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Abstract

This thesis address the issue of how to integrate action and perception in changing, complex

environments which include people. We consider the development of perceptive agents,
or more generally perceptual computer interfaces, which can directly respond to a user's
state, including body pose and hand or face gestures. This domain presents challenging
machine vision and learning problems, which must be solved in real-time to be useful as an
interface. We present methods for tracking an unconstrained user moving about a cluttered
office environment, and methods for recognition and interpolation of spatio-temporal hand
and face gestures using images obtained from an active, moving camera. To guide the
active camera, we adopt a model of visual attention based on the partially observable
Markov decision process (POMDP), which formalizes the notion of action selection given
perceptual input, i.e, hidden state. We implement an attention system based on hidden state
reinforcement learning, which solves an active recognition task formulated as a POMDP.
This system has been integrated into our interactive office environment, and can selectively
track a user's head, hands, or other salient features as they wander about.
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Chapter 1

Introduction

As found in nature, vision is not a passive process. It is both active, in that visual sensors are

actuated to change the imaged scene, and reactive, since the control signals which govern

those actuators are based on environmental stimuli. When the environment changes quickly

and itself has an active component, a model which captures the dynamic interplay between

the environmental stimuli and the perceptual system is needed. We seek a model of this

type of interactive vision.

Many practical vision problems require the use of active methods in rapidly changing

environments. The well-studied domain of automated navigation and vehicle control,

where automobiles are autonomously or semi-autonomously guided in real-time, is a good

example of an environment which can be neither absolutely nor statically described, given

the time constraints of performance. We will focus on a domain which similarly requires

real-time, context-dependent processing, the domain of interacting with people.

A system for interaction with people calls for active behaviors due to the unpredictable

nature of the domain. People are quite difficult to predict or model exactly, and so visual

methods for perceiving people need to be adapted and selected according to the current

context. Depending on the state of the user a different suite of visual routines or models
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may be appropriate for processing, and a perceptual system should thus adapt processing

based on prior experience with the user.

Most significantly, the spatial scale over which human interaction takes place is large -

a wide field of view is needed to first distinguish a human form and recognize overall pose,

but a narrow field of view is needed to discriminate fine gestures or expressions performed

by a hand or face. Since it is prohibitive (in either silicon or neuronal terms) to have a single

vision sensor which has high-resolution over a wide field of view, a foveated vision sensor

and associated active vision/attention mechanism for governing eye movements is needed.

Developing a computational framework for this type of visual attention - a mechanism

to guide what to look for, and when - is an important problem. Attention is a critical

component of both the human visual system, which can create a unified experience from

a series of saccadic eye movements and disjoint foveated views, and for contemporary

models of machine vision, which must direct limited computational resources in order to

achieve real-time performance. In addition to an explicit spatial "window of attention",

attention is manifest in other dimensions as well: one can attend to particular spatial

frequencies, chromatic characteristics, or even spatial arrangements. Broadly speaking, we

define attentive behaviors are those which affect the current context of visual processing,

either explicitly as through a active camera, or implicitly by changing the parameters of

filtering or model selection performed in early stages of visual processing.

Our goal in this thesis is to implement a mechanism which can perform attentive be-

haviors in the context of interacting with people. Practically, we wish to find a mechanism

which can offer high-resolution, foveated images of parts of the body that are important

for gesture understanding, such as hands and faces. This mechanism should also ulti-

mately support perception for interactive dialog, guiding visual processing of a human user

interacting with a conversational agent.

A rich model of attention needs to balance sensor/data-driven and goal-based processing,

provide context for evaluation of situated routines, and offer an action-selection method
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for executing active visual processes. An attention system needs to mediate between pure

perception and pure action, and to do so contingent on the current changing environmental

context. The key algorithmic aspect to this type of attentive, and interactive, vision is the

arbitration, selection, and scheduling of a set of resource-limited visual routines based on

observations that are both noisy and incomplete. In this thesis, we will discuss how this can

be captured in formal models of behavior and motor control, and describe their application

in the domain of interactive systems. In particular, we will develop a model of action

selection for attentive visual behaviors based on a model of Markovian decision processes

with hidden state. As we shall see, this offers a balance between approaches which assume

significant prior knowledge but can handle partial observability, such as the Kalman filter

[40], and model-free approaches which learn a model of the world (and by extension, of

the interaction with the user) but assume an absolute state representation.

1.1 Models of Dynamic Vision

To model the dynamic aspects of attention, it is natural to look to models traditionally used

for motor control and planning. However, it is important to choose a level of representation

which is appropriate for the task or system we are attempting to characterize [15]. Since

attentive behavior requires models which can adapt quickly to changing conditions, this can

be problematic.

Control-theoretic approaches in the computer vision literature have been a topic of

increasing recent interest for guiding low-level active vision [12, 37]. When the task is

complicated, and involves rapidly changing state, representations, and goals - as is the

case with attention - conventional approaches to control often break down. To accommo-

date changing representation or mode, multiple control models or regimens are needed in

the model of attention. But when there are many different models that may potentially

be present, it is important to have some way of predicting which are most likely to be
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transitioned into next. Otherwise, they will all have to be evaluated, at a potentially large

computational cost. If the probabilities of inter-model transfer are known, they can greatly

lower the computational cost of evaluating all the likely models to be seen at the next time

step. This is the essence of attentive processing.

This approach can be formalized with the notion of a Markovian state model, where

multiple models correspond to multiple states, and the likelihood of state transitions are

represented explicitly. In domains where a state-based representation is appropriate, Markov

Models can provide the contextual structure needed for multiple model recognition.

For active vision and attention, the Markovian approach can be used to model what

actions should optimally be taken according to both observations of external conditions

and the current representation of internal state. This type of Markov Decision Process

provides a model for action as well as observation, and has been applied extensively in

the Operations Research and Robot planning literature [71]. As a model of perceptual

processing, however, strict Markovian Models are limited by the assumption of observable

state. Perception problems are characterized almost by definition as being "ill-posed", in

that the underlying state of the world is not directly recoverable without further assumption.

In the context of Markov Models, this is termed a hidden state problem, since the true state

of the world is hidden from the model. For passive perception problems, the Hidden Markov

Model (HMM) addresses this, and has been used successfully for speech, handwriting, and

vision recognition tasks [64, 68]. To model active perception, Markov Decision Processes

need to be extended to accommodate hidden state.

A Markov Decision Process without direct access to the state of the environment is called

a Partially Observable Markov Decision Process (POMDP). POMDPs were developed in

the Operations Research literature [72, 84, 48], and have recently been introduced to the

field of Artificial Intelligence for active planning[53, 46, 21]. The POMDP approach holds

promise as a model for reactive behaviors in a perceptually realistic environment.

A related approach to modeling visual attention is the use of Bayes networks with
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decision theoretic criteria. These methods have much to offer from a representational

perspective, but the problem of learning their structure from experience is unsolved [69].

POMDP models provide a general framework for modeling action in the context of percep-

tion with hidden state, and combine the three essential components of a model of attention

and/or interactive vision: they have a model of action, they have a model of perception

(state is hidden), and they have a method for learning. In addition, they are built on a

well-established literature on statistical models of Markovian Decision Processes. Because

of these qualities, we feel POMDPs will be very useful as a model of attentive behaviors

within an environment for interacting with virtual agents.

1.2 Perception and Interaction

Previously we developed an interface to an interactive environment called the ALIVE

system, an acronym for "Artificial Life Interactive Video Environment" [30]. The system

presents a simulated mirror in the form of a large video screen, in which the user sees

him/herself immersed in a graphical environment inhabited by virtual creatures. The image

of the user is captured by a video camera, combined with the output from a computer

graphics workstation, and displayed on the screen in front of the user. Computer vision

techniques analyze the form of the user and compute his/her location in 3-D so as to afford

proper depth compositing, as well as the location of the user's head, hands, and other body

parts in order to determine whether the user is performing a known gesture.

The previous ALIVE system employed a stationary camera, and little attentional or

active vision.1 In this thesis we add active and attentional modes of processing to the

ALIVE system, using POMDP models to control which visual routines/models are selected

'The vision architecture as originally implemented supports a primitive attention mechanism, in that the

various processing routines could be switched on or off, but the higher-level control routines did not take

advantage of that capability.
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and when they are executed. Foveated perception is explicitly provided, through the addition

of a motorized camera with a narrow-field of view lens.

Active, foveated vision has two main implications for the ALIVE system. First, it

allows more detailed processing to be performed on regions of a users image for which

resolution is critical: hands, faces, etc. The current resolution of a users face in the ALIVE

system is too coarse for all but the simplest face recognition methods, and is insufficient for

detailed tracking of gestures or expressions. With a foveated sensor, view-based models

of hand and face gesture recognition, as well as other recognition techniques that require

high-resolution, foveated images, have been integrated into the ALIVE environment.

Second, and perhaps more important, the availability of foveated vision creates a limited

resource within the vision system that necessitates attentional modes of behavior. Previously

in the ALIVE system there was an option for attentional behavior, but since all vision

routines could be run simultaneously at little or no time penalty, there was no incentive

to actually use attentive behaviors. However a foveated sensor is obviously a limited

resource, and no universal (non-attentional) mode of driving it is feasible. (E.g. it would

be nonsensical to use a foveated camera as a raster scan input device.) Creating a system

which can perform resource allocation in a timely and productive manner, e.g. deciding

what to look for when, yields insights into the combination of behavior with perception,

and provides a system which can offer practical advances in the kinds of interaction with

people it can provide.

The major application of attentive processing developed in this thesis is a system for

active gesture recognition. Gestures are typically performed at multiple spatial scales and

are dependent on temporal context. An example of the former is recognition of a grasping

gesture where analysis on the scale of body parts is first needed to track an extended arm,

followed by a finer scale analysis of hand pose to determine when (and if) a user clasps his

or her hand. The latter occurs whenever a gesture is not defined by a set of static spatial

features, but requires transitioning through a particular temporal sequence of spatial states.
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The combination of these two characteristics calls for modeling with POMDPs. If

temporal context was the only confounding factor a HMM would be adequate to perform

recognition. Indeed HMM's have been applied to considerable success in recognizing

signals with temporal structure, such as speech, and recently have been used for recognizing

visual patterns at fixed resolution. But the presence of spatial context calls for active

methods, since we need to shift the window of processing across different scales and/or

spatial locations. This can be either a overt or covert process, the former being implemented

via a set of actuators on a moving camera and the later being implemented virtually as a

selection and subsampling from a single very high-resolution image.

This thesis formulates a model of attentive behavior in the interactive domain based

on partially observable Markov models. The utility of this approach is demonstrated

through the implementation of a system for multi-scale foveated gesture recognition using

a reinforcement-based learning algorithm. By utilizing a learning method to compute a

perceptually driven action selection policy, we show that attentive behaviors useful for

interactive systems can be found.

In Chapter 2, we will describe in detail our interactive interface domain, and discuss the

implications it places on the construction of a set of person tracking routines. Chapter 3 will

then describe a method for hand and face gesture analysis which yields accurate results in

real-time, but which requires high-resolution imagery. Chapter 4 will present a method to

perform these methods in the interactive domain, using an active camera to obtain foveated

images of the user's hand or face. Finally Chapter 5 will present our attention framework

for deciding which feature of the user to look at, using a model of action selection based on

POMDPs and an active recognition task.

W., OWN 14' 6 W



Chapter 2

Interactive Interfaces

Vision has numerous uses in the natural world. It is used by many organisms in navigation

and object recognition tasks, for finding resources or avoiding predators. Often overlooked

in computational models of vision, however, and particularly relevant for humans, is the use

of vision for communication and interaction between individuals. In these domains visual

perception serves as an important modality either in addition to language or in conditions

where language cannot be used. In most settings, people place considerable weight on

visual signals from another individual, such as facial expression, hand gestures, and body

language.

Models of machine perception have, in general, been designed with the goal of perform-

ing recognition and navigation tasks. While these are important and challenging problems,

we feel that the domain of interactive interfaces can offer new insights into models of

machine perception. In particular, we will argue that this domain has constraints which call

for models of visual perception that are both active and adaptive, since conventional models

cannot capture the dynamic and contextual aspects of people's visual language.

Vision as an interface modality offers a range of potential new applications which

are of increasing demand given the current climate of expanding sources of information
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Figure 2-1: Binary silhouettes of users after figure-ground processing.

without a similar expansion in the nature of the interface to that information (i.e., click

and type interaction.) For many users and many applications, keyboards, mice, or even

wired gloves or goggles are inappropriate tools, for either physical or sociological reasons.

In this chapter we will discuss the interactive interface domain as it relates to models of

visual perception, present the basic algorithms we use for constructing an interactive vision

system, and discuss three applications for human-computer interaction.

2.1 Implications

The domain of interacting with people provides several challenges to the designer of a

vision system. People are dynamic, have intentions and motivations, and have articulated

body kinematics as well as non-rigid motions in facial expressions. All of these are difficult

issues for conventional computer vision methods. We will discuss three of these issues: the

difficultly in modeling human forms, semantic context in interactive systems, and temporal

constraints on interactive performance.

The forms and motion of human bodies are complicated and can be hard to characterize

with precision. This means that methods which process static images of humans have to

deal with a wide range of potential shapes or patterns. For example, Figure 2-1 shows a set

of bitmap patterns of users of our system. A descriptive model of these forms would require

an articulated body model that included a non-rigid model of skin and clothing dynamics.

NOW MM"W" 9 MAN
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Common methods for recovering these models use motion information and often assume

motion obeys an affine flow model or a rigid-body constraint, neither of which seem to

hold in this case. For both static and dynamic processing, the people-watching domain is a

challenge in that it calls for finding methods which work robustly in the absence of a strict

model.

The fact that people are not simply objects, and have intentions and communicate

via semantically-laden signs, has interesting implications for a vision system. Traditional

domains such as navigation and object recognition have the property that problems within the

domain can be well described as the estimation of objective properties of the world for which

partial information is available. In these domains engineering estimation principles which

require an objective "ground-truth" can be straightforwardly be applied. Unfortunately,

when vision is considered in the domain of communication and interaction there is no

concrete notion of ground-truth to use as a problem formulation. When people use vision to

look at other people, the most important features they extract are semantic, in that they have

a meaningful or emotional content. People can use vision in interpersonal communication

to explicitly attend to and remember 3-D shape or location of the other person's body,

but that is not the norm, nor is it necessarily of great utility. To develop interfaces which

allow people to interact with computers as easily as they interact with other people requires

placing the emphasis on semantics rather than shape.

