

The copyright of this thesis rests with the University of Cape Town. No

quotation from it or information derived from it is to be published

without full acknowledgement of the source. The thesis is to be used

for private study or non-commercial research purposes only.

Univ
ers

ity
 of

 C
ap

e T
ow

n

A Lossy, Dictionary-based Method for Short
Message Service (SMS) Text Compression

Mini-dissertation , M.Sc. Information Technology

by Wickus Martin

© 2009 All rights reserved.

Supervised by Professor Gary Marsden

Univ
ers

ity
 of

 C
ap

e T
ow

n

This paper is accompanied by a DVD with source code, build scripts, binaries and the LD-based
dictionary in text format. See readme.txt for details.

Univ
ers

ity
 of

 C
ap

e T
ow

n

I know the meaning of plagiarism and declare that all of the work in the document, save for that
which is properly acknowledged, is my own.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Abstract

Short message service (SMS) message compression allows either more content to be fitted into a

single message or fewer individual messages to be sent as part of a concatenated (or long) message.

While essentially only dealing with plain text, many of the more popular compression methods do

not bring about a massive reduction in size for short messages. The Global System for Mobile

communications (GSM) specification suggests that untrained Huffman encoding is the only required

compression scheme for SMS messaging, yet support for SMS compression is still not widely

available on current handsets. This research shows that Huffman encoding might actually increase

the size of very short messages and only modestly reduce the size of longer messages. While

Huffman encoding yields better results for larger text sizes, handset users do not usually write very

large messages consisting of thousands of characters. Instead, an alternative compression method

called lossy dictionary-based (LD-based) compression is proposed here. In terms of this method, the

coder uses a dictionary tuned to the most frequently used English words and economically encodes

white space. The encoding is lossy in that the original case is not preserved; instead, the resulting

output is all lower case, a loss that might be acceptable to most users. The LD-based method has been

shown to outperform Huffman encoding for the text sizes typically used when writing SMS

messages, reducing the size of even very short messages and even, for instance, cutting a long

message down from five to two parts.

Keywords: SMS, text compression, lossy compression, dictionary compression

Univ
ers

ity
 of

 C
ap

e T
ow

n

Preface

This mini-dissertation concludes my studies towards the Masters in Information Technology at the

University of Cape Town. The topic of SMS compression was not the original one I investigated. At

first, I wrote code to send binary attachments such as PDF and MP3 files by SMS. The experiment

worked, but then I had to admit how impractical such a pursuit would be; it takes a very large number

of SMS messages to transfer even a tiny PDF document. I then started thinking whether to compress

the attachments prior to transmission. When compressing the attachments failed to sufficiently reduce

the size to make sending SMS attachments viable, I abandoned the idea completely. It was then that I

started wondering about the merits of compressing plain-text SMS messages. The idea seemed worth

exploring, but I still had to convince the department to let me undertake the research as part of my

Masters project. Professor Gary Marsden from the department is actively involved in the field of

mobile interaction. I decided to pitch my idea in the hope I might convince him to take on the role of

supervisor. Professor Marsden was immediately supportive of the idea and I want to thank him for

allowing me the freedom to pursue a topic of my own interest. I also want to thank my girlfriend,

Allison Johnson, for the the support she gave me throughout the time I was working on the disserta-

tion. Thank you also for proofreading my writing!

Wickus Martin

November 2009

Univ
ers

ity
 of

 C
ap

e T
ow

n

Table of Contents

Chapter 1 - Introduction ..1

1.1 Motivation ..1

1.2 Problem statement...2

1.3 Dissertation outline..2

Chapter 2 - Background..3

2.1 SMS...3

2.2 Compression and decompression...6

Chapter 3 - Related work ..13

Chapter 4 - Design and implementation...16

4.1 Algorithm..16

4.2 Dictionary..17

4.3 Keyword substitution...22

4.4 The prototype...23

Chapter 5 - Results and discussion...26

Chapter 6 - Conclusion...47

Chapter 7 - Future work..49

Chapter 8 - References...50

Appendix A - Printout Ref# 0012...53

Appendix B - Printout Ref# 0043...55

Appendix C - Printout Ref# 0064...57

Appendix D - Printout Ref# 0179...59

Appendix E - Printout Ref# 0205...62

Appendix F - Printout Ref# 0353...65

Appendix G - Printout Ref# 0600...69

Appendix H - Printout Ref# 0723...75

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 1 - Introduction

1.1 Motivation

Mobile SMS is an incredibly successful technology. In December 2008, there were 4 billion mobile

phone subscribers [1], and a 2007 report forecasts that, by 2012, the number of SMS messages sent

will total 3.7 trillion globally [2]. In addition, in 2008, more than 29 billion messages were sent in

Germany alone. This is 15% more than in 2007, and the number expected in 2009 is even greater

owing to the popularity of technologies such as Twitter [3]. In the UK messages totalled 41.8 billion,

56.9 billion and 78.9 billion in 2006, 2007 and 2008 respectively [4]. These figures also amount to

huge profits and, in 2006 and 2008, the SMS industry globally was worth $81 and $151 billion

respectively. In 2013 that figure is expected to rise to $212 billion globally [5].

The market appeal of SMS messaging is proportional to the simplicity of the technology, and it is in

developing countries that SMS messaging is seeing its largest growth. Despite its success, the techno-

logy has an inconvenient limitation, namely, a 160-character-per-SMS message limit. Initially, users

would type their message up to the number of allowed characters and, if the message was not yet

finished, send another one. Handsets eventually automated this process, allowing users to type a long

message in its entirety and send the message. Without prompting the user, the handset breaks the

message into parts, labels the sequence of each part, and then transmits the parts in sequence. As the

parts are received, the receiving handset processes the sequence numbers and integrates the message

parts in the correct order for the recipient to view as a whole. This feature is called concatenated (or

long) SMS, and while it offers usability convenience, it actually further restricts the numbers of

characters that can be typed per SMS message. That is, concatenated SMS requires a special header

to be sent with every message, leaving only 153 characters for the user. Users are also billed the price

of a normal SMS message for every part comprising the whole. A 307-character SMS message is thus

billed as three messages (153 + 153 + 1), whereas only two messages would be billed in the absence

of automatic concatenation (160 + 147).

The profit margin of SMS messages is near 90%, and so the consumer is the big loser here. This

forces us to consider why concatenated messages are not billed as single messages, as the way in

which SMS messages are charged makes them one of the most expensive forms of data transfer in

existence. In the UK, it costs 374.49 GBP to transmit just 1 MB of data via SMS at 2008 rates. This

makes it 42 times more expensive than downloading the same amount of data from the Hubble space

telescope for which NASA charges 8.85 GBP per megabyte [6].

1

Univ
ers

ity
 of

 C
ap

e T
ow

n

1.2 Problem statement

The goal of this study is to design, implement and evaluate a dictionary-based method for compress-

ing English SMS text messages. We would have achieved our objective if, by applying the developed

compression scheme, an SMS can be transmitted and received in fewer parts than which would be

required without any form of compression – the standard case for SMS transmission.

It is easy for a design to fall short in practice and to avoid this mistake, an actual, working prototype

is built and tested against. Additionally, we will look at whether the method designed is a better fit for

SMS compression than other known compression methods such as Huffman encoding. The basis for

comparison is simple – whichever method requires the fewest parts to transmit a specific message is

the more suitable candidate for SMS compression. Among the compression methods, special

attention is given to Huffman encoding as it is the only method officially prescribed by the GSM

specification – albeit compression in general is not supported, as far as this author could determine,

on any of the leading handsets.

1.3 Dissertation outline

Chapter 2 provides background information on those aspects of SMS technology and compression

relevant to this study. Chapter 3 discusses related work from literature. Chapter 4 covers the design

and implementation of the compression method, the scientific approach taken to evaluate the

outcome and the metrics involved. Chapter 5 presents and discusses the findings and results. Chapter

6 presents the conclusion, and Chapter 7 suggests areas and ideas for future work.

2

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 2 - Background

2.1 SMS

Short message service (SMS) is a communication protocol for transmitting text messages over the

GSM network. The technology was introduced by the European Telecommunication Standards

Institute in 1991 [7]. SMS works quite simply: when a message is punched into a handset, it is sent to

a short message service centre. It is the job of the SMS centre to deliver the message to the recipient

or store the message for a later retry if the recipient cannot be reached, for example, when a phone is

switched off. There is no guarantee that an SMS message will be delivered, but operators usually

make their best attempt and only discard the message after a few days if they have no success.

The official terminology for a device that sends or receives an SMS message is a short message

service entity (SMSE); this term is used to describe, for example, a personal computer, mobile phone,

GSM modem or any other device that can send and/or receive SMS messages directly over the GSM

network. Although SMS is a standard, required part of the GSM network, more recently the techno-

logy has been carried over to developed wireless networks, such as 3G. Messages are limited to 160

characters, however, as a remnant of the GSM implementation in which messages were transmitted

using the Mobile Application Part of the SS7 signalling protocol [8], which limits payloads to 140

octets (8-bit bytes) or 1120 bits. In order to represent text characters as binary digits, a mapping set is

required. This is the same method used by personal computers for storing text. Every character in the

language is represented by a unique binary codeword. US-ASCII is a widely used binary alphabet (or

character set) in which every Latin character is assigned a unique 7-bit pattern. US-ASCII caters

mainly for English, so in order to support symbols from other languages, a much larger character set

is required. There are many different implementations, but Unicode UTF-8 and UTF-16 are some of

the more popular ones. The implementers of the GSM alphabet have had to deal with the same

issues; it comes as no surprise then that the default alphabet for English and western European

languages, called ETSI GSM 03.38, closely resembles US-ASCII and also uses 7-bit codewords [9].

Messages written in languages such as Chinese and Russian, on the other hand, are encoded using

16-bit Unicode USC-2. Depending on the language, the maximum number of characters that can be

fitted into a single SMS message will be either 160 (1120 bits = 7 bits per character * 160 characters)

or 70 (1120 bits = 16 bits per character * 70 characters). It is obvious then that the reason for the 160-

character limit is twofold, owing to both the choice of the SS7 MAP signalling protocol and the

implementation of the default character set [10]. There are advantages and disadvantages to any

character set implementation. Morse code assigns short codes to the most commonly used letters,

3

Univ
ers

ity
 of

 C
ap

e T
ow

n

making those easier to send. The drawback is that the longest character '0' takes 19 times longer to

transmit than the shortest character 'E'. When the telegraph was mechanized, the focus switched to

constant length codes whereby each character takes the same time to transmit. The smallest number

that can encode 26 characters using a binary signalling system is 32 or 2^5 (two to the power 5)

which means each character can be uniquely encoded using 5 bits. The French telegraph engineer

Emile Baudot invented this system in 1870. Early teleprinters commonly used the Baudot system and

if the designers of SMS had considered Baudot, then 224 characters per message (1120 / 5) , an

increase of 40%, would instead have been possibles.

SMS handsets and modems can operate in either text or PDU mode. Text mode is an encoding of the

underlying bit stream using GSM alphabets. PDU stands for protocol data unit and represents the

way digital information is coded and structured when it is transmitted. If complete control of the

data is required, then the text mode can be bypassed and the raw binary data can be directly manipu-

lated in terms of ones and zeroes (or, more specifically, as hexadecimal strings) in PDU mode. Since

binary data are verbose, PDU data are usually specified in terms of hexadecimal bytes. A normal 8-

bit byte can be represented as 1111 1111, which can be written as FF in hexadecimal (1111 in binary

= 15 in decimal = F in hexadecimal).

The transmission of a message can be broken down into two steps, namely, mobile-originated (MO)

and mobile-terminated (MT) services. A mobile-originated service deals with transmitting a message

from the sending phone to the SMS centre, while the mobile-terminated service is concerned with

transporting the message from the SMS centre to the destination phone. The SMS-SUBMIT PDU

relates to the mobile-originated service, while the SMS-DELIVER PDU relates to the mobile-termin-

ated service. When control over raw data is required, both types of PDU must be addressed. To send

a message, an SMS-SUBMIT PDU must be created, and to receive an SMS message, the SMS-DE-

LIVER PDU must be interpreted. The main point is that PDU mode allows for the manipulation of

SMS in virtually any way desired. The catch, of course, is that such a message is meaningless to a

receiving handset unless it can process the manipulation; otherwise, the handset simply has a

message that it does not understand and cannot display to the user in a meaningful way. In order to

transmit a message this way, a custom-protocol stack layered on top of the normal SMS stack that is

available to both the sender and the receiver is needed. This could be done by either inserting the

code into the handset firmware or by encoding the message before sending it to the GSM modem

and, on receipt, instructing the GSM modem not to interpret the message but rather to hand it over to

the custom stack. Ideally, the stack would be adopted in the GSM specification, which would mean

handset manufacturers would support the feature natively. To first demonstrate the protocol practic-

ally, however, a custom stack must be introduced and wrapped around the GSM modem interface.

4

Univ
ers

ity
 of

 C
ap

e T
ow

n

This can be done with a PC running the stack and interfacing with the GSM modem over a physical

serial link. The SMS specification supports this set-up through the Hayes set of AT commands [11].

Initially, when users had to type messages exceeding the 160-character limit, they would type one

message, send it, then continue the conversation by typing the next message and send that. It was not

long, however, before some of the handset manufacturers started to automate the process by allowing

the user to type a long message in its entirety, press send and let the handset break the message into

160-character parts to send each individually. At this stage, there was no support for reassembling the

message on the receiving side. The recipient received the parts, often out of order, and opened each

of the parts individually to read it. Eventually, the idea of concatenated (or long) SMS was taken up

officially in the GSM specification, which meant that handset manufacturers could implement

functionality in a standard way. The concatenated SMS specification stated that the handset should

label each of the parts with a sequence number, that is, the equivalent of “part 2 of 3”, to allow the

receiving handset to recombine the parts in the correct order in order to display the message to the

user as a whole.

The solution for concatenated SMS builds on the core PDU structure and embeds the concatenated

meta-information into bits that would otherwise be used for the text message payload. The concaten-

ated meta-information (i.e. “part 2 or 3”) is incorporated as a special 6-byte header called the concat -

enated SMS user datagram header (UDH). The header is present in every part of a concatenated SMS

message, which reduces the storage space for the text message from 1120 bits to 1072 bits (1120 – 6

bytes * 8 bits per byte). Therefore, only 153 characters (1072 / 7 bits per character) can be fitted into

each part of a concatenated SMS message. The binary data making up the PDU packets are

transferred in byte-high, bit-low order. In other words, the higher-order bytes are transferred first,

followed by the lower-order bytes. The bytes themselves are transmitted one bit at a time, from the

lowest-order bit first to the highest-order bit. For example, the hexadecimal string 02AE would be

transferred as 1010111000000010 as shown in Table 2.1.

HEX BINARY

BYTE1 02 0 0 0 0 0 0 1 0

BYTE0 AE 1 0 1 0 1 1 1 0

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

5

Table 2.1: PDU packets are transferred in byte-high bit-low order.

Univ
ers

ity
 of

 C
ap

e T
ow

n

2.2 Compression and decompression

Text compression is the process of making a body of printed or written work more compact in order

to minimise the space required for storage or transmission. The bit or binary digit is the basic unit of

information storage and transmission in digital computing. Therefore, in computer science, text

compression involves encoding the content using fewer bits than the number required to represent the

message in its original state [12]. However, compressed data is not immediately useful and must first

be restored by reversing the changes in a process called decompression. Compression involves two

main steps, namely, modelling and coding. Modelling represents derived knowledge about the

subject data and typically incorporates a redundancy study [13]. The resulting model and data are

then fed into a coder, which encodes the data into a more compact form by applying the model. The

coding part involves feeding the model and data into an algorithm for encoding. The algorithm reads

the model and uses the contained domain context to calculate the best way of compacting the data. To

decompress the data, these steps are reversed in that the model and compacted data are fed into an

algorithm so that they can be decoded to produce the prototype source.

When air is compressed, the degree of compression is a result of the pressure applied. To compress

air into a smaller volume, more pressure must be applied; similarly there is a trade-off that must be

considered when compressing text. The design and selection of a particular scheme involves consid-

ering the achievable compression ratio against various factors in terms of acceptable distortion,

processing power, memory requirements and time of execution. Text is usually compressed in such a

way that the original message can be reconstructed exactly. This is called lossless compression.

There are situations in which it becomes perfectly acceptable to lose some of the original representa-

tion in order to achieve a higher compression ratio. The popular MP3 audio format uses a lossy

compression scheme to vastly reduce the bits required to store music tracks while still offering near-

CD-quality listening. This reduction is achieved by sacrificing the precision of certain sounds

occurring in the range outside what most people can discern [14]. Lossless compression allows the

original information to be recreated exactly, without any loss of quality or precision. The disadvant -

age is that the resulting compression ratio will not be as high as that which can be achieved using

lossy compression, through which some of the data can be discarded. Lossless compression typically

involves some form of entropy encoding, which exploits statistical redundancy to make the data more

concise while preserving the original precision. The idea is to replace repeating units of the data with

shorter codewords. The units that appear most frequently are replaced with the shortest codewords,

and the ones that appear least often are replaced with the longest codewords. A codeword is nothing

more than a sequence of bits, the length of which equals the number of bits in a sequence. The major

difference between the different schemes is the way in which they produce the statistical model from

6

Univ
ers

ity
 of

 C
ap

e T
ow

n

which frequencies or probabilities are determined. The schemes all employ either a static or an

adaptive model. Static models are those produced entirely before the encoding stage; the encoder

receives the model and does not modify it in any way. Adaptive systems work differently, as the

model changes during encoding in response to analyses of the growing dataset. In an extreme case,

an adaptive system might start with a perfectly trivial or empty model, yield poor results and then

adapt to compact the data dynamically better by performing a single pass or multiple iterations of

introspection and compression.

