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High frequency (>20 MHz) ultrasound has numerous potential applications in dermatology

because of its ability to penetrate several millimeters into the skin and provide information at a

spatial resolution of tens of microns. However, conventional B-scan images of skin tissues often

lack the capability to characterize and differentiate various skin tissues. In this work, quantitative

ultrasonic methods using the attenuation coefficient, backscatter coefficient, and echo envelope

statistics were studied for their potential to characterize human skin tissues in vivo.

A high frequency ultrasound system was developed using polymer transducers, a pulser/receiver,
high-speed digitizer, 3-axis scanning system, and a PC. Data collected using three different

transducers with center frequencies of 28, 30 and 44 MHz were processed to determine the

characteristics of normal human dermis and subcutaneous fat. Attenuation coefficients were

obtained by computing spectral slopes vs. depth, with the transducers axially translated to

minimize diffraction effects. Backscatter coefficients were obtained by compensating recorded

backscatter spectra for system-dependent effects, and additionally for one transducer, using the

reference phantom technique. Good agreement was seen between the results from the different

transducers/methods. The attenuation coefficients were well described by a linear frequency

dependence whose slope showed significant differences between the forearm and fingertip

dermis, but not between the forearm dermis and fat. The backscatter coefficient of the dermis

showed an increasing trend with frequency and was significantly higher than that of fat. A

maximum likelihood fit of six probability distributions (Rayleigh, Rician, K, Nakagami, Weibull,

and Generalized Gamma) to fluctuations in echo envelope data showed that the Generalized

Gamma distribution modeled the envelope better than the other distributions. Fat was seen to

exhibit significantly more pre-Rayleigh behavior than the dermis. Data were also obtained from

the skin of patients patch-tested for contact dermatitis. A significant increase in skin thickness,
decrease in mean backscatter of the upper dermis, and decrease in attenuation coefficient slope

was found at the affected sites compared to normal skin. However, no differences in terms of

echo statistics were found in the mid-dermis. These results indicate that a combination of

ultrasonic parameters have the potential to non-invasively characterize skin tissues.

Thesis committee: Dr. Mandayam A. Srinivasan (advisor)
Prof. Dennis M. Freeman (advisor)
Prof. Arthur B. Baggeroer
Dr. Timothy K. Stanton
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1 Introduction

This thesis is concerned with the development of quantitative methods to characterize human skin

tissues in vivo using high frequency ultrasound. This chapter explains the need for non-invasive

imaging of skin tissues, describes the suitability of high-frequency ultrasound for imaging skin

tissues, and explains the importance of ultrasonic tissue characterization methods in evaluating

skin tissues. It also provides a brief survey of ultrasonic tissue characterization methods and

previous work on ultrasonic evaluation of skin. The chapter concludes with a note on thesis

organization.

1.1 Need for non-invasive imaging of skin tissues

Non-invasive imaging of skin has several applications in dermatology. These include

determination of tumor margins prior to surgery, tumor staging, evaluation of non-tumorous skin

lesions such as scleroderma, psoriasis, and contact dermatitis, determination of the depth of

thermal burn injuries, studying the effects of photoaging, studying the effects of nuclear radiation

on skin etc. An accurate diagnosis of suspected skin lesions often requires skin biopsies and

subsequent histological evaluation of the biopsy slides. Skin biopsies are minor surgical

procedures that require sectioning and staining, are time-consuming, and also have associated

morbidity (pain, local anesthesia, and scarring). In many cases, biopsies turn out to be

unnecessary as a majority of skin lesions are non-tumorous. Hence it is conceivable that at least

in some of the cases, non-invasive imaging of suspected skin lesions could provide information

on the nature of the skin lesions so that biopsies are done only in cases that require them.

Non-invasive imaging of skin is also useful when biopsies are determined to be necessary, as in

the case of lesions diagnosed to be skin cancer. Types of skin cancer include malignant

melanoma, the fastest growing cancer in the US [1], and non-melanoma cancers such as basal cell

and squamous cell carcinomas, which represent the most commonly occurring malignancy in

humans [2]. The incidence of malignant melanoma, the most serious form of skin cancer, has

almost tripled in the past 4 decades, making it the fastest growing cancer in the United States.

About 32,000 melanoma cases are reported each year, and 6,500 cases are fatal. No significant

change in diagnosis can be attributed to this increase [3]. About 600,000 non-melanoma cancer
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cases are reported each year in the United States. The primary form of treatment for all skin

cancer cases is a surgical removal of the tumor. However the boundaries of the tumors are not

always obvious to the surgeon at the time of surgery. This is because tumors could spread beneath

the surface, and their extent may not be visually obvious. Because of this, the general practice is

to excise the affected skin areas with wide margins around the tumor, check with histology if the

borders are free of tumor, and repeat surgery if more tissue removal is needed. Such an iterative

procedure is both time-consuming and expensive. It is therefore very advantageous to have non-

invasive imaging methods that could provide information on the extent of the area of skin that

needs to be biopsied. Non-invasive imaging of skin cancer is also useful in determining the

thickness of the tumor, which is the single most important indicator of the stage of the disease.

An additional advantage with non-invasive imaging is that unlike in the case of biopsies, tissues

can be examined repeatedly over a period of time. Thus non-invasive imaging can be used for

determining the patient's response to chemotherapy and determining the recurrence of tumor.

Thus non-invasive imaging methods could play a significant role in the treatment and

management of skin cancer.

Evaluation of thermal bum injuries is another important application of non-invasive skin imaging.

According to a recent White House report, each year over 3,000 people die and 16,000 are injured

in the US by residential fires alone [4]. Bum injuries are graded as first degree bums (only

epidermal skin damage), second degree bums (partial thickness damage), or third degree bums

(full thickness damage). While first degree bums are considered to be minor and do not require

extensive treatment, deep second degree and third degree bums require skin grafting. The

treatment for bum injuries is determined by the depth of tissue damage. However it is often

difficult to determine the depth of bum injuries through visual examination alone, especially for

the case of second degree bums. Therefore in many cases it is difficult to decide whether skin

grafting is required or not. In such cases a non-invasive imaging tool that can determine the depth

of the thermal injury is very useful in planning the treatment.

Another application of non-invasive skin imaging is the evaluation of cutaneous radiation

fibrosis, which is the thickening of the skin due to exposure to nuclear radiation [5]. For instance

an ultrasound study of the skin of survivors of the 1986 Chernobyl nuclear accident six years after

the accident showed a significant increase in thickness [6]. Other applications of skin imaging

include photoaging studies where the changes in skin due to sun damage can be evaluated,

evaluation of the effects of cosmetics on skin, and evaluation of laser resurfacing treatments. Also
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non-tumorous lesions such as contact dermatitis could be studied non-invasively. Specifically the

increase in skin thickness and alterations to the dermis could be studied and related to the degree

of the allergic or irritant reactions.

There are also other non-clinical applications for skin imaging. These include studies on human

tactile sensing that attempt to relate mechanical loads on the skin surface to neural responses

transmitted to the brain [7, 8]. While much is known about the way the human vision and

auditory systems work, comparatively little is known about the way human touch works. Just as

light intensity triggers neural responses from retinal cells, mechanical strains trigger responses

from the mechanoreceptors in skin. Using elastographic techniques [9] imaging of skin could be

used to determine these mechanical strains. These mechanical strains could be then related to

recorded neural discharge rates from afferent nerve fibers. Imaging could also provide details of

fine structures and layers in the skin, which can then be used to develop finite element models.

These models can also be used to numerically compute strain fields near the nerve endings due to

prescribed mechanical loads on the skin surface, thus obviating the need for experiments. By

combining strain imaging and numerical simulations, it might also be possible to determine

mechanical properties of skin tissues such as Young's Modulus and Poisson's ratio of various

skin layers.
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Figure 1.1:Cross-sectional histological image of human skin. Figure adapted from Odland [10].

1.2 Need for high frequency ultrasound

Having described the importance of non-invasive evaluation of skin, we now explain the

suitability of high-frequency ultrasound for imaging skin tissues. Selection of a suitable technique

for imaging skin is determined primarily by the physical dimensions of skin tissues and the level

of resolution required. Skin consists of a superficial layer of epidermis (0.15 mm thick in most
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parts) and an underlying layer of dermis (1.2-1.8 mm thick). The total skin thickness in most

parts of the body is typically less than 2 mm except at the palms and soles where it is thicker. The

dermis consists of an upper layer called papillary dermis and a deeper layer called reticular

dermis. The region beneath the reticular dermis consists of subcutaneous fat, which is sometimes

considered to be a third layer of the skin and is also referred to as the hypodermis (Fig. 1.1).

When affected by certain conditions, e.g., psoriasis or contact dermatitis, the skin thickness could

increase significantly. This implies that the imaging technique should be capable of imaging

tissues up to a depth of several mm, say a maximum of 5 mm. The next requirement is that the

resolution of the device must be small enough, on the order of tens of microns, to differentiate

sub-layers within the skin and to identify and isolate pathologies within the skin. This is

especially important for evaluating early stage malignant melanoma, where an accurate

determination of the tumor thickness is important. Commonly available imaging techniques such

as MR, x-ray, and conventional ultrasound (operating at frequencies in the range 1-10 MHz) are

generally used for imaging either the full thickness of human body or for imaging tissues that lie

deep within the body (10 cm). The resolution provided by these modalities is about 1 mm, and

hence they are not suitable for imaging skin. Confocal microscopy, a technique that uses optical

reflections from tissues, is a promising technique for imaging superficial skin tissues because of

its high resolution (- microns) enabling visualization of details at a cellular level [11, 12].

However the technique is limited to imaging only superficial tissues (- 0.35 mm) and not the full

thickness of the skin. Another limitation with this technique is that it can provide only horizontal

scans of the tissue. This is disadvantageous in cases where vertical sections of skin tissues are

needed, e.g., to determine the thickness of a skin lesion. Optical coherence tomography [13, 14],

another technique that uses optical backscatter from tissues to vertical sections, is also a

promising technique for imaging skin, but has limited penetration in skin (- 1 mm). Hence it is

less suited for imaging deep skin tissues.

One method that can image the full thickness of skin and provide the required level of resolution

is high-frequency ultrasound. High-frequency ultrasound is similar to conventional ultrasound (1-

10 MHz) but uses much shorter pulses having higher center frequencies. The shorter pulse length

leads to an improvement in the axial (along the beam propagation) resolution and the higher

frequency leads to better lateral (perpendicular to the beam propagation) resolution. At a typical

frequency of 50 MHz, both the axial and lateral resolutions are on the order of tens of microns,

with the former being smaller in general. The depth of penetration is about 5 mm, which is

smaller than of conventional ultrasound, but is sufficient enough to image skin tissues. Besides

19



satisfying the resolution and imaging depth requirements, high-frequency ultrasound poses no

known risks unlike methods that rely on ionizing radiation. Additionally high-frequency

ultrasound systems could be modified with relative ease to achieving a trade-off between

resolution and penetration depth. For instance, it is easy to replace a 50 MHz transducer with a

100 MHz one and image only the epidermis at a lateral resolution of less than 15 jim. High

frequency ultrasound also complements optical techniques such as confocal microscopy in that it

provides full thickness information at a comparatively lower resolution whereas confocal

microscopy provides information at a very high resolution but only of superficial tissues. Finally

high-frequency ultrasound systems are also inexpensive compared to most other imaging

modalities including conventional ultrasound systems.

1.3 Need for ultrasonic tissue characterization methods

Having described the potential of high-frequency ultrasound in imaging skin, we now describe

the need for quantitative ultrasonic methods to characterize skin tissues. Ultrasound images are

created by detecting the envelope of the backscattered echoes from the tissues and mapping the

envelope into gray levels for display. These images, commonly referred to as B-scans are

essentially maps of the envelope of backscatter echoes from different parts of the tissue. The

envelope represents only partial information present in the echoes as information such as the

frequency dependence of backscatter amplitude or of phase is lost during its computation. Since

the primary tissue-wave mechanism responsible for backscattered echoes is diffuse

backscattering, the backscattered echoes depend on the size, shape, material properties, and

number density of scatterers distributed in the tissue. These scatterers are basically discontinuities

in the acoustical properties in the tissue and in the case of skin could be collagen fibers in the

dermis, keratinocyte cells in the epidermis, groups of cells or fibers, sub-cellular components or

sub-fibrous components. It is conceivable therefore that by analyzing the backscattered echoes,

more quantitative information about the tissue and scatterers could be extracted for characterizing

and classifying tissues. Another problem with ultrasound images is that identification of tissue

structures in the images relies on subjective interpretation of features, which are also highly

dependent on operator settings and display conditions. Subjective interpretation is oftentimes

difficult due to the presence of speckle in ultrasound scans, which results from the interference of

waves scattered from scatterers lying within the resolution cell. Thus quantitative methods might

have the potential to reduce ambiguity in inferring tissue features. These quantitative methods are

commonly referred to as tissue characterization methods.
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In the case of skin tissues, the need for tissue characterization studies is evident from earlier

studies that have shown the limitations with conventional B-scan imaging. For example it is

known that using only B-scans it is difficult to distinguish between benign and malignant lesions

[15], between different types of skin tumors [15, 16], between melanoma and an old scar [17], or

between tumors and sub-tumoral inflammatory infiltrate [18]. The reason for this is that the gray

levels in the images could not always be definitively correlated with any specific type of tissue.

For instance all tumors generally appear hypoechoic with respect to normal dermal tissue without

any difference among their different types. Thus it is worthwhile to pursue quantitative tissue

characterization methods that might, using additional features, be able to classify and differentiate

various skin lesions. For example structural changes in skin due to changes in pathology (e.g.

infiltration of dermal collagen fibers by tumor cells) could result in changes in ultrasonic

properties that are registered by these methods.

Interestingly, dermatologists who have used 20 MHz ultrasound systems to image skin have

already investigated the possibility of extracting quantitative features from images to augment

information seen in the ultrasound images. For example in studies of contact dermatitis,

ultrasonic parameters such as the mean echogenicity values and the number of low-intensity

pixels have been used to relate them to the degree of the allergic or irritant reaction [19]. In

photoaging studies, the mean echogenicity values have been used to relate to the level of sun

damage [20]. Although these parameters are not based rigorously on the physics of wave-tissue

interaction, they have shown to be able to add to information available from B-scan images.

Hence it is apparent that even practicing dermatologists have found the need and use for

extracting additional quantitative features from ultrasonic scans of skin tissues, thus corroborating

the importance and need for tissue characterization methods in studying skin.

A very brief survey of various tissue characterization methods and ultrasonic parameters is now

presented. The simplest parameter is the speed of sound in the tissue. However this parameter

cannot be computed for in vivo tissues using pulse echo techniques with single element

transducers. Commonly, the speed of sound is assumed to be some particular value, e.g., 1.5

mm/ps [21], as little variation is seen across soft tissues and across a variety of frequencies.

Another parameter that could be inferred from signals backscattered from tissues is the

attenuation coefficient. This quantity is the loss in signal amplitude with propagation distance, for

any frequency component in a pulsed wave. It is expressed in units of dB/mm, as it is commonly

assumed that the wave decays exponentially with distance [22]. Another parameter is the
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backscatter coefficient, which is defined as the differential scattering cross-section per unit

volume of tissue at an angle of 180 degrees [23]. This quantity directly determines the brightness

of pixels in B-scan images. Moreover, if a wide bandwidth pulse is used, then the frequency

dependence of both the attenuation and backscatter coefficients can be used as quantitative

parameters to characterize tissues. With pulse-echo techniques, the recorded signal at a particular

depth within the tissue depends on both the attenuation and backscatter coefficient, and therefore

both the quantities cannot be inferred from a single set of measurements (taken over several

depths within the tissue). This problem is circumvented by assuming that the region of interest

(ROI) is homogeneous and consists of the same tissue, and therefore the backscatter coefficients

are the same at all the depths within the ROI. This assumption thus leads us to infer both the

attenuation and backscatter coefficients from a single set of measurements. Another possible

parameter that can be extracted is the mean scatterer size, which can be estimated once the

frequency dependence of backscatter coefficient is known. The extraction of the above

parameters requires compensation for the characteristics of the imaging system, as the

backscattered echoes depend not only on the tissue being insonified but also on the imaging

system characteristics. Theoretical developments for computing the above parameters including

compensation for system dependent effects, and tests on tissue-mimicking phantoms have been

presented by several earlier researchers [24-32]. These methods are also well described in the

book by Shung and Thieme [33].

Another method for tissue characterization uses the fact that ultrasonic signals can be modeled as

stochastic signals since the precise details of the scattering structures in tissues, and consequently

the details of the backscattered signals, are not known a priori [34, 35]. The backscattered echo is

modeled as a random process and the statistical fluctuations (probability density functions) of this

process depend primarily on the number density of the scatterers relative to the wavelength as

well as spatial heterogeneity within the tissue. The number density has been used as a parameter

for characterizing tissues [36-42]. The theoretical background for the above methods was

obtained from work done in other fields such as statistical optics, radar and communications [43-

47].

Using one or more of the above methods, several tissues have been studied: the heart [48, 49],

blood [50], liver [51-54], eye [55-57], kidney [58, 59], spleen [60], breast [38, 61], tendon [62,

63], atherosclerotic plaques [64, 65], lung [66, 67], and skeletal muscle [68]. Skin tissues on the

other hand have not been studied well using ultrasonic tissue characterization methods. For the
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sake of completion we also mention other parameters that have been explored in the literature.

These include mechanical strain imaging (elastography [9, 69]), and nonlinear ultrasonic

parameters such as the B/A measure [70].

1.4 Previous studies on ultrasonic skin imaging and characterization

Previous work on ultrasonic imaging of skin has mostly involved 20 MHz systems. Examples of

such works include evaluation of tumors [15, 18, 71, 72], scleroderma [73], psoriasis [74, 75],

bum injuries [76], contact dermatitis [19], radiation fibrosis [6], photoaging [20, 77] and study of

the effects of cosmetics [78]. Systems operating at frequencies greater than 20 MHz have also

been demonstrated [79, 80]. The B-scan images of skin produced by such systems have shown

that fine structures such as veins and hair follicles can be visualized [17, 81]. Ultrasonic skin

characterization is a relatively new field and there are very few studies that report on the

ultrasonic properties of skin or utilize tissue characterization techniques for classifying skin

tissues. Most of these studies are also based on excised skin tissues, and not in vivo tissues. Of

the studies that have been done so far, Olerud et al [82] showed that both speed and attenuation in

skin were directly related to collagen content and inversely related to water content. Riederer-

Henderson et al [83] measured attenuation and speed in excised normal canine skin at 25 and 100

MHz using backscatter techniques and Scanning Laser Acoustic Microscopy (SLAM)

respectively. Using backscatter and SLAM techniques respectively, Forster et al [84] and Olerud

et al [85] found that the speed and attenuation values for wounded canine skin were less than that

of control skin. Moran et al [21] measured speed, attenuation and backscatter coefficients from

excised human skin tissues between 20-30 MHz. Baldeweck et al [86] measured attenuation

coefficient of excised porcine skin tissues at 20 MHz. Pan et al [87] measured attenuation and

backscatter coefficients in excised rabbit and human skin between 20-30 MHz and found a

decreasing trend in attenuation coefficient and a slight increasing trend in backscatter coefficient

with increasing strain. Guittet et al [88] measured attenuation at 40 MHz for 150 human

volunteers in vivo using a spectral-shift technique and found a decreasing trend in attenuation

coefficient slope with age.

1.5 Goals of this thesis and thesis organization

This thesis is concerned with developing quantitative tissue characterization methods for skin

tissues using high frequency ultrasound. Three different measures will be studied: the attenuation

coefficient, the backscatter coefficient, and parameters related to echo statistics. The fact that

these three measures form a related set can be easily seen. The attenuation coefficient is a
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measure of mean decay rate of ultrasound with propagation distance in the tissue, the backscatter

coefficient is a measure of the mean inherent backscatter from the tissue, and echo statistical

parameters measure the statistical fluctuations in the backscatter from the tissue. These

parameters are first studied in normal skin tissues in vivo. We also emphasize that unlike most of

the previous studies, this study utilizes in vivo human skin tissues rather than in excised tissues.

In order for tissue characterization methods to be clinically useful, the studies should be done

under in vivo conditions. The properties of in vitro tissues could differ significantly from that of

in vivo tissues due to reasons such as changes in skin tension, absence of blood flow, differences

between room and body temperatures (when specimens are tested at room temperature), and

specimen preparation effects. After normal skin is studied, a clinical example, characterization of

contact dermatitis skin, is presented.

Chapter 2 describes the development of the high-frequency ultrasound systems used in this work.

Three systems with increasing complexity in design are described. Examples of in vivo skin

images are also shown.

In Chapter 3, the computation of attenuation and backscatter coefficients from normal human skin

tissues in vivo is described. This chapter makes several contributions. Until now, backscatter

coefficients of skin tissues have not been measured under in vivo conditions, and in vitro

measurements of backscatter coefficients are very few. Diffuse backscattering is the primary soft

tissue-wave interaction responsible for echoes received at the transducer, and hence, for any

images that are generated with ultrasound systems. The backscattered signals depend on the size,

shape, material properties, and orientation and concentration of scatterers (discontinuities in

acoustic properties) in the tissue and could contain potential information about tissue

microstructure especially when a broad range of frequencies is available. Therefore

measurements of in vivo backscatter coefficients will serve to improve our basic understanding of

ultrasound-skin tissue interaction. Another contribution of this chapter is the study of attenuation

and backscatter coefficients of subcutaneous fat, which is sometimes considered as a third layer

of skin and referred to as the hypodermis. Based on B-scan images, subcutaneous fat is

considered hypoechogenic with respect to dermis, but such a difference has not been quantified in

terms of integrated backscatter measurements or frequency dependence of backscatter

coefficients. It is necessary to study subcutaneous fat because skin lesions such as tumors could

extend well beneath the dermis into the fat [1]. Previous studies have indicated that in B-scan

images, both subcutaneous fat and skin tumors appear hypoechogenic with respect to the dermis
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and therefore there could be ambiguity in determining the bottom margins of thick tumors that

extend beneath the dermis into the fat. Chapter 3 also studies whether ultrasonic properties of skin

tissues could vary from one location to another. Unlike other organs like the heart, liver etc. that

are localized to one region in the body, the skin covers the entire body and large variations in

properties are possible because of differences in skin thickness and type (e.g. glabrous vs. hairy

skin), the state of tension, exposure to sun and environment, as well as work-related usage of

certain parts of the body. By recording data from two grossly different regions in the body, the

fingertip and the dorsal forearm, the attenuation coefficients of the dermis at these two locations

are compared.

In Chapter 4, the echo statistics of backscattered signals from normal human skin tissues are

studied. Until now, the statistical distributions of the envelope of backscattered signals from skin

tissues have not been studied. The type of probability distribution of the envelope signals, and

their parameters, could contain potential information regarding tissue microstructure that could be

exploited for tissue characterization. The capability of six different probability distributions

(Rayleigh, Rician, K, Nakagami, Weibull, and Generalized Gamma) to model statistics of

envelope of backscattered data collected from the skin of several human volunteers in vivo is

studied using the Kolmogorov-Smirnov (KS) statistic as a goodness of fit measure. Although a

recent independent work has also proposed the use of the Generalized Gamma distribution in

ultrasonic tissue characterization [89], this chapter reports the first attempt to fit empirical

ultrasonic backscatter data using the Generalized Gamma distribution for any tissue. The

variability in parameter estimates and a comparison of the inter- and intra-subject variability are

studied. This is important as a large variability in the estimates might limit the capability of the

parameters for tissue characterization and methods to reduce such variability should be pursued.

