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Abstract

Substrate coupling effects have had an increasing impact on circuit performance in
recent years. As a result, there is strong demand for substrate simulation tools. Past
work has concentrated on fast substrate solvers that are applied once per contact to
get the dense conductance matrix G. We develop a method of using any underlying
substrate solver a near-constant number of times to obtain a sparse approximate
representation G ~ QGwiQ' in a new basis. This method differs from previous matrix
sparsification techniques in that it requires only a "black box" which can apply G
quickly; it doesn't need an analytical representation of the underlying kernel or access
to individual entries of G. The change-of-basis matrix Q is also sparse. For our largest
example, with 10240 contacts, we obtained a Gt with 130 times fewer nonzeros than
the dense G (and Q more than twice as sparse as Gt), with 20 times fewer solves
than the naive method, and fewer than 4 percent of the QGtQ' entries had relative
error more than 10% compared to the exact G.

Thesis Supervisor: Jacob White
Title: Professor
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Chapter 1

Introduction

1.1 Motivation

Integrated circuits are typically built on a layered silicon substrate. In recent years,

coupling through the substrate has come to have a substantial effect on overall circuit

performance, for a variety of reasons including shrinking feature sizes and the trend

toward integrating analog and digital blocks of circuitry on the same chip [1, 2, 3].

Switching noise from the digital block injects current into the substrate, which can

then affect the sensitive circuitry of the analog block.

Many techniques have been developed for extracting substrate models [2, 4, 5, 6,

7, 8, 9, 10]. Some use coarse, inaccurate models to achieve efficiency: for example,

treating the substrate as a single circuit node to which the contacts are connected

by resistors. This would mean there is no dependence of current response at contact

B to a voltage at contact A on the distance between the contacts, which isn't even

approximately true for realistic contact layouts.

The others require a dense conductance matrix to be extracted (because the re-

sistive substrate effectively links every contact to every other contact by a resistor).

(In some cases, the inverse of the conductance matrix is extracted instead.) They

develop efficient substrate solvers which can solve for contact currents given contact

voltages (or, in some cases, for voltages given currents). There are two basic prob-

lems. First, the extraction of the dense matrix is very costly, requiring one solve on

13



the discretized substrate per substrate contact, or n solves for n contacts. Second, if

the goal is to include a model of the substrate in a circuit simulator, including the

dense block corresponding to the conductance matrix is undesirable. This is true both

in memory cost and in time: realistically, an analog block may have tens of thousands

of contacts, leading to a conductance matrix G with hundreds of millions or billions

of entries. Even just applying G to a vector may be computationally expensive.

In this work, we develop techniques for extracting a representation of G quickly,

assuming only a substrate solver which, given contact voltages, returns the contact

currents, by reducing the number of solves required from n to 0(log n). In addition,

the representation will be a "sparsified" representation of G, in the sense that it will

typically require only 0(nlogn) operations to apply our representation to a vector,

compared to the n2 operations for applying the dense matrix-vector product. It is

not immediately obvious how obtaining such a representation can improve circuit

simulator efficiency, but the recent work of [11] provides important progress in this

direction.

1.2 The problem

Our model of the substrate is simple: it is just a layered block of resistive (Ohm's law)

material. Each layer has its own conductivity. The contacts are on the top surface.

This is illustrated in Figure 1-1. Each contact is assumed to be a perfect conductor,

so that the voltage on any contact is a constant.

Given voltages on the n contacts, one can solve for the n contact currents. (Each

contact current is the current density integrated over the contact. Unlike voltage,

current density is not uniform on a contact.) How this is formulated and solved

numerically is the subject of Chapter 2. For us, the solver is viewed as a black-box:

given a vector of the n contact voltages, it returns a vector of the n currents.

However, this black box is likely to be costly to apply, since its cost is related to

the number of discretization points in whatever formulation is used, which can be

many times greater than the number of contacts. The naive approach to obtaining

14
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a 1

Figure 1-1: 3D layered substrate profile. Figure courtesy of Mike Chou.

the conductance matrix G requires n solves: we use the fact that Gei = G(:, i), where

ei is the ith standard basis vector, representing 1 volt on contact i and 0 volts on all

other contacts. Thus applying the black-box solver to the voltage function which is

1 volt on contact i and 0 on all others, for each i, obtains G with n black-box calls.

In this work we reduce this to O(log n) for reasonably regular contact layouts.

In addition, our algorithms obtain a representation of G which can be applied in

O(n log n) operations. Note that this n is the number of contacts, and not the much

larger number of discretization points used in the black-box solver.

1.3 Sparsification techniques

Many techniques have been developed which fall into the category of matrix sparsi-

fication. The term sparsification comes from the fact that applying a sparse matrix

to a vector is much cheaper than applying a dense matrix of the same size, but the

term is used more generally to mean any technique for applying a particular matrix

A to a vector that is reasonably accurate and more efficient than the standard 0(n2 )

matrix-vector product. Such techniques obviously can only work for specific types of

matrices, since just reading in the entries of a general A costs n 2 operations.

15



Since our goal in this work is to get a good sparsification of G efficiently, we should

ask why previous sparsification techniques do not meet our needs.

Multipole methods [12, 13, 14] (along with the older Barnes-Hut treecode [15])

are perhaps the most famous of all sparsification techniques. However, the technique

of [12] only applies to matrices which come from the 1/r kernel, or polynomials in

1/r. This includes, for example, the panel potential-from-panel charge matrices used

in capacitance calculation [16]. A kernel has been derived for the substrate problem,

but it is not of 1/r form. In addition, it takes panel currents to panel potentials. Our

conductance matrix G instead takes contact potentials to contact currents.

Precorrected-FFT methods [17] can be applied to a broader range of problems

because they only require translational invariance of the kernel; that is, the kernel

K(x, y, z; x', y', z') should be a function of x - x', y - y', and z - z' only. Because

of the finite thickness and sidewalls of the substrate, this is not satisfied even for the

substrate coupling kernel, and certainly not for the conductance matrix.

Multiresolution methods based on the singular value decomposition, such as IES3 [18],

originally developed for capacitance computations, might seem to have more promise.

Other techniques also based on using the SVD at many levels include [19, 20, 21].

However, they require constant-time access to the individual entries of the matrix

being sparsified to be efficient. This is not a problem for 1/r matrices, but there

is no easy way to get access to individual entries of the conductance matrix G. As

mentioned earlier, all we assume is a black-box solver which can give currents on all

the contacts given voltages on all contacts, in time proportional to the number of

discretization points.

Assuming only access to a black-box solver is also useful because solvers which

include more realistic substrate features, such as indentations in the substrate surface,

can be included with no modifications to our algorithms.
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1.4 Overview

In Chapter 2, we describe methods used for the underlying black-box substrate solver.

Most of this is not new research, but is included for completeness and as a resource for

workers starting out in this area. Chapter 3 gives a description of the wavelet-based

sparsification algorithm. This is essentially an adaptation of the work of [22] to our

problem, although there are some differences. In particular, the use of the combine-

solves technique is new. The low-rank method of Chapter 4 is new, although one of the

major underlying ideas, the use of the SVD to sparsify matrix sections corresponding

to well-separated sets of contacts, has been well-known in the community [18]. The

work of Chapter 4 was originally presented in [23].

17



18



Chapter 2

Substrate solvers

2.1 Overview

The algorithms we develop for extraction and sparsification of the substrate coupling

conductance matrix are based on the idea of using a "black-box" substrate solver.

This is simply a routine which, given voltages on the substrate contacts, returns

currents on the contacts. There are two general approaches.

The first is a finite-difference scheme in which the entire three-dimensional sub-

strate is discretized, Laplace's equation is solved in this volume to give voltages on all

the nodes, and currents at the top-layer contact nodes are determined using Ohm's

law and added for each contact to give the current at that contact. The second is an

approach which uses variables on the top surface only, based on an analytic solution

to Laplace's equation in a rectangular solid (with boundary and interface conditions

determined from the conductivities of the substrate layers).

The basic advantage of the finite-difference approach is that it can deal with more

general situations, such as irregular conductivity profiles and wells (indentations in

the top substrate surface). However, in situations where the surface-variable approach

is applicable, it is much more time and memory-efficient than finite difference, because

the number of variables needed to discretize only the top surface is small compared to

the number needed to discretize the whole volume as in the FD approach. In general

one can have more confidence in the accuracy of the results as well.
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Since our goal is a fast and accurate method for applying G, one might wonder

why we don't simply use the "black-box" substrate solver, whether FD or surface-

variable-based, instead of changing the basis of the conductance matrix. The reason is

that the number of variables needed to discretize the substrate, or even the substrate

contact surfaces, may be much larger than the number of contacts. Indeed, in [9],

the one real example used has 478 contacts and 183905 panels associated with those

contacts, or about 400 times as many. (Incidentally, this is the only example that the

author is aware of in the substrate extraction literature which is substantial in size

and comes from a real contact layout.)

We now turn to a discussion of the two methods, both of which we have used in

our work.

2.2 Finite-difference solver

The finite-difference solver seems to have the advantage of simplicity. Poisson's equa-

tion

-V - (urVo(r)) = p(r) (2.1)

is discretized using finite-difference approximations for the derivatives. One standard

way of doing this, which we develop below, results in a "grid of resistors" model of

the substrate. The system of linear equations which arises has a number of variables

(approximately) equal to the number of grid points for the 3-D grid. From the

contact voltages, we set voltages at top-surface grid points which are within contact

boundaries, and the system is solved to give voltages at all the grid points. There

are several choices of algorithm for solving the system. From these voltages and

using Ohm's law for the resistors terminating on contacts, the contact currents are

computed. We now turn to each of these steps in more detail.
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2.2.1 Discretization

How does discretizing Poisson's equation (2.1) lead to a grid of resistors? We examine

this question in some detail in order to get a better understanding of the electromag-

netic quantities involved and their interrelationships. Start with (2.1) in rectangular

coordinates:

/2 Q2 02
-aO- + + #2 O(r) = p(r). (2.2)

( 1X2 ay2 aZ2

We place a regular 3-D grid of points in the substrate. Finer grids give more

accuracy, but at the cost of more memory and computation time. Because of the

3-D discretization, refinement by a factor of k leads to a k' increase in memory

requirements. As a practical matter, we found that memory requirements were the

limiting factor in determining the size of problems we could attempt with the finite-

difference approach.

Consider a typical point (x, y, z) in the grid with associated voltage v(x, y, z). For

notational convenience we call this point r, with associated voltage vr. We refer to its

neighbors (x - h, y, z) and (x + h, y, z) by rx_ and rx+, with associated voltages vx-

and vx+ respectively, and similarly for its neighbors in the y and z directions. For

now assume that (x, y, z) and its neighbors are all in one layer of the substrate hav-

ing conductivity oi. Then, using a finite-difference approximation for the derivative

results in

V,' -V - ,-r, Vr+-, rr.. V,+ Vr _______

(-h h + h h + h p

6 V - Vr+ - Vr _- V + - V - VZ+ - VZ

UV - h2 r = Pr. (2.3)

(2.4)

The quantity Pr = p(x, y, z) is current flux density. This is a scalar quantity

representing current injection per unit volume, that is, the current per unit volume

injected into an infinitesimal ball around (x, y, z). It is important to distinguish

current flux density from current density, which is a vector quantity (units of current
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per unit area) representing the direction and strength of current at a given point.

Assuming a purely resistive substrate, there can be no current flux into or out of any

point in the substrate interior. This of course doesn't mean there's no current at that

point, only that inflow of current must be balanced by outflow.

The only places with nonzero current flux density are the substrate contacts on

the top surface, as well as a backplane contact when there is one (this is a single

large contact covering the entire bottom surface of the substrate). In fact, having

nonzero current flux density anywhere in the substrate is a consequence of the fact

that we're considering the substrate and its contacts in isolation from the rest of the

circuit. In the real circuit, of which the substrate is a part, the contacts connect to

circuit elements such as transistors and the interconnect between them, and there is

no current flux at the contacts when considered as part of the whole circuit. Since

we've isolated the substrate, however, the currents from the rest of the circuit must

be modeled by a nonzero current flux density at the contacts.

A further confusing aspect of the situation is that although current flux density

is a per-unit-volume quantity (A/cm3 ), in our model the substrate contacts have no

thickness, so the total current is obtained by integrating over the contact area (not

volume). This implies that the flux density is a multiple of a delta function, i.e.

p(x, y, z) =(Z)Psurface (x ,Y)

Grid-of-resistors interpretation

Discretizing Poisson's equation as in (2.3) is equivalent to modeling the substrate with

a grid of resistors as shown in Figure 2-1, where the resistance R for each resistor

entirely within layer i is determined from the resistivity 1/oa by the familiar formula

Li1
Ri = - - -1 (2.5)

A ai

where L is the wire length and A the area. (Layer boundaries are discussed later.)

To see this, multiply both sides of (2.3) by h3 where h is the grid spacing, obtaining
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Figure 2-1: 3-D grid of resistors (resistors shown as conductances)

Jih(6v, -v+ -V- -VY+ _VY- -VZ+ - V-) = prh =ir. (2.6)

Since p, is current flux density in A/cm 3 , Prh3 is the current ir leaving an h-sided

cube whose center is the node (grid point) r. So (2.6) relates voltages at a node and

its neighbors to the node current (net current out of the node). We can derive the

same equation from (2.5) and Ohm's law. The total current out of a node is

L ((Vr - vr+) + (Vr - V ( +

+(Vr - vY-) + (VI - vz+) + (Vr - v-))

uih(6v, -vx+ - vx- _ y+ - vY- -v+ _-) (2.7

Equations (2.7) and (2.6) are the same.
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Layer boundaries

Having derived the equation for a node whose neighbors are all in its layer, we now

consider the case of a node having a neighbor in a different layer. We assume that the

node doesn't fall on a layer boundary; in fact, for convenience we have always placed

the layer boundaries halfway between constant-z planes of nodes in our experiments.

The resistors in the grid which cross layer boundaries are the only ones we need

to consider. Such a resistor will be in the z-direction and have a fraction p of its

resistance in layer i - 1 and a fraction 1 - p in layer i when the layer boundary is

a fraction p of the distance between the two planes of grid points, one in layer i - 1

and the other in layer i, which are closest to the layer boundary.

If the "standard" (length h) resistor with resistance R is reduced to a fraction p

of its original length, the resistance is now Rp. Since the length-h resistor in layer i

has conductance a-h, we have

length (p) layer (i - 1) resistance

length (1 - p) layer (i) resistance

total resistance

conductance

i-ph
- - P

h

oli-1 01i

This is shown in Figure 2-2.

Equation 2.7 becomes

(Or" + gr, + gr'y-i + + g,. )v,

-9gX+VX+ - g Xvx- - g Y+Vl+ - g9v g-Y -9z++ - Z- vz = zr, (2.9)

where gx+ is the conductance of the resistor connecting the central point r to rx+ and

similarly for gx-, gy-, gy+ - and g'+
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conductivitya1

conductivityT2

la y e r _- _ -_-_-_- -- --_-_-_-_-_-_-_-_-_- -
boundary
"splits" resistor: I

length (1-p)h _ resistance
length ph resistance R2 Rl+R2

Figure 2-2: Resistance of layer-boundary resistor is found by viewing it as two resistors
in series
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Exterior boundary conditions

In the grid-of-resistors discretization, the Neumann (zero-current) boundary condi-

tions which hold at the substrate sides, the non-contact portion of the top, and, in the

no-backplane-contact case, on the bottom, are naturally included by simply omitting

resistors. For example, the point r which has the smallest coordinate in all three

dimensions will have resistors to rx+, ry+, and r,+ only.