Communication implies context, so a purely descriptive approach to vision is clearly

inappropriate - the goal of vision routines for an interactive people-watching system should

not be to perfectly estimate and represent the three-dimensional shape of the body and face.

Vision routines for an interactive people-watching system should recover and provide some

meaningful signal in the context of the current interaction. What exactly is meaningful

will change over time, so no static description would suffice. Rather than attempt to

fully describe the 3-D world before interpretation, the task-based or "purposive" vision

paradigm [2] sidesteps the recovery of a 3-D representation, and advocates computation
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which directly achieves some goal given the visual input. They and others argue that the

process of recovering a full 3-D representation is a computationally inefficient and often

unnecessary stage, when the larger task is properly considered [4, 5].

Finally, the presence of people in an interactive system provides a strong pressure to

achieve real-time performance. Quite simply, if the system does not react in real-time, or

perhaps what is more appropriately called "interactive-time", the user will get bored and

leave. Unlike many static domains in which the agent can stop momentarily if necessary to

make a decision, the visual routines and agent models used in an interactive man-machine

system must be both robust and fast.

For these reasons, successful vision methods for interactive interfaces must be robust,

semantically-situated, and active. To achieve these goals, we have developed a specific

interaction paradigm, described in the following section, that allows simplified processing

of the human form and yet offers a wide range of interaction. We have focused on the

implementation of a set of real-time visual routines which make robust estimates of the

user's position, pose, and/or gestures, and allow interaction with a set of virtual agents.

2.2 The Magic Mirror

We have chosen to explore an interaction domain in which the user faces a wall-size (but

fixed) display which contains cameras that observe the user. Computer-generated graphics

and video images are presented on the display, along with a graphical representation of the

user. The cameras are connected to a vision system which analyze in real time the state and

location of the user, and update the virtual representation accordingly. This representation

may consist of the user's digitized image, a 3-D model of a person, a model of a graphical

cartoon character, or a combination of all of these. Objects (or agents) in the virtual world

can use the vision system to "see" the user, who can in turn see the graphical representation

of the objects on the display.



CHAPTER 2. INTERACTIVE INTERFACES

This "magic-mirror" paradigm is attractive because it provides a set of domain con-

straints which are restrictive enough to allow simple vision routines to succeed, but is

sufficiently unencumbered that can be used by real people without training or a special

apparatus. These constraints derive from the fact that we can arrange the imaging geometry

of the camera such that the user is almost always in a frontal pose. In our system, the

same camera used for vision processing is also used for acquiring the image of the user

which is composited into the graphics display. For the "magic mirror" effect to work, the

image of the user used for the display must come from a camera position which is located

approximately at the position of the screen. Since in this paradigm the user will be watching

the screen almost continuously, we can assume with some degree of confidence that they

will face the screen and thus their body will be oriented parallel to the screen much of the

time. When this is true, we can make relatively strong inferences about the position of the

user's head and hands.

We implement the magic-mirror model using a single CCD camera to obtain a color

image of the scene. The image of the user is separated from the background, composited

into the 3-D graphical world, and projected onto a large screen which faces the user. (The

polarity of projection is reversed so that the image appears as it would in a mirror.) Vision

routines are run on the image to allow the user to interact with the virtual world. The entire

system, including vision, animation, and rendering, occurs in real-time (10Hz) so that an

interactive experience is preserved.

2.3 Related Work on Interfaces to Virtual Environments

A wireless sensor, such as vision, has several additional advantages over tethered goggles-

and-gloves interfaces to virtual environments. It provides a safer solution because the

user can still see where he or she is moving, and thus can avoid bumping into things, or

tripping over wires. The also user enjoys greater behavioral and expressive freedom. We
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observed that users of the Magic Mirror system feel very uninhibited (we have have seen

users doing cartwheels, jumping jacks, etc). Finally, the user ends up concentrating more

on the environment itself, rather than on the complex and unfamiliar equipment being used

to interact with that environment.

Other systems, such as the Visual Portal [32] and the CAVE [24] system have solved

many of the limitations of traditional goggle-based environments through the use of wireless

batons and other sensors, thus avoiding both the problems of a tethered display and viewpoint

estimation (head angle). Our system has the advantage that it is completely unencumbered,

and works on users with no special tools or marks. We also adopt a mirror paradigm,

where the user explicitly sees a representation of him/herself and his/her relationship to

other objects in the world.

The novel vision-based interface presented here was inspired by the pioneering work

of Myron Krueger's Videoplace system [45]. The Magic Mirror and Videoplace differ

primarily in three respects. The first is that Videoplace focuses on 2-D rather than 3-D

worlds and interaction. A second difference is our emphasis on modeling agents. Most

of Krueger's worlds allow users to interact with other users, a notable exception being the

"critter", a 2-D animated sprite. Finally, the vision system is able to recognize hand and

body gestures as patterns in space and time.

Another system that bears similarities to the Magic Mirror is the Mandala system [80]

which composites the user's color image with a virtual world that is sometimes video-based

and sometimes computer animated. The Mandala system only supports 2-D and requires

a chromakey background or specially-colored manipulation objects; it does not attempt to

recognize parts of the user's figure nor does it do any gesture recognition. Other systems

have been developed for vision-based interactive graphics but have generally been restricted

to off-line analysis of either face or limb motion [35, 87, 75]. (But see [28] for a real-time

facial analysis system.)
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2.4 Vision Routines for Person Tracking

We have developed a set of vision routines for perceiving body actions and gestures per-

formed by a human participant in an interactive system.' Vision routines acquire the image

of the user, compute a figure/ground segmentation, and find the location of head, hands, and

other salient body features (Figure 2-2). We use only a single, calibrated, wide field-of-view

camera to determine the 3-D position of these features. We do assume that the background

is fixed, although it can be arbitrarily complex, and that the person is normally facing the

camera/screen. The integration of the person and and localization of his/her head or hand

features in the world are performed using the following modules: figure-ground processing,

scene projection, hand tracking, and gesture interpretation.

2.4.1 Figure-ground processing

To detect appropriate hand/face features and composite the user's image onto the magic

mirror, the vision system must isolate the figure of the user from the background (and from

other users, if present). This is accomplished by use of spatially-local pattern recognition

techniques to characterize changes in the scene, followed by connected-components and

morphological analysis to extract objects.

We assume the background to be an arbitrary, but static, pattern. Mean and variance

information about the background pattern are computed from an initial sequence of images

with no person present, and these statistics are used to determine space-variant criteria for

pixel class membership. In general, we use a hierarchical color classification is used to

compute figure/ground segmentation, using a Gaussian model of each background pixel's

color and an n-class adaptive model of foreground (person) colors. The classification takes

care to identify possible shadow regions, and to normalize these region's brightness before

'The first version of these routines was implemented by the author [30]; more recent versions have been

implemented in collaboration with Chris Wren and Ali Azarbayejani [88].
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the figure/ground classification. The classification also makes use of Markov neighborhood

statistics in setting the priors for each pixel's classification [88].

2.4.2 Scene projections and calibration

Once each pixel has been identified as most likely belonging to the user, we use connected

components and morphological analysis to delineate the foreground region. This analysis

begins with a seed point at the centroid location of the person in the previous frame; if

this fails to grow a sufficiently large region, random seed points are selected until a stable

region is found. Finally, we compute the contour of the extracted region by chain-coding

the connected foreground region.

When the figure of the user has been isolated from the background, we compute an

estimate of its 3-D location in the world. If we assume the user is indeed sitting or standing

on the ground plane, and we know the calibration of the camera, then we can compute the

location of the bounding box in 3-D. Establishing the calibration of a camera is a well-

studied problem, and several classical techniques are available to solve it in certain broad

cases [6, 41]. Typically these methods model the camera optics as a pinhole perspective

optical system, and establish its parameters by matching known 3-D points with their 2-D

projection.

Knowledge of the camera geometry allows us to project a ray from the camera through

the 2-D projection of the bottom of the bounding box of the user. Since the user is on the

ground plane, the intersection of the projected ray and the ground plane will establish the

3-D location of the user's feet. The 2-D dimensions of the user's bounding box and its

base location in 3-D constitute the low-level information about the user that is continuously

computed and made available to all agents in the computer graphics world. The contour is

projected from 2-D screen coordinates into 3-D world coordinates, based on the computed

depth location of the person. This is then used to perform video compositing and depth
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clipping to combine the user's video image with computer graphics imagery.

2.4.3 Hand tracking and gesture interpretation

One of the most salient cues in an interactive interface is the location of the user's hands.

We have implemented feature localization heuristics that determines hand locations by

searching within a window along the side of the contour for extremal horizontal and vertical

points. If the highest point in the window is above the shoulder of the user, we label that the

hand, otherwise the horizontal extremal point is used. The highest point within a window of

the contour located above the centroid of the foreground region is labeled the head. These

feature localization algorithms are not infallible, but we have found they work well in a

wide range of conditions, especially if combined with color space classification to identify

the location of flesh tones[88].

Our system improves on earlier systems in which only the 2-D position of the user's

hand was used to determine activation of objects such as virtual buttons. The improvements

avoid inadvertent manipulation of objects, such as unintended activation of buttons. The

system uses combination of clues including 2-D position of the hands, Z position of the

user's body, and gesture information to make sure that the user's intention is to actually

manipulate an object. For example, in order for the 3-D button to be pushed, the user has to

perform a "pointing gesture", have the hand over the button in 2-D and the user's feet have

to be placed in the correct Z-plane.

Both the absolute position of hands, and whether they are performing characteristic

gesture patterns, are relevant to the agents in the virtual world. We use pattern recognition

strategies to detect and classify these characteristic gesture patterns. Static gestures, such

as pointing, are computed directly from the hand feature location. To recognize dynamic

gestures, we use a high-resolution, active camera to provide a foveated image of the hands

(or face) of the user. The camera is guided by the computed feature location, and provides
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images which can be used successfully in a spatio-temporal gesture recognition method.

This framework for real-time gesture processing and active camera control is described in

detail in the following chapters.

2.5 Applications of the Magic Mirror

Several applications have been implemented which use the full-body, interactive vision

metaphor described above. Here we describe three applications: interacting with au-

tonomous virtual agents, browsing a multimedia database using natural gestures, and inter-

active game experiences.

2.5.1 Perceptually situated intelligent agents

The first implementation of an interactive vision environment was a system designed to

allow a user to interact with an immersive visual environment of artificial life agents,

without using any physical apparatus. Our system, ALIVE, or "Artificial Life Interactive

Video Environment" uses the vision routines described above, together with behavior-based

animation and agent modeling systems. 2 With few exceptions (e.g. [45]), to experience

these environments previously required the use of gloves, goggles, and/or a helmet, and

most likely a wired tether to a computer graphics workstation [67].

The initial ALIVE system [30] contained of two virtual worlds, which the user could

switch between by pressing a virtual 3-D button. One world was inhabited by a Puppet and

the other world by a Hamster and a Predator. The Puppet had behaviors to follow the user

around, try to hold the user's hand, and imitate some of the actions of the user (sitting down,

jumping, etc). It would be sent away when the user pointed away and come back when the

2The behavior system for the Hamster and Dog characters in ALIVE was implemented by Bruce Blumberg
[13, 14], and the Puppet chacter by Jeremey Brown, under the supervision of Pattie Maes.
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Figure 2-2: Person tracking in a system for vision-based interaction with a virtual en-
vironment. (a,b) A user sees him/herself in a "magic mirror", composited in a virtual
environment. Computer vision routines analyze the image of the person to allow him/her to
effect the virtual world through direct manipulation and/or gestural commands. (c) Results
of feature tracking routine; head, hands, and feet are marked with color-coded balls.
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Figure 2-3: Gestures are interpreted by the agents based on the context. Here, the Puppet
walks away in the direction the user is pointing.

user waved. The puppet employed facial expressions to convey some of its internal state.

For example, it would pout when the user sent it away and smile when the user motioned it

to come back. It giggled when the user would touch its belly.

Similarly the Hamster had behaviors to avoid objects, follow the user, and to beg for

food. The user was able to feed the Hamster by picking up food from a virtual table and

putting it on the floor. The user could open an adjoining cage and release a Predator, which

would then chase the Hamster (but avoid the user).

The user could interact with the agent using certain hand gestures, which were interpreted

in the context of the particular situation. For example, when the user points away (Figure

2-3) and thereby sends the puppet away, the puppet will go to a different place depending

on where the user is standing. If the user waves or comes towards the puppet after it has

been sent away, this gesture is interpreted to mean that the user no longer wants the puppet

to go away, and so the puppet will smile and return to the user. In this manner, the gestures

employed by the user can have rich meaning which varies on the previous history, the agents

internal needs and the current situation.

More recent ALIVE worlds have focused on artifical agents of increasing complexity.
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In the ALIVE system presently demonstrated at MIT, users interact with an autonomous dog

agent who would follow, beg, mimic, and play fetch with the user, as well as other behaviors.

The dog agent was comprised of an ethologically based action selection mechanism that

choose behaviors for execution based on both perceptual input provided by the vision system

and internal state/goals [13, 14].

2.5.2 Multimedia Navigation

Given the trend that dramatically increasing amounts of information are available through

publically accessible computer networks, it is important to develop methods to better

access and manipulate that information. In cases where traditional keyboard interfaces

are inadequate due to public access constraints or naive users, an interactive vision-based

interface has several desirable properties: it is passive, non-intrusive, and responds to a

person's natural gestures.

The vision-based magic mirror interface can be used in an interactive multimedia

browsing task. Using the same physical installation and vision routines as above, Wren,

Sparacino, and colleagues [89] have constructed a system using the Magic Mirror interface

in which the user could navigate a space of video, sound and text objects. Objects could

change state - display at a higher resolution, add more detailed description, and/or show

pointers to background information - based on the proximity of the user in the 3-D virtual

space and or whether the user was gesturing at the object. Most recently they have connected

this system to a WWW navigator (Figure 2-4(a)).

2.5.3 Interactive Video Games

Perception of a user's pose using computer vision has direct application as an interface to

video games [80]. Rather than use buttons or dials to move a game figure, a game character

can be directly or indirectly controlled using the user's own body. This can result in a more
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visceral, and athletic, experience for the game player. At the Media Lab, K. Russell, T.