Finally the capability of the parameters to differentiate different normal skin tissues (dermis vs.

fat, forearm dermis vs. fingertip dermis) is also studied.

Chapter 5 describes a clinical application of the tissue characterization methods. Contact

dermatitis, a common inflammatory condition of the skin, is used as an example. The attenuation

coefficient, mean backscatter amplitude, and parameters related to echo statistics are computed

for the skin lesions and compared with those of normal tissues.

Chapter 6 summarizes the contributions of this work and suggests topics for future work.
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A final note about the thesis is in order. Because some of the chapters (3, 4 and 5) were written as

separate manuscripts for publication in journals, some discontinuity between the chapters is

inevitable. Also for the same reason, some amount of repetition is unavoidable. Such an

organization of the thesis with each chapter having some independency of its own will also

benefit the reader who wishes to read only a portion of the thesis.
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2 System Design

This chapter describes the development of the high-frequency ultrasound imaging systems used in

this work. The need for a custom-designed system was based on several reasons. Commercial

ultrasound systems operating at frequencies higher than 20 MHz are not commonly available.

Moreover, commercial systems have several limitations when it comes to characterization of

tissues. For instance in tissue characterization studies, the raw backscatter signals are needed and

not just the final images. If raw signals are not available, then all the details of the signal path

must be known. If there are nonlinear transformations in the signal path (e.g. signal compression),

then the effects of these nonlinearities must be incorporated in the analysis, which is not generally

straightforward. Another difficulty is that commercial systems lack flexibility that is needed in

tissue characterization studies. For instance, it may not be possible to minimize diffraction effects

through axial scanning, or correction curves may not be available to compensate for diffraction

correction. Hence it was decided to build a custom-designed system as a research platform in the

laboratory. Three systems with increasing complexity and functionality were constructed.

At high frequencies, phased array transducers are not yet available and hence a single element

transducer needs to be mechanically scanned over the tissue in order to collect echo signals from

various locations. Such a system requires, apart from the transducer, a scanning system to

position the transducer, a pulser to excite the transducer, a digitizer to collect the backscattered

echoes, and a PC to control the various elements. The first system built was a simple manually

scanned system to demonstrate the concept of high frequency ultrasonic imaging of skin tissues.

The second system incorporated computer controlled scanning to automate the transducer

positioning. The total imaging time for this system was too large due to limitations in the data

transfer rate, which made it unsuitable in a clinical environment. The third system was an

improved version of the second system with capability to scan at much faster rates. At the heart of

all these systems is the transducer that generates the acoustic waves and collects the backscattered

echoes. Three different transducers were obtained from Panametrics Inc. (Waltham, MA). A

description of these transducers is first presented, after which the three systems are described.
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2.1 Transducer characteristics

The ultrasonic transducer works on the principle of piezoelectricity. Application of a high-voltage

pulse leads to the generation of acoustic waves. The transducer also receives the backscattered

echoes from the tissues and converts them into electrical signals. The quality of the backscattered

echoes, and consequently the images, are primarily determined by the properties of the

transducer. Among different transducers made of different piezoelectric materials, it was found

that ones made of Polyvinylidene Diflouride (PVDF) polymer were good for the purpose of skin

imaging. The acoustic impedance of PVDF matches that of water, which leads to effective

coupling when water is used as the medium between the transducer and tissue. Commercially

available polymer transducers also have large bandwidths and have less noise than those made of

other materials such as Lead zirconate titanate (PZT). The axial (along the direction of wave

propagation) resolution of the system is determined by the length of the acoustic pulse generated

by the transducer, and the speed of sound in the medium:

Az = (2.1)
2 2(BW)

where c is the speed of sound, T is the pulse length, and BWis the inverse bandwidth of the pulse.

For roundtrip measurements, it is common to use the -6 dB points as a measure of the bandwidth.

The lateral (perpendicular to the wave propagation) resolution is determined by the wavelength of

the sound in the medium and the f-number of the transducer:

Ax = FA = Fe (2.2)
f

where F is the f-number of the transducer, A is the wavelength of the wave, and f is the

frequency corresponding to the wavelength. In cases such as medical ultrasound where a pulsed

wave is used, it is common to use the center frequency as an indicator of the frequency of the

wave. The depth of focus, or the distance over which the wave stays approximately focused is

determined once again by the wavelength and the f-number. The -6 dB depth of focus for round-

trip measurements is given by [90]:

DOF(-6 dB)= 7.12 F 2  (2.3)

Hence, from the above equations it is clear that the frequency characteristics of the transducer are

important in determining the characteristics of the imaging system. The axial and lateral

resolutions, besides determining the quality of B-scan images, are important quantities in tissue

characterization studies. For instance, in computing attenuation and backscatter coefficients, the
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average of power spectra from adjacent independent lateral locations must be computed. The

lateral resolution determines how far the transducer should be moved laterally in order to record

independent echoes. The axial resolution determines the distance along an echo line required for

independence. Independent samples are needed in creating empirical histograms of backscatter

fluctuations, and subsequently computing echo statistics parameters. The depth-of-focus is also

an important quantity as it provides an indication of the extent over which any features can

change appreciably purely due to diffraction effects rather than due to features of the tissue being

studied.

16.65 16.7 16.75

time ([ s)

10 20 30 40
MHz

16.8 16.85 16.9

50 60 70 80

Figure 2.1: (a) Echo reflected from a plane reflector at the focus of the P150 transducer for an energy
setting=4 pJ (b) Frequency spectrum of the corresponding pulse. See also Table 2.1.

The three transducers used in this work had nominal frequency ratings of 50, 75 and 100 MHz.

Although the transducers were made to operate at the above frequencies, the actual center

frequency is typically lower, possibly due to attenuation in the coupling fluid over a distance of

twice the focal length. It was also seen that the excitation energy setting in the pulser changes the

frequency of the pulse to some extent. With increasing level of excitation, the center frequency of

the transducer was found to decrease due to the inherent characteristics of the pulser. Changing
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the excitation level thus leads to a trade-off in the penetration depth and system resolution. With a

higher energy setting, the echoes also remain above the noise level for a deeper distance, thereby

increasing penetration depth. The downside is the loss in system resolution. The combination of

transducers and the energy of excitation, and the resulting properties of the transducers are shown

in Table 2.1. These settings were decided mostly by trial and error, with the larger excitation level

used for tissue characterization studies and the lower excitation level used for clinical

applications that needed both imaging and characterization.

Figure 2.1 shows the echo of the signal reflected by a planar interface placed at the focus for the

case of the P150 transducer for an excitation level of 4 uJ. Also shown is the frequency spectrum

of the pulse. The center frequency, taken to be the mean of the -6 dB points, was computed to be

33 MHz, and the -6dB bandwidth was computed to be 28 MHz. In order to determine the depth

of focus of the transducer, several echoes were recorded when the reflector was placed at

different distances from the transducer. Figure 2.2 shows the recorded pulses. The -6 dB depth of

focus was computed to be 1.03 mm.
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Figure 2.2:Experimental determination of the depth of focus of the P150 transducer for an energy
setting of 4 pJ.
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2.2 System I: Manually scanned system

In order to demonstrate the capability of high frequency ultrasound to image skin tissues, a simple

manually scanned system was first developed. This system was easy to implement and is

described in detail in a previous work [91] and is shown in Fig 2.3. . It consisted of the P175

polymer transducer, a pulser (Panametrics, Model PR5900), a digitizing oscilloscope (Tektronix,

Beaverton, OR; Model TDS 520C), and a high-precision manually scanned 2-axis positioning

system (Parker Hannafin/Compumotor, Cleveland, OH). The digitizing oscilloscope sampled the

backscattered signals from the tissue at a sampling frequency of 500 MHz. A low pass filter with

a cut off frequency of 200 MHz was selected on the receiver portion of the pulser. The transducer

was mounted on the scanning system that had a horizontal positioning accuracy of 2 tm. Since

the transducer was broadly focused (f/#=4, DOF=5.1 mm), diffraction effects (beam amplitude

variations due to the focusing characteristics of the transducer) were minimal in this case and a

single echo at every lateral location of the transducer was considered sufficient to create images.

Each echo sequence was an average of 100 repeated waveforms obtained at the same location,

which vastly improved the signal-to-noise ratio of the echoes. Qualitative evaluation of the

system was performed using tissue-mimicking phantoms with various densities of scatterers.

Images of human skin in vivo showed the separation between dermis and fat and fingerprints on

the surface of a fingertip skin.

Figure 2.3:Experimental setup of the manually scanned system.
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Table 2.1: Properties of the transducers used in this work. The numbers in the first row next to the
transducer model numbers indicate the energy setting in the pulser.

Transducer P150, 32 J P150, 4 PJ P175, 32 pJ P13005, 16 pJ

Center frequency 28 MHz 33 MHz 30 MHz 44 MHz

- 6 dB bandwidth 30 MHz 28 MHz 40 MHz 50 MHz

F-number 2 2 4 2

Diameter 6.35 mm 6.35 mm 3.175 mm 2 mm

Focal length 12.7 mm 12.7 mm 12.7 mm 4.58 mm

-6 dB depth-of-focus 1.3 mm 1.03 mm 5.1 mm 1.27 mm

Axial resolution 25 um 27 um 19 um 15 um

Lateral resolution 107 um 83 um 200 urn 68 um

2.3 System II: Computer-controlled scanning system'

Once the basic concept of a high frequency imaging system was demonstrated using the manually

scanned system, computer-controlled motorized positioning was included to automate scanning.

Figure 2.4 shows a schematic of the setup and a picture of the system while data were being

collected from a subject's fingertip in vivo. The transducer was mounted on a 3-axis stage that

had precision-grade slide assemblies for each of the axes (Parker Hannafin, model number

402006LNMP). The total travel length was 6 inches on each of the axes, and the positioning

accuracy and repeatability were 12 pim and 2 Jtm over the total travel length. Motors (Model

number Zeta57-5 1) attached to the three axes were powered using micro-stepping drives (Model

number Zeta4). Encoders were used on the x and y-axes to provide a high lateral positioning

accuracy of 1 pm. The drives were controlled a 4-axis controller (Model AT6400), which

received commands from the PC through an ISA interface card. Custom programs were

developed in a Visual C++ environment to facilitate computer control. The transducer was

attached to the scanning system using a manually operated rotary stage and a custom machined

bracket. A joystick was used to facilitate initial positioning of the transducer at the start of the

experiment. As in the previous system, each echo line was an average of several repeated

acquisitions (100 for transducers I and II, and 240 for transducer HI), which greatly improved the

This section contains material excerpted from an article published in Ultrasound in Medicine and Biology
[92].
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signal-to-noise ratio, enabling even weak signals from subcutaneous fat to be studied. An

example of the importance of averaging is shown in the next section which describes System III.

All tissue characterization studies described in Chapters 3 and 4 were performed using this

system. To facilitate the data acquisition procedure, many other features were added to the

system. One such feature was that while recording each echo line, the vertical scale on the

digitizing oscilloscope was adjusted in real-time by the controlling program in order to record

strong signals like surface reflections free of clipping, as well as weak signals like backscatter

from subcutaneous fat without quantization effects. For example, when a full scale of -5 to +5

volts is set, a weak signal with amplitude of only 25 mV might get quantized to a value of zero,

because of the finite number of bits. On the other extreme, if the full scale is too low, say -5 mV

to + 5mV, the same signal would be recorded with clipping effects. Since there is no a priori way

to know the magnitude of signals to be recorded, the software adjusts the scaling on the vertical

axis (by trial and error) for each echo sequence to ensure that the signals are being recorded

without serious degradation due to quantization effects as well as without clipping. Another

feature was that several axial scans were used to combine data collected from different depths in

the tissue, so as to minimize diffraction effects. Although such a technique has been used before

[79], the present system could adaptively adjust the height of the transducer above the skin

surface for every lateral location. Such a procedure was important in tissue characterization

studies due to the curvature of the skin. As shown in Fig. 2.5, because of the skin curvature, data

from adjacent locations of the focal zones for any given axial location of the transducer could

correspond to different depths from the surface when the transducer is rectilinearly scanned

across the tissue. In some cases the location of the focal zone might even move out of the surface.

This is undesirable when lateral averaging of quantities like power spectra are done. Hence at

each lateral location of the transducer, the system first adjusted for the surface curvature by

measuring the time-of-flight from the surface and then moved the transducer up or down, so that

the surface was at a pre-determined distance from the transducer. Such adjustments still have the

problem of oblique incidence due to surface curvature, i.e., the incident angle not being 900.

However since the interaction of waves with the tissues is more of scattering rather than specular

reflections, the effect of oblique incidence should be small as long as the incident angle is not

very different from 900[52]. Scanning was first done in the axial direction to collect data from

several locations of the focal zones in the tissue for a given lateral location, after which the

transducer was moved to the next lateral location, its height adjusted, the axial scans done, and
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the procedure repeated for all lateral locations. Scanning was thus done in discrete steps, with the

transducer moved and stopped at the appropriate locations.

Tektronix digitizing oscilloscope
(Sampling freq: 500 MHz +-
Average 100/250 acqs.)

Panametrics
Pulse/Receiver

GPII

3axis scanning system
(I pm accuracy)

PVDF Xdcr

water

Tissue

Figure 2.4: System II with computer controlled positioning of the transducer. The right panel shows
the fingertip being immersed in the water bath during imaging.

Data for tissue characterization studies were collected from the forearm and the fingertip of

human volunteers. During a typical data collection experiment, echo sequences from 25 lateral

locations were recorded. At each lateral location, echo sequences from 10 axial locations were

recorded. The total time of imaging was about 6 minutes. Although this time was large, problems

due to patient movements were not significant in tissue characterization studies, since the aim

was to collect independent echo lines though lateral scanning. Still, efforts were undertaken to

limit subject movements during the experiment. While collecting data at the forearm, velcro

straps were used to hold the arm steady. A small cup was used to hold water. The bottom of the

cup had a slot to allow passage of the ultrasound. The cup was glued to the skin using a double

stick tape. While collecting data at the fingertip regions, custom designed finger splints made of a

thermo polymer material (Smith & Nephew Inc., Germantown, WI; Rolyan #A292-01,) were

made for each subject to hold the fingertip steady. The splint was glued to the bottom of a water

bath. While no special attempt was made to maintain the temperature of water to be constant

during a given experiment, the temperature at the start of the experiment was uniform for all

subjects (36*C).

34
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Figure 2.5: Skin curvature effects. In ultrasonic tissue characterization studies, power spectra from
focal zone depths of adjacent locations are averaged to compute mean spectra. When such a
procedure is applied to high frequency imaging of skin, due to the curvature of the surface,
averaging occurs between data at different depths (top). In some cases the focal zone location might
even move out of the surface. Hence the system adjusts for this by measuring the time-of-flight and
translating the transducer up and down (bottom). Then several axial scans are performed at the
same lateral location, followed by lateral scans to collect data from other locations.

2.4 System III: Fast scan system

The next step was to improve the system to be capable of both imaging and tissue

characterization in a clinical environment. While the motorized scanning system was a significant

improvement over the manually scanned system, the time of imaging was still too long to be used

in a clinical setting. In a clinical setting, imaging should be done as quickly as possible in order to

reduce strain on the patient. The reason for the long imaging time with the previous system was

that the data transfer rate from the digitizing oscilloscope to the PC using the GPIB interface was

slow. While GPIB communication protocols can handle high data transfer rates up to 1.5

Mbytes/sec (with an ISA interface board), the increased time taken by the digitizing oscilloscope

to parse the commands sent by the PC reduced this to much smaller rates. Benchmark

experiments showed that a maximum of 4 waveforms could be transferred per second,

independent of the number of samples in the waveform. The time required to transfer a waveform

from the digitizing oscilloscope to the PC directly determines the time of imaging as follows:

Assume that the data are collected at regular intervals during a continuous motion of the

transducer. Then the inter-sampling distance should be smaller than half the lateral resolution of

the system in order to avoid aliasing artifacts. Data from the echo line at one location must be

35



transferred to the computer during the time it takes the transducer to move to the next location.

Assuming an inter-sampling distance of 25 pLm, it can be seen that with 0.25 sec to transfer a

waveform from the digitizing oscilloscope to the PC, the speed of transducer motion could be at

most 0.1 mm/sec. This in turn would lead to an imaging time of 50 sec for a typical 5 mm scan,

which is too long for the subject to sit still.

To reduce the transfer rate from the digitizer to the PC, the digitizing oscilloscope in the earlier

system was replaced with a high-speed A/D board (Gage Applied Sciences, Montreal, Canada;

Model CompuScope 8500). The board could transfer data from its on-board memory to the PC's

memory at rates of up to 100 Mbytes/sec using the PCI bus. Unlike in the case of the digitizing

oscilloscope, very little overhead is required in communicating with the A/D board. Another

change from the earlier system was that the discrete step based scan was replaced with a

continuous scan of the transducer. In this case, backscattered data from the tissues are tapped off

periodically and transferred to the PC's memory while the transducer is in a continuous motion.

The continuous scan ensured that communication delays between the PC and the motion control

system do not offset the improvement in faster data acquisition rates with the A/D board.

A number of design constraints needed to be addressed while designing this system, due to the

conflicting requirements between duration of imaging, image quality, limitations in hardware,

ease of building the system, simplicity in use, and overall cost. In order to design the system, the

following points were first noted:

1. While the primary aim of this work is tissue characterization, it is often advantageous to

visualize conventional B-scan images as well. Tissue characterization experiments and

imaging experiments have different requirements. In the former case, there is no need to

collect contiguous echo lines that are spaced close together. In fact the echo lines should

be separated by distances larger than the lateral resolution of the system in order to

collect independent echoes. In the latter case, the echo lines should be spaced by a

distance that is less than one half of the lateral resolution of the system (Nyquist sampling

criterion), so that an image can be constructed by combining all the echo lines. Thus

tissue characterization studies can be done on the data collected in imaging experiments,

but not vice versa. Therefore, in order to have the capability to perform both

characterization and imaging, the system should be capable of collecting echo lines that

are spaced by less than half the lateral resolution of the system.

36



2. Unlike in the case of the digitizing oscilloscope, the A/D board does not have the ability

to do on-board averaging of waveforms. Hence averaging must be done in software once

all the independent waveforms are acquired and downloaded to the PC's memory. A

finite amount of time is required by the PC to do the averaging and no further data

collection can be performed until this averaging operation is completed. Also, enough

memory is needed to store all the waveforms on the board before they can be downloaded

to the PC. The importance of averaging is illustrated in Fig. 2.6 where it can be seen that

the signal-to-noise in the waveform can be greatly improved by signal averaging.

E

40 (a) Unaveraged echo sequ Ience I40

20-

0

-20-

-40
0 200 400 600 800 1000 1200

(b) Echo sequence afier averaging 50 acquisitions
40

20

0~

-20

-40
0 200 400 600 800 1000 1200

Sample number

Figure 2.6: Importance of averaging. (a) A single waveform recorded from the human skin. The pre-
echo portion of the waveform is seen to have considerable noise. (b) After averaging over 50
independent acquisitions of the same waveform, the noise level is seen to be much lower. (The y-
scale in this figure was selected to be from -40 to 40 mV to illustrate the weaker signals. The actual
recorded waveforms were not clipped.)

3. The sampling rate of theA/D board could be chosen to be 500 MHz, 250 MHz, 200 MHz,

or lower. But the noise inherent in the A/D board was significantly higher when the

sampling rates were at 500 or 250 MHz, than at 200 MHz. The lower sampling rate is
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also advantageous as it leads to a smaller number of samples to download from the board

to the PC (which takes less time) and to reduce time required for subsequent operations

such as averaging. With this setting the analog filter setting on the receiver portion of the

pulser was set to have a low pass cut off of 100 MHz.

4. The maximum admissible pulse repetition frequency (PRF) of the pulser is 20 kHz for all

energy level settings except for the highest setting of 32 pJ, for which the maximum PRF

was 10 kHz. These correspond to an inter-pulse interval of 50 and 100 ps respectively. If

a total of 50 waveforms are to be recorded for averaging purposes, then a time duration

that is 50 times the above period must elapse before all the waveforms could be acquired.

5. While performing a continuous scan, the speed of motion should be generally as high as

possible subject to two constraints. First, during the time required to acquire say N

waveforms (for averaging purposes), the transducer, which is in a continuous movement,

should have moved by only a small fraction of the lateral resolution of the system.

Otherwise, the various waveforms being averaged would not correspond to the same

tissue location, and hence cannot be averaged together. Second, during the time the

transducer takes to move to the next location where another echo line is recorded, three

tasks must be completed: (1) All the N waveforms should be acquired at the previous

location of the transducer (2) All the acquired waveforms should have been transferred to

the PC's memory, and (3) A point-by-point averaging of all the waveforms should be

completed.

The solution steps were as follows:

The first step was the selection of the transducer. The transducer P150 with an energy setting of 4

pJ was chosen. The P175 transducer lead to fuzzier images because of its poor focusing. The

P13005 transducer was less suited for imaging than the P150 transducer due to two reasons: First,

with a smaller aperture size (smaller collecting area for the backscattered echoes), the signal-to-

noise ratio was poorer. Also, because of shorter focal length for this transducer (4.58 mm),

secondary reflections (waves that have traveled twice between the transducer and the tissue,

presumably due to slight impedance mismatch at the transducer face) were found to interfere with

the echoes from deeper tissues. The P150 transducer does not pose this difficulty as its focal

length was much larger (12.7 mm), and secondary reflections, if any, would interfere with echoes

from much deeper tissues, beyond any useful imaging depth.
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With the 4 pJ setting on the pulser, a pulse repetition frequency of 20 kHz could be chosen. Thus

the inter-pulse period was 50 pts. It should also be pointed out that this duration was much longer

than the time to record all useful echoes for a single waveform. For instance, for the focal length

of 12.7 mm and an additional imaging distance of say 4 mm beyond the focus, the time required

for the wave to traverse the roundtrip distance would be about 23 pts (assuming a sound speed of

1.5 mm/ps), which is less than 50 ps.

The sampling frequency was chosen to be 200 MHz, which was sufficient to record echoes for

the P150 transducer (center frequency ~ 30 MHz). The board was chosen to operate in a multiple-

record capture mode, wherein it could be triggered repeatedly to capture and stack a pre-

determined number of waveforms in its memory. The number of samples in each waveform could

be specified beforehand. The board captures the waveform up to the specified number of samples,

and then re-arms itself to capture successive waveforms. This feature was especially useful in

collecting repeated waveforms for averaging purposes. Rather than collecting the entire 50 ps of

data per waveform, only a portion corresponding to the useful duration of about 23 ps was

recorded for a each waveform. This reduced the memory requirements on the board and also

reduced the number of samples that needed to be transferred and averaged subsequently.

The lateral spacing between the echo lines was chosen to be 25 ptm, which was less than one-half

of the lateral resolution of the system of 83 [m. The scanning speed and the number of averages

that made up a single echo line were chosen by trial and error after some benchmark experiments.