We can relate this to the continuous equation

= 0 (2.10)

by applying the finite-difference approximation to (2.10). For example, if r is a grid

point in the interior of the x = xmin face (i.e., on a sidewall), the FD approximation

of (2.10) is

V-Vr 0 (2.11)
h

S0 VO = V

Substituting in (2.9), we get

(gr4+ ±gr+ ±gr' ±gr, + gr )Vr - gr -rgr grv~ -r -r grv =r

This is exactly (2.9) with the resistor from r to rx_ removed. We know that the finite-

difference approximation (2.11) is most accurate for approximating the derivative at

(r + rx_)/2, so the sidewall should be halfway between r and rx_. The effect of this

is shown in Figure 2.2.1. The substrate is divided into cubes and there is a grid point

at the center of each cube. The grid spacing is h but the spacing from the boundary

grid points to the substrate boundary is h/2.

Finally, we need a way to set contact voltages and allow current injection into the

substrate. This is a Dirichlet boundary condition at the top-surface contacts, and

at the backplane contact when it exists. Where should a contact grid point be in
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Neumann boundary
nodes eliminated
from system
(unfilled circles)

Figure 2-3: View of constant-z substrate slice. Dashed line is substrate boundary, at
distance h/2 from grid points for intergrid spacing h.

relation to the substrate's top surface? It seems clear that since the contact, whose

voltage is known, is on the substrate surface, the grid point should be exactly on the

substrate surface. But we have seen that Neumann boundary points should be at

a distance h/2 from the substrate surface, so ideally the Dirichlet boundary points

should be "offset" by h/2 from the rest of the grid, which has spacing h.

For convenience of implementation, in order to maintain a regular grid structure,

we didn't do this. There are two choices for placing the Dirichlet boundary points

which are "closest" to the ideal just discussed. Placing the boundary points an h/2

distance above the top substrate surface (the layer just outside the substrate) was

the choice we made initially. See Figure 2-4.

In the system of equations, the Dirichlet nodes are not included as variables,

because the node voltage is known. Call the node d. Then Vd can be eliminated from

equations which originally included it, by substituting its known value and moving it

to the right-hand-side. This is the reason we originally chose the Dirichlet boundary

points in the layer just outside the substrate: then the variables which remain form a

full regular 3-D grid. With this choice, each eliminated node modifies one equation,

corresponding to the node directly below it.

The other choice is to place the Dirichlet points a distance h/2 into the substrate
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outside substrate
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Figure 2-4: Two choices for placement

Second method: Dirichlet
boundary nodes just
inside substrate

L
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of contact (Dirichiet boundary) nodes

from the top substrate surface. This is less convenient to implement, because once

these Dirichlet points are eliminated, the variables in the system no longer form a

regular grid. Also, each eliminated node now modifies several equations, the nodal

equations for its (generally five) neighbors, instead of just one.

Although it is clear that in the limit as h -+ 0, the choices will give the same

results, we needed to use fairly coarse grid spacings to be able to try problems with a

reasonably large number of contacts. In fact, we found substantial differences in the

results. The first choice resulted in substantially better sparsification performance.

As a result, in order to present our results conservatively, we use the second choice

for the FD solver used to generate the results presented in this work.

2.2.2 Solving the system

There are several choices for solving the system of equations generated by discretizing

Poisson's equation as described. The number of variables can be quite large: in the

largest examples we've tried with the finite-difference approach, there are about 4

million variables. Since the solve step needs to be repeated many times, it's critical
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to get an efficient solver to be able to try even reasonably large examples. We discuss

several possible approaches, starting with the simplest.

Cholesky factorization

Since the Laplacian matrix A for which we're trying to solve Ax = b is symmetric

positive definite (see Section 2.4), the obvious method is Cholesky factorization. It

requires 0(n3 ) operations for a dense A, clearly unacceptable for the n = 4 - 106

example mentioned above. Luckily A is sparse, and in particular the 3D grid structure

of the connections makes it possible to use a sparse Cholesky method requiring only

o(n2 log n) operations for the factorization and 0 (n4 /3 log n) nonzero entries in L and

U. However, this is still not acceptable for large problems.

The n4/ 3 log n figure assumes a true 3D grid structure with equal numbers of grid

points in each dimension. One might argue that since the substrate is typically a

"thin" domain, so few layers need to be used in the z dimension that it is really a

quasi-2D problem. This is a questionable assumption (in [9], the real example used

is 1 mm x 1 mm in the xy-plane and 0.4 mm in the z direction.) Even with this

assumption, though, the best case of a 2D grid requires 0(n3 /2 log n) operations for

the solve.

ICCG: PCG with incomplete Cholesky preconditioning

Our first attempt at a finite-difference substrate solver used preconditioned conjugate

gradient (PCG). The conjugate gradient method is a well-known Krylov subspace

method for solving Ax = b in the case where A is symmetric positive definite (s.p.d.).

Krylov methods attempt to find an approximation Xk to the exact solution x* in the

Krylov space

ICk(A, b) = (b, Ab, A2 b, ... , Ak-1b) (2.12)

where the () notation means "space spanned by".

(An nice exposition of the conjugate gradient method is given in [24].) To sum-

marize the important points about Krylov methods for us:
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* They require a "black box" which, given a vector x, produces the matrix-vector

product Ax.

" The matrix-vector product operation is repeated k times (or iterations) leading

to more accurate approximations Xk to the exact solution x* of Ax = b as k

grows larger.

" The number of iterations needed to converge to a given residual tolerance is re-

lated to conditioning of A: a poorly conditioned A may require many iterations

while a well-conditioned A will require few.

The "black box" in our case is just the operation of multiplying the sparse A by

a vector, using the standard sparse matrix-vector product algorithm. In general,

though, the matrix doesn't even need to be represented explicitly, as long as there's a

way to compute Ax given x (for example, a circulant matrix can be applied efficiently

using FFT-based convolution).

The effect of the conditioning of A on iteration count is crucial. For many matrices

that come up in practice, including our Laplacian, the conditioning is very poor and

the iteration count is too large for conjugate gradient (or other Krylov methods) to

be immediately practical. The key to making these algorithms practical is the idea

of preconditioning. For PCG, the idea is to solve the equivalent equations

M-1/2-AM-1/2z M-1/2b (2.13)

x = M-1/2 (2.14)

for an appropriate choice of M. M is called the preconditioner. The straightforward

implementation is to apply the conjugate gradient algorithm to (2.13), and then apply

M- 1/ 2 to the approximate solution zk to get xk in (2.14). M is required to be s.p.d.,

so that M-1/2 exists and M- 1/2AM- 1/2 is s.p.d. This would seem to require the

ability to apply M- 1/2 to a vector. In fact, however, it's possible to implement an

equivalent procedure (in the sense that for all k, in exact arithmetic the result Xk

after k iterations is the same as in the original procedure), which requires only the
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ability to apply M-1 . See [25] for details.

The strategy is to choose M so that M- 1/ 2AM- 1/2 is well-conditioned. As an

extreme example, choosing M = A results in

M-1/2 AM-1/2 = A-1/ 2 * A * A-1/ 2 = I.

with minimum possible condition number of 1. But we need to be able to apply M- 1,

which is exactly the original problem if M = A! In practice M should be a cheap-

to-apply approximate inverse of A, where approximation quality versus quickness of

applying M-1 is a tradeoff.

A common choice for M, and the first one we tried, is the "incomplete Cholesky"

operator. A is approximately factored into A ~ LaL' by applying Cholesky factor-

ization to A but only allowing nonzero entries in La in positions with nonzeros in A

(i.e., disallowing fill-in). Thus La is twice as sparse as A (it has nonzeros only in the

lower-triangular part of A). The approximate M-1 = (LaL')-?1 ~ A- is applied to

a vector y to give a result z by

Z = (LaL')-ly = L'a-L; 1y.

Lj 1 is applied using forward substitution and then L'- 1 is applied using back-substitution,

for a total computational cost equal to that of applying A.

The incomplete Cholesky preconditioner is cheap, but unfortunately not very ef-

fective. We found that even for fairly simple examples hundreds of iterations were

required for convergence to a reasonable tolerance.

Fast-solver preconditioners

We found that using preconditioners in the class of fast Poisson solvers reduced the

iteration count substantially. Fast Poisson solvers [26, 27] provide exact, direct so-

lutions in 0(n log n) time to the grid-of-resistors problem when the grid is regular

and the boundary conditions are uniform on each face. That is, the boundary con-
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ditions are either Dirichlet (given voltage) or Neumann (given current-0 in our case)

conditions on each face, but not a mixture of both on the same face.

The methods work by using the fact that in the case of uniform boundary condi-

tions there is a change of basis, which can be applied cheaply using the 2-D Discrete

Cosine Transform (DCT) in the x and y directions [28, 29], in which the grid-of-

resistors system becomes many decoupled tridiagonal systems, each of which is easy

to solve. An implementation can be found in [30].

We emphasize that the uniform boundary condition requirement is not satisfied

for us, so the fast solvers cannot be used directly. In particular, the top face has

nodes which correspond to contact surfaces (Dirichlet b.c.) and nodes corresonding

to non-contact surfaces (Neumann b.c.). However, it is reasonable to view the fast

solver operator (call it M-1 ) as an approximate inverse of A. Then M can be used

as the preconditioner in PCG.

For simplicity, we describe how the preconditioner is implemented for the first

choice of placement of the Dirichlet nodes described in Section 2.2.1, where they are

placed just outside of the substrate surface so that eliminating them from the system

results in a regular 3D grid of variables. The details are different for the second choice

of placement but the essential idea is the same. Also to keep things simple, assume

that the two layers of grid points directly below the top substrate surface are in the

same conductivity layer, with conductivity UL.

If r is a top-layer node directly below a Dirichlet boundary node, the equation (2.7)

becomes

OULh(6v, - v + _ - _VV+ _ VY-- _-) = ir. (2.15)

On the other hand, if r is a top-layer Neumann boundary node, (2.7) becomes

ULh(5Vr - V+ - (2.16)

The only difference is the coefficient of Vr. We thus have two possibilities for a fast-

solver preconditioner: a pure-Dirichlet preconditioner where M is created by assuming

there is a Dirichlet node above every top-layer node, or a pure-Neumann precondi-
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Preconditioner Average # iterations
Dirichlet 22.2
Neumann 7.9

area-weighted 6.8

Table 2.1: Preconditioner effectiveness

tioner where M is created by assuming that every top-layer node is a Neumann node.

In fact, these are not the only possibilities. One can reduce the conductance

of the resistor connecting the top-layer nodes to the Dirichlet nodes above in the

construction of M to a fraction p of its original value. Then p = 1 gives the pure-

Dirichlet preconditioner while p = 0 gives the pure-Neumann preconditioner (the

"Dirichlet node" above is totally disconnected from the rest of the grid and has no

effect on it). We can choose any intermediate value of p as well. One choice that

makes sense intuitively is to choose

total area of contacts
total area of substrate top surface*

In Table 2.1, we present results giving the average number of iterations per solve

for PCG with a fast-solver preconditioner based on these ideas, for a simple regular

contact layout, over the several hundred solves required to implement one of the

sparsification algorithms described later. The pure-Dirichlet preconditioner, while a

vast improvement over no preconditioner and the incomplete Cholesky preconditioner,

is not as good as the pure-Neumann preconditioner, and the area-weighted idea just

described works best of all.

Multigrid

Multigrid techniques for Poisson's equation [31, 32] have a long history [33, 34], and

may be very useful here. The iteration counts could possibly be reduced somewhat,

and each iteration would probably cost less than for PCG, where each iteration in-

volves applying a fast Poisson solver. Dealing with layer boundaries properly in the

coarse-grid representation would be the major issue.
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2.3 Surface variable methods

The finite-difference approach requires the discretization of the whole substrate vol-

ume. Since the quantities of interest, contact currents and voltages, are on the top

substrate surface only, it is natural to try to develop methods which use surface

variables only. We might hope for an approach analogous to the well-known integral

equation method for computing charge density given potentials on conductor surfaces:

( f ) = j p(s) 1 dA
47reo s ||f - s|1

where S is the collection of conductor surfaces, f is the field point, and s is the source

point. The multiplier 1/1f - s|l, traditionally denoted 1/r, is called the Green's

function. In fact this is also possible for the multilayer substrate coupling problem

(see [7]). Unfortunately the substrate coupling current density-to-potential Green's

function is much more complicated than 1/r, actually an infinite series.

2.3.1 Eigenfunction-based approach

Fortunately, an alternative approach which also uses only surface variables has been

developed [35, 36, 9]. The operator A which is applied to surface current density

i(x, y) and gives surface potential v(x, y) can be analyzed in terms of its eigenfunc-

tions. An eigenfunction f (x, y) satisfies

Af (x, y) = Af (x, y). (2.17)

If a and b are the substrate length and width, as in Figure 1-1, it turns out that

the eigenfunctions form an infinite family of functions fmn, one for each ordered pair

of nonnegative integers (i, n):

mrx n7ry
fmn (X, y) = cos cos ( .b (2.18)

The eigenvalues Amn associated with the fnn are easy to calculate given the layer
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Figure 2-5:
Chou.

Example: three contacts discretized into panels. Figure courtesy of Mike

thicknesses and conductivities. A procedure is given in [9] for the case of a grounded

backplane contact, but it isn't derived there. Later in this section we give a derivation

which also covers the easy generalization to the no-backplane-contact case.

The many additional pieces that make up an eigenfunction-based substrate cou-

pling solver are discussed in [9]. The substrate is discretized into square panels (see

Figure 2-5). Call the operator which takes contact panel currents to contact panel

potentials A. (Non-contact panel currents are 0.) We have

Ai =v

and the i (current) vector has one entry per contact panel, representing total cur-

rent on that panel. The v (voltage) vector also has one entry per contact panel,
representing average potential on that panel. The simple cosine-mode form of the

eigenfunctions carries over to the discretized version. The result is a simple proce-

dure for applying A, which starts by putting zeros in all non-contact panels, then
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q s f..
q zero-padding '3 DCT ij

lifting IDCT A
v=Pq jl

Figure 2-6: Applying the current-to-potential operator
Figure courtesy of Mike Chou.

using eigendecomposition.

applies a 2-D DCT to convert to the basis of surface eigenfunctions, multiplies by the

eigenvalues, applies the 2-D inverse DCT to convert back to the standard basis. Now

the average potential has been calculated on all panels, but is needed only on the

contact panels. This is shown schematically in Figure 2-6 (q is used for the vector of

currents). Then this algorithm for applying A can be used in an iterative method for

solving Ai = v.

"Fast-solver" preconditioner?

We might consider a "fast-solver" type of preconditioner for the eigendecomposition

approach. That is, can we use an exact solver for a closely related problem as a

preconditioner? To see how this might work, examine the steps in Figure 2-6. All

the arrows are reversible except the last one ("lifting"). The IDCT is inverted to a

DCT, scaling by Aij becomes scaling by 1/Aij, the DCT becomes an IDCT, and the
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zero-padding becomes lifting.

The "lifting" step can't easily be reversed, since we do not have the voltages on

the non-contact surfaces. (Voltages are only specified on the contact surfaces when

we solve for the currents.) This is in contrast to the "zero-padding" step-we know

that currents are 0 on non-contact surfaces. However, for purposes of a preconditioner

we may simply zero-pad the voltages as well, or make the non-contact voltages some

simple function of the (known) contact voltages.

