An Analysis of Physical Object Information Flow
within Auto-ID Infrastructure

by
Tatsuya Inaba
BACHELOR OF ENGINEERING IN ELECTRICAL ENGINEERING
UNIVERSITY OF TOKYO, 1991
Submitted to the Center Engineering Systems Division in Partial Fulfiliment of the
Requirements for the Degree of
MASTER OF ENGINEERING IN LOGOSTICS
at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUNE 2004

© Tatsuya Inaba. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic

Certified by

Accepted by

copies of this thesis document in whole or in part.

Signature of Author........................ N J.
Engineering Systems Division
—_ May 7, 2004
Certified by.........cooiiii e —aes
: N

George A. Kocur
Senior Lecturer of Department of Qi‘(ﬂ-—ap\d\Environment Engineering

Thesis Supervisor

James B. Rice
Director, ISCM Program of Center t6&4ransportation and J0gistics
héSys ervisor
é’/ Yosef Sheffi
Professor, Engineering Systems Division
Professor, Civil and Environmental Engineering Department
MASSACHUSETTS INSTITUTE, Director, MIT Center for Transportation and Logistics
OF TECHNOLOGY .
JUL 27 2004
LIBRARIES

ARCHIVES

An Analysis of Physical Object Information Flow
within Auto-ID Infrastructure

by

Tatsuya Inaba

Submitted to the Engineering Systems Division on May 7, 2004 in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF ENGINEERING IN LOGISTICS

ABSTRACT

The application of Radio Frequency Identification (RFID) has been studied for decades, and
many field trials have been executed to evaluate the usability of RFID systems, the business case
of RFID applications and so forth. One of the trial fields is its application to supply chain
management (SCM) because the RFID technologies are thought to improve visibility of physical
objects dramatically. Through this trial phase, benefits and feasibility of RFID have been
confirmed, and as a result, major retailers, such as Wal-Mart, Target, and Metro, have decided
to implement RFID. At the same time, these trials reveal the necessity of RFID standards.
Among these newly developed RFID standards, Auto-ID standard, which was originally
developed by Auto-ID Center, is a strong candidate to be a de-facto standard.

Auto-ID technologies consist of data standards and software architecture components. Data
standards also consist of two components: Electronic Product Code (EPC) and Physical Markup
Language (PML). On the other hand, software architecture components consist of four
components: readers, Savant, EPC Information Server (EPC-IS), and Object Name Service
(ONS). EPC-IS, which defines the interface of the servers that store physical object information,
plays a key role in realizing business processes that the RFID technologies are expected to
realize. In this thesis, we propose architecture of EPC-IS by defining the requirements for
EPC-IS through generic business processes executed in Auto-ID infrastructure. The architecture
we propose is not a monolithic message schema but three simple message schemas with
vocabulary sets that are separately defined in dictionaries. By taking this structure, we achieve
robust and scalable interface. We also evaluate our proposal by applying it to the problems
found in the RFID trials and possible future business processes.

Thesis Supervisor: George A. Kocur
Title: Senior Lecturer of Civil and Environmental Engineering

Thesis Supervisor: James B. Rice
Title: Director of ISCM Program of Center for Transportation and Logistics

Acknowledgement

First and foremost, I would like to thank to my family to understand my will and support my
study at MIT. Without their understanding and support I had not had the chance to study and
mingle with my friends at MIT.

I also thank to my friends who cheer me up and give me valuable advices. With their support, I
can keep high motivation to learn new things and write a thesis.

Regarding the thesis, I am very grateful for the support, advices and encouragement from my
advisors George Kocur and Jim Rice. Their advices helped me to focus the thesis topic,
construct the logic, and break the wall when I was stuck.

I also would like to appreciate all at Auto-ID Lab, especially Robin Koh. The discussion with
him was very informative and helped me to develop the scope of my thesis. He sometimes
pushed me to move forward and gave me advices and encouragement. He also gave me many
contacts that are essential to my thesis. The visit to the Auto-ID Lab was one of the most
valuable experiences I had through this thesis writing.

I would like to thank to the architects at EPCglobal, especially Ted Osinski. The advices from
him helped me to develop the proposal I made in this thesis.

Last but not least, I would like to show my appreciation to all the staff and friends at MLOG
Program. The experience we had, to discuss, to chat, to help each other and to eat and drink,
made the life at MIT more valuable, fruitful, and enjoyable.

Table of Content

1. INEOAUCHION......uveiiiiiniiiiiitirieiirett st ssases s s sssts s sssssss s ssessanesssasssessbsnessanes 7

PR 5 - T0 € 1 T OO 10
2.1 Auto-ID Standard ... 10
2.1.10 ADSTTACT ... e e e e e 10
2.1.2. REAUETIS...coiiiiiiiciii e e e e 10
2.1.30 SAVADIL ..ottt ettt 11
2.1.4. EPC-IS e 11
2.1.5. ONS e 12
2,16, EPC . 12
2. 1.7, PML e 12
2.2. Research of EPC-IS ... s 13
2.2.1. History of EPC-IS ..ot 13
2.2.2. Researchreview on EPC-IS ... 13
2.2.3. Approach of this thesiS........ccociiiiiiie e 14
2.3, BZB Standardsc..ccoooieiiiiii ettt et 14
2.3.1. INErOAUCTION ..c..eiiiiiiiiiiii ettt st et cor e e 14
2.3.2. eDXML .o et e e 14
2.3.3. ROSELLANEL ..o e e 15
2.3.4. Summary of B2B standard observation..............cccccocuvviiiininininncce 15

3. Objective, Assumptions and Methodologycovuirviieriiiiinnieennueinnineniciinnnennees 16
Bl OBJECLIVE ..ottt ettt e st et ae e ettt eaen 16
3.2, ASSUIMPLIONS.....oiiiiiiiiiii et 16
3.2.1. Physical 0DJeCt LYPe.......cccoiiiiiiiiiiic s 16
3.2.2. Supply chain range.............cccoioiiiiiiii e s 17
3.2.3. Server with EPC-IS eXiStencec.cccoiviiiiinireninenieieeee e 17
3.2.4. BZB CONMECLIONooviiiiiiiiiiicc ettt ettt ettt et e 18
3.3, MethodolOgYc.couiiiiiiiiiiiiiie ettt 18

4. Requirement ANAlYSIScccovuiiiviiiininiiiiiiiiciriiiieeteestennte st et e cnesssaseseeseeens 19
4.1. Business process SEIECHIONoccueiiiriiiiiiiiiie ettt 19
4.2. Query product-level data business ProCess.............occeoeriririeiesenenicieeeceeeeeereeee e 20
42,1, OVEIVIBW ..ottt ettt ettt ettt a e et ne e eeeeneas 20
4.2.2. Business process fIoW.........ccoioiiiiiiiiiii et 20

4.3. Query instance-level data business Processc..cocecirieceiiirenencnienenenescceenee 23

.31, OVEIVIEW ..ot ettt st et et e e ne e 23
4.3.2. BuUSINESS Process flOW..........cociiiiiiiiiiie et et 23
4.4. Query location data buSIness Processccoeoverieiniiiinii et 26
4.4.1. OVEIVIEW .ot 26
4.42. Business process flow.................coiiiii 26
4.5. Query path data buSiness ProCess.............ccooiviciiiiiinieniiece e 29
4.5.1. OVEIVIBW .ottt sas s s 29
4.5.2. Business process flow ... 29
4.6, EXCEPUONS ...veoveentciieicie e e s 32
46,1, OVEIVIBW .ottt ettt ettt sttt et e s et et e et e ne et as 32
4.6.2. Business process flow for notify exceptionccccovviiiiininiiiiici 32
4.6.3. Business process flow for query exception...........ccoccociiiiiinirniicncniecnin e 32
4.7. Requirement definitionccccoooooiiiiiiiiii 36
4.7.1. MESSAEE LYPESooueiiiiiiiiiiiiiieic e 36
4.7.2. Scalability of the Message...............ccccoccoiiiiiiiiiiiiii 36
4.7.3. Data LYPe....couieiiciiiniciiece e 36
4.7.4. Mechanism to translate historical data into business process.............cc.ccccecoou.. 37
MOAEHNGcccovviiriirinreinrieniiitticre ettt eesse e ne s e asesssssessnssnssssansssnnrsnnanss 38
5.1, Modeling dir@CTIONcovriiriirieiiiie ettt et et ebs e 38
5.1.1. Separation of message structure from dictionary structureccccceceeveueanne 38
5.1.2. Meaning of adopting Dictionary...........c.cccccociiieiiiiiieiiicieeneni e 38
5.1.3. Dictionary STIUCLUTE.........coooiiiiiiiiiii ittt s 38
5.2, DICTIONATY ...ttt ettt e e st s e 39
5.3 IMBSSAEER .ottt ettt e e b ettt sttt eaes 41
5.3.1. NOUY MESSAZE.......cocoiiiiiiiiiiiiiiii et 42
5.3.2. QUEry/ReSPONSE MESSAGEcveeiiiiirieitetiiie e sterite ettt e et esbe e e sbtesbe e seetenteseeereens 44
5.3.3. Acknowledge MeSSAe.............cccoiiiiiiiiiiiiiii ettt 48
EVaAIUALIONoeiieiiiiiininiitninentiiitc sttt e s st st s s s st e s nasasae e s snens 50
6.1. Imperfect tag deteCtion..........cocooiiiiiiiiiiii et 50
6.2, SECUTILY.....ooviiiiiiiicicic ettt ettt en e 52
6.3. Further buSiness ProCesSes.........ccccoviiiiiiiiiiiicee ettt et 53
6.4. Handling trace business ProCessccooeieiiiiiiiiiriiee e, 53
6.4.1. Business process flOW........ccoiiiiiiiiriieic ettt 54
6.4.2. Requirement analysis ... 57

6.5. Assembly trace DUSINESS PrOCESS ...cc.eeevieerieeieireetie et eeteeeeee et eeeeeete e e eteeereeeseseirans 57
6.5.1. Business process flOW........cooiiiiiiiieccieiee ettt e e 58
6.5.2. Requirement analySisccccvieriiiieeeiiieeiiiiceeee et ete e et e e eette e et e eerree e enreeenes 62

6.6. Order track DUSINESS PrOCESS.....coviretieiienieeiteeite ettt ettt et e st e s e e ebe e bt e seseeeatesaenennns 62
6.6.1. Business Process floW......oocoiiiiiiiiieeieeee ettt s 63
6.6.2. Requirement analysisccccoviiiiiieiiiiie et 66

7. Summary and SUZEEStIONS.......ccverrercverieerrererreinterrrerrersssssneeeeesssteesssrareessesnraneasssssrenes 67

Tl SUMIMATY .ccuiiiieecieeecciieertteeereee e e e e raeesee e seaesssaassssaesassesansseesesseasssasssssessavsaesssseassseseaes 67
7.1.1. EPC Information Service architectureccccoeviiiiiiiiniiininiieccceeeee e, 67
T.1.2. IMBSSAZC.ccccuiieeereeeereeeeiteeesbee ettt e e et e bt e e s be e e e st e s s sreeabes e s e e be e e rae e s e e esateeesabaeessranesneas 67
0 TN 0371 o) ¥ 1 o, 20O OO USRS 68

7.2. Suggestions for future StUAY.......coceevvieiiiereiiieeeereeee e n e e eeaee e 68
7.2.1. Standard developmient.......c..ccocieiiieiiiieniineee et 68
7.2.2. Impact assessment of merging EDI/B2B infrastructure with Auto-ID
INETASEIUCEUTE ...ttt st st sttt e be e sae e e ae s be e sbaasane s besaeens 68

8. References........coccevieiiveiiniiiiiiitcctcen b s s baessae 70
1SN o] o 1=3's Lo 1 - SRR URR U PROP 73

9.1, DICHIOMATYeeveeeeeteeeeeee et ettt et e et e e tae s e e s e treeesseeeeareseteeesreeesaeeenrneeeearerenas 73
9.1.1. Dictionary SChemacccocieiiiiiiiieee ettt ae e 73
9.1.2. Event DIiCLIONATY ..cocoeieeiiiieeeeeeeeeeett et eee ettt evreeenneessseeeenreeeenns 74
9.1.3. Property DiCtlOnAry.....c.ccuiiiiiieiiiiieeieteeceiieeceettre e e ettt e e eertreeesvaeeeeensaesesenraaeesenas 76

0.2, MESSAC ceeeei ettt e e et et e ee e e e e e ————————aaee e e ea e ——————teeeesaaa——raaaaereenensiaannans 79
9.2.1. SCREIMA ettt et ettt eba e st e eereenbae s 79
9.2.2. Sample INSEANCES ..occeeieiiiieeee et e s 82

1. Introduction

The history of Radio Frequency Identification (RFID) is long, and studies and implementations
of RFID go back to the mid-20™ century [1]. Although the technology is categorized as RFID,
the technology behind RFID applications at that time was different from that of today.
Currently RFID technology premises the use of IC tag, which stores information about the
object to which the IC tag is attached. This IC tag based RFID technology has been studied for
decades, and based on these studies field trials have been executed to evaluate wide range of
applications.

One of the trial fields of RFID has been its application to supply chain management (SCM)
because this technology is thought to dramatically improve the visibility of physical objects
and this increased visibility will bring companies in the supply chain many benefits, such as
the reduction of inventory, reduction of inventory management costs, and realization of value
added service.

Objectives of these trials are both technical and business verifications, which range from the
feasibility of RFID infrastructure, such as the usability of IC tag and radio frequency signal
reader, the accuracy of identification [2], and the estimation of RFID impact on the real
business [3].

Through trial phase, benefits and feasibility of RFID infrastructure has been confirmed, and
as a result, major retailers, such as Wal-Mart, Target, and Metro, have decide to deploy RFID
implementation. At the same time these trials reveal the necessity of RFID standards. RFID
standards are beneficial in many reasons. Major benefits are: 1) guarantee of interoperability,
2) acceleration of implementation, 3) reduction in cost of RFID components.

The RFID system is more beneficial when it is used among companies. To guarantee
interoperability, standards are necessary. Without standards, IC tags of a manufacturer may not
be detected by readers made by other manufacturers. This problem is not limited to the relation
between IC tags and readers but occurs between other components as well, such as
information handling between readers and systems, data stored in IC tags, and information
exchange within the RFID system.

In order to deploy standards, standard organizations not only define standard specifications but
also provide know-how by publishing implementation guidelines and organizing conferences
to share success stories about implementation. With these efforts, companies can accelerate
RFID system implementation with fewer troubles.

Reduction in cost of RFID components is a secondary benefit from RFID standard deployment.
If a standard is defined and deployed to many companies, economy of scale works and, as a
result, manufacturers of each component can achieve lower cost, and that benefits companies
that implement RFID systems.

Among the RFID standards, the Auto-ID standard, which was originally developed by Auto-ID
Center and 1s managed by EPCglobal, is a strong candidate to be a de-facto standard. Auto-ID
Center was a federation of research universities that was originally founded in 1999 and is now

Auto-ID Lab. In Auto-ID Lab there are six universities: Massachusetts Institute of Technology
(MIT), University of Cambridge, University of Adelaide, Keio University, Fudan University,
and University of St. Gallen [4]. EPCglobal is a non-profit organization, and its goal is to
realize global, multi-industry adoption and implementation of the EPCglobal Network [5].

The EPCglobal Network is by definition a set of technologies that enable immediate, automatic
identification and sharing of information on items in the supply chain [6]. EPCglobal Network
consists of software architecture components and data standards. Software architecture
components also consist of four components: readers, Savant, EPC Information Server
(EPC-IS), and Object Name Service (ONS). On the other hand, data standards consist of two
components: Electronic Product Code (EPC) and Physical Markup Language (PML). In this
thesis, we use the EPCglobal Network and Auto-ID technologies to mean the same thing.

Readers are devices for detecting tags when tags enter the read range. EPCglobal has published
the Auto-ID Reader Protocol Specification. This specification defines interactions between
readers and other Auto-ID compliant software components, such as Savant [7].

Savant is middleware software designed to control information flow between readers and
EPC-IS. EPCglobal has published the Savant Specification. This specification defines the
functions and interface of Savant. Data detected by readers is filtered, aggregated, counted and
reduced by Savant. Savant also controls information flow between readers and the enterprise
applications [8].

EPC-IS is an interface standard to define how to update and retrieve data of physical objects
stored in servers. Types of data stored in the servers are product-level property data such as the
size of physical objects, instance-level property data such as shelf life, and historical data such
as the detected record of physical objects. EPCglobal has not published specifications for
EPC-IS [9].

ONS provides global look-up service to the Auto-ID compliant software components. The
function is similar to Domain Name Service (DNS) in the Internet. EPCglobal has published
the Object Name Service Specification [10].

EPC is the identification schema for physical objects. EPCglobal has published EPC Tag Data
Specification. In the specification, in addition to EPC, Filter Value and encoding and decoding
rules are specified [11].

PML is an eXtensible Markup Language (XML) vocabulary set, which is used to describe all
the information exchanged in the Auto-ID infrastructure. PML consists of two parts: PML Core
and PML Extension. PML Core is specified in the Physical Markup Language Specification
Core [12].

These are the components defined by EPCglobal. In order to fulfill the benefits of Auto-ID
technologies, information about physical objects needs to be exchanged effectively within the
Auto-ID infrastructure, and a key component to realize this information exchange is EPC-IS as
an interface for servers that store physical object information. However, currently the
specification of EPC-IS has not been published yet.

There are two reasons why the specification is not published. One reason is that Auto-ID trials

8

focus on real-time applications. If companies implement an application that needs historical
data of physical objects, knowing how to use EPC-IS is necessary. The other reason is that
Auto-ID implementation is still on a trial basis and the priority of interoperability within the
Auto-ID infrastructure is still not so high. If companies need to exchange more information
about physical objects, the necessity of a standard method of using EPC-IS becomes more
crucial.

As we describe above, there is a gap between fundamental expectations towards the Auto-ID
infrastructure and the current publication of standards. In this thesis, we would like to fill the
gap by proposing a solution: architecture that can exchange information with EPC-IS.

