
Inertial-Optical Motion-Estimating
Camera for Electronic Cinematography

by
Christopher James Verplaetse

B.S., Aerospace Engineering
Boston University

June 1994

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES

MASSACHUSETTS
at the

INSTITUTE OF TECHNOLOGY
June 1997

@Massachusetts Institute of Technology, 1997. All rights reserved.

Author

Program in Media Arts and Sciences
March 15, 1997

Certified by

Neil Gershenfeld
Associate Professor of Media Arts and Sciences

Program in Media Arts and Sciences
Thesis Supervisor

Accepted by

Chairperson,
Stephen A. Benton

Departmental Committee on Graduate Students
Program in Media Arts and Sciences

OFTECHNOLO.

JUN 2 3 1997

Inertial-Optical Motion-Estimating
Camera for Electronic Cinematography

by
Christopher James Verplaetse

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on March 15, 1997
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

The IOME Cam (inertial-optical motion-estimating camera) system estimates a video cam-
era's motion using both optical and inertial data. Optical, or vision-based motion estima-

tion, has a number of performance limitations based on the nature of its input: external
motions as well as pixel noise, shadows, and occlusions in the optical field cause errors. Sim-
ilarly, pure inertial motion estimation experiences errors that grow quadratically with time.

This thesis examines a system that combines the benefits of both data types and uses each

to correct for the other's errors. Motivating applications for a self-motion-estimating video

camera, such as graphical and physical modeling of a scene, are discussed. The Humming-
bird inertial navigational hardware, designed and built for this project, is also described

herein. Additionally, several related proprioceptive devices are presented.

Thesis Supervisor: Neil Gershenfeld
Title: Associate Professor of Media Arts and Sciences

This work was supported by the Things That Think and News In the Future consortia.

Inertial-Optical Motion-Estimating
Camera for Electronic Cinematography

by
Christopher James Verplaetse

The following people served as readers for this thesis:

Thesis Reader:

Walter Bender
Principal Research Scientist

Media Laboratory

Thesis Reader:

V. Michael Bove Jr.
Associate Professor of Media Technology

Program in Media Arts and Sciences

Acknowledgments

The endeavor to complete this thesis has been a long one and many kind people have helped me
along the way.

Above all, I want to extend my gratitude to my advisor and my readers for their guidance, support,
and amazing patience. I thank Neil Gershenfeld, my advisor and an inspirational person, for allowing
me to take part in his wonderful group, for his constant jet of brilliant and inquisitive ideas and his
parallel ability and will to maintain an interest in each member of his team, for his guidance and
flexibility, and for his demand for focus. Walter Bender, I thank for helping me with all aspects
of my thesis, and for giving me the opportunity to come to the Media Lab and to experience this
unique place to learn, teach, invent, and play. I thank Mike Bove for helping me understand many
aspects of the IOME Cam project: visual and inertial signals, communications systems, and electical
engineering aspects; and for helping me refocus on the realities of the project a number of times.

A good deal of friends have helped me through this project, and other trying issues, during its
tenure. Jon Orwant has been a good friend and unofficial advisor/guide around MIT; he made me
feel at home at the 'Tute and in the garden. Michelle McDonald, a gifted young woman and a good
friend, taught me how to program in X, helped me with presentations, and kept me sane and stable
through many Karman streets. Chris Turner, another invaluable colleague and good friend, helped
me with PIC programming, debugging electronics, and helped me focus on the big picture. I thank
Joshua Wachman for introducing me to the Lab and for his continued friendship and goodwill. I
thank Dave Becker for his true friendship, for making me laugh, and always inflating my spirits.
Stefan Agamanolis was the Earth's best officemate, making me laugh, keeping me sane, and helping
me out with random math and computer questions. I thank Majida Rizk for her friendship, her
patience, and for her understanding.

The folks in the Garden and on the third floor were a big part of my MIT experience and I am most
thankful for their help and comradeship. Mike Massey has been a friend and has helped me learn
about optics and the 70s. Henry Holtzman, Jon Watlington, Shawn Becker, Roger Kermode, Jeff
Noris, and Ross Yu have also helped me along the way. I thank Flavia Sparacino for helping develop
ideas about motion-base ride movies and for helping me with the title of this paper. Thanks to Erik
Trimble for his help with my thesis poster.

The people of the Physics and Media Group have given me a lot of help and support. I thank Joe
Paradiso for his friendship and for helping me learn about countless aspects of electronics. Thanks
also to Henry Chong, Matt Reynolds, Rehmi Post, Edward Boyden, Bernd Schoner, Tom Zimmer-
man, Barret Comisky, and Ara Knaian for their various help with electronics and computation; and
to Jeremy Levitan for helping with IOME Cam mechanics and machining. I thank Josh Smith for
his help with general computation and his brilliant humor and observations. I thank Rich Fletcher
for his continual interest, and for discussing applications and future research. I am hyper-thankful
for Craig Abler's help with the Hummingbird's pcb layout, which I should mention is the only
electronics layout I've ever heard of that returned from the fab house 100 percent correct in one try.

A number of other people at the Media Lab have offered me assistance and opportunities. I thank
Linda Peterson, Santina Tonneli, Susan Bottari, Lena Davis, and Felice Napolitano for their help.
Thanks to Tod Machover and Teresa Marrin for varied opportunities and help.

I want to thank Nicholas Negroponte and Jerome Weisner for envisioning and creating the MIT
Media Lab, a truly magical environment. Thanks to both Glorianna Davenport and Bran Ferren
for their guidance and interest in using IOME Cam for an array of electronic cinematographic
applications. And thanks to Walter De Brouwer and Riverland for providing the facilities and push
to finish this project.

I thank the eleemosynary men of Shfucco, Rob Passaro, B. Ellingwood, and Kazu Niimi, for their
support and friendship. I thank my family for their support, patience, and interst. I am also indebted
to Michelle Kemper for her friendship, energy, patience, and caring.

Lastly, I will always be grateful to my Mom and Dad for being supportive and interested in what
I do and for always believing in me.

11 11 -1 -- - - - , , - I 1. - - 1-1 1 -1 1 - .- I .- - - . , 10, , -- -- l" -1-1 - , , ", , - . -- - * - - I - - -1 - , - . - - , I I - I -'. - - - . - .1-1 1..--.. .1 - 11 1 - 1 11 . -

Contents

1 Introduction
1.1 Prior Art and Science .
1.2 Motivating Applications .

1.2.1 Salient Stills - 2D Modeling
1.2.2 Camera operator gesture recognition
1.2.3 3D M odeling .
1.2.4 Motion Capture and Playback

1.3 Vision-based motion estimation
1.3.1 Optical Flow .
1.3.2 Affine Modeling .
1.3.3 Perspective Projection .
1.3.4 Vision-based Errors vs. Inertial

1.4 Inertial Motion Sensing & Navigation
1.4.1 Motion-Sensing Modalities
1.4.2 Inertial .
1.4.3 Determining Position Inertially
1.4.4 Inertial errors vs. optical

2 Inertial Sensing Technologies
2.1 Accelerometer Technologies .

2.1.1 Pendulous Accelerometer
2.1.2 Piezoelectric Micromachined Pendulous Accelerometers
2.1.3 Piezoresistive Micromachined Pendulous Accelerometers
2.1.4 Capacitive Micromachined Pendulous Accelerometers .
2.1.5 Comparison of Accelerometer Technologies

2.2 Gyroscope Technologies .
2.2.1 Vibrating Gyroscopes .
2.2.2 Tuning Fork Gyroscope
2.2.3 Piezoelectric Vibrating Gyroscope
2.2.4 Other Gyroscopes .
2.2.5 Comparison of Gyroscope Technologies

2.3 IMUs and Inertial Navigation Coordinate Systems
2.3.1 Camera-referenced coordinate system

3 Design of IOME Cam

9
10
10
11
11
12
13
14
14
15
16
16
17
18
19
20
22

23
23
24
25
27
28
29
29
31
32
33
34
34
35
36

3.1 IOME Cam's IMU: The Hummingbird 38
3.2 Hummingbird's Components 39

3.2.1 Gyroscope - Murata Gyrostar . 39
3.2.2 Accelerometer - Analog Devices ADXL05 41
3.2.3 Other System Components . 44

3.3 Modulation / Demodulation Strategies . 44
3.3.1 IOME Cam's Data Characteristics 44
3.3.2 Frequency-division-multiplexing - FDM 46
3.3.3 TDM 48
3.3.4 Dem odulator . 51

3.4 Improving on the Hummingbird. 52

4 The joint motion estimator: the Kalman Filter 53
4.1 Characteristics of the Kalman Filter . 53
4.2 Filter Iteration and Propagation . 55
4.3 Controlling Errors with the Kalman Filter 56
4.4 IOME Cam's System Model and State Space 57
4.5 System Update . 59
4.6 Observables . 60
4.7 Modeling System Noise and Uncertainties 60

4.7.1 Accelerometer Uncertainty . 60
4.7.2 Gyroscope Uncertainty . 61
4.7.3 Random Forcing Function System Noise 61

4.8 Recovering rotation and orientation . 62
4.8.1 Orientation From Gyroscopes . 62
4.8.2 Orientation From Accelerometers . 63

5 Related Work - Inertial Proprioceptive Devices 64
5.1 Example Proprioceptive Applications . 67

5.1.1 P en . 68
5.1.2 The Digital Baton . 69
5.1.3 Cam eras . 69
5.1.4 Shoes . 69
5.1.5 Bats and Rackets . 70

6 Conclusions and Future Research 72
6.1 Motion Estimation: Optical and Inertial . 72
6.2 Applications and Motivations . 73
6.3 Inertial Sensing Technologies . 74

6.3.1 The Hummingbird, IOME's IMU . 74
6.4 Other Proprioceptive Devices . 75

A Hummingbird - Assembly 76
A .1 Parts List . 78

B Hummingbird - Programming 80

B.1 PIC microcontroller code . 80

C Demodulator MATLAB code 84

D Kalman filter MATLAB code 88

E Hummingbird Demo Code 91
E.1 glwin.c 91
E .2 incon.c . 96
E.3 incon95.c . 99

Chapter 1

Introduction

The IOME Cam (inertial-optical motion-estimating camera) system is designed to combine

inertial and optical motion-estimating techniques to determine a camera's motion during a

video sequence. IOME Cam employs a Kalman filter joint estimator to observe both optical

and inertial data types to predict camera motion parameters. While either the optical or

inertial data could be used alone for motion-estimation, each method has inherent error

types that limit its performance. When used together, however these two data types can

actually correct for the other's errors (see Sections 1.3.4 and 1.4.4).

The development of the IOME Cam has occurred concurrently with and has been influ-

enced by the projects associated with the Things That Think (TTT) consortium at the

MIT Media Laboratory. One area explored within TTT is that of inertial proprioceptive,

or motion-cognizant, devices [Verplaetse, 1996] - devices that feel their own motions using

inertial sensors. While computer vision has been the sole navigator or motion estimator

for cameras, and a good deal of work has been done in this area [Becker, 1996] [AP, 1995]

[Teodosio, 1992], a vision estimator's performance is ultimately limited by the lack of in-

formation in its input. Video-estimator errors are caused by external motions, lighting,

shadows, and unanticipated (unmodelable) camera motions among other things. Introduc-

ing inertial sensing, which is not dependent on any visual information, to the camera-motion

estimation problem is a logical step.

Inertial-Based Optical
Error Correction

Optical
Data

Inertial
Data

Vision-Based Inertial
Error Correction

Figure 1.1: Schematic view of the IOME Cam system.

1.1 Prior Art and Science

Camera motion estimation is a well defined and developed problem in the field of computer

vision (see Section 1.3.) Combining inertial sensors with video cameras has also been an

increasingly active area of research in the past decade, but the majority of related work has

been done in the way of image stabilization. Most major video camera manufacturers offer

gyrostablized cameras today. There is no evidence, however, of previous work done in the

area of instrumenting a video camera with an full inertial measurement unit for recovery of

camera motion parameters.

1.2 Motivating Applications

There are a number of motivations for determining a camera's motion during an image

sequence. A motion-cognizant vision system such as the one we're discussing allows new

and exciting uses of the visual data that was once only useful for playing back as video or

for capturing still screen shots.

1.2.1 Salient Stills - 2D Modeling

Still photography and video are both visually effective but each in different visual domains,

due to the respective medium of each. Stills offer high resolution, high contrast visual

information and are ideally shown on handheld print media. However, as their name implies,

they are limited to one still moment in time '. Video on the other hand offers dynamic,

temporal visual information, with the ability to follow a character or action or to zoom in

on a certain visual aspect. Video, however, requires special displays (typically physically

constraining compared to a still's handheld media); also video has poor resolution for any

one given frame. Salient Stills is a computer program intended to combine the advantages

of both video and stills [Teodosio, 1992].

A Salient Still is a high resolition, wide field-of-view 2D image that contains temporal

information. The Salient Still is comprised of multiple frames from a video sequence that

have been translated, skewed, and rotated, based on the camera motion. A number of

photographic and cinematographic examples of Salient Stills are given by [Massey, 1996].

Salient still production is hampered by vision-motion-estimation errors and has been a

driving factor in the development of IOME Cam. The purely visual input combined with

the linear Affine model being used create limitations to the Salient Still output such as

skews, warping, and blurred visual information.

1.2.2 Camera operator gesture recognition

IOME Cam can also be thought of as a parsing tool to be used intermediately between the

motions of a camera operator and the segments of a video shoot. The camera's inertial

motion datacan be used as meta-information that accompanies, and pertains to, the visual

and audio content. As an editing tool, the camera motion data can be analyzed with a

gesture-recognition system to identify the operator's intent or to anticipate his/her next

'Time-delay and multiple-exposure photography arguably produce still images representing multiple-
time-instances.

- -- - - - - - I- , , ". 7- , - , - - , - . -- -l- I,- -_ . - , I- I - - - - -- - --

move. This information can be used to annotate or parse the video into known segments

[Davenport].

SmartCams

When used in the capacity described above, IOME Cam would be a sensible input com-

ponent of Pinhanez's SmartCam system [Pinhanez, 1995]. Currently this system uses com-

puter vision to monitor and recognize actions in the video and to automatically control

the camera(s) appropriately 2. Given the additional information of camera operator intent

(or anticipated next move) the SmartCam system could base its camera control on that

information as well as the vision-recognized actions.

1.2.3 3D Modeling

Perhaps the most basic and all-encompassing application goal of the IOME Cam system is

that of generating 3 dimensional models of scenes. If the camera's 3D motion from frame to

frame is known, the motions and geometries of objects on the image plane can be analyzed

relative to that camera motion, yielding a geometrical model of the objects and camera.

Bove nicely summarizes [Bove, 1989]

the output of the camera should not be frames but rather a three-dimensional

database describing the objects in the scene and their movements through time,

as this would permit great data compresion as well as computer-graphics-style

operations and interactive modification

Becker's [Becker, 1996] system approaches this goal nicely with purely visual input, achiev-

ing 2.5D modeling, but is of course constrained to use with static scenes and other visual
2An example is Pinhanez's cooking-show demo (http://pinhanez.www.media.mit.edu/people/pinhanez/):

when the vision system senses the onion is being diced, it zooms the camera in on the action. In a likewise
manner, an IOME Cam might pan across the room, following a character, automatically yielding the live-shot
off to a better-located camera.

limitations. Given a 3D model of a real scene, there are countless ways to modify, enhance,

and playback that scene. Some pertinent ones are discussed in the following few paragraphs.

Data Compression

A video scene described in the form of sequential frames (with each frame comprised of

numerous pixels) takes up much more bandwidth than a modeled scene. Here, a "modeled"

video sequence refers to a scene that represented by a computer database that describes the

properties of objects and motions within that scene. The Structured Video projects at the

Media Lab have included a copious research in the area of data compression and modeled

scenes.

Object-Based Media Presentation and Special Effects

Given the aforementioned modeled scene with segmented objects, it would be possible to

manipulate the appearence of (or even presence of) certain objects or characters in a video

presentation of that scene. In a sense, the IOME Cam could be used to generate virtual sets

[Ferren]. This would enable the same story to be told any number of times using completely

different settings, props, or characters. Virtual (computer generated) objects could also be

integrated into the scene and made to interact with the real objects. 3

1.2.4 Motion Capture and Playback

A popular attraction type at theme park and location-based-entertainment venues is the

motion-base ride-movie. These "rides" consist of a platform that is suspended in conjunction

with a motor system 4 and a display surface. Typically a movie is shown from the viewpoiont

3This real-virtual character fusion is commonly done in the special effects industry - Jurassic Park is
a popular example. However, current motion estimation and scene modeling are done manually frame by
frame - a laborious task.

4 The majority of motion-bases are in a Steward Platform configuration, driven by hydraulic actuators,
although pneumatic and electromagnetic actuators (like those built by Aura Systems Inc.) are becoming

of a moving vehicle (i.e. a jet fighter) and as the camera view changes with the motion of

the recorded video, the platform on which the viewers are located also moves accordingly.

The viewers are made to feel like they are visually and physically experiencing the motions

that the camera underwent.

When considering the ride-movie as both a video and motion playback system, IOME Cam

seems an ideal input device. In its simplest form it records motion and video; and its inertial

data could be made to drive a motion platform time-synched with the video to form an

automated ride-movie driver.

1.3 Vision-based motion estimation

Estimating the motion of a video camera has long been one of the problems approached by

the computer vision field. Autonomous robot navigation, scene modeling, and the example

applications described above are all driving this research. One common technique that

has been developed to estimate a camera's motion is through analysis of optical flow, or

the apparent motion of brightness patterns on a camera's image plane. Another set of

techniques, called feature tracking [AP, 1995] [Becker, 1996], involve tracing the motion

and properties of a set of visual features from frame to frame. Unfortunately, vision-

based motion estimators are not fully robust - they are limited by lack of information or

mismodeled information in the video, by discontinuities and noise in optical flow and other

error sources.

1.3.1 Optical Flow

Complex video sequences, both static and dynamic, may be thought of as a distribution of

image intensity that undergoes simple translations when viewed over sufficiently small time

steps[Horn, 1986]. This changing image intensity, optical flow, is modeled as a continuous

more common. Another motion-base example is Tim Anderson's Jerkotron, an electric motor, cable, and
pulley assembly whose base is moved in pure tension.

function of space and time

I(x, y, t) = I(x + dx, y + dy, t + dt)

Given a continuous motion field, I may be expanded using a Taylor series (ignoring higher

terms)

dI dx dI dy dI

dx dt dy dt dt

The above model accounts only for x and y translations, and not for zoom. The affine

transform model does account for zoom in terms of scaling factors.

1.3.2 Affine Modeling

Given the optical flow data from a video sequence, motions of objects on the image plane

are related to motions of objects in the real world via one of a number of existing models.

The affine model is used by the Salient Still program. That process is described in this

section.