Experiments we did using this idea indicate that it is not promising (the number of

iterations isn't reduced much, if at all). Why are fast-solver preconditioners effective

in the finite-difference formulation and not here? Intuitively, the reason may be that

the proportion of variables for which the preconditioner M is not doing the same

thing as the original A is much larger in the surface-variable case. In both the FD

and surface-variable formulations, the non-contact substrate surface is where M is

different from A, but in the surface-variable case, this is a much larger proportion

(typically something like 75%) of the problem domain than in the FD case, where M

and A match in the substrate interior.

Performance comparison

The approach developed in [9] is quite different, based on multigrid ideas. The use

of multigrid for solving integral equations is developed here and in [37]. The result

is consistently fast convergence (fewer than 10 iterations for 10-6 relative residual

tolerance). With permission of the author of [9], we have used the QuickSub code he

developed for the substrate problem in our work.

As mentioned earlier, a substrate can either have a backplane contact or no such

contact (floating backplane). We have been more interested in the floating-backplane

case, since it results in more global coupling. The QuickSub code, however, requires

a backplane contact.

The way we actually dealt with this in using QuickSub to produce results was to

include a very resistive layer adjacent to the groundplane. This isn't an ideal solution

for the floating-backplane case, because in order to accurately approximate the lack
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Iterations/solve Time per solve (s)
finite difference 7.0 3.8
eigenfunction 6.0 0.4

Table 2.2: Solve speed for finite-difference versus eigenfunction methods

of a groundplane, the layer needs to become so resistive that the system becomes

nearly singular (slight changes in the net current injected from the top will produce

very large changes in contact potentials). This destroys accuracy and slows down

convergence.

However, our purpose was not to get an extremely accurate simulation of the

floating-backplane case, but simply to look at a situation where there is significant

global coupling, in order to evaluate our sparsification algorithms. For this purpose,

inserting a resistive layer of only moderately high resistance works fine.

Table 2.2 shows the average time per solve for 10 solves on an example problem, as

well as the average number of iterations per solve. The eigenfunction-based approach

is approximately 10 times as fast as the finite difference approach for this example,

which is based on the substrate thickness of the phase-lock-loop example from [9].

While speedups will vary by example, in general the eigenfunction approach is much

faster. There are two reasons for this: iteration counts are generally smaller, and the

time per iteration is smaller because the number of variables is much smaller in the

surface-based approach.

Derivation of eigenfunctions and eigenvalues

Although [9] gives a recursive formula for the eigenvalues associated with the eigen-

functions fi., there appears to be no derivation of the formula in [9] or its references.

While this type of Green's function derivation is typical in computational electromag-

netics, we believe that presenting a complete derivation serves a useful purpose. First,

we see that applying the eigendecomposition approach to applying A is just as easy in

the floating-backplane case as in the grounded-backplane case which [9] restricts itself

to. Whether this can be extended to the multigrid methods developed in [9] is an

interesting topic for further work. Second, seeing the derivation presented clearly may
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be helpful to workers starting out in this area without an extensive computational

EM background.

Poisson's equation (2.1) becomes

192 a2 a2 "Z=0
1 (X2 + ay2 + aZ2 m,n(z) =0

in the substrate interior (there are no sources and thus no current flux density p). We

are led to look for functions of the form

y(X, y, z) = b(z) cos(ax) cos(#y) (2.19)

as solutions essentially because cosine functions are eigenfunctions of the second

derivative operator, reducing the Laplacian to a simple single-variable differential

equation.

a 2 a2 a2(02 + 2 + z2) q(z) cos(ax) cos(#y)

= (-a2 _ /2 + Dz2) q(z) cos(ax) cos(fy) = (2.20)

822

(a2_ + 2 (z) = 0 (2.21)

There are many possible choices of a and 3, but we want to choose those which satisfy

the sidewall Neumann boundary conditions |2=0 = = , = = y=O = 2Iyb =

0. This leads to the choices a = m7r/a, # = n7r/b for any ordered pair (m, n) of

nonnegative integers. (Note that Dirichlet boundary conditions would require the use

of sines instead of cosines.)

For a particular pair (, n), set -ymn = (m7r/a)2 + (n7r/b)2. Then the general

solution to (2.21) is

em,n(Z) = ((k)eYmn (d+z) + '0,e-y)n(d+z) (2.22)

for m, n not both 0. (If m and n are both zero the solution is of the form oo + (ooz.
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The coefficients are obtained from boundary and interface conditions as in the general

case-we will not give details.) The superscript k indicates the solution holds in layer

k. The idea is to "glue" solutions in different layers together, guided by the interface

and boundary conditions.

We are looking for solutions of the form (2.19). We can make the guess that

functions of the form fin = c cos(mirx/a) cos(n7ry/b) giving the top-layer surface

current density will result in a solution of this form. If this is true (we will see that it

is), this means that fmn is an eigenfunction of the surface current density to surface

potential operator A.

To get the potential solution in the whole substrate, we need to find the coefficients

in (2.22). We have several conditions (see [38] for a general discussion of continuity

conditions):

" top layer current in (Neumann boundary condition)

UL = c cos(m7rx/a) cos(n7ry/b)(2.23)
19z

- - at z = 0 (2.24)
dz UL

(- mne-yd _ ^mn nd = CIUL (2.25)

" continuity of potential at layer boundaries

innk e y.ddk) + (k)C-'mn (ddk) =_ (-k)eYmn(d-dk ) (k-1)C--Yn(d-dk) (.6

" current density component in layer boundary direction continuous

do+ do- (2.27)
__k ~~ Uk-1i-
dz dz

(-kk) ey..n (d-dk) Uk-ymnk-1)e mn(d-dk)

Uk'inmn, Uk1mn$n n (ddk) (2.28)

* boundary condition at bottom

40



- grounded backplane contact

S(-d) = 0 (2.29)

(m1 = -(mn (2.30)

- no backplane contact

d- = 0 (2.31)
dz z=-d

( -= U2n (2.32)

The conditions (2.28) and (2.26) together give

e'-mn(dd-k) e-1mn(d-dk) ( (k)(
e-Y~mn(d-dk) e-ymnn(d-dk) I (k) n 2 3

mn ~ Ymn J\mn (

-( e-Ymn(d-dk e--mn(d-dk) ' ( (k1) 1)

e a 1eu YmneYmn(ddk -t ev e- mn (d-dk) ) f (k 1)e

/dii ( (1 =k-\ (1 Uk-1) r e -scaar . In a w a

n 2 OUk 2 Uk I
(k)i Uk-1) - )e 2Ymn(ddk)(I+O'- &k 1))

~mn 2 OUk 2\ + Oj1 1 (k
(2.34)

This gives a recursive formula for the level-k coefficients in terms of those at level

k - 1. To start the recursion, note that for a grounded backplane, the Dirichlet

condition (2.30) requires ((~l) $m9) = 0(1, -1) for some scalar 0. In fact we can

choose 0 = 1 because the only condition which is affected by the choice is (2.25)

and any scaling can be absorbed by the constant c. For the no-grounded-backplane

(Neumann) case, we similarly get ((1),() ) - (1, 1). The only difference between

the situations is in the base case of the recursion!

Now that we have the coefficients, the eigenvalue Amn in Afmn(X, y) = Amnfmn(X, y)

follows immediately by noting that fmn(, y) is the surface current density at the top
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from (2.25) and Afmn(x, y) is the potential at the top from (2.22):

Amn - Afmn(X, y) _ ( nemnd + {(n27emn d (2.35)
frnn(X, Y) - L (4 mn'Ymn e~mnd - $,n)ymne-rmn d)

For the m = n = 0 case (i.e., a uniform current density into the substrate from the

top), going through the same process gives the recursion

(Ok) ( y 0 (Ok-1)

S k-1) (2.36)
((O) J - 1) dk I (k~1)

and the eigenvalue is given by A00 = /((UL ). Initial values are (00 = 1 and

(')= d in the grounded-backplane case. The no-backplane-contact case is interesting:

dZ(OO + (OM z) =0 at z =0 requires ( =0. Then from the previous recursion it's

clear than Q0 = 0 as well. But then A00 = oc. This makes sense physically: it's

impossible to push a uniform current into the top of the substrate when there's no

backplane contact for it to leave through.

2.4 Solution properties

It is useful to examine some of the basic properties of the conductance matrix G

being computed, for various reasons. First, it is a useful check in debugging, both for

debugging the solvers and the sparsification algorithms which give a representation of

G. If the computed G doesn't satisfy the basic properties of symmetry and diagonal

dominance, something is wrong. Second, symmetry of G is useful in the wavelet

algorithm and crucial to the development of the low-rank algorithm for getting a

sparse representation of G. Finally, it is interesting to relate properties of the finite-

difference matrix A to those of G. These are well-known standard properties, but we

try to give some intuition.

The grid-of-resistors matrix A giving the voltage-to-current operator of (2.6) has

interesting properties. First, it is symmetric. This is clear, because a resistor with

conductance a between nodes a and b adds a to Aaa and Abb, and adds -a to Aab and
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Aba. So starting from the (symmetric) 0 matrix, each "stamping" operation maintains

the symmetry of A. It is also diagonally dominant, i.e. IAX| ;> E . IA,,. This

diagonal dominance is strict at the nodes adjacent to Dirichlet boundary nodes, since

one of the -- entries is removed from the row while the others remain the same. The

diagonal dominance is "tight" at all other nodes (internal and Neumann boundary

nodes). Diagonal entries are positive and all other non-zero entries are negative.

The symmetry of the computed G ultimately comes from the symmetry of A in the

finite difference approach. In the eigendecomposition approach, the symmetry of G

results from the symmetry of the panel current-to-potential matrix, which can be seen

by the orthogonality of the Q in the QDQ' eigendecomposition. The symmetry of the

actual G, without approximation, comes from the self-adjointness of the Laplacian

operator. Diagonal dominance holds because the diagonal entry Gjj represents the

current into contact j when unit voltage is placed on contact j and all other contacts

are grounded. Thus current will flow into contact j, and out all the other contacts.

The total current flowing out all the other contacts must exactly match the current

flowing into contact j.

If there is a backplane contact, some of the current will flow out through it, so

since G represents only the interaction of the top-surface contacts, in this case the

diagonal dominance is strict. If there is no backplane contact, the diagonal dominance

is tight in every row. Again the diagonal entries are positive and all others negative.

Note, however, a major difference from the A matrix: G is dense, as voltage at one

contact produces current in all other contacts.

For the no-backplane case, EiU1 Gij = 0 for all j since the total current into the

top substrate surface is 0. Thus there is a rank-one deficiency in the computed G.

This should not be surprising, since with no backplate contact, increasing all the

top-surface contact voltages by a constant DC offset will not affect the currents.
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Chapter 3

Wavelet methods

We begin by giving some intuition for why a change-of-basis approach, approximating

G by QGWQ', can be useful for sparsification of substrate coupling, and why the

change of basis is obtained by a multilevel construction. We proceed to describe

this construction more formally, by presenting an algorithm for forming the change-

of-basis matrix Q. This algorithm guarantees an orthogonal Q. From this we get

a solution (although not the most effective one, as we show in Chapter 4) to the

sparsification problem, in the following way. We want

G = QGwQ', (3.1)

and using the orthogonality of Q we obtain

G = Q'GQ. (3.2)

Since this step can be reversed so that (3.2) implies (3.1), we can set Gw = Q'GQ

and then get a sparse approximation G,, of Gw simply by dropping small entries in

Gw. We give results later which show that this leads to much more accurate results

than simply dropping small entries in the original G for realistic problems.

The algorithms for computing Q are based on those developed in [22] for 1/r

potential-from-charge matrices. Here is a quick summary of the main differences.
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First, since G is a current-from-potential matrix, for us the analogous quantity to

charge in [22] is potential, and the analogous quantity to potential in [22] is current.

We use polynomial moments rather than multipole moments. The hierarchy is one of

squares rather than cubes since the moments are on the 2-D substrate surface. For

the 1/r kernel, [22] gives an error analysis showing that the wavelet sparsification is

guaranteed to be effective: this analysis does not apply to our case, which is part of

the motivation for developing the low-rank method of Chapter 4.

However, this only deals with the problem of getting a good sparsification of G, not

with efficiently extracting that representation. In fact, naively applied, the method

just described would require n black-box calls and 0(n2 ) work just to list the entries

of G. A method of combining solves is applied to this situation to reduce the number

of black-box solves to 0 (log n) and total work to 0 (n log n).

3.1 Intuition

Conductance matrix entries may decay slowly. That is, entries decay slowly in the

standard basis, and there may be significant interaction even between the two most

widely-separated contacts. By changing basis, we can get faster decay. To be more

precise, the entry Gij can be expressed in terms of G as

Gij = e'Gej (3.3)

where ek is the kth standard basis vector-which is why the decay of entries of G

is called decay "in the standard basis". On the other hand, with a change-of-basis

matrix Q,
(Gw) = (Q'GQ) 3 = Q(:, i)'GQ(:, j). (3.4)

So the (i, j) entry of G, is obtained by projecting the current response to the jth

basis vector onto the ith basis vector in the new basis given by Q. As a first step, we

can look at how to obtain a GQ with fast-decaying entries. We concentrate on four

neighboring contacts. The standard-basis functions associated with these contacts are
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Figure 3-1: Standard basis voltage functions. White = 1 V, gray = 0 V

shown in Figure 3-1. To get fast-decaying entries in GQ, we try to find basis functions

which are nonzero only in a small area, and have nearly zero current response well

outside this area.

The intuition for finding basis functions with this property is that faraway current

responses to nearby contacts look similar. Then by linearity, putting 1 volt on two

of the four contacts and -1 volt on the other two should result in near-zero faraway

current response. This can be used to find 3 basis functions with support only on

the four contacts; but to cover the entire space of possible voltages on the contacts,

which of course includes non-balanced voltage functions, we need one basis function

which doesn't satisfy the balanced-voltage property. For this the all-1 volt function

is used. The new basis functions are shown in Figure 3-2. The same idea can be used

for all 16 groups of four contacts.

At this point, 3/4 of the basis functions have the balanced-voltage property, but

1/4 do not and will not have fast-decaying faraway currents. This is what leads to

the idea of a multilevel construction for the new basis. Four all-1 basis functions from

the finest level are shown in Figure 3-3. They can be recombined to form four basis

functions with support only in one square on the next-coarser level. This is shown in
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Figure 3-4: Transformed basis functions on coarser level. White = 1 V, gray = 0 V,
black = -1 V.

Figure 3-4. Just as on the finest level, three have the balanced-voltage property and

one is left over. If this process is continued through the levels (just one more level

in our case, the coarsest, since the division into squares is just one square containing

the whole substrate surface), all the new basis functions have the balanced-voltage

property at some level, except one (the all-1 function).

We note that this simple example is essentially the same as the Haar wavelet

construction described in [39]. The applications described in [39] are in signal and

image processing, often as an alternative to Fourier analysis. The basic ideas of

locality of support of the basis functions and the multilevel nature of the basis are

the same.

We now have an idea of why entries in GQ are mostly close to zero. This numerical

sparsity is improved in Q'GQ. A column of GQ is a current response to a new basis

vector. From (3.4), one entry (G,)i 3 of G, = Q'GQ is given by projecting column i

of GQ onto the jth basis vector of Q. Since current responses at neighbor contacts
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to a faraway voltage will look similar, this projection results in near-cancellation and

small entries.

3.2 Some definitions and notation

The generalization of the ideas described for a regular grid of contacts to an algo-

rithm which produces Q for general contact layouts is based on the idea of vanishing

moments for localized basis functions. We first describe the division of the substrate

surface into squares at several levels, which the multilevel algorithm relies on, and we

introduce some notation.

Assume for simplicity that the top surface of the substrate is a square with side

length 1. This square can be subdivided into four squares, each of half the sidelength.

