,
…, vi , …, ⊥}.

• GDi
m, the copy of the local GD maintained by a message

created by pi, message(i, GDi
m). It is an n-size vector

which contains the same information as GDi
p does.

When the message traverses process pj, exchange GDi
m

and GDj
p (For each k (0 ≤ k ≤ n −1) if GDi

m[k] ≠ ⊥ then
let GDj

p[k] = GDi
m[k] endif; let GDi

m = GDj
p;). Initially,

GDi
m is equal to GDi

p.
• suspecti, a set containing ID of its neighbors which are

suspected to have crashed by the perfect failure detector
module of pi.

• newsuspecti, a superset of suspecti, it also contains ID of
other processes (not only its neighbors) which are
deduced to have crashed from the receiving messages.
Because correct processes may not suspect their
common neighbor’s crash at the same time, this can be
used to save crash detecting time.

• suspecti
m, similar to newsuspecti, but it carried by a

message and includes all crashed processes. When a
message created by pi traverses process pj, pj exchanges
suspecti

m and newsuspectj (Let suspecti
m = suspecti

m ∪
newsuspectj; Let newsuspectj = suspecti

m). To reduce the
message and memory size, suspecti, newsuspecti and
suspecti

m, can be implemented as an n-bit vector, jth bit
related to the failure state of process pj, 0 means not
crash, 1 crashed.

• leftaliveprocessi, contains ID of one of pi’s neighbors
which is alive and closest to pi in pi’s anti-clockwise
direction, process pi sends or resends LEFT messages to
its leftaliveprocessi. It is always the ID of the alive
neighbor with the biggest distance to pi.

• rightaliveprocessi, similar to leftaliveprocessi but in
clockwise direction.

• message(i, GDi
m, newsuspecti

m, direction, j, reverse), a
message created by pi and sent from pj where direction,
RIGHT (constant variable as 1) is a RIGH message or
LEFT (constant variable as 0). Sometimes, we just use
message(i, GDi

m, direction) or message(i, GDi
m)

regardless of the sender or the direction. reverse is an
integer, when the message is a regular message, reverse
equals to −1. Otherwise, reverse equals to the ID of the
process which has caused the reverse traversal.

• messagelisti, a list containing all messages sent or resent
by pi except the reverse messages. It is used to recover
messages missed by a neighbor’s crash. A message m is
lost if it cannot be resent by any process anymore. To
reduce the memory cost, each item of messagelisti only
contains the message’s creator and direction, (k,
direction).

• reverse_messagelisti, a list containing all reverse
messages sent or resent by pi. For recovering reverse
messages missed by a neighbor’s crash. Each item
contains (k, direction, g, j), where j is the ID of the
reverse causer, and g is ID of the destination process.

• decide(i, GD), is a message sent to its neighbors by pi as
soon as it decides, where GD is the decision.

Definition 1. Traversed and Reverse Traversed. We say a
message has traversed a process pi if message(k, GDk

m, ,
direction, , −1) has visited pi and (k, direction) stored in
messagelisti. We say a message has reverse traversed a
process pi if message(k, GDk

m, , direction, , g) or
message(k, GDk

m, , direction, g, −1) has visited pi and (k,
direction, ,g) stored in reversemessagelisti.

Definition 2. Complete votes. A non-crashed process pi
collects complete votes if all other non-crashed processes
do not maintain a different value vj, i.e., if GDi

p[j] ≠ vj,
there is no other non-crashed process, such as pk, with
GDk

p[j] = vj.

Definition 3. Meet. The two regular messages created by
one process meet at process p, if one type message finds
that another message with the same creator in the
messagelist of p.

