
A Web-Controllable Shaking Table for
Remote Structural Testing Under Seismic Loading

by

Mazen Manasseh

Bachelor of Engineering, Civil Engineering, 2002
American University of Beirut

Submitted to the Department of Civil and Environmental Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Civil and Environmental Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

© Massachusetts Institute of Technology. All rights reserved

Signature of Author
Department of Civil'and Environmental Engineering

May 11, 2004

C ertified by
Kevin Amaratunga

Associate Professor of Civil and Environmental Engineering
Thesis Supervisor

Accepted by...
I Heidi Nepf

Chairman, Departmental Committee on Graduate Students

MASSACHUsETs. INSTITE
OF TECHNOLOGY

JUN 0 7 2004 BARKER

A Web-Controllable Shaking Table for
Remote Structural Testing Under Seismic Loading

by

Mazen Manasseh

Submitted to the Department of Civil and Environmental Engineering on May 11, 2004
in partial fulfillment of the requirements for the degree of Master of Science in Civil and

Environmental Engineering

ABSTRACT

The thesis presents a remotely accessible system for controlling a shaker table

laboratory experiment. The Shake Table WebLab is implemented at MIT's Civil

Engineering Department under the Microsoft-sponsored iLab initiative for the

development of educationally-oriented virtual experiments. Facilitated accessibility, safe

operation and expandability are essentials at the root of the design and implementation of

the Shake Table WebLab.

The fully functional system allows students and researchers to excite a two-story

structure, which is three feet high, by vibrating its base while receiving accelerometer

readings from its three levels. Registered Internet users may upload their own input data,

such as the seismic ground acceleration of a newly occurring earthquake, and therefore

study the corresponding behavior of a real structure. The system is designed with an

expandable architecture which enables future researchers to add functionalities that suit

their fields of interest. Relevant fields of study include real-time signal processing and

filtering techniques that would provide an understanding of how earthquakes affect a

structure and therefore provide insight on means to minimize encountered damage in

large-scale structures. An already developed tool utilizes frequency domain transfer

functions to compare the measured structural response at the upper levels with a

predictable result based on seismic vibrations applied at the structure's base.

Two main characteristics of the web-based application are interactivity, provided

through synchronized control/response processes, and sensor-based monitoring of the

experiment. The system is built on the Microsoft .Net Framework through server-hosted

Active Server Pages and browser-embedded Windows Form Controls. Web Service

methods are implemented for initiating remote processes. Throughout the thesis, I state

the motivations for conducting this project, the different online activities and generic

administrative features, and a description of the implemented technologies and system

components.

Thesis Supervisor: Prof. Kevin Amaratunga
Title: Associate Professor of Civil and Environmental Engineering

ACKNOWLEDGEMENTS

This thesis is the result of my continuous research throughout the period I have been a

Master's student at MIT. The outcome of my work, presented in the thesis, has only been

possible due to the guidance and support from a number of MIT faculty, colleagues and

business affiliations.

I would like to thank my advisor, Prof. Kevin Amaratunga who has never been

short on providing me with inspirational guidance and unlimited support. His

consultation has always been a source of enlightenment and motivation. Prof. Eduardo

Kausel has also been dedicated to my project through his commitment to tackle the

smallest details and provide valuable ideas. His wise approach helped me learn a lot

throughout the course of this project. I would also like to thank Prof. Ruaidhri O'Connor

for his availability during critical times by helping us resolve hardware difficulties.

Thanks to all other faculty who have expressed there admiration of the project.

Microsoft Corporation has provided the necessary funds for the research through

Project I-Campus as an alliance with MIT. Quanser Consulting Inc. has also been very

cooperative in sorting out technical problems. Thanks to the I-Lab team for their

continuous interest in and appreciation of the Shake Table WebLab.

I am thankful to all the assistance that I received from my fellow colleagues in

Information Technology in Civil and Environmental Engineering. My final and greatest

gratitude is towards my family - my father George, mother Rita, brother Christian and

sister Grace - for being a boundless source of affection and strength.

3

TABLE OF CONTENTS

ABSTRACT .. 2

ACKNOWLEGEMENTS... 3

TABLE OF CONTENTS ... 4

LIST OF FIGURES... 5

LIST OF TABLES.. 6

CHAPTER 1 - INTRODUCTION... 7

1.1 GENERAL BENEFITS OF REMOTELY ACCESSIBLE LABS.. 7

1.2 TYPES OF WEB-CONTROLLABLE EXPERIMENTS .. 8

1.3 OBJECTIVE OF THE SHAKE TABLE WEBLAB .. 9

1 .4 T H ES IS O U T LIN E .. 10

CHAPTER 2 - HARDWARE COMPONENTS & INITIAL SYSTEM CONDITIONS... 11

2.1 HARDWARE COMPONENTS... 11
2.2 INITIAL SOFTWARE ARCHITECTURE ... 14

CHAPTER 3 - SYSTEM ARCHITECTURE .. 19

3.1 PROBLEM IDENTIFICATION AND FORMULATION OF ADOPTED SOLUTION 19
3.2 OVERVIEW OF THE SOFTWARE ARCHITECTURE .. 21

3.3 IMPLEMENTED TECHNOLOGIES .. 23

3.4 COMPONENTS OF THE IMPLEMENTED SYSTEM .. 29
3 .5 D A T A M O D E L .. 30

CHAPTER 4 - FUNCTIONALITIES OF THE W EB LAB.. 33

4.1 ONLINE EXPERIMENTATION ACTIVITIES... 33
4.2 USER ACCOUNT MANAGEMENT AND ACCESSIBILITY FEATURES.. 43

CHAPTER 5 - SHAKE TABLE CONTROL SERVER ... 48

5.1 OVERVIEW OF THE CONTROL SERVER ... 48

5 .2 W INC O N C O NFIG URATION .. 49

5.3 WEB SERVICE IMPLEMENTATION ... 49

5.4 DATA STREAMING MECHANISM.. 52

CHAPTER 6 - FEATURES OF THE W EB APPLICATION... 57

6.1 BROWSER- EMBEDDED TOOLS.. 57
6.2 COMPUTATION OF FAST FOURIER TRANSFORMS (FFT)... 58
6.3 COMPUTATION OF TRANSFER FUNCTIONS... 62
6.4 CODING DIGITAL FILTER COMPUTATIONS .. 66

CHAPTER 7 - SUMMARY AND FUTURE W ORKS .. 69

7 .1 S U M M A RY .. 69
7 .2 FUT U R E W O RKS.. 69
7 .3 LESSO N S LEA RNED ... 71

REFERENCES... 73

APPENDIX .. 74

4

LIST OF FIGURES

FIGURE 1. SHAKE TABLE TEST STRUCTURE AND HARDWARE ASSEMBLY ON THE RIGHT. SERVE COMPUTERS
O N TH E LEFT 11

FIGURE 2. TW O-LEVEL TEST STRUCTURE ... 13
FIGURE 3. CLOSE-UP OF THE SHAKER TABLE. .. 13
FIGURE 4. ACCELERATION AND AMPLITUDE LIMITS VS. FREQUENCY ... 12
FIGURE 5. W INCON SERVER'S CONTROL PANEL. .. 16
FIGURE 6. WINCON SERVER'S SINKS AND SOURCES ASSOCIATION FORM. .. 17
FIGURE 7. WINCON CLIENT/SERVER IMPLEMENTATION ON SEPARATE COMPUTERS................................. 20
FIGURE 8. SYSTEM ARCHITECTURE AND THE INTERRELATIONSHIP AMONG VARIOUS HARDWARE AND

SOFTW ARE COM PONENTS... 22
FIGURE 9. MS .NET FRAMEWORK AND THE COMMON INTERMEDIATE LANGUAGE. 23
FIGURE 10. DATA MODEL DIAGRAM IMPLEMENTED IN SQL SERVER.. 32
FIGURE 11. SHAKE TABLE WEBLAB MENU PAGE SHOWING LISTS OF PUBLICLY AND PRIVATELY ACCESSIBLE

EARTHQUAKE EXPERIM ENTS. ... 34
FIGURE 12. SEQUENCE OF PROCESSES FOR RUNNING A PREVIOUSLY-LOADED OR AN INTERACTIVE

E X PE R IM E N T 3 5
FIGURE 13. SEQUENCE OF PROCESSES FOR CREATING A NEW EXPERIMENT.. 37
FIGURE 14. APPLYING A LOW-PASS FREQUENCY FILTER TO A NEWLY ADDED ACCELERATION SERIES. 39
FIGURE 15. THE WEBLAB'S SINE WAVE VARIATION PAGE IMPLEMENTED FOR THE INTERACTIVE

E X PE R IM E N T 4 2
FIGURE 16. ALLOWABLE AMPLITUDE/FREQUENCY RANGE FOR THE SINE-WAVE INTERACTIVE EXPERIMENT.

.. 42
FIGURE 17. PROCESS MODEL OF WEB-USER REQUESTS TO OPERATE THE SHAKER TABLE. 45
FIGURE 18. PROCESS MODEL OF THE QUEUE-MONITORING PROGRAM.. 46
FIGURE 19. SQL STORED PROCEDURE FOR UPDATING USER STATUS IN QUEUE... 47
FIGURE 20. SQL STORED PROCEDURE FOR REMOVING CLIENT REQUESTS OLDER THAN 10 SECONDS........... 47
FIGURE 21. SIGNATURES OF WEB METHODS IMPLEMENTED IN THE CONTROL SERVER'S WEB SERVICE..... 50
FIGURE 22. RENEWING SOCKET CONNECTIONS FROM A CLIENT APPLICATION TO THE CONTROL SERVER.... 54
FIGURE 23. PROCESS DIAGRAM FOR READING ONE 32-BIT FLOAT NUMBER... 55
FIGURE 24. PROCESS DIAGRAM FOR INTERPRETING COMMANDS SENT FROM THE CONTROL SERVER TO THE

CLIEN T W EB APPLICATIO N .. 56
FIGURE 25. SNAPSHOT OF THE ACTUAL AND PREDICTED FLOOR RESPONSES FOR THE KOBE EARTHQUAKE. 58
FIGURE 26. SINE WAVE EXPERIMENT SHOWING PLOTS OF THE SECOND-FLOOR ACCELERATION AND FFT

SPE C TR A 6 0
FIGURE 27. SNAPSHOTS OF FFT SPECTRA TAKEN AT DIFFERENT TIMES DURING AN INTERACTIVE

E X PE R IM E N T 6 1
FIGURE 28. STRUCTURAL BEHAVIOR IN DIFFERENT VIBRATION MODES. ... 61
FIGURE 29. TRANSFER FUNCTION TAB VIEW DISPLAYS TWO PLOTS SHOWING THE FREQUENCY PEAKS OF

EA C H FL O O R 62
FIGURE 30. FLOW CHART OF TRANSFER FUNCTION APPLICATION ... 65
FIGURE 31. FREQUENCY-DOMAIN REPRESENTATION OF TRANSFER FUNCTIONS 65

5

LIST OF TABLES

TABLE 1. SHAKE TABLE PARAMETRIC CHARACTERISTICS ... 12
TABLE 2. AMPLITUDE/FREQUENCY BOUNDARY LIMITS FOR THE INTERACTIVE EXPERIMENT.................... 41
TABLE 3. SUMMARY RELATING FFT SPECTRA TO MODES OF VIBRATION. .. 60
TABLE 4. COMMAND-BASED PROTOCOL FOR WINCON COMMUNICATION WITH AN OUTSIDE APPLICATION. 78

6

Chapter 1

INTRODUCTION

1.1 General Benefits of Remotely Accessible Labs

A recently evolving trend in engineering education is focused on replacing traditional

means of experimentation with virtual laboratories which are remotely accessible through

the web. Such a shift from the physical laboratory environment to an online

experimentation space is sometimes accused of detaching students from an irreplaceable

real-world experience gained through physical interaction with a laboratory setup (Khan,

2002). For instance, a laboratory presence is valuable for conducting experiments on

reinforced concrete members or soil samples as understanding material behavior is

crucial to the observer. For this reason, the primary intention of a virtual experiment shall

be driven by a tendency to improve the quality of learning. In some cases, this aim may

require encouraging students to familiarize themselves with the experiment through a

virtual online version before a more fulfilling laboratory session (Powell et al, 2002).

Based on the type of experiment and the equipment involved, a virtually-conducted

experiment may, however, prove to be more rewarding from the perspectives of both

student learning and the logistics of laboratory resources.

A remotely controllable laboratory as a replacement to a traditional one has

valuable benefits in terms of advocating new trends in education and a more efficient

management of laboratories. Online laboratories are key to distant learning programs

(Waner & Tuttas, 2002). Moreover, online experimentation provides a means to tighten

lab-to-lab collaboration among universities and research centers. As a result, research and

student groups have access to a wider collection of experiments by accessing resources in

geographically distant locations. Concerning the benefits of virtual labs in managing

resources of a laboratory, a reduced cost is associated with sharing facilities among

7

different educational departments. A single experimentation unit supported by a remotely

accessible system, which caters for multiple user accessibility, is a more cost effective

solution than having multiple experimentation units or several scheduled lab sessions

conducted by an appointed assistant. Specialized laboratories are usually utilized 25% of

the school week (Powell at al, 2002). Consequently, reducing the space occupied by

laboratories and therefore the needed effort for maintaining equipment lead to a reduction

in the overall costs as virtual experimentation becomes more frequently adopted.