In general, doing I levels of subdivision leads to a partition of the surface into 221

squares of sidelength 2-'. The set of 221 squares on level 1 is denoted by S1 . The

maximum level of refinement L is chosen so that each square at level L contains at

most a small constant number of contacts. We assume that contacts do not cross

square boundaries at any level. Splitting large contacts into many smaller ones using

the finest level square boundaries may be necessary to achieve this. A square is

denoted by ((i, j), 1), where 1 is the level and (i, j) gives the (x, y) position of the

square, with 1 < x, y 2'. The contacts are numbered ci,... , c,,. The union of the

contacts in square s is denoted by C,. In particular C((,1),o) is the union of all the

contacts and will be denoted by C.

3.2.1 Moments

The idea of "balancing" voltages for neigboring contacts of equal size can be gener-

alized to require the contact area-weighted average voltage to be zero for (most) new

basis functions. The zeroth-order moment po,o,, of a basis function - in square s is

defined by

P0,0's (o-) = o-(x, y)dx dy. (3.5)
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Requiring pO,O,, (o) = 0 is exactly the requirement that the area-weighted average

voltage on the contacts is 0. It is important to note that the integration of voltage

is done over the contact area in square s only, not over the whole area of square s.

The reason for this is simply that we don't immediately know the voltages in the

non-contact areas from voltages on the contacts. (In particular, it is not true that

the voltage outside the contacts is 0. On the other hand, the surface current density

outside the contacts is 0.)

Even faster decay of current response can be achieved by imposing more con-

straints. In particular, we choose a parameter p and require all moments of order < p

to vanish, not just the zeroth-order moment. The (a, 3) moment of a function a- in

square s is defined by

Pa'1,,(o) = f'Cs X/a Ya(x, y)dx dy (3.6)

where (x', y') = (x, y) - centroid(s). The order of , is a + /. Hence,

P (p + 1)(p + 2)number of moments of order < p = Z (p - a + 1) =2 (37)
a=O

That faster decay is achieved by increasing p is provably true for sparsifying 1/r

matrices-see [22] for details. We found p = 2 to be effective in our experiments.

A vector v of voltages is just a vector in R". This vector is associated with a

voltage function on the contacts in the obvious way by the function f defined by

n

f(v) = ZViXi, (3.8)
i=1

where Xi : C -+ R is the characteristic function of the ith contact; that is, Xi(r) = 1

for r C ci and Xi(r) = 0 for r ci.

When we refer to "moments of a vector", this is just a shorthand for moments

of the associated voltage function. Also, we introduce some notation for indexing

characteristic functions. X,,i will refer to the characteristic function of the ith contact

in square s. We can use the same notation for standard basis vectors, i.e. e,,i refers
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to the standard basis vector corresponding to the ith contact in square s.

3.3 Multilevel structure

We start with R' and perform an orthogonal decomposition at each level as indicated

below. The space W(i) is spanned by the "fast-decaying" basis vectors on level i (i.e.,

their associated voltage functions have fast-decaying current response, while the space

VW is spanned by the "leftovers", like the voltage vectors whose associated functions

are shown in our example in Figure 3-3, which must be pushed to the next level.

R n = W(L) E V(L) (3.9)

V(L) - W(L- 1) & (L-1)

V(1) IO) E V(0)

Only vectors in the WW( are included in the new basis, with the exception of the

coarsest level space V(O). This corresponds to

= W(L) ( W(L 1) E. ... E WV() E V(0), (3.10)

which can be seen by applying the equations (3.9) in succession.

This gives a high-level view. Specifically, the space W(i) is defined to be the

subspace of V(i+) of vectors for which all moments up to order p in squares at level

i vanish:

W(i) = {v E 1+ : Put,,s(v) = 0 for all a + < p,s E Si.}

The space V) is defined to be the orthogonal complement of IW( in V(+', leading

to the structure of (3.9). Because any vector w in W(W whose paf, 8 (W) vanish for all

s can be written as a sum of vectors, each with support in exactly one square, we
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have

V) = e8sesVs (3.11)

W = Es ES)Ws (3.12)

where V, is defined to be the subspace of VW consisting of vectors which are zero

outside square s, and W, is defined similarly.

The key to the multilevel construction is the relationship between these individual-

square subspaces on successive levels. Specifically, fix a parent square p on level i, and

its four child squares s1 ... 84 on the finer level i + 1. Then, since WW is a subspace

of V(+') and VW is the orthogonal complement of WW in V('+l), it is clear that

W1'EVVP = VS1 e VS2 (DVS DV8 4 ' (3.13)

We will now show how to construct bases for the spaces V(L), VPL), that is, the

finest-level spaces. Then we will use (3.13) to construct bases for the coarser-level

spaces.

3.4 Basis construction

Just as in our definitions above, the construction of the multilevel basis proceeds

level-by-level, starting at the finest level.

3.4.1 Finest level

We need to form a basis for W(L) and a basis for its orthogonal complement V(L), and

we do this by forming bases W, and V for each square s at level L. For convenience

of notation, we work with vectors expressed in the standard basis of square s: that is,

we write v = ( v1  ... Vn, )' for the voltage function v\Xs, 1 +.. .+nvXs,s.. (For any

given finest-level square s, n. is defined simply as the number of contacts in square

s.) These can be zero-padded to make whole-substrate standard basis vectors. In an
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efficient implementation, the zeroes will not be explicitly stored-Q will be stored as

a sparse matrix.

We first form the (p + 1)(p + 2)/2 x n, matrix of moments M, whose entries are

given by

(MA0)(a), = pa,3,s(es,j).

The columns of M, are just the moments of the square-s standard basis vectors

el ... en, each representing 1 volt on one contact in square s and 0 volts on all other

contacts in square s. The goal is to get ws basis vectors for W5 (square-s vanishing

moments vectors) and vs basis vectors for Vs. By linearity, Msv = 0 exactly when the

first (p + 1) (p + 2)/2 moments of v vanish. We will put the basis for Ws in columns

of W, and the basis for Vs in columns of V. Then we want

Snon-0 0
M V Ws = c) (3.14)

In (3.14), V is n, x v, and W is n, x w,. One way to achieve this is to take a singular

value decomposition

M= USESQ',

or

Ms = (Us) EO 0 VS (3.15)

where E' is the matrix whose columns contain the nonzero singular values of Ms. vs

is defined to be the number of nonzero singular values, and w, := n, - vs. V is taken

to be the first vs columns of Qs and W, the remaining w, columns. (It is possible

for Ws to be an empty matrix, i.e. w, = 0, as happens when (p + 1)(p + 2)/2 > ns.

This is not a case that needs any special treatment.) Thus the SVD of M, defines

the bases V and Ws. Substituting (3.15) into the left-hand side of (3.14) shows that

the equation (3.14) is satisfied, which was what we needed. (To see this, note that

the columns of W, are orthogonal to those of V in (3.15) because Q, is orthogonal
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by definition of the SVD.)

An interesting property of this construction, which is important in analyzing the

sparsification performance of wavelets, is that v, <; (p + 1) (p + 2)/2. This can be seen

from the fact that the v, columns of E' each contain a nonzero singular value in the

diagonal position, so the number of columns (v,) of E is less than or equal to the

number of rows (p + 1)(p + 2)/2.

3.4.2 Coarser levels

Assume that the multilevel construction has been carried out from level L through

coarser levels to level i + 1 inclusive. We now express vectors in the standard basis

of the square p on level i + 1. The square p is the parent of child squares si,... , s 4,

and in order to satisfy the relation (3.13), we need to take the vectors in V,, ... V4,

now expressed in the standard basis of p, and recombine them to form the bases V
and W, in the parent square. Collecting the Vj vectors from the four child squares

results in a matrix, denoted V(children), defined by

Vsl 0 0 0

0 VS2  0 0
p(children) 0 0 3 0

0 0 0 V 4.

Just as we took the SVD of M, on the finest level to split the basis into V, and W,,

on coarser levels we will take the SVD of the moments of vectors in Vi(children). ie

of MpVp(children). This could be accomplished simply by computing MpV(children)
and taking the SVD, but it can be done more efficiently using moments available from

previous levels. The idea is that from the SVD calculation on the finer level in square

si, we use the relation M 1 = Us2 E,jQ',, which gives the moments of basis vectors in

Q,, by multiplying both sides by Q,, to get M,Qsi = UsE,, and

MSiVS, = Us, E .
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The only issue is that Ms, calculates moments using a different center from Mp.

But the moments in the new center are related to those in the old center by a (p +

1)(p + 2)/2 x (p + 1)(p + 2)/2 matrix which can be calculated by expanding out

(x - xo)0(y - yo) 0 for a shift of (xo, yo).

We form the bases V for V, and W, for W by an orthogonal transformation

of the vectors in Vchildren. That is, we define V1, = V(children)T and W

"(children) R,, where Q, = ( T, R, ) is orthogonal and defined by an SVD:

MPV (children) = (U)( Ez o ) ( (3.16)

The goal is for the moments to vanish for vectors in VpchildrenRp but not those in

VpchildrenT. This is achieved, as seen by substituting (3.16) into MPV (children)QP:

(MP)(V(children))( T RP ) = ( UE 0 ). (3.17)

Notice that the SVDs taken are always of small-constant size matrices, since the

number of columns of each of the four Vs, is < (p + 1)(p + 2)/2, so MPV (children) is
a (p + 1) (p + 2)/2 x 2(p + 1) (p +2) matrix at most. Also, the new vectors V and W

don't need to be stored explicitly if we are only interested in applying Q rather than

having the actual Q matrix-it is enough to keep the transformation matrices Tp and

Rp for each square p on each level, along with the V, and W, for each finest-level

square s.

3.4.3 Complexity analysis: sparsity of Q for regular contact

layouts

Here we show, for a simple case, what level of sparsity can be expected in the

constructed Q. Specifically, we assume that the 22L finest-level squares are each

populated with a constant number c of contacts, which is greater than the number

d = (p + 1) (p + 2)/2 of moment constraints. So the total number of contacts n is 22Lc
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and Q is n x n. The columns of Q are exactly zero-padded columns of W, for each

square at each level along with zero-padded columns of V((1,1),0) (the nonvanishing-

moments basis vectors on level 0 in a square which is the whole substrate). (The

zero-padding just takes an n,-length vector, defined on the contacts in square s only,

to an n-length vector defined on all the contacts.) So we can determine the sparsity

of Q by looking at the number of columns, and nonzeros per column, in each W, and

V((,1),O) -

We mentioned in the discussion of the construction of V, and W, that there are

at most d = (p + 1) (p + 2)/2 vectors in V, for any square at any level. On the finest

level, in each square there are generally d columns in V, and thus c - d columns

in W, for each square s, because the total number of columns in V, and W, is the

number of contacts per square c. The reason the total number of columns is always

c is that the vectors in V, and W, together form a basis for the dimension-c space of

square-s voltage vectors. There may be fewer than d columns in V, (though this is

very unlikely).

We count the finest-level nonzeros first. There are 22L finest-level squares. Any

given square s has at most c columns in W, and because each column of W, has

support only in square s, the total number of nonzeros for each column of W, is at

most c. This gives at most 2 2L C2 nonzeros in Q from finest-level vanishing-moments

basis vectors.

Now consider the coarser level squares for a given level i < L. For a coarser level

(parent) square p, the number of basis vectors in V and Wp together equals the num-

ber of basis vectors in the child-square spaces Vs1,... , VA4 (this follows from (3.13)).

Because V can have at most d vectors for any square t on any level, there are at most

4d basis vectors total in Vp and W, so certainly at most 4d basis vectors in Wp. Since

each vector in W, has support only in the level-i square p, there are at most c2 2(L-i)

nonzeros per column of Wp. Since there are 22i squares at level i, the total number

of nonzero level-i entries is at most

4d. 2 2- c2 2(L 4cd2L
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On the coarsest level, there are at most d vectors in V((I,1),o), each of which may

have n = 22Lc nonzeros, so this contributes cd22 L nonzeros. Thus, each level has at

most a constant times 22L nonzeros contributed at that level, and there are L + 1

levels. But L + 1 = O(log n), and 2 2L = 0(n), so there are at most O(nlogrn)

nonzeros in Q. This of course means that Q can be applied to a vector in 0(n log n)

operations. Because Q is orthogonal, its inverse is Q' and can also be applied in

O(n log n) operations.

We mentioned earlier that a more efficient representation can be obtained if we

don't need the explicit matrix Q, just a way to apply Q. This can be done by

representing Q = Q(L)Q(L-1) ... Q(), where the columns of Q(L) are the (zero-padded)

columns of V, and W, for all the finest-level squares s. There are at most c nonzeros

per column in Q(L), for a total of at most cn = C2 
2 22L nonzeros. For any given

coarser level i, Q() has, for each square p at level i, the transformation matrices T,
and Rp which re-combine vectors from the child square bases V,, . . . V,, of p. That is,

( T R, ) is, for any given p, a square matrix of size at most 4d x 4d. So the total

number of entries in any ( T, RP ) block is bounded by the constant 16d 2 , and there

are 22i such transformation blocks in Q(), one for each level-i square p. This gives a

total of 16d 2 - 22j nonzero entries for Q(i. We then have

total # nonzeros < c2 . 2 2L + 16d 2 (22 (L-1 ) + 2 2(L-2) ± + 1)

" 16c2(22L + 2 (L-1) . ± 1)

" 16c 2 . 4 (2 2L) (3.18)
3

From (3.18) and n = c - 2 2L we see that the number of nonzeros in Q(L) plus the

number of nonzeros in the transformation-matrix blocks of the Q() for i < L is 0(n).

(Note that we didn't count diagonal identity-matrix blocks in the Q(), since these

do not need to be explicitly stored and applying these blocks to vectors is an empty

operation.)

We conclude that storing Q(L) and the non-identity parts of the Q() for i < L

gives an 0(n) method for applying Q. This immediately gives a method for applying
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= Q' in O(n) operations as well since

Q- Q(O)IQ(1)'.. Q(L)'.

3.5 Reducing the number of solves

In the last section, we constructed the change-of-basis matrix Q. We have seen that

it can be used to get a sparse representation of G by setting G", = Q'GQ, truncating

small entries of G, to get a sparse approximation G., of G., and approximating G ~

QGWQ', which can be applied using three sparse matrix-vector products. However,

this assumes we have G available, which would require n black-box solver calls, one

per column, and is an 0(n2 ) algorithm (just to read the entries of G) in any case.

Here we give a method for obtaining a sparse representation of G in the same form

G ~ QGWQ', but with a very small number of black-box solver calls (0(log n)).

The basic idea for obtaining A, given a black box which outputs Av given v, is to

exploit a priori knowledge (or assumptions) about the sparsity structure of A. Instead

of calculating Ae 1, . . . , Aen to obtain A, we may choose a set S of several basis vectors

and calculate the response A(Eves v) = EZVs Av. If, for any given distinct vectors

v and w in S, the nonzeros of Av and Aw don't overlap, then Av can be extracted

from Eves Av for each v E S. To see how this might work, suppose we know a priori

that A is tridiagonal. Take the simple example of a 7 x 7 A. We can apply A to

el + e4 + e7 to obtain

all a 12  1 al1

a 21 a22 a23  0 a 12

a32 a3 3 a3 4  0 a3 4

a43 a44 a45  1 = a44  (3.19)

a5 4 a5 5 a5 6  0 a5 4

a65 a66 a67  0 a67

a76 a77 1 a77
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Thus every third column of A starting from the first can be obtained with just one

application of A. Similarly, with A(e 2 + e5 ) we can find every third column of A

starting from the second, and with A(e 3 +e6 ) we find every third column of A starting

from the third. For any tridiagonal A, three matrix-vector products suffice to obtain

A.

