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Abstract

This thesis introduces modal matching, a physically-motivated method for establishing cor-
respondences and computing canonical shape descriptions. The method is based on the
idea of describing objects in terms of generalized symmetries, as defined by each object’s
eigenmodes. The resulting modal description is used for object recognition and categoriza-
tion, where shape similarities are expressed as the amounts of modal deformation energy
needed to align two shapes. Modal matching is also used for a physically-motivated linear-
combinations-of-models paradigm, where the computer synthesizes a shape in terms of a
weighted combination of modally deformed prototype shapes. In general, modes provide
a global-to-local ordering of shape deformation and thus allow for selecting the types of
deformations used in object alignment and comparison.

In contrast to previous techniques, which required correspondence to be computed
with an initial or prototype shape, modal matching utilizes a new type of finite element
formulation that allows for an object’s eigenmodes to be computed directly from available
shape information. This improved formulation provides greater generality and accuracy,
and is applicable to data of any dimensionality. Correspondence results with 2-D contour
and point feature data are shown. Recognition experiments for image databases are
described, in which a user selects example images and then the computer efficiently sorts
the set of images based on the similarity of their shape.

While the primary focus of this thesis is matching shapes in 2-D images, the underlying
shape representation is quite general and can be applied to compare signals in other
modalities or in higher dimensions, for instance in sounds or scientific measurement data.
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Chapter 1

Introduction

Multimedia databases are an increasingly important component of computer and telecom-
munications usage. The social, educational, and commercial usefulness of such databases
could be enormous. Yet progress towards the dream of large, commercially-viable multi-
media databases is stymied by the lack of a mature and reliable technology for organizing
and searching these digital signals based on their content. To humans these databases
contain movies, news, speech, graphics, music, medical or other scientific data, text, etc.
— things that have semantic content; while, to a computer these databases contain merely
bits — vast heterogeneous collections of digital signals.

For a text database, we can avoid this problem because inquiries can be based on
the database elements themselves: strings of characters. Questions about database
content can be answered by simply comparing sets of ASCII strings. Because this search
is efficient, users can search for their answers at query time rather than having to pre-
annotate everything. To accomplish the same thing for multimedia databases we need
methods that allow efficient comparison of the signals themselves in order to see if they
have the same (or more generally, similar) content.

For a video database, the current approach is for a human to enter textual descriptions
of each image’s content and then enter these annotations into a standard text database.
The signals themselves are not really part of the database; they are only referenced by text
strings or pointers. The problem with this approach is that in most images there are literally

hundreds of objects that could be referenced, and each imaged object has a long list of
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CHAPTER 1. INTRODUCTION 11

attributes. Even worse, spatial relationships are important in understanding image content,
and if we must also consider relations among images, then the problem quickly becomes
intractable. The old saying “a picture is worth a thousand words” is an understatement.
Researchers have recently made progress in automatic indexing for image databases.
For instance, they have proposed a variety of automatic image indexing methods, based on
shape [26, 55, 56, 79], color [13, 54, 133], or combinations of such indices [85]. The general
approach is to calculate some approximately invariant statistic, like a color histogram or
invariants of shape moments, and use these to stratify the image database. Unfortunately,
significant semantic information may get lost in this process. For instance, do we really
want our database to think that apples, Ferrarris, and tongues are “the same” just because
they have the same color histogram? Indexing gives a way to limit search space, but does

not answer “looks like” questions except in constrained datasets.

1.1 Approach

One key in bridging this “communications gap” is more effective models of a human’s
sense of what is similar and what is not. Given digital signals, we need decompositions
that preserve perceptual similarities while providing an efficient encoding of the signal. In
particular, these representations should employ decompositions that preserve semantically
meaningful and perceptually important information about the original digital signals [94, 95].
It can be argued that we need an arsenal of specially trained decompositions, each with
appropriate “control knobs” for describing a particular type of object or context (for instance
the Karhunen-Loéve transform for grayscale images [144] or the Wold decomposition for
textures [100]). The goal of this thesis will be to develop a new method for semantics-
preserving matching, encoding, and comparing signal shape.

Shape matching is complicated by the fact that humans will report that shapes are
“similar” even when the two shapes are actually deformed versions of each other. There-
fore, to measure the shape similarities between two objects, we must be able to describe
the deformations that relate them. The shape decomposition should provide deformation

“control knobs” that roughly correspond to a human user’s notions of perceptual similarity.
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As part of this, the decomposition should allow for selecting weighted subsets of shape
parameters that are deemed significant for a particular category or context. Thus the
computer, like the human, can filter out deformations which may be inconsequential in a
particular shape class or context.