1.2 Types of Web-Controllable Experiments

Virtual experiments, as described above, are associated with real laboratory equipment

that is controlled remotely. While simulations are artificial, virtual experiments

incorporate physical components that provide a sense of reality (Wagner & Tuttas, 2001).

In proceeding efforts of the iLabl group to provide a shared system architecture that

facilitates the implementation of common requirements for developing virtual

laboratories, experiments have been categorized into three groups based on the specific

nature of the experiment. This approach for categorization is reliant on the kind of

interactivity involved between the user and the laboratory. The first type of virtual

experiments is defined as 'batched'. Such an experiment expects the user to set values for

input parameters at once before the experiment is started. After the experiment request

has been processed, the user is provided with values for different output parameters. It is

in this manner, through which input and output parameters are each collectively

transferred between a client and the laboratory server, that the naming of the category is

justified. The Microelectronics Weblab (http://weblab.mit.edu), for experimenting with

semiconductor devices, is an example of a virtual laboratory based on a batched

experiment. The second category is termed 'interactive' and involves more interaction

between the client and the laboratory server as various input parameters can be changed

while the experiment proceeds. The Heat Exchanger Project (http://heatex.mit.edu) for

experimenting with concepts in thermodynamics is representative of an interactive

The iLab is an interdepartmental research group at MIT aimed at developing virtual experiments.

8

NTOUTION

experiment. The third category includes experiments that focus on streaming sensor data.

This category requires intensive data transfer from a server to a client whereby the

delivered data is collected in real-time by different sensors. The flagpole project

(http://flagpole.mit.edu), which is considered a preparatory step towards the monitoring

of physical infrastructure (Amaratunga & Sudarshan, 2002), serves as an instance of a

sensor data streaming experiment.

1.3 Objective of the Shake Table WebLab

Providing accessibility to a shaker table apparatus through the Internet has been

advocated by academic and research interests to facilitate efforts of understating

vibratory effects on a structure. One major field of interest is the study of the vibration

modes of structures under earthquakes.

Facilitated and secure accessibility are essentials at the root of the design and

implementation of the Shake Table WebLab. The Internet serves as an easily accessible

medium for students to perform their experiments. To illustrate, were students to conduct

their experiments in the lab, they would need to devote precious time to get acquainted

with the exacting procedures needed to operate the hardware components in a safe and

error-free manner. By contrast, a web interface that is well-adapted to the specific needs

of the users eliminates the need to spend course time instructing students on the proper

operation of the test apparatus. Add to that the vulnerability of the shaker table itself

when subject to loading above the safe operating limits or without proper calibration.

Alternatively, through the Shake Table WebLab students are able to directly explore their

ideas without being concerned about the technicalities of interfering directly with the

laboratory setup. The web application is configured so as to eliminate possibilities of

human error in activating the shaker table. Such errors may lead to operation under

unsafe conditions and therefore jeopardize the lab setup and anyone near it. These

necessary precautions are carried out programmatically through accessibility processes

that automatically execute whenever a web user conducts an experiment. As to the shaker

being reachable by researchers outside MIT, web accessibility enables, for example, a

research group in Japan, interested in understanding the nature of a new earthquake, to

9

upload the corresponding seismic content and compare the behavior of a mounted

structure due to a new earthquake with that of another.

In addition, a remotely accessible shaker table has valuable outcome in the

classroom as instructors convey concepts in structural dynamics. Accompanying class

lessons with experimental demonstrations enhances traditional means of conveying

course material, and it adds interest to a class in structural dynamics as students are then

able to observe in real-time the illustration of theoretical concepts. An advantage to such

an approach is being able to compare experimental results with those obtained from

simulations. Eventually, in-class demonstration allows experimentation to proceed in

parallel to lecturing without the need to arrange for dedicated lab sessions.

1.4 Thesis Outline

In this thesis, I present the Shake Table WebLab

(http://flagpole.mit.edu:8000/shaketable), one of a group of iLab projects in progress at

MIT under the sponsorship of Project iCampus: MIT-Microsoft Alliance. As a successor

to the Flagpole Project (a sensor lab for the monitoring of wind loading on a 31m tall

flagpole), the Shake Table WebLab presents an online laboratory that is both interactive

and heavily reliant on accelerometer sensor readings. Through the Shake Table WebLab

students can excite a two-story 3ft tall structure by vibrating its base while

simultaneously monitoring its behavior as they receive accelerometer readings from three

different levels. The Shake Table WebLab allows any web user to upload his/her own

input data, such as the ground accelerations of a newly occurring earthquake, and

therefore study the corresponding behavior of a real structure. For instance, an interest to

structural engineering students is to observe the response to the applied loading as it is

transferred to a higher level of the structure. Throughout this thesis, I state the

motivations for conducting the project, the different online available activities and the

various system components as well as special administrative features that have been

implemented.

10

Chapter 2

HARDWARE COMPONENTS & INITIAL SYSTEM

CONDITIONS

2.1 Hardware Components

The hardware setup used for the Shake Table WebLab is a product of Quanser Consulting

Inc. The uniaxial servo-controlled electromechanical earthquake simulation system

consists of the following components (see Figure 1): a shake table, a power module

equipped with a microcontroller-based safety circuit to drive the table, a data acquisition

board (MultiQ) to drive the power amplifier and collect sensor responses, and a two-floor

test structure. The shake table consists of a 1 Hp brushless servo motor driving a '/2" lead

screw. An 18" x 18" linearly moving stage is coupled to a circulating ball nut driven by

the lead screw. The table slides on low friction linear ball bearings on two shafts. Table I

summarizes the characteristics of

the shake table and the graph in

Figure 2 plots the acceleration

and amplitude limits against

varying frequency. Proprietary is

fin.

Figure 1. Shake table test structure
and hardware assembly on the right.
Serve computers on the left.

11

Chapter 2
HARDWARE COMPONENTS & INITIAL SYSTEM CONDITIONS

Table 1. Shake Table Parametric Characteristics

Table Dimensions 18 x 18 inches

Maximum Payload 33 Lbs
Operational Bandwidth 20 Hz
Peak Velocity 33 inches/sec.

Ball Screw Efficiency 90%
Maximum Force 700 N
Peak Acceleration 2.5 g
Stroke +/- 3 inches

Weight 60 Lbs

Encoder/Lead Screw Resolution 0.000125 inches

Motor Maximum Torque 1.65 Nm

Linear Bearing Load Carrying Capacity 290 Lbs

Source: Quanser Consulting Inc. Shaker Table

3

Acceleration limit in g
2.5

2-

1.5- Amplitude Limit in inches

1-

0.5

0 5 10 15 2
Fr"Hiency "t

Figure 2. Acceleration and Amplitude Limits vs. Frequency

12

0

Chapter 2
HARDWARE COMPONENTS & INITIAL SYSTEM CONDITIONS

The assembled three-foot tall structure carries one accelerometer

on each floor (Figure 3). A third accelerometer is attached to the

moving base of the table. In addition, there are three position

detection sensors embedded under the moving plate of the table.

Located in the center, far left and far right positions (see Figure 4),

those sensors serve to determine the location of the table relative to

its allowable displacement limits.

Figure 3. Two-level test structure

Ball Nut

Lead Screw

Positioning
Knob

Right Limit
Sensor

Center Position
Sensor

Left Limit
Sensor

Figure 4. Close-up of the shaker table.

13

2.2 Initial Software Architecture

The rest of this chapter deals with the software application, namely WinCon 3.2,

which is developed by Quanser Consulting and enables computerized control over the

shaker table. Following is a description of WinCon's features and capabilities as initially

intended to be used for a variety of implementations. However, since the aim of the

project transcends WinCon's functionalities, an expanded architecture that describes the

new system is presented in Chapter 3. Accordingly, the description of WinCon below

only serves to provide an understanding of the software on which the newly implemented

system design relies. Since the new system is built on top of WinCon, it is essential to

present WinCon's intrinsic features first and then introduce the new architecture in the

next chapter.

2.2.1 WinCon Software

WinCon is a Windows 95/98/NT application which consists of two components: WinCon

Client and WinCon Server. WinCon Client is installed on a computer that is connected to

the controller/data acquisition (MultiQ) board and therefore is responsible for driving the

table and conveying sensor data. WinCon Server is another desktop application that

entails user interface controls and display charts and would act to serve up the table with

different experiments. WinCon Server communicates with a WinCon Client by

establishing a TCP/IP socket connection through a well-defined port on the WinCon

Client side. To illustrate, the server needs to be configured so as to connect to a TCP port

exposed by the client. Various client-server scenarios are supported whereby a WinCon

Server may connect to several clients and a WinCon Client may communicate with

several servers. Hosting both the client and server applications on the same computer is

also a possible implementation (Quanser Consulting Inc.).

WinCon Client

WinCon Client is a real-time component that executes special type files, namely

WinCon Controller Library (.wcl) type file. Operation requires that WinCon Server

14

HA1DAE C'MOM NELS~E CND N

transfer the controller file to the client where it is executed as the connection with one or

more servers is maintained. WinCon Servers connected to the client receive real-time

data as the experiment proceeds. Another means of running experiments locally on the

client computer connected to the shaker table is possible by loading the controller file

directly in WinCon Client. In the latter case, the user is not able to view any outputs from

the system.

WinCon executable files are compiled from code generated out of Simulink
2models . Simulink is a diagrammatic programming tool whereby a model is defined by a

set of function-specific blocks and interconnecting links. Accordingly, the basis of any

experiment executed in WinCon is a Simulink diagram. Refer to Appendix A for a

sample Simulink diagram that loads its inputs (typically previously scaled seismic

accelerations and system constants) from the Matlab workspace. Simulink blocks such as

'Shaker Table', 'q_Clock' and 'Stop Run' are provided by Quanser for carrying out

WinCon-specific operations. The 'Enable Shaker Amp' block, for example, is required to

activate the shaker table.

Being a real-time software that requires accurate time synchronization between

the MultiQ board clock and the Windows operating system clock, WinCon Client

imposes the need for VenturCom's Real Time Extension (RTX). The role of RTX is to

enable windows to handle control-oriented and high-performance operations (VenturCom

Inc., 2000).

WinCon Server

WinCon Server has several functionalities that enable users to change client

parameters, upload experiments to be executed on the client, and change experiment

input parameters in real-time. After downloading a WinCon controller library file to the

client, WinCon Server is then capable of starting, manipulating input signals to and

stopping the client. Moreover, WinCon server (Figure 5) is capable of plotting and saving

data streams acquired from a specified WinCon Client. After customizing the

2 Simulink is a Matlab-based package for modeling, simulating and analyzing dynamic systems the outputs
of which change over time (The MathWorks, 2002).

15

Chapter 2
HARDWARE COMPONENTS & INITIAL SYSTEM CONDITIONS

input/output settings associated with a loaded wcl file, a user may choose to save his

preferences as a WinCon Project File (.wcp) for future use.

Msine - WinCon Server .. I XA

Ele went ModeI Eot WNdow &jw Jep

Figure 5. WinCon Server's control panel.

A particularly distinctive feature of WinCon Server is its External Interface Window

(EIW) which supports integration with independent applications. Accordingly, special-

purpose programs may be developed and used to alter input parameters and process

output data streams. An external application communicates with the server's EIW

through a dedicated TCP/IP socket connection identified by a designated port on the

machine hosting WinCon Server. Figure 6 is a snapshot of the EIW's parameter

association form. Left column fields are input/output scopes in the corresponding

Simulink model of the WinCon project. The right column fields are the sink/source

names sent from a web-client application when it first establishes a TCP connection with

WinCon. Accordingly, this form serves to associated Simulink's sinks and sources with

corresponding parameter names declared in an external application. More details as to the

methodology of streaming data are provided in section 5.4.

2.2.2 Initial Principle of Operation and Limitations

Building the Shake Table WebLab with a flexible yet stable architecture has been one of

the main concerns in designing the new system. A significant effort has been dedicated

towards safe and facilitated operation. This section describes the processes that were

required to be manually performed in order to conduct a sample experiment using the

WinCon software. The following description provides a clarification of the initial

processes that have been simplified later on with the new system (described in chapter 3)

thus providing seamless user interaction with the server.

16

Chapter 2
HARDWARE COMPONENTS & INITIAL SYSTEM CONDITIONS

SwiksIsosieel

1 Accel S

C7 Ac--- -- b

Sink Desailrd
0 Arroliude Roaftn
0 Flowr1Accal
0 FIociZkcc

Sq.sne2/qCkock Used... Ti FrqueCY Reain
Acceernete2 I q,.sfi2/AcceIS TableAccel OSineWave

NJ Cd I q.ane2/For 1 FlocrIAccel 0 Tabliaccel
Cmd Inch j q.snrw2/Floor 2 F0oor2AccuI 0 TabeDilsp
Enable Shake amp qrn2/nchA TableDispT

SFloor 1 j .in2/Fr q Frequency Readng 0 Tine
1 F oba 2 q-_in2/Cmd I Ampludle Roadin

Freq 4-sin2/Sine/Produ Sine Wave10 Freq;
(- From PIC Safety Circut

g1
1g2
1 Inch A

Inch to g

Figure 6. WinCon Server's sinks and sources association form.