Lossy compression followed by decompression does not restore the original data to exactly the same

state. When the data are compressed, there is a net loss of quality or precision that cannot be

recovered during decompression. While lossless compression is typically used for text and computer

data files, it is very common to use lossy compression for rich media such as pictures (e.g. JPEG),

music (e.g. MP3) and films (e.g. MPEG-4). The main advantage of lossy over lossless encoding is

that much smaller encodings can be created while still remaining useful. Sometimes the quality

difference between the original and the restored data is almost imperceptible. A naïve but illustrative

example of lossy compression would involve storing the number 9.99999999 as 10, which is a

reduction in character count of 80%. The original precision is lost, but the approximation is close.

There are two main categories of lossy compression method, namely, transform and predictive

methods. Transform codes take samples from a music track, for example, break it into parts,

transform these in terms of a new basis coordinate and reduce the discrete values in a process called

quantisation before entropy encodes the result. In predictive lossy compression, the next target

sample is predicted on the basis of a previous result. The differential between the actual and predicted

result is then quantised and encoded.

The branch of information theory called rate-distortion science deals with determining the amount of

precision that may be sacrificed during lossy compression without rendering the result unusable.

Dictionary-based compression is among the most popular forms of lossless data compression [15].

The data are broken up into non-overlapping units called phrases, and these are then mapped to

shorter bit strings called codewords. The dictionary is the tool that provides the mapping between

phrases and codewords. When compressing text, the simplest implementation of this scheme would

involve replacing each word with a codeword representing the index of the word in a dictionary such

as the Oxford English Dictionary. The representation of verbal information as single numbers can

optimize main storage, peripheral storage, and data transmission [16]. In a large dictionary however,

the index for a word can consist of more digits than the word it represents has characters. However,

this could be offset somewhat by the advantage that words at the start of the dictionary have indices

shorter than their corresponding words. The other drawback of this method is the sheer size of the

7

Univ
ers

ity
 of

 C
ap

e T
ow

n

dictionary. If the dictionary were to be encoded along with the message so that the recipient would

have it to decompress the text, then the compressed message might be significantly larger than the

original input. Considering that the Oxford English Dictionary contains 59 million words and

requires 540 megabytes of storage space, it becomes obvious why this approach is impractical.

However, since the dictionary is static and not based on the content of the message, another option is

to omit it from the encoded form if an agreement can be reached on the recipient having the diction-

ary on hand. However, there are methods that are more sophisticated than using words as the phrases

to replace. The problem with words involves the sheer number of possibilities; encoding characters,

for instance, reduces the size of the set significantly, and some dictionary-based methods are predic-

ated on this approach. In fact, this is the single method used to represent text on computers.

Computers only understand binary digits and cannot, for example, make sense of the concept “a” or

“b” natively. The US ASCII Character Set, for example, uses a dictionary of 7-bit patterns to repres-

ent every character in the English alphabet. Larger sets such as Unicode UTF-8 use the same diction-

ary design and incorporate symbols not only from English but from all modern written languages by

allowing each symbol to be represented by anything from 8 to 32 bits. This is a form of encoding,

however, and not compression. Compression of a character would require representing that character

with fewer bits than those required using the bit pattern from its character set. Dictionary size and the

speed at which lookups can be made are the two trade-offs between cost and latency.

Huffman coding is a form of lossless, dictionary-based data compression using entropy theory based

on the assumption that the input data consist of some symbols, be they characters or bit sequences,

which occur more frequently than others [17]. Data that satisfy this assumption can be compressed

quite well, while those that do not are better suited to other compression means. The assumption

does, however, hold true for most text files and raw images. The algorithm first scans the data input,

then identifies repeating symbols, and finally organises these into a frequency table sorted from most

to least frequent. The entries from the table are then organised into a binary tree, the purpose of

which is to derive a unique bit sequence of variable length for each of the symbols. The bottom-up

layout of the tree ensures that the most frequently used symbols are assigned the shortest bit

sequences, while the less frequent ones have longer sequences. The algorithm then makes a second

pass over the original data, replacing each of the symbols with the bit sequence derived from the tree

before also storing the frequency table in a compression header. During decompression, the

frequency table is read from the header, and then, just as in compression, a tree is created to identify

the mapping between bit sequences and symbols. The compressed data is then scanned, and each of

the bit sequences is replaced with the corresponding symbol from the tree so as to arrive at the

original data exactly. The most obvious question regarding this method of compression is why it is

necessary to re-create the tree from the frequency table stored in the compression header rather than

8

Univ
ers

ity
 of

 C
ap

e T
ow

n

just storing the tree instead of the table. The answer is that the bit sequences assigned to the symbols

would take up more real estate in terms of storage than the frequency of each symbol. The main

concept on which Huffman encoding is based is very simple and not even unique; it represents

symbols with codewords that are shorter than their original encoding allows based on the frequency

of the symbols. The cleverness of the Huffman method rests in the use of a bottom-up tree to find

shorter codewords. It is for this reason that, even though the frequency table is stored in the compres-

sion header, it is known by a rather generic name, while the tree is crowned with the inventor's name,

that is, the Huffman tree. A simple example can be used to illustrate Huffman encoding. Table 2.2

shows the frequency table for the text "aaaaaabbbbcc".

Symbol Frequency

a 6

b 4

c 2

The next step is to build the Huffman tree. There are different ways to explain the algorithm: two

instances being mathematical and logical. The logical method described next is easier to understand.

Initially, there are no parents, only disconnected leaf nodes. The tree is built by repeatedly iterating

over the existing nodes and finding the two nodes that have the lowest frequency number and are not

yet a parent. The two nodes, once found, are then given a common parent node that is assigned a

frequency equal to the sum of that of the children. This process is repeated over and over until a

single parent can be placed at the top of the tree, unifying all the branches. This so-called “ultimate”

parent node is called the root. Figure 2.1 shows the Huffman tree in line with this example.

a = [6]--------------------------------+

 |

 |

 |-------------[12]

b = [4]--------------+ |

 | |

 |-------[6]-------+

 |

c = [2]--------------+

9

Figure 2.1: Huffman tree for "aaaaaabbbbcc" showing frequency numbering.

Table 2.2: Huffman frequency table for "aaaaaabbbbcc".

Univ
ers

ity
 of

 C
ap

e T
ow

n

The next step is to traverse the tree from the root to each of the leaves, assigning a 1 to the path along

every left branch and a 0 to the branch on the right as depicted in Figure 2.2.

 (0)

a = [6]--------------------------------+

 |

 |

 (0) |-------------[12]

b = [4]--------------+ |

 | |

 |-------[6]-------+

 | (1)

c = [2]--------------+

 (1)

The bit sequence assigned to every symbol is created by traversing the direct path from the root to

the leaf assigned to the symbol and appending all of the 1s or 0s encountered along the way. Table

2.3 shows the codebook or dictionary with the substitution codes that will be used to represent each

of the characters in the message. Figure 2.3 shows how the message is encoded by representing each

of the characters by its corresponding codeword from the dictionary.

Symbol Bit sequence = tree path from root

a 0

b 10

c 11

 a a a a a a b b b b c c

| 0 | 0 | 0 | 0 | 0 | 0 | 10 | 10 | 10 | 10 | 11 | 11 |

10

Table 2.3: Huffman codebook for "aaaaaabbbbcc".

Figure 2.3: Message encoding for "aaaaaabbbbcc".

Figure 2.2: Huffman tree for "aaaaaabbbbcc" showing numbered paths.

Univ
ers

ity
 of

 C
ap

e T
ow

n

The length of the code is inversely proportional to the estimated frequency of occurrence of the

character in question; in other words, more common characters are represented by shorter strings of

bits in comparison to less common characters, which employ longer bit strings. All of this is

calculated using a binary tree, more commonly known as a “Huffman tree”. Thus, to take an extreme

example involving an SMS text message written in English, we can expect the letter “a” to appear far

more regularly than the letter “z”; likewise, an “e” will appear more frequently than an “n” but

potentially not as often as a space. The corresponding bit patterns will reflect this. The estimated

frequency of the occurrence of characters can be determined in one of three ways. There can be a

pre-agreed and therefore fixed character distribution frequency. The advantage of this is that streams

of data (in our case, characters in a text message) that comply with the fixed distribution frequency

improve the overall compression rate. The disadvantage lies in the possibility that an input stream of

data may emerge that deviates significantly from the pre-agreed character frequency distribution. To

avoid this, there is an alternative “dynamic” Huffman encoding method. In this scenario, a coder

monitors and adapts the frequency distribution based on the appearance of previous characters in the

bit stream during input processing. The decoder then generates the Huffman tree, which reflects the

information processed in the bit stream. Gallager first showed showed that a Huffman tree with a

distinguished node could be converted to another Huffman tree by swapping subtrees of equal weight

[18, 19]. A distinguished node is one from which every other node on the tree can be reached

without a loop. The conversion can be performed in time logarithmic to the number of nodes on the

tree and without requiring structural change if the count on the distinguished node were to be

increased. Knuth built on this idea by producing an algorithm that maintains a Huffman tree when

leaf weights are decremented or incremented [20]. Vitter improved on the algorithm further by

introducing a new system for numbering nodes corresponding to their level ordering [21].

The compressed size of a message encoded with a dynamic Huffman algorithm will usually be less

than that obtainable using the original static algorithm, since the coding can be different or tailored to

different places in the input stream. With small amounts of data, however, such as we may expect to

find in an SMS text message, this comes at a price as a result of the byte space occupied by the

compressor header, which is used to generate the character frequency distribution. As a third alternat-

ive, both methods can be combined so that there is a fixed frequency distribution that can then be

amended by the coder should any significant deviations arise in the data stream. This is even less

suited to short messages, however, unless one reduces the number of characters within the character

frequency distribution list. Those characters that are less common are assigned a “special character”

status when they do appear, and the coder adds them to the frequency distribution when appropriate.

McIntyre and Pechura [22] showed that, for short messages, the dynamic and semi-dynamic methods

are less effective than the static method, which uses a fixed coding tree for all messages. There are

11

Univ
ers

ity
 of

 C
ap

e T
ow

n

methods such as arithmetic coding [23, 24, 25, 26] which are superior [27] in most respects to

Huffman coding. However, the GSM 03.42 compression algorithm for text messaging services [28]

requires the implementation of raw untrained dynamic Huffman coding only. This paper proposes an

alternative method to that outlined in GSM 03.42 and therefore discussion and comparison will be

limited to Huffman coding.

12

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 3 - Related work

Textspeak is an abbreviated form of slang in which proper spelling, grammar and punctuation are

ignored in favour of brevity, thereby allowing users to save on keystrokes while also reducing the

size of the message. According to Döring [29], the challenges of a small screen, restricted keypad and

160-character limit has encouraged the evolution of textspeak as an even more abbreviated language

than that which emerged prior to that in chatrooms and virtual worlds. The associated keystroke

benefits are less important now that predictive texting is widely available, but textspeak does reduce

message size and, as such, can be viewed as a form of user-performed compression. For example,

vowels are often removed from existing words to create abbreviations such as "txt" for "text" and

"pls" for "please." Common phrases may be reduced to acronyms, so that "laugh out loud" and "be

right back" become "lol" and "brb," respectively. Words are also often replaced by similar-sounding

spellings. For example, "see" becomes "c" and "you" becomes "u" so that "see you" becomes "cu".

The same can be done with syllables so that "great" becomes "gr8". Textspeak can greatly reduce the

size of a message and speed up typing; however, although SMS provides an informal environment

where mistakes are acceptable, it may not appeal to everyone or be appropriate for all situations.

However, there has clearly been a need to shorten messages and, in 1997, Vodafone undertook a

study to investigate the way handsets might compress SMS messages. Vodafone's approach focused

on using Huffman encoding to compress the SMS text prior to transmission and required the

compression stack to be installed on the sending and receiving handsets. This method used a

variation of the standard Huffman algorithm called dynamic or adaptive Huffman encoding, which

compresses data as it is transmitted. The difference between the two methods is that standard

Huffman encoding requires two passes over the data, whereas adaptive Huffman uses a single pass.

Adaptive Huffman is faster to perform, but it is not as optimal as standard Huffman encoding in

terms of the compression ratio that can be achieved. Using this method, Vodafone discovered that

they could increase the number of characters per SMS message to 200. Additionally, they extended

the algorithm further to incorporate the use of a static dictionary for business English. The dictionary

codewords consisted of a list of keywords of up to 255 characters that could be replaced in the

original text to further increase compression efficiency. With all of the options enabled, the number

of characters per message was extended to 240, an increase of 50% [30]. The dictionary option

supported English text only.

In 1998, the European Telecommunications Standards Institute extended the GSM specification with

official support for SMS compression based on the work pioneered by Vodafone but enhanced with

13

Univ
ers

ity
 of

 C
ap

e T
ow

n

further functionality. Unlike the Vodafone implementation, GSM 03.42 not only supports English but

also western European languages such as German, Italian, French, Spanish, Dutch, Swedish, Danish

and so on. At the time of writing, the specification has only been implemented for English and

German, while support for the remaining western European languages is pending completion. The

specification required only that untrained, adaptive Huffman compression be included in any

implementation purporting to support compression. Character grouping is an optional feature

whereby characters that are expected to appear together are grouped such that transitions are

signalled not between individual characters, but between groups of characters. The net result is a

smaller Huffman tree together with an increased compression ratio. The tree for the text “abcABC”

would thus not contain characters for both lower-case and upper-case characters but instead for the

lower-case characters only and then a special non-printable character to signal the transition to upper-

case. The stream would thus be encoded as “abc[UpperCaseTransitionSignal]abc”. The savings here

are not in the payload but in the tree that would be freed from storing nodes for “A and B and C”.

The algorithm also optionally supports keyword substitution through the use of language-specific

dictionaries. The dictionary for each language supports 128 static entries for common words. The

presence of a keyword substitution is signalled with a special keyword preceding the substitution. A

keyword is encoded using 10 fixed bits. If, for example, the dictionary contained only the words

“this” and “sunday”, then the text “i'll see you this sunday” would be encoded as “i'll see you

[KeyWordSignal][10 bits = this][KeyWordSignal][10 bits = sunday]”. The final option supported is

punctuation processing, which, if used, distorts the text so that the message does not resemble the

original exactly. Punctuation processing removes leading and trailing white spaces from the input

stream and reduces otherwise redundant spaces to a single space. On encoding, the first character of

every sentence is converted to lower case, and the last character of the stream is dropped if it is a full

stop. On decoding, the cases are restored except for the final full stop. In other words, when punctu-

ation processing is used, GSM 03.42 constitutes a form of lossy compression.

CleverTexting [31] is a commercial, patent-pending SMS compression scheme from an Indian

company by the same name. The compression scheme is implemented as a Java midlet that is

installed on sending and receiving handsets. CleverTexting was released in 2009 and can achieve a

30 to 40% increase in text length, extending the number of characters in an SMS to 224. The

company website does not fully describe the compression scheme, but does explain a custom

implementation is created for each of the supported languages and that the punctuation such as

spaces, commas and full stops are not removed.

The Technical University of Berlin and Aalborg University in Denmark have researched compressing

short messages using prediction by partial matching (PPM). PPM is categorized as a form of adaptive

14

Univ
ers

ity
 of

 C
ap

e T
ow

n

statistical compression that builds a context model of the input stream to predict future symbols. The

probability of each symbol is passed though an arithmetic coder to compute the compressed sequence

of bits. Arithmetic coding does not replace each symbol with a code, but instead encodes the entire

message into a single number which will be a fraction n where (0.0 ≤ n < 1.0). The processor is novel

in that it does not use the dictionary to store the single character arrays and their probability. Instead,

it uses a single data array where each element consists of two bytes: The first byte contains a symbol

count and the second a parity check byte. The single elements are accessed by a specific hash

function that assigns each character array an element of the data array. Collisions are detected by a

parity check of the hash function input and the parity byte of the mapped element in the data array.

This data model, together with functions to compute the complete statistics of the requested symbol,

form the context model. This technique increases the length of an SMS by 50 to 55%, allowing the

number of characters in an SMS message to be increased from 160 characters to 320–340 characters

[32,33]. The researchers have applied for a patent on the work with the help of the Patent and

Contract Unit at Aalborg University and this is currently pending. The team consists of Stephan Rein,

Clemens Guehmann and Frank Fitzek. Frank Fitzek co-founded Acticom GmbH in Berlin, which is a

leading supplier of protocol stack software for companies such as LG Electronics, Novell and VTT

and offers SMS Zipper as a commercial product based on the published work: SMS Zipper is

installed as a Java application on the sending and receiving handsets, which must support J2ME.

SMS Zipper uses an external model to support specific languages, which allows the model to be

tailored to a specific language in order to yield the best possible results. It also allows the stack to be

easily expanded to support additional languages. At the time of writing, SMS Zipper supports

English, German, Danish and Italian. In [32], Rein, Guehmann and Fitzek state that, to their

knowledge, their paper is the first to combine lossless short message compression with a low-com-

plexity context modelling scheme.

The area of text compression has been well investigated, but little research has been done on its

application to the domain of mobile text messaging. In addition to compressing short messages, there

is the challenge of encoding the data in a way that is compliant with the GSM specification for SMS

PDUs. Nakayama [34] proposes a method whereby, unlike conventional paradigms that send

messages in the form of character sequences, key code sequences are used that reflect the user’s

typing history to author the message. The key-code representation can be as efficient as 4 bits per key

code. Experiments using the Canterbury corpus and the optimal dictionary have shown that key-code

representation requires 2.95 fewer bits per character compared to the conventional GSM 03.38

representation. Using this method, each character can be encoded in 4.05 bits. After evaluating LD-

based compression, we will revisit the methods discussed here to compare the resulting compression

ratios.

15

Univ
ers

ity
 of

 C
ap

e T
ow

n

16

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 4 - Design and implementation

4.1 Algorithm

We propose to implement a software algorithm for compressing SMS messages. The core method of

coding involves the use of a bespoke dictionary containing short keywords to represent English

words. Instead of sending an SMS message as normal text, the message is processed with the English

words being replaced with shorter keywords from the dictionary. In other words, if we wish to send

the message "Hello World" and using the dictionary from Table 4.1, we could encode the message as

"1 2".