Starner, and C. Wren have implemented an interactive full-body interface to the popular

DOOM video game (Figure 2-4(b)). DOOM is a first person multi-player game in which

the goal is to explore a 3-D maze, fight and kill any monsters or opposing players, and

obtain treasure. Traditional interfaces to this game are all based on PC keyboards, which

are relatively cumbersome to manipulate. Using the full body interface, body position and

gesture are used to control the game. Navigation is performed using a mixture of first and

third person interface metaphors: translation is determined from the position of the user in

the 3-D space, rotation adjusted based on pointing to one side or the other, and gun control

based on either sound input commands or two handed gestures.

2.5.4 Other Applications

Many other applications could be adapted to this type of interface; for example an interactive

aerobics trainer, which, unlike the ubiquitous home video tape, would not only lead the user

through a routine, but also watch to see if the user is successfully completing the workout

and adjust the pace if necessary. In addition, when connected to a wide area network

this interface can be naturally applied to the domain of teleconferencing and telepresence,

allowing the user to control a full-body representation of his or her body in a shared virtual

world.3

3A first experiment along these lines was the distributed ALIVE system shown at SIGGRAPH96, see [31].



INTERACTIVE INTERFACES

(a)

(b)

Figure 2-4: Examples of interactive video games and web navigation using the full-body
interface: (a) web navigation using real gestures, (b) SURVIVE, a full-body interface to
the DOOM video game.

CH APTER 2.



Chapter 3

Real-time Hand and Face Gesture

Analysis

Gestures are an important aspect of human interaction, both interpersonally and in the con-

text of man-machine interfaces. There are many facets to the modeling and recognition of

human gesture: gestures can be made by hands, faces, or the entire body, they can be static

or dynamic, person-specific or cross-cultural, tied to linguistic utterances or meaningful in

their own right. Here we consider vision-based analysis of user-specific spatio-temporal

gestures, which can be described as a set of poses or expressions observed over a finely

sampled temporal sequence. We will focus on methods which learn a task-specific repre-

sentation of hand and face gestures for use in real-time recognition and tracking tasks.

The analysis presented in this chapter assumes high-resolution imagery of the hand or

face is available; Chapter 4 will show how we use an active camera to obtain foveated

imagery of hands or faces in an unconstrained environment, and utilize estimates of pose

or expression in an interactive interface.

Our system achieves robust real-time performance in gesture analysis by exploiting the

principle of using only as much "representation" as needed. Hands and faces are complex
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3D articulated structures, whose kinematics and dynamics are difficult to model with full

realism. Consequently, instead of performing model-based reconstruction and attempting

to extract explicit 3D model parameters (for example see [23, 39, 43]), we use a direct

approach which represents the object performing the gesture with a vector of similarity

scores to a set of 2-D views. With this approach we can perform recognition and tracking

on objects that are either too difficult to model explicitly or for which a model recovery

method is not feasible in real time.

As we shall see below, our appearance-based approach affords several advantages, such

as the ability to form a sparse representation that models only the poses of the hands that are

relevant to desired gestures, and the ability to learn the models directly from the data using

unsupervised clustering. We combine the dimensionality reduction offered by appearance-

based analysis with a supervised learning interpolation stage that maps view model outputs

into a task dependent coordinate system, in which recognition and interactive control are

straightforward.

3.1 Appearance-based Representation

We adopt a appearance-based representation of gesture performance, where the appearance

of a target object (e.g., the face or hand) is described by its similarity to a set of iconic views

that span the set of poses and configurations of the target object.

This approach is related to the idea of view-based representation, as advocated by Ullman

[79] and Poggio [63], for representing 3-D objects by interpolating between a small set of

2-D views. Recognition using views was analyzed by Breuel, who established that there

are reasonable bounds on the number of views needed for a given error rate [16]. However,

the view-based models used in these approaches rely on a feature-based representation of

an image, in which a "view" is the list of vertex locations of semantically relevant features.

Unfortunately, the automatic extraction of these features remains a difficult problem.
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More closely related to our approach is the work of Turk and Pentland[78], who used

combinations of low-order eigenvectors to describe a space of target appearances. In

this way they were able to detect and recognize human faces. Murase and Nayar[58]

later generalized this appearance-based approach to accurately recognize a set of industrial

objects and determine their pose. The difference between these appearance-based methods

and the earlier view-based methods is that precise feature detection is unnecessary (they

can be applied directly to edge maps, optical flow or normalized intensity), and that they

can capture much larger range of variation in target appearance.

In this paper we are not interested in recognition from static imagery, but rather in real-

time analysis of a spatio-temporal pattern, in particular people's hand gestures and facial

expressions. To accomplish this we have extended the notion of appearance modeling into

the temporal domain by use of elastic spatio-temporal matching. We have also coupled

a task-dependent interpolation stage with our appearance analysis framework, providing

direct connection between the user's gestures and task control.

Our work differs from other appearance-modeling research in the use of combinations of

spatial views to describe image appearance. We use the view with the maximum similarity

(minimum distance) to localize the position of the object, and the entire set of view scores at

that point to characterize the actual pose of the object. We will use the term "view model"

to mean the iconic representation of a single example of a target, and the term "appearance

model" to mean the vector of similarities between a target and a set of view models.

3.1.1 Correlation-Based Similarity

For the presentation in this chapter, we have chosen normalized correlation to be the

similarity measure between an image and a set of spatial view models to obtain real-time

performance. (Similarity can also be defined directly as a likelihood measure defined by

an eigenvector representation of a class of images; this will be discussed further in Section
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4.3.) Given a set of models indexed by the variable m, 1 < m < M, the view-model

similarity function is
.. Sm(i, j) - S' (i, j)

Rm(z, 3) = fnIUm(3.1)

where

Sm(,j)= m Z Tm(u, v)I(i+ u, + v)

{u,vjdm(u,v)=1}

Tm(u, V) V I(i+u,j+v)
{u,vldm(u,v)=1} {u,vldm(u,v)=1}

and where Tm() is the value of pixels in the image used to define the view model, I(i, j), 0 <

i < W, 0 < j < H is the new image being searched, dm(i, j) is set 1 for valid view model

locations and 0 for "don't-care" locations, nm = Zij dm (i, j) is the number of valid pixel

locations in the view model, and or, cTm are the standard deviation of the observed and

model images, respectively. We define the spatial maxima and the corresponding image

offsets for each view model:

r= max Rm(i, j), (Z, 3,ri) = arg maxRm(i,j).

and store them in a vector of spatial similarity scores, called an "appearance model":

r = [l/W,3/H, R 1 (7, j), R 2 (?, j)..., RM(A,)] T -

With a smooth similarity function, the similarity score of a particular view model as the

object undergoes non-linear transformations such as rotation, scale, or articulation will be a

roughly convex function. The peak of the function will be centered at the parameter values

corresponding to the pose of the object used to create the view model. For example, Figure

3-1(a) shows three images of an eyeball that were used to create view models for gaze

tracking; one looking 30 degrees left, one looking center-on, and one looking 30 degrees to
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(a) ()(c)

Figure 3-1: (a) Three spatial views of an eyeball at +30, 0, and -30 of gaze angle.
(b) Normalized correlation scores of the view models when tracking a eyeball tracking
from approximately -30 to +30 degrees of gaze angle with two reported saccades. (c)
Interpolated gaze angle showing these saccades, using RBF method described in Section
3.4.

the right. Figure 3-1(b) shows the normalized correlation score for each view model when

tracking a eyeball rotating from left to right, with two saccades. Each view model shows a

roughly convex curve centered about the gaze angle used to create the view model.

Given a set of view models which sample a transformation parameter finely enough

over a range of interest, the spatial appearance model (set of similarity scores) is a sufficient

representation of the signal such that one can estimate the actual transform parameters

for new views by interpolation. Section 3.4 will present a method to perform this task.

In general, rather than actually estimate 3-D parameters explicitly, our method uses the

normalized correlation scores directly for recognition and control. Examples of this will be

shown in Section 3.5.

3.1.2 Temporal view analysis

A similar view-based dimensionality reduction is also possible in the temporal domain. We

construct temporal view patterns comprised of spatial appearance models observed over
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time, and use a correlation-based similarity function defined over these dimensions (t, m) to

compute a spatio-temporal appearance model. Because of temporal scaling due to different

sampling or performance rates, there is variation in time which we need to accommodate.

Our solution is to allow the observed sequence to be arbitrarily time-warped to each stored

temporal view model before computing a similarity score. The result of this stage is a

spatio-temporal appearance model (vector of temporal similarity scores) containing scores

which characterize both spatial and temporal properties of the input signal.

To find the similarity between two sequences, we again use a normalized correlation

metric, but after using the Dynamic Time Warping (DTW) method to temporally align

the two sequences, thus allowing the time-course of a gesture to vary. The DTW method

involves the use of dynamic programming techniques [9] to solve an elastic pattern matching

task, and was originally developed to solve the time alignment problem in the speech and

signal processing literature [70]. Note that DTW is a simplification of Hidden Markov

Modeling (HMM); they are equivalent for the relatively simple (non-branching) sequences

we will be considering.

We use a version of the DTW method that has been modified to match backward in time,

so that we can constrain the temporal endpoints of the two sequences to be the same, but

allow the starting point to match elastically. To temporally align an observed sequence of

spatial view model score vectors, R = { r[0], r[ 1], ..., r[T] } , with a temporal view model of

spatial scores T, = {s, [0], s,[1], ..., sp[T] 1, where the number of vectors in each sequence

are not necessarily equal, we consider a grid for each view model whose horizontal axis is

associated with 7Z and whose vertical axis is associated with T,. Each element of this grid

contains a distance measure D,, measuring the Euclidean distance between r[i] and sp[j].

The best time warp will minimize the accumulated distance backward along a monotonic

path through the grid from (T, T') to (0, 0). The DTW algorithm uses a partial sum variable,

CP,,,, to recursively compute a minimal solution; C,,;,5 is defined to be the minimum cost

to align r[i..T] with s,[j..T,]. A backward matching DTW method can be defined with

MOW _ 11 MOM-- It A -_
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C,,i,j = D,,i,j + min(C,,i+1,j+1, C,,i+1,,, Cp,i,j+1), except on the border of the grid, where

C,, = D, , C =,i, D,,,; + Cp,i+1,Tp, and Cp,T,j = Dp,T,J + Cp,T,j+1 . When the

recursion is complete, the minimum distance between 7R and T, is simply C,,o,o.

This method constrains the observed sequence and the gesture pattern to be aligned at

the current time step. However, we do not know a priori the actual start point of the gesture

in our buffer of observed spatial view scores, so we must relax the requirement that the

start point of both sequences also be aligned. We define the score of a gesture model to

be the minimum of any of the partial sums which account for all of the time samples in

the temporal model, independent of how much of the buffer of currently observed scores is

matched: 'D(1, T) = mino>t>T C,,o.

To find the actual alignment we simply backtrack through Cij along the directions of

partial sum minima. We define a warp function wp(j), which returns the index of the

observed sequence r corresponding to the j-th element of s, vectors in view T. This can

be computed by setting

j*= 0 ; w(0) = i* = arg min Cp,t,o,
o>t>T

and then iterating

d= min(C,i*+1,3*, Cp,i*,j*+1, CP,i*+1,*+1)

while incrementing i* when d* = C,*+1, j* when d* = C,,i*,*+1, and both when

d* = CP,i*+1,j*+1. Setting wp(j*) = i* after each iteration, we have the optimal time-

alignment when i* = T andj* = T'.

With the optimal path through the grid in hand, we compute the normalized correlation

of these time-aligned sequences, which we define to be gp where p is the index over the set
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(a) (b) - (c) (d)

Figure 3-2: (a,c) Spatial view models automatically acquired from a sequence of images of
a rotating box. (b,d) Normalized correlation scores for each model as a function of angle.

of temporal views:1

M * TE(sp)m[t]rm[w(t)] - J(sp)m[t] Z rm[wp(t)]
m,t m,t m,t

9P (M * T) 2Ursp

Finally then, g is the spatio-temporal appearance model, a vector of combined spatio-

temporal view scores computed by cascading the temporal normalized correlation scores

(with elastic matching) onto the spatial normalized correlation scores.

3.1.3 Implementation Issues and Real-time performance

The majority of the computational burden in this method involves finding the set of view

model correlation scores. To compute correlation scores, we rely on a special-purpose

image processing computer which is designed for quick correlation searching. The view

model acquisition, evaluation, and maxima finding are implemented on a Cognex 4400

'This expression for gp can be arrived at from the formula defined by Eq. (1), by first replacing m with
p (the indexing variable), then u with m and v with t (the dimensions correlation is computed over), then
I(m, t) with rm[wp(t)] and T,(m, t) with (sp)m[t] (the objects compared), and finally n, with M * T (the
number of items in the comparison), so that gp R(0, 0).

r, _
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vision processor developed by the Cognex Corporation (other processing is performed on

Sun-4 and SGI Indigo-2 workstations). We have found that when recognizing hand gestures

where the hand fills 1/8th to 1/4th of the video frame, it is possible to acquire these images

at an input resolution of 128x120 and achieve good recognition performance. We have

tested our system at this resolution on examples which used up to 40 models (on a run

of the rotating box example); the time required to exhaustively search all models in this

case was on the order of 200-300ms. (At this resolution our system can store up to 100

view models in memory accessible by the searching hardware.) Using the predictive search

pruning mechanism described in [25], which exploits temporal correlation in the observed

view scores, we were able to reduce the processing time for this example to under 100ms.

The vision processing for the face interpolation and hand gesture recognition examples

described at the end of this paper ran at rates in excess of 10 Hz.

3.2 Learning View and Appearance Models

A key problem for this approach is how to learn a set of view models that span the target

object's range of appearance over both space and time. When objects are non-rigid, either

constructed out of flexible materials or an articulated collection of rigid parts, such as

hands and faces, the dimensionality of the space of possible appearances is very large.

Full enumeration of the space in these cases is intractable even if a complete 3-D model

is available. However, many appearances may never be encountered in a particular task

due to additional constraints. These may be physical (some joints may not be completely

independent), or behavioral (some poses or motions may never be used in the actual

communication between user and machine). We therefore use a learning method which

derives from training data an appropriate set of view models that are sufficient to characterize

the entire range of target appearances.