For this thesis | developed a shape understanding method that allows users to select
examples, and has the computer carry out a search for similar objects in the database,
based on the similarity of the signals’ shapes. In machine vision this is known as taking
a view-based approach. From an implementation standpoint, this approach offers the
advantage of representing 3-D objects without having to construct detailed 3-D models.
From a user-interface standpoint, a view-based approach is particularly appealing because
it offers an intuitive, viewer-centered paradigm for guiding a database search: users can
easily pick out examples from sub-images, or construct a search based on an image
composite. It is also straight-forward for users to specify analogy-based searches like “A
is to B as C is to?” or employ negative examples like “find me more of things like A,B but
not like C,D”

The key is being able to efficiently encode shape and deformation. In images, defor-
mation differences between objects of the same type are sometimes due to changes in
viewing geometry: e.g., foreshortening or distance change. Other times they are due to
physical deformation: one object is a [stretched, bent, tapered, dented, ...] version of the
other. For instance, most biological objects are flexible and articulated. More generally,
real-world signal shape deformations are the result of physical processes, and so it seems
logical that the underlying shape representation must somehow embody (approximately)
the physics of objects in the world.

This rationale led Terzopolous, Witkin, and Kass [141], and many others in the machine
vision community [18, 27, 33, 38, 89, 90, 96, 131] to focus on the description of data using
physics-based deformable models. The power of these techniques stems not only from
their ability to exploit knowledge about physics to disambiguate visual input, but also from
their capacity to interpolate and smooth raw data, based on prior assumptions about
noise, material properties, etc. Unfortunately, deformable models do not by themselves

provide a method for computing reliable canonical shape descriptions, or for establishing
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correspondence between shapes.

To address the problem of obtaining canonical descriptions, Pentland and Sclaroff
developed a method in which all shapes are represented as modal deformations from
some prototype object [90, 96]. By describing deformation in terms of the eigenvectors
of the prototype object's stiffness matrix, they were able to obtain a robust, frequency-
ordered shape description. Moreover, these eigenvectors or modes provide an intuitive
method for shape description because they correspond to the object’s generalized axes of
symmetry. Using this approach, they developed robust methods for 3-D shape modeling,
object recognition, and 3-D tracking utilizing point, contour, range, and optical flow data
[91].

This method, however, still did not address the problem of determining correspondence
between sets of data, or between data and models. Every object had to be described as
deformations from a single prototype object. This implicitly imposed an a priori parame-
terization upon the sensor data, and therefore implicitly determined the correspondences
between data and the prototype.

Modal matching, the new formulation described in this thesis, generalizes these earlier
approaches by obtaining the modal shape invariants directly from the sensor data. This
will allow us to compute robust, canonical descriptions for recognition and to solve corre-
spondence problems for data of any dimensionality. A detailed mathematical formulation
for 2-D problems is given, and method is tested on the shapes found in digital grayscale
images, image contour data, and graphics. For the sake of this thesis, a shape will be
defined as: a cloud of feature locations, a region of support that tells us where the shape
is, and the original digital image (grayscale or color).

Modal matching is a semantics-preserving shape-encoding scheme. It decomposes
shape into a description of how to build the shape from deformations, and corresponds
qualitatively to shape similarity experiments on humans by Gestalt psychologists [3, 59]
and others [12, 51, 68, 72]. In the modal representation shape is thought of in terms of an
ordered set of deformations from an initial shape: starting with bends, tapers, shears, and
moving up towards higher-frequency wiggles. The resulting mathematical representation

(modes) yields a shape description that corresponds neatly with words in English; this is
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Figure 1-1: Fish morphometry: an example of biological shape deformation, adapted from D’Arcy
Thompson [142]. Nonrigid deformation can be important in describing variations across species.

evidence that we are on the right track[90, 96].

Finally, the modal representation is supported by the theories put forth by biologists
studying the morphometry of animal bones and shape [142, 19], in which the shape of
different species is related by deformations. Figure 1-1 (adapted from [142]) demonstrates
the importance of deformation in relating different species of fish.

Figure 1-2 shows some examples of the type of shapes (and deformations) the system
will be expected to match and compare in 2-D imagery. The first set of shapes comes from
a database of hand tool images. This database currently contains on the order of 60 views
of 12 hand tools, where images were collected while varying 3-D orientation and lighting,
and non-rigid deformation. Note that the last two tools are nonrigidly deformed. Figure
1-2(b) shows a second set of images, this time silhouette-based: outlines of airplanes for
different plane types, under varying 3-D orientation. The third set of shapes (Figure 1-2(c))
comes from a database of children’s field guide illustrations. The database contains over
100 views of different animal species, under varying orientation, scale, and allowing for
small articulated motions. Given a user-selected view, the system will find similar animals,
based on deformations from the example view.

While the primary focus of this research will be matching shapes in 2-D images, the

underlying shape representation is quite general and can be applied to compare signals



CHAPTER 1. INTRODUCTION 18

(a)

(b)
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Figure 1-2: Examples of three types of deformed shapes that the system will match and compare.
The images of hand tools (a) come from a database of 60 views of 12 hand tools, where images
were collected while varying 3-D orientation, lighting, and non-rigid deformation (note that the last
two tools are nonrigidly deformed). The airplane silhouettes (b) come from a collection of views
generated for different plane types, under varying 3-D orientations. The images of animals (c) were
extracted from a database of over 100 field guide illustrations. Given a user-selected view, the
system will find similar animals, based on deformation from the example view.

in other modalities or in higher dimensions, including sounds or scientific measurement
data. In addition, the results of this thesis have useful applications in other areas: the
“sensor fusion” problems found in aligning medical image data, improved techniques for
image metamorphosis, and new methods for data compression.