English Word Replacement Keyword

Hello 1

World 2

This is, of course, a very naive implementation, but it does demonstrate the fundamental concept,

namely, the replacement of English words with much shorter indicators. In the above example, the

number of characters was reduced from 11 (including spaces) to 3, which is a drastic reduction in

size. To accomplish this type of encoding, the dictionary should contain as many entries as possible.

However, there will be cases in which certain words are not found in the dictionary. In such cases, the

word will not be substituted but rather kept as is. If we consider the message "Hello Again World"

using the same example dictionary as before, then we lack a dictionary entry for "Again". In other

words, we do not have a so-called “hit” in the dictionary, and the resulting encoding will look like "1

Again 2". The reduction is not as drastic this time, but it is still significant. This means that we can

encode any text message and not merely messages in which all the words are found in the dictionary.

This is the fundamental basis of the coding mechanism proposed in this study. Of course, the charac-

ters making up the word "Again" would still need to be encoded according to a character alphabet. To

avoid fracturing the implementation to accommodate both a word dictionary and a character

alphabet, the two structures are combined so that the lossy dictionary-based dictionary contains

entries for characters and words. There are also special signalling entries to indicate conditions such

as "Yes, this message was encoded using our algorithm". Further discussion of the signalling entries

is deferred until a later section. Additionally, the keywords are not actually textual as described

above, but are rather unique binary sequences. On the receiving side, the message must be decoded

17

Table 4.1: Example dictionary showing how shorter codes can be used to substitute for longer
sections of text (in this case words).

Univ
ers

ity
 of

 C
ap

e T
ow

n

again. This decoder considers the input stream, parses out the symbols and then looks up each

symbol against an exact copy of the dictionary that was used on the sending side. The binary symbols

are replaced with their corresponding textual entries. Some of the symbols are replaced by word

entries, while others are replaced by character entries. Table 4.2 and 4.3 show the steps involved to

respectively compress and decompress an SMS message using the LD-based method..

Step Name Description

1 Preprocessing Eliminate redundant whitespace. Eliminate non-printable characters.
Convert all text to lowercase.

2 Parsing Perform lexical analysis of input stream and parse text into words and
punctuation characters.

3 Add compression
header

A special compression header is constructed using a signalling entry
from the dictionary.

4 Dictionary
replacement

Words from the message are replaced with keywords from the
dictionary. Words not found in the dictionary are encoded one
character at a time using binary keywords from the dictionary.

5 PDU structuring The binary stream of keywords is packaged according to the rules for
a SMS SUBMIT PDU.

Step Name Description

1 PDU extraction Extract the data stream representing the message from the PDU
DELIVER PDU.

2 Recognition Inspect the first byte of the data stream to determine whether it was
encoded using LD-based compression. If not, then abort further
processing and treat as a normal SMS.

3 Dictionary
replacement

Replace binary keywords in data stream with textual entries from
dictionary. Some of the keywords will map to word entries, others to
character entries.

4.2 Dictionary

In designing the dictionary, care should be taken to ensure that, during encoding, the hit ratio for

matching words in the SMS message to entries in the dictionary is as high as possible. The more

words there are that can be replaced with short codewords from the dictionary, the better the

compression result will be. The dictionary must thus contain those words that will be used most

frequently in SMS messages. One way to accomplish this would be to analyse thousands and

18

Table 4.2: Algorithm outline for compressing an SMS message using LD-based encoding.

Table 4.3: Algorithm outline for decompressing an LD-based SMS message.
Univ

ers
ity

 of
 C

ap
e T

ow
n

thousands of SMS messages and build up a statistical model indicating the frequency at which words

occur. The dictionary would then be created by adding words from the statistical model, starting with

the most frequently occurring words until all available slots have been filled. The problem with this

approach is that it is hard to find such an archive of SMS messages. Another approach might be to

take a literary corpus of written work and build the statistical model from that. There are indeed

sufficient books available in the public domain to follow this approach. However, the language used

in SMS messages tends not to resemble that found in books but rather is generally patterned like the

informal flow of spoken speech. According to Lingley [35], written speech is organised and transac-

tional, while spoken speech is typically unplanned, less structured and interactive. The researchers in

this study decided to create a statistical model using spoken speech as the training medium. In order

to do so they took scripts from television shows and films, which are often freely available on the

Internet. In computational linguistics, this type of statistical model is called a frequency list. In

simple terms, a frequency list is a sorted list of words and their frequencies; the frequency indicates

the number of occurrences in a given corpus, which is, in this case, television and film dialogue.

Table 4.4 show the ten most common words in the English language as rated by the Oxford English

Corpus [36].

Rank Word

1 the

2 be

3 to

4 of

5 and

6 a

7 in

8 that

9 have

10 I

A similar study was performed by the open content group Wiktionary, using collections of TV and

film scripts and transcripts mainly downloaded from the Internet. Table 4.5 shows the most common

words as indicated by Wiktionary [36].

19

Table 4.4: Ten most common words according to the Oxford English Corpus.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Rank Word

1 you

2 I

3 to

4 the

5 a

6 and

7 that

8 it

9 of

10 me

There is very little difference between the lists, and significantly, there are very few differences when

comparing the 100 most common words, as the same words appear with only slightly different ranks.

For instance, the words "be", "in" and "have" are missing from the Wiktionary top-10 list but appear

instead ranked at 25, 13 and 18, respectively. The researchers used the frequency lists from the

Wiktionary project as the basis for constructing the dictionary only because the entries are expected

to align slightly better with regular spoken dialogue. The Wiktionary project counted 29,213,800

words of transcript dialogue. Hyphenated words were broken down so that, for example, "happy-

juice" was counted as "happy" and "juice." Apostrophes were stripped from words, unless they were

entirely contained within word characters. For instance, "'cause" would be counted as "cause", but

"don't" would be counted as "don't". All of the words were converted to lower case, so "He" and "he"

would both be counted as "he". The only exception is "I", which always appeared in upper case.

Verbal expressions such as "phew" and "brr" were counted, but they only entered the lower-fre -

quency end of the list.

There are three types of entry in the dictionary, namely, signalling symbols, character symbols and

word symbols. Signalling systems indicate special processing conditions. For instance, the decoder

algorithm reads the first byte of the input stream to determine if the LD-based compression instruc-

tion is set. This instruction is a signalling symbol that indicates to the decoder that the message was

indeed encoded using LD-based compression and can be decompressed safely. If the signalling

symbol is not set, then the input stream is treated as normal, uncompressed SMS data. The dictionary

can accommodate exactly 32,768 entries. This is because the coder reads and writes data in either 8-

or 16-bit chunks and uses the highest-order bit of the highest-order byte of every chunk to indicate

the size of the chunk. An 8-bit chunk would be stored as 0xxxxxxx, and a 16-bit chunk would be

20

Table 4.5: Ten most common words as indicated by Wiktionary.

Univ
ers

ity
 of

 C
ap

e T
ow

n

stored as 1xxxxxxxxxxxxxxxx. If we bear in mind that the value represented in 8 bits by 0xxxxxxxx

is equivalent to the 16-bit value represented by 00000000 0xxxxxxxx, we can create a continuous

range of values from 00000000 00000000 to 11111111 11111111. There is a catch, however, in that

the first bit cannot be used, since it must indicate the size of the chunk; this leaves 15 bit positions in

the lower order. The binary number 111 1111 1111 1111 can be written as 0111 1111 1111 1111. This

means that the range of slots in the dictionary will be numbered from 00000000 to 01111111

11111111, which, in decimal notation, is 0 to 32,767, for a total of 32,768 places.

Before seeding the dictionary, the Wiktionary lists were further processed by removing all words that

consisted of a single character, such as "a" and "I", as such words already appear in the dictionary as

single character entries instead of word entries. In the end, the dictionary takes the form illustrated in

Table 4.6.

Number in
decimal

Symbol Symbol
type

Bits to
encode

00000 <LD-based compression indicator> signal 7

00001 <sp> character 7

00002 ! character 7

...

00040 a 7

00041 b character 7

...

00070 you<sp> word 7

00071 to<sp> word 7

...

00126 at<sp> word 7

00127 how<sp> word 7

00128 got<sp> word 15

00129 there<sp> word 15

...

16418 you word 15

16419 to word 15

...

32766 brr word 15

32767 grr word 15

21

Table 4.6: Partial extract from LD-based dictionary.

Univ
ers

ity
 of

 C
ap

e T
ow

n

The dictionary (partially shown in Table 4.6) contains only lower-case entries. This simplifies the

problem of addressing different permutations of words such as "The", "THE" and "the". If all

permutations were to be accommodated in the dictionary, then we would quickly run out of space and

far fewer unique words could be supported. This means that the input stream has to be converted to

lower case prior to encoding and that the original case will not be recovered upon decoding. It is this

aspect that makes this encoding "lossy", but this is also the reason that we are able to achieve a

relatively high compression rate. Furthermore, it takes 7 bits to encode a space character, as denoted

by <sp> above. Since most words are followed by a space, this is a significant waste of space in that

the number of spaces will usually be equal to 1 less than the number of words in the message. The

dictionary contains an optimisation whereby all of the words are double encoded, once followed by a

space and once without. In other words, the word "you" appears in the dictionary as both "you" and

"you<sp>". This obviously cuts the number of unique words that can be accommodated in the

dictionary in half, but with an sufficiently large dictionary this is not a problem. The LD-based

dictionary stores more than 16,000 of the most commonly used English words in 316 Kb. The

Oxford English Corpus indicates that English consists of a small number of very common words, a

larger number of intermediate ones and an indefinitely long “tail” of rare terms [37]. Nation [38]

estimate that a native English speaker would need to know around 5,000 words in order to read a

novel written for teenagers. This type of novel was selected because it is deemed to be a good

example of an accessible work of literature. In 2006, Nation ISP published the results of a very

detailed study on how many words are needed for reading and writing at different skill levels (shown

in Table 4.7).

22

Univ
ers

ity
 of

 C
ap

e T
ow

n

Question Answer

How many words do you need to read a
novel?

2,000 words for 87.83% coverage
4,000 words plus proper nouns for 94.8% coverage
9,000 words plus proper nouns for 98.24% coverage
proper nouns account for 1.53%

How many words do you need to read
newspapers?

2,000 words for 83% coverage
4,000 words plus proper nouns for 95% coverage
8,000 words plus proper nouns for 98% coverage
proper nouns account for 4.55% to 6.12%

How many words do you need to read
graded readers?

2,000 words for 91.20 % coverage
2,000 words plus proper nouns for 96.75 % coverage
3,000 words plus proper nouns for 98.86 % coverage
proper nouns account for 5.55%

How many words do you need to know
to be familiar with most words in a
children’s movie?

4,000 words plus proper nouns for 96.70% coverage
7,000 words plus proper nouns for 98.08% coverage
proper nouns account for 1.47%

How many words do you need to cope
with an unscripted talk-back interview?

2,000 words for 89.41% coverage
3,000 words plus proper nouns for 96.52% coverage
6,000 words plus proper nouns for 98.26% coverage
7,000 words plus proper nouns for 98.62% coverage
proper nouns account for 1.29%

How many words do you need to cope
with unscripted conversation?

2,000 words for 89.35% coverage
3,000 words plus proper nouns for 96.03% coverage
6,000 words plus proper nouns for 97.67% coverage
7,000 words plus proper nouns for 97.95% coverage
proper nouns account for 1.03%

The conclusion is that 8,000 to 9,000 words are needed for reading and writing and 6,000 to 7,000

words are needed for speaking and listening in order to understand 98% of content. The dictionary

should thus contain at least the 9,000 most common English words in order to approach a 100% hit

ratio, but in fact it contains the first 16,000 most common words.

4.3 Keyword substitution

The entries from the dictionary are all keyed against a binary pattern consisting of either 7 or 15 bits.

Entries 0–127 are stored using 7 bits, and those from 128–32,767 are stored in 15 bits. During

encoding, an extra bit is added just prior to writing the entry to indicate whether the entry itself is

stored in 7 or 15 bits. A simplified version of the coder, which ignores signalling entries for the sake

23

Table 4.7: How large a vocabulary is needed for reading and listening?

Univ
ers

ity
 of

 C
ap

e T
ow

n

of explanation, would encode the text "I love summer" according to the mapping shown in Table 4.8.

During transmission, the mapping will be used to produce the binary stream illustrated in Figure 4.1.

i <sp> love<sp> summer

dictionary index (dec) 48 1 179 17505

dictionary index (bin) 0110000 0000001 000000010110011 100010001100001

0 0110000 0 0000001 1 000000010110011 1 100010001100001

Table 4.9 shows hows the binary stream would be decoded on the receiving side.

Bits 7-bit flag 15-bit flag Symbol

0 x

0110000 i

0 x

0000001 <sp>

1 x

000000010110011 love<sp>

1 x

100010001100001 summer

4.4 The prototype

A working proof of concept was created to test the theory behind the code design, as well as to help

identify problems in the design. The first step was to generate the dictionary. Generating such a large

codebook by hand would have been a slow, error-prone process, and so instead it was done using a

combination of scripting and programming. Most of the prototype was implemented in OpenJDK 1.6

Java accompanied by Bash front-end scripts. True to the Unix philosophy, the prototype was written

as a combination of various parts or libraries. Libraries, all created in Java, were created to (1) accept

a text message from the command line; (2) compress the message using the LD-based routine; (3)

encode the compressed message into an SMS PDU; and (4) submit the PDU to the GSM modem. A

24

Table 4.8: Encoding “I love summer” with the LD-based algorithm.

Table 4.9: Decoding the LD-based binary stream for “I love summer”.

Figure 4.1: Binary stream for “I love summer” rendered by LD-based algorithm.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Siemens TC35i terminal (shown in Figure 4.2) provided the GSM interface for sending and receiving

SMS messages.

The TC35i can be instructed using serial AT commands and is fully compliant with GSM 07.05 for

SMS, which makes it straightforward to implement a driver using only GSM documentation. The

terminal connects to a workstation running GNU/Linux kernel version 2.6.28-13 by way of a ch341-

uart converter cable mounted on /dev/ttyUSB0. The PDU is transmitted to the terminal via port

/dev/ttyUSB0 with the help of a driver that creates the necessary AT commands for pushing the

PDU , as well as the open source RXTX library for serial line communication.

25

Figure 4.2: Workstation showing Siemens TC35i and aerial (circled).

Univ
ers

ity
 of

 C
ap

e T
ow

n

Figure 4.3 illustrates, at a high level what the coding and communication stack looks like for the

sender and receiver. The code for the prototype is distributed along with this dissertation and includes

data (i.e. novels and frequency lists) and scripts for generating the dictionary and building the

prototype, as well as scripts for sending and receiving compressed SMS messages for running all the

experiments. In this way, these experiments can be repeated objectively in order to generate reports

on individual experiments, mine data from various experiment reports and present findings in a

tabular form. There are also scripts for parsing the tabular data and generating Gnuplot graphs.

Essentially, all the experiments and findings presented in the dissertation can be repeated in order to

verify the results, study the source code and verify the logic involved.

26

Figure 4.3: Prototype stack.for sending and receiving messages.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 5 - Results and discussion

Public domain texts (shown in table 5.1) were taken from Project Gutenberg and then analysed

against the dictionary to determine how much of the content is covered. By scanning every word in

the text and tabulating the number of words that also exist in the dictionary, we are able to describe

the coverage in terms of the hit ratio whereby a "hit" constitutes a word from the text that also exists

in the dictionary. The public domain texts were analysed as is, in other words, unaltered from the

original downloaded copies, which meant they included notes not present in the original printing

such as disclaimers and terms of use added later by Project Gutenberg.

Text % unique hit ratio % coverage hit ratio Bits per
character

Dracula 58.16 90.14 4.01

Emma 59.69 91.67 4.03

Frankenstein 60.20 88.30 4.11

Monte Cristo 44.95 90.75 4.19

Origin of Species 45.75 86.23 4.28

Paradise Lost 45.81 85.77 4.50

Price and Prejudice 60.79 93.34 4.01

War and Peace 43.56 91.71 4.08

War of the Worlds 60.29 86.59 4.26

There is a subtle distinction between the unique hit ratio and the coverage hit ratio shown in Table

5.1. The unique hit ratio indicates the percentage of unique words that also appear in the dictionary,

whereas the coverage hit ratio indicates the total number of words appearing in the dictionary. A

strong unique ratio indicates that the dictionary has a large vocabulary sufficient to cover many

words, even if some of those words might only appear once in the text. The unique hit ratio is not a

good indicator of how well the dictionary will perform, as there is little benefit to including scarcely

used, exotic words. The more important metric is the coverage hit ratio, as this indicates how much

of the total content of the text can be encoded against the dictionary. While the unique hit ratio fluctu-

ates greatly between the different texts, the coverage hit ratio is more regular and predictable. A text

such as Darwin's Origin of the Species is expected to contain many scientific and domain-specific

words, which would not constitute the larger part of a vocabulary, and this is reflected in the rather

low unique hit ratio obtained. Despite being a scientific text, however, the majority of the words

27

Table 5.1: Evaluating the LD-based dictionary for coverage against public domain novels.

Univ
ers

ity
 of

 C
ap

e T
ow

n

appear in casual speech, and words such as "the" and "and" appear more often than the scientific

ones, resulting in a sufficiently high coverage hit ratio. In other words, while the dictionary contains

only 45.75% of the unique words in Origin of the Species, it can be used to compress 86.23% of the

content. The coverage hit ratio is relatively constant, ranging from a low of 85.77% to a high of

91.71%. The compression ratio achieved ranges from 4.50-4.01 bits per character, or 35.71- 42.71%.

At first, the compression ratio achieved does not sound very impressive, and indeed it is not, since

the compression algorithm is not tailored to give the best compression for large texts such as the

above. A method such as GZIP, for instance, would provide a much better compression ratio.

However, the compression method is more effective than GZIP or some of the other popular

algorithms when applied to small texts such as the ones for which the LD-based method is intended.

Table 5.2 shows the results of compressing the full 61,313 characters of text from Paradise Lost. The

conclusion is that LD-based compression is not well suited for compressing large datasets.

