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 Abstract — Existing Global Data Computation (GDC) 
protocols for asynchronous systems are designed for fully 
connected networks. In this paper, we discuss GDC in a 
dedicated asynchronous chordal ring, a type of un-fully 
connected networks. The virtual links approach, which 
constructs t+1 (t<n) process-disjoint paths for each pair of 
processes without direct connection to tolerate failures (where t 
is the maximum number of processes that may crash and n is 
the total number of processes), can be applied to solve the GDC 
problem in the chordal but the virtual links approach incurs 
high message complexity. To reduce the high communication 
cost, we propose a non round-based GDC protocol for the 
asynchronous chordal ring with perfect failure detectors. The 
main advantage of our approach is that there is no notion of 
round, processes only send messages via direct connections and 
the implementation of failure detectors does not require 
process-disjoint paths. Analysis and comparison with the virtual 
links approach shows that our protocol reduces the message 
complexity significantly. 

 
Index Terms — data computation, chordal rings, perfect 

failure detector. 
 

I. INTRODUCTION 
n a distributed computation, a Global Data (GD) is a 
vector with one entry being filled with an appropriate 

value proposed by the corresponding process. The problem 
of computing a global data and providing each process 
with a copy, defines the Global Data Computing (GDC) 
problem [4, 8].  The problem can be more precisely 
defined as: In a distributed system with n processes, let 
GD[0..n−1] be a vector data with one entry per process and 
let vi denotes the value provided by pi to fill its entry of the 
global data. The GDC problem consists of building GD 
and providing a copy of it to each process. Let GDi denotes 
the local variable of pi to contain the local copy of GD. The 
problem is formally specified by a set of four properties as 
following. Let ⊥ be a default value that will be used 

instead of the value v
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j when the corresponding process pj 
fails prematurely. These properties are [8]: 
• Termination: Eventually, every correct process pi 

decides a local vector GDi. 
• Validity: No spurious initial value. ∀i: if pi decides GDi 

then (∀j: GDi[j]∈{vj, ⊥}). 
• Agreement: No two processes decide different Global 

Data. ∀i,j: if pi decides GDi and pj decides GDj then 
(∀k: GDi[k] = GDj[k]). 

• Obligation: If a process decides, its initial value belongs 
to the Global Data. ∀i: if pi decides GDi then (GDi[i] = 
vi). 
According to the well-known FLP consensus 

impossibility result [6], the GDC problem has no 
deterministic solution in an asynchronous distributed 
system with process crash failures. To circumvent the 
impossibility problem, perfect failure detectors defined by 
Chandra and Toueg [3] is used in a GDC protocol to 
tolerate crash failures (when a process crashes, it stops 
prematurely and remains crashed forever) for 
asynchronous distributed systems [8]. The GDC protocol 
proposed in [8] terminates in min(2f + 2, t + 1) 
asynchronous computation rounds where f is the number of 
processes actually crash in an execution. The GDC 
protocol is extended to improve the lower bound to min(f + 
2, t + 1, n) in [4]. However, both GDC protocols are based 
on an assumption that there is a communication channel 
connecting each pair of processes and channels are reliable. 
This means the distributed systems are fully connected.  

In this paper, we show the first step to solve the GDC 
problem in a type of un-fully connected networks: chordal 
rings. Chordal rings introduce link redundancy to improve 
the reliability of ring networks. With alternate paths 
between processes, the network can sustain several 
processes and links failures. A chordal ring Cn 〈d1, d2, …, 
dk〉 of size n and a chord structure 〈d1, d2, …, dk〉 is a ring 
Rn consisting of n processors {p0, p1, …, pn−1}, in which 
each processor is connected to other processors at distance 
(calculated in clockwise direction) d1, d2, …, dk, n − dk, …, 
n − d2, n − d1 by additional incident chords [14]. Figure 1 
shows a chordal ring, C16 〈4〉. Rings and complete graphs 
are chordal rings, denoted as Cn 〈 〉 and Cn 〈2, 3, …, ⎣n / 
2⎦〉, respectively. 

Existing GDC protocols designed for fully connected 
systems can be used to solve the GDC problem in un-fully 
connected systems by adopting a virtual links solution to 
achieve reliable communication despite possible faults in 
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any pair of processes without direct connection. The virtual 
links approach was initially proposed to solve consensus 
problem (a consensus problem is for a group of processes 
to achieve agreement in distributed systems with failures, a 
GDC problem can be regarded as a special consensus 
problem in which processes are required to agree on a 
global data.) for un-fully connected networks [12, 18], in 
which k-connected networks are considered. G(V, E) 
represents a undirected graph G with its vertex set V and 
edge set E, where an edge eij ∈ E is a unordered pair (vi  vj), 
and vi, vj ∈ V. A vertex cut of G(V, E) is a subset Vc ⊂ V, 
such that G − Vc has more than one component. G is said to 
be a k-connected graph if min | Vc | = k. According to 
Menger’s theorem, G is k-connected iff there exists k 
disjoint paths between any two vertices of G, and there is 
no intermediate vertex on these k disjoint paths which will 
appear twice [18]. The virtual links solution is to establish 
a virtual link for each pair of processes by constructing t + 
1 disjoint paths between the two processes, which is a 
method of achieving reliable communication despite 
possible faults in relaying processes [12], then the 
consensus problem in the k-connected topology can be 
solved by existing consensus protocols designed for fully 
connected systems. How to construct disjoint paths to 
establish virtual links can be found in [16]. 
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Figure 1. C16 〈4〉 Chordal Ring 