We use a simple incremental unsupervised clustering scheme. The system begins with
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one spatial view model taken from an image region defined by the user in the initial frame

of the image sequence. The target object is then tracked by using the similarity search

function given above. When the maximum search score (r,) falls below a certain threshold

0, a new view model is added to the appearance model (i.e., the search set) using the image

at the offset associated with the current best score. To add a new model, we construct a

new template T(u, v) with the values of the pixels in the image in the region covered by the

view in the appearance model with the maximum similarity score. In our implementation

and in all the results shown in this chapter, we set 0 = 0.7 and have empirically found this

to yield good results.2 This parameter determines the tradeoff between the number of views

used (and thus storage space and computation time) and the accuracy of the appearance

model representation (a higher threshold leads to a representation with more views, which

can represent finer details).

For acquiring new temporal views, we use the same learning rule, but using the elastic-

matching correlation function defined in the previous section. We do assume that during the

learning process there is a temporal segmentation signal, so that sequences are presented to

the temporal view formation process discretely. Thus, the first sequence is used to define

the first temporal view model; additional sequences are added to the set of view models (the

spatio-temporal appearance model) when they fail to match against the current set with a

sufficient score. During run time there is no temporal segmentation signal needed.

For simple objects and transformations, this clustering method can build an appearance

model which adequately covers the entire space of possible target appearances. For example,

for a convex rigid body undergoing a l-D rotation with fixed relative illumination, a small

number of view models can match object across a range of the rotation transformation.

Figures 3-2 illustrates this with an example of a box rotating about a single axis.

2This assumes that the target object is indeed present in the entire image sequence. In practice we also use
a second threshold, 00 = 0.6, and disregard any images that match with r, <; 0. During the training phase,
if the target object leaves the scene or is occluded and the best score falls below this threshold, we will not
build spurious view models.
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3.3 Limitations and extensions of the appearance-based

method

Our iconic, appearance-based approach to representing spatio-temporal events has the

advantages of being efficient to implement and having a data-driven learning method which

makes few assumptions on the exact character of the input signal. However, this approach

also has several limitations, particularly in the ability of an iconic method to generalize

across all possible gestures of a certain semantic class.

An appearance-based method using purely iconic view model templates cannot be

expected to perform generalization across multiple users or when a single user performs a

gesture that is not well modeled by previously-seen spatio-temporal patterns. We therefore

use our method in environment where the user is known via face recognition or other

methods, and where the the user is willing to use standard patterns when interacting with

the system (note that the user can teach the system the patterns they want to use; they are

not fixed ahead of time).

Furthermore, our use of direct modeling of view intensity makes our system sensitive

to direction of illumination (which will effect shading) and viewing direction, although it

provides for invariance to gross illumination changes. In practice, we have simply controlled

the illumination, for instance, using near-band IR illumination from LEDs (which is visible

to standard CCD cameras but invisible to humans), or using the location-dependent training

scheme in Section 4.4.

However, even with these restrictions there are many domains in which our method can

be useful. Examples include a user interacting with a workstation, a driver in an automobile,

and camera control in teleconferencing. In each of these cases the set of users is small

and/or user identity is available through other means, there are clear advantages to control

via characteristic hand or face gestures, and the imaging conditions are relatively constant.
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3.4 Interpolation from Visual Input to Task Control

We use a task-dependent interpolation method to map from the set of view model scores

to a result vector used for recognition or control. Interpolation is done using a supervised

learning paradigm, based on a set of training examples which define the desired result for

a particular set of view model outputs. Using the Radial Basis Function (RBF) method

presented in [62], we compute a result vector y to be a weighted sum of radial functions

centered at an exemplar value:

y(g) = 1c.iF(||g - gN||) , (3.2)
i=1

where

c = F-y, (F);3 = .F(lIg - gi)|), y = [y(l), ... ,y(n)]T , (3.3)

g are the computed spatio-temporal view-model scores, and { (y(), g0))} are a set of

exemplar result and view-model score pairs (which may be scalar or vector valued). F is

the RBF, which in our implementation was simply .F(§) = @.

We use the interpolation stage to map the observed view model scores into a quantity

which is directly useful for a particular task. For example, if we wanted to estimate the

eye gaze angle for the example in Figure 3-1, we could use an RBF interpolator with a one

dimensional output space corresponding to gaze angle and three exemplars, containing the

view model scores corresponding to each view model angle:

{(y W, g())} = {(-30, [1.0, 0.3, 0.3 ]T), (0, [0.3, 1.0, 0. 3 ]T), (30, [0.3,0.3, I.O]T)}

Using this RBF configuration, it is straightforward to recover an estimate of the underlying

eye gaze angle from the three spatial view model outputs. The interpolated gaze angle is

shown in Figure 3-1(c).

WIMI.- I NOW 'I" - I I
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3.5 Examples of Appearance-based Analysis

3.5.1 Mimicking Facial Expressions

The modeling and tracking of expressions and faces has been a topic of increasing interest

recently. Facial animation is a difficult problem due to the sheer complexity of realistic

facial models: dozens of degrees of freedom are present in a face, and to control them

for computer animation using conventional keyframe or motor control techniques is quite

difficult. A much more natural approach is to use one's own face to control the model

face parameters. We present a system which tracks facial expressions in real-time without

mechanical actuators or make-up, using our interpolated appearance-based vision methods.

This approach follows in the tradition of others who have explored techniques for visual

analysis of facial expression [87, 74, 10, 34, 51]. In our method spatial view outputs are

interpolated to control the motor states of a 3-D computer graphics face, using the face

model employed in Essa and Pentland [34]. The result vector y is defined to be the motor

state of the animated face. Training examples are acquired by setting the model face to

generate a particular expression, asking the user to mimic the expression, and recording the

pair of vision scores and muscle parameters.

We have implemented real-time facial expression tracking, for use in interactive anima-

tion or telepresence. Figure 3-3(a) shows 5 frames of a 125 frame video sequence of a user

making a smile and surprise expression are shown. Spatial view models covering the entire

face were acquired from a separate training sequence containing the same user making these

expressions. The unsupervised clustering method returned view models corresponding to

a neutral, smile, and surprise expression. (No temporal views were used in this example,

since we were interested in tracking static pose.) An RBF interpolator was trained using

perceptual/motor state pairs for these three expressions; the resulting (interpolated) motor

control values for the entire sequence are shown in Figure 3-3(c), and the rendered facial
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Figure 3-3: Interactive facial expression tracking in real time. A set of normalized corre-
lation view models are used to characterize facial state, and then used to interpolate a set
of motor control parameters for a physically based face model. View models are acquired
using unsupervised clustering while the interpolation is trained using supervised learning.
See text for details.
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(a) (b)

Figure 3-4: (a) Overview shot of full system for tracking facial expression in real-time.
User is on left, vision system and camera is on right, and animated face is in the center
of the scene. The animated face matches the state of the users face in real-time, including
eye-blinks (as is the case in this shot.) (b) Spatial view models learned by unsupervised
clustering method for region-based face mimicking example; independent view models
were found for eyes, eye-brows, and mouth regions.

mesh for five frames of these motor control values is shown in Figure 3-3(d). Note that the

unsupervised clustering method will often return more view models than the actual number

of expressions; the RBF method makes no assumptions in this regard.

When there are only a few canonical expressions that need be tracked/matched, this

full-face view-based approach is robust and simple. However if the user wishes to exercise

independent control of the various regions of the face, then use of full-face models will be

overly restrictive. For example, if the user trains two expressions, eyes closed and eyes

open, and then runs the system and attempts to blink only one eye, the rendered face will be

unable to match it, instead half-closing both eyes. A solution is to decouple the regions of

the face which are independent geometrically (and to some degree, independent in terms of

muscle effect.) In this approach, separate appearance models are computed for each facial

region, and multiple RBF interpolations are performed. Each interpolator drives a distinct

subset of the motor state vector.



CHAPTER 3. REAL-TIME HAND AND FACE GESTURE ANALYSIS 48

Figure 3-4 shows a picture of the set-up of the system as it is being run in an interactive

setting, the regions used for the decoupled view models, and the actual view models acquired

for the smile/surprise sequence. During run-time, the animated face mimics the facial state

of the user, matching in real time the position of the eyes, eyelids, eyebrows and mouth of

the user. In the example shown in this picture, the users eyes are closed, so the animated

face's eyes are similarly closed.

Realistic real-time performance of animated facial expressions has been achieved with

this method: our prototype system combining vision and graphics processing runs in excess

of 8 frames/sec with approximately 0.5 sec lag. Typical users can use the system for periods

of approximately 15 minutes without having to retrain the view models. In addition, our

system offers an extremely low bitrate mechanism for facial teleconferencing. In the above

example, vision scores can be encoded in approximately 64 bits per frame; at 8 Hz, only

512 bytes/sec of bandwidth is required. In the domains where the user is known and the

imaging conditions relatively controlled, our method can provide a real-time solution to

low-bitrate facial coding for teleconferencing and telepresence applications.

3.5.2 Recognition of Hand Gestures

Another application of our appearance-based interpolation framework is the recognition of

hand gestures. An RBF-based classifier can be defined by interpolating the spatio-temporal

similarity scores into a space whose axes correspond to the recent performance of the

patterns we wish to detect. In contrast to the previous example, this classification task calls

for a discrete decision rather than a continuous modulation of an input signal. We achieve

this by selecting only the maximal component of the interpolated result.

We tested our system on a recognition task with two target gestures. These patterns were

selected to be a simple interface to a video conference control system, and are arbitrary.

Fourty-two examples of a "hello" gesture were collected, twenty-six examples of "good-
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Figure 3-5: Formation of spatial and temporal view models for hand gesture analysis.
Example of (a) "hello" and (b) "good-bye" gesture are shown. Spatial and temporal view
models were found for these gestures, as described in the text. (c,d) Scatter plot of spatio-
temporal correlation feature vector on gestures in test set (h=hello, b=bye, o=other). (c)
shows case where 2 temporal models were found, (d) shows case with three temporal
models.
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(actual) (actual) (actual)
ntrain=3  hello bye other

(predicted) hello 3928 104 68
(predicted) bye 0 2492 8

(predicted) other 68 239 593d (b)

(actual) (actual) (actual)
ntrain=3 9  hello bye other

(predicted) hello 2069 18 13
(predicted) bye 0 1297 3

(predicted) other 2 36 462

error rate '"

(c)
training set site

Figure 3-6: Classification of spatio-temporal view model scores using RBF-based method
described in text. (a) Confusion matrix obtained using RBF classification method with
a training set containing one example of each gesture; rows indicate predicted gesture,
columns indicate actual gesture (n,ain = 3, ntet = 75, results summed over 100 runs, for
a total of 7500 test trials). (b) Confusion matrix obtained using training set containing half
of all gestures (n,ain=3 9 , ntes=39, results summed over 100 runs, for a total of 3900 test
trials). (c) Plot of error rate as a function of training set size. Error rate ranged from 6.5%
for nt,an = 3 to 1.8% for n,ain = 39.
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bye" and ten examples of other gestures intended to generate false alarms in the classifier.

Each user is free to define "hello" or "goodbye" to be any repeatable spatio-temporal pattern.

We assume a training phase where the gesture is performed in front of a known background

(and we set dm (i, j) accordingly). Users performed the example gestures discretely, so that

temporal segmentation was provided in the training phase.

Figure 3-5(a,b) shows a representative example of a hello and a goodbye gesture pro-

duced by one user. For each trial we randomly selected a subset of gestures to train the

classifier, and tested on the remaining gestures. "Hello" and "good-bye" gestures in the

training set were input to the unsupervised clustering procedure, which computed spatial

and temporal views as described above. In each run five spatial views and two or three

temporal views were found by the clustering procedure. The resulting spatio-temporal ap-

pearance model scores of these view models proved to be a good classification mechanism.

Figure 3-5(c,d) shows example scatter plots of temporal appearance vectors (g), labeled

with the actual gesture (Hello, Bye, Other). Figure 3-5(c) shows a case where two temporal

view models were found, this leading to a 2-D spatio-temporal appearance vector. Figure

3-5(d) shows a case where 3 temporal view models were found for the data resulting in 3-D

spatio-temporal appearance vector. In both cases a clear separation of the target patterns is

present in the spatio-temporal appearance vectors.

To perform classification, we configured an RBF interpolator with a three dimensional

output space and an input space corresponding to the dimensionality of the spatio-temporal

appearance model. The RBF was defined with exemplars of the form (y(W), g(0), where g(W

are the spatio-temporal appearance vectors in the training set, y(') is set to [1,0, 0, T if the

i-th gesture in the training set is a "hello" gesture, [0, 1, 0 }T if "good-bye", and [0, 0, I]T

if it is a conflictor or no gesture ("other"). We classified all of the gestures in the test set,

defining the predicted class based on the index of the largest interpolated score in the result

vector. We classified the gesture "hello" if the first element was largest, "good-bye" if the

second was largest, and "other" if the third was largest.

Oil
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Figures 3-6 shows the classification results for different training set sizes, The confusion

matrices for a training set of 3 and 39 gestures from the full set of 78, are shown, based on

data summed over 100 trial runs. (The graph is estimated from data summed over 10 trial

runs per training set size. With only three training examples (one of each type, randomly

selected) we obtained a remarkable success rate (ratio of the number of correct trials to the

total number of trials) of 93.5%. When the training set size was allowed to increase to be

half the size of the data set, performance increased to 98.2%.

3.6 Summary of appearance-based gesture analysis and in-

terpolation

We have developed and implemented a real-time system for learning, tracking, and rec-

ognizing complex objects and gestures defined as characteristic spatio-temporal patterns.

The use of an appearance-based representation allows us to model (and search) only the

portion of an object's appearance-space which is actually used by a user in the gestures to

be analyzed. Our appearance-based approach also allow analysis without having to recover

exactly the underlying object pose parameters. Using task-dependent interpolation based

on the Radial Basis function method, we have been able to achieve fast and robust analy-

sis and synthesis of facial expressions, and accurately recognize hand gestures using only

conventional video camera images as input. This system has promise as a new approach in

the interactive animation, video tele-conferencing, and personalized interface domains.



Chapter 4

Active Tracking of Expression and Pose

Ideally, a system for interactive interface should know whether a user is paying attention,

in particular where the user is looking during a dialog. We would like to have a wireless,

unconstrainted interface, which can detect where the user is looking and what his or her

facial state/expression is. To accomplish this, tracking and expression analysis must occur

over a wide spatial range. The person tracking methods presented in Chapter 2 can follow

a user around a room, but cannot discriminate detailed structure. The appearance-based

analysis presented in Chapter 3 can capture detailed expression structure, but require high-

resolution images of the hand or face.