This thesis is laid out as follows: Chapter 2 reviews the background of this thesis, such as
Auto-ID standards. Chapter 3 explains objectives of the thesis and discusses assumptions used
in the thesis. We also introduce the methodology employed in the thesis. Chapter 4 defines the
requirements for the model we propose, and the following chapter models solutions.
Chapter 6 evaluates the model with problems that are currently revealed and possible future
scenarios and makes it more robust. Chapter 7 concludes our proposal and discusses further
research questions that need to be addressed.

2. Background

Since we will propose architecture of EPC-IS in this thesis, components, functions and
situation of the Auto-ID standard is necessary as background information. In addition to that,
we review research that has been done about EPC-IS. At the same time, we introduce
Business to Business (B2B) standards as a relevant technology in this chapter.

2.1. Auto-ID Standard

2.1.1. Abstract

The Auto-ID standard is a set of RFID standards which were originally researched and
published by Auto-ID Center and are maintained by EPCglobal now. Auto-ID Center, which
changed its name to Auto-ID Lab in November 2003, is a federation of six universities
worldwide: MIT, University of Cambridge, University of Adelaide, Keio University, Fudan
University, and University of St. Gallen. On the other hand, EPCglobal is a non-profit
organization entrusted to drive global, multi-industry adoption and implementation of the
EPCglobal Network and is a joint venture of Universal Code Council (UCC) and EAN
International, which are also non-profit organizations to manage barcode, Electronic Data
Interchange (EDI) standards, and B2B integration standards [13].

The EPCglobal Network i1s a set of technologies that enable immediate, automatic
identification and sharing of information on items in the supply chain. EPCglobal Network,
which is equivalent to Auto-ID technologies, consists of software architecture components and
data standards. The software architecture components consist of four components: readers,
Savant, EPC-IS, and ONS, and the data standards consist of two components: EPC and PML.

2.1.2. Readers

Readers are the devices which read and write the data stored in the Auto-ID compliant IC tags.
Functions and interface of the readers are defined in two Auto-ID standards: Reader Protocol,
which defines the upstream wire part of the readers and Radio Frequency Communication
Protocol, which defines the downstream wireless part of the readers.

Reader Protocol defines three layers: Reader Layer, Message Layer, and Transportation Layer.
Reader Layer is the layer that defines the content and format of the message exchanged
between readers and Savant. Reader Layer defines commands sent from Savant and functions
that readers should perform when commands are sent to readers, such as IC tag read trigger,
filter, and send messages to IC tags.

Message Layer is the layer that defines how command messages defined in Reader Layer are
formatted, transformed, and carried on a specific network transport, and Transportation Layer
is the layer that defines transport facilities provided by the operating system or equivalent.

10

In the Reader Protocol specification, Message Layer and Transportation Layer are defined as
Message Transportation Binding (MTB). Reader Protocol defines commands sent from
Savant and MTB.

Regarding Radio Frequency Communication Protocol, there are three communication
protocols defined in Auto-ID standards: 900 MHz Class 0 Radio Frequency (RF)
Identification Tag Specification, 13.56 MHz ISM Band Class I Radio Frequency
Identification Tag Interface Specification, and 860MHz - 930 MHz Class 1 Radio Frequency
(RF) Identification Tag Radio Frequency & Logical Communication Interface Specification
[14] [15] [16].

Each of the communication protocol specification defines radio signal frequency, radio signal
power, shape of radio signal, message frame, command to IC tags, power of radio and so
forth. It also refers to the functions of the IC tag as a corresponding device to communicate
with.

2.1.3. Savant

Savant is a software system that is located between the enterprise application system and
readers. The primary function of Savant is to reduce the vast amount of data read by readers;
therefore, by this nature, Savant has functions to communicate with the enterprise
applications and readers and to sort out data detected by readers. In addition, Savant has
functions to communicate with ONS and EPC-IS as well. The specification of Savant is
defined in Savant Specification.

Savant Specification comprises two parts: specification of Processing Modules, which
defines functions which reside in Savant, and interface with other Auto-ID components. In
Savant Specification version 1.0, only interface for the enterprise applications is defined.

Processing Modules define functions of Savant. Processing Modules are not only defined by
EPCglobal but also by users. The combination of Processing Modules is arbitrary, and users
can choose whatever they need to fulfill their business goals except for the Standard
Processing Module. The Standard Processing Module, which defines minimal functions of
Savant, is mandatory.

The interface specification in Savant Specification defines message structure, MTB, and the
transportation protocol that Savant premises.

2.1.4. EPC-IS

EPC-IS is an interface that defines protocol to access to servers which store physical object
data. The data is exchanged in PML format.

Servers for physical object information store two types of data: historical data and property
data. Historical data is event records sent by Savant, and property data is a set of relevant

11

information about physical objects. Property data consists of the product-level property data
and the instance-level property data. Examples of the product-level property data are the size
and the manufacturer of the physical object, whereas examples of the instance-level property
data are the expiration date and the purchase order document number for the physical object.

Specification of EPC-IS has not been published, but a couple of studies have been done for
EPC-IS. We introduce them in the following section along with the history of EPC-IS.

2.1.5. ONS

ONS is a global lookup service that connects EPC with one or more Uniform Resource
Identifiers (URIs) where more information about the physical object is stored. The location
may be servers with EPC-IS, web sites, and other Internet resources. The specification of ONS
1s defined in ONS Specification.

ONS Specification defines the flow of lookup, method to convert EPC to URI format, and
message format of the lookup query. ONS uses the same method that Domain Name Service
(DNS) uses. In DNS, URIs and IP addresses are linked, whereas URIs and EPC are linked in
ONS.

2.1.6. EPC

EPC is the fundamental identifier for physical objects. The specification of EPC is defined in
EPC Tag Data Specification. EPC Tag Data Specification defines the format of EPC, and the
encode/decode scheme with other industry identifiers, such as Serialized Global Trade
Identification Number (SGTIN) and Serial Shipping Container Code (SSCC). All the
encode/decode schemes are specified with the header value.

The number of the digits defined for an identifier is 96 digits, but, in order to meet industry
requirements to collect the tag data effectively, EPCglobal defines Standard EPC Tag Data,
which consists of EPC and optional Filter Value.

21.7. PML

PML is an eXtensible Markup Language (XML) vocabulary set, which is used to describe all
the information exchanged in the Auto-ID infrastructure. PML consists of two parts: PML Core
and PML Extension.

PML Core is for the common vocabulary that is commonly used in different industries and
that describes basic attributes in the Auto-ID infrastructure, whereas PML Extension is for the
industry specific vocabulary set. PML Core is defined in PML Core Specification by
EPCglobal, but PML Extension may not be defined by EPCglobal but by other industry
Initiatives.

12

PML Core Specification defines the range of the specification, XML Schema for PML Core.
PML Core schema describes EPC, date time stamp of event, EPC of the reader, and the
related data, such as types of read command.

2.2. Research of EPC-IS

2.2.1. History of EPC-IS

The necessity of EPC-IS has been recognized since the initial stage of the Auto-ID
technology development because one of the primary concepts of Auto-ID technologies is to
store minimal data in the IC tag and to store other related data in the servers in the Auto-ID
infrastructure. In order to realize this concept, PML has been developed as the common
language to exchange information about physical objects, and a database to store the related
information of physical objects has been proposed [17].

Initially this proposed database was called PML Server. However, as the study went on,
researchers realized that related information might not be stored only in the PML Server and
that it might be stored in the other enterprise systems, such as the enterprise resource
planning (ERP) system. Based on this observation, researchers became focused on the
interface of the database, and the interface is called EPC-IS. Until now, we have used the
same term and studies have been done to better define the interface.

2.2.2. Research review on EPC-IS

Studies of EPC-IS have difficulty by nature because they are affected by industries to which
EPC-IS 1s applied but to define the common use cases among different industries is not easy.
The relatively lower necessity of EPC-IS standards also affects the research in this field. As
written in Chapter 1, the publication of EPC-IS has been late because initial trials are
focusing on applications which use real-time data, the data stored in the server can only be
used with a proprietary method, and interoperability is not a high priority in the trials. Of
course, the difficulty to define common use cases among industries is the main reason for the
delay.

However, a couple of studies have been done by Cambridge University, one of the
universities in the Auto-ID Lab. Approaches taken in the studies are to analyze characteristics
of the data which is supposed to be stored in the servers in the Auto-ID infrastructure and also
to define how to use the data [18].

The studies reveal that servers store two categories of data: the historical data and the
property data. The property data is also divided into the product-level property data and the
instance-level property data. This data type definition helps researchers to categorize use

cases of each data type, and from this categorization they analyze efficient methods to
retrieve data stored in the servers.

One fundamental assumption they make is that EPC-IS is different in different industries.

13

Based on this assumption, their focus is to provide technology components, such as query
methods and database schemas for EPC related data, and to assess how proposed components
are compatible with the existing industry standards.

2.2.3. Approach of this thesis

In this thesis, we take a different approach from the studies done by Cambridge University.
We use the same data type category that they define: historical data and property data
(product-level and instance-level). We also define use case as generic business processes,
which are explained in Chapter 4. The difference is how to achieve compatibility with the
existing industry standards. Our approach is to propose information flow architecture with
compatibility in the component level, which is defined in a dictionary as explained in Chapter
5.

The benefit of this approach is that this information flow architecture can be used as a base
model of new industry standards and that each industry can develop its standard by
modifying it. The drawback of this approach is that it may be difficult to adopt the
information flow architecture if the information flow architecture used in the industry is
different from our model.

2.3. B2B standards

2.3.1. Introduction

Although EPC-IS is not used only between different companies, it shares many
characteristics with B2B standards. Common components of B2B standards are messaging
protocol, vocabulary, message schema, choreography, and registry/repository scheme [19].
Not all the industry standards define all the components, but they provide most of them by
referring other standards. In this section, we introduce two industry B2B standards that we
refer for this thesis.

2.3.2. ebXML

ebXML (Electronic Business using eXtensible Markup Language) is a modular suite of
specifications that enables enterprises of any size and in any geographical location to conduct
business over the Internet. Using ebXML, companies have a standard method to exchange
business messages, conduct trading relationships, communicate data in common terms and
define and register business processes [20]. ebXML was started in 1999 as an initiative of
OASIS and the United Nations/ECE agency CEFACT. It provides all the components listed in
the introduction subsection. In addition to that, ebXML defines collaboration protocol
agreements, which specify procedure to agree terms and condition on line.

14

One of the significant aspects of ebXML is the wide coverage of the components and
industries. One of the drawbacks, on the other hand, is the speed of the standard defining
process. This is inevitable for developing the comprehensive standard.

Another characteristic of the standard is to try to define each component separately and make
it reusable. For example, business messages are not designed as a monolithic gigantic
message but as a combination of a vocabulary set (ebXML calls it Core Component) and
message schemas. The background technology to make ebXML define standard components
separately is XML [21].

2.3.3. RosettaNet

RosettaNet is a non profit organization dedicated to creating and implementing open
e-business process standards. Its focus is the high-tech industry starting from semiconductor,
electronic component, information technology, and telecommunication industries. It was
founded in 1999 in the United States and has eight affiliates around the world [22].

RosettaNet standard comprises messaging protocol, vocabulary (RosettaNet calls it
dictionary.), message schema, and choreography. Same as ebXML, by defining message
schema and dictionary separately, RosettaNet can reuse basic message structure and
vocabulary and also maintain them separately. RosettaNet standard also uses XML [23].

2.3.4. Summary of B2B standard observation

From B2B industry standard observations, we conclude that it is useful to use XML to
describe the interface and that to define components separately from message is a valid
approach for reusable and robust interface architecture. In this thesis, we adopt these points.

15

3. Objective, Assumptions and Methodology

In this chapter, we describe the objective of this thesis and assumptions we make for the
analysis. We also introduce the methodology employed in this thesis.

3.1. Objective

In order to fulfill the benefits aimed by the Auto-ID technologies, defining the information
flow of the physical objects within the Auto-ID infrastructure is crucial. The key component
to realize this information flow 1s EPC-IS, since EPC-IS is the common interface of the
servers which store the property data and the historical data of physical objects distributed in
the Auto-ID infrastructure.

However, currently specifications of EPC-IS have not been published yet, and, as a result,
information flow itself and interoperability among Auto-ID components are limited and some
of the business processes can not be implemented because of these constraints. Therefore, in
order to fully utilize the physical object information stored in servers and realize new
business processes, interface specifications are highly required.

The objective of this thesis is to propose physical object information flow architecture by
defining generic businesses and a set of interface schemas that enable physical object
information flow within the Auto-ID infrastructure.

3.2. Assumptions

Business requirements are necessary to start the analysis; however, some of the business
requirements are contradictory. In order to make clear discussion and develop rational model,
we discuss some of the business requirements that affect our analysis and make some
assumptions. We identify four business requirements as issues that affect information flow
within the Auto-ID infrastructure. They are: physical object type, supply chain range, server
with EPC-IS existence, and existence of B2B connection. We will discuss these issues, show
the possible dispositions, and make assumptions based on the discussion.

3.2.1. Physical object type

Physical object type is one of the most important business issues that need to be discussed. It
is not appropriate to assume that a package of paper towels and a case of pharmaceuticals are
treated in the same manner. It is conceivable that the paper towels may not be tracked by
individual instance level, whereas the pharmaceuticals may require being tracked and traced
by individual instance level. This is basically due to the monetary difference between paper
towels and pharmaceuticals.

16

What is the consequence of the difference of the physical object value, then? Suppose a
manufacturer ships the products to a retailer, does the manufacturer send all the individual
EPCs to the retailer in the first place? The answer depends on the relation between companies,
but presumably they do not exchange individual level information first. How about
pharmaceuticals? The possibility to send EPC of individual items is much higher than paper
towels, but it also depends on the relation.

However, if trouble, such as loss of a package, happens in shipping paper towels, how will
the manufacturer and the retailer solve the problem? The retailer may request the
manufacturer to send lower level shipping unit EPC, like package level EPC. In this paper
towel example, they may not go down to instance level EPC, but there is a need to exchange
granular level EPC. In addition, since container level is relative, we can suppose the lower
level shipping unit EPC to be instance level EPC. From this observation, we assume that
items need to be tracked by instance level in this thesis.

3.2.2. Supply chain range

Supply chain range is the issue of how we define supply chain starts and ends. Supply chain
start can be defined from raw material, subassembly or work-in-process (WIP), or finished
goods; and end can be defined as delivery to retail store, delivery to customer house and so
forth. End may go beyond those and be defined considering scrapping or recycling.

However, except for combining and separating processes which make one or more products
out of one or more components, business process can be defined as a collection of the
physical object moves: raw material moves from the raw material supplier to the
manufacturer, finished goods move from the manufacturer to the retailer, and scraps move
from the customer to the wrecker.

Based on this observation, we decide to start with finished goods move from one company to
another company for the requirement analysis in Chapter 4 and then model EPC-IS interface
to meet the requirements. After that, we add complexity to the model in Chapter 6 by
evaluating the model with the assembly process.

3.2.3. Server with EPC-IS existence

Existence of the server with EPC-IS is a fundamental assumption in this thesis, but size of the
company may affect the existence of the server. It is reasonable to assume that big enterprises
have servers, but it may not be true for small companies. If a small manufacturer does not
have a server with EPC-IS but its trading partner requires the manufacturer to keep
information of their products, what does the small manufacturer do? One possible scenario is
to outsource the maintenance of physical object information to a third party. In this way, the
company does not physically own a server but still keeps information of the products.
Therefore, we assume the existence of servers with EPC-IS in any business entity in this
thesis.

17

3.2.4. B2B connection

Before companies start using the Auto-ID technologies, they may have already established
connections with other technologies, such as Electronic Data Interchange (EDI) or B2B
Integration (B2Bi). In this case, they have a choice of using the existing connection or setting
up another connection using the Auto-ID technologies. If they decide to use EDI, what they
have to do is to define messages (or modify existing messages) for EPC-IS and develop
mapping rules between the EDI message and the EPC-IS interface. They need to do the same
thing when they decide to use B2Bi.

On the other hand, if they decide to use the Auto-ID technologies, they need to set up a new
connection. In this case, if they have an existing connection, it will become redundant. It is
reasonable to assume that companies abandon the redundant infrastructure or merge them
with the new connection. Based on these observations, we assume that all the companies are
using or will use Auto-ID technologies even if they have EDI/B2Bi connections.

3.3. Methodology

The methodology we follow in this thesis has three steps: 1) Requirement Analysis, 2)
Modeling, and 3) Evaluation. In the Requirement Analysis step, we define generic business
processes. One of the reasons why EPC-IS interface specifications have not been published is
the lack of business processes with EPC-IS, so we define generic business processes by
investigating current trials and expected business processes for RFID. After we specify these
business processes, we identify the requirements for the EPC-IS interface.

In the Modeling step, we model architecture of the EPC-IS interface. Since the requirements
are not comprehensive, we do not suppose that this model is used as a standard. However,
this architecture of the EPC-IS interface and the ways in which it is used will be applicable to
a new standard.

In the Evaluation step, we evaluate the model we propose in the previous step with problems
identified in the trials and the further possible business processes. With this evaluation step,
we modify the model if necessary and improve the robustness of the architecture.

18

4. Requirement Analysis

In this chapter, we define generic business processes so that the requirements for EPC-IS
interface are derived from the business processes.

4.1. Business process selection

The business processes we choose characterize the information flow in which the servers with
EPC-IS is involved. One main characteristic is the type of data that those servers store. Since
servers store data for both the product-level and the instance-level, we define the business
processes to deal with these two types of data. Another data type that those servers handle is
historical data, which is the event record of a specific instance when it is detected by readers.
We also define the business processes that utilize this historical data. We see the classification
of the product-level historical data, such as changes in a component of an assembly product.
However, this kind of change is also categorized as a product attribute change, which can be
managed as the product-level property. Therefore, we consider only instance-level for the
historical data.

Based on the analysis above, we define four generic business processes: 1) query
product-level data business process, 2) query instance-level data business process, 3) query
location data business process, and 4) query path data business process.

