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Abstract

Bridging the gap between the Wold random process decomposition theory and practical texture
modeling, this research establishes Wold-based texture modeling as an important method for a
wide range of applications that benefit from efficient and effective characterization of textural
information.

* A robust and efficient algorithm is developed for spectral 2-D Wold decomposition of homo-
geneous or near homogeneous random fields.

. A psychophysical study is conducted to show that the Wold component energy of a texture
pattern is a good computational measure for the most salient human texture perception
dimension of repetitiveness vs. randomness.

* A shift, rotation, and scale invariant Wold-based texture model is presented. This model
provides efficient and perceptually sensible features that are robust to many natural texture
inhomogeneities.

* For model perspective invariance, a linear system characterization and a decomposition of
image perspective transformations are proposed to form a basis for future algorithms to infer
image perspective parameters from a single sample of harmonic texture data.

* Based on the Wold texture model, an algorithm is developed for textured image database
retrieval. Compared to the state-of-the-art texture models, the new model appears to offer
perceptually more satisfying retrieval results while matching or surpassing the best recognition
performance of the others.

* A K-means-based image segmentation method is presented to demonstrate the use of Wold-
based modeling in characterizing textured regions in natural scene images.

* Applying the principle of Wold decomposition to temporal texture modeling, a robust and
efficient algorithm is developed for detecting and segmenting periodic motion. The use of

periodicity templates is proposed for characterizing periodicity in space and time.
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Chapter 1

Introduction

1.1 Texture

The most obvious property of texture is perhaps its ubiquity. While two-dimensional visual and
three-dimensional haptic textures are the most intuitive, "texture" can also be used to characterize
audio signals and spatiotemporal events, such as music and motion.

Ubiquitous as it is, a formal definition of texture remains elusive. In the literature, various
textual properties are often used to serve as the definition of texture or, more precisely, to constrain

the domain of problems. Commonly seen descriptions of textures include coarseness, contrast,
directionality, regularity, uniformity, roughness, busyness, etc.. Categorically, texture has also

been considered as "stuff", as opposed to "things"; the latter of which is usually associated with

identifiable objects.
In this dissertation, the term texture refers to signals that exhibit statistically certain degrees

of homogeneity and can be regarded as stationary or near stationary one-dimensional (1-D) or two-

dimensional (2-D) random processes. Other types of homogeneity exist. An example is self-similar

texture. The modeling of such texture has been addressed by others using fractal models [54][73],
and will not be considered here.

1.2 Texture Modeling

1.2.1 Texture Models

Texture models provide computational features that facilitate tasks such as image understanding,
representation, and synthesis. Historically, texture models are categorized as statistical, structural,
or statistical-structural (hybrid) [36][37][88][93].

Statistical Models

The statistical approach focuses on the statistical properties of textures. A texture pattern is

characterized either by statistics of image pixel gray scale values or by a stochastic model. Early

methods include autocorrelation [49], run length [33], and co-occurrence [38]. In the 1980's, a large

volume of literature appeared in the area of texture modeling using Markov-type random field

models. The work of Whittle [94], Woods [97], Besag [12], and Kashyap [52] made fundamental
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contributions to this development. Connections between image pixel value co-occurrence matrices
and Markov/Gibbs random field modeling were established in [25]. An excellent review of work in
Markov random field modeling can be found in [22]. Markov-type random field models typically
are effective for the analysis and synthesis of micro and random looking textures, but not much so
for that of larger scale and more structured patterns [21].

Structural Models

The structural methods represent a texture pattern by its textural primitives and their spatial
placement rules. Examples for both texture analysis and synthesis using structural models can be
found in [68][89][90]. The main deficiency of the structural methods is that they are incapable of
capturing or generating the randomness that natural textures almost always possess.

Statistical-structural Models

Analogies have been made between the structural/statistical characterization of texture models
and the attentive/pre-attentive dichotomy in low-level human vision [95]. However, this division
of texture models is based on the functional properties of the models, and natural textures usually
contain both structural and statistical components. Texture models capable of representing both
structure and randomness have been studied. Garand and Weinman proposed a hybrid model which
uses structured low frequency Fourier information as the initial state for a Gibbs random field model
to synthesize cloud textures [34]. Picard discussed the parameter selection of this hybrid model
and explored the use of an external field to introduce structure to a Gibbs random field [74]. More
recently, Francos et al. proposed a unified texture model based on the 2-D Wold decomposition
of homogeneous random fields [27]. Wold-based texture modeling (Wold-based modeling or Wold
model for short) is the focus of this dissertation.

1.3 Criteria for Texture Models

Different criteria can be applied when evaluating a texture model, often biased by the particular
application in hand. Two of the most common considerations are:

1. The ability to faithfully reconstruct the data. The quality of the reconstruction can be
measured in two ways. One is by the pixel-level mean-squared error criteria. The other is
by the perceptual resemblance. For example, two pictures of a grass lawn may have large
mean-squared pixel difference but look very similar.

2. The model efficiency. Two types of efficiencies are involved. One is in data representation, i.e.,
the ratio between the model feature size and data size. The other is the level of complexity
in model implementation and feature computation. A model can be easy to compute but
produce large feature set or vice versa.

Emerging applications such as image and video database retrieval pose new challenges to texture
modeling. In those applications, the computer system serves the purpose of saving human users
the time and effort of browsing the entire database. It is often expected that the retrieved images
resemble the visual properties of a given prototype. For such a system, it is important that the
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computational image features used for pattern comparison are meaningful to human perception.
This motivates the following additional criterion:

3. The model perceptual properties, i.e., the perceptual interpretation of model computational
features.

1.4 Focus: Wold-based Texture Modeling

The focus of this dissertation research is on Wold-based Texture Modeling. The mathematical
foundation of Wold-based texture modeling is the 2-D Wold decomposition of homogeneous ran-
dom fields. The 2-D Wold theory allows a textured image to be decomposed into three mutually
orthogonal components: harmonic, evanescent, and indeterministic (random). These component
images can be characterized separately.

Wold-based texture modeling is capable of satisfying all three criteria discussed above. Francos
et al. applied Wold-based models to image coding and reconstruction [26][27][85]. It was shown
in their work that a handful of model parameters could reconstruct natural textures that are
visually indistinguishable from the originals. The most important advantage of Wold-based texture
modeling lies with the third criterion. An independent psychophysical study has identified the top
three perceptual dimensions of human texture perception as "repetitiveness", "directionality", and
"granularity and complexity" [79]. As shown by the Brodatz texture [15] examples in Figure 1-1, the
perceptual properties of the Wold components can be described as "periodicity", "directionality",
and "randomness", agreeing closely with the findings of the human study.

1.5 Goal and Contributions

The goal of this research is to establish Wold-based texture modeling as an important method for
a wide range of applications that benefit from efficient and effective characterization of textural
information. This goal is achieved by bridging the gap between the Wold theory and practical
texture modeling. The main contributions of this work are as follows:

* A robust and efficient spectral 2-D Wold decomposition algorithm is developed for homoge-
neous or near homogeneous random fields.

* A computational measure for the most salient human texture perception dimension of pattern
repetitiveness vs. randomness is proposed and validated by a psychophysical study.

e A shift, rotation, and scale invariant Wold-based texture model is presented. This model
provides efficient and perceptually sensible features that are robust to many natural texture

inhomogeneities. The superior performance of the model is demonstrated in comparison to
state-of-the-art texture models in a textured image database retrieval experiment.

* For model perspective invariance, a linear system characterization of image perspective trans-

formation and its decomposition into affine and chirp transformations are presented. The
relation between geometric and spectral descriptions of perspective transformation is formu-
lated to form a basis for future algorithms to infer image perspective parameters from a single
sample of harmonic texture data.
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(a) (b)

Figure 1-1: Examples of Brodatz textures with different prominent Wold components. Top row:
originals. Bottom row: corresponding Fourier magnitude images. (a) D3: Reptile skin, having
a prominent harmonic component (spectral peaks supported by point-like regions). (b) D105:
Cheesecloth, having a strong evanescent component (spectral peaks supported by line-like regions).
(c) D29: Beach sand, having mostly an indeterministic component (relatively smooth spectrum).

* Based on the new texture model, an image retrieval algorithm is developed for textured
image databases. Compared to other well-known models, the Wold model appears to offer
perceptually more satisfying results in the image retrieval experiments while matching or
surpassing the best recognition performance of state-of-the-art texture models.

* Applying the principle of Wold decomposition to temporal texture modeling, a robust and
efficient algorithm is developed for detecting and segmenting periodic motion. The use of
periodicity templates is also proposed for characterizing periodicity in space and time.

1.6 Organization

The rest of the dissertation is organized as follows.

Chapter 2 A concise but comprehensive review of the 2-D Wold decomposition theory for random
fields is presented. This mathematical framework is the theoretical foundation of this disser-
tation. Certain approximations to the theory are also discussed for practical applications.
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Chapter 3 A spectral 2-D Wold decomposition algorithm for homogeneous or near homogeneous
random fields is presented. This algorithm detects the Fourier spectral harmonic and evanes-
cent frequencies of a textured image and decomposes the image by extracting these frequency
components from the image spectrum.

Chapter 4 The perceptual property of Wold-based texture modeling is investigated by conducting
a human texture ranking experiment. Human subjects and a computer order a set of texture
samples along the perceptually most salient dimension of human texture perception. The
ranking scores are analyzed to examine the concordance of the human rankings and the
correlation between the computer behavior and that of the humans.

Chapter 5 A Wold-based texture model is constructed. The model emphasizes the perceptually
most salient harmonic structures in a texture pattern and is designed for use in large collec-
tions of natural textures. Based on this new model, an image retrieval algorithm is developed
for textured image databases. The model invariance study leads to the decomposition of
perspective transformation. A K-means-based image segmentation method is also presented
to demonstrate how the Wold model can be used to characterize textured regions in natural
scenes.

Chapter 6 Based on the principle of 1-D Wold decomposition, an algorithm is developed to model
temporal textures for image sequence analysis. This robust and computationally efficient
method allows the detection, segmentation, and characterization of periodic motion to be
accomplished simultaneously. The use of periodicity templates is also proposed for charac-
terizing periodicity in space and time.

Chapter 7 Conclusions.

Chapter 8 Future research directions related to this work are suggested.
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Chapter 2

Theoretical Background

2.1 Introduction

This chapter reviews the mathematical foundation for this dissertation work. The intent is to make
a concise but comprehensive presentation of a theoretical framework to which many people have
contributed over the years. References are given throughout the chapter for details and proofs.

The original decomposition theory due to Wold applies to the analysis of one-dimensional sta-
tionary random processes [96]. It provides a general representation of such processes, as well as an
interpretation of the representation in terms of linear prediction. To analyze the structure of a 2-D
discrete random field, a two-dimensional linear prediction problem can be similarly formulated.

In the following discussion, it is assumed that the 2-D random field {y(m, n)}, (m, n) E Z 2, is
real and zero mean. In addition, the second-order moments of y(m, n) are assumed to be finite,

sup E y2(m, n)] < oo, (2.1)
(m,n)EZ

2

and E [y2 (m, n)] > 0 for at least one (m, n) E Z 2. Symbol E [.] denotes the expected value. The
objective is to find the minimum-norm linear predictor of y(m, n) as the projection of y(m, n) on
the Hilbert space spanned by all the field samples that are in the "past" relative to the "present".

Since there is no natural definition of "past" and "future" in a 2-D plane, different order
definitions can lead to different orthogonal decompositions of a 2-D random field. Various choices
of the "past", such as symmetric half-plane, non-symmetric half-plane (NSHP), quarter-plane,
"vertical" and "horizontal" half-planes, etc., have been used and resulted in two-fold, three-fold
and four-fold Wold-like decomposition of 2-D homogeneous random fields [18][19] [42] [43] [50] [51][57].
It is shown by Francos et al. [28] that, by considering a countably infinite set of "total-order" and

rational non-symmetric half-plane (RNSHP) support (see Section 2.2.1), a corresponding countably-
infinite-fold Wold-like decomposition of 2-D homogeneous random field can be obtained and the

two-fold, three-fold, and four-fold Wold-like decompositions are special cases of this countably-
infinite-fold decomposition. Francos et al. also generalized the NSHP-based decomposition to the

case of 2-D non-homogeneous random fields [31].
In the following, first the 2-D linear prediction problem is formulated. Then, the Wold-like

decomposition of 2-D non-homogeneous random fields is presented, followed by the Wold-like de-
composition of homogeneous random fields and the corresponding spectral decomposition. To apply
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Figure 2-1: Totally ordered non-symmetric half-plane (NSHP)
center location is "present".

support S of a 2-D plane. The

the 2-D Wold decomposition to practical problems, certain approximations of the theory are made.
Finally, examples are given for illustration.

2.2 Linear Prediction Formulation

In this section, the problem of 2-D linear prediction of a random field is formulated based on both
infinite and finite supports.

2.2.1 Total-order and Support in 2-D Plane

Definition 1 In the 2-D plane, a total-order can be defined for the samples of a random field
{ y(m, n)}, (m, n) E Z 2 , in a raster-scan manner: row after row, from left to right and top to
bottom. The order -.< is

(ij) -.< (s, t) iff (ij) E {(kjl) 1 k = sl < t} U {(kl) | k < s, -oo < I < oo}

and the order -< is

(2.2)

(2.3)
Based on the total-order definition, a totally ordered, non-symmetric half-plane
(NSHP) support S can be defined as follows. Given the (m, n)-th sample as "present", all
(i, j) -< (m, n) are in the "past", and the rest are in the "future".

This NSHP support is illustrated in Figure 2-1, where the "present" is at the center.
Obviously, the total-order and the NSHP support of Definition 1 is not unique on the 2-D

Past
0 0 e0

(i, j) -- (s, t) iff (iI j) 4- (8, t) or (i, j) = (s, 0).
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Figure 2-2: Example of a totally ordered rational non-symmetric half-plane (RNSHP) support,
rotated from S by an angle 0 = tan-4(1/2). The center location is "present".

lattice. Keeping the structure of the 2-D discrete sampling grid the same, multiple definitions of
total-order and NSHP support can be made.

Definition 2 Let a and # be co-prime integers and a 5 0. A new total-order and NSHP support

can be defined on the original 2-D grid by rotating the NSHP total ordering S of Definition 1

counterclockwise by an angle

0 = tan-1 (
a)

about the origin of its coordinate system. This new support is called the rational non-symmetric

half-plane (RNSHP) support since its boundary line is of rational slope. Denote the set of all

possible total order and RNSHP support defined in this manner by 0,

( = {o l o = (a, #); a,/# are co-prime integers}.

Note that 0 is a countably infinite set.
By Definition 2, the total-order and NSHP support S of Definition 1 can be denoted as o = (1, 0).

Figure 2-2 shows an example of RNSHP total ordering, with a = 2 and # = 1.
In the following, certain definitions and theorems are stated with respect to (w.r.t.) a particular

total-order and NSHP support definition o E 0. In places, this total-order and NSHP dependency

is noted by the superscript or the subscript o.

2.2.2 Linear Predictor Based on Infinite Support

Let ' denote the Hilbert space formed by the random variables y(m, n), (m, n) E Z 2 , with the

inner product of any two random variables y(m, n) and y(s, t) defined as E [y(m, n)y(s, t)]. Then
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the closed linear manifold spanned by the set {y(s, t)}, (s, t) -- (m, n) by the total-order o E 0, is
a subspace of H:

Kh(m,n) = Sp{y(s, t)I(s, t) - (m, n)} C H.

Note that this definition implies the nesting property:

O 

OHY(s't) C HY (m,n),

(2.4)

if (s, t) -< (m, n).

Definition 3 A predictor of y(m, n) is causal and of continuous support w.r.t. the order de-
fined in Definition 1 if it depends on all and only the preceding samples.

Definition 4 The minimum-norm, causal, continuous support, linear predictor of y(m, n) is the
0

projection of y(m, n) on the Hilbert space HK(m,nl). Denote the predictor as 9(m, n), then

9(m, n) = >3 b(mn)(k, 1) y(m - k, n - 1).
(0,0)-<(k,l)

(2.5)

2.2.3 Linear Predictor Based on Finite Support

In practice, only a finite number of samples are available. Therefore, it is necessary to consider a
finite support.

Definition 5 Define the 2-D discontinuous and finite half-plane support as

SM,N = {(k,l)1 k = 0, 1 < l < N} U {(k,l)| 1k M -N l N}, (2.6)

where M and N are positive integers.

Correspondingly, let

O
N'Y(m,n);SM,N = Sp -y(m k, n - 1) 1 (k, 1) E {SM,N U {(0, 0)}}}-

Definition 6 The minimum-norm, causal, finite support, linear predictor of y(m, n) is the projec-
0

tion of y(m, n) on the Hilbert space HL(m,n_1);SM,N. Denote the predictor as pSM,N (m, n), then

smN(m,n) = (2.7)S: b'n)(k, 1) y(m - n - 1).
(k,l)ESM,N

It is shown in [31] that the prediction of y(m, n) based on the continuous infinite half-plane sup-
port can be approximated by the prediction based on the discontinuous finite half-plane support.

CH APT ER 2.
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Theorem 1

lim lim E DKm,n) - ySM,N(m,n) = 0. (2.8)
M-*oo N--co

Therefore, although the 2-D Wold-like decomposition theory presented in the following sections is
based on infinite 2-D support, it can be applied to random fields defined on finite 2-D discrete grids.

2.3 Decomposition of Non-homogeneous Random Fields

The definitions and theorems in this section are stated with respect to the total-order and NSHP
support S (o = (1, 0)).

Definition 7 Let Q(m, n) be the minimum-norm, causal, continuous support linear predictor of

y(m, n). Then the random field {u(m, n) = y(m, n) - 9(m, n)} is called the innovation of the

random field {y(m, n)}.

Definition 8 A random field {y(m, n)} is regular if E [y(m, n) - y(m, n)]2 > 0 for at least one

(M, n) E Z 2 , i.e., its innovation field {u(m, n)} does not vanish.

Definition 9 A random field {y(m, n)} is deterministic if E [(y(m, n) - #(m, n)) 2] = 0 for all

(m, n) E Z 2, i.e., its innovation field {u(m, n)} vanishes.

Note that the deterministic field is a random field. It is deterministic only in the mean square
sense.

0 0

Definition 10 A regular field {y(m, n)} is purely indeterministic if 7P(mn) = 7"(m,n) for all

(m, n) c Z 2 , i.e., {u(m, n)} spans the same Hilbert space spanned by {y(m, n)}.

The following theorem is the basic theorem of the 2-D Wold-like decomposition of regular

random fields. It is a generalization of Cramer's [20] 1-D Wold decomposition of non-stationary
random processes by Francos et al. [31].

Theorem 2 If {y(m, n)} is a 2-D regular random field, then it can be represented uniquely by the

following orthogonal decomposition:

y(m, n) = v(m, n) + w(m, n), (2.9)

where
w(m, n) = a(mn)(k, l)u(m - k, n - 1) (2.10)

(0,0)-<(k,l)



CHAPTER 2. THEORETICAL BACKGROUND

and E[v(m, n)] = E[u(m, n)] = 0. Field {v(m, n)} is deterministic and field {w(m, n)} is regular
and purely indeterministic. The innovation field {u(m, n)} is white, i.e., E [u(m, n)u(s, t)] = 0,
for all (m, n) # (s, t). Fields {v(m, n)} and {u(s, t)} are orthogonal, i.e., E[v(m, n)u(s, t)] = 0,
for all (m,n) and (s,t) e Z2 . Thus fields {v(m,n)} and {w(s,t)} are also orthogonal. When
E [u2(m - k, n - 1)] > 0, the coefficients a(mn)(k, 1) are given as

S E [y(m, n)u(m - k, n - 1)]
E[u2 (m - k, n - 1)] (2.11)

When E [u2 (m - k, n - 1)] = 0, a(m,n)(k, 1) are arbitrarily set to zero to accomplish the uniqueness
of the sequence {a(mn)(k, l)}.

It can be shown that field {u(m, n)} is also the innovation field of {w(m, n)} [31]. Since field
0 0

{w(m, n)} is purely indeterministic, '(m,n) = R(m,n). Therefore, the purely indeterministic
component {w(m, n)} must exist for any regular field. If a random field {y(m, n)} is regular and
purely indeterministic, it can be represented completely by the white innovation driven moving
average (MA) system

y(m, n) = > a(mn)(k, l)u(m - k, n - 1). (2.12)
(0,0) -< (k,l)

By Theorem 2, the subspace 7-(m,n) has a direct sum representation

'(m,n) = '(m,n) ( Hu(m,n) (2.13)

Theorem 2 gives the basic decomposition of a regular random field into its deterministic and
purely indeterministic components. Shown next are some properties of the deterministic field
{v(m, n)}.

O

Definition 11 The remote past space -HvY(o, 0 ) w.r.t. a specific total-order and NSHP def-
inition is the intersection of all the Hilbert subspaces spanned by the samples of the regular field
{y(m, n)}, i.e.,

0 0
(-oo,- = n &H(m,n) (2.14)

(m,n)EZ
2

0 oo o
Let Kv(m,-oo) = l N(m,n). Using Theorem 2, it can be shown that the deterministic field

n=-oo

o 0 0
{v(m, n)} has the property that Kv(mn) = (m,-oo) for all m [31]. Define K" = Sp v I E

0 0

H(m,- oo), v I v(m-,o)}. Then,

0 0 0
'(m,-00) = (m-1,- 0 0 ) ( NM.

By induction, the Hilbert space spanned by the deterministic field {v(m, n)} can be written as the
direct sum of the remote past space and the row-to-row innovations of the deterministic field
w.r.t. the specific total-order and NSHP definition:
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Theorem 3

=(m,n) ='K(m,-oo) =-oo,-) e H KE- (2.15)
k=-oo

Theorem 3 implies that the remote past space and the row-to-row innovations of the deterministic
field {v(m, n)} are mutually orthogonal.

Definition 12 A 2-D deterministic random field {e(m, n)} is evanescent w.r.t. a specific total-
order and NSHP definition if it spans a Hilbert space that is identical to the one spanned by the
row-to-row innovations of the deterministic random field at each coordinate (m, n).

By Theorem 3, under each total-order and NSHP support o E 0, at most one evanescent field
can be resolved. This is the one that generates the row-to-row innovations aligned to the row
orientation of o. The subspaces spanned by all other evanescent components eo,, where o' E 0 and

O

o' # o, are contained in the remote past space ( Therefore, to resolve all the evanescent
components of the deterministic field, it is necessary to check the random field against every possible
total-order definition in 0.

So far, the orthogonal decomposition of a 2-D regular random field has been studied without
any assumption on the homogeneity of the field. In general, the regularity and determinism of a
2-D random field are total-order dependent. Therefore, the use of multiple total-order and RNSHP
supports can result in a family of orthogonal decompositions of a 2-D random field. It will be shown
in the next section that the decomposition of a regular and homogeneous random field is NSHP
support invariant. The homogeneity of the random field also makes its spectral decomposition
possible.

Summary:

By Theorem 2 and Theorem 3, a 2-D regular random field can be decomposed orthogonally into

remote past, evanescent, and purely indeterministic random fields.

2.4 Decomposition of Homogeneous Random Fields

2.4.1 Homogeneous Random Fields

Definition 13 A random field {y(m, n)}, (m, n) E Z 2 , is homogeneous if

E [y2(m, n)] < 00 (2.16)

and
r(k, 1) = E [y(m + k, n + l)y(m, n)], (k, 1) E 2 (2.17)

is independent of m and n.

If field {y(m, n)} is homogeneous, its innovation field {u(m, n)}, as well as its deterministic

field {v(m, n)}, its evanescent field {e(m, n)}, and its purely indeterministic field {w(m, n)}, are
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also homogeneous. Furthermore, the variance of field {u(m, n)} is a constant for all (m, n) E Z2.
Denote this constant by a2 . If field {y(m, n)} is also regular, then .2 is strictly positive and the
2-D Wold decomposition of homogeneous regular random fields is unique by Theorem 2.