Of course, the sparsity structure in our case is much more complicated. In fact,

GW = QGQ' is not sparse at all. It does, however, have many entries which we expect

to be so small that dropping them will not compromise accuracy very much. So we

need to specify our assumption on which entries of Gw are small. The entries of G"

are mostly of the form

W((k/,r),i,)(:, m')GW((,,r), i(:, M) (3.20)

and there are also the special cases involving the finest-level nonvanishers

V((1, 1),o) (:, m'/)GW((k,r),I)(:,7 m), (3.21)

W((k',r'),l') (:, m')GV((l,1),o)(:, M), (3.22)

V((1, 1),0)(:, m') GV((1,,1),o)(:, m). (3.23)

First we deal with these special cases. In our assumptions, none of the entries of these

forms are assumed to be small. All the entries of the forms (3.22) and (3.23) can be

found by applying G to the small constant number of columns of V((1,1),o). The entries

of the form (3.21) can be found by symmetry of G from the entries of the form (3.22):

we have

V((i,i),O)(:, m')GW ((k,,),)(:, in) = (V((,1),o) ( ') G ((kr),) (:, in))'

=W((k,r),l)(: m)'G'V((1,,1),o)(: GIm')

=W((k,r),l)(:, m)'GV((1,1),o)(:, m')

We still need to specify our assumption for when entries of the form (3.20) are small
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Figure 3-5: Schematic representation of basis vector constituents of voltage vector for
solve-reduction technique. Each basis vector is represented by a black square. Note
that neighbor squares of distinct basis vector squares do not overlap.

enough to ignore. The definition is that basis vectors in two squares are considered to

have a small interaction if the squares are well-separated. We define well-separated

in a conservative way. Assume without loss of generality that 1 < 1' (the case 1' < 1

is defined symmetrically). Consider a square s on level 1 and a square s' on level 1'.

Let p' be the ancestor square of square s' on level 1. Then s and s' are defined to be

well-separated if s and p' are not the same square or neighboring squares. So entries

are not assumed small exactly when s and p' are the same or neighbors. We will use

the word "local" for this "same or neighbors" situation for two squares.

Now we are ready to define the sums of vectors to which we apply G. To provide

the needed separation, we only combine basis vectors which are on the same level and

which are at least 3 squares apart. See Figure 3-5. Then we have vectors for each

level 1, i = O...2,j =0 ... 2, m = 0.. maxsES, eW given by

0((ij),m),I

1<k,r<2'

E W((k,r),I)(, mn).
(k,r)=(i mod 3,j mod 3)

(3.24)
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Since the number of vanishing-moments basis vectors may differ from square to square

on a given level, there may be some values of m for which some squares do not have

vanishing-moments basis vectors-that is, the number of columns in W((k,r),) is < m.

In this case, W((k,r),l)(:, m) is simply defined to be the 0 vector.

Now, we claim that from these vectors 0((ij),m),1, we can extract all entries of the

form (3.20), if we also assume I K 1'. This assumption creates no problems, since

the entries with 1 > 1' can be filled in by symmetry of G,. We call the approximate

version of G, created by this technique G, 8 .

Notice first that for any k, r, 1, and m, W((k,r),l)(:, m) is included in exactly one
9 ((i,j),m),l. By our assumption on small entries, we only need to consider vectors

W((k',r'),l')(:, m') such that the ancestor square p' on level 1 of ((k', r'), ') is local to

((k, r), 1) (other entries are small by assumption). Then, by our assumption, for any

1 K 1', for this 0 ((i,j),m),,, we have

W((k',r'),l') GO((i,j),m),I ~ W((k',r'),l')GW((k,r),) (:, mn. (3.25)

The reason is that W((k,r),l) is the same as or a neighbor of the ancestor square p'

of square ((k', r'), '). Thus no other vector in the sum defining 0 ((i,j),m),t can be a

neighbor of p', because any other vector in the sum is at least 3 squares away from

((k, r), 1) in either the x or y direction, and p' is at most 1 square away from ((k, r), 1),

so that p' must be at least 2 squares away from any other vector in the sum, that is,

not local to it. So the other terms are small by our assumption.

This is not a rigorous argument unless "small" means exactly 0. The argument

can also be made rigorous if there is a sufficiently fast guaranteed decay of the "small"

entries with distance of the squares. Though we don't have any such guarantee, our

results later indicate that the method is effective in practice.
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3.5.1 Complexity analysis: number of solves required for reg-

ular contact layouts

It is clear that the combine-solves technique reduces the number of solves required

from the n required by the naive method. To get a handle on how large this reduction

is, we count the number of solves required for a simple regular-layout case. We make

the same assumptions as for our discussion of the sparsity of Q: c > d contacts per

finest-level square, where d is the number of moment constraints.

Looking at (3.24), this is easy to do. There are 3 choices for i and j (0,1,2), at

most max(c, 4d) values of m (m < the maximum number of basis vectors in W((k,,),l)

for all kr,l) at any level, and O(logrn) levels. The number of choices for (i, j, m) is

thus a constant, so the total number of choices is O(log n). The number of solves

required has been reduced from n to O(logn)! While there is no guarantee that this

will hold for very irregular contact layouts, we have found very substantial reductions

in the number of solves in practice.

Finally, we note that alternative approaches to reducing the number of solves

may be useful. In particular, the methods described in [40] could be applied to the

substrate coupling situation to greatly reduce the number of variables in the problem

when the voltages have support in only one square at a sufficiently fine level. Then,

instead of reducing the number of solves, we gain efficiency because each solve is

less costly. This method, however, has the disadvantage that it requires the use of

an underlying substrate solver based on the techniques of [40], whereas we can use

arbitrary solvers.

3.6 Complexity analysis: nonzeros in Gw8 for reg-

ular contact layouts

The assumption on which entries are zeroed out makes it possible to analyze the

number of nonzeros in G,, formed using the wavelet basis and the combine-solves

technique. We again use the regular-layout assumption. There are at most d columns
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in V((1,i),o). The expressions (3.22) and (3.23) are the interactions of these d vectors

with all n basis vectors in Q, so this contributes at most dn nonzeros. Expres-

sion (3.21) is the interaction of d vectors with fewer than n basis vectors in Q, so this

also contributes at most dn nonzeros.

For the W-W interactions, we use the fact that there are at most max(c, 4d)

vectors in W((k,,),l) for any square on any level. Call this constant C. How many

entries of the form (3.20) are there if we require ' < 1? For a given level 1, there

are 221 squares on that level, each with < C vanishing-moments basis vectors. Fix

one such square s. Responses to W, on level ' are nonzero in our approximation

only in the < 9 squares local to the level-l' ancestor of s, i.e. at < 9C basis vectors.

Since there are < log n levels, there are a total of 221C . 9C log n nonzero entries for

responses to W-vectors on a given level 1. Summing this through the levels produces

L

for 1' < l,total nonzeros < E 2219C 2 log n
1=0

S 4 22L9C2logri
3

- O(nlog n)

Including the l < ' entries at most doubles the number of nonzeros (since G,, is

symmetric by construction). Under our assumptions, there are O(n log n) nonzeros

in the matrix extracted using the combine-solves technique with the Q we defined.

3.7 Computational results

For all the examples in this section, we used a two-layer substrate with the bottom-

layer conductivity 100 times the top-layer conductivity. (Actually, as we discuss

briefly later, we also used a thin third layer to try to simulate the effect of having no

groundplane while using an integral equation solver which requires a groundplane.)

The dimensions of the substrate are 128 by 128 (x, y) by 40 (z). Note that we do not

give units since everything scales and our error measures will not depend on the scale.

The interface between the two layers is just below the top surface of the substrate,
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at z = -0.5.

The intention is to study situations where the couplings drop off slowly. For the

finite-difference solver, using no backplane contact helped achieve this. The integral-

equation solver we used currently requires the use of a groundplane. We were able

to reduce its effects and get reasonably slow drop-off in the couplings by placing a

second interface near the bottom of the substrate, at z = -39, and a layer below it

with one-tenth the top-layer conductivity.

Our sparsification methods do not provide an exactly correct representation of

G-there is always some loss of accuracy. Since any desired sparsity can be achieved

if enough accuracy is sacrificed (the 0 matrix is sparse indeed-but not so accurate),

in order to present meaningful results we need to consider sparsity and accuracy

together.

For the relatively small examples we present here, it is feasible to actually calculate

the exact G using the naive method. Then we can look at the sparsity of the G,,

obtained by the wavelet method with the combine-solves technique, versus the error

in G, := QGWQ' compared to the exact G. How do we make this comparison? There

are various ways-the one we have chosen is to look at relative errors in the entries

of G,. The relative error of an individual entry (i, j) of an approximation Gapprox

to G is given by

error(i,) = Gapprox(i, j) - G(i, j)|
IG(i, j)I

Because it is a relative measure, this is an especially difficult standard to meet for small

entries of G. However, it is reasonable to measure our results this way since small

contacts (which will have small interaction entries) may be connected to sensitive

circuitry for which small errors could be important.

For the results, we look at two possible ways of using the wavelet method. In the

first, we drop only the entries of G,, which are small according to the conservative

assumption given in Section 3.5, obtaining G, 8 . In this high-accuracy approach,

we look at the maximum relative error of any entry. On the other hand, perhaps

we want better sparsity and are willing to sacrifice some accuracy. For this, we drop
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Figure 3-6: Regular contact layout

Example Sparsity of Maximum Sparsity of Proportion
unthresholded relative thresholded of entries

GW8 error Gwt with rel. err
> 10%

la 2.5 0.2% 15.3 0.1%
lb 2.5 0.2% 15.4 5.2%
2 3.5 0.2% 20.6 1.1%
3 2.5 47% 15.3 80%

Table 3.1: Sparsity and accuracy for wavelet sparsification

additional entries by choosing a threshold t so that the sparsity will be approximately

6 times greater than that obtained with only the conservative assumption. We call

the approximation to G, thus obtained Gwt (t for thresholded). In this case, we look

at the fraction of entries whose relative error is greater than 10%.

We give results for four examples here. All examples except for Example lb are

solved using the integral-equation solver. Example la is a regular grid of contacts,

shown in Figure 3-6. Example lb is the same layout, but is solved using the finite-

difference solver. Example 2, shown in Figure 3-7, is an irregular layout of contacts,

with many large gaps between contacts, but the contacts are still all the same shape

and size. Example 3, shown in Figure 3-8, is a regular layout of contacts which

alternate in size. Table 3.1 gives results. The "sparsity" of a matrix is the ratio of n2

(total number of entries) to the number of nonzeros. We didn't include sparsity of Q

66

MEMM MEM 0 M M

*MEEE I::EEEEEEEEEEEEEEEE E ElmENEE

*EEEEEEE E M EEEEEEEEEEEUEEEEEE. EEEEM M M
.*EEEEEE. EEEEEE.EEEEEEE...... M M M M.EE B. .

*EE.EEEEEEEEEEEEEEEEEEEEM M M M M.....EE..M
*EEEEEEEEE EEUEEEEEE. .EE.EEE. .. . . .E . .
*EEEEEEEEEEEEEEEEEEEEEEEEEE E. EE E E M M M

UE EHEHEo U EEEEEEE M E E U EKEEHEKU. E M EKE U U

M MM MM ... E....... M............ M
EEEEEEEEM M E KE EEEE M EE E EE EE . E EE E

..... M . . U ....... .............. ..

M EIE E E E EE . EEEEEEE M.



on
 -

1
a

n
e 

on
 

Na
= 

m- 
m- 

-
-

on
 

on
 

on
an

on
on

a-
 m

2

m
 

.-
..
 

m
. 

m. 
-

'-
'-
 -

-i
-m

'..
 

m
. 

'
on

 -
m

 
'a

-a
n

 
'a

 
''n

on
a 

m
 

on
 

an
o 

mm
 

a 
m

'a-
 

'o
'm

 
'n

 im
 

'n
 m

 
an

 
a 

m
'U

 
'U

 
'N

 
so

 
-a

-a 
'a

 'm
'. 

an
'-

 
'o

 
'U

 
'U

 
-a

 
' 

on
 'a

- 
'a

-:
 

-:
 

.0 
-an

 
an

 
on

- 
N 

on 
a 

-
-a 

-
0 

-a
-

0 
on

on
- 

n
oa

n
oi

la
n

e 
on 

a- 
n 

a 
-a

-a
n 

-
1-o

a
n

 a
m

 
'a

 
so

 
-

m
-' 

'U
' 

-a
 

m a
' 

-
'N

an 
on

-n 
-No

ann
 

an 
so-

a 
-o

n -
-

-
a-

on
m 

'ai 
m

 m
m 

-m
 a 

'm
 s 

o 
m

 a 
m

 a
 

'

-U
i'i

m
 

'im
 

' 
-' 

-'
m

- 
'-U

- '
U-

 
'Ua

- 
'U

 
' 

-' 
'

...
.. 

m
..
..
..
. 

m
...

...
...

im
...

on
a-

n 
so

 
-

-m 
a'

im
 

' 
mm

 
n 

a 
m 

n 
a 

an
 

m
 

0-

-a
-a

 a
N

an
a 

-
-a

- 
on

a 
N-

a 
-

a 
on

 
M 

on
 

so
-a

 -
-m

m
..
..
 

m
m

m
i-
m

 
'U

-'
- 

'U
 

'-
' 

'-
'm

 
-*

-
aso

 
an

 
a 

so
n

o
a

N
a

 
a 

on 
-na

 
a -

a 
-as

 -
an 

-an

s-
 

-
'i'm

 
'i'

m
 

on
 

'm
 m

m 
s 

m
 'o

'm
 

'n
 

m
n

'o
 

'o

-.
m

. 
..

.-
U 

U 
U 

m
 

' 
.

.m
 

-
'U'

 
.

.
i-

m

-a
- 

-
m

 m
 'm

 
' 

' 
'I
 

an
 n

 m 
a 

'U
 

' 
'o 

o 
m

'i
'm

 
:B

lo
m

 
No

 
mm

 '
m

IN
 

'a
 

' 
an

 
mn

 m
 

m
 

'U 
m

 i 
'n

 
'Us

'm 
mm

 
mm

 
mm

 
so

 
'n 

'n 
'U

 'U
 

'o
 

'n
 

'n
 

'n 
'no

UN
s 

N
on

' 
'i'

 
'U

 
'U

 '
n 

'o
 

'U
' 

'N
 

'n
 

'e
 

'a 
'N

 
'U

o
o

n
N

 
a

N
om

as
 

.am
 

an
 

i..
 

on
an

nm
i..

..:
0 

0a 
o m

mi
o.a

n
a
n

m
n

m
N

io
'u

.a
' 

a 
m.

. 
m

m
.. 

'i 
' 

'oN
Ua

 
o 

oM

a
n

m
 

'i'
am

 
an

 a
n

 
a
n

 '
 

n 
' 

n 
' 

n 
mm

 
am

'U
'~

i'

-R

CO
O cm-

CD 0
0 o0
D

C
.

0 0 0
.

0

1-1 CI
O

cn CD n03 0 C- CD CD

M
e

A:

al L
 

c

0 
1. 

Ik
e

J
7
 r

w
on

M
1

-0
0:

22
rr

rr
r 

a 
z
z
z
z
z

a 
0
1

le
ss

o
n

 
a

C
Z

:

I I
 1

 1 1
 1 1

11
11
11
11
1H
I



in the table only because it is normally much better than the unthresholded sparsity

of G, 8 . For all of these examples, the sparsity of Q was at least 15. Of course, a

Q which is not sparse would provide another way to "cheat" on the sparsity of G, :

for example, one can take QDQ' = G with a diagonal (and thus very sparse) D by

diagonalizing G, but the Q will be both expensive to obtain and dense.