Algorithm Typical file extension Kilobytes % difference

Plain US-ASCII - 420.1 reference

Plain UTF-8 text - 479.0 +14.02

BZip2 bz2 148.0 -64.77

Comic Book ZIP cbz 196.2 -53.30

Gnu Zip gzip 196.1 -53.32

Lempel-Ziv-Markov
chain-Algorithm

lzma 167.1 -60.22

Zip zip 196.2 -53.30

Huffman - 216.5 -48.46

LD-based - 263.2 -37.35

Previously, compression was measured using non-standard files, which raised the possibility that the

file selected might unfairly favour the particular algorithm being tested. In order to compare the

compression results from two different algorithms, the same baseline should be used to ensure that

the comparison is like for like and unbiased. The Canterbury Corpus (Table 5.3) was presented in

1997 as a replacement for the older Calgary Corpus as, after 10 years of use, the latter had started to

reveal several shortcomings. The biggest problem with the Calgary Corpus was that it was compiled

from a rather arbitrary body of work. The authors of the Canterbury Corpus, on the other hand, took

care to ensure that the inclusion of a document in the corpus was justifiable as a means to indicate

compression efficiency. The criteria for choosing the Canterbury Corpus included that 1) the

28

Table 5.2: Compression results for the epic poem Paradise Lost.Univ
ers

ity
 of

 C
ap

e T
ow

n

documents be representative of the type of files that would be likely compression targets in real-

world situations; 2) the files be of moderate size to make distribution a non-issue; and 3) the corpus

be available to all wishing to use it. This last point was addressed by limiting the corpus to

documents freely available from the public domain. The Canterbury Corpus also incorporated

contemporary formats such as HTML and, moreover, was distilled from a pool of 800 candidates.

These candidate documents were divided into 11 predefined categories, and within each category the

most representative candidate was selected based on a scatter plot of file size before and after various

compression methods were applied. The file that delivered results closest to the regression line was

selected from every category to become a de facto part of the corpus.

File Category Description Bytes

alice29.txt text English text (Alice in Wonderland) 152,089

asyoulik.txt play Shakespeare (As you like it) 125,179

cp.html html HTML source 24,603

fields.c Csrc C source 11,150

grammar.lsp list LISP source 3,721

kennedy.xls Excl Excel Spreadsheet 1,029,744

lcet10.txt tech Technical writing 426,754

plrabn12.txt poem Poetry 481,861

ptt5 fax CCITT test set 513,216

sum SPRC SPARC Executable 3,824

xargs.1 man GNU manual page 4,227

The LD-based algorithm is designed specifically for compressing English text, and so we will focus

exclusively on the compression of alice29.txt.

29

Table 5.3: Contents of the Canterbury Corpus.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Algorithm Bits per character

bred-r3 2.55

ppmD5 2.20

szip-b 2.24

bzip-9 2.25

bzip-6 2.25

szip 2.25

ppmD7 2.26

bzip2-9 2.27

bzip2-6 2.27

ppmC-896 2.30

ppmD3 2.31

dmc-50M 2.38

dmc-5M 2.38

dmc-16M 2.38

ppmCnx-896 2.39

bzip-1 2.40

bzip2-1 2.42

gzip-b 2.85

huffword2 3.09

yabba-d 3.18

compress 3.27

ppmC-56 3.29

gzip-f 3.43

ppmCnx-56 3.57

srank-d 3.66

LD-based 3.85

gzip-d 3.86

char 4.59

pack 4.62

lzrw1 4.94

yabba512 5.31

cat 8.00

Table 5.4 outlines the results from compressing the Canterbury Corpus. The outcome in this instance

follows that from compressing Paradise Lost; that is, LD-based compression is not very effective for

30

Table 5.4: Compression ratio achieved on alice29.txt from the Canterbury Corpus.

Univ
ers

ity
 of

 C
ap

e T
ow

n

large-sized documents. However, this coding method was not designed to be effective for such

documents, and importantly, the outcome is quite different when we compare the compression results

for a small text such as:

Thanks! Hope you have great Xmas too! What you up to these days? Still in London? Can't believe

I've been back in NZ for nearly 18 months, but I'm still loving every minute of it! (Ref# 0179)

The above message is 179 characters long and about the length we can expect for a typical SMS

message. Table 5.5 shows the results of compressing this message with some of the popular compres-

sion methods.

Algorithm Typical file extension Bytes % difference

Plain US-ASCII - 157 reference

Plain UTF-8 text - 179 +14.01

BZip2 bz2 174 +10.82

Comic Book ZIP cbz 306 +94.90

Gnu Zip gzip 177 +12.73

Lempel-Ziv-Markov
chain-Algorithm

lzma 169 +7.64

Zip zip 306 +94.90

Huffman - 148 -5.73

LD-based - 75 -52.22

The methods perform very well with larger datasets, which is the domain for which compression is

typically required. That is, it aims to reduce large datasets to small ones. However, these methods do

not fare so well with small datasets. The LD-based method was designed to be effective with small

texts, and so it is much more effective in this range but less so for larger datasets. It is significant how

much better LD-based encoding fares compared to Huffman encoding, especially since Huffman

encoding is the only compression method officially supported in the SMS specification. For large

datasets, we can expect Gnu Zip to outperform Huffman encoding as is evident from the experiments

discussed previously, but in the case of small messages, Huffman encoding was the only standard

algorithm that provided any savings at all, suggesting why it was chosen as the basis for GSM 03.42.

However, the use of LD-based encoding resulted in a reduction in message size of over 50%. Notice

also that, while the compression ratios achieved for methods such as Huffman and GZip encoding

31

Table 5.5: Result of compressing message Ref# 0179 with different methods.

Univ
ers

ity
 of

 C
ap

e T
ow

n

vary greatly depending on the size of the message, LD-based encoding is more consistent. When

novels were compressed, the average reduction in size was around 40.52%.

As Huffman compression is the only method supported in the GSM specification, we are especially

interested in comparing LD-based and Huffman encoding. To this aim, eight short messages were

created and a prototype was employed to send and receive the messages, as well as to report the

differences between standard uncompressed SMS, Huffman-encoded SMS and LD-based encoded

SMS. Table 5.6 lists the messages used in testing.

Message Length

Hello World! 0012

The quick brown fox jumps over the lazy dog 0043

Now is the time for all good men to come to the aid of the party 0064

Thanks! Hope you have great Xmas too! What you up to these days? Still in London?
Can't believe I've been back in NZ for nearly 18 months, but I'm still loving every minute
of it!

0179

Yes, but to be honest, when I am working on a problem I never think about beauty. I only
think about how to solve the problem. But when I have finished, if the solution is not
beautiful, I know it is wrong

0205

Hey mate, how are you? Meant to email you after a trip to cape town to let you know i'd
finally seen your beautiful city. What are you doing in london when you can call cape
town home? Was a nice change from life in the slums too. Hopefully coming over for a
wedding in April next year - will keep you posted. And would love you to come visit
Australia!

0353

And so it was indeed: she was now only ten inches high, and her face brightened up at
the thought that she was now the right size for going through the little door into that
lovely garden. First, however, she waited for a few minutes to see if she was going to
shrink any further: she felt a little nervous about this; 'for it might end, you know,' said
Alice to herself, 'in my going out altogether, like a candle. I wonder what I should be like
then?' And she tried to fancy what the flame of a candle is like after the candle is blown
out, for she could not remember ever having seen such a thing.

0600

We understand it still that there is no easy road to freedom. We know it well that none of
us acting alone can achieve success. We must therefore act together as a united people,
for national reconciliation, for nation building, for the birth of a new world. Let there be
justice for all. Let there be peace for all. Let there be work, bread, water and salt for all.
Let each know that for each the body, the mind and the soul have been freed to fulfill
themselves. Never, never and never again shall it be that this beautiful land will again
experience the oppression of one by another and suffer the indignity of being the skunk of
the world. Let freedom reign. The sun shall never set on so glorious a human
achievement!

0723

32

Table 5.6: SMS messages used in testing.

Univ
ers

ity
 of

 C
ap

e T
ow

n

The results for LD-based compression of the messages listed in Table 5.6 were evaluated with the aid

of the prototype; the results in each case were compared to that obtainable through Huffman

encoding.

Ref# 0012

Message Hello World!

Decompressed message hello world!

Characters 12

Hit ratio 100%

Words not found in dictionary NA - All words found in dictionary

Result Uncompressed Huffman LD-based

Bits 84 160 40

Bits per input char 7.00 13.33 3.33

Transmission bits 208 280 168

Transmission bits per input char 17.33 23.33 14.00

Number of SMS messages 1 1 1

Characters per SMS 12.00 12.00 12.00

Table 5.7 shows a summary of results from running the test for Ref#0012. The full, line-by-line, log

is attached to Appendix A. The GSM terminal was mounted on /dev/ttyUSB0 and the message "Hello

World!" sent to 07894555501. Next, the AT driver's log shows the commands issued to send SMS-

SUBMIT PDU containing the LD-based payload. The same modem was in turn used to receive the

SMS message, which means that the actual phone number for the SIM in the GSM terminal is the

same as the number to which the message was sent. This was done to eliminate the expense of

buying a second terminal. To allow the message time to be delivered from the GSM network, a 60-

second pause was included before issuing the AT commands for checking for unread messages. In

fact, the command issued did not actually ask for unread messages, as there is no such command.

Instead, all messages were retrieved, and then each was inspected by checking for a bit flag that

indicated whether the message had been read or not. To avoid repeatedly downloading messages that

had already been read, the researchers introduced a little hack whereby once the most recent unread

messages were obtained, the script issued AT commands to delete all messages on the terminal. This

33

Table 5.7: Results of encoding and sending SMS message Ref# 0012.

Univ
ers

ity
 of

 C
ap

e T
ow

n

meant that the researchers started with a so-called “clean slate” so that, following the next sent

message, only the latest messages were retrieved. Note that these peculiarities do not appear to affect

the outcome of this analysis and were added to avoid capturing log output for messages in which we

were not interested for the sake of the experiments.

The unread message was then decoded, and the LD-based payload was read from the SMS-DELIV-

ER PDU. The payload was decompressed, and the message was displayed. A quick inspection shows

that although the original message was sent as "Hello World!", the message that was actually sent and

received was the lower-case equivalent "hello world". Other than the change in case, the message

was exactly the same. The summary at the end of the output shows that all of the words in the

message were found in the dictionary (i.e. 100% hit ratio); the summary also lists the index rank at

which each of the words were found in the dictionary as well as the compressed hex and binary

stream for each word. Notice that the hex values for the words are exactly the same as those that

appear in the payload issued over the serial line, as printed out by the AT driver. The output size of

the string is 84, 160 and 40 bits for the uncompressed, Huffman compressed and LD-based

compressed algorithms respectively.

Consistent with our earlier observation, Huffman actually increases the size of a very short string.

The increase in size is quite severe, as the Huffman output is almost twice the size of the original

message. Alternatively, the LD-based output is almost half the size of the uncompressed message. It

is significant to observe that the output produced by the LD-based algorithm is four times as effective

as Huffman encoding, which is the official GSM method for compressing SMS messages. The

summary shows entries for both "Bits" and "Transmission Bits". The "Bits" entry, which we have

already discussed, indicates the size of the compression output. Remember, however, that the payload

must be packed into a PDU-SUBMIT PDU. This PDU has a strict structure and requires setting

additional header and indicator flags, and it represents the actual size of the SMS message in terms of

the number of bits that would be used to carry the SMS message over the GSM network. The differ-

ence between the "Bits" and "Transmission Bits" values for each of the three cases is about 10 bits.

This difference of 10 bits is constant and there is nothing we can do to optimise it since it forms part

of the fixed structure of the PDU. However, since it is a fixed amount that is added to each of the

"Bits" values, it should be clear that the case with the highest "Bits" value is also the case with the

highest "Transmission Bits" value.

34

Univ
ers

ity
 of

 C
ap

e T
ow

n

Ref# 0043

Message The quick brown fox jumps over the lazy dog

Decompressed message the quick brown fox jumps over the lazy dog

Characters 43

Hit ratio 100%

Words not found in dictionary NA - All words found in dictionary

Result Uncompressed Huffman LD-based

Bits 301 400 128

Bits per input char 7.00 9.30 2.98

Transmission bits 424 520 256

Transmission bits per input char 9.86 12.09 5.95

Number of SMS messages 1 1 1

Characters per SMS 43.00 43.00 43.00

The results for Ref#0043 (shown in Table 5.8) are similar to those of the previous message and the

hit ratio is again 100%. The message "The quick brown fox jumps over the lazy dog" is an interesting

one in that it uses every letter in the alphabet. Using the entire alphabet in such a short message

means that there is little repetition for Huffman encoding to exploit. Remember that Huffman

encoding attempts to find those patterns that occur most often in an input stream and then replaces

each of these patterns with the shortest possible keyword. The most frequently occurring patterns are

assigned the shortest codewords, and the least frequently occurring ones are assigned the longest

codewords. Once again, Huffman encoding increased the size of the message, while LD-based

encoding decreased it by more than half. However, since the message in all cases can be transmitted

as a single SMS message, there are no cost savings in this case. The actual size of an SMS message

matters little as long as that size is less than the maximum length of a single SMS message. In all

these cases, all the characters were accommodated in a single SMS message, meaning a consistent 43

characters.

35

Table 5.8: Results of encoding and sending SMS message Ref# 0043

Univ
ers

ity
 of

 C
ap

e T
ow

n

Ref# 0064

Message Now is the time for all good men to come to the aid of the party

Decompressed message now is the time for all good men to come to the aid of the party

Characters 64

Hit ratio 100%

Words not found in dictionary NA - All words found in dictionary

Result Uncompressed Huffman LD-based

Bits 448 504 176

Bits per input char 7.00 7.88 2.75

Transmission bits 568 624 304

Transmission bits per input char 8.88 9.75 4.75

Number of SMS messages 1 1 1

Characters per SMS 64.00 64.00 64.00

Looking at the results from Table 5.9, a pattern starts to emerge; for each of the previous three

messages, the Huffman algorithm increased the number of bits when compared to the uncompressed

message, while the LD-based algorithm reduced the size. The reduction this time is quite drastic; the

LD-based output is 60% smaller than that of the uncompressed message. We expect Huffman

encoding to clearly demonstrate its advantages as messages become longer, surpassing the LD-based

algorithm.

36

Table 5.9: Results of encoding and sending SMS message Ref# 0064

Univ
ers

ity
 of

 C
ap

e T
ow

n

Ref# 0179

Message Thanks! Hope you have great Xmas too! What you up to these
days? Still in London? Can't believe I've been back in NZ for
nearly 18 months, but I'm still loving every minute of it!

Decompressed message thanks! hope you have great xmas too! what you up to these
days? still in london? can't believe i've been back in nz for nearly
18 months, but i'm still loving every minute of it!

Characters 179

Hit ratio 91%

Words not found in dictionary 18, nz, xmas

Result Uncompressed Huffman LD-based

Bits 1253 1184 592

Bits per input char 7.00 6.61 3.31

Transmission bits 1592 1520 720

Transmission bits per input char 8.89 8.49 4.02

Number of SMS messages 2 2 1

Characters per SMS 89.50 89.50 179.00

Ref#0179 (results in Table 5.10) is the first string tested that is longer than the 160-character limit. In

addition, in this example not all of the words can be found in the dictionary; the hit ratio stood at

91% with words like "18", "nz" or "xmas" left unresolved. For each of these words, the LD-based

algorithm relied on per-character encoding. Notice how, for instance, "xmas" was encoded as "x" +

"m" + "a" + "s". Despite not finding all of the words in the dictionary, the LD-based compression

reduced the total number of SMS messages necessary to send the text from two to one. Note that, as

the strings become a little bit longer, Huffman encoding shows some benefit; thus, for the first time,

Huffman compression shrinks the size of the message, albeit by a modest amount insufficient to

shorten it into a single SMS message.

37

Table 5.10: Results of encoding and sending SMS message Ref# 0179

Univ
ers

ity
 of

 C
ap

e T
ow

n

Ref# 0205

Message Yes, but to be honest, when I am working on a problem I never
think about beauty. I only think about how to solve the problem.
But when I have finished, if the solution is not beautiful, I know
it is wrong

Decompressed message yes, but to be honest, when i am working on a problem i never
think about beauty. i only think about how to solve the problem.
but when i have finished, if the solution is not beautiful, i know it
is wrong

Characters 205

Hit ratio 100%

Words not found in dictionary NA - All words found in dictionary

Result Uncompressed Huffman LD-based

Bits 1435 1112 608

Bits per input char 7.00 5.42 2.97

Transmission bits 1776 1232 736

Transmission bits per input char 8.66 6.01 3.59

Number of SMS messages 2 1 1

Characters per SMS 102.50 205.00 205.00

The experiments were conducted in order of increasing message size. Ref#0205 (results shown in

Table 5.11) and those that follow are all more than the 160-character limit for a single SMS message.

The trends previously observed continue in that Huffman encoding produces more of a saving, but

this saving is still not nearly as much as that resulting from LD-based compression. This time,

however, Huffman encoding did reduce the number of SMS text messages to one. This finding

emphasises just how much Huffman compression is biased against short strings. In the previous

experiment, the character count was smaller than in this case, yet two separate SMS messages were

required. Now that the character count has increased, Huffman compression has more text to

optimise and thus can reduce the output to a single SMS message. It is not the number of bits that

matter directly but rather the number of SMS messages, and so in this case the outcome favours

Huffman and LD-based compression equally. Both Huffman and LD-based compression fit 205

characters into a single SMS message, thereby coming under the 160-character limit.

38

Table 5.11: Results of encoding and sending SMS message Ref# 0205

Univ
ers

ity
 of

 C
ap

e T
ow

n

Ref# 0353

Message Hey mate, how are you? Meant to email you after a trip to cape
town to let you know i'd finally seen your beautiful city. What are
you doing in london when you can call cape town home? Was a
nice change from life in the slums too. Hopefully coming over for
a wedding in April next year - will keep you posted. And would
love you to come visit Australia!