Using the originally provided Simulink models to apply a new vibration - defined

by file-stored accelerations - to the table is achievable through three steps: First, the

Simulink model that reads input from the Matlab Workspace is opened with Simulink

and the corresponding WinCon constants are loaded from a data file. Second, the new

acceleration data is loaded and a scaling algorithm is applied to generated scaled-down

ground displacements that are within the displacement limits of the shaker table. The

input/output parameters for the scaling function are described as:

[Tc, Xc, Ac, Te] = qscale (t, a, Xmax) [5]

Input parameters:

t: array of time at equal sampling intervals

a: array of accelerations in g matching t

xmax: maximum displacement of the table from the center position

Output parameters:

Tc: command time array

Xc: position command array applied to the table in cm

17

Selectedmodel vmab Seleted de rk:

_ -iu

V461b I S4nk

Ac: acceleration array in g

Te: numeric value for the duration of the experiment in seconds

Applying the scaling function to seismic accelerations results in displacements (Xc)

proportional to real ground displacements with a maximum equal to xmax but with

accelerations defined in Ac identical to the real accelerations in a. Third, when all

required input parameters to the model are loaded into the workspace, the Simulink

model is compiled. Matlab uses a C-compiler to generate intermediary code files and

finally produce the WinCon Controller Library (.wcl) which is ready to execute in

WinCon Client.

Though WinCon supports a client/server setting which allows carrying out

experiments from outside the lab, relying on WinCon as the only means to establishing a

remote connection to the laboratory setup does not exploit the full functionalities of the

shake table as discussed in the next chapter. Furthermore, each WinCon experiment - in

the form of a Simulink model - is static as to its input data. For instance, the Simulink

model that runs an earthquake reads its ground accelerations from the Matlab workspace

resulting in a compiled controller (.wcl) file that only serves to execute that particular

earthquake. As a result, each stored earthquake has its own executable with the

corresponding seismic data embedded within. Accordingly, the initial models

necessitated as many executable (.wcl) files as there were earthquakes - though all the

files would entail the same execution mechanism. The disadvantage of this principle is in

executing new experiments for newly occurring earthquakes as that would require

repeating the whole aforementioned compilation process. It is in this sense, that

extending original operation to become more flexible (as new experiments can be

seamlessly supported) and easily accessible (from a commonly used Internet browser)

have been two major requirements in extending functionalities of the shake table lab.

18

Chapter 3

SYSTEM ARCHITECTURE

3.1 Problem Identification and Formulation of Adopted

Solution

Before delving into the details of the implemented system architecture, I first reiterate the

problem that the project aims at targeting. After providing a high-level description of the

situation, various proposed alternatives are discussed as possible solutions and the

adopted system is finally justified.

As presented earlier in Chapter 1, the project's aim is to provide web accessibility

to a laboratory experiment in an attempt to allow interested groups to conduct

experiments remotely. To achieve that goal, we need to understand the primary system

conditions, chose a development platform that enables extending the original system,

appropriately distribute software components among client and server computers and

provide a safe and well-organized accessibility mechanism. For that purpose, I discussed

earlier the initial state of the system as it operates prior to introducing any modification.

In brief, the hardware components (driving motor and sensor devices) are accessible

through Quanser's WinCon proprietary software which provides a means for remote

accessibility, yet it does not address all the requirements of an easily accessible and

extensible system. Accordingly, presented below are three alternatives which define

distinct approaches towards an enhanced architecture:

1. Relying on WinCon's client/server implementation to allow users to access the

experiment remotely: This approach entails implementing WinCon as the only

software for conducting experiments. This is possible through WinCon's

client/server connectivity by installing WinCon Client on the computer connected

19

to the shaker table while WinCon Server is installed on every user-computer to

serve up experimental data to the laboratory computer (see Figure 7). While such

an approach requires minimal effort in terms of software development, it,

however, offers very little in terms of simplicity and manageability of user

accessibility to the laboratory experiment. To illustrate, such an implementation is

solely based on a TCP connection between user computers and the laboratory

server. In addition to installing WinCon Server, users would need the whole

Matlab/Simulink environment installed locally on their machines in order to

compile new experiments as described in the 'Initial Principle of Operation'

section of the previous chapter.

PC#1 PC#2

WinCon WinCon
Server Client

Win95/2000/XP Win95/2000
Matlab MultiQ Board
Simulink

Remote User Plant to be
controlle

Figure 7. WinCon Client/Server implementation on separate computers.

2. Replacing WinCon with a newly designed control program: Bypassing WinCon as

a means to establish direct access and control over the shaker table necessitates

the development of an alternative program. Such a control program may be

designed to intelligently handle multiple client requests and publish streaming

sensor readings in real-time. The advantage of this option is that it provides total

flexibility by incorporating all the favorable features early on in its design (such

as communicating with a web-interface as a user-side application). However,

totally disregarding WinCon's role as a user's mediator to the shaker table

indicate additional challenges attributed to: 1) Understanding and reestablishing

low-level programming needed to interface the new program with the

microcontroller and data-acquisition devices, and 2) rebuilding several

20

components - such as booting-up the microcontroller and calibrating the table -

which are already implemented by Quanser Consulting and are operational from

within WinCon.

3. Maintaining WinCon as a mediator between a newly developed web-based user

application and the back-end laboratory setup: The External Interface Window 3

(EIW) provided in WinCon Server may be used as a channel for communicating

with additional applications that comply with its exposed protocol. Accordingly,

while WinCon remains the only means of accessing the shaker table, a user web-

based application may be supported. Though this approach would necessitate

ensuring the reliability of WinCon and more precisely its EIW as a control

program and data publishing server, the solution allows unrestricted extensibility

of a client application that is easily accessible, user-friendly and upgradeable.

While the first option is least demanding in terms of development, it provides the least

customization capabilities as adopting a previously developed application doesn't

necessarily match newly defined requirements that have been imposed much later, for a

different purpose and by a different group. On the other hand, the second option provides

ultimate customization as all the system software is to be developed from scratch.

However, designing a system from the ground up is time consuming especially that the

details of the hardware interface are not well-specified. The third solution serves as a

middle ground between the two extremes as it aims at maintaining the constructive

aspects of WinCon, as an intermediary that activates the shaker and acquires sensor data

streams, while the user interface is provided through a newly-built web application.

Accordingly, the rest of this chapter reveals the system architecture and the technologies

that have been implemented in delivering a solution based on the third concept.

3.2 Overview of the Software Architecture

The Shake Table WebLab is built on a multi-tier architecture that supports client-server

interaction. A client is representative of an Internet user computer - for example a student

3 For a description of the EIW, refer to the WinCon Server Section in Chapter 2.

21

Chapter 3
SYSTEM ARCHITECTURE

accessing the shaker table website. The term server incorporates several computer

systems located at the MIT Civil Engineering Labs that serve as intermediaries for

establishing communication between a web client and the shake table controllable

apparatus. Server-sided components are distributed among three machines with well-

defined interconnections: a shake table control server, a web/database server, and a

streaming video server. Distributing server tasks among the three machines is essential

for maintaining acceptable system performance levels. Figure 8 is a depiction of the

various system components, the software installed on each and the connecting channels

that tie them together. For an overall understanding of the system architecture, I describe

below the software technologies that have been used and elaborate on how they have

been applied for the purpose of this system through an overview of the main roles of its

components. The next chapters present an in-depth explanation of the functionalities

provided by each component.

Shake Table System Components

-
-SensorData

M- Digital_____
Shake Table Motor Data

Control Server.

% ADO .e! % Connection

Web Service

0 %

.R>=

Sensor Output SensorOutput-

Moor Input

Amp ted Motor

--4- Media Stream -

System Software:
-Wndows 2000

Net Framework
SL Server

WebCast Saere

Connection AS Net eb Application

011915 Queue Monio rg
Client Computer Http Web Form Program

Computer Requests

-stam Software: Connector Defn
- E Browser

.Net Framework
J# Net Redistributable
Package culnt

Dv LoQdo nens: Computer
Win rm Control

Figure 8. System architecture and the interrelationship among various hardware and software
components.

-Windows 2000
-WinCon Client 3.2

Win~on Server 3.2

Net Framework
-MATLAB

- RTX

Deveoped Cmponents:
-Web Service

-Stop Model Executable

4 Media Stream

Media Client
System Software:

SWindows C
-WebCast Client

tnn

Flow of Data

Network Connection
Invocation

22

4---ni
1113M-1

DB
E

Server

3.3 Implemented Technologies

As illustrated in Figure 8, all system components include the Microsoft .Net Framework

as a requirement for the developed software to execute. This section introduces the .Net

Framework, its essentials and related applications. In addition, a justification for the

selection of .Net as an adopted software platform for the Shake Table WebLab is

discussed from the viewpoints of both its advantages and drawbacks.

3.3.1 The Microsoft .Net Framework and the CLR

The development and release of the .Net Framework by Microsoft Corporation was

advocated by the need for a platform which primarily aims at software integration. To

illustrate, software integration is meant both within the same operating system process

and across the web. The Common Language Runtime (CLR) serves to provide

integration at the same system level while XML-based Web Services serve to integrate

software at an Internet scale. In a few words, "the CLR is a loader that brings components

to life in an operating system process" (Box & Sells, 2003).

Language Source
(i.e. C# or VB.Net) Consuming Net

Framework Libraries

I.
Language-specific compiler

Intermediate Language (MSIL)

.Net Framework

Common Language Runtime (CLR)

Win32

Figure 9. MS .Net Framework and the Common Intermediate Language.

As Windows NT 3.1 marked the end of the DOS era on July 9, 1993, the CLR release as

part of the .Net Framework on February 13, 2002 marked the end of the Component

23

Object Model (COM) era. From a world were contracts among software components

were merely defined by functional entry points, we later moved to COM, which defines

contracts based on type definitions allowing the dynamic loading of code. Today the CLR

serves to resolve problems in COM, mainly caused by the description of contracts

between components. Unlike the COM object-model and Win32, the CLR functions on

types that exist in a Common Intermediate Language (CIL) (see Figure 9). It is only until

runtime that a type represented in the CIL is then converted to the native machine code

by the Just-in-Time (JIT) compiler of the CLR. Consequently, CLR type definitions are

logical - based on method names and signatures - rather than being physically

represented by their memory addresses and offsets. Furthermore, as the CIL-to-native

translation occurs on the deployment machine, the processor-specific layout rules will

better match the processor architecture that the code executes on (Box & Sells, 2003).

Other characteristics of the CLR include: managed code execution, metadata

specification in types, and Just-in-Time (JIT) type loading. The execution of managed

code allows the CLR to be aware of various aspects of the running program such as the

state of variables and the origins of stack frame code. An example of managed execution

within the CLR is automatic garbage collection. It is true that with such features,

programmers tend to be in less control of their program, yet their productivity increases

when working at higher levels of abstraction as they become manipulators of types,

objects and values instead of dealing with virtual memory and threads. As to type

metadata, it serves to define the type contract which is essential for its translation from

CIL to native code. More simply put, the metadata of a type exposes the names of the

type methods with their associated signature (input/output parameters). The aim of the

JIT compiler is to postpone type loading into memory until the program needs to access

the code associated with those types. Consequently, not all parts of an assembly4 are

loaded into memory at the time of its execution as some parts are not loaded until being

requested at runtime.

24

4 An assembly is a collection of types.

3.3.2 Why use the .Net Framework?

Following the aforementioned briefing on the nature and features of the .Net Framework,

two facts follow: First, since program components are compiled into the CLR-compliant

Intermediate Language, this provides the advantage of writing programs in a particular

language and reusing components written in other languages as the compilation of the

written code results in assemblies in the common intermediate language. This is true of

languages which have a CLR-compliant compiler such as the .Net built-in compilers for

C#, VB.Net and C++. Second, since the compiled assemblies exist in a non-machine code

format, the CLR engine is required on every system that is expected to execute programs

compiled against the CLR.

Another framework to consider is based on the Java programming language and

the Java Virtual Machine (JVM). Sun's Java 2 platform and the JVM have a lot in

common with Microsoft's CLR. For example, both are based on types and execute

managed code. However, there remains a lot to be said about the differences between the

two platforms. Accordingly, determining which is better is only possible from the

viewpoint of what is required of a new system implementation and which of these

platforms better suit these requirements.

As mentioned earlier, two major objectives of the Shake Table WebLab are

facilitated accessibility and feature extensibility. For this reason, I will focus on these two

points as I present the advantages and disadvantages of both the Java and MS .Net

platforms. Starting with the accessibility issue, the aim is to minimize effort on behalf of

a user accessing the WebLab - this is more simply explained as users being asked to

download and install minimal software. Though both platforms require a virtual engine to

be installed - either the Java Runtime Environment or the .Net Framework

Redistributable - yet we still need to investigate the types of supported operating

systems. A current advantage of the Java alternative is that the JVM is platform

independent as it supports Windows, Linux and Mac operating systems. On the other

hand, the newly released CLR is only supported on a Windows-based system.

Concerning feature extensibility, support for multiple languages is a considerate element.

While the CLR is capable of supporting various languages (C#, VB, C++, J#) as

previously explained, the JVM only supports the Java programming language.