Examples la, 1b, and 2 show very good performance by the wavelet method.

These all consist of many contacts of the same size and shape, although in Example

2 the spacing is irregular and there are many large gaps, which may be why it has a

high fraction of high-relative-error entries compared to Example 1. Example lb also

shows a high proportion of high-relative error Gt entries, perhaps due to "noise" in

the solution given by the comparatively inaccurate finite-difference solver. Example

3, though, shows most clearly the shortcomings of our wavelet-based approach. The

main difference between it and the others is the presence of contacts of different sizes.

Exactly how this becomes a problem is discussed at the beginning of Chapter 4, where

a new method for sparsifying the conductance matrix is developed which we've found

to be much more effective than the wavelet method on a variety of examples.

3.7.1 Spy plots

It is instructive to look at the Matlab sparsity structure (spy) plots for the G,, and

G., matrices. We show the G, plot for Example 2 in Figure 3-9 and the G.t plot

in Figure 3-10. The plots are 2-D pictures of the matrix entries, filled in only in

positions with nonzero entries. The sparsity structure has clear origins in the mul-

tilevel structure of the wavelet construction. To understand this, we need to specify

the order chosen for the transformed basis vectors. (Different orderings will lead to

the same G,,, Get matrices with rows and columns permuted, so computational cost

is not affected, but the spy picture depends on the ordering.)

The coarsest level V(ii),o) basis vectors are first in the ordering. Then we continue

level-by-level to finer levels. On a given level 1, the vectors in W((,j),I) are included

for all squares ((i, j), 1) on level 1. The ordering of the squares within each level is

quadrant-hierarchical. This means that squares in the top-left quadrant of the come
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Figure 3-9: Spy plot for Example 2

200 400 600
nz = 69865
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Figure 3-10: Spy plot after thresholding for Example 2

69

20C

40C

600

800

1200

200

400

600

800

1000

1200
0

IU

*j I

16 , "

--



first in the ordering, followed by those in the top-right quadrant, the bottom-left

quadrant, and the bottom-right quadrant in turn, and also that each quadrant is

itself quadrant-hierarchically ordered. The "base case" of this recursive definition is

that any single finest-level square is quadrant-hierarchically ordered.

There are several "rays" of nonzeros visible in the plot, most noticeably along the

diagonal, horizontally along the top, and vertically at the left side. The diagonal ray

is composed of nearby interactions of squares on the same level. The vertical and

horizontal rays are interactions with everything else of the coarsest level V and W

vectors and the second-coarsest level W vectors. If we look at any one of the other

rays, it represents the interaction of overlapping squares which are a fixed number of

levels apart. This is somewhat oversimplified since squares which are neighbors may

not be close in the quadrant-hierarchical ordering, which is responsible for the blocks

which aren't on a ray.
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Chapter 4

Low-rank methods

The method of forming the basis by multilevel geometric moment-matching, discussed

in Chapter 3, uses only information about the geometry of the contact layout. No

information from actually applying the operator G is used in forming Q. The fun-

damental idea of the low-rank method is that we may be able to get a better Q (in

terms of accuracy-sparsity tradeoff of G,,, while maintaining a sparse Q) by using

information obtained from applying G. In our examples, we have found that the new

low-rank approximation method is always competitive with and often far superior to

the wavelet method.

First we give some intuition on why the wavelet method is inadequate in many

cases, and how this can be remedied. This is followed by a presentation of the low-

rank algorithm in the following sections, and finally a discussion of results. In our

discussion of the new algorithm, we try to start from the simplest possible approach,

and show why it isn't enough and how to fix it.

4.1 Some intuition

Consider the contact layout shown in Figure 4-1. If we applied the wavelet method

to this layout in its simplest form p = 0 (matching only the zeroth-order moment),

it would form a vanishing-moments basis function with support in the square s con-

taining the two gray-shaded contacts. As discussed in Chapter 3, this is done by
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.U ... ............. .. ............ _ _ .. .._ ._ ....-----

Figure 4-1: Simple example contact layout

enforcing a constraint requiring

(4.1)fa(x, y)dx dy = 0,

where o-(x, y) gives the voltage at position (x, y) on the substrate surfaces and C, is

the contact area in square s. This means the area-weighted average voltage in square

s must be 0. Since the larger contact (contact 2) is 2.25 times the area of the smaller

contact (contact 1) in square s, this suggests that using the vector ( 2.25 -1 )',

normalized to unit length to give v = ( .9138 -. 4061 ) would result in small current

response at contacts 3 through 6 in square d (shaded in black).

Unfortunately, this basis function's response at the four black contacts is not very

small. We computed G using the integral equation solver for the contact layout of

Figure 4-1 with a two-layer substrate, plus a thin layer adjacent to the groundplane

(substrate dimensions 64 x 64 (x,y) and 40 (z), conductivities 1, 100, 0.1, interfaces

z = -2, z = -39). Forming the interaction matrix Gd, giving current responses at
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contacts 3 through 6 from voltages at 1 and 2, for this example we get

-0.5020 -0.9461 -0.0744

-0.3651 -0.6888 .9138 -0.0539
GdSV = (4.2)

-0.7054 -1.3341 -. 4061 -0.1028

-0.4984 -0.9435 -0.0723

These are somewhat smaller than the entries of Gd8 , but we can do much better. To

see how, observe by inspecting Gd, that its second column is very close to a multiple

of its first:

1.8848

1.8864
Gds(:, 2)./Gds(:, 1) = (4.3)

1.8914

1.8928

That is, the current responses at contacts 3 through 6 to unit voltage on contact

2 are very close to 1.89 times the current response at 3 through 6 to unit voltage

on contact 1. This suggests taking ( 1.89 -1 )', normalizing it to unit length to

give ( .8839 -. 4677 )', and using this as our basis function. In fact, doing this gives

GdsV = ( -. 0012 -. 0006 .0005 .0007 )', a much smaller faraway current response.

We of course need a method more automated than "eyeballing" Gds to find a basis

function with small faraway response. One such method is to factor Gd, using the

reduced SVD:

-0.4710 -0.7231

G-s = UEV' = 0.3428 -0.3529 2.2740 0 0.4677 0.8839

-0.6637 0.3634 0 0.0016 0.8839 -0.4677

-0.4692 0.4697

(4.4)

Notice that o2 2 is very small. This implies that

GdsV(:, 2) = UEV'V(:, 2) = UE = U ( (4.5)
S (-02 2
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Figure 4-2: Two squares of interacting contacts

is small as well. Thus the SVD gave us a vector V(:, 2) with small faraway current

response. We emphasize that the ability to find such a vector was critically dependent

on having a very small singular value in the reduced SVD. The same idea can be

applied to arbitrary-sized matrix sections.

4.1.1 SVDs of matrix sections

Can we generalize the preceding observations to interactions between larger sets of

contacts? Consider the layout shown in Figure 4-2 with two highlighted squares, a

source square s (on the left, with black boundary) and a destination square d (to the

right of and below center, with gray boundary). The matrix section relating voltages

on contacts in s to currents on contacts in d is denoted Gd,.

We can take the SVD of Gd, (a 53 by 56 matrix). The singular values decay very

rapidly. In contrast, if we look at G,,, the self-interaction of square s (56 by 56),

there is only very slow decay in the singular values. This is shown in the semi-log

plot of Figure 4-3, and is an example of a general principle: we can expect rapid

decay of the singular values for interactions between two squares only when they are
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Figure 4-3: Singular values (line of stars shows square s self-interaction, line of dots
shows s to d interaction)

well-separated (not the same or neighbors).

Approximating GdS by dropping all but the largest few singular values gives a fast

method for approximately applying Gd,. Experimentally, the accuracy is very good

in the fast-decay case but not in the slow-decay case. That is, the accuracy is good

when s and d are well-separated.

If only interactions between well-separated squares on the same level as the gray

and black squares of Figure 4-2 can be approximated this way, a large part of the

operator is not represented. This naturally leads to the idea of a multilevel algorithm,

since the "gap" of interactions which aren't represented can be reduced by including

interactions between well-separated squares on finer levels.

4.2 The algorithm

In this section, we put these ideas and others together to design an algorithm for

computing Q and G,, such that G ~ QGWQ'. Like others which have been proposed

for this and similar problems ([18, 41]-the work of [41] was discussed in more detail

in Chapter 3), it is multilevel. We use the same definitions of levels and squares as

in the wavelet chapter. In general, on a given level, the algorithm will deal with

75



interactions between squares which are not too far apart (this will be defined more

precisely later).

The algorithm is divided into two phases. First, a multilevel row basis represen-

tation is obtained by a process which proceeds through the levels from coarsest to

finest. The result is a representation of the coupling operator which is approximately

O(n log n) in both storage cost and cost of applying the operator to a vector. This

part of the algorithm gives, by itself, a very efficient and accurate way to apply G.

In order to further improve performance, in the second phase, we use the multilevel

row-basis representation obtained in the first phase to create a transformed basis Q
and obtain a sparse Gw, such that G ~ QGwQ'. The second phase proceeds through

the levels from finest to coarsest. This has two advantages over the multilevel row-

basis representation: first, we can drop additional entries in Gw, by thresholding to

trade off accuracy for sparsity if desired, and second, this is in the same form as the

representation in Chapter 3, which facilitates performance comparisons.

We now describe more precisely the goals of each phase and how they are achieved.

4.3 Coarse-to-fine sweep: multilevel row-basis rep-

resentation

The goal of the first phase is to form a multilevel row-basis representation of G. More

precisely, consider an interaction matrix G,8 which is applied to voltages in square

s and gives currents in the interactive squares I, of square s. (The terminology of

interactive and local squares is due to Greengard [12].) In general, we use the notation

Gba to mean the operator which takes a length na vector v of the region-a contact

voltages and returns a length nb vector i of the region-b currents resulting from putting

the voltages in v on the contacts in region a and zero voltage on all other contacts.

That is, GbaV = i and Gba has na columns and nb rows.

The interactive squares I, of a level-l square s are the squares on level 1 which

are separated from s by at least one square but whose parent squares are neighbors
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Figure 4-4: Interactive (labeled I) and local (labeled L) squares of shaded square:
next-coarser level squares shown with bold lines

(adjacent or have a common corner). The local squares L, of a level-i square are s

itself and its neighbors on level 1. See Figure 4-4. Notice that interactive and local

are symmetric definitions-if d C I, (respectively, L,), then s C Id(respectively, Ld).

In this case we say s and d are interactive (respectively, local) to each other. We

generalize the notation n, introduced in Chapter 3 for number of contacts in a square

in the obvious way to number of contacts in the interactive region n1 ., and local

region n,.L

The important point is that the interaction matrix is numerically low-rank. Specif-

ically, there is a small number (which we assume is upper-bounded by a constant c) of

rows, each of which is a linear combination of rows of GI.,, such that these rows form

a basis (to a close approximation) for the row space of GI,. This is the reason for

our use of the term "row basis". (In our examples, we've found that choosing c = 6

gives a close enough approximation for very good accuracy.) If we have some way of

getting these rows (we will see later how to do this with an SVD), we can write them

down in a matrix V' (c rows, n, columns). Any vector v of voltages in square s which
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is orthogonal to the rows of V' (i.e. V,'v 0) will have

G,,v ~ 0, (4.6)

because all the rows of GI, are approximate linear combinations of rows of V,'. Thus,

we can get an accurate representation of G.,, by projecting v onto the rows of V,'

and knowing the responses to the < c voltage vectors given by columns of V1-in

matrix notation the responses are Go8 V. If we construct VS' so that its rows are

orthonormal, we get a compact representation of our approximation:

G1., ~(GI.,sV)V'. (4.T7)

Using the new representation to do matrix-vector products results in a dramatic

efficiency improvement over simply having the dense Ga and applying it in the naive

way when the number of contacts in s and I is large. This is true both for storage

and running time. G,s requires nsnjI entries of storage, while G,V, requires < cnri,

storage and V' requires < cn8 storage, for a total of at most c(n. + n,) storage. The

running time, in muliply-add operations, is the same as the storage for matrix-vector

product. (More accuracy can be obtained using a variant of this idea which exploits

the symmetry of G-this is discussed in Section 4.3.1.)

The goal of the first phase is to form the row basis representation of Gr., for every

square s on every level, which consists of the row basis V,' (so-called because it is

an approximate basis for the row space of G.,1 ) and approximations to the responses

to the row-basis vectors G,,V, as well as the finest-level local interaction matrices

GL.s for each finest-level square s. How the approximations are made is discussed in

Section 4.3.3. We also call V the "important vectors", since knowing responses to

them is enough to approximate responses to anything. In Section 4.3.3, we address

the question of how to form this representation. We will show how to apply (an

approximate version of) G once we have a row-basis representation for G, after first

showing a refinement which exploits the symmetry of G to improve the accuracy of

the row-basis representation.
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4.3.1 Exploiting symmetry of G to improve accuracy

For each square s, we can consider the space of important vectors (V) as well as

the orthogonal space (W,) of (V,) in IZs. The bases V, and W, are chosen so that

( V W, ) is an orthogonal matrix. This is similar to the wavelet definition, but now

we have

(WS) E (V) = R",fns (4.8)

the whole space of voltage vectors on the contacts in s, as opposed to (3.13), where

the direct sum is not the whole space.

In our algorithm, W, will not be formed explicitly (except on the finest level),

because it wouldn't be efficient to do so, but it is useful for thinking about our

assumptions. Just as we only assumed that interactions between two vanishing-

moments basis vectors in well-separated squares are small, here we only want to

assume that

WdjGdsWs ~ 0. (4.9)

for non-local squares d and s. Notice that this is actually assuming less than (4.7).

One way to look at the situation is to write Gd, in the following way:

Gds = Vd Wd)( Gds ( V, W )(f (4.10)

(d W )V
V VGdsV VGdsWs Vs'

W=G 8V(WVGsasW\W )(4.11)d) WdG dVs WjG s Ws WS'
Gds = VdVGdsVsVs' + VdVGdsWsW'

+WWjGdsVVs' + WdWjGdsWsWs. (4.12)

Under the strong assumption (4.7), the terms in the right column of the 2 x 2 matrix

in (4.11) can be ignored, and (4.12) becomes

Gds ~ VdVGdsVs~s'± WdWjGdsVV'

Gds = GdsVsVs,
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as expected. We used the identity VV'+ WW' = I, which holds when ( V W ) is

orthogonal.

If we use the weaker assumption of (4.9), we can expect to achieve higher accuracy

because only the lower-right entry in the 2 x 2 matrix in (4.11) is ignored. In this

case the approximation becomes

Gds ~ VdV'GdsVss' + VdV'GdsWsWs' + Wd WdGdsVsVS' (4.13)

= GdsVsV' +VdV'Gd 8(I -VVSV') (4.14)

= (GdsVs)V' + Vd(GsdVd)'(I - Vs V') (4.15)

(GdsVs)(v'+ Vd(GsdVd)('(I -VsVs') (4.16)

The second exact equality comes from the symmetry of G. The last line has the

superscript (r) to indicate the use of the approximate row-basis responses returned

by the algorithm described in 4.3.3. Notice that no new information is needed to

apply this refined approximation-we assumed we have the row basis vectors and

responses to them in every square, and that allows us to apply (4.16). From now on,

we will make only the weaker assumption and thus use (4.16).

