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Abstract

This thesis investigates the complexities of acoustic scattering by finite bodies in general and
by fish in particular through the development of an advanced acoustic scattering model and
detailed laboratory acoustic measurements. A general acoustic scattering model is developed
that is accurate and numerically efficient for a wide range of frequencies, angles of orientation,
irregular axisymmetric shapes and boundary conditions. The model presented is an extension of
a two-dimensional conformal mapping approach to scattering by irregular, finite-length bodies
of revolution. An extensive series of broadband acoustic backscattering measurements has been
conducted involving alewife fish (Alosa pseudoharengus), which are morphologically similar to
the Atlantic herring (Clupea harengus). A greater-than-octave bandwidth (40-95 kHz), shaped,
linearly swept, frequency modulated signal was used to insonify live, adult alewife that were
tethered while being rotated in 1-degree increments over all angles of orientation in two planes
of rotation (lateral and dorsal/ventral). Spectral analysis correlates frequency dependencies to
morphology and orientation. Pulse compression processing temporally resolves multiple returns
from each individual which show good correlation with size and orientation, and demonstrate
that there exists more than one significant scattering feature in the animal. Imaging technologies
used to exactly measure the morphology of the scattering features of fish include very high-
resolution Phase Contrast X-rays (PCX) and Computerized Tomography (CT) scans, which are
used for morphological evaluation and incorporation into the scattering model. Studies such as
this one, which combine scattering models with high-resolution morphological information and
high-quality laboratory data, are crucial to the quantitative use of acoustics in the ocean.
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Title: Senior Scientist, WHOI
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Chapter 1

Introduction

1.1 Historical background for the use of sound in

underwater observations

The first significant experiment in underwater acoustics was conducted by Colladon and

Sturm in 1826 in the waters of Lake Geneva, Switzerland. By striking a bell underwater

while simultaneously setting off a flash of light from explosives above the water, an

observer in a boat some distance away measured the time lapse between the flash of light

and the arrival of the sound of the ringing bell underwater. Colladon and Sturm, in

a single experiment, not only a established a good value for the speed of sound (c) in

fresh water but simultaneously, and possibly unintentionally, demonstrated the fact that

as light and sight are the primary means of assessing the world above water, sound is

the method of choice to observe the underwater world. Water is opaque to light but is
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transparent to sound which can travel great distances through the ocean and be detected

at low frequencies even at megameter ranges (Baggeroer et al., 1994).

Medwin and Clay (1998) opine that acoustical oceanography (the use of sound to

study oceanographic processes) got its start in 1912, with the sinking of the HMS Titanic.

Within months of the tragedy, patents were filed for new sonar systems to detect the

presence of large objects underwater using acoustic backscattering. In fact, within

20 years of the Titanic's sinking, sonar was being used for the detection of schools of

fish. Since that time, the science of underwater acoustics has progressed and has been

applied in many ways to study the ocean environment. Much interest continues in the

study of how human-generated sound interacts with marine organisms, whether for the

purpose of understanding how the sound affects marine mammal behavior or for the

purpose of detecting and tracking marine organisms. Acoustic scattering from marine

organisms is the focus of much research by a diverse number of individuals: the academic

biologist/acoustician, the commercial fisherman, the fisheries manager and the military

sonar engineer.

1.2 Current interest in ocean observation

Just as in the 1930's, the modern commercial fisherman uses sonar to detect and localize

the presence of schools of fish to maximize the catch. Given the limits on the number

of fishing days and types of harvested fish allowed, remotely classifying fish would be

advantageous for the commercial fisherman in order to avoid unnecessary catches of
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unwanted species and to maximize time at sea by limiting operational costs in terms of

payroll and fuel.

The fisheries manager is tasked with observing and estimating fish populations in

particular regions of the ocean to prevent over-fishing and the resultant collapse of the

fisheries as happened in New England (Fogerty and Murawski, 1998; Steele, 1998), or

worse, the extinction of particular species due to over-fishing or habitat destruction.

The academician is interested in better understanding the distribution, diversity,

abundance and size distributions of fish populations in order to assess the state of the

resources present in the ocean and changes in the environment in which these organisms

live. Without knowledge of these factors, it is difficult to determine, much less predict,

the effect on populations of low availability of food supplies for each species or the effect

of over-fishing by humans.

The military sonar engineer is interested in observing and understanding how sound

interacts with boundaries such as the sea surface, the seafloor, turbulence, internal waves,

bubbles and marine organisms. Organism-based sound can be due to scattering from

the animal or actually produced by the animal itself, e.g., whales, dolphins and snapping

shrimp (Au and Banks, 1998; Olivieri and Glegg, 1998; Versluis et al., 2000; Schmitz et al.,

2000). For active sonar systems seeking an acoustic target, organism-based interference

contributes to the background reverberation detected by the sonar, decreasing the signal-

to-noise ratio (SNR) and lowering the probability of detection (Urick, 1983).
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1.3 Methods of ocean observation

Historically, scientists have relied on ocean surveys involving direct sampling with various

types of nets to assess organism populations. Direct sampling furnishes biological data

like abundance, biomass, length and species identification but is time-consuming and

expensive. The catch may not be representative of the biomass in the water column

since the net is selective, and as many marine organisms are free swimmers, the animals

can avoid the net. Some delicate animals are destroyed by the nets, making it difficult

to count the catch. The population estimate generated from the survey is susceptible

to error since the sampling volume is small relative to the size of the region that is

being surveyed. The abundance estimate from the small volume is then extrapolated

to the whole, large region, causing errors to be propagated and amplified in the biomass

estimate.

To overcome the problems and limitations plaguing the biological oceanographer and

fisheries manager, the use of acoustic technology has made it possible to do rapid, high-

resolution, broad-scale synoptic surveys of marine organisms (Gunderson, 1993). An

acoustic survey would be less expensive by sampling the entire water column at a much

faster rate, requiring less ship-time and labor while providing total coverage of the sur-

veyed region. The acoustic survey is non-invasive, eliminating the problems of net

avoidance and destruction of the organisms. The potential exists for the acoustic survey

to produce high-resolution maps that can help advance understanding of aquatic com-

munity compositions, predator-prey interactions and habitat utilization (Horne, 1998).
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Acoustic sampling produces acoustic data, not biological data; therefore, the acoustic

backscattered signal must be translated into meaningful biological information. Abun-

dance estimates using echo sounders have been made for several decades; however, these

estimates are quite often based on the assumptions that (1) the aggregation is composed

of animals of a single size and species, (2) the echo energy is proportional to the product

of the number of animals per unit volume and average backscattering cross section, and

(3) the average backscattering cross section is relatively constant for a given size and

species, implying variations in echo energy are related to variation in numerical density.

Directly relating acoustic scattering strength to biomass can be an unreliable indicator

of abundance. The scattering strength of an organism depends upon the anatomical

features of the animal, which vary widely between species that may even be of the same

individual size or biomass, introducing large errors in the abundance estimates (Foote,

1980; Stanton et al., 1994a). Dawson and Karp (1990) observed that fish at nearly hor-

izontal aspect experienced approximately 10 dB target strength variations, apparently

due to its swimming motion only. In an earlier study, Nakken and Olsen (1977) noted

a 20 dB variation over time for a swimming Atlantic cod (Gadus morhua) at zero tilt

angle.

Therefore, the goal of inverting acoustic scattering by marine organisms for mean-

ingful biological information such as species, size and numerical density requires an un-

derstanding of the scattering characteristics of each type of organism. In other words,

solving the inverse problem requires a detailed knowledge of the forward problem of
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predicting the acoustic scattering based on each animal's unique acoustic signature.

In the case of the impact of reverberation on the performance of military sonar sys-

tems, characterization of the complex reverberant properties of the water column has

been largely ignored, i.e., the physics of the scattering by inhomogeneities, and specifi-

cally, marine organisms has not been taken into account in any significant way. Detailed

physics-based characterization of marine organisms' scattering properties over a wide

range of frequencies could lead to improvements in sonar system performance.

1.4 The physics of acoustic scattering

In order to exploit the properties of sound transmission and interaction with boundaries

in the ocean, the physics of the scattering must be formalized and the factors affecting

scattering studied in detail.

The far-field scattered sound wave is expressed as:

Psc -I Pinc f (1.1)
r-oo r

where pifc is the pressure amplitude of the incident acoustic wave upon the object

at a distance r away, k (= 2-r/A, A =wavelength) is the acoustic wavenumber of the

incident field and f is the scattering amplitude. Given the dynamic range of the far-field

scattering amplitude in the backscatter direction, it is often expressed in logarithmic

terms as target strength (TS), expressed in units of decibels (dB) relative to 1 m (Urick,
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1983):

TS = 10logo bs, (1.2)

where Ub, is the differential backscattering cross section, which can be considered to

be a measurement of the effective (acoustic) area of the target. The equation can be

represented in another form:

TS = 20 logo IfbsI, (1.3)

where fb, is the backscattering amplitude and Os, = fb, 2.

The scattering amplitude, f, is a complex function of the size, shape, orientation and

material properties of the scatterer as well as the wavelength of the incident acoustic

field. The scattering characteristics of the object are fully described by the scattering

amplitude whose accurate parameterization is the focus of scattering physics research.

Prediction of an organism's scattering properties requires detailed, accurate measure-

ment of the acoustic scattering characteristics of the animal of interest as well as a detailed

theoretical scattering model to quantify the nature and extent to which size, shape, mate-

rial properties, orientation and frequency affect scattering characteristics (Greenlaw and

Johnson, 1983).

1.5 Overview of relevant work

Two vast bodies of literature exist on acoustic scattering that are nearly independent

of each other: one consists of general scattering research without specific application,
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while the other consists of studies on scattering by marine organisms specifically. Since

the objective of this thesis is to contribute to both of these fields of study, the following

paragraphs provide an overview of work done in both areas and a description of the

factors that contribute to the complexity of scattering physics.

1.5.1 General scattering

Solutions to the wave equation can be approached in a number of different ways. Pos-

sible approaches can be categorized as exact analytical, exact numerical or approximate

methods of solution.

Exact analytical solutions to the wave equation require the scatterer surface to ex-

actly match the locus of all points for a constant radial coordinate. Such exact analytical

solutions exist only for a limited number of simple geometries (eleven) for which the sep-

aration of variables is possible (Morse and Feshbach, 1953; Bowman et al., 1987). These

exact analytical solutions are limited to smooth, simple geometries, such as the sphere,

infinitely long cylinder, or spheroid. Exact analytical solutions for acoustic scatter-

ing was first investigated in the 1870's by Lord Rayleigh (1945), where he considered

the case of spherical and infinitely long cylindrical scatterers whose cross sections were

small compared to the wavelength of the incident sound. Anderson (1950) presented

an exact solution for scattering from a fluid sphere. Scattering by solid, rigid spheres

and cylinders was investigated by Morse (1981), as well as Faran (1951) who focused

on shear waves of the object. Junger (1951) formulated scattering from thin elastic,
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air-filled shells of spherical and cylindrical shape in terms of "rigid body scattering" and

"radiation scattering". Goodman and Stern (1962) addressed the problem of scattering

by elastic spherical shells in which the material properties of the surrounding medium

and the interior of the shell differ from the shell itself. Since scattering from simple

spherical and infinitely long cylinders is not sufficient to describe scattering from realis-

tic scatterers found in nature, scattering by prolate spheroids has been investigated by

Spence and Granger (1951), Weston (1967), Yeh (1967), Furusawa (1988) and Ye et al.

(1997). Some of these exact modal series solutions were transformed through use of the

Sommerfeld-Watson Transformation to obtain an exact formulation for the rays scattered

by bodies (Uberall, 1966; Williams and Marston, 1985).

Exact numerical solutions to the wave equation are required, particularly at high fre-

quencies, once the scatterer shape deviates from a simple geometry, as do most realistic

scatterers of interest. These formally exact, numerically solved methods include the per-

turbation method (Ogilvy, 1991) which is limited to shapes that are close to a separable

geometry, the T-matrix method (Waterman, 1968; Varadan et al., 1982; Lakhtakia et al.,

1984; Hackman and Todoroff, 1985) and solving the boundary integral equation by the

boundary element method (Tobocman, 1984; Francis, 1993). These numerical models

are limited in that they can be computationally intensive and numerically unstable as

the frequency or irregularity of the surface increases.

Approximate solutions are useful in that they provide an analytical solution under

certain conditions of validity in which no exact solution exists, or they attempt to avoid

15



unwieldy analytical formulations or numerical difficulties inherent in the numerical im-

plementation of exact solutions. Approximate analytical solutions include the physi-

cal optics, or Kirchhoff, approximation (Born and Wolf, 1999; Neubauer, 1963; Junger,

1982; Gaunaurd, 1985) which involves an integral over the scatterer surface, the Born ap-

proximation (Born and Wolf, 1991) and Distorted Wave Born Approximation (DWBA)

(Stanton et al., 1993; Chu et al., 1993) which involve an integral over the volume of

the scatterer and the deformed cylinder method (Stanton, 1988a, 1988b, 1989a, 1989b)

which involves a line integral. Other approximate solutions include the geometric theory

of diffraction (Levy and Keller, 1959; Yamashita, 1990) which is based on the superpo-

sition of scattered rays, as well as a ray solution for curved edges based on the exact

solution for straight edges (Svensson et al., 1999). Approximate analytical solutions

also include asymptotic formulations based on the exact solutions for the cases of low

and high frequencies (Sammuelmann, 1988). While each of these approximations may

perform well in their respective ranges of validity, they are all limited in one or more of

the following conditions: frequency range, class of surfaces, types of boundary conditions

and eccentricity of shape.

1.5.2 Scattering from marine life

In the particular field of acoustic scattering by marine organisms, the multitude of dif-

ferent species of zooplankton and fish that occupy the water column make it impractical

to study and acoustically characterize each individual species. Figure 1-1 illustrates the
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categorization by gross anatomical structure and the approximation by simpler shapes

necessary to describe the important scattering mechanisms of the animals. The great

complexities of the physics of the scattering require detailed measurements and develop-

ment of models to accurately characterize scattering from marine organisms.

Acoustic measurements of fish

Much research has been conducted to quantify, in terms of target strength, the efficiency

with which fish scatter sound (Midttun, 1984). Studies include measurement of target

strengths in situ and ex situ, with multiple and single targets. In situ measurements

are conducted in the natural environment yet present the challenge of unknown target

size, orientation and position relative to the acoustic beam; ex situ measurements, how-

ever, provide greater control over these factors (Foote, 1997). Ex situ measurements of

tethered fish (similar to the method presented in Chapter 3 of this thesis) include those

conducted by Jones and Pearce (1958), Haslett (1969, 1977), Diercks and Goldsberry

(1970), Love (1969, 1970, 1971), and Nakken and Olson (1977). In spite of the fact that

these measurements were performed at a limited number of angles of orientation (mostly

dorsal), they were performed on a variety of species of different sizes and at a number

of different frequencies and demonstrate complicated variability that is dependent upon

morphology, orientation and acoustic wavelength.
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Figure 1-1: Several anatomical groups of zooplankton and fish, and certain important
scattering components: (a) fluid-like, (b) elastic-shelled, (c) gas-bearing zooplankton,
and (d) gas-bearing (swimbladder) fish. The scattering amplitude from the various
anatomical features is indicated by an f(...). Adapted from Stanton et al., 1998b.
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Modeling scattering from fish

Attempts have been made to empirically quantify the relationship between echo ampli-

tude and actual fish length (Love, 1977; Foote, 1987). Although linear regression curves

have been used with some success, they are constrained to certain frequencies and species,

and by the system's ability to acoustically resolve individuals within aggregations (Horne

and Jech, 1999). More sophisticated scattering models are required to better account for

the complexities introduced by shape, orientation and material properties. As mentioned

earlier, the existence of numerous species with different shape and material properties

requires some simplification in the modeling.

For low frequency applications, the acoustically dominant swimbladder has been mod-

eled as a sphere (Andreyeva, 1964; Love, 1978; Ye and Farmer, 1994; Feuillade and Nero,

1998) and as a prolate spheroid (Weston, 1967; Ye, 1996). Scattering from simple spheri-

cal shapes is not sufficient to describe scattering from animals with more irregular shapes,

particularly at high frequencies. Efforts have been made to describe the scattering by

more realistic, elongated shapes. For example, Clay (1991) modified Stanton's (1988a,

1989a) deformed finite cylinder model and derived a ray-mode model for fish using a

combination of gas- and fluid-filled cylinders.

Including the exact shape and size of the dominant scattering components of the

animal is a crucial, yet very difficult aspect of building an accurate backscattering model.