The affine model, given in 1.1, provides a linear transform between the image sequences

(optical flow) and camera motion

u bx cx z axCy}I\}~()(1.1)
o by cY y ay

where: u and v are the optical flow terms,

ax and ay are pure transitional terms,

bx is a scaling factor for x in the x direction,

c, is a rotation factor for x in the y direction,

by is a rotation factor for y in the x direction,

cY is a scaling factor for y in the y direction,

and x and y are the real world coordinates, x and y.

Note that the z term is not present in equation 1.1; the affine model treats z translations

as zooms, with constant changes in the bx and c, terms.

1.3.3 Perspective Projection

The perspective projection model (Equation 1.2) is another approach to mapping optical

flow to real world motion and is discussed in [AP, 1995] and [Szeliski, 1993] and planned

for use in the future versions of Salient Stills. In this nonlinear model,

(U Y 1+ Z (1.2)

u and v are the optical flow terms, x, y, and z are the real world motion terms, and # is

the inverse focal length.

1.3.4 Vision-based Errors vs. Inertial

Recall that IOME Cam's goal is to improve upon existing camera motion estimation schemes

by combining sensor modalities. In vision-based motion estimation, one of the most common

and harmful errors is that due to motions in dynamic scenes. When objects are moving on

the image plane in an uncorrelated manner to the camera motion, vision techniques will not

be able to differentiate between the two types of motion. Shadows and occlusions caused by

moving objects will also cause errors such as "false positive" motion estimates. Such optical

queues cause vision-based estimators to have "not enough information" and the accuracy of

Position
Error

: Time

Figure 1.2: Characteristic positional error of optical estimators.

their estimates tend to be sporadic or unstable, with segments of increased positional error

(Figure 1.2.) When enough [correct] optical information is available again, the positional

error will fall.

Inertial sensing is a good check source for these frame-to-frame error types as it provides

excellent short-time motion data. Vision-based estimation is more reliable for long term

accuracy. Since inertial navigation methods suffers from positional error drifts, the long-

term stability of optical methods can be used for baseline restoration of inertial errors.

1.4 Inertial Motion Sensing & Navigation

The technology of inertial motion sensing is the only source of fully autonomous self-motion

sensing and is a logical aid for video camera motion estimation, since it does not require

external references and thus won't be hampered by the same error sources as video. A video

camera, instrumented with inertial motion sensors, can record its inertial motion data as

it records video. Such a system allows for motion estimation to be performed using the

inertial data alone, or via a joint estimator, like with IOME Cam, using both inertial and

video data.

1.4.1 Motion-Sensing Modalities

Motion sensing is not a new idea. For years, security systems, weapon systems, and med-

ical and entertainment systems have employed various forms of "externally referenced"

motion sensing technologies such as infrared, radar 5 , and video. Internally referenced,

autonomous motion sensing has also existed for quite some time. Robots, aircraft, automo-

biles, and other vehicles have sensed and measured their motions for decades, using varying

electromechanical sensors as well as inertial sensors.

Most of the motion sensing technologies referred to above are restricted in terms of where

and how they are useful. Infrared, radar, and video motion sensing technologies are all

"externally referenced", physically removed from the moving object of interest. As a result

these sensing modes are subject to occlusions and numerous interferences and noise sources.

Although cars and aircraft measure their own motions, their motion sensors are both di-

mensionally and directionally limited. A car wheel's motion sensor requires the friction of

a road and only senses in one dimension; a pitot tube only works for an aircraft traveling

forward in familiar atmospheric conditions. Table 1.4.1 summarizes some sensor types, their

constraints, and their respective application domains.

A more tractable and generally effective type of motion sensor is the inertial sensor. Used

in spacecraft, aircraft, and submarines for years, this type of sensor attaches directly to the

moving body of interest and gives an output signal proportional to its own motion with

respect to an inertial frame of reference. Two types of sensors comprise inertial sensing:

accelerometers and gyroscopes. Accelerometers sense and respond to translational accel-

erations; gyroscopes sense and respond to rotational rates. Inertial sensors are desirable

for general motion sensing because they operate regardless of external references, friction,

winds, directions, and dimensions. However, inertial systems are not well suited for abso-

lute position tracking. In such systems, positions are found by integrating, over time, the

sensors' signals as well as any signal errors. As a result position errors accumulate. Inertial

"Radar is used, of course, for aircraft sensing, but has recently found use in human-machine interfaces.
Examples of using radar as a performance space interface include Joe Paradiso's 10/10 Media Lab anniversary
space and Steve Mann's dance interface, done in Canada in the 1980s.

Sensory Type Reference Example Applications Limitations

radar external body airplane, human objects need to
in motion tracking be in motion

electric field external body with 3D mouse, limited range
sensing electric charge cello bow

magnetic transmitter Polhemust, FOBtt limited range
GPS Earth orbitting navigation, more outdoors, Earth

sattelite network
video external objects in robots, CHI excess external motions,

acceptable visual field lighting
Inertial self ICBM navigation systems, errors increase

I_ I Hummingbird with time

t: Polhemus refers to the manufacturer of the UltratrakTM motion sensors

tt: FOB refers to Flock of Birds UltratrakTM by Ascension Technology Corp.

Table 1.1: Various motion sensing modalities

systems are most effective in sensing applications involving relative motion, when used in

conjunction with another sensor type such as GPS, IR, or video.

1.4.2 Inertial

Inertial navigation describes the techniques and technologies used in measuring the inertial

effects of a moving body and using those measurements to deduce the body's time-varying

position. Inertial sensing is accomplished with two types of sensors: accelerometers and

gyroscopes. Typically, both of these sensors are sensitive to only one axis of motion. Inertial

navigation systems (INS) used in aircraft, spacecraft, and other vehicles are usually based on

an inertial measurement unit (IMU) that consists of a set of three orthogonal accelerometers

and 3 mutually orthogonal gyroscopes. Such a device is sensitive to the full 6 degrees of

freedom of motion (3 transitional and 3 rotational).

Compared with other modes of motion sensing, the inertial type is ideal for enabling devices

to become proprioceptive, or aware of their own motions and positions. Some example

proprioceptive devices are described in section 5.1. Besides the inertial type, the other

aforementioned motion sensor types are all limited by being externally referenced (these

sensor modes would be ideal if the task at hand was to sense other bodies' motions). This

project, however, addresses the problem of estimating the motion of a video camera during

a video sequence after video has been recorded; and IOME Cam introduces inertial sensing

to the camera motion estimation problem.

1.4.3 Determining Position Inertially

Inertial navigation systems determine position and orientation from the basic kinematic

equations for translational and rotational motion. An object's orientation, given a sensed

rotational rate, W, during each time step, dt, is given by

0 = o + wt (1.3)

where 0 = orientation angle, and dt = time step. A gyros' output is the rotational rate w.

Similarly, position is found with the translational kinematic equation

x = xo + vot + 1at2 (1.4)
2

where x = position, v = velocity, and a = acceleration, an accelerometer's output.

It should be noted that IMUs alone can not be used for absolute position tracking. Since

an INS calculates position by multiplying an accelerometer's output by t2, any errors in

the accelerometer's output are also multiplied by t 2; accelerometer errors propagate by

equation 1.4 (Figure 1.3.) This leads to huge position errors: in just 60 seconds, a one

dimensional IMU using an accelerometer with an output noise level of just 0.004 g yields a

position uncertainty of about 70 meters. Gyroscope errors increase linearly with time, via

equation 1.3, and are therefore typically less 'harmful' than accelerometer errors. Because

of their inherent accumulation of absolute positional errors, inertial sensors are much better

suited for relative motion sensing/tracking. The accelerometer with 0.004 g noise, gives

a positional uncertainty of about 0.2 mm per cycle in a system as slow as 10 Hz; the

uncertainty falls to about 80 micrometers per cycle in a 50 Hz system.

Position
Error

Time

Figure 1.3: Characteristic positional error of inertial estimators.

Pure inertial measurement systems are best suited for relative motion sensing applications

or for short-duration position tracking applications. The smart pen application (a pen that

knows what it is writing) is an example of a system where absolute position tracking of the

pen tip would be desirable, but relative position tracking still allows a highly useful system.

Given absolute position tracking, the pen's IMU could essentially store analog 'carbon'

copies of what the pen had written. Due to inertial errors, the pen system could never

accurately track the pen tip's position on the paper for a useful duration, but in tracking

the pen tip's relative motions and continuously checking for verifiable characters, the pen's

IMU can recognize written characters and store the corresponding ASCII characters in

memory.

Inertial navigational systems suffer most from the inherent buildup of positional errors as-

sociated with inertial sensors because INSs need to operate indefinitely for the duration

of their 'missions'. For navigation and other applications where system accuracy is more

important than system autonomy hybrid inertial motion sensing systems are common. An

inertial-optical motion estimator was discussed above in the context of a proprioceptive

video camera. Other hybrid inertial systems include inertial-stellar missile navigation sys-

tems [Mackenzie, 1990] and inertial-GPS (global position system) airplane guidance sys-

tems.

Applications requiring absolute rotation (orientation) tracking and relative translation track-

ing can accomplish this with a pure inertial system. In such a system, orientation is com-

puted from the gyro outputs as usual - with a slightly growing time dependent error as usual.

Provided that the system is at rest occasionally, the accelerometers can accurately sense the

orientation of the ig gravity acceleration vector. Given these occasional gravity-orientation

updates, the system can correct its gyro-induced orientation errors for an indefinite dura-

tion. This is an example of a "zero velocity update". Note this scheme will only work if the

accelerometers being used are DC responsive, that is if they sense constant accelerations.

1.4.4 Inertial errors vs. optical

As mentioned in section 1.4.3, inertial navigation systems have a characteristic positional

error drift - the position errors of inertial navigation systems grow quadratically with time.

Since INSs use a dead reckoning approach, their errors are continuously compounding. For

the case of IOME Cam, optical data can be used to correct for the inertial errors. Vision-

based motion estimators are better suited for longer time duration tracking and can therefore

aid in baseline restoration of inertial error drift. Given occasional visual queues, absolute

position and orientation data may be restored from time to time. Conversely, inertial sensing

can prevent false-positive estimates associated with optical analysis of dynamic scenes.

Chapter 2

Inertial Sensing Technologies

The following two sections discuss the technologies of accelerometers and gyroscopes, the

primary components of inertial navigation. Care is taken to show example state-of-the-art

inertial technologies in terms of commercially avaiable sensors. In each of the following

sections, available accelerometer and gyroscope technologies are surveyed according to per-

formance, price, and size characteristics, as applied to the domain of IOME Cam (and other

proprioceptive applications.)

2.1 Accelerometer Technologies

A number of different accelerometers were considered for use with this project. This sec-

tion discusses the general operation of the accelerometer and explains some of the major

technologies used in accelerometer development.

At its most basic level an accelerometer can be viewed as a classical second order mechani-

cal system; that is a damped mass-spring system with an applied force. When the system

undergoes an applied acceleration, the spring is made to stretch or contract by the mass's

inertial force. The resultant displacement of the mass or internal force of the spring is the

system's output which is proportional to the input acceleration. There are a number of tech-

Acceleration Proof
Mass

Input
Axis

Demodulator &
Differential Amplifier

Driving Secondary
Signal Signals

Figure 2.1: Generic pendulous accelerometer

nologies used to implement today's accelerometer designs. In this section, these technologies

are described along with the performance and price characteristics of corresponding com-

mercially available acclerometers. See section 2.1.5 for a survey of commercially available

accelerometers.

2.1.1 Pendulous Accelerometer

The vast majority of modern accelerometers are of the pendulous type. Although a number

of different implementations exist, they all work by similar principles. A generic closed-

loop pendulous accelerometer, consisting of a hinge, a proof mass, pickoffs, damping, and a

forcer, is shown in Figure 2.1.

Referring to Figure 2.1, a pendulous accelerometer's pendulosity, p, will be defined as the

proof mass multiplied by the length from its CG to the hinge

p = mk.

When an acceleration is applied parallel to the input axis, the torque on the output axis is

given by

T = fk = mak = ap (2.1)

where

f = ma = inertial force

k = length from proof mass CG to hinge

m = proof mass

a = applied acceleration

p = mk = pendulosity

This example accelerometer uses a magnetic pickoff that has three separate windings, one

primary and two secondary. The pickoff acts as a differential transformer. When the proof

mass is centered, under no acceleration, the pickoff's two secondary windings generate the

same voltage, yielding no difference. But under an applied acceleration, the proof mass

is moved off center and one secondary voltage rises and the other one falls, increasing

their voltage difference. The phase of the voltage difference with respect to that of the

driving signal will give the direction of the applied acceleration, and the differential voltage

amplitude will give the amplitude of the acceleration.

In a closed-loop accelerometer like the example one, the forcer coils' output torque is pro-

portional to the feedback current, the differential circuit's output, T = kFi (where kF =

scale factor of forcer). Since a = T/p (from Equation 2.1) we see the acceleration can be

found as
kFi

a= -(2.2)

2.1.2 Piezoelectric Micromachined Pendulous Accelerometers

One of the main transducer technologies used in pendulous accelerometer design is that of

piezoelectricity. A piezoelectric material is defined as a material that develops a distributed

Y2 Beam and
Electrode

Z Beam and
Electrode

Z

P) Y

Y1 Beam and
Electrode X

Figure 2.2: AMP's 3dof piezoelectric gyro design

electric charge when pressed or subjected to a force. Piezoelectric materials transform me-

chanical work input into electrical output and vice versa. A simple piezoelectric pendulous

accelerometer consists of a piezoelectric cantilever structure whose center of mass is ade-

quately displaced from its base. When the structure is accelerated it is made to deflect, and

when the piezoelectric element deflects it develops a proportional charge differential.

Piezoelectric accelerometers are called active devices because they generate their own sig-

nals, and theoretically do not need to be powered. Since piezoelectric sensors require phys-

ical work to generate an electrical output, they can not respond to steady-state inputs;

hence, they are also called AC-response sensors. Most piezoelectric accelerometers will only

operate above a certain threshold frequency. Piezoelectric materials are also pyroelectric;

that is, they respond to changes in temperature.

AMP Inc. has a line of low cost pendulous piezoelectric accelerometers, including a novel

design that senses two translational and one rotational axes of acceleration - all in one

14 pin surface mount package. Figure 2.2 shows the component layout of AMP's sensor.

Acceleration in the ' direction is sensed by the Yi and Y2 beams and electrodes; acceleration

in the Z direction is sensed by the Z beam and electrode. Also rotation about the z-axis is

sensed differentially by the translational accelerations of Y and Y2 . These sensors utilize

the piezoelectric properties of the polymer polyvinylidene fluoride (PVDF). AMP's ac-

responding ACH-04-08, has a 3dB frequency response of 7 Hz to 3.3 kHz, and an input

range of about +2 to i30g.

2.1.3 Piezoresistive Micromachined Pendulous Accelerometers

A common type of commercially available low-g pendulous accelerometer is made from

micromachined silicon, a piezoresistive material. Piezoresistive materials, like quartz, lead

zirconate titanate, and boron, have the property of changing their resistance under physical

pressure or mechanical work. If a piezoresistive material is strained or deflected, its internal

resistance will change and will stay changed until the material's original position is restored.

These accelerometers act as both AC- and DC-response sensors. In order to detect this

change in resistance, a power supply is necessary - piezoresistive accelerometers are passive

devices.

Piezoresistive pendulous accelerometers typically have a proof mass which is suspended

by one or more piezoresistive 'cantilever' arms. An applied acceleration will deflect the

proof mass and strain the cantilevers, resulting in a resistance change proportional to the

acceleration. The resulting resistance change is usually measured via a Wheatstone-type

bridge circuit (Figure 2.3(a)). IC Sensors' model 3021 and Entran's EGAX both employ

this type of scheme.

Like piezoelectric materials, piezoresistive materials are also temperature-sensitive (they're

used in thermistors), which will adversely affect a piezoresistive accelerometer's repeata-

bility. One way to avert this temperature problem is to use the sensor's pendulous arm

connected to the proof mass, as a strain gauge arranged in a Wheatstone Bridge circuit (as

(a) (b) (c)

Wheatstone Buffer & Differenial
Bridge Amplifier Amplifier

Stage

Variable resistance piezoresistor
measures strain corresponding
to proof mass deflection

V In

Other three resistors
in bridge are also - O
piezoresistive to
counteract temperatature
sensitivity

Ref
0Ref

Figure 2.3: Example piezoresistive accelerometer temperature compensation and amplifica-
tion circuit

described above), and to use the same piezoelectric material as for the other fixed resistors

in the bridge. This corrects for temperature sensitivities by canceling the effects from either

side of the bridge.

Figure 2.3 shows a simplified example of the typical temperature compensation and ampli-

fication circuit used by I.C. Sensors in their piezoresistive silicon micromachined accelerom-

eters. The circuit is divided into three main parts. Part (a), the Wheatstone Bridge,

measures the change in resistance of the accelerometer's strain gauge and outputs a corre-

sponding voltage difference. Stage (b) acts as a buffer to minimize the current drawn from

the bridge and acts to amplify the bridge's signals, increasing the voltage difference. The

differential amplifier, part (c), then measures the final voltage difference and delivers the

output voltage.

2.1.4 Capacitive Micromachined Pendulous Accelerometers

Perhaps the most common type of consumer accelerometer is the capacitive micromachined

pendulous accelerometer. Accelerometers with capacitive sensing elements typically use

the proof mass as one plate of a capacitor and the base as the other. When the sensor is

accelerated, the proof mass tends to move and the voltage across the capacitor changes; this

change in voltage corresponds to the applied acceleration. These sensors may be operated

open-loop or closed-loop.

Capacitive accelerometers generally have higher sensitivities than piezoresistive models - the

two piezoresistive accelerometers listed in Table 2.1.5 have sensitivities of about 10 mV/g

and the capacitive accelerometers in the same Table have sensitivities an order of magnitude

higher.

The basic capacitive micromachined accelerometers are made in much the same manner as

the piezoresistive pendulous accelerometers discussed in Section 2.1.3. Silicon Microstruc-

tures' model 7130 ±10g capacitive micromachined accelerometer has a frequency response

of DC to 500 Hz and maximum noise floor of approximately 0.1 g.

2.1.5 Comparison of Accelerometer Technologies

In terms of the motion-estimating camera and the other self-motion-sensing applications

described in Section 5.1, it is evident that the accelerometer market is approaching the de-

sired size, price, and performance. Table 2.1.5 surveys representative commercially available

accelerometers.

2.2 Gyroscope Technologies

Gyroscopes are the rotational-motion inertial sensors and are available in a variety of types.