C. Proposed Protocol
Each process pi invokes the function GDC(vi). It

terminates with the invocation of the statement return()
that provides the Global Data. The function consists of
three concurrent tasks: T1, T2 and T3, as shown in Figure
4.
1. Function GDC(vi)
2. cobegin
3. task T1:
4. call Initialization(vi);
5. decided ← false;
6. while (not decided)
7. wait until receive a message m;
8. if m is regular message(k, GDk

m, direction, j, −1) then
9. call handle_regular_message(k, GDk

m, suspectk
m, direction, j, −1)

10. if m is reverse message(k, GDk
m, suspectk

m, direction, j, g) then
11. call handle_reverse_message(k, GDk

m, suspectk
m, direction, j, g)

12. if detected two returning messages then
13. decided ← true
14. end while
15. ∀pj ∈ (∏i − newsuspecti) do send decide(i, GDi

p) to pj enddo;
16. return(GDi

p)
17.
18.task T2:
19. wait until receive decide(k, GD);
20. ∀pj ∈ (∏i − newsuspecti) do send decide(k, GD) to pj enddo;
21. return(GD)
22.
23.task T3:
24. loop
25. wait until detect a new neighbor, pk’s crash;
26. call handle_new_crash(pk);
27. endloop
28.coend

Figure 4. Pseudocode of the Protocol
The main task, Task T1, initializes the algorithm,

handles regular and reverse messages, and when it detects
two returning messages, pi decides and resends the
decision to all alive neighbors. Task T2 is associated with
the processing of a decide(k, GD) message. pi resends the
message to all alive neighbors and decides on GD. Task T3
handles new crashes and recovers missed messages.

Firstly, we introduce two rules to reduce redundant
messages and to ensure agreement correctness.

Rule 1. If process pi receives a message, message(k, GDk

m,
suspectk

m, direction, j), and finds the sender pj is suspected
by newsuspecti, pi discards the message and does nothing
else.
Rule 2. If process pi receives a message message(k, GDk

m,
suspectk

m, direction, j, −1) and finds that (k, direction) ∈
messagelisti, or receives a reverse message message(k,
GDk

m, suspectk
m, direction, j,) but finds (k, direction, ,) is

already in reverse_messagelisti, pi discards the message
and does nothing else.

Rule 2 includes: When pi receives a message message(k,
GDk

m, suspectk
m, direction, j, −1) and finds it requires

reverse traversal, but (k, direction, ,) is already in
reverse_messagelisti, pi discards the message also.

Now we describe the main functions on initialization,
how to handle messages (where rule 1 and rule 2 will be
applied firstly) and new crashes. The details on these
functions are in the Appendix.
• Initialization(vi). pi initializes its data structures, then

creates and sends out two messages.
• handle_regular_message(k, GDk

m, suspectk
m, direction,

j, −1). We assume every process treats the receiving
messages in FIFO manner (i.e., pi will exchange
information with the receiving messages in FIFO
manner). If the message requires reverse traversal, to
reduce the message overhead and save time, process pi

will choose a neighbor closest to pj in the reverse range
to send the reverse message. Otherwise, pi resends the
message if pi is not the creator of the message. If new
crashed neighbors found according to the message
sender, pj, (there are common neighbors between pi and
pj), call handle_new_crash() to handle new crashes.

• handle_reverse_message(k, GDk
m, suspectk

m, direction,
j, g). To reduce the message overhead and save time, pi
chooses a neighbor closest to pg in the rest reverse range
(the rest reverse range includes the processes from pi to
pg in the reverse range) to resend the message. If no
process can be chosen, the reverse traversal ends and
continues the message’s regular travesal.

• handle_new_crash(pk). If the crashed process causes the
change of rightaliveprocessi or leftaliveprocessi, pi will
resend all corresponding regular messages ever sent. If
pi has sent reverse messages to pk before, pi will try to
choose a new process to resend each reverse message.

IV. CORRECTNESS PROOF
This section proves that the proposed protocol achieves

the four properties of the GDC problem.

A. Validity Property
Theorem 1. If pi decides GDi then ∀j: GDi[j]∈{vj, ⊥}.

Proof. There are two cases for a process to decide. First, a
process pi finds its own two messages returned, then pi
makes decision as GDi. According to the protocol, for each
GDi

p[j], it is either vj or ⊥, it follows directly from the
initialization, the exchanging method and the channel
reliability (no message alteration, no spurious message).
Second, the decision GD is derived from a received
message, decide(k, GD). But, initially decide(k, GD) is
created and sent by process pk in the first case and GD is
the decision made by pk, the theorem must be true in this
case too.