The modal matching technique offers three clear advantages over previous techniques.
First, it can be used to automatically identify and label corresponding features on two
shapes so that the alignment, comparison, and morphing can take place without human
operator intervention. Second, the underlying deformation representation allows for sep-
arating out different types of deformation (i.e., rotation, scaling, bending, etc.). Lastly, the
deformation parameters correspond qualitatively with those reportedly used by humans in
describing shape similarity and thus provide a meaningful interface for animation and for

database inquiry.
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1.2 Thesis Overview

Besides this introductory chapter and a brief concluding chapter, there are seven other
chapters in this thesis.

Chapter 2 gives a review and analysis of the previous work done in view-based systems
for machine vision. It touches on four main areas: linear combinations of models, object-
centered coordinate frames, deformable models, and eigen-representations for images
and shapes. There is a summary of the state of the art given at chapter end.

Chapter 3 first gives a top-level overview of our approach, and then gives the math-
ematical details of our new finite element model. This new formulation utilizes Gaussian
interpolants to avoid previous problems with sampling and model parameterization. For-
mulations for 2-D finite elements are provided.

The next three chapters give expanded formulation details for the main system compo-
nents: modal matching, modal descriptions, and modal combinations of models.

Chapter 4 describes modal matching, the new method for determining corresponding
features on similar shapes. Modal matching utilizes a shape-intrinsic coordinate system
for robust correspondence computation. This intrinsic coordinate system is built from the
eigenvectors of the new physical shape model formulated in Chapter 3, is invariant to
rotation, scaling, and translation, and is robust to nonrigid deformation and noise.

The next chapter, Chapter 5, first formulates a number of different methods for recover-
ing modal shape descriptions. It then details how the resulting modal descriptions can be
utilized for recognition, category representation, and similarity judgment. The underlying
modal model provides a global-to-local ordering of shape deformation. This makes it easy
to select which types of deformations are to be compared. Finally, various energy-based
measures for shape similarity are proposed.

Chapter 6 describes how the core technology of modal matching can be used to obtain
a new physically-based framework for linear-combinations-of-views. Our modal method
offers the advantage of employing an ordered description of shape. As a result, we will
be able to analyze and decompose shape deformations (and then resynthesize shapes)

in a flexible, principled manner. We then formulate algorithms for describing categories of
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objects in terms of linear combinations of modally-warped examples, and for characterizing
non-rigid motions in terms of warps from extremal views.

Chapter 7 details and evaluates experimental results. Modal matching is first applied
to some classic 2-D shape correspondence problems, and then performance is demon-
strated on real image data. Experiments in shape alignment and shape comparison are
then described. The modal parameters make it possible to pin-point the types of deforma-
tion needed to align shapes, thereby making it possible to determine relationships between
objects and categories. These ideas are then extended to solve problems in shape-based
image database search and shape categorization. Finally, the concept of physically-based
linear-combinations-of-views is tested on problems in nonrigid and articulated motion de-
scription, and image metamorphosis for computer graphics.

The results of experiments described in the previous chapter reveal some of the
strengths and limitations of the modal matching method. Chapter 8 discusses these
limitations, and then proposes some interesting directions for future research.

Finally, there are two appendices. The first appendix describes the extension of the
finite element formulation to three dimensions and higher. The second appendix details
how modal matching and morphing could be applied in another signal domain: sound.

This thesis presents some work that also appears in journals and conference proceed-
ings. Chapters 3, 4 and 5 are based in part on [117, 118, 121]. Part of Chapter 6 appears

in [119], and some of the image database results of Chapter 7 appear in [120].



Chapter 2

Background

The method developed in this thesis employs a deformable shape decomposition that
allows users to specify a few example objects and have the computer efficiently sort the
set of objects based on the similarity of their shape. Shapes are compared in terms of the
types of nonrigid deformations (differences) that relate them to examples. This chapter will
provide a review and analysis of the previous work done in example-based (view-based)
systems for machine vision. Though the simplicity of an example-based representation
is alluring, there are some problems in actually using such a scheme for recognizing

deformable shapes. [n particular, there are four main problem areas:

Data reduction View-based approaches are inefficient in terms of storage: to exhaustively
collect enough views to represent an object requires too many images. This is
especially true if we allow for nonrigid and articulated objects: not only do we need
to account for all possible views, but also for all valid configurations/deformations.
Many of these views are very similar and carry redundant information. We can
take advantage of this redundancy by storing only the characteristic views, views in
which things change significantly. To generalize this approach Poggio and Edelman
[102] and Ullman and Basri [147] utilized an effective method for data reduction: a
linear combinations of models paradigm, where any view can be synthesized as

a linearly-warped combination of example views.