The model being used for this project is Murata's Gyrostar. This gyro has an input range

of ±90 deg/sec and a resolution of about 1 deg/sec. The Gyrostar employs piezoelectric

vibrating elements and operates much like the classical double tuning fork gyro, with one

axis for driving and the one axis for sensing. Both of these gyro types cause an oscillating

driving motion along one body-fixed axis. When the sensor is made to rotate, the driven

element undergoes Coriolis accelerations in a direction that is orthogonal to the axes of

Make/Model Type Input 3 dB Frequency Output Noise Price Range
Range [g] Response [Hz] @ 12Hz [g] [US$]

AMP ACH-04-08 piezoelectric +2 to i30 7 to 3300 0.02 25-50

Entran EGAX piezoresistive 0 to i 10 0 to 240 0.00013 500

IC Sensors 3021 piezoresistive 0 to ± 10 0 to 400 .33 mg 100

Silicon Micro- capacitive 0 to i 10 0 to 500 0.1 100
structures 7130
Silicon capacitive 0 to ± 10 0 to 800 0.002 100
Designs 1210

Analog Devices differential 0 to i 5 0 to 20 t 0.002 15-30
ADXL05 capacitive

Analog Devices differential 0 to ± 50 0 to 20 t 0.13 15-30
ADXL50 capacitive

t: These sensors have customized bandwidth

tt: Includes linearity, hysteresis, & repeatability

Table 2.1: Summary of Selected Accelerometers

rotation and of the driven motion. The subsequent Coriolis-driven motion is picked up by

the sensing elements and is proportional to the applied rotation.

This section discusses the general operation of the gyroscope, the rotational-motion inertial

sensor. There are two main branches of gyroscopes; mechanical gyros that operate using

the inertial properties of matter, and optical gyros that operate using the inertial properties

of light. The operation of several types of mechanical gyros are discussed and the charac-

teristics of representative commercially available gyros are covered. The younger branch

of optical gyros is briefly mentioned as they are typically more expensive than mechanical

gyros and are currently developed primarily for navigational applications.

Original gyro designs, called gimbaled systems, were based on the preservation of rotational

momentum and consisted of a spinning disk or rotor connected to the moving body of in-

terest by low-friction gimbals. When the body underwent rotation but the spinning rotor

maintained its original orientation (preserving its angular momentum). As gimbaled sys-

tems progressed, because they were entirely mechanically based, they became increasingly

intricate, mechanically complex, and expensive. In recent decades, technology has advanced

more in the way of electronics and solid state technology than in mechanics; similarly gy-

roscope designs also moved away from their complex mechanical foundation. Today's gyro

designs are almost exclusively of the strapdown type, made with few to no moving parts,

and without gimbals and spinning rotors.

Assuming that the gyro's rotor is made to spin at a constant rate, W it will have an angular

momentum,

H = Iw.

If the gyroscope is rotated about an axis perpendicular to its angular momentum vector at

a rate, Q, a resulting torque will develop,

T= xH

in a direction orthogonal to both Q and H. This torque will cause the disk to precess, and

it is that precession which is measured to give the rotational rate. Closed-loop or 'force

feedback' gyroscopes supply a forcing counter-torque, acting against the precession-causing

torque. The output signal for closed-loop gyros is the current driving the counter-torque

forcers.

2.2.1 Vibrating Gyroscopes

All vibrating gyroscope designs make use of Coriolis acceleration to sense rotation rates.

This section describes several forms of the vibrating gyro, including the tuning fork gyro

and piezoelectric vibrators.

When an object rotates and has a varying radius about its axis of rotation, it undergoes a

Coriolis acceleration in the direction tangential to the rotation

ac = 46, = fisW (2.3)

There is an associated Coriolis force acting in the same direction (normal to the direction

Driving
Sensirg Tines Oscillation

Body Rotation,

Resulting Coriolis
Acceleration

Figure 2.4: Schematic of a tuning fork gyro.

of the varying radius). The Coriolis acceleration and force are proportional to the rotation

rate.

2.2.2 Tuning Fork Gyroscope

A schematic of a simple tuning fork gyro is illustrated in figure 2.4. This figure shows a

'double tuning fork' - a structure with two pairs of tines. The two tines in each pair have

the same orientation. The double-tines are made to oscillate antiphase, which yields no net

motion, but provides a varying radius about the input axis. When a tuning fork gyro is made

to rotate about its input axis, its tines undergo sinusoidally varying Coriolis forces in the

direction normal to the tines' driven motion. When the tines are subjected to these Coriolis

forces, they oscillate in the same direction as the forces. These oscillations are detected

by the gyro's sensing elements. Tuning fork gyros may use piezoelectric, piezoresistive,

magnetic, or other types of sensing elements.

Systron Donner's GyroChip line of gyros are based on a double tuning fork design. The

GyroChip II, is a $1000 +100 deg/sec gyro with bias stability <0.05 deg/sec and output

Body-fixed
z Z Axes

Y

Piezoelectric
SCeramic Driving

Element

Piezoelectric
Ceramic Sensing
Element

Figure 2.5: A Generalized Vibrating Gyro with Rectangular Cross Section

noise <0.15 deg/sec. Watson Industries' tuning fork gyro, Model ARS-C132-1A, is a i100

deg/sec gyro with bias stability <10 deg/sec. This gyro sells for about $700.00.

2.2.3 Piezoelectric Vibrating Gyroscope

The principles of operation of the tuning fork gyro can also be used to describe the operation

of the more general vibrating gyro shown in Figure 2.5. This device, with a rectangular

cross section, has piezoelectric ceramic elements on two of its sides, one for driving and one

for sensing. The driving element, B, is driven with a periodic electrical signal, and made to

oscillate in the - direction. The sensing element, A, is sensitive to motions aligned with the

5 axis, and thus does not respond to B's driving signal. When the gyro is made to rotate,

at a rate w, about its ' axis, the oscillating element B develops Coriolis effects in the 5

direction. The amplitude of oscillation due to the Coriolis forces is proportional to w and

is sensed by the piezoelectric sensing element A.

Make/Model Type 3 dB Band- Output Noise Bias Price Range
width [Hz] @ 12Hz [deg/s] Stability [US$]

Murata Vibrating 0 to 7 0.45 0.9deg/10min 80-300
Gyrostar Piezoelectric

Systron Donner Double 0 to 50 0.17 0.05 deg/sec 1000
GyroChip II Tuning Fork

Watson Ind. Tuning 0 to 50 0.05 <10 deg/sec 700-800
ARS-C132-1A Fork

Hitachi IFOG Not Not 5.0 deg/ hr 1500
HGA-V Available Available

Hitachi IFOG Not Not 1.3 deg/ hr 1250
HGA-D Available Available

Table 2.2: Summary of Selected Gyroscopes

2.2.4 Other Gyroscopes

Aside from the various vibrational types, the main gyroscopes in development are optical

gyros. Optical gyroscopes operate based on 'The Sagnac Effect'. These sensors use two light

waves, traveling in opposite directions around a fixed path. When the device is rotated,

the light wave traveling against the rotation direction will complete a revolution faster than

the light wave traveling with the rotation. This effect is detected by means of the phase

difference in the two light waves. The ring laser gyro (RLG), zero lock-ring laser gyro

(ZLG), and the interferometric fiber optical gyro (IFOG) are the main types of optical

gyros currently being developed.

Some examples of commercially available optical gyros are Hitachi's IFOG models HGA-V

and HGA-D. Compared with the previously mentioned vibrational gyros, these IFOGs are

fairly large and expensive, but they exhibit superior bias stability (see Table 2.2.5).

2.2.5 Comparison of Gyroscope Technologies

Table 2.2.5 gives a survey of commercially available gyroscopes in terms of performance

characteristics, price, and size.

Microcontroller

- . .I m I .

Figure 2.6: Schematic of Inertial Measurement Unit (IMU)

2.3 IMUs and Inertial Navigation Coordinate Systens

A schematized inertial measurement system for a general proprioceptive device is shown in

Figure 2.6. This systems consists of a set of sensors whose signals go through an analog-to-

digital converter to a microcontroller. The sensors include accelerometers and gyroscopes

as well as a temperature sensor (because most inertial sensors' signals are temperature

dependent) and any other sensors called for by a given application. The microcontroller

either stores the sensor data for later use or it performs some type of real-time analysis and

invokes the appropriate output.

Several types of computation and analysis may be performed with the inertial sensors' data

by the system's microcontroller. The most basic microcontroller computational function is

to estimate motion and position with equations 1.3 and 1.4. A more sophisticated method

for estimating motion and position is to use a Kalman filter state-estimation algorithm.

Once the system's time-dependent motions and positions are estimated, a pattern recog-

nition scheme such as a neural network, hidden Markov model, or matched filter may be

performed with that motion data. These pattern recognition schemes are useful for iden-

tifying certain segments of a system's motion. Those motion segments might be caused

X

Figure 2.7: Camera-fixed coordinate system

by a baton moving through the upbeat of a conducting gesture, a pen signing its user's

signature, or a pair of dancing shoes stepping through a samba.

After estimating the device's motion and position and recognizing any appropriate patterns,

the system's microcontroller may accordingly store system state data, activate output me-

dia, or communicate with external devices.

2.3.1 Camera-referenced coordinate system

As discussed in section 2.3, an inertial navigation system's sensors sense motion with respect

to a body-fixed coordinate system. For the case of IOME Cam, the camera-fixed coordinate

system is shown in the figure 2.7.

The origin of IOME Cam's body-fixed axis is located at the center of projection (COP) of

the camera. This is done to expedite the joining of the inertial and optical data. Since the

inertial sensors themselves can not be positioned at the center of projection, the offset of

each needs to be noted and appropriately accounted for in subsequent calculations.

,. Body-fixed
k Axis

Y

Global Coordinate
Axis

Figure 2.8: Global and body-fixed coordinate systems

The purpose of any navigational system is to determine an object's location or motion

with respect to a known (fixed or global) coordinate system.1 In the host of non-inertial,

externally referenced, motion-sensing modes discussed earlier, it was often the case that this

coordinate system fix came from the external reference itself (IR and radar are examples.)

Inertial navigation systems require an additional step in resolving the fixed coordinate

system. Since inertial sensors sense motion with respect to the moving body's reference, a

coordinate transformation between the two axes is necessary.

Figure 2.8 illustrates the two coordinate systems. It should be noted that due to the

necessary coordinate transformation the IOME Cam system is not able to be modeled as

linear. The fact that this transformation introduces a nonlinearity necessitates deviation

from the standard linear Kalman filter: an Extended Kalman filter will be necessary.

'This coordinate system may be Earth-fixed for vehicular travel, or based on the location of a desktop
Polhemus' transmitter, for example.

z

Chapter 3

Design of IOME Cam

The design of the IOME Cam system largely breaks down into its hardware inertial mea-

surement and data modulation unit and its software demodulator and motion estimator.

The system's hardware, consisting of an inertial measurement unit (IMU) and its associ-

ated data modulator, interfaces with a video camera. 1 IOME Cam's software consists of

a demodulator for the inertial data and a joint motion estimator whose input is the data

from the demodulator (the IMU data) along with the output from a vision-based motion

estimator .

3.1 IOME Cam's IMU: The Hummingbird

The main hardware component of this project is the inertial measurement unit, which is to

be fully designed and fabricated as part of the thesis work. The IMU is of the strapdown type,

consisting of motion sensors, a microcontroller, a temperature sensor, and a data encoding

system (see Figure 2.6). Three orthogonal accelerometers are used to sense translational

acceleration and three gyroscopes sense rotational motion. A temperature sensor is needed

because the outputs of both accelerometers and gyros are temperature sensitive.

'The camera being used for this project is the Sony Betacam SP. All specifications can be found in [Sony].

After the inertial sensors, the next components of the IMU are an analog- to-digital con-

verter (ADC) and a multiplexer. The Hummingbird's on-board microcontroller has these

components continuously cycle through each of the inertial sensors, sampling each sensor's

analog output signal, converting that signal to digital and then multiplexing those signals

onto one data stream. The multiplexed data stream is sent from the microprocessor to

the transmitter portion of the circuit. The transmitter encodes the data onto one of the

camera's spare data storage media (the version of IOME Cam built for this project used

one of the auxiliary audio tracks.) The bulk of this post-sensor work can be accomplished

by a microcontroller like one in Motorola's 68HC11 line or Microchip's PIC microcontrollers

(the PIC16C71 is used for this work.)

Aside from the electronics-related hardware, a fair amount of physical hardware has been

designed and fabricated for this project, including housing and mounting structures. Care

must be taken to locate the inertial sensors so that they measure the "correct" axes of input.

The camera motion estimation problem attempts to estimate the motion of the camera's

image plane and the IMU's physical layout must be designed accordingly or accounted for

in the analysis and computation. Additionally, an ideal IOME Cam IMU is a removable

component, one that can be plugged into a variety of cameras.

3.2 Hummingbird's Components

The Hummingbird IMU consists of roughly one hundred parts. Characteristics and use of

the primary components are given in the following section. A detailed parts list is given

A.1.

3.2.1 Gyroscope - Murata Gyrostar

A design similar to the rectangular cross section vibrating gyro described in 2.2.3, but with

improved piezoelectric conversion efficiency [Nakamura, 1990], is a vibrating gyro with an

Under Rotation

Resulting Sensed
Sensing Oscillations are
Elements Unequal

B B

A A '

C C

Resulting Sensed
Driving Resuting Sensed Oscillations Cancel
Element Driving Oscillations Cancel Each Other

Oscillation Each Other
Driving Coriolis
Oscillation Oscillations

Figure 3.1: An example piezoelectric vibrating gyro: Murata's Gyrostar.

equilateral triangle cross section. Murata Electronics Corporation's new gyroscope, the

Gyrostar, or ENC05E, employs this design. Figure 3.1 shows cross-sectional views of the

gyro while at rest (a) and while rotating (b). The triangular cross section design uses three

piezoelectric ceramic elements, one attached to each outer wall. Of the three elements, one

is a driving element, C, and two are sensing elements, A and B. The output signal of this

device is the difference between A's signal and B's signal.

output(t) = a(t) - b(t)

When the gyro is at rest, element C's driven motion is imparted to the sensing elements,

A and B, in a direction that is aligned with the axis of symmetry of A and B. Therefore,

while at rest, A and B are seeing the same signal and the output is zero.

When the gyro rotates about its input axis, the driving element C, experiences a periodical

Coriolis acceleration in the direction perpendicular to both the driving motion and the

rotation vector. With the introduction of Coriolis forces to element C, the net motion that

C imparts onto A and B is not aligned with A's and B's axis of symmetry. In this case,

A and B receive differing signals, and the sensor's nonzero output is proportional to the

rotation rate.

The ENC05E operates by actuating and sensing physical vibrations (acoustical pulses) and

therefore is susceptible to errors in the presence of applied vibrations in the given frequency

At Rest

range. An easy error would be to use two identical ENC05Es on the same physical surface

- the driving pulses of one would wrongly affect the sensing pulses of the other. For this

reason, the sensors are available in two oscillation frequencies, 25.0 kHz and 26.5 kHz.

Hummingbird uses the two different frequencies to avoid errors.

Hummingbird Gyro Noise

The Murata gyroscopes will experience noise signals due to induced sound waves at their

triangular prisms' corresponding resonant frequencies. To get an idea for a typical IOME

Cam gyroscope noise floor, consider the signal characteristics for an average pan motion

of about 30 degrees. Given the ENC05's mean noise at 12 Hz of 0.45 deg/sec and IOME

Cam's update rate of 90 Hz, IOME Cam will experience a milidegree noise floor in terms

of angle which is a signal to noise ratio of about 3.64.

3.2.2 Accelerometer - Analog Devices ADXL05

The accelerometers being used in this project, Analog Devices' ADXL05, are made of mi-

cromachined silicon and use a differential capacitive sensing element. These sensors sense

an acceleration range of i5g with resolutions near 0.01g. A simple schematic is shown in

Figure 3.2. The ADXL05 has a silicon beam proof mass which is tethered at each end and

has comb-like "fingers" extending perpendicularly from both sides of the beam's length.

Each of these fingers is located centrally between two fixed capacitive plates when the sen-

sor is at rest. As the sensor is accelerated the proof mass deflects and the fingers move

from the centers of the fixed capacitive plates. A difference in capacitance is sensed at the

fingers and this signal is proportional to the applied acceleration.

A variation of the general capacitive accelerometer described above is implemented by

Analog Devices. Analog Devices' ADXL50 and ADXL05 accelerometers use differential

capacitive sensors, consisting of independent fixed plates and movable "floating" central

plates that deflect in response to changes in relative motion (Figure 3.2). Under acceleration,

Figure 3.2: Analog Devices' ADXL05 (simplified figure): at rest and under applied acceler-
ation.

the deflection of the center plate will cause a difference in the capacitances of the two

capacitors on either side of the plate.

Analog's actual sensor consists of a large series of the differential capacitors mentioned

above in a comb-like shape (Figure 3.3). This comb-like structure acts as the sensor's proof

mass and its 'fingers' are etched from silicon. The center plate of the differential capacitor

is a movable element connected to the proof mass. Referring to Figure 3.3, under zero-

acceleration, the center fingers, C, remain equidistant from the outer fingers, A and B.

When an acceleration is applied, the A-C and B-C distances become unequal and therefore

the A-C and B-C capacitances become unequal.

Signal Conditioning of the ADXL05 Differential Capacitance Accelerometers

The differential capacitances across the capacitors' fingers are detected by the signal con-

ditioning portion of the accelerometer. Referring again to Figure 3.3, we see that a 1-MHz

oscillator applies square waves VA and VB to the A and C plates respectively. VA and VB

are complimentary - equal in amplitude and 180 degrees out of phase. When at rest (A-C

and B-C capacitances are equal), the center plates, C, detect equal amounts of waveforms

VA and VB. These two waveforms are coupled at C and cancel each other, resulting in

zero-amplitude Vc. When an acceleration causes varied A-C and B-C capacitances, the

1 MHz Square-
wave Oscilaor

Figure 3.3: Schematic Illustration of ADXL05.

waveforms VA and VC change in amplitude. For example if the A-C capacitance increases

and the B-C capacitance decreases, the amplitudes of the corresponding waveforms do the

same. When coupled at the center plate, VA and VB result in a square waveform VC whose

amplitude and phase are related to the amplitude and direction of the applied acceleration.

After passing through a buffer, square waveform VC enters the synchronous demodulation

portion of the sensor's circuit. Synchronous demodulation is the process of convolving a

frequency-domain modulated signal with the frequency-domain modulation signal in order

to recover the original signal. The ADXL05's phase-sensitive demodulator receives a 1-MHz

square waveform from the oscillator - the same square waveform that the oscillator sends the

A capacitor plates. The phase of signal Vc determines the direction of applied acceleration:

if VC is in phase with VA then C has moved towards A, and if VC is in phase with VB then

C has moved towards B.

The demodulator acts as a lock-in amplifier, it demodulates the modulated signal and applies

a low-pass filter. The output signal is an analog voltage proportional to the acceleration.

This signal goes to the sensor's output and to the force-feedback closed-loop portion of the

circuit.

3.2.3 Other System Components

The primary other system components are the PIC 16C71 microcontroller, a multiplexer,

and a RS232 transceiver. These are all standard electronic components and are listed in

the "parts list" appendix of this document.

3.3 Modulation / Demodulation Strategies

IOME Cam stores its inertial motion data synchronously with the video and audio on one

of the camera's spare audio tracks. The motion data is recovered from the digitized audio

signal in post production/analysis. IOME Cam therefore uses a hardware modulator and

software demodulator for its inertial data. For the modulator, the Hummingbird converts

its IMU data output (which is in the form of a multiplexed DC voltage waveform) to an

appropriate audio level signal. The audio signal is then sampled 2 and is demodulated and

converted into bits and numerical values via a software demodulator (performed in Matlab.)