Modeling of the scattering of sound by complex body shapes is a difficult problem due

to the mathematical challenge of exact solutions and the computational difficulties of
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numerical approaches, as mentioned above. A number of approaches have been used to

more closely represent the exact shape of the dominant scattering mechanisms. Arrays of

point scatterers (Clay and Heist, 1984) have been used to model the fish body form. Clay

(1991) developed the Kirchhoff ray-mode (KRM) model of finite cylinders that combines

a modal solution for ka < 0.15 and a Kirchhoff approximation for ka > 0.15 to take

advantage of the performance of the two models as a function of ka. Note that ka is a non-

dimensional form of frequency, and a is the radius of the cylinder. Clay and Horne (1994)

modeled acoustic backscatter of Atlantic cod (Gadus morhua) using the KRM model.

Do and Surti (1990) used a series of cylinders and cones similar in concept to the KRM.

Jones and Pearce (1958) and Haslett (1962b) attempted to experimentally approximate

the shape of a fish swimbladder as a cylinder and ellipsoid, respectively. Foote (1985)

computed the target strength of fish by applying the Kirchhoff approximation to a more

realistic 3-dimensional model of the swimbladder based on the digitized microtomed

swimbladder of pollack (Pollachius pollachius) and saithe (Pollachius virens). Foote and

Francis (1999) modeled the target strength of swim-bladdered fish using the boundary

element method based on the same swimbladder shapes in Foote (1985). Models using

the exact shape of the animal's morphology are desired because they are more realistic

and promise greater accuracy over models based on simple geometric shapes, especially

in the geometric scattering region (high ka). As in the case of general scattering models,

fish scattering models are generally limited with respect to frequency range, class of

surfaces, types of boundary conditions, eccentricity of shape and/or numerical efficiency.
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Complexities of scattering from marine life

Morphology

In the case of fish, morphology (size, shape and material properties) creates sound

speed and density contrasts that have significant effect upon the scattering. Swimblad-

ders have been considered to be the dominant scattering mechanism based on estimates

that swimbladders cause as much as 90-95% of the target strength of fish under certain

conditions due to the large acoustic contrast between the air-filled swimbladder and the

surrounding tissue and water (Foote, 1980). Their influences on the acoustic signatures

have been studied intensively by Jones and Pearce (1958), Andreyeva (1964), Weston

(1967), Haslett (1962c), Hawkins (1977), Love (1978) and Foote (1980, 1985). While

the size and shape of swimbladders may dominate the scattering properties of fish, other

parts of the anatomy create acoustic impedance contrasts which contribute, particularly

for fish without swimbladders, to the overall scattering, e.g., skull, vertebral column,

muscle tissue and gonads. The extent to which each of these individual anatomical

features contributes to the scattering from the whole fish is generally unknown, although

some studies have illustrated their importance (Sun et al., 1985).

Orientation

Orientation has a profound effect upon scattering (Nakken and Olsen, 1977; Foote,

1985) at the higher frequencies. The effect of angle of orientation on scattering from

the animal is further complicated by the movement of the animal during measurement

(Zakharia, 1990). Slight movements of the animal in the laboratory setting reflect the

21



greater complexity of in situ measurements and acoustic surveys, where animal orienta-

tion influences the received scattered signal.

Behavior and physiological changes

The physical parameters of morphology and orientation mentioned above are also

influenced by behavior, further complicating the process of accurately measuring their

acoustic properties. Those factors include depth excursions, swimming motion that

changes aspect, ingesting and expelling of air to change buoyancy, size of the gut after

feeding, seasonal effects such as spawning, and physiological effects such as voluntary

muscular tension on the swimbladder wall (Hawkins, 1981; Feuillade and Nero, 1998).

Frequency

Generally, the scattering strength of a fish varies with frequency (Haslett, 1962a; Love,

1969, 1971). At very low frequencies in the Rayleigh scattering region, the backscat-

tering cross section is proportional to the fourth power of frequency. At swimbladder

resonance frequencies, backscattering cross section varies with fish size and frequency. In

the geometric scattering region at higher frequencies, it depends on multiple scattering

features in the fish which will cause interference in a manner specific to its anatomy, and

that interference pattern is dependent upon frequency (Haslett, 1962c). In other words,

the physical separation of scattering features in the fish relative to acoustic wavelength

determines the interference pattern.

Broadband

The vast majority of acoustic measurements on fish are in terms of target strengths
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at single frequencies. Although this level of information can be invaluable for fishery

population estimates, traditional target strength measurements lack coherent information

necessary for extracting more detailed information, such as size and species identification.

Specifically, narrowband measurements are performed at discrete frequencies, thus fre-

quency dependencies are missing from the data, although this has been addressed in part

by use of multiple discrete frequencies. Since an animal's scattering properties vary con-

siderably with the frequency of the transmitted signal, the use of broadband transducers

would offer continuous coverage over a significant range of frequencies, thus increasing

the amount of information contained in the signal. Furthermore, the broadband signals

inherently have high temporal resolution (which varies with inverse bandwidth of the

transmitted signal) which can be realized through the use of an impulse signal or pulse

compression of a longer signal (Chu and Stanton, 1998). With high temporal resolution,

scattering features can be realized in the time domain. In spite of the great advantages of

broadband signals, relatively few studies have investigated the finer structure of the an-

imal's spectral characteristics (Kjaergaard et al., 1990; Simmonds et al., 1996; Zakharia

et al., 1996). Characterizing an animal's scattering properties over a broad bandwidth

is made difficult by the lack of well-performing and affordable broadband transducers in

the desired frequency ranges, but advances in the field are being made.
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1.6 Purpose of this thesis

As demonstrated by the research outlined above, predicting and modeling the scattering

of sound by irregular finite objects is formidable. Successful use of acoustics by the

biologist, commercial fisherman, fisheries manager and military sonar engineer requires

accurate scattering models for each category of object or animal, verification of the models

through accurate measurements of scattering from those objects or animals, and reliable

inversion algorithms.

In particular, a general acoustic scattering model is needed that is numerically efficient

over a wide range of frequencies for all angles of orientation (three-dimensional), for

realistic shapes and boundary conditions. In addition, high-resolution measurements

of the morphology of fish are needed to accurately represent the exact shapes of the

scattering features in the fish on which the models are based. Furthermore, high-quality

acoustic backscattering measurements of fish are needed for the identification of dominant

scattering mechanisms of fish and testing and refinement of the scattering models. The

acoustic measurements need to be performed under the following conditions: (1) live,

healthy fish in an environment that mimics their natural environment, (2) control of the

position of the fish within the acoustic beam to allow measurements of target strength,

(3) control of angle of orientation with high angular resolution, (4) measurements in more

than one plane, and (5) the use of broadband signals to make possible spectral and time-

domain processing techniques. The measurements, analysis and modeling presented in

this thesis seek to meet these needs.
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Chapter 2 of this thesis describes the development of an advanced acoustic scatter-

ing model that can be used in a wide variety of applications, including scattering from

fish. The scattering model is an extension to axisymmetric finite-length bodies of a

two-dimensional general scattering model, called the Fourier matching method (FMM)

(DiPerna and Stanton, 1994). It involves conformally mapping the scatterer surface,

which can be irregular, to a new coordinate system in which the locus of points describ-

ing the radial coordinate being a constant coincides with the scatterer surface. It is a

numerically efficient solution that is valid for a wide range of frequencies, over all angles

of orientation, for smooth and irregular surfaces, and all scalar boundary conditions.

Chapter 3 describes the experiment and analysis portion of the project. As outlined

above, detailed knowledge of the morphology of fish is critical to gaining an accurate

knowledge of its scattering properties. Two imaging techniques which are used to exactly

measure the morphometry of the scattering features of fish include very high-resolution

Phase Contrast X-rays (PCX) and Computerized Tomography (CT) scans, the images

from which are incorporated into the FMM scattering model. The results of an extensive,

high-quality set of broadband acoustic backscattering measurements conducted on alewife

fish over a wide frequency band and over all angles of orientation (10 increments) in two

planes of rotation are presented, including the use of both spectral and time-domain

analysis techniques to extract unique features from the backscattering acoustic signals

from the fish to aid the inference of its acoustic scattering characteristics.

Chapter 4 provides a summary of the thesis, conclusions, a concise list of significant
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contributions of the thesis, and recommendations for future work.

A final note about the format of this thesis is in order. Chapters 2 and 3 were writ-

ten as manuscripts for submission to the Journal of the Acoustical Society of America

and were, therefore, written as self-contained articles. Consequently, some discontinu-

ity and redundancy in the thesis is unavoidable; however, such organization involving

independent chapters benefits the reader who is interested in only a portion of the thesis.
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Chapter 2

Acoustic scattering by axisymmetric

finite-length bodies: An extension

of a 2-dimensional conformal

mapping method1

2.1 Introduction

The prediction of acoustic scattering from finite and infinitely long bodies has been

pursued for many years, starting with Lord Rayleigh's work on scattering from a sphere

(Rayleigh, 1945). Exact analytical solutions to the acoustic wave equation require the

1This chapter is based on an article submitted to the Journal of the Acoustical Society
of America (Reeder and Stanton, submitted).
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scatterer's surface to exactly match the locus of all points for which the radial coordinate

is a constant. Such exact analytical solutions exist only for a limited number of cases

for which the separation of variables is possible (Morse and Feshbach, 1953; Bowman et

al., 1987). In all of these cases, the boundary is simple; e.g., a sphere, infinitely long

cylinder and prolate spheroid.

For complex shapes, approximate analytical solutions, including the perturbation

method, and approximate asymptotic formulations, such as physical optics (Gaunaurd,

1985) and the geometric theory of diffraction (Levy and Keller, 1959; Yamashita, 1990)

have been developed. Numerical solutions have also been developed, including the

boundary element method (Tobacman, 1984; Francis, 1993), T-matrix (Waterman, 1968;

Varadan et al., 1982; Lakhtakia et al., 1984; Hackman and Todoroff, 1985) and the mode

matching methods (Yamashita, 1990). All of these approaches are limited in one or

more of the following: frequency range, class of surfaces, types of boundary conditions,

eccentricity of shape and/or computational implementation and numerical efficiency.

DiPerna and Stanton (1994) introduced a conformal mapping approach to predicting

far-field sound scattering by infinitely long cylinders of noncircular cross section. The

approach, termed the Fourier Matching Method (FMM), involves a conformal mapping

of variables to a new coordinate system in which the constant radial coordinate exactly

matches the scatterer surface. The method makes use of the Newton-Raphson algorithm

to execute the mapping. The boundary conditions are satisfied by requiring the Fourier

coefficients in the new angular variable of the total field to be zero and then the resultant
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scattered field is expressed in terms of circular eigenfunctions.

The FMM proved to be accurate over a wide range of frequencies, shapes of cross sec-

tion, and penetrable (fluid) as well as impenetrable boundary conditions. Furthermore,

the approach is inherently numerically efficient due to the nature of its formulation. For

example, the FMM was shown by DiPerna and Stanton (1994) to be more efficient than

the T-matrix method for the case of the high-aspect-ratio elliptic cylinder because fewer

terms were needed for the numerical integrations. Even after incorporating the FMM

basis functions into the T-matrix calculations, the FMM required 85% fewer integration

points.

A major limitation of the two-dimensional FMM was the fact that it was formulated

for the case of an infinitely long cylinder-a two-dimensional scattering solution. Many

practical scattering problems involve scattering from finite bodies and cannot be accu-

rately modeled by the two-dimensional solution. In order to address this need, the FMM

is extended in this paper to predict the scattering from finite-length bodies. In order for

this particular approach to be used for finite bodies, the outer boundary of the bodies

must be described by a function rotated about the length-wise axis. Hence, although

the function is arbitrary and these bodies are three-dimensional, they are restricted to

axisymmetric shapes. As with the two-dimensional formulation, this approach is in-

trinsically numerically efficient and is valid over a wide range of frequencies and shapes

as well as both monostatic and bistatic scattering geometries. The extension has been

formulated for three boundary conditions-Dirichlet (soft, or pressure-release), Neumann
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(rigid) and Cauchy (fluid). In all three cases, the surrounding material is fluid.

In Section II, the theoretical basis for the formulation is presented, which includes

the development of the new orthogonal coordinate system to which the body is mapped,

the conformal mapping procedure, modal series solutions to the transformed Helmholtz

equation, and resulting equations for the modal series coefficients after satisfying the three

boundary conditions. In Section III, several practical numerical issues that arise in the

solution of the scattering problem are explored, including the effect of machine precision,

truncation of the modal series, and the choice of numerical methods. In Section IV,

the numerical results are presented for various shapes (spheres, smooth prolate spheroids

and two finite bodies with irregular surfaces), boundary conditions (soft, rigid and fluid),

and over a wide range of frequencies and scattering angles. The results are compared

with various previously published results using other approaches. Section V contains a

summary and concluding remarks.

2.2 Theory

The derivation of the extended formulation for scattering by an axisymmetric finite-length

body is conceptually very similar to the corresponding derivation of the two-dimensional

solution described by DiPerna and Stanton (1994); in fact, some of the elements are

identical. Both solutions begin with the wave equation in a known coordinate system

and conformally map the coordinate variables to a new, orthogonal coordinate system

in which the locus of all points where the new radial coordinate is a constant exactly
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coincides with the scatterer surface. The difference in the coordinate systems between

the two cases concerns the fact that one involves two-dimensional coordinates while the

other involves an additional coordinate dimension with a new geometry defined for the

finite body. Both solutions use mapping functions that are identical in form, transform

the Helmholtz equation to the new coordinate system, and then satisfy the boundary

conditions using identical techniques to arrive at differing, yet structurally similar, ex-

pressions for the scattered pressure. The two-dimensional solution includes a mapping

function that corresponds to the shape of the boundary of a cross-sectional slice of the

cylinder, while the three-dimensional solution uses a mapping function that corresponds

to the shape of the boundary of a length-wise slice of the body (specifically, the function

that is rotated about the longitudinal axis). Furthermore, the two-dimensional solution

includes circular eigenfunctions while the three-dimensional solution for the scattered

pressure is expressed in terms of spherical wave functions; i.e., spherical Bessel and Han-

kel functions and associated Legendre functions. Due to these similarities, the original

work will be referred to quite regularly in the development that follows.

Consider the scalar wave equation:

1 02 P
V 2P = -9 2  (2.1)

C2 190

where P(x, y, z) is the acoustic pressure in three dimensions, V2 is the Laplacian operator,

c is the speed of sound, and t is time. Assuming a harmonic time dependence, eiwt, where

w is the angular frequency, the wave equation becomes the scalar Helmholtz differential
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equation in Cartesian coordinates:

V 2 P(x, y, z) + k 2P(x, y, z) = 0. (2.2)

Here, k = w/c = 27r/A is the spatially independent acoustic wave number and A is the

acoustic wavelength. In all cases considered here, the body does not support shear

waves and is surrounded by a fluid medium. By a conformal (angle- and orientation-

preserving) transformation of coordinates, the transformed Helmholtz equation in the

new coordinate system becomes:

V 2P(u, w, v) + k 2 F(u, w)P(u, w, v) = 0, (2.3)

where (u, w, v) are the new coordinates, and F(u, w) is a function which depends on the

specific transformation (Morse and Feshbach, 1953; DiPerna and Stanton, 1994). With

the exception that the wave number is now a function of position, the new Helmholtz

equation is formally identical to the Helmholtz equation in Cartesian coordinates.

2.2.1 Conformal mapping

Since x, y and z are mutually orthogonal in the Cartesian coordinate system, conformally

mapping them into a new coordinate system guarantees that the new coordinates (u, w, v)

will be mutually orthogonal, which eases the computation of the normal particle velocity

on the boundary. Additionally, the conformal mapping generates a new set of angular
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functions which fit the scatterer surface more naturally; that is, points along the surface

that change rapidly in (x, y, z) are sampled at a higher spatial rate yet are equally spaced

in (u, w, v). A new coordinate system must first be established, and then the conformal

mapping function is defined and expanded to provide a method by which the body may

be mapped to the new coordinate system.

Orthogonal coordinate system

An orthogonal coordinate system can be generated for a three-dimensional body of rev-

olution from a two-dimensional conformal mapping. Consider the geometry in Fig. 2-1,

in which # is the azimuthal angular coordinate ranging from 0 to 27r (measured from

the positive x-axis in the xy-plane), 9 is the polar angular coordinate ranging from 0

to 7r (measured from the positive z-axis), and r is the radial coordinate ranging from

0 to oo. This body is one of revolution that is formed by rotating the contour of the

body about the z axis, in the same way that the prolate spheroidal coordinate system

is created from an ellipse rotated about the major axis (Flammer, 1957). Consider a

new coordinate system whose azimuthal angular coordinate, v, corresponds to # in the

original coordinate system. The new polar angular coordinate, w, is measured from the

polar axis, z, and ranges from 0 to 7r, as does the original polar angular coordinate, 9.