Regarding the system layout, we premise the structure in Figure 4-1-1. We assume two
companies, and the difference is indicated by the suffix. We also assume that ONS is public
so that both companies can use the ONS equally. Regarding Savant, we assume two layers.
Savantl and Savant2 are connected to servers with EPC-IS (we represent these servers as
EPC-IS in the system layout) and the enterprise application, and Savantl-1 ~ Savant1-3 and
Savant2-1 ~ Savant2-3 are connected to readers and Savantl, Savant2 respectively. EPC-IS1
stores the property data of items and the historical data that is detected by Readerl-1 ~
Readerl-3, whereas EPC-IS2 stores the historical data that is detected by Reader2-1 ~
Reader2-3. The enterprise application controls business transaction data, such as purchase
orders and advance ship notices, and also provides the interface for business process
operations.

19

ONS

Company 1 /ﬁ Company 2
— / -
Enterprise g Enterprise
™) Apptication | -~ Application 2)
I—* EPC-IS 1 EPC-IS 2 <—~——J
t—————————» Savant] Savant2 |(¢——-———
3 3
| | l 1
Savant 1-1 Savant 1-2 Savant 1-3 Savant 2-1 Savant 2-2 —l Savant 2-3
I I [I l |
Reader 1-1 Reader 1-2 Reader 1-3 Reader 2-1 Reader 2-2 Reader 2-3
N N N N N
LQ%E—*--T (A] = [A] = [a

Figure 4-1-1: System layout for the generic business processes

4.2. Query product-level data business process

4.2.1. Overview

Query product-level data business process is the business process that is executed when
Company?2 queries the product-level data of a product to Company!l’s server (with EPC-IS)
which stores the data of products. Preconditions of this business process are that these
companies settle terms and conditions about this business process', original product data is
stored in the Enterprise Applicationl, and Companyl and Company2 implement the Auto-ID
infrastructure.

4.2.2. Business process flow

Figure 4-2-1 shows the flow of the business process. Each arrow represents the message sent
between the system components.

! Articles that companies in the business process need to settle before the transactions are: the way to
exchange business documents except for the messages we deal with, such as purchase order; the location
of each Auto-ID compliant readers; and the technical specifications that are necessary to connect servers
with EPC-IS, such as IP address.

20

Register product information: Original product-level data stored in the Enterprise
Applicationl is sent to the EPC-IS1. When the data is registered successfully, an
acknowledgement message returns to the Enterprise Applicationl.

Register EPC and the server to the ONS: The relation between the product-level EPC
and the EPC-IS1 location is registered to the ONS. If the data is registered
successfully, an acknowledgement message returns to the enterprise application.

Send EPC to a server of the trading partner: After the product-level information is
registered in the EPC-IS1, the data is sent to the EPC-IS2. Timing of the data update
and the attributes of the product data may be defined in terms and conditions. When
the data is sent successfully, an acknowledgement message returns to the EPC-IS1.

Send EPC from the EPC-IS2 to the Enterprise Application2: After the step 3, the
EPC-IS2 sends the EPC to the Enterprise Application2. When the data is sent
successfully, an acknowledge message returns to the EPC-IS2. The data that the
Enterprise Application2 receives depends on the data sent from the EPC-IS1, but the
Enterprise Application2 can get the EPC at least. This message can be asynchronous
to the step 1 and 3. In this business process, we assume that sending a message from
the EPC-IS2 to the Enterprise Application2, but this assumption is equivalent to the
procedure that the Enterprise Application2 queries the EPC to the EPC-IS2.

Query the product-level data from the Enterprise Application2 to the EPC-IS2: After
the step 4, the Enterprise Application2 has the product-level EPC of a specific product.
Suppose an employee wants to know the size of the product, he operates the
Enterprise Application2 and the Enterprise Application2 sends a query to the
EPC-IS2.

EPC-IS look-up: After the step 5, the EPC-IS2 looks up the location of servers which
store the data of a specific EPC by sending a query to the ONS. In this case, the
EPC-IS2 gets the location information of the EPC-IS1.

Query the product-level data from the EPC-IS2 to the EPC-IS1: After the step 6, the
EPC-IS2 recognizes the location of the EPC-IS1. Then the EPC-IS2 queries the
product-level data of a specific product to the EPC-IS1 and gets the necessary
information.

Response from the EPC-IS2 to the Enterprise Application2: In response to the step 5,
the EPC-IS2 sends a response back to the Enterprise Application2. The response
contains the data that the EPC-IS2 receives in the step 7.

21

(44

A19nb uoneuuojur [9A3[-1onpoid oY) JO MO[J NIOA :[-7-+ 2InS1]

|
i
i
|
|
i

8z1s way dsay
“ezis wael dsed |
(0d3) 8z1s wey Aisnp
“ Y1dWN
dn %007 SI-0d3
(0d3) 8zisjwsy AienD
oy >
0d3 meu pueg R
oy
| 3V
., < 0d3 wnpoud pusg P
,, 0d3 nposd puss
, , oV >
-~ SFOJIPUE 5T BI85y |
3V
7 [O BIpoId BRIGeY |
|
Z uoijeayddy] i NPy
osudiejugy T lueaeg Am TSiF0d3 SNO 1 SI-0d3 | WeAeg o

4.3. Query instance-level data business process

4.3.1. Overview

Query instance-level data business process is the business process that is executed when
Company?2 queries the instance-level data of a product to Company!1’s server (with EPC-IS)
which stores the instance-level property data. Preconditions of this business process are that
these companies settle terms and conditions about this business process, original product data
is stored in the Enterprise Applicationl, Company2 has already received the product level

data and placed an order to Company!, and they implement the Auto-ID infrastructure.

4.3.2. Business process flow

Figure 4-3-1 shows the flow of the business process. Each arrow represents the message sent

between the system components.

Send the instance-level data with the EPC to the EPC-IS1: When each instance is
scanned and the relevant data is inputted from one of the Savants, the data is sent to
the EPC-IS1 from the Savantl. When the data is sent successfully, an acknowledge
message returns to the Savant1.

Register the EPC and the server to the ONS: The relation between the instance-level
EPC and the EPC-IS1 location is registered to the ONS. If the data is registered
successfully, an acknowledgement message returns to the Savant1.

Send order information (order level) from the Enterprise Application] to the Savantl:
Based on the order Company]1 received from Company2, the Enterprise Application]
sends an identifier of the purchase order, the product-level EPC and the quantity to
the Savant]l.> When the data is sent successfully, an acknowledge message returns to
the Enterprise Application].

Send order information (instance level) from the Savantl to the EPC-IS1: After the
step 3, each order is linked with the individual EPC. Then the individual EPC with the
relevant information (e.g., order identifier) is sent to the EPC-IS1 and registered.
When the data is sent successfully, an acknowledge message returns to the Savantl.

Query shipping information from the Enterprise Applicationl to the EPC-IS1: After
the step 4, the Enterprise Applicationl queries shipping information (EPC of item,
case, pallet etc.) to send an advance ship notice to Company?2. The key of the query is

% We assume that Company? assigns purchase order identifier and Company! uses the same identifier. In

the real practice, companies that receive purchase orders from their trading partner assign their own

identifier, but they also maintain transform tables that link receiver’s identifier with sender’s identifier, We
also assume that Company1 sends purchase order identifier that Company?2 assigns when Company! sends

any messages related to the original purchase order.

23

10.

the order identifier that the Enterprise Application1 sends to the Savantl previously.

Send an advance ship notice to Company2: After the step 5, the Enterprise
Applicationl sends an advance ship notice to Company2. We assume the Enterprise
Application] sends an advance ship notice to the EPC-IS1 and then the EPC-IS1
sends an advance ship notice to the EPC-IS2, but this information may be sent via
EDI/B2Bi connection if they have a connection. We also assume the EPC-IS2 pushes
an advance ship notice to the Enterprise Application2, but the Enterprise Application2
may query information to the EPC-IS2.

Query the instance-level data from the Enterprise Application2 to the EPC-IS2: After
the step 6, the Enterprise Application2 has the instance-level EPC of the items that
Company?2 orders. Suppose an employee wants to know the expiration date of the
individual item, he operates the Enterprise Application2 and the Enterprise
Application2 sends a query to the EPC-1S2.

EPC-IS2 look-up: After the step 7, the EPC-IS2 looks up the location of servers
which store the data of a specific EPC by sending a query to the ONS. In this case, the
EPC-IS2 gets the location information of the EPC-IS1.

Query the instance-level data from the EPC-IS2 to the EPC-IS1: After the step 8, the
EPC-IS2 recognizes the location of the EPC-IS1. Then the EPC-IS2 queries the
instance-level data of a specific individual item to the EPC-IS1 and gets the
information.

Response from the EPC-IS2 to the Enterprise Application2: In response to the step 7,
the EPC-IS2 sends a response back to the Enterprise Application2. The response
contains the data that the EPC-IS2 receives in the step 9.

24

€14

Aronb uonewIOUI [SAJ[-90UBISUI 3Y) JO MO[J YIOA :[-€-4 2InS1]

asudisjuy

o)1t Jious dsay
341 yioys dsay
(0d3B) ot y1ous Aenp -
A U1dvN
> dn Yool §1-343
(Dd3) apt s1eus fusnp
oV
- abIloN a3UBApPY
i %oy
| SOV
< SONON SOUBADY .
- BO1JON 8oUBADY
| ojul Buiddiys dsay >
BV
W_E Buiddiys pue Jepio puag
pE >
- O3u) JOpIO puUSS
Yo >
¢ —DJIoRItey
YoV >
NelLIoul [9AS[-50UEISUl pUag
Z uoneoyddy) 1 [} uoneayddy
ssudio3 Z wueneg # , Z 81-0d3 SNO L SI-0d3 L Wweaeg ” |

4.4. AQuery location data business process

4.4.1. Overview

Query location data business process is the business process that is executed when Company?2
queries current location data of an individual item to the server which stores location data.
Location data is stored in the server of Companyl, Company2 and the party which handles
the item and stores the data. Preconditions of this business process are that these companies
settle terms and conditions about this business process, original product data is stored in the
Enterprise Application]l, Company2 has already received product level data and placed an
order to Company]1, and they implement the Auto-ID infrastructure.

4.4.2. Business process flow

Figure 4-4-1 shows the flow of the business process. Each arrow represents the message sent
between the system components.

1. Send the instance-level data with the EPC to the EPC-IS1: When each instance is
scanned and the relevant data is inputted from one of the Savants, the data is sent to
the EPC-IS1 from the Savantl. When the data is sent successfully, an acknowledge
message returns to the Savant].

2. Register the EPC and the server to the ONS: The relation between the instance-level
EPC and the EPC-IS1 location is registered to the ONS. If the data is registered
successfully, an acknowledgement message returns to the Savant].

3. Send order information (order level) from the Enterprise Applicationl to the Savantl:
Based on the order Company1 received from Company?2, the Enterprise Applicationl
sends an identifier of the purchase order, the product-level EPC and the quantity to
the Savantl. When the data is sent successfully, an acknowledge message returns to
the Enterprise Application].

4. Send the order information (instance level) from the Savantl to the EPC-IS1: After
the step 3, each order is linked to the individual EPC. Then the individual EPC with
the relevant information (e.g., order identifier) is sent to the EPC-IS1 and registered.
When the data is sent successfully, an acknowledge message returns to the Savant].

5. Query shipping information from the Enterprise Applicationl to the EPC-IS1: After
the step 4, the Enterprise Applicationl queries shipping information (EPC of item,
case, pallet etc.) to send an advance ship notice to Company2. The key of the query is
the order identifier that the Enterprise Application] sends to the Savantl previously.

6. Send an advance ship notice to Company2: After the step 5, the Enterprise
Application] sends an advance ship notice to Company2. We assume the Enterprise

26

10.

11.

Applicationl sends an advance ship notice to the EPC-IS1 and then the EPC-IS1
sends an advance ship notice to the EPC-IS2, but this information may be sent via
EDI/B2Bi connection if they have a connection. We also assume the EPC-IS2 pushes
an advance ship notice to the Enterprise Application2, but the Enterprise Application2
may query information to the EPC-IS2.

Send the detected data from the Savantl to the EPC-IS1: When the items are shipped,
they are scanned by the readers and the data is sent from the Savantl to the EPC-IS1.
In this sample process, we assume the Savantl-1 is located at Company1’s plant and
the Savantl-2 and the Savantl-3 are located at the distribution center of Companyl.
When they are scanned, the data is first sent from the Savant1-2 to the Savantl, and
then the Savantl sends the data to the EPC-IS1. When the data is sent successfully, an
acknowledge message returns to the Sanvantl.

Query the instance-level data from the Enterprise Application2 to the EPC-IS2: After
the step 6, the Enterprise Application2 has the instance-level EPC of the items that
Company?2 orders. Suppose an employee wants to know the location of the individual
item, he operates the Enterprise Application2, and the Enterprise Application2 sends a
query to the EPC-IS2.

EPC-IS2 look-up: After the step 8, the EPC-IS2 looks up the location of servers
which store the data of a specific EPC by sending a query to the ONS. In this case, the
EPC-IS2 gets the location information of the EPC-IS1.

Query the instance-level data from the EPC-IS2 to the EPC-IS1: After the step 9, the
EPC-IS2 recognizes the location of the EPC-IS1. Then the EPC-IS2 queries the
instance-level data (location data) of a specific individual item to the EPC-IS1 and
gets the information.

Response from the EPC-IS2 to the Enterprise Application2: In response to the step 8,
the EPC-IS2 sends a response back to the Enterprise Application2. The response
contains the data that the EPC-IS2 receives in the step 10.

27

8¢

A120b BIEP UONIEOO] 9Y) JO MO[J JIOA :[-p-{ 2INS1]

|
|
|
,H
|
I
|
uoneso| we) dsey
o uofeso| way dsay
(Od3)|uoneool way Asanp
d1ldVvN
» dnH00) SI-0d3 o
(0d3) uoneoo] ey Aienp o
Y >
[—emEpWwEAT |
>
Bjep Jusag
VY o
- DIION 8OUBADY
3oV
DY
B J.Qﬁqz|3am>u< .
-t
Q210N JIUBAPY
»
ojul buiddiys dsay
< (FSqUNU TSpIo) CJul BUIdIIS ATSTD]
>
Y
i ojui Buiddiys pue Japio pueg
oV >
<
Ojul 19pIO PURS
BV >
a Jd3 =103y
oY
i8ewiour jAsr-eouUBIs Tl pusg
Z uopeoliddy . . 1 uonedliddy
ssudsoug Z weaeg Z St-0d3 SNO L SI-0d3 } ueAesg asudioug

4.5. Query path data business process

4.5.1. Overview

Query path data business process is the business process that is executed when Company2
queries the path data that an individual item takes by using the EPC that is originally sent by
Companyl. The event data is stored by the servers of Companyl, Company2 and the other
parties which handle the item. With this business process, Company2 can retrieve EPC of
readers that have scanned the specific instances, and, from EPCs of these readers and the
location information of them, which are received by Company2 in terms and conditions,
Company?2 can trace the physical route that these instances have taken. Preconditions of this
business process are that these companies settle terms and conditions about this business
process, original product data is stored in the Enterprise Applicationl, Company?2 has already
received the product level data and placed an order to Companyl, and they implement the
Auto-ID infrastructure.

4.5.2. Business process flow

Figure 4-5-1 shows the flow of the business process. Each arrow represents the message sent
between the system components.

1. Send the instance-level data with the EPC to the EPC-IS1: When each instance is
scanned and the relevant data is inputted from one of the Savants, the data is sent to
the EPC-IS1 from the Savantl. When the data is sent successfully, an acknowledge
message returns to the Savantl.

2. Register the EPC and the server to the ONS: The relation between the instance-level
EPC and the EPC-IS1 location is registered to the ONS. If the data is registered
successfully, an acknowledgement message returns to the Savant1.

3. Send order information (order level) from the Enterprise Applicationl to the Savantl:
Based on the order Company] received from Company?2, the Enterprise Applicationl
sends an identifier of the purchase order, the product-level EPC and the quantity to
the Savantl. When the data is sent successfully, an acknowledge message returns to
the Enterprise Application].

4. Send order information (instance level) from the Savant] to the EPC-IS1: After the
step 3, each order is linked to the individual EPC. Then the individual EPC with the
relevant information (e.g., order identifier) is sent to the EPC-IS1 and registered.
When the data is sent successfully, an acknowledge message returns to the Savantl.

5. Query shipping information from the Enterprise Applicationl to the EPC-IS1: After
the step 4, the Enterprise Applicationl queries shipping information (EPC of item,
case, pallet etc.) to send an advance ship notice to Company?2. The key of the query is

29

10.

11.

12.

the order identifier that the Enterprise Applicationl sends to the Savantl previously.

Send an advance ship notice to Company2: After the step 5, the Enterprise
Application] sends an advance ship notice to Company2. We assume the Enterprise
Application]l sends an advance ship notice to the EPC-IS1 and then the EPC-ISI
sends an advance ship notice to the EPC-IS2, but this information may be sent via
EDI/B2Bi connection if they have a connection. We also assume that the EPC-IS2
pushes an advance ship notice to the Enterprise Application2, but the Enterprise
Application2 may query new information to the EPC-IS2.

Send detected data from the Savant to the server: When the items are shipped, they
are scanned by the readers and the data is sent from Savant to the servers. In this
sample process, we assume the Savantl-1, the Savantl-2, and the Savantl-3 are
located at Company!’s facility and the Savant2-1, the Savant2-2 and the Savant2-3
are located at Company?2’s facility. All these Savants are called edge Savant. When
scanned, the data is first sent from the edge Savant to the Savant1 or the Savant2, and
then each Savant sends the data to the server with EPC-IS in the facility. When the
data is sent successfully, an acknowledge messages return to the Savants which send
the message to each server.

Register the EPC and the server to the ONS: The relation between the instance-level
EPC and the EPC-IS2 location is registered to the ONS at Company? side. If the data
is registered successfully, an acknowledgement message returns to the Savant2.