An un-fully connected chordal ring, Cn 〈d1, d2, …, dk〉 
with 2k different chords, is a (2k + 2 )-connected networks, 
because Cn 〈d1, d2, …, dk〉 is still a connected graph after 
deleting any 2k + 1 nodes. The dedicated chordal ring 
considered in this paper is Cn 〈2, …, ⎣(t + 1) / 2⎦ 〉 which is 
a (2⎣(t + 1) / 2⎦)-connected networks, where t (2 < t < n − 
1) is the number of failures that can be tolerated. If t is 1, 
the considered chordal ring is Cn 〈 〉, and when t is 2, the 
considered chordal ring is Cn 〈2〉. In this model, when t ≥ n 
− 2 and n is even, Cn 〈2, …, ⎣(t + 1) / 2⎦ 〉 is fully 
connected; when t ≥ n − 3 and n is odd, Cn 〈2, …, ⎣(t + 1) / 
2⎦ 〉 is fully connected. We can establish virtual links for 
each pair of processes in the dedicated un-fully connected 
chordal ring, then the GDC problem in the dedicated 
chordal ring can be solved by the round-based GDC 

protocols in [8, 4]. 
The shortcoming of the virtual links approach is the high 

message complexity incurred. In each round, the number of 
messages increases significantly because it relies on the use 
of disjoint-paths. In the asynchronous systems, another 
important issue is how to implement failure detectors. 
There are two methods: 1) use virtual links for each pair of 
processes to detect each other’s crash by adopting 
traditional implementation scheme [3]; 2) use gossip-style 
failure detection service [15], after a process detect one 
neighbor’s crash, it multicasts the crash information to all 
its neighbors. It is obvious that both methods incur many 
redundant messages. 

To reduce the message overhead, we propose a non 
round-based GDC protocol for the dedicated asynchronous 
chordal ring that has no notion of round, processes only 
send messages via direct connections and the 
implementation of failure detectors does not require 
process-disjoint paths. Non round-based GDC protocol is 
first introduced in [17] for fully connected asynchronous 
distributed systems with perfect failure detectors. In this 
paper, we propose a protocol where every process just 
needs to detect its neighbor’s failures and is not required to 
multicast failures. Analysis and comparison with virtual 
links solution shows that our protocol reduces the message 
complexity significantly.  

The rest of this paper is organized as follows. Section II 
introduces the system model. Section III describes our 
proposed non-round GDC protocol for the dedicated 
asynchronous chordal ring.  In section IV we present the 
correctness proof of the proposed protocol. Section V 
analyzes the message complexity and compares it with the 
virtual links solution. Section VI concludes the paper with 
a discussion of future works. 

II. SYSTEM MODEL 
An asynchronous chordal ring Cn 〈2, …, ⎣(t + 1) / 2⎦ 〉 

consist of n processes tolerating at most t failures, ∏={p0, 
…, pn−1}, where 2 < t < n − 1. When t is 1, the chordal ring 
is Cn 〈 〉, and when t is 2, the chordal ring is Cn 〈2〉. There is 
no shared memory in the system and processes exchange 
messages by ring edges and chords. Channels are reliable, 
i.e., no spurious messages, no loss and no corruption but 
need not be FIFO. Moreover, process speeds and 
communication delays are arbitrary. For any pair of 
processes pi and pj, they are neighbors of each other if 
there is a ring edge or a chord connecting pi and pj. We 
denote the set of all neighbors of pi as ∏i. 

The failure model considered is the crash failure model. 
When a process crashes, it definitely stops its activity and 
does nothing else [11]. In the asynchronous chordal rings, 
each process pi is equipped with a failure detector module. 
This module provides pi with a set of variables called 
suspectedi that contains the identities of the neighbors that 
is assumed to have crashed. Process pi can only read this 

 



 
 

set of variables, which is continuously updated by the 
module. If pj ∈ suspectedi, we say that “pi suspects pj”. 
Otherwise, pi regards pj as an alive neighbor. According to 
the quality of guesses made by failure detector modules, 
eight classes of failure detectors can be defined [3]. In this 
paper, we use perfect failure detector [2, 8], in which no 
guess is mistaken. It is defined by the following properties: 
• Completeness: Eventually, every process which crashes 

is suspected by every correct process. 
• Accuracy: No process is suspected before it crashed. 

How to realize the perfect failure detector is mentioned 
in [8]. 

III. THE NON ROUND BASED PROTOCOL 

A. Underlying Principle 
The underlying principle of the protocol is shown in 

Figure 2.  Initially, each process creates and sends two 
messages to collect votes from other processes. One 
message is sent in the clockwise direction, called RIGHT 
message, and another is sent in the anti-clockwise 
direction, called LEFT message. Each process resends 
received messages in the same direction after exchanging 
information with these messages (each process maintains a 
local GD, and every message carries a copy of the local 
GD’, when a message arrives on a process, the process 
combines the two GDs. The pseudocode for the exchange 
progress is: For each i (0 ≤ i ≤ n −1) if GD’[i] ≠ ⊥ then let 
GD[i] = GD’[i] endif; let GD’ = GD;). When one message 
returns to its creator, the message must have traversed all 
correct processes. When a process detects that the two 
messages created by itself return, it decides its local GD 
and sends its decision to all alive neighbors, then 
terminates the algorithm.  