The scatterer surface in the original coordinate system is defined by the vector, ~r, but

in the new coordinate system the scatterer surface is defined by the locus of all points

where the new radial coordinate is a constant; specifically, u = 0. Defining the functions,
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x

= (0, 2n) U=O

v =(0, 2n) r(u, i)

,w= (0, n)

g(u, )

Figure 2-1: Scattering geometry for an irregular, axisymmetric finite-length body. The
body is symmetric about the z-axis. The azimuthal angular coordinates, < and v, range
from 0 to 27r in the xy-plane, and the polar angular coordinates, 0 and w, range from 0 to
7r, measured from the z-axis. The radial coordinate in the (u, w, v) coordinate system
equals zero on the surface. Broadside incidence corresponds to 0=90 degrees. End-on
incidence corresponds to 0 and 180 degrees. In the new coordinate system, g(u,w) is the
length along the z-axis, and f(u,w) is the projection in the xy-plane.
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f (u, w) and g(u, w), of the new coordinate system as shown in Fig.

prescribes dimensions of the body in the x, y and z directions to be:

2-1, trigonometry

x(u, w, v) = f (u, w) cos(v) (2.4)

y(u, w, v) = f(u, w) sin(v) (2.5)

(2.6)z(u, w, v) = g(u, w).

The position vector, 7, is defined in the new coordinate system by:

7 (u, w, v) = x(u, w, v)i+ y(u, w, v)j + z(u, w, v)k, (2.7)

wherei, j, and k are unit vectors along the coordinate axes. The position vector can be

alternatively expressed by substituting Eqs. (2.4)-(2.6) into Eq. (2.7):

7 = f(u, w) cos(v)i+ f(u, w) sin(v)j + g(u, w)k. (2.8)

The local projection of 7 in each of the coordinate directions is given by the partial

derivative of 7 with respect to each of the variables:

7,, = fU(u, w) cos(v)i + fu(u, w) sin(v)j+ gu(u, w)k

r = fW(u, w) cos(v)i + fw(u, w) sin(v)j + gw(u, w)k

(2.9)

(2.10)
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= -f(u, w) sin(v)i + f (u, w) cos(v)j, (2.11)

where the subscript denotes the variable with respect to which the partial derivative is

taken.

As mentioned earlier, an orthogonal coordinate system is desirable since it facilitates

the computation of the normal particle velocity on the boundary necessary for satisfying

the boundary conditions, and more naturally fits the scatterer surface. An orthogonal

coordinate system requires the following condition to be satisfied:

r u r = 0 (2.12)

r w r = 0 (2.13)

r. . = 0, (2.14)

which can be expanded as:

fu(u, w)f(u, w) cos(v) sin(v)(-1 + 1) = 0 (2.15)

f (u, w)f (u, w) cos(v) sin(v)(-1 + 1) = 0 (2.16)

fu(u, w)fW(u, w)(cos2 (v) + sin2 (v)) + gu(u, w)gw(u, w) = 0. (2.17)
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The first two conditions are automatically satisfied. The third condition simplifies to:

fM(u,w)fW(u, w) + gu(u, w)gw(u, w) = 0, (2.18)

which will be satisfied if:

fu(u, w) = gw(u, w) (2.19)

and

fW(u,w) = -gu(u, w). (2.20)

These are precisely the Cauchy-Riemann equations for an analytic function (Hildebrand,

1964). Therefore, if f(u, v) and g(u, v) are chosen to be harmonic, then the Cauchy-

Riemann conditions will be satisfied, making them analytic functions which represent a

conformal transformation. A shape initially plotted in the (x, y, z) coordinate system

will be transformed into a shape in the (u, w, v) coordinate system with changes in

position and size while preserving angles and proportions (Morse and Feshbach, 1953).

Orthogonality of the coordinate system as well as the form of the Helmholtz equation

will be preserved (Strang, 1986).

Mapping function

As discussed above, a conformal mapping function must be developed to map the scat-

terer from the old coordinate system to the new orthogonal, axisymmetric coordinate

system just developed. It must be noted at this point that, to the authors' knowledge, a
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general three-dimensional mapping does not exist in the field of mathematics. Due to the

fact that conformal mappings are currently limited to two dimensions, the geometry for

the finite body must be axisymmetric about one of the axes, using the two-dimensional

function that is to be conformally mapped to form the body by revolution about the axis.

The particular mapping used herein is a two-dimensional mapping developed by DiPerna

and Stanton (1994) extended to a finite body of revolution which is axisymmetric about

the longitudinal axis. The infinitely long cylindrical geometry in DiPerna and Stanton

(1994) was described in circular cylindrical coordinates with the radial coordinate, r,

being a function of 9, the azimuthal angular coordinate ranging from 0 to 27r. The

conformal mapping in that case applied to the function, r(0), which corresponded to the

shape of the boundary of a cross-sectional slice. In this work, 0 is now the polar angular

coordinate ranging from 0 to ir, and <$ is the azimuthal angular coordinate ranging from

0 to 27r. The function, r(9), and associated conformal mapping is now associated with

the shape of the boundary of a length-wise slice.

The category of surfaces described by Eqs. (2.4)-(2.6) has the additional limitation

that r be single-valued; i.e., there can be only one value of r for each w. Following

DiPerna and Stanton (1994), the mapping procedure for the axisymmetric finite body is

commenced by expanding r in a Fourier series relative to the polar angle, 9, shown in

Fig. 2-1:

r(9) = a + [r cos(nO) + r' sin(nO)], (2.21)
n=1

where a is the average radius of the body and rc and r' are the usual Fourier series
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coefficients that in this case correspond to the deviation of the surface from the shape

of a circle. Note that the series requires more terms to converge for a high aspect ratio

(ratio of length to width) prolate spheroid compared to the Fourier series for a shape

that varies little from the shape of a circle. Rewriting the cos(nO) and sin(nO) functions

in terms of exponentials and using the expression:

1
Rn =-[r' + ir'], (2.22)

2n n

gives
00

reO = aeiO + [R*ei+n)O + &ei(1-n)O] (2.23)
n=1

For a conformal mapping from the (x, y, z) coordinate system to the new coordinate

system in (u, w,v):

M(p) = M(u + iw), (2.24)

where M(p) is the analytic mapping function in terms of u, the radial variable, and w, the

polar angular variable, and p is the distance between the axis and outer boundary (i.e.,

the radius of a given cross-sectional slice). It is desirable to make scattering predictions

using this model without inversely mapping the results of this model back to the original

coordinate system. The potentially difficult inverse mapping is avoided by choosing

M(p) such that the coordinate system becomes spherical as the radial coordinate is

increased. While the choice of such a mapping function allows predictions of this model

to be easily compared to existing solutions, it restricts direct comparisons to the far-
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field. The general approach can certainly be used in the near-field, but comparisons

of near-field scattering between this formulation and other solutions would require an

inverse mapping. Note also that there will be two different mapping functions: G(p) for

the exterior problem and T(p) for the interior problem. For the interior problem, T(p)

is chosen such that the coordinate system becomes spherical as the radial coordinate is

decreased.

For the exterior problem, G(p) must be chosen such that:

(1) As u -* oo, the coordinate system becomes spherical,

(2) the transformed Helmholtz equation is solvable, and

(3) u = 0 is the scatterer surface.

The first two conditions can be satisfied by choosing the form of the exterior mapping

function (DiPerna and Stanton, 1994) to be:

G(p) = ceP + Ce-"P (2.25)
n=O

which can be decomposed into the complex components:

g(u, w) Re(G(p)) = cleu cos(w) + E ce-" cos(nw) (2.26)
n=O

and

f(u, w) Im(G(p)) = cleu sin(w) + E cne-n sin(nw). (2.27)
n=O

The coefficients of the mapping function must be chosen such that u = 0 defines the
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scatterer surface in the new coordinate system. Setting the surface, as represented in

the two coordinate systems, equal to one another with u = 0 gives:

00

G(p)I=o = c-iew + Zcne-i", (2.28)
n=O

and substituting further from Eq. (2.23):

00 00

aeiO + Z[R*ei(1+n)O + ne'(1-nO ceiW + c ine . (2.29)
n=1 n=O

Since the left-hand side contains positive and negative frequency components while the

right-hand side contains only negative frequency components (with the exception of

c_1eiw), 0 and w are not equal; therefore, it is necessary to determine the extent to

which 9 depends on w. Since it was assumed earlier that the surface is periodic and can

be represented as a Fourier series, the deviation of 9 from w will be periodic and can be

represented as a Fourier series. Specifically, assume:

00

9(w) = w + Z[6'cos(lw) + 6'sin(lw)]. (2.30)
1=1

The conformal mapping relies on the choice of 6' and 6' such that Eq. (2.29) is satisfied.

Using the orthogonality relationships of complex exponential functions, multiplying both
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sides by (1/27r)e-iiw and integrating over w from 0 to 27r:

e-i aeO() + Z[R*ei(1+n)o(w) + Rnei(1n)9(w)] dw =

(2.31)

where j is an integer. This set of nonlinear constraints is identical in form to that of

DiPerna and Stanton (1994) and is solved by use of an extension of the Newton-Raphson

method, the details of which are laid out in Appendix A of DiPerna and Stanton (1994).

Note, however, that even though the integral in Eq. (2.31) is performed from 0 to 27r,

w is defined in the scattering geometry from 0 to 7r only (not 27). Consequently, the

mapping coefficients are computed based on the periodic extension from 0 to 2'r, but

only half of them are used. The upper result in the right hand side of Eq. (2.31) is

used to solve for the values of 6' and 6', which are then used to solve for the mapping

coefficients, cn, through use of the lower result in the right hand side of Eq. (2.31).

The uniqueness of the transformation is tested by verifying that the Jacobian of the

transformation is nonzero. This ensures that there exists only one (x, z) for each (u, w).

Specifically:

IG'(p)1 2 5 0, u > 0. (2.32)

The interior mapping procedure is identical to the exterior mapping procedure with

the exception that the interior mapping function, T(p), is different from G(p); specif-

ically, T(p) is chosen such that the coordinate system becomes spherical as the radial
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coordinate is decreased. The remaining two conditions mentioned above in the choice

of G(p) remain the same for the interior problem. These conditions are satisfied by:

T(p) = Ztne"P. (2.33)
n=O

To summarize, the procedure described above to conformally map the scatterer shape

from the original coordinate system to a new coordinate system is identical in form to the

procedure presented in DiPerna and Stanton (1994). In this study, the same mapping

procedure is extended to a different (finite-length, axisymmetric) scattering geometry;

specifically, it is extended to the shape of the boundary in the length-wise slice. The

results of this mapping will be used in solving the Helmholtz equation in three-dimensions

in the next section.

2.2.2 Solutions to the Helmholtz equation

The 3-dimensional Helmholtz equation from Eq. (2.2) in spherical coordinates is:

V2 P(r, 9, 0) + k 2 P(r, 9, #) = 0, (2.34)
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the general solution to which is:

00 00

pext(r, 0,) = E anmjn(kr)Pn (cos(0))eim (2.35)
n=-oo m=-oo

+ bnmh$')(kr)P, (cos(9))emI,
n=-oo m=-oo

where j(kr) is the spherical Bessel function of the first kind of order n, h$((kr) is the

spherical Hankel function of the first kind of order n, and Pn(cos(9)) is the associated

Legendre function of degree n and order m. The radial coordinate is r, the polar

angular coordinate is 0, and the azimuthal angular coordinate is 4. The scattered field

coefficients, bnm, are to be determined by satisfying the boundary conditions using the

known coefficient, anm, of the incident plane wave field traveling from the 0 direction:

anm = inE(2n + 1)fn + 1 P"(cs(0)), (2.36)
IP(n + m + 1)

where em is the Neumann factor, P is the gamma function, and 0 is the angle of incidence

of the incident wave relative to the z-axis.

Pe-t(r, 0, #) is the total pressure external to the scatterer in the original coordinate

system (i.e. before transformation): the first term in Eq. (2.35) represents the incident

pressure and the second term represents the scattered pressure. Quantities in the original

coordinate system can be expressed in terms of the new coordinate system defined in Sec.

II.A.1 and Fig. 2-1:

# =v (2.37)
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r(u, w) = f 2 (u, w) + g 2(u, w)

Cos (0(u, W)) = g (' W). (2.39)
r(u, w)

Using these relations, the conformal mapping transforms the Helmholtz equation (Eq.

(2.34)) into:

V 2P(u, w, v) + k2 F(u, w)P(u, w, v) = 0, (2.40)

the solution to which is:

P" (u, W, V) = E E anmjn(kr(u, w))P,"(UW)e) e" (2.41)
n=-oo m=-oo

+ E E bnmh( (kr(rw))P") eim,
n=-oo m=-oo

which is now the expression for the total far-field pressure in the new coordinate system

as the sum of the incident and scattered pressure fields, respectively.

The procedure to determine the pressure field inside the scatterer is identical in nature

to the exterior problem, but since there is a different mapping function for the interior

problem, there will be a Helmholtz equation that is identical in form, but incorporates

a different wave number, ki, to accurately characterize the material properties of the

scatterer's interior. The expression for the interior pressure field becomes:

00 00

Pin(u, w,v) = Z Z lnjn(kr(u, w))Pn (uw e' (2.42)
n=-oo m=-oo
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where 'nm are the internal field coefficients. Only the spherical Bessel function is included

in the expression for the internal field since the spherical Hankel function becomes infinite

at the origin.

In the limit of great distances from the scatterer, the coordinate system becomes

spherical and the asymptotic form of the Hankel function varies inversely with distance.

The scattered pressure (the second term in Eq. (2.41)) in this far-field limit has the form:

Pseat + Picl. fS, (2.43)
U_+00 r

where the scattering amplitude, f, having units of length, is a measure of the efficiency

with which an object scatters sound and is a function of the object's size, shape, ori-

entation, material properties and the wavelength of the incident wave. The far-field

scattering amplitude is given in general form as:

(g0u0w
fS bmi- n " (u w) ei""'. (2.44)

n=-oo m=-oo/

The far-field scattered energy evaluated in the backscatter direction is often expressed

in terms of the target strength (TS) with units of decibels (dB) relative to 1 m (Urick,

1983), which is given by:

TS = 10 logUb = 10 log Ifbs 12, (2.45)
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where fb, is the far-field scattering amplitude evaluated in the backscattering direction,

and bs, = Ifb, 12 is the differential backscattering cross section, which differs from the

often-used backscattering cross section a by a factor of 47r (a = 47rasb). In order to

compare scattering from objects of different sizes but similar proportions, target strength

is often normalized by the the square of some typical dimension. Using the length (L)

of the elongated scatterer as the normalization constant, the "reduced" target strength

(RTS) is:

RTS = 10 log C = 10 log Ifb, 2 - 10 log(L2) = 10 log . (2.46)

In the case of a sphere, the target strength is normalized by ira2 instead of L 2. An

alternative expression often used to represent the energy scattered in three dimensions is

the normalized, steady-state pressure amplitude, or form function, defined by Neubauer,

1986:

2
foo = -fS. (2.47)a

To summarize, a new orthogonal coordinate system has been established to which the

original coordinate system is mapped via a conformal mapping function. The scatterer

surface in the new coordinate system is defined by the locus of all points where the radial

coordinate is a constant. The solution to the Helmholtz equation in the new coordinate

system will have the same form as the original solution, but with new coordinates using

the realizations of Eqs. (2.37) - (2.39). This can be confirmed by inspecting the case
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of the exterior field for the spherical scatterer: r(u, w) = ci1eu, 9(u, w) = w and # = v,

resulting in the same solution as in spherical coordinates using separation of variables.

Also, for the case far (u -+ oc) from the non-spherical scatterer: r(u, w) -+ cieu,

O(u, w) --+ w and q = v, resulting in the same solution as in spherical coordinates in the

far-field. Equations (2.41) and (2.42) are a general solution for the total pressure in the

case of acoustic scattering from a finite-length, axisymmetric body for all frequencies, all

angles (bistatic scattering) and for impenetrable (soft and rigid) and penetrable (fluid)

boundary conditions. All the quantities needed to satisfy soft, hard and fluid boundary

conditions have now been established. Each boundary condition generates a different

set of modal series coefficients, bnm, which are used in Eq. (2.44) to compute the far-

field scattering amplitude. These coefficients will be determined for three boundary

conditions in the following section.