Query the instance-level data from the Enterprise Application2 to the EPC-IS2: After
the step 6, the Enterprise Application2 has the instance-level EPC of the items
Company?2 orders. Suppose an employee wants to know the path that the individual
item takes, he operates the Enterprise Application2 and the Enterprise Application2
sends a query to the EPC-IS2.

EPC-IS2 look-up: After the step 9, the EPC-IS2 looks up the location of severs which
store the data of a specific EPC by sending a query to the ONS. In this case, the
EPC-IS2 gets the location information of the EPC-IS1 and the EPC-IS2 itself.

Query the instance-level data from the EPC-IS2 to the EPC-IS1: After the step 10, the
EPC-IS2 recognizes the location of the EPC-IS1. Then the EPC-IS2 queries the
instance-level data of a specific individual item to the EPC-IS1 and gets the
information.

Response from the EPC-IS2 to the Enterprise Application2: In response to the step 9,
the EPC-IS2 sends a response back to the Enterprise Application2. The response
contains both path data that the EPC-IS2 receives in the stepll and path data the
EPC-IS2 stores.

30

1€

A1onb e1ep yied ay) Jo mo[J JIOM :[-G- 2InS1

yed wey dsey
B uofeoo| way dsay
(0d3)|uoneosol way Alenp
HidVWN
> dn 00| §I-0d3
(Dd3) ed way Lend
oY
0d3 Jqisibay o

P— — |

- oY | ETEYE » /

elep jJusng oA [

| ov » k

$ov o ejep jueAl
- adnON 8oueApY
» oV
BV
%%.o.zlﬂcm%(o
i 010N e2uBAPY
ojur buiddiys dsay
WV
WE_ 6uiddiys pue JapJo pusg
XV
[ojul JopIo puag
oV >
« Td3IeEI05y
T r
Z uoneoyddy ~ . {1 uonesyddy
esudiejug Z JuBAeg _ 2 SI-0d3 SNO ._ L SI-0d3 | jueAeg ., asudepug _

4.6. Exceptions

4.6.1. Overview

In addition to the generic business processes, we include exception business processes. We
assume two types of exceptions: exceptions that happened after a system component received
a notify message, and exceptions that happened after a system component received a query
message. We exclude the exceptions that happen on account of the messaging protocol layer
and the lower layer errors.

4.6.2. Business process flow for notify exception

Figure 4-6-1 shows the flow of the business process. Each arrow represents the message sent
between the system components.

1. Register the product information: Original product-level data stored in the Enterprise
Applicationl is sent to the EPC-IS1. When the data is registered successfully, an
acknowledgement message returns to the Enterprise Applicationl.

2. Register the EPC and the server to the ONS: The relation between the product-level
EPC and the EPC-IS1 location 1s registered to the ONS. If the data is registered
successfully, an acknowledgement message returns to the enterprise application.

3. Send the EPC to the server of the trading partner: After the product-level information
is registered in the EPC-IS1, the data is sent to the EPC-IS2. Here we assume a case
that the data is sent to the EPC-IS2, but the EPC-IS2 does not register the data for
some reason. The EPC-IS2 sends an exception message back to the EPC-IS1, and the
EPC-IS1 sends an exception message to the original requester, the Enterprise
Applicaiton].?

4.6.3. Business process flow for query exception

Figure 4-6-2 shows the flow of the business process. Each arrow represents the message sent
between the system components.

1. Register the product information: Original product-level data stored in the Enterprise
Application] is sent to the EPC-IS1. When the data is registered successfully, an
acknowledgement message returns to the Enterprise Applicationl.

? We see the necessity of another message that deals with recovering the data integrity after an exception
occurs, but we exclude this issue out of the thesis’s scope.

32

Register the EPC and the server to the ONS: The relation between the product-level EPC
and the EPC-IS1 location is registered to the ONS. If the data is registered successfully,
an acknowledgement message returns to the enterprise application.

Send the EPC to a server of the trading partner: After the product-level information is
registered in the EPC-IS1, the data is sent to the EPC-IS2. Timing of the data update and
the attributes of the product data may be defined in terms and conditions. When the data
is sent successfully, an acknowledgement message returns to the EPC-IS1.

Send the EPC from the EPC-IS2 to the Enterprise Application2: After the step 3, the
EPC-IS2 sends the EPC to the Enterprise Application2. When the data is sent
successfully, an acknowledge message returns to the EPC-IS2. The data that the
Enterprise Application2 receives depends on the data sent from the EPC-IS1, but the
Enterprise Application2 can get the EPC at least. This message can be asynchronous to
the step 1 and 3. In this business process, we assume that sending a message from the
EPC-IS2 to the Enterprise Application2, but this assumption is equivalent to the
procedure that the Enterprise Application2 queries the EPC to the EPC-IS2.

Query the product-level data from the Enterprise Application2 to the EPC-IS2: After the
step 4, the Enterprise Application2 has the product-level EPC of a specific product.
Suppose an employee wants to know the size of the product, he operates the Enterprise
Application2 and the Enterprise Application2 sends a query to the EPC-1S2.

EPC-IS look-up: After the step 5, the EPC-IS2 looks up the location of servers which
store the data of a specific EPC by sending a query to the ONS. In this case, the EPC-IS2
gets the location information of the EPC-IS1.

Query the product-level data from the EPC-IS2 to the EPC-IS1: After the step 6, the
EPC-IS2 recognizes the location of the EPC-IS1. Then the EPC-IS2 queries the
product-level data of a specific product to the EPC-IS1. Here we assume a case that the
query is sent to the EPC-IS1, but the EPC-IS1 does not retrieve the data for some reason.
The EPC-IS2 sends an exception response message back to the EPC-IS2, and the
EPC-IS2 sends an exception response message back to the original requester, the
Enterprise Applicaiton2.

33

¥€

uondooxo a3essow AJ1ou 3y} JO MO[J JIOM :[-9-1 210314

uopdeox3

Y

B

043 pnposd pusg

uondaox3y

%

0d3 npoid puag

'Y

¥V

SIF0dT Pue 943 Joi1sibdy

»

Y

oJUr phpoId 151]

Z uoneoyddy
asudiajug

Z \ueneg

ZSI0d3

SNO

} SI-0d3

| jueARg

| uonestddy
asudiejuy

Ge

uondaoxa A19nb ay3 Jo MO[J JIOM :7-9-1 21nT1

i
!
| [
uondeoxa dsey
- UORde%e dsey
I (0d3) 8zis wey AenD
d1dvN
dn %007 §1-0d3
(Dd3) sz1s jwey Atand »
|
%Y > |
Jd3 mau pusg N
, Yoy
v m
T Dazwnpoid puss |
| <
| Dd3 1npoud puag
r v >
[SFOdT PUE ST ToTEI05T]
! , N
%oy
OJuTIonpoId BsIeey |
s - - | uoneoyddy
asudiajug Z JUBABS lm ZS1-0d3 SNO | SIF0d3 | ees Joneondd

4.7. Requirement definition

From the generic business processes we defined in the previous section, we distill the
requirements for EPC-IS interface.

4.7.1. Message types

From the generic business processes, we find that three types of messages are necessary for
EPC-IS: Notify message, Query/Response message, and Acknowledge message. The Notify
message is used when the Enterprise Application, Savant, EPC-IS or other Auto-ID compliant
components create the data that is supposed to be stored in the server with EPC-IS. This
message is also used when these software components ask servers with EPC-IS for
transferring another Notify message with additional data stored in the servers. It is used for
both property data and historical data, and can send data of multiple products and instances.

The Query message is used when the Enterprise Application, EPC-IS or other Auto-ID
compliant components query the data to servers with EPC-IS, and Response message is the
response to the query. The key for the query may be EPC, property data, date time stamp of
historical data, and any other data defined in the message exchange.

The Acknowledge message is used to acknowledge the receipt of the Notify message. A
sending system component uses the Acknowledge message to confirm that the Notify
message has arrived at the receiving component. However, the use depends on the business
context. The message may send either message level result or the product/instance level
result.

4.7.2. Scalability of the message

Although four generic business processes are based on the RFID implementation trials and
the expected business processes of RFID, they do not cover all the business processes with
EPC-IS. Therefore, the model needs to have scalability to accommodate other business
processes and future business processes.

4.7.3. Data type

From the generic business processes, we find that EPC-IS must be able to deal both property
data and historical data, and the property data consists of product-level property data and
instance-level property data.

Actions required from the property data are create, update and query, but it is conceivable that
delete action is necessary as well. The historical data is stored when an event occurs to each
individual item. Attributes which need to be stored are event type, EPC of the subjected item,
date time stamp, and the relevant data, such as reader EPC.

36

4.7.4. Mechanism to translate historical data into business process

The historical data is stored in accordance with the event type. On the other hand, the
business processes which utilize this historical data may not just check the existence of a
specific individual item, which is directly known from the historical data. If a company wants
to know the path of an individual item, some mechanism that translates the plain historical
data into required the business process (e.g., query path of individual item) is necessary.

There are two types of procedures for this mechanism: one is the local procedure and the
other is the remote procedure. Since functions of EPC-IS are not determined, EPC-IS
interface needs to cover both procedures.

Local Procedure Remote Procedure

Enterprise g Enterprise
EPC-IS1 EPC-IS2 Application2 EPC-1S1 EPC-1S2 Application2

EPC-IS2 receives “Query path” order with
EPC from Enterprise Application2 and
sends same query to EPC-IS1. EPC-IS1
processes query and sends back result.
EPC-IS2 replies answer of original order to
Enterprise Application2

EPC-IS2 receives “Query path” order with
EPC from Enterprise Application2 and control
query (query for existence) to EPC-IS1.
Finally EPC-1S2 consolidates the query
results and replies answer of original order to
Enterprise Application2

Figure 4-6-1: Types of procedure

37

5. Modeling

In this chapter, we develop the architecture of EPC-IS based on the requirements we define in
Chapter 4. Since the generic business processes are not concrete enough to develop standard
specifications, the architecture model proposed in this chapter is not used as a standard as it is.
However, the fundamental structure is applicable to a new standard.

5.1. Modeling direction

From the requirement analysis, one key requirement for the modeling is scalability. There are
two reasons: one is that functions of EPC-IS have not been determined, and the other is that
Auto-ID technologies are applied to many industries, which may have requirements different
from our assumptions. In order to guarantee the scalability, we adopt a two-layer structure for
EPC-IS interface: 1) message structure and 2) dictionary structure. For the dictionary
structure, we also adopt Action class, which describes the event of the historical data and the
action to the property data, and Value class, which is an attribute of Action class.

5.1.1. Separation of message structure from dictionary structure

In order to guarantee the scalability, we take into account the maintenance cycle of the
message structure and the components embedded in it. Generally the need for changing
component requirement is more frequent than that for the message. If properties of physical
objects are embedded in the message as XML tags, for example, if we send a box-shape
product and model tags like <height>, <depth>, and <width> in the message, every time
items of a new shape need to be sent, the entire message needs to be modified, even if
fundamental message structure may not need to be modified. Therefore, we model the
message structure and the components separately, and propose the way to maintain those
components with the dictionary.

5.1.2. Meaning of adopting Dictionary

If the components in the messages are separately defined in the dictionary, the dictionary is a
vocabulary set used to describe physical objects, which is equivalent to the PML Extension.
By separating the components from the message, we propose the architecture of both EPC-IS
and the PML Extension.

5.1.3. Dictionary structure

We define a schema of the dictionary by analyzing the data that needs to be stored in the
dictionary. Table 5-1-1 shows the data structure for the property data. There are two types of

38

actions for the property data: one is for operating data stored in the servers, and the other is
for asking data transmission to other servers. The actions for the data operation are “create,”
“update,” and “delete,” and the data for these actions includes EPC of the subjected item and
the relevant data, such as size, expiration date, and the related business document of the item.
Unit of measure and format of the value are also necessary for the property data.

On the other hand, the Action for the data transmission is “notify,” and the data includes the
shipment identifier, the purchase order identifier, the EPC of the shipped item, and the
company profile. Details are defined in terms and conditions.

Considering the consistency of the data structure, we assume that we will use EPC for the
document identifier, such as a shipment identifier and a purchase order identifier. There is no
impact of this assumption for the dictionary schema. With this assumption, the format of the
shipment identifier becomes EPC format, and without this assumption, it may be free form.

Table 5-1-1 Structure for the property data

Action Key Relevant data
Create, EPC of instance, | Size, expiration date,
Update, Delete | EPC of product business document
Notify Shipment identifier | Purchase order identifier,
(EPC) EPC of shipped items,
company profile

The same structure is applied to the historical data. The Actions for the historical data are
events, such as “detect.” The key for the historical data is EPC of the subjected individual

item, and the relevant data, such as the date time stamp and the reader EPC, needs to be
collected. (Table 5-1-2)

Table 5-1-2 Structure for the historical data

Action Key Relevant data
Detect EPC of instance Date time stamp, Reader
EPC

From this observation, we propose the same dictionary schema structure for the property data
and the historical data.

5.2. Dictionary

From what we observed, we propose the same dictionary schema for both property data and
historical data. We use the UML Class Diagram for the dictionary schema design [24]. Figure

39

5-2-1 shows the schema for both dictionaries and Table 5-2-1 shows the description of each
class. The instances of the dictionary are listed in the appendix.

Based on the data structure, we observe that each action takes more than one pieces of
relevant data but that the amount of data is different in each case. Therefore, we develop
Value class separate from Action class and link them with identifiers. By defining Action
class as separate from Value class, we also include the mechanism of the local procedure and
the remote procedure; the instance of Action class can be defined either as “query detect data”
or “query path data.” The relevant data, which is different in each case, can also be defined
separately.

We also understand the need to aggregate Value class when a set of values has some special
business meanings. For example street, city, state, zip, and country are individual values, but
usually they are for specific business entities, such as the manufacturer address and the
retailer address. Therefore, we develop ValueSet class and link it with Action class and Value
class. We also understand that, in some cases, aggregation has multiple layers, so we add
recursive structure to ValueSet class.

There are several ways to exchange units of measure among Auto-ID components, but to
reduce the data size and the conversion load of each component, we propose to define unit of
measure in the dictionary. This unit of measure is defined as Format class and UOM class
associated with Value class.

Dictionary

1Y
. 1.0
1. 1.
1
Identifier Action 1 ValueSet 01 Value
1 Fid id -id
1 or 0.*
—— O Fver Valueld 1 > -ver -ver
f z (i U 0
. 1 h n
1 1 1 1
Type MinRev ValueSetid DictionaryEntity] uom
-id
DX er K
1
1 1
Valueld 3 r ? 1 Format
MajRev Date
Desc Name

Figure 5-2-1: Class diagram of the Dictionary schema

Table 5-2-1: Class description of the Dictionary schema

Class Name Description

Dictionary Class for the dictionary

40

Class Name Description

Identifier Class for the dictionary identifier. Instances of this class are
Event and Property.

MajRev Class for the major dictionary revision.

MinRev Class for the minor dictionary revision.

Date Class for the date of issue.

DictionaryEntity Abstract class for the classes used in the Dictionary schema.

Name Class for the name of the Action, ValueSet, and Value class.

Desc Class for the description of the Action, ElementSet, and Element
class.

Action Class to describe the event in the Event dictionary and the action
in the Property dictionary.

ValueSetld Class to indicate the relationship between the Action and the
ValueSet class. Identifiers of the ValueSet class are the instance
of this class.

Valueld Class to indicate the relationship between the Action and the
Value class. Identifiers of the Value class are the instance of this
class.

ValueSet Class to aggregate the ValueSet or the Value class. This class
does not have any instances.

Value Class to aggregate the value of the dictionary property. This class
does not have any instances.

Format Class to define the format of the property. This class may not be
used in the Event dictionary.

UOM Class to define the unit of measure of the property. This class
may not be used in the Event dictionary.

5.3. Message

From what we observed in section 5.1, we propose message schemas for the Notify message,
the Query/Response message, and the Acknowledge message. We use UML Class Diagram to
model these schemas [25].

41

5.3.1. Notify message

Figure 5-3-1 shows the message structure of the Notify message, and Table 5-3-1 shows the
description of each class and property.

The BusinessDocument class is an abstract class for all the messages. The Notify class is
specialized from the BusinessDocument class. The relation between the Notify class and the
PhysicalObject class is one to many in order for Savant to send data of multiple physical
objects. The PhysicalObject class has EPC as a property. Properties of the Action class,
dicRef and ver, come from the dictionary schema. By using identifier defined in the
dictionaries, a sender and a receiver can identify the action of the data. The relation between
the PhysicalObject class and the Action class is one to many. With this structure, Savant can
send multiple events of a physical object.

The Action class has two associated classes, the ElementSet class and the Element class. The
ElementSet class and the Element class correspond to the ValueSet class and the Value class
in the dictionary schema, respectively. This is because some instances of the Action class are
associated with instances of the Value class directly; and others are associated with instances
of the ValueSets class first, and then instances of the ValueSets class are associated with
instances of the Value class. Since an instance of the Action class needs at least one
associated instance of either the ElementSet or the Elment class, there is a constraint between
the ElementSet class and the Element class. The reason why the ElementSet class has
recursive structure is the same as that of dictionary structure. With this structure, the physical
address of a shipping facility of a manufacturer is modeled by defining the ship from location
and the manufacturer as instances of the ValueSet class and the physical address as an
instance of the Value class.

The Element class has the Value class for its associated class. The Value class takes historical
data and property data as its instance. Since the instances of each class are always defined in
pair in the dictionaries, the relation between the Element class and the Value class is one to
one.

42

Notify lBusinessDocument
[>{dicidentifier
? Q
1.4 1
PhysicalObject
-EPC 1 4 1
1.1 ? DataTime DocumentType Identifier
Action
-dicRef
~-name
)
1 L ____fconstaing
o
Element
ElementSet dicRef Value
= B
--n::mR:f : —:gref >—
0.1 1 1% |name 14
o
Figure 5-3-1: Class Diagram of the Notify message
Table 5-3-1: Class and property description of the Notify message
Class Name Description

BusinessDocument Abstract class for the business message. The Notify class, the
Query/Response classes and the Acknowledge class are the
generalized class of this abstract class.