2.4.2 Spectral Decomposition

For a homogeneous random field, its spectral representation exists in the form of a Fourier-Stieltjes
integral. In the following, all spectral functions are defined on the rectangular region

K= . 2 2 2 2

Let Fy( , r/) be the spectral distribution function of the homogeneous field {y(m, n)}. Then
the corresponding spectral density function fy( , T) is the 2-D Lebesgue derivative of Fy( , y):

82F (,)
fy ( ) ( 77) (2.18)

The spectral representation of the field {y(m, n)} is

1 1

y(m, n) = 2 e2j(m+nn)dZ((, r), (2.19)
2 2

where j = -1, Z( , y) is a doubly orthogonal increment process,

E [dZ( , 77)dZ*(i', y')] = 0, 7 # (', r # T', (2.20)

and is related to Fy( , y) by

dFy( , rj) = E [dZ( , r/)dZ*( , r)]. (2.21)

The covariance function of {y(m, n)} is

ry(k, 1) = e2 wj(k +ln)dFy((, 7). (2.22)
2 2

Helson and Lowdenslager proved that a 2-D stationary (homogeneous) process can be orthog-
onally decomposed into three sub-processes: remote past, evanescent, and innovation [43]. The
remote past and evanescent processes are deterministic and the innovation process is purely inde-
terministic. These are similar results as in Theorem 2, but for the homogeneous case. In the same
paper, the decomposition of the spectral distribution function of a homogeneous regular random
field is also given:

Theorem 4 The spectral distribution function Fy(,r/) of a homogeneous regular random field
{ y(m, n)} can be uniquely represented as

Fy(,r) = Fv(, r/) + Fw(, r/), (2.23)
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where F((, TI) and F,(, ,) are the spectral distribution functions of the deterministic and the

purely indeterministic components of {y(m, n)}, respectively. Function F,( ,r/) = Fy( , 7) is the

singular part of Fy y) and function F, ,) is absolutely continuous. Thus, the spectral measure
induced by F,((, I) is singular w.r.t. the Lebesgue measure and is concentrated on a Borel set £ with

Lebesgue measure zero in C. The derivative of F(, 77) is zero except on the set L. The spectral
representations of the deterministic and the purely indeterministic component fields have the form

v(m, n) = je2ij(m +no)dZ( ,r,). (2.24)

and
w(m, n) = J e2 rJ(m+n)dZ( , r) (2.25)

Therefore, the 2-D Wold-like decomposition of a homogeneous regular random field into deter-
ministic and purely indeterministic components corresponds to: (1) in terms of spectral measures,
the decomposition of the spectral measure of the random field into the sum of two mutually singu-

lar spectral measures (2.24) and (2.25) that are concentrated on the sets C and K\L, respectively;
(2) in terms of spectral distributions, the representation of Fy(, r/) as the sum of its singular
and absolutely continuous components (2.23). Clearly, the orthogonal decomposition of a homo-

geneous random field into deterministic and purely indeterministic components can be achieved
by performing a spectral Lebesgue decomposition [82], which separates the singular and the

absolutely continuous components of the spectral distribution of the random field.

2.4.3 Invariability

As mentioned at the end of last section, the set of multiple total-order and RNSHP support 0 gives

rise to a corresponding family of orthogonal decompositions of a random field since the regularity

and determinism of a non-homogeneous random fields are total-order dependent. In [42], Helson

and Lowdenslager showed the following:

Theorem 5 A 2-D homogeneous random field {y(m, n)} is regular iff fy((, 7) > 0 almost every-
where in K (in Lebesgue measure) and

log fy(, r)ddr > -oc. (2.26)
2 2

In the regular case, the variance of the innovation field {u(m, n)} is given by

1 1
a2 = exp log f((, y)dddy. (2.27)

2 2

The following theorem is based on Theorem 4, Theorem 5, and the fact that the results stated

in these theorems are independent of the total-order and NSHP definition.
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Theorem 6 The regularity property of a homogeneous random field and the decomposition of a
regular and homogeneous random field into deterministic and purely indeterministic components
are NSHP support invariant. The resulting component fields from the decomposition are unique.

Therefore, if a homogeneous random field is regular w.r.t. one total-order and NSHP definition, it is
regular w.r.t. any other total-order and NSHP definition. The deterministic (purely indeterministic)
component obtained w.r.t. one total-order and NSHP definition is identical to the deterministic
(purely indeterministic) component obtained w.r.t. any other total-order and NSHP definition.

2.4.4 Deterministic Field

Further analysis of the deterministic field is pursued in this subsection. As shown previously, under
the definition of the set of total-order and RNSHP support 0, multiple evanescent fields can be
resolved from the deterministic random field.

Definition 14 A random field {g(m, n)} is called generalized evanescent if it can be represented
as a linear (possibly infinite) combination of evanescent fields. Each of these evanescent fields
generates row-to-row innovations w.r.t. a different total-order and RNSHP support.

Definition 15 A 2-D random field {p(m, n)} is half-plane deterministic if it spans the Hilbert
0 0

space _ =_ where H-c,_oo is the remote past space of the random field
oEO

w.r.t. the total-order and NSHP definition o.

Since the half-plane deterministic field spans the intersection of all Hilbert spaces spanned by
the random field samples y(m, n), (m, n) E Z 2 , w.r.t. all total-orders and RNSHP definitions, it
contains no innovations w.r.t. any total-order and RNSHP definitions.

From Theorem 3,
0 0 00 0

(oo'oo) 7H(-oo,-oo) D e 7-( . (2.28)
k=-oo

By the uniqueness and NSHP support invariance of the deterministic field and using (2.28),

0 
0HV H HV~ cc) N(cc cc)(oo00o) (oo,oo0) (ono

OEO

= H N(-oo,-oo) Hk X
060 k=-oo

= -cc,-c) ) @-(%. (2.29)
0O0 k=-oo

This leads to the following theorem [28]:
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Theorem 7 The deterministic component {v(m, n)} of a 2-D regular and homogeneous random
field {y(m, n)} can be decomposed uniquely as

v(m, n) = p(m, n) + g(m, n), (2.30)

where field {p(m, n)} is half-plane deterministic and field {g(m, n)} is generalized evanescent. Fields
{p(n, n)} and {g(m, n)} are mutually orthogonal, i.e., p(m, n) I g(s, t) for all (m, n), (s, t) c Z 2 .

Field {g(m, n)} consists of a countable number of mutually orthogonal evanescent fields:

g(m, n) = 2: e0(m, n), (2.31)
OEO

where e0(m, n) is the evanescent field of {y(m, n)} w.r.t. the total-order and RNSHP definition o.

The corresponding spectral decomposition of the deterministic random field is as follows [26].

Theorem 8 Let Fp( , y) be the spectral distribution function of the half-plane deterministic com-
ponent of a homogeneous regular random field {y(m, n)} and Fg( , ') be the spectral distribution
function of the generalized evanescent component of {y(m, n)}. The spectral distribution function
Fv( , y) of the deterministic component of {y(m, n)} can be uniquely represented as

F( = F(, q) + F9 ( , y) = F,((, y) + E Fe.((, 'ii), (2.32)
OEO

where Fe,( , 7) is the spectral distribution function of the evanescent field w.r.t. the total-order and

RNSHP definition o. The spectral measures induced by the distribution functions in (2.32) are
mutually singular.

From the definition of the evanescent field and Theorem 8, the spectral measure of the evanescent

field w.r.t. the total-order and RNSHP definition o is a linear combination of spectral measures of
the form

dFe,( , 1 = k( o) d o dF'(o), (2.33)

where FS(ro) is a one-dimensional singular spectral distribution function and k( O) is a one-

dimensional spectral density function. Thus, the spectral distribution function of each evanescent
field is absolutely continuous in one dimension and singular in the orthogonal dimension.

Summary:

By Theorem 2 and Theorem 7, a homogeneous regular random field {y(m, n)} can be represented

uniquely by the following orthogonal decomposition:

y(m, n) = p(m, n) + g(m, n) + w(m, n)

= p(m, n) + E eo(m, n) + w(m, n). (2.34)
oEO

Correspondingly, the Hilbert space spanned by the homogeneous regular random variables {y(m, n)},

(m, n) E Z 2 , can be decomposed into three mutually orthogonal subspaces: the subspace containing
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no innovations and spanned by the half-plane deterministic random field {p(m, n)}, the subspace
representing the row-to-row innovations and spanned by the generalized evanescent random field
{g(m, n)}, and the subspace containing the innovations of the 2-D field {y(m, n)} and spanned by
the purely indeterministic random field {w(m, n)}, which can be described by the white innovation
driven MA term in (2.10).

By Theorem 4 and Theorem 8, the spectral distribution function of the homogeneous regular
random field {y(m, n)} can be uniquely represented as

Fy (( )=F,( y) + Fg ( , TI) + F. ( , y)

= F,((,i )+ E Fe(,ry) + F. (2.35)

The orthogonal decomposition of a homogeneous random field into deterministic and purely
indeterministic components can be achieved by the spectral Lebesgue decomposition, which separates
the singular and the absolutely continuous components of the spectral distribution of the field.

2.5 Approximations

Certain approximations to the 2-D Wold-like decomposition theory can be made for practical
applications. (See [26] for more details.)

Since the spectral measure of the deterministic component of a homogeneous regular field is
concentrated on a set with Lebesgue measure zero (Theorem 4), the derivative of the spectral
distribution function of the deterministic component is zero almost everywhere in K. In practice,
the spectral density function of the deterministic component can be considered as being non-zero
only on a countable set of points and curves in K.

One frequently observed component of the half-plane deterministic field is the harmonic ran-
dom field {h(m, n)}. In the "spectral density function", the harmonic field generates 2-D 6-
functions supported by discrete points in K. Hence, field {h(m, n)} has the form of a countable
sum:

P

h(m, n) = {A, cos 27r(md, + nq,) + Bp sin 27r(md, + njp)}, (2.36)
p=

1

where ( p, yp) are the spatial frequencies of the p-th harmonic and the Ar's and Bp's are mutually
orthogonal random variables with E[A2] = E[B2] = U. The autocorrelation function of {h(m, n)}
is

P

rh(m, n) = o cos 27r(md, + ny,). (2.37)
p=

1

Similarly, the "spectral density function" of each evanescent component fe( QA ( , TI) can be
considered as containing l-D 6-functions that are supported by lines of angle 0 = tan-1 (#/a) to
the ( axis in K. Therefore, these "spectral density functions" are continuous along their support
lines and singular in the orthogonal dimensions, i.e.,

IO

fe(C , y') = k() ) / [6(go - ?7) + 6 0 + Y7)]. (2.38)
i=1
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Hence, the evanescent field e,(m", no) has the form

IO

e0 (m", n") = s(m") E (C cos 27rn 0 ,7 + D? sin 27rn o), (2.39)
i=1

where {s(mo)} is a purely indeterministic 1-D process with spectral density 2k( *) and the C's
and D9's are mutually orthogonal random variables with E[C 2 ] = E[Dq 2 = 2 . The generalized
evanescent field and its spectral density function have the form of a countable sum of representations
in the form of (2.39) and (2.38) respectively.

As shown in (2.10), the purely indeterministic component of a regular random field has a white
noise driven MA representation. In practice, one may want to explore the possibility of using other
models. One such model is the 2-D autoregressive (AR) model:

w(m, n) = - E b(k, l)w(m - k, n - 1) + u(m, n). (2.40)

(0,0)-<(k,l)

The validity of a MA to AR inversion can be determined by either examining the invertibility of the
MA representation itself or testing whether the spectral density function f(, ,) possesses certain
properties. One sufficient condition for the existence of an AR representation is that f(, ,) is
strictly positive on and analytic in some neighborhood of the unit bicircle [24][94]. In practice, this
condition is usually satisfied and an AR representation of the purely indeterministic field can be
found [26].

In the following, the harmonic, the evanescent, and the purely indeterministic components of
a random field are referred to as the Wold components. Shown in the next section, the spatial
patterns of these Wold components appear to be visually repetitive, directional, and random.

Summary:

A 2-D homogeneous regular random field can be represented as the sum of a harmonic component, a
countable number of evanescent components, and a purely indeterministic component. These Wold

components are mutually orthogonal.
The "spectral density function" of the harmonic (evanescent) component has the form of 2-D

(1-D) 6-functions supported by points (lines) in the 2-D spectral domain. The spectral distribution

function of the purely indeterministic component is absolutely continuous. In practice, an AR

representation of the purely indeterministic component usually exists.

2.6 Examples of Wold Components

The Wold components of three natural textured images are shown here. Figure 2-3 shows the

Brodatz texture Pressed Cork (D32). Since this pattern is mainly indeterministic, its Fourier

magnitude image has no large peak. The sweater texture in Figure 2-4 has a prominent harmonic

component, which appears in its Fourier magnitude image as large peaks with point-like support.

Figure 2-5 shows another Brodatz texture, Oriental Straw Cloth (D78). This pattern has strong
evanescent components, which appear in its Fourier magnitude image as large values supported

by line-like regions. Both Sweater and Oriental Straw Cloth patterns have certain amount of
indeterministic component, which appears as the low value "smooth" background in their Fourier
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(a) Original (b) Fourier Magnitudes

Figure 2-3: Wold components of Brodatz texture D32: Pressed Cork. (a) Original. (b) Fourier
magnitude image of (a). Since this pattern is mainly indeterministic, its Fourier magnitude image
has no large peak.

magnitude images. The extracted harmonic, evanescent, and indeterministic components of these
two images are also shown.

Visually, the spatial images of the indeterministic components in the three examples are random
looking, while the harmonic component in the Sweater pattern is very regular in both dimensions
and the evanescent components in the Oriental Straw Cloth image appear to be directional.
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(a) Original (b) Fourier Magnitudes

(c) Harmonic Component (d) Indeterministic Component

Figure 2-4: Wold components of texture Sweater. (a) Original. (b) Fourier magnitude image of (a).

(c) Harmonic component. (d) Indeterministic component. This pattern has a prominent harmonic

component, which appears in its Fourier magnitude image as large peaks with point-like support.
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(a) Original (b) Fourier Magnitudes

(c) Evanescent Component (d) Indeterministic Component

Figure 2-5: Wold components of Brodatz texture D78: Oriental Straw Cloth. (a) Original. (b)
Fourier magnitude image of (a). (c) Evanescent component. (d) Indeterministic component. This

pattern has a strong evanescent component, which appears in its Fourier magnitude image as large

values supported by line-like regions.



Chapter 3

Spectral Decomposition

3.1 Introduction

The 2-D Wold-like decomposition theory presented in Chapter 2 provides the basis for two types
of approach to the decomposition of a homogeneous random field. One approach is the direct
parameter estimation from spatial data, and the other is the spectral decomposition based on the
Lebesgue decomposition of the singular and continuous spectral components of the random field.

The effectiveness of the algorithms must be gauged in the context of their applications. For
image coding, it is important that the estimated decomposition parameters provide enough infor-
mation about the original image so that the reconstructed image resembles the original at least
visually. For image similarity comparison, the discriminatory power of the extracted image features
is more valuable than their reconstructive ability, and the form of the features should facilitate the
distance computation in the feature space. In applications such as image database retrieval, au-

tomation and fast processing can be critical, especially when users introduce new images as query
prototypes and the features need to be computed on the fly.

In the following, the existing 2-D Wold-based decomposition algorithms seen in the literature

are first summarized and discussed. Then a new robust and computationally efficient spectral
decomposition algorithm is presented.

3.2 Previous Work

Francos et al. proposed two 2-D Wold decomposition methods. One is a maximum-likelihood (ML)
direct parameter estimation procedure and the other a periodogram thresholding scheme.

3.2.1 Direct Parameter Estimation

In [30][29], a conditional maximum-likelihood direct parameter estimation procedure was devised

based on the assumption that the purely indeterministic component is a real-valued, Gaussian
distributed, AR random field whose model is given by Equation (2.40) with (k, 1) c SM,N\{(0, 0)}-

The estimation problem is one of simultaneously estimating all the decomposition parameters

from a finite number of samples taken from a single observation of the random field. Staring

from the ML formulation, it was shown that the original ML problem can be transformed into a
nonlinear problem of minimizing a new objective function over the deterministic component spectral
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support parameters, which include all the harmonic frequencies {, ,},U 1 , all the total orderings

(a, #) E 0 that correspond to the evanescent components, and the frequencies {yI?)}[t aj
3) for each

(a,#). The amplitudes of the harmonic components and the AR parameters of the indeterministic
components are then computed by solving a linear least-squares problem. The parameters of the
modulating 1-D purely indeterministic processes of the evanescent components are estimated by
solving a 1-D two-channel ARMA problem.

Difficult to solve analytically, the nonlinear minimization problem was dealt with numerically.
To avoid an exhaustive search in the parameter space, a two-stage procedure was used. In the first
stage, a parametric Fourier spectral estimation is conducted by fitting a high-order linear prediction
model to the observed data and then computing the magnitude of the predictor transfer function
inverse. Isolated peaks, as well as peaks that form continuous lines in the magnitude function,
are identified as the candidates of the deterministic component spectral support parameters. In
the second stage, a conjugate gradient procedure is used to refine the candidates. This procedure
does not guarantee convergence to the global minimum unless the initial estimates are sufficiently
close to the true values. It is reported in [30] that this iterative procedure can be computationally
expensive, especially when the energy in the spectral peaks are not very high comparing to that in
the neighboring Fourier frequencies. Unfortunately, this situation often arises in nature textures.

The effectiveness of the ML algorithm was demonstrated in [29] and [30] on two synthesized and
six natural textures. The main advantage of this method is that it provides parametric descriptions
of all Wold components in a random field. The main disadvantage is its computational cost. The
entire procedure involves a high-order prediction model fitting, ARMA fittings, and gradient-based
search.

3.2.2 Periodogram Thresholding

The decomposition procedure proposed in [27] uses image periodogram thresholding to identify
large Fourier spectral values as the harmonic and the evanescent components. The initial threshold
is set to be the maximal value of the periodogram. Then the threshold is gradually lowered to
qualify more frequency components as spectral peaks until "additional detected peaks are too wide
to be considered as the contribution of harmonic components". The evanescent frequencies are
determined by checking if the large spectral peaks are located in nearby frequencies along one
dimension while fast decay of the periodogram values are observed in the orthogonal dimension.

After the removal of the deterministic component, the remaining purely indeterministic com-
ponent is modeled by an AR model using a 2-D Levinson-type algorithm.

In the periodograms of natural texture images, the support region of each harmonic peak is
usually not a point, but a small spread from the central frequency. There are essentially two issues
in spectral Wold decomposition. One is to detect the spectral peaks; the other is to determine the
peak support regions. The procedure in [27] resolves these two issues by using global thresholding
of the periodogram values. However, there are cases in which this method fails. An example is
shown in Figure 3-1. The pattern is Brodatz texture D11, Homespun Woolen Cloth, which has
high frequency spectral peaks that are only locally large in value. Global spectral thresholding
gives either poor segmentation of the peak support regions as in Figure 3-1 (c) or inaccurate peak
identifications as in Figure 3-1 (d). In natural textures, this type of spectra abounds.

The main advantage of the periodogram thresholding approach is its computational simplicity.
However, as shown above, this algorithm has serious limitations.
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(a) Original (b) Fourier Magnitudes

(c) Use High Threshold (d) Use Low Threshold

Figure 3-1: Harmonic peak identification on Brodatz texture D11, Homespun Woolen Cloth, using
global thresholding. (a) Original. (b) Fourier magnitude image of (a). (c) A high threshold results
in poor segmentation of the support regions. Note that this threshold value is already not high
enough since some low frequency random peaks are picked up. (d) A low threshold for better peak
support gives inaccurate peak identification.
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3.3 A New Spectral Decomposition Algorithm

3.3.1 Overview

The objective here is to develop a robust practical algorithm to decompose the deterministic and
the indeterministic components of a homogeneous regular random field. The new algorithm takes a
spectral decomposition approach, which is based on the principle of Lebesgue decomposition. The
focus is to detect and extract the spectral singularities, which appear in Fourier spectra as peaks
supported by point-like and line-like regions. As mentioned before, two issues are essential: one is
to locate the singularities, and the other is to determine their support regions.

The algorithm for extracting the deterministic components consists of three main parts: the
harmonic peak detection, the evanescent line detection, and the peak support segmentation. After
the spectral support of the deterministic component is determined, the component frequencies are
separated from the rest, which comprises the indeterministic component. The spatial values of the
deterministic and the indeterministic components can be obtained by taking the inverse Fourier
transform of the corresponding frequency components. As illustrated by the example in Figure 3-1,
both spectral peak detection and peak support determination should be local, as opposed to global,
operations.

Notations

In the following, the spatial and frequency samples are indexed by (m, n) and (k, 1) respectively,
where m and k are the row indices and n and 1 the column indices. Unless specified otherwise, the
samples are defined on the 2-D region

D = {(i,j)| 0 < i < N - 1, 0 j N - 1}. (3.1)

At times, vector notation f is used to denote frequency index (k, 1).

3.3.2 Spectral Estimation

The first step of a spectral approach is to compute the spectrum of a random field. There exist
a large variety of spectral estimation methods. In general, the ones providing better spectral
estimates in terms of frequency resolution and estimation bias and consistency are computationally
more expensive. To facilitate applications such as image database retrieval, the signal periodogram
is used in this algorithm for its computational efficiency.

The basic periodograms can be computed as the squared magnitudes of the signal discrete
Fourier transform (DFT). Given an image y(mn), (m,n) E D, its DFT and inverse DFT are
defined as

N-1 N-1

Y k 1) - E y(mn, n) e-jNm - N" (k,l1) E _D(32m=O n=O

0, otherwise

and
N-1 N-1

+n1 E Y(k, 1) eNe3N (mn) ElDy(m, n) =1 N2(n~)C (3.3)k=0 o=0thewis
0, otherwise
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The periodogram estimate of the image spectrum is

1
Py(k, 1) = N2|Y(k, 1)12, (k, 1) E V. (3.4)

It is well known that basic periodograms are "noisy". The variance of P,(k, 1) is often on the
order of the true spectra Py(k,l), independent of the image size [59]. Typically, some type of
smoothing technique is used in the estimation, as in the Bartlett estimator and Welch estimator
[45]. However, in the spectral Wold decomposition, an image is decomposed via the inverse Fourier
transform of its decomposed spectra. Hence, the spectral decomposition has to be based on the
actual DFT values of the original image, so smoothing techniques can not be liberally applied. The
noisiness of the periodogram poses a serious challenge to the decomposition algorithm.

Another issue related to the periodogram estimation is the image boundaries. Proper handling
of the boundaries is especially important when the image has irregular boundaries or is not quite
homogeneous. Circular Gaussian tapering is used in this algorithm when necessary. The Gaussian
tapering window is

(m-N/2)
2

+(n-N/2)
2

gt(m, n) = e 2,2 , (M, n) E V, (3.5)

where the standard deviation o is 0.375, normalized by the image half-size N/2. Since a spatial

multiplicative tapering corresponds to a spectral circular convolution, the periodogram of the ta-

pered image is a low-pass filtered version of the one without tapering. The smoothing effect of

Gaussian tapering is illustrated in Figure 3-2.

3.3.3 Spectral Harmonic Peak Detection

The harmonic peak detection is conducted on the 2-D Fourier magnitude image, which is the

scaled square root of the periodogram. The basic idea is to first find the local maxima of the

Fourier magnitudes. These local maxima provide the candidate locations of harmonic peaks. A

local maximum qualifies to be a harmonic peak only when its frequency is either a fundamental or

a harmonic.

Frequency Half-plane

Given an image of size N x N, its DFT magnitude image has the same size, with the zero frequency
(DC) at sample (0,0). Translate the magnitude image by (N/2, N/2) and wrap the image around
at the edges so that the DC is at f, = (N/2, N/2) of the frequency plane. (Note that the translation
and wrapping are equivalent to swapping the quadrants.) When the image is real, the translated

magnitude image is symmetric to f,. Define the frequency half-plane as

h ( 0<k<N_1, 0 < I < N - 1 U (k,l) Ik = N 0 < 1 < - (3.6)
h- ,) 2 2 - -'2 2J

For a symmetric magnitude image, its frequency half-plane contains no symmetric frequency
components. In the following discussion, all 2-D Fourier magnitudes and spectra are translated such

that the DC components are at fo. Also, unless specified otherwise, only the frequency half-plane

is under consideration.
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(a) Original (b) Gaussian Window (c) Tapered

Figure 3-2: Smoothing effect of multiplicative Gaussian tapering. Top row: spatial images. Bottom

row: corresponding Fourier magnitude images. (a) Original checkerboard pattern. (b) Gaussian
tapering window of o- = 0.375 (o- is normalized by the image half-size N/2). (c) Tapered checker-

board pattern: the top image is the multiplication of the other two top images and the bottom

image is the circular convolution of the other two bottom images.

Local Maxima

Although harmonic peaks usually correspond to large magnitude values, as shown previously, some

of them may be large only locally. For this reason, local maxima of the Fourier magnitudes are

first detected as candidates of harmonic peaks.
Since the spacing between the harmonic peaks can be small, the estimation window for local

maxima detection should not be large. However, the indeterministic "background" of the Fourier
magnitude image is usually "lumpy". Under these conditions, many detected local maxima do not

correspond to any harmonic peaks and are located rather randomly. Some intrinsic properties of

the harmonic random field should be used to discriminate the local maxima for the true harmonic

peaks.