2.2.3 Boundary conditions

The solution for the scattered field in Eqs. (2.41) and (2.44) depends on the boundary

conditions. For each boundary condition, there is a different set of scattered field coeffi-

cients, bnm, which needs to be evaluated. These coefficients are determined in the normal

approach in which the pressures and/or velocities are matched at the boundaries. This

matching is specific to the material properties on each side of the boundary. For each

of the different boundary conditions, expressions are derived in the following sections for

bnm, all of which are in terms of the parameters of the new coordinate system.
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The challenge presented by an irregular body is finding a solution to a system of

equations in order to satisfy the boundary conditions; specifically, a set of functions, O(w),

must be determined by which the basis functions are multiplied to generate the system

of equations. For a separable geometry, O(w) is chosen to be the angular eigenfunction

to yield a closed-form solution based on the orthogonality of the eigenfunctions. In the

case of irregular surfaces that do not conform to coordinate surfaces, a set of functions,

O(w), must be chosen to solve the system of equations. DiPerna and Stanton (1994)

chose the eigenfunctions in the new (cylindrical) coordinate system, 4 ' = e-im. It is

in this choice of eigenfunctions that the FMM derives its name. Without the conformal

change of variables to (u, w, v), this choice of functions would not be possible. For the

three-dimensional case, the eigenfunctions in the spherical coordinate system are chosen;

specifically (Morse and Feshbach, 1953):

= P(cos(w)) sin(w)e-"n. (2.48)

Using this choice for 4, a system of equations is generated to satisfy each of the

boundary conditions discussed herein (soft, rigid and fluid). The system of equations

is solved for the scattered field coefficients, bnm, which are then used in Eq. (2.44) to

determine the far-field scattering amplitude.
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Dirichlet boundary conditions

For soft (pressure release or Dirichlet) boundary conditions, the total pressure vanishes

on the surface of the scatterer; i.e., Pe-t(uo, w, v) = 0. Using Eq. (2.41), the series

solution for the total exterior pressure field evaluated at the boundary with pressure

release boundary conditions is set equal to zero:

0 -00 anm jn(kr(uo, w ))P m eimv (2.49)E E (no, w)

+ E bnmhk( kr(uo, w)) P"( guoW ei"v = 0.
n=-oo m=-oo n\(r(uo, w)/

The system of equations necessary to satisfy this boundary condition is generated by

multiplying both sides of this equation by Om"j from Eq. (2.48) and integrating over the

range of w and v (Morse and Feshbach, 1953):

21r kr pmg U W eimv

anmjz r (o,W)) Pn" ( "J

+ E E bnmh(') (kr (uo, w)) Pm(U" W) eimv (2.50)
n=-oo m-oo n r (UO, W))

x P" (cos (w)) sin (w) e-m} dvdw = 0.

Performing the integration on v gives:

S7' I in(kr(uow))P,"l g "' ) P"(cos(w)) sin(w) dw (2.51)
0r(UO, W)
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+ 1: bnm (h$P( kr(uo, w))P O' Pn(cos(w)) sin(w) dw = 0,

for each azimuthal order m. This system of equations for pressure release boundary

conditions can be written in compact form:

anmR" + E bnmQ"=O, (2.52)
n=-oo n=-oo

where anm is given in Eq. (2.36), and R" and Q" are defined, using Eq. (2.51) as:

R jn(kr(o,w))P ,(g(uo"w)Pm (cos(w))sin(w) dw (2.53)
JW r(uo, w)

Q 0" j (h( )(kr(uo,w))Pn m(gZo ) P,"L(cos(w))sin(w) dw. (2.54)
n - r (uo, w)}

Using Eq. (2.52), the series coefficient, bnm, for the far-field scattered field due to a soft

boundary is:

bnm = - (Q"'X) R"'anm. (2.55)

Neumann boundary conditions

With rigid, or Neumann, boundary conditions, the normal particle velocity vanishes on

the scatterer surface; i.e., n -VPe"'(uo, w, v) = 0, where 'n is the unit vector normal to the

surface and V is the gradient operator. The method to solve for bnm is broadly similar

to the previous case, although several new terms are necessary to satisfy this particular

boundary condition. The unit vectors in the u, v, and w directions are (Hildebrand,
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1964):

a =-
I r 1

a =-

|r V|

av = -+.
I r v|'

Using Eqs.

(2.56)

(2.57)

(2.58)

(2.9) - (2.11), the scale factors of each of the new coordinates (Morse and

Feshbach, 1953) can be rewritten using the new coordinates:

hu = I =

hw = |7r.+W =

ff2(u, w) + g2(u, w) = f2(u, w) + f,(u, w)

ff-(u, w) + g2,(u, w) = f2,(u, w) + fu2(u, w)

hV= = f(u, w).

Note that

hu(u, w) = h,(u, w) = h(u, w).

In the new coordinate system, the unit vectors become:

au = cos(V)(7 +h(u, w)

= f (u,w)
h(u, w)

fu7W) sin(v)j +
h(u, w)

cos(v)i + sin(v)j +
h(u, w)
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(2.59)

(2.60)

(2.61)

(2.62)

h(u, w)

W(u"' ) k
h(u, w)

(2.63)

(2.64)



= - sin(v)i + cos(v)j. (2.65)

The scatterer surface has been defined by u = uo; therefore, n = a. The gradient of P

is:

1 P 1 6P 1 OP~
VP(u,w,v)= + + (2.66)

hu(u,w) Ou h,(u,w) Ow h,(u, w) ov

Using 'n = 'au and hu(u, w) = ffQ,(u, w) +fu(u, w):

1 OP
n . VP(u, w, v) = . (2.67)

fw(u, w) + fu(u, w) 9U

Using Eq. (2.41), the series solution for the normal particle velocity of the total

external field for rigid boundary conditions evaluated at the boundary is set equal to

zero:

n E ( anmJn (kr (uo, w)) Pn ( (uoW)) em (2.68)
(n=-r (m=, o

+-n - V bnmhl) (kr (uO, w)) P"( ei(u =,o.
(n=o, m=-oo ( w))r (eO W) )

The system of equations necessary to satisfy this boundary condition is generated by

multiplying both sides of the equation by 'i"' in Eq (2.48) and integrating over the range
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of w and v:

00

Z anmjn (kr (uo, w))

bnmh 0 (kr (uo, w)) Pnm

xPn(cos(w)) sin(w)e-i'm} dvdw = 0.

Using Eq. (2.67) and performing the integration on v gives:

1: anm I (Jn(kr(uo, w))
fl -o -0

pm (g(uo,w) r(uo,w)gu(uo,w) -g(uo,w)ru(uo,w)
r (uo, w) )r2 (UO, W)

(2.70)

( (uow )
r(uo, w)

00

+ Z: bnmjf~
fl -o -0

kr(uo, w) )

hl) (kr (uo, w)) P g(UO, w)
n ( r (UO, W) )

sin(w)dw
V 'f( 

c fos(w ))

ff(Uo, W) + f2(Uo, W)

r(uo, w)gu(uo, w) - g(uo, w)r,(uo, w)
r2(uo, W)

+h( (kr(uo, w))Pn g kr(uo, w)i
r(uo, w) )

"P(cos(w))

Vf2(Uo, w) + f2(uo, W)

where, as with the other terms, the subscript, u, also indicates the partial derivative of

the Legendre functions with respect to u.

As in the previous section, the system of equations for rigid boundary conditions can

be written in compact form:

n=-oo
(2.71)0' b mQ=0,

n=-oo
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J j { Pn (,( 7W
(o,w) J "

g (uo, w) eim
r (uo, w))

eimv

(2.69)

sin(w)dw = 0,

/ / o00
n V

+ n,u (kr (uo, w)) Pn"m

00 00

+ n (n 1: o E c=-o m=-o



where anm is given in Eq. (2.36), R" is the integral in the first half of Eq. (2.70),

and Q' is the integral in the second half of Eq. (2.70). Using Eq. (2.71), the series

coefficient, bnm, for the far-field scattered field due to a rigid boundary is:

bnm = - (Q'")- 1 R',"anm. (2.72)

Cauchy boundary conditions

Fluid (Cauchy) boundary conditions is the case in which the body consists of a fluid

with material properties other than that of the surrounding fluid; that is, the body does

not support a shear wave. In this case, the exterior and interior pressure fields and

normal components of particle velocity are required to be equal on the surface. The

fluid boundary conditions take the form:

Pressure:

fLO Eo anmjn(kr(uo,w))Pn ("UO W) eimv

+ E E bnmh('(kr(uo, w))Pm g(uow) e (2.73)
r(uo, w))(2.73)

E E lnmin(kir(o, w))PM g 9(UO W) eimv
n=-oo m=-ooeociy:

Particle Velocity:
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+n -V E

=,n - V E

anmin(kr(uo, w))P (172)eimv

bnmh(z) (kr(uo, w))P,"( W) e
-00 n rU W)

E lnmjn(kir(uo,w))P
rr= -0,

where lnm are the interior field coefficients. The system of equations necessary to satisfy

this boundary condition is generated by multiplying both sides of the equation by Vi"' in

Eq (2.48) and integrating over the range of w and v:

Pressure:

fir f[47 (E E anmjn(kr(uo, w))Pn"

+ Z S bnmh(')(kr(uo,w))P
n=-oo m=-oo

( g(u0,w) emv

r(uO, w)J

( g(U0,W)
r(uo, w) )

eimv)

xP,"(cos(w)) sin(w)e-i" } dvdw

- fj 2 {_ _ 0,0 __inmjn(kir(uo, w))P (uo W)
r(U0, W))

eimv)

xPn(cos(w)) sin(w)e-imv } dvdw

Particle Velocity:

56

(2.74)""

imv

(2.75)



r j r (
emv)V ( Y 1 anmjn(kr(uo, w))Pm r(uow)

\n=-oo m=-oo (9(uo, w)

+n - bnmh(')(kr(uo, w))P"

x Pn(cos(w)) sin(w)e-mv} dvdw

( g(uo, w)
r(uo, w) )

7r j27{ 0V 0 lnmjn(kir(uo, w))P" (g(uo, W)\
r(uo, w) J

xP,"(cos(w)) sin(w)e-imv } dvdw.

Using Eq. (2.67) and performing the integration on v for both Eqs. (2.75) and (2.76)

gives:

Pressure:

a: anm
n=-o,

+ E bnmj
n=-oo

7rin j(kr (uo, w))PFn'

h(1)(kr(uo, w))P"

( g(uO, w)
r(uO, w)J

Pa" (cos(w)) sin(w)dw

P,"(cos(w)) sin(w)dw

= _ nm in(kr(uo, w))P"
(g(uo, W) ) P,"(cos(w)) sin(w)dw
Sr (uo, w)

Particle Velocity:
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(2.76)

im 
)

eimv)

(2.77)



jin(kr(uo, w))Pn
g(uo, w) r(uo, w)gu(uo, w) - g(uo, w)ru(uo, w)
r(uo,w)) r2(uo, w)

((uo, w)
r(uo, w))

kr(uo, w )
Pr"(cos(w))

'/f,(uo, w) + f,2(uo, W)

bm j7' (h0)(kr(uo, w))Pnm ) r (O, w)g (U0, W) - g(Uo,
nu r(uo, w) r2(uo, W)

sin(w)dw

w)r,(uo, w)
S00

(2.78)

P?"(cos(w))

I,(uo,w) )+ f,(o, w)
+h( kr(uo, w))P,"g ' OW kru (uO, w'n~u (r(uo,w))

00

= Inm (n (k r (uo,w)) P,"u ( g(U' 1)
- oo ' r(uo, w)1

+jn,u(kir(o, w))' (uw)
(r(uo, w) )

Writing Eqs. (2.77) and (2.78) in compact form:

where anm is given in Eq.

00n=-oo

0o

00

anmR" + E bmQ" =
n=-oo

00

InmR'n + 3k:bnmQ'n =

00

E inmSn
n=-oo

0o

E in S,'"' i
n=-oo

(2.79)

(2.80)

(2.36); Rn, Qm, and S"'7 are the first, second and third

integrals in Eq. (2.77); and R', Q', and S m are the first, second and third integrals
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00

Z: anm
fl -00

sin(w)dw

r(uo' w)gu(uo' w) - g(uo, w)r (uo, w)
r2(uo, W)

f ,(uo, w) + fu2(uo, w)
sin(w)dw.

n=-oo n=-oo

+jn,u( kr (uo, w)) P"'

kiru(uo, w))



in Eq. (2.78). In contrast to the above two cases of impenetrable boundary conditions,

bnm must be solved for in two simultaneous equations. Solving for bm in Eqs (2.79) and

(2.80):

bnm = - (Q"'Sn - Qr'S,') 1 (R"mS," - R'"S')anm. (2.81)

In summary, the far-field scattering amplitude (Eq. (2.44)) of a particular body is

determined by conformally mapping the scatterer surface to a new coordinate system

by solving Eq. (2.31), then solving for the far-field scattering coefficients, bnm, for the

appropriate boundary condition as specified in the equations of this section.

2.3 Numerical implementation

2.3.1 General approach

Prediction of the scattering by an axisymmetric finite-length body using the above for-

mulation requires a series of steps involving numerical methods. Given the complexity

of the procedure, it is summarized briefly in this section, with some of the challenges

elaborated upon in the next section. The shape of the scatterer is first described by the

array of points, (r, 0), in polar coordinates in the (x, z) plane (Fig. 2-1). The terms, r

and 0, are then expanded in a Fourier series using Eqs. (2.21) and (2.30). The confor-

mal mapping is based upon determining the values of 6' and 6', which are determined by

solving the upper result in the right hand side of Eq. (2.31). This is a set of nonlinear

constraints which are solved in an iterative, numerical manner by an extension of the
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Newton-Raphson method. The details of the Newton-Raphson method can be found in

the Appendix of DiPerna and Stanton (1994) or in many math texts. Once the values

of 6' and 67 are determined, the lower result in the right hand side of Eq. (2.31) is used

to determine the mapping coefficients, c, which are then used to compute functions,

g(u, w) and f(u, w), of the new coordinate system (Eqs. (2.26) and (2.27)). After the

values of g(u, w) and f(u, w) are determined, the conformal mapping is complete, and

the solution to the Helmholtz equation in the new coordinate system can be determined.

The number of terms included in the summations in Eqs. (2.21), (2.30) and (2.31) are

chosen in an arbitrary manner and iterated until a sufficient number of terms are used to

accurately map the scatterer to the new coordinate system. The mapping can be verified

visually by using g(u, w) and f(u, w) to plot on top of the shape in the original coordinate

system (Fig. 2-1). In the case of a smooth prolate spheroid, the conformal mapping

method can be avoided by using the fact that f = a sin(w) and g = b cos(w) in Eqs.

(2.26) and (2.27), where a and b are the semi-minor and semi-major axes of the prolate

spheroid, respectively. In the new coordinate system, the external far-field pressure (Eq.

(2.41)) is solved by use of Eqs. (2.37) - (2.39). For soft boundary conditions, solve Eq.

(2.55) by numerical integration of Eqs. (2.53) and (2.54). The numerical integration

can be performed by use of one of numerous integration techniques, many of which are

described in Press et al., (1992). In this work, simple matrix summation was used. Like-

wise for rigid and fluid boundary conditions, solve Eqs. (2.72) and (2.81) by performing

the numerical integrations in Eq. (2.70) and Eqs. (2.77) - (2.78), respectively. With the
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scattered field coefficients, bnm, the far-field scattering amplitude is finally computed Eq.

(2.44). The point at which the summations in Eq. (2.44) are truncated is determined in

an iterative manner. The issues and challenges involved in truncation and performing

the matrix inversions in Eqs. (2.55), (2.72) and (2.81) are discussed in the next section.

2.3.2 Numerical issues

In general, there exist significant inherent difficulties in the numerical implementation of

infinite series solutions. For series solutions for simple geometries such as a sphere or

cylinder, and with currently available computers, the series converges relatively rapidly.

However, as the shape deviates from a simple geometry, higher modes are required for a

converged solution. The problem is particularly complicated for objects of high aspect

ratio and irregularity (roughness) on the boundary. The accuracy of the solution must

be balanced with accounting for the degree of roughness and elongation of the boundary.

Precision

Some of the problem in the numerical calculation of the wave functions is merely the time

required for the computer to compute the wave functions. Beyond this issue of time,

the limiting factors in the numerical implementation are machine precision and matrix

manipulation.

The FMM generates a transition matrix, much like the T-matrix model (Waterman,

1968), that relates the incident field coefficients to the scattered field coefficients. For a
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spherical scatterer, the transition matrix is diagonal and each non-zero term on the main

diagonal is an eigenvalue for each mode computed. If the scatterer shape deviates from

spherical, the matrix contains off-diagonal terms. The additional higher modal terms

required to represent the scattering become extremely small, falling below the value that

can be accurately represented numerically, resulting in a singular matrix in which the true

values of its elements are below the precision of the machine. Thus, machine roundoff

error is introduced into the solution and quickly dominates the results as it propagates

through the solution via repetitive matrix manipulation.

The fundamental problem is the finite machine precision. The number of modes

required to accurately represent the scattering involves matrix elements that are numer-

ically smaller than the machine can accurately compute. Little can be done to improve

precision since it is a hardware limitation. Future technology may afford greater pre-

cision, but the extent to which it improves the solution is difficult to estimate. The

relationship between greater precision and increased accuracy in the solution is not nec-

essarily linear, but could be a rapidly decaying one instead.

Besides hardware limitations, numerical accuracy is very dependent upon accurate

and efficient numerical implementation of the theory. There are a number of numerical

algorithms that improve matrix manipulation and handling of roundoff error that have

been investigated in this work, including orthogonal triangular decomposition, LU factor-

ization, balancing of matrices and scaling strategies (Press et al., 1992). The single most

important algorithm investigated and used in the implementation of this formulation is
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the well-known singular value decomposition (SVD) algorithm (Press et al., 1992).