The speed was chosen to be 2 mm/sec, and the number of averages was chosen to be 50. For a

PRF of 20 kHz, or 50 ps interval between firings, the total time to acquire all the 50 waveforms

was 2.5 msec. During this time period, for a scanning speed of 2 mm/sec, the transducer moved

by a distance of 5 pm, which was only 6% of the lateral resolution. Thus, this ensured that all the

50 waveforms used in averaging were acquired from more or less the same location of the tissue.

Benchmark experiments then confirmed that for the above scanning speed, the system would be

ready to collect the next echo line by the time the transducer moved to the next location 25 pm

away. In other words, within a time of 12.5 ms (to cover 25 pm at 2 mm/sec) all the three

processing steps mentioned earlier were accomplished: It took 2.4992 ms to acquire the 50

waveforms (theoretical value is 2.47 ms since 49 inter-pulse periods need to elapse, plus an

additional 20 us for the 50t pulse), another 2.2444 ms to transfer the entire data from the board to

39



the PC's memory (theoretical value at 100 Mbytes/sec is 4480*50/100 = 2.240 ms), and another

2.5194 ms for averaging the 50 waveforms. Hence a total time of 7.2630 ms elapsed before the

system was ready to acquire further data, which was smaller than 12.5 ms. Hence the system was

working according to specifications. It should also be noted that the experimental parameters

such as the scan speed were not rigidly fixed, but could be modified by the user at the time of the

experiment.
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Figure 2.7: Trigger jitter problem in the AID board. The location of the trigger randomly varied by as
much as 8 samples, which made the waveforms to be out of alignment with one another. The
problem was corrected in software using an alternate reference point instead of the trigger location.

Before the system could be implemented according to the above specifications, an additional

hardware limitation of the A/D board had to be addressed. During the multiple-record mode, the

trigger location for each waveform was known only approximately. Hence the starting point of

each of the waveforms did not precisely coincide with that of one another. Because of this, the 50

waveforms were shifted a little bit with respect to one another, which meant that they could not

be stacked up and averaged sample by sample. Figure 2.7 shows an example of this problem. It

can be seen that the location of the trigger as stored by the hardware was not a constant but varied

randomly by as much as 8 sample points. Therefore the captured waveforms were not aligned in
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time. To overcome this problem, another absolute reference point, the location of the excitation

pulse, was used as the start of each waveform. This was possible since the relative location of the

excitation pulse with respect to the rest of the waveform was always constant. The location of the

new reference point was determined in software (in real-time) in each waveform record after all

the waveforms were transferred to the PC. As shown in Figure 2.7 (c), once this adjustment was

made, the waveforms indeed coincided with one another in time, and could therefore be averaged

to improve the signal-to-noise ratio.

Additional features were also added to the system compared to the previous system. Scanning

was made possible in one of 12 horizontal directions. This reduced strain on the patient to adjust

himself/herself to conform the tissue being imaged to a pre-determined scanning direction. Also

to make the system more ergonomic, the part of the system that held the transducer was made

more flexible though the use of custom designed brackets. This increased the workspace of the

device and the patient could be more comfortably seated or reclined on a chair or gurney. In order

to comply with electrical safety requirements, medical grade isolation transformers (Dale

Technology Inc., Thornwood; Model IT 1100) to reduce ground loop currents were also added to

the system. Figure 2.8 shows a picture of the imaging system

With a scan speed of 2 min/s, the total time for imaging for a scan length of 5 mm was only 2.5

seconds, twenty times shorter than the 50 seconds it would have taken with the previous system.

The only limitation of this system was that since the imaging time needs to be small, elaborate

axial scans and height adjustments to minimize diffraction effects as described in the previous

section could not be performed. Instead, in order to correct for diffraction effects, empirically

determined correction curves as described in Chapter 5 were used.
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Figure 2.8: Picture of System III.

2.5 In vivo images of human skin

Four examples of skin images obtained in vivo with the fast scan system are now described. All

the images correspond to normal skin tissues and were obtained using the P150 transducer with an

energy setting of 4 VJ. Figure 2.9 shows the image taken at the volar side of the forearm of a 47

year-old male subject. The difference between the echo-rich dermis and the echo-poor fat can be

clearly seen. Also seen is a vein that is about 2.25 mm in diameter. Figure 2.10 shows the image

of the left index fingertip of a 28 year-old male subject. The fingerprints on the surface can be

seen in the image. Also seen is an interface below the surface, which most likely corresponds to

the interface between the stratum corneum and the viable epidermis. Figure 2.11 shows the image

taken at the transition region from the skin to the nail on the dorsal side of the index finger. The

difference between the skin and nail regions can be clearly seen. Figure 2.12 shows the image of

a scar tissue in the hand of a 30 year-old female subject. The length of the scar measured with a

caliper was approximately 5 mm, which is also confirmed by the ultrasound image. In the

ultrasound scan, the scar tissue is seen to be hypoechogenic with respect to the dermis. An image

of skin affected by contact dermatitis is also shown in Chapter 5.
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Figure 2.9: In vivo image of the forearm skin. The divisions in this image and following images are
0.5 mm apart.
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Figure 2.10: Image of a fingertip skin.
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Figure 2.11: Image of the transition from skin to nail.
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Figure 2.12: Image of a scar tissue.
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3 Attenuation and Backscatter Coefficients of Normal

Skin Tissues2

3.1 Introduction

Ultrasonic tissue characterization studies are undertaken because of the fact that only a portion of

the total information in the echoes is used in displaying B-scan images. Therefore additional

signal processing to extract quantitative parameters has the potential to enhance the diagnostic

utility of ultrasound systems. This chapter describes the extraction of two such parameters,

namely the attenuation and backscatter coefficients of normal skin tissues. Ultrasonic attenuation

results from two basic mechanisms, namely absorption and scattering. Absorption is the

conversion of energy into heat and can be attributed to relaxation mechanisms. However no

theoretical mechanism has been shown to be fully capable of modeling the absorption

mechanisms in tissues [93, 94]. Scattering loss occurs because the incident wave is partially

redirected in many directions, and therefore the energy of the propagating wave is reduced. The

exact contributions of absorption and scattering to ultrasonic attenuation are generally unknown,

although in the low MHz range (1-10 MHz) evidence exists to show that absorption is a more

dominant mechanism [49, 52, 95]. The estimation of attenuation coefficients from in vivo pulse-

echo measurements requires comparison of the recorded signals from several depths in the tissue.

However the signals being compared between various depths will differ not only because of

attenuation, but also because of changes in backscatter coefficients between the depths. This

difficulty is overcome by assuming that the region over which attenuation is being computed is

homogeneous, which is equivalent to assuming a constant backscatter coefficient for the tissue at

all the depths. Thus the attenuation coefficients reported in this work must be interpreted as

inferred attenuation coefficients in the sense they represent the signal loss as recorded by the

measuring device. The attenuation coefficients of most tissues are seen to have a power-law type

of relationship with frequency, with the exponent ranging between 1 and 1.4 [93]. This exponent

in the power-law dependence is one parameter that could be exploited for tissue characterization.

In some cases a linear dependence is seen with frequency (exponent = 1). In such cases, the slope

of the attenuation coefficient could be used as a parameter for tissue characterization.

2 This chapter is based on an article published in Ultrasound in Medicine and Biology [92].
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The backscatter coefficient is defined as the differential scattering cross-section per unit volume

of tissue at an angle of 1800. The backscatter coefficient of tissues depends on the size, shape,

density and the material properties of the scatterers distributed in the tissue. Theoretical

developments for obtaining the backscatter coefficients of single scatterers of regular geometries,

such as spheres or cylinders are available in the literature. However in the case of biological

tissues, the complexity and diversity of the various tissues make theoretical development difficult.

In practice, the computation of backscatter coefficients is done empirically by making simplifying

assumptions to remove the effects of the instrument characteristics from the recorded echoes.

Since most tissues exhibit an increasing trend in the backscatter coefficient with frequency, a

power-law dependence, with an exponent ranging between 0 and 4 is often used to describe the

backscatter coefficient. An exponent of zero implies frequency independent geometric scattering

while a value of 4 indicates Rayleigh type scattering. This exponent is thus an additional

parameter that could be used for characterizing various tissues. The present chapter describes the

empirical computation of attenuation and backscatter coefficients of skin tissues in the range 14-

50 MHz. In order to make sure that the results are independent of the measuring system,

attenuation coefficients are measured using three different transducers. Backscatter coefficients

are also measured using three different transducers by compensating for system dependent

effects, and additionally for one transducer, using the reference phantom technique [96].

Implications of the results to skin characterization are then discussed.

3.2 Methods

3.2.1 Human subjects and tissues

Skin consists of a superficial layer of epidermis and an underlying layer of dermis. The region

beneath the dermis consists of subcutaneous fat, which is sometimes considered as a third layer of

skin and is referred to as the hypodermis. In most parts of the body the epidermis is very thin

compared to the dermis (0.15 mm vs. 1.2-1.8 mm) except at the palms and soles where it is much

thicker (- 0.6 mm). In this study, data were collected from 2 grossly different locations: the

dorsal side of the right forearm (hairy skin) and the left index fingertip (glabrous skin). At the

forearm, two body-sites one near the wrist, and the other near the elbow were studied. The reason

for choosing two sites at the forearm was that due to their proximity, one of them could serve as a

control for the other. Table 3.1 summarizes the tissues studied and the subject population. Since

skin condition could depend on the subject's age the present study was restricted to only young
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adults. The first transducer was used for all the three body-sites in order to study differences due

to body-site. All three transducers were used to collect data from the forearm wrist region in order

to test system independencies. In the case of skin regions near the forearm wrist and elbow, data

were collected from 10 locations of the focal zones (axial scans) starting from 0.3 mm below the

surface up to a depth of 3.0 mm in steps of 0.3 mm, which covered both the dermis and fat. In the

case of fingertip, data were recorded from 12 locations of the focal zones from 0.3 mm up to 1.95

mm in steps of 0.15 mm, which covered both the epidermis and dermis. Due to reasons

concerning logistics, the same set of subjects were not used for all the three transducers, but the

median ages were about the same (Table 3.1). All the subjects that participated in the fingertip

study were right-handed. For each of the experiments done, a second independent repetition at a

close-by region (displaced by a few mm from the original site) was done to increase the number

of independent data sets. All subjects signed an informed consent document approved by the

Institutional Review Board of the Massachusetts Institute of Technology.

Table 3.1: Tissues and subjects used in this study.

Subject population
Body-site Transducer Tissues

n Ages: range (median)

P150 (I) Dermis and fat 16 20-36 (26.5)

Forearm wrist P175 (II) Dermis and fat 16 22-36 (28.5)

P13005 (III) Dermis 16 19-36 (24.5)

Forearm elbow P150 (I) Dermis and fat 13 19-34 (24.5)

Left index fingertip P150 (I) Dermis 18 20-33 (24.5)

3.2.2 Data collection

In this work data were collected from all three transducers. For the sake of convenience, the P150,

P175, and P13005 transducers (Table 2.1) will be referred to as transducer I, II and III

respectively. Energy settings of 32 tJ were chosen for transducers I and II, and 16 pJ was

selected for transducer III. Echo lines were collected from 25 independent lateral locations of the

transducers by scanning along x and y in a 5 by 5 raster format. The area over which the 25 echo

lines were recorded was 1.5 mm x 1.5 mm for transducer I, 3 mm x 3 mm for transducer II, and 1

mm x 1 mm for transducer III. These corresponded to lateral stepping distances of 0.3, 0.6, and
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0.2 mm for the three transducers. The larger stepping distance for the case of transducer II reflects

the poorer resolution of this transducer.

3.2.3 Power spectra computation

Once data from all focal zone locations and all lateral locations were obtained, a time-gate of 128

samples, (total gate length = 0.256 ts, corresponding to a frequency resolution of about 4 MHz)

was applied to select data at the focus of the transducers. These gated data were truncated by

applying a Hamming window, Fourier-transformed and squared to compute individual power

spectra for all lateral locations and at all axial locations of the transducer. While it is customary to

compute the mean of the spectra recorded from all lateral locations, in this work it was found that

a trimmed mean wherein the top and bottom 25 percentile of the data were eliminated, was more

useful. Such a quantity is less sensitive to the presence of extreme variations in the data and will

be simply referred to as the mean spectra in this work. The approach was especially useful in the

case of subcutaneous fat where strongly reflecting fibrous septae were present occasionally.

Figure 3.1 shows mean spectra for 10 locations of the focal zones at the forearm of a human

subject obtained with transducer I.

10 20 30
MHz

40 50 60

Figure 3.1: Mean power spectra of backscattered signals from 10 focal zone locations in the skin
(locations indicated in the inset). See also Fig. 3.2.
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3.2.4 Attenuation estimation

The total amplitude attenuation coefficient has contributions from both absorption and scattering

effects [93]:

a(f)= as(f)+aa(f) (3.1)

where aa(f) is the amplitude absorption coefficient and a,(f) is the amplitude scattering

coefficient. The scattering loss in turn is proportional to the total loss by redirection of the wave

over all angles [97]:

a,(f) fc dQ) dQ (3.2)

where represents the differential scattering cross-section per unit solid angle of the tissue,
dQ

and is a function of the frequency f In this work, the total attenuation coefficient, which is

inferred from pulse-echo measurements at several depths, will be referred to as the attenuation

coefficient. The mean power spectrum of the echo from a particular depth zi at a frequencyf can

be expressed as:

S(f, z1) = H(f, zi)B(f, zi)e-4af)zi (3.3)

where H(f, zi) is a term that accounts for the electromechanical frequency response of the

transducer as well as depth dependent diffraction effects, and B(f, zi) is the backscatter

coefficient of the tissue at the depth z . Since the computed power spectra are dependent on both

the attenuation coefficient and the backscatter coefficient, it is in general not possible to extract

the two quantities from a single set of measurements. At this point, it is assumed that all the

depths correspond to the same tissue, and hence the backscatter coefficient is independent of the

depth z,. Such an assumption is reasonable when a homogeneous region can be identified and

considered to constitute a particular tissue, and all the depths are present within this tissue of

interest. As described later in this section, such homogeneous regions were chosen for the dermis

and fat. With this assumption,

B(f, zj)~ B(f) V zj (3.4)
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Moreover with the axial translation technique done to minimize depth-dependent diffraction

effects (Section 2.3), the function H(f, z,) can also be considered to be independent of the

depth z,:

H(f, z) ~ H(f) V zi (3.5)

Thus Eq. (3.3) can be written as

S(f, z) = H(f)B(f)e-4"f)zi (3.6)

If a particular frequency is now considered, the frequency dependence can be dropped to obtain

the following expression for the recorded spectra as a function of depth:

S(zi) = Ae~4"z (3.7)

where A is a constant that depends only on the frequency. Thus the attenuation coefficient cc

(dB/mm) at a particular frequency can be obtained through an exponential fit of the power spectra

as a function of the depth within the tissue.

In light of the above arguments, the first step in computing the attenuation coefficient is the

identification of a homogeneous region corresponding to a particular tissue of interest. This was

done by plotting "pseudo-images" using the collected data, as shown in Fig. 3.2. Such images

serve to differentiate grossly different regions such as the dermis and fat. In this example, the

strongly scattering dermis is seen to extend about 1.8 mm beneath the surface. To convert time-

of-flight to depth, a speed of sound of 1.5 mm/pts was assumed throughout this study, which is

close to values reported in the literature [21, 98, 99]. Small discrepancies in speed do not affect

the computed attenuation values (dB/mm) significantly, and hence a convenient value of 1.5

mm/ps was used. In general, most of the subjects had a dermal thickness between 1.3 and 1.8

mm, and hence the first four focal zone locations (at 0.3, 0.6, 0.9 and 1.2 mm from the surface)

were taken to correspond to dermis for all subjects. A few subjects whose forearm dermal

thicknesses were less than 1.2 mm were eliminated from the study a priori so as to maintain

uniformity. The focal zone locations beneath the dermis were taken to correspond to fat, with care

taken to avoid fibrous septa that were sometimes seen in the pseudo-images. Figure 3.1 also

demonstrates how the useful frequency range for analysis was chosen. At higher frequencies, the

spectra tend to become flat once the noise floor is reached, especially for signals from the deeper

fat tissues. In order to have a SNR of at least 10 dB, a frequency range of 14-50 MHz was chosen

for the dermis and a range of 14-34 MHz was chosen for fat.
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Figure 3.2: A pseudo image based on the collected data. The term pseudo implies that the image is

not a usual B-scan image, as the lateral stepping distance was larger than the lateral resolution of

the system, and also the collected data was actually 3-dimensional whereas the pseudo image is

plotted as though the data is 2-dimensional, by laterally combining all the y-scans and all the x-

scans together. Such images were used to a priori differentiate between dermis and fat.

In order to determine whether 4 focal zone locations were sufficient to accurately compute

attenuation coefficient, two benchmark experiments were done on forearm skin for one subject

before data collection from all subjects were done: The first experiment had seven closely spaced

focal zone locations starting from 0.3 mm below the surface and extending to 1.2 mm in steps of

0.15 mm. The second had only four focal zone locations in steps of 0.3 mm. The attenuation

coefficient slopes computed for the two cases were 0.2241 and 0.2483 dB/mm/MHz respectively,

indicating only a 11% higher value for the case with coarser spacing for than the one with finer

spacing. Hence it was decided to use the coarser spacing in the axial direction for all further

experiments as adding additional focal zone locations increased the data acquisition time.

3.2.5 Frequency dependence of attenuation coefficient

In order to determine the frequency dependence of the attenuation coefficient, a linear fit of the

form a(f) = f + C as well as a power law fit of the form a(f) = Af" + C were done. While

the former was done using linear-least squares techniques, the latter was done using a non-linear

optimization method using the optimization toolbox in Matlab.
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Figure 3.3: Comparison of the diffraction correction term used in this work (solid) with that given by

the analytical expressions of Chen et al [100] (dashed).

3.2.6 Backscatter coefficient estimation using compensation for system-dependent effects

Measurement of the backscatter coefficient requires compensating the recorded spectra for the

electromechanical response and the focusing properties of the transducer, and for the

characteristics of the receiver electronics. In this work, backscatter coefficients were computed by

two different methods. The first method is similar to that of Madsen and co-workers [101],

wherein the system dependent effects are accounted for by accurately modeling the physics of

wave propagation phenomena during the data reduction step, whereas the second method is the

reference phantom method as described by Zagzebski and co-workers [96, 102]. Other methods

for quantifying backscatter coefficients of tissues can also be found in the literature [24, 27, 30,

100, 103, 104].

The first method involved computing corrections using the known transducer geometries and also

recording the signal reflected off a plane reflector at the focus with known acoustic properties.

The following formula was used to compute the backscatter coefficient:

B,(f) = D(f)I(f) (3.8)
Sr(f)

where S, (f) is the mean power spectrum recorded from the tissue of interest, Sr (f) is the

power spectrum of the signal reflected from a perfect reflector at the focus of the transducer,
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D(f) is a diffraction correction term defined below, and I(f) is a term to account for

attenuation by intervening tissues lying shallower to the tissue of interest. The attenuation

coefficients computed beforehand for each tissue were used to compensate for attenuation within

the tissue of interest while computing S, (f). Such a procedure basically assumes homogeneity

in tissue properties for all the depths making up the tissue of interest. The term 1(f) is an

additional term to correct for intervening attenuation, for example, compensating for attenuation

by the dermis while computing backscatter coefficients of fat. The diffraction correction term

D(f) is given by

2

Jidsfe ds' R 1 2

D(f) s sI 4 0.(3.9)

fdQ jkr-r'

dD s, I r r' I

The detailed derivation of the above equation is presented in Appendix A. A brief explanation for

the terms in the above expression is as follows: The first term in the numerator represents a

surface integral over the surface of the transducer (denoted by S'), followed by another surface

integral over the surface of an identical transducer placed at a distance equal to twice the focus

(denoted as S mir ). The symbols r' and r refer to position vectors on the surface of the

transducer and a generic point in the integration space respectively. The second term R is the

intensity reflection coefficient between the plane reflector and the coupling medium water. The

third term in the numerator (1/0.63Y is a factor that accounts for the Hamming window function

used in computing the spectra [32]. The denominator consists of a surface integral over the

surface of the transducer (denoted by S'), followed by a volume integral over the region

occupied by the scatterers (denoted by Q ), modified by an exponential term that accounts for the

attenuation within the gate (a(f) is the amplitude attenuation coefficient of the tissue of interest,

and r, is the distance up to the start of gate). In practice, the computation of these integrals is a

time-consuming task when numerical integration techniques are used. In this work, the above

integrals were computed using the Angular Spectrum Method [105], which yields a much faster

solution due to the efficient computation of FFTs. The computed diffraction correction functions

were compared with simpler analytical functions given by Chen et al [100] for all three
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transducers used in this work (Fig. 3.3) Good match is seen in terms of frequency dependence,

but the simper formulation of Chen et al slightly under-predicts the diffraction correction for

transducers I and II, both of which were more focused (f-number =2) than transducer II (f-

number=4). In this work, the full diffraction corrections D(f) as defined above were used, as

they could be computed and stored a priori.

3.2.7 Backscatter coefficient estimation using the reference phantom method

The second method to compute backscatter coefficient was based on the use of a reference

phantom, which has been previously employed in determining in vivo backscatter coefficients of

other tissues such as liver [106-108] and kidney [108]. Such a method was used for computing

backscatter coefficients using data from transducer II. The reference phantom was obtained from

CIRS, Norfolk, VA and contained gelatin with randomly distributed spherical glass beads having

a mean size of 82 pm and a standard deviation in size of 3 gm. Properties of the scatterers were

provided by the manufacturer: The longitudinal wave speed is 5600 m/s; the density is 2.5 g/cc;

and the Poisson's ratio is 0.22. The concentration of scatterers is 8000 particles/cc. The gel has a

longitudinal wave speed of 1529 m/s and a density of 1.02 g/cc. The backscatter coefficient was

computed using the formula

Bre(f)= B (f)(f) (3.10)
Sef(f )

where S, (f) is the mean power spectrum recorded from the tissue of interest compensated for

attenuation within the tissue of interest, Sref (f) is the mean power spectrum recorded from the

reference phantom (compensated for attenuation in the phantom up to the depth at which spectra

were computed and for the transmission loss through the saran-wrap covering the phantom),

Brej (f) is the backscatter coefficient of the reference phantom, and I(f) is the intervening

tissue attenuation compensation term. The quantity Bref(f) was computed according to Faran's

model [109], assuming that the scatterers are randomly distributed, which leads to only

incoherent scattering contributions. To compute the mean backscattered spectra from the

phantom, Sef (f), 800 RF lines were recorded for averaging purposes in order to minimize

possible effects of inhomogeneities. The phantom had a protective saran-wrap cover, and

compensation for non-unity transmission coefficients at the water-saran-phantom interface was
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computed at the required frequencies (14-50 MHz) using the methods described in Madsen et al

[110].

3.2.8 Integrated backscatter

Once the backscatter coefficients were computed, the integrated backscatter was obtained in the

range of 14-34 MHz using the formula

Integrated Backscatter = B,(f)dff2 - ,(f (3.11)

where f; =14 MHz and f2 = 34MHz.Even though reliable spectra were available up to 50

MHz for the dermis, the use of 34 MHz as the upper limit made it possible to compare dermis and

fat tissues.
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Figure 3.4: In vivo attenuation coefficients of the forearm dermis (wrist) in the range 14-50 MHz
based on the 3 transducers. The markers indicate the median among subjects and the error bars
indicate the full range of data. The tick marks on the error bars indicate the 2 5' and the

7 5 'hpercentile points. The 3 curves are displaced slightly along the x-axis to make them more legible
and the frequencies Indicated on the x-axis are the actual values at which the attenuation
coefficients were computed.
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3.2.9 Statistical tests

In order to quantify differences in parameters between dermis and fat, such as attenuation

coefficient slope and integrated backscatter, a paired t-test was used.