18
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Correspondence To match views to images, we need to reliably extract and match fea-
tures. One way to solve this problem is to take an alignment approach: we try to
subject the first view to all possible scalings, translations and rotations in an attempt
to get the first view to closely overlay the second. This makes shape comparison
extremely inefficient, since we have to first deal with the potentially combinatoric
complexity of aligning models. A second class of methods employs local feature
matching; these methods can be unreliable in the presence of deformation and
noise. The more promising solutions to the correspondence problem take the form
of body-centered coordinate frames, coordinate systems that are intrinsic to the

shape.

Nonrigid deformation Some inherent problems with correspondence schemes come
from the fact that often nonrigid deformations can only be modeled as noise. To
better deal with this nonrigidity, we can employ deformable models, essentially em-
bedding the data in a sheet that can be optimally warped and stretched to match
other signals. One of the first such schemes was a dynamic programming approach
called elastic matching. Unfortunately, elastic matching has traditionally been com-
putationally slow, problematic with regard to correspondence, and prone to noise
stability problems. In light of these limitations, researchers introduced physics-based
models, which actually simulate the physics of a rubber sheet for better deformation

prediction and stability to noise.

Canonical description Because they are mesh-based, most deformable modeling tech-
niques suffer from an inability to obtain unique descriptions. This is because (in
general) the parameters for these surfaces can be arbitrarily defined, and are there-
fore not invariant to changes in viewpoint, occlusion, or nonrigid deformations. To
obtain canonical descriptions, we can employ eigen-representations like the modal
representations or any of a family methods descended from the Karhunen-Loeve
transform. In these representations, we can discard the high-eigenvalued compo-
nents in order to obtain overconstrained, canonical descriptions of the equilibrium

solution. This basis truncation is also useful for data reduction, since it can be used
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to optimally span a set of views.

The rest of this chapter will give a more in-depth analysis of previous work in the
four areas: linear-combinations of models paradigms, object-centered coordinate frames,
deformable models, and eigen-representations for shapes and images. Since the primary
application area of this thesis is image and video, my main emphasis will be on previous
image-based approaches and other related work in machine vision. However, it will become

clear that many of these concepts are easily generalized to signals in other modalities.

2.1 Linear Combinations of Models

Representing an object in terms of its aspects or characteristic views is a familiar idea in
the vision community [42, 71, 73, 65]. The underlying concept is powerful and simple:
imagine that we walk around an object and store views of the object in our memory as
we go. In our memory, an object can be represented in terms of a few critical views, and
all views in between can be generated as simple interpolations. This pictorial approach is
powerful because it can be used to model a three dimensional object without the use of a
three dimensional model.

Interestingly, the view-based approach offers a mixed blessing. On the one hand, the
approach offers the advantage that we need not have a complete model of the object (we
can fill it in with more critical views as we go); on the other hand, the approach has the
disadvantage that we cannot (in general) guarantee that we have a complete collection of
critical views. Finally, this approach suffers from problems with alignment and nonrigidity.
But despite these problems, the technique has been shown to be quite useful.

Ullman and Basri extended this idea, and suggested that a model can be represented
in terms of a linear combination of 2-D images [147]. They showed that this technique
works over changes in viewpoint, and claim (believably) that it can also represent nonrigid
deformations, and changes in lighting. Poggio and others have used this linear combina-
tions of views paradigm and applied it to the problem of teaching a neural net to recognize
3-D objects from 2-D views [34, 102] and to the problem of recovering projective structure

[128]. The linear combinations of views method has the problem that — though feature po-
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sitions can be accurately interpolated from view to view — the interpolation between points
is piece-wise affine, and can therefore provide only a first order approximation in modeling
the nonrigid warping of the underlying image pixels, nor can it handle large rotations.
This technique is also useful for generating novel views of the object. Given corre-
sponding points in a sufficient number of known images (sufficient to span the space of
all possible images of an object — for 3-D rotations, this is six) we can synthesize a new
image from any viewpoint in terms of a weighted and warped combination of these known
images. To recognize an object from a 2-D image, we first attempt to reconstruct it in terms
of a linear combination, and then measure similarity using a metric that has two terms: one
dependent on the amount of deformation/transformation needed to align the features, and
the other dependent on the pixel-by-pixel difference between the original and synthesized

grayscale or color images.

2.1.1 View interpolation for image synthesis

To interpolate between views, Poggio and others utilize a network of radial basis functions
(RBFs) [102, 105]. These functions are combined to interpolate a hyper-dimensional spline
surface that smoothly approximates the image-space trajectories for feature points across
2-D views [103, 101]. These point trajectories can then be used to smoothly deform the
underlying images. This technique of view interpolation has been applied in the area of
modeling human facial expression by Beymer et al. [11]. Beymer’s algorithm uses dense
flow to describe how to deform from one expression to another, and each expression’s
dense flow field is an “example” in the RBF interpolation framework. Flow fields derived
from one person’s expressions can be used to drive the deformation of another person’s
face.