 The path of message(i, LEFT) 

The path of message(i, RIGHT) 

Message received 
in anti-clockwise 

Message received 
in clockwise 

Resends Message to 
leftaliveprocessi, and 
resends all LEFT 
messages if 
leftaliveprocessi changes 

Resends Message to 
rightaliveprocessi, and 
resends all RIGHT 
messages if 
rightaliveprocessi changes 

Decides as soon as it detects 
two returning messages and 
sends the decision to all 
alive neighbors 

 Pa 

 Pb  Pj 

 Pi 

 
Figure 2. Proposed Non Round-based Protocol 

 
In our approach, a message needs to traverse other 

processes one by one in the ring. When ⎣(t + 1) / 2⎦ or 
more than ⎣(t + 1) / 2⎦ consecutive processes have crashed, 
some alive processes may have been skipped when the 

message is resent if the chordal ring is not fully connected. 
In this case, to traverse these skipped processes, a reverse 
traversal is needed for the message. Figure 3 shows the 
reverse traversal, in which each process only has four 
neighbors. pi detects that pi+1 and pi+2 crashed, pi sends a 
RIGHT message m to neighbor pi−2. In this case, m skips 
many correct processes. m will be resent in the clockwise 
direction in order to traverse all skipped correct processes. 
Message m being resent to traverse pj, the alive process 
closest to pi, is called a reverse traversal. In a reverse 
traversal, message m is called a reverse message. 
Otherwise, it is called a regular message. The process pi is 
the reverse causer, and those alive processes been skipped 
are in the reverse range. The crash of these consecutive 
processes, such as crash of pi+1 and pi+2 in the above 
example is called a reverse trigger. To reduce the message 
overhead and save time, when pi−2 resends m in reverse 
direction after exchanging information with m, it sends m 
to an alive neighbor, pi−4, in reverse direction, which is 
close enough to pi. When pj detects there is no alive 
neighbor between pj and pi in the reverse range, it ends the 
reverse traversal and starts resending the regular message.  
 The path of regular messages 

The path of reverse messages 
Point to the next process that should 
be traveled 

 pi−2

 pi−1

  pj 

 pi−4

 pi−3

 pi+2

 pi+1

  … 

pi detects both neighbors, pi+1 and 
pi+2, in newsuspecti. Add (k, 
RIGHT) to messagelisti , exchange 
information, and resend (k, GDk

m, 
suspectk

m, RIGHT, i, −1) to pi−2. 

pi−2 detects the message 
skipped many processes. A 
reverse traversal occurs. 
Add (k, RIGHT, i−4, i) to 
reverse_messagelist, 
exchange information, and 
resend (k, GDk

m, suspectk
m, 

RIGHT, i−2, i) to pi−4. 

Reverse 
trigger 

pi−4 choose an alive neighbor 
closest to pi in anti-clockwise, 
i.e., ph. Add (k, RIGHT, h, i) 
to reverse_messagelist, 
exchange information, and 
resend (k, GDk

m, suspectk
m, 

RIGHT, i−4, i) to ph. 

pj detects no alive neighbor 
can be chosen. The reverse 
traversal ends. Add (k, 
RIGHT) to messagelistj,   
exchange information, and 
resend (k, GDk

m, suspectk
m, 

RIGHT, j, −1) to 
rightaliveprocessj. 

pi 

Figure 3. Reverse Message Traversal 

B. Data Structures and Definitions 
Before introducing the protocol and its correctness 

proof, the following data structures are introduced. 
• ID, every process maintains an integer number as its 

identity, i.e., the ID of pi is i. Without losing generality, 
in this paper we assume all processes are arranged in a 
ring with ascending IDs in clockwise direction (Figure 
1). Thus, p(i+1) mod n is at clockwise to pi. 

• GDi
p, the local GD maintained by process pi. It is an n-

size vector which contains the values proposed by 
processes and exchanges information with each visiting 
message; GDi

p[j] is used to contain the proposed value 
of the process pj. Initially, GDi

p contains only vi, as {⊥, 
…, vi , …, ⊥}.  

 



 
 

• GDi
m, the copy of the local GD maintained by a message 

created by pi, message(i, GDi
m). It is an n-size vector 

which contains the same information as GDi
p does. 

When the message traverses process pj, exchange GDi
m 

and GDj
p (For each k (0 ≤ k ≤ n −1) if GDi

m[k] ≠ ⊥ then 
let GDj

p[k] = GDi
m[k] endif; let GDi

m = GDj
p;). Initially, 

GDi
m is equal to GDi

p. 
• suspecti, a set containing ID of its neighbors which are 

suspected to have crashed by the perfect failure detector 
module of pi. 

• newsuspecti, a superset of suspecti, it also contains ID of 
other processes (not only its neighbors) which are 
deduced to have crashed from the receiving messages. 
Because correct processes may not suspect their 
common neighbor’s crash at the same time, this can be 
used to save crash detecting time. 

• suspecti
m, similar to newsuspecti, but it carried by a 

message and includes all crashed processes. When a 
message created by pi traverses process pj, pj exchanges 
suspecti

m and newsuspectj (Let suspecti
m = suspecti

m ∪ 
newsuspectj; Let newsuspectj = suspecti

m). To reduce the 
message and memory size, suspecti, newsuspecti and 
suspecti

m, can be implemented as an n-bit vector, jth bit 
related to the failure state of process pj, 0 means not 
crash, 1 crashed. 

• leftaliveprocessi, contains ID of one of pi’s neighbors 
which is alive and closest to pi in pi’s anti-clockwise 
direction, process pi sends or resends LEFT messages to 
its leftaliveprocessi. It is always the ID of the alive 
neighbor with the biggest distance to pi. 