3.3 Results

Figure 3.4 shows the attenuation coefficient of the forearm dermis at the wrist, obtained using

data from all three transducers. It can be seen that the attenuation coefficients based on the

different transducers agree well with one another. To quantify the frequency dependence, both

linear and power-law fits were done for data from all subjects, for all three transducers. The linear

fit gave a slope P that ranged between 0.08 and 0.39 for all subjects (median=0.21 dB/mm/MHz).

The power-law fit gave an exponent that ranged between 0.05 and 3.52 (median=1.06). The

goodness of fit as determined by the correlation coefficient for both the linear and power law fits

were quite similar (mean correlation coefficient R 2 =0.95 for linear fit vs. R 2 =0.96 for power law

fit). It was also found that the power-law fit gave fitting parameters that had more variations from

one subject to another than the linear fit parameters. Such variations were found even for

repetitions done on a single subject (not shown), and can be attributed to difficulties in fitting

power-law functions within a limited frequency range [111]. Hence within the range 14-50 MHz,

the simpler linear frequency dependence of attenuation coefficient of the dermis adequately

described the results obtained in this work. The use of a non-zero intercept for curve-fitting the

frequency dependence is discussed in the next section.
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Figure 3.5: In vivo attenuation coefficient of (a) the dermis at 3 body-sites and (b) subcutaneous fat
at two body-sites. The markers indicate the median and the error bars indicate the full range of data.

The tick marks on the error bars indicate the 2 5th and the 7 5th percentile points. Individual curves

are slightly displaced along the x-axis to improve legibility. Data at frequencies higher than 26 MHz
in the case of fingertip dermis, and higher than 34 MHz in the case of subcutaneous fat were not
used due to poorer SNR at these frequencies.

Figure 3.5 (a) shows the attenuation coefficient of the dermis at the three body-sites: forearm

wrist, forearm elbow, and the fingertip obtained using transducer I. In the case of fingertip dermis

only data up to 26 MHz was used due to a poorer SNR at higher frequencies. As expected, the

results at the two forearm regions are similar (median P = 0.21 dB/mm/MHz at the wrist and 0.20

dB/mm/MHz at the elbow). At the fingertip however, the attenuation coefficient slope is higher

(median P = 0.33 dB/mm/MHz) than that at the other two locations. Figure 3.5 (b) shows the

attenuation coefficient of subcutaneous fat at the two forearm regions. The median P at the wrist

and elbow were 0.18 and 0.19 dB/mm/MHz respectively. These values are close to that of the

dermis, indicating similarity in attenuation coefficient slopes between dermis and fat. Figure 3.6

shows a histogram of the difference in attenuation coefficient slope between dermis and fat

computed individually for all subjects (for transducers I and II). A paired t-test gave a p-value of

0.61 for the equivalence of the two means, indicating that there is little difference between dermis

and fat in terms of attenuation coefficient slope within the frequency range studied.
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Figure 3.6: Histogram of difference in attenuation coefficient slope between the dermis and

subcutaneous fat. All data obtained using transducer I at both forearm wrist and elbow regions and

transducer 11 at forearm wrist regions were used to create the histogram (n=90). On the average little

difference is seen between the dermis and fat in terms of attenuation coefficient slope within the

range of frequencies studied.

Figure 3.7 shows the backscatter coefficient of forearm wrist dermis obtained using all three

transducers as well as the reference phantom method using data from transducer II. Good

agreement can be seen among these results despite differences in transducer characteristics. Some

discrepancies seen in the plots could be attributed to assumptions used in computing backscatter

coefficients as well as using a slightly different subject population for the three transducers. The

backscatter coefficients were generally in the range 10-to 10 TSr-mm-'and showed an

increasing trend with frequency. Data from these plots were combined with data from transducer

I at the forearm elbow and were plotted on a log-log scale (Fig. 3.12). An approximate increase in

slope is seen at higher frequencies, which implies increasing power-law exponents when piece-

wise power-law fits are done. For example if two power-law fits are done on the data, one for 14-

30 MHz and the other for 30-50 MHz, the latter would show a larger value for power-law

exponent than the former.
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Figure 3.7: In vivo backscatter coefficients of the dermis at the forearm wrist location in the range
14-50 MHz. The markers indicate the median and the error bars indicate the full range of data. The

tick marks on the error bars indicate the 2 5th and the 7 5th percentile points. Individual curves are
slightly displaced along the x-axis to improve legibility. The backscatter coefficients were computed
for the three transducers by compensating backscattered spectra for system-dependent effects, and
additionally for transducer II, using the reference phantom method.

Figure 3.8 shows the backscatter coefficients of the dermis and fat at the two forearm regions

obtained using data from transducer I. Results from the two regions match well for both dermis

and for fat. Within the range 14-34 MHz, backscatter coefficient of fat showed a slight increasing

trend followed by a slight decreasing trend. The results for fat also showed more variations than

for dermis, the reasons for which could be attributed primarily to the occasional presence of

strongly scattering fibrous septae in the fat. To compare the backscatter levels of the dermis and

fat, a histogram of the differences in integrated backscatter (14-34 MHz) between the two was

plotted (Fig. 3.9). All of the values were positive indicating higher integrated backscatter for

dermis compared to fat. A paired t-test gave a p-value ~~ 0 for the hypothesis that the two means

are the same. The ratio of integrated backscatter of dermis to that of fat computed for all data

ranged from 1.03 to 87.1 (median value was 6.45), indicating that within 14-34 MHz, dermis on

the average backscatters about six times stronger than fat.
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3.4 Discussion

3.4.1 Summary of results

In this work, attenuation and backscatter coefficients from normal human dermis and

subcutaneous fat were determined using human subjects under in vivo conditions. Attenuation

coefficients of dermis in the range 14-50 MHz at the forearm wrist region were computed using

data from 3 transducers, which showed good agreement with one another. Backscatter

coefficients of dermis at the same location were also computed by compensating recorded

backscatter spectra for the system-dependent effects, and additionally for one transducer using the

reference phantom method. The computed backscatter coefficients based on the 4 methods agreed

well with one another. Comparison of attenuation and backscatter coefficients between dermis

and fat at the forearm region was done. Attenuation coefficients of the dermis at two locations,

fingertip and forearm, were also compared. Table 3.2 presents a summary of the results.
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Figure 3.8: Backscatter coefficient of (a) the dermis and (b) fat at the two forearm regions obtained
with transducer I. Markers and error bars indicate median and full range of data respectively. The

tick marks on the error bars indicate the 25'h and the 7 5th percentile points. Individual curves are
slightly displaced along the x-axis to improve legibility.

Although the initial aim was to study all the 3 layers (epidermis, dermis, and fat) at both the

forearm and fingertip regions, only a sub-set of these tissues could be studied, the reasons for

which are as follows: First, for tissue characterization studies, the thickness of the tissue being

investigated should be sufficient to compute power spectra over a windowed region free of

surface and interface echoes. To compute the attenuation coefficients several such windows at

successive depths are required. At the frequencies and pulse lengths used in this study, the
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epidermis at the forearm region was too thin to fit this criterion. Next, while it was initially

thought that the epidermis at the fingertip could be studied due to its increased thickness, the

inhomogenities within the layer itself, such as the presence of a sharp interface at the stratum

corneum-viable epidermis border made it difficult to select homogeneous regions, and therefore

the fingertip epidermis could not be reliably studied from a tissue characterization perspective.

The presence of such imhomogeneities noted in this study is consistent with earlier studies of

ultrasound imaging of skin [81, 112]. Next, subcutaneous fat at the fingertip region could not be

studied because the signals from this tissue were too weak and close to the noise floor level.

Thus, in this work the forearm dermis, the forearm subcutaneous fat, and the fingertip dermis

were the three tissues studied. Furthermore, because the fingertip epidermis was not studied, the

backscatter coefficient of the fingertip dermis could not be computed because the intervening

attenuation due to the epidermis could not be determined reliably.

Table 3.2: Summary of attenuation and backscatter results.

Attenuation coefficient slope 3  Integrated backscatter (14-34

Tissue (dB/mm/MHz) MHz) x 10 -3 Sr -' mm -'

Range across subjects (median) Range across subjects (median)

Forearm dermis 0.081-0.388 (0.211) 1.57-47.7 (8.52)

Forearm fat 0.037-0.399 (0.184) 0.06-14.6 (1.60)

Fingertip dermis 0.088-0.524 (0.331)

3.4.2 Attenuation coefficient measurements

Previous work by Riederer-Henderson et al [83] at 25 and 100 MHz indicated that the attenuation

coefficient in skin might have a power-law type of dependence. Moran et al [21] also reported a

power-law type of dependence of dermal and epidermal attenuation coefficients with frequency

within the range 20-30 MHz, but whether a simpler linear fit could have modeled the data well

enough was not mentioned in their work. Work by Pan et al [87] showed that attenuation

coefficients in human skin at 20 and 30 MHz were 5.5 and 8.4 dB/mm respectively, from which a

3 When the frequency dependence of the attenuation coefficient is linear, it is sometimes useful to express
the attenuation on a per wavelength basis, which is a dimensionless quantity. The attenuation per
wavelength can also be represented using the Q factor [113] using the analogy with loss in second order
systems. The attenuation per wavelength for the dermis is 0.32 dB, and the Q factor is about 86.
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power-law exponent (assuming a(f) = Af") could be obtained to be n=1.04. Other researchers

have assumed a linear frequency dependence while computing attenuation coefficients for the

dermis [86, 88]. In this work, although power-law fits were analyzed, no advantage in using them

over simpler linear frequency dependence was seen in the range 14-50 MHz for the dermis. It

should also be noted that even if a power-law dependence is truly present, a large BW and

computation of attenuation coefficients at several independent frequencies within this BW are

needed to accurately determine the appropriate parameters [111]. Thus over the frequency range

analyzed, a linear frequency dependence adequately described the attenuation coefficient of the

dermis.

A surprising result from this study is that the attenuation coefficient slope of the dermis and

subcutaneous fat are similar. This is different from earlier results by Guittet et al [88] where a

lower value of attenuation coefficient slope was reported for subcutaneous fat. The reason for this

difference is not clear, but it can be noted that the applicability of the spectral-shift method used

in their studies becomes more limited when the bandwidth of the signals starts to change with

depth. In their case a bandwidth equal to that obtained at the focus on a steel plate reflector was

used for all depths, in which case an under-estimation of the attenuation coefficient slope could

occur if the bandwidth is actually smaller than the one used. The results in this work show a

decreasing trend in the bandwidth of the signals backscattered from deeper fat layers compared to

the shallower dermis (Fig. 3.1). Another reason could be due to the different frequency ranges

used. In this work the useful frequency for subcutaneous fat was chosen to be 14-34 MHz so as to

avoid noise from biasing the results, whereas the values reported by Guittet et al were at a center

frequency of 40 MHz. A histogram of differences in attenuation coefficient slopes between the

dermis and fat computed in this work showed that on the average there is little difference between

the two tissues (Fig. 3.6).
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Figure 3.9: Histogram of difference in integrated backscatter between the dermis and fat in the range
14-34 MHz. All data obtained using transducer I at both forearm wrist and elbow regions and
transducer 11 at forearm wrist were used to create the histogram.

The results in this work support the possibility that attenuation coefficients of the dermis could

depend on the location in the body. The values at the fingertip were found to be higher than that

at the forearm. Possible reasons are differences in skin tension at the two locations and

differences in the underlying collagen structure at the two locations [87]. Further studies

involving data collection from several body-sites are needed to establish regional variations in

ultrasonic properties of skin.

63



100

10 X Forster et al, 1990 (Dog)
I Foster et al, 1984 (Human breast)

-------. Guittet et al, 1999 (Human forearm in vivo)
-- Moran et al, 1995 (Human trunk dermis)

E -- " " (Human trunk epidermis)
o Olerud et al, 1987 (Dog)
A Pan et al, 1998 (Human breast)
A " " (Rabbit)
* Riederer-Henderson et al, 1988 (Dog)

- This study (Human forearm in vivo)
-- This study (Human fingertip in vivo)

0.1

1 10 1 00
MHz

Figure 3.10: Comparison of in vivo attenuation coefficients of the dermis from this study with
literature data.

When analyzing the frequency dependence of the attenuation coefficient of the forearm dermis, a

non-zero intercept was used in both the linear and power-law models. This is consistent with the

data shown in Fig. 3.5, wherein an extrapolation of the attenuation coefficients of dermis would

lead to negative y-intercepts. Such negative intercepts imply an increase in recorded signal levels

with distance at lower frequencies and can be attributed to increases in backscatter coefficients

within the region analyzed. As described before, estimation of attenuation coefficients with in

vivo backscattered data requires the assumption that backscatter coefficients are constant with

depth within the region analyzed. When such a condition does not exist, the computed attenuation

coefficients may not be true attenuation coefficients inherent to the tissues, but can only serve as

a relative measure between different tissues. Several researchers have used such assumptions:

Guittet et al for skin [88], Wilson et al [64] for vascular tissues, and Lu et al [107] for liver to

name a few. Examples of fitting frequency dependence curves for attenuation coefficients with

non-zero intercepts can also be found in the literature [51, 114]. Under these conditions, the

measured backscatter coefficients are also only averages over the region of interest (e.g. in the

case of dermis, over the range 0.3-1.2 mm beneath the surface). It is also worthwhile to note that
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if changes in backscatter coefficients from one depth to another within the region of interest are

relatively frequency independent, then the frequency dependence of attenuation is not affected

except for a shift along the y-axis. Thus, the computed linear slope P would be independent of

any frequency independent changes in backscatter coefficients over the region analyzed.

100
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0.1 - This study (Human forearm in vivo)
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Figure 3.11: Comparison of in vivo attenuation coefficients of fat from this study with literature data.

Figure 3.10 shows the comparison of the results of computed attenuation coefficient slopes from

this work with that found in the literature. To be consistent with other methods, only the

attenuation coefficient slope (with the intercept removed) was used in comparing with literature

data. It is to be noted that the previous in vivo results by Guittet et al (1999) were based on a

spectral-shift method whereas the results here were based on a spectral-difference method and a

good agreement between the two could be seen despite differences in methodology. Figure 3.11

shows a comparison of attenuation coefficient slopes of fat estimated in this work with that found

in the literature. Additional references were obtained from Bamber and Hall [115], Akashi et al

[116], Taniguchi et al [117], and Gammell et al [118].
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Figure 3.12: Comparison of in vivo backscatter coefficient of dermis from this study with literature

data (in vitro). Data from Moran et al. (1995) is based on a power-law fit mentioned in their study.

3.4.3 Backscatter coefficient measurements

This work seems to be the first one where in vivo backscatter coefficients are being reported for

dermis and subcutaneous fat. Only few in vitro data are available and a comparison is shown in

Fig. 3.12. Differences between the present results and previous studies can be attributed to

genuine differences between in vivo and in vitro tissues, specimen preparation effects, or

differences in skin properties between forearm and other body-sites used for the other studies. To

mathematically describe the frequency dependence of backscatter coefficients, a power-law fit

has been used for many tissues, as backscatter coefficients typically tend to increase with

frequency. In the case of the dermis, the backscatter coefficient computed in this study does not

show such a simple behavior but rather increasingly stronger dependence at higher frequencies

within the range 14-50 MHz. Such a behavior could result due to scattering from multiple

populations of scatterers in the dermis. The dermis consists of a network of collagen fibers whose

sizes approximately increase with depth. At the papillary layer closer to the surface the fibers are

0.3 to 3 jim in size whereas at the deeper reticular layer the sizes are coarser and 10 to 40 gm in

size [119]. Scattering at lower frequencies (14-30 MHz) could be dominated by the larger sized
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collagen fibers giving rise to a smaller power-law exponent, while scattering at higher frequencies

(30-50 MHz) could be dominated by a high density of small-sized collagen fibers giving rise to a

more Rayleigh type scattering with a higher value of power-law exponent. This is broadly

consistent with the anatomical structure of the dermis. If a bimodal distribution of scatterers is

assumed for the dermis, previous methods developed to estimate scatterer sizes from measured

backscattered spectra could be used to estimate mean scatterer sizes for these two populations

after suitably filtering the data to select relevant frequency ranges [26, 28]. Such analyses have

been useful in determining scatterer sizes in kidney [58], liver [28, 54] and the eye [28]. The

application of such methods to skin tissues will be the subject of future work. The possibility of

complex frequency dependence of backscatter coefficient such as the presence of resonance

patterns also exists if there is regularity in the size of scatterers. Such resonance patterns were not

found (even on a single-subject basis, results not shown) in this study most probably due to wide

variations in the sizes of the scattering structures in dermis. Conventional B-scans typically show

that subcutaneous fat is hypoechoic compared to the dermis, but such a difference has not been

quantified previously. The present results indicate that within the range 14-34 MHz, the

integrated (average) backscatter of the dermis is about six times larger than that of fat (median of

ratio of integrated backscatter of dermis and that of fat was 6.45). In conventional B-scans such a

difference could get more exaggerated when the compensation for intervening attenuation is

based on a smaller value of 0.5 dB/cm/MIz typical of soft tissues than the value of 2

dB/cm/MHz for dermis.

(a) (b)

Fingerprint

Stratum corneum -

Interface .. - -.......................

Viable epidermis
and papillary dermis

Reticular dermis

Sweat gland duct

Figure 3.13: In vivo B-scan Images of the fingertip of two human subjects. Both images show
strongly reflecting interfaces beneath the surface that possibly correspond to the transition from the

stratum corneum to the rest of the epidermis. In (a) scanning was done perpendicular to the finger
ridges on the surface and fingerprints could be seen. In (b) bright structures within the stratum
corneum that could possibly correspond to sweat gland ducts could be seen.
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3.4.4 Limitations of the study

(a) Effect of epidermis: In this work, while computing backscatter coefficients of dermis and fat

tissues, compensation for intervening attenuation was done by assuming that the attenuation

coefficient of epidermis is the same as that of the dermis. The effect of making such an

assumption can be estimated to first order from the in vitro data of attenuation coefficients of

epidermis and dermis by Moran et al [21]. From their results, at a frequency of 26 MHz, the ratio

in attenuation between epidermis and dermis for a round trip distance of 0.3 mm (approximately

twice the epidermal thickness at the forearm) is calculated to be 0.93 dB or a factor of about 1.24.

This indicates that the backscatter coefficients of the dermis and fat reported in this work could be

lower than the true value by about 24%. Efforts to determine attenuation and backscatter

coefficients of the epidermis at the fingertip were not successful with the present system due to

the presence of gross inhomogeneities in the epidermis. Figure 3.13 shows B-scan images of the

fingertip of two subjects. Notable is the presence of an interface below the surface and above the

dermis, most probably corresponding to the transition from the stratum corneum to the viable

epidermis [81]. While it is possible to separate the sub-layers in B-scan images, efforts to separate

them for tissue characterization were not successful with the present system due to finite pulse

length and the requirement of several windows free of interfaces within each layer to compute

attenuation (and therefore backscatter) coefficients. The epidermis is best studied using much

higher frequency systems (e.g. 100 MHz) with shorter pulses.

(b) Hydration effects: Since water is used as a coupling medium in the experiments, hydration

effects are possible during the time of the experiment (about 6 minutes). The effect of the

hydration on the attenuation and backscatter coefficients cannot be quantified at present but

presumably due to the barrier function of the stratum corneum in the epidermis [120], such effects

are limited to only the superficial layers in the skin, and the dermis and fat are not affected very

much. Such effects can also be reduced in future studies by using a faster imaging system.

3.4.5 Implications to tissue characterization

At present excision-biopsy is the gold standard for analysis of skin lesions such as suspected skin

tumors. This is a time-consuming and expensive practice, especially as the majority of skin

lesions are benign. High frequency ultrasound is a promising technique for evaluating skin due to

its ability to penetrate deep tissues (several mm), its low-cost, and non-invasiveness. Tissue

characterization parameters such as attenuation and backscatter coefficients have the potential to
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aid classification and differentiation between normal and abnormal skin tissues, as well as

between benign and malignant tissues. The computation of such parameters for normal skin

tissues in vivo is an important step in that direction. Future studies would deal with the evaluation

of such parameters for specific skin lesions. Moreover other parameters such as speckle statistics,

doppler, and elasticity may have the potential for providing useful information for the evaluation

of skin lesions and are worth being investigated in further studies. The epidermis could also be

studied using much higher frequency systems.
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4 Echo Envelope Statistics of Normal Skin Tissues4

4.1 Introduction

One approach for obtaining additional information for characterizing tissues using ultrasound is

to analyze the statistical fluctuations of the backscattered signals. Ultrasonic signals can be

modeled as stochastic signals since the precise details of the scattering structures in tissues, and

consequently the details of the backscattered signals, are not known a priori. Support for this type

of stochastic modeling comes from the fact that the ultrasound images of soft tissues have a

random interference pattern called speckle, similar to the appearance of a rough surface irradiated

by a coherent laser source. In ultrasound, speckle has both been considered as an unwanted effect

that must be minimized using speckle-reduction techniques, or as an information-carrying

phenomenon that can be exploited in tissue characterization. In this chapter we adopt the latter

methodology to characterize skin tissues. In prior studies, the first order statistics of the amplitude

of backscattered signals from several tissues such as the liver [121, 122], heart [123-125], breast

[126], eye [57], and kidney [42] have been studied. Parameters related to amplitude statistics such

as the scatterer number density [36, 42] and its frequency dependence [127] have also been

studied for their potential for tissue characterization. Moreover second order statistics have also

been studied [128]. Much of the theoretical background for such studies was obtained from

earlier works in other fields such as optics, radar, and communications.

Until now, the statistical distributions of the envelope of backscattered signals from skin tissues

have not been studied. The type of probability distribution of the envelope signals, and their

parameters, could contain potential information regarding tissue microstructure that could be

exploited for tissue characterization. In this work, we study the capability of six different

probability distributions (Rayleigh, Rician, K, Nakagami, Weibull, and Generalized Gamma) to

model statistics of envelope of backscattered data collected from the skin of several human

volunteers in vivo using the Kolmogorov-Smirnov (KS) statistic as a goodness of fit measure. We

also study the variability in parameter estimates and compare inter- and intra-subject variability.

This is important as a large variability in the estimates might limit the capability of the parameters

for tissue characterization and methods to reduce such variability should be pursued. Finally the

4 This chapter uses material from an article accepted for publication in the IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control: B. I. Raju and M. A. Srinivasan, "Statistics of
envelope of high frequency ultrasonic backscatter from human skin in vivo".
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capability of the parameters to differentiate different skin tissues (dermis vs. fat, forearm dermis

vs. fingertip dermis) is also studied.