View interpolation can also be useful in computer graphics where an animator wants
to be able to specify a few keyframes, and have the in-between frames interpolated.
Librande has successfully used the RBF interpolation framework for computing in-between
images [69] for 2-D character animation. Image interpolation can be used to transform one
object into an another object, this is known in the computer graphics and movie-making

communities as morphing [10, 153, 154). There has also been interest in view-based image
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coding, where interpolation can be used to generate new views of an object. A system
for view interpolation for image synthesis has been developed by Chen and Williams [25];
in this system, a computer renders a few expensive, high-quality images of synthetic
computer scenes, and in-between frames are interpolated cheaply based on precomputed
correspondence map and depth information.

Each of these view interpolation schemes assumes that corresponding image features
are known ahead of time. Most of these schemes do include a simple feature matching
algorithm, but correspondence computation is not integrated with the underlying represen-
tation. Automatic correspondence computation is an important part of many other machine
vision algorithms — matching stereo image pairs, computing structure from motion, and
aligning models with images, for instance. Unfortunately, these matching schemes exploit
some strong (and application limiting) constraints: rigidity, small deformation, small camera
rotations, efc.

In the computer graphics community, corresponding features are most often laboriously
determined by an artist — though there has been some recent work by Sederberg et al.
[124, 123] to automate correspondence computation, these methods only work for objects
that are defined in terms of closed two-dimensional contours. Thus, automatically deter-

mining correspondences remains a crucial unsolved problem in view-based approaches.

2.2 Object-Centered Coordinate Frames

Imagine that we are given two sets of image feature points, and that our goal is to determine
if they are from two similar objects. The most common approach to this problem is to try
to find distinctive local features that can be matched reliably; this fails because there is
insufficient local information, and because viewpoint and deformation changes can radically
alter local feature appearance.

An alternate approach is to first determine a body-centered coordinate frame for each
object, and then attempt to match up the feature points. Once we have the points described
in intrinsic or body-centered coordinates rather than Cartesian coordinates, it is easy to

match up the bottom-right, top-left, etc. points between the two objects.



CHAPTER 2. BACKGROUND 23

Many methods for finding a body-centered frame have been suggested, including
moment-of-inertia methods [7], polar Fourier descriptors [99], strip trees [6], the gener-
alized Hough transform [5], codons [110], curvature scale space matching [66, 80, 152],
and axial shape descriptors [16, 17, 21, 23, 58, 112]. These methods generally suffer from
three difficulties: sampling error, parameterization error, and non-uniqueness. One of the
main contributions of this thesis is a new method for computation of a local coordinate
frame that largely avoids these three difficulties.

Sampling error is the best understood of the three. Everyone in vision knows that which
features you see and their location can change drastically from view to view. The most
common solution to this problem is to only use global statistics such as moments-of-inertia;
however, such methods offer a weak and partial solution at best.

Parameterization error is more subtle. The problem is that when (for instance) fitting
a deformable sphere to 3-D measurements one implicitly imposes a radial coordinate
system on the data rather than letting the data determine the correct coordinate system.
Consequently, the resulting description is strongly affected by, for instance, the compressive
and shearing distortions typical of perspective. The number of papers on the topic of skew
symmetry is indicative of the seriousness of this problem.

Non-uniqueness is an obvious problem for recognition and matching, but one that is all
too often ignored in the rush to get some sort of stable description. Virtually all spline, thin-
plate, and polynomial methods suffer from this inability to obtain canonical descriptions;
this problem is due to the fact that in general, the parameters for these surfaces can be
arbitrarily defined, and are therefore not invariant to changes in viewpoint, occlusion, or

nonrigid deformations.

2.3 Deformable Models

As can be seen, there are inherent problems with finding corresponding points in different
views of an object. These problems often stem from the fact that perspective and nonrigid
deformations can only be modeled as noise. However, these types of deformation are

commonplace in the real world: plants sway in the breeze, arms and legs bend, cheeks
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bulge, efc. Clearly, shape deformations are not noise; deformation is constrained by and
actually conveys information about the physical nature of the objects we see. To better
deal with this nonrigidity, we can employ a deformable model, essentially embedding our
data in a sheet that can optimally warp and stretch to match other signals.

Over the years, there have been a number of methods suggested for matching deformed
signals. Some of the first schemes were grouped into the general category of elastic
matching [22, 24, 41, 81, 107], which is essentially an image-based version of dynamic
time warping [114]. Elastic matching utilizes a dynamic programming approach to solve for
constrained warps of the signal shape. The resulting search algorithm minimizes template
distortion while maximizing the match with an object in the image.