Fundamental-harmonic Relationship

One important property of the harmonic random field is the fundamental-harmonic relationship

among its spectral peaks. This is illustrated in Figure 3-3. The top row of the figure contains the
spatial images and the bottom row the corresponding Fourier magnitudes. The 1-D sine grating
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(a) (b) (c) (d)

Figure 3-3: Fundamental-harmonic relationship among harmonic peak frequencies. Top row: spa-
tial images. Bottom row: corresponding Fourier magnitude images. (a) 1-D sine grating containing
only one frequency component (considering half of the frequency plane). (b) Black and white
stripes have one fundamental frequency, which is the same as the single frequency in (a), and three
harmonic frequencies. (c) 2-D sine grating with two frequencies. (d) Checkerboard pattern, whose
fundamentals are the same as the frequencies in (c), has a series of harmonics -associated with its
fundamentals.

pattern in Figure 3-3 (a) contains only one frequency component in Dh. The black and white stripe
pattern in (b) have one fundamental frequency, which is the same as the single frequency in (a), and
three harmonic frequencies. Similar phenomenon can be observed in (c) and (d). While the 2-D
sine grating pattern in (c) has only two frequency components, the checkerboard pattern, whose
fundamentals are the same as the frequencies in (c), has a series of harmonics associated with its
fundamentals.

Since the edges in a natural pattern usually do not have strictly sinusoidal profiles, one can
expect to find harmonics associated with the fundamentals in the spectra of harmonic fields. There-
fore, the fundamental-harmonic relationship can be used to identify the true harmonic peaks among
the detected local maxima of the Fourier magnitude images.

For harmonic peak detection, the fundamental and the harmonic frequencies are defined as
follows.

Fundamental

A Fundamental is a frequency that can be used to linearly express the frequencies of some
other local maxima of the Fourier magnitudes.
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Harmonic

A harmonic is a frequency that can be represented as a linear combination of some funda-
mentals.

Hence, a harmonic frequency fh E Dh can be expressed as

Ih

fh=f ai(f -fo), a EZ, (3.7)
i=1

where f. E Dh is the i-th contributing fundamental of the harmonic fh.

Effect of Frequency Sampling

The discrete Fourier spectrum of an image can be regarded as the sampling of the image continuous
spectrum. In general, the sampling points do not fall right on to the very peaks of the continuous
spectrum. Therefore, in the DFT plane, the discrete harmonics are in general not the exact
multiples of their discrete fundamentals. Due to this sampling effect, certain amount of tolerance
should be considered when examining the fundamental-harmonic relations among the local maxima.
Furthermore, the fundamental frequency values should be refined to subsample precision since the
accuracy of the fundamental frequencies is critical, especially when the harmonics are at the high
multiples of the fundamentals. In the algorithm, the fundamental frequencies are refined by using
the frequencies of their detected harmonics.

Implementation

To detect the harmonic peaks, the image is first zero-meaned and Gaussian tapered, and then
its DFT magnitudes are computed. The local maxima of the magnitudes are found by searching
a small neighborhood of each frequency sample, typically a 5 x 5 region. To save computation,
frequencies whose magnitude values are below 5% of the entire magnitude range are not considered.

Next, the fundamental-harmonic relationship among the local maxima is examined. Starting
from the lowest frequency to the highest, each local maxima is checked first for its harmonicity -
if its frequency can be expressed as a linear combination of the existing fundamentals, and then
for its fundamentality - if the multiples of its frequency, combined with the multiples of existing
fundamentals, coincide with the frequency of another local maximum. To reduce the frequency
sampling effect, a tolerance of two sample points in both row and column directions is used in the
frequency matching.

When a new fundamental ff is found, the algorithm detects the harmonics for which the new
fundamental ff is solely responsible and refines the fundamental frequency value after each har-
monic is found. Denote the jth harmonic found as

f> = # ff + Afi, (3.8)

where ff is the fundamental frequency value after the (j--1)-th refinement, |Afj| < |ff_11 and #jj-1 3
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is a positive integer. Shown in Appendix A.1, the j-th fundamental refinement using f4 is

ff _ i=O f 1 A+ (3.9)

i=O i=0

where 0 = 1 and f0h = ff.
All the local maxima whose frequencies are either fundamental or harmonic are qualified as the

harmonic peaks.

Examples

Figure 3-4 shows two examples of harmonic peak detection. Shown in each example are the original
image, the Fourier magnitude image, and the locations of detected harmonic peaks.

3.3.4 Spectral Evanescent Line Detection

The spectral evanescent line detection utilizes the Hough transformation [40] of the Fourier mag-

nitude image. Consider a line in a conventional Cartesian X-Y coordinate system. Denote the line

normal angle by 4 and the line normal length by d. Then the line equation is

d = x cos 4 + y sin 4. (3.10)

A 2-D histogram is built for the normal angle 4 and normal length d. The histogram bin size is

half of a degree for 4 and unity for d. For each pixel (x, y) of the magnitude image, the pixel
value is added to every histogram cell whose index (4, d) satisfies (3.10). Large local maxima of

the histogram correspond to the prominent lines in the image while the bin indices of the maxima

provide the line parameters. Note that for accurate evanescent line detection, the large Fourier

magnitude values associated with the harmonic peak frequencies should be removed first since
these frequencies leave strong signatures in the Hough transform histogram.

An example of the spectral line detection is shown in Figure 3-5. The original is the Brodatz
texture D64: Handwoven Oriental Rattan. The Fourier magnitude image in Figure 3-5 (b) has six

lines. Image (c) is the Hough transform of (b). Six large local maxima are detected in (c). Lines

corresponding to the local maxima are shown in (d).

3.3.5 Determining Peak Support Regions

The support regions of the harmonic peaks and evanescent lines are determined by an iterative

algorithm. At the beginning of each iteration, a 2-D Gaussian surface is fitted to the Fourier

magnitude image, from which all the identified peak support frequencies are removed, to coarsely

model the indeterministic component. Based on the local standard deviation (square root of the

local variance) of the fitting residual, new support frequencies are identified. This process terminates

automatically when the averaged local standard deviation at the near neighbor of the estimated
support regions is comparable to that in the ambient areas.
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Figure 3-4: Examples of spectral harmonic peak detection. Left column: original image. Middle

column: Fourier magnitudes. Right column: detected harmonic peak locations. (a) Brodatz texture

D34: Netting. (b) Brodatz texture D82: Oriental Straw Cloth.

Initializing Mask

Before starting the iterative procedure, a mask image, which has the size of the Fourier magnitude

image, is created and initialized to zero. The mask records the support regions estimated in each

iteration. The frequency locations of the estimated harmonic peaks and evanescent lines are marked

in the mask as the initial support regions. If a frequency on an evanescent line has a magnitude

value less than 5% of the entire magnitude range, that frequency is not marked.

Gaussian Fitting

A 2-D Gaussian surface is used to coarsely model the indeterministic component in the Fourier mag-

nitude image. The indeterministic component corresponds to the relatively smooth "background"

of the Fourier spectra. The purpose of the Gaussian fitting is not to parameterize the indeter-

ministic component, but to facilitate the determination of the harmonic peak and evanescent line

support regions. This will become clear in the discussion that follows.
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(a) Original (b) Fourier Magnitudes

(c) Hough Transform

(d) Hough Local Maxima (e) Detected Lines

Figure 3-5: Example of spectral evanescent line detection. (a) Brodatz texture D64: Handwoven
Oriental Rattan. (b) Fourier magnitudes of (a). (c) Hough transform of the magnitude image. The
abscissa is the normal angle <$, and the ordinate the normal length d. (d) List of large local maxima
in (c). (e) Lines corresponding to the local maxima.

d H Rough Value
127.0 90.0 9220.0
128.0 0.0 7673.0
123.0 0.0 6648.0
133.0 0.0 6648.0
134.0 90.0 5951.0
120.0 90.0 5951.0
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The equation of the Gaussian surface is

M g,(f) - M, e (3.11)

where T denotes the transpose and f E D. Vector f, matrix Ef, and scaler M, are the parameters
to be estimated from the Fourier magnitude data. The least-squares estimation of f and Ef is
a difficult nonlinear problem. An alternative is to regard the magnitude data as a histogram of
Gaussian-distributed random frequency samples and estimate the parameters f and Ef by using a
maximum likelihood estimator. The bin size of the magnitude "histogram" in this case is unity in
both dimensions. Denote the integer part of the Fourier magnitude value IY(k, 1)1 by N(k,l). The
histogram interpretation of the magnitude image is that there are Ngk,l) random samples observed
at frequency (k, 1). The maximum likelihood estimate of the vector f and matrix Ef in (3.11) are
(see Appendix A.2 for derivations) Er 2 U21

2 = (,I)E(3.12)
Llk 1ll

where

k = E k N(k,l) (3.13)
(k,l)ED

2 = N S lN(k,) (3.14)
(k,l)ED

N(k,l) 2  (3.15)
(k,l)ED

a5l = -l = I k1 N(k,l) - k I (3.16)
(k,l)ED

2 a1m i S [2 N(k,l) - 2, (3.17)
(k,l)ED

N = N(k, I) (3.18)
(k,(1)ED

Since the Fourier magnitude image is symmetric with respect to f,, it is expected that ~f,.
After the parameters f and Ef are estimated, the magnitude M, of the Gaussian surface can

be obtained by solving a least-squares problem (see Appendix A.3 for derivations):

M, arg min E [ IY (k, 1)| Ms gs (k, 1) ]2 (3.19)
MS (k,l)ED

E 9s (k, 1)|1Y(k,1)|
(k,l)ED g2(k1)3.0

(k,1) EDE
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Growing Support Regions

The support regions are grown in each iteration from the existing support areas that are marked in
the mask. The Gaussian fitting residual, which is the difference between the magnitude image and
its fitted Gaussian surface, is first computed. Then the local standard deviations of the residual
image are estimated at each frequency using typically a 5 x 5 estimation window. The candidates
of new support frequencies are found by detecting large positive residual values that are at least
as large as the local standard deviation. These "outliers" become part of the peak support if they
are adjacent to the existing support frequencies. The new support frequencies are then recorded in
the mask and the values of these frequencies in the Fourier magnitude image are replaced by the
corresponding values of the Gaussian surface.

Terminating Iterations

The iterative process should terminate when the large spectral peaks are removed and the remaining
Fourier magnitude image becomes "smooth". However, this smoothness is only to the global scale;
the Fourier magnitude image is generally very noisy. Hence, any applicable smoothness measure
has to be statistical.

The local standard deviation (SD) is used in the algorithm to construct a smoothness measure.

At the end of each iteration, the local SD of the Fourier magnitude image is computed. An example
is given in Figure 3-6 to show how the local SD of the Fourier magnitude image becomes smoother
over the iterations (image (b) and the middle row). At the beginning, the local SD values are
large in areas near the spectral peaks. When more frequencies are extracted as peak support, the

local SD values adjacent to the peak support regions become similar to those further away from
the support regions. In the figure, the local SD images are individually scaled to the display range

[0,2551.
The Fourier magnitude smoothness measure used in the decomposition algorithm is constructed

as follows. First, two kinds of regions surrounding the spectral peaks are found. One is the

adjacent area, which includes all frequencies within distance dadj from the estimated peak support
frequencies. The other is the ambient area, which includes all frequencies within distance damb

from the frequencies in the adjacent area. Examples of the adjacent and the ambient areas are
shown in the bottom row of Figure 3-6, with dadj = dmb = 3. The smoothness measure is

defined as the ratio between the averaged local SD in the adjacent areas, SDadj, and the averaged

local SD in the ambient areas, SDabm. Figure 3-7 shows the local SD ratio SDadj/SDabm of 13
Brodatz textures in the first 7 iterations. For all 13 images, the local SD ratio tapers off after first

few iterations. In the algorithm, the iterative processing terminates when the change of local SD
ratio between iterations drops to below value 0.1.

3.3.6 Decomposition

The decomposition of a homogeneous random field is based on the decomposition of its spectral

Wold components. When the peak support determination program is terminated, the mask contains

the spectral frequencies of the deterministic component. Denote these frequencies as D,. The DFT
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(a) Fourier Magnitudes

(c) Iteration 1

(b) Initial local SD

(d) Iteration 4

Figure 3-6: Examples of Fourier magnitude local SD (5 x 5 estimation window) and the adjacent
and the ambient areas (3 pixel width) for local SD ratio computation. (a) Fourier magnitudes of
Brodatz texture D11 (the original is shown in Figure 3-1 (a)). (b) Initial magnitude local SD.
(c)-(d) Shown for iteration 1 and 4: top image: magnitude local SD; bottom image: estimated
peak support (white) and corresponding adjacent (light gray) and ambient areas (dark gray). The
local SD images are individually scaled to the display range [0, 255].
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Figure 3-7: Fourier magnitude local SD
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13 Brodatz textures in the first 7
of the Fourier magnitude images.

of the random field is then decomposed into the deterministic component

V(kl) = { Y(k,l), (k,l) E Dv
otherwise

(3.21)

and the indeterministic component

W(k, 1) = Y(k, 1),
0,

(3.22)(k, ) E D, (k, w) i De
otherwise

The deterministic field v(m, n) and the indeterministic field w(m, n) are obtained by computing

the inverse DFT of V(k, 1) and W(k, 1), respectively.
Note that the mask can also record whether an extracted peak frequency belongs to a harmonic

peak or an evanescent line. Consequently, the deterministic field can be decomposed further into the

harmonic and the generalized evanescent components by using a spectral decomposition procedure

similar to the one presented above.

3.3.7 Examples

Three decomposition examples are shown in Figures 3-8, 3-9, and 3-10. The images in the top

rows are the original, the Fourier magnitudes of the original, and the detected harmonic peak
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Table 3.1: Fourier magnitude local SD ratio of textures D11, Sweater, and D78 at the end of
processing iteration 1 to 4.

central frequencies or evanescent lines. The Fourier magnitudes are computed after the original
images are zero-meaned. Shown in row 2 to row 5 of each figure are the mask images, the Fourier
magnitude images, the harmonic components, and the indeterministic components obtained at the
end of iterations 1 to 4. The Fourier magnitude images are individually scaled to the display range
[0,255].

The Fourier magnitude local SD ratio at the end of each iteration are shown in Table 3.1. For
the three examples, the automatic termination of the iterative peak support estimation occurs after
iteration 3, 4, and 3, respectively.

3.4 Discussion

Spectral peak support estimation is an important issue for a spectral decomposition algorithm
since in practice the spectral singularities seldom appear as pure 1-D or 2-D impulses in estimated
spectra. The algorithm presented here uses a non-parametric peak support estimation method,
which is based on the local variance of image Fourier magnitudes. The main advantages of this
algorithm are its robustness and computational efficiency. A parametric approach, such as fitting
2-D Gaussian models to spectral evanescent and harmonic peaks, can also be considered for robust
peak support estimation. For fast computation of model parameter estimation, an efficient fitting
algorithm, such as the one presented in Section 3.3.5, can be used.

3.5 Summary

In this chapter, a spectral 2-D Wold decomposition algorithm for homogeneous or near homogeneous
random fields is presented. This algorithm relies on the fundamental-harmonic relationship among
spectral peaks to identify the harmonic frequencies, and uses Hough transformation to detect
spectral evanescent components. A local variance based procedure is developed to determine the
spectral peak support. Comparing to the existing global thresholding scheme and maximum-
likelihood parameter estimation, this algorithm is more robust and flexible for the large variety of
natural textures, as well as computationally more efficient than the maximum-likelihood method.

Iteration D11 Sweater D78
1 1.410867 1.579968 1.331581
2 1.183042 1.308202 1.215476
3 1.140345 1.199033 1.172281
4 1.121880 1.147715 1.145736
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Original Fourier Magnitudes Harmonic Peaks

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 3-8: Decomposition of Brodatz texture D11: Homespun Woolen Cloth. Shown in row 2 to
row 5 are the processing results at the end of iterations 1 to 4: mask images; Fourier magnitude
images; Harmonic components; and indeterministic components.
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Original Fourier Magnitudes Harmonic Peaks

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 3-9: Decomposition of texture Sweater. Shown in row 2 to row 5 are the processing results
at the end of iterations 1 to 4: mask images; Fourier magnitude images; Harmonic components;
and indeterministic components.

-to
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Original Fourier Magnitudes Evanescent Lines

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Figure 3-10: Decomposition of Brodatz texture D78: Oriental Straw Cloth. Shown in row 2 to row
5 are the processing results at the end of iterations 1 to 4: mask images; Fourier magnitude images;
Harmonic components; and indeterministic components.
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Chapter 4

Perceptual Properties

4.1 Introduction

In this chapter, the perceptual properties of Wold-based texture modeling are studied. The "per-
ceptual property of a texture model" is the correspondence between the computational features
provided by the model and the perceptual visual properties of the texture pattern.

Why is the perceptual property of a texture model important? This is perhaps best explained
by using the example application of image database retrieval. (A retrieval experiment is presented
in the next chapter.) In image retrieval, a computer system is expected to fetch back from the
database the images that are similar to some user selected prototypes. Image retrieval involves
similarity comparison. The underlying mechanism of a typical retrieval system is as follows. Each
database image is represented by a set of pre-computed features in a feature space. In response
to a query, distance measures are computed in the feature space to gauge the similarity between
the database images and the prototypes. Images that are the most similar to the prototypes based
on the particular similarity measures used are returned to the user. In this retrieval model, the
construction of the features and the choice of the distance measures, usually closely related to each
other, are crucial to the success of the system. One common criterion for evaluating the retrieval
results is the perceptual similarity between the retrieved set and the prototype set, i.e., whether
the images are alike in their visual appearance. If the computational image features reflect the
perceptual characteristics of the images, the image similarity measured by the computer algorithm
can be expected to correspond well to the perceptual similarity.

In the following sections, previous work on the perceptual properties of computational tex-
ture models is first reviewed and then human and computer experiments conducted to study the
perceptual properties of Wold-based texture modeling are presented.

4.2 Previous Work

4.2.1 Tamura et al.

From the descriptions seen in the literature and from observations of the Brodatz textures, Tamura
et al. chose six visual textural properties - coarseness, contrast, directionality, line-likeness, regu-

larity, and roughness - to model as computational texture features [87].
Human experiments were conducted to establish the ground truth ordering of 16 Brodatz texture
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samples based on each of the six textural properties. In the experiment, 48 human subjects, 28
male and 20 female, gave their pairwise judgment for all possible pairs of the 16 texture samples
according to each of the six properties. The test data were processed to produce a one-dimensional
ordering of the test images for each textural property. For example, for the coarseness property,
the textures were ordered from coarse to fine.

To improvise computational features for the six textural properties, Tamura et al. tested and
modified heuristic features proposed in the literature as well as composing new ones. For each
feature, The 16 Brodatz samples were ordered based on the feature values computed on each
texture. The final computational feature for each textural property was chosen as the one that
provided the highest Spearman correlation coefficient (see Section 4.6.4) between the computer
and the human orderings.

By the correlation between the human and the computer data, the computational features for
coarseness, contrast, and directionality were considered to have achieved successful correspondences
with the human data while the other three were not so successful. Strong correlations were observed
between coarseness and contrast and between directionality and line-likeness. An attempt was made
to measure texture similarities by using simple combinations of the six computational features, but
the results did not correspond to the human data well.

4.2.2 Amadasun and King

Amadasun and King proposed five computational features corresponding to textural properties of
coarseness, contrast, busyness, complexity, and texture strength [2]. No strong reasons were given
why these properties were chosen. The computational features were composed heuristically from
the absolute differences between the gray scale value of each pixel and the averaged gray scale value
in a neighborhood surrounding the pixel.

The relations between the computational features and five textural properties were studied via
a human texture ranking experiment. Ten Brodatz texture samples were ranked by 88 subjects, 48
male and 40 female, by each of the five properties. The computer rankings were based on the values
of the features computed on each texture. The final human ranking for each feature was the order of
the rank sum of each texture sample. The correspondences between the computational features and
the textural properties were evaluated by computing the Spearman correlation coefficients between
the computer and the human rankings for each property. The coefficient values ranged from 0.503
to 0.856, with the lowest for texture strength and the highest for coarseness.

The correlations among the feature rankings and among the property rankings were also com-
puted. Strong correlations were observed between the coarseness and texture strength and between
contrast and complexity for both the features and the properties. Combinations of the compu-
tational features were further tested in a similarity measurement experiment. The results were
slightly better than that of the Tamura experiment.

4.2.3 Remarks

One common problem with the two studies above is that the textural properties were chosen
largely based on the intuition and observation of the researchers. Although these features seem to
be characteristic of natural textures, it is not clear what the relative importance of these features
are and how well they span the perceptual space of human texture perception. As shown by the
experimental data, strong correlations exist among some of the textural properties investigated.
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Another common problem is that the computational features were improvised heuristically for
the individual textural properties. It is not clear how well these separate features can be used
together to represent a texture pattern.

Finally, while both studies used a large number of human subjects in the experiment, the
concordance of the human data was not evaluated in any manner.

4.3 Experimental Design

4.3.1 Dimensions of Human Texture Perception

Rao and Lohse conducted a human study to identify the relevant dimensions of human texture

perception [79]. In their experiment, twelve test subjects first rated 56 pictures from the Brodatz

album on twelve 9-point Likert scales labeled by adjectives such as repetitive, directional, random,
granular, uniform, regular, etc.. Then, the subjects were asked to sort the pictures into groups of
similar items. The initial groupings were subsequently grouped again and again into higher-order

clusters of similar groups, until all pictures were in a single group. The Likert scale data were

analyzed by using classification and regression tree analysis, discriminant analysis, and principle

component analysis, while the grouping data were analyzed by using hierarchical cluster analy-
sis and non-parametric multidimensional scaling (MDS). Combining the analysis results of both

scaling and grouping data, the top three dimensions of human texture perception were identified.

These dimensions are shown in Figure 4-1. It was reported that the repetitiveness in texture,
which is represented by the X axis, appears to be the most important feature used by humans in

distinguishing textures. This property of repetitiveness is also significantly correlated with that of

regularity, uniformity, and non-randomness.

4.3.2 Objectives

The purpose of this experiment is to investigate the perceptual properties of Wold-based texture

modeling. The main premise of the experiment is that Wold texture modeling results in behavior

similar to that of humans in discriminating textures along the most important dimension of human

texture perception - repetitiveness vs. randomness.

4.3.3 General Procedure

The perceptual properties of Wold-based texture modeling are studied here in a texture ordering

experiment. The experimental design is based on the result of Rao and Lohse's work. Since the

top perceptual dimensions have already been identified by Rao and Lohse, the current experiment

takes the form of texture ranking (ordering) instead of free sorting. The focus of this study is on

the X axis of repetitiveness vs. randomness, the perceptually most salient dimension.

In the experiment, human subjects order a set of textured images along the chosen perceptual

dimension. A computer program orders the same set of images using the Wold computational

model. Then the images are ordered again based on the averaged human ranking scores to produce

the final human ordering. The correlation between the final human ordering and the computer

ordering is used to gauge how well the computational model captures the perceptual properties of

the images along the axis.
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Non-granular
High Complexity
Fine

Repetitive
Non-random
Directional
Regular
Locally Oriented
Uniform

High Contrast
Non-directional

Low Contrast
Directional

Y

Non-repetitive
Random
Non-directional
Irregular

X Non-oriented
Non-uniform

Granular
Low Complexity
Coarse

Figure 4-1: Top three dimensions of human texture perception identified by Rao and Lohse's study.

4.3.4 Representing the Perceptual Axis

Different methods can be used to explain to the human subjects about the characteristics of the
perceptual axis along which the test images are to be ordered. One method is to exemplify the
two extremities of the axis by sample images. However, since the perceptual dimension is identified
via multidimensional scaling and other statistical analysis of high dimensional test data, the visual
properties it incorporates are better described in abstract terms. It is also difficult to select a small
set of example images to convey the meaning of the axis accurately since the visual properties that
human subjects derive from the examples can vary widely from person to person.

An alternative is to use the two sets of adjectives that are associated with the axis when it
is identified. Using the adjectives also helps the subjects to focus on using the visual perceptual
cues rather than the semantic categorical labels, such as the common names of the patterns, when
comparing images. A potential problem is that the understanding of the English adjectives may
vary among individual subjects. This problem is dealt with by averaging the ranking data across
a large number of subjects.

4.3.5 Computational Periodicity Measure

For a computer algorithm to order the test images along the axis of repetitiveness vs. randomness, a
quantitative measure is needed to gauge the amount of periodicity and randomness in each image.
The orthogonal Wold components of an image have distinctive visual properties: the harmonic

z.z



4.4. HUMAN EXPERIMENT

component appears to be regular and repetitive, the evanescent component looks directional, and
the indeterministic component is random. Therefore, it is conceivable that the Wold components
can be used to represent the perceptual properties of a texture pattern. The question is: what
physical quantities of these components should be used to measure their perceptual strength?