25

As a result, while the JVM may be described as a platform independent

environment, the .Net Framework is more of a language-independent engine. Another

issue is the availability of valuable parts of code that have been previously written in

Java. Consequently, it is essential to reuse those Java-based classes. Eventually, the .Net

Framework was adopted as a common platform for the various system components. This

decision allows future research groups, interested in applying their own programs (for

instance adding advanced signal processing algorithms that run within the client

application), to do so without worrying about the programming language they have to

adhere to. Moreover, reusing previously-developed Java code has been possible through

.Net's support for a J# language - a syntactically identical language to Java. As to

supporting operating systems other than Windows, this is not currently possible,

however, as the CLR becomes more mature, it is anticipated that initiatives will work

towards extending the .Net platform to other operating systems. The ongoing Mono

Project, for example, is one such initiative that aims at supporting the .Net environment

on Unix-based operating systems.

3.3.3 ASP .Net

ASP.Net is a successor to the previous ASP Web programming model. While ASP

provided a lot in server-sided processing of input HTML and dynamic generation of

output HTML, ASP.Net offers much more in terms of performance levels, development

efficiency, and code reusability. With ASP, server processes are based on script

interpretation. On the contrary, ASP.Net handles HTML requests based on compiled code

which avoids the need for recompilation on each request and therefore increases the

server response time. In addition, generating Web forms in ASP.Net allows for an object-

oriented approach to Web development. To illustrate, web forms consist of two essential

files: an aspx file which contains the HTML-based design of the form and a code-behind

file which may be written in any CLR-compliant language. Hence, the separation

between the presentation (aspx) and server side processes (code-behind) of a web form is

defined (Prosise, 2002).

26

3.3.4 Web Services

A Web service is another type of a web application. However, it is not intended to be

used by end-users but rather to provide services to other applications, in this case an

ASP.Net web application. Instead of having a user interface, a Web Service exposes its

services through Web Methods defining an API (Application Program Interface) which

other applications may consume. Unlike the Distributed Component Object Model

(DCOM), Web services are based on XML SOAP messages as a means to transfer

information across the web. For the purpose of the Shake Table WebLab, a Web service

is hosted on the Control Server in order to trigger processes on that machine from a user's

client application. The purpose is to gain control over WinCon which in turn activates the

shaker and streams back sensor responses. Chapter 5 provides a description of the

implemented Web Service and the use of its Web Methods.

3.3.5 Windows Form Controls

Despite the support for server-side code in ASP.Net, a real-time interactive experience

could only be applied through the use of client-side program components. Accordingly,

Windows Form Controls are implemented as client applications that load within a user's

browser. Previously known as Windows ActiveX controls and similar to Java Applets,

Win Form Controls are based on the .Net Framework and are identical to an ordinary

Windows Form. However, the difference between the two is in the way that a form is

launched. In the case of an ordinary Windows Form application, the program runs as a

stand-alone executable. However, a Win Form Control is intended to be embedded within

an HTML page and thus can only be accessed from within a web browser. Moreover,

Win Form Controls run within the CLR and therefore require that the client machine: 1)

have the .Net Framework installed, and 2) access the Shake Table WebLab from a CLR-

enabled browser such as Internet Explorer.

As with the case of Java Script and ActiveX, Win Form Controls are associated

with security concerns. This is true because a program that automatically loads itself and

runs within a client computer makes its host environment susceptible to malicious

execution if not loaded from a trusted source. Accordingly, these controls are operational

27

only when granted permission by a particular user. The user would have to increase the

security trust level associated with the shaker table website. Such security configurations

are applied to both: the Internet browser and the .Net Framework.

Since a Wind Form Control executes within the CLR of the client's computer, it

therefore functions independently of the ASP.Net application. However, for the purpose

of the Shake Table WebLab, the control that loads within the browser has properties

which are user-defined from within ASP pages. Accordingly, it is necessary to transform

some predefined properties, such as the user's identity and the type of the selected

experiment, from an asp page to its embedded form control. The following technique is

used whereby customizable parameters of the control may be passed and defined when

the control is first loaded:

- In the asp page the following object tag is used to locate the compiled library of the Win
Form Control and pass parameters that are defined in the asp page to the control.

<OBJECT style='...' height='...' width='...' classid=' server path to the contro
dLI file # class name' VIEWASTEXT>

<param name='first parameter na-e' value='value of first parameter'>
<param name='second parameter name' value='value of second parameter'>

<param name='third parameter name' value='value of third parameter'>
</OBJECT>

- In the control's main class, each parameter is declared with 'get' and 'set' properties in
order to access the passed values as follows (C# syntax):

public string 'first parameter name'

{
get

{
//Code to return a value

}
set

//Code to use the passed value

}

28

3.4 Components of the Implemented System

3.4.1 Shake Table Control Server

Direct access to and control of the shaker table assembly is achieved through a dedicated

server. The purpose of the control server is to translate client requests into server-side

processes that gain control of the shaker. Accordingly, being connected to the MultiQ

data acquisition board, this server is responsible for sending and acquiring data to and

from the shaker table assembly. Digital data which the control server delivers to the

MultiQ board consists of values of successive table displacements that correspond to a

particular input signal. The MultiQ board would in turn provide the control server with

data corresponding to:

1- Sensor readings from three mounted accelerometers which reflect the behavior of

the test structure.

2- Sensor readings from three position detectors located at the table's base. (See

Figure 4) These readings serve to inform the control server whether the table is

properly positioned in order to avoid situations where excessive displacements

cause the table to go beyond the boundary limits.

3.4.2 Web/Database Server

The second server computer has two main functionalities: a Web Server, namely Internet

Information Services (IIS) hosting an ASP .Net application and a database server

implemented in MS SQL. The web application serves as the access point for Internet

users to control the shaker table. Managing accessibility, such as user authentication and

queuing of multiple client requests, is a functionality of the Web Server. For this purpose,

a database is implemented to store user accounts, previously loaded experiment records,

queued clients, and other modifiable system parameters such as the frequency of the

sensors' sampling rate and the status of the lab. In addition to users accessing the Web

Server through their web browsers, the Control Server establishes a database connection

- based on an ADO connection to SQL - mainly to access experiment-related

information in the database.

29

3.4.3 Streaming Media Server

The web laboratory environment includes a live video display of the shaker table located

in the Civil Engineering lab. Live video is broadcast through a streaming media server

called WebCast. A web cam is connected to this server which in turn publishes the video

stream to be viewable in the user's browser. The video display enables a user to identify

the different modes of vibrations of the structure as it undergoes various dynamic

excitations.

3.4.4 Clients

The online web application allows a real-time control of the shaker table while receiving

streaming sensor data from the Control Server. Accordingly, communication starts

through http messages between a client - through an IE browser - and both the Web

Server and the Web Service hosted on the Control Server. Through an http transfer

protocol the client application calls web methods that launch the necessary processes on

the Control Server. Afterwards, the web application maintains an open channel for data

transfer to and from the Control Server. For this reason, the web application incorporates

a Win Form Control that establishes a TCP connection with WinCon's EIW. This control

is embedded within an html page and therefore runs on the client's machine in Internet

Explorer.

3.5 Data Model

A back-end database is implemented in SQL Server to manage the information associated

with the following features: user accounts, uploaded experiments, queue status, activity

logs, and other system variables. The database is not intended to store experiment

information regarding individual experiments beyond the descriptive information that

applies upon new experiment uploads. Accordingly, each experiment is represented once,

in the database, regardless of the number of times that it is run. This approach is applied

because the database does not handle experiment information such as input parameters

and results. Such information which relates to user-specific instances of running an

30

experiment are handled locally on the client's computer. Figure 10 presents the

implemented data model. Following is a description of the major database entities:

Users: The users table stores user profiles. The "IsAdministrator" parameter defines

whether the user is an administrator or not. The "UserAllowedDuration" parameter is the

maximum time in minutes that a user is allowed for any experiment. A five minute value

is set as default for accounts created by new users. However, this value can be changed

by an administrator either upon creating a new user account from the Secure Area of the

web application or by changing the profile of a previously registered user from the "User

Account Management" page also listed under "Secure Area".

PreLoadedExp: This table holds records of experiments that acquire input from file. If an

experiment is created by a regular user, "IsPublic" is set to false as the experiment is

visible to that user only. Only administrator accounts may declare experiments as public.

A one-to-many relationship exists between the "User" and "PreLoadedExp" entities as a

user may have several experiments and each experiment shall be owned by a user

designated by a unique "UserID".

Queue: The queue entity holds records of user requests starting at the time that a request

to run an experiment is submitted until the experiment is stopped, either explicitly by the

current user or an administrator, or automatically by the server when the allocated time

limit is exceeded. Each request logged into "Queue" consists of the user's ID, a time

limit, a most recent updated timestamp and a number which represents the user's turn in

the queue. Records of the queue are managed dynamically by a monitoring server-hosted

program as described in section 4.2.2. Accordingly, a queued item is either maintained or

removed based on the status of the associated user. For instance, a user who is

disconnected after submitting a request will be removed from the queue in order not to

block accessibility of subsequent users.

The "LabStatus" field is configurable by an administrator and indicates whether

the WebLab is available for regular user-access or not. The "Frequency" field is a system

31

constant that specifies the rate at which sensor readings are taken. This rate depends on

WinCon's configuration for acquiring sensor readings. Since the system is implemented

with a time interval of 20 milliseconds for streaming data, "Frequency" is set to 50Hz.

Accordingly, changing this predefined value requires reconfiguring WinCon project files

to be compatible with the new interval.

Users
User-D

Name

meAiI
UIserAIIO-. eduration

ActivityLog
UserName
4::essDate
Experiment

Hos t~ Jame

-9.

PreLoadedExp
I PreLoadedExOiD

UserID
Name
D.eteCreated
IsPublic
Totamme

_ agnitude
EQDate

TemporaryMemory
LastHlodel
LabSta',us

SystemConstants
JFrecuencv

Figure 10. Data model diagram implemented in SQL Server.

32

Queue
Turn
CientID
TimeLimit
LastLpdate

Chapter 4

FUNCTIONALITIES OF THE WEB LAB

4.1 Online Experimentation Activities

Building the Shake Table WebLab with a flexible yet stable architecture has been one of

the main concerns in design. This chapter presents the different online experimentation

activities and user accessibility features of the WebLab. Three different types of activities

are described below: previously loaded experiments, new experiments, and interactive

sine-wave experiments.

4.1.1 Previously Loaded Experiments

Previously loaded experiments are available in two groups: publicly available to the

whole user community and privately accessible by the experiment creator only (see

Figure 11). Further illustration on user permissions and accessibility is provided in the

'User Account Management' section later in this chapter.

Figure 12 is the sequence diagram for processes that occur while running one of

the stored experiments. The diagram serves to summarize the activities that execute on

both the client and the server and clarifies which of these functions occur synchronously

and which occur asynchronously on separate threads. While vertical lines represent the

lifetime of a program, horizontal arrows represent method calls - as in the case of arrows

directed towards the Web Service - or an action invoked by the application from which

the arrow is initiated and affecting the application to which the arrow is directed. All

arrows directed from the Web Service towards WinCon are good examples of the latter

case. Ovals attached to a vertical application thread represent functions that

synchronously execute within that thread as the program proceeds downwards. The

shaded ovals, 'data transfer to/from WinCon' and 'process data', are further illustrated

33

under 'Data Streaming Mechanism' in Chapter 5 and 'Coding Digital Filter

Computations' in Chapter 6 respectively.

Below is a list of previously leaded experiments These expeiments are either created by
you when uploading new data or have been exposed by other users as publicly accessible
experiments

Select one of the following experiment categories to run a Eve experiment.

Personal Experiments Public Experiments

florthridge Conal
Hach EL CEWTRO -500E

EL CENTRO - S90W
EL-Centm - NS
Golden Gate SFR - N10E
Golden Gate SFR - S80E
Hach
Hachinohe - NS
Helena - SOOW
Helena - S90W

Proceed >>

Figure 11. Shake Table WebLab menu page showing lists of publicly and privately accessible
earthquake experiments.

On the clients' computers the main program is the Win Form Control which loads within

their browsers. (The means by which parameters are passed from the HTML page to the

control is previously described in the 'Implemented Technologies' section of chapter 3.)

Within this same system process, there are two other threads (namely Threads 1 and 2)

which proceed asynchronously with the main thread. The purpose of 'Asynchronous

Thread 1' is to maintain the status of the current user in an SQL queue table. To

illustrate, Thread 1 would update the timestamp of the user in the maintained queue at

five second intervals to avoid being disconnected by a server-side queue monitoring

program. The purpose of 'Asynchronous Thread 2' is to renew socket connections with

WinCon, on the Control Server, in order to avoid having the client disconnected while

receiving data streams as the experiment proceeds. On the shake table control server,

34

NA S iF E WS LA

there are two main applications: a Web Service and WinCon. A description of each of

the web methods invoked on the Web Service is described in Chapter 5.

Client Execution (IE Browser) Server Execution (ST Control Server)

experim

SWin Form Control

ent selecte

Load Object
Parameters: Asynchronous Asynchronous Thread 2
ExpNamThread 1
UserlD
E xplD
ScreenRes

start

create unique ID

queue delay

UpdateDB()

LoadWCC

Maintain Status in
Queue @ 5 sec.

LoadWCM

LoadWC
Passed P
- Experim

get sampling frequecGtotlie en- GeffotalTime()

connect to/start WinCon

RenewConnectiono

data transfer tolfrom WInCon

exp. stopped

---- -- - --- ---- -T Close WCO

process data &
update plots

alibrateo Run cal.wcp

(-- n c l-brate.wcp

Run cal.wcp

otionDetectoro
Run MotionDetection Model

0
aramnter: Load Common Model
ent name

Figure 12. Sequence of processes for running a previously-loaded or an interactive experiment.