In their seminal paper, Fischler and Eschlager [41] described a system that built up
subtemplates that corresponded to significant features, and then searched for a match
using a two step process: 1) find subtemplate matches, and then 2) find match configura-
tions that satisfy relational constraints. Burr [24] and Broit [22] later used elastic matching
to optimally align deformed images, and line drawings. This warping method for matching
has also been used for matching stereo image pairs [81, 107]. In some cases, the warps
for elastic matching can be controlled using parametric control knobs (for instance, pa-
rameters that predict the geometric distortion due to changes in camera position) as was
discussed by Barrow et al. [8]. In this method, image matching is performed by searching
over the model parameters to find the warp that best matches the data.

Elastic matching has been applied to signal matching problems in other domains.
Reiner et al. used it in gas chromatography to identify microorganisms [109] and tissue
samples [108]; they used time-warping to correct for nonlinear distortions of the time
axis. Widrow [151] employed “rubber masks” to elastically match chromosome data, and
to match EKG data. Elastic matching has also been applied to the problem of on-line
handwriting recognition (for a survey see [135]).

Unfortunately, elastic matching has traditionally been computationally slow, has prob-
lems with correspondence, and has noise stability problems. Most of the methods were
not completely automatic, and assumed that features were selected and matched as a

separate, preprocessing step. While the dynamic programming model tried to capture
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deformation, it did not model the underlying physics of deformation. Given an object’s
physical properties, we would like to utilize this knowledge to parameterize our shape rep-
resentation in such a way as to capture physically-allowable shape variations, and thereby

model the variation over a category of shapes.

2.3.1 Physics-based models

The notion of employing physical constraints in shape modeling has been suggested
by many authors [67, 51, 89]; however, the seminal paper by Terzopoulos, Witkin, and
Kass[141], who obtained 3-D models by fitting simulated rubbery sheets and tubes, has
focused attention on modeling methods that draw on the mathematics used for simulating
the dynamics of real objects. One motivation for using such physically-based represen-
tations is that vision is often concerned with estimating changes in position, orientation,
and shape, quantities that physical models accurately describe. Another motivation is that
by allowing the user to specify forces that are a function of sensor measurements, the
intrinsic dynamic behavior of a physical model can be used to solve fitting, interpolation,
or correspondence problems.

Kass, Witkin, and Terzopoulos also introduced this physical modeling paradigm in the
area of contour tracking via snakes [61, 138]. Snakes are simulated strings of a rubbery
material that can be placed near a contour in an image, and then pulled and pushed
closer to the contour (or valley) via artificial forces. Typically these forces are computed
directly from the image intensity. Once settled into place, snakes can be used to establish
correspondence between contours in different images, they can also be used to track
deforming shapes over a moving image sequence.

This initial concept of snakes has lead to the development of specialized deformable
templates for finding and recognizing faces [70, 156], for tracking hand gestures [14], and
for elastically matching medical data [4, 33, 131]. The template for a face consists of an
interlocked set of snakes that look for particular facial features: eyes, mouth, nose, etc.
Others have sought more general ways to incorporate prior knowledge about the particular
object being searched for, and have derived the physics of their templates directly from a

training set [2, 30, 74, 75, 122, 127]. | will review some of these statistical techniques in
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more depth in Section 2.4.

While this initial family of physically-based shape representations enabled vision re-
searchers to better model nonrigid shape deformation, there was the drawback that these
representations relied on the mathematical technique of finite differences for discretizing
and numerically integrating the underlying physical equations. The use of finite differ-
ences leads to severe problems with sampling, since the method cannot allow for spring
attachment points other than at the discretization nodes. This sampling problem can be
alleviated somewhat by increasing the number of discretization points, but the computation
time needed is multiplied by the requirement for a regularly sampled discretization grid,
and by the need for proportionally smaller time steps in time integration. Terzopoulos
suggested the use of multigrid methods [137] as a way to make the computation more
tractable at increased resolutions, but this did not alter the requirement that springs have

to be attached at the discretization nodes.

2.3.2 Finite element methods

To better deal with sampling and scale problems, we can utilize the finite element method
(FEM) for physical modeling. This approach was employed in modeling deformable solid
shapes (superquadrics) by Pentland and Sclaroff [90, 96] and later by Terzopoulos and
Metaxas [140]. Cohen and Cohen have worked out a finite element formulation for snakes
[28]. This lead to modeling shape in terms of 3-D deformable balloons that can inflate to
fit medical and other three-dimensional data sets [27, 78], and to rubber blob models for
tracking moving objects in 2-D images [60].

In the FEM, interpolation functions are developed that allow continuous material prop-
erties, such as mass and stiffness, to be integrated across the region of interest. Note that
this is quite different from the finite difference schemes just described — as is explained in
[9] and [96] — although the resulting equations are quite similar. One important difference
between the FEM and the finite difference schemes is that the FEM provides an analytic
characterization of the surface between nodes or pixels, whereas finite difference methods
do not. Another important difference is that the FEM can guarantee convergence on a

solution [9, 86], whereas the finite difference methods cannot.