It has been suggested that the human visual system contains simple mechanisms that measure
the local energy present in the concentric and oriented receptive fields [9][8]. Computationally,
this perception model has been implemented as a set of oriented linear filters followed by some
rectifying nonlinearity that computes the local energy of the filter output [10]. By this model,
the spatial properties of texture patterns are encoded in the local energy distribution of the filter
output. Therefore, it is reasonable to use the total energy associated with a particular textural
property to represent the perceptual strength of that property.

In the computer experiment, the deterministic energy ratio is used as the quantitative mea-
sure along the perceptual axis of repetitiveness vs. randomness. By Theorem 2, an image y(m, n)
can be decomposed into a deterministic component v(m, n) and an indeterministic component
w(m, n) as

y(m, n) = v(m, n) + w(m, n),

where the deterministic component v(m, n) includes both the harmonic and the evanescent Wold
components. The deterministic energy of the image is the energy contained in component
v(m, n). Using Parseval's theorem [59], the deterministic energy E, and the total energy E. of the
image can be computed as

EV =v(m, n) N2  IV(k, 1)12 (4.1)
(m,n)E N (k,l)E'D

and
En= S Iy(m , n)12  =N2  |Y(k,1)1 2, (4.2)

(m,n)EDN (k,l)ED

where V(k, 1) is defined by Equation (3.21). The deterministic energy ratio is then EV/Ey.

4.4 Human Experiment

4.4.1 Method

Subjects

Thirty-two subjects, with an equal number of males and females, participated in the study. The
subjects are MIT students and staff from various disciplines. Their ages range from 18 to 36.

Materials

The test samples were the 20 Brodatz textures shown in Figure 4-2. The names of the Brodatz
album pictures from which the test samples were made are listed in Table 4.1. These samples
include all the relatively homogeneous patterns among the 56 Brodatz textures used in Rao and
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Table 4.1: Names of the Brodatz album pictures from which the test samples were made.

Lohse's study.1 The physical test samples were made by pasting the cutouts of Brodatz album
original glossy prints over 7cm by 7cm cardboards. 2 The samples were shown to the subjects under
normal indoor lighting conditions.

The two sets of adjectives shown at the extremities of the X axis in Figure 4-1 were printed at
the two ends of a 14cm by 175cm board. In the experiment, the test subjects were asked to order
the texture samples along the board, between the two sets of adjectives.

Procedure

At the beginning of an experiment, a page of written instructions was shown to the subject to
explain the test apparatus and the task (see Appendix B). The texture samples were given to the
subjects in a randomized pile, next to the test board. There was no time limit for completing the
task.

'Recall that the Wold-based decomposition has the homogeneity assumption. In practice, certain inhomogeneities
can be tolerated by the algorithms, but only to an extent.

2 Samples of texture D1, D26, D64, and D94 were made of the laser printer printouts of the digitized originals in
finer scale.

Token Material Name
D1 Woven Aluminum Wire
D9 Grass Lawn

D11 Homespun Woolen Cloth
D26 Ceramic-coated Brick Wall
D29 Beach Sand
D32 Pressed Cork
D34 Netting
D52 Oriental Straw Cloth
D55 Straw Matting
D57 Handmade Paper
D64 Handwoven Oriental Rattan
D78 Oriental Straw Cloth
D80 Oriental Straw Cloth
D82 Oriental Straw Cloth
D83 Woven Matting
D93 Fur
D94 Brick Wall

D101 Cane
D102 Cane
D110 Grassy Fiber
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The ordering score, from 1 to 20, was recorded for each sample image as the test data. In
addition, the subject was asked to give a confidence measure of the ordering on Likert scale 1 (least
confident) to 7 (most confident). The age and gender of the subjects were also recorded.

4.4.2 Experimental Data

The data collected in the experiment are shown in Table 4.2. The first column lists the subject
numbers. The second column records the subjects' gender. The third column contains the confi-
dence ratings each subject gave to his or her ordering. The confidence ratings are on Likert scale 1
(least confident) to 7 (most confident). The rest of the columns in the table are the ranking scores
each of the 20 test image received from every subject.

4.5 Computer Experiment

4.5.1 Method

Input Data

The computer test images were the digitized version of the 20 texture samples used in the human
experiment. The images were scanned from the Brodatz album by an HP ScanJet IICX scanner.

The digital images are in 8-bit gray scale and cropped to 256 pixel by 256 pixel squares over the

same image regions that are shown in the samples used in the human test.

Procedure

The test images were first zero-meaned and Gaussian tapered using the tapering window function

shown in Figure 3-2 (b). Gaussian tapering eliminates any possible effect of the image boundary
conditions on the spectral peak extraction and subsequently the energy computation. The images

were decomposed into their deterministic and indeterministic components using the spectral de-

composition method developed in Chapter 3. The final output of the program was the ratio EV/Ey
of each test image.

4.5.2 Experimental Data

The 20 test images are shown in Figure 4-2, and their Fourier magnitudes in Figure 4-3. The
harmonic peak central frequencies and the evanescent lines detected from each test image are
displayed in Figure 4-4 and Figure 4-5. Figure 4-6 shows the mask images, which contain the

frequency locations of the deterministic component of each test sample. Shown in Figure 4-7

are the remaining Fourier magnitudes of the test images after the deterministic frequencies are

extracted. In each of the images in Figure 4-7, the values at the deterministic frequencies are

replaced by the corresponding values of the Gaussian surface that are fit to the magnitude image

in the decomposition process. The magnitude images in Figure 4-7 are individually scaled to the

display range of [0,255].
The energy ratio EV/E, of all test images are shown in Table 4.3. The ranking scores are

obtained by ordering the images based on their deterministic energy ratios. Image D9, D29, D32,
D93, and D110 are tied for ranks 16 to 20. These images are given the rank 18, which is the mean
of the ranks for which the images are tied.
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Table 4.2: Human ranking data of 32 subjects on 20 test images along the perceptual dimension of
repetitiveness vs. randomness. First column: subject numbers. Second column: subjects' gender.
Third column: confidence ratings each subject gave to his or her ordering. These ratings are on
a Likert scale 1 (least confident) to 7 (most confident). The rest of the columns are the ranking
scores each test image received from every subject.
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Table 4.3: Test sample deterministic energy ratio EV/Ey. The ranking scores are obtained by
ordering the images based on their deterministic energy ratios.

4.6 Data Analysis and Results

4.6.1 Overview

The data processing consists of a series of statistical tests. The goal is to decide if the human and
the computer ranking data are significantly correlated. The Spearman rank correlation coefficient

r. and the Kendall rank correlation coefficient r are used to assess the correlation between the
ranking based on the averaged human ranks and the computer ranking.

To ensure that the ranking based on the averaged ranks is the best estimate of the "true" human

ranking, the overall agreement among the 32 sets of human rankings is ascertained by using the
Kendall concordance coefficient W. The concordance within and between the rankings of the male

and the female subject groups is also evaluated.

4.6.2 Confidence Ratings

The confidence ratings were collected to evaluate the validity of the rankings. As shown in Table 4.4,
28 out of 32 subjects were confident with their rankings, 3 were neutral, and 1 was not so confident.

Name E,/Ey (%) Rank

D1 92.49 3
D9 0.0 18

D11 72.25 10
D26 79.13 6
D29 0.0 18
D32 0.0 18
D34 88.57 4
D52 75.27 7
D55 84.43 5
D57 17.77 15
D64 74.60 8
D78 59.27 11
D80 35.41 14
D82 57.73 12
D83 73.60 9
D93 0.0 18
D94 43.65 13
D101 96.19 1
D102 94.51 2
D110 0.0 18
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Rating Scale 1 2 3 4 5 6 7
Number of Subjects 0 0 1 3 12 16 0

Table 4.4: Summary of human ranking confidence data. Scale 1 is the least confident and 7 the
most confident.

No subject was completely uncertain about his or her ranking. Therefore, all the ranking data are
considered valid for analysis.

4.6.3 Final Rankings

For each test image, the human ranking scores are averaged across all 32 subjects. The final
human ranking is generated by ordering the test images based on the averaged ranking scores. The
averaged and the final human ranking scores are shown in Table 4.5.

The final human ranking and the computer ranking are shown together in Table 4.6 by the
ascending ordering of the ranking scores. Increasing rank values correspond to moving along the
perceptual axis from repetitive to random. In Figure 4-8 and Figure 4-9, from left to right and top
to bottom, the test samples are displayed in the order of the final human ranking and the computer
ranking respectively, from repetitive to random.

4.6.4 Spearman correlation coefficient r,

Method

The Spearman rank correlation coefficient r, measures the degree of association or correlation
between two sets of ranking scores. The Spearman's r, can be derived from the Pearson product-
moment correlation coefficient r. Denote the two sets of ranking scores as Xj and Y, j = 1,- , N,.
The Pearson's r is defined as

N s(Z X jY) - (E Xj)(Y)(
V[Ns X: X?-( Xj) 2 ][Ns Y-2 _(Zy) 2 (

where the sums are from j =1 to N,. When the sample values are ranks, r = rs, and [55]

N-.
6 E(X-Yj) 2

rs = 1 (Ns2 _ 1) -(-)

The range of rs is [-1,1]. The value -1 corresponds to complete disagreement between the two
rankings, and the value 1 indicates complete agreement.
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Table 4.5: Averaged and final human ranking scores of texture ordering.

Testing the Significance of r,

The significance of Spearman's r, can be tested under the null hypothesis HO that the two rankings
are not associated and the observed value of r, differs from zero only by chance. When N. > 10,
the statistic

t=rs S-2 (4.5)

has the Student's t-distribution with degrees of freedom df = N, -2 [55]. Thus, the probability p of

observing under Ho a value as large as r, can be determined by first computing the corresponding
I value and then finding the significance of that t in a t-distribution table.

Results

The Spearman correlation coefficient for the human and the computer ranking scores in Table 4.3

and Table 4.5 is
r. = 0.9504

Sample Average Final
Name Rank Rank

D1 3.15625 1
D9 17.84375 18
D11 8.84375 10
D26 7.56250 8
D29 17.34375 17
D32 17.96875 19
D34 4.09375 2
D52 7.28125 6
D55 5.78125 5
D57 17.28125 16
D64 7.50000 7
D78 11.43750 13
D80 13.18750 14
D82 8.59375 9
D83 9.18750 12
D93 15.21875 15
D94 8.90625 11

D101 4.93750 4
D102 4.87500 3
D110 19.00000 20
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Table 4.6: Final human ranking and computer ranking scores. Increasing score values correspond
to moving along the perceptual axis from repetitive to random.

with t = 12.96. The probability for this r, value to occur under Ho is p < .001. Therefore, the
hypothesis Ho can be rejected with the probability of error less than 0.1%. The conclusion is that
the human ranking and the computer ranking are significantly correlated.

4.6.5 Kendall correlation coefficient T

Method

The Kendall correlation coefficient T takes a different approach to assessing the correlation between
two sets of ranking scores. Denote the two lists of N, ranking scores as X and Y and put them
side by side to form an N, by 2 matrix. Now reorder the rows of the matrix so that the X column
is in its natural order, i.e., 1, ... , N,. Denote the ranks in the new Y column as Yj, j = 1, - - -, N,.
A credit score is calculated for each of the Yf's as follows. For a particular rank Y, its value is
compared to all the rank values Yk, k > j. When Y > Y, Y earns a credit +1, otherwise, a credit
-1. Next, the credit scores of each Y are summed together as the actual total credit S. The value
of S is at its maximum (NS(N, - 1) when the original X and Y rankings are identical, i.e., the

Human Computer
Rank Name Rank Name

1 D1 1 D101
2 D34 2 D102
3 D102 3 D1
4 D101 4 D34
5 D55 5 D55
6 D52 6 D26
7 D64 7 D52
8 D26 8 D64
9 D82 9 D83
10 D11 10 D11
11 D94 11 D78
12 D83 12 D82
13 D78 13 D94
14 D80 14 D80
15 D93 15 D57
16 D57 18 D9
17 D29 18 D29
18 D9 18 D32
19 D32 18 D93
20 D110 18 D110
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reordered Y column is also in its natural order. The Kendall's r is defined as the ratio between the
actual total credit S and the maximum total credit,

2 S
r = .S (4.6)

Ns(Ns - 1)

The range of r is [-1, 1]. The value -1 corresponds to complete disagreement between the two
rankings, and the value 1 indicates complete agreement.

Testing the Significance of r

The significance of Kendall's r can be tested under the null hypothesis Ho that the two sets of
ranks X and Y are unrelated. When N. > 10, the distribution of r under HO can be approximated
by the normal distribution N(p, a,) [55], where

2 (2N 8 + 5)
IIT-, UT 9N(N - 1)

That is,
r -- Pr = 9N (Ns - 1) (47)

U 2 (2Ns +5)

is approximately normally distributed with zero mean and unit variance. Thus, the probability p of

observing under HO a value as large as T can be determined by first computing the corresponding
z value and then finding the significance of that z in a normal distribution table.

Results

The Kendall correlation coefficient for the human and the computer ranking scores in Tables 4.3
and 4.5 is

r =0.7474

with z = 4.61. The probability for this r value to occur under Ho is p < .001. Again, the hypothesis
HO can be rejected with the probability of error less than 0.1% and the conclusion is that the human

ranking and the computer ranking are significantly correlated.

4.6.6 Comparison of r, and r

The values of r, and r are not identical when both are computed from the same ranking data. In

fact, r. and r have different underlying scales, and numerically they are not directly comparable

to each other. However, the two coefficients have the same power in detecting the existence of

association in the rankings. That is, the distributions of rs and r are such that, with a given set of

data, both will reject the null hypothesis at the same level of significance [84].
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4.6.7 Concordance of All Human Data

Overview

In the above, the averaged human ranking scores are used to determine the final ranking of the
test images. The final ranking scores are subsequently used to assess the correlation between the
human and the computer ranking data. However, the validity of determining the final ranks based
on the averaged ranking scores should be justified. This justification has two aspects. One is the
inter-subject reliability of the human data, i.e., whether there exist certain underlying criteria upon
which the test subjects agree; the other is, assuming the reliability of the data, whether the final
ranking determined by the averaged ranks are the best estimate of the "true" ranking according to
the underlying criteria.

The Kendall concordance coefficient W is used to examine the inter-subject reliability of the
data. The magnitude and significance of W provides evidence whether any underlying criterion
exists in the ranking data. When the evidence is positive, it is shown by Kendall [55] that the best
estimate of the "true" ranking is provided by the order of the averaged ranks in a least-squares
sense.

Kendall Concordance Coefficient W

Given the rankings of K, subjects on N, entities, the Kendall concordance coefficient W is con-
structed as follows. First, all the ranking data are arranged into a K, by N, data matrix. The
rows of the matrix are ordered by the subjects and the columns by the entities ranked. Thus,
each column of the matrix contains the ranks given by all subjects to a particular entity. Denote
the rank sum of each entity, which is the sum of the ranks in each column, by RJ, j = 1, . - -, N.
When all the subjects are in perfect agreement in their rankings, the rank sum Rj's take the value
Ks, 2K, 3Ks, - - NK,, though not necessarily in that order. On the other hand, when there is no
agreement among the subjects, the values of the Rj's will be approximately equal. Therefore, the
degree of agreement among the subjects is reflected by the degree of variance among the N, rank
sums. This variance reaches its maximum when the perfect agreement occurs among the rankings.
The Kendall concordance coefficient W is defined as the ratio between the actual variance VR and
the maximum variance of the rank sums. The value of W can be computed as [55]

12VR
W = K21 R(4.8)

SK2N s (Ns2 _ 1) (4-

where
N . N, 2

VR = Rj N - Rj (4.9)
3j.=1 ( N j=1

The range of W is [0,1], and W = 1 when subjects are in perfect agreement.
The principle of the Kendall concordance coefficient W is further explained by its relationship

with the Spearman correlation coefficient r.. The concordance of K, sets of rankings can be
evaluated by computing the average value of the Spearman correlation coefficients between all
possible pairs of the rankings. Denote the average value of the Spearman correlation coefficients
as r8 . It can be shown that the Kendall concordance coefficient W has a linear relationship with
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value rs.v [55]:
rSav = KsW - 1 (4.10)

AS - 1

Testing the Significance of W

The significance of Kendall concordance coefficient W can be tested under the null hypothesis HO
that there is no agreement among the K, sets of rankings. When Ns > 7, the distribution of
statistic

2 12 VR
X2 l2VR Ks(Ns - 1)W (4.11)

KSNS( NS + 1)

is approximately x2 with degrees of freedom df = N - 1 [55]. The probability p of observing under
HO a value as large as W can be determined by first computing the corresponding x2 value and
then finding the significance of that x in a x2 distribution table.

Results

The Kendall concordance coefficient for the 32 sets of human ranking data in Table 4.2 is

W = 0.7874

with Xr = 478.72. The probability for this X value to occur under HO is p < .001. Therefore,
the hypothesis Ho can be rejected with the probability of error less than 0.1%. The conclusion is

that the human ranking is reliable and there exist certain underlying criteria upon which the test
subjects agree.

4.6.8 Concordance Within and Between Male and Female Groups

Further analysis has been conducted to examine the agreement in ranking within and between the

male and female subjects. A straightforward procedure is to assess the concordance of the rankings

among the male and female groups separately. If the magnitude and the significance level of the

concordance coefficients suggest that there is strong agreement within each group, the agreement
between the two groups can be assessed by computing the Spearman correlation coefficient for the
rankings provided by the orders of the averaged ranks of each group.

For the male group, the Kendall concordance coefficient is W = 0.8011, with statistic X =

243.55 and significance p < .001. For the female group, the coefficient is W = 0.7872, with

X = 239.30 and p < .001. Thus, both male and female groups exhibit strong within-group
agreement in their rankings.

The averaged rankings of the male and female groups are shown in Table 4.7, together with the

final ranking scores based on the averaged ranks. The Spearman correlation coefficient rs for the

final rankings of the two groups is rs = 0.95, with statistic t = 13.18 and significance p < .001.
Hence, the rankings of the male and the female subject groups are significantly correlated.

The conclusion of the concordance evaluation of the male and female ranking data is that the

rankings exhibit strong agreement within each group and there is no significant difference between
the rankings of the two groups.

Schucany and Frawley extended the concept of the L statistic introduced by Page [71] and
proposed a rank test for two group concordance [83]. This test uses the L statistic, which is defined
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Table 4.7: Averaged and final ranking scores of male and female groups.

as the inner product of the two sets of rank sums of the two groups, to assess both the within-group
and the between-group concordance. However, since the rank sum values are proportional to the
averaged ranks, this method uses the same basic information in data as the procedure presented
above does. Given the very significant results of the Kendall's concordance within each group
and the Spearman's correlation between the groups, it is very unlikely the L test would conclude
otherwise.

4.6.9 Concordance of Combined Human and Computer Data

The Kendall concordance coefficient for combined human and computer data is W = 0.7902, with
statistic X = 495.44 and significance p < .001. Notice that this W value is larger than that
of the human data alone. Considering also the high correlation between the computer and the
averaged human rankings, it can be seen that the behavior of the computer in the texture ordering
experiment is indistinguishable from that of the human subjects.

Male Female
Sample Average Final Average Final
Name Rank Rank Rank Rank

D1 3.0000 1 3.3125 1
D9 18.2500 19 17.4375 17

D11 9.5000 11 8.1875 9
D26 6.6875 6 8.4375 10
D29 17.3125 17 17.3750 16
D32 17.9375 18 18.0000 19
D34 3.8125 2 4.3750 2
D52 7.7500 7 6.8125 6
D55 6.1875 5 5.3750 4
D57 17.0625 16 17.5000 18
D64 7.8750 8 7.1250 7
D78 12.0000 13 10.8750 13
D80 12.8750 14 13.5000 14
D82 9.5000 12 7.6875 8
D83 9.3750 10 9.0000 11
D93 15.1875 15 15.2500 15
D94 8.1250 9 9.6875 12

D101 4.3125 3 5.5625 5
D102 4.5625 4 5.1875 3
D110 18.6875 20 19.3125 20
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4.7 Implications of the Experimental Results

The following conclusions can be drawn from the experimental results:

1. The highly significant correlation between the human and the computer texture ranking data
suggests that the component energy resulting from the 2-D Wold decomposition of an image
is a good computational measure for the most salient dimension of human texture perception,
the dimension of repetitiveness vs. randomness.

2. The highly significant concordance of the human rankings indicates the following:

(a) There exists a common interpretation to the semantic labels associated to the perceptual
dimension.

(b) These labels indeed correspond to certain underlying criteria, upon which the human
subjects agree, for texture similarity measurement.

It should be emphasized that the Wold-based texture model is a computational image model,
and not a model for visual texture perception. The purpose of investigating the perceptual proper-
ties of the Wold model is to provide assurance that the model behaves consistently with the texture
perception and therefore can facilitate tasks such as image similarity comparison.

4.8 Discussion

4.8.1 Comparison to Previous Work

The current study differs in many respects from the existing work reviewed in Section 4.2. In
accordance with the earlier remarks, the following observations can be made.

First, the textural properties for which the Wold-based texture modeling is examined are chosen
based on an independent study of human texture perception. The experiment is carried out along
the perceptually salient dimension. Therefore, there is little doubt that the observed correspon-
dences between the textural properties and the computational features are important for texture
modeling.

Second, Wold-based texture modeling has a solid theoretical foundation. The computational
features are not composed purely heuristically. Consequently, the Wold model can provide com-
putational descriptions that contain sufficient information for both texture representation and
synthesis. 3

Finally, the analysis of the experimental data is more rigorous in that both the significance of
the ranking correlations and the concordance of the human data are tested.

4.8.2 Early Vision Models and Texture Modeling

Early Vision Models

The vast majority of human texture perception research has been carried out in the context of

texture discrimination and segregation (See [7] for a review). The early work includes the texton

3 Texture synthesis examples can be found in [27][28].
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theory by Julesz et al. [46][47][48] and the physical attribute based approach of Beck [5][3][4]. More
recently, computationally explicit early vision models have been proposed [6][9][10][16] [41][64][91].
The fundamental elements of these models are the outputs of oriented linear filters (or spatial
frequency channels), which are a crude model of the response properties of mammalian cortical
cells. The explanatory and predictive power of these perception models has been demonstrated
in various texture discrimination and segregation tasks. An example is the texture segregation
model by Bergen and Landy [10]. The initial stage of the model consists of a set of linear filters
in different orientations and spatial scales. These filters are followed by a rectifying nonlinearity,
which computes the energy of the filter output. The basic image representation provided by the
initial stage is then used by a correlation based decision making mechanism to achieve texture
segregation. More recently, a model of two-stage linear filtering and decision making has been
proposed by Sutter et al. [86].

Relations to Wold-based Texture Modeling

First and second directional derivatives have been used as the set of linear filters in early vision
models [9][10]. However, the choice of the filters is not critical [10]. To gain some insights into
the relations between Wold-based modeling and early vision models, the use of Gabor filters is
considered here.

Gabor functions are essentially Gaussian functions modulated by complex sinusoids. In two
dimensions, they take the form

1 2 2

g(x,y) = 2 eux 2 ( " ee2 o3 , (4.12)

where (o is the sinusoid frequency. A set of Gabor filters in various sizes, shapes, and orientations
can be constructed by choosing the value of the parameters ax, oy, o and applying appropriate
amounts of spatial rotations. The Fourier transform of the Gabor function in (4.12) is

G(7 r) = e X 9 o+ 1W] (4.13)

which is a Gaussian function centered at the modulating frequency (o, 0). The shape of this
Gaussian function is determined by the values of asx and or.. Since a spatial rotation corresponds
to a frequency rotation by the same angle, the location of the Gabor Gaussian function in the 2-D
frequency plane is determined by the filter orientation and modulating frequency. Therefore, a set
of Gabor filters can be built to cover the entire 2-D frequency range.

Now consider an input image with spectral harmonic peaks. The Gabor filters tuned to these
peak frequencies will give large outputs while other filter outputs are relatively small. Therefore, the
energy of the overall filter outputs concentrates on the periodic component of the image. Similarly,
the filters should also respond strongly to image evanescent components. Hence, the behavior of
the early vision model when using Gabor filters is consistent with the Wold-based modeling, which
emphasizes the separate characterization of deterministic and indeterministic image components.
This analysis also supports the use of deterministic energy ratio as a measure of pattern periodicity.
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Early Vision Models and Texture Similarity

Although the existing early vision models can shed some light on the problem of judging texture
similarity, the similarity comparison is a quite different visual task from texture segregation. Firstly,
more complex usage of multiple texture properties may be required. This observation is also
made by both Tamura [87] and Amadasun [2]. Secondly, when more than two patterns are under
consideration, the task for the computational model is not only determining whether the patterns
are different, but also how different. Therefore, after the relatively low-level and simple linear
filtering stage, a more sophisticated process of information aggregation and quantization is most
likely involved. Much research effort is needed to reach a better understanding of texture similarity
comparison in humans.
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Figure 4-2: Brodatz texture test samples used in the perceptual study.
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Figure 4-3: Test sample Fourier magnitudes.
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Figure 4-4: Test sample spectral harmonic peak frequencies.
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Figure 4-5: Test sample spectral evanescent lines.
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Figure 4-6: Test sample deterministic frequencies.
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Figure 4-7: Test sample remaining Fourier magnitudes after the deterministic frequencies are ex-

tracted. The images are individually scaled to the display range of [0,255].
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Figure 4-8: Test samples displayed in final human ranking order. From left to right, top to bottom,
the images are from the most repetitive to the most random.
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Chapter 5

Image Database Retrieval

5.1 Introduction

Current worldwide efforts of digitizing massive archives of image, film, and video have created
an immediate demand for automated retrieval systems. Tools assisting search among texture-
rich imagery have broad applications in, to name a few, video editing, medical image query, and
commodity markets such as carpet, tile, and upholstery.