DateTime The data time stamp for the message sent.

DocumentType Either “notify,” “query,” “response,” or “acknowledge.”

Identifier Identifier of the business message.

Notify Class for the Notify message.

PhysicalObject Class for the subjected physical object. This class has one to
many relation with the Notify class, which means one Notify
message sends the data of multiple physical objects.

Action Class for the action done to the physical objects, which is defined
in the Action class in the dictionary. This class has one to many
relation with the PhysicalObject class, which means multiple
actions are sent about one physical object.

ElementSet Class for the aggregated values of each Action class instance.

43

Class Name Description

The Action class takes either the ElementSet class or the Element

class as the child class. This class does not have any instances.

Element Class for the values of each Action class instance. The Action
class takes either the ElementSet class or the Element class as the

child class. This class does not have any instances.

Value Class for the relevant information values of each Action class
instance. The pair of the Name class and the Value class

describes the relevant information of the Action class instance.

dicldentifier Property to identify the dictionary type and the version.

EPC Property to identify the EPC of the class.

dicRef Property to refer the Action, ValueSet, and Value class instance
of the dictionary.

ver Property to refer the version of each class.

name Property to show the name of each dictionary instance.

id Identifier for the instance.

idref Identifier reference for the instance.

5.3.2. Query/Response message

Figure 5-3-3 shows the message structure of the Query/Response message, and Table 5-3-2
shows the description of each class and property.

The BusinessDocument class is an abstract class for all the messages. Both the Query and the
Response class are specialized from the BusinessDocument class. The structure of the
Response class is identical to the Notify class. Since the Query class describes the attributes
that a query sender wants to get, the Query class does not have the PhysicalObject class as an
associated class. If a sender wants to retrieve all the data that are related to one EPC, it can
use the Value class. This query is enabled by the dictionary design that each instance of the
Action class has an EPC as an instance of the associated class of the Action class.

There are several ways to develop instances of the Query message. Since our proposal uses
XML, XML Query (XQuery) proposed at World Wide Web Consortium (W3C) may be
applied [26], [27]. However, XQuery is more compatible to the XML with solid tag names
than those with generic tag names like our model. Therefore, we propose a different query
model in this thesis.

Simple query is constructed by sending tags with identifiers defined in the dictionaries. For
example, when a retail company wants to retrieve the reader EPC by which a product is
scanned, the company sends a Query message indicating the required data with tags. In the
sample below, we assume that this company wants to know the EPC of readers that scan a

44

product whose EPC is known (urn:epc:1.10.100.2). When the trading company receives the
query, it retrieves servers which store historical data and sends back the response. In this
example, two readers scan the product, and EPCs of these readers (urn:epc.1.10.110.1 and
urn:epc:1.10.110.2) are sent back to the retail company.

Sample Query Message

<Action dicQuery="EA001-01” name="detect”>
<Element dicQuery="EV001-01” name="EPC”’>
<Value> urn:epc:1.10.100.2</Value>
</Element>
<Element dicQuery="EV003-01” name="ReaderEPC”>
<Value></Value>
</Element>
</Action>

Sample Response Message

<PhysicalObject EPC="um:epc:1.10.100.2”>
<Action dicQuery="EA001-01" name="detect”>
<Element dicQuery="EV001-01” name="EPC”’>
<Value> urn:epc:1.10.100.2</Value>
</Element>
<Element dicQuery="EV003-01” name="ReaderEPC"’>
<Value>umn:epc:1.10.110.1</Value>
</Element>
</Action>
<Action dicQuery="EA001-01” name="detect”>
<Element dicQuery="EV001-01” name="EPC’>
<Value> urn:epc:1.10.100.2</Value>
</Element>
<Element dicQuery="EV003-01” name="ReaderEPC"’>
<Value>um:epc:1.10.110.2</Value>
</Element>
</Action>
</PhysicalObject>

Figure5-3-2: Sample instance of the simple query

More complex queries are also developed in the same manner. If a retail company wants to

45

know the data scanned during the specific time range, it fills the time range for the Value tag
instance, and if the company wants to know the data scanned by the several readers, it
enumerates EPCs of these readers for the Value tag instance.

Since we understand the need to send back the query result in the Response message, we
designed this mechanism into the Response message. We propose a simple method although
there are several ways to send results. We design a property, called category, which has a list
of values: success, failure, and partial success. If all the results of the specific level, such as
PhysicalObject class level, are the same, either success or failure is selected. When parts of
the results of that level succeed, partial success is selected.

Query BusinessDocument| Response Originalidentifier]
tifier <,L K>—
1 1
0 1 ,
1 1 1 1
DataTime DocumentType| Identifier PhysicalObject Result
-EPC K>—p—1—category
1 0.1
0.1
1 1
I -
1 1 1
Action 1 Action Reason
-dicQuery K> < -dicQuery
-name -name
1
1 . . 1
- fconstrainy____ | e — — — fconstraing}
0. 0.~
0.1 0.1
Element Element
ElementSet icQuery Value Value | 11 [dicQuery 1.4 1 | ElementSet | o 4
-dicQuery S -d S -id < [-dicQuery
-name -idref <> -idref |-name
0.1 1 1.7 |-name 11 -name

] N

Figure 5-3-3: Class diagram of the Query/Response message

Table 5-3-2: Class and property description of the Query/Response message

Class Name Description

BusinessDocument Abstract class for the business message. The Notify class, the

Query/Response classes and the Acknowledge class are the

generalized class of this abstract class.

46

Class Name

Description

DateTime The data time stamp for the message sent.

DocumentType Either “notify,” “query,” “response,” or “acknowledge.”

Identifier Identifier of the business message.

Query Class for the Query message.

Response Class for the Response message.

PhysicalObject Class for the subjected physical object. This class has one to
many relation with the Response class, which means one
Response message sends the data of multiple physical objects.

Action Class for the action done to the physical objects, which is defined
in the Action class in the dictionary. This class has one to many
relation with the Query class in the Query message, and the
PhysicalObject class in the Response message.

ElementSet Class for the aggregated values of each Action class instance.
The Action class takes either the ElementSet class or the Element
class as the child class. This class does not have any instances.

Element Class for the values of each Action class instance. The Action
class takes either the ElementSet class or the Element class as the
child class. This class does not have any instances.

Value Class for the relevant information values of each Action class
instance. The pair of the Name class and the Value class
describes the relevant information of the Action class instance.

Originalldentifier Class for the identifier of the Query message to which the
Response message is response.

Result Class for the result of the query.

Reason Class for the reason when an exception occurs.

dicldentifier Property to identify the dictionary type and the version.

EPC Property to identify the EPC of the class.

dicRef Property to refer the Action, ValueSet, and Value class instance
of the dictionary.

ver Property to refer the version of each class.

name Property to show the name of each dictionary instance.

category Property to show the result of the Query message. The value for

&

this property is either “success”, “failure”, or “partial success.

47

Class Name

Description

id

Identifier for the instance.

idref

Identifier reference for the instance.

5.3.3. Acknowledge message

Figure 5-3-4 shows the message structure of the Acknowledge message, and Table 5-3-3
shows the description of each class and property.

The BusinessDocument class is an abstract class for all the messages. The Acknowledge class
is specialized from the BusinessDocument class. Since the result of the Notify message may
be defined either message level, PhysicalObject class level, or Action class level, the Result
class is associated with the Acknowledge class, the PhysicalObject class and the Action class.
Results of the Acknowledge message are sent in the same way as the Response message.

Originalldentifier] 1
E—— [Mf-dicidentifier

.]

q..
Result 0j1 1 |PhysicalObject DataTime DocumentType Identifier

-category 0.1 EPC

1

Reason

1 |Acknowledge BusinessDocument

1

0.* 1 1

1

11

Action

-dicRef
-name

Figure 5-3-3: Class diagram of the Acknowledge message

Table 5-3-3: Class and property description of the Acknowledge message

Class Name Description
BusinessDocument Abstract class for the business message. The Notify class, the
Query/Response classes and the Acknowledge class are the
generalized class of this abstract class.
DateTime The data time stamp for the message sent.
DocumentType Either “notify,” “query,” “response,” or “acknowledge.”

48

Class Name Description

Identifier Identifier of the business message.

Acknowledge Class for the Acknowledge message.

PhysicalObject Class for subjected physical object. This class has one to many
relation with the Acknowledge class, which means one
Acknowledge message sends data of multiple physical objects.

Action Class for the action done to the physical objects, which is defined
in the Action class in the dictionary. This class has one to many
relation with the PhysicalObject class.

Originalldentifier Class for the identifier of the Notify message.

Result Class for the result of the Notify message.

Reason Class for the reason when an exception occurs.

dicldentifier Property to identify the dictionary type and the version.

EPC Property to identify the EPC of the class.

dicRef Property to refer the Action, ValueSet, and Value class instance
of the dictionary.

ver Property to refer the version of each class.

name Property to show the name of each dictionary instance.

category Property to show the result of the Query message. The value for

I Lc

this property is either “success”, “failure”, or “partial success.

49

6. Evaluation

In the previous two chapters, we defined requirements for EPC-IS and, based on the
requirements, we model messages used for EPC-IS as well as the PML Extension as Property
Dictionary and Event Dictionary. In this chapter, we evaluate the model from other
perspectives, such as issues raised in the RFID trials and the expectation towards RFID. The
points we deal with are as follows: 1) imperfect tag detection, 2) security, and 3) further
business processes.

6.1. Imperfect tag detection

Although RFID obviates the need for contact and error rate is considered to be lower than
that of bar code, the read rate is not 100%. From the field trial conducted by Auto-ID Lab,
read rate was about 97% [28]. This rate will become worse when items are packed in cases or
cases are loaded on pallets.

In order to increase read rate, companies start thinking about using the EPC of the case as a
representing EPC of its entire items and the EPC of the pallet as a representing EPC of the
cases on it and so forth. Suppose cases that are loaded on a pallet are sent from location A to
location B, the relation between the EPCs of each case and the EPC of the pallet can be
linked at location A. If the relation is successfully linked and operators at location B can use
the data, they deem all the cases are arrived when they scan the EPC of the pallet. This
technique 1s called aggregation, association or inferred reading [29].

In order to realize this inferred reading, there are three things that need to be done: the event
of aggregation and disaggregation need to be defined, the historical data needs to be stored,
and the data needs to be effectively retrieved by Query/Response message from the receiving
company.

Table 6-1-1 shows the event data for aggregation and disaggregation. Attributes of the events
are similar to detect event previously defined in the requirement analysis. This means that
these events are accommodated with the Event Dictionary and that the messages modeled in
Chapter 5 can handle the historical data of these events.

Table 6-1-1 Structure of aggregation and disaggregation event

Action Key Relevant information

Aggregate EPC of instance Date time stamp, Reader
EPC, Aggregated EPCs,
Aggregation direction(*)

Disaggregate | EPC of instance Date time stamp, Reader

50

Action

Key

Relevant information

EPC, disaggregated EPC

(*) Aggregation needs at least two types of physical objects: upper layer
object such as container and pallet, and lower layer object such as item
and case. This direction shows the relation between two physical objects.

A problem occurs when either items in a case or cases on a pallet are lost during
transportation. If the actual reading and the inferred reading are recorded equally, one can not
tell the difference and it becomes impossible to trace the path of each item. Therefore, the
actual reading and the inferred reading should be recorded differently. In order to include this
new requirement, we add a new class, the InferredReading class, as an associated class of the

Action class.

Considering the data structure of the Notify message and the Response message, the same
modification, adding the InferredReading class, needs to be done for the Response message

as well.

InferredReading| 0.4

)

Figure 6-1-1: Modified class diagram for the Notify message

51

Notify 'BuslnossDocumam
[fdicidentifier
1.4 T 1
PhysicalObject|
-EPC 1 1 1
11 ? DataTime DocumentType| Identifier
Action
F— -dicRef
-name >
constraint
L RS (L AR
0.
Element
ElementSet dicRef Valse
-dicRef -id
K>
-name -idref o_—‘
0.1 1. lname E]

Query BusinessDocument Response Originalidentifier]
dicidentifier %
1 1
1 i L]
1 1 1 .
DataTime DocumentType Identifier InferredReading| 0.1 |PhysicalObject] Result
——<3-EPC K>————-category
1 0.1
0.1
1.* .
1. 1 1
Action 1 Action R
-dicQuery > e -dicQuery
-name l-name
1
1 . 1
constraint constraint
—— fconstrang____ | e —— fonstaingy___ |
a.* 0.*
0.1 0.1
Element Element
ElementSet dicQuery Value Value 11 [-dicQuery 1. 1 ElementSet 0.1
-dicQuery oS -id O -id . I-dicQuery
-name ~ -idref N -idref name
0.1 1 1% |name 11 -name

] N

Figure 6-1-2: Modified class diagram for the Query/Response message

6.2. Security

Security is one of the most significant issues for the information system implementation.
Security issues for the message exchange are categorized as Authorization, Authentication,
Non-Repudiation, Confidentiality, and Integrity.

When considering the security issues, there are two important things that need to be
considered: 1) the relation between the owner of a server which stores physical object data
and the owner of a software component which accesses to the server, and 2) the messaging
protocol technology used between the server and the software component.

If the server is accessed from a Savant in the same company, the security level of this
connection could be lower than that when the server is accessed from a software component
in the trading partner. This is also dependent on the nature of the data which is accessed. If
the data is product-level property data, such as size, manufacturer, and other technical
specifications, there may be few security issues. Just as the catalog information is accessed
almost freely by everyone who uses the Internet.

From this observation that the data exchanged is the same but the security level may change
dependent on the relation between owners, we conclude that the security issues should be
taken care of not by the message schema but by the lower layer, which is the messaging
protocol.

52

There are a couple of messaging protocols which may be used to exchange the physical
object information. If both a server which stores data of physical objects and a software
component which accesses to the server are located in the same company’s network, they
may be connected with MQ technology or JMS, whereas if a software component is outside
of the company’s network, SOAP is the strong candidate to connect servers [30], [31], [32].

The important thing here is that each messaging protocol has its own mechanism to guarantee
the security issues. Therefore, we propose that the security issues are not taken care by the
message schema but by the messaging protocols that are selected based on the business
requirements.

6.3. Further business processes

One of the highly expected business processes for the RFID technologies is the process to
track and trace physical object movement. Although we developed a track business process
and a trace business process as the generic business processes and modeled EPC-IS based on
them, the model might not meet the future business requirements. Therefore, after this section,
we will evaluate our model with further complex business processes: 1) handling trace
business process, 2) assembly trace business process, and 3) order track business process.

6.4. Handling trace business process

Handling trace business process is useful in such cases as the international shipment which
requires handling by many different companies and pharmaceutical tracing which may be
legislated in some of the states [33].

Regarding the system layout, we premise the structure described in Figure 6-4-1. We assume
four companies, and the difference is indicated by the suffix. We also assume that ONS is
public so that every company can use the ONS equally. Regarding Savant, we assume a
one-layer structure. Each Savant is connected to a server with EPC-IS (we represent this
server as EPC-IS in the system layout). Savantl and Savant4 are also linked with the
enterprise application. EPC-IS1 stores the property data of items and the historical data that is
detected by Readerl, whereas EPC-1S2, EPC-IS3, and EPC-IS4 store the historical data that
is detected by Reader2, Reader3 and Reader4, respectively. The enterprise application
controls business transaction data, such as purchase order and advance ship notice, and also
provides the interface of business process to operators.

Preconditions of this business process are that all the companies settle terms and conditions
about this business process, original product data is stored in the Enterprise Application] and
the Enterprise Application2, Company4 has already received the product level data and
placed an order to Company1, and Company1~4 implement the Auto-ID infrastructure.

53

Company 1 Company 2 P ,./’/ / \ Company 3 Company 4
. Enterprise e - // ///, \ Eni;;)rise
Application] r ! Application 4
Y // / ./
Y / / N y
I
EPC-IS 1 a \\ \ EPC-IS 4
b /] \)
I
EPC-IS 2 / \ EPC-IS 3
1 !
y / y
——» Savant 1 Savant 2 Savant 3 Savant4 |e-
Reader 1 Reader 2 Reader 3 Reader 4
N—" N— N— N—
S >~ —— —

Figure 6-4-1: System layout for the handling trace business process

6.4.1. Business process flow

Figure 6-4-2 shows the flow of the business process. Each arrow represents the message sent
between the system components.

1. Send the instance-level data of the items to Company4: The instance-level data is sent
from Companyl to Company4. The process is the same as that of the Query
instance-level data business process. (See flow explanation of the Query
instance-level data business process step 1 through 6.)

2. Send the detected data from the Savants to the EPC-ISs: When the items are shipped,
they are scanned by the readers and the data is sent from the Savant of each company
to the server with EPC-IS of each company. In this sample process, we assume that
the Savant2, the Savant3 and the Savant4 are located at Company2’s Company3’s,
and Company4’s facility, respectively. When the items are scanned; the data is sent to
the Savant2, the Savant3 and the Savant4; and then the each Savant sends the data to
the server in their facility. When the data is sent successfully, an acknowledge
message returns to the Savant which sends the message to the server.

54

Register the EPC and the server to the ONS: The relation between the instance-level
EPC and the server location is registered to the ONS at Company2, Company3 and
Company4. If the data is registered successfully, acknowledgement messages return
to each Savant.

Query the instance-level data from the Enterprise Application4 to the EPC-1S4: After
the step 1, the Enterprise Application4 has the instance-level EPC of the items
Company4 orders. Suppose an employee wants to know the company that the
individual item is handled, he operates the Enterprise Application4 and the Enterprise
Application4 sends a query to the EPC-154.

EPC-IS4 look-up: After the step 4, the EPC-IS4 looks up the location of servers
which store the data of a specific EPC. In this case, the EPC-IS4 gets the location of
the EPC-IS1, the EPC-1S2, the EPC-IS3 and the EPC-IS4 itself.