CHAPTER 2. BACKGROUND 27

Unfortunately — whether we use finite differences or finite elements — these physically-
motivated representations cannot be directly used for comparing objects. Virtually all
spline, thin-plate, and polynomial methods suffer from an inability to obtain canonical
descriptions; this problem is due to the fact that in general, the parameters for these
surfaces can be arbitrarily defined, and are therefore not invariant to changes in viewpoint,
occlusion, or nonrigid deformations. For any mesh-based representation, the only general
method for determining if two surfaces are equivalent is to generate a number of sample
points at corresponding positions on the two surfaces, and observe the distances between
the two sets of sample points. Not only is this a clumsy and costly way to determine if two
surfaces are equivalent, but when the two surfaces have very different parameterizations
it can also be quite difficult to generate sample points at “corresponding locations” on the

two surfaces.

2.3.3 Modal decomposition

Pentland and Sclaroff addressed this problem of non-uniqueness by adopting an approach
based on modal analysis [96]. In modal analysis, the standard FEM computations are
simplified by posing the dynamic equations in terms of the equations’ eigenvectors. These
eigenvectors are known as the object’s deformation modes, and together form a frequency-
ordered orthonormal basis set for shape. Pentland and his colleagues subsequently
applied modal analysis to problems in shape recovery and recognition [97, 90, 96], and for
nonrigid motion tracking [92].

Bookstein also employed a similar eigenmethod to model the biological shape changes
found in medical landmark data[18]. He computed a set of principal warps that served
as an orthogonal basis transform for regularization — this is essentially the modal repre-
sentation for thin-plate splines. Bookstein’s method has the problem that it assumes that
corresponding landmarks are located beforehand.

In general, the modal representation has the advantage that it decouples the degrees
of freedom within the non-rigid dynamic system. Decoupling the degrees of freedom yields
substantial advantages — the most important of these being that the fitting problem has

a simple, efficient, closed-form solution. The modal transform does not by itself reduce
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the total number of degrees of freedom, and thus a complete modal representation suffers
from the same non-uniqueness problems as all of the other representations.

The solution to the problem of non-uniqueness is to discard enough of the high-
frequency modes that we can obtain an overconstrained estimate of shape. Use of a
reduced-basis modal representation also results in a unique representation of shape be-
cause the modes (eigenvectors) form a frequency-ordered orthonormal basis set similar
to a 3-D Fourier decomposition. Just as with the Fourier decomposition, reducing the
number of sample points does not change the low-frequency components, assuming reg-
ular subsampling. Similarly, local sampling and measurement noise primarily affect the
high-frequency modes rather than the low-frequency modes. The result is a parametric
deformable model, where the parameters are physically meaningful, and correspond to
how much bending, tapering, pinching, etc., is needed to represent an object. Thus the
solution is well-suited for recognition and database tasks.

The modes used for describing object deformation are computed by solving an eigen-
value problem on a large matrix; this means that modal analysis can have the disadvantage
that the basis can be prohibitively expensive to compute on the fly. It has been noted that
the modes for a particular class of similar shapes can be precomputed and generalized
[90, 96]. In some cases — topological tubes and spheres — Nastar has shown that the
deformation modes can be found analytically [84].

Employing the modal representation provides a computationally convenient way to get
a parametric finite element model, while also solving the problems of sampling and non-
uniqueness; however, another nettlesome problem remains unsolved. In each of these
physics-based methods, attaching a virtual spring between a data measurement and a
deformable object implicitly specifies a correspondence between some of the model's
nodes and the sensor measurements. In most situations this correspondence is not given,
and so must be determined in parallel with the equilibrium solution. Sometimes, for the
method to be reliable, the user must hand place an initial deformable model in the image
at the appropriate size and orientation. The attachment problem is the most problematic
aspect of the physically-based modeling paradigm. This is not surprising, however, as the

attachment problem is similar to the correspondence problems found in many other vision
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applications.

2.4 Eigen-representations

There is a class of eigenmethods that derive their parameterization directly from the shape
data, and thus try to avoid this spring attachment problem. Some of these techniques
also attempt to explicitly and automatically compute correspondences between sets of
feature points, while others avoid specifying feature correspondences at all, matching
images using a more global or Gestalt approach. Like modal analysis, each of these
eigenmethods decomposes shape deformation into an ordered, orthogonal basis. These

methods fall roughly into three categories: eigenshapes, eigenwarps, and eigenpictures.

2.4.1 Eigenshapes

The idea behind eigenshapes is simple: shape is described by a positive definite symmetric
matrix measuring connectedness between data points. This shape description can be
uniquely decomposed into a set of linearly-superimposed components by an eigenvector
analysis of this shape matrix, and the resulting eigenvectors can be used to describe
the most significant deformations for that class of objects. In some ways, these principle
deformations are akin to an object’s generalized (nonlinear) axes of symmetry, in that they
describe the principle axes of deformation over a training set of shapes.