A retrieval system serves the purpose of saving human users the time and effort of browsing
the entire database; hence, it is expected that the retrieved images resemble the visual properties
of the prototype pattern provided by the human user. To build such a system, it is important that
the computational features used for pattern comparison are faithful to those used by humans in
comparing patterns. As shown previously, the perceptual properties of the image Wold components
can be described as "periodicity", "directionality", and "randomness", agreeing closely with that
of the top dimensions of human texture perception. Hence, perceptually salient features can be
constructed based on the Wold theory.

Francos et al. [26][27][85] applied the 2-D Wold decomposition to spectral estimation and texture
modeling. In their work, it is assumed that the images are homogeneous random fields and the
model designs are based on the actual image decomposition. The proposed algorithms performed
well on a few texture examples, but are not robust or computationally efficient enough to handle
databases where image quantity is large and inhomogeneity abounds.

In this chapter, a Wold-based texture model is developed and shown to be robust in textured
image database retrieval and natural scene representation applications. The emphasis of the model
construction is on providing perceptually salient features for image recognition and similarity com-
parison. The model computational features, which preserve the perceptual properties of the Wold
components, are extracted without decomposing each image. This model design eases the constraint

on pattern homogeneity. The new texture model and the corresponding algorithms for image simi-

larity comparison can tolerate a variety of pattern inhomogeneities, as well as transformations such

as pattern rotation and scaling. The problem of aggregating different types of features for image

similarity comparison is resolved by using a Bayesian probabilistic approach.
The effectiveness of the Wold model for natural texture modeling is demonstrated in image re-

trieval experiments in comparison to the performance of two other well-known pattern recognition

methods, namely, the shift-invariant principal component analysis (SPCA) [75] and the multires-
olution simultaneous autoregressive (MRSAR) [66] modeling. The Wold model appears to offer a
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perceptually more satisfying measure of pattern similarity while matching the best performance of
these other methods by traditional pattern recognition criteria.

To illustrate how the Wold features can be used in natural scene representations, an image seg-
mentation algorithm and experimental segmentation and representation results are also presented.

This chapter is organized as follows. Section 5.2 introduces the texture database used in the
retrieval experiment. Section 5.3 contains a brief discussion of the image retrieval performance of
several existing texture models. The Wold-based texture model is constructed in Section 5.4, and
then applied to image database retrieval in Section 5.5. Section 5.6 demonstrates Wold texture
modeling of natural scene images. A discussion of the strengths and weaknesses of the Wold-based
model is in Section 5.7, followed by several conclusions.

5.2 Brodatz Texture Database

The "Brodatz texture database" contains 1008 natural texture patches, cropped from all 112 pic-
tures in the Brodatz album [15]. Each Brodatz texture provides nine 128 x 128 non-overlapping
sub-images in 8-bit gray levels. This collection contains a large variety of natural textures, includ-
ing the many inhomogeneous ones which are not usually included in texture studies. Including the
entire Brodatz collection in the database allows the potential of confusion and failure that exists
when texture algorithms encounter non-texture regions in natural scenes. Examples of the database
are shown in Figure 5-1.

5.3 Other Texture Models

Using the benchmarking method reported in [76], the retrieval performance of several image models
over the Brodatz database was evaluated by computing their recognition rate operating character-
istics. The image classes are defined by the original Brodatz album pages. Using each image in the
database once as a retrieval prototype, the average recognition rate is computed for different num-
bers of the top retrieved images. A 100% recognition rate is reached by a search when 8 matches
are found within the top retrieved images considered. For example, if the first 15 retrieved images
are considered and 4 matches are found for an image, then the recognition rate for that image
at retrieved set size 15 is 50%. The models evaluated include the MRSAR, the SPCA, the tree-
structured wavelet transform (TWT) 1 [17], and the three Tamura features of coarseness, contrast,
and directionality [87] as used in [69]. Note that this evaluation method uses a traditional pattern
recognition criterion, not necessarily agreeing with perceptual criteria.

The benchmarking results show that, when compared to the other three, the MRSAR model
offers the best intra-class recognition rate (see Figure 5-13 in Section 5.7.3). Recently, a Gabor
wavelet decomposition model was also applied to image retrieval and its performance benchmarked
against the MRSAR model [65]. By the recognition rate operating characteristics, the retrieval
performance of the Gabor and MRSAR methods are similar. Therefore, by this criterion, it would
be reasonable to regard MRSAR as representative of the state-of-the-art texture modeling for
image database retrieval. However, in many retrieval cases where structured image patterns are

'The TWT method is sensitive to image sizes. Much smaller than the 512 x 512 used in [17], the 128 x 128
database image size had a negative impact on the TWT performance in the benchmarking.
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D36: Lizard Skin

(c) D45: Swinging Light (d) D62: European marble

Figure 5-1: Example images of Brodatz texture database. Each original album picture contributes
to the database nine 128 by 128 grey scale images.

involved, it is observed that the MRSAR model is incapable of distinguishing images with very
little perceptual resemblance, showing its limitations in measuring perceptual similarity. Examples
are shown in Section 5.5.3. This weakness of the MRSAR model is innate since the model only
characterizes the interaction among neighboring image pixels, where neighbors are determined by
the model order. As an autoregressive (AR) process, the MRSAR model is most appropriate for
modeling random fields with continuous spectra (fine and purely random texture). When using an
AR process to model an image with many spectral peaks (spatially periodic structures), it is often
difficult to avoid both the information loss inherent in fitting with a low-order model and the extra
computation and over-fitting with a higher-order model.

Skin
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5.4 A Wold-based Texture Model

5.4.1 Model Construction

Perceptually, by Rao and Lohse's study [79], the existence of periodic structure is the strongest
perceptual cue in texture discrimination. A careful examination of all Brodatz database images
and their Fourier spectra reveals the following:

* Natural textures often contain multiple Wold components. Perceptually structured textures
usually have dominant harmonic components which appear as structured spectral peaks. Con-
versely, when the harmonic components are significant, they usually dominate the perceptual
pattern discrimination.

* Although certain local inhomogeneities (such as texture on an uneven surface or viewpoint
distortion) spread out or change the frequencies of the spectral peaks slightly, the intrinsic
structure of these peaks remains.

* Strong evanescent components correspond to eminent directionality in patterns; local inho-
mogeneities have only a minor effect on these components.

The distinct spectral signatures of some Brodatz database textures were shown earlier in Fig-
ure 1-1. Considering the observations above, the Wold-based texture model is designed to first
conduct a "harmonicity test" on an image. This test provides a measure of the confidence that the
image can be characterized as highly structured (or relatively unstructured). Based on this mea-
sure, either harmonic peak feature extraction or MRSAR fitting, or both, are deployed. The final
Wold representation of the image contains the harmonic confidence measure and the corresponding
harmonic peak features and MRSAR features.

The construction of the new model emphasizes the perceptually most salient harmonic infor-
mation. It also incorporates the demonstrated robustness of the MRSAR model. The new model
avoids the decomposition of images. The knowledge of harmonic and indeterministic components
is combined probabilistically by using the harmonic confidence measure. Details of the model are
explained in the following subsections.

5.4.2 Harmonicity Test

Autocovariance Energy Ratio re

To determine the prominence of harmonic structures in a texture, the energy distribution of the
image autocovariance function is examined. Given an N x N image y(m, n), (m, n) E D (D is
defined by Eq. (3.1)), its autocovariance function ry(m, n) can be computed as the inverse Fourier
transform of its Fourier magnitude squared:

N-1 N-1 11

ry(m, n) N2 |O Y(k,1)|2 m n (, E D (5.1)

0, otherwise

where Y(k, 1) is defined in Equation (3.2)
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(a) (b)

Figure 5-2: Distinct autocovariance energy distribution of some Brodatz database textures. From
top row to bottom: the originals; the absolute value of autocovariance functions; and the small
displacement regions. (a) D3: Reptile skin: with periodic energy concentration in the entire
displacement plane. (b) D69: Wood grain: with more small displacement energy. (c) D29: Beach
sand: with most energy gathered in small displacement region.

As shown in the top two rows of Figure 5-2, the autocovariance energy of a highly structured
texture is concentrated periodically throughout the 2-D displacement plane. In contrast, the au-
tocovariance energy of a random-looking texture concentrates in a small displacement region. The
ratio between the autocovariance "small displacement energy" (defined below) and its total energy
(total sum of the absolute value of the function) can be used as an indication of the image har-
monicity. (The autocovariance value at the zero displacement is ignored.) This ratio is denoted as

re.

- iL - - - - - __ __ - - - - -1 M_ _
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Wh W

mean 6.3579 43.6936
variance 10.0241 295.6701

prior 0.1270 0.8730

Table 5.1: Parameters of two Gaussian classes fitted to the autocovariance energy ratio data.

An image is first zero-meaned and Gaussian tapered using the tapering window function in
Figure 3-2 (b). This window function is used in all image tapering in this chapter. The image
autocovariance is computed as the inverse DFT of the image power spectrum. Starting from the
zero displacement, a region is grown outwards continuously until the value of the autocovariance
function is lower than a small portion of the function range (10% in the experiments). This region
is regarded as the small displacement region. Examples are shown in the bottom row of Figure 5-2.
The energy in this region is used as the "small displacement energy".

Harmonic Confidence Measure

The autocovariance energy ratio re is computed for each image in the Brodatz database. The
histogram of these ratios has a bi-modal structure. Gaussian assumptions are made to model the
energy ratio data using an expectation and maximization (EM) procedure. (See Appendix C.1.)
Denote the resulting classes as Wh (harmonic) and w, (random). The EM algorithm gives the means
and variances of the Gaussian conditional probability density functions of re, denoted as p(relwh)
and p(relw,), and the prior probabilities, denoted as P(Wh) and P(w,). The estimated parameters
are listed in Table 5.1. The joint probability density functions P(re,Wh) = p(redwh)P(Wh) and
p(rew r) = p(relwr)P(Wr) are plotted in Figure 5-3, together with the energy ratio histogram.

Given the autocovariance energy ratio re of an image, the posterior probability of Wh can be
computed as

= p(re,wh) p(re,wh) p(reIWh)P(Wh)
p(re) p(re,wh) + p(re,w,) p(re wh)P(wh) + p(rewr)P(wr) (

This probability is then used as the confidence measure of characterizing the image as highly
structured. Consequently, the confidence of describing the image as relatively unstructured is

P(wIre) = 1 - P(WhIre). (5.3)

For a given image, the values of P(wh Ire) and P(wr Ire) determine what feature sets are computed.
By the property of Gaussian functions, any value of re gives non-zero posterior probabilities. To
save computation and storage, values of P(WhIre) and P(wIre) smaller than 0.001 are considered
insignificant and set to zero (for about 5% of Brodatz database images). Corresponding to the non-
zero P(whIre) and P(w,|re), the harmonic peak features and the MRSAR features are computed
respectively.
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EM Fitting of Gaussian Functions to Autocovariance Energy Ratio Data

Figure 5-3: EM fitting of Gaussian density functions to image autocovariance energy ratio data.

Shown are the joint probability density functions p(re,wh) (solid line) and p(re,w,) (dash line),
together with the energy ratio histogram (dot line). The histogram has bin size 5% and is scaled
down by a factor of 5400.

5.4.3 Features for Harmonic Structures

Feature Extraction

The Wold feature set characterizing the harmonic structure of an image consists of the frequencies
and the magnitudes of the spectral harmonic peaks. To extract the feature set, the image is first
zero-meaned and Gaussian tapered. Then the spectral harmonic peaks are detected using the
method presented in Section 3.3.3. Examples of harmonic Wold features are shown in Figure 5-4.
Note that it is usually not necessary to use all detected harmonic peaks for the feature sets. In this

work, only the ten largest ones are kept for each image.

Feature Invariance

The harmonic Wold features inherit from the Fourier spectral magnitude the property of spatial
shift-invariance, a property that is usually important when comparing images. It is often desirable

for a retrieval system to also provide users options such as pattern comparison with respect to
relative rotation and scaling.

Since the spatial relationship of the harmonic peaks in a Wold feature set does not vary under
rotation, effects of relative rotation among textures may be reduced by rotating the peaks to align
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(a) (b)

Figure 5-4: Harmonic features of three Brodatz database textures. Each pattern contains two fun-
damental frequencies. From the top row to the bottom: originals; DFT magnitudes; and harmonic
peak feature frequencies. (a) D3: Reptile skin. (b) D14: Woven aluminum wire. (c) D52: Oriental
straw cloth.
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Original Fourier Mag. Peak Feature Rotated Rot. & Scaled

Figure 5-5: Harmonic peak feature rotation, and scale invariance. Top row: D3, Reptile skin.

Bottom row: D35, Lizard Skin. Although the original patterns are in different scale and have

relative rotation, their harmonic peak features allow rotation and scale invariant image similarity

comparison.

the main orientation of the texture to a chosen direction (horizontal in this work). The main

orientation of a texture is defined here as the direction of the lowest fundamental frequency in the

feature set. Note that this direction may not correspond to the perceptually most salient orientation

in the image, but this does not matter for the purposes of comparing images after aligning their

orientations. Aligning the peaks using the frequency with the most energy (not necessarily the

lowest fundamental frequency) is not as useful since the energy distribution can be influenced by

many non-pattern attributes, such as local lighting and contrast. Since each feature set typically

consists of a small number of peaks, its rotation involves minimal computation compared to a

rotation in the spatial domain.
In a similar manner, the harmonic Wold features can be made scale invariant by scaling the 2-D

frequency values of each peak by a factor that puts the lowest fundamental frequency at a chosen

distance from the zero frequency.
Examples of the rotated and scaled harmonic peak features are shown in Figure 5-5. Although

the original patterns are in different scale and have relative rotation, their harmonic peak features

allow rotation and scale invariant image similarity comparison.

Harmonic Peak Matching

In the image retrieval applications considered here, the user selects a prototype image and the

retrieval algorithm searches through the database test images for the ones that are similar to the

prototype. The comparison of the texture harmonic structures is carried out by matching the Wold
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feature sets. Denote the peak feature magnitude values of a prototype and a test image by mP(s)
and mt(r) respectively, where s = (si, S2), r = (ri, r 2) E Dh. As defined in Equation (3.6), region
Dh is half of the discrete frequency plane. The harmonic pattern similarity between the two images
is measured as:

Mp= m,(s) 1 w,(r - s) m2,s)t(r) (5.4)
3EEh rEvh [mp(s) + mt(r)'

where w,(.) is a point spread weighting function, implemented here as a 5x5 (size found empirically)
Gaussian mask with unity at the center and standard deviation a = V5. This function enables
peak matching within a small neighborhood of the prototype peaks. This not only compensates
for the frequency sampling effects of the DFT operation, but also tolerates small frequency shifts
of the harmonic peaks caused by inhomogeneities in the data. The function of the ratio term is to
weigh the difference of the peak magnitudes since quantity

me(s) mt(r)

m,(s) + mt(r) mr(s) + mt(r)

reaches its maximum when mp(s) = mt(r). Note that the larger the value Mpt, the more similar
the two harmonic patterns.

5.4.4 Features for Relatively Unstructured Textures

Feature Extraction

The indeterministic component of a texture can be modeled by an AR process (Section 2.5). Var-
ious AR implementations have been applied to texture modeling. In this work, the second-order
symmetric MRSAR model of Mao and Jain [66] is used.

The least-squares estimation (LSE) method is used to estimate the MRSAR model parameters.
Other methods, such as the maximum likelihood (ML) estimation [53] and the 2-D Levinson type
algorithm [67], can also be used. It has been shown that under the experimental circumstances
similar to this work, the LSE and the ML estimates offer very similar performance [56]. The 2-
D Levinson algorithm is especially useful when the model order determination is involved in the
parameter estimation. Since the MRSAR modeling in this work targets the relatively unstructured
patterns in an image, a fixed second-order model is chosen and the LSE estimation is used for its
computational simplicity.

For every other pixel of an image, four SAR coefficients and the standard deviation of the
SAR fitting error are estimated at each of the second, third, and fourth resolution levels. These
parameters are then concatenated to form fifteen-parameter feature vectors. The mean and the
covariance matrix of these feature vectors comprise the MRSAR feature set for the image. Details
of the LSE estimation procedure can be found in Appendix C.2.

Image Comparison

Two relatively unstructured images are compared by examining the Mahalanobis distance of their
MRSAR feature vectors. Let f, and ft be the feature vectors of the prototype and a test image
respectively. Let K, be the covariance matrix of the prototype feature fp. The Mahalanobis
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distance between the two images is

dt= (f - f)TK (ft - f,). (5.5)

Note that the smaller the Mahalanobis distance, the more similar the two images.
In Section 5.5.3, the results of image retrieval based solely on the MRSAR features are compared

to the performance of the Wold-based model.

5.4.5 Detecting Evanescent Components

Since the spectral signatures of evanescent components are straight lines, an algorithm using the
gray-scale Hough transform was developed to detect evanescent components in the frequency do-

main. After computing the Hough transform of the image DFT magnitudes, the histogram of line
slope angles is built. The variance of this histogram and the variance of the Fourier energy along

lines corresponding to the sharp peaks in the histogram are found to be discriminative features for
evanescent detection. This algorithm accurately identifies the images from the Brodatz pictures

D49, D105, and D106 as highly evanescent. Perceptually, these images indeed have distinctively
strong directional properties.

The fact that the Brodatz database contains few strongly evanescent samples makes it impossible

to statistically determine how the evanescent information should be incorporated into the modeling
procedure. In this work, the evanescent database images are modeled by MRSAR processes.

5.4.6 Measuring Similarity of Textures

Using the Wold features of textures, the image similarities can be measured by either the harmonic
peak matching or the MRSAR feature Mahalanobis distances. However, since the harmonic and

the MRSAR features are of different types, it is an open question how the two measures should
be best combined so that the resulting measure reflects the overall similarity of textures. In the

context of image retrieval, the following probabilistic joint measure for image similarity is devised.

Given a prototype image, the system generates two image orderings by using the harmonic
peak and the MRSAR features respectively. In each ordering, the entire database is sorted by the
descending order of the image similarity to the prototype. When multiple images have the same

similarity measure value to the prototype, they share the same ordering rank. For an arbitrary
test image, its ordering ranks in the two orderings are typically different. Denote its rank in the
harmonic ordering by Oh and the one in the MRSAR ordering by 0,. As discussed in Section 5.4.2,
the posterior probabilities P(wh re) and P(, Ire) can be used as a confidence measure of character-
izing the prototype texture as highly structured or relatively unstructured. More specifically, these

probabilities indicate the degree of belief in the two orderings. Hence, the joint rank of the test

image is computed as
O joint = OhP(Whre) + OrP(Wr|re).

The final similarity ordering of the database is formed by sorting images in the ascending order of

their joint rank values.
As an additional benefit, it is found that, with this similarity measure, the system is less

sensitive to the choices of threshold parameters (such as the 10% for the small displacement energy
calculation in Section 5.4.2), while giving improved overall retrieval performance.
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Prototype Harmonicity Database Joint Image
Image Test Ordering Display

Multiscale MSAR

P(worr) :A 0 'SAR Features Ordering

Figure 5-6: Flow-chart of image retrieval system based on the Wold texture model.

5.5 Textured Image Database Retrieval

5.5.1 Image Retrieval System

The flow-chart of the image database retrieval system is shown in Figure 5-6. This system consists
of four stages. The first stage is the harmonicity test. Given a prototype image, its autocovariance
energy ratio is computed to obtain the posterior probabilities P(Whlre) and P(w,|re). Probability
values smaller than 0.001 are set to zero. In the second stage, corresponding to the non-zero poste-
rior probabilities, the harmonic peak features and the MRSAR features are estimated respectively.
The harmonic peaks in the feature set are rotated to align their main orientation to horizontal
and scaled such that the distance between the lowest fundamental frequency and zero frequency is
10. The third stage provides database image orderings where the entire database is sorted by the
descending order of the image similarity to the prototype. In each ordering, the similarities are
measured by either the harmonic peak matching or the MRSAR feature Mahalanobis distances.
In the final stage, different orderings are combined using the method described in Section 5.4.6 to
obtain the final joint ordering.

The retrieval experiments are carried out on the Brodatz texture database using the Photobook
test environment described in [72]. Parameters used to compute the posterior probabilities for a
prototype image in harmonicity testing can be found in Table 5.1. The Gaussian weighting function
for harmonic peak matching is shown in Figure 5-7.

Each harmonic peak feature set contains the 2-D frequencies and magnitudes of ten harmonic
peaks, yielding twenty integers and ten floating-point numbers per image. A MRSAR feature set
includes the 15-parameter feature vector and the 15 x 15 feature covariance matrix (120 distinct
numbers due to symmetry), for a total of 135 floating-point numbers per image. For a 128 x 128
image, feature computation takes typically 0.18 second for the harmonic peaks and 38 seconds for
the MRSAR features on an HP9000/735 workstation.
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Figure 5-7: The non-zero region of the Gaussian weighting function wp(.) for harmonic peak match-
ing (a = 5).

5.5.2 Retrieval Performance Criteria

When evaluating the image retrieval results in the experiments, two performance criteria are con-

sidered. One is guantitative: the nine samples from each original Brodatz texture form a class

and a perfect "traditional pattern recognition performance" implies that the class members of the

prototype image appear as the first eight retrieved images. The other criterion is gualitative and

more difficult to evaluate: the retrieved images should be in the order of their perceptual similarity

to the prototype image. In fact, the latter criterion is subject to cognitive and other influences,
and there may not exist a unique "correct" ordering upon which all people agree. The claim that
Wold-based modeling provides perceptually sensible features rely on the results of the human study
reported in Chapter 4, and on the observations in the image retrieval experiment.

5.5.3 Image Retrieval Examples

In Figures 5-8 and 5-9, two examples of Wold-based image retrieval are shown together with the
results given by the SPCA model and the MRSAR model. The two latter models are described and

benchmarked in [76]. In each display, the upper left image is the user selected prototype image.

In raster-scan order after the prototype, the retrieved images are shown by descending similarity

to the prototype 2. With pre-computation of the features, all three methods search the database in
interactive-time (the search is faster than loading the images for display).

Figure 5-8 demonstrates the superior qualitative and quantitative performance of the Wold

model. Here, the prototype image is straw cloth. In (a) and (b), both the SPCA and the MRSAR

methods fail to find other straw cloth pictures as the most similar; they each retrieve images

perceptually very different from the prototype. In (c), the Wold model provides both "intra-class"

accuracy and "inter-class" similarity. It finds all eight other straw cloth patterns in the database

and fills the display with other highly structured textures.

2The drawback of sequential display is that images having the same order number appear as different in their

ordering.
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In Figure 5-9, the experiment is repeated on a prototype image of reptile skin. The results
in (a) and (b) show that the SPCA and the MRSAR methods confuse the periodic reptile skin
patterns and the random-looking paper fiber or cork patterns. In (c), the Wold method retrieves
large number of reptile skin images up front, exhibiting its robustness to rotation, scale, and other
image local inhomogeneities.

In both examples, the Wold-based method uses largely the harmonic information in the textures

(re= 6.36% and 5.52%, P(WhIre) = 0.893 and 0.900). This is consistent with the fact that both
prototype images contain prominent periodic structures.

5.6 Natural Scene Representation

This section demonstrates how to generate descriptions for textured regions of natural scenes in
terms of Wold features. A scene image is first segmented by using its MRSAR features and a K-
means-based clustering algorithm. The Wold features are then extracted for the segmented image
regions.

5.6.1 Textured Region Segmentation

Numerous image segmentation methods have been proposed for various tasks [39][32][81]. While
the common practice is to partition the entire image, the focus here is to detect and segment sizable
and relatively homogeneous regions in a scene. Note that precision of region boundaries is not a
primary concern in representing natural scene contents for retrieval; it is more important to extract
features that provide a basis for subsequent content identification.