• rightaliveprocessi, similar to leftaliveprocessi but in 
clockwise direction. 

• message(i, GDi
m, newsuspecti

m, direction, j, reverse), a 
message created by pi and sent from pj where direction, 
RIGHT (constant variable as 1) is a RIGH message or 
LEFT (constant variable as 0). Sometimes, we just use 
message(i, GDi

m, direction) or message(i, GDi
m) 

regardless of the sender or the direction. reverse is an 
integer, when the message is a regular message, reverse 
equals to −1. Otherwise, reverse equals to the ID of the 
process which has caused the reverse traversal.  

• messagelisti, a list containing all messages sent or resent 
by pi except the reverse messages. It is used to recover 
messages missed by a neighbor’s crash. A message m is 
lost if it cannot be resent by any process anymore. To 
reduce the memory cost, each item of messagelisti only 
contains the message’s creator and direction, (k, 
direction).  

• reverse_messagelisti, a list containing all reverse 
messages sent or resent by pi. For recovering reverse 
messages missed by a neighbor’s crash. Each item 
contains (k, direction, g, j), where j is the ID of the 
reverse causer, and g is ID of the destination process.  

• decide(i, GD), is a message sent to its neighbors by pi as 
soon as it decides, where GD is the decision.  

Definition 1. Traversed and Reverse Traversed. We say a 
message has traversed a process pi if message(k, GDk

m, , 
direction, , −1) has visited pi and (k, direction) stored in 
messagelisti. We say a message has reverse traversed a 
process pi if message(k, GDk

m, , direction, , g) or 
message(k, GDk

m, , direction, g, −1) has visited pi and (k, 
direction, ,g) stored in reversemessagelisti. 

Definition 2.  Complete votes. A non-crashed process pi 
collects complete votes if all other non-crashed processes 
do not maintain a different value vj, i.e., if GDi

p[j] ≠ vj, 
there is no other non-crashed process, such as pk, with 
GDk

p[j] = vj. 

Definition 3. Meet. The two regular messages created by 
one process meet at process p, if one type message finds 
that another message with the same creator in the 
messagelist of p. 

C. Proposed Protocol  
Each process pi invokes the function GDC(vi). It 

terminates with the invocation of the statement return() 
that provides the Global Data. The function consists of 
three concurrent tasks: T1, T2 and T3, as shown in Figure 
4. 
1. Function GDC(vi) 
2. cobegin 
3. task T1: 
4.   call Initialization(vi); 
5.   decided ← false; 
6.   while (not decided) 
7.     wait until receive a message m; 
8.     if m is regular message(k, GDk

m, direction, j, −1) then 
9.        call handle_regular_message(k, GDk

m, suspectk
m, direction, j, −1) 

10.  if m is reverse message(k, GDk
m, suspectk

m, direction, j, g) then 
11.     call handle_reverse_message(k, GDk

m, suspectk
m, direction, j, g) 

12.  if detected two returning messages then  
13.     decided ← true 
14.  end while 
15.  ∀pj ∈ (∏i − newsuspecti) do send decide(i, GDi

p) to pj enddo;  
16.  return(GDi

p) 
17. 
18.task T2:  
19.  wait until receive decide(k, GD); 
20.  ∀pj ∈ (∏i − newsuspecti) do send decide(k, GD) to pj enddo;  
21.  return(GD) 
22. 
23.task T3:   
24.  loop 
25.    wait until detect a new neighbor, pk’s crash; 
26.    call handle_new_crash(pk); 
27.  endloop 
28.coend 

Figure 4. Pseudocode of the Protocol 
The main task, Task T1, initializes the algorithm, 

handles regular and reverse messages, and when it detects 
two returning messages, pi decides and resends the 
decision to all alive neighbors. Task T2 is associated with 
the processing of a decide(k, GD) message. pi resends the 
message to all alive neighbors and decides on GD. Task T3 
handles new crashes and recovers missed messages. 

 



 
 

Firstly, we introduce two rules to reduce redundant 
messages and to ensure agreement correctness.  

 
Rule 1. If process pi receives a message, message(k, GDk

m, 
suspectk

m, direction, j), and finds the sender pj is suspected 
by newsuspecti, pi discards the message and does nothing 
else. 
Rule 2. If process pi receives a message message(k, GDk

m, 
suspectk

m, direction, j, −1) and finds that (k, direction) ∈ 
messagelisti, or receives a reverse message message(k, 
GDk

m, suspectk
m, direction, j, ) but finds (k, direction, , ) is 

already in reverse_messagelisti, pi discards the message 
and does nothing else. 

Rule 2 includes: When pi receives a message message(k, 
GDk

m, suspectk
m, direction, j, −1) and finds it requires 

reverse traversal, but (k, direction, , ) is already in 
reverse_messagelisti, pi discards the message also. 

Now we describe the main functions on initialization, 
how to handle messages (where rule 1 and rule 2 will be 
applied firstly) and new crashes. The details on these 
functions are in the Appendix. 
• Initialization(vi). pi initializes its data structures, then 

creates and sends out two messages. 
• handle_regular_message(k, GDk

m, suspectk
m, direction, 

j, −1). We assume every process treats the receiving 
messages in FIFO manner (i.e., pi will exchange 
information with the receiving messages in FIFO 
manner). If the message requires reverse traversal, to 
reduce the message overhead and save time, process pi 

will choose a neighbor closest to pj in the reverse range 
to send the reverse message. Otherwise, pi resends the 
message if pi is not the creator of the message. If new 
crashed neighbors found according to the message 
sender, pj, (there are common neighbors between pi and 
pj), call handle_new_crash() to handle new crashes. 