B. Termination Property
The termination property is guaranteed by Theorem 2.

Firstly, we introduce two Lemmas.

Lemma 1. (1) At most one reverse trigger in an execution
of the protocol; (2) no further-reverse traversal occurs
during a reverse traversal; (3) there is reliable
communications between any pair of processes in the
reverse range.

Proof. Because the proposed protocol is designed to
tolerate up to t crashes but each process has 2⎣(t + 1) / 2⎦
neighbors, it is clear that there is at most one reverse
trigger in any execution of the protocol. Thus during a
reverse traversal, no further-reverse traversal can occur.

For any pair of non-crashed processes, pi and pj in the
reverse range, if there are less than ⎣(t + 1) / 2⎦ processes
between them, there will be a ring edge or chord
connecting them, pi can send the reverse message to pj
directly. Otherwise, relay processes are required and each
process has at least ⎣(t + 1) / 2⎦ neighbors in the reverse
range. Because there is at most t failures but the chordal
ring is a (2 ⎣(t + 1) / 2⎦)-connected networks, and a reverse
trigger already exists, so only less than ⎣(t + 1) / 2⎦
processes may crash. By Menger’s theorem, a link can be
constructed between pi and pj within the reverse range.
Thus, there are reliable communications between pi and pj
in the reverse range. This means any reverse traversal can
end and recover the traversal eventually.

Lemma 2. There exists at least one process which
eventually receives its own two messages, and both
messages have traversed all non-crashed processes.

Proof. Assume the contrary that no process eventually
receives its own two messages. Because at most t (t < n −
1) processes can crash in the protocol, there exists at least
two correct processes, assume one is pi. Next, we will
prove eventually pi will receive its own two messages.

First, we consider the LEFT message, m, of pi. After it is
created, m starts to traverse other processes in the ring.
According to the protocol, m traverses the alive processes
in anti-clockwise. If there is an un-traversed alive process,

pj, eventually m can traverse it as guaranteed by the
protocol and Lemma 1.

In the same way, pi eventually receives its RIGHT
message and the message has traversed all other non-
crashed processes.

Theorem 2. Every correct process decides eventually.

Proof. By Lemma 2, we can assume pi receives its own
two messages and sends decide(i,GD) messages to all other
alive neighbors. There are two cases:

CASE 1. pi is a correct process. Because chordal rings are
(t + 1)-connected graph and at most t processes crash,
then every other correct process can eventually make
decision by either receiving its own two messages or
receiving decide(i, GD) message from others.

CASE 2. pi is not a correct process, it crashes after it
sending some decide messages. There are three sub-
cases:

case 2a. some correct processes receive the decide
message, thus every other correct process can
eventually make decision as in CASE 1.

case 2b. some non-crashed processes receive the
decide message, then it will take the same steps as
pi does in CASE 2.

case 2c. no process receives the decide message, by
Lemma 2, another process will receive its own two
messages and take the same steps as pi does.

Because there is at least one correct process, case 2b and
case 2c will finally result in case 2a or CASE 1. Thus, all
correct processes can decide eventually.

C. Agreement Property
We show that the proposed protocol ensures agreement

property by Theorem 3. The underlying idea is that when a
process’ two messages return, all non-crashed processes
maintain the same GDp, thus, the agreement property is
ensured. The proof proceeds as follows: Firstly, Lemma 3
proves when the two messages created by a process pi meet
at another process pk, the process pk gets complete votes.
Then, Lemma 4 proves that when the two messages created
by a process return home, the GDp of every non-crashed
process will be equal.

Lemma 3. When the two messages created by a process pi
meet at another process pk, the process pk gets complete
votes.