This assumption is also related to how the combine-solves technique is used. This

is the same as the method developed in Section 3.5, and we use it in our algorithm

for constructing the row-basis representation. With our assumption one can show, in

exactly the same way as used in Section 3.5, that it is possible to add many vectors,

apply G to their sum, and extract responses to the individual components. The key

point is the following: if v. with support in square s is one vector in a sum used

in combine-solves, and vs E (W,), then we can extract VdGdSVS accurately for any

Vd E (Wd). The projection onto a vector in Wd is required for accuracy, i.e. we can't

expect to get just GdsVs accurately using the combine-solves method.

Our initial implementation of the row-basis method used the stronger assumption,

and the accuracy was not what we had hoped. Reworking the algorithm using the

weaker assumption, as just described, resulted in a dramatic improvement in accuracy

at a constant factor (< 2) increase in computational cost of applying the operator.
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Interactive squares
of parent of black
square (light shading)

Interactive squares of black square (dark shading)

Figure 4-5: Nesting of interactive spaces: outer unshaded squares are interactive
squares of grandparent square of small black square s

Also, this increase in cost of applying the operator applies only to the row-basis

representation; the wavelet-like representation developed in Section 4.4 is just as

efficient with the weaker assumption.

4.3.2 Applying the operator

Given v, how do we obtain an approximate Gv using our row-basis representation?

To see, let s be the small black square in Figure 4-5. To get responses to voltages in

s everywhere, we first need an approximate Gg where g is the grandparent square

of s, because the interactions of s with the unshaded outer squares are obtained from

interactions of g with the interactive squares of g. Then we need an approximate

G,, where p is the parent square of s to get the interactions with the lightly shaded

squares. Then we use an approximate G,, to get the response in the interactive

squares of s, and finally we use an approximate GL,, to get the responses in the

squares local to s. The nesting of interactive regions is shown in Figure 4-5. In

general, the response to a vector v can be found by going through the levels, and for

each square s on each level, finding Gr.,v,, where v, is the restriction of v to square

s, and adding the current response to the total current. Finally the local interactions

GLSV must be added in for all squares s on the finest level.

We summarize this procedure in the following pseudocode, which includes the

refinement discussed in Section 4.3.1 to improve accuracy. The levels start at level
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2 since the interactive region of any square on a coarser level (1 or 0) is empty.

The superscripts (r) and (f) indicate the use of an approximation to the quantity in

parentheses, from the multilevel row-basis algorithm which will be described in the

next section.

for lev := 2 to maxlev

for each square s on level lev

for each square d on level lev in I,

compute id = (GdsVs)rV,'VS ± Vd(GSdVd)(r)'(vs - VsVd'v8)

i := i + zeropad(id)

end

end

end

Now deal with finest-level local interactions

for each square s on level maxlev

for each square d in L,

compute id = GT v,

i := i + zeropad(id)

end

end

Complexity analysis for regular contact layouts

We now show that for a regular contact layout the apply-operator algorithm is

O(n log n) in memory and time. Assume there are d contacts in each finest level

square, and at most c vectors in V, for any square s at any level.

Then on the finest level L there are 22L squares, giving a total of n = 22 Ld

contacts. Each square has a maximum of 27 interactive squares. Each interaction of

two squares on level i (the "compute" step inside the 3 nested for loops at the start of

the algorithm) costs at most 5cd22(L-i) multiply-add operations. The reason is that
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the matrices V, and Vd each have at most cd22(L-i) entries (c columns, number of

rows equals number of contacts in the square, which is d22(Li)). V' can be applied to

v. just once, and in addition V, Vd', (GdsV)(r), and (GdVd)(r)' must each be applied

once. Each of these 5 matrices costs the same cd22(L-i) multiply-adds to apply.

For level i, there are 2 2i, < 27 interactions per square with other squares, and

5cd22 (L-i) multiply-adds per interaction, giving at most

27. 22i - 5cd22 (L-i) 2 2i = 135cd2 2L

multiply-adds for this level. Notice that this is independent of i, and the total oper-

ation count for all levels is thus at most 135Lcd22 L, except for the finest-level local

interactions. Since n = 22Ld, L = 0(log n), so L - 135 . 22Ld is O(n log n). On the

finest level we use the full GTf) for each local interaction. Each such matrix has d2

entries, and there are < 9 local squares for each of the 22L finest level squares, giving

a bound of 9d 2 22L operations for this part of the algorithm, which is 0(n), so the

total complexity remains 0(n log n).

4.3.3 Forming the representation

We now show how to form the multilevel row-basis representation. This is easiest

to do on the coarsest level (level 2); additional techniques are required to make the

algorithm work efficiently on finer levels.

Coarsest level

There are 16 squares on the coarsest level lev = 2. We fix one of these squares s, and

show how to form the row basis V' for Gr.,. One approach is to take a truncated

singular value decomposition. That is, we choose a threshold c and take the SVD

G0,1 = UEV' =(UElarge UEsmall ( S, (4.17)

W,)
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(number of columns of Elarge), then IV' is defined to be the first ns(large) rows of V'

and W,' is the remaining rows of V'. The rows of V' form our approximate row basis

for s, and (W8 ) e (V) = lR". There is a problem with this approach, though: it

requires obtaining the whole dense G1 ,8 , which would require a number of black-box

calls equal to n, for every square s.

In order to have only O(log ri) black-box calls, we use a version of sampling, similar

to [18]. The idea is to get a few sample rows of Gi.8 and get the row basis by taking

the SVD of these sample vectors. In its simplest form, a sample row gives the current

due to voltages in s on a sample contact in I,. We can write this in matrix form by

making a matrix of sample vectors S8 each of whose columns is a 0-1 vector which is

1 only at the index of the sample contact. Then the matrix of sample rows is S'Gir..

This type of interaction is illustrated in Figure 4-6. Actually, there is no reason to

restrict to these 0-1 vectors; we can use any vectors with support only in I, as the

rows of S' and call them the sample vectors. We can obtain S',Go by using the

symmetry of G:

S'G 1 ,8 = (G8 1, S8 )'. (4.18)
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We need only obtain G,,,S8 , which can be done with nsamp(s) solver calls, where

nsamp(s) is the number of sample vectors (columns) in S,. In fact, sample vectors can

be shared among different squares on a given level, by choosing each sample vector

to have support in exactly one square. So, on a given level, we can choose 1 sample

vector per square, and then for a given square s, S, consists of those sample vectors

with support in I,. We actually choose the sample vector with support in square s

randomly (MATLAB randn). There are never more than 27 interactive squares for a

given square s on any level, and thus the number of sample vectors in S, is bounded

by a small constant. (For very irregular contact layouts, it's possible there might not

be enough sample vectors in the interactive squares if many of these squares have

no contacts. In this case, one could use more than 1 sample vector per square, an

approach we have implemented. However, this still doesn't cover all cases, for example

if all of the interactive squares of s are empty. One way to solve this problem would

be to choose sample vectors in faraway squares if there aren't enough contacts in the

interactive squares; we have not yet implemented this.)

We take the reduced SVD of GrSs, an n, x nsamp(s) matrix, obtaining

GsjSs = UEV' = (v W large V, (4.19)
Esmall)

where Elarge is defined to be the first nlarge rows of E (those with large enough

singular values according to whatever threshold criterion is used), and Esmall is the

rest of the rows of E. Notice that because we took the reduced rather than the

full SVD, U is ns x min (nsamp, n.), so that no matter how large nr is, the fact that

nsamp is < 27 means that U has at most a small constant number of columns. V is

defined to be the first nlarge columns of U and W. is the rest of U. This V, is an

approximate column basis for G,Ss, as can be seen by approximating Esmall = 0
in (4.19), obtaining

GsS 8 ~ VsElargeV', (4.20)

the right-hand side of which consists of a matrix whose columns are in the column
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space of V. Thus V' is an approximate row basis for (G8 ,,S,)' = S'G,,, which is

what we wanted.

With < c additional black-box solver calls per coarsest-level square s, the re-

sponses G1 .,V, can be obtained. Since there are only 16 such squares, the number of

black-box solver calls required is bounded by the constant 16c. (In fact, we actually

have the responses to V, everywhere, and in particular at the interactive and local

squares together. We denote the interactive and local squares together by P,. We

have Gp,,V, which will be important on the finer levels.)

Finer levels

The goal for the finer levels is the same: to obtain a small row basis V' for each square

s to represent the interaction of square s with the interactive squares I, of s. The

same approach of choosing one sample vector per square and sharing these among

the source squares to form an approximate G.,, that was described for the coarsest

level is used here.

The difference from the coarsest level is in how the sample vector and row basis

responses are calculated in each square. If this were done in the obvious way, by calling

the black-box solver once per sample vector and row-basis vector in each square, the

resulting algorithm would be very inefficient, because the number of squares on the

finest level is Q(n), so Q(n) solves would be needed.

To reduce the number of black-box solver calls required, we combine solves as

described in Section 3.5. For a square s on level 1, a vector v. (length n,) of the

voltages in that square can be expressed as a sum of two vectors in the parent square

as follows. First extend v, to a vector v of voltages in p (length np) in the natural

way, that is by copying the voltages in v, to the entries corresponding to square s in v

and putting zeros in the entries corresponding to the other three children of p. Then

v = VV'v + (I - VV,')v (4.21)
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So we have

Gprsvs = Gppv = (GppV,)V'v + G,,p(I - VV' )v

~(GrV4) (Vp ' + (Gpp(I - VPV')v)(a (4.22)

(The superscripts (r) and (ca) indicate the use of approximations which will be

explained shortly.) The reason we need to show how to obtain the current responses

in P,, which contains the local squares as well as the interactive squares of s, is that

the first term on the right relies on having G,,p from the parent level. We have Gp 1,

since Ps is contained in P,. I, is not contained in I,, so the algorithm wouldn't work

if we substituted I, for P, in (4.22).

The first term on the right-hand-side of (4.22) is computed from the next-coarser

level (1 - 1) row-basis representation; the superscript (r) indicates that the exact

Gp,,V1 is not used (because we have no way of getting it efficiently on finer levels);

instead the approximation to it from this algorithm applied on the parent level is used.

The second term is G,,p applied to (I - VV')v, and (I - VV')v is orthogonal to the

level 1 -1 row basis in square p, i.e., in (Wp). We can use the combine-solves technique

to group many such vectors (from squares spaced 3 apart, as described in Section 3.5)

into one black-box call. The superscript (Ca) indicates the approximation implied by

use of the combine-solves technique. The relations among regions of contacts used in

the splitting method are shown in Figure 4-7.

We are not quite done. As mentioned in Section 4.3.1, we can only expect to

accurately approximate entries of the form wqGqpwp, where wq E Wq, wp E W,, and q

is a square local to p. We cannot expect that the "raw" output (Gqpwp)ca of combine-

solves will be accurate. By the "raw" output, we mean the entries of Gvsum which

give currents on contacts in local squares of p, where vsum is the sum (including wp

as a summand) sent to combine-solves.

What we do is to separate Gp,, into its parts Gqp for every square q local to

p. (The local squares of the parent p of s together form the set P, of interactive

and local squares of s.) Then for each local square q, we just need to approximate
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Figure 4-7: Splitting method illustrated

Gqp(I - VV,')v. We do this by another splitting. Write w = (I - VV')v. Then

Gqp(I - VV')v = (V,' + (I - V V'))Gqpw

= VV '(Gqpw) + (I - VqV')(Gqpw)

= Vq (GpqV )'w + (I - VVq')(Gqpw)

Vq ((GpqVq)(r))'w + (Gqpw)(c) - VjVj'(Gqpw)(ca)

(4.23)

(4.24)

The first term of (4.23) is approximated using the row basis V1 in the destination

square q and the approximate response (GpqVq)(r) to it. Since each entry in the

second term is a row of (I - Vq V') multiplied by Gqpw, we just need to show that each

row of (I-Vq V') is in the space (Wq). But this is clear, since I-VV' = WqW'. Thus

the second term can be extracted accurately using the combine-solves technique. We

denote the more accurate approximation to Gp.,W, obtained by (4.24) by (Gp,,pWp)c.

Exactly the same splitting technique can be used to obtain the approximate re-

sponses (Gp.,V,)(r) to the row basis in square s.
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Finest level

At this point, we have represented all of G corresponding to squares which are in-

teractive at some level. The only parts of G that remain to be computed are the

interactions of local squares on the finest level. For each finest-level square s we

already have the responses to the row-basis vectors V,. Because finest-level squares

each contain at most a small constant number of contacts, the explicit formation of

the orthogonal space W, is not computationally prohibitive, unlike on higher levels

(W, is n, x (< n,)). The combine-solves technique is used, with the technique to

improve accuracy described by (4.24), to obtain local responses to the columns of

Ws.

Also, we can explicitly form

GL., = GLS, (V s'+WW') (4.25)

(GL,,)s) := (GLS, sV)(r)V, + (GLsWs)(C W, (4.26)

where (GL.,s)(f) means finest-level approximation.

4.3.4 Making the multilevel row-basis representation: algo-

rithm summary

The following is a pseudocode summary of the algorithm just described:

Phase 1: get multilevel row basis representation

for lev:=2 to maxlev

for each square s on level lev

choose a random sample vector m, (nonzero only in s)

end

get responses to sample vectors:

if lev==2

for each square s on level lev

Get response Gm, to sample vector
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using black-box solver

end

else get response to sample vectors using splitting method:

for each square s on level lev

Decompose m, = r. + o0 (m, in span of parent square p row-basis,

o, orthogonal to parent level row-basis)

end

Use combine-solves technique to approximate (Gp,,pos)(C) Gppos.

for each square q local to p on parent level

Use (4.24) to refine approximation of Gqpo,

end

Combine refined approximations to get (Gpo 8.,)(C)

for each square s on level lev

Use parent-level row-basis responses to get local and interactive

approximate responses (Gp,,pV)(r)V,'r5 to r

Approximate Gp,,m, by (Gppo,)(c) + (Gp,,pV)(r)Vr,

end

end the lev/z2 case

for each square s on level lev

Get row basis V, using sample vectors and SVD

Get approximate responses (Gp,V,)(r) to row basis:

same method as getting responses to sample vectors

end

end

for each square s on finest level (lev==maxlev)

Get G2f using (4.26) and

combine-solves technique

end
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4.4 Fine-to-coarse sweep

In this part of the algorithm, the goal is to use the row-basis representation just

obtained to obtain a representation which is wavelet-like in structure [22, 42, 41],

obtaining G ~ QGWQ'. In this section, whenever we use the notation Gab, it means

the approximate Gab obtained from (4.16).

This is a simpler representation to work with and has the advantage that further

sparsity can be obtained by thresholding out small entries in G", to form an even

sparser Get trading off better sparsity for decreased accuracy. It also makes compar-

isons to previous work [41] possible. Because we have the row basis representation to

work with, no further calls to the black-box solver are needed in this phase.

On each level, starting at the finest, we construct fast-decaying and slow-decaying

basis functions in each square. Denote by T, and U, the matrices whose columns are

the fast- and slow-decaying basis functions respectively. That is, the current response

to the fast-decaying basis functions in a square s should be close to 0 outside the local

squares of s, and the whole basis, Z, = ( T, U, ), should have orthogonal columns.

The finest level is very easy: for a square s on the finest level, U, consists of the

row basis for s; i.e. U, = V. The columns of T, form a basis for the orthogonal space

of (U,) in Rn,; i.e. T, = W,.