Decompressed message hey mate, how are you? meant to email you after a trip to cape
town to let you know i'd finally seen your beautiful city. what are
you doing in london when you can call cape town home? was a
nice change from life in the slums too. hopefully coming over for
a wedding in april next year - will keep you posted. and would
love you to come visit australia!

Characters 353

Hit ratio 98%

Words not found in dictionary slums

Result Uncompressed Huffman LD-based

Bits 2471 1856 1080

Bits per input char 7.00 5.26 3.06

Transmission bits 2984 2192 1208

Transmission bits per input char 8.45 6.21 3.42

Number of SMS messages 3 2 1

Characters per SMS 117.67 176.50 353.00

Table 5.12 shows the results for test run Ref#0353. In this test, the hit ratio is 98%, because "slums"

does not exist in the dictionary. The uncompressed message would be sent in three parts, while the

Huffman-compressed version would be sent in two parts. Finally, the LD-based message would still

only require a single SMS message to accommodate all 353 characters of the message.

39

Table 5.12: Results of encoding and sending SMS message Ref# 0353

Univ
ers

ity
 of

 C
ap

e T
ow

n

Ref# 0600

Message And so it was indeed: she was now only ten inches high, and her
face brightened up at the thought that she was now the right size
for going through the little door into that lovely garden. First,
however, she waited for a few minutes to see if she was going to
shrink any further: she felt a little nervous about this; 'for it might
end, you know,' said Alice to herself, 'in my going out altogether,
like a candle. I wonder what I should be like then?' And she tried
to fancy what the flame of a candle is like after the candle is
blown out, for she could not remember ever having seen such a
thing.

Decompressed message and so it was indeed: she was now only ten inches high, and her
face brightened up at the thought that she was now the right size
for going through the little door into that lovely garden. first,
however, she waited for a few minutes to see if she was going to
shrink any further: she felt a little nervous about this; 'for it might
end, you know,' said alice to herself, 'in my going out altogether,
like a candle. i wonder what i should be like then?' and she tried
to fancy what the flame of a candle is like after the candle is
blown out, for she could not remember ever having seen such a
thing.

Characters 600

Hit ratio 99%

Words not found in dictionary brightened

Result Uncompressed Huffman LD-based

Bits 4200 2768 1768

Bits per input char 7.00 4.61 2.95

Transmission bits 4880 3272 2112

Transmission bits per input char 8.13 5.45 3.52

Number of SMS messages 4 3 2

Characters per SMS 150.00 200.00 300.00

The excerpted text for Ref#0600 (results shown in Table 5.13) was taken from Alice in Wonderland.

Only "brightened" was not found in the dictionary, bringing the hit ratio to 99%. In all experiments

thus far, the dictionary provided adequate coverage, as was the case for the novels, making it possible

to achieve a satisfactory compression ratio. The uncompressed, Huffman-compressed and LD-based

messages required four, three and two parts respectively. Note that, during transmission, the message

was sent as two separate SMS-SUBMIT PDUs. In addition, on delivery there were two unread SMS-

DELIVERY PDUs. Significantly, in this case, we have proven that we are able to use LD-based

40

Table 5.13: Results of encoding and sending SMS message Ref# 0600
Univ

ers
ity

 of
 C

ap
e T

ow
n

encoding to send and reassemble multipart SMS messages, just as in standard concatenated SMS.

However, instead of the handset reassembling the message, we had to reassemble it ourselves.

Ref# 0723

Message We understand it still that there is no easy road to freedom. We
know it well that none of us acting alone can achieve success. We
must therefore act together as a united people, for national
reconciliation, for nation building, for the birth of a new world.
Let there be justice for all. Let there be peace for all. Let there be
work, bread, water and salt for all. Let each know that for each
the body, the mind and the soul have been freed to fulfill
themselves. Never, never and never again shall it be that this
beautiful land will again experience the oppression of one by
another and suffer the indignity of being the skunk of the world.
Let freedom reign. The sun shall never set on so glorious a
human achievement!

Decompressed message we understand it still that there is no easy road to freedom. we
know it well that none of us acting alone can achieve success. we
must therefore act together as a united people, for national
reconciliation, for nation building, for the birth of a new world.
let there be justice for all. let there be peace for all. let there be
work, bread, water and salt for all. let each know that for each the
body, the mind and the soul have been freed to fulfill themselves.
never, never and never again shall it be that this beautiful land
will again experience the oppression of one by another and suffer
the indignity of being the skunk of the world. let freedom reign.
the sun shall never set on so glorious a human achievement!

Characters 723

Hit ratio 99%

Words not found in dictionary indignity

Result Uncompressed Huffman LD-based

Bits 5061 3016 2064

Bits per input char 7.00 4.17 2.85

Transmission bits 5912 3520 2408

Transmission bits per input char 8.18 4.87 3.33

Number of SMS messages 5 3 2

Characters per SMS 144.60 241.00 361.50

The last message, Ref#0723, is fairly long at 723 characters; messages longer than this would

probably be quite scarce. The uncompressed message would require five parts, while the Huffman

41

Table 5.14: Results of encoding and sending SMS message Ref# 0723

Univ
ers

ity
 of

 C
ap

e T
ow

n

algorithm would encode the message into three parts. Finally, the LD-based message would only

require two parts, fitting roughly 361 characters into a single SMS message. Next, we take a look at

our results across the experiments.

Length Uncompressed Huffman LD-based

0012 7.00 13.33 3.33

0043 7.00 9.30 2.98

0064 7.00 7.88 2.75

0179 7.00 6.61 3.31

0205 7.00 5.42 2.97

0353 7.00 5.26 3.06

0600 7.00 4.61 2.95

0723 7.00 4.17 2.85

Figure 5.1 shows that the uncompressed message always uses the standard 7 bits per character as

encoded per ETSI GSM 03.38 and thus acts only as a baseline. When compressing messages with

Huffman encoding, the first four messages, which are the shortest ones, actually result in an increase

42

Figure 5.1: The average number of bits used to encode each of the characters in the compressed
message. The lower the number, the better the compression.

Univ
ers

ity
 of

 C
ap

e T
ow

n

in the number of bits required to capture a character. We see that the Huffman algorithm performs

consistently better as the message size increases, and thus we expect this trend to continue as

message length becomes longer, beyond that considered in these experiments. This was indeed

observed when encoding novels. However, the range of message sizes evaluated is considered repres-

entative of the length of messages users would typically type when sending an SMS message. The

performance of the LD-based method does not show any improvement for a longer message size, nor

does it show a penalty for shorter messages. Huffman encoding is heavily dependent on the size of

the messages, as it depends on the opportunity to exploit repeating patterns. In contrast, LD-based

encoding shows no such bias – the more words found in the dictionary, the better the result. The

encoding shows results consistent in the range of 2.85 to 3.33 bits per character.

43

Univ
ers

ity
 of

 C
ap

e T
ow

n

Length Uncompressed Huffman LD-based

0012 17.33 23.33 14.00

0043 9.86 12.09 5.95

0064 8.88 9.75 4.75

0179 8.89 8.49 4.02

0205 8.66 6.01 3.59

0353 8.45 6.21 3.42

0600 8.13 5.45 3.52

0723 8.18 4.87 3.33

Whereas Figure 5.1 shows the bits per character as a result of compressing the message, Figure 5.2

shows the bits per character necessary to transmit the message. The figures are larger as a result of

the addition of meta-information required to structure the data into PDU format. It is worth consider -

ing this result in that it clearly shows the so-called “effective” bits per character or, put another way,

the total bits required to transmit the message against the size of the content. The overhead is consist-

ent in that the same number of bits are added under the uncompressed, Huffman-compressed and LD-

based compressed methods within a single experiment. In the first instance, regarding message 0012,

the penalty is about 10 bits. The bit count per character for an uncompressed message increases from

7 to 17.33, whereas the count for the Huffman method increases from 13.33 to 23.33. The LD-based

count increases from 3.33 to 14.00. The trend continues, but becomes less severe as the message size

increases.

44

Figure 5.2: The average number of bits per character used in the PDU. Once the message is encoded
with the compression method, it is then passed through a second stage of encoding to package the
payload into the PDU transmission format.

Univ
ers

ity
 of

 C
ap

e T
ow

n

Length Uncompressed Huffman LD-based

0012 12.00 12.00 12.00

0043 43.00 43.00 43.00

0064 64.00 64.00 64.00

0179 89.50 89.50 179.00

0205 102.50 205.00 205.00

0353 117.67 176.50 353.00

0600 150.00 200.00 300.00

0723 144.60 241.00 361.50

To use as few parts as possible per message, it is important to fit as many characters as possible in

each SMS message. The hard limit is 160 characters for a single SMS message, or 153 characters for

every part of a concatenated SMS message (i.e. 1120 bits minus a 6-byte header leaves 1072 bits that

can fit 153 7-bit characters). The values in Figure 5.3 are the average taken across all of the parts

making up the whole, but, of course, none of the uncompressed messages exceeded the 153-character

45

Figure 5.3: The number of characters fitted into each SMS part. A standard SMS can accommodate
160 characters and a concatenated SMS can take max 153 characters per part. Using LD-based
compression, the maximum was extended to 361 characters.

Univ
ers

ity
 of

 C
ap

e T
ow

n

limit. With the aid of Huffman encoding, a maximum count of 241 characters was achieved; this

figure was 361 with LD-based encoding.

Length Uncompressed Huffman LD-based

0012 1 1 1

0043 1 1 1

0064 1 1 1

0179 2 2 1

0205 2 1 1

0353 3 2 1

0600 4 3 2

0723 5 3 2

Moving from compressed bits per character to transmission bits per character to characters per SMS

message, we finally consider the overall aim of this study, that is, to reduce the number of SMS

messages for communicating a given message (shown in Figure 5.4). Neither Huffman nor LD-based

encoding left the message count worse off in any of the instances under consideration. There was

46

Figure 5.4: The number of SMS messages (or concatenated SMS parts) to transmit each of the test
messages.

Univ
ers

ity
 of

 C
ap

e T
ow

n

either no benefit for some of the cases or a reduction. However, LD-based encoding yielded a better

result in all instances. As the formal compression scheme adopted in GSM specification, Huffman

encoding did produce savings for longer messages, while LD-based compression yielded even better

results.

47

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 6 - Conclusion

This paper explored the design, implementation and evaluation of a dictionary-based method for

compressing English SMS text messages. The dictionary was constructed using frequency lists of

those words that appear most often in film scripts and was then tested against some popular novels in

English literature. The design is based on lower-case words in order to avoid reserving space for

different case permutations (i.e. upper case, mixed case, title case and so on). This decision meant

that more unique words could be added to the dictionary, resulting in a greater hit ratio for the input

stream and, therefore, greater compression efficiency. The decompressed message thus always

appears in lower case, meaning that this decision also leads to a trade-off between efficiency and

quality. Therefore, this decompression method becomes a lossy one. The loss of quality in this case

only involves the case of the message, and since SMS is largely an informal method of communica-

tion, there are situations in which people might be willing to make this trade-off in order to save on

their bills. Furthermore, it would be a waste to use 7 bits to encode a space character. Since most

words are followed by a space, this is a significant waste of space in that the number of spaces will

usually be equal to 1 less than the number of words in the message. The dictionary therefore allows

using a single bit to indicate whether or not a word is followed by a space. LD-based dictionary

stores more than 16,000 of the most commonly used English words. Nation [38] showed that

between 8,000 and 9,000 words are needed for reading and writing and 6,000 to 7,000 words for

speaking and listening in order to understand 98% of typical English language. The dictionary setup

for instance contains only 45.75% of the unique words in Origin of the Species, but can still

compress 86.23% of the content. This is because, even though highly specialised in content and

vocabulary, the specialised words still do not occur as frequently as the more common words from

the dictionary. Table 6.1 gives and overview of how LD-based compression rates against methods

discussed in the “Related Work” section.

Algorithm Compression ratio in
bits per character

ETSI GSM 03.38 7.00

Huffman 6.01

CleverTexting 5.00

ETSI GSM 03.42 4.67

Nakayama 4.05

Rein, Guehmann and Fitzek 3.29

LD-based 2.98

48

Table 6.1: Comparing the LD-based method against related work.

Univ
ers

ity
 of

 C
ap

e T
ow

n

The GSM specification officially supports Huffman encoding, but we have shown that Huffman

encoding is not particularly well-suited to short messages, since the overhead of encoding the

dictionary into the data stream adds to the message size, often increasing the size of messages rather

than reducing them. The results indicate that the method outperforms Huffman encoding for small

messages in the size range expected for SMS texts and that it might offer a better alternative. The

major drawback of the proposed compression method is that the dictionary would need to be installed

on both the sending and the receiving handsets, thereby using some of the already limited memory on

the phone. The dictionary measures 316 Kb in size, which should easily fit on modern handsets,

many of which can store MP3 albums and films.

49

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 7 - Future work

The current version of the compression scheme presented here has been shown to achieve the goal of

decreasing the size of text messages, even outperforming the standard GSM method of compression.

Further fine-tuning could be performed to improve the results even more. If a word were misspelt,

for example, it would not be found in the dictionary and thus would need to be encoded one character

at a time. It might make sense to use the dictionary as a spell-checker prior to encoding the message.

The current form of the dictionary stores either characters or words, but further savings could be

attained by also storing commonly used phrases. There is no support for encoding hyphenated words,

and so something like “devil-may-care” would not yield a hit from the dictionary. The algorithm

could be improved by splitting up such words at the point of the hyphen and storing the result as

“[devil][-][may][-][care]”. This improvement could be made even more generic in order to

scan any words not found in the dictionary to see whether they could be split into parts that do exist

in the dictionary. Something like “easement ” could then be encoded as “[ease][m][e][n][t]”.

Further revisions to the dictionary would require the inclusion of a scheme by which to indicate the

appropriate version of the dictionary to use when decompressing the message. This could be

achieved by including dictionary version information in the compression header. Dictionaries could

also be created for other languages, as there is nothing inherent in the algorithm that prevents support

for other languages. That is, language-specific dictionaries could be created and then indicated in the

compression header.

50

Univ
ers

ity
 of

 C
ap

e T
ow

n

Chapter 8 - References

1. “GSM technologies to reach 4 billion mobile connections worldwide”, Report by 3G
Americas, http://www.3gamericas.org, Retrieved 10 November 2009.

2. “Worldwide SMS revenues to hit $67bn by 2012”, Report by Portio Research,
http://www.portioresearch.com, Retrieved 10 November 2009..

3. “Online social networking boosts German SMS usage”, Velti News Article reporting on
data released by BitKom, http://www.velti.com, Retrieved 10 November 2009..

4. “The Q4 2008 UK mobile trends report”, UK Mobile Data Association,
http://www.themda.org, Retrieved 10 November 2009..

5. “No slowing of mobile messaging services growth in tough economic times”, Report by
ABI Research, http://www.abiresearch.com, Retrieved 10 November 2009..

6. N Bannister, Channel 4 Dispatches programme “The Mobile Phone Rip-Off”, write up on
http://www.physorg.com/news129793047.html,
http://www.physorg.com/news129793047.html, Retrieved 10 November
2009..

7. ETSI GSM 03.40, Digital cellular telecommunications system (Phase 2+); Technical
realization of the short message service point-to-point, 3GPP Technical Specification,
version. 7.5.0, 2001.

8. L Dryburgh and J Hewitt, Signaling System No. 7 (SS7/C7): Protocol, Architecture, and
Services”, Cisco Press, 2004.

9. ETSI GSM 03.38, Digital cellular telecommunications system (Phase 2+); Alphabets and
language-specific information, 3GPP Technical Specification, v. 5.3.0, 1996.

10. F Trosby, “SMS, the strange duckling of GSM”, Telektronikk, 3, 187–194, 2004.

11. ETSI GSM 07.07, Digital cellular telecommunications system (Phase 2+); AT command
set for GSM Mobile Equipment (ME), 3GPP Technical Specification, version 7.8.0, 2003.

12. TC Bell, JG Cleary and IH Witten, Text Compression, Prentice Hall, 1990.

13. CE Shannon, “A mathematical theory of communication”, Bell Sys. Tech. Journal, 27,
398–403, 1948.

14. N Jayant, J Johnston and RB “Safranek, Signal Compression Based on Models of Human
Perception”. Proceedings of the IEEE, 81, 10, 1385–1422, 1993.

15. K Sayood, Introduction to Data Compression. New York: Morgan Kaufmann, 153, 1996.

16. WD Hagamen, DJ Linden, HS Long and JC Weber, “Encoding verbal information as
unique numbers”, IBM Systems Journal, vol. 11, no. 4, pp. 278-315 , 1972.

17. DA Huffman, “A method for the construction of minimum-redundancy codes”,

51

Univ
ers

ity
 of

 C
ap

e T
ow

n

Proceedings of the 1952 Conference of the IRE, 40, 9, 1098–1101, September 1952.

18. RN Williams, Adaptive Data Compression, Kluwer Academic , 17–19, 1990.

19. RG Gallager, “Variations on a Theme by Huffman”, IEEE Transactions on Information
Theory, 24, 6, 668–674, 1978.

20. DE Knuth, “Dynamic Huffman coding”, Journal of Algorithms, 6, 2, 163–180, 1985.

21. JC Vitter, “Design and analysis of dynamic Huffman codes”, Journal of ACM, 34, 4,
825–845, 1987.

22. DR McIntyre and MA Pechura, “Data compression using static Huffman code-decode
tables”, Communications of the ACM, 28, 6, 612–616, 1985.

23. N Abramson, Information Theory and Coding. McGraw-Hill, New York, 61–62, 1963.

24. JJ Rissanen, “Generalized Kraft Inequality and Arithmetic Coding”, IBM Journal or
Research and Development, 20, 3, 198–203 , 1976.

25. R Pasco, Source coding algorithms for fast data compression, PhD thesis, Department of
Electrical Engineering, Stanford University, 1976.

26. JJ Rissanen, “Arithmetic codings as number representations”, Acta Polytechnic.
Scandinavica, Math. 31, 44–51, 1979.

27. IH Wittten, RM Neal and JG Cleary, “Arithmetic coding for data compression”,
Communications of the ACM, 30, 6, 520–540, June 1987.