5 WinCon is represented as a single application instead of showing WinCon Client and WinCon Server
separately. This representation is sufficient for the purpose of the sequence diagram as both applications reside
on the control server and starting WinCon Server would automatically launch WinCon Client on the same
computer.

35

. L ----

4.1.2 New Experiments

The second type of online activities allows users to create new experiments by adding

items to their own list of preloaded experiments. This functionality is useful for

experimenting with newly occurring earthquakes by uploading horizontal components of

seismic accelerations and running the corresponding experiments. With the absence of a

commonly adopted standard for seismic data representation, it is essential to interpret

uploaded files based on a well-defined structure. The specified format, can however,

accommodate various numeric layouts with a non-confining unit of measurement so as to

avoid complications on behalf of a user in preparing a new experiment. Refer to

Appendix B for the description of a newly uploaded data file format. In addition,

uploading new earthquake data files requires server-sided checking and scaling down of

displacements to a scale which is compatible with the capabilities of the shake table.

Accordingly, the experiments are an exact representation of the real seismic

accelerations, yet the ground displacement values are reduced systematically to a

maximum of three inches for the displacement of the table's base. With the newly

developed web application, all necessary system processes for uploading new data are

carried out at the click of a button.

Sequence of Programmatic Processes

Figure 13 shows the sequence of processes entailed in creating a new experiment. Client

input (such as the experiment name and local path of a data file) is defined through a Win

Form Control while the server-side processes (on the Control Server) include a Web

Service and Matlab functions. When a user submits a request - with a complete set of

input parameters - to the Web Service to start processing the data, an asynchronous

thread is initiated on the client to maintain its status in the queue. Even though the user

doesn't activate the shaker in the process of creating an experiment, the request, which is

received by the Control Server, is expected to reserve a considerable portion of the

server's processor (mainly by executing Matlab commands) which would degrade the

performance of simultaneously running experiments by other users. Therefore, a single

queue is designed to handle all client requests to the Control Server - be they aimed at

36

Chapter 4
FUNC N A L ITES (AF HE WEB LAB

running experiments or creating new ones. The role of Matlab as a server-side data

processing environment is further illustrated in the following section.

Sequence for Creating a New Experiment

Client Execution (IE Browser)

Control

Load Object

Parameter:
UsedD Asynchronous

Ihread

User input

UpdateDBStatusO

LoadaNewDataFile(

Passed Parameters
- New data content ir
- Experiment name
- UserlD
- IsPublic (A boolean

MaintainStatus in
Queue

Display result

Server Execution (ST Control Server)

Aatlab

Return Message

Create a raw data file

Initiate Matlab

Apply Freq. Filter

Baseline Correction

Run Quanser's qscale

Save scaled data to file

dd a DB reference to the
new experiemnt

Figure 13. Sequence of processes for creating a new experiment.

37

Filtering Newly Uploaded Excitation Signals

As users may upload new input signals to the shaker, it is essential that the signals be

filtered appropriately to avoid subjecting the shaker to high frequencies. The largest

frequency that an input signal may entail is related to the sampling time interval which

users state in their uploaded data files. A sampling time interval of ims, for example,

would correspond to a maximum applicable frequency of 50 Hz, which is half the

sampling frequency. One possible solution to this problem would entail restricting

acceptable time intervals to values above a minimum threshold which would guarantee

avoiding unfavorable experiments applied to the shaker. However, a user may use a low

sampling rate for a more accurate signal representation without necessarily applying any

high frequencies. For this reason, we resort to a more elaborate solution which makes use

of a frequency filter. Accordingly, users may upload data with low sampling frequencies

and the filter would screen the corresponding signal of any high-range frequencies.

The procedure used to process the newly uploaded data consists of two steps:

first, a low-pass frequency filter is applied; second, a baseline correction of the filtered

acceleration time series is performed. A low-pass filter with a maximum frequency of

20Hz is applied to the Fourier transform of the table input accelerations (see Figure 14).

The filter is dynamically generated using Matlab's Finite Impulse Filter (FIR) based on a

Hamming window. Refer to Appendix C for the Matlab filtering function code.

Multiplying the filter by the Fourier transform would deprive the frequency spectrum of

any frequencies above 20 Hz. The Inverse Fast Fourier Transform of the resulting

spectrum would give back the acceleration time series excluding its high frequencies. As

to the baseline correction, it is based on zero initial velocity and displacement conditions.

A cubic curve as a baseline is finally subtracted from the acceleration values resulting

from the filter to produce an acceleration series with a flattened baseline.

38

Chapter 4
C N THE WE LA

Table Input Acceleration
0.40

0.10- -u
0.00 -- -

-0 . 10 - - - - - - - - -

4 -0.20-
-0.30

0 10 20 30 40 50
Time (sec)

Fourier Transform of Input Acceleration
16-
14-

10-

6-
4-
2

-2
0 5 10 15 20 25 30 35

Frequency (W*)

Lowpass Fiher
1.2 -

0 .8 - --- -----

0.6-

0.4-

0.2 - - - - --

0
0 5 10 15 20 25 30 35

Frequency (Htz)

Figure 14. Applying a low-pass frequency filter to a newly added acceleration series.

4.1.3 Interactive Experiment

The first two types of experiments may be described as non-interactive in the sense that

when the experiment is started, users have no further control of the shaker table besides

observing the streamed-back sensor responses. In the previous cases, the streamed data

represents four distinct parameters: three accelerometer readings and one displacement

39

reading of the base. Two accelerometers are located on each of the two floors and one at

the base. In contrary to the two previous categories, the third experimentation model is

interactive whereby displacements of the shake table are dynamically set by the user

instead of being read from file. To illustrate, the input displacements are defined by a sine

wave signal, the frequency and amplitude of which are modified by the user as the

experiment proceeds. In addition to the four sensor responses described above, the sine

wave variation experiment provides three other signal readings that reflect the amplitude,

frequency and input sine wave as applied to the shaker. Accordingly, users are able to

simultaneously change the input displacement signal and monitor the behavior of the

mounted structure as it responds to instant alterations conducted on the client side.

Figure 15 is a screenshot of the interactive experiment interface and the 'Sine

Wave Variation' page which enables users to define an input wave. Two knob controls

allow a user to incrementally change an input sine-wave while variations to the signal are

instantaneously plotted. A user may shift back and forth between the 'Floor

Accelerations' tab and the 'Sine Wave Variation' tab in order to observe the

instantaneous effect of the input signal on the acceleration responses and their Fourier

spectra. One useful experiment is to check out the modes of vibration of the test structure

by increasing the frequency as the user observes structural deflections in the live video

display.

Unlike previously loaded experiments whereby the input signal is filtered and

scaled down to comply with the table's capabilities, the interactive experiment entails

directly feeding user input to the table. For this reason, it is essential that a user be

restricted to sine-wave variations that may be safely applied. Accordingly, knob controls

are designed to validate user input based on criteria that ensures a safe operation of the

shaker and avoids excessive deflections of the test structure. Table 2 is a list of maximum

frequency values that may be set at various frequencies. In addition to maximum

allowable frequencies, a forbidden frequency range that is centered on the dominant

vibration mode of the test structure is applied6. Figure 16 is a plot of the amplitude-

frequency boundary limit. The forbidden frequency range, designated by the lower and

6 Refer to section 6.2 for more information on the modes of vibration of the test structure.

40

Chaper 4
CTHE W-E LA-

upper limit vertical series, bans frequencies at or near resonance conditions with the

structure's first mode of vibration (1.4Hz).

Table 2. Amplitude/Frequency boundary limits for the interactive experiment.

2.5 1.1
2.4 1.1
2.3 1.1
2.2 1.1
2.1 1.1
2 1.1

1.9 1.1
1.8 1.1
1.7 1.1 1.9 2.2
1.6 1.1 1.9 2.2
1.5 1.1 1.9 2.4
1.4 1.1 1.9 2.4
1.3 1.1 1.9 2.6
1.2 1.1 1.9 2.6
1.1 1.2 1.8 2.6

1 1.2 1.8 2.6
0.9 1.3 1.7 3
0.8 1.3 1.7 3
0.7 1.3 1.6 3.5
0.6 1.3 1.6 3.5
0.5 1.3 1.6 3.5
0.4 1.3 1.6 4
0.3 1.3 1.6 4.5
0.2 1.4 1.6 5
0.1 5

41

Chapter 4
FUNCTIONALITIES OF THE WEB LAB

Shake Table WebLeb ..] 0,.Aal S
_____________ wind.*t TMWVh Fuisn Taw ~sur i

Figure 15. The WebLab's sine wave variation page Implemented for the Interactive experiment.

-.- Amplitude-Frequency Boundary
Lower Limit of Resonance Frequency Range

-a-Upper Limit of Resonance Frequency Range
3

2.5

1.5

I.5

0
0 1 2 3 4 5 6

Frequency (1)

Figure 16. Allowable amplitude/frequency rage for the sine-wave interactive experiment.

42

4.2 User Account Management and Accessibility Features

An essential feature of an online experimentation environment is the manageability of

user accounts in terms of authenticating accessibility and authorizing permission to

restricted activities. Moreover, a web channel to control laboratory equipment

necessitates a request queuing mechanism that avoids the possibility of simultaneous

multiple client-control scenarios. I explain next why these features are vital requirements

for the shake table WebLab and how they have been implemented.

4.2.1 User Account Management

Access to the Shake Table WebLab requires registration which can be carried out online.

Accessing any of the online lab activities entails a user login with a username and

password. 'Administrator' and 'Developer' are two special types of user accounts that are

given added accessibility privileges. A user with an administrative account can view, edit

and remove other registered users. Another functionality restricted to an administrator is

the ability to make uploaded earthquake experiments publicly accessible. Newly created

experiments by ordinary users are only visible to the experiment owners who have

uploaded the new data files. Administrators may, however, choose to configure new

experiments as public. Consequently, the added experiment will be displayed under the

public experiments list and may therefore be activated by any registered user. An

administrator account is of value to a course instructor or an assistant who needs to

manage student profiles and add to the public experiment archive. Creating an

administrative account is only possible through another logged-in administrator.

As to the 'Developer' account, it is intended for a technical developer who is to

maintain and upgrade the system. To prevent access to the shaker table at times when the

system is being upgraded, a protection key is implemented. Accordingly, an administrator

can lock the online accessible channel to the shaker whereby none of the registered users

except the 'Developer' can run experiments. This approach serves as a precaution against

unfavorable outcomes when the table undergoes testing.

43

4.2.2 User Request Queuing Mechanism

In order to organize online requests to activate the table, a client monitoring solution is

implemented with the following functionalities: queue user requests in order to prevent

more than one client from activating an experiment at the same time, remove any

disconnected client from the queue, and stop the shaker table in case the active user was

disconnected. The queue includes user requests that might be cancelled as when a user

closes his/her browser. Accordingly, a dynamic queuing mechanism has been

implemented to continuously check client status and grant lab access on a first-come-

first-serve basis.

The aforementioned features are implemented with a queue-monitoring program

hosted on the Web Server. When a logged-in user attempts to run an experiment, the

client application (as a Windows Form Control) creates a unique ID which is logged into

an SQL Server queue table with the corresponding time of request. During the time

before a user is granted control permission, two different programmatic functions

proceed: one running on each queued client computer, and one continuously monitoring

program on the Web Server. The aim of the processes that run on the client side is to

update the client status on the server at five second intervals by renewing the client's time

stamp in the queue. Moreover, this same process keeps users informed of their rank in the

queue and the estimated remaining time for their turn. The client-side processes are

illustrated in Figure 17 which presents the implemented model for handling user requests.

Meantime the monitoring program on the server checks for any updates in the database

queue table at five second intervals. As a result, the queue monitoring program removes

any queued item older than ten seconds; if the status of the user who is in charge of the

shaker table hasn't been updated for more than ten seconds, the program disposes the

corresponding user from the queue after stopping the table in case it is in operation mode.

Refer to Figure 18 for the process diagram of the continuously running queue-monitoring

program.

44

Chapter 4
FUNCTIONALITiES O THE WEB LAB

Process Model of User Requests

[NMo Response]
Messagw: Lab Offlin*

[Unavailable] Mesg:LbOfi,

in (ueue [First in Queue] Experiment Execution

Display stripCharts

Check Experiment Time

[<Alowed Duration] Cnnect/start WInCon

Run Experiment

[> Allkwed Duration)

a
I-

Figure 17. Process model of web-user requests to operate the shaker table.

45

User Input '\,[AvaIlable]
LwLo pironumber of points for FFT updat!V-

Qusue-Related Activities (Create Re quest ID)

Add Rom to Queue

C : Check Queued List

Update Displayed

N~i
r UpdaeT

Note
(sm sWe Sevie briocason

(Slop Experiment)

Chapter 4
FUNCTIONALmES OF THE WEB LAB

\/
Remove Waiting Requests of Disconnected Users

(with TimeStamp older than 10 sec.)

Retrieve Timestamp of Top Item in Queue
(Running Request)

Retrieved

[older than 10 sec.]

[last updated
within past 10 sec.]

Clear Top Item in Queue Sleep 5 sec.