To extend the appearance-based gesture analysis method to work in unconstrained

environments, we propose the use an active camera to obtain high-resolution images of the

users hand or face. In this chapter we show how appearance-based methods can estimate

expression or pose from an active, high-resolution camera, where the active camera is driven

by tracking an unconstrained user in a fixed low-resolution, camera view.
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4.1 Active Camera Architecture

To provide high resolution images for gesture recognition, we augment the existing wide

field-of-view camera in our interactive environment with an active, narrow-field-of-view

camera. Information about feature (e.g. head/hand) location from the person tracking

methods run on a wide field-of-view camera is used to drive the motor control parameters

of the narrow field camera. We use the figure/ground segmentation and contour analysis

routines described in Chapter 2 to determine head or hand location. This location is then

translated into gaze angles for the active camera's motor system, and a foveated image

of that body part is acquired. We then apply the appearance based analysis presented in

Chapter 3 to these high-resolution images. Camera control is performed open-loop using

the general person tracking routines, and closed-loop, using feedback from the expression

and pose analysis (Figure 4-1.) Figure 4-2(a,b) shows example output from the wide angle

camera and the narrow angle camera, as the narrow camera tracked the users head given

the head position information computed by the ALIVE routines on the wide angle image.

4.2 Foveated Expression Tracking Example

We have integrated the active vision sensor with the appearance-based gesture analysis to

track facial expression. Using a simplified, two expression model (neutral and surprised),

we tracked facial expressions as the user moved about the scene and the narrow angle camera

followed the face. Figures 4-3,4-4 show the results of tracking these two expressions using

the narrow angle camera input when the user is in two different locations in the scene, using

a single set of view models. The view models were acquired at a location in the scene

different from the two locations where we ran these tracking experiments.

For each of these experiments a surprise measure was interpolated from the view scores

using the radial basis function method described in Section 3.4. To produce the interpolated
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Head

User

Figure 4-1: Overview of system for face/body tracking and pose estimation, Objects are
rendered on Video Wall and react to facial pose or expression of user. Static, wide-field-
of-view, camera tracks user's head, and drives gaze control of active, narrow-field-of-view
camera. Appearance/view-based analysis is run on face images from active camera, to
provide pose or expression estimates for objects/agents to react to, and to provide closed
loop face tracking feedback for active camera.
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(a)

(b)
Figure 4-2: Active tracking in an interactive room; images acquired from (a) wide and (b)
narrow field of view cameras as user moved across scene and narrow camera tracks head.

surprise measures shown in these figures, we mapped the vision scores to a one-dimensional

motor value, labeled "surprise". With this formulation, the distinction between expression

recognition and expression tracking becomes blurred; the surprise measure can be used

directly for animation, or peaks can be found and used for recognition/detection.

Figure 4-5 shows the plot of the two view model scores and the interpolated surprise

measure for the entire run. During this run, the user began standing in the middle of the

scene, made three surprise expressions, then moved to the left, back to the middle, and

finally to the right of the scene, and repeated the three expressions at each location. In the

graphs we can see that the view scores fall to zero as the user moves to a new location

and the camera saccades to find the face again. When fixated on the face, the two fixed

view-models extract useful information about the surprise expression, as is evidenced by

the four sets of three peaks in the interpolated surprise measure. Each peak corresponds to

the user performing the surprise expression, which he did three times at each of the four

locations in the scene.
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(a)(b)

d)

(e)

Figure 4-3: View-based expression tracking using foveated face images. (a) Wide-angle
view of scene. (b) Foveated images of face while user performs one "surprise" expression.
(c) Normalized correlation "view" templates of neutral and surprise expression. Views were
trained while user was at a different location in the scene. (d) Normalized correlation score
of view templates evaluated on sequence in (b). User performed three surprise expressions
in the sequence. (e) Plot of surprise measure interpolated from view template scores. Three
peaks are present corresponding to the three surprise expressions.
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(b)

(d)

(e) tjf~
Figure 4-4: Same surprise expression performed at different location in scene, analyzed
using same foveated view templates as as in previous figure.
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Figure 4-5: Results from extended run where user moved to four locations in scene and
performed three surprise expressions in each location. (a) Neutral view model score,
(b) surprise view model score, and (c) interpolated surprise measure. The active camera
followed the users face (scores drop to zero during camera motion), and the surprise measure
picks up the three expressions the user performed at each location.
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4.3 Pose Estimation with Eigenspaces

While the appearance-based framework based on normalized correlation views has been

successful at the simple tracking shown above, it is a fundamentally limited method of

characterizing higher dimensional spaces. Our most recent work on tracking facial pose

relies on a more powerful technique for describing the distribution of a class of face images,

the eigenspace technique.

We extend the appearance-based approach to utilize an eigenspace representation for

each view, as proposed by [61]. In this formulation a separate set of "eigenfaces" is com-

puted for each possible object pose. Object pose is identified by computing the eigenspace

projection of the input image onto each eigenspace and selecting the one with the lowest

residual error (or "distance-from-feature-space" (DFFS) metric [61]). This scheme can

be viewed as a multiple-observer system where separate eigenspaces are simultaneously

''competing" to describe the input image.

The key difference between the view-based and a traditional parametric eigenspace

representation (e.g. [58]) can be understood by considering the geometry of facespace. In

the high-dimensional vector space of an input image, multiple-orientation training images

are represented by a set of M distinct regions, each defined by the scatter of N example

images. Multiple views of a face form non-convex (yet connected) regions in image space

[11]. Therefore the resulting ensemble is a highly complex and non-separable manifold. The

parametric eigenspace attempts to describe this ensemble by a projection onto a single low-

dimensional linear subspace (corresponding to the first n eigenvectors of the NM training

images). In contrast, the view-based approach corresponds to M independent subspaces,

each describing a particular region of the facespace (corresponding to a particular view

of a face). The relevant analogy here is that of modeling a complex distribution by a

single cluster model or by the union of several component clusters. The latter (view-

based) representation can yield a more accurate representation of the underlying geometry
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depending on the degree of manifold complexity of the data, as was argued in Chapter 2

(and [25]).

4.3.1 MAP estimation with Eigenspaces

Recently Moghaddam & Pentland [56] have shown that the DFFS measure can be combined

with a corresponding "distance-in-feature-space" (DIFS) to yield an estimate of the proba-

bility density function for a class of images. This likelihood estimate can be made optimal

(with respect to information-theoretic divergence) and can be computed solely from the

low-dimensional subspace projection coefficients, thus yielding a computationally efficient

estimator for high-dimensional probability density functions.

Specifically, given a set of training images {x'}N, from an object class 0 (in this case a

collection of user views from a single location and pose), we wish to estimate the likelihood

function for this data - i.e., P(x|Q). We note that from a probabilistic perspective, the

class-conditional density P(xIQ) is the most important data representation to be learned.

This density is the critical component in detection, recognition, prediction, interpolation

and general inference. In our case, having learned these densities for several pose classes

{01, Q2, -- , Qn }, we can formulate either a maximum-likelihood estimate

KML(x) = argmax{P (xIM) (4.1)

or a maximum a posteriori estimate

QMAP(X) = Qj s.t. P(QjIx) > P(Q Ix) Vi $ j (4.2)

'This subsection was written by Baback Moghaddan, as part of a joint publication with the author [29].
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using Bayes rule

P(Qjx) n (4.3)

E P (X|IQ) P(92j)
3j=1

We now review how an arbitrary density estimate P(x|I;) can be computed using the

eigenspace technique of [56] specialized to the case of a Gaussian distribution. Given a set

of m-by-n images {I}NT, we can form a training set of vectors {X}, where x E JZN=mn

by lexicographic ordering of the pixel elements of each image IP. The basis functions in a

Karhunen-Loeve Transform (KLT) [47] are obtained by solving the eigenvalue problem

A = GTI (4.4)

where I is the covariance matrix of the data, (D is the eigenvector matrix of I and A is

the corresponding diagonal matrix of eigenvalues. In PCA, a partial KLT is performed

to identify the largest-eigenvalue eigenvectors and obtain a principal component feature

vector y = (D i, where x = x - x is the mean-normalized image vector and 4 M is

a submatrix of D containing the principal eigenvectors. PCA can be seen as a linear

transformation y = T(x) : RN - ZM which extracts a lower-dimensional subspace of

the KL basis corresponding to the maximal eigenvalues. This corresponds to an orthogonal

decomposition of the vector space 1ZN into two mutually exclusive and complementary

subspaces: the principal subspace (or feature space) F = {<D }D containing the principal

components and its orthogonal complement F = As shown in [56], an

estimator for P(x|I) is given by:

exp - =2
[x( = 2 M/22 1 ( f(N-)/P(xIK2) = (27r) M /2 HTm A 12 (4.5)N-)1

- PF(Xl2 )p(XIQ)
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In general, brute-force computation of pose likelihoods in real-time is computationally

infeasible. Fortunately, most of the information computed by a brute force evaluation of

DFFS is of little importance-what is of interest is the location of the minima of the distance

function. Following [19], we use the zero-th order eigenvectors, EO, to perform spatial

localization within the foveated camera view. We compute a coarse to fine search using

the EO template for each pose, and find the pose and offset which has maximal normalized

correlation response. We then fully evaluate the higher order eigenvectors at this location

for each pose, and compute the pose class likelihood as given above.

4.4 Location-dependent Eigenspace Learning

Face images obtained from our active camera can be used to compute pose estimates, using

the eigenspaces technique described above. However, with a user moving in 3-space, we

have to deal with considerable variations in scale (size of head), and illumination changes

(such as shadows) that are not well modeled by a single eigenspace. These variations have

large-scale geometric effects, just as do changes in pose. Our approach is to define multiple

sets of eigenspaces, indexed over both pose and location in the world. A set of eigenspaces

is constructed corresponding to each facial pose and world location. Each pose class is

defined by a set of location specific pose class statistics:

Qi = {Q;,i}, I E 4, (4.6)

where the set of world locations is given by

1Z0 = Z1, ... z }, ((4.7)
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Figure 4-6: Multiple-Pose Eigenspaces for 3 different spatial locations
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where z is a 3-D coordinate vector. To compute a composite pose class likelihood, we

consider the estimation problem to be a case of estimation given spare observations. We

approximate the probability at locations where no training data is available. Given an

observed face image x at a world location z*, we compute an approximate probability via

interpolation among the K nearest locations which have actual probability estimates. Using

a linear interpolant, we have

K

P(x, z*|D;) ~ Z w(k)P(xIQi,n(k)), (4.8)
k=O

where n(k) is a function that returns the k-th nearest location to z* in L, and w(k) weights

the distance of each location

w(k) = Z* - n(k)jj2  (4.9)
,0o Iz* - n(j)II2

This offers much increased accuracy over computing a single set of pose eigenspaces for use

over the entire room environment. Figure 4-6 shows sets of eigenspaces for three different

poses collected at three different world locations.

Note that we need not evaluate the eigenspaces for each possible world location, since

the person tracking routines provide an estimate of the users position that is sufficient to

restrict the set of eigenspaces used by the system. The run-time computational burden of

having L different world locations each with a separate set of pose templates is k times

the cost of a single location, since we need not evaluate the eigenspace likelihoods that for

locations that are not in the nearest neighbor set [82].

We evaluated the tracking and pose estimation performance of our system. Eigenspaces

were trained for each of 3 poses at 10 different world locations, using a sample set size of

10 images at each location. The locations were set to be in two concentric semi-circles on

the floor of the workspace, at camera pan angles of -32, -16, 0, 16, and 32 degrees, and
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ranges of 80 and 120 inches. The active camera was fitted with a lens of 50mm focal length

(c-mount type). Figure 4-6 shows three of the eigenspaces that were trained.

In these experiments we have used multiple views of a single user to construct eigenspaces.

In our data set, each eigenspace describes variations in appearance due to expressions, slight

mis-alignments and with and without glasses. (The method, however, can easily be extended

to multiple users.)

We then evaluated the performance of the system against new images of the same user

both at the locations where the eigenspaces were trained, and at randomly selected floor

locations. We used the spatial localization method described above, evaluating eigenspaces

at the location at which the corresponding EO template had maximal normalized correlation

response.

First, we note that eigenspace face analysis can improve head tracking accuracy using

closed-loop feedback to guide the active camera. Figure 4-7 compares the camera position

in the case of open loop control, when the gaze angle is determined only by the wide-angle

person finder, and closed loop control, when the gaze angle is corrected by the offset of

the face in the current foveated image. During normal system operation, we set a threshold

on DFFS value to determine the transition between open and closed loop state, so that the

closed loop signal does not contribute when there is no face in the active camera field of

view. During these runs, the user was approximately twelve feet from the camera, and

walked freely in approximately a ten by ten foot area. Total time for computing pose

estimates and active tracking, including closed loop feedback, was less than 1/5 second.

Second, we show the pose classification rate for our system. In a trial with n = 25

observations, where 10 of these observations were at the training locations and the remainder

at locations chosen with a uniform probability across the workspace, we computed the pose

class confusion matrix. Three pose classes were used, one for looking to the left of the

screen (Q1), one for looking at the center of the screen ( 2), and one for looking at the

right of the screen ( 3). Recall that the screen was situated in front of the 15'x15' space,
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Figure 4-7: Tracking results: plot of pan angle for (a) stationary user, and (b) moving user

who walked across room while oscillating head. Dashed line shows pan position under

open-loop control; solid line shows pan position under closed-loop control.
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(a) trained (actual)
locations L1  Q2 K3

(observed)
L1 10 0 0
Q2 0 10 3
K3 0 0 7

(b) untrained (actual)
locations Q1  Q2 Q3

(observed)
L1 14 2 2
Q2 1 12 3
L3 0 1 10

(c) all (actual)
trials Q1 Q2 Q3

(observed)
Q1 24 2 2
02 1 22 6
K23 0 1 17

Table 4.1: Results of pose classification experiment determining the pose of a user facing

a display screen as the user stood at various locations in an interactive room. The task was
to classify where on the video screen the user was looking; left (i1), center (Q 2), or right

(A3). A multiple location/multiple pose eigenspace technique was used on the output of an
active camera tracking the users head, as described in the text. The confusion matrix was
computed for (a) trials at trained locations, (b) trials at non-trained locations, (c) all trails.
An overall success rate of 84% was achieved.
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and was itself 8'x10'. Results of our system on this experiment are shown in Table 4.1.

We obtained an overall success rate of 84% (63/75) for all trails, which breaks down to a

success rate of 90% (27/30) on the trails at the locations were the eigenspaces were trained,

and 80% (36/45) on the trails at randomly selected locations.