Query the instance-level data from the EPC-IS4 to other EPC-ISs: After the step 5,
the EPC-IS4 recognizes the location of other EPC-ISs. Then the EPC-1S4 queries the
instance-level data of a specific individual item to the EPC-IS1, the EPC-IS2 and the
EPC-IS3 and gets the information.

Response from the EPC-IS4 to the Enterprise Application4: In response to the step 4,
the EPC-IS4 sends a response back to the Enterprise Application4. The response
contains all the company data that EPC-IS4 receives in the step 6 and company data
that the EPC-IS4 stores.

55

ssa001d ssauisnq 9oen} Surjpuey Y} JO MO[J JIOM :Z--9 21n31

9¢

¢ ElEp(BUPUEY dS8Y |
B —
Ejep|Bujpuey dsay
T (OdI EEp[pUIPUET ABRD ™
1 ETEp|DUNPUEY OS5y
5d3) Ny -
€1ep|BUipUEY dse
(5d3) eep[puipuey Kdno —»
- —YIavN
» dn %001 S|-0d3 o |
(0d3) eiep buipuey Kienp | _
- oV |
043 g > |
- MY
=BG >
ejep buipueH B
R o = =)11 2:) E——
v
ejep bulipueH
. v
»v —> ejep bupueH
¢ SONON pous) fo.
HON ARY - - o
-t ; -
FOHON Souspy SONON 8jueApY
oy Buiddiys dspy >
(tequuinu &._3 oju Buiddiys Arend
b
v
¥y i :
B 0d3 seisiber
1 7 m I r
dd | f w,
«Wﬂﬁuu_,_cm/* yiuereg v $1-0d3 | € luereg € §1-0d3 SNO ZSIF0d3 | Zieaeg m | SFOd3 I | ueneg 1 uonedyddy *
! | "

L

L

esudidiuy 7

6.4.2. Requirement analysis

Based on the business flow defined in the previous section, we identify the need for defining
an event for handling. The event is described in Table 6-4-2. Attributes of the event are
similar to the events previously defined. This means that this event is also accommodated
with the Event Dictionary and that the messages modeled in Chapter 5 can handle the
historical data of this event.

Table 6-4-2 Structure of the handling event

Action Key Relevant information

Handle EPC of instance Date time stamp, Reader
EPC, business entity which

handles the instance

6.5. Assembly trace business process

Assembly trace business process is useful in such cases as tracing hazardous materials in the
electronic appliances, which is necessary in the environment where the use of hazardous
substances is strictly prohibited [34].

Regarding the system layout, we premise the structure in Figure 6-5-1. We assume three
companies, and the difference is indicated by the suffix. We also assume that ONS is public
so that every company can use the ONS equally. Regarding Savant, we assume a one-layer
structure. Each Savant is connected to a server with EPC-IS (we represent this server as
EPC-IS in the system layout) and the enterprise application. EPC-IS1 stores the property data
and the historical data of the component(A) that are detected by Readerl, in the same way,
EPC-IS2 stores the property data and the historical data of the component(B) that are detected
by Reader2. EPC-IS3 stores the property data and the historical data of product(C) that are
detected by Reader3. The enterprise application controls the business transaction data, such
as purchase order and advance ship notice, and also provides the interface of the business
process to operators.

Preconditions of this business process are that all the companies settle terms and conditions
about this business process; original product data is stored in the Enterprise Applicationl,
Enterprise Application2 and Enterprise Application3; Company3 has already received the
product level data from Company!l (component (A)) and Company2 (component (B)) and
placed an order to Companyl and Company2; and Companyl, Company2 and Company3
implement the Auto-ID infrastructure.

57

ONS

Company 1 Company 2 Company 3
Enterprise] Enterprise Emerﬁrise
Application 1 Application 2 Application 3 ™
Y U 1 Y
EPC-IS 1 EPC-IS3 e
A
\
EPC-IS 2
e Savant 3
L Savant 1 Savant 2
Reader 3
R Ny
Reader 1 Reader 2 v
N ~
\\1/ _/ C
i A A
[a]fa] B
B B —
I

Figure 6-5-1: System layout for the assembly trace business process

6.5.1. Business process flow

Figure 6-5-2 shows the flow of the business process. Each arrow represents the message sent
between the system components.

1. Send the instance-level data of the component (A) to Company3: The instance-level
data 1s sent from Company] to Company3. The process is the same as that of Query
instance-level data business process. (See flow explanation of the Query
instance-level data business process step 1 through 6.)

2. Send the instance-level data of the component (B) to Company3: The instance-level
data is sent from Company2 to Company3. The process is the same as that of the
Query instance-level data business process. (See flow explanation of Query
instance-level data business process step 1 through 6.)

3. Register product (C) information: Original product-level data of the product (C)
stored in the Enterprise Application3 is sent to the EPC-IS3. When the data is
registered successfully, an acknowledgement message returns to the Enterprise
Application3.

58

10.

11.

Send the instance-level data of the product (C) with the EPC to the EPC-IS3: After
the product (C) is assembled and scanned, and the relevant data is inputted from the
Savant3, the Savant3 sends the data to the EPC-IS3. When the data is sent
successfully, an acknowledge message returns to the Savant3.

Register the EPC and the EPC-IS to the ONS: The relation between the instance-level
EPC of the product (C) and the EPC-IS3 location is registered to the ONS. If the data
is registered successfully, an acknowledgement message returns to the Savant3.

Query the instance-level data from the Enterprise Application3 to the EPC-IS3: After
the step 4, the Enterprise Application3 has the instance-level EPC of the components
that Company3 uses. Suppose an employee wants to know the location of a product
(C) which contains a specific component (A) (whose EPC is known), he operates the
Enterprise Application3, and the Enterprise Application3 sends a query to the
EPC-IS3.

Response from the EPC-IS3 to the Enterprise Application3: In response to the step 6,
the EPC-IS3 sends a response back to the Enterprise Application3 with the EPC of a
product (C) which uses the specific component (A).

Query the instance-level data from the Enterprise Application3 for a product (C)
location: After the step 7, the operator sends a query from the Enterprise Application3
to the EPC-IS3 using the EPC of the product (C) he gets in the previous step.

EPC-IS3 look-up: After the step 8, the EPC-IS3 looks up the location of servers
which store the data of the specific EPC. In this case, the EPC-IS3 gets the location
information of the EPC-IS3 itself.

Query the instance-level data from the EPC-IS3 to other EPC-ISs: After the step 9,
the EPC-IS3 recognizes the location of other EPC-ISs. Then the EPC-IS3 queries the
instance-level data of the specific individual item to the EPC-ISs. In this case, the
EPC-IS3 does not send any query to other EPC-ISs, but if the product (C) has already
shipped, the EPC-IS3 sends a query to the servers which store the historical data of
the product.

Response from the EPC-IS3 to the Enterprise Application3: In response to the step 10,
the EPC-IS3 sends a response back to the Enterprise Application3. The response
contains all the location data that the EPC-IS3 receives in the step 10 and the location
data that the EPC-IS3 stores.

59

09

(/1) ssao01d ssoursng 20e1) A[qUISSSE Y} JO MO[J JIOM :1-G-9 2Ind1g

N EEL)
———————~ieEEeT
]
e
BiEp JuaAa
PV >
350N JOUBAPY - > oY >
EREINCRIVENYY -+ S5NON SATEADY
ojur Buiddiys dsey o
(Jaquinu a._ou oyui Buiddys lienp
oY
ojyu) BYiddiys pue Jap1o puss
Vv
r4SIUTISpIO PUSS |
AV :
RFERSEEY
v
uoneuJojuI [BA3]-35UR)SUl puag
N EEYY
T
D e
EE
EEEEEcererrrew——— |
eep jusaa |
oV >
e
BOION 3OUBAPY Sy > o
-~ SOION 90UEAPY - SOION SATEADY
ojut Buiddiys dsby o
(saquunuy %..ov oyuy Buiddiys juanp
BV >
oyur 64iT8ijs pue Jepio u:ﬂ
= —
oV
0d3 Jaisibay
Vv
uoleufIbjul [9A3[-90UEISU] puss
L
€ uoneoyddy . , 2 uonedlddy § | uonesyddy
| ssudiojug € juereg € SI-0d3 SNO 2 SI-0d3 Z juereg ssudiaiug 1L SI-0d3 | jueaeg esudiag

(Z/2) ss9001d ssaursng aoe1) A[QUIASSE) JO MO[J JIOA :]-G-9 2In31]

19

pUoNeEso[0S8y |
< Elep|uoRedo dsey _
[(OJI EEp UONESOT AING >
B "ETET UORE0T 455y
1D d3) €iep|uoneso] Asno >
XN
p| dN00ISIFOdT
(Dd3) =ep| uoneso| K1anD
< Od3 onpoud dsey
(Dd3 ysuodwoo) D43 1npoid Aiend
< HY
Dd3 Josibay
D v i
(Aiquiasse) UGHBLLIOIUT [BAGI-BBUEISUI pUSS ﬁ
AoV
ﬁ ojul ,o:voammxw_mmm R H |
| , | |
£ uonesiddy |] "] ——y : Pr—
ssudiaia £ JueAeg € SI-0d3 W SNO 2 81-0d3 Z weAeg osudion3 | SI-0d3 | JueARS B

6.5.2. Requirement analysis

Based on the business flow defined in the previous section, we identify the need for defining
a new event, assembly. The event is described in Table 6-5-1. Attributes of the event are
similar to the events previously defined. This means this event is also accommodated with the
Event Dictionary and that the messages modeled in Chapter 5 handle the historical data of
this event.

Table 6-5-1 Structure of the assembly event

Action Key Relevant information

Assembly EPC of instance Date time stamp, Reader
EPC, component(s)EPC,
Assembly direction

6.6. Order track business process

Order track business process is useful in such cases as tracking the status of the products
which have long manufacturing process time and doing quality error management. [35].

Regarding the system layout, we premise the structure in Figure 6-6-1. We assume two
companies, and the difference is indicated by the suffix. We also assume that ONS is public
so that every company can use the ONS equally. Regarding Savant, we assume a two-layer
structure. Savant] is connected to servers with EPC-IS (we represent these servers as EPC-IS
in the system layout) and the enterprise application, and Savantl-1 ~ Savant1-3 are connected
to the readers and Savantl. EPC-IS1 stores the property data and the historical data of the
component (A) that are detected by Reader1-1, component (B) that are detected by Reader1-2.
Product (C) will be detected by Reader1-3 after the assembly process starts. The enterprise
application controls the business transaction data, such as purchase order and advance ship
notice, and also provides the interface of the business process to operators.

Preconditions of this business process are that these companies settle terms and conditions
about this business process, the bill of materials (BoM) is stored in the Enterprise
Application]l, Company2 has already placed an order to Companyl, and Companyl and
Company?2 implement the Auto-ID infrastructure.

62

ONS

Company 1 j ~ Company 2
Enterprise L Enterprise
Application 1 e Application 2

y / \
~ {
| -
» EPCIS1 | . EPC-IS 2
R
4
» Savant | i/
Savant 1-1 Savant 1-2 } Savant 1-3
Reader 1-1 Reader 1-2 Reader 1-3
N N—
C
[A]la] e

Figure 6-6-1: System layout of the Order track business process

6.6.1. Business process flow

Figure 6-6-2 shows the flow of the business process. Each arrow represents the message sent
between the system components.

1. Send the instance-level data of the component (A) with the EPC from the Savantl-1
to the Savantl: After each instance is scanned and the relevant data is inputted from
the Savantl-1, it sends the data to the Savantl. When the data is sent successfully, an
acknowledge message returns to the Savantl-1.

2. Send the instance-level data of the component (B) with the EPC from the Savant1-2
to the Savantl: After each instance is scanned and the relevant data is inputted from
the Savant1-2, it sends the data to the Savantl. When the data is sent successfully, an
acknowledge message returns to the Savant1-2.

3. Send the instance-level data of the components with the EPC from the Savant] to the
EPC-IS1: After receiving the data from the Savantl-1 and the Savantl-2, the Savantl
sends the data to the EPC-IS1. When the data is sent successfully, an acknowledge
message returns to the Savant].

63

10.

11.

Query available components of the product (C) from the Enterprise Applicationl to
the EPC-IS1: the Enterprise Application] queries available component information
(EPC of component (A), (B)) to arrange a purchase order from Company3. The key of
the query is the product-level EPC of the necessary components that the Enterprise
Applicationl has as a BoM of the product (C).

Send the order information and preassigned the EPC from the Enterprise Application]
to the EPC-IS1: Based on the order that Company] received from Company2 and the
component availability, the Enterprise Application] preassigns an EPC for a product
(C) and sends it to the EPC-IS1 with the relevant information. When the data is sent
successfully, an acknowledge message returns to the Enterprise Application!.

Register the EPC and the server to the ONS: The relation between the instance-level
EPC of the product (C) and the EPC-IS1 location is registered to the ONS. If the data
is registered successfully, an acknowledgement message returns to the EPC-IS1.

Send an order status notice to Company2: After the step 6, the Enterprise
Application] sends an order status notice to Company2. We assume the Enterprise
Applicationl sends a notification to the EPC-IS1 and then the EPC-IS1 sends a
notification to the EPC-IS2, but this information may be sent via EDI/B2Bi
connection if they have a connection. We also assume that the EPC-IS2 pushes the
notification to the Enterprise Application2, but the Enterprise Application2 may query
new information to the EPC-IS2.

Query the instance-level data from the Enterprise Application2 to the EPC-IS2: After
the step 7, the Enterprise Application2 has the instance-level EPC of the product (C)
that Company3 will receive. Suppose an employee wants to know the status of the
order, he operates the Enterprise Application2 and the Enterprise Application2 sends a
query to the EPC-IS2.

EPC-IS2 look-up: After the step 8, the EPC-IS2 looks up the location of servers
which store the data of the specific EPC. In this case, the EPC-IS2 gets the location of
the EPC-IS1.

Query the instance-level data from the EPC-IS2 to the EPC-IS1: After the step 9, the
EPC-IS2 recognizes the location of the EPC-IS1. Then the EPC-IS2 queries the
instance-level data of the specific individual item to the EPC-IS1. In this case, the
EPC-IS2 gets the status of the product (C) that Company?2 will receive.

Response from the EPC-IS2 to the Enterprise Application2: In response to the step 8,
the EPC-IS2 sends a response back to the Enterprise Application2. The response
contains all the status information that the EPC-IS2 receives in the step10.

64

g9

$50001d sSouISNq Yorl) 19pI0 3Y) JO MO[J YIOM :Z-G-9 2Ind1]

nie;s Japlo dsay

“SN{EIE 18pIs ds3y
{Dd3) snigls Jopio Aianp >
B - |/ E—
[dnyoosi-od3 T
(Dd3) sniess Jspio Aanpd o
Y -
T ‘
S21I0N JUBApY R v
VY >
901I0N aouehpY
4SRN SUEADY |
oY >
Od3 J8isibey

¥V
Dd3 Pnpoid ubisseald

9d3) suauodwod dsay |

-

(4aquinu Japjo) sjusuodwiod ajgelreae Kiand

B Yoy
p—p

((g) ‘(v)iusuodwod)uoneulioul [9As|-BoUBISUL pUSS|

Y
((@)iusuodwon)uoyeusioul jdhaj-aousisy) puss
B Hov

>

((v)wauodwp))uoyeulIojut |9A3|-3U-ISUI puag

2 uoneolddy y . R . L uojleoyddy
ssudIong Zs1-0d3 SNO Z-lweaeg L-jereg leaeg 1SI-0d3 ssudog

6.6.2. Requirement analysis

Based on the business flow defined in the previous section, we identify the need for defining
a new event, notify. The event is described in Table 6-6-1. Attributes of the event are similar
to the events previously defined. This means this event is also accommodated with the Event
Dictionary and that the messages modeled in Chapter 5 handle the historical data of this

event.

Table 6-6-1 Structure of the notify event

Action

Key

Relevant information

Notify

EPC of instance

Purchase order identifier,

status of the product

66

7. Summary and Suggestions

In this chapter, we summarize this thesis by discussing some of the findings of this thesis and
making some suggestions for the future study.

7.1. Summary

7.1.1. EPC Information Service architecture

The key objective of this thesis is to propose EPC-IS architecture. We defined generic
business processes by using the characteristics of information stored in the servers with
EPC-IS. This characteristic was studied by Cambridge University, one of the Auto-ID Lab
universities. By defining business processes this way and analyzing requirements in the
following step, we guaranteed that the architecture we proposed was able to support these
business processes.

Then we defined the requirements derived from those generic business processes, proposed
architecture which consists of messages and dictionaries, and developed schemas for both
messages and dictionaries. This separation makes it possible to maintain each of the schemas
independently. It is also expected to reduce the impact of the business process change on the
message structure because the impact of the change is absorbed by modifying dictionary
instances.

Then we evaluated the message and the dictionary schemas with further requirements which
are being raised in the RFID field trials and the expected future applications for RFID.
Through this evaluation, we modified the message schemas, increased the dictionary
instances, and made them more robust.

7.1.2. Message

One of the proposals we made is the necessity of the messages in order to realize the generic
business processes. The messages we proposed are three: Notify message, Query/Response
message and Acknowledge message. The Notify message is used for registering and updating
the physical object information, the Query/Response message is used for retrieving
information stored in the server with EPC-IS, and the Acknowledge message is used for
notifying acknowledgement and exception of the Notify message. We also proposed the
schemas of these messages. The document type definition (DTD) of schemas and the sample
instances of them are listed in the Appendix.

67

7.1.3. Dictionary

Another proposal we made is the separation of the dictionary from messages in order to
guarantee the scalability of the massages. We developed one dictionary schema and two sets
of instances as the Event Dictionary, which maintains events and the attributes of them, and
the Property Dictionary, which maintains attributes of both product-level and instance-level

property.

Since the attributes defined in the dictionaries are used to describe the physical object
information within Auto-ID infrastructure, these dictionaries are also used as the PML
Extension. We list the document type definition (DTD) of the dictionary schema, the Event
Dictionary and the Property Dictionary in the Appendix.