Figure 18. Process model of the queue-monitoring program.

As illustrated in the process diagrams, queuing user requests entails excessive database

querying. To illustrate, the server-hosted program updates the queue table every five

seconds. In addition, every client placing a request to conduct an activity is repeatedly

renewing its presence in the queue table at the same time interval. To improve

performance, SQL stored procedures are implemented to handle database operations.

Figure 19 and Figure 20 are two sample stored procedures used in maintaining the queue

table.

46

Figure 19. SQL Stored procedure for updating user status in queue.

CREATE PROCEDURE dbo.ProcRemoveDeadQueueltems

@CloseWCOul ini OUTPUT,
@CIientlDOui varchar(50) OUTPUT

AS
DECLARE @TopLastUpdate datetime
SET @CIoseWCOu=0
SELECT TOP 1 @TopLastUpdate = LastUpdate. @ChientDOul = ClientD FROM Queue

IF DATEADD(second 10,GetDate()) > @TopLastUpdate
BEGIN

SET @CloseWCOul = 1
END

DELETE FROM Queue
WHERE (DATEADD(second10.GetDate()i> LastUpdate)
FND ClientID <> @ClientlDOut

RETURN
GO

Figure 20. SQL stored procedure for removing client requests older than 10 seconds.

47

,"hapter 4
FUNC 17!A 7E ' NNTE L A

CREATE PROCEDURE dbo ProcQueueCheck

@ClientD varcharf(50)

AS
UPDATE Queue SET LastUpdate=GetDate() WHERE CIientD=@CIientD

SELECT' FROM Queue

RETURN
GO

Chapter 5

SHAKE TABLE CONTROL SERVER

5.1 Overview of the Control Server

The shaker table Control Server has direct access to the table apparatus through a data

acquisition/controller board which is in turn connected to a power module. This same

server runs Quanser Consulting's WinCon proprietary software package for driving the

shake table. WinCon was originally targeted for client/server operation where WinCon

server and WinCon client are installed on separate computers with a TCP data transfer

channel between the two. However, for the purpose of the project, both of those programs

are installed on the Shake Table Control Server. As described in Chapter 2, the WinCon

Server application is accompanied by an external Interface that provides an additional

TCP channel for other applications to communicate with the shake table. Since the aim of

the project is to provide lab accessibility through an Internet browser, a user friendly

client-side web application is needed. This application relies on WinCon as an

intermediary for controlling/monitoring the shake table equipment.

In order to establish a connection between the web application and WinCon, an

essential mechanism is required to automatically carry out processes on the shake table

control server. Accordingly, a Web Service is hosted in Internet Information Services

(IIS) to translate web client requests, carried out through the web application, into

corresponding activities on the control server. For instance, a user request to start an

experiment triggers a web service method to check the status of the control server and

accordingly calibrate the shake table before initiating the experiment. Another web

method is then triggered to launch WinCon and load the corresponding experiment files.

Other major applications hosted on the Control Server include Matlab as a means

to scale down original earthquake data - when a user chooses to experiment with

48

new earthquakes - into displacement ranges that comply with the Shake Table

capabilities. Functions within Matlab are triggered through a web method. This method

uploads the new data file from the user's computer, launches Matlab as a background

process running on the control server and sends the necessary commands to the Matlab

environment7 . The data file that results from the uploading and scaling procedures is

stored under an identifiable directory on the Control Server in order to be read by

WinCon when the corresponding experiment is requested.

5.2 WinCon Configuration

Since an outside web-based application handles remote accessibility to the laboratory,

both WinCon Client and Server are hosted on the control server. As described in the

'Initial Principle of Operation' section of Chapter 2, WinCon is based on Simulink

models that are then transformed into WinCon executable files by a C-compiler. The

limitation of the originally supplied models is in the fact that they acquire their input

from the Matlab workspace (sample provided in Appendix A); thus, their compilation

would result in the input data being embedded within the executable. Alternatively, the

models are changed so as to read their input from a separate data file. Accordingly, the

new earthquake model permits the same WinCon executable to run an indefinite number

of excitations. As a result, instead of generating a distinct WinCon file for each

experiment, we end up with one executable only and as many data files as there are

experiments.

5.3 Web Service Implementation

Web Methods are implemented on the Control Server mainly to handle remote access to

both WinCon and Matlab. Refer to Figure 21 for a listing of the Web Methods as written

in C#, with their corresponding input/output parameters. Following is a brief description

7 Interfacing the MS .Net-based web service (Prosise, 2002) with Matlab is achieved through a dedicated
CLR (Common Language Runtime) compliant type developed in VB .Net for interconnecting .Net
applications with Matlab.

49

ChapterT5
SPA lv TA-1s 1 ,mo - -CL-v I

of the functionality provided by each method. Refer to the sequence diagrams in Figure

12 and Figure 13 for an overview of how these methods are invoked.

[WebMethod]
+ public string CheckLabStatua (string UserNae)7

- [WebMethod]

+ public string LoadWC (string ExpFileName)I

- [WebMethod]

+ public string LoadWCMotionDetector ()7j

- [WebMethod)
+ public string LoadWCCalibrate()Z

- [WebMethod)

+ public string ClozeWCOr7

- [WebMethod)

+ public double GetTotalTimeO]

- [WebMethod]

+ public string LoadNewDataFle (string FileContent, string ExpName, int UserID, int IsPublic)Z

Figure 21. Signatures of Web Methods implemented in the Control Server's Web Service.

- CheckLabStatus is called by a client to determine the status of the laboratory just as

the user request to run an experiment is sent. The laboratory status is

maintained in the SQL database and stored as 'LabStatus' (refer to the 'Data

Model Section' in Chapter 3 for more information about the database).

Accordingly, the method is expected to return the state of the lab as being

either available or not. The returned value is also dependant on the type of

user issuing the request. For this reason, even though the lab status, stored in

the database, may be unavailable, a 'developer' user is still granted access to

the lab. In addition to checking the lab status being preset as available or not,

client calls made to this method serve to detect if the control server is on and

ready to receive experiment requests. While a 'not available' return value

would be translated to a user as 'the WebLab being disconnected for

maintenance', not receiving any response after calling this method would

indicate to a client that the control server is in an offline state and, in both

cases, the experiment request would be discontinued.

50

LoadWCCalibrate positions the table in a centered state so as to allow for maximum

displacements without exceeding the boundary limits of the shaker.

LoadWCMotionDetector checks whether the test structure is still moving due to

oscillations from a prior experiment.

GetTotalTime retrieves the duration of a previously loaded experiment which a user

has chosen to run. The client application uses the experiment duration to fit

the recorded response data points with the maximum plotting width of the

graph panels. This serves to provide the clearest possible real-time plots

depending on the size of the acquired data. The duration of an experiment is

stored in a data file which is located on the control server and contains all

information pertaining to that particular experiment.

LoadWC loads the selected experiment into WinCon. There are two directories on

the control server which contain experimental data. The first one, named

'Scaled Data Files', contains a data file for each experiment excitation that has

been uploaded and scaled appropriately. The second directory, 'Active

Directory', contains all WinCon project files (such as the WinCon project files

used for table calibration and the sine-sweep interactive experiment). One of

the WinCon files under the 'Active Directory' is a common file that reads

input accelerations from a data file located under the same directory.

Accordingly, in order to run a particular experiment, the corresponding data

file is copied from 'Scaled Data Files' into 'Active Directory' with a name

recognizable by the common WinCon project. The experiment name,

therefore, becomes meaningless to the WinCon project file as long as the

correct data is loaded into 'Active Directory'.

CloseWC would stop a running experiment and close the WinCon software. Since

stopping a running WinCon experiment is only possible by establishing a TCP

socket connection with WinCon Server's EIW, an instance of the ExtComm

class needs to be initiated. (Refer to section 5.4 for information on Extcomm.)

51

Accordingly, the Web Method CloseWC creates an ExtComm object and

invokes its stopmodel() function which sends the appropriate command to

discontinue WinCon's operating model.

- LoadNewDataFile creates a new experiment as it takes four parameters from the

client: the experimental data in a Matlab format, the name of the new

experiment as declared by the user, the user's ID, and a Boolean key which

specifies whether the experiment to be created is publicly accessible by the

whole user community or privately owned by its creator. As described earlier

in Figure 13, this method would initiate a set of Matlab functions that would

handle filtering and scaling-down the originally submitted excitation data.

Ultimately, a scaled data file that represents the new experiment is stored

under the 'Scaled Data Files' directory with a name consisting of a

combination of the supplied experiment name and the creator's UserID.

Hence, a user may use an experiment name only once in his list of new

experiments while the same name can be given to several experiments

belonging to different users. Finally, this Web Method adds a new database

reference to the created experiment and associates it with the creators UserID.

5.4 Data Streaming Mechanism

As the aforementioned Web Methods serve to launch WinCon on the Control Server and

configure it with the appropriate experimental data, there is no further client-server

interaction via the Web Service until the client triggers a request to stop the experiment.

Instead, a TCP socket connection takes care of transferring data, back and forth, between

a client (Win Form Control) and the Control Server.

The protocol for socket communication of an 'Outside Application' with

WinCon is established by Quanser Consulting Inc. Refer to Appendix D for an

illustration of the commands which may be issued from or received by an 'Outside

8 An 'Outside Application' (OA) is the naming given by Quanser to a program written to communicate
with WinCon Server by using a socket connection and complying with a predefined protocol.

52

Application' after launching WinCon Server and its External Interface Window. Since a

client/server socket connection establishes an open communication channel through

which data is being transmitted, a client side application was designed so as to provide

real-time information retrieval from the server and proper event handling techniques.

Accordingly, a client socket is launched in its own thread to listen to data published by

the server socket on a predefined port. As new data is made available on the server, the

client application retrieves the posted information and carries out appropriate event

handling procedures. Refer to Appendix E for a class model of the J# program that

handles socket connections to WinCon. Since the source code for the represented classes

was implemented in Java, a .Net compatible version of the libraries was created with the

J# CLR-compliant compiler. Accordingly, once compiled, the libraries are accessible by

the client application written in C#. The class model includes a listing of the fields and

methods of each class. Designed by Quanser Consulting, the object model entails three

main classes: AsyncCommThread which inherits the system Thread, the abstract class

Comm, and the ExtComm class which inherits Comm. Client communication with

WinCon's EIW is established by initiating an ExtComm object and calling connect() and

startModel() successively. The commThread9 object of type AsyncCommThread is

responsible for listening to the server socket for any new bytes ready to be read.

5.4.1 Socket Connection Renewal

One problem concerning socket connections to WinCon is related to a connection

timeout occurring at a one minute period after initiating the connection. Since the

WinCon application is responsible for initiating the server-side socket, it is, therefore, not

possible to control the timing out of the connection. This is attributed to the fact that

WinCon is a proprietary software, the source code of which is not publicly available. In

order to avoid having a client application disconnected, a data renewal mechanism is

implemented so that communications between a client and the server are uninterrupted.

Figure 22 depicts the data renewal mechanism whereby the maximum lifespan of a

socket connection is reduced to 50 seconds and a new socket is initiated instead. The

9 commThread is a property of Comm and is of type AsyncCommThread.

53

main running thread in this diagram, 'Connection Renewal Thread', corresponds to

'Asynchronous Thread 2' of the generalized sequence diagram in Figure 12. A five-

second overlap is used after a new socket is connected and before disconnecting the

previous socket. This approach serves to avoid losing segments of data streams at the

interchange between two consecutive sockets.

Connection Renewal Thread

45sec

5 sec

40 sec

5 sec

-r~

connecto

Socket Th

disconnecto

connecto

1 __ disconnecto

read 1 Socket Thread 2

connecto

disconnecto

connecto

Figure 22. Renewing socket connections from a client application to the Control Server.

5.4.2 Data Transfer Based on the IEEE Standard for Single-
Precision Floating Points

Data transfer across the socket connection is based on 8-bit bytes whereby every

four bytes form a meaningful float. The float number is in a Single Precision Floating

Point format consisting of a one sign bit (0 for positive and 1 for negative), followed by

an eight bit exponent, and finally a 23 bit mantissa.

54

31 23 0

e = exponent f = mantissa

s =sign

The single float value represented by the 32 bits can be obtained as follows:

float = (- 1)' x 2e- 127 X (1.f)2

Before reading data from the server, the client socket waits until four bytes are available,

whereby the four bytes are treated as a single float of 32 bits (see the process diagram in

Figure 23). Float numbers read by the client may be either:

" one of the communication command numbers listed in Appendix D

* a data value (such as an acceleration reading)

Check number of bytes available

No >3 -Yes

F Read 4 bytes

Transform the 4 int bits into
their corresponding float

Return the resulting float number

Figure 23. Process diagram for reading one 32-bit float number.

The diagram in Figure 2410 illustrates the process through which the client application

listens to incoming messages from WinCon and translates received command numbers

into corresponding procedures. This diagram illustrates messages that are received by an

'Outside Application' and thus only shows the commands that are sent from the EIW to

an OA.

10 The function of the shaded box, 'Read one float number', is illustrated in Figure 23.

55

Chapter 5
SHAKE TABLE CONTROL SERVER

Check number of bytes available

No
3

Yes

J.