4.4.1 Coarser levels

For each parent square p on level 1, the idea is to recombine slow-decaying basis

functions from the level-i + 1 children of p to form many fast-decaying and some

slow-decaying basis functions in p. This is done using the SVD. Let X, be the matrix

whose columns are the columns of U,, U,2 , U83 , and U,4 , zero-padded so they are

written in the standard basis of the parent square p, for each of the four children

si, 82, s3, 84 of p. Our method is to take the SVD of Gj,,Xp. This represents the

interaction of the child-square slow-decaying basis functions with the contacts in the

interactive squares of p. Take the reduced SVD of GjpX,, and set U and Tp to
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sections of V as shown:

S0 U'

GjpXp =UEV'=U 7large P (4.27)
0 Esmall T'

For very irregular contact layouts, it is possible that there will be zero or very few

contacts in the interactive squares, making it impossible to use this interaction to

effectively distinguish the fast-decaying vectors in p. In this case, the algorithm

needs to be modified to take in contacts in the faraway squares of p as well; we do not

consider this here, and assume that nr, > # columns(Xp). (This also assures that E

in (4.27) will be square as shown.)

Choose the number of columns in U, equal to the number of singular values in

Elarge (i.e., the number of large singular values according to whatever threshold we

are using). Notice that if we multiply both sides by T,, we get

G1,p(XTp) = U(:, lElarge + 1 : Elargel + ZsmallDEsmall. (4.28)

The right-hand side is close to zero (assuming the Esmall are in fact very small),

suggesting that the columns of XpTp are a very good "fast-decaying" basis on the

parent level 1.

We proceed through the levels, transforming the slow-decaying basis functions on

a level into fast-decaying basis functions on the next-coarser level. At the end, the

only slow-decaying basis functions left are at the coarsest level. The coarsest-level

slow-decaying basis functions and the fast-decaying basis functions on every level form

the columns (once zero-padded) of our orthogonal change-of-basis matrix Q.

We briefly sketch how the entries of G,, can be computed efficiently, given the

new basis Q and the multilevel row-basis representation. The only interactions which

need to be kept are those between fast-decaying (T,) basis functions in squares which

are local to each other. (Just as in the wavelet method, for two basis functions on

different levels, we take the conservative approach of defining "local" to mean that

the finer-level square's ancestor on the coarser level is the same as or a neighbor
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of the coarser-level square. In fact, many of these interactions are very small, and

are zeroed when a threshold is applied). We also keep the top-level slow-decaying

basis-function interactions with everything else. There are at most a small constant

number of these.

The essential idea is to keep a data structure for each level containing the local

responses to the T, and U, basis vectors in each square at that level. We have this

already for the finest level, from the multilevel row-basis representation. On coarser

levels, the interaction between a parent square p and its neighbors can be decomposed

into the four interactions between each of its children si ... s4 and the neighbors of

p. For each child si, this interaction can be decomposed into the interaction with

squares local to that child, and the interaction with interactive squares of that child.

We get the local interactions from the data structure maintained on the child level,

and the interactive square interactions can be obtained using the row basis of si and

the response to it in the interactive squares I, of si.

Although we don't give a formal complexity analysis of the two phases (coarse-to-

fine and fine-to-coarse), it is possible to do so for reasonably regular contact layouts,

obtaining a cost in storage and time of O(nlogn). Also, the G,, and Q obtained by

the fine-to-coarse method each have O(n log n) nonzeros. The key facts used are that

approximately applying (GdV,)(r), where s and d are interactive, is an O(n, + nd)

operation, and that applying V' is an O(n,) operation. Then the need to apply many

such operations on the finer levels is balanced by the smaller number of contacts in

each finer-level square.

4.4.2 Algorithm summary: fine-to-coarse sweep

Phase 2: get wavelet-structure basis Q

for lev:=maxlev downto 2

Form T, (fast-decaying response),

U, (slow-decaying response)

for each square at level lev:

if lev==maxlev
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for each square s at level maxlev

set U, = V, set T, = W,

end

else

for each square s at level lev

use SVD to get Ts, U, from

children W,, . . Wc4

end

end

For each square s on level lev,

put zero-padded vectors from T, into Q

if lev==2

For each square s on level lev,

put zero-padded vectors from U, into Q
end

end

Fill in G,,: form interactions of fast-decaying basis functions

with each other and with coarsest-level slow-decaying basis functions,

and coarsest-level slow-decaying basis vector interactions

with each other

4.5 Previous work using SVD-based methods

Our work is certainly not the first sparsification method to rely on low-rank approxi-

mation and the singular value decomposition. Here we attempt to give a brief overview

of previous work which uses the SVD for similar problems, and to highlight what is

unique in our contribution. The main features of our algorithm which distinguish

it from others which have been proposed for similar problems are the following: the

reliance on a fast black-box solver which we want to call only a near-constant number
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of times (without assuming constant-time access to individual matrix entries), the use

of a wavelet-like change-of-basis, a "multipole-like" algorithmic structure, and the use

of sampling to avoid taking SVDs of large dense matrices.

The first feature is, to the best of the author's knowledge, unique to our algo-

rithm. We rely only on the ability to apply G O(log n) times, aided by use of the

combine-solves technique. Other techniques which use the SVD require either explicit

knowledge of the kernel and analytic properties of it, or access to individual entries

of G. We have mentioned earlier that there is no known way to get constant-time

access to individual entries of G.

Even if we leave this issue aside, all of the other approaches for matrix sparsifica-

tion of integral operators which we are aware of lack at least one of the other features

mentioned. We briefly discuss some of these methods.

The approach of [18] and the associated IES3 code was the first SVD-based method

which became well-known in the electronic design automation community. It is ap-

plicable to matrices, such as Galerkin 1/r matrices, for which entries are accessible in

constant time. It uses the idea of sampling and is thus able to achieve an O(n log n)

extraction cost. However, the structure is not multipole-like. By multipole-like, we

mean that interactions between source and destination squares are computed using a

representation for the source square and a representation for the destination square

separately (such as the multipole and local Taylor expansions of the multipole algo-

rithm). In the approach of [18], a low-rank representation is computed by taking

the SVD of the (sampled) interaction between every pair of interactive squares. In

contrast, our low-rank approach uses a representation V, (and responses to it) for the

source square and Vd (and responses to it) for the destination square. Also, because

the "important vectors" for the IES 3 approach differ for different destination squares

given the same source square, their approach is not a global change of basis.

The machinery of H-matrices and H2-matrices [20, 21, 43] is another SVD-based

sparsification approach. The H-matrix construction is very similar to that of IES 3.

Truncated SVDs (in which the few largest singular values kept) of large matrix blocks

are required. When Taylor expansions of the kernel are available, the truncated SVD
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can be obtained efficiently, but the approach of sampling matrix entries is not used.

The H2-matrix construction, unlike the H-matrix construction, has a multipole-like

structure. Again sampling is not used.

The wavelet approach of [22] of course gives a wavelet-basis representation of the

operator, and has a multipole-like structure. The SVD is used efficiently, but only

to choose additional "fast-decaying" basis functions based on geometric moment-

matching (i.e., SVDs of interactions between well-separated squares are not used

here).

The method of [44] is an SVD-based algorithm with multipole structure. How-

ever, SVDs of finest-level interactions of each square with its faraway squares are

formed, clearly Q(n 2 ) work without the use of sampling. The authors of [44] have

also used the SVD in what is essentially a multipole implementation, to represent

the many operators required in a multipole algorithm (i.e., the far-field-to-local "flip"

operator) [45].

Finally, it is interesting to note that one of the above methods, as well as an ap-

proach developed in the computational electromagnetics community [46], can be used

to efficiently invert "sparsifiable" matrices directly. Given an H-matrix, it is possi-

ble to get an H-matrix representation of the inverse. Thus, for example, one could

represent a 1/r potential-from-charge matrix as an H-matrix, invert the represen-

tation, and have an H-matrix representation of the charge-from-potential operator.

Can we apply the same idea to our problem, representing the contact-current to

contact-potential matrix as an H-matrix, and inverting the representation to get the

potential-to-current (conductance) matrix? The difficulty is that the Green's func-

tion current-to-potential matrix is available for panel currents to panel potentials, not

contact currents to contact potentials. (Notice that panel current densities are not

constant across a contact, but are determined by the constraint that potential on each

contact is constant.) The approach of [46] is also one of direct inversion, although

in this case it is applied only to a particular, one-dimensional, problem. The idea of

direct inversion may be useful in many contexts, perhaps for example in forming a

fairly inaccurate (i.e., rank-1) approximate inverse to use as a preconditioner.
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4.6 Computational results

Just as for the wavelet method, sparsity and accuracy must be considered together to

assess the quality of the results. The fact that the two-phase low-rank algorithm pro-

duces the same type of representation G ~ QGWQ' as the wavelet method facilitates

comparisons.

For our threshold criterion, we chose to consider as "large" the singular values

which were larger than 1/100 of the largest singular value, to a maximum of 6 large

singular values (corresponding to the 6 constraints imposed by matching moments up

to order 2).

There are two basic ways we use to compare the accuracy/sparsity tradeoff of the

low-rank algorithm with the wavelet algorithm. The first is to look at the sparsity

obtained by each without any thresholding to remove small entries, and to consider

the maximum relative error in any entry for QGWQ' computed by the wavelet method

and QGWQ' computed by the low-rank method, versus G computed in the obvious

way by calling the black box once per contact.

The second way (possibly more realistic, given the fairly low accuracy requirements

for typical applications) is to get an even sparser representation G ~ QGerQ' by

truncating small entries in G,,. We chose the truncation threshold so that G., would

be approximtately 6 times sparser than the sparsity of the low-rank G", (binary search

was used to achieve this). Instead of looking at the maximum relative error, we look

at the proportion of entries in QGetQ' with relative error higher than 10%.

In the second case, we compare the low-rank method to the wavelet method in

two ways. First, we can threshold entries in the wavelet G,, to obtain a G.t with

equivalent sparsity to the thresholded low-rank Ge,, and then compare the accuracy.

Second, we can attempt to set the threshold for the wavelet representation so that

the thresholded wavelet and low-rank representations have equivalent accuracy.

We show results for three examples, including two which are familiar from the

wavelet chapter. Example 1 is the regular grid of contacts, and Example 2 is the

oscillatory-size grid of contacts (alternating rows of large and small contacts), both
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Example Sparsity Sparsity Max. rel. Max. rel. Solve Solve
factor factor error error reduction reduction

(low rank) (wavelets) (low rank) (wavelets) factor factor
(low rank) (wavelets)

1 3.9 2.5 5.1% 0.2% 3.2 2.9
2 4.1 2.5 5.7% 47% 3.3 2.9
3 3.5 2.3 12% 31% 2.8 2.5

Table 4.1: Sparsity/accuracy tradeoff achieved by low-rank versus wavelet methods
without thresholding

Example Sparsity of Entries Wavelet Wavelet
Gt (low off by more sparsity QGerQ' entries
rank rep. than 10% (equiv. off by more

(low rank) accuracy) than 10%
(equiv.

sparsity)
1 23 0.4% 20 0.8%
2 24 1.0% 2.5 (*) 89%
3 21 1.4% 6.6 94%

Table 4.2: Sparsity/accuracy tradeoff for low-rank versus wavelet method: the (*)
indicates that even with no thresholding the wavelet method didn't achieve the same
accuracy as the low-rank method

described and shown in Chapter 3. Example 3 shows that our algorithm can deal

with very irregularly shaped contacts. It includes some small square contacts, long

thin contacts, and rings, which are all features of real substrate contact layouts. It is

shown in Figure 4-8.

The results for the high-accuracy (no thresholding) approach are shown in Ta-

ble 4.1. The wavelet algorithm outperforms the low-rank algorithm, in the high-

accuracy case, for the regular-grid example. However, for the other two examples the

low-rank method is far better, achieving a much smaller maximum relative error with

slightly better sparsity and solve-reduction performance. (The solve-reduction factor

is simply the ratio of the number of solves required to extract G naively (i.e., the

number of contacts) to the number required by the sparsification method used. It is

a good measure for the efficiency of extracting the representation, since the solver calls

are likely to be the dominant cost in an real-world implementation of our algorithms.)

The results with thresholding are presented in Table 4.2. In all cases, the low-rank
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Figure 4-8: Contact layout for Example 3

Example Sparsity Max. rel. Thresholded Off by Solve
error sparsity >10% reduction

4 10 6.3% 62 1.7% 8.7
5 21 5.3% 129 3.2% 18

Table 4.3: Some results on larger examples

method is superior to the wavelet method. However, the performance difference is

fairly slight for the regular-grid example. For Example 3, the contact layout is shown

in Figure 4-8, and a spy plot of the low-rank G., is shown in Figure 4-9.

In closing, we present some results for the low-rank algorithm on larger examples

which show just how effective the algorithm can be. Table 4.3 shows results for two

examples. The errors are based on taking a 10% sample of the columns of the actual

G because it is computationally prohibitive to form the whole G when the number

of contacts is so large. Example 4 is a 64 by 64 grid of contacts of alternating sizes,
essentially the same as example 2 but 4 times as large. Example 5 has 10240 large

and small contacts and is shown in Figure 4-10. This shows very good scaling of the

low-rank algorithm as the number of contacts grows large, as one would expect for an

algorithm which produces O(n log n) nonzero entries in the transformed-basis matrix.

A spy plot of Gt for Example 5 is shown in Figure 4-11.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We have shown two methods for extracting and sparsifying the substrate coupling

conductance matrix. Both work better than the naive method of simply thresholding

away small entries in the original G, but the low-rank method is more effective on

examples which include contacts of different sizes and shapes. For our largest example

(10240 contacts), we obtained a factor of about 20 in solve reduction with a factor

of over 100 in sparsity with only 3 percent of the entries in the approximate G off

by more than 10 percent, even though the smallest entries are less than 1/500 of the

largest off-diagonal entries. Because our algorithm produces a representation G", of

G with 0(n log n) nonzero entries for reasonably regular contact layouts, we expect

these improvement factors to grow as the number of contacts increases.

5.2 Future work

There are two basic directions for future work on the low-rank method. One is further

development of the extraction/sparsification tool itself, including error analysis. In

terms of developing the tool, is it possible to handle extremely large or long contacts

efficiently? Right now they need to be broken up into many small contacts so that

each fits in a finest-level square, thus increasing the number of contacts. It would be
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useful to avoid this increase.

In terms of error analysis, is it possible to bound the error in some way? We have

good experimental results, but it would be nice to have a theoretical guarantee. For

example, one might hope to show a relation between the number of singular values

kept and the maximum relative error for entries in QGWQ' which are above some

small value which is also a function of the number of singular values kept. If it is not

possible to prove such a general statement, perhaps specific parts of the algorithm can

be analyzed effectively. For example, is it possible to obtain a high-probability bound

for the error in the row-basis calculation resulting from the use of random sample

vectors in the interactive region, rather than the SVD of the entire interaction?

The other major direction is to try to use the tool to efficiently simulate the

substrate in the context of a large circuit simulation. It is not immediately obvious

how to use the ability to apply G quickly in a SPICE-type circuit simulator. A

method which does this has been developed in [11] and it would be interesting to

see how it works on large examples and what kind of error in approximating G is

acceptable in the circuit simulation context.
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Appendix A

MATLAB notation

(MATLAB is a registered trademark of The MathWorks, Inc.) We use both MATLAB-

style and conventional matrix notation throughout the thesis. The prime (') symbol is

used to denote matrix transpose (actually, conjugate transpose, but all our matrices

are real so it doesn't matter). G(a, b) is the entry in row a, column b of G. G(:, b)

is column b of G, and G(a,:) is row a of G. Just as in MATLAB, in the diagonal

E matrix of singular values, the singular values are in decreasing order along the

diagonal.

For submatrices, we tend to use the more conventional notation. If s and d are

index sets, then Gd, is the submatrix of G obtained by taking the columns in s of the

rows in d of G. That is, it is G(d, s) in MATlAB notation.
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