A number of modulation schemes, including several each of frequency division multiplexing

(FDM) and time division multiplexing (TDM), were considered in designing this version

of IOME Cam. A discussion of the modulation and demodulation issues related to IOME

Cam follows.

3.3.1 IOME Cam's Data Characteristics

In considering IOME Cam's motion data modulation and demodulation systems, it is im-

portant to characterize the important data signals and channels. The data signals of interest

consist of the outputs of the accelerometers and gyroscopes as well as the IMU's tempera-

ture sensor. Characteristics of data channel are defined by the Hummingbird's modulation

2Sampling of the audio signal is done at 44.1kHz, which is far greater than the nyquist rate of any of the
inertial signals.

components: one PIC microcontroller and one transformer, and the Beta Cam's spare audio

track.

Data characteristics of both the accelerometers and gyroscopes are determined by the nature

of their motion sensing applications. The required sensing capabilities for a motion-sensing

camera can be estimated by looking at the rates of movement of typical camera maneuvers.

Camera movement rates were experimentally found by monitoring the pan and tilt motions

of a handheld video recorder throughout a series of shooting sequences. An average rota-

tional rate of about 36 deg/sec was observed. Pan rates varied from near zero deg/sec up

to about 60 deg/sec. These rotational rates determine the input range for gyroscopes used

in a motion sensing camera.

Characteristic camera motion frequency can be estimated as that of human head motion.

Head motion frequency averages about 3.5 Hz and rolls off around 8 Hz [FD, 1994]. Giving

each inertial sensor as much as 50 Hz of bandwidth for each signal should well cover the

necessary requirements.

For thoroughness' sake, the temperature sensor is allocated the same 50 Hz of bandwidth,

although meaningful changes in temperature will most likely not happen faster than once

per few minutes.

Data channel capacity is no problem considering the available bandwidth of about 12.5

kHz for the Sony Betacam SP.3 The PIC microcontroller also poses no limitations for data

communications considering its 8 to 16 MHz processor speed and 0.25 s to 0.5 s instruction

speeds.

3This bandwidth is determined from the Recorder's 3 dB frequency response, 50Hz to 12.5 kHz. See
[Sony] for more details.

I-. -- -1. - I I I -I - - .-- _ I .

MXM

.M cooX FDM

Xdc4

(Or M o0)O , O

Figure 3.4: Schematized view of FDM (AM).

3.3.2 Frequency-division-multiplexing - FDM

Frequency-division-multiplexing refers to a type of modulation in which several band-limited

data signals are placed on to one wide band signal by each being modulated by a carrier

of different frequency (Figure 3.4.) Accordingly, such systems are often found in cases

where the data channel has a large bandwidth capacity compared to the bandwidth of the

data signal(s). For our case, the audio track of the Sony Betacam SP has a bandwidth

of approximately 12.5 kHz IOME Cam's data consists of seven 50Hz band-limited signals,

therefore the total data bandwidth is about 350Hz. Since the required bandwidth is about

an order of magnitude less than the available bandwidth, FDM is a reasonable modulation

strategy for IOME Cam's data storage.

The common commercial radio transmission methods of AM (amplitude modulation) and

FM (frequency modulation) are both FDM types and were considered for use in developing

this system.

Amplitude Modulation

AM was perhaps the most intuitive FDM modulation scheme considered for IOME Cam.

It was attractive because of the high available bandwidth capacity. There were several

amplitude and frequency-related detractors from using AM modulation however.

One problem was caused by the Beta Cam's built in automatic gain control (AGC). The

AGC's function is essentially to normalize the amplitude of the input signals to the camera's

audio tracks - an obvious obstacle to amplitude modulation. The camera did have an option

for disabling the AGC and manually adjusting the audio signal gain but the physical design

and interface of the corresponding knob gave no precise control, prevented repeatable gain

settings, and was obviously not designed for allowing storage of discrete electronic data

signals.

The other major obstacle to building the AM data modulation system was in the software

demodulation stage. Given seven different, and probably not precise, modulation frequen-

cies implemented in hardware, the task of synchronously demodulating each of them is

formidable.

Another consideration to keep part-count, and therefore size, down, was that number of

components needed to modulate and multiplex the seven different signals. It was most

desirable to keep all modulation tasks within the microcontroller.

Frequency Modulation and Phase Modulation

Where AM uses a modulating signal to vary the amplitude of carrier signal, the phase and

frequency of the carrier signal may also be altered for use in modulation. In FM modulation,

the frequency of the modulated signal varies around a central carrier frequency in proportion

to the amplitude of the input signal. Likewise, PM varies the phase of the carrier sinusoid

around a central value in proportion to the input signal.

Demodulation of an FM signal can be performed using a phase-locked loop. PLLs lock on to

an input signal's phase, calculate the difference between the expected phase and the actual

phase of the input signal which results in an output error signal. This output error signal

varies coincidentally and in the same manner as the changes in frequency of the modulated

signal: the output signal is proportional to the data signal.

X TDM (t

X1 X)

t

Figure 3.5: Schematized view of TDM (AM with pulse train carriers.)

3.3.3 TDM

Considering the limitations and obstacles of the FDM modulation schemes, several time-

domain-multiplexing schemes were considered. As its name implies, time-domain-multiplexing

communicates its multiplexed data streams through shared segments of the time spectra

(Figure 3.5) (i.e. only one data signal is transmitted at one time.) Intuitively, TDM modu-

lation is the simplest to implement. The main issues to be concerned with for IOME Cam

are the necessary and allowable data rates.

Since the Hummingbird's microcontroller has only digital (TTL) output capabilities and

considering computer interface purposes it made most sense to consider a digital output

TDM scheme (unlike the analog one, AM, depicted in Figure 3.5.)

Phase shift keying

The digital TDM modulation scheme that was chosen for use with this project is called

phase shift keying (PSK). In PSK, a periodic carrier signal stores information in it's phase.

Shown in Figure 3.6 with a pulse train carrier, a 1-bit is represented in (a), a 0-bit is a

"flipped" 1-bit in (b), and an example 8 bit byte is shown in (c). Phase shift keying was

an attractive solution to the modulation problem because it utilizes TTL digital output,

-7 7L
1 0

Figure 3.6: Schematized view of PSK: (a) 1-bit, (b) 0-bit, (c) 8 bits: 10011010

it lends itself well to time- domain-multiplexing without need for complex synchronous

demodulation techniques, and its operation is not functionally dependent on gain control

of the data channel.

Essentially the only consideration for implementation of the PSK modulator was the desired

data rate and the data storage channel's bandwidth. Since it is desirable to have inertial

data over-sampled compared to optical data (because of inertial data's time-dependent

nature) and since the NTSC video signal is updated at 30 Hz, the target update frequency

for the IMU was set at 90 Hz. An image of an actual IOME Cam PSK modulated data

waveform can be seen in Figure 3.7.

Recalling the 3 dB bandwidth of the audio track is roughly 0 to 12 kHz, it is safe to assume

gaussian-type curve and that the optimal audio frequency is about 6 kHz. A 6 kHz PSK

carrier has a period (bit length) of about 166 s. Accounting for 8 data bits, 1 start bit,

one stop bit, and 7 bytes per frame, each frame consists of 70 bits. The frame length is

11.67 ms, which yields a frame update rate of about 85.7 frames/second - quite close to the

desired 90 frames/second (90 frames per second is achieved with a 6.3 kHz carrier.)

While the inertial information update frequency of 90 Hz is well above the bandwidths

Figure 3.7: Raw PSK audio signal

of each of the motion signals, the estimated errors per frame for each data type can be

calculated given the duration of non-information per frame. Each frame consists of 7 bytes,

so a lag of 6 bytes, or 9.96 ms exists between each sensor's update. An estimate of each

sensor's frame-to-frame error may be found with the corresponding kinematic equations.

For the accelerometers (with 0.002 g noise)

dx = -0.002g 9.8/s 2 (9.96ms) 2 = 1.0
2 1g

The gyro, with 0.45 deg/sec noise gives frame-to-frame angular noise of

da = 0.45deg/sec (9.96ms) = 0.0045deg

1 7

3.3.4 Demodulator

The PSK demodulator for IOME Cam was developed entirely in software. In practice,

three elements were used in converting the audio waveform to binary data. A garden

variety audio digitizer was used to sample the audio signal at 44.1 kHz as a 16 bit stereo

signal in .wav format. Goldwave software was then used to convert .wav to .snd (ASCII.)

Finally a software demodulator was developed in Matlab.

The demodulation algorithm was simply to identify the interframe synch "bytes" and then

to read the 70 10-bit bytes in between. Byte reading was accomplished by iteratively time-

shifting one bit period length and analyzing the magnitude of the second half of each bit

carrier. An initial normalization component also was implemented in an attempt to undue

the signal damage incurred by the transformer and any other un intentional filtering. An

image of the demodulated "bits" from the signal in Figure 3.7 can be seen in Figure 3.8.

Figure 3.8: Audio signal and demodulated bits

3.4 Improving on the Hummingbird

There are a good number of engineering aspects of the Hummingbird that call for im-

provements, should the device be considered for more serious modeling application and

such. Namely, the fabrication, component placement, and design would need to be carried

out with more precision. The camera mounting connection is another necessary area for

improvement.

One of the Hummingbird's biggest advantages is its ease of use and application-based

adaptibility. For general purpose proprioceptive applications, the Hummingbird is an ideal

prototyping tool considering its ready-to-use nature and its built-in user-programmable gain

and bandwidth settings.

Several other striking needs for improvement of the Hummingbird IMU are its size and

speed. Currently the device is about the size of a computer mouse and needs to approach

the size and form factor of a matchbook, considering today's surface mount components and

minimal area connectors. IMU speed is another current limiting factor. Considering the

data channel it was designed to work with, transmission of around ten 8-bit data streams

at around 100 Hz suffices. However, such a system should be capable of real-time analysis

and storage of such data and transmission of higher bandwidth information.

- -

Chapter 4

The joint motion estimator: the
Kalman Filter

This thesis sets out to produce a joint motion estimator, combining inertial and visual

motion estimation techniques. This can be accomplished by combining an optical motion

estimator, such as those based on optical flow or feature tracking (Section 1.3), with in-

ertial motion data by use of Kalman filtering techniques. The inertial motion data, when

transformed to be represented in terms of the image plane via a transform model like equa-

tion 1.1 or 1.2, becomes readily accessible for comparison or joining with other (optical)

motion terms.

4.1 Characteristics of the Kalman Filter

The Kalman filter came about as an extension of the Wiener solution for obtaining an

optimal estimate of a system's state [Kalman, 1960]. That is, the Kalman filter is used to

produce an unbiased, minimum variance, consistent estimate of a state vector, i, based on

a set of measurements, y, in a system that can be described by the two governing equations:

The extended Kalman filter is implemented by recursively computing updates 1 to the state

vector F and the state error covariance matrix P, given initial estimates of these two quan-

tities. For our system, updates occur in two ways: temporal updates, based on inertial

information, and observational updates, based on optical information. When accurate opti-

cal motion information, or measurements, are available, they are used for the estimator. For

the times when optical information is available with a higher error probability, the inertial

information is used for the estimator (in a dead-reckoning-like manner.)

Xk = Ak-1 4-1 + 17k (4.1)

and

Yk = Bk - k -- Ek (4.2)

where

A and B are matrices describing the relationships between observed and state vectors,

7is Gaussian random forcing function (noise) with error covariance matrix Q
f is the measurement noise with error covariance matrix R

The two noise sources, 7 and (, are considered white noise, that is their values at some

time k is completely independent of their values at any other time k and that they are

independent from all other variables being considered. The errors are assumed to be zero-

mean random vectors, uncorrelated in time, but possibly having correlations among their

components. They are expressed in terms of covariance matrices Q and R

'The updates for this system occur at a rate of 90Hz, which provides inertial data at three times the rate
of optical data (for NTSC signals). For PAL or other video signal types, the IMU speed could be altered to
maintain the 3:1 inertial to optical data ratio.

Q = (W#T) (4.3)

R = (FT) (4.4)

The error covariance matrices are used in the iterative filter to compute current values for

filter weights.

The Kalman filter is a recursive procedure, efficient with computational resources and mem-

ory. It uses the result of the previous step to aid in obtaining the desired result for the

current step. This is a key difference from the Wiener (weighting function) approach, which

requires arithmatic operations on all the past data. Kalman's solution also lends itself well

towards discrete-data problems, and time-variable, multiple input/output problems (which

navigation is an example of). The camera navigation problem, with both optical and inertial

data, is a prime candidate for use of the Kalman filter estimator.

4.2 Filter Iteration and Propagation

For a system defined by equations 4.1 and 4.2 the recursive Kalman filter propagates in the

following manner. Given initial estimates for the state Fkik1 and error Pkik_1, the steps

are the following.

* Make estimate of the new observable - This estimated value uses all state data up

to the present time.

Ykjk-1 = Bk - Xkik1

* Obtain new measurement for the observable - This observable vector may be of

variable length, depending on which measurements are available.

Yk

* Compute the Kalman gain matrix - The Kalman gain matrix includes the weighting

factors of each observable for future state predictions. It is this matrix which will

alternate between the inertial and optical data, based on their respective contributions

to the error covariance.

Kk = Pkik_1BT(BkPkik_1Bk + Rk)-1

e Make optimal estimate of the new state - This value will be the best estimate of the

state and will be used for predicting the next state as well as for estimating the next

observable.

Xkjk = XkIk-1 + Kk(Yik - YkIk-1)

" Update the error matrix - Using new Kalman gain matrix

PkIk = (1 - KkBk)Pkik_1

" Make prediction of the new state - Make predictions for next iteration.

Xk+1|k = Ak 'kk

" Predict the new error - Typically, the magnitude of P will increase with inertial

(temporal) updates and will decrease with optical (observational) updates.

Pk+1|k = AkPkIkAk +

The above steps are then repeated. Given this iterative method, only the data from the

previous step, plus any new (observed) information, is necessary to reach the next itera-

tion(s).

4.3 Controlling Errors with the Kalman Filter

The strength of the Kalman filtering comes from its selective weighting of a system's inputs.

The Kalman gain matrix K, used for finding the new state 'kIk and error matrix Pkik,

dynamically changes the weighting it gives to each input type based on the system's current

Optical Error
Error Components
Covariance

Inertial Error
Components

STime

Kalman Gain
Weighting

optic o-
Information

Inertial _ _ ~ ~ ~ ~ ~ ~ ~
Information

Time

Figure 4.1: Kalman gain matrix dynamically changes weights of input types based on their
contributions to the error covariance matrix.

error covariance P whose internal components are functionally dependent on the accuracy

of the inertial and optical information.

This functionality can be qualitatively seen in Figure 4.1. It is shown that the components

of the error covariance due to inertial data and optical data continuously rise and fall during

the segment. The Kalman gain weighting adjusts accordingly, yielding a minimum variance

estimate of the state vector.

Figure 4.2 shows the corresponding positional errors for each data type alone accompanied

with the resulting optimal-estimate error contribution, which is better than either of the

two alone.

4.4 IOME Cam's System Model and State Space

To estimate a camera's motion, the relevant variables for the state vector are those as-

sociated with translation and rotation with respect to a set of global coordinates. The

Position
Error Inertial

Estimator /j Optical
Estimator

A

t Joint
Estimator

Time

Figure 4.2: View of positional errors: inertial, optical, and joint (using Kalman filter.)

components of the state vector X for our system are defined as

" x 1: x-position, Ps, (with respect to global coordinates)

* x 2: x-velocity, Vs, (with respect to body-fixed coordinates)

* x 3 : x-acceleration, Ax, (with respect to body-fixed coordinates)

* x 4 : y-position, Py, (with respect to global coordinates)

" x5: y-velocity, Vy, (with respect to body-fixed coordinates)

* X6 : y-acceleration, A., (with respect to body-fixed coordinates)

* x 7: z-position, P, (with respect to global coordinates)

* x8 : z-velocity, V,, (with respect to body-fixed coordinates)

" x: z-acceleration, A2 , (with respect to body-fixed coordinates)

* x1o: Roll, <, (angular position about body x-axis with respect to global coordinates)

* x11 : Roll rate, w, (rate of rotation about body x-axis)

* x 12: Pitch, 0, (angular position about body y-axis with respect to global coordinates)

. x 13 : Pitch rate, wo, (rate of rotation about body y-axis)

e x14 : Yaw, 0, (angular position about body z-axis with respect to global coordinates)

" x15 : Yaw rate, w2, (rate of rotation about body z-axis)

Note that the terms associated with camera orientation, that is roll (4), pitch (0), and

yaw (4), must be defined in terms of the global coordinate system via the coordinate

transformation introduced in section 2.3. This step introduces a nonlinear characteristic to

our Kalman filter and is described in detail in section 4.8.

4.5 System Update

When maximal measurement data is available the entire state space can be updated and/or

estimated in one step. In such a case the following full state-space update step is taken.

1 At 2

At

1 At }At 2

1 At
1

1 At }At 2

1 At
1

In other cases, this step updates the required state values. Which components are updated

is dependent on the measured information (discussed in the next section.)

4.6 Observables

New IMU data is available to our system at a rate of 90 Hz (see section 3.3) while optical-

data occurs at 30 Hz. Therefore, for our 90 Hz update rate system, the comprehensive

measurement vector, y, occurring a third of the time is given by

ax -x-acceleration
ay y-acceleration
az z-acceleration
WX roll rate
WY pitch rate

= WZ yaw rate
afxaffine scaling parameter
afyaffine scaling parameter
afaffine shear parameter
afyx affine shear parameter affine x-translation parameter

affine y-translation parameter
- by .

When only the inertial data is available, the measurement vector has less terms and the

update step matrices, A and B, are updated accordingly.

4.7 Modeling System Noise and Uncertainties

The noise and uncertainty of IOME Cam's components show their affect in the values of

the error covariance matrices Q, R, and P. The following sections discuss how these error

sources are modeled.

4.7.1 Accelerometer Uncertainty

Uncertainty of system input signals from accelerometers has a number of potential causes.

The ADXL05 type sensors used for this project, like all other accelerometers, suffer from

the following: non-linear sensitivity response to various input frequencies 2 , change in noise

as a function of temperature 3, and change in sensitivity as a function of temperature. The

latter is accounted for in the design of the Hummingbird - a temperature sensor is located

on-board so that accelerometer sensitivity can be dynamically calculated.

4.7.2 Gyroscope Uncertainty

Similar to the accelerometers, the Gyrostar gyroscopes being used for this project suffer

from uncertainties and noise due to temperature dependencies since their active elements

are piezoelelectric. Using vabratory pulses as their actuating and sensing mechanisms,

these sensors are also vulnerable to oscillatory interferences that are present at the resonant

frequency or its harmonics.