7.2. Suggestions for future study

7.2.1. Standard development

In this thesis we proposed architecture of EPC-IS. Since starting from generic business
processes, we assume that this architecture could become core architecture of a new EPC-IS
standard. However, the research to discuss this assumption has not done yet. Therefore, one
future study area is to verify the architecture and develop a new EPC-IS standard with the
real business requirements.

7.2.2. Impact assessment of merging EDI/B2B infrastructure with Auto-ID
infrastructure

In this thesis, we discussed the possibility of sending data via EDI/B2B1 connection and
concluded that there is little difference between connection of the EDI/B2Bi infrastructure
and that of the Auto-ID infrastructure. However, we did not discuss the impact of using the
Auto-ID infrastructure to exchange other transaction messages defined in the EDI/B2B
standards, such as quote, purchase order, and invoice.

Since it i1s envisaged that companies will maintain fewer connections within their systems and
between their systems and those of the trading partners, this study is essential to further
deploy the Auto-ID infrastructure.

68

8. References

[1] The Association for Automatic Identification and Data Capture Technologies. Shrouds of
time, The history of RFID
http://www.aimglobal.org/technologies/rfid/resources/shrouds_of_time.pdf

[2] Auto-ID Lab Silvio Albano. EPC field test Board of overseers meeting June 2002,
Cambridge, England

[3] Timothy Porter Milne. A Framework for Auto-ID Enabled Business

[4] Auto-ID Lab. About Auto-ID Lab
http://www.autoidlabs.com/aboutthelabs.html

[5] EPCglobal. About EPCglobal
http://www.epcglobalinc.com/about/about_epcglobal.html

[6] EPCglobal. FAQ, What is EPCglobal Network?
http://www.epcglobalinc.com/about/fags.html#8

[7] EPCglobal. Auto-ID Reader Protocol 1.0
[8] EPCglobal. Auto-ID Savant Specification 1.0

[9] Mark Harrison. White Paper EPC. Information Service Data Model and Queries
http://www.autoidlabs.com/whitepapers/CAM-AUTOID-WHO025.pdf

[10] EPCglobal. Auto-ID Object Name Service (ONS) 1.0
[11] EPCglobal. EPCTM Tag Data Standards Version 1.1 Rev.1.23
[12] EPCglobal. PML Core Specification 1.0

[13] EPCglobal US. Welcome to EPCglobal US!
http://www.epcglobalus.org/

[14] EPCglobal. 13.56 MHz ISM Band Class 1Radio Frequency Identification Tag Interface
Specification: Candidate Recommendation, Version 1.0.0

[15] EPCglobal. Draft protocol specification for a 900 MHz Class 0 Radio Frequency
Identification Tag

[16] EPCglobal. 860MHz 930MHz Class I Radio Frequency Identification Tag Radio
Frequency & Logical Communication Interface Specification Candidate

69

Recommendation, Version 1.0.1

[17] Sanjay Sarma, David L. Brock & Kevin Ashton. The Networked Physical World
Proposals for Engineering the Next Generation of Computing, Commerce &
Automatic-ldentification
http://www .autoidlabs.com/whitepapers/MIT-AUTOID-WH-001.pdf

[18] Mark Harrison, Humberto Moran, James Brusey, Duncan McFarlane. PML Server
Developments
http://www .autoidlabs.com/whitepapers/cam-autoid-wh015.pdf

[19] ebXML. ebXML Technical Work
http://www.ebxml.org/technical_work.htm

[20] ebXML. About ebXML
http://www.ebxml.org/geninfo.htm

[21] ebXML. Core Component Overview Version 1.05
http://www.ebxml.org/specs/ccOVER.pdf

[22] RosettaNet.
http://www.rosettanet.org/

[23] W3C. Extensible Markup Language (XML)
http://www.w3.org/XML/

[24] RosettaNet. PIP2A9 Technical Product Information Exchange Protocol
[25] RosettaNet. PIP® Design Guidelines

[26] World Wide Web Consortium.
http://www.w3.org/

[27] W3C. XQuery 1.0: An XML Query Language
http://www.w3.org/TR/xquery/

[28] Auto-ID Lab Silvio Albano, Daniel W. Engels. Technical Report Auto-ID Center Field
Trial: Phase I Summary
http://www.autoidlabs.com/whitepapers/MIT-AUTOID-TR-006.pdf

[29] Auto-ID Lab Silvio Albano. Auto-ID Field Test Lessons Learned in the Real World

[30] IBM. WebSphereMQ
http://www-306.ibm.com/software/integration/wmgq/

70

[31] Sun Microsystems. J2EE Java Message Service (JMS)
http://java.sun.com/products/jms/

[32] W3C. XML Protocol Working Group
http://www.w3.0rg/2000/xp/Group/

[33] U.S. Food and Drug Administration. COMBATING COUNTERFEIT DRUGS A Report
of the Food and Drug Administration
http://www.fda.gov/oc/initiatives/counterfeit/report02_04.html

[34] European Union. DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous

substances in electrical and electronic equipment
http://europa.eu.int/eur-lex/pri/en/oj/dat/2003/1_037/1_03720030213en00190023.pdf

[35] Duncan McFarlane, Sanjay Sarma, Jin Lung Chim, C Y Wong, Kevin Ashton. Submitted
to Journal of EAIA, July 2002 THE INTELLIGENT PRODUCT IN MANUFACTURING
CONTROL
http://www-mmd.eng.cam.ac.uk/automation/Paper/2002_journal_eaia_dmss.pdf

[36] U.S. Department of Defense. DOD ANNOUNCES RADIO FREQUENCY
IDENTIFICATION POLICY
http://www.defenselink.mil/releases/2003/nr20031023-0568.html

[37] Metro group. News Release, METRO Group To Introduce RFID Across The Company
http://www.metrogroup.de/servlet/PB/menu/1008965_12/index.htm

[38] RFID Journal. Target Issues RFID Mandate
http://www.rfidjournal.com/article/articleview/802/1/1/

[39] Computer World. Wal-Mart Backs RFID Technology Will require suppliers to use 'smart’

tags by 2005
http://www.computerworld.com/softwaretopics/erp/story/0,10801,82155,00.html

71

9. Appendix
9.1. Dictionary

9.1.1. Dictionary Schema

<!--
Fhis o Duotienury schema.,
Copyvright ros Tatsuya Inaba 2004
>
e i e 2

CHANGE HISTORY
Version Date Time Author

Initial Drratt 20040202 15:00 Inabu

i1 20040224 15:00 Inaba
1.2 20040318 11:15 Inaba

ITE L TEITEL N L R aTTI IR Tmimm e
<!ENTITY % common-elements "Name, Desc">
<!ENTITY % common-attributes "

id ID #REQUIRED

ver CDATA#REQUIRED

">
<!ELEMENT Dictionary (Identifier, Action*, ValueSet*, Value*)>
<!ELEMENT Identifier (Type, MajRev, MinRev, Date)>
<!ELEMENT Type (#PCDATA)>
<!ELEMENT MajRev (#PCDATA)>
<!ELEMENT MinRev (#PCDATA)>
<!ELEMENT Date (#PCDATA)>
<!ELEMENT Action (%ocommon-elements;, ValueSetld*, Valueld*)>
<!ATTLIST Action

Jocommon-attributes;

>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Desc (#PCDATA)>
<!ELEMENT ValueSetld (#PCDATA)>
<!ELEMENT Valueld (#PCDATA)>
<!ELEMENT ValueSet (%ocommon-elements;, Valueld*)>
<IATTLIST ValueSet
P%common-attributes;
>
<!ELEMENT Value (%common-elements;, Format, UOM)>
<!ATTLIST Value
Jecommon-attributes;
>
<!ELEMENT Format (#PCDATA)>
<!ELEMENT UOM (#PCDATA)>

72

9.1.2. Event Dictionary

<?xml version="1.0"7>
<!DOCTYPE Dictionary SYSTEM "Dictionary.dtd">
<7xml-stylesheel type="text/xsl" href="dictionary.xs" 7>
<Dictionary>
<ldentifier>
<Type>Event</Type>
<MajRev>1</MajRev>
<MinRev>0</MinRev>
<Date>2004-03-18</Date>
</ldentifier>
<Action id="EA001" ver="1.0">
<Name>Detect</Name>
<Desc>Event used when physical object is scanned.</Desc>
<Valueld>EV001</Valueld>
<Valueld>EV002</Valueld>
<Valueld>EV003</Valueld>
</Action>
<Action id="EA002" ver="1.0">
<Name>Aggregate</Name>
<Desc>Event used when two physical objects are aggregated.</Desc>
<Valueld>EV001</Valueld>
<Valueld>EV002</Valueld>
<Valueld>EV003</Valueld>
<Valueld>EV004</Valueld>
<Valueld>EV005</Valueld>
<Valueld>EV013</Valueld>
</Action>
<Action id="EA003" ver="1.0">
<Name>Disaggregate</Name>
<Desc>Event used when two physical objects are disaggregated.</Desc>
<Valueld>EV001</Valueld>
<Valueld>EV002</Valueld>
<Valueld>EV003</Valueld>
<Valueld>EV004</Valueld>
<Valueld>EV005</Valueld>
<Valueld>EV013</Valueld>
</Action>
<Action id="EA004" ver="1.0">
<Name>Handling</Name>
<Desc>Event used when business entity handles physical object.</Desc>
<ValueSetld>EVS001</ValueSetld>
<Valueld>EV006</Valueld>
<Valueld>EV007</Valueld>
</Action>
<ValueSet id="EVS001" ver="1.0">
<Name>Physical Address</Name>
<Desc>Physical Address of physical object location, business entity etc.</Desc>
<Valueld>EV008</Valueld>
<Valueld>EV009</Valueld>
<Valueld>EV010</Valueld>
<Valueld>EV011</Valueld>
<Valueld>EV012</Valueld>

73

</ValueSet>

<Value id="EV001" ver="1.0">
<Name>EPC</Name>
<Desc>EPC of scanned physical object. Key of historical record.</Desc>
<Format>EPC</Format>
<UOM/>

</Value>

<Value id="EV002" ver="1.0">
<Name>DateTime</Name>
<Desc>DateTime of the event.</Desc>
<Format>DateTime</Format>
<UOM/>

</Value>

<Value id="EV003" ver="1.0">
<Name>ReaderEPC</Name>
<Desc>EPC of reader which scans physical object.</Desc>
<Format>EPC</Format>
<UOM/>

</Value>

<Value id="EV004" ver="1.0">
<Name>RelatedEPC</Name>
<Desc>EPC of related physical object. Used for Aggregation event.</Desc>
<Format>EPC</Format>
<UOM/>

</Value>

<Value id="EV005" ver="1.0">
<Name>AggregationRelation</Name>
<Desc>Relation of the aggregation. If value is "1", physical object is larger concept physical

object.</Desc>

<Format>Binary</Format>
<UOM/>

</Value>

<Value id="EV006" ver="1.0">
<Name>BusinessEntity</Name>
<Desc>Name of business entity which executes the event.</Desc>
<Format>Text</Format>
<UOM/>

</Value>

<Value id="EV007" ver="1.0">
<Name>ContactName</Name>
<Desc>Contact information</Desc>
<Format>Text</Format>

<UOM/>

</Value>

<Value id="EV008" ver="1.0">
<Name>Street</Name>

<Desc>Street of physical address.</Desc>
<Format>Text</Format>
<UOM/>

</Value>

<Value id="EV009" ver="1.0">
<Name>City</Name>
<Desc>City of physical address.</Desc>
<Format>Text</Format>
<UOM/>

74

</Value>

<Value id="EV010" ver="1.0">
<Name>State</Name>
<Desc>State of physical address.</Desc>
<Format>Text</Format>
<UOM/>

</Value>

<Value id="EVO11" ver="1.0">
<Name>Zip</Name>
<Desc>Zip code of physical address.</Desc>
<Format>Number</Format>

<UOM/>

</Value>

<Value id="EV012" ver="1.0">
<Name>Country</Name>
<Desc>Country of physical address.</Desc>
<Format>Text</Format>
<UOM/>

</Value>

<Value id="EV013" ver="1.0">
<Name>Dependency</Name>
<Desc>Dependency of the two physical objects. If the item is contained in a case, the value is
"1".</Desc>
<Format>binary</Format>
<UOM/>
</Value>
</Dictionary>

9.1.3. Property Dictionary

<?xml version="1.0"7>
<!DOCTYPE Dictionary SYSTEM "Dictionary.dtd">
<?xml-stylesheet type="text/xsl" href="dictionary.xsI"7>
<Dictionary>
<Identifier>
<Type>Property</Type>
<MajRev>1</MajRev>
<MinRev>1</MinRev>
<Date>2004-03-18</Date>
</Identifier>
<Action id="PA001" ver="1.0">
<Name>Create</Name>
<Desc>Action used to create data</Desc>
<ValueSetld/>
<Valueld/>
</Action>
<Action id="PA002" ver="1.0">
<Name>Delete</Name>
<Desc>Action used to delete data</Desc>
<ValueSetld/>
<Valueld/>
</Action>

75

<Action id="PA003" ver="1.0">
<Name>Update</Name>
<Desc>Action used to update data</Desc>
<Valueld/>

</Action>

<Action id="PA004" ver="1.0">
<Name>Notify</Name>
<Desc>Action used to notify business document such as ASN</Desc>
<ValueSetld>PVS002</ValueSetld>
<Valueld/>

</Action>

<ValueSet id="PVS001" ver="1.0">
<Name>Manufacturer</Name>
<Desc>Data related to manufacturer</Desc>
<Valueld>PV007</Valueld>
<Valueld>PV008</Valueld>
<Valueld>PV009</Valueld>
<Valueld>PV010</Valueld>
<Valueld>PV011</Valueld>
<Valueld>PV012</Valueld>
<Valueld>PV013</Valueld>

</ValueSet>
<ValueSet id="PVS002" ver="1.0">
<Name>ASN</Name>

<Desc>Data related to ASN</Desc>
<Valueld>PV014</Valueld>

</ValueSet>

<Value id="PV001" ver="1.0">
<Name>EPC</Name>
<Desc>EPC of property data</Desc>
<Format>EPC</Format>
<UOM/>

</Value>

<Value id="PV002" ver="1.0">
<Name>DateTime</Name>
<Desc>DateTime of the event.</Desc>
<Format>YYYYMMDDThhmm+hhmm</Format>
<UOM>DateTime</UOM>

</Value>

<Value id="PV003" ver="1.0">
<Name>Height</Name>
<Desc>Height of physical object</Desc>
<Format/>
<UOM>meter</UOM>

</Value>

<Value id="PV004" ver="1.0">
<Name>Depth</Name>
<Desc>Depth of physical object</Desc>
<Format/>
<UOM>meter</UOM>

</Value>

<Value id="PV005" ver="1.0">
<Name>Width</Name>
<Desc>Width of physical object</Desc>
<Format/>»

76

<UOM>meter</UOM>

</Value>

<Value id="PV006" ver="1.0">
<Name>Weight</Name>
<Desc>Weight of physical object</Desc>
<Format/>
<UOM>kg</UOM>

</Value>

<Value id="PV007" ver="1.0">
<Name>BusinessEntity</Name>
<Desc>Name of business entity which executes the event.</Desc>
<Format»>Text</Format>
<UOM/>

</Value>

<Value id="PV008" ver="1.0">
<Name>ContactName</Name>
<Desc>Contact information</Desc>
<Format>Text</Format>
<UOM/>

</Value>

<Value id="PV009" ver="1.0">
<Name>Street</Name>
<Desc>Street of physical address.</Desc>
<Format>Text</Format>
<UOM/>

<fValue>

<Value id="PV010" ver="1.0">
<Name>City</Name>
<Desc>City of physical address.</Desc>
<Format>Text</Format>
<UOM/>

</Value>

<Value id="PVO011" ver="1.0">
<Name>State</Name>
<Desc>State of physical address.</Desc>
<Format>Text</Format>
<UOM/>

</Value>

<Value id="PV012" ver="1.0">
<Name>Zip</Name>
<Desc>Zip code of physical address.</Desc>
<Format/>
<UOM>Number</UOM>

</Value>

<Value id="PV013" ver="1.0">
<Name>Country</Name>
<Desc>Country of physical address.</Desc>
<Format>Text</Format>
<UOM/>

</Value>

<Value id="PV014" ver="1.0">
<Name>Documentld</Name>
<Desc>Document identifier of transaction(e.g. PO, ASN)</Desc>
<Format>Text</Format>
<UOM/>

77

</Value>

<Value id="PV015" ver="1.0">
<Name>ExpirationDate</Name>
<Desc>Expiration date of the item</Desc>
<Format>DateTime</Format>
<UOM/>

</Value>

</Dictionary>

9.2. Message

9.2.1. Schema

9.2.1.1. Notify message

<!--
{1~ o Notify schema.
Conymghit o) Tatsuya Inaba 2004
->
<lee L e iz
CHANGE HISTORY

Voraion Date Time Author

Pt Pradt 200402120 15:00 Inaba
P 20040225 14:00 Inaba
I 20040311 16:00 Inaba
i 20040318 12:00 Inaba

Z. 2. Do o .- — ——>
<!ENTITY % common-elements "DateTime, Identifier, DocumentType">
<!ENTITY % common-attributes "
dicRef CDATA #REQUIRED
.