For an ill-conditioned matrix in which some elements are below machine precision, the

SVD algorithm sets those numerically indiscernible elements to zero. Eliminating one or

more linear combinations of the set of equations that is to be solved is justified because

those subspaces are dominated by roundoff error and contribute negligible energy to the

solution and contribute principally to error; indeed, the error can be amplified. Singular

values whose ratio to the largest singular value is less than N times the machine precision

are set to zero (Press et al., 1992). This threshold value is equivalent to the rank of the

matrix, which is an estimate of the number of linearly independent rows or columns of

a matrix. Eliminating erroneous subspaces yields a more stable numerical result and a

convergent solution at higher frequencies; however, a disadvantage of the method is the

potential of removing some energy that contributes to the solution, thereby diminishing

the amplitude and structure of the results at higher frequencies. Therefore, the threshold

used for SVD must be set with care.

Truncation

Regardless of whether the wave functions are difficult to compute and are susceptible to

limitations of machine precision, numerical computation of an infinite series such as in

Eqs. (2.41) and (2.44), cannot be performed exactly due to the fact that there are an

infinite number of terms. Furthermore, the point at which the series must be truncated

is not necessarily obvious. For lower frequencies and smooth spherical or smooth low-
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aspect-ratio spheroids (i.e., low eccentricity), reaching a converged solution before the

onset of singularity is typically not a problem using currently available personal comput-

ers. As the frequency, aspect ratios or degree of irregularity are increased, roundoff error

begins to increase as a factor in preventing the solution from being converged.

Given the importance of these numerical issues, a study was conducted to explore

the conditions under which the solution would be reliable once numerically evaluated.

The "performance envelope" of the FMM for broadside backscattering by smooth prolate

spheroids of varying aspect ratios for soft and rigid boundary conditions was investigated

(Figs. 2-2 and 2-3).

In this study, a "converged" solution is defined as one in which the computation of

additional modes does not significantly change the result for a given value of ka. Specif-

ically, the scattering amplitude for a converged solution (although strictly a truncated

form of the exact solution) changed by less than 0.1% (an amount chosen arbitrarily in

this study) with the computation of additional modes, which correlated very well with vi-

sual inspection. "Truncated" and "numerically stable" approximations are less objective

and are a relative indication of the degree of reliability. Truncated approximations, as

defined in this paper, employ a sufficient number of modes to represent the scattering to

a lesser degree of accuracy than the above-defined converged solution, but still generally

predicts the overall scattering levels and finer structure. Numerically stable approxima-

tions use a sufficient number of modes to adequately represent the overall amplitude, if

not the finer structure, of the majority of the scattering. For both the soft (Fig. 2-2)
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and rigid (Fig. 2-3) cases, the solution was obtained for prolate spheroids with aspect

ratios ranging from 1:1 (i.e., a sphere) to 13:1, and ka ranging from 0 to 10. Note that

a is the semi-minor axis of the prolate spheroid, b is the semi-major axis, and the aspect

ratio is b/a. This assignment of notation (a and b) differs from that in some literature,

as a in this paper is intended to correspond to a cylindrical radius for the elongated

bodies. For each of the two boundary conditions, a converged solution is reached for the

sphere and 2:1 aspect ratio prolate spheroid for values of ka up to 10. As the aspect

ratio is increased beyond 2:1, the value of ka at which the solution is converged falls

off rapidly down to levels of 1.3 (soft) and 1.2 (rigid) at an aspect ratio of 13:1. The

truncated approximation and numerically stable approximation behave less predictably

as a function of ka and aspect ratio, but indicate generally decreasing convergence values

of ka with increasing aspect ratio. The value of ka at which a converged solution is

reached in the soft case is generally higher than that of the rigid case, particularly for

aspect ratios of 8:1 or less. This is consistent with the fact that the soft case does not

include an expression for the derivative of pressure as in the rigid case (Eq. (2.67)), thus

requiring fewer matrix manipulations that would propagate roundoff error.

2.4 Numerical results

All of the results plotted in Sec. IV were generated using Eqs. (2.44)-(2.47), (2.55), (2.72)

and (2.81) to illustrate predictions as well as demonstrate the accuracy of the FMM in

a wide variety of applications. Predictions using the FMM are first compared to those
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using the exact solution for soft, rigid and fluid spheres. Predictions are then compared

between the FMM and various formulations for smooth prolate spheroids for a variety of

aspect ratios, frequencies, and incidence and scattering angles. Thirdly, computations

are presented for scattering from a realistic, irregular body. Lastly, predictions are

presented for scattering by gaseous smooth prolate spheroids in the region of resonance

for various aspect ratios.

2.4.1 Spheres: comparison with exact solution

Computing the scattering from the sphere is an essential benchmark for the FMM since

the exact solutions exist. The results for the soft, rigid and fluid spheres produced by

the FMM are identical to the exact solutions (Anderson, 1950) in all three cases (Fig.

2-4). In the case of fluid boundary conditions, material properties for a weak scatterer

(i.e., one having properties resembling that of the surrounding fluid) were used. The

specific values were chosen to resemble zooplankton tissue.

2.4.2 Prolate spheroids: comparison with various solutions

As mentioned earlier, accurately computing the scattering from a prolate spheroid is a

difficult task, particularly at high aspect ratios and high frequencies. Every scattering

model has its strengths and weaknesses, so to thoroughly test the scope of applicability for

the FMM, it is compared to a variety of models within their ranges of performance. The

approaches used for comparison are the Deformed Finite Cylinder (DFC) model, the T-
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Figure 2-4: FMM and Exact Solutions: Reduced Target Strength as a function of ka for
soft, rigid and fluid spheres. Mass and sound speed contrasts for the (weakly scattering)
fluid case are g=1.043 and h=1.052, respectively. Exact solution calculation based on
formulation from Anderson (1950).
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matrix formulation, the Boundary Element Method (BEM), the exact prolate spheroidal

solution, and the Kirchhoff approximation.

Deformed finite cylinder model (DFC)

Stanton adapted his formulation for the finite cylinder (Stanton, 1988a, b) to finite cylin-

ders of deformation; e.g., prolate spheroids and uniformly bent finite cylinders (Stanton,

1989a). The model, which is based on the modal series solution for an infinitely long

cylinder, has proven to be accurate at broadside and near-broadside orientations to the

prolate spheroid for aspect ratios of 5:1 and higher (Partridge and Smith, 1995). The

FMM compares well to the DFC for the case of broadside backscatter from a rigid prolate

spheroid of aspect ratios 2:1, 5:1 and 10:1 (Fig. 2-5). As the aspect ratio is increased,

results for the FMM are limited to lower frequencies to maintain a converged solution.

In the Rayleigh region (ka < 1), the TS increases as expected, proportional to (ka)4 .

Note also that the agreement between the FMM and the DFC in the Rayleigh region

improves as the aspect ratio increases, reflecting the fact that the accuracy of the DFC

improves with aspect ratio, eventually coinciding with the FMM results.

T-matrix method

The T-matrix method is a formally exact, numerical solution that has been the focus of

much research to date and has proven to be an accurate model for numerous scattering

problems. In two earlier studies, the T-matrix approach has been applied to backscatter

and bistatic scattering by rigid prolate spheroids with an aspect ratio of 2:1 (Varadan
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Figure 2-5: FMM and DFC: Reduced Target Strength of rigid prolate spheroids at
broadside incidence as a function of ka for aspect ratios of 2:1, 5:1 and 10:1. DFC
calculations are based on the formulation from Stanton (1989a). The agreement between
the FMM and DFC improves as the aspect ratio increases, which is consistent with the
fact that the DFC is valid in the limit of high aspect ratio geometries.
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et al., 1982) and 10:1 (Hackman, 1993) and will be compared with FMM predictions.

There is excellent agreement between the FMM and the T-matrix method in the cases

of backscatter for a 2:1 aspect ratio prolate spheroid at broadside (Oo = 900) and oblique

(90 = 450) angles of incidence, as well as in the bistatic geometry of broadside incidence

(Oo = 900) and end-on reception (0, = 00) (Fig. 2-6). There is also excellent agreement

between the T-matrix and the FMM after increasing the aspect ratio from 2:1 to 10:1 for

the rigid prolate spheroid in the case of broadside and end-on backscatter (Fig. 2-7). All

of the cases in Figs. 2-6 and 2-7 illustrate the interference between the specular reflection

and a Franz or creeping wave and the associated shifts in the peaks and nulls for the

different angles of incidence and reception (Uberall et al., 1966).

Boundary element method (BEM)

Francis (1993) developed a numerical method of computing the scattering by a finite

body using a boundary element method based on a partial application of a Helmholtz

gradient formulation. The FMM and BEM agree perfectly to high frequencies (ka = 10)

in the case of end-on backscatter for a 2:1 aspect ratio rigid prolate spheroid (Fig. 2-8).

Exact prolate spheroidal solution

The exact solution for a prolate spheroid in prolate spheroidal coordinates has been used

by various investigators (Yeh, 1967; Furusawa, 1988; and Ye et al., 1997). While this

is formally an exact solution, it encounters the same numerical challenges mentioned in
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T-matrix results are from Fig. 37(a) of Hackman (1993). The form function is given in
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Figure 2-8: FMM and BEM: Reduced Target Strength as a function of ka for a 2:1 rigid
prolate spheroid at end-on incidence. The agreement continues well past ka=10. BEM
results are from Francis (2001).

Sec. III. Comparisons of the FMM to the exact solution in the case of backscatter and

forward scatter for a range of incidence angles (9o = 300, 70', 900) demonstrate good to

excellent agreement in all cases (Fig. 2-9).

Kirchhoff approximation

The Kirchhoff approximation is a frequently used approximation for backscattering; how-

ever, it is generally limited to the geometric scattering region (ka >> 1), perfectly re-

flecting boundary conditions (soft and rigid) and near-broadside incidence (Born and

Wolf, 1999). It is a convenient approximation for the amplitude of the backscatter,

but does not accurately represent the oscillations in the amplitude due to the interac-
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Figure 2-9: FMM and Exact Prolate Spheroidal Solution: Reduced Target Strength as
a function of ka for a 10:1 rigid prolate spheroid at incidence angles of 30, 70 and 90
degrees for backscatter and forward scatter. Exact prolate spheroidal solutions are from
Fig. 7 of Ye et al. (1997).
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tion between the specular reflections and Franz waves. Comparisons of the FMM to

this approximation within the range of reliability of the Kirchhoff approximation fur-

ther establish the consistency of the FMM. Specifically, the reduced target strengths for

broadside backscattering generally agree well for the single frequencies presented, with

improved agreement as the frequency increases (Fig. 2-10). At ka = 1, the Kirchhoff

approximation is near the limit of its range of validity and under-estimates the ampli-

tude. Additionally, it can be seen that the Kirchhoff approximation falls off much more

rapidly than the FMM for all ka as the incidence angle moves away from broadside.

2.4.3 Irregular bodies: comparison with Kirchhoff approxima-

tion

As emphasized earlier, accurate computation of the scattering by smooth elongated bod-

ies is not a simple task, particularly as the aspect ratio and frequencies increase. The

additional complexity of an irregular surface further complicates an already difficult prob-

lem. A key distinction of the FMM is its ability to conformally map an irregular axisym-

metric surface to an orthogonal coordinate system that better fits the scatterer surface.

To demonstrate the practical application of the FMM to a realistic, asymmetrical, irregu-

lar body with non-Gaussian roughness, the acoustic scattering by a gas-filled swimbladder

from an alewife fish (Alosa pseudoharengus) has been modeled and compared with the

Kirchhoff approximation for two representative shapes (Figs. 2-11 and 2-12). This par-

ticular problem was chosen as fish are a significant scatterer of sound in the ocean and
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results are based on the formulation from Clay and Horne (1994). Shape #1 is shown in
the bottom frame. The vertical axis is exaggerated to better illustrate the irregularity
of the surface. Broadside corresponds to 0 degrees.
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the swimbladder is the organ in the fish that generally dominates the scattering. A more

extensive treatment of this application is given in Reeder et al. (submitted). At these

values of ka the soft boundary condition was used given the high contrast in material

properties between the gas and surrounding tissue. There is reasonable agreement be-

tween FMM and Kirchhoff for most values of ka for Shape #1 in Fig. 2-11, but for Shape

#2 in Fig. 2-12, the Kirchhoff predictions generally under-estimate relative to the FMM

at angles well off broadside.

2.4.4 Low ka resonance scattering for gaseous bodies: compar-

ison with T-matrix and exact prolate spheroidal solutions

In contrast to the cases of rigid and weakly-scattering objects described above whose

scattering levels decrease dramatically in the ka << 1 region, gaseous bodies have a

strong resonance in that region and have been the subject of many earlier studies. Al-

though in the low ka region there are fewer restrictions in the calculations, challenges

still remain in the prediction of scattering from gaseous bodies with high aspect ratios.

In this study, the FMM is directly compared with the T-matrix method and the exact

prolate spheroidal solution over a range of aspect ratios up to 20:1 for constant volume

prolate spheroids. Predictions from the T-matrix method and FMM are compared in

Fig. 2-13 for aspect ratios up to 16:1; however, results for aspect ratios up to 20:1 were

presented by Feuillade and Werby (1994) using the T-matrix method, as well as Ye and

Hoskinson (1998) using the exact prolate spheroidal solution. In addition, low ka res-
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Figure 2-13: FMM and T-matrix: Normalized backcattering amplitude as a function of
kae for a gaseous (g=0.00126, h=0.22) prolate spheroid at broadside incidence. Results
from the FMM (top panel) are compared to results from the T-matrix method (bottom
panel) from Fig. 4(a) of Feuillade and Werbe (1994). The single dots in the top panel are
peak amplitudes for aspect ratios listed in parentheses. The backscattering amplitude
on the vertical axis is normalized to the peak amplitude of the sphere. As the aspect
ratio of the spheroid is increased beyond 1:1, the dimensions of the spheroid are changed
to maintain a volume equal to that of the original sphere. Thus, the ae in kae is the
equivalent spherical radius of the object, corresponding to the radius of the sphere (the
1:1 case shown) that has the same volume as the prolate spheroid. Results for aspect
ratios up to 20:1 were tabulated by Feuillade and Werby (1994) using the T-matrix
method, as well as Ye and Hoskinson (1998) using the exact prolate spheroidal solution.
There is excellent agreement among predictions from all three formulations for aspect
ratios up to 20:1.
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onance scattering by gaseous bodies of higher aspect ratio (up to 100:1) was calculated

with no difficulties relative to the numerical issues cited earlier. These ratios are much

higher than what has previously appeared in the literature (Strasberg, 1953; Weston,

1967; Feuillade and Werby, 1994; Ye and Hoskinson, 1998). The FMM accurately pre-

dicts the scattering in the resonance region-the increase in the resonance frequency, the

decrease in the resonance amplitude and the broadening of the resonance peaks for pro-

late spheroids of constant volume and increasing aspect ratio within the verifiable range

of aspect ratios presented in the literature (up to 20:1 aspect ratios).

2.5 Summary and conclusions

An extension of a two-dimensional conformal mapping approach to scattering by irregu-

lar, finite-length bodies of revolution has been presented for three boundary conditions.

The model conformally maps the coordinate variables of the original coordinate system

to a new orthogonal coordinate system in which the locus of all points where the new

radial coordinate is a constant exactly coincides with the scatterer surface. The solu-

tions to the transformed Helmholtz equation are a general solution for the total pressure

in the case of far-field scattering from a finite body of revolution. This model has

been shown to be very accurate in the prediction of scattering from smooth, symmetric

bodies for a wide range of frequencies (Rayleigh through geometric scattering region),

scattering angles (monostatic and bistatic), aspect ratios and boundary conditions, and

for all angles. Good agreement has also been demonstrated for irregular, realistic shapes
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when compared to the Kirchhoff approximation. This work represents a significant ad-

vancement by providing a numerically efficient formulation that is applicable over a wide

range of frequencies, scattering angles and geometries for soft, rigid and fluid boundary

conditions.

There is great potential for further development of this model, including application to

acoustic scattering by elastic solids and shells. The implementation of better numerical

integration techniques, the use of extended precision format of floating point arithmetic or

various smoothing techniques (Yamashita, 1990) could delay the onset of ill-conditioned

matrices, accelerating convergence. New scaling techniques based upon the physical

scattering mechanisms could also increase accuracy (Schmidt, 1993).

84



Chapter 3

Broadband acoustic backscatter and

high-resolution morphology of fish:

Measurement and modelingi

3.1 Introduction

Acoustic surveys of marine organisms have long been used to rapidly and synoptically

survey the ocean for organisms of ecological and economic importance. Acoustic meth-

ods complement traditional methods such as direct sampling with nets. Direct sampling

furnishes biological data such as abundance, biomass, direct measurements of organism

size and species identification, but encounters problems such as net avoidance, small

'This chapter is based on an article submitted to the Journal of the Acoustical Society
of America (Reeder et aL, submitted).
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sampling volumes, catch destruction of delicate specimens, and costs in time and money.