4.2 Probability density functions

The signal received by an ultrasound transducer can be modeled as a phasor sum of the returns

from several scatterers within the resolution cell of the system:

re' =Eaie (4.1)
i=1

where a1 's are the amplitudes of signals scattered from the individual scatterers, which in turn

depend on the shape, size and acoustical properties of the scatterers and the surrounding medium,

and the Ol 's depend on the position of the scatterers. Since the precise details regarding the

scattering cross-sections of the individual scatterers are unknown, the a's are modeled as

random variables. Also since the locations of the scatterers are unknown, the 6, 's are also

modeled as random variables. Moreover n , the number of scatterers contributing to the resultant,

can also be a random quantity in general. Hence the resultant amplitude r is also a random

quantity that can be described using probability density functions (pdfs). It should be pointed out

that the model presented in Eq. (4.1) is an idealized one since realistic scattering occurs

continuously throughout the tissue and not at discrete points. Nevertheless, it provides a

convenient starting point for analysis. Even with this simplified model, it is generally difficult to

obtain the exact pdf of the amplitude r except when n is small, and the Oi 's are assumed to be

uniformly distributed between 0 and 2 [129]. In practice several well-known distributions are

employed to describe the pdf of r and their appropriateness is evaluated using goodness of fit

measures. In making such a description, one desires that the distribution fits empirical data well

and is sufficiently rich enough to model a variety of scattering conditions. With the aim of

determining the pdf that best models backscatter data from skin tissues, six probability

distributions summarized below were studied in this work. Expressions for their pdfs, denoted as

p(r), and their cumulative distribution functions (cdfs), denoted as F(r), are also given. The

expressions for the cdfs were used in computing the KS goodness of fit measures. Also

mentioned are the bounds on the ratio of the mean to standard deviation, denoted as SNR.
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4.2.1 Rayleigh distribution

The Rayleigh distribution [130] results as a consequence of the central limit theorem, when the

scattering medium contains a large number of randomly distributed scatterers (0's uniformly

distributed between 0 and 2/r ). This is a consequence of the application of the central limit

theorem to the random phase summation problem. The Rayleigh distribution can also result if the

individual scattering amplitudes a in Eq. (4.1) are themselves Rayleigh distributed even for

finite n. Its pdf and cdf are given by

r2
p(r)= re 2c2 r > ; a >0 (4.2)

r r2
F(r)= e 2U2 (4.3)

It is instructive to present a brief derivation of the Rayleigh pdf using the central limit theorem.

From Eq. (4.1), the real and imaginary parts of the resultant phasor are given by

AR= a1 cos(9g) + a 2 cos(02 )+ ... + COs(ON) (44)
A1 = a, sin(O ) +a 2 sin(02 ) +...+aNsin(ON)

When n is large, the distribution of both AR and AI approach Gaussian with zero mean and

variance o.2 - n E(a2 ) where E(.) indicates the expectation operator. This follows directly from
2

the fact that the O6's are uniformly distributed between 0 and 27r and are independent of one

another. Moreover it is easy to show that AR and A1 are uncorrelated and jointly Gaussian with a

joint pdf given by

J(A 2 +,2)

p(AR, A,)= 2 2a2 (4.5)
27ro-

To evaluate the pdf of the amplitude of the resultant phasor r = AR2 + A a transformation to

polar coordinates is made:

r2

p(r, /) = r 2 222 (4.6)

where V/ is the phase of the resultant phasor. The pdf of r can be now be obtained by integrating

the above expression over all V/. Since y can be seen to be uniformly distributed between 0 and
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27g, a straightforward integration of Eq. (4.6) over V/ gives the Rayleigh pdf for r in Eq. (4.2).

For this distribution, the SNR is equal to 1.91. When conditions leading to Rayleigh statistics are

present, the B-scan images of the tissue show a speckle pattern that is often referred to as fully-

developed speckle.

4.2.2 Rician distribution

The Rician distribution [131] results if in addition to conditions leading to the Rayleigh

distribution, a specular or unresolved coherent component exists yielding the following pdf and

cdf for the amplitude of the resultant phasor:

p(r)=re 2 20( ) r 0; s 0,T >0 (4.7)

F(r)=1-Q, -sJ (4.8)

where IO(x) is the modified Bessel function of the first kind of order 0, Q, is the Marcum Q

function [132], and s is the amplitude of the coherent term. The Rician distribution includes the

Rayleigh distribution as a special case for s = 0. The SNR for the Rayleigh distribution is

>1.91. The term post-Rayleigh is sometimes used to refer to conditions leading to Rician

statistics.

4.2.3 K distribution

The K distribution [45] results when the O 's are distributed uniformly between 0 and 27r, and

the number of scatterers is random and follows negative binomial statistics, provided the mean

number of scatterers is large. This distribution also arises if the individual scattering amplitudes

a1 's are themselves K distributed even for finite N. The pdf and cdf are given by

p(r)= 2jj b a 1 Kai(br) r > 0; a, b > 0 (4.9)
F(a)

F(r)=1- 2 -- Ka (br) (4.10)
F(a) 2
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where a and b are the shape and scale parameters respectively, F(a) is the gamma function,

and K, (x) is the modified Bessel function of the second kind of order a . The relationship

between the Rayleigh and K distributions was given by Jakeman and Tough [133], who showed

that a Rayleigh process with non-constant second-moments is K distributed. Thus variations in

scattering cross-sections of the individual scatterers tend to lead to deviations from the Rayleigh

distribution to the K distribution. The K distribution has an SNR 1.91 and includes the

Rayleigh distribution as a special case for a = oo . The term pre-Rayleigh is sometimes used to

refer to conditions where the number density of the scatterers is not large enough to lead to the

Rayleigh distribution. The K distribution is thus one example of a pre-Rayleigh distribution.

4.2.4 Nakagami distribution

The Nakagami distribution, first derived by Nakagami [47] based on his large-scale observations

in high-frequency long-distance radio propagation, has the following expressions for the pdf and

cdf:

( 
2)2m'" 21 m 2

p(r)= r"'" e r > 0; m, Q > 0 (4.11)
F(m)Q'"

F(r) = Fine m, mr (4.12)

where m and Q are the shape and scale parameters respectively, and Fic(m, x) is the

incomplete gamma function. Although derived empirically, theoretical justifications for

encountering this type of distribution were provided by Yacoub [134] based on the observation

that the power of a Nakagami distributed signal is the same as that of another signal composed of

the incoherent sum of several Rayleigh signals. For example, if signals from two Rayleigh

regions are added coherently, then the sum has a Rayleigh envelope. However, if these signals are

added incoherently (powers added rather than instantaneous amplitudes), the resultant power is

the sum of two exponential random variables, which is gamma distributed, in which case the

amplitude is Nakagami distributed. Thus the Nakagami signal can be understood to be composed

of clusters of waves added incoherently, for which within any one cluster the resultant obeys

Rayleigh statistics, and the clusters are randomly distributed resulting in the incoherent addition

of the resultants. In an ultrasound context, Shankar [135] showed that the Nakagami distribution

could model a variety of conditions including pre-Rayleigh, Rayleigh, and post-Rayleigh

conditions and can be useful in modeling backscatter signals from the human breast [126]. The
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Nakagami distribution includes the Rayleigh distribution as a special case (m = 1) and

approximates the Rician distribution for m >1. The distribution can model pre-Rayleigh,

Rayleigh and post-Rayleigh conditions and its SNR can take any positive value.

4.2.5 Weibull distribution

The Weibull distribution was first proposed in the context of reliability engineering [136] and is

described by the following pdf and cdf:

p(r)=( e r 0; a,b > 0 (4.13)
a a

F(r) =1-e a (4.14)

where, b and a are the shape and scale parameters respectively. Good evidence for this

distribution has been observed in modeling radar clutter signals [137]. No theoretical explanation

seems to be available for encountering this type of distribution. However the fact that this

distribution can model pre-Rayleigh, Rayleigh and post-Raleigh conditions can be seen from the

relationship between the SNR and the shape parameter b:

SNR= (4.15)

F 1+ )F2 1+*1

The SNR monotonically increases with b, with 0 <b <2 corresponding to pre-Rayleigh

(SNR <1.91), b = 2 corresponding to Rayleigh (SNR =1.91), and b > 2 corresponding to

post-Rayleigh or Rician (SNR >1.91) conditions. The primary reason for including this

distribution in this study is that the functional form of its pdf is different from that of the other

distributions such as the K and the Nakagami distributions, thereby increasing the search space of

appropriate distributions for skin tissues. The SNR of the Weibull distribution can take any

positive value.
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4.2.6 Generalized Gamma distribution

The generalized gamma distribution, hereafter referred to as the GG distribution, was introduced

by Stacy [138] and is a three parameter distribution whose pdf and cdf are given by

cr (V1
p(r)= ea r 0; a,v,c >0 (4.16)

acvT(v)

F(r) = F V, (4.17)

where, c and v are two shape parameters that provide flexibility in adjusting the shape of the

pdf, a is the scale parameter, and In (i, x) is the incomplete gamma function. This distribution

has previously been found to be useful in modeling the fading of signals in a mobile radio

environment [139]. Recently, while the present work was under review, Shankar [89]

independently proposed the use of this distribution to model ultrasound envelope signals. The GG

distribution is especially attractive since it contains several distributions as special cases:

Rayleigh (c=2 and v =1), exponential (c=1 and v =1), Nakagami (c=2), Weibull (v =1), and also

the usual gamma (c=1) distribution. The lognormal distribution also arises as a limiting case

when v approaches oo. Moreover the GG distribution provides two parameters for tissue

characterization instead of at most one for all the other distributions. It is also interesting to note

that if r is GG distributed, so is r 2 and hence the GG distribution can be used for modeling both

the amplitude and intensity fluctuations.

For the sake of completeness we also mention some other distributions that have been studied in

the literature: the Generalized-Rician [41, 140], the Homodyned-K [37], and the Generalized-K

distributions [133]. They were not used in this study because the simpler Nakagami distribution

can model conditions leading to the above distributions [135].

4.3 Methods

4.3.1 Experimental system

The experimental system and data acquisition procedure are described in detail elsewhere [92]

and only brief details will be given here. The system consisted of a PVDF transducer

(Panametrics, Waltham, MA; Model P150), a pulser/receiver (Panametrics; Model PR5900), a
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digitizing oscilloscope sampling at 500 MHz (Tektronix, Beaverton, OR; Model TDS 520C), and

a 3-axis scanning system (Parker Hannifin/Compumotor, Cleveland, OH). The characteristics of

the transducer used in this study are shown in Table 2.1. A PC was used to control both

mechanical scanning and GPIB-based data acquisition. By averaging 100 repeated acquisitions,

the signal-to-noise ratio of each echo sequence was vastly improved. This approach was

especially useful to record signals from subcutaneous fat, which were considerably weaker than

those from the dermis. The scanning system had encoders on the x and y-axes that enabled the

transducers to be positioned with an accuracy of 1 tm. Echo sequences were collected from 25

independent lateral locations of the transducers by scanning along x and y axes over an area of

1.5 mm x 1.5 mm in a 5 by 5 raster format. The stepping distance of 0.3 mm was larger than the

lateral resolution of the system (0.1 mm). Since the transducer was well focused, diffraction

effects could lead to signal variations with depth. Therefore the transducer was axially translated

to focus at a desired depth, while data were recorded from the location of the focal zone. Once the

raw data were collected, further analyses were done off-line on a PC.

4.3.2 Human subjects and tissues

In most parts of the body, the skin consists of a thin layer of epidermis (0.15 mm thick) and a

thicker underlying layer of dermis (1.2-1.8 mm thick). The region beneath the dermis consists of

subcutaneous fat, which is sometimes considered as a third layer of the skin and referred to as the

hypodermis. In the palms and soles, the skin is vastly different from that at other locations.

Notably, the epidermal thickness is much larger (about 0.6 mm) in these regions due to the

increased thickness of the stratum corneum, the dead layer of cells. In this work, data were

collected from the dorsal side of forearm skin (close to the wrist) as well as the tip of the left

index finger on the palmar side. Since skin conditions could depend on age, the study was

restricted to only young adults. Eighteen subjects aged between 20-36 (median = 26) were used.

In the case of the forearm region, both the dermis and subcutaneous fat tissues were studied

whereas at the fingertip only the dermis was studied, as the signals from subcutaneous fat at this

region were close to the noise level. At the forearm, data collected when the focal zone was at 0.6

mm below the surface were taken to correspond to the dermis while data collected when the focal

zone was located at 2.4 mm below the surface were considered to correspond to fat. Occasionally

for some subjects when fibrous septae were seen to be present in the fat at a depth of 2.4 mm

(identified as hyperechoic structures within a relatively hypoechoic fat), another depth between

1.8-3.0 mm was used to extract data corresponding to fat. In the case of the fingertip, data
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collected when the focal zone was at 1.05 mm below the surface were taken to correspond to the

dermis. For each of the experiments, a second independent repetition at a close-by region

(displaced by a few mm from the original site) was done to increase the number of independent

samples. In order to study intra-subject variability and compare it with inter-subject variability,

18 repetitions of the experiment were done for 1 subject (male, 28 years) at the fingertip region.

Water was used a coupling medium between the transducer and the tissue. During imaging, the

forearm was held steady on a table using Velcro straps. The fingertip was kept steady using

custom-made finger splints. All the subjects who participated in the study signed an informed

consent document approved by the Institutional Review Board of the Massachusetts Institute of

Technology.

4.3.3 Determination of empirical probability density functions

Once echo sequences were recorded, the Hilbert transform approach was used to obtain envelope

signals. Sixteen independent samples of the envelope all lying within the focal zone region were

extracted from a particular echo sequence by picking every eighteenth sample. Assuming a speed

of sound of 1.5 mm / ,us in skin, the spacing between the extracted samples was 27 pu m, which

was larger than the axial resolution of the transducer (25 p m). Also the total length of 405 P1 m

spanned by all the 16 axial samples was considerably smaller than the -6 dB depth-of-focus of

the transducer (1.3 mm). With 16 samples per echo sequence, 25 such echo sequences through

lateral scanning (the transducer was focused at one specific depth, e.g. 0.6 mm below the surface

for the case of the dermis for all the 25 echo sequences), and 2 repetitions of the experiment, a

total of 800 samples were available to construct empirical histograms. Before combining the

samples in the above manner, compensation for attenuation within the 405 p4 m distance was

done by assuming attenuation coefficient slopes of 0.21, 0.18 and 0.33 dB/mm/MHz for the

forearm dermis, forearm fat, and fingertip dermis respectively [92]. Also, occasional specular

reflectors, e.g., fibrous septae in subcutaneous fat were eliminated prior to analysis to the extent

possible. Such occasional specular reflectors would make the results more pre-Rayleigh than the

ones reported in this work [41] and were removed because they were considered extraneous to the

tissue of interest. These occasional high peaks were considered to be outliers if their amplitudes

were very far from the median of all the samples. A distance of four times the inter-quartile range

(IQR) from the median was used as a cut off to categorize these samples as outliers. Median and

IQR were used (instead of mean and SD), as they are much less affected by the presence of

outliers. The reason for choosing 4 times the IQR was that further reduction in the cut-off
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distance did not change the statistics appreciably. It is a matter of personal judgment whether to

include or eliminate these samples. It is reasonable to consider that the occasional large peaks

were extraneous to the tissue of interest and therefore could be eliminated.

4.3.4 Estimation of the parameters

Estimation of the parameters of all the six distributions was done using the maximum likelihood

(ML) method, in which the set of parameters that maximizes the likelihood function or its

logarithm is determined. In the case of the Rayleigh distribution, the ML parameter was obtained

using a closed-form expression:

A 2 E(r 2 )
7ML 2 (4.18)

In the above and following equations, E(x) represents the mean of the random variable x, and is

taken to be equal to the sample mean. For distributions other than Rayleigh, simple closed-form

solutions for the parameters do not exist, and the ML procedure was implemented as an

optimization problem that sought to determine parameters that maximized the log-likelihood

function. The optimization procedure was implemented using the Nelder-Mead Simplex method

[141] available in the Matlab optimization toolbox (The Math Works Inc., Natick, MA). This

method does not require the computation of derivatives but requires an initial guess of the

solution. The initial guesses of the parameters (denoted with subscript 0 in this paper) were

obtained using the method of moments as described below. For the Rician, K, and Nakagami

distributions, the initial guesses were obtained using estimated second and fourth moments of the

data. For the Rician distribution we have,

s= 2[E(r2) - E(r4 ) (4.19)

- = E So (4.20)
2

For the K distribution we have,

2
ao = E(r4 ) (4.21)

-2
[E(r2 )]2

b = (4.22)
E(r 2 )
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And for the Nakagami distribution the initial guesses Were obtained as,

[E(r2)] 2

E(r 4) -[E(r 2  
.2

Qo = E(r 2 ) (4.24)

Under some conditions, the above equations for the Rician and K distributions do not yield

meaningful solutions. For instance, if the data were truly pre-Rayleigh distributed (e.g., K

distributed), the computed value of so would be complex. This was indeed the case for almost all

of the data obtained (see Results section). The ML procedure for the Rician distribution was

implemented by assuming the initial guess so to be a small positive quantity, equal to 0.1. On the

other hand if the data were truly Rician distributed, the computed value of ao would be negative.

However no such problem was seen for all the data sets analyzed in this paper.

For the Weibull distribution, an iterative procedure was used to compute the initial guess bo by

solving the following equation:

F I+-2
bo, E(r 2) 2(.5

p2= 2(4.25)
F 21 + I [E(r)]

bo

Figure 4.1 shows a plot of the LHS of the above equation as a function of bo. A monotonic

relationship is seen, and therefore a unique solution exists for bo for a given value of the RHS.

The solution was obtained using a look-up table containing pre-computed values of the LHS as a

function of finely spaced bo (accuracy of estimate was 0.005 in the range 1 ! bo 2 where the

solution was found for the data sets in this work). Once b was obtained, ao was obtained from

the following expression:

ao  - (r) (4.26)

F 1+
I bo
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Figure 4.1: Computation of the initial guess for the Weibull-b parameter. The graph shows the LHS of

Eq. (4.25) as a function of bo.

For the GG distribution, the initial guesses for the parameters were obtained using the moments

of logarithm of data as proposed by Stacy and Mihram [142]:

E [(ln(r) - ln(r))']

E [ (n(r) -l(r)2] 1.

(4.27)

CO = y,'(v0 ) (4.28)

E Iln(r) - In (r)

ao = E(r) (v) (4.29)

CO

In the above equation '"(v) d In[F(v)] is the polygamma function, which was evaluated
dVn[ )

using the polygamma function in Matlab's Symbolic Toolbox. At first v0 was obtained by

81

.-

[V'(V,))] 1.



solving Eq. (4.27), where the RHS of this equation is the skewness of the logarithm of the data.

Figure 4.2 shows a plot of the LHS of this equation as a function of vo. It can be seen that this

function is monotonic, and hence a unique solution for v0 exists as long as the RHS is between -2

and 0, which was the case for all the data sets analyzed in this work. A look-up table with pre-

computed values of the LHS as a function of vo was used for this purpose (accuracy of estimate

was 0.005 for the values estimated in this work). Once v0 was obtained, the value of co was then

obtained using Eq. (4.28), and subsequently the value of ao was then obtained using Eq. (4.29).

Once the initial guesses of the parameters of the Rician, K, Nakagami, Weibull, and the

generalized gamma distributions were obtained as described above, the ML estimation was

implemented using the Nelder-Mead optimization technique. We note that there are other simpler

methods to compute the parameters of some of the above distributions [143], including the use of

fractional order moments [144]. However, in order to compare the capability of various

distributions to model data from tissues, it is preferable to use the same method for estimating the

parameters of all the distributions. Thus the ML method was used for estimating the parameters

of all the distributions. Also the Nelder-Mead technique provided a uniform scheme to implement

the ML method for the various distributions, although we note that alternate implementations of

the ML method are also possible [145]. Additional optimization techniques employing Genetic

Algorithms were also studied for their potential to estimate the parameters, especially for the

Generalized Gamma pdf. However they performed poorly compared to the Nelder-Mead

technique.
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Figure 4.2: Computation of the initial guess for the GG-v parameter. The graph shows the LHS of Eq.

(4.27) as a function of the parameter V0.

4.3.5 Numerical issues

One issue in implementing the ML estimation procedure is that proper care is needed to prevent

overflow problems while computing the log-likelihood functions. For example, the gamma

function present in expressions for the pdfs of some of the distributions could easily overflow the

maximum limit of most computers when its argument is large. However its logarithm has a much

smaller value, and therefore while computing the log-likelihood functions, a direct evaluation of

the logarithm of the gamma function was used. Also while computing the log-likelihood

functions for the K distribution, the Bessel function Ka- (x) could overflow the maximum limit

of computers for small values of x. Hence an exponential approximation was used in such cases

[146]:

KaI(x) ~ -I for x < a -1 (4.30)
2 x

The logarithm of the above function was evaluated directly without first computing the

exponential, thereby avoiding numerical overflows.
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4.3.6 Goodness of fit testing

The goodness of fit of each of the candidate distributions to the empirical distribution was

evaluated using the KS goodness of fit measure, which is the maximum absolute difference

between the fitted cdf and the empirical cdf [147]. A smaller value of the KS statistic indicates a

better fit of the particular distribution to empirical data. For computing the fitted cdfs, the

expressions given in Section II were used. The KS test also enables us to accept or reject the

hypothesis that a particular distribution could model the empirical data for a chosen level of

significance. For example, for a significance level of 0.01, in order to accept the model, the KS

value should be less than (see Table A14 in [147])

D = (4.31)
4N

which, for a sample size of N = 800 , is 0.0576.

4.3.7 Statistical tests

To study the capability of the parameters of the various distributions to differentiate different

tissue types (dermis vs. fat; forearm dermis vs. fingertip dermis), the Wilcoxon sign rank test

(without the normal approximation for the test statistic) was used. In this test, the two values

being compared as taken as paired samples.

4.4 Results

4.4.1 Probability density function of amplitude of backscattered signals from skin tissues

Figure 4.3 shows typical pdf fits to empirical envelope data obtained at the forearm of a human

subject in vivo, for all the six distributions. Figure 4.4 shows the corresponding cdf fits to the

empirical cdf. The fits were obtained using the ML method for estimating the parameters with a

sample size of 800. It can be seen that the GG pdf fitted the empirical histograms very well and

had the smallest KS value (smallest cdf deviation from the empirical cdf) compared to the other

distributions. The empirical histograms were pre-Rayleigh, and the Rayleigh and Rician

distributions modeled the empirical histograms poorly compared to the other distributions. Also

the best Rayleigh and Rician fits were almost the same, which is consistent with the fact that the

best Rician fit to data that are pre-Rayleigh distributed is the Rayleigh fit. Other distributions,
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especially the K and Weibull distributions also show good fits to the data. The empirical

histogram for the case of fat was more pre-Rayleigh than that of the dermis.

Figure 4.5 shows the KS goodness of fit measures between each one of the six distributions and

the empirical distribution for the case of the forearm dermis, forearm fat, and fingertip dermis.

The GG distribution provided the best fit in a majority of cases, and on the average had the

smallest KS statistic values. Next to the GG distribution, the K and Weibull distributions also

provided good fits to the data as seen by the closeness of their KS values to that of the GG

distribution. If a hypothesis test was undertaken at a significance level of 0.01 to accept or reject

each of the models, the KS values should be less than 1.63 / 1 , which for N = 800 is 0.0576.