4.7.3 Random Forcing Function System Noise

Possible random forcing-function noise will appear in this system due to unmodelable dy-

namics of motion of the inertial sensors. Such motion can be caused by the human camera-

operator but also can be due to internal sensor errors such as cross-coupling, vibropendulous

errors, and hysteresis. These uncertainties must be initially estimated. For this system, their

contributions have been considered negligible.

2 This error will have minimal effect. The ADXL05 has a nearly linear "normalized sensitivity vs. fre-

quency" response up to about 200 Hz, which is well above the limit of human motion.
3 Micromachined silicon is temperature sensitive and experiences thermal hysteresis effects.

4.8 Recovering rotation and orientation

4.8.1 Orientation From Gyroscopes

The camera's position and orientation with respect to a global coordinate system are desired

quantities in our system's state. The IMU's sensors sense motion with respect to body-fixed

axes so a coordinate transformation is necessary to yield useful motion data.

To determine orientation, both the IMU's gyroscopes and accelerometers can be used. Fig-

ure 2.8 shows two sets of rectangular axes, one in the Global coordinate system (for the

system state vector) and one in a body-fixed coordinate system (for the IMU motion sen-

sors). It can easily be shown [Boas, 1983] that one set of axes can be written in terms of

the other by

(XIy = 2
z 13

ni x
n2 y
n3 z)

where 11 = the angle between the x and x' axes = cos (xx'), 12 = cos L(xy'), 13 = cos L(xz'),

12 = cos (xy'), m1 = cos (yx'), m2 = cos (yy'), m3 = cos L(yz'), ni = cos (zx'),

n2 = cos Z(zy'), and n3 = cos (zz').

For the case of our IMU, given a sufficiently fast update speed 4, the li,

terms can be found directly from gyroscope outputs, since the associated

per clock cycle can be estimated as the rotation rate multiplied by cycle

mi, and ni cosine

angles of rotation

time

11 = cos t(xx') = cos([(wydt)2 + (wzdt)2])

12 = cos L(xy') = cos(90 + wzdt) = sin(wzdt)

13 = cos L(xz') = cos(90 - wydt) = - sin(wydt)

4The angles subtended per IMU system-clock tick should be several orders of magnitude smaller than
the state vector angles

mi = cos L(yx') = cos(90 - wzdt) = - sin(w~dt)

M2 = cos L(yy') = cos([(w~dt)2 + (wxdt)2]})

M3= cos (yz') = cos(90 + wydt) = sin(wxdt)

ni= cos (zx') = cos(90 + wvdt) = sin(w dt)

n2= cos (zy') = cos(90 - wxdt) = sin(wxdt)

n3= cos (zz') = cos([(wxdt)2 + (wv dt)2)

This type of orientation recovery was implemented with the Hummingbird for demonstration

purposes and related signal-analysis and avatar-rendering code are available in Appendix E

and from the Hummingbird web site.5

4.8.2 Orientation From Accelerometers

For low-acceleration systems, a triad of accelerometers may also be used to measure, or

"watch", gravity to ascertain object orientation, that is roll and pitch angles with respect

to the global coordinate system. Such a scheme would yield one ambiguous degree of

freedom, however - that being object "heading" with respect to the gravity vector.

5The Hummingbird web site is located at http://physics.www.media.mit.edu/projects/hummingbird/
and is a source of related C/C++ code and OpenGL code for avatar control, assembly code for on-board
control, and gerber files for board manufacturing.

Chapter 5

Related Work - Inertial
Proprioceptive Devices

The IOME Cam one of a number of motor-cognizant devices being researched and developed

in a common body of work. Some of the related applications and motivations are described

in this chapter as well as the notion of making dumb devices into self-aware ones. Inertial

proprioception is also pointed out for its autonomy-enabling virtue as compared to all other

(externally referenced) motion sensing types.

As technology redirects intelligence away from the desktop and into everyday objects, com-

mon devices such as appliances, clothing, and toys are given computational sensing and

communication abilities. This technological movement is exemplified in such research ini-

tiatives as the MIT Media Lab's Things That Think projects and Xerox PARC's concept

of Ubiquitous Computing. While much of the associated work centers around devices that

sense and respond to the motion, presence, or state of people and objects in their surround-

ings (examples include 3D mice, smart tables, and smart coffee cups), this paper focuses

on devices that have a sense of themselves, particularly a sense of their own motions. Em-

bedded with inertial sensors, these devices are capable of autonomously sensing their own

motions and orientations and reacting accordingly. As a result, they are called inertial

proprioceptive devices.

Devices with this self-motion-sensing ability can monitor their motions and respond to them.

Consider a handheld personal digital assistant (PDA) containing inertial sensors. Such a

device could allow its user to move through complex information spaces by physically moving

or tilting the PDA in the corresponding direction. To go a step further, an inertial sensing

user-controlled device with a sense of its own functionality could assess its state and give its

user appropriate feedback. For example, a baseball bat could give batting tips, or juggling

balls could teach a novice to juggle.

Motion sensing is not a new idea. For years, security systems, weapon systems, and medical

and entertainment systems have employed various forms of "externally referenced" motion

sensing technologies such as infrared, radar, and video. Internally referenced, autonomous

motion sensing has also existed for quite some time. Robots, aircraft, automobiles, and

other vehicles have sensed and measured their motions for decades, using varying elec-

tromechanical sensors as well as inertial sensors.

Most of the motion sensing technologies referred to above are restricted in terms of where

and how they are useful. Infrared, radar, and video motion sensing technologies are all

"externally referenced", physically removed from the moving object of interest. As a result

these sensing modes are subject to occlusions and numerous interferences and noise sources.

Although cars and aircraft measure their own motions, their motion sensors are both di-

mensionally and directionally limited. A car wheel's motion sensor requires the friction of

a road and only senses in one dimension; a pitot tube only works for an aircraft traveling

forward in familiar atmospheric conditions.

A more tractable and generally effective type of motion sensor is the inertial sensor. Used

in spacecraft, aircraft, and submarines for years, this type of sensor attaches directly to the

moving body of interest and gives an output signal proportional to its own motion with

respect to an inertial frame of reference. Two types of sensors comprise inertial sensing:

accelerometers and gyroscopes. Accelerometers sense and respond to translational accel-

erations; gyroscopes sense and respond to rotational rates. Inertial sensors are desirable

for general motion sensing because they operate regardless of external references, friction,

Sensor Type Date Bias Size Price
Stability [in 3] [$U.S./axis]
[deg/hr]

Electrostatic Gyro 1970s 0.02 50-100 17000
(ESG), Rockwellt (1 naut.m/hr)

Expected Near-Termtt
navigation & mili- 1990s 0.02 10 - 20 5000 - 10000

tary gyros (1 naut.m/hr)
Expected Near-Termtt

general consumer 1990s 10 0.01 - 1.0 1 - 10

gyros

t: ESG references include [Schwarz, 1976] and [Mackenzie, 1990]
tt: With reference to [BKE, 1994]

Table 5.1: Cost, Size, and Performance of Selected Inertial Sensors from 1970s to 1990s

winds, directions, and dimensions. However, inertial systems are not well suited for abso-

lute position tracking. In such systems, positions are found by integrating, over time, the

sensors' signals as well as any signal errors. As a result position errors accumulate. Inertial

systems are most effective in sensing applications involving relative motion.

Until recent years, inertial sensors have only found use in the few fields mentioned above,

since their cost and size have traditionally been quite prohibitive (see Table A.1). Since

their inception, these sensors have largely been complex and expensive electromechanical

devices. Accelerometers have been made of relatively large mechanical proof masses, hinges,

and servos; gyros have been built with multiple mechanical gimbals, pickoffs, torquers, and

bearings. Recent advances in microelectromechanical system (MEMS) technologies have

enabled inertial sensors to become available on the small size and price scales associated

with commonplace devices like consumer appliances. These advances are largely a result of

batch processing techniques developed by the time-keeping and microelectronics industries

[BKE, 1994].

5.1 Example Proprioceptive Applications

Motion sensing of common objects such as shoes and pens has long existed in one form or

another. Treadmills have measured people's walking speeds and distances. PDAs sense the

path of a pen tip as a user writes on them. And computer programs analyze optical flow

of digitized video to infer camera motion. Each of these forms of motion detection requires

an externally displaced device to actually sense motion.

Inertial sensors do not require external references, and since they are becoming inexpensive

and smaller in size, they offer a new means of autonomous motion detection for devices

that have long been dependent on external references (ie. shoes and treadmills). Both

the automobile and computer industries have quickly found uses for inertial sensing. In the

automotive market, car navigation and airbag control are the main inertial applications; the

consumer computer market is seeing new input devices that can be used in three dimensional

space like inertial mice and head trackers for virtual reality. The inertial market for these

two industries is estimated to be in the range of $4 billion a year over the next several

years.[BKE, 1994]

Current work at the MIT Media Lab is focused on giving ordinary devices autonomous

motion sensing capabilities, via inertial sensing, so that as pens write, shoes walk, and

cameras move, these objects sense their own motions without need for external references.

The following sections describe several example applications of human-controlled motion-

sensing devices and the characteristics of their related motions. Figure 5.1 summarizes the

characteristic input motion levels for general user-controlled devices. For each application,

estimated motion data ranges are given along with experimentally recorded ranges. The

experimental motion data was gathered both from video analysis and from a three-axis

accelerometer-based inertial measurement unit (IMU) with a range of ±10g. This IMU used

Analog Devices' accelerometer model ADXL05, a type of capacitive pendulous accelerometer

to be described later.

Head devices (video camera)
Pan/Tilt: < 60 deg/sec
Avg. Frequency: 3.5 Hz
Frequency: < 8Hz Hand, arm, upper body devices

(Tennis Racket, Baseball Bat)
Acceleration Range: 0.5 to 9.0 g
Frequency: < 12 Hz

Hand, Wrist, Finger Devices (Pen)
Acceleration Range: 0.04 to 1.0 g Foot-Leg devices (shoes)
Frequency: < 8-12 Hz Acceleration Range: 0.2 to 6.6 g

Frequency: < 12 Hz

Figure 5.1: Characteristics of motion for common human-controlled devices.

5.1.1 Pen

Personal digital assistants and signature verification devices both employ forms of hand-

writing recognition - each analyzes the path of a pen tip on a writing surface. If a pen

is given inertial sensors and onboard computation and memory resources, it can sense its

motions while it writes and use that motion data to estimate its time-varying position. By

employing a pattern recognition method such as a neural network or hidden Markov model

[SMS, 1994] on its time-varying pen tip position, the pen can know and remember what

it has written. Such a "smart" pen could not only save notes and letters but also send

email, solve mathematical problems, check for spelling errors, and carry out other standard

computer operations.

An estimated range for pen tip accelerations was found by video taping the pens and papers

of several people as they signed their names. Pen tip velocities and radii of curvature of

a number of characters were used to calculate the corresponding centripetal accelerations,

which ranged from 0.1 g to 1.0 g.

Pen tip accelerations in the 2D writing plane were also recorded using the aforementioned

IMU attached to a pen tip. Recorded handwriting accelerations ranged, with uniform

distribution, from 0.04 to 0.66 g.

The frequency of motion for handwriting will be estimated as the approximate natural

frequency of the wrist and hand, 8 to 12 Hz, and should not exceed 20Hz [?]. Considering

the relative size and motion scales, the handwriting characteristic frequency described here

will act as the frequency limit for other applications such as foot, leg, and arm controlled

devices.

5.1.2 The Digital Baton

An application with similar motion-sensing requirements is the 'Digital Baton' [Marrin, 1996],

which was developed at the MIT Media Lab. This device, using an orthogonal accelerome-

ter triad for motion sensing and several pressure sensors for analog finger inputs, allows its

user to 'conduct' and control computer music orchestrations simply by moving and gripping

it in different ways.

5.1.3 Cameras

In addition to the inertial-optical motion estimating video camera being described in this

paper, there are a number of other motivations and applications for cameras to know their

motions. Currently, one of the main trends of information technology is towards object-

based media and media with higher-level "tags" or meta information. The attachment of

sensors to a video camera that allow recognition of video-related values, like motion, zoom,

focus, and lighting, will allow automatic tagging of the video and audio information with

a meta-track. Such information is useful for editing, playback, and other interactions of

media types.

5.1.4 Shoes

Just as most types of vehicles have speedometers and odometers, shoes should also be able

to sense and track their motions. The medical and athletic fields have relied on various

forms of externally referenced walking rate and distance sensors for some time. Shoes

embedded with an inertial sensing system would allow walking-sensing to be carried out

unobtrusively and in any setting. An inertial shoe pedometer system would work much like

the pen and camera described above; inertial sensors would record shoe motion components

and an onboard computer would estimate speed and distance traveled. Given sufficient

computational, memory, and sensing resources, a proprioceptive shoe system could not only

tell its wearer how far and fast he/she is walking but could also diagnose gait abnormalities

or alert the wearer that it's time to replace the shoe soles.

For a benchmark estimate of the shoe accelerations associated with walking, consider an

average man's walking speed of 3.5 mph (5.13 fps) or 2 steps/sec [Starner, 1996]. The

centripetal acceleration of a shoe traveling 5.13 fps about an average adult's knee of radius

2.17 ft [Woodson, 1981] is 12.1 ft/sec2 (about 0.4 g).

Experimental values of walking foot accelerations were obtained with the previously men-

tioned IMU fastened to a shoe near the ball of a foot while walking. Recorded accelerations

ranged from 0.19 to 6.57 g, with nearly all the acceleration activity located near the mean

of 1.59 g.

Given the estimated walking accelerations, inertial sensors used for shoe motion tracking

should have an input range of about +10 g's.

5.1.5 Bats and Rackets

The final example application area includes toys and tools that are swung or waved expres-

sively by their users. A baseball bat or tennis racket that senses its motions can tell a player

how fast he/she is swinging and if used with other sensors and a microprocessor, could give

feedback information about a player's performance.

Using the test IMU, hand accelerations were recorded during athletic arm/hand swinging

motions. An acceleration range of 0.49 to 9.02 g was found. Most of the acceleration activity

was concentrated near the mean value of 2.2 g.

Baseball bat accelerations for a typical youth swing (bat speed of 40 mph, 58.7 fps)

[WB, 1990] are estimated as the centripetal acceleration. These will serve as an upper

limit. Assuming a swinging arm length of 2 feet and a distance of about 10 inches from

the hands' position to the center of mass of the bat, the bat will experience a maximum

acceleration of (58.7fps) 2/2.8ft = 1230ft/sec2 = 389's! At the same time, the handle of

the bat will undergo an acceleration of about (29.3fps) 2/2ft = 429ft/sec2 = 13g's.

Given the motion range estimates for these athletic/expressive hand and arm applications,

any inertial sensors measuring the motion of a user's hand or arm needs to have an upper

input limit of near 10 to 15 g's. If the motion of an object extending from the user's body

(like a baseball bat) is to be sensed, a greater input range (about 50 g) is necessary.

'l- I.- - I-- - -I - -.1-11-- - - -11-1 - I 1 -1-1 -1-- - I - - - --- - - .. -- , . - I

Chapter 6

Conclusions and Future Research

In the course of work, research, and development associated with the IOME Cam project,

a number of conclusions were reached and an even larger number of directions for future

research were found. These aspects will be discussed in the following sections.

6.1 Motion Estimation: Optical and Inertial

Given that the domain of camera motion estimation is an interesting and useful one, char-

acterizing the technologies and methods of performing such estimation is a useful task. The

conventional optical motion estimation techniques, while quite thorough in development,

suffer from a number of fundamental shortcomings based on their input type and its imposed

constraints on the motion estimation problem. For vision based motion estimators, some

hindrances in the estimation are encountered unmodelable changes in lighting and texture,

dynamic (movement) scenes, and occlusions. Such error sources are typically transient in

nature, meaning useful optical information will reappear again and then fade again. Hence,

vision-based motion estimator systems are best suited for longer time period estimation.

The feature tracking approach exemplifies this characteristic.

Conversely, inertial motion estimation is weakest in long-term applications. Inertial sys-

tems perform best in analyzing relative motion or short, intermediate, intervals. For these

reasons, the inertial and optical data types are complimentary for the motion estimation

problem. Where a sole inertial system would experience fatal baseline drifts over long peri-

ods of time, an optical system's longer-period absolute update information can restore the

inertial baseline. At the same time, where vision systems are unable to perform optimally

from one given frame to another due to visual misinformation, inertial systems are ideal for

"filling in the holes".

The work done for this thesis project makes an advancement towards a fully integrated

camera motion estimator in which inertial data accompanies optical data in a joint motion

estimator. The two information types each have error-prone tendancies, but the advantage

of combining them is that the long-term stability of vision data is able to restore inertial

error drift and that the frame-to-frame usefulness of inerital data can correct spurious optical

errors.

6.2 Applications and Motivations

Motivating applications for a joint inertial-optical motion estimating camera system are

numerous. The introduction of this paper described several, including two dimensional and

three dimensional computer modeling of scenes, which have applications in compression

and transmission of "movie" data as well as creation of visual and audio special effects.

Knowledge of positional information about where the camera has been or is going can allow

integration of computer generated media entities with the recorded real media.

The entertainment industry has shaped much of IOME Cam and its related work. Spe-

cial effects creation along with the application of virtual sets are both benefactors and

users of the camera motion parameter technology. Another entertainment medium that is

quite suitable for inertial video data is the evolving ride movie. The video, motion, and

sound-recording IOME Cam makes a natural input to the video, motion, and sound-output

theaters being built today.

Another research area, extending from IOME Cam, that is being actively pursued by the

author and Media Lab researchers is the concept of MetaMovies1

6.3 Inertial Sensing Technologies

The state of inertial sensing has progressed to a point where integration of inertial motion

sensors with applications like the IOME Cam are afforable and effective. Performance,

price, and size characteristics are allowing cameras to watch where they're going and a host

of other devices to become motor-cognizant and motion- responsive.

The technologies associated with inertial sensing are also progressing at enourmous rates[KD, 1996].

In the course of the two years that the IOME Cam and its related projects were ongoing,

the state of the art in micromachined silicon accelerometer technology included a decrease

in both size and cost by about sixty percent.

6.3.1 The Hummingbird, IOME's IMU

The Hummingbird IMU, originally intended just for the IOME Cam project, through the

course of its development, became a general purpose platform for Things That Think-related

projects. The sif degree of freedom, temperature sensitive, and user programmable IMU is

easy to work with and plug in to other applications, but is lacking in terms of the precision

engineering requirements of some IOME Cam related goals. The non-precise component

placement and alignment should be allayed in the next version as should the 8-bit A/D

data stream (12 or 16 bits would allow for higher motion data precision.)

Also, the Hummingbird's mechanical couplings and interfaces inevitably led to numerical

errors in inertial motion estimation. Again, all levels of mechanical / engineering positioning

Introduced in Section 1.2.2, the research project aims to record camera motion and other camera state
variables (i.e. zoom and focus) synchronously with the audio and visual action. Camera state data is
analyzed to extract higher lever, meta, information relating to the action or content of the movie. This work
is being carried on with the Media Lab's Digital Life consortium.

and alignment could be improved upon.