4.5 Summary of active gesture analysis method

In conclusion, we have shown that by integrating person tracking routines, an active camera,

and multiple eigenspace pose models, we can accurately estimate the direction of gaze of

a user interacting with a large screen video display. In the experiment described here,

the user was on average 15' from the cameras and the display, and yet our system could

discriminate pose classes which amounted to 10-15 degrees of gaze angle. Our system runs

in real time, and is used in applications for interacting with virtual environments or agents

that can respond appropriately to the users gaze, such as showing more information about

an object of interest.



Chapter 5

Attention for Recognition

In this chapter gesture recognition is reformulated as an active process, so that a recognition

task can guide the acquisition of foveated imagery. We address the problem of "what to look

at", and "when" during recognition, e.g. how to guide the active camera of the previous

chapter. We develop a perceptual action-selection system that implements visual attention

based on reinforcement learning. Using on a simple reward schedule tied to recognition

performance, this attention system learns the appropriate object (e.g., hand, head) to foveate

in order to maximize recognition performance.

As described in Chapter 2, visual routines for person tracking can be used to track

the head and hands of a user, and an active camera guided to obtain foveated images for

gesture recognition. If we know a priori which body parts to foveate to detect the gesture

of interest, or if we have a sufficient number of active cameras to track all body parts,

then we have solved the problem. Of course, in practice there are more possible loci of

gesture performance than there are active cameras, and we have to address the problem of

selectively observing parts of the scene, i.e., attention. We desire a method for perceptual

action selection that can learn from experience and model the fact that we only have partial

observations of the actual state in the world. Inspired by the success of statistical methods
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for hidden state learning in the domain of static perception (e.g., Hidden Markov Models),

for active tasks we use a hidden state learning model with both action and perception: the

Partially Observable Markov Decision Process (POMDP). In our system we use a POMDP

formalism to define perceptual action selection in a recognition task, and solve for foveation

policies using reinforcement learning methods.

As we will describe in the following sections, we have formulated an "Active Gesture

Recognition" task using the POMDP framework, and have found that instance-based Q-

learning is a feasible means for finding foveation policies. We define a special action to

signify recognition and an associated reward function, which leads to a Q-value space that

is interpretable as confidence that the target is present.

An important issue in instance- or memory-based approaches is how to find the appro-

priate prior experience on which to base estimates of utility. We will present an extension

to the K-nearest neighbor algorithm, commonly used in instance-based methods, which re-

moves the arbitrary selection of K and assures all experience of a particular action chain is

pooled together when computing utility. This is important for our active gesture recognition

task since it is essential to average experience over trials both with the putative target and

with distractors.

In addition, we found that instance-based Q-learning failed on our task when we intro-

duced multiple targets, as the Q-value space becomes quite complex when multiple sources

of positive reward are present. To solve the task under these conditions, we propose a mul-

tiple model approach, where a separate Q-learning module attempts to generate foveation

actions appropriate under the assumption that a particular target is present. As we will

show, this method is empirically viable, and can be expressed concisely as a Q-learning

system with vector-valued Q and reward functions.
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5.1 The Active Gesture Recognition Problem

We define an Active Gesture Recognition (AGR) task as follows. First we assume there

is some state representation of the world, describing the person configuration (or more

generally, the scene configuration). Second, we assume that portions of the state of the

world are only revealed via a moving fovea, and that a set of actions exist to perform

that foveation. Some portion of the world state (e.g., a low-resolution view) may be fully

observable. The position of the camera constitutes the perceptual state of the system; we

define the full "state" to be the concatenation of world state and perceptual state. Third,

we assume that, in addition to actions for foveation, there is also a special action labeled

accept, and that the execution of this action by the AGR system signifies detection of

a target world state (or target sequence of states). Finally, the goal of the AGR task is to

execute the accept action whenever a target pattern is present, and not to perform that

action when any other pattern (e.g. distractor) is present. A pattern is simply a certain

world state, or sequence of world states. The AGR system should use the foveation actions

to selectively reveal the hidden state needed to discriminate the target pattern.

An important problem in applying reinforcement learning to this task is that our per-

ceptual observations may not provide a complete description of the user's state. Indeed,

because we have a foveated image sensor in our interactive interface environment (as de-

scribed in Chapter 4) we know that the true world state is hidden as the camera can only

foveate on a single body part of the user at any given moment in time. By definition, a sys-

tem for perceptual action-selection must not assume a full observation of state is available,

otherwise there would be no meaningful perception taking place.

The AGR task can be considered as a Partially Observable Markov Decision Process

(POMDP), which is essentially a Markov Decision Process without direct access to state

[72, 48]. A POMDP includes a set of states in the world S, a set of observations 0, a set

of actions A, and a reward function R. Note that we do not assume the system has access
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to S, nor does it know a priori the transition likelihood between states or the likelihood

function mapping states to observations.

In the AGR task we define the reward function to provide a unit positive reward whenever

the accept action is performed and the target pattern is present (as defined by an oracle,

external to the AGR system), and a fixed negative reward of magnitude a when accept

is performed and a distractor (non-target) pattern is being presented to the system. The

parameter a expresses the trade-off between the two types of recognition errors, false alarms

and misses; for the results presented in this thesis we have taken a conservative approach

and set a = 10. (This is similar to the idea of disproportionally penalizing the Q-value

of perceptually aliased states, in Whitehead's Lion algorithm [85].) Zero reward is given

whenever a foveation action is performed.

We wish to find a policy, a mapping from state (in the case of an MDP) or some function

on observations (in the case of a POMDP) to action which maximizes the expected future

reward, suitably discounted to bias towards timely performance. Given the reward function

in the AGR task, this will correspond to a policy which successfully recognizes the target

pattern. We have implemented the AGR task in two domains: a static image domain used

for algorithm evaluation and pedagogical purposes, and the interactive interface domain

described in previous chapters.

5.1.1 AGR on static imagery

We have implemented a version of the AGR task with target patterns which are defined as

simple images. In this domain, world state is simply a single high-resolution image, and

the observation consists of a subsampled version of the entire image, plus a full-resolution

window over a foveated region of the image. The fovea is a fixed size rectangle and can be

moved by executing a set of foveation actions. (See Figure 5-1(a)). Gaussian noise with

variance a' is added to both the low and high resolution observations in our implementation.
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Image/Scene

observation

action

Figure 5-1: Formulation of AGR task with simple static images as world state.

(c)

U
Figure 5-2: Four gesture patterns in interactive interface domain which require foveated
images for discrimination. (a) Overview of AGR system in interactive domain; active
camera tracks the relevant hand to identify the gesture, as described in text. (b) Output from
wide field of view camera; (c) output from narrow field-of-view active camera.
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feature values observability precondition

person-present (true, false) (always observable)
left-arm-extended (true, false) (always observable)
right-arm-extended (true, false) (always observable)

face-foveated (true, false) (always observable)
left-hand-foveated (true, false) (always observable)
right-hand-foveated (true, false) (always observable)

face (neutral, smile, surprise, f face -f oveated == true
left-hand (neutral, point, open, ...) left-hand-foveated == true
right-hand (neutral, point, open,...) right-hand-foveated ==true

Table 5. 1: Set of features used in POMDP formulation of Active Gesture Recognition task

in interactive interface domain. This representation is computable in real-time using person
tracking and gesture recognition routines described in the previous chapters.

In this domain we compute the set of foveation actions by analyzing the set of target and

distractor images and determining locations which can possibly discriminate perceptually

aliased pairs. Each pair of images which is not discriminable using the low-resolution

(fully-observable) portion of the observation is passed to a high resolution comparison

stage. In this stage the images are compared and all points which differ are marked into a

candidate foveation mask. The marked points in the mask are then clustered, yielding a set

of final foveation targets.

When observations are compared in this domain, we perform a test which measures

whether the average pixel deviation between the two images (including both low and high

resolution) is greater than two standard deviations. If not, they are considered to be "equal"

observations, for the purposes of the matching function described later in this chapter.

5.1.2 AGR in the interactive interface domain

In the AGR task applied to the interactive interface domain, we assume primitive routines

exist to provide the continuous valued control and tracking of the different body parts that

represent/contain hidden state. We represent body pose and hand/face state using a simple
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feature set, based on the representation produced by our body tracker presented in Chapter

2 and appearance-based recognition system presented in Chapter 3, and we define the world

state (which we also call user state in this application) to be a configuration of the user's

body pose and hand/face expression.

In this domain user state is defined by the pose, facial expression, and hand con-

figurations, expressed in nine variables (see Table 5.1). Three of these are boolean,

person-present, lef t-arm-extended, and right-arm-extended, and are

provided directly by the person tracker. Three more are provided by the foveated gesture

recognition system, face, left-hand, right-hand, and take on an integer num-

ber of values according to the number of view-based expressions/hand-poses: in our first

experiments f ace can be one of neutral, smile, or surprise, and the hands can

each be one of neutral, point, or open. In addition, three boolean features represent

the internal state of the vision system: head- f oveated, lef t-hand- f oveated,

right-hand-foveated.

At each timestep, the full state s E S is defined by these features. An observation,

o E 0, consists of the same feature variables, except that those provided by the foveated

gesture system (e.g., head and hands) are only observable when foveated. Thus the f ace

variable is hidden unless the head- f oveated variable is set, the lef t-hand variable

hidden unless the lef t-hand- f oveated variable set, and similarly with the right hand.

Hidden variables are set to a undef ined value.

The set of actions, A, available to the AGR system are 4 foveation commands:

look-body, look-head, look-left-hand, and look-right-hand plus the

special accept action. Each foveation command causes the active camera to follow

the respective body part, and sets the internal foveation feature bits accordingly.
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5.2 Background: POMDPs

Formally, a POMDP is defined as a tuple, < S, 0, A, T, R >, where S is a finite set of

states, 0 is a finite set of observations, A is a finite set of actions, T is model of state

transition probabilities, and R models the reward associated with executing a particular

action in a particular state. After executing a particular action a E A in state s E S, the

world transitions to a new state s' with probability T(s, a, s'), and the agent receives a

reward R(s, a) and observation o E 0 with probability O(s, a, o).

Given a POMDP, one wishes to construct a policy, 7r which maps states to actions, and

provides an (optimal) action to be taken given the world is in a particular state. Policies

may be deterministic or stochastic, with the latter being more complex but yielding higher

average rewards in some cases [71].

Methods for constructing a policy based on a POMDP model can be divided into two

approaches: indirect and direct. Indirect methods attempt to estimate the actual state of

the world, and then treat the problem as a conventional Markov Decision problem (MDP)

with full state access. Direct methods forgo recovery of the actual state and attempt

to characterize optimal behavior given only actions and observations. We will discuss

examples of each of these, as well as hybrid approaches that use weak methods to model

internal state.

Indirect methods combine a predictive forward model that recovers an estimate of

absolute state with a conventional MDP learning method. Given absolute state, recovering

an optimal policy for a MDP is a well-studied problem. Q-Learning is one widely used

method based on a reinforcement learning paradigm for finding an optimal policy. The Q

function maps state and action pairs to a utility value, which is the expected discounted

future reward given that state and action. Optimal Q values can be computed on-line

using a Temporal Differences method [73], which is an incremental form of a full Dynamic

Programming approach [7]. In the case of deterministic state transitions, the optimal Q
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function must satisfy

Q(s, a) = r + 7 max Q(s', a)
aEA

where s' is the next state after executing action a in state s. To find an optimal Q, the

difference between the two sides of this equation is minimized:

Q(8, a) <- Q(s, a) + q(r + 7 max Q(s', a))
a6 A

This has been shown to converge to optimal policies when the environment is Markovian

and the Q-function is represented literally as a lookup table [83].

Several approaches have been proposed which combine a predictive model to transform

a POMDP to a MDP and then use Q-learning to construct a policy function. The Perceptual

Distinctions Approach (PDA) developed by Chrisman [22] uses a state-splitting approach

to construct a model of the domain. A modified Expectation-Minimization (EM) algorithm

was used to alternate between maximizing the model probability given a fixed number of

internal states, and splitting perceptually aliased states into new states. A similar method

was developed by McCallum, the Utile Distinction Memory approach (UDM), which split

states based on the predicted reward [52]. Given a state estimator learned via PDA or UDM,

or simply computed from T and 0, an optimal policy can be constructed [21].

However these indirect methods have been criticized as being computationally in-

tractable in realistic environments [44]. Indeed, the empirical results suggest that a pro-

hibitive amount of training time is required with these algorithms [53].

Rather than convert a POMDP to a MDP through state estimation, direct methods

update a value function over observations without recovering absolute state. Jaakkola et.

al. present a Monte-Carlo algorithm for policy evaluation and improvement using Q-values

defined over actions and observations [44]. They provide a recursive formulation of the

Monte-Carlo algorithm, and prove the policy improvement method will converge to at least
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a local maximum.

A hybrid approach between these two extremes has been explored by Lin [46] and

McCallum [53]. These methods use a memory-based approach to identifying state. Lin's

window-Q algorithm supplies a history of the N most recent observations and actions to

a conventional Q-learning algorithm. The hope is that perceptually aliased states can be

discriminated by knowing a portion of the state history. A significant drawback to this

approach is the use of fixed window size. McCallum's Instance-Based state identification

method extends this approach to use windows of varying length depending on the current

sequence. Q-learning is performed over a space of states that is defined using a sequence

similarity measure over the observations. The instance-based approach seems to have the

best empirical results among those published, and has the advantage that the algorithm is

intuitive and simple to implement.

5.3 Hidden-State Reinforcement Learning

To find policies for AGR tasks we have implemented an memory-based method for hid-

den state reinforcement learning, based on McCallum's instance-based approach, which

we will describe in detail. This method performs Q-learning [73, 83], but replaces the

absolute state with a distributed state representation. (As is usual with Q-learning, we

do not assume any access to or knowledge of the set of states S, or the likelihood func-

tions T(s, a, s'),O(s, a, o).) Given a history of action, reward, and observation tuples,

(a[t], r[t], o[t]), 0 < t < T, a Q-value is also stored with each timestep, q[t], and Q-learning

is performed by evaluating the similarity of recently observed tuples with sequences farther

back in the history chain. Q-values are computed, and the Q-learning update rule applied,

maintaining this distributed, memory-based representation of Q-values.