It can be seen from Fig. 4.5 that on the average, the GG, K and Weibull distributions would

satisfy this criterion for all the three tissues. The Nakagami distribution, though better than the

Rayleigh/Rician models did not fit the data as well as the GG, K and Weibull distributions. For

all the data sets, the Rayleigh and Rician distributions gave poor fits to the data, because of which

their parameters were not studied further.
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PDF: Forearm dermis

Rayleigh/Rician (0.138)
------ K (0.021)
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Figure 4.3: Fitting probability density functions to empirical data. The top figure corresponds to data
from the forearm dermis and the bottom figure corresponds to data from the forearm fat. The pdf fits
were scaled so that the area under the curves matched the total area under the histograms. The
samples were normalized so that the maximum value was unity. The Rayleigh and Rician fits are co-
linear. The values in the inset are the Kolmogorov-Smirnov goodness of fit values. See also Fig. 4.4.
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CDF: Forearm dermis
1-

0.8-

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

CDF: Forearm fat
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Figure 4.4: CDFs of the fitted distributions. Only portions of the data (0.05-0.50) are shown to
illustrate the differences. The values in the inset are the Kolmogorov-Smirnov goodness of fit
values. See also Fig. 4.3.
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#Best 0 1 0 1 16

S

*

3

RA/RI K NA WE GG

(c) Fingertip dermis
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Figure 4.5: The KS goodness of fit measure between the empirical distribution and each of the 6
fitted distributions (RA-Rayleigh, RI-Rician, K-K, NA-Nakagami, WE-Weibull, GG-Generalized gamma)
for the case of the dermis and fat at the forearm wrist and the dermis at the fingertip. Each dot
corresponds to data from one particular subject. The mean, standard deviation (SD), and the number
of subjects where the KS value of that particular distribution was the best (smallest), are indicated.
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4.4.2 Inter-subject variability vs. intra-subject variability

Figure 4.6 shows a plot of the estimates of the SNR parameter and of the shape parameters of the

K, Nakagami, Weibull, and the GG distributions for all the subjects and for 18 repetitions on the

same subject. All the data were obtained at the fingertip. For both the inter- and intra-subject

cases, the SNR and Weibull-b parameters showed smaller variability (5-7% of the mean) than the

other parameters. The K and GG distribution parameters showed larger variability (17-43% of the

mean). The Nakagami-m parameter showed about 9% variability with respect to the mean. For

the SNR, Nakagami-m, and Weibull-b parameters, the percent variability was only marginally

smaller for the inter-subject case than for the intra-subject case. Given that these parameters are

positively biased, the smaller variability in the intra-subject case could be accounted for by the

smaller mean values. In the case of the K-a and GG-c parameters, the percent variability was

smaller for the intra-subject case, but once again these could be explained by the differences in

mean values. For the GG-v parameter the inter-subject variability was larger even though the

means were comparable, but it is conceivable that the variability could have been lower than the

intra-subject case if a couple of extreme values had been excluded (Fig. 4.6 (e)). These results

suggest that the inter- and intra-subject variability in the parameter estimates are similar.

Although the particular subject chosen for the intra-subject may not be characteristic of all

subjects, the similarity in intra- and inter-subject variability indicates that reasons other than

genuine inter-subject differences might be important and suggests further work for identifying

and reducing variability.
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Figure 4.6: Comparison between inter-subject (A) and intra-subject (B) variability. The dots represent
the estimated values for each subject or repetition. Numerical values for the mean (top row), the

mean
standard deviation (middle row), and the percentage variability defined as xlOO (bottom

SD
row) are also indicated.
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4.4.3 Characterization of differences in tissues

The SNR parameter and the shape parameters of the K, Nakagami, Weibull and GG distributions

were evaluated for their capability to differentiate between the dermis and fat at the forearm, and

between the dermis at the forearm and fingertip regions. For this purpose the difference in the

estimated parameters between the two tissues taken subject-wise were computed. The data to

compare forearm dermis and fat were obtained from the same experiment in which the location of

the transducer focal zone was axially shifted to focus first on the dermis and subsequently on fat.

The data to compare the forearm and fingertip dermis were obtained from two separate

experiments done one after the other at the two body-sites. From Fig. 4.7 it can be seen that the

differences in parameter estimates between the dermis and fat was positive in a majority of the

cases for SNR, K-a , Nakagami-m, Weibull-b, and GG-c parameters, and negative in a majority

of cases for the GG- v parameter. For all parameters, significant differences between the dermis

and fat could be seen as indicated by low p-values. Between forearm dermis and fingertip dermis,

a similar trend is seen but only the GG parameters showed significant differences at a 0.01

significance level. These results indicate that the GG-v and GG-c parameters might be more

capable of differentiating tissues than the other parameters.

4.5 Discussion

Skin is an easily accessible organ in the human body and is affected by a large number of lesions.

With conventional ultrasound it is often difficult to distinguish between various lesions and hence

additional quantitative studies might be useful. One such method is the use of envelope statistics.

This study seems to be the first one on modeling the pdf of envelope signals from skin tissues.

The statistics of envelope signals can provide additional information only if the statistics deviate

from the Rayleigh behavior. If only Rayleigh statistics were present, no additional information

other than the mean backscatter level can be used for tissue characterization. This study supports

the hypothesis that non-Rayleigh, specifically pre-Rayleigh statistics are present in the case of

skin tissues (at least for the specific transducer employed), which can therefore provide additional

information for tissue characterization. The non-Rayleigh behavior cannot however automatically

be ascribed to the small resolution cell sizes present in high frequency imaging systems. This is

because tissues contain scatterers even at small length scales and the number of scatterers is not

necessarily small for small resolution cell sizes. For example, collagen fibers, the dominant

scatterers in the dermis, are themselves composed of smaller fibrils and microfibrils, all of which

constitute scatterers ranging in size from tens of microns to tens of Angstroms [119, 148]. It is
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likely that the variation in scatterer cross-sections is large enough to cause the effective number

of scatterers within the resolution cell to be small, leading to pre-Rayleigh statistics. It should also

be pointed out that the envelope statistics is not only dependent on the tissue being studied, but is

also dependent on the imaging system used. When a less focused transducer (f/#=4, but similar

frequency characteristics to the one reported in this work) was used, the mean estimated SNR

values were about 9% larger for both the dermis and fat tissues (results based on this transducer

not reported in this work). This is consistent with the fact that the resolution cell size is larger for

a less focused transducer than a more focused transducer, leading to fewer pre-Rayleigh

deviations.
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Figure 4.7: Differences in parameters between the dermis and fat at the forearm (A) and the dermis at
the forearm and fingertip (B). Each data point is the difference in the respective estimated quantities.

The number above and below the y = 0 line indicate the number of cases where the difference

value was positive and negative respectively. The p-values based on a Wilcoxon sign rank test are
also indicated.
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Previous studies (involving other tissues) have rarely compared the performance of several

distributions for modeling empirical data. Also, except for the recently published independent

work by Shankar [89], the applicability of the GG distribution has not been studied in an

ultrasound context. Our study shows that the GG distribution was able to fit the empirical

envelope data from skin tissues better than all the other distributions. This is not surprising since

the GG distribution has one additional parameter that makes it more flexible to tailor itself to

empirical data as long as a sufficient sample size is available. It should however be noted that

even among distributions that have the same number of parameters, some of them fit better than

the others. For example, the K and Weibull distributions fit better than the Rician and Nakagami

distributions even though all of them have two parameters, implying that the number of

parameters does not solely determine the goodness of fit. Thus the better fit of the GG

distribution is not merely because of having an additional parameter, but rather because of its

ability to adjust its upper and lower tails independently with two shape parameters [89, 139].

Other distributions, especially the K and Weibull distributions were also able to model the

envelope data well. In practice, the choice of an appropriate distribution will depend not only on

the goodness of fit, but on other factors including the variability in the estimated parameters, the

sample size available (which is related to the variability), and the capability of the estimated

parameters to classify different tissues. Even though all the parameters were estimated using the

same sample size, the GG-v parameter showed larger percent variations than the other

parameters. This would imply that in general a larger sample size would be necessary to estimate

the GG parameters to a desired level of accuracy. Such variability issues regarding the GG

distribution have been studied before, because of which the Weibull distribution has often been

considered appropriate when the sample size is small [149]. The K distribution yielded very good

goodness of fit measures, but showed more variability than the Weibull parameters. It is known

that the K distribution becomes less useful when the true value of a is large, because the

variance in the estimate becomes large [42]. The Weibull and Nakagami distributions do not have

this difficulty. Between the Weibull and Nakagami distributions, the Weibull distribution

outperformed the Nakagami distribution with better goodness of fits as well as smaller percent

variability. It is likely that the Weibull and GG distributions might prove useful in modeling

ultrasound echo signals when small and large sample sizes are available respectively.

One would expect the intra-subject variability in the parameters to be smaller than the inter-

subject variability as additional differences from one subject to another could arise due to

different skin conditioning, aging, or sun exposure. However, the intra-subject variability was
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found to be similar to inter-subject variability for data collected at the fingertip. This indicates

that any genuine variability between subjects is over-shadowed by other factors. One possible

reason is the finite sample size used to estimate the parameters. Increasing the sample size could

reduce variability but only at the loss of stationarity in tissue properties. Other possible factors

include variations in ambient humidity, time to acclimatize to the ambient conditions, and diurnal

changes associated with skin [150]. The fact that intra-subject variability is large indicates that for

tissue characterization, data should preferably be acquired from both the suspected lesion and the

adjoining normal skin tissue during the same experiment.

Dermis and fat are vastly different tissues. They can easily be differentiated using the absolute

backscatter levels in the frequency range 20-50 MHz [92]. The present work supports the

hypothesis that they can be differentiated using envelope statistics as well. This was despite the

variability in the estimated parameters. Fat was seen to show more pre-Rayleigh behavior as

shown by smaller SNR values. More deviation from Rayleigh to pre-Rayleigh is the result of

more variations in the scattering cross-sections, or equivalently, smaller effective number of

scatterers in fat. Such variations in fat tissue could be due to the presence of septa/fascia, adding

to the inhomogeneity to the tissue. Between the dermis at the fingertip and forearm regions, only

the GG parameters showed differences at a 0.01 significance level indicating that the GG

distribution might be better suited in classifying skin tissues than other distributions (if a

sufficient sample size is available). While computing the parameter estimates for the case of

forearm fat, the effect of intervening attenuation (not the same as attenuation within the ROI) by

the dermis, and to a lesser extent the much thinner epidermis, was not considered. The presence

of intervening attenuation would tend to increase the size of the resolution cell thereby pushing

the distributions closer to the Rayleigh distribution [15 1]. This would lead to larger estimates for

parameters such as K-a, Nakagami-m, and Weibull-b. However even in the presence of

intervening attenuation, the above parameters were found to be smaller for the case of fat than for

the dermis. Intervening attenuation will also affect the parameters estimated at the fingertip

dermis due to the thicker epidermis. Hence it is conceivable that the true estimates of the above

parameters for the forearm fat and fingertip dermis are smaller than what was estimated. Such

effects can be minimized using narrow-band filtering prior to estimation.

In fitting the pdfs to empirical data, only an overall goodness of fit measure (KS measure) was

used. This measure however does not indicate the closeness of fit in different regions of the

histogram, e.g. the lower tail, the body, or the upper tail. If sufficient data samples are available, it
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may be worthwhile to determine the goodness of fits in different regions of the histograms, and

compare them among the various distributions. Such a procedure could indicate which parts of

the histogram are important, and might provide further insight on the physics of interaction of

ultrasound with skin tissues.
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5 Characterization of Skin Affected by Contact

Dermatitis

5.1 Introduction

Ultrasonic tissue parameters such as the attenuation coefficient, backscatter coefficient, mean size

of scatterers, scatterer number density, and echo statistics have been widely studied for their

potential to classify normal vs. abnormal conditions in several tissues including the heart, liver,

spleen, breast, eye, and kidney. These methods, commonly referred to as tissue characterization

methods, are undertaken because of the fact that ultrasound B-scan images utilize only partial

information in the backscattered echoes, and through appropriate signal processing, additional

parameters that might provide information about tissue pathologies could be extracted. In the case

of skin tissues such studies have not been widely investigated for characterizing skin lesions,

despite the increasing reliance of high frequency ultrasound as a non-invasive imaging tool.

Although ultrasound has the capability to image fine features in skin such as sweat gland ducts,

hair follicles, and veins, the diagnostic capabilities of skin images to identify specific pathologies

are limited. For instance, it is difficult to differentiate between benign and malignant lesions using

B-scan images, as both types of lesions appear hypoechogenic with respect to normal skin [15].

Another study indicated that both scar tissue and malignant melanoma could appear similar in

ultrasound scans [17]. Given the fact that skin is affected by a large number of lesions, it is

worthwhile to study if tissue characterization methods have the potential to extract additional

information for identifying and classifying various skin lesions.

Previous quantitative studies of skin lesions in vivo using ultrasound have mostly been limited to

parameters that could be computed directly from images obtained using 20 MHz systems. Dermal

echogenicity (mean backscatter amplitude) was found to be capable of differentiating between

basal cell papilloma and melanoma [152]. Skin echogenicity and thickness were found to be

related to changes due to photoaging [20]. Other parameters that require analysis of the radio

frequency backscattered echoes such as the attenuation coefficient [88] and apparent integrated

backscatter [153] have also been studied in normal skin tissues in vivo. In our earlier work we

have studied frequency dependent attenuation and backscatter coefficients [92] as well as

parameters related to echo statistics, such as the SNR (ratio of mean to standard deviation) and
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parameters of envelope probability density functions (pdfs) of normal skin tissues in vivo [154].

The purpose of the present study is to determine if some of the above parameters could

distinguish between normal skin and skin lesions. To test the methods, contact dermatitis (both

allergic and irritant), is used as an example. Previous studies of skin affected by contact

dermatitis using 15 and 20 MHz ultrasound have shown that changes in the dermis such as the

increase in skin thickness, and decrease in echogenicity of the upper dermis can be visualized [19,

155, 156]. In this chapter, tissue characterization parameters namely the attenuation coefficient,

and parameters related to the fluctuations of the envelope of backscattered signals are studied for

their capability to differentiate skin affected by contact dermatitis from normal skin tissues. Skin

thickness and echogenicity measurements are also reported. Before the tissue characterization

parameters could be computed however, compensation for the system-dependent effects must be

made. For instance when focused transducers are used, depth dependent diffraction effects due to

variation in beam amplitude and beam size along the length of the beam could influence the

results. Hence in this study we first obtain the diffraction correction curves empirically using

human dermal tissue in vivo, and then use the correction curves to compute the various

parameters with minimal diffraction effects. The computed parameters for normal skin and skin

affected by contact dermatitis are then compared.

5.2 Materials and Methods

5.2.1 Experimental system

The fast-scan high-frequency imaging system (system III) described in Chapter 2 was used in this

work. Briefly, the system consisted of a PVDF transducer (Panametrics, Waltham, MA; Model

P150), a pulser/receiver (Panametrics; Model PR5900), a 3-axis scanning system

(Compumotor/Parker-Hannifin, Cleveland, OH), and a high-speed PCI-bus based A/D board

(Gage Applied Sciences, Montreal, Canada). The pulser was set to operate at the energy and

damping settings of 4 uJ and 50 ohms respectively. At these settings, the center frequency and -6

dB bandwidth of the reflection spectrum from a planar interface placed at the focus were

measured to be 33 MHz and 28 MHz respectively. The f-number, focal length and diameter were

specified by the manufacturer to be 2, 12.7 mm, 6.35 mm respectively. The theoretical axial and

lateral resolutions of the system were computed to be about 25 and 90 ptm respectively. The

vertical range on the A/D ranged from -0.5 to 0.5 volts, which was sufficient to record

backscatter echoes from the skin tissues, although the surface echo was sometimes saturated. The
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transducer was set to scan continuously at a speed of 2 mm/sec and scan lines (RF data

corresponding to A-scans) were acquired and stored at regular intervals corresponding to a

spacing of 25 tm between the scan lines. Each echo sequence, digitized at 200 MHz, was an

average of 50 repeated acquisitions, which significantly improved the echo signal-to-noise ratio.

The distance moved by the transducer during the acquisition of the 50 waveforms that made up a

single scan line was 5 ptm (for a pulse repetition frequency setting of 20 kHz and a scan speed of

2 mm/sec; 50 pts/waveform x 50 waveforms x 2 mm/sec = 5 pm), which was small compared to

the system's lateral resolution. Distilled water was used as the coupling medium between the

transducer and tissue. For this purpose, a small water cup with a slot for allowing the ultrasound

beam to pass through was used. At a scan speed of 2 mm/sec, a typical scan of 5 mm took 2.5

seconds. In practice, between 2 to 4 scans separated by 1 mm laterally were recorded. Also each

lateral scan consisted of three scans focused at different axial locations. These three scans were

such that for one of them the region of interest (ROI) was positioned at the transducer's focal

zone, and for the other two the ROIs were positioned one above and one below the focal zone by

1 mm. In order to position the tissue of interest in the above manner, scan lines were visualized at

the start of the experiment using the real-time oscilloscope capabilities of the software provided

with the AID board, and the location of the echo-entry line was adjusted by moving the

transducer using a joystick. The three axial scans were done in order to reduce any residual post-

correction diffraction effects by averaging the parameters computed for the three cases. Also,

parameters computed from the different transverse scans were averaged to further reduce

variability. Once the RF data were collected, B-scan images were created by computing the

envelope using the Hilbert-transform approach. The field-of-view was 5.25 mm in the axial

direction, and adjustable by the user in the lateral direction, typically 5 mm. Custom-written

programs in Matlab (The MathWorks, Inc., Natick, MA) were used for generating and displaying

the images.

5.2.2 Subjects and patch tests

Contact dermatitis is an inflammatory skin condition caused by skin contact with an exogenous

agent. It can be broadly classified into two types, allergic contact dermatitis (ACD) and irritant

contact dermatitis (ICD). One standard procedure to evaluate contact dermatitis is known as patch

testing, wherein the allergen or irritant is mixed with petrolatum solution is applied to the skin for

a specified amount of time. The affected areas are then subsequently evaluated, either

immediately after patch removal, or after a specified amount of time. Seven subjects with a
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clinical history of allergic contact dermatitis were recruited for the study by the collaborating

investigators from the Massachusetts General Hospital (MGH). The subjects ranged in age from

25 to 66 (mean=41). Patch testing was performed on the subjects with contact allergens

(fragrance mix, wool alcohol, nickel sulphate) incorporated in petrolatum using Finn chambers

(Epitest Ltd. Oy, Norway) affixed with Scanpor tape (Norgesplaster, Vennesia, Norway).

Allergens were applied for a period of 48 hours to the ventral side of the forearm for 2 subjects,

and to the thigh for 5 subjects. Imaging was performed 24 hours after removal of the patches.

Patch testing was also performed at the same body sites using 5% sodium lauryl sulphate in

petrolatum to induce irritant contact dermatitis for the same seven patients. Similar to the allergic

sites, patches were applied for 48 hours and ultrasonic imaging was done 24 hours after patch

removal. Since the allergic and irritant reactions arise out of different mechanisms, they could be

independent reactions for the same subject. Thus a total of 14 independent experiments were

available to compare the lesion (both ACD and ICD) with normal skin. Clinical grading of the

reactions as 0, 1, 2, and 3 was performed at the time of imaging by one of the clinical

collaborators from MGH. A higher grade represented a more severe reaction. Nearby normal sites

were also imaged. For control purposes, evaluation of a patch test site with petrolatum alone was

done at an adjacent location for all subjects.

Additional patch tests were performed on the same set of patients: both allergic and irritant

patches were applied for 12 hours and the sites were evaluated 12 hours after removal (referred to

as 12-hour tests). The allergic patches were also applied for 24 hours and evaluated 48 hours after

patch removal (referred to as 24-hour tests). Results from these additional tests were used along

with the 48-hour tests mentioned in the preceding paragraph to determine trends in ultrasound

parameters with clinical score. All the subjects who participated in the study signed informed

consent documents approved by the Institutional Review Boards of both MIT and MGH.

5.2.3 Ultrasound parameters

Table 5.1 provides a summary of the quantitative parameters studied in this work.

Skin thickness: Skin thickness was measured using images displayed on the computer screen. The

thickness was measured from the start of the entry echo to the interface between the dermis and

subcutaneous fat. Since the interface between the dermis and fat was irregular, an average of

100



several thickness values based on several scans and several locations within a particular scan was

used. Typically, a total of 16 measurements were used to compute the mean thickness.

Echogenicity of upper dermis: Echogenicity refers to the mean amplitude of echo envelope

obtained from within an ROL. Echogenicity values were computed for the upper dermis, which

was taken to be the region from 225 pm to 450 ptm below the start of the surface echo. To

accurately determine the depth in the above manner, the location of the surface echo was

computed for each echo line by a threshold detection procedure.

Table 5.1: Summary of ultrasound parameters studied in this work.

Parameter ROI

Skin thickness Start of entry echo to the border

between dermis and fat.

Echogenicity (mean backscatter Upper dermis, extending from 0.225

amplitude) mm to 0.450 mm from the skin surface.

(a) Full dermis

Attenuation coefficient slope (b) Partial thickness corresponding to

the thickness of the normal skin

Echo-statistics parameters: SNR, Dermis extending from 0.5 mm to 1

Weibull-b, K-ac, GG-v, and GG-c mm from the surface.

Attenuation coefficient slope: Attenuation coefficient at any given frequency is the rate of decay

of ultrasound with distance of propagation and is measured in units of dB/mm. Our previous

studies have shown that within the range 14-50 MHz, the attenuation coefficient of skin tissues

increases linearly with frequency [92]. The slope of the attenuation coefficient vs. frequency

curve is referred to as the attenuation coefficient slope (p), which is represented in units of

dB/mmi/MHz. Computing this quantity involves the computation of mean power spectra as a

function of depth for several frequencies. At first, an ROI parallel to the skin surface and

corresponding to the dermis was selected by the user by a visual examination of the B-scan

image. The dermis was identified as the hyperechoic tissue lying above the hypoechoic fat. The

ROI selected by the user, which was initially an arbitrary quadrilateral, was modified into a

parallelogram so as to have a uniform length in the axial direction at all the scan lines within the
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ROL. Each scan line within the ROI was divided into several axial segments of 40 samples (200

ns) each with an overlap of 50%. The time duration of 200 ns corresponded to an axial slice

thickness of 150 pm assuming a speed of sound of 1.5 mm/Rs for the dermis. For a normal skin

thickness of 1.2 mm in the volar forearm, 15 axial segments were available per scan line to

compute attenuation in dB/mm. In the lateral direction a typical ROI of 4.0 mm consisted of 160

scan lines, each separated by 25 pm. Power spectra corresponding to all the segments and scan

lines were obtained by computing the Fourier transform after applying a Hamming window, and

squaring the magnitude of the resultant. The segment length of 200 ns provided a frequency

resolution of 5 MHz. Once power spectra were obtained, diffraction correction determined by the

location of the center of each of the segments were applied (see next section). Mean power

spectra as a function of depth from the surface were then computed by laterally averaging the

corresponding diffraction-corrected power spectra from all the scan lines. Spectral slopes

(dB/mm) representing the decay of ultrasound with depth were then computed for several

frequencies in the range 10-50 MHz. Finally, a linear fit to the spectral slope vs. frequency curve

was computed to obtain the attenuation coefficient slope.

In the case of normal skin tissues, the entire dermis was used to compute the attenuation

coefficient slope. In the case contact dermatitis, the thickness of the skin increased in many cases.