Acoustically surveying the ocean for marine organisms could avoid these problems, par-

ticularly with respect to large-scale synoptic surveys while obtaining high-resolution data

(Gunderson, 1993; Medwin and Clay, 1998). Since acoustic sampling does not directly

produce biological data, inference of biological information from acoustic scattering by

marine organisms requires an understanding of the process by which those organisms

scatter sound.

Understanding the scattering mechanisms of marine organisms is a challenge due to

the fact that fish anatomy is complex and the acoustic scattering characteristics are

correspondingly complex. Nash et al. (1987) illustrated the influence of the various

anatomical components of fish on the scattering by performing length-wise acoustic scans

of whole fish and dissected swimbladders, heads and vertebrae (Fig. 3-1).

Given the complexities of the scattering characteristics of marine organisms as illus-

trated in that and other studies, detailed investigations must be made into the scattering

mechanisms of the animals in order to determine and decipher the extent to which each

dependency contributes to the overall scattering characteristics. Studies must consist

of careful, accurate measurement of the acoustic scattering and associated modeling to

effectively elucidate these mechanisms. Due to the large number of organisms that exist

in the ocean, it is not possible to study the scattering by all species; however, organisms

can generally be categorized according to morphological groups. For example, fish can

be categorized by morphological characteristics, such as size, shape and the presence or
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Figure 3-1: Curves of relative acoustic pressure vs. length for a largemouth bass showing
relative scattering contributions by the whole fish, head, vertebral column and swimblad-
der. This qualitative illustration of the dependence of fish target strength on changes
in morphology was generated through the use of a focused array transducer system that
scanned the length of the object at 220 kHz in the near-field. Adapted from Nash et al.
(1987).
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absence of swimbladders (Foote, 2001). Regarding zooplankton, Stanton et al. (1994a,

1998a, 1998b) identified three major categories: fluid-like (e.g., euphausiids, shrimp,

copepods), gas inclusions (e.g., siphonophores), and elastic shells (e.g., pteropods).

Much research has been directed toward making measurements of the scattering of

sound by fish, usually in terms of target strength (Midttun, 1984; Foote, 2001). Studies

have included measurement of target strengths in situ and ex situ, with both multiple

and single targets. In situ measurements present the challenge of unknown target size,

orientation and sometimes position relative to the acoustic beam, while ex situ measure-

ments provide greater control over these factors, although in an unnatural environment

(Foote, 1997). Ex situ measurements of tethered fish include those conducted by Jones

and Pearce (1958), Diercks and Goldsberry (1970), Haslett (1969), Love (1969, 1970,

1971), Nakken and Olson (1977), Miyanohana et al. (1990), and Benoit-Bird and Au

(2001). Although most of these measurements were performed at single frequencies

and at a limited number of angles of orientation (mostly dorsal), they were performed

on a variety of species of different sizes and demonstrate complicated variability that

is dependent upon morphology, orientation and acoustic wavelength. Attempts have

been made to empirically quantify the relationship between echo amplitude and actual

fish length (Love, 1977; Foote, 1987). Although linear regression curves have been used

with some success, they are constrained to certain ranges of frequencies and species, and

lack the ability to make predictions outside those bounds (Horne and Jech, 1999). More

sophisticated scattering models have been required to better account for the complexities
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introduced by shape, orientation and material properties.

Modeling of the scattering of sound by complex body shapes is a difficult problem

due to the mathematical challenge of exact solutions and the computational difficulties

of numerical approaches. A number of approaches have been used to represent the shape

of the dominant scattering mechanisms. For low frequency applications, the acoustically

dominant swimbladder has been modeled as a sphere (Andreyeva, 1964; Love, 1978;

Ye and Farmer, 1994; Feuillade and Nero, 1998) and as a prolate spheroid (Weston,

1967). At high frequencies, the elongation of the scatterers has increasing importance

and efforts in this frequency region have been made to describe the scattering by more

realistic, irregular shapes. For example, Jones and Pearce (1957) and Haslett (1962b)

attempted to experimentally approximate the shape of a fish swimbladder as a cylinder

and ellipsoid, respectively, and Do and Surti (1990) used a series of cylinders and cones

in a similar fashion. Furusawa (1988) and Ye (1996) modeled acoustic scattering by

fish using prolate spheroids. Arrays of point scatterers (Clay and Heist, 1984) have

been used to model the fish body form. Foote (1985) computed the target strength

of fish by applying the Kirchhoff approximation to a realistic 3-dimensional model of

the swimbladder based on the digitized microtomed swimbladder of pollack (Pollachius

pollachius) and saithe (Pollachius virens). Clay (1991) combined a component of Stan-

ton's (1988a, 1989a) deformed finite cylinder model (based on a modal series solution)

in the ka < 0.15 region with the Kirchhoff approximation for ka > 0.15 to create the

Kirchhoff-ray mode (KRM) model to account for the irregular shape of the swimbladder
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and fish body and make predictions over all of ka. Clay and Horne (1994) modeled

acoustic backscatter of Atlantic cod (Gadus morhua) using the KRM model. Foote and

Francis (2002) modeled the target strength of swimbladdered fish using the boundary

element method based on the same swimbladder shapes in Foote (1985). Models using

the exact shape of the animals' morphology are desired because they are more realistic

and promise greater accuracy over models based on simple geometric shapes, especially

in the geometric scattering region (high ka). Each of the above-mentioned scattering

models are limited with respect to frequency range, class of surfaces, types of boundary

conditions, eccentricity of shape and/or numerical efficiency.

As shown in the above studies, successful use of acoustics in ocean observations re-

quires accurate scattering models for each category of animal, verification and refinement

of the models through accurate, extensive measurements of scattering from fish, and reli-

able algorithms for numerical implementation of the models. Very importantly, advanced

scattering models must include scatterer shapes that closely resemble the dominant scat-

tering features within the fish. This information requires high-resolution morphological

measurements of the fish to be made. Another important requirement is that the acous-

tic scattering measurements be conducted over a wide range of frequencies, preferably

with continuous coverage over the frequency band.

In spite of the need for broad spectral coverage in the scattering measurements, the

majority of acoustic measurements on fish are in terms of target strengths at single fre-

quencies. Although this level of information has been proven to be very useful for certain
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applications, such as fishery population estimates, traditional target strength measure-

ments lack spectral coverage for rigorous model development. Specifically, narrowband

measurements are performed at discrete frequencies, thus frequency dependencies are

missing from the data, although this has been addressed in part by use of multiple dis-

crete frequencies. Since an animal's scattering properties vary considerably with the

frequency of the transmitted signal, the use of broadband transducers offer continuous

coverage over a significant range of frequencies, thus increasing the amount of information

contained in the signal. Furthermore, the broadband signals inherently have high tem-

poral resolution (which varies with inverse bandwidth of the transmitted signal) which

can be realized through the use of an impulse signal or pulse compression of a longer

signal (Chu and Stanton, 1998). With high temporal resolution, scattering features can

possibly be resolved in time and identified. In spite of the great advantages of broadband

signals, relatively few studies have investigated and/or exploited the animal's spectral

characteristics (Kjaergaard et al., 1990; Simmonds et al., 1996; Zakharia et al., 1996).

The needs for broadband acoustic measurements and advanced scattering models that

incorporate high-resolution morphology are addressed in this study. Extensive broad-

band acoustic measurements were conducted on live, adult alewife (Alosa pseudoharen-

gus), which were tethered while being rotated in 1-degree increments of orientation angle

over all angles in two planes of rotation (lateral and dorsal/ventral). Spectral and time-

domain analyses identify dominant scattering mechanisms and demonstrate the extent

to which the scattering depends on size, shape, acoustic frequency and orientation angle.
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Traditional x-rays and advanced techniques involving CT scans were used to rapidly and

non-invasively image the anatomy of the fish so that digitizations of swimbladder shape

could be incorporated into two scattering models-the KRM model referenced above (us-

ing traditional x-rays), as well as a newly developed scattering formulation, the Fourier

Matching Method (FMM) for axisymmetric finite-length bodies (Reeder and Stanton,

submitted) The FMM formulation is a versatile model applicable over a wide range of

shapes, all angles and all frequencies. Predictions by the two scattering models, using

the morphological information, are compared to the acoustical backscattering laboratory

measurements of the alewife.

This chapter is organized as follows. In Sec. II, basic descriptions of target strength

and pulse compression (PC) processing of broadband signals are delineated, followed

by a synopsis of the Kirchhoff-Ray Mode and Fourier Matching Method models. In

Sec. III, the laboratory setup, methods used for data collection and measurements of

animal morphology are presented. Acoustic scattering results are presented in Sec. IV.

Comparisons between model predictions and measurements are made in Sec. V, followed

by a summary and conclusions in Sec. VI.
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3.2 Theory

3.2.1 Definitions

The far-field scattered sound wave is expressed as:

P scat + Pi"c f, (3.1)
r-+OO r

where pinc is the pressure amplitude of the acoustic wave incident upon the object, r is

the distance between the object and receiver, k (= 27r/A, where A = wavelength) is the

acoustic wavenumber of the incident field and f is the scattering amplitude. The far-field

scattering characteristics of the object are fully described by the scattering amplitude.

Given the sometimes large dynamic range of the backscattering amplitude, it is often

expressed in logarithmic terms as target strength (TS), expressed in units of decibels

(dB) relative to 1 m (Urick, 1983):

TS = 10 log1 o fb,12 = 10 log910 bs, (3.2)

where bsb - 12 is the differential backscattering cross section and differs from the

often-used backscattering cross section , a, by a factor of 47r (o, = 4robs). The term,

fAs, is the scattering amplitude evaluated in the backscatter direction. Target strength

is often normalized by the square of some typical dimension to give the reduced target
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strength (RTS):

RTS =10 lg10  bsRTS = 10 loglo = 10 logo IfbS 2 - 10 log1 o IL2 , (3.3)

where L is, in the case of elongated scatterers, the length of the scattering object. In

the case of a sphere, the target strength is often normalized by ra2 instead of L 2 . The

average target strength is expressed in terms of the value of the average backscattering

cross section:

(TS) = 10 log10  (ob), (3.4)

where the average, denoted (), is performed over the frequency band and before the

logarithm operation is performed.

3.2.2 Pulse compression

In order to resolve major scattering features such as the head and swimbladder of the

fish, the received signal is compressed in time by cross correlating the echo with the

received calibration signal. The result is a short, high-amplitude signal with increased

signal-to noise ratio (SNR). This type of process is enhanced for long, wideband signals

such as those used in this study. This approach is similar to the commonly used matched

filter that involves cross correlating the received signal plus noise with the signal without

the noise (Turin, 1960). In the case of scattering from marine organisms, however, the

exact scattering characteristics of the animal are not known; therefore, the "replicate"
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signal (corresponding to the signal without the noise) used in the correlation process for

a true matched filter, is not known. Chu and Stanton (1998) suggested using a different

signal in the cross-correlation: the received calibration signal obtained during calibration.

This modified matched filter process is referred to as pulse compression and its output

is referred to as the compressed pulse output (CPO). The resultant output is a series of

echoes, corresponding to the dominant scattering features of the target.

3.2.3 Models

Two scattering models that are valid for elongated scatterers and for a wide range of fre-

quencies and orientations are used to compare with the experimental data: the Kirchhoff-

Ray Mode (KRM) model which has previously been applied to fish acoustics and the

newly developed Fourier Matching Method (FMM).

KRM

The Kirchhoff-Ray Mode (KRM) model has been used to compute the scattering from fish

with a hybrid approach by predicting the scattering in the low ka region with a monopole

(m = 0) mode to a cylinder solution and predicting the high ka region with the Kirchhoff,

or "ray", approximation. For both components of the solution, the scattering object is

approximated by 1-mm long cylindrical volume elements, v(j), constructed from digitized

shape of the body and swimbladder using traditional x-ray images. For the swimbladder

scattering in the low ka region (ka < 0.15), the cylindrical monopole solution is written
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as the sum of the scatter from Ne elements:

. Ne

f b) =- 7 boe-2 k( )dx(j), (ka < 0.15) (3.5)

where fb) is the scattering amplitude as a function of frequency (notation of L (script)

in Clay and Horne (1994) is replaced by f b)), bo is the zero-order mode scattering co-

efficient, and dx is the incremental element along the length of the swimbladder. For

the swimbladder scattering in the high ka region (ka > 0.15), the Kirchhoff ray ap-

proximation is used. The above equation is modified to sum the backscatter from N

swimbladder elements:

f:b) _ Rf.9(1 - R 2f) N,-1f~~~ ,")=- ~ ~ fj+1/2 e-i(2kf bVUU)+Tsb),U(j), (ka > 0.15)
j=O

(3.6)

where Rf, is the reflection coefficient, U and L indicate the upper and lower surfaces,

wf refers to the water-fish interface, fs denotes the swimbladder-fish body interface, fb

denotes the fish body, sb refers to the swimbladder, Au(j) is the incremental distance

between elements, and Ab and 'I are empirical amplitude and phase adjustments for

small ka. A similar expression using the Kirchhoff approximation describes the scattering
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for the fish body in the high ka region (ka > 0.15):

Ne-1

f(fb) -i2 {(ka(j)) 1/ 2  (ka > 0.15)
j=0

x [e-i( 2 kvu(j) - (1 - R2f)ei(-2kvu(j)+ 2 kb(VU ()-VL())+Ifb)] (3.7)

x Au(j)},

The total scattering from the fish body and swimbladder is the coherent sum of the

scattering amplitudes:

f(tot) = f(sb) + f(f b) (3.8)

where the choice of expressions using either Eq. (3.5) or (3.6) for f(b) is implicit and

depends on the particular value of ka.

FMM

The Fourier matching method (FMM) used herein to describe the scattering by the

swimbladder involves the use of a two-dimensional conformal mapping approach to de-

scribe scattering by axisymmetric, irregular, finite-length bodies of revolution (Reeder

and Stanton, submitted). The model conformally maps the coordinate variables of the

original coordinate system to a new orthogonal coordinate system in which the new radial

coordinate being a constant exactly coincides with the scatterer surface. The solutions

to the transformed Helmholtz equation are a general solution for the total pressure in the
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case of far-field scattering by a finite body of revolution. This model has been shown to

be very accurate in the prediction of scattering by smooth, symmetric bodies for a wide

range of frequencies (resonance in the Rayleigh region through the geometric scattering

region), scattering angles (monostatic and bistatic), aspect ratios and boundary condi-

tions. Good agreement has also been demonstrated for irregular, realistic shapes when

compared to the Kirchhoff approximation (Reeder and Stanton, submitted).

Using a conformal mapping function of the form:

G(p) = c_1 e + E Cne-p (3.9)
n=O

where cn are the conformal mapping coefficients determined by solving a system of non-

linear constraints using the Newton-Raphson method, the coordinate system is mapped

to a new, orthogonal coordinate system in which the constant radial coordinate exactly

coincides with the scatterer surface (in this case, the swimbladder outer boundary). The

scattering amplitude in the new coordinate system is:

00 00

f = Sb n~injl, (g.)mv
f r(u, w)) e (3.10)

where bnm are the far-field scattering coefficients that depend on the shape and mate-

rial properties of the scatterer, P,"are associated Legendre functions, r(u, w) is the new

radial coordinate, and g(u, w) is a function of the new system. The far-field scattering

coefficients, bnm, are determined after solving the transformed Helmholtz equation and
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satisfying the boundary conditions at the surface of the scatterer. Details and defi-

nitions of the parameters are in Reeder and Stanton (submitted). The FMM results

presented here are based upon the scattering by the swimbladder alone-they do not

include the computation of scattering from the fish body. As a consequence, the FMM

will expectedly underpredict the scattering.

3.3 Experimental methods

Seventeen adult alewife fish were used in the acoustic backscattering measurements. The

morphology of the fish was characterized through a combination of dissection and three

x-ray technologies. The scattering measurements were performed on individual fish

secured in a tether in a laboratory tank.

3.3.1 Animals

Alewife were chosen because they are readily caught and are similar to the important

fish, Atlantic herring (Clupea harengus), in their body size, shape and swimbladder con-

struction (Fig. 3-2). Both alewife and Atlantic herring expand and contract their

swimbladders primarily by transferring air via a pneumatic duct between their esoph-

agus and swimbladder. Other methods of maintaining buoyancy include diffusion and

secretion of gases via a network of blood vessels and gas glands in contact with the

swimbladder.
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Figure 3-2: Images of alewife used in the acoustic scattering experiments: (a) whole fish,
(b) dissected fish showing enlarged gonads, (c) dissected fish with gonads removed to
expose the swimbladder, and (d) traditional x-ray of whole fish showing (dark) outline of
swimbladder. The fish were collected as they swam upstream to spawn in the freshwater
ponds of Cape Cod, Massachusetts; consequently, their gonads were enlarged as seen in
(d). All of the fish were adults with an average caudal length of 22 cm and an average
body weight of 144 grams.
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Table 3-1.
each of the

Dimensions, weights and availability of acoustic, x-ray and dissection data for
alewife used in the acoustic scattering measurements. Total length (TL) is the

distance from the nose to the tip of the tail. Caudal (standard) length (CL) is the distance
from the nose to the end of the flesh near the tail.