<!ELEMENT Notify (%common-elements;, PhysicalObject*)>
<!ATTLIST Notify

dicldentifier CDATA #IMPLIED
>
<!ELEMENT PhysicalObject (Action*)>
<!ATTLIST PhysicalObject

EPC CDATA #REQUIRED
>
<!ELEMENT Action (ElementSet*, Element*, Inferred?)>
<!ATTLIST Action

%ecommon-attributes;
>
<!ELEMENT ElementSet (ElementSet?, Element*)>
<!ATTLIST ElementSet

J%ecommon-attributes;
>
<!ELEMENT Element (Name?, Value?)>
<!ATTLIST Element

%ecommon-attributes;

78

id ID #IMPLIED

idref IDREF #IMPLIED
>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Value (#PCDATA)>
<!ELEMENT Inferred (#PCDATA)>
<!ELEMENT DateTime (#PCDATA)>
<!ELEMENT Identifier (#PCDATA)>
<!ELEMENT DocumentType (#PCDATA)>

9.2.1.2. Query message

<!--
Thiv s Query schema.
Copyright co) Tutsuya [naba 2004
-->
<!-- I UTTRITI ImEm

CHANGE HISTORY

Version Dute Time Author

Initial Draft 20040311 16:00 Inaba
2004031y 14800 Inaba
i oLz = —-—
<!ENTITY % common-elements "DateTime, Identifier, DocumentType">
<!ENTITY % common-attributes "

dicQuery CDATA #REQUIRED

name CDATA #REQUIRED

">
<!ELEMENT Query (%common-elements;, Action+)>
<!ATTLIST Query

dicldentifier CDATA #IMPLIED

>
<!ELEMENT Action (ElementSet?, Element*, Inferred?)>
<!ATTLIST Action
%common-attributes;
>
<!ELEMENT ElementSet (ElementSet?, Element*)>
<!ATTLIST ElementSet
%common-attributes;
>
<!ELEMENT Element (Value)>
<!ATTLIST Element
% common-attributes;
id ID #IMPLIED
idref IDREF #IMPLIED
>
<!ELEMENT Value (#PCDATA)>
<!ELEMENT Inferred (#PCDATA)>
<!ELEMENT DateTime (#PCDATA)>
<!ELEMENT Identifier (#PCDATA)>
<!ELEMENT DocumentType (#PCDATA)>

79

9.2.1.3. Response message

<!--
This is Response schenis
Copyright «¢) Tutsuya fuabi 20004
-—>
<lem mmmmmmmem s T S
CHANGL HINTORY

Version hate Fime Author

Initial Draft
.1

200405110 1600 tnaba
{100 Inaba
s e m e >
<!ENTITY % common-elements "DateTime, Identifier, DocumentType">
<!ENTITY % common-attributes "

dicQuery CDATA #REQUIRED

name CDATA #REQUIRED

">
<!ELEMENT Response (%common-elements;, Originalldentifier, PhysicalObject*, Result?)>
<!ATTLIST Response

dicldentifier CDATA #IMPLIED

>
<!ELEMENT PhysicalObject (Action+, Result?)>
<!ATTLIST PhysicalObject
EPC CDATA #IMPLIED
>
<!ELEMENT Action (ElementSet?, Element*, Inferred?, Result?)>
<!ATTLIST Action
%common-attributes;
>
<!ELEMENT ElementSet (ElementSet?, Element*)>
<!ATTLIST ElementSet
%ocommon-attributes;
>
<!ELEMENT Element (Value)>
<!ATTLIST Element
Jcommon-attributes;
id ID #IMPLIED
idref IDREF #IMPLIED
>
<!ELEMENT Value (#PCDATA)>
<!'ELEMENT Inferred (#PCDATA)>
<!ELEMENT Result (Reason?)>
<!ATTLIST Result
category (success | fail | partly_success) #REQUIRED
>
<!ELEMENT Reason (#PCDATA)>
<!ELEMENT DateTime (#PCDATA)>
<!ELEMENT Originalldentifier (#PCDATA)>
<!ELEMENT Identifier (#PCDATA)>
<!ELEMENT DocumentType (#PCDATA)>

80

9.2.1.4. Acknowledge message
<!--
This s Acknowledge scheg
Copyright (¢) Tatsuyu Inatus 2004

—>
<!__ e+ MATI LD TS
CHANG HISNTORY
Version Date Frne Author
Initial Draft 20040318 1504 loaba

TITIOUU TLTLL L LT DD LN I ID I IIIS IS II IRIE SNIT IRIR I TN D ees>

<!ENTITY % common-elements "DateTime, Identifier, DocumentType">
<!ENTITY % common-attributes "
dicQuery CDATA #REQUIRED
name CDATA #REQUIRED
H>
<!ELEMENT Acknowledge (%common-elements;, Originalldentifier, PhysicalObject*, Result?)>
<!ATTLIST Response
dicldentifier CDATA #IMPLIED
>
<!ELEMENT PhysicalObject (Action+, Result?)>
<!ATTLIST PhysicalObject
EPC CDATA #IMPLIED
>
<!ELEMENT Action (Result?)>
<!ATTLIST Action
%common-attributes;
>
<!ELEMENT Result (Reason?)>
<!ATTLIST Result
category (success | fail | partly_success) #REQUIRED
>
<!ELEMENT Reason (#PCDATA)>
<!ELEMENT DateTime (#PCDATA)>
<!ELEMENT Originalldentifier (#PCDATA)>
<!ELEMENT Identifier (#fPCDATA)>
<!ELEMENT DocumentType (#PCDATA)>

9.2.2. Sample Instances

9.2.2.1. Notify the scanned item

When items are scanned by the Savant, the data is sent to the server which stores the physical
object data. This sample instance is used in this situation. A reader (urn:epc:1.10.101.1001)
scans four items at 15:13:43-5:00 2004 February 25. In response to the Notify message, the
Acknowledge message is sent back to the Savant.

Notify message
<?xml version="1.0" encoding="UT}-§"7>

81

<!DOCTYPE Notify SYSTEM "Notify.dtd">
<Notify dicldentifier="EventDictionary verl.0">
<DateTime>20040225T15:13:43 -0500</DateTime>
<Identifier>200402250001 </Identifier>
<DocumentType>notify</DocumentType>
<PhysicalObject EPC="urn:epc:1.10.100.1">
<Action dicRef="EA001" name="Detect">
<Element dicRef="EV001" name="EPC">
<Value>urn:epc:1.10.100.1</Value>
</Element>
<Element dicRef="EV002" id="D200402250001" name="DateTime">
<Value>20040225T15:00:00-05:00</Value>
</Element>
<Element dicRet="EV003" id="E1001" name="ReaderEPC">
<Value>urn:epc:1.10.101.1001</Value>
</Element>
</Action>
</PhysicalObject>
<PhysicalObject EPC="urn:epc:1.10.100.2">
<Action dicRef="EA001" name="Detect">
<Element dicRef="EV001" name="EPC">
<Value>urn:epc:1.10.100.2</Value>
</Element>
<Element dicRef="EV002" idref="D200402250001" name="DateTime"/>
<Element dicRef="EV003" idref="E1001" name="ReaderEPC"/>
</Action>
</PhysicalObject>
<PhysicalObject EPC="um:epc:1.10.100.3">
<Action dicRef="PA001" name="Detect">
<Element dicRef="EV001" name="EPC">
<Value>urn:epc:1.10.100.3</Value>
</Element>
<Element dicRef="EV002" idret="D200402250001" name="DateTime"/>
<Element dicRef="EV003" idref="E1001" name="ReaderEPC"/>
</Action>
</PhysicalObject>
<PhysicalObject EPC="urn:epc:1.10.100.4">
<Action dicRef="PA001" name="Detect">
<Element dicRef="EV001" name="EPC">
<Value>urn:epc:1.10.100.4</Value>
</Element>
<Element dicRef="EV002" idref="D200402250001" name="DateTime"/>
<Element dicRef="EV003" idref="E1001" name="ReaderEPC"/>
</Action>
</PhysicalObject>
</Notify>

Acknowledge message

<7?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE Acknowledge SYSTEM "Acknowledge.dtd">

<Acknowledge>
<DateTime>20040225T15:13:43 -0500</Date Time>
<Identifier>200402250002</1dentifier>
<DocumentType>acknowledge</DocumentType>

82

<Originalldentifier>200402250001 </Originalldentifier>
<Result category="success"/>
</Acknowledge>

9.2.2.2. Notify the expiration date

When the property data is inputted at the Savant, the data is sent to the server which stores the
physical object data. This sample instance is used in this situation. The expiration date data is
sent to the server. In response to the Notify message, the Acknowledge message is sent back
to the Savant. In this case, the result of an item(urn:epc:1.10.100.4) becomes error because the
EPC has not registered in the server.

Notify message
<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE Notify SYSTEM "Notify.dtd">
<Notify dicldentitier="PropertyDictionary ver1.0">
<DateTime>20040318T14:13:43 -0500</DateTime>
<Identifier>200403180009</Identifier>
<DocumentType>notify</DocumentType>
<PhysicalObject EPC="urn:epc:1.10.100.1">
<Action dicRef="PA003" name="Update">
<Element dicRef="PV015" name="ExpirationDate">
<Value>20040425T12:00:00-5:00</Value>
</Element>
</Action>
</PhysicalObject>
<PhysicalObject EPC="urn:epc:1.10.100.2">
<Action dicRef="PA003" name="Update">
<Element dicRef="PV015" name="ExpirationDate">
<Value>20040425T12:00:00-5:00</Value>
</Element>
</Action>
</PhysicalObject>
<PhysicalObject EPC="um:epc:1.10.100.3">
<Action dicRef="PA003" name="Update">
<Element dicRef="PV015" name="ExpirationDate">
<Value>20040425T12:00:00-5:00</Value>
</Element>
</Action>
</PhysicalObject>
<PhysicalObject EPC="urn:epc:1.10.100.4">
<Action dicRef="PA003" name="Update">
<Element dicRef="PV015" name="ExpiratioDate">
<Value>20040425T12:00:00-5:00</Value>
</Element>
</Action>
</PhysicalObject>
</Notify>

Acknowledge message

83

<7xmi version="1.0" encoding="UTF-8"7>
<IDOCTYPE Acknowledge SYSTEM "Acknowledge.dtd">
<Acknowledge dicldentifier="PropertyDictionary ver1.0">
<DateTime>20040318T15:13:43 -0500</DateTime>
<Identifier>200403180010</Identifier>
<DocumentType>acknowledge</DocumentType>
<Originalldentifier>200403180009</Originalldentifier>
<Result category="partly_success">
<Reason>EPC not find</Reason>
</Result>
<PhysicalObject EPC="urn:epc:1.10.100.4">
<Action dicRef="PA001" name="Register">
<Result category="fail">
<Reason>EPC not find</Reason>
</Result>
</Action>
</PhysicalObject>
</Acknowledge>

9.2.2.3. Notify the advance ship notice

When items/cases/pallets are sent from a company to its trading partner, the company sends
advance ship notice to its trading partner. This sample instance is used in this situation. First,
the enterprise application of the sending company sends the Notify message to its server with
EPC-IS, and the server sends the Notify message to the server with EPC-IS which is located
at the trading partner’s facility. In this case, the sending company packs two items in cases
(um:epc:1.10.100.10, urn:epc:1.10.100.11). The shipment document identifier also uses EPC
(urn:epc:1.10.102.1) in this case.

Notify message from the enterprise application to the server with EPC-IS
<?xm} version="1.0" encoding="UTF-8"7>
<!DOCTYPE Notify SYSTEM "Notify.dtd">
<Notify dicldentifier="EventDictionary ver1.0">
<DateTime>20040324T15:13:43 -0500</DateTime>
<Identifier>200403240001</Identifier>
<DocumentType>notify</DocumentType>
<PhysicalObject EPC="urn:epc:1.10.102.1">
<Action dicRef="PA004" name="Notify">
<ElementSet dicRef="PV002" name="ASN">
<Element dicRef="PV014" name="Documentld">
<Value>urn:epc:1.10.102.1</Value>
</Element>
</ElementSet>
</Action>
</PhysicalObject>
</Notify>

Notify message from the server of the sending company to the sever of the receiving
company

<?xml version="1.0" encoding="UTF-8" 7>

<!DOCTYPE Notify SYSTEM "Notify.dtd">

84

<Notify dicldentifier="EventDictionary verl.0">
<DateTime>20040324T16:13:43 -0500</DateTime>
<Identifier>urn.epc:1.10.102. 1</Identifier>
<DocumentType>notify</DocumentType>
<PhysicalObject EPC="um:epc:1.10.102.1">
<Action dicRef="PA004" name="Notify">
<ElementSet dicRef="PV002" name="ASN">
<Element dicRef="PV014" name="Documentld">
<Value>urn:epc:1.10.102.1</Value>
</Element>
</ElementSet>
</Action>
</PhysicalObject>
<PhysicalObject EPC="urn:epc:1.10.100.10">
<Action dicRet="EA001" name="Detect">
<Element dicRef="EV001" name="EPC">
<Value>urn:epc:1.10.100.10</Value>
</Element>
<Element dicRef="EV002" id="D200403241000001" name="DateTime">
<Value>20040324T10:00:00-5:00</Value>
</Element>
<Element dicRel="EV003" id="D200403241000002" name="ReaderEPC">
<Value>urn:epc:1.10.101.1001</Value>
</Element>
</Action>
<Action dicRef="EAQ003" name="Aggregate">
<Element dicRef="EV004" name="RelatedEPC">
<Value>urn:epc:1.10.100.1</Value>
</Element>
</Action>
<Action dicRef="EA003" name="Aggregate">
<Element dicRet="EV004" name="RelatedEPC">
<Value>urn:epc:1.10.100.2</Value>
</Element>
</Action>
</PhysicalObject>
<PhysicalObject EPC="urn:epc:1.10.100.11">
<Action dicRef="PA001" name="Detect">
<Element dicRef="EV001" name="EPC">
<Value>urn:epc:1.10.100.11</Value>
</Element>
<Element dicRef="EV002" idref="D200403241000001" name="DateTime"/>
<Element dicRef="EV003" idref="D200403241000002" name="ReaderEPC"/>
</Action>
<Action dicRef="EA002" name="Aggregate">
<Element dicRet="EV004" name="RelatedEPC">
<Value>urn:epc:1.10.100.3</Value>
</Elernent>
</Action>
<Action dicRef="EA002" name="Aggregate">
<Element dicRef="EA004" name="RelatedEPC">
<Value>urn:epc:1.10.100.4</Value>
</Element>
</Action>
</PhysicalObject>

85

</Notify>

9.2.2.4. Query the product size

When a buyer wants to know the size of an item, the company sends a query to the supplier.
This sample instance is used in this situation. Precondition of this sample is that the buyer gets
the EPC of the product of which the company wants the size. First, the buyer sends a query
with the EPC of the item, and then the supplier sends back the size of the item to the buyer.

Query message
<?xml version="1.0" encoding="UTF-8" 7>
<!DOCTYPE Query SYSTEM "Query.dtd">
<Query dicldentifier="PropertyDictionary verl.0">
<DateTime>20040311T14:13:43 -0500</DateTime>
<Identifier>200402250006</1dentifier>
<DocumentType>query</DocumentType>
<Action dicQuery="PAO01" name="Create">
<ElementSet dicQuery="PVS001" name="Manufacturer">
<Elerent dicQuery="PV007" name="BusinessEntity">
<Value/>
</Element>
</ElementSet>
<Element dicQuery="PV003" name="Height">
<Value/>
</Element>
<Element dicQuery="PV004" name="Depth">
<Value/>
</Element>
<Element dicQuery="PV005" name="Width">
<Value/>
</Element>
<Element dicQuery="PV006" name="Weight">
<Value/>
</Element>
<Element dicQuery="PV001" name="EPC">
<Value>urn:epc:1.10.100.1</Value>
</Element>
</Action>
</Query>

Response message
<7xml version="1.0" encoding="UTF-§" 7>
<!DOCTYPE Response SYSTEM "Response.dtd">
<Response dicldentifier="PropertyDictionary ver1.0">
<DateTime>20040311T14:13:43 -0500</DateTime>
<Identifier>200402250007</Identifier>
<DocumentType>response</DocumentType>
<Originalldentifier>200402250006</Originalldentifier>
<PhysicalObject EPC="urn:epc:1.10.100.1">
<Action dicQuery="PA001" name="Create">
<ElementSet dicQuery="PVS001" name="Manufacturer">
<Element dicQuery="PV007" name="BusinessEntity">

86

<Value>MIT</Value>

</Element>

</ElementSet>

<Element dicQuery="PV003" name="Height">
<Value>0.3</Value>

</Element>

<Element dicQuery="PV004" name="Depth">
<Value>0.1</Value>

</Element>

<Element dicQuery="PV005" name="Width">
<Value>0.2</Value>

</Element>

<Element dicQuery="PV006" name="Weight">
<Value>1.0</Value>

</Element>

<Element dicQuery="PV001" name="EPC">
<Value>urn:epc:1.10.100.1</Value>

</Element>

</Action>
</PhysicalObject>
</Response>

9.2.2.5. Query the Expiration Date

When a buyer wants to know the expiration date of an item, the company sends a query to the
supplier. This sample instance is used in this situation. Precondition of this sample is that the
buyer gets the EPC of the product of which the company wants the expiration date. First, the
buyer sends a query with the EPC of the item, and then the supplier sends back the expiration
date of the item to the buyer.

Query message
<7xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE Query SYSTEM "Query.dtd">
<Query dicldentifier="PropertyDictionary ver1.0">
<DateTime>20040311T14:13:43 -0500</DateTime>
<Identifier>200402250006</1dentifier>
<DocumentType>query</DocumentType>
<Action dicQuery="PA001" name="Create">
<Element dicQuery="PV001" name="EPC">
<Value>urn:epc:1.10.100.2</Value>
</Element>
<Element dicQuery="PV015" name="ExpirationDate">
<Value/>
</Element>
</Action>
</Query>

Response message

<7xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Response SYSTEM "Response.dtd">

<Response dicldentifier="PropertyDictionary ver1.0">
<DateTime>20040311T15:13:43 -0500</DateTime>

87

<Identifier>200402250007</Identifier>
<DocumentType>response</DocumentType>
<Originalldentifier>200402250006</Originalldentifier>
<PhysicalObject EPC="um:epc:1.10.100.2">
<Action dicQuery="PA001" name="Create">
<Element dicQuery="PV001" name="EPC">
<Value>urn:epc:1.10.100.2</Value>
</Element>
<Element dicQuery="PV015" name="ExpirationDate">
<Value>20040425T12:00:00-5:00</Value>
</Element>
</Action>
</PhysicalObject>
</Response>

88