In such cases, attenuation coefficient slopes were computed for both the full thickness as well as

for the smaller thickness corresponding to that of the normal skin. In some of the affected sites, a

sub-epidermal hypoechogenic band was seen. Including this band for the ROI did not however

seem to affect the computed attenuation coefficient slopes significantly for cases analyzed in this

work.

Echo-statistics parameters: The echo-statistics parameters studied in this work included the SNR

of echo envelope, and the shape parameters of the Weibull, K, and Generalized Gamma (GG)

distributions fitted to the envelope data histograms. The SNR is the ratio of mean to standard

deviation of the envelope data and is related to the number density of scatterers within the

resolution cell. It was computed using the estimated mean and standard deviations of the

envelope data. The SNR is also a measure of deviation from the Rayleigh statistics, which occurs

when the resolution cell consists of a large number of randomly distributed scatterers. The SNR is

equal to 1.91 when the Rayleigh conditions are satisfied, less than 1.91 for pre-Rayleigh

conditions, and larger than 1.91 for post-Rayleigh or Rician conditions.
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The Weibull, K, and the GG distributions were studied because of their excellent fit to envelope

data from normal skin tissues [154]. The shape parameters of the three distributions were

determined by fitting probability density functions (pdfs) using the maximum likelihood (ML)

method. The Weibull pdf is given by the following expression:

p(r) =- - e a r >0; a,b >0 (5.1)
a a

The parameter b is referred to as the shape parameter as it determines the shape of the pdf,

whereas the parameter a is a scaling parameter. By suitably changing the values of the parameter

b, the Weibull distribution can be made to model pre-Rayleigh (b <2), Rayleigh (b = 2), and

Rician (b > 2) conditions. Hence the parameter b can also be seen to be a measure of deviation

from the Rayleigh condition. To estimate this parameter, the log-likelihood function was first

obtained:

L(ri, r2 ,..., rN, a, b)= Nln b -(b -1)n r - Nbln a (5.2)

where r, represents an envelope sample, N represents the number of samples, and the summation

is over all the samples. By setting the first partial derivative of the log-likelihood function with

respect to a to zero, the following relationship between the parameters a and b is obtained:

a = rZJb jl1b (5.3)
N)

A simple one-dimensional exhaustive search method was then used to obtain the ML solution. A

sufficiently large grid of solution points for the parameter b was chosen and the corresponding

values for the parameter a were computed using Eq. (5.3). The log-likelihood function was

computed at the points (a, b) using Eq. (5.2), and the one corresponding to the maximum was

taken to be the solution. Further refinement around the solution point was then done to improve

the accuracy of the estimates.

The K distribution has been previously studied in modeling ultrasound echo signals from the

breast and liver [157]. Its pdf is given by:
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p(r) = 2 (yb1 Ka-I(br) r > 0; a, b >0 (5.4)
F(a)

The parameter x is the shape parameter, and can be identified as an effective scatterer number

density [158]. The parameter b is a scaling parameter and Ka,(x) is the modified Bessel

function of the second kind of order (x-1. The cx parameter can take values ranging from zero to

infinity. The K distribution approaches the Rayleigh distribution when cX approaches infinity. To

obtain the ML solution, the log-likelihood function was obtained:

L(r, r.,Nb, a) =N (a +1) In(b) -In +~a +a In + I n (K,,-,(b,)) (5.5)

Since the partial derivatives of the above expression are difficult to compute, a two-dimensional

Nelder-Mead simplex optimization method in the Matlab's Optimization toolbox was used to

obtain the ML solution as described in chapter 4.

The GG pdf is given by the following expression:

cr(c (r
p(r) = e r 0 a, v,c >0 (5.6)

acvF(v)

In the above expression, the parameter a is a scaling parameter and the parameters v and c are

the two shape parameters. In particular, the parameters v and c are capable of adjusting more or

less independently the lower and upper tails of the pdf respectively [89, 139]. The GG

distribution has several other distributions as special cases: Rayleigh (c=2, v=1), exponential (c=1

and v=1), Nakagami (c=2), Weibull (v=1) and also the usual gamma (c=1) distribution. Although

no physical explanation seems available, this distribution has been found to be useful in modeling

envelope signals from skin tissues better than many other distributions [154]. Besides it provides

two shape parameters for characterizating tissues as opposed to one for the Weibull and K

distributions. To compute the shape parameters, the log-likelihood function was first obtained:

L(ri, r2 ,..., rN,a, v, c)= Nlnc -(cv -1)Inhrl- - Ncv In a - NIn F(v) (5.7)

By setting the first partial derivatives of the above expression with respect to c and a to zero we

get [145]:

104



V= {- CI (5.8)
N Yr

a = ' (5.9)
Nv

The ML solution was obtained using a ID exhaustive search method similar to the one described

for the Weibull pdf. At first a large solution grid was assumed for the parameter c, and the

corresponding values for v and a were obtained using Eqs. (5.8) and (5.9). The likelihood

expression was then evaluated at the points (a, v, c) using Eq. (5.7), and the one corresponding to

the maximum was selected. Further refinement around the solution space was then done to

improve accuracy.

It should also be pointed out that the parameters SNR, Weibull-b and K-u are not independent of

one another, but the dynamic ranges for these three parameters are different. It can also be shown

that over a small range of values, there is an approximately linear relationship between the

Weibull-b parameter and the SNR.

For computing the above echo-statistics parameters, an ROI corresponding to the dermis from 0.5

to 1 mm below the skin surface was chosen. The reason for choosing only 0.5 mm for the ROI

was to keep the length small enough to minimize both attenuation and diffraction effects within

the ROI (although diffraction correction is applied based on the overall location of the ROI). The

envelope samples corresponding to the scan lines within this ROI were collected to form

empirical histograms. While combining the data only every other scan line and every fourth

sample along a scan line were used due to the correlated nature of adjacent data samples. The

spacing between the samples roughly corresponded to one-half of the system resolution in both

the lateral and axial directions. Typically, a total of about 1600 samples were available for

constructing envelope histograms. Once the parameters were estimated as described above, a

correction for diffraction was applied to the parameters depending on the location of the center of

the ROI (next section).
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5.2.4 Statistics to compare normal and affected skin

The parameters computed for the skin affected by contact dermatitis (both allergic and irritant

considered as one population and will be referred to as the affected sites) were compared against

normal skin tissues using the Wilcoxon sign rank test. P-values to test if the difference in the

values were significantly different from zero were computed (paired test). A value of p <0.05

was considered significant.
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(a) Depth # = 9

(b) Depth # = 13

(c) Depth # = 17

I div=0.5 mm

Figure 5.1: Experiments to determine diffraction correction curves. Ultrasound data were collected
from skin in vivo when the tissue was at several depths separated by 0.25 mm. The figure shows
three such depths, one each corresponding to the ROI being (a) below the focus, (b) at the focus and
(c) above the focus. The 'x' marks indicate the location of the transducer's focal zone. The ROI
drawn in the images Indicate the ones used to compute mean power spectra at various distances
from the transducer. Another set of ROls, larger than the above were used to compute echo-
statistics parameters.
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5.3 Diffraction correction

The use of focused transducers requires compensation for diffraction effects while computing

quantitative tissue characterization parameters. Due to variation in the beam amplitude with

distance, diffraction affects power spectra measurements and consequently the attenuation

coefficient slope. Diffraction also affects the echo statistics due to variation in the beam size with

distance. Various approaches, both theoretical and experimental have been proposed for

compensating measured power spectra for diffraction effects. In our previous studies [92, 154],

the transducer was axially translated so as to shift the location of the focal zone to a particular

depth of interest. In such experiments, a correction was not required as data were always obtained

from the transducer's focal zone. Such a technique was found to be less preferable in a clinical

research setting due to the increased time of imaging. Hence it was decided to correct for the

diffraction effects using empirically obtained correction curves. Previous studies have shown that

the diffraction correction curves are themselves dependent on the medium being imaged [159].

Hence instead of using tissue-mimicking material, human dermis in vivo was used to obtain the

diffraction correction curves. The basic premise in our methods is that if the same tissue is placed

at different distances from the transducer, then any parameter being computed (e.g power

spectrum at a particular frequency, SNR, Weibull-b etc.) must be the same at all the locations

once diffraction compensation is applied. Data were collected at the dorsal forearm of five

subjects for 19 locations spaced apart by 0.25 mm through axial translation of the transducer.

Two repetitions were done for all the subjects, who were different from the ones that participated

in patch testing. Figure 5.1 illustrates the images obtained when the tissue was at three of the 19

distances from the transducer. For each of the 19 images, two sets of ROI, one for studying

variations in mean spectra with depth, and the other for studying the variation in echo-statistics

parameters with depth, were selected. The former ROI spanned a distance of 0.225 mm (60

samples) in the axial direction while the latter spanned a distance of about 0.5 mm in the axial

direction. The mean spectra, echogenicity, SNR, Weibull-b, K-ce, GG-v and GG-c parameters

were computed for all the 19 locations as described in the previous section.
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Figure 5.2: Diffraction correction curves for correcting power spectra as a function of the distance
from the focus. The correction curves were obtained using human dermal tissues in vivo. The solid
line is the mean correction curve from 10 experiments (5 subjects, 2 repetitions each) and the error
bars indicate the standard deviations. The dashed curve is based on the theoretical formulation
developed by Chen et al [100].

Figure 5.2 shows the diffraction correction curves for the power spectra at three frequencies over

a distance of 1.5 mm on both sides of the focus. It can be seen that the correction curve has a

narrower width at higher frequencies, which is consistent with the fact that higher frequencies are

more tightly focused. For comparison, theoretical diffraction correction curves developed by

Chen et al [100] are also shown. The theoretical and empirical correction curves agree very well

at lower frequencies. At higher frequencies the empirical curve is seen to be broader than the
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theoretical curve. This could be due to the fact that a finite length was used for both the segment

length in computing the power spectrum (0.225 mm) and for the stepping distance between the

different locations (0.25 mm). These two effects tend to smear the correction curves, the effects

of which are more prominent for the higher frequencies. During data reduction, the empirically

computed diffraction corrections were used to correct power spectra measurements by dividing

by the correction factor at the appropriate distance. The attenuation coefficient slope was then

computed using the corrected power spectra.

Figure 5.3 shows the computed diffraction correction curves for the echo-statistics parameters.

The SNR generally increases with distance from the focus. This is expected as away from the

focus, the beam becomes broader and therefore larger number of scatterers contributes to the

resultant. The increase in the number of scatterers pushes the envelope pdf closer to Rayleigh pdf

and the SNR approaches 1.91. The location of the minimum point of SNR however does not

match the location of the focus, but is seen to be deeper. The reason for this is not clear, but is

probably due to the fact that the dermal tissue scatterers are not uniformly dense within the 0.5

mm ROI, and that variations in amplitude of the beam within this 0.5 mm affect the echo

statistics in a complex way. Similar trend is seen for the Weibull-b and K-t parameters. The

Weibull-b curve is very similar to the SNR curve, which is due to the fact that the two quantities

are approximately linearly related over the limited range of values obtained. The K-cc parameter

becomes large as we move away from the focus, which is a consequence of the envelope pdf

approaching the Rayleigh pdf. The percentage variability in the estimates is larger for this

parameter than that for the other parameters, which is due to the fact that a very large sample size

is needed for estimation even for moderately large values of cc. The GG-v curve shows a trend

that is opposite to that of the SNR, Weibull-b and K-ce parameters while the GG-c parameter

shows a trend that is similar to the above parameters. The mean correction curves for all the

parameters were normalized so as to have minimum value of unity for all the parameters except

the GG-v, which was normalized to have a maximum value of unity. The normalized diffraction

correction curves were then used to correct estimated quantities by dividing by the correction

factor at the appropriate distance.
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Figure 5.3: Diffraction correction curves for correcting estimates of echo-statistics parameters as a
function of the distance from the focus. The correction curves were obtained using human dermal
tissues in vivo. The solid line is the mean correction curve from 10 experiments (5 subjects, 2
repetitions each) and the error bars indicate the standard deviations. The increase in SNR away from
the focus indicates that the envelope pdf approaches the Rayleigh pdf.

In order to verify the diffraction correction procedure, data were collected from one additional

subject (this subject was different from the ones used in obtaining the correction curves). All the

ultrasonic parameters were computed and corrected for diffraction effects. Figure 5.4 shows the

power spectra at 20, 30, and 40 MHz as a function of distance from the focus. Comparing Figures

5.2 and 5.4, it can be seen that the correction has resulted in a more uniform distribution of the

111

2

1.8

1.6-

-1 0 1
Distance from focus (mm)

1.2

0.8 -
-2

(a) SN R

22

-



power spectra. The power spectra show variability, which could be attributed to the use of a finite

number of scan lines in computing the mean power spectra. The variability in the corresponding

attenuation coefficient slope would be smaller because the linear fit of the dB/mm vs. frequency

curve would tend to smoothen the variations. The variability was further minimized through

averaging the computed attenuation coefficient slopes obtained from several scans, both axial and

lateral. Figure 5.5 shows the corrected echo-statistics parameters as a function of the distance

from the focus. Comparing Figures 5.3 and 5.5, it can be seen that the diffraction correction to

these parameters has resulted in a more uniform distribution of the parameters with distance. The

variability is seen to be the highest for the K-o parameter. The variability is also reduced by

averaging estimates from several axial and lateral scans.
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Figure 5.4: Corrected power spectra as a function of the distance from the focus.

It should also be emphasized that the diffraction corrections for the SNR and pdf shape

parameters are only valid within a limited range of values. To apply the correction curves to the

echo-statistics parameters, the scattering conditions need to be pre-Rayleigh after correction. For

example, if the diffraction correction in Fig. 5.3 (b) is used for a tissue that already shows

Rayleigh statistics at the focus (SNR=1.91), the compensated values when the ROI is away from

the focus would be larger than 1.91, which is incorrect, as the increased beam size should still
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result in Rayleigh conditions. In this work, all the computed values for both the normal tissues

and skin lesions were pre-Rayleigh even after the application of correction functions.
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Figure 5.5: Corrected echo-statistics parameters as a function of the distance from the focus.
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5.4 Results

Figure 5.6 shows an image of a normal skin tissue and skin affected by allergic contact dermatitis

for one subject. It can be seen that the skin thickness increased significantly for the case of

contact dermatitis. It can also be seen that in the case of the affected skin, the amplitude of the

pixels in the upper dermis decreases. Figure 5.7 shows the differences in skin thickness

measurements at the affected sites and the corresponding normal skin. Only data from the 48-

hour patch tests (Section 5.2.2) were used in these results. Also, data from all subjects

irrespective of whether changes were clinically observed or not, were used. Significant increases

in the skin thickness can be seen at the affected sites. The petrolatum control site also showed a

slight but insignificant increase in skin thickness. Figure 5.8 shows the skin thickness increase

from the normal values as a function of clinical score. In these results, data from all the three

patch tests were used. A progressive increase in the mean skin thickness with increasing clinical

score was observed. No significant difference is seen between the zero score cases and the

petrolatum control cases.

Nearby normal skin (b) ACD skin

(1 div 0.5 mm)

Figure 5.6: Images of (a) normal skin and (b) skin affected by allergic contact dermatitis (ACD). The
extent of the dermis is shown by the arrows. The increased thickness in the case of contact
dermatitis can be seen.
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Figure 5.9 shows the differences in the echogenicity of the upper dermis between the affected

sites and the normal skin for the 48-hour patch tests. A significant decrease in the echogenicity

value could be seen. Figure 5.10 shows the differences in echogenicity as a function of the

clinical score for data from all the patch tests. The decrease in the mean values from the normal

skin value is found to be more for more severe reactions.

Figure 5.11 shows the differences in attenuation coefficient slope between the affected sites and

the normal skin. As in Figs. 5.7 and 5.9, only data from the 48-hour patch tests were used. Since

the skin thickness in general increased for the affected sites, the values were computed for both

the full thickness of the skin and for the partial thickness corresponding to that of the normal skin.

In both cases the affected skin showed a significant decrease in the attenuation coefficient slope.

The change for the partial thickness case was slightly smaller than that for the full skin thickness

case. Figure 5.12 shows the differences in attenuation coefficient slope as a function of the

clinical score. As in Figs. 5.8 and 5.10, data from all three patch tests were used. The cases

corresponding to scores 1, 2 and 3 showed significant differences from the normal skin. When the

full thickness was used, a noticeable decrease in the mean value from score 2 to 3 was seen. Such

a trend is however not seen when only the partial skin thickness was used to compute the

attenuation coefficient slope.
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Figure 5.7: Difference in skin thickness between the affected sites and the normal skin, and between
the petrolatum control site and the normal skin. In the case of the lesion, 14 data points (7 subjects,
2independent cases per subject - one for ACD and the other for ICD) were available and are shown
by the dots. In the case of the control site, 7 data points were available. The 'x' marks indicates the
mean of the respective data sets. The text in the figure refers to mean±SD (first row) and the p-
values (second row).

Figure 5.13 shows the differences in echo-statistics parameters between the affected sites and the

normal skin for the 48-hour patch tests. Although slight increases in the mean values could be

seen for all the parameters except for the GG-v parameter where a decrease was seen, the

differences were not statistically significant. Among the various parameters, the GG-v and GG-c

parameters were seen to perform relatively better in that their p-values were smaller than that of

the others.
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Figure 5.8: Difference in skin thickness between the affected sites and normal skin as a function of
the clinical score. Also shown is the difference for the petrolatum control case. Each dot represents
a data point and the 'x' mark indicates the mean.

0

-20 -

S-40

.- 60
-15.6+16.3 1.41±13.93

-- 80- p =0.004 p =I

0'-4

Lesion Pet.

Figure 5.9: Difference in echogenicity values between the affected sites and the normal skin, and
between the petrolatum control site and the normal skin. Each dot represents a data point and the 'x'
mark indicates the mean. The text in the figure refers to mean±SD (first row) and the p-values
(second row).
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Figure 5.10: Difference in echogenicity of the upper dermis between the affected sites and normal
skin as a function of the clinical score. Also shown is the difference for the petrolatum control case.
Each dot represents a data point and the 'x' mark indicates the mean.

5.5 Discussion

In this work, the application of ultrasonic tissue characterization methods for evaluating skin

lesions was studied. Contact dermatitis was chosen as an example because of the ease of patch

testing methods. Table 5.2 summarizes the quantitative results from this work for all the

parameters studied.
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(a) Change in atten coeff slope (full thickness)
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(b) Change in atten coeff slope (partial thickness)
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Figure 5.11: Difference in attenuation coefficient slope between the affected sites and the normal
skin. Also shown is the corresponding difference at the petrolatum control site. Each dot represents
a data point and the 'x' mark indicates the mean. The text in the figure refers to mean±SD (first row)
and the p-values (second row). The top panel is for the case when the entire skin thickness was
used in computing the attenuation coefficient slope. The bottom figure is for the case when only the
skin thickness corresponding to that of the normal skin was used in computing the attenuation
coefficient slope.
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Our results confirm earlier work with 15 MHz ultrasound that showed that the thickness increases

in skin affected by contact dermatitis, and that the increase is larger for more severe reactions

[160]. Our results also confirm earlier results using 20 MHz ultrasound [19] that alterations

occurring at the papillary dermis decrease the echogenicity in this region. Our study seems to be

the first where attenuation coefficient slope has been calculated for skin affected by contact

dermatitis. The results indicated that the attenuation coefficient slope decreases when skin is

affected by contact dermatitis. The attenuation coefficient slope at the affected sites was

80%± 17% (mean±SD) of that of the normal skin. When the sites that did not show any reactions

clinically were excluded (cases corresponding to zero scores), the attenuation coefficient slope

was 71%±13% of that of the normal skin. One reason for the decrease in the affected skin areas

could be that the dermis expands due to edema and is filled by fluids that increase the water

content. A previous study has shown that attenuation is inversely related to water content [82].

The increase in water content in the affected areas would then decrease the attenuation

coefficient. Another reason could be that due to the increased thickness of the skin, the same

amount of attenuation occurs over a larger distance, which in turn decreases the attenuation

coefficient. This might also explain why the decrease in attenuation coefficient slope is larger for

more severe reactions, for which the increases in skin thickness were larger.

On B-scan images, the exact increase in skin thickness for the lesions was sometimes hard to

visualize as the border between the dermis and fat was less pronounced compared to the normal

skin tissues. In such cases the contrast in the images had to be adjusted on the screen, and more

than one scan had to be looked at to determine the border between the dermis and fat. For this

reason, the attenuation coefficient slope might be an additional useful parameter to include in

characterizing contact dermatitis.
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Figure 5.12: Difference in attenuation coefficient slope between the affected sites and normal skin as
a function of the clinical score. Also shown is the corresponding difference at the petrolatum control
site. Each dot represents a data point and the 'x' mark indicates the mean.
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Figure 5.13: Difference in echo-statistics parameters between the affected sites and the normal skin.
Also shown is the corresponding difference at the petrolatum control site. Each dot represents a
data point and the 'x' mark indicates the mean. The text in the figure refers to mean±SD (first row)
and the p-values (second row).

Our previous study on echo statistics showed that the Weibull, K and GG pdfs were good at

modeling the statistical fluctuations of envelope of backscatter signals from skin tissues [154]. In
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this study the parameters of these pdfs were computed at an ROI that spanned from 0.5 to 1 mm

from the skin surface. The aim was to determine if there were changes to mid-dermis that could

be registered by these parameters. However the results showed no significant differences between

the affected sites and the normal skin. This is surprising since due to edema, the density of

scatterers could be expected to decrease, and consequently the SNR could be expected to

decrease. Our results indicate that the edema formation might be localized to the upper dermis.

Further studies would be required to investigate changes in these parameters. In general, the study

of echo-statistics parameters was difficult because a large homogeneous ROI could not always be

chosen due to the presence of inhomogeneities such as hair follicles or sweat gland ducts.

Table 5.2: Summary of results. The values indicated are mean (SD). In the case of attenuation
coefficient slope P, two values were computed, one corresponding to the full thickness of the lesion
and the other corresponding to the thickness of the normal skin. Data from all three patch tests, for
both ACD and ICD were used.

Normal Lesion (all scores) Lesion (excluding

zero scores)

Thickness (mm) 1.459 (0.212) 1.865 (0.462) 2.059 (0.478)

Upper dermis
56.8(17.7) 41.2(15.6) 32.7(11.0)

echogenicity

Full thickness ~ 0.199 (0.040) 0.157 (0.042) 0.139 (0.035)
(dB/mm/MHz)

Partial thickness 0.199 (0.040) 0.163 (0.034) 0.150 (0.028)
(dB/mm/MHz)

SNR 1.375 (0.067) 1.377 (0.070) 1.387 (0.070)

Weibull-b 1.439 (0.072) 1.440 (0.072) 1.447 (0.074)

K-cc 1.329 (0.322) 1.330 (0.277) 1.380 (0.291)

GG-v 2.344 (0.391) 2.442 (0.755) 2.236 (0.595)

GG-c 0.945 (0.087) 0.953 (0.166) 0.995 (0.156)

In this study, both the allergic and irritant reactions were considered together as one population. It

is possible that any genuine differences in the computed parameters between the allergic and

irritant sites contribute to the variability seen in the results. Future work could study if significant

differences between the allergic and irritant reactions are observed for the ultrasonic tissue

characterization parameters. In future studies, other non-invasive methods such as trans-
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epidermal water loss measurements and confocal imaging parameters [161] could be combined

with ultrasonic tissue parameters to characterize skin affected by contact dermatitis
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6 Summary and Future Work

6.1 Contributions of this thesis

The overall contribution of this thesis is the introduction of quantitative ultrasonic methods in

characterizing skin tissues in vivo. Very few studies on characterizing skin with ultrasound exist

at present. Almost all of these studies dealt with excised skin tissues. This is a serious limitation

as the ultimate aim of tissue characterization methods is to evaluate tissues in a clinical and

preferably, an out-patient setting, The specific contributions of this thesis are as follows:

The attenuation coefficient of normal skin tissues was shown to be a linearly increasing function

of frequency over a range of frequencies relevant to dermatological applications (14-50 MHz).