Performance-wise, the IMU and its corresponding modulator and demodulator work only

in a post production setting in which speed is not crucial. Ideally, this system should work

in real-time (which would allow numerous new application), but is in need of faster and

more sophisticated hardware to do so. Modulation and demodulation of the Hummingbird's

motion data signal was sufficient for the 90 Hz TDM scheme presented earlier, but could

be improved with one of a number of FDM modulation schemes.

6.4 Other Proprioceptive Devices

The IOME Cam is one of a family of proprioceptive devices under development. The notion

of devices with a sense of themselves that know how they are moving and can act accordingly

is an empowering and technologically exciting one. Projects related to this motion-sensing

camera include shoes with inertial pedometers, pens that know what they're writing, golf

clubs and baseball bats that assits their users, and a digital conductor's baton that controlls

a computer orchestra.

While inertial sensing has been shown to be somewhat of a born-again technology that has

found a home in intelligent personal electronics, the development of this IOME Cam project

has shown that inertial sensing is a powerful addition to the camera motion parameter

estimation problem. Where vision-based estimators once ran into impossible modeling

situation, with a lack of visual information, inertial motion data fits in in a corrective

manner. The sole-inertial motion estimator also benefits from the long term stability of the

optical estimator, showing that the two modes work better together.

Appendix A

Hummingbird - Assembly

Figure A.1: Hummingboard

Figure A.2: Birdboard

Figure A.3: Birdboard A

A.1 Parts List

Parts to order for Hummingbird. All parts were ordered from Digi-Key
Digi-Key Corporation
1-800-digi-key
http://www.digikey.com/

Part Number Description Price Manufacturer
Gyro Circuit

3299W-104-ND 3/8" multiturn 56.40/200 Bourns
100 K pot

P4908-ND 0.047uF cer cap 7.83/200 Panasonic
P5292-ND 4.7uF elec- 5.85/200 Panasonic

trolytic cap

Accelerometer Circuit
3299W-105-ND 3/8" multiturn 56.40/50 Bourns

1M pot

56KEBK-ND 56K 1/8W res. 4.70/200 n/a
270KEBK-ND 270K 1/8W res. 4.70/200 n/a

PCC223BCT-ND 22nF smt cap 20.00/100 Panasonic
PCC333BCT-ND 33nF smt cap 20.00/100 Panasonic

General Bird Board

A5506-ND SPST 6-crqt switch 15.13/10 AMP
MAX475CPD-ND 10MHz qd opamp 154.50/25 n/a

3M1110-ND 2mm 10 pin 10.40/10 n/a
dual row header

3M1008-ND 2mm 8 pin 10.40/10 n/a
dual row header

3M1108-ND 2mm 8 pin 12.90/10 n/a
dual row header
General Hummingboard

MAX202CPE-ND rs232 transceiver 29.40/10 n/a
CT2082-ND 2-cqt SPST 8.90/10 n/a

dip switch

H2031-ND 2mm 10 pin 10.70/10 n/a
vert. pcb sock

WM4700-ND 2 pin right 1.13/10 n/a
angle header

102CR-ND blue LED 7.83/10 CREE
LT1078-ND red LED 1.38/10 LITEON
LT1080-ND green LED 1.38/10 LITEON
3M1010-ND 2mm 10 pin 12.90/10 n/a

dual row socket

Table A.1: Parts, Prices, and Manufacturer Information for Hummingbird.

Appendix B

Hummingbird - Programming

B.1 PIC microcontroller code

hum-au.1 verpcam driver code - send 6Kbaud audio signal

including 7 chanels of dataw

General Purpose Inertial Controller PIC Controlling Code

Chris Verplaetse

MIT Media Lab

May-Oct 1996

- Device Configuration

DEVICE PIC16C71,HSOSC,WDTOFF,PWRTOFF,PROTECTOFF

id 'ADC1' ; Device ID

; -- Port Assignments

serialin
;serial-in
MUXA
MUXB
MUXC
TX

DEBUG1
DEBUG2

; -- Constants

;BITK

;HALFBITK

;BIT.K

;HALFBITK

BITK

EQU
EQU

EQU
EQU
EQU
EQU

EQU

EQU

EQU
EQU
EQU
EQU

EQU

RA .2

RB .0

RB. 1
RB .2

RB .3

RB .4

RB .5

RB .6

24

12

50

25

83

;trigger pin - listens to PC
;trigger pin - listens to PC

;PIC pin7 -- > mux select A

;PIC pin8 -- > mux select B

;PIC pin9 -- > mux select C

;serial data out

;debugging pin

;debugging pin

;24 for 19200

;50 if for 9600

;83 for 6000

HALFBITK

;BITK
;HALFBITK

;BITK
;HALFBITK

SENSORTOT

EQU
EQU

EQU
EQU

EQU
EQU

42
102
51
206
103

;102 if for 4800

;206 if for 2400

6 ;there are *7* sensors 0 through 6

; -- File Register Initialization

org OCh

counteri ds I
counter2 ds 1

delay-ctr ds

xmt-byte ds

bit-ctr ds

rbit-ctr ds I
rcv-byte ds 1

rcv.trig ds I
sindex ds 1

sindexo ds 1

bytenum ds 1

Initializations

- ADC Setup

0

64

128
192

0

8

16

24

;PIC oscillator period X 2 (<=1MHz)

;PIC oscillator period X 8 (<=4MHz)

;PIC oscillator period X 32 (<=16MHz)

;Independent RC Oscillator, 2-6 us

;ADC Channel 0 (AinO, pin 17)

;ADC Channel 1 (Aini, pin 18)

;ADC Channel 2 (AinO, pin 17)

;ADC Channel 3 (AinO, pin 17)

AD-clk I AD-ch

;AD-ref = 0 ;RA.0-RA.3 Analog, Vdd reference

;AD-ref = 1 ;RA.0-RA.2 Analog, RA.3 reference

AD-ref = 2 ;RA.0/1 Analog, RA.2/3 Digital, Vdd reference

;AD.ref = 3 ;RA.0-RA.3 Digital Input, Vdd reference

Set starting point in program RON to zero. Jump past interrupt vector to beginning of program. (This

program doesn't use interrupts, so this is really not needed, but it will be easier to add interrupts later if requi

org 0

jmp start

org 5

start clrb rpO

mov intcon,#0 ;Turn interrupts off.

mov adcon0,#10000000b

setb rpO ;Enable register page 1.

mov TRISA,#255 ;set

mov TRISB,#0 ;set

mov adconi,#ADref ;Set

clrb rpO ;Back to register page 0.

setb adon ;Appl

clrb DEBUG1

clrb DEBUG2

clrb TX

clr rcv.byte

;Set AD clock and channel.

porta to input.

portb to outputs.

usable pins, Vref.

y power to ADC.

;AD-clk =
;ADclk =
AD-clk =
;AD-clk =

AD-ch =

;AD-ch =
;AD-ch =
;AD-ch =

AD-ctl =

clr rcv-trig
clr xmt-byte
mov sindex,#O ;initialize sensor index
mov bytenum,#65

:goesync nop

:xmitsync

mov
mov
rr
movb
call
djnz

:goe nop
call muxsele ;select mu
call littledally ;give
call adcsample

:xmit

mov sindex,#O

setb
call
mov
rr
call
djnz
clrb
call
inc
cjbe

xmt-byte,#00000000b ;sync byte
bit-ctr,#4 ;8 data bits in a byte
xmt-byte ;move bit 0 of xmt-byte (from adcsample)
TX,c ;transmit the bit
period ;delay
bit-ctr,:xmitsync ;Not 8 bits yet ? Send next bit

x chO
mux time to settle after address

c ;start bit
xmt
bit-ctr,#8 ;8 data bits in a byte
xmt-byte ;moves lsb into c
xmt
bit-ctr,:xmit ;Not 8 bits yet ? Send next bit
c

xmt
sindex ;increment sindex
sindex,#SENSORTOT,:goe ;go to next sensor

jmp :goesync ;start over

xmt movb
call
movb
call

TX,c
halfperiod
TX,/c
halfperiod

halfperiod mov
:delay-loop nop

djnz
ret

period mov
:delay-loop nop

djnz
ret

adcsample setb
:not-done jnb

jmp
:gotit mov xmt-b

mov
clrb ADIF ;not sure

ret

delayctr,#42

delay-ctr,:delay-loop

delay-ctr,#83

delay-ctr,:delay-loop

go-done ;Start conversion
go_done,:gotit ;Poll for 0 (done)

:not-done
yte,adres ;Move ADC result into xmt-byte

xmt-byte,#01000001b ;debug
if this helps ?

littledally mov delaysctr,#50 ;this should be about
:littlejloop nop
djnz delay-ctr,:little-loop
ret

muxsele mov sindexo,sindex ;copy sindex to sinexo for manipulation
mov c,#0
rr sindexo
movb MUXA,c
rr sindexo

;dummy bit to insert into c
;bit 0 of sindex goes to c
;assign bit 0 of sindex to MUXC
;bit 1 of sindex goes to c

movb MUXB,c ;assign bit 0 of sindex to MUXB

rr sindexo ;bit 2 of sindex goes to c

movb MUXC,c ;assign bit 0 of sindex to MUXA

ret

nop

nop

nop

Appendix C

Demodulator MATLAB code

function [retval] = process(filename,startnum,len)
% (<filename>,<start-data-point>,<length>)

% writeoutfile('verpcam4.snd',2455,600)

endnum = startnum + len; %end data-point of this sequence

fidr = fopen(filename,'r'); % filehandle open

x = fread(fidr,(endnum),'short'); % x = all data points
y = x(startnum:endnum); % y = our data points of interest
% ------ begin condition the signal (rp)
n = 10;

z = conv([1:n]*0+1,y)/n;
nice = y-z((n/2):(len+n/2)); % nice is nicer than y (closer to bits)
figure(1);
plot(nice(i:len),'b');
title('nice');
legend('nice');
%retval = nice;
% ------- end conditioning the signal
status = fclose(fidr); % close filehandle

use = nice;
nicemax = max(nice); % nice maxvalue
nicemin = min(nice); % nice minvalue
nicemean = mean(nice); % nice meanvalue
nicemedian = median(nice); % nice medianvalue
nicestd = std(nice); % nice standard deviation

if abs(nicemin) > abs(nicemax)
nicemax = abs(nicemin); % nice maxvalue (confirmed)
end

nicenorm = nice./nicemax; % normalized nice values (between 0 and 1)

for i = i:len
if nicenorm(i) > 0.0
nicebits(i) = 1; % nice -- > nicebits (either 01 or OFF)

elseif nicenorm(i) <= 0.0;

nicebits(i) = 0;
end
end
nicebitsplot = nicebits .* .2; % nicebitsplot (easier to see / for plotting)

% -------------- plot nicebitsplot-------------
figure(2)
plot(nicenorm, 'g');
hold on;
plot(nicebits .* .2,'r');

hold off;
title('nicebitsplot');
legend('nicenorm','nicebits');

nicederiv(1:len) = zeros(size(1:len)); % nicederiv(x) is the derivative of
for i = 1:len % nice // the time rate of change
if i > 1 & i < len-1

nicederiv(i) = (nicenorm(i+1)-nicenorm(i-1))/2.0;
end

end

badcount = 1; % count of bad areas
badsize = 0; % duration of bad area
flagstart = 0; % flag first point
flagend = 0; % flag last point
toggle = 0;

% here, we are finding all the BAD data points (ie. "non bit"s)
% these data points COULD account for wrongful bit presence - ie. if
% the "nice" is hovering around zero flipping often there will be excess
% bits for each zero-skipping
for i = 1:len
if (abs(nicenorm(i)) < 0.4) & (abs(nicederiv(i)) < 0.3) % ION-bit
% nicenorm < 0.4 - bits are gonna be either high or low,
% not zero. nicederiv > 0.3 when quick transitions are happening
% ie. when bits are happening.
stat(i) = -0.2; % these are not bits
if i > 2 % just so we're not bugging with the start
if flagstart == 0

flagstart = i;

flagstartarray(badcount) = flagstart; % bad bits (starting points)
toggle = 1;
elseif toggle == 1

badsize = badsize + 1;
end

end
else % this IS a bit

stat(i) = 0.2; % these are bits
if i > 2 % don't waste time with the first couple data points
if toggle == 1 % if we are in the middle of a ION-bit
toggle = 0; % Non-bit is done
flagend = i-1; % end of non bit
flagsizearray(badcount) = flagend - flagstart;
flagendarray(badcount) = flagend; % array of non bits
badcount = badcount + 1;
flagstart = 0; % reset this
end
end
end
end

------------ plot nicederiv and nicebitsplot----------

figure (3);
%plot(nicenorm,'r');
%hold on;
plot(nicederiv,'g');
hold on;
plot(nicebitsplot,'b');
plot(stat,'c');
hold off;
title('nicebits');
legend(nicederiv','nicebitsplot');

% now we'll determine which of the alleged non-bit areas are indeed
% true non-bit areas and which are just 'week' bits
count = 1;
for i = 1:length(flagsizearray)
if flagsizearray(i) > 10 % if the non-bit zone is longer than
% 10 data points we'll believe it's not a bit
nobitsstart(count) = flagstartarray(i);
nobitsend(count) = flagendarray(i);
count = count + 1;
end
end

nobitsstart
nobitsend

lennba = length(nobitsstart); %length of nobitarray
count = 1;
for i = 1:lennba-i
wordsize(count) = nobitsstart(i+1) - nobitsend(i);
count = count + 1;
end

wordsize

% the avg wordlength is 563 points
% (563 points / 6 bytes) (1 byte / 10 bits) = 9.3833 points / bit
bitlensequence = [4 5 5 4 5 5];
bitlenseqctr = 1;

do = 1;
ictr = 1;
halfbitctr = 1;
nobitsstart(length(nobitsstart)+1) = nobitsend(length(nobitsstart)) + 563
lengthnobitsend = length(nobitsend) %debugging echo print
while (ictr <= length(nobitsend)),
j = nobitsend(ictr);
go = 0;
while ((j <= nobitsstart(ictr+1)) & j<=length(nicebits)),%do until end of this word/frame

if go == 0
if nicebits(j) == 1 % false start

j = j+1;
elseif nicebits(j) == 0
go = 1;
end
% 'go equals 0'

elseif go == 1
thehalfbits(halfbitctr) = nicebits(j);

halfbitctr = halfbitctr + 1;
j = j + bitlensequence(bitlenseqctr);
if j == 7
j = 1;
end
% 'go equals 1'

end
end

ictr = ictr + 1;
end

lengththehalfbits = length(thehalfbits)

bitctr = 1;

for i = 2:2:length(thehalfbits)
thebits(bitctr) = thehalfbits(i);
bitctr = bitctr + 1;
end

lengththebits = length(thebits)
fide = fopen('bits.out','W');
for vi = 1:10:length(thebits)
% wi
fprintf(fidw,'%d %d %d %d %d %d %d %d %d %d\n',thebits(wi:wi+9));
end
status = fclose(fidw);

% thebits

%flagsizearray
%flagstartarray
%flagendarray
%nicebits
%wordsize

Appendix D

Kalman filter MATLAB code

function [retval] = setkal

DTR = pi / 180; % degrees to radians conversion

dt = 1/90;
dtdata = 1/180;

[realrate,realangle] = testdata(dtdata,DTR);

figure(1);
plot(realrate, 'b');
hold on;
plot(realangle, 'r');
hold off;
legend('realrate' 'realangle');
title('actual state');

% x: state vector x = [angle rate]'
% y: observations y = [gyro]'

% A: system update matrix x(k+1) = A
A = eye(2);
A(1,2) = dt;

eta = [0.45*dt 0.45]'; % state noise
% eta = [0 .11]';

x(k) + eta <-- noise

/ fluctuations

% B: observation matrix y(k) = B x(k) + epsilon <-- noise

B = [0 1];

epsilon = [0.45];

% Q: error covariance matrix for random forcing function
Q = zeros(2);
Q(1,1) = eta(1).^2;
Q(2,2) = eta(2).~2;

% R: error covariance matrix for measurements
R = zeros(1);
R(1,1) = epsilon(1).^2;

A
eta
B
epsilon

Q
R

% initial estimate for state x(tit-1) and error P(tlt-1)
k = 1;
x-est = [0 0]';
P-est = Q;

for k = 1:90

% estimate the new observable y(klk-1) = B x(klk-1)
y.est = B * x-est;

% measure a new value for the observable
dataindex = lookupindex(k,dt,dtdata);
y-meas = realrate(dataindex);

% compute the kalman gain matrix
K = P-est * B' * (B * P-est * B' + R)^(-1);

% note: B could be variable based on measurements

% estimate the new state
x-estolde = x-est;
x-est = x-estolde + K * (y.meas - y-est);

% update the error matrix
P-olde = P-est;
P = (1 - K*B) * Polde;

%predict the new state
x-pred = A * x-est;

%predict the new error
P-pred = A * P * A' + Q;

% update varnames for next iteration
x-est = x-pred;
P-est = P-pred;

kalgainang(k) =K ;
kalgainrate(k) =K(2);
angpred(k) = x-pred(1);

ratepred(k) = x.pred(2);

end

figure(2)
plot(ratepred,'b')
hold on;
plot(angpred,'r')
hold off
legend('predicted rate ,'predicted angle')
title(>estimates')

figure(3)
plot(ratepred-realrate(1:2:180),'b')
hold on

~-

plot(angpred-realangle(1:2:180),'r')
hold off
legend('rate error','angle error')
title('errors')

figure(4)
plot(kalgainrate,'b')
hold on;
plot(kalgainang,'r')
hold off
legend('kal gain matrix rate','kal gain matrix angle')
title('kalman gain matrix')

function[dataindex] = lookupindex(k,dt,dtdata)
% find appropriate mock-observable index
ourtime = k .* dt;

dataindex = round(ourtime / dtdata);

function [realrate,realangle] = testdata(dtdata,DTR)
% function to generate test data

realanglelast = 0;
dtdata = 1/180;

for i = 1:180 % t = i/180
realrate(i) = (sin((i-1) * DTR))^2;
realangle(i) = realanglelast + realrate(i).*dtdata;
realanglelast = realangle(i);
end

Appendix E

Hummingbird Demo Code

The following three files are source code from a Microsoft Visual C/C++ demo application for the Hummingbird.
They create an OpenGL "avatar" of the hummingbird which mimics the motions of the Hummingbird in the real
world. The three files are named glwin.c, incon.c, and incon95.c. They can be accessed and downloaded via the World
Wide Web from the Hummingbird home page http://physics.www.media.mit.edu/projects/hummingbird.