Read n float numbers where
n = number of associated sinks

WinCon model
has started

WinCon model 4
has stopped

5
Sinks association L

6 14

Sources Connection
association status

value 18-

15 Set initial par

Error mess
disconn

am values

age and
ection

Figure 24. Process diagram for interpreting commands sent from the Control Server to the client
web application.

56

Chapter 6

FEATURES OF THE WEB APPLICATION

6.1 Browser-Embedded Tools

Users access the lab through an Internet browser. An embedded Windows Form Control

(which is similar to a Java applet) provides a rich control and plotting interface. The

client application is expandable in terms of the data processing tools that might be added

depending on the purpose of the user. The common experiment interface shown in Figure

25 provides the following features:

" Real-time plotting of measured acceleration responses

- Fast Fourier Spectra dynamically updated as the experiment proceeds

" Transfer function spectra for each floor and the extraction of dominant

frequencies

- Capability to save plots to data files

" Simultaneous plotting of actual and predicted responses in variant line colors

- Capability to export/import transfer functions to and from files: This is

implemented in such a way that, after a user runs an experiment, he/she may

upload one or more transfer functions which are named by the user. Dropdown

list boxes on the plotting interface are dynamically populated with the new

uploads. Users may then choose a transfer function in order to predict a floor

response and compare it with the actual measurement.

- A live video display of the shaker table

57

Chapter 6
FEATURES OF THE WEB APPLICATION

Shake Table WebLab MLEMi Lod
IW RwMuiaa T mum~Iw TV*. Dgplswt , Do Mona

Figure 25. Snapshot of the actual and predicted floor responses for the Kobe earthquake.

6.2 Computation of Fast Fourier Transforms (FFT)

A frequency-domain representation of the structural response instead of a time domain

one provides further insight into the nature of the structure and its state of vibration as it

responds to excitations applied to its base. Accordingly, a Fast Fourier Transform (FFT)

is generated for each of the three time histories associated with the accelerometers on the

three levels. Following is the definition of the Fourier Transform which transforms time-

based data (x(t): represents time accelerations) into a frequency-based spectrum X(f).

X(f) = x(t)eJ**dt

Knowing the maximum frequency of the Fourier spectrum is possible by looking at the

data sampling frequency. Acceleration readings are acquired at a time interval of 20

milliseconds. This value is configured within all the WinCon experiment settings so as to

publish data to the windows form application at 20ms intervals. Since at least two data

points are required to define a period on the plotted time histories, the minimum period

58

would therefore be twice the period of data collection. Accordingly, the maximum

detected frequency of vibration would be half the frequency at which data is collected.

T = 0.02 sec. (Time interval for data collection)

Freq = 1/0.02=50 Hz (Frequency of data collection)

Hence, the maximum response frequency, called the Nyquist frequency, is calculated as:

Fmax= Freq/2 = 25 Hz (Nyquist Frequency)

The usefulness of FFT computation in the case of a shake table is to pinpoint the

dominant modes of vibration of the test structure and therefore know its natural

frequencies. To illustrate, the poles of a plotted FFT represent the dominating

frequencies. The significance of a structure's natural frequencies is in identifying which

types of ground accelerations would subject the structure to excessive deformation. A

situation where the ground excitation has a frequency close to the structure's natural

frequency would result in harmony between the ground movement and that of the

structure, a case referred to as resonance. As the displacement of the ground and the

structure are more in sync, the structural deformation is additive to that of the ground and

therefore result in great displacement.

The Shake Table WebLab offers an interactive medium to observe and discover

the aforementioned properties of the test structure by running the sine wave input

experiment introduced in Chapter 4. In addition to a complete FFT being plotted when

the user stops the experiment, FFT spectra are also dynamically generated as the

experiment proceeds. The implemented algorithm for FFT computation requires that the

time-histories consist of a number of points (N) which is a power of 2 (for example

N=256, 512, 1024 points). Accordingly, carrying out the FFT on a set of points is

accomplished by padding zeros to the end of the data set up to the closest power of 2.

While calculating FFTs based on smaller ranges of data points result in a more real-time

experience for the user, a greater range results in a delayed yet more accurate

presentation of a frequency plot. For this reason, the user is prompted to specify one of

three rates (256, 512 or 1024 sample points per plot) at which FFT spectra shall be

displayed.

59

Chapter 6
FEATURES OF THE WEB APPLICATION

Shake Table WebLab aara
________________ RecwwiiwTwidwh~ Iu~ TIMbvcmw -1 Do

Figure 26. Sine wave experiment showing plots of the second-floor acceleration and FF spectra.

As shown in Figure 26, by changing the frequency knob, a user is provided with

updated frequency spectra as the shaker vibrates. The peaks of the FFT reflect the

instantaneous dominant vibrating frequencies of each floor based on the immediate

modification in the input sine wave signal that the user carries out. By setting a low

refreshing rate based on 256 data points, a user is provided with more frequent FFT plots

to identify the prevailing mode of vibration. Figure 27 displays snapshots of the FFT plot

for the second floor readings at three different times of the same experiment. Refer to

Table 3 for information relating to each snapshot. Figure 27(c) corresponds to the final

FFT which is based on the whole experiment data. The two peaks refer to the two natural

frequencies of the structure namely, 1.5Hz and 5.3Hz. Figure 27 (a) and (b) correspond to

intermediate FFTs taken when the input frequency is set to 1.4 and 5 Hz respectively.

Table 3. Summary relating FFT spectra to modes of vibration.

60

Second Mode Figure 27(b) 5 Figure 28(c) 1

Chapter 6
FEATURES OF THE WEB APPLICATION

(c) Complete FFITfor the second floor showing two dominant frequencies.
Figure 27. Snapshots of FFT spectra taken at different times during an interactive experiment.

) t
a) Still frame b) I $mod c) 2 "d mode

Figure 28. Structural behavior in different vibration modes.

61

(a) 5econa floor Pt1 snowing the low natural frequency for the first mode of vibration.

(b) Second floor E1T showing the high natural frequency for the second mode of
vibration.

Chapter 6
FEATURES OF THE WEB APPLICATION

6.3 Computation of Transfer Functions

Another developed functionality is accessible through the 'Transfer Functions' tab shown

in Figure 29. The aim of this tool is to determine the transfer functions from the ground

accelerations to each of the upper floor accelerations. Accordingly, what is required is a

digital filter which transforms input acceleration signals at the base into a response signal

at an upper floor.

Shake Table WebLab .su /L Mm r

Figure 29. Transfer function tab view displays two plots showing the frequency peaks of each floor.

X(t) igital y(t)
(input signal at the base) Filter (output response at an upper floor)

In identifying a system for the black box, we look for a causal filter whereby values of y

are not dependant on future values of x. Moreover, since we are dealing with infinite time

histories of acceleration, the filter which is to be implemented needs to have an infinite

62

sum. Accordingly, an Auto-Regressive Moving Average (ARMA) model is used to

represent an Infinite Impulse Response (IIR) filter as such:

N

I ak Y,_k
k=0

M
y = I b0 xnk

k=0

M

= bk xnk
k=0

N

-Xak y._k
k=1

.. (2)

where a and b are sequences with lengths M and N respectively, and the
coefficient a0 is normalized as 1.

In expanding the last equations, values for x and y with subscripts less than zero are

considered as zero:

Y0 =b 0x0

Y1 =b 0x1 +b 1 x -a 1 y 0

y 2 =bx 2 +bix, +b 2x. -aiy 1 -a 2

In matrix form, the last equation is written as:

yO

Y1

_yP _

x, x0 0 -. 0

x 2 x1 x 0 . 0:

. I

:xM-1 XM-2 M-3 *0

XM XM-1 XM-2

XM+1 XM XM-1

xP xP_ xP-2

more compactly:

y = Xb - Ya

or

y = Wc

... x0

... x1

--- XP-M

b2

b

70

|y
y2

~0 ~0 -- ~* ~|

0 0 . 0

Y O . |
. . . . I

YN-2 YN-3

YN-1 YN-2 YN-3

YN YN-1 YN-2

_YP- 1 yP-1 YP-2

YO

Y1

YP-N

... (3)

... (4)

where:

W = [X -Y] and c = [bT aT]T

a1

a2

aN

63

0

_

This system of equations is over-determinate because it has more rows (P) than unknown

variables (M+N+l). Therefore, the least-squares method is adopted as a solution by

multiplying each side of the equation by the transposed matrix:

W T y =W TWC --- (4)

c= [WTW] WTy -- (5)

The digital filter to be found can be represented by the coefficients of vector c which is,

in turn, reliant on matrices X and Y. However, the matrix expansion of Eq. 2 contains

inaccuracies which result from the fact that the initial boundary values entail missing

numbers which have been replaced by zero. A more accurate calculation of the vector c

would therefore be based on the modified matrices, X' and Y', instead of X and Y. The

modification entails disregarding initial rows in the matrices which contain missing

values. The disregarded rows are enclosed in a dashed boundary in the above matrix

representation and the resulting matrices are modified as follows:

XM XM-1 XM- 2 '. X 1 .YN- N-2 YN-3 YO Y

X'- M+1 XM XM- 1
Y N .N-1 YN-2 '.

_ P XP-1 XP-2 XP-M _ _YP-1 . P-1 YP-2 ..'. YP-N_

and W = [X' - Y'] is used in equation 5.

Accordingly, by finding c, vectors a and b which characterize the digital filter are

determined. Having determined the system which relates the output values y to input

values x by using known values for x and y, we can therefore apply the resulting filter to

predict the response to any other input signal x. The flow chart in Figure 30 summarizes

the process of applying a digital filter to predict floor responses.

64

Acquire experimental data x and y

Use Eq. 5 to compute vectors a & b

Acquire new input data x'

Use Eq. 2 to predict output response y'

Figure 30. Flow chart of transfer function application

The peak frequencies of the system can be extracted by obtaining the transfer function.

This is done by writing the recursion equation in the frequency domain (see Figure 31).

The poles of the transfer function are obtained by finding the roots of polynomial A in the

denominator of equation 7.

A(w).Y(c) = B(w).X(w)

B(o)
Y(w) = X(w) = H(co).X(c)

A(w)

--- (6)

--- (7)

where X, Y, A and B are the Fourier transform complex vectors of x(t), y(t), a and
b respectively.

2"d Floor Transfer Function -> H 2=

1 St Floor Transfer Function -> H,

2X

(yN

t(Il

y2(t) FFT

yI(t) FFT

x(t) FFT

YA~o))

XNw)

Figure 31. Frequency-domain representation of transfer functions.

65

6.4 Coding Digital Filter Computations

This section entails the signatures of functions implemented in the C# language to carry

out transfer function computations. Accordingly, when an experiment is stopped and the

client is disconnected from the server, the following functions are executed

synchronously after a client has acquired a complete set of acceleration readings:

1. Compute Complete Fourier Transforms:

After accumulating full acceleration streams, a complete FFT spectrum is

calculated and plotted for each of the three levels of the test structure responses. Since

the time-frame of an experiment is not predefined, as it may vary from a few seconds

up to several minutes, the size of the FFT spectra is not predetermined. Since the FFT

algorithms" used are based on 2" data points, it is necessary to pad the gathered

acceleration time histories with zeros up to the nearest 2"n number before calling the

function that computes the Fast Fourier Transforms.

2. Compute Transfer Functions:

The method PlotTransferFunctions () is implemented to compute the transfer

functions from the ground-level input accelerations to each of the two upper-floor

levels. Accordingly, PlotTransferFunctions () would, in turn, call

ComputeTransferFunction twice, each time supplying the input parameters

corresponding to a different floor. The signature of ComputeTransferFunction is as

follows:

TransferFunction ComputeTransferFunction(double[] Input,
double[] Output, out ArrayList PeakFreq)l{...}

ComputeTransferFunction takes as input two double arrays: Input is the array

containing table accelerations while Output contains one of the floor accelerations.

The third parameter PeakFreq serves as an output container of the peak frequencies in

the transfer function. The final result of this method would be stored into a user-

"The FFT algorithm implemented in C# is depicted from a C-based algorithm by Press et al, Numerical
Recipes, Chp. 12 Fast Fourier Transforms.

66

defined struct named TransferFunction and would entail all the characteristics of the

digital filter. The TransferFunction struct contains the following parameters:

- two double arrays, namely, a and b, which contain the transfer function

coefficients

- an array of the Complex class, TFComplex, to store the complex form of the

computed transfer function

A struct is implemented for storing the transfer function information instead of a

class. This is mainly due to the fact that this struct is not expected to inherit other

classes and thus it would be more efficient storing the transfer function data as a

value type.

Two additional functionalities of ComputeTransferFunction are:

a- Generating the frequency spectrum of the transfer function through

ComputeTFSpectrum as:

void ComputeTFSpectrum(ref TransferFunction TF, int nn) {...}

The TF object in the above method call should already contain its coefficient

vectors a and b. The integer nn is the number of points in the time domain which

is to be used for generating a spectrum with a matching size.

b- Finding the peak frequencies of the spectrum through the roots method as:

string roots(Complex[] a, int m, ref Complex[] roots, int polish)

This method finds the roots of the polynomial:

p = a[O] + x.a[1] + x2 .a[2] + ... + x'.a[m]

where the array a contains the coefficients of vector a of the transfer function

described in the previous section.

3. Compute Predicted Accelerations:

Transfer functions calculated in the previous step are used to generate predicted

floor accelerations through the following method:

67

double[] ComputePredictedAccel (TransferFunction TF,

double[] InputAccel)

TF shall contain its coefficient vectors a and b, and InputAccel is an array of

the table's accelerations as an excitation signal. The returned array contains the

values of the predicted floor response corresponding to transfer function TF.