An unsupervised segmentation algorithm is developed to find reasonably homogeneous image
regions. The algorithm is robust to slight inhomogeneities due to perspective viewpoint and uneven
textured surfaces. Smooth regions (small variations in pixel values) are first detected by threshold-
ing the local variances at each pixel in a 9 x 9 neighborhood. These regions are useful for retrieval
requests such as "find pictures with a patch of sky at upper left". The main segmentation algo-
rithm is a K-means-based clustering of image pixels in MRSAR feature space. Pixels in smooth
regions are excluded from this procedure since the LSE estimates of their MRSAR coefficients are
unreliable due to the under-determined linear equations.

The pixel MRSAR features are computed in the same manner as described in Section 5.4.4.
To initialize the clustering algorithm, the image is tessellated into rectangular regions (64 x 64
squares on 256 x 384 8-bit gray scale images in the experiments below). In a typical iteration,
the Mahalanobis distances of each pixel to every cluster are computed and the pixel is re-assigned
to the nearest cluster. Small clusters (less than 4000 pixels) are eliminated and their members
re-assigned. Clusters are merged when their mutual Mahalanobis distance is small. The program
terminates after a given number of iterations or when no pixel changes its cluster membership in
an iteration. One morphological closing [80] operation is applied to the segmentation output to
smooth the boundaries. The circular structuring elements used in the two examples below have
diameters 15 and 30 pixels respectively.
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Figure 5-8: Image retrieval of the straw cloth pattern comparing three methods: (a) SPCA, (b)
MRSAR, and (c) Wold. In each picture, the images are raster-scan ordered by their similarities to
the image in upper left.
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Figure 5-9: Image retrieval of the reptile skin pattern comparing three methods: (a) SPCA, (b)
MRSAR, and (c) Wold. In each picture, the images are raster-scan ordered by their similarities to
the image in upper left.
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5.6.2 Natural Scene Representation Examples

Figures 5-10 and 5-11 show two examples of textured region segmentation and representation in
natural scenes. In both figures, the K-means-based segmentation results are shown with smooth
regions marked in black. The number of iterations used in clustering are 15 and 30 respectively for
the two images.

The example shown in Figure 5-10 illustrates the segmentation and representation of a city
scene. The segmented building is shown in (c). The autocovariance energy ratio of the building
is re = 11.88% (P(Whlre) = 0.489), hence the region should be represented by both the harmonic
peak and the MRSAR features. The DFT magnitudes and the harmonic peak features of the
building patch are shown in (d) and (e). In computing the DFT, a 128 x 128 Gaussian window

(o- = 24) is applied to the center of the building. The harmonic peak extraction in this example
shows the robustness of the algorithm to inhomogeneity due to perspective, even though no explicit
perspective coordinate transform was included.

Note that not only does the segmentation find the building patch in the image, but also the Wold
representation of the patch indicates the presence of a "highly structured region." For recognition
and retrieval, this description rules out large categories of content such as "grass." If a user were
browsing for city scenes, the algorithm could skip over images without any highly-structured regions.

Figure 5-11 shows a national park scene and its segmentation. Both the cliff and rock patches

have no harmonic structures (re > 45%) and hence are modeled by their MRSAR features. In
addition, the cliff has a strong evanescent component which can be detected by the method described
in Section 5.4.5.

5.7 Discussion

5.7.1 Image Inhomogeneity

The effectiveness of the Wold-based model presented above depends on the properties of the esti-

mated image spectra. On the spectra estimated by the simple method (windowed periodogram)
used here, the proposed image modeling and comparison system is surprisingly insensitive to small
surface inhomogeneities and viewpoint changes. However, the performance of the model will be
compromised when the inhomogeneities alter image spectra substantially.

One example is given in Figure 5-12. If shown to a human, the two lace pictures could be
judged similar. Nevertheless, one of the lace patterns has prominent spectral harmonic peaks and
the other does not. The reason is that the netting pattern in (c) is not homogeneous enough to form

strong peaks in its spectra, nor does the netting cover enough area of the image to reinforce the
weak periodicity that is present. Instead, the high contrast flowers in (c) overwhelm the harmonic

component in spectra. However, a human viewer seems to "homogenize" the netting, and considers

the two lace pictures to be similar.

5.7.2 Perspective Transformation

Image spatial perspective transformation is a special kind of image inhomogeneity. For a structured

pattern, the perspective transformation can cause the deformation of pattern spectral harmonic

peaks. An example is the building patch and its spectrum shown in Figure 5-10. Although in
this case the peak detection algorithm was able to extract the peak features in spite of the peak

101



CHAPTER 5. IMAGE DATABASE RETRIEVAL

(a) (b)

(c) (d)

Figure 5-10: Segmentation of city scene. (a) Original; (b) Smooth regions; (c) Segmentation
result with smooth regions in black; (d) Segmented building; (e) DFT magnitudes of building; (f)
Extracted harmonic peaks.
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(a) (b)

(c) (d)

Figure 5-11: Segmentation of national park scene. (a) Original; (b) Segmentation result with

smooth regions in black; (c) Segmented cliff; (d) segmented rocks.

spreading, the locations of these peaks in the frequency plane are different from where they would

be if the building were frontal. Since the perspective effect is common in natural scene images, it

is important to make the image features perspective invariant.
Various estimation methods have been proposed to recover the planar surface normal from

surface texture information [35][58][63]. These methods first approximate the perspective trans-

formation locally with an affine one and then use either spatial or spectral texture features to

estimate the surface orientation. Among other computational concerns, the methods need at least

two sizable texture patches for estimation. In natural scene images, very often the textured regions

are not large enough to deploy these methods.
Aiming at a solution that will allow planar surface normal recovery from a single harmonic

texture patch, a spectral approach is formulated as a decomposition of image perspective trans-

formation into affine and chirp transformations. The perspective deformation of harmonic peaks

can be expressed as a convolution of the spectral peaks with a shift-variant frequency kernel. The

current results of this on-going research are described in Appendix D.
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(a) (b)

Figure 5-12: Examples of perceptually similar textures which exhibit distinct spectral signatures.
(b) and (c): two patches of Brodatz database texture D41: Lace. (a) and (d): DFT magnitudes of
(b) and (c) respectively.

5.7.3 Performance Over the Brodatz Database

The quantitative measure of the retrieval performance is obtained using the benchmarking method
described in Section 5.3. In Figure 5-13, the average recognition rate characteristic of the Wold-
based method over the Brodatz database is plotted against those of four other methods: MRSAR,
SPCA, TWT, and the Tamura features. Figure 5-13 shows that, by the traditional pattern recog-
nition criterion, the effectiveness of the Wold model matches that of the MRSAR and is much
better than those of the SPCA, the TWT, and the Tamura features.3 It should be stressed that
the perceptual advantage of the Wold model, which is demonstrated by some examples in the last
section, is not well captured by this traditional quantitative evaluation.

Comparing the recognition rate averaged within each Brodatz class, the MRSAR method per-
forms better on 10 of the 112 classes at neighbor size 8. Examples are D38 (Water), D41 (Lace),
D80 (Straw cloth), and D84 (Raffia). In all ten classes, some class members have relatively ho-
mogeneous and structured patterns with prominent spectral peaks while the others do not. When
the prototype image is a structured patch from such a class, the Wold model, which uses the har-
monic peak information, may consider some other structured database images as more similar to
the prototype than some of the patches in the prototype class. For these classes, the MRSAR
model captures the average local spatial interaction and outperforms the Wold model by up to
18%. However, it is arguable if humans would agree with the original Brodatz grouping for some
of these classes.

Although the Brodatz collection contains a large variety of natural textures, it is still a lim-
ited set. For instance, the Wold model, which represents both the harmonic structure and the
randomness in a pattern, should outperform the MRSAR model on textures with mixed-spectra.
However, most of the highly structured Brodatz textures have uniform backgrounds and simple
local features. On these images, the MRSAR model, which is incapable of representing large scale

3The Wold performance curve in Figure 5-13 is slightly different from the one reported in [60]. This is due to the
minor variations in the model implementation.
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Retrieval Performance Operating Characteristics
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Figure 5-13: Retrieval performance operating characteristics - average recognition rates over the
entire Brodatz database, considering from 8 up to 100 top retrieved images. Methods shown
(from top curve to bottom): Wold-based model, multiresolution simultaneous autoregressive (MR-

SAR) model, shift-invariant principal component analysis (SPCA), tree-structured wavelet trans-
form (TWT), and Tamura features.

spatial structures, performs no worse than the Wold model and can even achieve 100% recognition
(eg.: D14, D20, D34, and D47). Although the Wold model does better in cases such as D3 (93.1%
vs. 54.2%) and D52 (98.6% vs. 58.3%), its strength is not shown strongly against the MRSAR
model given the limited variety of the database images.

The fundamental weakness of this performance evaluation is the lack of a meaningful benchmark-
ing method for perceptual similarity in image retrieval. The current database classes are defined
by the image origin in the Brodatz album, instead of the visual similarities. This is especially prob-
lematic for inhomogeneous images, where members of different classes can be perceptually more
similar than images from the same original Brodatz picture. Examples are the sub-images of D36
(Figure 5-1 (b) Lizard skin) and D3 (top image of Figure 5-2 (a) Reptile skin). However, regrouping
the images by their perceptual categories is not as easy as it appears. For instance, it is difficult

for a human to judge pattern similarity without being biased by the image semantic content. One
example is the five Brodatz brick wall patterns which differ in scale and surface properties.
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5.8 Summary

In this chapter, a texture model based on the 2-D Wold random field decomposition theory is
developed and evaluated for image retrieval in the Brodatz texture database.

The structure of the Wold-based model reflects the correspondence between the perceptual prop-
erties of the Wold components and the properties of human texture perception. It emphasizes the
perceptually most salient harmonic structures in a texture while using the robust statistical models
to represent the relatively unstructured patterns. The model avoids the actual decomposition of
images and is designed to tolerate a variety of inhomogeneities in natural data, including pattern
scaling and rotation. The robustness of the model makes it suitable for use in large collections of
natural patterns.

The Wold-based model provides a new approach in modeling textures with mixed-spectra. Since
the model uses harmonic peak extraction and MRSAR modeling to target different parts of the
spectra, it is able to avoid a common problem found in statistical modeling: the information loss
inherent in fitting highly structured textures with a low-order model, or the extra computation and
over-fitting with a higher-order model.

For model perspective invariance, a linear system characterization of image perspective trans-
formation and its decomposition into affine and chirp transformations are presented. The relation
between geometric and spectral descriptions of perspective transformation is formulated to form a
basis for future algorithms to infer image perspective parameters from a single sample of harmonic
texture data.

Based on the new Wold texture model, an image retrieval algorithm is developed. Different
types of image features are aggregated for similarity comparison by using a Bayesian probabilis-
tic approach. Compared to other texture models, the Wold model appears to offer perceptually
more satisfying results in the image retrieval experiments while matching or surpassing the best
performance in recognition by traditional quantitative criteria.

A K-means-based image segmentation method is presented to demonstrate how Wold-based
modeling can be used to characterize textured regions in natural scenes. The Wold feature sets
constructed for these regions can be used subsequently in image content description.
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Chapter 6

Temporal Texture Modeling

6.1 Introduction

Periodicity is common in the natural world. It is also a salient cue in human perception. Informa-
tion regarding the nature of a periodic phenomenon, such as its location, strength, and frequency,
is important for the understanding of the environment. Techniques for periodicity detection and
characterization can assist in many applications requiring object and activity recognition and rep-
resentation.

Although surface patterns may come to mind first, periodicity often involves both space and

time, such as cyclic motion. The main body of work on periodic motion is model-based (eg.
[1][44]). More recently there is work on motion recognition directly using low-level features of

motion information (eg. [77][78][14]). However, to date, there has not been a method which uses

low-level features to detect and systematically characterize periodicity in space and time. This

work [61] attempts to tackle this problem by using periodicity templates to incorporate the loca-

tion, strength, and other characteristic information of a periodic phenomenon. The templates are
useful in applications such as periodic motion representation and action recognition. The template
generating procedure also provides a tool for detecting and segmenting regions of periodicity. The
proposed method is Fourier spectral based and uses 1-D Fourier transforms; therefore, it is also
computationally efficient.

6.2 The Approach

The term temporal texture is defined in [78] as "motion patterns of indeterminate spatial and
temporal extent". This definition emphasizes the randomness of a temporal event. In this work,
"temporal texture" is used to refer to any approximately homogeneous spatiotemporal phenomenon.

Hence, periodic temporal activities such as walking, swimming, or playing a violin are considered
as a type of temporal texture.

The one-dimensional signals along the temporal dimension of a three-dimensional data volume
formed by an image sequence can be considered as stochastic processes. When assuming sta-

tionarity, a stochastic signal can be decomposed into deterministic (periodic) and indeterministic

(random) components. This is the classic 1-D Wold decomposition of stochastic processes [96]:
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Theorem 9 A zero-mean, regular, and stationary stochastic process {y(n)}, n E Z, can be repre-
sented uniquely by

y(n) = v(n) + w(n) (6.1)

where
00

w(n) = > a(k)u(n - k) (6.2)
k=O

and E[v(n)] = E[u(n)] = 0. The coefficient a(0) = 1 and %o a(k) 2 < 00. Process {v(n)} is
deterministic and process {w(n)} is regular and purely indeterministic. The innovation process
{u(n)} is white, i.e., E[u(n)u(k)] = 0 for all n f k. Processes {v(n)} and {u(n)} are orthogonal,
i.e., E[v(n)u(k)] = 0 for all n, k E Z. Thus processes {v(n)} and {w(n)} are also orthogonal.

Different from the 2-D case, evanescent components do not exist in 1-D signals. Therefore, the
deterministic component of a 1-D signal can be approximated solely by the harmonic component,
which corresponds to the repetitive structure in the signal. As discussed previously, the repetitive
structure in a signal contributes to the Fourier spectral harmonic peaks, and the random behavior
to the smooth part of the spectra. Shown in Chapter 4, the deterministic energy ratio of a 2-D
signal is a good measure of signal periodicity. Referring to the energy contained in the spectral
harmonic peaks of a signal as the harmonic energy, the ratio between the harmonic energy and
the total energy of a 1-D signal along the temporal dimension is used in this work to detect and
segment spatiotemporal periodicity.

The approach described above assumes that the spatiotemporal periodicity is observable along
lines parallel to the temporal (T) axis. In other words, the action needs to be tracked just like
humans fix their eyes on a walking person. The problem of object tracking is conceptualized
here as foveating. Typically, optical flow based techniques are used for tracking. However, flow
based methods are usually susceptible to noise. A non-flow-based procedure - foveating by frame
alignment - is developed here for object stabilization.

In this chapter, examples of walking people are used to illustrate the techniques. However, it
should be stressed that the goal of this research is not to detect and segment a moving object, but
to detect and characterize in a three-dimensional data volume those regions that exhibit periodicity.
The algorithm is not expected to segment out the walking person. Instead, regions of legs and arms
and the outline of the bouncing head and shoulder should be identified.

6.3 Related Work

The work of Polana and Nelson on periodic motion detection [78] is perhaps the most relevant to
the approach presented in this chapter. In their work, reference curves, which are lines parallel to
the trajectory of the motion flow centroid, are extracted and their power spectra computed. The
periodicity measure pf of each reference curve is defined as the normalized difference between the
sum of the spectral energy at the highest amplitude frequency and its multiples and the sum of
the energy at the frequencies half way between. Besides the value of the periodicity measure itself,
there is no checking on the signal harmonicity along the curve, which is a weakness of the method.
The periodicity measure for an entire sequence is the maximum of pf averaged among pixels whose
highest power spectrum values appear on the same frequency. The final periodicity measure is used
to distinguish periodic and non-periodic motion by thresholding.
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In [77], flow based algorithms are used to transform an image sequence so that the object in
consideration is stabilized at the center of the image frame. Then flow magnitudes in tessellated
frame areas of periodic motion were used as feature vectors for motion classification. It will be
shown later in the chapter that flow based methods are very sensitive to noise.

The proposed approach differs from the work discussed above in the following ways: 1) the
harmonic relationship among spectral peaks is explicitly verified; 2) a more accurate measure of
periodicity in the form of harmonic energy ratio is proposed; 3) multiple fundamentals can be
extracted along a temporal line; 4) the values of fundamental frequencies are used in processing to
help distinguish periodicity of different activities; 5) regions of periodicity are actually segmented;
and 6) optical flow based methods are not used here, so the proposed algorithm is robust in the
presence of noise.

6.4 Method

6.4.1 Overview

The algorithm for periodicity detection and segmentation consists of two stages: 1) preprocessing:
foveating by frame alignment; 2) simultaneous detection and segmentation of regions of periodicity.

Foveating (or tracking) is by itself an important research area. In this work, two types of image
sequences are considered:

I. Area of interest (typically a moving object) is as a whole stationary to the camera, but
the background can be moving;

II. There is very little ego-motion involved, permitting minor shake and drift as in the hand-
held situation, and approximately each moving object is as a whole moving frontoparallel
to the camera along a straight line and at a constant speed.

In practice, a large number of image sequences containing periodicity can be categorized into one

of these two types.
When watching a sequence of a person walking across the image plane, as shown in Figure 6-1,

a notion of repetitiveness is experienced. However, if the frames are examined individually, there
are no re-occurring scenes. The reason why periodicity is perceived in the sequence is due to one's
ability to focus the visual attention on the moving object, or, foveating. The effect of foveating
can be accomplished computationally by frame alignment. Obviously, foveating is not necessary
for sequence type I, but in fact is a process of transforming type II sequences into type I.

In the second stage, 1-D Fourier transforms are performed along the temporal dimension of
the aligned frames. The spectral harmonic peaks are detected and used to compute the harmonic

energy. A periodicity template of frame size is then generated by using the extracted fundamental
frequencies and the harmonic energy ratio at each frame pixel location. The original sequence is

then masked for regions of periodicity.
In the following, the term data cube refers to the three dimensional (X: horizontal; Y: vertical;

and T: temporal) data volume formed by stacking all the frames in a sequence, one in front the
other. The XT and the YT slices of the data cube reveal the temporal behavior usually hidden
from the viewer. Figure 6-2 shows the head and ankle level XT slices of the Walker sequence. The
head leaves a more or less straight track (non-periodic) in (a) while the walking ankles in (b) make
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Frame 20 Frame 40

Frame 60 Frame 80

Figure 6-1: Four frames in the 97 frame sequence Walker. Frame size is 320 by 240. The goal is

not to segment out the walking person, but to detect and characterize regions that are involved in

periodic motion, such as the legs, the arms, and the outline of the bouncing head and shoulder.

a crisscross pattern (periodic). Note that the periodicity in (b) is difficult to characterize since it is

along neither the X nor the Y dimension, but the diagonal line. In this sense, foveating, or frame

alignment, is a process of transforming data into a form in which periodicity can be easily detected

and measured.
Throughout this section, the Walker sequence will be used to illustrate the technical points.

More complex examples are given in Section 6.5.

6.4.2 Preprocessing: Foveating by Frame Alignment

To align a sequence to a particular moving object, the trajectory of the object needs to be detected

first. To be demonstrated in Section 6.5, optical flow based methods are subject to the noise

MEMO-
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(a) (b)

Figure 6-2: Head and ankle level XT slices of the Walker sequence. (a) Head leaves a straight track

(non-periodic). (b) Walking ankles make a crisscross pattern (periodic). Note that the periodicity

in (b) is difficult to characterize since it is along neither X nor Y dimensions, but the diagonal line.

sensitivity inherent in pairwise frame differencing. A filtering method similar to the one in [70] is

used here to find the trajectories.
A 1-D median filter is first applied to the data volume along the temporal dimension T to

exclude moving objects and result in a sequence containing mostly the background. Filter length

of 11 was used in the Walker sequence. Subtracting the background from the original sequence, a

difference sequence containing mainly the moving objects is obtained. Since the object trajectories

in consideration are approximately linear, the 2-D representations of the trajectories can be obtained

by simply computing the average of the XT or the YT slices of the difference cube. This is equivalent

to collapsing the difference cube top down to the XT plane or sideways to the YT plane. Next,
lines in the 2-D trajectory images are detected via the Hough transform. The detected lines give

the X or the Y positions of the moving objects in each frame. These position values are used as

alignment indices. The averaged XT image of the Walker difference sequence and the line found by

a Hough transform based method are shown in Figure 6-3. Note that multiple object trajectories

can be detected simultaneously using this procedure. An example of three walking persons is shown

in Section 6.5.
Using the alignment indices of an object, each frame in the image sequence can be repositioned

to center the object to any specified position in the XY plane. After alignment, the object should

appear as moving in place in the sequence. For instance, after aligning the Walker sequence in the X

dimension (alignment in the Y dimension is not necessary since the overall Y position of the person

does not change much), the position of the walker's torso remains in place, but the surroundings

move to the right. In effect, this is equivalent to focusing the visual attention on an object when

viewing a sequence in which the object's position changes frame by frame. This process is referred

to as foveating by frame alignment. The aligned sequences are passed on to the second stage of the

algorithm.

6.4.3 Finding Regions of Periodicity

The input to this stage is the aligned sequences. To save computation and storage, an aligned

sequence can be cropped to limit processing to the area of interest. It will become clear later that

the cropping does not effect the detection of periodicity. The location and size of the cropping

window can be determined by first aligning the difference sequence using the estimated alignment
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(a) (b)

Figure 6-3: (a) Averaged XT image of the Walker sequence after background removal. (b) Line

found in (a) by using the Hough transform method. Each dot marks the object location in a frame.

(Each horizontal line in the picture represents a frame.)

indices and then computing the average XY image. Figure 6-4 shows the averaged aligned XY

image and the aligned and cropped Walker sequence with splits near the center of the frames to

show the inside of the data cube.
Facing the data cube, a line can be drawn from a pixel (xo, yo) in the first frame all the way

through the cube to arrive at pixel (xo, yo) in the last frame. Clearly, this line contains pixel (xo, yo)
of all frames. This line, named as the temporal line at (xo, yo), is of essential importance to the

discussion. If the frame size is Nx by N., then there are NxNy temporal lines in the data cube.

In the aligned sequence, the object of interest should be moving in place. Apparently, if the

object is moving cyclically in any manner, the periodicity will be reflected in some of the temporal

lines. Figure 6-5 (al) and (b1) show the head level and ankle level XT slices of 64 frames (Frame

17 to 80) of the data cube in Figure 6-4 (b). Every column in the images is a temporal line. These

images are in fact the aligned and cropped version of the two XT slices in Figure 6-2. Each column

in Figure 6-5 (a2) and (b2) is the 1-D power spectra of the corresponding column in (al) and

(b1). Note that the power spectrum values are normalized among all temporal lines in the data

cube. Figure 6-5 (ci) and (c2) give the details of the signal along the white vertical lines in (b1)
and (b2). While the head level slice in (al) shows no harmonicity, the periodicity of the moving

ankles in (bl) is reflected by the spectral harmonic peaks, shown clearly in (c2). Referring to the

energy contained in the spectral harmonic peaks as the temporal harmonic energy, the ratio

between the harmonic energy and the total energy of the signal along a temporal line, the temporal
harmonic energy ratio, is used as a measure of temporal periodicity at the corresponding pixel

location.
The 2-D spectral harmonic peak detection algorithm described in Section 3.3.3 is adapted here

for use on 1-D signals. Given the signal along a temporal line, it is first zero-meaned and Gaussian
tapered, then its power spectral values are computed using a fast Fourier transform. To locate the

harmonic peaks, local maxima of the spectrum values (excluding values below 10% of the value

range in the data cube) are found by searching a size 7 neighborhood of each frequency sample.

These local maxima provide candidate locations of harmonic peaks. A local maximum marks the

location of a harmonic peak only when its spectral frequency is either a fundamental or a harmonic.

The definitions of the fundamental and the harmonic frequencies are similar to the ones given in

Section 3.3.3. A tolerance of one sample point is used in the frequency matching. Note that multiple
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(a) (b)

Figure 6-4: (a) Averaged XY image of the aligned Walker sequence after background removal. The

area of interest is clearly shown. (b) Aligned and cropped Walker sequence with splits near the

center of the frames to show the inside of the data cube.

fundamental frequencies can exist on a temporal line.

Due to the nature of the natural temporal signal and the windowing effect in spectra computa-

tion, a harmonic peak usually does not appear as a single impulse. Therefore the procedure so far

only provides the central frequency location of each peak. The support of a peak is determined by

growing outward from the central frequency location along the frequency axis until the spectrum

value is below certain small value (5% of the spectrum value range in this work). After the har-

monic peaks are identified, it is straightforward to compute the harmonic energy ratio associated

with each fundamental frequency and its harmonics on the temporal line.