E.1 glwin.c

// incon95.c "inertial controller dot c"
// Chris Verplaetse, MIT Media Lab
//
// original OpenGL code from Ed Boyden's "Practical
// Physicist's Guide to OpenGL". Thanks Ed

#include <windows.h>
#include <windowsx.h>

#include
#include
#include
#include

#include
#include
#include

<stdio.h>
<math.h>
<stdlib.h>
<string.h>

<GL\gl.h>
<GL\glu.h>
<GL\glaux.h>

#include "GLWin.h"

LRESULT CALLBACK WndProc (HWND, UIIT, UINT, LONG);
void CreatelewGLWindow(HWID hwnd);
HWID CreateGLWindow(int glxpos, int glypos, int glxsize, int glysize, HINSTANCE hInstance);
HWED GLund;
HANDLE hInst;
float radius=7.0,yaw=O.O,pitch=70.0,roll=70.0;
void polarView(GLfloat radius, GLfloat yaw, GLfloat pitch, GLfloat roll);

float Function(Vector x);

void Ploto;

LRESULT CALLBACK GLWndProc (HWID hund, UINT message, UINT wParam, LONG
lParam);

#if defined(SECOND.WINMAIN)

int WIIAPI WinMain(HANDLE hInstance,

int nCmdShow)

{
static char sAppClasslame[]="GLWin";

HWND hwnd;

MSG msg;

WNDCLASSEX wndclass;

HANDLE hPrevInst, LPSTR lpszCmdParam,

wndclass.style = CSHREDRAW I CSVREDRAW;
wndclass.cbSize = sizeof(WEDCLASSEX);
wndclass.lpfnWndProc = WndProc
wndclass.cbClsExtra = 0
wndclass.cbWndExtra = 0
wndclass.hInstance = hInstance
wndclass.hIcon = LoadIcon (NULL, IDIWINLOGO);
wndclass.hCursor = LoadCursor (NULL, IDCARROW)
//wndclass.hbrBackground = GetStockObject (BLACKBRUSH)
wndclass.hbrBackground = GetStockObject (WHITEBRUSH)
wndclass.lpszMenuName = NULL;
wndclass.lpszClassName = sAppClassName;

if (!RegisterClassEx(wndclass)) return 0;

hund = CreateWindow (sAppClasslame,// window class name
"GLWin",// window caption

WSOVERLAPPEDWINDOW,// window style

CWUSEDEFAULT, // initial x position

CWUSEDEFAULT, // initial y position

CWUSEDEFAULT, // initial x size

CWUSEDEFAULT, // initial y size

HWNDDESKTOP,// parent window handle

NULL,// window menu handle -- NULL to use class menu

hInstance,// program instance handle

NULL) ; // creation parameters

hInst=hInstance;

ShowWindow (hwnd, nCmdShow);

UpdateWindow (hwnd);

while (GetMessage (&msg, NULL, 0, 0))

{
TranslateMessage (&msg)

DispatchMessage (kmsg) ;}

return msg.wParam;

}
#endif

void CreateNewGLWindow(HWND hwnd)

{
int width=100, length=120;
HDC hdc;

GLfloat maxObjectSize, aspect;

GLdouble near-plane, far-plane;

static GLfloat ambientProperties[] = (0.95, 0.95, 0.95, 1.0};
static GLfloat diffuseProperties[] = {0.8, 0.8, 0.8, 1.0};

static GLfloat specularProperties[] = (1.0, 1.0, 1.0, 1.0};

static GLfloat light-positionO[] = (1.0, 1.0, 1.0, 1.0};

static GLfloat pinkAmbient[] = {.95, .65, .65, 1.0};

near-plane = 1.0;
far-plane = 200.0;
maxObjectSize = 3.0;
radius = near-plane + max0bjectSize/2.0;

pitch = 70.0;

roll = -40.0;

// this was CreateGLWindow
GLwnd=CreateGLWindow(250, 250, 2*width,2*1ength, hInst);
hdc = GetDC(GLwnd);
//Enter custom GL code here
//Initialization

glClearColor(1.0, 1.0, 1.0, 1.0);
glClearDepth(1.0);
glEnable(GLDEPTHTEST);
glEnable(GL.LIGHTING);

glLightfv(GLLIGHTO, GLAMBIENT, ambientProperties);
glLightfv(GLLIGHTO, GLDIFFUSE, diffuseProperties);
glLightfv(GL.LIGHTO, GLSPECULAR, specularProperties);
glLightModelf(GLLIGHTMODELTWOSIDE, 1.0);
glLightfv(GLLIGHTO, GLPOSITION, light-positionO);
glEnable(GLLIGHTO);

glMatrixMode(GLPROJECTION);
glLoadIdentity(;

aspect = (GLfloat) width/(GLfloat) length;
gluPerspective(45.0, aspect, near-plane, far-plane);
glMatrixMode(GLMODELVIEW);

glLoadIdentity();
}

HWND CreateGLWindow(int glxpos, int glypos, int glxsize, int glysize,
HINSTANCE hInstance)
{

//Creates GLWindow of desired size, and yields
char GLName []="GLName";

HWED hGLund;
HDC hdc;
HGLRC hglrc;
WNDCLASS GLwndclass;

extern LRESULT CALLBACK WndProc (HWND, UIIT, UINT, LONG);
PIXELFORMATDESCRIPTOR pfd = {

sizeof(PIXELFORMATDESCRIPTOR), // size of this pfd

PFDDRAWTO_WINDOW
PFDSUPPORTOPENGL
PFD.DOUBLEBUFFER,
PFDTYPERGBA,
24,
0, 0, 0, 0, 0, 0,
0,
0,
0,
0, 0, 0, 0,
32,
0,
0,
PFDMAINPLANE,

0,
0, 0, 0
};

version number
support window
support OpenGL
double buffered
RGBA type
24-bit color depth
color bits ignored
no alpha buffer
shift bit ignored
no accumulation buffer
accum bits ignored
32-bit z-buffer
no stencil buffer
no auxiliary buffer
main layer
reserved
layer masks ignored

int iPixelFormat;

GLwndclass.style = CSHREDRAW I CSVREDRAW;
GLwndclass.lpfnWndProc = WndProc;

GLvndclass.cbClsExtra = 0

GLundclass.cbWndExtra = 0

GLwndclass.hInstance = hInstance;

GLwndclass.hIcon = LoadIcon (NULL, IDIWINLOGO);

GLwndclass.hCursor = LoadCursor (NULL, IDCARROW)

GLwndclass.hbrBackground = GetStockObject (BLACKBRUSH)
GLwndclass.lpszMenuName = "";
GLwndclass.lpszClassName = GLName

RegisterClass(&GLwndclass);

hGLund = CreateWindow (GLlame,

WSOVERLAPPEDWINDOW | WSVISIBLE | WSCLIPSIBLINGS,

glxpos,

glypos,

glxsize,

glysize,

HWNDDESKTOP,

HULL,

hInstance,

NULL);

hdc=GetDC(hGLwnd);

iPixelFormat=ChoosePixelFormat(hdc, &pfd);
SetPixelFormat(hdc, iPixelFormat, kpfd);
hglrc = wglCreateContext (hdc);
wglMakeCurrent (hdc, hglrc);
return hGLund;

}

void polarView(GLfloat radius, GLfloat yaw, GLfloat pitch,

GLfloat roll)

{
glTranslated(0.0, 0.0, -radius);

glRotated(-yaw, 0.0, 1.0, 0.0);

glRotated(-pitch, 1.0, 0.0, 0.0);

glRotated(-roll, 0.0, 0.0, 1.0);

}

float Function(Vector x)

{
return x[2]-x[0]+x[1];
}

void Pointer()

{
static GLfloat blueAmbient[] = {0.0, 0.0, 1.0, 1.0},

redAmbient[] = {1.0, 0.0, 0.0, 1.0},

greenAmbient[] = {0.0, 1.0, 0.0, 1.0};

// polarView(radius,yaw,pitch,roll);

auxWireCube(2.0);
glPushAttrib(GL.LIGHTINGBIT);

glMaterialfv(GLFRONTANDBACK, GLAMBIENT, blueAmbient);

auxSolidTorus(0.25, 1.5);

glMaterialfv(GLFRONTANDBACK, GLAMBIENT, redAmbient);

auxSolidCone(.75, 2.0);

// auxWireTeapot(.75);

// PlotFunctionGL(Function,-1.0,1.0,-i.O,i.O,-i.O,1.0,50,50);

glPopAttribO;

}

void Camera()

{
static GLfloat blue[] = {0.0, 0.0, 1.0, 1.0},
red[] = {1.0, 0.0, 0.0, 1.0},
black[] = {0.0, 0.0, 0.0, 1.0},
green[] = {0.0, 1.0, 0.0, 1.0},
beige[] = {0.85, 0.85, 0.80, 1.0},
darkblue[] = {0.0, 0.0, 0.40, 1.0},

darkgray[] = {0.25, 0.25, 0.25, 1.0};

glPushAttrib(GLLIGHTINGBIT);

glRotated (90.0, 0.0, 0.0, 1.0);

//glRotated (4.0, 20.0, 20.0, 1.0);

glMaterialfv (GLFRONTANDBACK,

//auxWireBox (2.0, 4.0, 2.0);

auxSolidBox (2.0, 4.0, 2.0);

glMaterialfv (GLFRONTANDBACK,

glTranslated (0.0, -3.0, -0.35);

//auxWireCylinder (0.5, 1.0);
auxSolidCylinder (0.5, 1.0);

glTranslated (0.0, 1.0, 0.0);

glMaterialfv (GLFRONTANDBACK,

glTranslated (0.5, 0.0, 0.45);

auxWireSphere (0.1);

glMaterialfv (GLFRONTANDBACK,

glTranslated (0.0, 0.0, -0.15);

auxWireSphere (0.1);

GL.AMBIENT, black);

GLAMBIENT, darkgray);

GLAMBIENT, blue);

GLAMBIENT, red);

glPopAttribO;

}

void globe.viewo;

void Plot()

{
HDC hdc;

hdc = GetDC(GLwnd);

glClear(GLCOLOR.BUFFERBIT I GLDEPTHBUFFERBIT);
glPushMatrixO;
globeview();

Camera 0;
glPopMatrix(;

SwapBuffers(hdc);

}

E.2 incon.c

// incon.c "inertial controller dot c"
// Chris Verplaetse, MIT Media Lab
//

#include <windows.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <mmsystem.h>

//#include "fish95.h"
//#include "status3d.h"

Takes a window and sets up a timer proc to go with a given amount
of time indicated by Speed (in Milliseconds) to indicate when the
next timer is supposed to get fired off. The way Windows works is
that if this routine is called with the same window handler and the
same id number (in our case always hard coded), the timer
will be reset to the new interval

UIIT
#define
#define

TimerID;
MAXLOOP 4000
NUMSENSORS 6

char *hCommDev;
unsigned char inbuf[50];

void ShowError(int err, char* name) {
MessageBox(NULL, name, "Error!", MBICONSTOP);
}

// Sets up the fish. Causes
int INCOMSET(HWND hwnd) {
int err, is-err;
// char * commstring;
DCB dcb;
COMMTIMEDUTS CommTimeOuts;

DWORD NBytesWritten;
BOOL WErr;
OVERLAPPED Write0s;

is-err = 0;

bugs when used directly, though

hCommDev = CreateFile("COMi", GENERICREAD
NULL, OPENEXISTING, 0, NULL);

// set baud rate etc
err = BuildCommDCB("COM1: baud=9600 parity=l
if (err < 0) {
is-err += err;

ShowError(err, "BuildCommDCB");

GENERICWRITE, 0,

data=8 stop=1", &dcb);

is-err=0;

dcb.fOutxCtsFlow=FALSE;

dcb.fOutxDsrFlow=FALSE;

dcb.fDtrControl=DTRCONTROLDISABLE;

dcb.fDsrSensitivity=FALSE;

dcb.flull=FALSE;

err = SetCommState(hCommDev,&dcb);

if (err < 0) {
is-err += err;

ShowError(err, "SetCommState");

}
// Set 10 buffers

SetupComm(hCommDev, 4096, 4096);

// Set Timeouts

CommTimeOuts. ReadIntervalTimeout = 100;
CommTimeOuts. ReadTotalTimeoutMultiplier = 10;
CommTimeOuts. ReadTotalTimeoutConstant = 10;

CommTimeOuts.WriteTotalTimeoutMultiplier = 0;

CommTimeOuts. WriteTotalTimeoutConstant = 5000;

SetCommTimeouts(hCommDev, &CommTimeOuts);

TimerID = SetTimer(hwnd, 1, 5, NULL);

if (!TimerID) {
MessageBox(NULL, "I couldn't create the fish timer!", "I'm sorry, but...", MBICONSTOP);

exit(-1);

}

Writeos.hEvent=(ULL,TRUE,FALSE,NULL);

WErr=WriteFile(hCommDev, "R", 1,&kBytesWritten, &Writeos);
if (WErr==FALSE) {
err=GetLastErrorO;

ShowError(err,"Serial Port Write Error");

return -1;

}

if (is-err<0) {
MessageBox(NULL, "Serial port errors.", "Notice!", MBICONSTOP);

exit(-1);

}
}

int READUPDATE(void) {
int err, numrin, loop-count;

int done;
int tries;

DWORD J.BytesRead, IBytesWritten;
BOOL WErr, RErr;

OVERLAPPED Readas, Write0s;

Read0s.hEvent=(ULL,TRUE,FALSE,NULL);

Write~s.hEvent=(NULL,TRUE,FALSE,IULL);

tries = 0; done = 0;

while ((!done) && (tries < 10)){
num-in = 0;
loop-count = 0;

// Here we're going to twiddle until the sync byte comes in (FF).

do {

RErr=ReadFile(hCommDev, inbuf, 1, &lBytesRead, &Read0s);
} while (inbuf[O] != Oxff);

while ((numin < NUNSENSORS) && (loop-count < MAXLOOP)) {
loop-count++;

RErr=ReadFile(hCommDev, inbuf+numin,,UM.SEISORS,&JLBytesRead, &Read0s);

num-in+=NBytesRead;

if (RErr==FALSE) {
err=GetLastErrorO;

ShowError(err, "ReadFile Error");
return -1;

}
}
if (numin >= IUMSENSORS) done = 1;

tries++;

WErr=WriteFile(hCommDev, "R", 1,kNBytesWritten, &Write0s);
if (WErr==FALSE) {

err=GetLastErrorO;

ShowError(err,"WriteFile Error");
return -1;

}
}
if (!done) {

ShowError(err, "Serial port read timed out");

return -1;

}
return(NBytesRead);
}

* gets the current fish levels

* Should have already issued a write command

int readfish(void)

{
int err, numin, loop-count;

int done;

int tries;

DWORD NBytesRead, N.BytesWritten;
BOOL WErr, RErr;

OVERLAPPED ReadOs, Write0s;

Read~s.hEvent=(ULL,TRUE,FALSE,NULL);

Write0s.hEvent=(NULL,TRUE,FALSE,NULL);

tries = 0; done = 0;

while ((done) && (tries < 10)
num-in = 0;

loop-count = 0;

while ((numin < NUMSENSORS) && (loop-count < MAXLOOP)) {
loop-count++;
RErr=ReadFile(hCommDev, inbuf+numin,NUMCHARS,&NBytesRead, &Read0s);

num-in+=NBytesRead;

if (RErr==FALSE) {
err=GetLastErrorO;

ShowError(err,"ReadFile Error");

return -1;

}
}
if (numjin >= NUMCHARS) done = 1;

tries++;
WErr=WriteFile(hCommDev, "R", i,kI.BytesWritten, kWrite0s);

if (WErr==FALSE) {
err=GetLastErroro;

ShowError(err,"WriteFile Error");
return -1;

}
}
if (!done) {

ShowError(err, "Serial port read timed out");
return -1;

}
return(IBytesRead);
}

*/

E.3 incon95.c

// incon95.c "inertial controller dot c"
// Chris Verplaetse, MIT Media Lab

//
// contributions by Rehmi Post and
// Ed Boyden III

/1*

This will be a first attempt at establishing serial communications
with the inertial controller (IMU) "dof box"
----Chris Verplaetse July 14

This code now contains a simple [orientation] motion model and an openGL
graphics representation of the DOF box
----Chris Verplaetse Rehmi Post July 17

#include<windows.h>
#include<stdio.h>
#include<string.h>
#include<time.h>
#include<commctrl.h>
#include<math.h>
#include "GLWin.h"

#define NUMSENSORS 6
#define PI 3.1415926

LRESULT CALLBACK WindowFunc(HWND, UIIT, WPARAM, LPARAM);

int INCOMSET(HWND);
int READUPDATE(void);
char szWiname[] = "WinClock"; // name of window class //
char str[260] = ""; // holds output string //
unsigned char inbuf[50];
int X = 1, Y = 10; // screen location //
int wawa = 0;
float xpos, ypos, zpos; // translational dof coordinates
double xang=0.0, yang=0.0, zang=0.0; // rotational dof coordinates
float xangrate, yangrate, zangrate;

double gxav, gyav, gzav;

double axav, ayav, azav;

float accx=0.0, accy=0.0, accz=0.0;

float gyrx, gyry, gyrz;

double axdif, aydif, azdif, gxdif, gydif, gzdif; //

double action; // use this for "zuvting" (zero velocity updates)

int initializing-motion-est = 20;

int calibrating-x = 0;
int calibrating-y = 0;
int calibrating-z = 0;
float x-scale = 1.0;

float y.scale = 1.0;

float z-scale = 1.0;

float x-temp, y-temp, z-temp;

double alpha, beta, gamma;

double ix=-1.0, iy=0.0, iz=0.0; // the i^ unit vectroid

double kx=0.0, ky=0.0, kz=1.0; // the k- unit vectron

double 11, 12, 13, ml, m2, m3, ni, n2, n3;

double xtemp, ytemp, ztemp;

double gmag;

int calibrating-ax = 0;
int calibrating-ay = 0;
int calibrating-az = 0;
double axmin = 200.0, axmax = 10.0,

aymin = 200.0, aymax = 10.0,

azmin = 200.0, azmax = 10.0;

double axzg = 0.0, ayzg = 0.0, azzg = 0.0; // zero-g values of accelerometers

double axsens = 1.0, aysens = 1.0, azsens = 1.0;

double inorm, jnorm, knorm;

float bufav[8];
float num-samples = 10.0;

int WINAPI WinMain(HINSTAICE hThisInst, HINSTANCE hPrevInst,

LPSTR lpszArgs, int nWinMode) {
HWND hwnd;

HWND hwnd2;

MSG msg;

WNDCLASS wcl;

// define a window class //
wcl.hInstance = hThisInst; // handle to this instance /
wcl.lpszClassName = szWinaname; // window class name //
wcl.lpfnWndProc = WindowFunc; //window funtion //
wcl.style = 0; // default style //

wcl.hIcon = LoadIcon(IULL, IDIAPPLICATION); // icon style //

wcl.hCursor = LoadCursor(NULL, IDCARROW); // cursor style //
wcl.lpszMenuName = NULL; // no menu //

wcl.cbClsExtra = 0;
wcl.cbWndExtra = 0;

// make the window background white //
wcl.hbrBackground = (HBRUSH) GetStockObject(WHITEBRUSH);

// register the window class //
if (!RegisterClass (&wcl)) return 0;