Proof. Let mi
L denotes the left message created by pi, and

mi
R denotes the right message created by pi. Assume the

contrary that there exist processes (crashed or non-crashed)
traversed by mi

L or mi
R maintain a different value vh when

mi
L and mi

R meet at pk but GDk
p[h] ≠ vh. According to the

protocol, these processes did not maintain vh when mi
L or

mi
R traversing them, and ph must have crashed before mi

L
or mi

R tried to traverse ph. Assume pj is one of the original
processes traversed by mi

L or mi
R which maintains vh when

mi
L and mi

R meet at pk. Without losing generality, assume
mi

R have traversed pj. So, there exists another message m
traversed pj which maintained vh after mi

R traversed pj and
both mi

L and mi
R did not traverse the sender of m, pl, until

they met at pk. It is obvious pl is a neighbor of pj.

Case 1. Consider m as a regular message. If mi
R should

have traversed pl before it traverses pj, there are two
cases: 1). When mi

R received by pj, pl was skipped, then
pl was added to pj‘s newsuspect, by Rule 1, m would be
discarded by pj. 2) There exists another neighbor of pj,
pg, when mi

R received by pg before mi
R traverses pj, pl

was skipped, according to the protocol, no regular
message sent from pl to pj. Both cases are contrary to pj
maintaining vh. Otherwise, mi

R should traverse pl after it
traversed pj, there are also two cases: 1). When mi

R
resent by pj, pl was skipped, then pl must be in pj‘s
newsuspect, by Rule 1, m would be discarded by pj. 2)
There exists another neighbor of pj, pg, when mi

R resent
by pg after mi

R traversed pj, pl was skipped, according to
the protocol, no regular message sent from pl to pj. Both
cases are contrary to pj maintaining vh.

Case 2. Consider m as a reverse message. If pl is not the
reverse causer, the proof is the same as in Case 1.

Thus, according to the definition of complete votes, pk
gets the complete votes when the two messages created by
a process pi meet at it.

Lemma 4. If the two messages created by a process return
home, the GDp of every non-crashed process will be equal.

Proof. By Lemma 2, when a message returns home, it must
have traversed all non-crashed processes. Now, assume the
contrary, that when process pi’s two messages message(i,
RIGHT) and message(i, LEFT) return, there exists a non-
crashed process pk at the same time, GDi

p[j] = vj but
GDk

p[j] ≠ vj. As the above proof, both messages must have
traversed pk. This indicates the two messages have met on
pk. Because the exchange algorithm between GDm and GDp
is a union operation, when the two messages met on pk,
GDk

p[j] ≠ vj must be true at that time. By Lemma 3, no
other process can achieve GDp[j] = vj after that time. This
is a contradiction.

Another case is GDi
p[j] ≠ vj but GDk

p[j] = vj. For same
reason, the two messages must have met on pk. When the
two messages met on pk, if GDk

p[j] ≠ vj is true at that time,
by Lemma 3, no process can achieve GDp[j] = vj after that
time. This is a contradiction. Otherwise, GDk

p[j] = vj is true
at that time, it is contradiction to GDi

p[j] ≠ vj when the two
messages return according to the protocol.

Thus GDp of all non-crashed processes will be equal
after the two messages created by pi return home.

Theorem 3. No two processes decide differently.

Proof. There are two cases for a process to decide. The
first case is its own two messages return, then the process
decides and multicasts the decision to neighbors. The
second case is the process receives a decide(k, GD) then
makes the same decision, but decide(k, GD) has been
initially created by a process under first case.

Assume pi is the first process, whose two messages
return and decides then multicasts the decision to
neighbors. By Lemma 4, every non-crashed process
contains the same votes in its GDp after pi made decision.
In both of the above cases when another process makes
decision, it must make the same decision as pi made. Thus,
no two processes decide differently.

D. Obligation Property
Theorem 4. If a process decides, its initial value

belongs to the Global Data. ∀i: if pi decides GDi then
(GDi[i] = vi).