As in traditional Q-learning, at each timestep the utility of each action in the current

state is evaluated. If full access to the state was available and a table used to represent Q
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values, this would simply be a table look-up operation, but in a POMDP we do not have

full access to state. Using McCallum's Nearest Sequence Memory (NSM) algorithm, we

instead find the K nearest neighbors in the history list relative to the current time point,

and compute their average Q value. For each element on the history list, we compute the

sequence match criteria with the current time point, M(i, T), where

M(i, j)=S(i,j) + M(i - 1,j - 1) if S(i,j) > 0 and i > 0 andj > 0

0 otherwise .

We modify McCallum's algorithm slightly (for reasons made clear in Section 5.8) and

define S(i, j) to be 1 if o[i] = o[j] or a[i] = a[j], 2 if both are equal, and 0 otherwise. Using

a superscript in parentheses to denote the action index of a Q-value, we then compute

T

Q(a)[T] = (1/K) E v(a)[i]q[i] , (5.1)
i=O

where V(a*) [i] indicates whether the history tuple at timestep i votes when computing the

Q-value of a new action a*: V(a*) [i] is set to 1 when a[i] = a* and M(i - 1, T) is among

the K largest match values for all k which have a[k] = a*, otherwise it is set to 0. Given Q

values for each action the optimal policy is simply

7r[T] = arg max Q(a)[T] . (5.2)
aEA

The new action a[T + 1] is chosen either according to this policy or based on an exploration

strategy. In either case, the action is executed yielding an observation and reward, and a

new tuple added to the history. The new Q-value is set to be the Q value of the chosen
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Figure 5-3: AGR results for simple imagery targets: (a) set of four target patterns, where

the first and last pair are indistinguishable at low-resolution (b) recognition performance
(percentage of correct trials) for varying amounts of observation noise.

action, q[T + 1] - Q(a[T+1])[T]. The update step of Q learning is then computed, evaluating

U[T + 1] = max Q(a)[T + 1], (5.3)
a6 A

q[i] +- (1 - #)q[i] + /(r[i] + -U[T + 1]) , (5.4)

for each i such that V(a[T+1[i] = 1

Figure 5-3 shows the results using this hidden-state Q-learning algorithm on an AGR

OWN
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task using image-based world state. In this example four different world states were used for

the target and distractors; varying amounts of noise were added to the actual observations at

run-time. We ran the system by randomly selecting one of the patterns as target, and using

the other three as distractors. This Q-learning system easily learns the correct foveation

policies to actively recognize these targets; e.g., to foveate up to recognize one of the square

targets, and to foveate down to recognize one of the circle targets. For moderate levels of

noise, each pattern can be easily discriminated from all the others, however, as 0- exceeds

20.0', the high-resolution information in the signal becomes insufficient to discriminate the

two square targets and the two circle target, so performance drops by half. As a approaches

60.0, the low-resolution information becomes indistinguishable, and all the targets are

confused, leading to a recognition rate of zero.

5.4 Deterministic Exploration and Training Strategy

This instance-based Q-learning can find optimal policies to solve AGR tasks both in the

image-based example given above, and in the interactive interface domain. Figure 5-4

shows the recognition performance using simple target and distractor gestures in the latter

domain. In these simple cases an exploration model based on random search (e.g., explore

a random action either when the maximum utility is negative or with random probability,

typically p = 0.05) is sufficient to find a good policy.

The targets in Figures 5-3 and 5-4 are all "simple" because they can be discriminated with

a single foveation action and resulting observation. However, with more complicated targets

random search has a considerably more difficult time finding a good policy. Empirically

we found that for targets which required more than one foveation action (in addition to the

accept action) to discriminate from distractors, a good policy could not be found with

'The image range was 0..255.
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Figure 5-4: Simple target performance with random exploration (a) set of targets which
can be discriminated using a single foveated observation. For each run, one gesture was
randomly chosen as target, and the other three used as distractors. (b) results averaged
over 100 runs; error rate is plotted as a function of trial number (proportional to timestep).
Random exploration is sufficient to learn a recognition policy in these cases.

gesture pattern scene features

person-present,
left-arm-extended,
left-hand-point

person-present,
left-arm-extended,
left-hand-open

2 -person-present,
right-arm-extended,
right-hand-point

3 person-present,
right-arm-extended,

right-hand-open
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Figure 5-5: Complex target performance with random exploration (a) set of targets which
cannot be discriminated by a single foveated observation (b) error rate plotted as a function
of trail number. Random exploration is insufficient to learn a recognition policy in these
cases.

gesture pattern scene features

5 person-present, face-surprise

6 person-present,
left-arm-extended,
left-hand-open,

right-arm-extended,

right -hand-open

7 person-present,
left-arm-extended,

left-hand-open,
right-arm-extended,

right-hand-point

8 person-present,
left-arm-extended,
left-hand-point,
right-arm-extended,

_right -hand-open
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random exploration. Figure 5-5 shows an example of random exploration failing to learn a

policy for targets which require more sophisticated discrimination polices.

Our Q-learning system can become stuck in local minima if it follows a purely greedy

strategy (e.g. no exploration). Also, varying amounts of exploration experience are required

for different sets of targets and distractors for the system to converge to an adequate level

of performance. To learn the globally optimal policy the system must experience the global

optimal path at least once; this may never happen without exploration, and may take a

considerable amount of time with purely stochastic exploration.

To overcome this problem, we have devised deterministic exploration regimes which

provide quick convergence to an optimal policy, given random presentation of target and

distractors. Our exploration strategy is based on the observation that the system needs to

build an accurate evaluation of the utility (Q-value) of the accept action given different

foveated observations. Depending on the complexity of the recognition task, which is

determined by the target and distractor set, some number of foveated observations is ideally

needed to resolve the target identity.

We define the complexity of an AGR problem to be the smallest number of foveated

observations sufficient to uniquely identify the target gesture from the distractor patterns.

A 0-th order AGR problem is one in which the target is uniquely identifiable without any

foveated observations; a 1-st order problem requires a single foveated observation (say a

facial expression); a 2-nd order problem requires foveating on two body parts, etc.2

In a 0-th order problem, a sufficient (and trivial) deterministic exploration regime is

to execute the accept action under all observation conditions and compute Q-values as

given above. In a higher order problem, a single positive reward is insufficient to determine

policy, since the system may well be perceptually aliased. For the system to learn this, it

must execute each possible foveation action (or foveation sequence for problems of 2-nd

2For example, to discriminate gesture 6 from gesture 7,8 in the example shown in Table 5-9 requires a

foveated observation of both hands, so this is a second-order AGR task.
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and higher order) several times with both target and distractor before assessing the reliability

of the accept command.

Our deterministic exploration strategy is to explore this foveation/accept space assuming

a problem of fixed order and ensure that the system will experience all relevant action chains

both with the target and with the distractor. To train our system, we follow a three stage

procedure. First, we provide the system with the deterministic experience described above,

e.g., the system selects actions according to to a pre-scheduled list which enumerates

action chains up to a predetermined depth (typically 2, in our experiments) followed by

an accept terminal. Each action chain is executed d (a given parameter) times for each

target/distractor, with the intention being the system should have sufficient initial experience

with both target and distractor to determine the true utility of each action. Throughout the

training phase, we randomly switch between target and distractors, so that the utility of

actions will be averaged over trials with each.

Second, we run a batch version of the Q-learning update rule until the utility values

converge. We cycle through the memory structure, updating the utility of each q value as

given in Eq. 5.4. When the cumulative change is less than a fixed value or stops decreasing,

we consider the utility values to have converged,.

Finally, we let the system run according to policy, (i.e. select the action with maximal

Q-value) and evaluate the recognition performance. During testing we randomly switch

between target and distractors, and record trials when the system executes accept on a

distractor, or fails to execute ac c ept on a target. These trials are marked as errors; all other

trials are considered correct. When the time-averaged performance rate stops increasing,

we freeze the utility values of the entire system, re-measure recognition performance, and

record this performance measure as the final value.
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5.5 Variable-K Nearest Neighbor Algorithm

The key to successful application of instance-based Q-learning algorithm is the identification

of the appropriate instances (e.g. memories) on which to base estimates of the utility of a

particular new action. In our AGR task, with deterministic exploration as given above, it

is especially important that the utility of a particular action given a particular observation

history be estimated from previous experience with that action and observation history on

both target and distractor trials. Estimates of utility which are based only trials with the

target present will greatly overestimate the utility of all actions, since with the target present

by definition any action chain followed by accept will yield positive reward. Conversely,

estimates of utility based only on trials with distractors will grossly underestimate the true

utility. Effective learning occurs in our system only when the utility of a particular action

is considered over trials with both target and distractor.

This poses a problem for an instance-based algorithm which finds voting instances using

a strict K-nearest neighbor method, since it becomes critical to have chosen the correct value

of K. A value which is too small will miss some relevant experience, and yield an unreliable

utility estimate; a value which is too large will merge together instances which are actually

different states, returning us to the problem of perceptual aliasing. Since the number of

instances (memories) which are relevant to a particular utility estimate will vary greatly, no

fixed value of K will suffice.

A simple example illustrates the problem: consider the estimation of the utility of

accept, when the previous observation/action sequence was to foveate the face and observe

a neutral expression. Assume that the target and all distractors all have a face with neutral

expression, so this should be of no use in discriminating target from distractor. During the

training phase the system will have explored this sequence several times, some with the

target and some with the distractor. When match similarities are computed, the memories

with maximum match value will indeed all correspond to the relevant previous experience.
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There may be 20 such previous experiences, but a strict K-nearest neighbor algorithm with

K=4 will ignore 16 of them. If the 4 memories happen to miss experiences with the target,

which is not unlikely, then the computed utility will be incorrect.

Rather than set K very large and risk merging truly different states, we instead propose

a new algorithm, which we call Variable K Nearest Neighbors. Variable-K differs from

strict-K in that all memories with a given match length are included in the voting set, e.g.,

are pooled together when estimating utility.

In the Variable-K algorithm, we assert a minimum percentage kp of experience to be

included. (If there is no noise in the match function, this can be effectively set to zero; in

our experiments we used kp = 5%) We histogram the match lengths of all memories, and

sort them from largest to smallest. We then find the match length value m' such that the

kp% of memories have larger match lengths than m'. We then subtract a fixed amount kt

to this match length value, and include all memories with match value greater than m' - kt

into the voting set. Figure 5-6 depicts the threshold computation used in the Variable-K

algorithm.

The effect of this algorithm is to find a percentage of nearest neighbors with largest

match values, as does strict-K, but then to include all other memories with roughly the same

match length. In the above example, all 20 experiences would be included in the voting set,

and utility accurately estimated. In practice we have used kt = 1, and found this algorithm

greatly improved the performance of instance based Q-learning given the multiple trial (e.g.

nonstationary) structure of our AGR task.

5.6 Multiple Model Q-Learning Algorithm

With a variable-K algorithm, we found the instance-based hidden state reinforcement learn-

ing described above to be an effective way to perform action-selection for foveation when

the task is recognition of a single object from a set of distractors. E.g., the data in Figures
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Figure 5-6: Variable K nearest neighbor algorithm. To compute voters for computation
of utility, the match value of each memory compared against the current time point is
computed. These values are histogrammed (displayed in order of decreasing match length)
and a preliminary threshold corresponding to the match length value m' which kp percent
of the match length values are larger than. (Here the match length histogram is plotted for
decreasing match length, and the shaded area corresponds to kp% of the total histogram
area. ). We then subtract kt to this preliminary threshold to find the final threshold. All
memories with match length greater than or equal to m' - kt are included in the voting set.
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5-3,5-4, and 5-5 reflect averages over multiple trials, each of which picked one gesture as

target and the remaining three as distractors. Thus, a policy was learned for recognizing a

single gesture. In none of these cases did the system learn a foveation policy sufficient to

recognize multiple gestures.

In fact, we did not find that this type of system performed well when the AGR task was

extended to include more than one target gesture. When multiple accept actions were

added to enumerate the different targets, we were not able to find exploration strategies that

would converge in reasonable time. This is not unexpected, since the addition of multiple

causes of positive reward makes the Q-value space considerably more complex. To remedy

this problem, we propose a multiple model Q-learning system. In a multiple model approach

to the AGR problem, separate learning agents model the task from each target's perspective.

Conceptually, a separate Q-learning agent exists for each target, maintains its own Q-value

and history structure, and is coupled to the other agents via shared observations. Since we

can interpret the Q-value of an individual AGR agent as a confidence value that its target

is present, we can mediate among the actions predicted by the different agents by selecting

the action from the agent with highest Q-value (Figure 5-7).

Formally, in our multiple model Q-learning system all agents share the same observation

and selected action, but have different reward and Q-values. Thus they can actually be

considered a single Q-learning system, but with vector reward and Q-values. Our multiple

model learning system is thus obtained by rewriting Eqs. (5.1)-(5.4) with vector q[t] and

r[t]. Using a subscript j to indicate the target index, we have

T

Q(a)[T] = (1/K) E v(a)[i]q,[i] (5.5)
i=o

ir[T] = argmax max Q ")[T]) . (5.6)
aRA 3 /

Rewards are computed with: if a[T] = accept then rA[T] =R(j, T) else r 3[T] = 0;
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R(j, T) = 1 if gesture j was present at time T, else R(j, T) = -a. Further,

Uj[T + 1] = max Q ")[T + 1], (5.7)
aEA

qj[i] <- (1 - #)qj[i]+ ±#(rs[i] + U[T + 1]) V i s.t. v(a[T+1I])[] = 1 . (5.8)

Note that our sequence match criteria, unlike that in [53], does not depend on r[t]; this

allows considerable computational savings in the multiple model system since v(a) need not

depend on j

5.7 The action overlap problem with multiple-Q

The multiple-model Q-learning algorithm is simple to implement and scales well in terms

of adding little to the cost of training. As long as modules corresponding to different targets

call for the same action in each perceptual condition that has significant utility, one can

add arbitrarily many modules and use the policy given in Eq. 5.6. For example, Figure

5-8(c) shows the performance for Q-learning on a fixed set of target/distractor patterns

running separately for each target, and running with the multiple model algorithm. As the

recognition policies for each of these targets never "overlap" in the sense that they never

call for different actions in the same perceptual condition, they never interfere, and the

recognition rate is perfect in each case.

However when the policies for different targets do overlap, they can easily interfere

and disrupt recognition performance. Figure 5-8(e) shows results with a set of targets

whose recognition policies overlap; to recognize target I the optimal policy is to foveate

the top of the circle when a coarse circle is observed, but to recognize target III the optimal

policy is to foveate the right of the circle under the same perceptual condition. When both

policies are active, they can interfere with each other and significantly reduce recognition

performance. The pathology is that with a deterministic policy, when there are competing
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(different) actions with substantial utility in different modules the system will always pick

one action and not the other, causing the second policy to never be executed (and thus the

corresponding target never recognized).