• handle_reverse_message(k, GDk
m, suspectk

m, direction, 
j, g). To reduce the message overhead and save time, pi 
chooses a neighbor closest to pg in the rest reverse range 
(the rest reverse range includes the processes from pi to 
pg in the reverse range) to resend the message. If no 
process can be chosen, the reverse traversal ends and 
continues the message’s regular travesal. 

• handle_new_crash(pk). If the crashed process causes the 
change of rightaliveprocessi or leftaliveprocessi, pi will 
resend all corresponding regular messages ever sent. If 
pi has sent reverse messages to pk before, pi will try to 
choose a new process to resend each reverse message.  

IV. CORRECTNESS PROOF 
This section proves that the proposed protocol achieves 

the four properties of the GDC problem.  

A. Validity Property 
Theorem 1. If pi decides GDi then ∀j: GDi[j]∈{vj, ⊥}. 

Proof. There are two cases for a process to decide. First, a 
process pi finds its own two messages returned, then pi 
makes decision as GDi. According to the protocol, for each 
GDi

p[j], it is either vj or ⊥, it follows directly from the 
initialization, the exchanging method and the channel 
reliability (no message alteration, no spurious message). 
Second, the decision GD is derived from a received 
message, decide(k, GD). But, initially decide(k, GD) is 
created and sent by process pk in the first case and GD is 
the decision made by pk, the theorem must be true in this 
case too.   

B. Termination Property 
The termination property is guaranteed by Theorem 2. 

Firstly, we introduce two Lemmas. 

Lemma 1. (1) At most one reverse trigger in an execution 
of the protocol; (2) no further-reverse traversal occurs 
during a reverse traversal; (3) there is reliable 
communications between any pair of processes in the 
reverse range. 

Proof. Because the proposed protocol is designed to 
tolerate up to t crashes but each process has 2⎣(t + 1) / 2⎦ 
neighbors, it is clear that there is at most one reverse 
trigger in any execution of the protocol. Thus during a 
reverse traversal, no further-reverse traversal can occur.  

For any pair of non-crashed processes, pi and pj in the 
reverse range, if there are less than ⎣(t + 1) / 2⎦ processes 
between them, there will be a ring edge or chord 
connecting them, pi can send the reverse message to pj 
directly. Otherwise, relay processes are required and each 
process has at least ⎣(t + 1) / 2⎦ neighbors in the reverse 
range. Because there is at most t failures but the chordal 
ring is a (2 ⎣(t + 1) / 2⎦)-connected networks, and a reverse 
trigger already exists, so only less than ⎣(t + 1) / 2⎦ 
processes may crash. By Menger’s theorem, a link can be 
constructed between pi and pj within the reverse range. 
Thus, there are reliable communications between pi and pj 
in the reverse range. This means any reverse traversal can 
end and recover the traversal eventually.   

Lemma 2. There exists at least one process which 
eventually receives its own two messages, and both 
messages have traversed all non-crashed processes. 

Proof. Assume the contrary that no process eventually 
receives its own two messages. Because at most t (t < n − 
1) processes can crash in the protocol, there exists at least 
two correct processes, assume one is pi. Next, we will 
prove eventually pi will receive its own two messages.  

First, we consider the LEFT message, m, of pi. After it is 
created, m starts to traverse other processes in the ring. 
According to the protocol, m traverses the alive processes 
in anti-clockwise. If there is an un-traversed alive process, 

 



 
 

pj, eventually m can traverse it as guaranteed by the 
protocol and Lemma 1.  

In the same way, pi eventually receives its RIGHT 
message and the message has traversed all other non-
crashed processes.     

Theorem 2. Every correct process decides eventually. 

Proof. By Lemma 2, we can assume pi receives its own 
two messages and sends decide(i,GD) messages to all other 
alive neighbors. There are two cases: 

CASE 1. pi is a correct process. Because chordal rings are 
(t + 1)-connected graph and at most t processes crash, 
then every other correct process can eventually make 
decision by either receiving its own two messages or 
receiving decide(i, GD) message from others. 

CASE 2. pi is not a correct process, it crashes after it 
sending some decide messages. There are three sub-
cases:  

case 2a. some correct processes receive the decide 
message, thus every other correct process can 
eventually make decision as in CASE 1.  

case 2b. some non-crashed processes receive the 
decide message, then it will take the same steps as 
pi does in CASE 2.  

case 2c. no process receives the decide message, by 
Lemma 2, another process will receive its own two 
messages and take the same steps as pi does.  

Because there is at least one correct process, case 2b and 
case 2c will finally result in case 2a or CASE 1. Thus, all 
correct processes can decide eventually.     

C. Agreement Property 
We show that the proposed protocol ensures agreement 

property by Theorem 3. The underlying idea is that when a 
process’ two messages return, all non-crashed processes 
maintain the same GDp, thus, the agreement property is 
ensured. The proof proceeds as follows: Firstly, Lemma 3 
proves when the two messages created by a process pi meet 
at another process pk, the process pk gets complete votes. 
Then, Lemma 4 proves that when the two messages created 
by a process return home, the GDp of every non-crashed 
process will be equal. 

Lemma 3. When the two messages created by a process pi 
meet at another process pk, the process pk gets complete 
votes. 