Proof. When a process, pi, decides after its two
messages return, its two messages maintain vi, then
obligation property is satisfied following the initialization.
Another case is pi decides after it received a decide(k, GD)
message, the decide message must be sent from pk initially.
When pk makes the decision, its two messages must have
returned and have traversed pi. According to the protocol,
vi must be in GD. So in this case obligation property is also
ensured.

V. MESSAGE COMPLEXITY ANALYSIS
First, we consider no failure occurs.

A. Message Complexity without Failures
For a system with n processes and initially each process

creates and sends two messages, the total number of
messages is 2n. When the two messages created by a
process return home, the total number of hops of each
message is n. Without considering the reliable multicast1
of decide messages, the total number of message hops in
the system is 2n2. Considering reliable multicast, the
number of resent decide messages will be less than 2⎣(t +
1)/2⎦n, because each process has 2⎣(t + 1)/2⎦ neighbors and
only multicasts once then decides and stops.

B. Message Complexity with Failures
Now consider failure occurs, but firstly without reverse

traversal of messages.
There are four cases for a message m traversing from

process pi to pj via ph as shown in Figure 5.

1 Because a decide message will send to all neighbors like a multicast,

and each neighbor will resend received decide message to its all neighbors
and so on, then we call the whole process as a reliable multicast.

1. In the case of no failure as shown in Figure 5a, ph does
not crash; message m will be sent from pi to ph and then
be sent from ph to pj. Two message hops are required.

2. In Figure 5b, when m arrives at pi, pi suspects ph, then pi
resends m to pj directly. In this case, one message hop is
saved comparing to Figure 5a.

3. In Figure 5c, when m arrives at pi, pi resends m to ph but
ph crashes and does not resend m to pj. Then pi suspects
ph and resends m to pj. In this case, the number of
message hops is the same as in Figure 5a.

4. In Figure 5d, when m arrives at pi, pi resends m to ph and
ph resends m to pj before it crashes. Then pi suspects the
crash and resends m to pj. In this case, one more
message hop is needed comparing to Figure 5a.
According to the protocol, one message will be
discarded by pj.

b. pi suspects ph crashed

c. pi sent m to ph but ph crashed, then pi
suspects ph and resends m to pj

ph pjpi

d. pi sent m to ph and ph sent m to pj before it
crashed, then pi suspects ph and resends m to pj

ph pjpi ph pjpi

a. no failure

ph pjpi

Figure 5. Message routes
Thus, when f processes actually crash, the message
complexity of the protocol without considering reliable
multicast is bounded by [2n2 − 2nf, 2n2 + 2nf].

Now, consider reverse traversal. First, according to the
protocol, only consecutive ⎣(t + 1) / 2⎦ neighbors of a
process have crashed; the message sent or resent from the
process need a reverse traversal. Second, the speed for a
message traversing in reverse is much faster than a regular
message. By Lemma 1, there is at most one reverse trigger
in an execution, thus, the total number of messages is less
than 2[2n2 − 2nf, 2n2 + 2nf].

The previous discussion does not include the message
lost by process crash. For example, pi sends m created by
itself to ph and ph resends m to pj, then all the three
processes crash before m is resent by pj.

C. Comparing with Other Protocols
We compare the proposed protocol with the protocols in

[8, 4] but we do not consider the message overhead caused
by implementing failure detectors.

Firstly, we compute the process-disjoint paths between
any pair of processes, pi and pj, in the dedicated chordal
ring. If pj ∈ ∏i, there is no process-disjoint path.
Otherwise, the length can be bounded by t and n, i.e., the
length of the longest disjoint path is ⎣n/⎣(t + 1)/2⎦⎦, the
average length is ⎣n/(t + 1)⎦ from pi to p(i+n/2) mod n, and the
shortest is two obviously. Without losing generality,
assume t is odd. t + 1 process-disjoint paths are needed.
Any two process-disjoint paths in different directions are

made of a ring, requiring about 2n/(t + 1) relay messages.
Thus, a total of about n relay messages is needed for pi to
reliably communicate with pj in the dedicated chordal ring.