28. ETSI GSM 03.42, Digital cellular telecommunications system (Phase 2+); Compression
algorithm for text messaging services, 3GPP Technical Specification, v. 7.1.1, 1998.

29. N Döring, “Kurzm. wird gesendet - Abkürzungen und Akronyme in der SMS-
Kommunikation”, Vierteljahresschrift für Deutsche Sprache, 112, 2, 97–114, 2002.

30. R Dettmer, “Short message gets longer”, IEE Review, 43, 3, 104.

31. CleverTexting: Offers on phone SMS Compression, PRLog (Press Release),
http://www.prlog.org/10162046­clevertexting­offers­on­phone­
sms­compression.html, Retrieved 10 November 2009.

32. S Rein, C Guehmann and F Fitzek, “Low complexity compression of short messages”,
Proceedings of the 2006 IEEE Data Compression Conference, 123–132, March 2006.

33. FHP Fitzek, S Rein, MV Pedersen, GP Perrucci, T Schneider and C Guehmann, Low
complex and power efficient text compressor for cellular and sensor networks,
http://vbn.aau.dk/fbspretrieve/6317172/FF­LowComplex­
IST2006.pdf, 2006.

34. T Nakayama, “Alternative source coding model for mobile text communication”,
Proceedings of the 2005 ACM symposium on Applied Computing, 1139–1145, 2005.

35. D. Lingley, “Spoken Features of Dialogue Journal Writing”, Asian EFL Journal, 7, 2,
article 3, 1-13, 2005.

52

Univ
ers

ity
 of

 C
ap

e T
ow

n

36. “Frequency lists”, Wiktionary.com: The free dictionary,
http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists,
Retrieved 10 November 2009.

37. “Language facts”, AskOxford.com: The Oxford English Corpus,
http://www.askoxford.com/oec/mainpage/oec02/?view=uk, Retrieved 10
November 2009.

38. I.S.P. Nation, “How large a vocabulary is needed for reading and listening?”, Canadian
Modern Language Review, 63, 1, 59-82, 2006.

53

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix A - Printout Ref# 0012

Details
===
GSM Modem SerialPort: /dev/ttyUSB0
PhoneNumber: 07894555501
Message: Hello World!

Starting...

Stable Library
===
Native lib Version = RXTX-2.1-7
Java lib Version = RXTX-2.1-7
Tx: ATE0
Rx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CMGS=20
Rx: >
Tx: 0011000B817098545505F100F4FF0600814BC14702#
Rx: +CMGS: 56
Rx: OK

Sending done!

Waiting 60 seconds before trying to read message. This gives it time to be delivered from the
GSM network...
OK, here we go.

Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CPMS?
Rx: +CPMS: "ME",1,25,"SM",0,50,"SM",0,50
Rx: OK
Tx: AT+CMGR=1
Rx: +CMGR: 0,,25
Rx: 0791448720003023040C9144874955551000F4900192810512000600814BC14702
Rx: OK

Found Unread Message: 0791448720003023040C9144874955551000F4900192810512000600814BC14702

Delete all messages in store as part of housekeeping

Tx: AT+CMGD=1
Rx: OK
Deleted message at index 1

Decompressed Message: hello world!

Receiving done!

Please wait, generating report...
Report generated.

SMS Compression Report
==

54

Univ
ers

ity
 of

 C
ap

e T
ow

n

REF# 0012

Text Message [12 characters]: Hello World!

Words Not Found in Dictionary [100.00 percent hit ratio]
==
[N/A - All words exist in dictonary]

Dictionary Symbol Dictionay Index Encoded Hex Byte(s) Encoded Binary Byte(s)
===
[compression indicator] 0 00 00000000
hello[sp] 331 814B 10000001 01001011
world 16711 C147 11000001 01000111
! 2 02 00000010

REF# 0012 [12 chars] Uncompressed Huffman LD-Based
==
Bits: 84 160 40
Bits Per Input Char: 7.00 13.33 3.33
Transmission Bits: 208 280 168
Transmission Bits Per Input Char: 17.33 23.33 14.00
Number of SMS Messages: 1 1 1
Characters per SMS: 12.00 12.00 12.00

Experimental: JNI_OnLoad called.

55

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix B - Printout Ref# 0043

Details
===
GSM Modem SerialPort: /dev/ttyUSB0
PhoneNumber: 07894555501
Message: The quick brown fox jumps over the lazy dog

Starting...

Stable Library
===
Native lib Version = RXTX-2.1-7
Java lib Version = RXTX-2.1-7
Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CMGS=31
Rx: >
Tx: 0011000B817098545505F100F4FF110048842E86DC8E8B9BE780B9489612C316#
Rx: +CMGS: 57
Rx: OK

Sending done!

Waiting 60 seconds before trying to read message. This gives it time to be delivered from the
GSM network...
OK, here we go.

Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CPMS?
Rx: +CPMS: "ME",1,25,"SM",0,50,"SM",0,50
Rx: OK
Tx: AT+CMGR=1
Rx: +CMGR: 0,,36
Rx: 0791448720003023040C9144874955551000F490019281158300110048842E86DC8E8B9BE780B9489612C316
Rx: OK

Found Unread Message:
0791448720003023040C9144874955551000F490019281158300110048842E86DC8E8B9BE780B9489612C316

Delete all messages in store as part of housekeeping

Tx: AT+CMGD=1
Rx: OK
Deleted message at index 1

Decompressed Message: the quick brown fox jumps over the lazy dog

Receiving done!

Please wait, generating report...
Report generated.

SMS Compression Report
==

56

Univ
ers

ity
 of

 C
ap

e T
ow

n

REF# 0043

Text Message [43 characters]: The quick brown fox jumps over the lazy dog

Words Not Found in Dictionary [100.00 percent hit ratio]
==
[N/A - All words exist in dictonary]

Dictionary Symbol Dictionay Index Encoded Hex Byte(s) Encoded Binary Byte(s)
===
[compression indicator] 0 00 00000000
the[sp] 72 48 01001000
quick[sp] 1070 842E 10000100 00101110
brown[sp] 1756 86DC 10000110 11011100
fox[sp] 3723 8E8B 10001110 10001011
jumps[sp] 7143 9BE7 10011011 11100111
over[sp] 185 80B9 10000000 10111001
the[sp] 72 48 01001000
lazy[sp] 5650 9612 10010110 00010010
dog 17174 C316 11000011 00010110

REF# 0043 [43 chars] Uncompressed Huffman LD-Based
==
Bits: 301 400 128
Bits Per Input Char: 7.00 9.30 2.98
Transmission Bits: 424 520 256
Transmission Bits Per Input Char: 9.86 12.09 5.95
Number of SMS Messages: 1 1 1
Characters per SMS: 43.00 43.00 43.00

Experimental: JNI_OnLoad called.

57

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix C - Printout Ref# 0064

Details
===
GSM Modem SerialPort: /dev/ttyUSB0
PhoneNumber: 07894555501
Message: Now is the time for all good men to come to the aid of the party

Starting...

Stable Library
===
Native lib Version = RXTX-2.1-7
Java lib Version = RXTX-2.1-7
Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CMGS=37
Rx: >
Tx: 0011000B817098545505F100F4FF17007B4F48808E54658087823E47808647488F7E4C48C1C2#
Rx: +CMGS: 58
Rx: OK

Sending done!

Waiting 60 seconds before trying to read message. This gives it time to be delivered from the
GSM network...
OK, here we go.

Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CPMS?
Rx: +CPMS: "ME",1,25,"SM",0,50,"SM",0,50
Rx: OK
Tx: AT+CMGR=1
Rx: +CMGR: 0,,42
Rx:
0791448720003023040C9144874955551000F49001928125550017007B4F48808E54658087823E47808647488F7E4
C48C1C2
Rx: OK

Found Unread Message:
0791448720003023040C9144874955551000F49001928125550017007B4F48808E54658087823E47808647488F7E4
C48C1C2

Delete all messages in store as part of housekeeping

Tx: AT+CMGD=1
Rx: OK
Deleted message at index 1

Decompressed Message: now is the time for all good men to come to the aid of the party

Receiving done!

Please wait, generating report...
Report generated.

58

Univ
ers

ity
 of

 C
ap

e T
ow

n

SMS Compression Report
==

REF# 0064

Text Message [64 characters]: Now is the time for all good men to come to the aid of the
party

Words Not Found in Dictionary [100.00 percent hit ratio]
==
[N/A - All words exist in dictonary]

Dictionary Symbol Dictionay Index Encoded Hex Byte(s) Encoded Binary Byte(s)
===
[compression indicator] 0 00 00000000
now[sp] 123 7B 01111011
is[sp] 79 4F 01001111
the[sp] 72 48 01001000
time[sp] 142 808E 10000000 10001110
for[sp] 84 54 01010100
all[sp] 101 65 01100101
good[sp] 135 8087 10000000 10000111
men[sp] 574 823E 10000010 00111110
to[sp] 71 47 01000111
come[sp] 134 8086 10000000 10000110
to[sp] 71 47 01000111
the[sp] 72 48 01001000
aid[sp] 3966 8F7E 10001111 01111110
of[sp] 76 4C 01001100
the[sp] 72 48 01001000
party 16834 C1C2 11000001 11000010

REF# 0064 [64 chars] Uncompressed Huffman LD-Based
==
Bits: 448 504 176
Bits Per Input Char: 7.00 7.88 2.75
Transmission Bits: 568 624 304
Transmission Bits Per Input Char: 8.88 9.75 4.75
Number of SMS Messages: 1 1 1
Characters per SMS: 64.00 64.00 64.00

Experimental: JNI_OnLoad called.

59

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix D - Printout Ref# 0179

Details
===
GSM Modem SerialPort: /dev/ttyUSB0
PhoneNumber: 07894555501
Message: Thanks! Hope you have great Xmas too! What you up to these days? Still in London?
Can't believe I've been back in NZ for nearly 18 months, but I'm still loving every minute of
it!

Starting...

Stable Library
===
Native lib Version = RXTX-2.1-7
Java lib Version = RXTX-2.1-7
Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CMGS=89
Rx: >
Tx:
0011000B817098545505F100F4FF4B00C0EB02018155465680E73F34283A01C08E02014E46774780F9C1CF200180D
C50C9A42001809280EF80B5809E809150354101548855121901C27F0D01645380DC85C2813581694CC02702#
Rx: +CMGS: 59
Rx: OK

Sending done!

Waiting 60 seconds before trying to read message. This gives it time to be delivered from the
GSM network...
OK, here we go.

Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CPMS?
Rx: +CPMS: "ME",1,25,"SM",0,50,"SM",0,50
Rx: OK
Tx: AT+CMGR=1
Rx: +CMGR: 0,,94
Rx:
0791448720003023040C9144874955551000F4900192814531004B00C0EB02018155465680E73F34283A01C08E020
14E46774780F9C1CF200180DC50C9A42001809280EF80B5809E809150354101548855121901C27F0D01645380DC85
C2813581694CC02702
Rx: OK

Found Unread Message:
0791448720003023040C9144874955551000F4900192814531004B00C0EB02018155465680E73F34283A01C08E020
14E46774780F9C1CF200180DC50C9A42001809280EF80B5809E809150354101548855121901C27F0D01645380DC85
C2813581694CC02702

Delete all messages in store as part of housekeeping

Tx: AT+CMGD=1
Rx: OK
Deleted message at index 1

Decompressed Message: thanks! hope you have great xmas too! what you up to these days? still

60

Univ
ers

ity
 of

 C
ap

e T
ow

n

in london? can't believe i've been back in nz for nearly 18 months, but i'm still loving
every minute of it!

Receiving done!

Please wait, generating report...
Report generated.

SMS Compression Report
==

REF# 0179

Text Message [179 characters]: Thanks! Hope you have great Xmas too! What you up to these
days? Still in London? Can't believe I've been back in NZ for nearly 18 months, but I'm still
loving every minute of it!

Words Not Found in Dictionary [91.00 percent hit ratio]
===
18
nz
xmas

Dictionary Symbol Dictionay Index Encoded Hex Byte(s) Encoded Binary Byte(s)
===
[compression indicator] 0 00 00000000
thanks 16619 C0EB 11000000 11101011
! 2 02 00000010
[sp] 1 01 00000001
hope[sp] 341 8155 10000001 01010101
you[sp] 70 46 01000110
have[sp] 86 56 01010110
great[sp] 231 80E7 10000000 11100111
x 63 3F 00111111
m 52 34 00110100
a 40 28 00101000
s 58 3A 00111010
[sp] 1 01 00000001
too 16526 C08E 11000000 10001110
! 2 02 00000010
[sp] 1 01 00000001
what[sp] 78 4E 01001110
you[sp] 70 46 01000110
up[sp] 119 77 01110111
to[sp] 71 47 01000111
these[sp] 249 80F9 10000000 11111001
days 16847 C1CF 11000001 11001111
? 32 20 00100000
[sp] 1 01 00000001
still[sp] 220 80DC 10000000 11011100
in[sp] 80 50 01010000
london 18852 C9A4 11001001 10100100
? 32 20 00100000
[sp] 1 01 00000001
can't[sp] 146 8092 10000000 10010010
believe[sp] 239 80EF 10000000 11101111
i've[sp] 181 80B5 10000000 10110101
been[sp] 158 809E 10000000 10011110
back[sp] 145 8091 10000000 10010001
in[sp] 80 50 01010000
n 53 35 00110101
z 65 41 01000001
[sp] 1 01 00000001
for[sp] 84 54 01010100
nearly[sp] 2133 8855 10001000 01010101
1 18 12 00010010
8 25 19 00011001
[sp] 1 01 00000001
months 17023 C27F 11000010 01111111
, 13 0D 00001101
[sp] 1 01 00000001
but[sp] 100 64 01100100
i'm[sp] 83 53 01010011
still[sp] 220 80DC 10000000 11011100
loving[sp] 1474 85C2 10000101 11000010
every[sp] 309 8135 10000001 00110101
minute[sp] 361 8169 10000001 01101001
of[sp] 76 4C 01001100
it 16423 C027 11000000 00100111

61

Univ
ers

ity
 of

 C
ap

e T
ow

n

! 2 02 00000010

REF# 0179 [179 chars] Uncompressed Huffman LD-Based
==
Bits: 1253 1184 592
Bits Per Input Char: 7.00 6.61 3.31
Transmission Bits: 1592 1520 720
Transmission Bits Per Input Char: 8.89 8.49 4.02
Number of SMS Messages: 2 2 1
Characters per SMS: 89.50 89.50 179.00

Experimental: JNI_OnLoad called.

62

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix E - Printout Ref# 0205

Details
===
GSM Modem SerialPort: /dev/ttyUSB0
PhoneNumber: 07894555501
Message: Yes, but to be honest, when I am working on a problem I never think about beauty. I
only think about how to solve the problem. But when I have finished, if the solution is not
beautiful, I know it is wrong

Starting...

Stable Library
===
Native lib Version = RXTX-2.1-7
Java lib Version = RXTX-2.1-7
Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CMGS=91
Rx: >
Tx:
0011000B817098545505F100F4FF4D00C0780D0164475CC3270D01808D300180C081D85D28018168300180B0796AC
79D0F01300180D5796A7F478A3448C1440F0164808D300156C3C70D0173488B1A4F5AC1BE0D013001524B4FC0EF#
Rx: +CMGS: 60
Rx: OK

Sending done!

Waiting 60 seconds before trying to read message. This gives it time to be delivered from the
GSM network...
OK, here we go.

Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CPMS?
Rx: +CPMS: "ME",1,25,"SM",0,50,"SM",0,50
Rx: OK
Tx: AT+CMGR=1
Rx: +CMGR: 0,,96
Rx:
0791448720003023040C9144874955551000F4900192815503004D00C0780D0164475CC3270D01808D300180C081D
85D28018168300180B0796AC79D0F01300180D5796A7F478A3448C1440F0164808D300156C3C70D0173488B1A4F5A
C1BE0D013001524B4FC0EF
Rx: OK

Found Unread Message:
0791448720003023040C9144874955551000F4900192815503004D00C0780D0164475CC3270D01808D300180C081D
85D28018168300180B0796AC79D0F01300180D5796A7F478A3448C1440F0164808D300156C3C70D0173488B1A4F5A
C1BE0D013001524B4FC0EF

Delete all messages in store as part of housekeeping

Tx: AT+CMGD=1
Rx: OK
Deleted message at index 1

Decompressed Message: yes, but to be honest, when i am working on a problem i never think

63

Univ
ers

ity
 of

 C
ap

e T
ow

n

about beauty. i only think about how to solve the problem. but when i have finished, if the
solution is not beautiful, i know it is wrong

Receiving done!

Please wait, generating report...
Report generated.