Proof. Let mi
L denotes the left message created by pi, and 

mi
R denotes the right message created by pi. Assume the 

contrary that there exist processes (crashed or non-crashed) 
traversed by mi

L or mi
R maintain a different value vh when 

mi
L and mi

R meet at pk but GDk
p[h] ≠ vh. According to the 

protocol, these processes did not maintain vh when mi
L or 

mi
R traversing them, and ph must have crashed before mi

L 
or mi

R tried to traverse ph. Assume pj is one of the original 
processes traversed by mi

L or mi
R which maintains vh when 

mi
L and mi

R meet at pk. Without losing generality, assume 
mi

R have traversed pj. So, there exists another message m 
traversed pj which maintained vh after mi

R traversed pj and 
both mi

L and mi
R did not traverse the sender of m, pl, until 

they met at pk. It is obvious pl is a neighbor of pj. 

Case 1. Consider m as a regular message. If mi
R should 

have traversed pl before it traverses pj, there are two 
cases: 1). When mi

R received by pj, pl was skipped, then 
pl was added to pj‘s newsuspect, by Rule 1, m would be 
discarded by pj. 2) There exists another neighbor of pj, 
pg, when mi

R received by pg before mi
R traverses pj, pl 

was skipped, according to the protocol, no regular 
message sent from pl to pj. Both cases are contrary to pj 
maintaining vh. Otherwise, mi

R should traverse pl after it 
traversed pj, there are also two cases: 1). When mi

R 
resent by pj, pl was skipped, then pl must be in pj‘s 
newsuspect, by Rule 1, m would be discarded by pj. 2) 
There exists another neighbor of pj, pg, when mi

R resent 
by pg after mi

R traversed pj, pl was skipped, according to 
the protocol, no regular message sent from pl to pj. Both 
cases are contrary to pj maintaining vh. 

Case 2. Consider m as a reverse message. If pl is not the 
reverse causer, the proof is the same as in Case 1.  

Thus, according to the definition of complete votes, pk 
gets the complete votes when the two messages created by 
a process pi meet at it.   

Lemma 4. If the two messages created by a process return 
home, the GDp of every non-crashed process will be equal. 

Proof. By Lemma 2, when a message returns home, it must 
have traversed all non-crashed processes. Now, assume the 
contrary, that when process pi’s two messages message(i, 
RIGHT) and message(i, LEFT) return, there exists a non-
crashed process pk at the same time, GDi

p[j] = vj but 
GDk

p[j] ≠ vj. As the above proof, both messages must have 
traversed pk. This indicates the two messages have met on 
pk. Because the exchange algorithm between GDm and GDp 
is a union operation, when the two messages met on pk, 
GDk

p[j] ≠ vj must be true at that time. By Lemma 3, no 
other process can achieve GDp[j] = vj after that time. This 
is a contradiction.  

Another case is GDi
p[j] ≠ vj but GDk

p[j] = vj. For same 
reason, the two messages must have met on pk. When the 
two messages met on pk, if GDk

p[j] ≠ vj is true at that time, 
by Lemma 3, no process can achieve GDp[j] = vj after that 
time. This is a contradiction. Otherwise, GDk

p[j] = vj is true 
at that time, it is contradiction to GDi

p[j] ≠ vj when the two 
messages return according to the protocol. 

Thus GDp of all non-crashed processes will be equal 
after the two messages created by pi return home.    

 



 
 

Theorem 3. No two processes decide differently. 

Proof. There are two cases for a process to decide. The 
first case is its own two messages return, then the process 
decides and multicasts the decision to neighbors. The 
second case is the process receives a decide(k, GD) then 
makes the same decision, but decide(k, GD) has been 
initially created by a process under first case.  

Assume pi is the first process, whose two messages 
return and decides then multicasts the decision to 
neighbors. By Lemma 4, every non-crashed process 
contains the same votes in its GDp after pi made decision. 
In both of the above cases when another process makes 
decision, it must make the same decision as pi made. Thus, 
no two processes decide differently.    

D. Obligation Property 
Theorem 4. If a process decides, its initial value 

belongs to the Global Data. ∀i: if pi decides GDi then 
(GDi[i] = vi). 

Proof. When a process, pi, decides after its two 
messages return, its two messages maintain vi, then 
obligation property is satisfied following the initialization. 
Another case is pi decides after it received a decide(k, GD) 
message, the decide message must be sent from pk initially. 
When pk makes the decision, its two messages must have 
returned and have traversed pi. According to the protocol, 
vi must be in GD. So in this case obligation property is also 
ensured.    

V. MESSAGE COMPLEXITY ANALYSIS 
First, we consider no failure occurs. 

A. Message Complexity without Failures 
For a system with n processes and initially each process 

creates and sends two messages, the total number of 
messages is 2n. When the two messages created by a 
process return home, the total number of hops of each 
message is n. Without considering the reliable multicast1 
of decide messages, the total number of message hops in 
the system is 2n2. Considering reliable multicast, the 
number of resent decide messages will be less than 2⎣(t + 
1)/2⎦n, because each process has 2⎣(t + 1)/2⎦ neighbors and 
only multicasts once then decides and stops. 

B. Message Complexity with Failures 
Now consider failure occurs, but firstly without reverse 

traversal of messages. 
There are four cases for a message m traversing from 

process pi to pj via ph as shown in Figure 5.  

 
1 Because a decide message will send to all neighbors like a multicast, 

and each neighbor will resend received decide message to its all neighbors 
and so on, then we call the whole process as a reliable multicast. 

1. In the case of no failure as shown in Figure 5a, ph does 
not crash; message m will be sent from pi to ph and then 
be sent from ph to pj. Two message hops are required. 

2. In Figure 5b, when m arrives at pi, pi suspects ph, then pi 
resends m to pj directly. In this case, one message hop is 
saved comparing to Figure 5a. 