Perfect failure detectors are used to solve GDC problem
in asynchronous system [8]. The protocol is round-based
and needs at most 2f + 2 rounds. The lower bound is
improved to f + 2 rounds in [4]. In each round, every
process sends a message to another alive process. Thus, in
each round, the total number of messages are n(n − 1).
When considering process-disjoint paths, total relay
messages is n2(n − 1) per round. It is obvious that our
protocol reduces the message complexity significantly for
solving GDC problem in the dedicated chordal rings.
When consider failures, in the worst case, (2f + 2)n2(n − 1)
relay messages are needed in [8] and (f + 2)n2(n − 1) relay
messages are needed in [4]. But, the message complexity
of our proposed protocol does not increase linearly when
the number of actual crashes increases.

On the time comparison, the time for a process to relay a
message in process-disjoint paths is less than the time for a
process to handle a receiving message and resending it. So,
we only compare the communication time. Without
failures, in our protocol, each message is relayed n times.
Both protocols in [8, 4] need at least two rounds to stop
without failures. In each round, the longest process-disjoint
path is n/(t + 1) when no failure occurs. Thus, the time
complexity of our protocol and other protocols [8, 4] is n
versus 2n/(t + 1) respectively. If t is small, our protocol is
acceptable. With failures, the relay times of our protocol
double but is acceptable in comparison, i.e., the time
complexity of protocol in [8] and [4] increase by factor of
(2f + 2) and (f + 2) respectively.

VI. CONCLUSION
In this paper, we present the GDC protocols for a

dedicated asynchronous chordal ring. We show that with
virtual links among each pair of processes, the GDC
problem in the dedicated chordal ring can be solved by the
tradition GDC protocols which are designed for fully
connected networks. But it incurs a high message
overhead. To reduce the message complexity, we propose a
message-efficient non-round based protocol for solving the
GDC problem tolerating up to t crash failures in the
chordal ring with perfect failure detectors. Analysis and
comparison show that our protocol reduces the message
complexity significantly.

Future works include (1) investigate protocols to solve
the GDC problem for regular chordal rings, Cn 〈d1, d2, …,
dk〉; (2) investigate the possibility of extending the non-
round based protocol to tolerate other failure models such
as crash-recovery model, omission failure and malicious
failure model; (3) adapt the proposed protocol with weaker
failure detectors; and (4) design of non round-based GDC
protocols for other topologies such as hypercube and multi-
mesh.

REFERENCES
1. P.A. Bernstein, V. Hadzilacos, and N. Goodman, “Concurrency

Control and Recovery in Database Systems”, Reading, Mass.:
Addison-Wesley, 1987.

2. B. Charron-Bost, R. Guerraoui, and A. Schiper, “Synchronous
system and perfect failure detector: solvability and efficiency
issues”, Proc. IEEE Int. Conf. on Dependable Systems and Networks
(DSN), New York, USA, June 2000, pp. 523-532.

3. T. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems”, J. ACM, vol. 43, no. 2, Mar. 1996,
pp. 225-267.

4. C. Delporte-Gallet, H. Fauconnier, J. Hélary, M. Raynal, "Early
Stopping in Global Data Computation", IEEE Trans. Parallel
Distrib. Syst. 14(9), 2003, 909-921.

5. D. Dolev, R. Reischuk, and R. Strong, “Early Stopping in Byzantine
Agreement”, J. ACM, vol. 37, no. 4, Apr. 1990, 720-741.

6. M.J. Fischer, N. Lynch, and M.S. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process”, J. ACM, vol. 32,
no. 2, Apr. 1985, 374-382.

7. V.K. Garg and J. Ghosh, “Repeated Computation of Global
Functions in a Distributed Environment”, IEEE Transaction on
Parallel and Distributed Systems, vol. 5, no. 8, pp. 823-834, 1994.