We have investigated three approaches to overcoming this "action overlap" problem.

Common to all of them is the addition of a reset behavior, which returns the camera position

to the initial condition whenever the current maximum utility value falls below zero (e.g.

the system is lost). With this, direct deterministic learning, stochastic policies, and a new

persistence algorithm all can solve the action overlap problem.

5.7.1 Learning to overcome action overlap

With a strict deterministic policy, it is still possible for the system to learn to act differently

after it tries an action, fails to recognize the target, and resets to the initial condition. The

variable length match voting scheme described above allows the length of an history chain

matching to compute utility to vary for different actions. Thus, after resetting, the utility

of repeating the action taken prior to resetting will ideally be lower. The system can infer

this from previous experience with repeating the action twice, if this appropriate prior

experience is available.

The system will naturally experience the effect of multiply repeating the particular

action with an intervening reset, since this is the "pathological" behavior described above.

The utility of the alternate (overlapped) action will remain the same, since it will still be

matching against the same experience after the reset as it did at the first timestep with the

given trial. The second action will this get chosen after the system explores the first action

and resets; the "prior experience" matched to compute the utility of the first action will then

consist of prior trials where the system tried a dual repeat of the first action.

In this way, deterministic multiple-model policies can overcome the action overlap

problem. However, in practice it can take a considerable amount of time to learn this
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solution strategy. We thus turn to alternative means of dealing with the problem, using

stochastic and/or persistent policies.

5.7.2 Stochastic policies

Another solution to the overlap problem is to use a stochastic policy [71]. With a stochastic

policy and the reset function given above, some fraction of the time the alternate action (the

one with lower utility) will be executed, so there is a non-zero probability the correct policy

to recognize the second target will be chosen.

However this may take a long time, and if there are multiple states of overlap in the

policies (e.g. they overlap not just on the first action, but on subsequent actions as well) it

could take a considerable amount of time to allow a "overlapped" policy to fully execute.

(E.g. to execute as if it were the only active policy).

5.7.3 Persistent and exclusive modules

This leads us to an explicit algorithm which guarantees the policy in each Q module will fully

execute (persistence), and a further variant which prevents a module which had control and

failed to find non-zero reward to regain control until either all modules have had a chance to

execute or the world state changes (exclusivity). 3 (This assumes a signal exists to indicate

a change in world state; if no signal is available we do not use the exclusivity algorithm).

We use two boolean variables, Ak, and Ck, to indicate whether a Q module k is active

and/or current. We modify the policy of Eq. 5.6 such that the new action is selected only

from modules which are marked current.

7r[T] = arg max max Q(")[T]. (5.9)
aEA ({JCk=l}

3These algorithms were based on the helpful suggestion of Prof. Aaron Bobick.
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We update the current value after each timestep, according to which modules predicted the

chosen action. Initially, and after each accept or reset action, C is set the value of A in

each module; A is initially set to 1, and is reset to all l's whenever the world state changes.

At each subsequent timestep C is cleared for each module that did not call for the chosen

action:

Cj = 0 if Max Q )[T] # 7rT), vi.

This has the effect of guaranteeing that one particular policy will be carried out to its

conclusion (either generating accept or encountering uniform non-positive utility).

Further, when the reset action is performed (forced) by the system, all modules which

are current are deactivated. E.g., on reset,

Ak = Ak and ( not Ck)

and on changing world state, or when all modules are inactive, we set

Ak= 1 Vk .

This ensures that the correct module will get eventually get control and exercise its corre-

sponding policy, even if other modules initially have higher utility values.

Figure 5-8(c) shows the recognition performance using this approach on the same set

of image-based targets/distractors used in Figure 5-8(a,b). The persistence/exclusivity

algorithm prevents the dithering associated with action overlap, and leads to the expected

recognition performance.
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5.8 Multiple Model Active Recognition Results

Finally, we show the effects of our learning system on a complex multiple target task in

the interactive interface domain. As described earlier, we use the person tracking methods

described in Chapter 2, and the active gesture analysis methods presented in Chapter 3 and

4, to derive a real-time, foveated representation of a user. Figure 5-2 depicts the overall

system for active tracking of a user, and shows example imagery obtained by the system.

The use of this feature-based representation exploits the generalization ability of the

person tracking and spatio-temporal pattern perception system described in earlier chapters.

Though this is by design, and is not learned per se by the Q-learning method, this allows

the overall system to easily perform generalization. Each instance of the feature vector

depicted in 5.1 represents a wide class of input imagery, and experience the Q-learning

system has will any of them will generalize to later performance with the others.

Again, we note that the feature-based representation of user state is perceptually aliased,

in the sense of [85]. Our perceptual aliasing is due to the fact that we have a foveated sensor,

which can not observe all parts of the scene simultaneously. The body and arm features are

observable in the coarse view (i.e. fully observable) but the hand and face features require

a high-resolution foveated view. The latter can only be seen, and are thus only set in the

feature vector, when the camera is pointing at the appropriate body part.

We collected example output from the perceptual systems, and ran off-line experiement

to test the recognition performance of the learning system. The set of gesture patterns

collected and used in this experiment is shown in Figure 5-9. We ran our learning system

as defined above, keeping constant the parameters # = 0.1, -y = 0.5, a = 10. Figure 5-10

shows results for each target plotted for different amounts of initial exploration experience

according to the parameter d, which represents the average number of times the system

initially explored a given action chain, divided by the number of targets and distractors.

Targets which are easily discriminable have good performance even with little initial train-
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ing, but the second-order targets require values of d > 2 to obtain adequate performance.

Figure 5-11 shows the results for this experiment cumulative across all targets; for d > 2

accuracy rates in excess of 95% were obtained.

In our present implementation, real-time performance (> 5Hz) on the AGR task is

possible as long as the history list representation can be maintained in main memory on a

contemporary workstation. Currently, approximately ten thousand timesteps can be stored

in main memory, so real-time performance is possible for runs of up to 30 minutes. A topic

of future work is to extend the system to selectively forget and/or merge portions of the

history list, so that the system can run indefinitely in constant-size memory.

5.9 Discussion of attention system

The examples we have shown demonstrate the ability of hidden-state Q-learning, using

an instance-based utility representation, to learn where to look to discriminate target from

distractor patterns. Conceptually, the system constructs an action-selection mechanism

which operates by comparing prior experiences which had similar recent action/observation

history compared to the most recent time point. Since observations include both the state

of the user and the state of the perception system (e.g. where the active camera is looking),

this means that the system builds predictive models that can combine both what the user

will do next, and where to look to confirm the relevant part of the hidden state.

With static targets, as we have shown, (implicit) state transition modeling captures

only the foveation dynamics. Conversely, if the high-resolution camera were fixed but

the targets were dynamic, then the underlying states would reflect the temporal structure

of the target (or at least as could be best predicted). As mentioned in the introduction,

this latter configuration is essentially that of an HMM. The major difference would be the

lack of an assumed number of internal (hidden) states in the POMDP approach. Modeling

the temporal structure of a dynamic signal is important in any interaction domain where
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temporal context can aid recognition; a good example of this is the domain of driving

interaction, where Pentland and colleagues [60] have shown human performance can be

effectively and usefully predicted in an interactive system.

Because our system is based on Q-learning, it has the ability to learn from delayed

rewards. This is important, since we want our system to be able to learn plans even when

it is only rewarded only at the end of a trial. In the case of the AGR system, this is the case

as reward is only distributed on the performance of the recognition action, which happens

at the end of a sequence of foveation actions. Learning the correct foveation actions is the

key problem faced by the system; were it only to model the expected instantaneous reward,

it could never learn foveation behavior. In the Q-Learning framework, however, reward is

propagated back through the utility structure, so future expected reward can effect current

action choices.

The use of a reinforcement/reward paradigm offers considerable flexibility; in addition

to application to pattern recognition, one can envision a range of interaction regimens that

are applicable to this learning framework. Higher-level actions in an interface can and

should be included into the POMDP action set, which may lead to a more powerful and

robust system than is possible with a system that relies on an intermediate gesture repre-

sentation to conditions these higher-level actions. Simply adding additional terms to the

reward function to encourage speedy recognition of certain default or priority actions would

be perhaps the most straightforward way of bringing higher-level interface design issues

directly into the learning framework. Much in the way that general-purpose optimization

frameworks have proven powerful for scene description and structure recovery, it is our

belief that reinforcement protocols hold promise for modeling a wide range of performance

in interactive systems.

In summary, gesture recognition systems often require high-resolution images of hands

and faces when used in unconstrained environments (including ours, described in Ch. 3),

but the issue of how to decide what to foveate is often left unresolved or addressed only with
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ad-hoc solutions. In this chapter we have resolved this, and have developed a mechanism to

selectively foveate salient body parts in an active gesture recognition task where foveation

is guided by recognition performance. We adopt a Partially Observable Markov Decision

Process formalism, using an action set comprised of foveation actions as well as a special

recognition action. Execution of this action is rewarded based on whether the target is

in the scene. We use instance-based hidden state reinforcement learning to learn a policy

which models both when to execute the recognition action and what foveation commands

to execute to properly discriminate the target gesture. To accurately pool experience

when estimating the utility of a new action, we implement a variable-K nearest neighbor

algorithm which includes all experience with a given action chain. This method works

for single target recognition tasks, however multiple targets create undesired complexity in

a scalar Q-value space due to multiple sources of positive reward. To overcome this we

define a multiple-model Q-learning paradigm with vector-valued Q and reward functions.

With this framework, our system can actively recognize targets from a set of gestures in

real-time.
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Figure 5-7: Multiple model Q-learning: one Q-learning agent for each target gesture to be
recognized, with coupled observation and action but separate reward and Q-value.
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Figure 5-8: Performance for increasing number of Q-learning modules, (a) target I, (b) target
II, (c) recognition results of target I alone (with target II the distractor), and target II alone
(with target I the distractor), and with both target 1,11 using the multiple model Q-learning
algorithm. For these two targets, no degradation of performance is found with the multiple
model algorithm. (d) target III, and (e) performance for each of the three targets alone,
(with the other two as distractors), and for all three combined using the multiple model

approach. With these three targets, there is the "action overlap" problem, and performance
is degraded using a greedy policy. (f) performance with a persistent/exclusive policy. Using

this algorithm algorithm, optimal performance is obtained.
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gesture pattern scene features

0 person-present,
left-arm-extended,
left-hand-point

1 person-present,
left-arm-extended,

left-hand-open

2 person-present,
right-arm-extended,
right-hand-point

3 person-present,
right-arm-extended,
right-hand-open

4 person-present,face-smile

5 person-present,face-surprise

6 person-present,
left-arm-extended,

left-hand-open,
right-arm-extended,
right -hand-open

7 person-present,
left-arm-extended,
left-hand-open,
right-arm-extended,
right-hand-point

8 person-present,
left-arm-extended,

left-hand-point,

right-arm-extended,
right -hand-open

Figure 5-9: The set of targets used in the multiple-model active gesture recognition example.
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Figure 5-10: Recognition results of multiple model/target example, plotted for each target,
with varying amounts of initial training (d=1..4).
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Figure 5-11: Recognition results of multiple model/target example averaged across all
targets, plotted for varying amounts of initial training.
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Chapter 6

Conclusion

Perceptual Computer Interfaces, systems which can directly sense and respond to a user's

pose and/or expression, are an interesting new domain for machine vision and learning.

We described an interactive interface environment based on the "magic mirror" paradigm,

in which the user interacts with a large screen video display. Simple real-time vision

routines can be applied in this domain to provide an interaction between people and virtual

agents or objects. The gross 3D position of the user, the location of hands and head, and

coarse information about overall pose can be recovered using classical image processing

techniques: figure-ground extraction, connected components, and context-based search.

This system allowed a user to interact and navigate in a virtual world using familiar and

intuitive means, through the use of passive sensing with no explicit markers.

To be effective, a perceptive interface needs to be responsive both to the overall pose and

position of the user, and to detailed gestures he or she may perform. We described methods

for learning, tracking, and recognizing complex gestures defined as characteristic spatio-

temporal patterns. Our use of an appearance-based representation allowed us to model

(and search) only the portion of an object's appearance-space which is actually used in the

gestures to be analyzed. The appearance-based approach also allowed analysis without
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having to recover exactly the underlying object pose parameters. Using task-dependent

interpolation based on the Radial Basis Function method, we were able to achieve fast and

robust analysis and synthesis of facial expressions, and accurately recognize hand gestures,

using only conventional video camera images as input.

However, this gesture recognition system requires high-resolution images of hands and

faces to be used in unconstrained environments. To obtain these, we used an active pan-

tilt camera equipped with a narrow field-of-view lens. The addition of active sensing in

a gesture recognition system makes deciding what object or feature to foveate based on

the current task and visual input, i.e., how to perform visual attention, a key issue. To

solve this problem, we have developed a principled mechanism to track and foveate salient

body parts in an active gesture recognition task where foveation is guided by recognition

performance. Our attention system is based on the Partially Observable Markov Decision

Process formalism, using an action set comprised of foveation actions as well as a special

action signifying recognition. We use instance-based hidden state reinforcement learning to

learn a policy which models both when to execute the recognition action and what foveation

commands to execute to properly discriminate the target gesture.

In instance-based reinforcement learning, it is important to accurately pool experience

when estimating the utility of a new action. To do this, we implement a variable-K

nearest neighbor algorithm which includes all prior experience with a given action chain.

Additionally, we found that multiple targets create undesired complexity in a scalar utility

space due to multiple sources of positive reward. This problem was solved by the derivation

and application of a multiple-model Q-learning paradigm with vector-valued Q and reward

functions. With these algorithms our system can actively recognize targets from a set of

gestures in real-time.

We have implemented a perceptual computer interface using this attention system which

can track a person as they walk freely about a room, respond to the overall coarse state of

the user, and selectively attend to fine-grained state of the users face or hand. This allows
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agents or computer programs which use the interface to condition their computation based

directly on the users interest, as expressed through body pose and facial expression. These

interfaces have great potential to be useful in allowing natural and intuitive modes of human-

to-computer communication when controlling machine systems, providing new forms of

expression in an interface, and in conveying a rich description of the user in person-person

communication mediated by computer systems, such as telepresence or teleconferencing.
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