One may argue that the technique discussed above will fail when a temporal line contains only

a sinusoidal signal that produces a single spectral peak. Theoretically, this is correct. However,
this situation is highly unlikely to ever occur in image sequences of natural scenes and objects. The

explanation to this traces back to the formation of the signal on a temporal line. Since a temporal

line corresponds to a particular pixel in the image plane, having a pattern moving across the pixel is

equivalent to having the pixel scanning across the pattern. When will this scan create a sinusoidal

signal? The answer is only when the pattern has a sinusoidal profile. (An example is to translate

horizontally a vertical sine grating pattern frontoparallel to the camera at a constant speed. See

also Figure 3-3.) However, natural edges, patterns, and surfaces hardly ever have such a profile.

Therefore, it is safe to say that higher harmonics will usually accompany the fundamentals in the

Fourier spectra of the signals along the temporal lines.

Applying the peak detection procedure to all temporal lines in a data cube, the periodicity

template of the aligned sequence is built by registering the fundamental frequencies and the

corresponding values of temporal harmonic energy ratio at each pixel location in an data structure

array of frame size. At places where no periodicity is involved, the corresponding values in the

template data structure remain zero. Under circumstances such as a noisy background, some
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(al) (a2)

(bl) (b2)

(c1) (c2)

Figure 6-5: Temporal lines and their normalized power spectra. (al) and (b1) show the head
level and ankle level XT slices that are the aligned and cropped version of the two XT slices in
Figure 6-2. Every column in the images is a temporal line. Each column in (a2) and (b2) is the

1-D power spectra of the corresponding column in (al) and (b1). (ci) and (c2) give the details of

the signal along the white vertical lines in (bi) and (b2). While the head level slice in (al) shows

no harmonicity, the periodicity of the moving ankles in (bi) is reflected by the spectral harmonic

peaks, shown clearly in (c2).
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(a) (b)

Figure 6-6: (a) Temporal harmonic energy ratio values of the aligned Walker sequence of Figure 6-4
(b). High value indicates more harmonic energy at the location. As expected, the brightest region
is the wedge shape created by the walking legs. The head, the shoulder, and the outline of the
backpack are shown because the walker bounces. The hands appear at the front of the body since
in most parts of the sequence the walker was fixing his gloves and moving his hands in a rather
periodic manner. Note that the moving background and parts of the walker do not appear in the
template since there is no periodicity present in those areas. (b) Using the periodicity template
and the alignment indices to mask the original sequence. The four frames in Figure 6-1 are masked
and stacked together into one frame.

speckle noise may appear in the template. Simple morphological closing and opening operations
can be applied to the template to remove the speckles.

Figure 6-6 (a) shows the temporal harmonic energy ratio values of the Walker sequence after
one closing and one opening operation with a 3 pixel diameter circular structuring element. The
larger the energy ratio value, the more harmonic energy at the location. As expected, the brightest
region is the wedge shape created by the walking legs. The head, the shoulder, and the outline of
the backpack are shown because the walker bounces. The hands appear at the front of the body
since in most parts of the sequence the walker was fixing his gloves and moving his hands in a
rather periodic manner. Note that the moving background and parts of the walker do not appear
in the template since there is no periodicity present in those areas.

Since the non-periodic activities of the background do not light up in the templates, it is clear
that the sequence cropping applied earlier in the second stage does not effect the processing results,
but only increases the computational efficiency.

Using the alignment indices generated at the first stage, the periodicity template can be applied
to the original sequence to mask the regions of periodicity in each frame. The masked frames
corresponding to the ones in Figure 6-1 are stacked together and shown in Figure 6-6 (b).
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6.5 Examples

In addition to the Walker sequence, four more example sequences are used here to demonstrate
the effectiveness of the proposed algorithm: Trio, Dog, Wheels, and Jumping Jack. The Walker
and Trio sequences were recorded by a hand-held consumer-grade camcorder during a snow storm.
Camera drift and the influence of breathing of the cameraman are visible in the sequences. The
Dog and Wheels sequences were taken by the same camera, but set on a tripod. The Jumping Jack
sequence was recorded by a fixed Betacam camera in an indoor setting. Except for the Jumping
Jack, none of the subjects in the sequences was aware of the filming; hence the activities are natural
and exhibit natural irregularities. All original sequences have 320 by 240 frame size.

These examples are used to demonstrate 1) the effectiveness of the new algorithm in finding
and characterizing periodicity in various settings; 2) the robustness of the algorithm under noisy
conditions; and 3) the noise sensitivity of optical flow based estimation methods, which have been
used for trajectory detection in many existing works, and avoided by the method proposed here.

6.5.1 Trio

Trio is a 156 frame sequence of three people walking and passing each other. Frames 40, 61, and
88 of the sequence are shown in the left column of Figure 6-7.

As in the Walker example, a temporal median filter is used to extract the background. After
the background is largely removed from the sequence, the averaged XT image is computed. The
lines in the XT image are then detected via Hough transform. Figure 6-8 shows the averaged XT
image and the lines detected from the image. The detected lines provide the alignment indices of
each objects. Note that the alignment indices of all three objects are estimated simultaneously by
the proposed algorithm.

Next, as in the Walker example, the original sequence is aligned and cropped for each of the
three moving individuals. All aligned sequences contain 64 frames. Then the aligned sequences
go though the process of power spectrum estimation and harmonic peak detection. Finally, the
temporal harmonic energy ratio at each pixel location is computed to generate the periodicity
templates. Figure 6-9 shows example frames of the aligned sequences and the harmonic energy
ratio values of the corresponding periodicity templates. Again, the goal here is not to segment out
the walking person, but to detect and characterize regions of periodicity, such as the legs, the arms,
the outline of the bouncing heads and shoulders, and even the dangling straps of the backpack.
Finally, the templates are used to mask the original sequence. Examples of masked sequence are
shown in the right column of Figure 6-7.

Notice that, besides the center person, there is a second or even a third person passing through
in all three aligned sequences. However, their appearance has no effect on the result of periodicity
detection. This is because, to any individual temporal line, these passersby are one-time event
and do not contribute to the temporal harmonic energy of the temporal line. The Trio example
demonstrates that the proposed algorithm is well suited for the detection of multiple periodicities,
even under the circumstances of temporary object occlusion.

6.5.2 Dog

Dog is a 104 frame sequence, in which a person walks with two dogs in front of a picket fence.
Figure 6-10 (a) shows the 13th frame of the 64-frame aligned sequence. Images (b1) and (b2) show
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Frame 40 Masked frame 40

Frame 61 Masked frame 61

Frame 88 Masked frame 88

Figure 6-7: Three pairs of original and masked frames of sequence Trio. Left column: originals,
where three people are walking and passing each other. Right row: frames in the left column are
masked by the periodicity templates of three individuals. Again, the goal here is not to segment out
the walking person, but to detect and characterize regions of periodicity, such as the legs, the arms,
the outline of the bouncing heads and shoulders, and even the dangling straps of the backpack.
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(a) (b)

Figure 6-8: (a) Averaged XT image of the Trio sequence after background removal. (b) Lines found
in (a) by using the Hough transform method.

the first and the second fundamental frequencies in the periodicity template, while (ci) and (c2)
contain the corresponding harmonic energy ratios. Note that there are double fundamentals at
many pixel locations.

The complication here is the picket fence. In the original sequence, the fence is part of the
fixed background, exhibiting only spatial periodicity. However, when the sequence is aligned to the
person, the fence starts to move in the background, leaving periodic signature on many temporal
lines. As shown in (b1) and (ci), the fence area lights up in the periodicity template.

Figure 6-10 (b3) shows the fundamentals with value near 0.8757r, which is the temporal frequency
of the fence in the aligned sequence. The frequency values can be used to extract the fence. Figure 6-
10 (c3) shows the harmonic energy ratios in the template after the fence frequency is taken out.
Figure 6-10 (d) shows frame 46 of the original Dog sequence. Images (e) is (d) masked to show the
fence region, and image (f) is (d) masked to show other regions of periodicity.

6.5.3 Wheels

The examples shown so far all involve walking. However, the algorithm is not limited to periodicity
caused by human activities, but works in general for any periodic spatiotemporal phenomenon.

Wheels is a 64 frame sequence of a car passing by a building. Near the top of the building,
two spinning wheels are connected by a figure 8 belt. Periodicity occurs at the car hub caps and
the spinning wheels. One side of the figure 8 belt is patterned and appears periodic. Every region
with periodicity is expected to be captured : the hub caps, the wheels, and one side of the belt. As
shown in Figure 6-11, the algorithm accomplishes just that.

6.5.4 Jumping Jack

In the Jumping Jack sequence, there is no translatory motion involved and most part of the back-
ground is very smooth. This sequence and the noisy versions of it are used to demonstrate the
robustness of the new algorithm under noisy conditions and also to show the sensitivity of the
optical flow based motion estimation to noise. There are three different kinds of input given to
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Figure 6-9: Example frames of the aligned sequences and the harmonic energy ratio values of the
corresponding periodicity templates for each individual of the Trio sequence. Two left columns:
example frames. Right column: harmonic energy ratios.
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(b1) (b2) (b3)

(c1) (c2) (c3)

(d) (e) (f)

Figure 6-10: The Dog sequence. (a) Frame 13 of the 64-frame aligned sequence. (bl) and (b2):
first and second fundamental frequencies in periodicity template. (b3) Fundamentals with value
near the temporal frequency of the fence. The frequency values can be used to extract the fence.
(ci) and (c2): harmonic energy ratios in the template, corresponding to the frequencies in (b1)
and (b2). (c3) Harmonic energy ratios in the template after the fence frequency is taken out. (d)
Frame 46 of the original sequence. (e) Frame in (d) masked to show fence region. (f) Frame in (d)
masked to show other regions of periodicity.
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Figure 6-11: Sequence Wheels contains a car passing by a building. Near the top of the building,
two spinning wheels are connected by a figure 8 belt. Periodicity occurs at the car hub caps and
the spinning wheels. One side of the figure 8 belt is patterned and appears periodic. Only the hub
caps, the wheels, and one side of the belt should be captured. As shown in the first three rows,
the algorithm accomplishes just that. The original and the masked frames shown are frames 6, 24,
and 45. Details of the spinning wheels and the car are shown in the bottom row.
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(a) (b)

Figure 6-12: Optical flow estimates of the Jumping Jack sequences: (a) from original sequence;
(b) from sequence corrupted by AGWN with variance 100; (c) from sequence corrupted by AGWN
with variance 400. Top row: frame 61 of the Jumping Jack sequences. Bottom row: corresponding
optical flow magnitudes. Under noisy conditions, the flow-based algorithm is mostly ineffective.

the algorithm: the original sequence and the sequences corrupted by additive Gaussian white noise
(AGWN) with variance 100 and 400. The length of the sequences used in power spectrum estima-
tion is increased to 128 due to the cycle of the jumping motion. The input sequences have frame
size 155 by 170.

Most related work uses flow based methods to extract spatiotemporal surfaces or curves to
locate the moving objects in a sequence. However, as demonstrated in Figure 6-12, the noise
sensitivity of the flow based method can be a drawback in real applications. The optical flow
magnitudes are estimated here by using the hierarchical least-squares algorithm [92] which is based
on a gradient approach described in [11][621. This algorithm is representative of the existing optical
flow estimation techniques.

In Figure 6-12, frame 61 of the original and the two white-noise corrupted Jumping Jack se-
quences are shown in the top row, and the corresponding optical flow magnitudes in the bottom
row. When given a clean input such as the original Jumping Jack sequence, the flow magnitudes
can be used to segment out the moving object. However, under the noisy conditions, the algorithm
is mostly ineffective.

Figure 6-13 shows the processing results produced by the proposed algorithm. Again, frame 61
of the original and the two white-noise corrupted Jumping Jack sequences are shown in the top
row. The second row in Figure 6-13 is the 57th TY (not YT!) image of each sequence. It shows
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AGWN Var=100 AGWN Var=400

Figure 6-13: Processing results of the Jumping Jack sequences. Left column: from original sequence.
Middle column: from sequence corrupted by AGWN with variance 100. Right column: from
sequence corrupted by AGWN with variance 400. Row 1: frame 61 of the Jumping Jack sequences.
Row 2: TY slice 57, showing the tracks left by the right hand and leg; each row of these images is a
temporal line. Row 3: temporal line power spectra of TY slice 57. Row 4: harmonic energy ratios
of periodicity templates. The proposed algorithm is robust in the presence of noise. As shown in
Row 4, although the noise causes some degradation in the arm regions, other areas of the templates
are well preserved.

Original
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(a) (b)

Figure 6-14: Harmonic energy ratios of the periodicity templates of the Walker sequence: (a) from
original sequence; (b) with AGWN of variance 100; (c) with AGWN of variance 400. The proposed
algorithm is robust in the presence of noise.

the tracks left by the right hand and leg. The rows in these images are temporal lines and the
corresponding power spectra are shown in the third row of the figure. The harmonic energy ratio

values of the periodicity templates can be found in the last row of the figure. Although the noise
causes some degradation in the arm regions, other areas of the templates are well preserved.

The reason why the proposed algorithm is robust in the presence of certain amounts of white
noise is that white noise only contributes to the relatively smooth indeterministic component of

the power spectrum. As long as the noise energy is not so high that it overwhelms the spectral
harmonic peaks, the algorithm works.

6.5.5 Walker

The detection results of the Walker sequence are mostly shown in Section 6.4. Presented here are
the results from noisy inputs. Additive Gaussian white noise of variance 100 and 400 was used to
corrupt the original sequence. The length of the aligned sequences for power spectrum estimation
is 64. The resulting harmonic energy ratios of the periodicity templates in Figure 6-14 show clearly
that, unlike optical-flow based methods, the proposed algorithm is robust in the presence of noise.

6.6 Discussion

6.6.1 Algorithm

Compared to the one used in [78], the periodicity measure proposed here in the form of the temporal
harmonic energy ratio is a more accurate and more reliable measure of signal periodicity. It not
only can indicate the presence of periodic activities, but also gives a quantitative measure of how
much energy at each pixel location is contributed by the periodicity.
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The fundamental frequencies of the temporal signals are extracted and registered to the peri-
odicity templates. Using this information, areas involved in periodic activities with different cycles
can be distinguished easily. This is demonstrated in the example of a person walking in front of a
picket fence.

The proposed algorithm can also be considered as a periodicity "filter". At first, all moving
objects are targets for foveating, but then only the ones exhibiting periodic behavior remain. Given
an input sequence of a street with cars and pedestrians, the algorithm will find the moving legs
of the pedestrians and filter out the cars and other non-periodic activities. Since periodicity is a
salient feature to human visual perception, the proposed algorithm provides a model of low-level
periodicity perception, even though it may not work exactly like the human visual system.

Existing related work often uses flow based methods to extract the trajectories of moving objects.
Since flow based methods can be susceptible to noise, foveating by frame alignment is used here
instead to focus on individual objects. This approach not only improves the performance of the
algorithm in the presence of noise, but also is efficient in that it generates alignment parameters of
all moving objects simultaneously.

The method introduced here is computationally efficient. The most machine intensive part of
the algorithm is the 1-D fast Fourier transform used in power spectrum computation. However,
when the activity cycle is reasonably short, such as walking in normal speed, a sequence length of
64 frames suffices. Cropping of aligned sequences also helps to speed up the processing.

In the current work, a few assumptions are made on the data. The steady background condition
in the translatory moving object case is mainly for the background subtraction. The algorithm
actually tolerates small camera movement quite well. When an object is not moving in a translatory
manner with respect to the camera, its trajectory will not be linear in the data cube and a scheme
more sophisticated than the Hough line detection will have to be used for the frame alignment. If
the object is not moving frontoparallel to the camera, the perspective effect will change the size
of the object in the sequence. However, this change should not be significant during the period of

64 frames when the distance between the camera and the object is sufficiently large. In practical
situations, this is often the case.

6.6.2 Applications

Among other possible applications, the proposed algorithm can be applied to motion classification
and recognition. In [14], the shape of the active region in a sequence was used for activity recogni-
tion. In [77], the sum of the flow magnitudes in tessellated frame areas of periodic motion were used
as feature vectors for motion classification. The periodicity templates produced by the algorithm
introduced here can provide not only distinct shapes of regions of periodic motion, such as the
wedge for the walking motion and the snow angle for the jumping jack, but also accurate pixel-

level description of a periodic action in the form of temporal harmonic energy ratio and motion

fundamental frequencies.
The characterization of periodicity is also important to video database related applications.

The presence, position, strength, and frequency information of periodic activities can be used for

video representation and retrieval.
In general, periodicity is a salient attention-getting feature. The proposed algorithm can be

used in numerous surveillance applications for detecting ambulatory activity without having to do

full-person recognition.
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6.7 Summary

A new algorithm for finding periodicity in space and time is presented. The algorithm consists
of two main parts: 1) foveating, or frame alignment, which transforms data into a form in which
periodicity can be easily detected and measured; 2) Fourier spectral harmonic peak detection and
energy computation to identify regions of periodicity and measure its strength. This method allows
the detection, segmentation, and characterization of spatiotemporal periodicity to be accomplished
simultaneously, and is computationally efficient. The effectiveness of the technique and its robust-
ness to noise over optical-flow based methods are demonstrated using real-world video examples.

The use of periodicity templates for characterizing spatiotemporal periodicity is proposed. The
templates contain information such as the fundamental frequencies and the temporal harmonic
energy ratio at each frame pixel location. The periodicity templates and the template generating
algorithm are useful tools for applications such as action recognition, video databases, and video
surveillance.



Chapter 7

Conclusions

This work has established Wold-based texture modeling as an important method for a wide range
of applications that benefit from efficient and effective characterization of textural information.
This was achieved by bridging the gap between the Wold random process decomposition theory

and practical texture modeling. Applications demonstrated in this work include image and video
analysis, representation, understanding, and similarity comparison.

* A new spectral 2-D Wold decomposition algorithm for homogeneous or near homogeneous
random fields was presented. This algorithm detects the Fourier spectral harmonic and

evanescent frequencies of a textured image and decomposes the image by extracting these

frequency components from the image spectrum. The harmonic frequencies are identified by
using the fundamental-harmonic relationship among spectral peaks, while the evanescent fre-

quencies are detected via Hough transformation. Compared to the prior Wold decomposition
methods, this fully automated algorithm is more robust and flexible for a large variety of
natural textures, and is also computationally efficient.

* A psychophysical study was conducted to investigate the perceptual property of Wold-based

texture modeling. A highly significant correlation was found between the human and com-
puter texture ranking data, suggesting that the component energy resulting from the 2-D
Wold decomposition of an image is a good computational measure for the most salient di-
mension of human texture perception, the dimension of repetitiveness vs. randomness. The

highly significant concordance of the human rankings also verifies that the top perceptual

dimension indeed corresponds to certain underlying criteria, upon which the human subjects

agree, for texture similarity measurement.

* A Wold-based shift, rotation, and scale invariant texture model was developed and presented.

The structure of the model reflects the correspondence between the perceptual properties of

the Wold components and the properties of human texture perception. The model features are

extracted without explicitly performing a Wold decomposition. By modeling the structured

and relatively unstructured texture components separately, the model overcomes the common

deficiency of purely statistical models in characterizing structured patterns. This model is

designed to tolerate a variety of inhomogeneities in natural data, making it suitable for use

in large collections of natural patterns.
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* For model perspective invariance, a linear system characterization of image perspective trans-
formation and its decomposition into affine and chirp transformations were presented. The
relation between geometric and spectral descriptions of perspective transformation was for-
mulated to form a basis for future algorithms to infer image perspective parameters from a
single sample of harmonic texture data.

* Based on the new texture model, an image retrieval algorithm was developed for textured
image databases. Different types of image features were aggregated for similarity comparison
by using a Bayesian probabilistic approach. Compared to other well-known models, the Wold
model appears to offer perceptually more satisfying results in the image retrieval experiments
while matching or surpassing the best recognition performance of state-of-the-art texture
models.

* A K-means-based image segmentation method was presented to demonstrate the use of Wold-
based modeling in characterizing textured regions in natural scene images. The Wold feature
sets constructed for these regions can be used subsequently in image content description.

* Based on the principle of 1-D Wold decomposition, a new algorithm was developed to model
temporal textures for image sequence analysis. The algorithm first performs foveating via
frame alignment and then identifies spatiotemporal regions exhibiting periodicity. This com-
putationally efficient method allows the detection, segmentation, and characterization of pe-
riodic motion to be accomplished simultaneously. Compared to commonly used flow-based
techniques, this method is more robust in the presence of noise. The effectiveness of the
algorithm has been demonstrated on a variety of complex natural scene videos with multiple
motions.

* The use of periodicity templates was proposed for characterizing periodicity in space and
time. The information carried by the templates not only indicates the presence and position
of signal periodicity, but also gives an accurate quantitative measure of how much energy at
each frame pixel location is contributed by the periodicity. The periodicity templates and the
template-generating algorithm provide useful tools for detecting and representing periodicity
in applications such as action recognition, video database retrieval, and video surveillance.
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Chapter 8

Future Research Suggestions

8.1 Model Perceptual Property

The perceptual property of the Wold models can be further studied in an image similarity compari-
son experiment using human subjects. Instead of ordering a set of image samples along an abstract
perceptual dimension, the samples can be ordered by their similarities to a prototype image. The
correlation between the human and the computer ordering data can indicate how well the Wold
models correspond to the human perception of image similarity.

8.2 Retrieval Algorithm

When the homogeneity condition of the data permits, the image retrieval algorithm presented in
Chapter 3 can be improved by using the actual decomposition of database images. Image decom-
position should improve at least two aspects of the system. First, the MRSAR can have a better
fit to the indeterministic component in data and therefore be more effective in comparing image
similarity. Second, a better feature aggregation can be achieved by using the image deterministic
energy ratio instead of the autocovariance energy ratio. It has been demonstrated in Chapter 4
that the deterministic energy ratio is a good measure of image harmonicity.

8.3 Model Performance Evaluation

In Chapter 3, the performance of the retrieval algorithms was evaluated by using the averaged
recognition rate criterion. However, the image classes used in the computation are defined by the
origin of the images in the Brodatz album, not by visual similarities. Since the album contains
many inhomogeneous images, the class definitions are not always appropriate. In addition, the
texture variety in the album is limited. Establishing the "ground truth" of the image perceptual
classes for a larger and more diverse texture collection by using human subjects should notably
improve the quality of the performance evaluation.
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8.4 Temporal Textures

In Chapter 6, the periodicity templates and the template-generating algorithm are proposed as
general tools for detecting and charactering periodicity in the spatiotemporal domain. As discussed
in Section 6.6.2, there are many potential applications of these tools. Such applications include
real-time action recognition, video database retrieval, automated video surveillance, just to name
a few.



Appendix A

Derivations in Spectral
Decomposition

A.1 Fundamental Frequency Refinement

Equation (3.9) can be derived as follows. From

j-1

i=O
j=1 j-1

i=O

i=O

f=3f- 1±+Af 3,
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A.2 Gaussian Surface f and ED Estimation

For N independent, identically distributed (i.i.d.) Gaussian samples xi, i = 1,...,
likelihood estimates of the mean x and the covariance matrix Ex are [23] 1

N 

i=1

N, the maximum

= I (x -)(x -i)T.
E =1

Given that N(k,l) i.i.d. 2-D Gaussian random samples f=(k,l) are observed at each (k,l) E D,
the maximum likelihood estimates of the mean f and covariance matrix Ef are

E4- > f N1  (A.1)
feD

1
EX = (f f)(f f)T Nf,

feD
(A.2)

where f = (k, l) = [ k l ]T and Nt = Z' N(k,l). From (A.1),
(k,l) ET

( kN(k,l),
(k,l)ED

From (A.2),

f = I I
feD

fev

= ( ff TN5

feD

= 1 5ffTN5

fED

fN )1 1
NtfEv

ta T

Nt 1:fN )
fED

( N5 1
fED

- ffT - ffT + ffT

- ffT

'The maximum likelihood estimate of the covariance matrix Ex is biased. An unbiased estimate for Ex is the
sample covariance matrix

N

Ex = N-I Z(X 1:)(X, jx)T.

However, when N is large, which is the case here, the two estimates are virtually identical.

and

I lN(k,l)
(k,l)ED

= (k, l ).

(ffT - ffT - ffT + ?jiT) N5
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N k2 N(k,l) -
(kl)ED

N4- > k1 N(k,l) -
N (k,l)ED

k2  + T kl Nk,l) - kI
t (k,l)ED

S N1 ( 2 N (,) - t2
Nt(k,l)ED

2~kk
2
1lk

A.3 Gaussian Surface Magnitude Estimation

After parameters f and Ef are estimated, the squared Gaussian surface fitting error is

E2= ( [|Y(k,l)|-- Mg,(k,l)]2,
(k,l)ED

with a single variable M,. Taking the derivative of E2 w.r.t. M, and setting it to zero,

d e2
M = -2 ( gs(k,l)[\Y(k,l)|-Msg s(k,l)]= 0

dMs (k,l)Efl

L gs(k,l)|Y(k,l)|=M,
(k,l)Efl

S g2(k,l)
(k,l)ED

E g(k,1)|Y(k,1)|
(k,l)6D

E g2(k,l)
(k,l) EV

The last equation is (3.19).
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Appendix B

Instruction Sheet Used in Human
Experiment

Instructions

On the table in front of you, you will find twenty texture images and two sets of adjectives at
either end of a board.