The fact that a linear dependence was sufficient indicates that the attenuation coefficient slope

could be a useful parameter for characterization. However whether such a linear dependence is a

good model for specific skin lesions needs to be tested.

The study also found that the attenuation coefficient slopes of the dermis and fat tissues were

similar. This was a surprising result given that these tissues differ in so many other ways. The

study also found that ultrasonic properties of the dermis such as the attenuation coefficient slope

could vary from one body-site to another. This is important in that it indicates that in future

studies the normal skin data should be obtained as close as possible to the site of the lesion.

The backscatter coefficient of normal skin tissues were measured in vivo for the first time. The

computation of backscatter coefficients is considerably more complicated than the attenuation

coefficients in that the system-dependent effects should be removed through appropriate data

reduction methods. To ensure that the results were independent of the measuring system, three

different transducers were used and the results were found to agree with one another. Moreover

two different methods to extract the backscatter coefficient also gave similar results. The

backscatter coefficient of the dermis was found to have an increasing dependence with frequency,

but did not show a single power-law type dependence over the range 14-50 MHz.

This thesis also seems to be the first time the statistical fluctuations of ultrasonic backscatter

signals from skin tissues have been studied. The results indicated that non-Rayleigh statistics are

present in the case of envelope backscatter fluctuation from skin tissues for the systems that are
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commonly used in skin imaging. The presence of non-Rayleigh statistics leads to additional

possibilities for characterizing skin tissues through the use of the pdf shape parameters.

In this work, the generalized gamma distribution was used for the first time in modeling

backscatter data from any tissue. Although a recent independent work [89] also proposed the use

of this distribution in modeling ultrasound echo fluctuations, this thesis seems to be the first

where actual data from tissues have been modeled. The generalized gamma distribution was

found to be able to fit the echo data from skin tissues very well. However the estimated

parameters showed a larger variability than the parameters of the other distributions. Despite this

variability the shape parameters of the generalized gamma distribution were able to differentiate

dermal tissues at different locations better than that of the other distributions.

This is also the first time, to the best of the author's knowledge, that tissue characterization

parameters that require data reduction have been applied for any skin lesion, and not just contact

dermatitis. Previous works have at best have used image-based parameters such as echogenicity

to characterize skin lesions. While such image-based quantities are certainly useful, they have the

same limitations that a conventional image has, namely they utilize only partial information in the

backscatter echoes. The results of this study showed that skin affected by contact dermatitis has a

smaller attenuation coefficient slope than that of the normal skin. However no changes in the

echo statistics were found. These results indicate that in the future, a combination of several

parameters might be useful in characterizing tissues.

6.2 Suggestions for future work

The work presented here represents only an initial attempt at characterizing skin tissues with

high-frequency ultrasound. Suggestions for future work are as follows. Ultrasound data could be

collected from various skin lesions, and a database of ultrasonic properties could be created. The

specificity and sensitivity of the parameters to identify and differentiate skin lesions could then be

tested using independent subjects. Of particular importance would be skin cancer, both melanoma

and non-melanoma cancer, as well as other pigmented skin lesions. In addition to characterizing

various skin lesions, ultrasound would also be suited for determining the tumor margins, if in fact

a biopsy is needed.
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At present the device is limited to imaging body-sites that are topologically accessible to

ultrasound. These include reasonably flat regions such as the forearm, thigh, or parts of the body

that could be easily constrained such as the fingertip. Further ergonomic modifications to make

the device more easily accessible to other parts of the body would be very useful.

The data collected in this work could be analyzed to extract additional parameters such as the

mean scatterer size in skin. The scatterer size could be determined from the frequency

dependence of the backscatter coefficient. Such studies using conventional ultrasound have been

previously shown to have potential in characterizing renal tissues [162].

The epidermis was not studied in this work because the resolution of the device was not sufficient

to resolve layers in the epidermis. The use of much higher frequency systems could provide the

capability to characterize epidermal layers.

In future studies, ultrasound parameters could be combined with parameters extracted with other

non-invasive imaging methods, especially confocal microscopy and optical coherence

tomography, in order to characterize skin lesions. This might prove to be more useful than using a

single modality because ultrasonic and optical methods provide different information about the

tissue microstructure and could compliment each other.

Other ultrasonic techniques such as elastography (strain imaging) could also be studied for their

potential in characterizing skin lesions. Such methods would require modifications to the present

device. In particular, a method to deliver a known indentation to the skin surface would be

needed. Additionally, if mechanical properties such as the Young's Modulus or Poisson's ratio

are needed, the force of indentation must be known as well. The mechanical properties can then

be used to characterize skin lesions.

Compared to other tissues, scattering from structures in skin tissues is poorly understood. In

normal skin, scattering occurs from densely packed collagen fibers. Commonly made

assumptions such as the absence of shear waves and the absence of multiple scattering effects

may not be applicable in this case. More fundamental studies using simpler tissue-mimicking

phantoms or computer simulations may provide insight into the scattering mechanisms in skin

tissues.
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The generalized gamma and Weibull distributions could also be studied for characterizing tissues

other than the skin.
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Appendix A: Derivation of the Diffraction Correction

Term for the Computation of Backscatter Coefficients

This Appendix presents the derivation of Eq. (3.9). In the following, the symbols f X and k

represent the frequency, wavelength and the wave number of the wave respectively. Although

these three quantities are related, it is convenient to use all of them explicitly in the derivation.

The aim is not to be rigorous, but to provide simple derivations based on well known concepts in

linear acoustics. See also Madsen [101].

Let us assume that the field generated at the face of the transducer is represented by A(f). This

field is assumed to be constant over the face of the transducer. The propagated field due to this

aperture in the vicinity of a scatterer located at the point r is given by [105]

Pic (f) Af) f. eI ds (A.1)
jA S, r-r

where S' represents the transducer aperture and r' represents a point on it. The suffix inc

indicates that this field is the incident field to the scatterer, which is subsequently backscattered

towards the transducer. The backscattered field at a generic point on the transducer's face (once

again denoted by r') is given by:

jk r-r

P(r, r )= Pi
r-r

(A.2)

Af)ffejlrrIds e k Q- IOf)

jA S, r- r' r - r'

where |I(f)1 2 is the differential scattering cross-section of the scatterer at an angle of 180

degrees. Here we have assumed that the scatterer is far enough from the transducer such that the

angular dependence of (D(f) can be ignored. Now integrating the backscattered field over the

face of the transducer, and applying the electromechanical response of the transducer T(f), the

following expression is obtained for the voltage signal due to this single scatterer:
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V(f, r) = T(f) Jfp(r, r')ds'
S.

= T(f) A(f, ds' r-r (f)ds' (A.3)
jA s r-r r-

jkr-r \2

= T(f) , dsj ((f)
jA S, r -r

Now assuming incoherent scattering by the tissue, the total power recorded is obtained by

summing or integrating the contributions from all scatterers (incoherent assumption leads to

summing powers rather than summing instantaneous amplitudes):

sisue(f) ffV(f,r) 2 NdQ

JA(f ) T(f)2 e jlr-r ds 41(f1)( NdQ (A.4)
2 k2-rr

A(f) 2 T(f) 2 D(f)12 N rreikrr ds' dQ

where Q represents the scattering volume and N is the number of scatterers per unit volume in the

tissue.

To get rid of the transducer's electromechanical response, the reflection from a planar reflector

located at the focus is recorded. This is the same as the signal recorded by an identical transducer

located at a distance of twice the focus (referred to as the mirror transducer), except for the

reflection coefficient between the planar reflector and the surrounding fluid, usually water. To

compute this quantity, first consider the field at a distance twice the focal length:

A(f) eikrr
Field at twice the focal length= . __, ds (A.5)

j S r-r

where r is now a point on the mirror transducer. The total signal recorded by the transducer due to

the reflection is now given by:
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V, (f) = RanPT(f) r e , dsdsmirror
se,,, s,rs,, F - dsSm Srrr mrrorr-

(A.6)

Ramp A f) T(f) if dsmirr rj S,.iror

jk r-rI

s e ds
Srmio I r-r'

where Ramp is the amplitude reflection coefficient between the planar reflector and water. Now

taking absolute value of the square of the above quantity we get

2

Vref(P) 2 = A(f) 2 T(f)2 Jfd
S ,iro ,

jk r-r, 2
J ,

S,ds
s',resmir r -r

where R = Ra2 is the intensity reflection coefficient between the planar reflector and water,

which can be computed if the material properties of the reflector are known.

The backscatter coefficient of the tissue is given by

(A.8)B(f)= N<D(f)12

The above quantity can now be obtained using Eq. (A.7) and (A.4) to give:

|V2  Rtissue I

jk r-r,

t J mirror j d , ds
siro s',rES,,r r -r

4

jjjje .Ids' dQ
Q S' r-r

2

(A.9)

To complete the derivation, we only need to add the effect of attenuation within the gate used in

computing Fourier Transforms, and account for the signal loss due to the Hamming window

function. Then the expression given in Eq. (3.9) is obtained.
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Appendix B: On Estimating the Parameters of the

Generalized Gamma Distribution

The three-parameter Generalized Gamma (GG) distribution is an interesting distribution in that it

contains several simpler distributions as special cases, and provides two shape parameters for

tissue characterization. However its parameters are more difficult to estimate, and in general

show larger variability than those of other distributions commonly used in tissue characterization.

This Appendix describes some aspects regarding the estimation of the parameters of the GG

distribution using the method of moments and the maximum likelihood method. It is shown that

when the skewness of the logarithm of data is outside the limits (-2, 0), the method of moments

fails to provide a solution. It is also shown through examples that the maximum likelihood

method also fails to provide a solution in certain cases. Using Monte-Carlo simulations it is

shown that the maximum likelihood method provides better estimates than the method of

moments, especially for small values of v (- 1). The difficulty in estimating v for both the

methods for large v (- 4) is demonstrated.

B.1 Method of moments (MOM)

The GG distribution is given by the following expression:

c(cv--1) _ r

p(r) = cr, e r >0 a, v,c >0 (B. 1)
acvT(v)e

The method of moments to estimate its parameters was first described by Stacy and Mihram

[142] and requires solving the following three equations:

E [(n(r)-n(r))] (B.2)
E"v = - I r (B .2))) ] 1.

y'(v) (B.3)

E [(ln(r) - In (r))]
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r(v)
a = E(r) (B.4)

F'(v).
where yi(v) = F(v) is the digamma function, and F(v) is the gamma function. To solve the

above equations, the RHS of Eq. (B.2), which is the skewness of the logarithm of the data, is first

computed. The estimate of v is then obtained by solving the transcendental equation numerically.

Once v is obtained, c and a are obtained using Eqs. (B.3) and (B.4).

Under some conditions, a solution to Eq. (B.2) may not be possible. This is because the LHS of

Eq. (B.2) is bounded between -2 and 0 whereas the RHS can in general take any negative value.

To prove that the LHS is bounded, let us first compute the lower asymptotic limit when v -+ 0.

Consider the following series expansions for the first two derivatives of the digamma function

[146]:

1
V/'(V) 2 (B.5)

k=O (v+k)

S 1
y"(v)= -2 (B.6)

k=O (v + k)'

From the above we get

___(V)__ K +)3 (v+23

r2 .5

Nowtaingth liitas v) = 0, we get) (+2

V / ' V ) 2 ( + 1 ) 2 ( + 21 ) 2
V ( V + ( v + 2(B .7)

1+ ( 3+ (V )

V+1) v+2)
=-2-

+ 2 
2( V.)

V+1) v+2)

Now taking the limit as v -> 0 , we get
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(B.8)lim- Vf = -2
v->0 (yi'(v)) 5

To obtain the limit as v -+ oo , consider the series expansions for large v [146]:

1 1 1 1 1 1
V'(v)= -+ + + +..

v 2v 2 6v3 30v' 42v 30v9

11 1 1 1 3 5
V"( + + +.v 2v 4 6v 6 6v8 10v1 6v 12

v large (B.9)

v large (B.10)

Hence for large v,

1 1 1 + 3 5

(V) 2 6 0 1 v 6 )

( ' ) 1 1 1 1 1 1 1.5

v 22 6v' 30v 42v NO0v

2 Iv - ± + 3 5+
v 2V2 6V4 6V6 1003 6v'o..

1+ + + +...
2v 6V2 30v4  42v5  30v8

-1

(B.11)

Thus for large v, the LHS is simply an inverse square root function. Now taking the limit as

V -+ o , we get

lim = 0V_+0 V/=0) (B.12)

Having obtained the lower and upper asymptotic limits of the LHS, a straightforward plotting of

the LHS function shows that it is monotonic and bounded between -2 and 0 (see Fig. 4.2). This

implies that if the RHS is outside these limits, then no solution exists. Monte-Carlo simulations to

verify that the MOM could indeed fail to yield a solution are presented in Section B.4.
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B.2 Maximum likelihood method (MLM)

The maximum likelihood estimates are obtained by maximizing the log-likelihood function given

by the following expression:

L(r, r,..., rN, a, v, c) = N In c - (cv -1)j in r - Ncv In a - N In F(v) (B. 13)

where ri refers to a sample value, and N is the number of samples. By setting the first partial

derivatives of the above expression with respect to c and a to zero we get

V=- C Ii(B. 14)
N (r

a = (B. 15)
Nv)

To obtain the estimates, the value of c that maximizes the log-likelihood function in Eq. (5.7) is

first obtained. This optimization procedure can be implemented as a one-dimensional exhaustive

search technique for c, as the other two parameters a and v are known from Eqs. (5.9) and (5.8)

once the solution space for c is chosen. Once the estimate of c is obtained, the estimates of v and

a are obtained using Eq. (5.8) and (5.9).

One problem with the ML method is that for some sets of data, the maximum of the likelihood

function might occur at inadmissible boundaries such as c = 0 or c = 00 . These violate the

constraints on the parameters and hence no ML solution exists in these cases. In practice the

solution was found inadmissible for small but finite values of c - 0.018, as the corresponding

values for a were 0 at the computer's precision, which was also inadmissible. To illustrate the

MLM, and to show that in some cases solutions do not exist, 4 examples will now be presented.

The first two are cases where the solution exists, and the next two are cases where no solution

exists. The data for the four examples were as follows:

Data set 1:
0.4894 0.5381 0.9458 0.5115 0.7545 0.1026 0.7685 0.1117 0.5081 0.3701

1.0379 1.0144 0.2911 0.4809 0.6508 0.9623 0.4759 0.1665 0.9415 0.9117
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0.7597 0.9327 1.1431 1.2566 1.4848 1.1166 0.5619 0.6714 0.7698 0.8240

0.8001 1.3940 0.7225 1.2626 0.4194 0.8768 0.7974 1.0090 0.3866 0.8077

0.6285 0.3238 0.2701 0.6877 0.5168 1.1832 1.1209 0.5364 0.8337 0.8077

Data set 2 [163], expressed in natural logarithm of the data:

0.216 -0.410 -1.064 -6.824 -0.758 4.054 0.032 1.262 -0.030 -2.640

0.438 2.208 -0.754 -0.684 -3.506 1.954 0.716 -1.686 -0.832 0.438

Data set 3:
1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

Data set 4:

1.7004 2.3060 3.0967 1.4422 1.8927 1.8427 1.3323 2.2770 2.9700 1.0764

1.2298 1.2609 1.9310 1.8200 2.0940 1.9889 1.6170 1.0971 1.4590 1.0268

1.6479 1.9747 2.6232 1.9977 2.3441 1.6001 2.4848 2.6380 1.7846 1.8186

1.1817 1.4501 2.1128 1.8171 2.4596 2.2352 3.6193 1.5267 2.4195 1.4499

2.6537 1.7604 2.1651 2.7308 2.1268 1.4737 1.5511 1.5249 1.5695 1.4657

Figure B. 1 shows the log-likelihood function for the four examples as a function of c. In the first

example, a unique extremum exists, which also happens to be the maximum. In the second

example, two extrema are obtained, one corresponding to the maximum and the other

corresponding to the minimum. Wingo [145] has also analyzed this data set and stated that the

two extrema correspond to local maxima, but his second maximum actually corresponds to a

minimum of the log-likelihood function. The third example shows that the maximum of the log-

likelihood function could occur at c = co. While numerically it is not possible to prove that the

solution is indeed occurring at oo unless the exhaustive search is extended up to oo, from a

practical standpoint, a finite solution was unobtainable. The fourth example shows that the

maximum of the likelihood function could occur at c = 0. Thus in the third and fourth cases, the

ML solution does not exist. The interested reader could verify these cases as the full data sets

have been provided. It should also be pointed out that these examples are based on very few data

samples compared to what is normally available in ultrasonic tissue characterization studies, and

should not necessarily imply a serious limitation with the MLM.
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Figure B.1: Four examples to illustrate the Maximum Likelihood Method of estimation of the GG-c
parameter. The estimated values of the parameter c are shown in the figures.

B.3 Monte-Carlo simulations

In order to further illustrate the above aspects, and to study variability issues in estimating the GG

parameters, Monte-Carlo simulations were performed using random number generators, and both

the MOM and MLM estimates were obtained. GG random numbers were obtained from the usual

gamma random numbers using a simple transformation. For instance, let the random variable x be

distributed according to the usual gamma distribution with parameters a and v :

x

x (v-1)e a
p(x)= F(v)a

Then a new random variable obtained by the following transformation

r = xc (B.17)

is GG distributed with parameters a', v, and c [164]. Thus by using the usual gamma random

number generator available in Matlab, GG random numbers were generated.
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Monte-Carlo simulations were done for fixed values of a = 1 and c = 2, for eight values of

v=0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. For each v, simulations were done for eleven sample

sizes N=100, 150, 200, 300, 400, 600, 800, 1200, 1600, 2400, and 3600. For all the above 88

cases, 1000 repetitions were done in order to study the variance in the estimates. Thus a total of

88,000 set of estimates (both MOM and MLM) were obtained. For later convenience, we will

refer to values of v around 1 as "small v" and to values around 4 as "large v".

Figure B.2 shows the number of cases for which no solution was possible for all the v's, and for

four sample sizes. It can be seen that the MOM did not yield a solution in several cases. The

MLM yielded a solution in almost all cases, except for the case of N = 200 and large v. For all

sample sizes, the above problem with MOM decreased with increasing values of v.

N =200

..... .... .... ..-.

N =400

---- --

3 1 2 3 4

N = 800

.~ mom
--- MOM

-- MLM

0 1 2 3 4
V

100

80

60

40

20

0

100

80

60

40

20

0

3 1 2 3 4

N = 1600

0 1 2
V

Figure B.2: Number of cases, among 1000 trials, for which the Method of Moments (MOM) and the
Maximum Likelihood Method (MLM) did not yield any solution. The x-axis is the true value of the
parameter v used in the random number generation. The sample size N is indicated on top of each
panel.
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Figure B.3: Kolmogorov-Smirnov (KS) goodness of fit measures for the Method of Moments (MOM)
and Maximum Likelihood method as a function of N for four values of v.

Figure B.3 shows the Kolmogorov-Smirnov (KS) goodness of fit for both the MOM and MLM,

for v = 0.5,1,2, and 4. It can be seen that the MLM always gave a smaller KS value than the

MOM, implying that its pdf fit was closer to the actual histogram than that of the MOM. The

difference in KS values between the two methods is more pronounced for smaller v, but for large

v both the methods yield similar goodness of fits. As expected, for every v, the performance of

both the methods improves with increasing N.

Figure B.4 shows the performance of the estimate of v as a function of sample size for two cases

corresponding to v=1 and 4. For both the cases, the MLM estimates were closer to the true values

on the average and had smaller variability compared to the MOM estimates. When the true value

of v was 4, occasionally large values of the estimates were obtained for both the methods, which

lead to very large mean estimates, even higher than the 95f percentile points. Such occasional

large values for the estimate of v when its true value is large have also been mentioned by
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previous researchers [149]. Figures B.5 and B.6 further illustrate the problem in estimating v

when its true value is even moderately large. In general, the ML estimates are asymptotically

normal [165], and the histogram of the estimates should show a normal distribution for large

sample sizes. In Figure B.5, when v=1, the histogram of the estimates is normal when the sample

size was 3200. However in Figure B.6, when v=4, even for a sample size of 3200, the histogram

was not normal, but skewed towards the right. Thus when the true value of v is large, a very large

sample size might be needed to reach asymptotically normal distribution its estimate. Figure B.7

shows the estimated values of the other shape parameter c. Once again the MLM shows better

performance in that the variability of its estimates is smaller than those of the MOM. However,

unlike in the case of estimating v, occasional large values do not occur.

v= 1

10
-u- MOM
- - MLM

10

E
0

100 200 400 800 1600 3200

3 V=4
10

-- MOM
-- MLM

102
E

110,

10

E10
0-1

100 200 400 800 1600 3200
N (number of samples)

Figure B.4: Variability in the estimated values of v as a function of sample size N. Results are shown
for two cases corresponding to true values of v=1 and 4. The markers indicate the mean of the
estimates based on 1000 Monte-Carlo trials. The error bars indicate the extent of estimated values
between the 5th and 95th percentile points. In some cases (for true v=4, N5200), the mean estimates
are seen to be higher than the 9 5 th percentile points, due to occasionally large estimates.
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Figure B.5: Histogram of estimated values of v for two sample sizes (N=400

of v was I in both cases and the estimates were obtained using the MLM.
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Figure B.6: Histogram of estimated values of v for two sample sizes (N=400 and 3200). The true value

of v was 4 in both cases and the estimates were obtained using the MLM.
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Figure B.7: Variability in the estimated values of c as a function of sample size N. Results are shown

for two cases corresponding to true values of v=1 and 4. The markers indicate the mean of the
estimates based on 1000 Monte-Carlo trials. The error bars signify the extent of estimated values
between the 5th and 9 5 th percentile points.

B.4 Summary of results

This appendix provided several useful results regarding estimation of the parameters of the GG

distribution:

- Both the MOM and MLM methods may fail to provide solutions. In practice, such

failures occur more for the MOM than MLM, especially for small v and small N.
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- The MLM is in general better than the MOM in terms of the KS goodness of fit,

especially for small v. For large v, both the methods give comparable goodness of fits.

- The MLM always gives better estimates (smaller bias and smaller variance) than the

MOM, at least for the cases analyzed here.

- Reliable estimation of v is hard when its true value is large due to the possibility of

occasionally very large estimates. This is true for both the MOM and MLM. When the

true value of v is large, a very large sample size might be needed for estimating the

parameter v reliably.

These results should be useful to researchers in many fields including radar, communications,

sonar, and medical ultrasound, where the estimation of the GG parameters is needed.
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