Animal Animal Gender TL CL Height Width Weight Acoustic:X-ray:Dissection
Desig Tag # (mm) (mm) (mm) (mm) (g)

10 152 F 259 215 59.7 25.2 159 Yes:No:Yes
11 153 M 255 217 52.4 21.3 120 Yes:No:Yes
12 154 M 255 225 54.3 23.8 133 Yes:Yes:Yes
13 155 F 268 225 60.8 27.3 172 Yes:Yes:Yes
14 156 M 258 220 59.0 26.0 151 Yes:Yes:Yes
15 157 F 256 216 54.7 23.0 135 Yes:Yes:Yes
16 158 M 260 220 62.8 25.8 168 Yes:Yes:Yes
17 159 F 244 215 59.4 22.8 120 Yes:Yes:Yes
18 160 M 241 200 59.7 23.7 121 Yes:Yes:Yes
19 161 M 257 217 56.7 24.5 141 Yes:Yes:Yes
20 162 F 259 216 63.5 26.1 165 Yes:Yes:Yes
21 163 M 254 217 59.6 24.0 147 Yes:Yes:Yes
22 164 * 254 223 56.6 24.7 148 Yes:Yes:No
23 165 F 277 235 56.4 23.3 150 Yes:Yes:Yes
24 166 F 255 217 57.0 23.8 139 Yes:Yes:Yes
25 167 * 250 213 50.9 22.2 116 Yes:Yes:No
26 168 * 265 225 56.5 26.0 157 Yes:Yes:No
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The fish were collected in May, 2000 as they were migrating upstream to spawn in the

freshwater ponds of Cape Cod, MA. The standard (caudal) lengths (measured between

the nose and end of the flesh near the tail) of these fish were quite uniform, averaging

22 cm. Their body weights averaged 144 grams. Since these fish were ready to spawn,

their gonads were enlarged. The males' gonads were approximately 10% of their body

weight, while the females' gonads equaled as much as 15% of their body weight. The

animals' physical dimensions and weights are summarized in Table 1.

3.3.2 Morphometry of animal shapes: PCX and CT scans

In addition to visual inspection of the fish (both whole and in dissected form), the

morphology was investigated through quantitative use of various x-ray technologies-the

traditional x-ray, phase contrast x-rays (PCX) and computerized tomography (CT) scans.

After the acoustic measurements were recorded, traditional x-rays (Fig. 3-2d) of the fish

were performed at the Falmouth Animal Hospital in N. Falmouth, Massachusetts. These

x-ray images were later used to generate hand-traced digitized objects of the swimbladder

and fish body for use in the KRM model. Traditional x-rays are gray-scale images

produced on a film that is sensitive to the amplitude of energy absorbed by an object.

However, x-rays change not only in amplitude, but also in phase as the material distorts

the wave as it passes through the material is ignored. Traditional x-ray imagery ignores

this distortion, yet the newly developed PCX process captures these extremely small

phase changes, resulting in a high-resolution image with contains much finer detail than
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tradition x-ray images (Wilkins, 1996; Davis and Stevenson, 1996; Gureyev et al., 2000).

PCX imaging, performed on an alewife at the Commonwealth Scientific and Industrial

Research Organisation (CSIRO) in Melbourne, Australia, is sensitive to, and illustrates

well, the small-scale anatomical features of alewife such as fins, ribs, striations in muscle

tissue, gills and weakly scattering soft tissue (Fig. 3-3). Such high-resolution imagery

dramatically aids the determination of the scattering features in fish.

Additionally, high-resolution computerized tomography (CT) scans were performed

on an alewife at the Falmouth Hospital in Falmouth, Massachusetts (Fig. 3-4). The

images produced by the scans were used to generate a three-dimensional digital object

of the swimbladder to be incorporated into the FMM scattering model. The alewife was

scanned along the longitudinal axis of the animal, producing 112 images 2 mm apart.

"Slices" of the fish were created to examine the morphology of the animal in each cross

section. The original CT images contained 500 x 900 pixels, but were then cropped

(referenced to a common pixel to maintain accurate physical proportions) for ease of

numerical manipulation. The CT images were then converted to a three-dimensional

binary matrix, each element of which contained a "1" for each element of the original

matrix whose value was above a certain threshold. Thus, a three-dimensional digital

object of the fish was produced (Fig. 3-5a). A wire-cage diagram was then created

of the fish body to better illustrate the exact physical morphology of the fish and its

swimbladder (Fig. 3-5b). Coordinate points were then extracted from the top, bottom

and side boundaries of the digital object of the swimbladder. Each of these boundaries
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Figure 3-3: Phase Contrast X-ray (PCX) of an alewife. Imaging was performed at the
Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Melbourne,
Australia. The PCX process is an extremely high-resolution imaging technique which is
sensitive to weakly scattering body tissue. Slight morphological details can be detected,
such as the gills, fins, ribs, striations in the muscle tissue, gonads and gut (Stevenson,
2002). 104



Figure 3-4: High-resolution Computerized Tomography (CT) scan images of an alewife
with their placement indicated along the fish body. The black areas within the cross-
sectional slices include the swimbladder and gas-inclusions in the gut, which is connected
to the esophagus near the head. The vertebral column and muscle tissue can also be
seen in the images.

105



6

4- 0
cm

2- 10

-- b15 CM

0 20
2 4 25

cm -

6-

4 0

cm-

...2 0
0 2 4 25

cm

Figure 3-5: Three-dimensional digital objects generated from CT scan imagery: whole
fish (upper panel) and wirecage diagram of fish body with swimbladder object inside
(lower panel). The 112 images generated during the CT scan were processed by a digital
image processing algorithm to generate the exact shapes to incorporate into the FMM
for scattering predictions.
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were rotated about the axis to form three bodies of revolution to model each of the

scattering planes-dorsal, ventral and lateral. These points were used by the FMM to

conformally map the swimbladder objects into a new coordinate system in which the new

radial coordinate exactly matches the surface of the body. The CT scans are an efficient

and non-invasive method of producing high-resolution images of fish. This method is in

contrast to the direct, but time-consuming, method of microtoming (Foote, 1985; Ona,

1990).

3.3.3 Acoustic data acquisition

The acoustic backscattering measurements were conducted in a large freshwater tank at

Benthos, Inc. in North Falmouth, MA (Fig. 3-6). The experimental setup, similar in

concept to that described in Stanton et al. (2000), included the use of a power amplifier,

signal generator, a pair of transducers, pre-amplifier, band-pass filter, oscilloscope and

personal computer. During the measurements, the individual fish were secured in a

harness in the center of the acoustic beam and rotated. Although all animals were alive

and in good condition at the beginning of each measurement, some died part-way into

the measurement. The data presented here are from nine data sets on three animals

(15, 17 and 26), all of which remained alive for the entire measurement.

A pair of Reson TC2116 broadband acoustic transducers was mounted horizontally

in the tank facing the fish in the tethering system, the center of which was attached to a

computer-controlled stepper motor which rotated the assembly in 10 increments through
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Figure 3-6: Schematic of the laboratory system used for measuring acoustic backscat-
tering by live, individual fish as a function of angle of orientation and frequency: tank,
transducers, lasers used for alignment, stepper motor to rotate the animal in the acoustic
beam and acoustically transparent tether system. The photograph of the harness, shown
in the inset, was enhanced so the thin monofilament can be seen.
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two full rotations (720 pings per data set). The two transducers were identical and

closely spaced, one used as the transmitter and one as the receiver, approximating a

monostatic configuration. The use of two transducers allows closer scattering ranges,

minimizes the effect of transmitter ringing and makes the system easier to calibrate. The

fish were insonified with a shaped chirp signal with a usable frequency spectrum ranging

from 40kHz to 95kHz (Fig. 3-7).

The transmitted signal was shaped to make the composite response of the transducer

pair approximately uniform over the usable bandwidth. The transmitted voltage time

series, vb (t), and the received voltage time series (the backscattered return echo from

the animal), R (t), were stored on a personal computer for later analysis.

The tethering system consisted of a specially designed, hand-made harness (Fig. 3-6

inset) made of 4 lb. test fishing line suspended in the tank by six lines to a frame mounted

just above the surface of the water and by six lines to a frame near the bottom of the

tank. The harness was designed to hold the fish in the center of the acoustic beam and

at a constant range (rb, = 4.3 m) from the transducers as the fish was rotated. The

harness uses the least amount of material possible in order to be acoustically transparent.

It provided just enough restriction to prevent escape while allowing the fish to move as

freely as possible to minimize stress. The harness has six longitudinal lines, one on the

top, one on the bottom and two along each side. The vertical members of the harness

are spaced more closely together near the head of the fish to prevent escape, and spaced

farther apart toward the rear of the fish to allow for freedom of movement. The vertical
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Figure 3-7: Broadband chirp signals: time series of voltage signal as applied to the trans-
mitting transducer and used during both the scattering experiment and calibration; time
series of calibration signal as measured at the output of receiving transducer; frequency
spectrum of received calibration signal; and auto-correlation function (compressed pulse)
of the received calibration signal which corresponds to matched filter output. The trans-
mitted signal was shaped to flatten the composite response of the transducer pair across
the frequency band of 40-95kHz. The received calibration signal was stored for later use
in the analysis to generate absolute target strengths on a ping-by-ping basis. The nor-
malized compressed pulse output has sidelobes which are numerical processing artifacts
with maximum peaks of 0.365. These sidelobes can introduce spurious artificial echoes
in the analysis which must be taken into account.
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members near the gills are spaced so as not to restrict the gills. The harness has a cinch

at the front that is tightened before the fish is slipped into the harness from the back.

Once the experiment is complete, the cinch is loosened and the fish can be removed by

slipping it through the front of the harness, avoiding damage to the fins and scales of

the fish. The lines to each of the points on the top and bottom frames can be used to

adjust the precise position of the harness in the tank. The bottom frame is suspended

just above the bottom of the tank by the six bottom lines so that it is outside of the

acoustic beam but does not drag on the bottom of the tank.

Before each fish was placed in the tether, much attention was given to ensuring that

the harness was located in the center of the acoustic beam and was free of bubbles. Un-

derwater lasers were mounted and aligned on the bottom of the transducers to aid in the

alignment of the transducers (Fig. 3-6). Due to the relatively large distances involved,

these lasers proved to be indispensable in the process of alignment. The tether system

was adjusted so that when the fish was placed in the harness for measurement, the sys-

tem would pivot about the approximate center of its swimbladder. To eliminate bubbles

coalescing on the harness, all of the lines on the tethering system were thoroughly wetted

and rubbed with a soap solution prior to measurement. This process was done each time

the tethering system was taken out of the water for any reason. Additionally, a small

amount of soap was applied to each transducer face before calibration and measurement

to ensure good contact with the seawater and to minimize adherence of bubbles that

could contaminate the acoustic signals.
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The background reverberation of the tank was taken into account for the scattering

measurements. The background reverberation signals (with no fish in the tank) were

summed over hundreds of pings and the resultant (unwanted) coherent echo was then

stored in the digital oscilloscope. While collecting backscattering signals from the fish,

the stored background reverberation signal was subtracted from the echo in real time by

the oscilloscope. The difference signal that was stored, R (t), during the experiment

consisted of the echo from the fish and random noise of the entire system.

The system was carefully calibrated prior to each set of backscattering measurements

following the pseudo-self-reciprocity calibration procedure referred to by Urick (1983) and

outlined in detail by Stanton et al. (1998a). The system was calibrated by mounting the

transducers such that they faced each other and were separated by a range of rmj = 4.1

m. The time series of the shaped, chirp transmitted calibration (v' (t)) voltage and the

average of hundreds of received (vi1(t)) calibration voltages were stored on a computer

and used later in order to calculate fish target strengths. The received calibration signal

was also used in the pulse compression analysis discussed in Section II.

Taking into account the calibration information, the scattering amplitude of the fish

was computed for each ping:

fAs = V (3.11)
VKI VbT rcw'

where Vb', VT V3Q and V are the absolute values of the Fourier transforms of the

band-pass filtered voltage time series VA, T, yR1 and vT (Fig. 3-7).
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3.4 Experimental results

The broadband signals have been analyzed in both the frequency and time domains.

The orientation dependence of the scattering has been examined for each Fourier com-

ponent of the signal, and the spectral and temporal patterns have been examined for

every orientation angle. Given the great difference in shape of the swimbladder in the

dorsal/ventral and lateral planes, the results from these different planes are analyzed.

3.4.1 Spectral domain

Acoustic backscattering strength was observed to be strongly dependent upon acoustic

frequency and animal orientation (Figs. 3-8, 3-9, 3-10 and 3-11). These relationships

are demonstrated in both planes of scattering-dorsal/ventral and lateral. Generally, the

target strength is maximum near broadside incidence. Also, at fixed angles of orientation,

the target strength varies with frequency, represented by a series of peaks and nulls (Fig.

3-11).

The beamwidth of the main scattering lobes from the fish generally become more

narrow with increasing frequency (Figs. 3-8, 3-8 and 3-10). Ventral aspect scattering is

generally less directional than corresponding dorsal aspects (Figs. 3-9 and 3-10).

3.4.2 Time domain

The compressed pulse output (CPO) shows separation of the echo into multiple highlights,

apparently due to different dominant scattering features in the fish (Figs. 3-12, 3-13
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Figure 3-8: Magnitude of backscattering amplitude as a function of angle as measured
for Alewife 26 in the lateral plane at 50 kHz, 70 kHz and 95 kHz. Tail-on orientation
corresponds to 0 degrees. Each plot is on a linear scale, normalized to unity and based
on a one-ping recording for each one-degree increment of rotation.
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incidence relative to the dorsal or ventral sides for the left and right panels, respectively.
For a free-swimming, horizontally oriented fish, 0 degrees dorsal and 0 degrees ventral
angles would correspond to a downward- and upward-looking acoustic transducer.
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Figure 3-12: Normalized compressed pulse output (CPO) for Alewife 15 at approximately
30 degrees from tail-on orientation in the lateral plane. The time delay on the horizontal
axis has been converted to distance (cm) to represent the spatial separation between
the scattering features of the fish. The processing sidelobe is an artifact of the pulse
compression process, as illustrated in Fig. 3-7; therefore, any peak significantly higher
than the processing sidelobe level represents a physical arrival from the fish.

and 3-14). In order to analyze this in terms of the scattering, time of arrival has

been converted into separation distances. The overall separation and structure of the

highlights in the CPO are a strong function of orientation angle. At normal incidence,

there is generally a single, dominant peak. At oblique angles of incidence, multiple

significant peaks are present in the received signal. The separation between the first and

last arrival tends to increase for angles away from normal incidence.

The concept of partial wave target strength (PWTS) was introduced by Chu and

Stanton (1998) to characterize the contributions by various individual highlights or partial

118



Nojmalized Compressed Pulse Output

Head-on

180

140

S100

C 0

0 .2W

20
Tail-on

0 100 200 300 400
Time Delay (pLsec)

Figure 3-13: Normalized CPO (contour plot) for Alewife 17 as a function of angle of
orientation and time delay, depicting the changing CPO as the fish is rotated from tail-
on through broadside to head-on orientation in the dorsal/ventral plane. Each segment
of the plot corresponding to each degree of rotation is the CPO from a single realization
at that particular angle of orientation. At angles near end-on, the individual arrivals are
spread out in time, whereas at angles near broadside, the individual rays return nearly
simultaneously.
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of the scattering features and their changes as a function of angle of orientation.
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waves that make up the total backscattered signal from the animal. PWTS is achieved

by partitioning, or time-gating, the CPO to isolate scattering highlights of interest. The

spectral characteristics of the PWTS features of these echoes are significantly different

than that of the total signal (Figs. 3-15 and 3-16).

3.5 Modeling and comparison with data

3.5.1 Relating scattering features to fish anatomy

The dependencies of acoustic backscattering strength of the alewife on orientation, fre-

quency and morphology are clearly seen in the data. The narrow width of the main lobes

indicated in Fig. 3-8 correlates to scattering from the relatively long, narrow swimbladder

and body. The difference between dorsal and ventral scattering directivity in Figs. 3-9

and 3-10 is also consistent with an elongated shape that also possesses a difference in the

curvature between the two sides (i.e., the ventral side of the swimbladder is more rounded

than the dorsal side). The pattern of peaks and nulls in Fig. 3-11 is consistent with

constructive and destructive interference between multiple rays scattering from different

parts of the body. The rays add constructively or destructively depending upon the

location of the part of the body from which it is scattered, the frequency of the signal,

and the angle of orientation in relation to the source/receiver transducer pair. Maxi-

mum target strength occurs near broadside incidence, as these multiple arrivals are in

phase (or nearly so) and add coherently to the total target strength. As the orientation
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moves away from broadside incidence, the arrivals become well out of phase and add

destructively at certain frequencies as evidenced by the one null and two broad peaks at

near broadside incidence. At more oblique angles, the peaks and nulls are more closely

spaced as constructive and destructive interferences occur at more frequencies within the

band.