8. J. Hélary, M. Hurfin, A. Mostéfaoui, M. Raynal, and F. Tronel,
"Computing Global Functions in Asynchronous Distributed Systems
with Perfect Failure Detectors". IEEE Transactions on Parallel and
Distributed Systems 11(9): 897-909 (2000)

9. J.M. Helary and M. Raynal, “Synchronization and Control of
Distributed Systems and Programs”, John Wiley & Sons, 1990.

10. L. Lamport, "Time, Clocks and the Ordering of Events in a
Distributed System", Communications of the ACM 21(7), 1978, 558-
565.

11. N. Lynch, "Distributed Algorithms", Morgan Kaufmann, 1996.
12. F. J. Meyar, and D. K. Pradhan, “Consensus with Dual Failure

Modes”, IEEE Transaction on Parallel and Distributed Systems, Vol.
2, No. 2, April 1991, 214-222.

13. A. Mostéfaoui, and M. Raynal, "Consensus Based on Failure
Detectors with a Perpetual Accuracy Property", in Proc 14th Int'l
Parallel and Distributed Processing Symp. 2000.

14. B. Mans, and N. Santoro, "Optimal Fault-Tolerant Leader Election
in Chordal Rings", The Twenty-Fourth Annual International
Symposium on Fault-Tolerant Computing (FTCS 1994), June 15-17,
1994, Austin, Texas.

15. R. Renesse, Y. Minsky, and M. Hayden, "A Gossip-Style Failure
Detection Service", Proc. of the IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing
Middleware’98, Sep. 15-18, 1998.

16. D. Sidhu, R. Nair, and S. Abdallah, "Finding disjoint paths in
networks", ACM SIGCOMM Computer Communication Review,
Proceedings of the conference on Communications architecture &
protocols, 21(4), Aug. 1991, 43-51.

17. X. Wang, and J. Cao, "A non Round-based Consensus Protocol in
Asynchronous Distributed Systems with Perfect Failure Detectors",
Technical paper, 2003.

18. D. B. West, “Introduction to Graph Theory”, Prentice Hall, NJ,
USA. 1996.

19. S.C. Wang, K.Q. Yan, and C.F. Cheng, "Asynchronous Consensus
protocol for the unreliable un-fully connected network", Operating
Systems Review 37(3), 2003, 43-54.

Appendix

Details of the main functions in the proposed protocol.

Initialization(v) i
1. Function Initialization(vi)
2. begin
3. GDip ← {⊥, …, vi , …, ⊥};
4. GDim ← GDip;
5. newsuspecti ← suspecti;
6. rightaliveprocessi ← closest neighbor in clockwise

∉ newsuspecti;
7. leftaliveprocessi ← closest neighbor in anti-

clockwise ∉ newsuspecti;
8. if (the first consecutive ⎣(t+1)/2⎦ neighbors in

clockwise crashed) then
9. rightaliveprocessi ← leftaliveprocessi
10. if (the first consecutive ⎣(t+1)/2⎦ neighbors in

anticlockwise crashed) then
11. leftaliveprocessi ← rightaliveprocessi
12. send message(i, GDim, RIGHT, i, −1) to

rightaliveprocessi;
13. send message(i, GDim, LEFT, i, −1) to

leftaliveprocessi;
14. messagelisti ← { (i, RIGHT), (i, LEFT)};
15.end

Figure 6. Initialization

 Processing Regular Message
1. Function handle_regular_message(k, GDkm, direction, j,
−1)
2. begin
3. if j ∈ newsuspect then (i)
4. return; //applying rule 1
5. if k direction) ∈ messagelist((,
6. return; //applying rule 2

i) then

7. Exchange information between GDip and GDkm;
8. if ((k, direction,) ∈ reverse_messagelisti) then
9. delete (k, direction,) from

reverse_messagelisti;
10. for each common neighbor, ph, of pi and pj do
11. call handle_new_crash(ph);
12. if (k ≠ i) then
13. add (k, direction) to messagelisti;
14. if (the coming consecutive ⎣(t+1)/2⎦ neighbors