100

// now that a window class has been registered, a window may /
// be created //
hwnd = CreateWindow(
szWinName, //name of window class //
"DOF Box - Development Window",// title //
WSOVERLAPPEDWINDOW, // window style - normal //
CWUSEDEFAULT, // x coorinate - let Windows decide //
CWUSEDEFAULT, // y coorinate - let Windows decide //
//CWUSEDEFAULT, // width - let Windows decide //
//CWUSEDEFAULT, // height- let Windows decide //
1000,
1000,
HWNDDESKTOP, // no parent window //
NULL, // no menu //
hThisInst, // handle of this instance of
NULL // no additional arguments //

the program //

// attempt to set up communications with serial port //
INCOMSET(hwnd);
gxav=l15.0, gyav=115.0, gzav=122.0;
axav= 82.9, ayav=102.2, azav=143.0;
//MessageBox(hwnd, "incom-set done", "INCOMSET done", MBDK);

// display the window //
ShowWindow(hwnd, nWinMode);
UpdateWindow(hwnd);

UpdateWindow(hwnd);

#ifdef WAWAWA
// this will be our text output window
hwnd2 = CreateWindow(
szWinName, //name of window class //
"DOF Box - Developement Window",// title //
WSOVERLAPPEDWINDOW, // window style - normal //
CWUSEDEFAULT, // x coorinate - let Windows decide //
CWUSEDEFAULT, // y coorinate - let Windows decide //
//CWUSEDEFAULT, // width - let Windows decide //
//CWUSEDEFAULT, // height- let Windows decide //
1000,
1000,
HWNDDESKTOP, // no parent window //
NULL, // no menu //
hThisInst, // handle of this instance of the program 11
NULL // no additional arguments //

ShowWindow(hwnd2, nWinMode);
UpdateWindow(hwnd2);
//
#endif WAWAWA

// start a timer - interupt once per millisecond //
SetTimer(hwnd, 1, 1, NULL);

// create the message loop //

while(GetMessage(&msg, NULL, 0, 0)) {

101

TranslateMessage(&msg); // allow use of keyboard //
DispatchMessage(&msg); // return control to windows //
}

KillTimer(hwnd, 1); // stop the timer //

return msg.wParam;
}

int calibrating-status = 1;

#ifdef WAWA

void calibrate-accelerometers 0 {

if (calibrating-status == 1) {
if (accx < axmin) axmin = accx;
if (accy < aymin) aymin = accy;
if (accz < azmin) azmin = accz;

if (accx > axmax) axmax = accx;
if (accy > aymax) aymax = accy;
if (accz > azmax) azmax = accz;

calibrating-status = 1;
}
}

#endif

void motion-est (unsigned char *inbuf)

{
//static float gxav=115, gyav=116, gzav=121;
static float w-new, wjlast;
double axlast, aylast, azlast;

axlast = accx;
aylast = accy;
azlast = accz;

accx = bufav[0] / num-samples;
gyry = bufav[1] / num-samples;
accy = bufav[2] / num-samples;
gyrz = bufav[3] / num-samples;
accz = bufav[4] / numsamples;
gyrx = bufav[5) / numsamples;

if (initializing-motionest > 0) {
w-new = .10;

wjlast = .90;

initializingmotionest--;
} else {
w-new = 0.001;

w-last = 0.999;

}
gxav = w-new*gyrx + wjlast*gxav;
gyav = w-new*gyry + wjlast*gyav;
gzav = w-new*gyrz + wjlast*gzav;
axav = w-new*axav + wjlast*axav;
ayav = w-new*ayav + wjlast*ayav;
azav = w-new*azav + wjlast*azav;

axdif = accx - axlast;

102

= accy - aylast;

= accz - azlast;

= gyrx - gxav;

= gyry - gyav;

= gyrz - gzav;

action = sqrt(axdif*axdif + aydif*aydif + azdif*azdif + gxdif*gxdif + gydif*gydif + gzdif*gzdif);

//xangrate = (gyrx
//yangrate = (gyry
//zangrate = (gyrz

xangrate = gxdif /
yangrate = gydif /
zangrate = gzdif /

- gxav)
- gyav)
- gzav)

.09;

.09;

.09;

xang = xang + (xangrate

yang = yang + (yangrate

zang = zang + (zangrate

.09; // x angle rate in deg/sec

.09; // y angle rate in deg/sec

.09; // z angle rate in deg/sec

x angle rate in deg/sec
y angle rate in deg/sec
z angle rate in deg/sec

* 0.055) *
* 0.055) *
* 0.055) *

x.scale;
y-scale;
z.scale;

alpha = (xangrate * 0.055) * x-scale * PI / 180;
beta = (yangrate * 0.055) * y-scale * PI / 180;

gamma = (zangrate * 0.055) * z-scale * PI / 180;

11 = cos(sqrt(beta*beta+gama*gamma));
12 = -sin(gamma);
13 = sin(beta);
mi = sin(gamma);
m2 = cos(sqrt(alpha*alpha+gamma*gamma));
m3 = -sin(alpha);
ni = -sin(beta);
n2 = sin(alpha);
n3 = cos(sqrt(alpha*alpha+beta*beta));

xtemp = ix;
ytemp = iy;

ztemp = iz;

ix = 11*xtemp +
iy = 12*xtemp +
iz = 13*xtemp +

ml*ytemp + nl*ztemp;
m2*ytemp + n2*ztemp;
m3*ytemp + n3*ztemp;

xtemp = kx;
ytemp = ky;
ztemp = kz;

kx = 11*xtemp +
ky = 12*xtemp +
kz = 13*xtemp +

ml*ytemp + nl*ztemp;
m2*ytemp + n2*ztemp;
m3*ytemp + n3*ztemp;

gmag = sqrt(ix*ix+iy*iy+iz*iz);

inorm = (accx -
jnorm = (accy -
knorm = (accz -

axzg) /
ayzg) /
azzg) /

axsens;
aysens;
azsens;

if (calibrating-ax == 1) {
if (accx < axmin) axmin = accx;
if (accx > axmax) axmax = accx;
if (accy < aymin) aymin = accy;
if (accy > aymax) aymax = accy;
if (accz < azmin) azmin = accz;
if (accz > azmax) azmax = accz;

103

aydif
azdif
gxdif
gydif
gzdif

}
else if (calibratingax == 0) {
axzg = axmin + (axmax-axmin)/2;
ayzg = aymin + (aymax-aymin)/2;
azzg = azmin + (azmax-azmin)/2;

axsens = (axmax - axmin) / 2;

aysens = (aymax - aymin) / 2;
azsens = (azmax - azmin) / 2;
}

}

void globeview() {
double magnitude;

magnitude = sqrt(ix*ix+iy*iy+iz*iz);
ix = ix / magnitude;
iy = iy / magnitude;
iz = iz / magnitude;

gluLookAt(ix*8.0, iy*8.0, iz*8.0,// eye
0.0, 0.0, 0.0,// center
kx, ky, kz); // up

}

extern float roll, pitch, yaw;
FILE *outfile;
FILE *infile;

void CreatelewGLWindow(HWND);
void PlotO;

// this funtion is called by Windows 95 and is passed //
// messages from the message queue //
LRESULT CALLBACK WindowFunc(HWID hwnd, UINT message,
WPARAM wParam, LPARAM lParam) {
HDC hdc;
PAINTSTRUCT paintstruct;
//struct tm *newtime;
//time.t t;
UINT accxlevel, gyrylevel, accylevel, gyrzlevel, acczlevel, gyrxlevel;
char wawas [260];
static int err; // testing

switch(message) {
case WM.CHAR : process keystroke //
X = Y = 10; // display characters here //
sprintf(str, "%c", (char)wParam); // stringsize character/I
switch (wParam) {
case ,' :

num-samples
if (num-samples < 3)
numsamples = 3;
break;
case 1.1:

num.samples ++;
if (num-samples > 40)
num-samples = 3;
break;
case 'a':
initializing-motion.est = 100;
break;
case 'r' : // load saved scale values

104

infile = fopen("scales","r");
if (infile == NULL)
MessageBox(hwnd, "The file scales was not opened", "Bad Deal", MB_0K);
else {
fscanf(infile,"Xf %f %f", &x-scale, &y-scale, kztscale);
}
fclose(infile);
break;
case Is' : save current scale values
outfile = fopen("scales" ,w+")

if (outfile == NULL)
MessageBox(hwnd, "The file scales was not opened", "Bad Deal", MBOK);
else {
fprintf(outfile,"%f %f %f", x-scale, y-scale, z-scale);
}
fclose(outfile);
break;
case)zl:
xang = yang = zang = 0;

ix = -1.0;
kz = 1.0;
iy = iz = kx = ky = 0.0;

break;
case 'V:
if (calibratingx) {
x-scale = 90.0 / (xang - x.temp);
calibratingx = 0;
} else {
x.temp = xang;
x-scale = 1.0;
calibrating-x = 1;
}
break;
case I!': // Gotta finish dealing with this accelerometer zero g zufting stuff
if (calibrating-ax) { calibrating-ax = 0; }
else { calibratingax = 1; }
break;
case '@' :
calibrating-ax = 2;
break;
case '2':
if (calibrating-y) {
y-scale = 90.0 / (yang - y-temp);
calibratingy = 0;
} else {
y.temp = yang;
y-scale = 1.0;
calibrating-y = 1;
}
break;
case '3':
if (calibrating-z) {
z-scale = 90.0 / (zang - z-temp);
calibrating-z = 0;
} else {
z-temp = zang;
z-scale = 1.0;
calibrating-z = 1;
}
break;
case IqI:
PostQuitMessage(0);
break;
default:

105

InvalidateRect(hwnd, NULL, 1); // paint the screen //
break;
}
break;
case WMKEYDOWN:
switch (wParam) {
case VK_F1:
CreatelewGLWindow(hwnd);
PlotO;
break;
case VKLEFT:
pitch-=i;
Plot();
break;

}
break;
case WMPAINT // process a repaint request //
hdc = BeginPaint(hwnd, &paintstruct); // get dc //
TextOut(hdc, X, Y, str, strlen(str)); // output string/I
EndPaint(hwnd, &paintstruct); // release dc //
break;
case WMTIMER : timer went off //
{
int i, j;

for (i = 0; i< 6; i++)
bufav[i] = 0.;
for (i=0; i<(int)numsamples; i++) {
err = READUPDATEO;
for (j = 0; j < 6; j++)
bufav[j] = bufav[j] + inbuf[j];
}
}
inbuf[IUM.SENSORS] = 0;
motion.est(inbuf);

sprintf(wawas, "raw (%6.2f, %6.2f, %6.2f) avg (%6.2f %6.2f %6.2f %6.2f %6.2f %6.2f)
dif(%6.2f %6.2f %6.2f..%6.2f %6.2f %6.2f) angle(%6.2f, %6.2f, %6.2f)
globe(/6.21f %6.21f %6.21f) %5.2f action: %6.2f ",
//gyrx, gyry, gyrz,
accx, accy, accz,
axav, ayav, azav, gxav, gyav, gzav,
axdif, aydif, azdif, gxdif, gydif, gzdif,
xang, yang, zang,
ix, iy, iz, gmag, action);

sprintf(wawas, " amin(%6.2f, %6.2f, %6.2f) amax(26.2f, %6.2f, %6.2f)
azg(%6.2f, %6.2f, %6.2f) norm(%6.2f, %6.2f, %6.2f) mag(%6.2f)
axmin, aymin, azmin,
axmax, aymax, azmax,
axzg, ayzg, azzg,
inorm, jnorm, knorm,
sqrt(inorm*inorm+jnorm*jnorm+knorm*knorm));

sprintf(wawas, i(%6.2f %6.2f %6.2f) k(/6.2f %6.2f %6.2f)
ix, iy, iz,
kx, ky, kz);
strcpy(str, wawas);
InvalidateRect(hwnd, NULL, 0); // update screen //

Plot ();

106

accxlevel = 200 - accx;

gyrxlevel = 350 - gyrx;

accylevel = 500 - accy;

gyrylevel = 650 - gyry;

acczlevel = 800 - accz;

gyrzlevel = 950 - gyrz;

wawa++;
hdc = GetDC(hwnd); // get device context //

SetPixel(hdc, wawa, accxlevel, RGB(255,0,0));
SetPixel(hdc, wawa, gyrylevel, RGB(255,100,0));
SetPixel(hdc, wawa, accylevel, RGB(255,0,255));
SetPixel(hdc, wawa, gyrzlevel, RGB(0,100,255));
SetPixel(hdc, wawa, acczlevel, RGB(0,0,255));
SetPixel(hdc, wawa, gyrxlevel, RGB(0,0,0));

ReleaseDC(hwnd, hdc); // release device context //
if (wawa >= 1000) {
wawa = 1; // loop the X graph
InvalidateRect(hwnd, NULL, 0); // update screen //
}
break;
case WMRBUTTONDOWN // process right mouse button //
CreatelewGLWindow(hwnd);
Plot();
break;
case WMLBUTTONDOWN : process left mouse button //
strcpy(str, "Left Button is Down.");
X = LOWORD(lParam); // set X to current mouse position //
Y = HIWORD(lParam); // set Y to current mouse position //
InvalidateRect(hwnd, NULL, 1); // paint the screen //
break;
case WMDESTROY : terminate the program //
PostQuitMessage(0);
break;
default
// let Windows 95 process any messages not specified //
// in the previous switch statement //
return DefWindowProc(hwnd, message, wParam, lParam);
}
return 0;
}

107

Bibliography

[AP, 1995] Ali Azarbayejani and Alex P. Pentland, Recursive Estimation of Motion, Structure, and Focal Length,
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 6, June 1995.

[BB, 1982] Dana H. Ballard and Christopher M. Brown, Computer Vision, Prentice-Hall, 1982

[BKE, 1994] N. Barbour, K. Kumar, J.M. Elwell Jr., Emerging Low(er) Cost Inertial Sensors, presented at 22nd
Joint Service Data Exchange for GN&C, 1994.

[Becker, 1996] Shawn Becker, Vision-assisted modeling for model-based video representations, Ph.D. Thesis, Mas-
sachusetts Institute of Technology, 1996.

[Boas, 1983] Mary L. Boas, Mathematical Methods in the Physical Sciences, John Wiley & Sons, New York, 1982.

[Bove, 1989] V. Michael Bove, Jr., Synthetic Movies Derived from Multi-Dimensional Image Sensors, Ph.D. Thesis,
Massachusetts Institute of Technology, Cambridge, MA, April 1989.

[BH1992] Robert Brown, Patrick Hwang, Introduction to Random Signals ans Applied Kalman Filtering, John Wiley
& Sons, Inc. New York, 1992.

[Davenport] Application ideas related to camera-operator-motion-recognition are based on discussions with or ideas
of Glorianna Davenport at the MIT Media Laboratory.

[KD, 1996] Personal communiations with Joe Kung and Jim Dosher, both of Analog Devices Inc.

[Elwell, 1991] John Elwell, The Charles Stark Draper Laboratory, Inc. Progress on Micromechanical Inertial Instru-
ments. Published by the American Institute of Aeronautics and Astronautics. 1991

[Ferren] Virtual set-related applications are based on discussions with Bran Ferren at Walt Disney Imagineering in
Glendale, CA., 1996.

[FB, 91] Richard S. Figliola, Donald E. Beasley. Theory and Design for Mechanical Measurements. Wiley. New York.
1991.

[FD, 1994] E. Foxlin and N. Durlach, "An Inertial Head Orientation Tracker With Automatic Drift Compensation
Doe Use with HMDs," Proceedings from VRST '94, Virtual Reality Software and Technology, Singapore (August
23-26), 1994).

[Gershenfeld, 1995] Neil Gershenfeld, The Nature of Mathematical Modeling, to be published , Cambridge University
Press, 1997.

[Horn, 1986] Berthold Klaus Paul Horn, Robot Vision, The MIT Press, 1986

[Kalman, 1960] R.E. Kalman, Research Institute for Advanced Study, A New Approach to Linear Filtering and
Prediction Problems, Journal of Basic Engineering, Transactions of the ASME, March 1960.

[Kuo, 1991] Benjamin C. Kuo. Automatic Control Systems. Prentice Hall. Englewood Cliffs, New Jersey. 1991.

[HH, 1994] Paul Horowitz and Winfield Hill, The Art of Electronics, Cambridge University Press, 1994.

108

[Lawrence, 1993] Anthony Lawrence, Modern Inertial Technology., Springer-Verlag, New York. 1993.

[Mackenzie, 1990] Donald Mackenzie, Inventing Accuracy: A Historical Sociology of Nuclear Missile Guidance, MIT
Press, Cambridge, MA, 1990.

[Marrin, 1996] Teresa Marrin, Toward an Understanding of Musical Gesture: Mapping Expressive Intention with the
Digital Baton, Masters Degree Thesis, Massachusetts Institute of Technology, 1996.

[Massey, 1996] Michael Massey and Walter Bender, Salient Stills: Process and Practice, IBM Systems Journal, VOL
35, NOS 3&4, 1996.

[Nakamura, 1990] Takeshi Nakamura, Vibration Gyroscope Employs Piezoelectric Vibrator, JEE, September 1990.

[Pinhanez, 1995] Claudio Pinhanez and Aaron Bobick, Intelligent Studios: Using Computer Vision to Control TV
Cameras, IJCAI'95 Workshop on Entertainment and AI/Alife, April 1995.

[Schwarz, 1976] J.A. Schwarz, "Micro-Navigator (MICRON)," A GARD Conference Proceedings No. 176 on Medium
Accuracy Low Cost Navigation, AGARD (1976), pp. 6/1-14.

[Sony] Sony Pro-Betacam SP Camcorder, UVW-100K/100PK Operating Instructions Manual.

[SMS, 1994] T. Starner, J. Makhoul, R. Schwartz, and G. Chou, "On-line Cursive Handwriting Recognition Methods,"
IEEE Conference on Acoustics, Speech, and Signal Processing, Adelaide, Australia (April 1994), Vol. V, pp. 125-
128.

[Starner, 1996] T. Starner, "Human Powered Wearable Computing," IBM Systems Journal, Vol. 35, Nos. 34, 618-629,
1996.

[Szeliski, 1993] Richard Szeliski and Sing Bing Kang, Recovering 3D Shape and Motion from Image Streams using
Non-Linear Least Squares, DEC Cambridge Research Laboratory, Technical Report Series, March 1993.

[Teodosio, 1992] Laura Teodosio, Salient Stills, Master's Thesis, Massachusetts Institute of Technology, June 1992.

[Verplaetse, 1996] Christopher Verplaetse, Inertial Proprioceptive Devices: Self Motion-Sensing Toys and Tools, IBM
Systems Journal, VOL 35, NOS 3&4, 1996.

[WB, 1990] R.G. Watts and T.A. Bahill, Keep Your Eye On the Ball: The Science and Folklore of Baseball, W.H.
Freeman and Company, New York, 1990.

[Woodson, 1981] Wesley E. Woodson, Human Factors Design Handbook. McGraw-Hill, 1981.

109