SMS Compression Report
==

REF# 0205

Text Message [205 characters]: Yes, but to be honest, when I am working on a problem I never
think about beauty. I only think about how to solve the problem. But when I have finished, if
the solution is not beautiful, I know it is wrong

Words Not Found in Dictionary [100.00 percent hit ratio]
==
[N/A - All words exist in dictonary]

Dictionary Symbol Dictionay Index Encoded Hex Byte(s) Encoded Binary Byte(s)
===
[compression indicator] 0 00 00000000
yes 16504 C078 11000000 01111000
, 13 0D 00001101
[sp] 1 01 00000001
but[sp] 100 64 01100100
to[sp] 71 47 01000111
be[sp] 92 5C 01011100
honest 17191 C327 11000011 00100111
, 13 0D 00001101
[sp] 1 01 00000001
when[sp] 141 808D 10000000 10001101
i 48 30 00110000
[sp] 1 01 00000001
am[sp] 192 80C0 10000000 11000000
working[sp] 472 81D8 10000001 11011000
on[sp] 93 5D 01011101
a 40 28 00101000
[sp] 1 01 00000001
problem[sp] 360 8168 10000001 01101000
i 48 30 00110000
[sp] 1 01 00000001
never[sp] 176 80B0 10000000 10110000
think[sp] 121 79 01111001
about[sp] 106 6A 01101010
beauty 18333 C79D 11000111 10011101
. 15 0F 00001111
[sp] 1 01 00000001
i 48 30 00110000
[sp] 1 01 00000001
only[sp] 213 80D5 10000000 11010101
think[sp] 121 79 01111001
about[sp] 106 6A 01101010
how[sp] 127 7F 01111111
to[sp] 71 47 01000111
solve[sp] 2612 8A34 10001010 00110100
the[sp] 72 48 01001000
problem 16708 C144 11000001 01000100
. 15 0F 00001111
[sp] 1 01 00000001
but[sp] 100 64 01100100
when[sp] 141 808D 10000000 10001101
i 48 30 00110000
[sp] 1 01 00000001
have[sp] 86 56 01010110
finished 17351 C3C7 11000011 11000111
, 13 0D 00001101
[sp] 1 01 00000001
if[sp] 115 73 01110011
the[sp] 72 48 01001000
solution[sp] 2842 8B1A 10001011 00011010
is[sp] 79 4F 01001111
not[sp] 90 5A 01011010
beautiful 16830 C1BE 11000001 10111110
, 13 0D 00001101
[sp] 1 01 00000001
i 48 30 00110000

64

Univ
ers

ity
 of

 C
ap

e T
ow

n

[sp] 1 01 00000001
know[sp] 82 52 01010010
it[sp] 75 4B 01001011
is[sp] 79 4F 01001111
wrong 16623 C0EF 11000000 11101111

REF# 0205 [205 chars] Uncompressed Huffman LD-Based
==
Bits: 1435 1112 608
Bits Per Input Char: 7.00 5.42 2.97
Transmission Bits: 1776 1232 736
Transmission Bits Per Input Char: 8.66 6.01 3.59
Number of SMS Messages: 2 1 1
Characters per SMS: 102.50 205.00 205.00

Experimental: JNI_OnLoad called.

65

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix F - Printout Ref# 0353

Details
===
GSM Modem SerialPort: /dev/ttyUSB0
PhoneNumber: 07894555501
Message: Hey mate, how are you? Meant to email you after a trip to cape town to let you know
i'd finally seen your beautiful city. What are you doing in london when you can call cape
town home? Was a nice change from life in the slums too. Hopefully coming over for a wedding
in April next year - will keep you posted. And would love you to come visit Australia!

Starting...

Stable Library
===
Native lib Version = RXTX-2.1-7
Java lib Version = RXTX-2.1-7
Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CMGS=150
Rx: >
Tx:
0011000B817098545505F100F4FF88008097CA150D017F67C0222001828C47B09F4680F72801835A4798D081D5478
0BE46528101826881905E81E2C2DD0F014E674680D25089C8808D467680E598D081D5C0D220015F2801812B81CF80
9680CE50483A333C343A01C08E0F018A35814780B95428018219509500816581D90E01808F80FB46D3040F0149808
B80B34647808684C1D5F602#
Rx: +CMGS: 61
Rx: OK

Sending done!

Waiting 60 seconds before trying to read message. This gives it time to be delivered from the
GSM network...
OK, here we go.

Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CPMS?
Rx: +CPMS: "ME",1,25,"SM",0,50,"SM",0,50
Rx: OK
Tx: AT+CMGR=1
Rx: +CMGR: 0,,155
Rx:
0791448720003023040C9144874955551000F49001928165940088008097CA150D017F67C0222001828C47B09F468
0F72801835A4798D081D54780BE46528101826881905E81E2C2DD0F014E674680D25089C8808D467680E598D081D5
C0D220015F2801812B81CF809680CE50483A333C343A01C08E0F018A35814780B95428018219509500816581D90E0
1808F80FB46D3040F0149808B80B34647808684C1D5F602
Rx: OK

Found Unread Message:
0791448720003023040C9144874955551000F49001928165940088008097CA150D017F67C0222001828C47B09F468
0F72801835A4798D081D54780BE46528101826881905E81E2C2DD0F014E674680D25089C8808D467680E598D081D5
C0D220015F2801812B81CF809680CE50483A333C343A01C08E0F018A35814780B95428018219509500816581D90E0
1808F80FB46D3040F0149808B80B34647808684C1D5F602

Delete all messages in store as part of housekeeping

66

Univ
ers

ity
 of

 C
ap

e T
ow

n

Tx: AT+CMGD=1
Rx: OK
Deleted message at index 1

Decompressed Message: hey mate, how are you? meant to email you after a trip to cape town to
let you know i'd finally seen your beautiful city. what are you doing in london when you can
call cape town home? was a nice change from life in the slums too. hopefully coming over for
a wedding in april next year - will keep you posted. and would love you to come visit
australia!

Receiving done!

Please wait, generating report...
Report generated.

SMS Compression Report
==

REF# 0353

Text Message [353 characters]: Hey mate, how are you? Meant to email you after a trip to cape
town to let you know i'd finally seen your beautiful city. What are you doing in london when
you can call cape town home? Was a nice change from life in the slums too. Hopefully coming
over for a wedding in April next year - will keep you posted. And would love you to come
visit Australia!

Words Not Found in Dictionary [98.00 percent hit ratio]
===
slums

Dictionary Symbol Dictionay Index Encoded Hex Byte(s) Encoded Binary Byte(s)
===
[compression indicator] 0 00 00000000
hey[sp] 151 8097 10000000 10010111
mate 18965 CA15 11001010 00010101
, 13 0D 00001101
[sp] 1 01 00000001
how[sp] 127 7F 01111111
are[sp] 103 67 01100111
you 16418 C022 11000000 00100010
? 32 20 00100000
[sp] 1 01 00000001
meant[sp] 652 828C 10000010 10001100
to[sp] 71 47 01000111
email[sp] 12447 B09F 10110000 10011111
you[sp] 70 46 01000110
after[sp] 247 80F7 10000000 11110111
a 40 28 00101000
[sp] 1 01 00000001
trip[sp] 858 835A 10000011 01011010
to[sp] 71 47 01000111
cape[sp] 6352 98D0 10011000 11010000
town[sp] 469 81D5 10000001 11010101
to[sp] 71 47 01000111
let[sp] 190 80BE 10000000 10111110
you[sp] 70 46 01000110
know[sp] 82 52 01010010
i'd[sp] 257 8101 10000001 00000001
finally[sp] 616 8268 10000010 01101000
seen[sp] 400 8190 10000001 10010000
your[sp] 94 5E 01011110
beautiful[sp] 482 81E2 10000001 11100010
city 17117 C2DD 11000010 11011101
. 15 0F 00001111
[sp] 1 01 00000001
what[sp] 78 4E 01001110
are[sp] 103 67 01100111
you[sp] 70 46 01000110
doing[sp] 210 80D2 10000000 11010010
in[sp] 80 50 01010000
london[sp] 2504 89C8 10001001 11001000
when[sp] 141 808D 10000000 10001101
you[sp] 70 46 01000110
can[sp] 118 76 01110110
call[sp] 229 80E5 10000000 11100101
cape[sp] 6352 98D0 10011000 11010000
town[sp] 469 81D5 10000001 11010101
home 16594 C0D2 11000000 11010010
? 32 20 00100000

67

Univ
ers

ity
 of

 C
ap

e T
ow

n

[sp] 1 01 00000001
was[sp] 95 5F 01011111
a 40 28 00101000
[sp] 1 01 00000001
nice[sp] 299 812B 10000001 00101011
change[sp] 463 81CF 10000001 11001111
from[sp] 150 8096 10000000 10010110
life[sp] 206 80CE 10000000 11001110
in[sp] 80 50 01010000
the[sp] 72 48 01001000
s 58 3A 00111010
l 51 33 00110011
u 60 3C 00111100
m 52 34 00110100
s 58 3A 00111010
[sp] 1 01 00000001
too 16526 C08E 11000000 10001110
. 15 0F 00001111
[sp] 1 01 00000001
hopefully[sp] 2613 8A35 10001010 00110101
coming[sp] 327 8147 10000001 01000111
over[sp] 185 80B9 10000000 10111001
for[sp] 84 54 01010100
a 40 28 00101000
[sp] 1 01 00000001
wedding[sp] 537 8219 10000010 00011001
in[sp] 80 50 01010000
april[sp] 5376 9500 10010101 00000000
next[sp] 357 8165 10000001 01100101
year[sp] 473 81D9 10000001 11011001
- 14 0E 00001110
[sp] 1 01 00000001
will[sp] 143 808F 10000000 10001111
keep[sp] 251 80FB 10000000 11111011
you[sp] 70 46 01000110
posted 21252 D304 11010011 00000100
. 15 0F 00001111
[sp] 1 01 00000001
and[sp] 73 49 01001001
would[sp] 139 808B 10000000 10001011
love[sp] 179 80B3 10000000 10110011
you[sp] 70 46 01000110
to[sp] 71 47 01000111
come[sp] 134 8086 10000000 10000110
visit[sp] 1217 84C1 10000100 11000001
australia 22006 D5F6 11010101 11110110
! 2 02 00000010

REF# 0353 [353 chars] Uncompressed Huffman LD-Based
==
Bits: 2471 1856 1080
Bits Per Input Char: 7.00 5.26 3.06
Transmission Bits: 2984 2192 1208
Transmission Bits Per Input Char: 8.45 6.21 3.42
Number of SMS Messages: 3 2 1
Characters per SMS: 117.67 176.50 353.00

Experimental: JNI_OnLoad called.

68

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix G - Printout Ref# 0600

Details
===
GSM Modem SerialPort: /dev/ttyUSB0
PhoneNumber: 07894555501
Message: And so it was indeed: she was now only ten inches high, and her face brightened up
at the thought that she was now the right size for going through the little door into that
lovely garden. First, however, she waited for a few minutes to see if she was going to shrink
any further: she felt a little nervous about this; 'for it might end, you know,' said Alice
to herself, 'in my going out altogether, like a candle. I wonder what I should be like then?'
And she tried to fancy what the flame of a candle is like after the candle is blown out, for
she could not remember ever having seen such a thing.

Starting...

Stable Library
===
Native lib Version = RXTX-2.1-7
Java lib Version = RXTX-2.1-7
Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CMGS=154
Rx: >
Tx:
0051000B817098545505F100F4FF8C0500037302010049634B5FC87C1B01755F7B80D5829E9565C2300D01497481A
32939302E2F3B2C352C2B01777E4880D64A755F7B486B8748547081144880AC820480DE4A8431CB200F01C0CA0D01
C72A0D0175886154280181AB81F547808573755F70478BE580CDC68E1B01758281280180AC84976AC02D1C0108544
B8133C1AC0D0146C02E0D080180CB8C#
Rx: +CMGS: 62
Rx: OK
Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CMGS=108
Rx: >
Tx:
0051000B817098545505F100F4FF5E0500037302027347C3AA0D01085057706FDA9F0D01712801CD810F01300182E
84E300180C95C71C0812008014975820B4788C44E4896DD4C28018DA54F7180F7488DA54F8BF3C04B0D015475809A
5A811E80EA8174819081B92801C09B0F#
Rx: +CMGS: 63
Rx: OK

Sending done!

Waiting 60 seconds before trying to read message. This gives it time to be delivered from the
GSM network...
OK, here we go.

Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0

69

Univ
ers

ity
 of

 C
ap

e T
ow

n

Rx: OK
Tx: AT+CPMS?
Rx: +CPMS: "ME",2,25,"SM",0,50,"SM",0,50
Rx: OK
Tx: AT+CMGR=1
Rx: +CMGR: 0,,159
Rx:
0791448720003023440C9144874955551000F4900192818570008C0500037302010049634B5FC87C1B01755F7B80D
5829E9565C2300D01497481A32939302E2F3B2C352C2B01777E4880D64A755F7B486B8748547081144880AC820480
DE4A8431CB200F01C0CA0D01C72A0D0175886154280181AB81F547808573755F70478BE580CDC68E1B01758281280
180AC84976AC02D1C0108544B8133C1AC0D0146C02E0D080180CB8C
Rx: OK

Found Unread Message:
0791448720003023440C9144874955551000F4900192818570008C0500037302010049634B5FC87C1B01755F7B80D
5829E9565C2300D01497481A32939302E2F3B2C352C2B01777E4880D64A755F7B486B8748547081144880AC820480
DE4A8431CB200F01C0CA0D01C72A0D0175886154280181AB81F547808573755F70478BE580CDC68E1B01758281280
180AC84976AC02D1C0108544B8133C1AC0D0146C02E0D080180CB8C
Tx: AT+CMGR=2
Rx: +CMGR: 0,,113
Rx:
0791448720003023440C9144874955551000F4900192818591005E0500037302027347C3AA0D01085057706FDA9F0
D01712801CD810F01300182E84E300180C95C71C0812008014975820B4788C44E4896DD4C28018DA54F7180F7488D
A54F8BF3C04B0D015475809A5A811E80EA8174819081B92801C09B0F
Rx: OK

Found Unread Message:
0791448720003023440C9144874955551000F4900192818591005E0500037302027347C3AA0D01085057706FDA9F0
D01712801CD810F01300182E84E300180C95C71C0812008014975820B4788C44E4896DD4C28018DA54F7180F7488D
A54F8BF3C04B0D015475809A5A811E80EA8174819081B92801C09B0F

Delete all messages in store as part of housekeeping

Tx: AT+CMGD=1
Rx: OK
Deleted message at index 1
Tx: AT+CMGD=2
Rx: OK
Deleted message at index 2

Decompressed Message: and so it was indeed: she was now only ten inches high, and her face
brightened up at the thought that she was now the right size for going through the little
door into that lovely garden. first, however, she waited for a few minutes to see if she was
going to shrink any further: she felt a little nervous about this; 'for it might end, you
know,' said alice to herself, 'in my going out altogether, like a candle. i wonder what i
should be like then?' and she tried to fancy what the flame of a candle is like after the
candle is blown out, for she could not remember ever having seen such a thing.

Receiving done!

Please wait, generating report...
Report generated.

SMS Compression Report
==

REF# 0600

Text Message [600 characters]: And so it was indeed: she was now only ten inches high, and
her face brightened up at the thought that she was now the right size for going through the
little door into that lovely garden. First, however, she waited for a few minutes to see if
she was going to shrink any further: she felt a little nervous about this; 'for it might end,
you know,' said Alice to herself, 'in my going out altogether, like a candle. I wonder what I
should be like then?' And she tried to fancy what the flame of a candle is like after the
candle is blown out, for she could not remember ever having seen such a thing.

Words Not Found in Dictionary [99.00 percent hit ratio]
===
brightened

Dictionary Symbol Dictionay Index Encoded Hex Byte(s) Encoded Binary Byte(s)
===
[compression indicator] 0 00 00000000
and[sp] 73 49 01001001
so[sp] 99 63 01100011
it[sp] 75 4B 01001011
was[sp] 95 5F 01011111
indeed 18556 C87C 11001000 01111100
: 27 1B 00011011

70

Univ
ers

ity
 of

 C
ap

e T
ow

n

[sp] 1 01 00000001
she[sp] 117 75 01110101
was[sp] 95 5F 01011111
now[sp] 123 7B 01111011
only[sp] 213 80D5 10000000 11010101
ten[sp] 670 829E 10000010 10011110
inches[sp] 5477 9565 10010101 01100101
high 16944 C230 11000010 00110000
, 13 0D 00001101
[sp] 1 01 00000001
and[sp] 73 49 01001001
her[sp] 116 74 01110100
face[sp] 419 81A3 10000001 10100011
b 41 29 00101001
r 57 39 00111001
i 48 30 00110000
g 46 2E 00101110
h 47 2F 00101111
t 59 3B 00111011
e 44 2C 00101100
n 53 35 00110101
e 44 2C 00101100
d 43 2B 00101011
[sp] 1 01 00000001
up[sp] 119 77 01110111
at[sp] 126 7E 01111110
the[sp] 72 48 01001000
thought[sp] 214 80D6 10000000 11010110
that[sp] 74 4A 01001010
she[sp] 117 75 01110101
was[sp] 95 5F 01011111
now[sp] 123 7B 01111011
the[sp] 72 48 01001000
right[sp] 107 6B 01101011
size[sp] 1864 8748 10000111 01001000
for[sp] 84 54 01010100
going[sp] 112 70 01110000
through[sp] 276 8114 10000001 00010100
the[sp] 72 48 01001000
little[sp] 172 80AC 10000000 10101100
door[sp] 516 8204 10000010 00000100
into[sp] 222 80DE 10000000 11011110
that[sp] 74 4A 01001010
lovely[sp] 1073 8431 10000100 00110001
garden 19232 CB20 11001011 00100000
. 15 0F 00001111
[sp] 1 01 00000001
first 16586 C0CA 11000000 11001010
, 13 0D 00001101
[sp] 1 01 00000001
however 18218 C72A 11000111 00101010
, 13 0D 00001101
[sp] 1 01 00000001
she[sp] 117 75 01110101
waited[sp] 2145 8861 10001000 01100001
for[sp] 84 54 01010100
a 40 28 00101000
[sp] 1 01 00000001
few[sp] 427 81AB 10000001 10101011
minutes[sp] 501 81F5 10000001 11110101
to[sp] 71 47 01000111
see[sp] 133 8085 10000000 10000101
if[sp] 115 73 01110011
she[sp] 117 75 01110101
was[sp] 95 5F 01011111
going[sp] 112 70 01110000
to[sp] 71 47 01000111
shrink[sp] 3045 8BE5 10001011 11100101
any[sp] 205 80CD 10000000 11001101
further 18062 C68E 11000110 10001110
: 27 1B 00011011
[sp] 1 01 00000001
she[sp] 117 75 01110101
felt[sp] 641 8281 10000010 10000001
a 40 28 00101000
[sp] 1 01 00000001
little[sp] 172 80AC 10000000 10101100
nervous[sp] 1175 8497 10000100 10010111
about[sp] 106 6A 01101010