crashed) then
15. send message(k, GDkm, direction, i, i) to

leftaliveprocessi or rightaliveprocessi
according to the reverse direction

16. else
17. send message(k, GDkm, direction, i, −1) to

leftaliveprocessi or rightaliveprocessi
according to the message direction

18.end

Figure 7. Processing Regular Message

 Processing Reverse Message
1. Function handle_reverse_message(k, GDkm, direction, j,
g)
2. begin
3. if (j ∈ newsuspecti) then
4. return; //applying rule 1
5. if ((k, direction,) ∈ reverse_messagelisti) then
6. return; //applying rule 2
7. if ((k,direction) ∈ messagelisti) and (pk ∉ rest

reverse range) then
8. return; //the reverse traversal ended already
9. Exchange information between GDip and GDkm;
10. for each common neighbor, ph, of pi and pj do
11. call handle_new_crash(ph);
12. if not reach the reverse trigger then
13. add (k, direction, g) to reverse_messagelisti;

14. send message(k, GDkm, direction, i, g) to
leftaliveprocessi or rightaliveprocessi
according to the reverse direction

15. return;
16. if reach the reverse trigger then
17. delete (k, direction,) from

reverse_messagelisti;
18. add (k, direction) to messagelisti;
19. if (k ≠ i) then
20. send message(k, GDkm, direction, i, −1) to

leftaliveprocessi or rightaliveprocessi
according to the message direction

21.end

Figure 8. Processing Reverse Message

 Processing New Crash
1. Function handle_new_crash(pk)
2. begin
3. if (k ∈ newsuspect) then i

4. return;
5. newsuspecti ← newsuspecti ∪ {k};
6. re-calculate rightaliveprocessi and

leftaliveprocessi //Figure 6 line 6-11
7. if (rightaliveprocessi has changed) then
8. For each (j, RIGHT) ∈ messagelisti do
9. if (the coming consecutive ⎣(t+1)/2⎦ neighbors

crashed) then
10. send message(j, GDip, RIGHT, i, i) to

leftaliveprocessi
11. else
12. send message(j, GDip, RIGHT, i, −1) to

rightaliveprocessi
13. For each ((j, LEFT, g) ∈ reverse_messagelisti) do
14. if not reach the reverse trigger then
15. send message(j, GDip, LEFT, i, g) to

rightaliveprocessi
16. if reach the reverse trigger then
17. delete (j, LEFT, g) from

reverse_messagelisti;
18. add (j, LEFT) to messagelisti;
19. if (j ≠ i) then
20. send message(j, GDip, LEFT, i, −1) to

leftaliveprocessi
21. if (leftaliveprocessi has changed) then
22. For each (j, LEFT) ∈ messagelisti do
23. if (the coming consecutive ⎣(t+1)/2⎦ neighbors

crashed) then
24. send message(j, GDip, LEFT, i, i) to

rightaliveprocessi
25. else
26. send message(j, GDip, LEFT, i, −1) to

leftaliveprocessi
27. For each ((j, RIGHT, g) ∈ reverse_messagelisti)
do
28. if not reach the reverse trigger then
29. send message(j, GDip, RIGHT, i, g) to

lefttaliveprocessi
30. if he reverse trigger then reach t
31. delete (j, RIGHT, g) from

reverse_messagelisti;
32. add (j, RIGHT) to messagelisti;
33. if (j ≠ i) then
34. send message(j, GDip, RIGHT, i, −1) to

rightaliveprocessi
35.end

Figure 9. Processing New Crash

	INTRODUCTION
	System Model
	The Non Round Based Protocol
	Underlying Principle
	Data Structures and Definitions
	Proposed Protocol

	Correctness Proof
	Validity Property
	Termination Property
	Agreement Property
	Obligation Property

	Message Complexity Analysis
	Message Complexity without Failures
	Message Complexity with Failures
	Comparing with Other Protocols

	Conclusion
	Initialization(vi)
	Processing Regular Message
	Processing Reverse Message
	Processing New Crash