68

Chapter 7

SUMMARY AND FUTURE WORKS

7.1 Summary

This thesis presented various aspects of the design and implementation of a shake table

remote laboratory. The Shake Table WebLab provides an online space for the real-time

interactive control of a shake table. I discussed the effectiveness of online

experimentation in general and focused on the deliverables of the project. The goal of the

project is defined from the perspective of transforming the initial system into desired

final operation conditions. Accordingly, various alternatives are evaluated before

detailing the implemented solution. Since the implemented system is based on the MS

.Net Framework, a concise explanation of various aspects of this framework is presented.

The overall system architecture, its various components and detailed implementation are

then elaborated together with generic features that are of valuable use in other similar

remote laboratories.

7.2 Future Works

While the outcome of this project work is a fully functional remotely-controllable shaker

table, there are several aspects of this web lab, more specifically as a shaker table

experiment, that may be given further consideration. Based on my involvement

throughout the course of this project, I present below areas which are prospects for

further development and research. Future work aspects are separated into two categories:

technical (through software and hardware improvements) and collaborative (with other

research groups).

69

7.2.1 Improving Software & Hardware Components

Means to enhance the current architecture entail adding software components as well as

experimenting with innovative sensor devices. Upgrades to the Shake Table WebLab are

possible as additional course-specific applications can be easily added to the already

implemented web application. Since the foundation of a remotely accessible system is

developed, future works are aimed at processing output data as the structure responds to

different vibrations and therefore allow students to compare theoretical means of

understanding structural dynamics with real-case applications. Moreover, an easily

accessible shaker table with a sensor-intensive application provides a suitable space for

experimenting with real-time signal processing algorithms. A constructive improvement

of the current software entails providing an API for others to use from within their own

programs in order to perform specific data processing tasks such as the estimation of

damping ratios. As to the hardware setup itself, future efforts may entail experimenting

with wireless sensors - including applications of smart materials like shape memory

alloys and piezoelectric wafers - as well as various model structures. For that purpose, the

current framework would have to be scaled-up to support more sensors depending on the

complexity of newly developed model structures.

7.2.2 Collaborating with Ongoing Research Initiatives

Extending the functionality of the already established web lab is more rewarding when

conducted in collaboration with ongoing research efforts in the areas of both web-

accessible laboratories and earthquake engineering. Concerning ongoing projects

focusing on web laboratories, the MIT iLab project is an ongoing initiative that aims at a

shared architecture providing a backbone for web-based laboratories. Accordingly,

adapting the current Shake Table WebLab with the iLab shared architecture requires

rethinking administrative and accessibility features in the light of what the iLab team

provides in terms of lab-specific versus brokerage services.

As to exchanging research experience with other earthquake engineering groups,

the Network for Earthquake Engineering Simulation (NEESgrid) is one consortium that

70

aims at advancing the study of earthquake engineering by enhancing collaboration among

various institutions. The goal is to provide an infrastructure so that various earthquake

engineering research groups, experimenting with either physical or numerical simulation,

can take advantage of the results of already accomplished experiments. In addition, a

shake table has several experimental benefits in understanding civil engineering

phenomena under seismic conditions. Besides structural testing, examining geotechnical

soil behavior due to seismic vibrations is another application that requires the

implementation of different types of sensor devices. Liquefaction, for instance, is a

suitable phenomenon to be further examined with the use of a shaker table.

7.3 Lessons Learned

Determining what is required of the new Shake Table WebLab has been conducted in

close collaboration with Eduardo Kausel, professor of structural engineering, and Kevin

Amaratunga, professor of information technologies. However, setting a predefined set of

requirements prior to development had necessitated some flexibility in the system

architecture that accommodates future extensions. Flexibility allows implementing ideas

that were not included in the primary deliverables of the web lab. Following are some

important aspects that have been stressed throughout the course of the implementation:

Using a variety of software suites has proven efficient in delivering a fully-

functional system in a short period of time. This was possible by being able to

make use of more than one programming language and different programming

environments. To illustrate, though most of the newly developed components are

.Net-based and were developed in C#, reusing previously written Java classes,

without their conversion to C#, was very productive in the development phase. In

addition, being unrestrictive as to a programming platform allows for more

efficient handling of programming tasks. For example, software components that

handle the graphical user interface were developed in Visual Studio .Net which

provides sufficient efficiency for programming graphical objects. Conversely,

programming algorithmic components that require invoking a considerable

71

number of mathematical functions is much easily implemented in Matlab which is

more suitable for mathematically-intensive programs.

Of course, using several programming platforms, such as MS .Net and Matlab,

requires proper distribution of programmed tasks between client-side and server-

side execution. The aim is to avoid burdening users with demanding requirements

that are essential for accessing the system. Accordingly, in order to avoid having

users install Matlab on their computers, all Matlab functions are executed on the

server. A client-side program is capable of invoking those functions via a Web

Service hosted on the same server. In this case, instead of requiring a Matlab

license for each user, only one Matlab license is needed for the server installation.

- The Shake Table Weblab hasn't emerged in its final condition from a ground up

approach. The fact that there was considerable software that we reused in

implementing the new architecture had both its advantages and drawbacks. As

more elaborately explained in Chapter 3, the new architecture is based on

software components originally accompanying the hardware setup. Yet

incorporating those components without further modification would have resulted

in a much tedious and inefficient means of operating the hardware. Accordingly,

it was necessary to reengineer the essential processes of originally-supplied

components and transform them into ones which are adequate for incorporation in

a more robust and larger-scoped system.

72

REFERENCES

1. Amaratunga, K., and Sudarshan, R., "A Virtual Laboratory for Real-Time Monitoring
of Civil Engineering Infrastructure", International Conference on Engineering
Education, August 18-21, 2002.

2. Box, D., and Sells, C., "Essentials .Net", Volume 1, The Common Language
Runtime, Addison Wesley, Boston, 2003.

3. Caicedo, J., Betancourt, S., and Dyke, S., "Introduction to Dynamics of Structures",
A Project Developed for the University Consortium on Instructional Shake Tables,
Washington University in Saint Louis.

4. Khan, R., "Software Architecture for Web-Accessible Heat Exchanger Experiment",
SM Thesis, Department of Civil and Environmental Engineering, MIT, 2002.

5. Powell, R. et Al, "Using Web-Based Technology in Laboratory Instruction to Reduce
Costs", Computer Applications in Engineering Education, Wiley Periodicals Inc.,
Volume 10, Issue 4, 2002.

6. Press, W., Teukolsy, S., Veterling, W., and Flannery, B. (2002), "Numerical Recipes
in C", Second Edition, Cambridge University Press.

7. Prosise, J., "Programming Microsoft .NET", p.521-560, 417-170, Microsoft Press,
Washington, 2002.

8. Quanser Consulting Inc., "UCIST Shake Table".

9. Quanser Consulting Inc., "WinCon 3.2".

10. The MathWorks, "Simulink Model-Based and System-Based Design", Version 5,
Natick, MA, 2002.

11. The MathWorks, "Simulink Model-Based and System-Based Design", Version 5,
Natick, MA, 2002.

12. VentureCom Inc., "RTX 5.0 User's Guide", Cambridge, MA, 2000.

13. Wagner, B., and Tuttas, J., "Distributed Online Laboratories", Engineering Education
and Research, iNEER, 2001.

73

APPENDIX

APPENDIX A - Original Sample of a WinCon Compatible Simulink Model

APPENDIX B - Newly Uploaded Data Files Format

APPENDIX C - Matlab Function for a Low-Pass Frequency Filter

APPENDIX D - WinCon's ElW Communication Protocol

APPENDIX D - WinCon's ElW Communication Protocol

74

APPENDIX A - Original Sample of a WinCon Compatible Simulink Model

Te
Enjbl* ShkE*r Amp STOP rom WorkspaceL

Duration Relationa
Operatol Stop Run

Ac

0 ~ T able Accelerometer

q_Clock ork ac
Used for

bias removal

Inch 0
Int

Scaled Position - - - -

rn to M0c

Scaled Position
conlmand

Eu to Amp

Su
, AII*J-nEpM

Accel

Always start with table in Central Position

Accetlerometeul
o2fo~r

AccelerometerZ
g3 Floor 2

75

i

cel R

APPENDIX B - Newly Uploaded Data Files Format

An experiment requires as input time related accelerations. The time interval for accelerations should
be fixed. Accordingly, your data file must state the time interval (in seconds) of successive
accelerations on the first line. The acceleration data should be provided on the second line onwards.

One or more accelerations can be displayed on the same line. In case there is more than one
acceleration value on the same line, these values must be separated by at least one space. There is
no restriction as to the number of accelerations on a single line. No other information may be available

in the file. The text should consist of numeric values only and saved as a .txt or .dat file.

File Format:

[Time Interval dt in Seconds]
[Acc#1 @t=0] [Accel#2 @t=dt] [Accel#3 @ t=2dt]
[Acc#4 @t=3dt] [Acc#5 @t=4dt] [Accel#6 @t=5dt]

Sample 1:

0.02
134.0650 0.1000000E-02 127.8370 83.27400 -117.4720
-242.1620 -332.3140 -407.2950 -463.2890 -487.0100

Sample 2:

0.01
7.957000
8.075000
7.882000
10.36500

76

APPENDIX C - Matlab Function for a Low-Pass Frequency Filter

Parameter Definition:

Input:
- data is the array of numeric values to be filtered.
- dt is the time interval between two consecutive values in data.
- high is the upper limit frequency value in the applied filter.

Output:
- result is the array of filtered numeric values.

77

functian result = FrequencyFilter (data, dt, high)

nn=s ize (data, 1);
if rem(nn,2)-=O

data=data (1:s size (data, 1) -1)
end
nn=size (data, 1);
ft=fft (data);

n=nn/2;
nfl=n+1;
MaxFreq=1/2/dt;

trLm2=high*nf1/MaxFreq; %high =2OH_

if trim2==nf1
trira2=nf1 -1;

end

%Creates a ops filter
b--fir1(418, tri-m2/nf1, 'low');

[h]=freqz (b, 1, nfl);

ft=ft (1:nfl),;
ft=ft.*h;

ft=[ft;conj (ft (nfl:-1:2)) ;
result=real (if ft (ft)).;

APPENDIX D - WinCon's ElW Communication Protocol

Table 4. Command-based protocol for WinCon communication with an Outside Application.

1 NEWDATA EIW -+ OA Vector of values

2 NEWVALUE OA --> EIW Index into associated sources
followed by new value

3 MODELSTARTED EIW -+ OA None

4 MODELSTOPED EIW -+ OA None

5 SINKASSOCIATIONS EIW -+ OA Number of associated sinks
____________followed by vector indices

6 SORCE-SSOCATIOS EI OA Number of associated sources6 SOURCE_ASSOCIATIONS EIW -+ A followed by vector of indices

7 EXTERALCHECKSUM OA -+ EIW Checksum value

8 BEGINSINKLIST OA -+ EIW None

9 NEWSINK OA -EIW Size of sink name followed by
character string

10 ENDSINKLIST OA- EIW None

11 BEGINSOURCELIST OA -+ EIW None

12 NEWSOURCE OA -+ EIW Size of source name followed by
character string

13 ENDSOURCELIST OA-+ EIW None

14 CONNECTIONSTATUS EIW -+ OA Connection status value

15 BADCHECKSUM EIW -+ OA None

16 STARTMODEL OA -+ EIW None

17 STOPMODEL OA -+ EIW None

18 INITIALPARAMVALUES EIW -- OA Number of parameters followed by
vector of values

19 EXTCMDINVALID Internal None

Source: WinCon 3.2, Quanser Consulting Inc.

78

APPENDIX E - Object model for establishing communication between an OA and WinCon

AsyncCommThread: Thread

-inBuffer: BufferedinputStream
-comm: Comm (Abstract)
+AsyncCommThread(in buffer: BufferedinputStream, in com : Comm (Abstract))
+run()

Comm (Abstract)

-socket : Socket
-port: int
-host: string
-inBuffer: BufferedinputStream
-outBuffer: BufferedOutputStream
-commThread : AsyncCommThread : Thread
-fsa : float
-sinkCount : int
-sourceCount: int
-valueCount: int
+Comm(in host: string, in port: int)
+connect()
+disconnect()
+readFloato : float
+writefloat(in fvalue: float) : bool
+error(in s : string)
+isDataAvailableo: bool
+newData()
+model DataArriving()
+modelConnected()
+modelSinkAssociation()
+modelSourceAssociationso
+model[nitialParamValues()
+modelAddSink(in sink: string)
+modelAddSouce(in source : string)
+modelNewValue(in nIndex: int, in fvalue: float)
+startModel()
+stopModel()

(Source code by Quanser Consulting Inc.)

79

ExtComm

-text : string
+ExtComm(in host : string, in port : int, in text : string)
+modelStart()
+modelStop()
+modelNewData(in data[] : float)
+modelSinkAssociations(in associated[] : float)
+model RequestsSinkso
+modelRequestsSources(
+modelSoureAssociations(in associated] : float, in)
+modellnitialParamValues(in values] : float)
+modelBadChecksum()
+modelChecksum(: float
+modelPrmary()