Through pulse compression processing, the individual arrivals from different parts

of the body (which apparently cause the interference patterns in the spectral plots)

are resolved, resulting in several significant scattering features being extracted from the

received signal (Fig. 3-12). The separation of the peaks (~8 cm) correlates well with

the physical separation between the skull and swimbladder of the alewife used in the

experiment.

The separation in time of the arrivals from individual scattering features in the fish

as it rotated in the acoustic beam is illustrated in Fig. 3-13. At tail-on orientation, the

scattering features nearest the tail scatter the incident wave first, followed by scattering

from other features as the incident wave travels from tail to head. As the orientation

moves toward broadside, the time separation between the partial waves decreases as

the physical separation of the scattering features in the transducer direction decreases.

As the orientation moves toward head-on, the time separation increases again. The

temporal distribution of the arrivals from different significant scatterers in the fish in

Fig. 3-13 is apparent and is consistent with the physical separation of the scattering

features in the fish; however, the contributions from individual scattering features in

124



the fish are indiscernible. In order to elucidate the dynamic contributions of individual

scatterers in the fish as a function of orientation, temporal separation is converted to

spatial separation (Fig. 3-14). The arrival nearest to the tail and apparently from

the swimbadder, is generally the most significant contributor to the overall scattering

throughout the 90 degree rotation. The scattering near the end of the time series,

apparently from the head, is initially shadowed by the body of the fish and cannot be

detected acoustically. As the fish is rotated toward broadside incidence, the head exits

the acoustic shadow, and the amplitude of the arrival from the head increases. The

arrivals between the head and swimbladder demonstrate complicated variable scattering

mechanisms that are orientation dependent. The two significant scatterers within the

fish nearest the head and tail are separated by approximately 12 cm, correlating well

with the anatomical dimensions of the fish.

Partial wave target strength (PWTS) makes more evident the characteristics of se-

lected arrivals in the backscattered signal and their interactions (Fig. 3-15). These

constructive and destructive interferences vary as the animal's orientation changes ac-

cording to the separation (relative to the transducers) of the scattering features with

respect to the wavelength of the sound. At broadside incidence, the multiple arrivals are

in phase (or nearly so) and add coherently, resulting in a relatively flat response over the

band. As the orientation moves away from broadside, the arrivals add less coherently,

causing the individual waves to add destructively at certain frequencies, which results

in a series of peaks and nulls in the target strength over the frequency band. If the
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multiple arrivals are analyzed separately, the interference mechanism can be further elu-

cidated (Fig. 3-16). The partial wave target strengths of the individual first and second

major arrivals at oblique angles exhibit smooth and relatively flatter responses than that

of a combination of the two arrivals. This further illustrates the hypothesis that these

resolved echoes are due to multiple singular scattering features.

3.5.2 Modeling the scattering

For all animals, it has been demonstrated experimentally that the acoustic backscattering

is strongly dependent upon morphology, angle of orientation and frequency. In an effort

to quantify these dependencies, the FMM and KRM models were used for predictions

of target strength vs. angle to compare to the acoustic measurements of the alewife.

Although, as shown above, there are several scattering features in the fish, the FMM

predictions are based upon scattering from high resolution representations of the swim-

bladder alone,which is the dominant scatterer near broadside incidence, modeled with

soft, or pressure-release, boundary conditions. The KRM results are based upon the

coherent addition of the scattering from the swimbladder with soft boundary conditions

and the scattering from the fish body with fluid boundary conditions.

Experimental measurements and accompanying model calculations are presented for

two different fish (#15 and #17) at dorsal and ventral aspects at two different frequencies

(Fig. 3-17). There is good agreement between the models and data in the general struc-

ture and amplitude of the target strength as a function of orientation. Both models and
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Figure 3-17: FMM, KRM and acoustic scattering data: Target strength as a function
of angle of orientation for Alewife 15 and 17 in the dorsal/ventral plane at 65 kHz (top
panels) and 55 kHz (bottom panels). C is the correlation coefficient, and G is the
average relative error across the band between the FMM and measured values. The
plotting convention is the same as Fig. 3-9. These particular frequencies were chosen
due to the good fit between the models and data.
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data demonstrate well the more narrow acoustic beampattern at dorsal aspect compared

to that of the ventral aspect, which is consistent with morphology. Also consistent with

morphology is the position of the center of the main lobe at broadside incidence. The

position of the main lobe is a function of the position of the fish in the harness and the

offset of the swimbladder within the fish from the axis of the fish body. It is expected that

the FMM would typically under-predict the target strength predicted by the KRM and

the actual target strength values from the measurements due to the fact that the FMM is

based upon scattering from the swimbladder alone. Additionally, the conformal mapping

formalism used in the FMM to model the shape of the swimbladder is two-dimensional,

resulting in an axisymmetric shape. The mapping procedure accurately accounts for

the shape along the length of the swimbladder; however, the cross-sectional radius of

curvature is too small, contrbuting to the underprediction. This under-prediction by

the FMM is particularly apparent at near-broadside angles. In the frequency band of

interest (40-95 kHz), the KRM relies on the Kirchhoff approximation and is valid only

at near-broadside incidence. The KRM prediction falls off too rapidly at off-broadside

angles; hence, the FMM typically performs better than the KRM at off-broadside angles.

For all frequencies at broadside incidence, the FMM and KRM generally agree with the

data to within 6 dB in most cases.

The scattering process is highly complex and can depend on numerous parameters

simultaneously. Predictions of single realizations are difficult to make due to the un-

certainty and variability of each parameter. In this particular experiment, the animals

129



had some freedom of movement within the harness, which introduced significant vari-

ation into the acoustic data from realization to realization, while exhibiting consistent

trends in the dependencies on orientation and frequency in all data sets. Therefore,

comparisons between predictions and data for a single realization are generally qualita-

tive. Quantitative comparisons can be made for both the statistics of scattering and for

averaged levels, where the averages can be over some distribution of parameters, such

as a distribution of sizes, angles of orientation or range of frequencies. An attempt was

made to provide a relative quantification of the "goodness of fit" between the FMM and

data. With each plot of target strength vs. angle, values of "C" and "G" are listed.

The correlation coefficient between the FMM predictions and the data is designated "C",

and the average relative error across the band between the FMM and data is designated

"G." Typically, "C" tends to be a better measure of the agreement in the structure as

a function angle, while "G" tends to be a better measure of the agreement in overall

amplitude. In terms of structure and amplitude, scattering as a function of orientation

angle at dorsal aspect was modeled better than at ventral aspect, as demonstrated by

the slightly higher values of "C" and "G" for dorsal aspect.

Due to the high degree of variability of the data on an ping-by-ping, comparisons of

data and model predictions can be difficult and sometimes qualitative at best. Given

these challenges, model performance can be assessed based on comparisons of averages

taken over a uniform distribution of orientations or frequencies. Average target strengths

across the frequency band and standard deviations were computed from the acoustic mea-
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surements and the FMM predictions (Fig. 3-18). The average target strength values were

obtained by averaging the backscattering cross section over all frequencies (40-95 kHz),

then taking the logarithm. While the FMM predicts the expected lower target strength

at broadside angles, there is good agreement between the average target strengths from

the measurements and the FMM. The overall amplitude of the target strength and the

finer structure of the scattering as a function of orientation is smoothed out as a result

of the averaging process; however, the high degree of variability in the data at all angles

of orientation is demonstrated by the elevated levels of standard deviation about the

average target strength values. The FMM predictions vary less over the frequency band,

particularly at near broadside angles.

3.6 Summary and conclusions

In summary, detailed and extensive measurements of morphology and acoustic scatter-

ing and predictions of scattering have been made for adult alewife fish. The acoustic

measurements consisted of using a greater-than-octave bandwidth (40-95 kHz), shaped

chirp to insonify adult alewife that were tethered while being rotated. The acoustic

scattering time series were measured in 1-degree increments of orientation angle over all

angles in two planes of rotation (lateral and dorsal/ventral). High-resolution Phase Con-

trast X-rays (PCX) and Computerized Tomography (CT) scans were used for detailed

morphological evaluation and measurement. Axisymmetric bodies of revolution for each

aspect of the swimbladder were developed from the CT scans for use in the models. The
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acoustic scattering predictions have been made by the FMM and KRM models. While

the KRM is based on the Kirchhoff-ray mode approximation and specifically designed for

fish scattering, the FMM is a three-dimensional conformal mapping, general scattering

solution that is valid over a wide range of frequencies, from the low-frequency resonance

region to the high-frequency geometric scattering region.

These data, as well as the modeling results and predictions, demonstrate that inclu-

sion of exact morphology through the use of high-resolution imaging techniques and the

use of broadband signals provide specific information about the scatterer. Specifically,

analysis in both the spectral and time domains demonstrate that acoustic scattering by

fish is strongly dependent upon morphology, orientation and frequency in both lateral

and dorsal/ventral aspects. The use of pulse compression processing of the echoes from

the animals allowed the temporal resolution of multiple returns from each individual,

demonstrating that there exists more than one significant scattering feature in the an-

imal, which could include the head, vertebral column, gonads and gut. The multiple

returns from the animal also show good correlation with size and orientation. Compar-

isons between the model predictions and acoustic measurements show good agreement

as a function of orientation for dorsal and ventral aspects. Further use of CT scans and

PCX imaging on multiple species of fish under various conditions (juvenile vs. adult,

spawning vs. non-spawning, shallow vs. deep, etc.) and subsequent modeling are nec-

essary to expand understanding of the extent to which the various factors affect the

scattering, as well as experimental investigations into the extent to which scattering by
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anatomical features other than the swimbladder and fish body (gonads, gut, muscle tissue

and vertebral column) contribute to the overall scattering.

133



Chapter 4

Summary and conclusions

This thesis investigates the complexities of acoustic scattering by finite bodies in general

and by fish in particular. Through the extension of an advanced acoustic scattering

model and the extensive measurement and associated analysis of acoustic backscatter-

ing by fish, the scattering properties of finite bodies and alewife fish are explored to

determine the extent to which morphology, orientation and acoustic frequency affect the

scattering. The following paragraphs provide a summary and conclusions of the thesis

and recommendations for future work. The final section consists of a summary of the

contributions of this thesis.

4.1 Modeling

In the second chapter, an advanced scattering model is presented. Specifically, a general

acoustic scattering model is developed that is numerically efficient over a wide range of
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frequencies, angles of orientation, irregular shapes and boundary conditions. The model

presented is an extension of a two-dimensional conformal mapping approach to scatter-

ing by irregular, finite-length bodies of revolution. The model conformally maps the

coordinate variables of the original coordinate system to a new orthogonal coordinate

system in which the locus of all points where the new radial coordinate is a constant ex-

actly coincides with the scatterer surface. The solutions to the transformed Helmholtz

equation are a general solution for the total pressure in the case of far-field scattering

by a finite-length body of revolution. This model has been shown to be very accu-

rate in the prediction of scattering by smooth, symmetric bodies for a wide range of

frequencies (resonance in the Rayleigh region through the geometric scattering region),

scattering angles (monostatic and bistatic), aspect ratios and boundary conditions, and

for all angles. Good agreement has also been demonstrated for irregular, realistic shapes

when compared to the Kirchhoff approximation. While this method is a formally exact,

numerically solved formulation which is valid for all frequencies and all angles of orien-

tation, it is limited to far-field scattering by axisymmetric bodies and possesses practical

limitations in its numerical implementation. Due to the limitations of machine precision,

computation of converged solutions become more difficult with increasing frequency and

eccentricity of scatterer shape. However, this work represents a significant advancement

by providing a model whose usefulness generally extends over a wider range of conditions

over other series-based models.
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4.2 Measurement and analysis

In the third chapter, high-resolution morphological and acoustic scattering measurements

of fish are conducted. In particular, high-resolution measurements of the morphology of

fish have been made to accurately represent the exact shapes of the scattering features

in the fish on which the models are based, and detailed acoustic backscattering measure-

ments of fish have been made for the identification of dominant scattering mechanisms

and refinement of the scattering models. Imaging technologies to exactly measure the

morphology of the scattering features of fish include very high-resolution Phase Contrast

X-rays (PCX) and Computerized Tomography (CT) scans. PCX technology provides a

morphological evaluation tool for the small-scale anatomical features of alewife such as

fins, ribs, striations in muscle tissue, gills and weakly scattering soft tissue. CT scans are

used to produce high-resolution digital swimbladder objects that are used as scatterer

shapes by the FMM. Detailed acoustic scattering measurements have been conducted,

and acoustic model predictions have been made for adult alewife fish using the FMM and

KRM models. These data, as well as the modeling results. and predictions, have shown

that the scattering process is highly complex and depends upon morphology, orientation

and acoustic frequency. The acoustic measurements consisted of using a greater-than-

octave bandwidth (40-95 kHz), shaped chirp to insonify adult alewife. The tethering

system provided the control necessary to maintain the animal in the center of the acous-

tic beam while allowing sufficient movement of the fish in a naturally swimming position

to minimize stress. The acoustic scattering time series were measured in two planes of
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rotation (lateral and dorsal/ventral) in 1-degree increments over all angles of orientation.

Strong dependence upon morphology, orientation and frequency in both lateral and dor-

sal/ventral aspects was demonstrated in the analysis and plots of the data in both the

spectral and time domains. Temporal resolution of multiple returns from each individual

fish by the use of pulse compression processing of the echoes demonstrated that there

exists more than one significant scattering feature in the animal. The multiple returns

from the animal also show good correlation with size and orientation.

Ultimate objectives of this research include the improvement in the use of acoustic

surveys for numerical abundance estimates, size estimates and species identification, as

well as improvement in naval sonar system performance by feature extraction from scat-

tered acoustic signals. Quantitative use of acoustics in the ocean requires studies such as

this one, which combine scattering models with high-resolution morphological informa-

tion and high-quality laboratory data. Specifically, good agreement between measured

and predicted target strengths increase confidence in the use of acoustic scattering mod-

els to estimate numerical abundance of fish in ocean surveys, thus reducing reliance upon

traditional net surveys. Increased SNR and improvement in the probability of detection

would result from inclusion of acoustic scattering models in naval sonar systems to aid

in the discrimination between unwanted reverberation and target echoes.
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4.3 Recommendations for future work

There is great potential for further development of the FMM, including extension

to elastic boundary conditions. The use of extended precision format of floating point

arithmetic, implementation of better numerical integration techniques, derivation of cer-

tain mathematical expressions in a form that is less susceptible to roundoff error, and

various smoothing techniques (Yamashita, 1990) could delay the onset of ill-conditioned

matrices, improving the result. New scaling techniques based upon the physical scat-

tering mechanisms (Schmidt, 1993) and incorporation of prolate spheroidal radial and

angular wave functions could also improve performance.

Further use of CT scans and PCX imaging on multiple species of fish under various

conditions (juvenile vs. adult, spawning vs. non-spawning, shallow vs. deep, etc.) and

subsequent modeling are necessary to expand understanding of the extent to which the

various factors affect the scattering. Experimental investigations into the extent to which

scattering by anatomical features other than the swimbladder and fish body (gonads,

gut, muscle tissue and vertebral column) contribute to the overall scattering are needed.

These experimental investigations could include bistatic scattering measurements that

could exhibit enhanced scattering profiles that are not evident in the backscattering

configuration.
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4.4 Contributions of this thesis

- Extension of the FMM to three dimensions as a formally exact, general solution

to far-field scattering by axisymmetric irregular, finite-length bodies for all frequencies

(resonance in the Rayleigh region through the geometric scattering region) for all angles

of orientation (forward scattering, bistatic scattering and backscattering), and for soft,

rigid and fluid boundary conditions. This numerically efficient formulation is generally

useful over a wider range of conditions than other series-based solutions.

- Detailed and extensive measurement of broadband acoustic scattering by adult

alewife in 1-degree increments of orientation angle over all angles in two planes of rotation

(lateral and dorsal/ventral). Through spectral and temporal analysis, these measure-

ments elucidate dominant scattering features of fish that are correlated to size, anatomy

and orientation.

- Use of new phase contrast x-ray (PCX) technique and high-resolution computerized

tomography (CT) scans to not only evaluate the morphology, but to generate digital

scattering shapes for input into scattering models.

- Application of the new, more general FMM model to predicting acoustic scattering

by fish through use of high-resolution morphometry.
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