71

Univ
ers

ity
 of

 C
ap

e T
ow

n

this 16429 C02D 11000000 00101101
; 28 1C 00011100
[sp] 1 01 00000001
' 8 08 00001000
for[sp] 84 54 01010100
it[sp] 75 4B 01001011
might[sp] 307 8133 10000001 00110011
end 16812 C1AC 11000001 10101100
, 13 0D 00001101
[sp] 1 01 00000001
you[sp] 70 46 01000110
know 16430 C02E 11000000 00101110
, 13 0D 00001101
' 8 08 00001000
[sp] 1 01 00000001
said[sp] 203 80CB 10000000 11001011
alice[sp] 3187 8C73 10001100 01110011
to[sp] 71 47 01000111
herself 17322 C3AA 11000011 10101010
, 13 0D 00001101
[sp] 1 01 00000001
' 8 08 00001000
in[sp] 80 50 01010000
my[sp] 87 57 01010111
going[sp] 112 70 01110000
out[sp] 111 6F 01101111
altogether 23199 DA9F 11011010 10011111
, 13 0D 00001101
[sp] 1 01 00000001
like[sp] 113 71 01110001
a 40 28 00101000
[sp] 1 01 00000001
candle 19841 CD81 11001101 10000001
. 15 0F 00001111
[sp] 1 01 00000001
i 48 30 00110000
[sp] 1 01 00000001
wonder[sp] 744 82E8 10000010 11101000
what[sp] 78 4E 01001110
i 48 30 00110000
[sp] 1 01 00000001
should[sp] 201 80C9 10000000 11001001
be[sp] 92 5C 01011100
like[sp] 113 71 01110001
then 16513 C081 11000000 10000001
? 32 20 00100000
' 8 08 00001000
[sp] 1 01 00000001
and[sp] 73 49 01001001
she[sp] 117 75 01110101
tried[sp] 523 820B 10000010 00001011
to[sp] 71 47 01000111
fancy[sp] 2244 88C4 10001000 11000100
what[sp] 78 4E 01001110
the[sp] 72 48 01001000
flame[sp] 5853 96DD 10010110 11011101
of[sp] 76 4C 01001100
a 40 28 00101000
[sp] 1 01 00000001
candle[sp] 3493 8DA5 10001101 10100101
is[sp] 79 4F 01001111
like[sp] 113 71 01110001
after[sp] 247 80F7 10000000 11110111
the[sp] 72 48 01001000
candle[sp] 3493 8DA5 10001101 10100101
is[sp] 79 4F 01001111
blown[sp] 3059 8BF3 10001011 11110011
out 16459 C04B 11000000 01001011
, 13 0D 00001101
[sp] 1 01 00000001
for[sp] 84 54 01010100
she[sp] 117 75 01110101
could[sp] 154 809A 10000000 10011010
not[sp] 90 5A 01011010
remember[sp] 286 811E 10000001 00011110
ever[sp] 234 80EA 10000000 11101010
having[sp] 372 8174 10000001 01110100
seen[sp] 400 8190 10000001 10010000
such[sp] 441 81B9 10000001 10111001

72

Univ
ers

ity
 of

 C
ap

e T
ow

n

a 40 28 00101000
[sp] 1 01 00000001
thing 16539 C09B 11000000 10011011
. 15 0F 00001111

REF# 0600 [600 chars] Uncompressed Huffman LD-Based
==
Bits: 4200 2768 1768
Bits Per Input Char: 7.00 4.61 2.95
Transmission Bits: 4880 3272 2112
Transmission Bits Per Input Char: 8.13 5.45 3.52
Number of SMS Messages: 4 3 2
Characters per SMS: 150.00 200.00 300.00

Experimental: JNI_OnLoad called.

73

Univ
ers

ity
 of

 C
ap

e T
ow

n

Appendix H - Printout Ref# 0723

Details
===
GSM Modem SerialPort: /dev/ttyUSB0
PhoneNumber: 07894555501
Message: We understand it still that there is no easy road to freedom. We know it well that
none of us acting alone can achieve success. We must therefore act together as a united
people, for national reconciliation, for nation building, for the birth of a new world. Let
there be justice for all. Let there be peace for all. Let there be work, bread, water and
salt for all. Let each know that for each the body, the mind and the soul have been freed to
fulfill themselves. Never, never and never again shall it be that this beautiful land will
again experience the oppression of one by another and suffer the indignity of being the skunk
of the world. Let freedom reign. The sun shall never set on so glorious a human achievement!

Starting...

Stable Library
===
Native lib Version = RXTX-2.1-7
Java lib Version = RXTX-2.1-7
Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CMGS=154
Rx: >
Tx:
0051000B817098545505F100F4FF8C050003040201006081264B80DC4A80814F55820883E347C8B10F0160524B664
A82F54C80AB8423817F769B7BC93B0F016081468E7D831B8121808A280188AEC0B60D01548833EC7B0D0154926BC3
A60D01544887534C28018117C1470F0180BE80815C860154C0410F0180BE80815C850A54C0410F0180BE80815CC0C
F0D01CBA90D01829C498E7554C0410F#
Rx: +CMGS: 64
Rx: OK
Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i
Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CMGS=145
Rx: >
Tx:
0051000B817098545505F100F4FF830500030402020180BE81A7524A5481A748C2860D014881344948846256809EA
26B479D99C6AE0F01C08C0D0180B04980B080E1838B4B5C4A5181E285E6808F80E184EE48BE7C4C808280C7813F49
8A274830352B302E35303B40014C811848B1514C48C1470F0180BE88D5E4CE0F01488654838B80B082055D6396142
8018355E84402#
Rx: +CMGS: 65
Rx: OK

Sending done!

Waiting 60 seconds before trying to read message. This gives it time to be delivered from the
GSM network...
OK, here we go.

Tx: ATE0
Rx: OK
Tx: AT+CGMI
Rx: SIEMENS
Rx: OK
Tx: AT+GMM
Rx: TC35i

74

Univ
ers

ity
 of

 C
ap

e T
ow

n

Rx: OK
Tx: AT+CMGF=0
Rx: OK
Tx: AT+CPMS?
Rx: +CPMS: "ME",2,25,"SM",0,50,"SM",0,50
Rx: OK
Tx: AT+CMGR=1
Rx: +CMGR: 0,,159
Rx:
0791448720003023440C9144874955551000F4900192819504008C050003040201006081264B80DC4A80814F55820
883E347C8B10F0160524B664A82F54C80AB8423817F769B7BC93B0F016081468E7D831B8121808A280188AEC0B60D
01548833EC7B0D0154926BC3A60D01544887534C28018117C1470F0180BE80815C860154C0410F0180BE80815C850
A54C0410F0180BE80815CC0CF0D01CBA90D01829C498E7554C0410F
Rx: OK

Found Unread Message:
0791448720003023440C9144874955551000F4900192819504008C050003040201006081264B80DC4A80814F55820
883E347C8B10F0160524B664A82F54C80AB8423817F769B7BC93B0F016081468E7D831B8121808A280188AEC0B60D
01548833EC7B0D0154926BC3A60D01544887534C28018117C1470F0180BE80815C860154C0410F0180BE80815C850
A54C0410F0180BE80815CC0CF0D01CBA90D01829C498E7554C0410F
Tx: AT+CMGR=2
Rx: +CMGR: 0,,150
Rx:
0791448720003023440C9144874955551000F490019281952500830500030402020180BE81A7524A5481A748C2860
D014881344948846256809EA26B479D99C6AE0F01C08C0D0180B04980B080E1838B4B5C4A5181E285E6808F80E184
EE48BE7C4C808280C7813F498A274830352B302E35303B40014C811848B1514C48C1470F0180BE88D5E4CE0F01488
654838B80B082055D63961428018355E84402
Rx: OK

Found Unread Message:
0791448720003023440C9144874955551000F490019281952500830500030402020180BE81A7524A5481A748C2860
D014881344948846256809EA26B479D99C6AE0F01C08C0D0180B04980B080E1838B4B5C4A5181E285E6808F80E184
EE48BE7C4C808280C7813F498A274830352B302E35303B40014C811848B1514C48C1470F0180BE88D5E4CE0F01488
654838B80B082055D63961428018355E84402

Delete all messages in store as part of housekeeping

Tx: AT+CMGD=1
Rx: OK
Deleted message at index 1
Tx: AT+CMGD=2
Rx: OK
Deleted message at index 2

Decompressed Message: we understand it still that there is no easy road to freedom. we know
it well that none of us acting alone can achieve success. we must therefore act together as a
united people, for national reconciliation, for nation building, for the birth of a new
world. let there be justice for all. let there be peace for all. let there be work, bread,
water and salt for all. let each know that for each the body, the mind and the soul have been
freed to fulfill themselves. never, never and never again shall it be that this beautiful
land will again experience the oppression of one by another and suffer the indignity of being
the skunk of the world. let freedom reign. the sun shall never set on so glorious a human
achievement!

Receiving done!

Please wait, generating report...
Report generated.

SMS Compression Report
==

REF# 0723

Text Message [723 characters]: We understand it still that there is no easy road to freedom.
We know it well that none of us acting alone can achieve success. We must therefore act
together as a united people, for national reconciliation, for nation building, for the birth
of a new world. Let there be justice for all. Let there be peace for all. Let there be work,
bread, water and salt for all. Let each know that for each the body, the mind and the soul
have been freed to fulfill themselves. Never, never and never again shall it be that this
beautiful land will again experience the oppression of one by another and suffer the
indignity of being the skunk of the world. Let freedom reign. The sun shall never set on so
glorious a human achievement!

Words Not Found in Dictionary [99.00 percent hit ratio]
===
indignity

Dictionary Symbol Dictionay Index Encoded Hex Byte(s) Encoded Binary Byte(s)

75

Univ
ers

ity
 of

 C
ap

e T
ow

n

===
[compression indicator] 0 00 00000000
we[sp] 96 60 01100000
understand[sp] 294 8126 10000001 00100110
it[sp] 75 4B 01001011
still[sp] 220 80DC 10000000 11011100
that[sp] 74 4A 01001010
there[sp] 129 8081 10000000 10000001
is[sp] 79 4F 01001111
no[sp] 85 55 01010101
easy[sp] 520 8208 10000010 00001000
road[sp] 995 83E3 10000011 11100011
to[sp] 71 47 01000111
freedom 18609 C8B1 11001000 10110001
. 15 0F 00001111
[sp] 1 01 00000001
we[sp] 96 60 01100000
know[sp] 82 52 01010010
it[sp] 75 4B 01001011
well[sp] 102 66 01100110
that[sp] 74 4A 01001010
none[sp] 757 82F5 10000010 11110101
of[sp] 76 4C 01001100
us[sp] 171 80AB 10000000 10101011
acting[sp] 1059 8423 10000100 00100011
alone[sp] 383 817F 10000001 01111111
can[sp] 118 76 01110110
achieve[sp] 7035 9B7B 10011011 01111011
success 18747 C93B 11001001 00111011
. 15 0F 00001111
[sp] 1 01 00000001
we[sp] 96 60 01100000
must[sp] 326 8146 10000001 01000110
therefore[sp] 3709 8E7D 10001110 01111101
act[sp] 795 831B 10000011 00011011
together[sp] 289 8121 10000001 00100001
as[sp] 138 808A 10000000 10001010
a 40 28 00101000
[sp] 1 01 00000001
united[sp] 2222 88AE 10001000 10101110
people 16566 C0B6 11000000 10110110
, 13 0D 00001101
[sp] 1 01 00000001
for[sp] 84 54 01010100
national[sp] 2099 8833 10001000 00110011
reconciliation 27771 EC7B 11101100 01111011
, 13 0D 00001101
[sp] 1 01 00000001
for[sp] 84 54 01010100
nation[sp] 4715 926B 10010010 01101011
building 17318 C3A6 11000011 10100110
, 13 0D 00001101
[sp] 1 01 00000001
for[sp] 84 54 01010100
the[sp] 72 48 01001000
birth[sp] 1875 8753 10000111 01010011
of[sp] 76 4C 01001100
a 40 28 00101000
[sp] 1 01 00000001
new[sp] 279 8117 10000001 00010111
world 16711 C147 11000001 01000111
. 15 0F 00001111
[sp] 1 01 00000001
let[sp] 190 80BE 10000000 10111110
there[sp] 129 8081 10000000 10000001
be[sp] 92 5C 01011100
justice[sp] 1537 8601 10000110 00000001
for[sp] 84 54 01010100
all 16449 C041 11000000 01000001
. 15 0F 00001111
[sp] 1 01 00000001
let[sp] 190 80BE 10000000 10111110
there[sp] 129 8081 10000000 10000001
be[sp] 92 5C 01011100
peace[sp] 1290 850A 10000101 00001010
for[sp] 84 54 01010100
all 16449 C041 11000000 01000001
. 15 0F 00001111
[sp] 1 01 00000001

76

Univ
ers

ity
 of

 C
ap

e T
ow

n

let[sp] 190 80BE 10000000 10111110
there[sp] 129 8081 10000000 10000001
be[sp] 92 5C 01011100
work 16591 C0CF 11000000 11001111
, 13 0D 00001101
[sp] 1 01 00000001
bread 19369 CBA9 11001011 10101001
, 13 0D 00001101
[sp] 1 01 00000001
water[sp] 668 829C 10000010 10011100
and[sp] 73 49 01001001
salt[sp] 3701 8E75 10001110 01110101
for[sp] 84 54 01010100
all 16449 C041 11000000 01000001
. 15 0F 00001111
[sp] 1 01 00000001
let[sp] 190 80BE 10000000 10111110
each[sp] 423 81A7 10000001 10100111
know[sp] 82 52 01010010
that[sp] 74 4A 01001010
for[sp] 84 54 01010100
each[sp] 423 81A7 10000001 10100111
the[sp] 72 48 01001000
body 17030 C286 11000010 10000110
, 13 0D 00001101
[sp] 1 01 00000001
the[sp] 72 48 01001000
mind[sp] 308 8134 10000001 00110100
and[sp] 73 49 01001001
the[sp] 72 48 01001000
soul[sp] 1122 8462 10000100 01100010
have[sp] 86 56 01010110
been[sp] 158 809E 10000000 10011110
freed[sp] 8811 A26B 10100010 01101011
to[sp] 71 47 01000111
fulfill[sp] 7577 9D99 10011101 10011001
themselves 18094 C6AE 11000110 10101110
. 15 0F 00001111
[sp] 1 01 00000001
never 16524 C08C 11000000 10001100
, 13 0D 00001101
[sp] 1 01 00000001
never[sp] 176 80B0 10000000 10110000
and[sp] 73 49 01001001
never[sp] 176 80B0 10000000 10110000
again[sp] 225 80E1 10000000 11100001
shall[sp] 907 838B 10000011 10001011
it[sp] 75 4B 01001011
be[sp] 92 5C 01011100
that[sp] 74 4A 01001010
this[sp] 81 51 01010001
beautiful[sp] 482 81E2 10000001 11100010
land[sp] 1510 85E6 10000101 11100110
will[sp] 143 808F 10000000 10001111
again[sp] 225 80E1 10000000 11100001
experience[sp] 1262 84EE 10000100 11101110
the[sp] 72 48 01001000
oppression[sp] 15996 BE7C 10111110 01111100
of[sp] 76 4C 01001100
one[sp] 130 8082 10000000 10000010
by[sp] 199 80C7 10000000 11000111
another[sp] 319 813F 10000001 00111111
and[sp] 73 49 01001001
suffer[sp] 2599 8A27 10001010 00100111
the[sp] 72 48 01001000
i 48 30 00110000
n 53 35 00110101
d 43 2B 00101011
i 48 30 00110000
g 46 2E 00101110
n 53 35 00110101
i 48 30 00110000
t 59 3B 00111011
y 64 40 01000000
[sp] 1 01 00000001
of[sp] 76 4C 01001100
being[sp] 280 8118 10000001 00011000
the[sp] 72 48 01001000
skunk[sp] 12625 B151 10110001 01010001

77

Univ
ers

ity
 of

 C
ap

e T
ow

n

of[sp] 76 4C 01001100
the[sp] 72 48 01001000
world 16711 C147 11000001 01000111
. 15 0F 00001111
[sp] 1 01 00000001
let[sp] 190 80BE 10000000 10111110
freedom[sp] 2261 88D5 10001000 11010101
reign 25806 E4CE 11100100 11001110
. 15 0F 00001111
[sp] 1 01 00000001
the[sp] 72 48 01001000
sun[sp] 1620 8654 10000110 01010100
shall[sp] 907 838B 10000011 10001011
never[sp] 176 80B0 10000000 10110000
set[sp] 517 8205 10000010 00000101
on[sp] 93 5D 01011101
so[sp] 99 63 01100011
glorious[sp] 5652 9614 10010110 00010100
a 40 28 00101000
[sp] 1 01 00000001
human[sp] 853 8355 10000011 01010101
achievement 26692 E844 11101000 01000100
! 2 02 00000010

REF# 0723 [723 chars] Uncompressed Huffman LD-Based
==
Bits: 5061 3016 2064
Bits Per Input Char: 7.00 4.17 2.85
Transmission Bits: 5912 3520 2408
Transmission Bits Per Input Char: 8.18 4.87 3.33
Number of SMS Messages: 5 3 2
Characters per SMS: 144.60 241.00 361.50

Experimental: JNI_OnLoad called.

78

Univ
ers

ity
 of

 C
ap

e T
ow

n

	Chapter 1 - Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Dissertation outline

	Chapter 2 - Background
	2.1 SMS
	2.2 Compression and decompression

	Chapter 3 - Related work
	Chapter 4 - Design and implementation
	4.1 Algorithm
	4.2 Dictionary
	4.3 Keyword substitution
	4.4 The prototype

	Chapter 5 - Results and discussion
	Chapter 6 - Conclusion
	Chapter 7 - Future work
	Chapter 8 - References
	Appendix A - Printout Ref# 0012
	Appendix B - Printout Ref# 0043
	Appendix C - Printout Ref# 0064
	Appendix D - Printout Ref# 0179
	Appendix E - Printout Ref# 0205
	Appendix F - Printout Ref# 0353
	Appendix G - Printout Ref# 0600
	Appendix H - Printout Ref# 0723