3. In Figure 5c, when m arrives at pi, pi resends m to ph but 
ph crashes and does not resend m to pj. Then pi suspects 
ph and resends m to pj. In this case, the number of 
message hops is the same as in Figure 5a. 

4. In Figure 5d, when m arrives at pi, pi resends m to ph and 
ph resends m to pj before it crashes. Then pi suspects the 
crash and resends m to pj. In this case, one more 
message hop is needed comparing to Figure 5a. 
According to the protocol, one message will be 
discarded by pj. 

 

b.  pi suspects ph crashed 

c.  pi sent m to ph but ph crashed, then pi 
suspects ph and resends m to pj 

ph pjpi 

d.  pi sent m to ph and ph sent m to pj before it 
crashed, then pi suspects ph and resends m to pj 

ph pjpi ph pjpi 

a.  no failure

ph pjpi

Figure 5. Message routes 
Thus, when f processes actually crash, the message 
complexity of the protocol without considering reliable 
multicast is bounded by [2n2 − 2nf, 2n2 + 2nf].  

Now, consider reverse traversal. First, according to the 
protocol, only consecutive ⎣(t + 1) / 2⎦ neighbors of a 
process have crashed; the message sent or resent from the 
process need a reverse traversal. Second, the speed for a 
message traversing in reverse is much faster than a regular 
message. By Lemma 1, there is at most one reverse trigger 
in an execution, thus, the total number of messages is less 
than 2[2n2 − 2nf, 2n2 + 2nf]. 

The previous discussion does not include the message 
lost by process crash. For example, pi sends m created by 
itself to ph and ph resends m to pj, then all the three 
processes crash before m is resent by pj.  

C. Comparing with Other Protocols 
We compare the proposed protocol with the protocols in 

[8, 4] but we do not consider the message overhead caused 
by implementing failure detectors. 

Firstly, we compute the process-disjoint paths between 
any pair of processes, pi and pj, in the dedicated chordal 
ring. If pj ∈ ∏i, there is no process-disjoint path. 
Otherwise, the length can be bounded by t and n, i.e., the 
length of the longest disjoint path is ⎣n/⎣(t + 1)/2⎦⎦, the 
average length is ⎣n/(t + 1)⎦ from pi to p(i+n/2) mod n, and the 
shortest is two obviously. Without losing generality, 
assume t is odd.  t + 1 process-disjoint paths are needed. 
Any two process-disjoint paths in different directions are 

 



 
 

made of a ring, requiring about 2n/(t + 1) relay messages. 
Thus, a total of about n relay messages is needed for pi to 
reliably communicate with pj in the dedicated chordal ring. 

Perfect failure detectors are used to solve GDC problem 
in asynchronous system [8]. The protocol is round-based 
and needs at most 2f + 2 rounds. The lower bound is 
improved to f + 2 rounds in [4]. In each round, every 
process sends a message to another alive process. Thus, in 
each round, the total number of messages are n(n − 1). 
When considering process-disjoint paths, total relay 
messages is n2(n − 1) per round. It is obvious that our 
protocol reduces the message complexity significantly for 
solving GDC problem in the dedicated chordal rings. 
When consider failures, in the worst case, (2f + 2)n2(n − 1) 
relay messages are needed in [8] and (f + 2)n2(n − 1) relay 
messages are needed in [4]. But, the message complexity 
of our proposed protocol does not increase linearly when 
the number of actual crashes increases. 

On the time comparison, the time for a process to relay a 
message in process-disjoint paths is less than the time for a 
process to handle a receiving message and resending it. So, 
we only compare the communication time. Without 
failures, in our protocol, each message is relayed n times. 
Both protocols in [8, 4] need at least two rounds to stop 
without failures. In each round, the longest process-disjoint 
path is n/(t + 1) when no failure occurs. Thus, the time 
complexity of our protocol and other protocols [8, 4] is n 
versus 2n/(t + 1) respectively. If t is small, our protocol is 
acceptable. With failures, the relay times of our protocol 
double but is acceptable in comparison, i.e., the time 
complexity of protocol in [8] and [4] increase by factor of 
(2f + 2) and (f + 2) respectively. 

VI. CONCLUSION 
In this paper, we present the GDC protocols for a 

dedicated asynchronous chordal ring. We show that with 
virtual links among each pair of processes, the GDC 
problem in the dedicated chordal ring can be solved by the 
tradition GDC protocols which are designed for fully 
connected networks. But it incurs a high message 
overhead. To reduce the message complexity, we propose a 
message-efficient non-round based protocol for solving the 
GDC problem tolerating up to t crash failures in the 
chordal ring with perfect failure detectors. Analysis and 
comparison show that our protocol reduces the message 
complexity significantly.  

Future works include (1) investigate protocols to solve 
the GDC problem for regular chordal rings, Cn 〈d1, d2, …, 
dk〉; (2) investigate the possibility of extending the non-
round based protocol to tolerate other failure models such 
as crash-recovery model, omission failure and malicious 
failure model; (3) adapt the proposed protocol with weaker 
failure detectors; and (4) design of non round-based GDC 
protocols for other topologies such as hypercube and multi-
mesh. 
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Appendix 
 
Details of the main functions in the proposed protocol. 
 