Your task is, according to the visual properties of the textures, to order the twenty test
images in one line between the two sets of adjectives.

The left-most image in your ordering should be the most repetitive, non-random, directional,
regular, locally oriented, and uniform; the right-most one should be the most non-repetitive, ran-
dom, non-directional, irregular, non-oriented, and non-uniform; and the images you place toward

the center may contain elements of both sets of properties.
Please ignore the differences in image brightness, and pattern element size.
Please try not to order the images by their common names, such as grass, or bricks; use only

their visual properties.
There is no time limit for completing the task.
While you are waiting for your turn, please do not observe other subjects' ordering.

Thank you.
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Appendix C

Estimation Algorithms for Image

Database Retrieval

C.1 EM Procedure for Harmonic Confidence Measure

The autocovariance energy ratios of the Brodatz database images have a bi-modal distribution,
which is modeled here as two Gaussian distributions. Denote the energy ratios as {X}, n =

1, ... , N. The conditional density functions of the Gaussian classes, wim, m = 1, 2, are

P(XnI Wm) = V277 e 2M

The initial values of the means pm, the variances om, and the prior probabilities P(wm), m 1, 2,
are estimated via the K-means clustering of {xn}.

The main steps of the EM procedure are as follows [13]:

E-step:
1 -(""""'

P(W Xn) =P(XnIWm)P(Wm) Om e M (W)

p(Xw)P(w 1 2a
j -e P(w,-j)
j=1 of

M-step:
N

E Xn P(WmilXn)
n=1

pm = N

E P(wmlXn)
n=1

N

E (X - pLm) 2 P(wmIXn)
2  n=1
im N

E P(WmXn)
n=1
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Figure C-1: Second-order SAR model neighborhood D,. The center is the current site s = (s1,S 2 ).

N N

E P(WmIXn) Z P(WmIXn)
P(Wm) n=1 _ n=1

2 N N
E E P(lmIXn)
j=1 n=1

The procedure terminates if the absolute change of the log-likelihood

N 2

In { p(xlwm)P(m)}
n=1 m=1

after an EM iteration is lower than a threshold value (0.001 is used in this work).

C.2 Least-squares Estimation of SAR Model Parameters

C.2.1 Estimating SAR Model Parameters

Simultaneous autoregressive models characterize the interaction among neighboring image pixels as
a random field linear prediction problem. Given a zero-mean random field {y(s)}, s = (s 1 , 8 2) E P
(region D is defined by (3.1)), a second-order symmetric SAR model can be expressed as

y(s)= 3 (r) y(s + r)+ e(s), (C.1)

where region D,, as shown in Figure C-1, is the 8-pixel neighborhood of sample site s, parameters
0(r) = 0(-r), r E D, are the SAR coefficients, and prediction errors E(s), s E D, are independent
and zero-mean random variables with variance o-.

At any given sample location, the SAR model coefficients can be estimated by using the least-
squares estimation (LSE) method within an estimation window D, E D, which typically puts the
given sample at the center. The window size is usually determined empirically. In this work, 21 x 21
windows are used.

-1,-i -1,0 -1, 1

0,- x 0,1

1,-1 1,0 1, 1



C.2. LEAST-SQUARES ESTIMATION OF SAR MODEL PARAMETERS

Now, consider a particular estimation window D. Let y1(s), - - -, yp(s) denote the sample values
in neighborhood D, of sample site s E D, and 01, - p -, the corresponding SAR coefficients (p = 8
for second-order SAR models). Then

4,s) = y(s) - Zoiyi(s),
i=1

S E DC

is the prediction error for y(s). Assuming that there are P samples in Dw, let

(1)
E(2)

E(P)

y
y(2)

y(P)

and

Y = [y(1) y( 2 )

Then

yW) =

Y1 (1)
Y2(1)

y,(1)

Yi(2)
Y2 (2)

yp (2)

y1(s)
Y2(s)

Yp(S)

... y1(P)

... y 2 (P)

... y,(P)

E = y - yTO,

and the sum of squared errors is

ETE - E ( )2 =YTy - 2yTYTE + ETyyTE.
sFDw

The sum of squared errors can be minimized by solving equation

d
(ETCE ) = 0.dE)

This results in the normal equation

or,

sEDw

yyTe = Yy,

y(s)y T(s)e E y(s)y(s).
sE~w

The SAR coefficient estimates 01,- ,, are obtained by solving this set of linear equations.

The variance o-. of the prediction error E(s) is estimated by using the estimated SAR model

coefficients:
- ys)- $AyIs)1
"2 P >3 [Y(S) _ b'YI\)

sEDw

where 6T = 1 2 -. - p - -
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Figure C-2: Second-order MRSAR model neighborhood definitions. Pixel locations labeled as dl,
= 1, 2, 3, are the neighbors of the center pixel at the l-th resolution level.

C.2.2 Multiresolution SAR Modeling

Multiresolution image modeling usually involves filtering and subsampling. However, subsampling
sharply reduces the number of available pixels at each scale level. Small number of pixels can be
problematic for estimating SAR parameters via the LSE method. An alternative is to vary the
SAR neighborhood definitions. Shown in Figure C-2, the second-order MRSAR neighborhood at
the l-th resolution level, D., is composed of sample sites dl.

At each resolution level, four SAR coefficients and the prediction error standard deviation are
estimated for every other pixel of an image. For a particular pixel, parameters from different
resolution levels are concatenated into one feature vector. The average of these vectors and their
covariance matrix form the MRSAR feature set for the image.

d3 d3  d3

d2 d2 d2

d1  d1  d1

d3  d2  d1  d1  d2  d3
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Appendix D

Decomposition of Perspective
Transformation

D.1 Perspective Projection

As illustrated in Figure D-1, three reference frames are used in analyzing the perspective projection
of a three-dimensional (3-D) scene onto a two-dimensional image plane in a pinhole camera: the

camera frame X-Y-Z, the image frame x-y, and the surface frame s-t-n.
The origin 0 of the camera frame is at the projection center (the pinhole), and the Z axis

coincides with the camera optical axis. The origin o of the image frame is the intersection of the Z

axis and the image plane, with distance d from 0. Axes x and y are parallel to the axes X and Y,
respectively.

For a locally planar surface in the 3-D scene, the surface coordinate frame s-t-n can be con-
structed by using a surface point M = (Xm, Yin, Zm) as the origin and making the n axis parallel
to the surface normal. Denote the 3-D surface as Z(X, Y), and

OZ(X, Y) OZ(X, Y)

The surface normal can be expressed as

1
n= - (-p, -q, 1) (D.1)

r

with r = Vp2 + q2 + 1. The directions of the s and t axes are chosen such that, when the s-t-n

frame is rotated around the unit vector

- q p+q

to a position where the n axis is parallel to the Z axis, the s and I axes are parallel to the X and

Y axes, respectively. The image of the surface point M is m = (xzm, ymn).
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Figure D-1: Reference frames for the perspective projection in a pinhole camera. Camera frame
X-Y-Z has origin 0 at the projection center and axis Z coinciding with the optical axis. Image
frame x-y has origin o at the intersection of the Z axis and the image plane, with distance d from
0. Axes x and y are parallel to the axes X and Y, respectively. Surface frame s-t-n has origin at
surface point M = (Xm, Yin, Zm) and axis n is parallel to the surface normal.

For a point in the 3-D scene, its surface coordinates (s, t, n) and its camera coordinates (X, Y, Z)
are related by a 4 x 4 homogeneous transformation matrix T:

where

T=4 1
=-

S

=T t
n

p 2+rq2

p2+ q2

pq(1 - r)

p 2+q 2

p

(D.2)

pq(1 - r) p rX,
p2 + q2

rp2 + q2
P 2+ q2 ~

q 1 rZm

0 0 r

(D.3)
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A point on the locally planar surface has coordinates (s, t, 0). Applying the transformation
matrix T, the corresponding coordinates of the point in the camera frame are

X = 111S + t1 2 1+ Xm

Y = t21s + t 2 2 t+ Ym (D.4)

Z = 1318 + 132 t + Z,

Under perspective, the point is projected to the image plane at

d 111S + t 1 2 1+ Xm
x =-X =d

Z t318 + t321 + Zm

d t21S + t 2 21 + Ym
y = -Y = d

Z 1318 + t3 2 t+ Zm

(D.5)

Rewrite (D.5) using vector and matrix notations,

As+b
x = CTS +1

a11s + a 12 t + b1

cis + c2t + 1

a21s + a22 t + b2

cis + c21 + 1

(D.6)

wheres =[s t]T, x=[ x y ]T, and

anl
a21

a12
a22

412
t22

Xm

Ym

c - C 2

(D.7)

(D.8)

(D.9)t31
t32

Physically, matrix A represents image rotation, scaling, and
c chirping.

skew, vector b translation, and vector

D.2 Coordinate Transformations

D.2.1 Perspective Transformation

Denote the planar pattern on the 3-D surface as f(s, t), and the perspective image of this pattern
taken by the pinhole camera as f,(x, y). By Equation (D.6), a surface point (s, t) corresponds to a
unique point (x, y) in the image. Therefore, fp(x, y) = f(s, t) with respect to (D.6).
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Inverting Equation (D.6) yields (see Section D.5.1 for derivations)

s (A - xcT)-l(x - b)

(1 - cTA-lb)A-lx + (A-lb)(cTA-l)x - A-lb

1 - cTA-lx

APx + bP

CpTX 1

ap
12 -=(1_ -T TA-lb)A-l + (A-lb)(CTA-1)

a2 2 - c2b2
-a 21 + cib2

= -A-b =

= -A-Tc-

-a 1 2 + c2b
anl - cibi I

1 a22bi - a12b2
IAI [ -a 21 bi + an b2

1

|Al
a22c1 - a 2 1 c2

-a 1 2c1 + a11c2

and JAI = anla 22 -
Consequently,

a12a21 is the determinant of A.

fp(x, y) = f
apix + ap2y + by

cx + cy+1
al1 x + ap2 y + bj

cpx + c y+1

D.2.2 Affine Transformation

The coordinate transformation between image f(s, t) and its affine image fa(u, v) is

= As + b =

and
s = A- 1 (u - b) = Aau + b",

a 2
a12

S= -A-'b = bP

(D.10)

where

1

|AI

b=

cP =

(D.11)

(D.12)

(D.13)

(D.14)

where

ails + a12t + b1
a21s + a22t + b2

(D.15)

(D.16)

a
11A=

b" =a

a22
-a 21

-a 12
a11 I (D.17)

(D.18)
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Therefore,
fa(u, v) = f(a'iu + a"2v + b", aiU + a 2v + ba) (D.19)

D.2.3 Chirp Transformation

The chirp transformation is defined as the coordinate transformation between image fa(u, v) and

f,(x,y). Equations (D.6), (D.15), and (D.16) can be used to obtain (see Section D.5.1 for deriva-
tions)

X = CTA-lu + (1 - CTA-1b) -CpTU + ac

and

u = (I - xcT A-l) lx(1 - cTA-lb) (1 - cTA-lb) x

1 - cTA-lx

Ac x

cCTx +1

where I is a 2 x 2 identity matrix and

aC = 1 - cTA-lb = 1 - (a 22c 1 - a21 c2 )b1 - (-a 1 2c 1 + a11c 2 )b 2

AC = (1 - cT A-1b) I = ac I

CC = = -A-TC = cP

Therefore,

D.2.4 Relationship Among Three Coordinate Transformations

The basic parameters for the perspective, affine, and chirp coordinate transformations are

A = A- 1

AC = ac I = (1 - cTA-lb)I

AP= acAa + baCcT

bo = bP =-A-'b
c cP - A~Tc

The relationship of the transformations is summarized in Table D.1.

D.3 Decomposition of Perspective Transformation

D.3.1 Coordinate Transformations as Linear System Operations

The three coordinate transformations in discussion can be characterized as three linear system

operations (see Section D.5.2 for proof of linearity). Consequently, expression (D.14), (D.19), and
(D.25) are the output of the corresponding systems.

(D.20)

(D.21)

(D.22)

(D.23)

(D.24)

(D.25)

(D.26)
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Table D.1: Parameters of perspective, affine, and chirp transformations.

Given an input f(x, y) to a general linear system, the output can be written as

+00

g(x, y) = J h(x, y; s, t) f(s, t) ds dt (D.27)

where h(x, y; s, t) is the system impulse response. Hence, Equations (D.14), (D.19), and (D.25) can
be written as

f,(x, y) = ffh,(x, y; s, t) f(s, t) ds dt

+00

fa(U, V) = ha(u, v; s, t) f(st) ds dt
-00

+00

f,(x, y) = hc(x, Y; u, v) fa(uv) du dv
-00

(D.28)

(D.29)

(D.30)

where

h,(x, y; s, t) =
apix + ap2y+ bp

Clx + cPy + 1
a21 + a22y + bp
c" x + cx y + 1

ha(U, v; s, t) = 6 (aiiU + af2 v + ba - s, aiU + a"a2 v+ b - t)

hC(x, y; u, v) =
ac z

2Y +(cix +acxy+1 S7 acy
ciz + cly + 1

and the 6(.)'s are two-dimensional Dirac delta functions.

APPENDIX D. DECOMPOSITION OF PERSPECTIVE TRANSFORMATION

Perspective Affine Chirp

A AP - acAa+ bccT A = A- 1  AC = acI = (1 - cTA-lb)I

b bP = ba= -A-lb ba bP= -A-lb

c cP = cc - A-Tc c= c = -A-Tc

As+ b u
Coordinate cTs+1 u=As+b x= ccTu + ac

Transform APx + bP s Aa+ba U Ac x

cpTx +1 cCTx+1

(D.31)

(D.32)

(D.33)- V)



D.3. DECOMPOSITION OF PERSPECTIVE TRANSFORMATION

fa U, v)

f (S, t) Iha(U, V; s, t) hc(z, y; U, V) If,(z, Y)

h,(z, y; 8, 0)

Figure D-2: Decomposition of image perspective transformations.

D.3.2 Decomposition of Perspective Transformation

A perspective transformation can be decomposed into an affine and a chirp transformation. This
decomposition is shown as three linear systems in Figure D-2. The three system impulse responses
are related as follows (see Section D.5.3 for proof):

+oo
h y(x, y; s, ) = JJhc(x, y; u, v) ha(u, v; s, t) du dv (D.34)

D.3.3 Example of Perspective Decomposition

Figure D-3 shows an example of perspective decomposition. The top row pictures are the spatial
images f(s, t), fa(u, v), and fp(x, y), while the bottom row contains the corresponding Fourier
magnitude images IF(o, r)|, IFa(p, v)|, and |F,( , r/)|. When computing the Fourier magnitudes,
the spatial images are first zero-meaned and tapered by the Gaussian window function shown in
Figure 3-2 (b).

The spatial image f(s, t) in Figure D-3 (a) is a 2-D sinusoidal grating pattern:

f(s, t) = [1 + sin(ws + 0,)][1 + sin(wtt + 4 t)],

where the spatial frequencies ws = wt = 16 (normalized by the image size) and phases #, = #t =

-90'. The parameters used in the image transformations are p = 0.5, q = 0.2, and d = Z, = 100.
The perspective image in (c) can be obtained by applying either a perspective transformation on
the original image in (a) or a chirp transformation on the affine image in (b). The centers of the
top row images are on the Z axis of the camera frame.

Shown in the Fourier magnitude images in Figure D-3 (b) and (c), spatial affine and chirp
transformations have distinct spectral signatures. While the affine transformation gives rise to the
frequency shifts of the spectral harmonic peaks, the chirp transformation is responsible to the peak
deformation. The relationship among the Fourier transforms of the original, the affine, and the
perspective images is examined in the next section.
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(a) Original (b) Affine (c) Perspective
(Chirp on Affine)

Figure D-3: Example of perspective decomposition. Top row: spatial images f(s, t), fa(u, v), and

f,(x, y). Bottom row: corresponding Fourier magnitudes F(a, r), F(p, v), and F,( , Y). Shown in
(b) and (c), spatial affine and chirp transformations leave distinct spectral signatures.

D.4 Relationship in Frequency Domain

Define the Fourier transforms of image f(s, t), fa(u, v), and f,(x, y) as

+oo

F(u, r) = f f(s, ) e-2(as+rt) ds di

-00

+00

Fa (i, v) = if fa(u, v) e- 2r(01+vV) du dv
-00

+00

F,( , q) = if f,(x, y) e-j2r(x+7Y)dx dy
-00

(D.35)

(D.36)

(D.37)

The focus here is on deriving the expression of Fa(p, v) in terms of F(o, r), and F,(4, y) in terms
of Fa(p, v). With these expressions, it is straightforward to obtain the relationship between the
perspective pair F,(C, y) and F(a, T).
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D.4.1 Affine Transformation

For the affine pair f(s, t) and fa(u, v), it can be shown that their Fourier transforms F(o, T) and
Fa(p, v) also have an affine relationship (see Section D.5.4 for derivations):

Fa(p, v) = JAl e - 2 2r(bi+b2v)F (auip + a21v, a12p + a22v) (D.38)

By Equation (D.38), the Fourier transform of the affine image is a rotated, skewed, and phase-
shifted version of that of the original image. The frequency coordinate transformations are:

[u]=AT[1 "I- -T[O

The effect of affine transformation is demonstrated in Figure D-3 (b). Although some of the
spectral harmonic peaks are shifted, the shape of the peaks is preserved.

D.4.2 Chirp Transformation

Unlike the affine case, the chirp transformation does not preserve image homogeneity. As a con-
sequence, different areas in an image usually have different frequency content, even though the
original pattern is homogeneous. In practice, a tapering window can be used to isolate the area of
interest in the perspective image.

Centering a tapering window g(x, y) at location (xm, ymn) in the perspective image fp(x, y), the
Fourier transform of the image is

+00

F y) = f,(x, y) g(x - xm, y - ym) C2rx+ny)dz dy

+00

+oo
= Fa(a, #) Hc( , ; a, #) da dp (D.39)

-00

where

He, T; a, #) =J g(x - xm, y - ym) e c + ca,+C2+1 ) dx dy (D.40)

From Equation (D.40) and Figure D-3, it can be seen that the integration kernel Ec( , Y; a, #),
which is responsible for the spectral harmonic peak deformation, is a shift-variant function. If the
kernel He can be evaluated and expressed in a form that allows numerical modeling, it is conceivable
that the perspective parameters p and q, which define the surface normal, can be recovered from
the shape of the peak deformation. The kernel evaluation is a difficult problem, and is currently
studied in a joint effort with researchers from the Mathematics Departments of MIT and the
Harvard University.
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D.5 Derivations and Proofs

D.5.1 Coordinate Transforms

First, the derivation of (D.21). From I - xcTA-1 = (A - xcT)A- 1 ,

|I - xcTA~'I = A - xcATI
JAIl

1

= Al[ a22 - a 1 2 a 2 1 ) -

=1 - [ a22ci - a21c2

1 - cTA-x

(a 2 2c 1 - a 21 c2 )x - (-a12ci + aujc2 )y]

-a 12c 1 + a11c2 ] x

(I - xcT Al-)-lx = (I - x cPT) 1 x

=- ]c I

x1 [
|I -xcT A-11

-Ic2 x =
1 - cix1

pcl

c 2y
Cl Y

cpx
1 - c~y

-1

x

cix
1 - ci

x x
|I - xcTA-11 1 - cTA-1x

Hence, Equation (D.21).
Equation (D.10) can be obtained by bringing (D.21) into (D.16):

s = A-u - A~ 1 b - (1 cTA-lb)A-lx _ A-lb
1 - cTA-lx

(1 - cTA-lb)A-lx - A-b(1 - cTA-lx)

1 - cTA-lx

(1 - cTA-lb)A-lx + (A-1b)(cTA~1)x - A-lb

1 - cTA-lx

D.5.2 System Linearity

Proof:

Denote the affine system operator as C. Given two input signals fi(s, t) and f2(s, t), by Equa-
tion (D.19), the output signals of the system are

fai (x, y) = C {f1(s, t)} = fi (a ix + aa2y + b, a ix + a02 y + b')

fa 2 (X, y) = f 2 (s, t)} = f2 (a ix + a02 y + ba, a ax + a 2 y + b )

and
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For input a1 f1(s, t) + a2f 2(s, t), where a1 and a 2 are arbitrary constants, the output is

C {aif1(s, t) + a 2f 2 (s, t)}
= aif1 (alix + ai 2y + b, a iX + a22y + b') + a 2f 2 (a 1X + a 2 y + b, alix + a$2y + bi)

= a1 £ {f1(s, t)} + a 2 L {f 2 (S, t)}

Therefore, the system is linear. The linearity of the chirp and perspective systems can be shown
in a similar manner.

D.5.3 Relationship of Three Impulse Responses

Proof:

+00

Ifhc(x, y; u, v) ha(u, v; s, t) du dv

aczx

c1~ j+ '2

acy

c1z c2y+1

6( ai + b a a2

= 6(aliU + ai2 v + bo - s, aaiU + aa2 v+b' -t)

= 6(a,#0)

_ acy

c x+cjy+1c 2tY+1

= Aau+ b a _s
U cx1

1 - cTAb A-lb
1 - CTA-x) x -Ab-s

(1 - cTA~b)A-lx + (A-b)(cTA-)x - A~1 b
1 - cTA-1x

APx + bP

cPTx +1 s

Hence,

6(aL3)6 a(1xta 2ybi a 1 a 2 yb6( a , ~1 1)=2 i + c y + 1p
212+ 2y b

' co + cx + 1

+oo

ff
-00

- s

- V) x

h,(x, y; s, t)
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D.5.4 Fourier Transform of Affine Images

Using (D.19),

Fa(p,V) f
-oo

fa(U, v) e-j2x(Pu+vv)du dv

-+oo

e-27r(/u+vv) p0

-oo

e-j27x( au+vv)X

(S)t)6 (aa1 u+ aa2 v + ba - s, a 1 u + a 2v + ba - t) ds di du dv

[+00

f(s,t) +00 e-j2{ a[s-(aa1u+a'v+ba )]+3[t-(a1u+aa2vb; )]}da d#3) ds di du dv

+o~o - +oo

- 11 f (s, t) e- 2xr(as+flt)ds dt xif ._-oo +0o0-
-j3'2,x lpu-a(aa U+aa V+ba)+vv-,3 aa u+aa2V+ba)duv

- ..1 2 2 2) u

+00 -+00

=f F(a, #3) ej2(ba+bI) ,f (-a11 a2 -2 )v du dvj

+00

=f F(a, #) e 21(bia+6fi) 6 (t - alia - a21#, v - al2a - a220) da d#
- 00

Substituting variables as a' --alla + a21/3 and 3' = al2o+ a 2 ,

a'
o ]

=AT a] a
SA"-T

The Jacobian of this variable substitution is

Oa'
Ba

Oa

ao' -

0/3'

0#'3

a a
a a a a
a12 422

1

|Aal

+00

-f
+00

-ff

da do

da do
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Therefore,

+00

F. (p, v)= f F ( a2 a'Fa(III JIaa

1 e2r(uoh+vo v)F
|Aa|

1
T A| (aa2 bi -

- iAaIP, i2 a'+
|Aa|

_a13')
_AOf ej2r(uo'+vo3') x

-(p-av - /')da'd)'

a2 _
|Aa|

21 V
|Aa| 'I

a2

|Aa|
a V

1
vo = A (- a lba + a aba).

Using (D.26),

= A-lb = Ab"

Hence, Equation (D.38).

D.5.5 Fourier Transform of Chirp Images

Using (D.25),

+00

F,( , I) = f,(x, y) g(x - xm, y - ym) ej 2-x(Ex+y)dx dy
-o

- Xm, y - Ym) ej 2 rx+y) x

j fa(u,v)6 C acx l C ac y +

\-0 c1 + c1 +2 z+cy + 1
- V) du dv dx dy

- Xm, y - Ym) e j2x+ny) X

+0 fa(U, v) ( e (+1 "- c+)1 da di3 du dv dx dy
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= |AIIAaI

UO

VO I

1

|Aa|
a22

-a2

= A(-A-b) = -b

= AT

+00

= g(x

+00

+oo

= g(x
-00

-a51 p = A4-T
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'+0O[f fa(U, v) e-j 27r(au+Ov)du dv x

gf9(X - zm, y - ym) e c
1
2+c 2

y+1+ c 1+c2Y+1 ) dz dy da d

-00

+00

=] Fa(a,#)

- 00

g(z- Xm,y - Ym) e
,-OO

ci+c 2 +Cy+1 1 4+ciY+1 ) dx dy
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