Initialization(v ) i
1. Function Initialization(vi) 
2. begin 
3.   GDip ← {⊥, …, vi , …, ⊥};   
4.   GDim ← GDip; 
5.   newsuspecti ← suspecti; 
6.   rightaliveprocessi ← closest neighbor in clockwise  

∉ newsuspecti; 
7.   leftaliveprocessi ← closest neighbor in anti-

clockwise  ∉ newsuspecti; 
8.   if (the first consecutive ⎣(t+1)/2⎦ neighbors in 

clockwise crashed) then 
9.      rightaliveprocessi ← leftaliveprocessi 
10.  if (the first consecutive ⎣(t+1)/2⎦ neighbors in 

anticlockwise crashed) then 
11.     leftaliveprocessi ← rightaliveprocessi
12.  send message(i, GDim, RIGHT, i, −1) to 

rightaliveprocessi; 
13.  send message(i, GDim, LEFT, i, −1) to 

leftaliveprocessi; 
14.  messagelisti ← { (i, RIGHT), (i, LEFT)}; 
15.end 

Figure 6. Initialization 

 

 

 Processing Regular Message 
1. Function handle_regular_message(k, GDkm, direction, j, 
−1) 
2. begin 
3.   if j ∈ newsuspect then  (   i) 
4.      return;           //applying rule 1 
5.   if k direction) ∈ messagelist(( , 
6.      return;           //applying rule 2 

i) then  

7.   Exchange information between GDip and GDkm; 
8.   if ((k, direction, ) ∈ reverse_messagelisti) then  
9.      delete (k, direction, ) from 

reverse_messagelisti; 
10.  for each common neighbor, ph, of pi and pj do  
11.     call handle_new_crash(ph); 
12.  if (k ≠ i) then  
13.     add (k, direction) to messagelisti; 
14.     if (the coming consecutive ⎣(t+1)/2⎦ neighbors 

crashed) then 
15.        send message(k, GDkm, direction, i, i) to 

leftaliveprocessi or rightaliveprocessi 
according to the reverse direction 

16.     else 
17.        send message(k, GDkm, direction, i, −1) to 

leftaliveprocessi or rightaliveprocessi 
according to the message direction 

18.end 

Figure 7. Processing Regular Message 
 
 
 Processing Reverse Message 
1. Function handle_reverse_message(k, GDkm, direction, j, 
g) 
2. begin 
3.   if (j ∈ newsuspecti) then  
4.      return;        //applying rule 1 
5.   if ((k, direction, ) ∈ reverse_messagelisti) then  
6.      return;        //applying rule 2 
7.   if ((k,direction) ∈ messagelisti) and (pk ∉ rest 

reverse range) then  
8.      return;   //the reverse traversal ended already 
9.   Exchange information between GDip and GDkm; 
10.  for each common neighbor, ph, of pi and pj do  
11.     call handle_new_crash(ph); 
12.  if not reach the reverse trigger then 
13.     add (k, direction, g) to reverse_messagelisti; 

14.     send message(k, GDkm, direction, i, g) to 
leftaliveprocessi or rightaliveprocessi 
according to the reverse direction 

15.     return; 
16.  if reach the reverse trigger then  
17.     delete (k, direction, ) from 

reverse_messagelisti; 
18.     add (k, direction) to messagelisti; 
19.     if (k ≠ i) then  
20.        send message(k, GDkm, direction, i, −1) to 

leftaliveprocessi or rightaliveprocessi 
according to the message direction 

21.end 

Figure 8. Processing Reverse Message 
 
 
 Processing New Crash 
1. Function handle_new_crash(pk) 
2. begin 
3.   if (k ∈ newsuspect ) then  i

4.      return;            
5.   newsuspecti ← newsuspecti ∪ {k}; 
6.   re-calculate rightaliveprocessi and 

leftaliveprocessi   //Figure 6 line 6-11 
7.   if (rightaliveprocessi has changed) then 
8.      For each (j, RIGHT) ∈ messagelisti do  
9.         if (the coming consecutive ⎣(t+1)/2⎦ neighbors 

crashed) then 
10.     send message(j, GDip, RIGHT, i, i) to 

leftaliveprocessi  
11.        else 
12.      send message(j, GDip, RIGHT, i, −1) to 

rightaliveprocessi  
13.     For each ((j, LEFT, g) ∈ reverse_messagelisti) do 
14.        if not reach the reverse trigger then 
15.           send message(j, GDip, LEFT, i, g) to 

rightaliveprocessi  
16.        if reach the reverse trigger then  
17.           delete (j, LEFT, g) from 

reverse_messagelisti; 
18.           add (j, LEFT) to messagelisti; 
19.           if (j ≠ i) then  
20.              send message(j, GDip, LEFT, i, −1) to 

leftaliveprocessi  
21.  if (leftaliveprocessi has changed) then 
22.     For each (j, LEFT) ∈ messagelisti do  
23.        if (the coming consecutive ⎣(t+1)/2⎦ neighbors 

crashed) then 
24.     send message(j, GDip, LEFT, i, i) to 

rightaliveprocessi  
25.        else 
26.     send message(j, GDip, LEFT, i, −1) to 

leftaliveprocessi
27.     For each ((j, RIGHT, g) ∈ reverse_messagelisti) 
do 
28.        if not reach the reverse trigger then 
29.           send message(j, GDip, RIGHT, i, g) to 

lefttaliveprocessi  
30.        if he reverse trigger then   reach t
31.           delete (j, RIGHT, g) from 

reverse_messagelisti; 
32.           add (j, RIGHT) to messagelisti; 
33.           if (j ≠ i) then  
34.              send message(j, GDip, RIGHT, i, −1) to 

rightaliveprocessi  
35.end 

Figure 9. Processing New Crash 
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