One such matrix, the proximity matrix, is closely related to classic potential theory and
describes Gaussian-weighted distances between point data. Scott and Longuet-Higgins
[122] showed that the eigenvectors of this matrix can be used to determine correspon-
dences between two sets of points. This coordinate system is invariant to rotation, and
somewhat robust to small deformations and noise. A substantially improved version of this
approach was developed by Shapiro and Brady [126, 127]. Similar methods have been
applied to the problem of weighted graph matching by Umeyama [148], and for Gestalt-like
clustering of dot stimuli by van Oeffelen and Vos [149]. Unfortunately, proximity methods
are not information preserving, and therefore cannot be used to interpolate intermediate

deformations or to obtain canonical descriptions for recognition.
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In a different approach, Samal and lyengar [113] enhanced the generalized Hough
transform (GHT) by computing the Karhunen-Loéve transform for a set of binary edge
images for a general population of shapes in the same family. The family of shapes is then
represented by its significant eigenshapes, and a reference table is built and used for a
Hough-like shape detection algorithm. This makes it possible for the GHT to represent a
somewhat wider variation (deformation) in shapes, but as with the GHT, their technique
cannot deal very well with rotations, and it has the disadvantage that it computes the

eigenshapes from binary edge data.

2.4.2 Eigenwarps

Cootes, Taylor, et al. [30, 31] introduced a chord-based method for capturing the invariant
properties of a class of shapes, based on the idea of finding the principal variations of
a contour model (snake). Their method relies on representing objects as sets of labeled
points, and examines the statistics of the variation over the training set. A covariance matrix
is built that describes the displacement of model points along chords from the prototype’s
centroid. A principal components analysis is computed for this covariance matrix, and then
a few of the most significant components are used as deformation control knobs for the
snake.

This technique has the advantage that it can be trained to capture information along
the most important axes of variation for the training set (and thus for the expected variation
in new models it encounters within the same object class). Furthermore, the eigenvalues
give a principled way to put bounds on the amount of variation allowed (Cootes and Taylor
limit this to one standard of deviation). Unfortunately, this method has three disadvantages:
it relies on the consistent sampling and labeling of point features across the entire training
set, it is edge-based, and it cannot handle large rotations.

This technique is based directly on the sampled feature points. When different feature
points are present in different views, or if there are different sampling densities in different
views, then the shape matrix for the two views will differ even if the object’s pose and
shape are identical. In addition, this method cannot incorporate information about feature

connectivity or distinctiveness; data are treated as clouds of identical points. Most impor-
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tantly, this approach cannot handle large deformations unless feature correspondences

are given.

2.4.3 Eigenpictures

Another group of eigen-description methods is known as eigenpictures, because these
methods compute the principal components directly on the grayscale images themselves.
Using these approaches researchers have built systems that perform stable, interactive-
time recognition of faces [145], cars [83], and allowed interactive-time tracking of cars and
roads [143].

One such eigenpicture technique is a particularly familiar one in the Media Lab: eigen-
faces [64, 144, 145]. The basic idea is simple: by finding the principal variations over a
large training set of grayscale face images, we can use a small number of these orthogonal
eigenfaces to describe novel faces. To recognize a new face, we first recover a recipe that
tells us how to synthesize this face as a weighted combination eigenfaces. We can then
recognize the novel face by comparing the new face’s recipe against recipes for known
faces.

In the limit, the eigenface decomposition can contain infinitely many base-faces, but by
truncating to only the first 10-20 eigenfaces, we can usually account for over 99 percent of
the variance over the training set. Thus, the description of faces can be achieved with only
a few parameters. Furthermore, this transform into the truncated eigenspace describes
a subspace called face space. This fact can be used for face detection: if a subimage
does not project correctly into this face image subspace, then it is not considered to be a
face [145]. Another strength of the eigenpicture method is its robustness to occlusion and
noise.

As originally proposed, the technique has problems in dealing with changes in scale,
orientation, and lighting. Problems in modeling lighting changes for faces are being care-
fully addressed by Hallinan in his Ph.D. work at Harvard [50]. In addition, Pentland et al.
have extended the eigenface method to incorporate modular eigenspaces that can incor-
porate information about change in viewpoint, and eigentemplates to better model salient

facial features like the eyes, nose and mouth [93]. Murase and Nayar [83] have applied the
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eigenpicture technique to the more general problem of representing aspect graphs of any
object. The aspect graphs can be used to capture both changes in viewpoint around an
object and changes in lighting. However, despite these improvements, eigenpictures still

cannot adequately cope with scaling, rotation, nor deformation.

2.5 Summary

All shapes can be represented as deformations from a standard or prototypical shape; this
basic premise has served as inspiration for many of the view-based shape representations
for machine vision. One key issue in using a view-based approach is that of data reduction:
given the multitude of possible viewpoints and configurations for an object, we need to
reduce this multitude down to a more efficient representation that requires only a few
characteristic views. This general approach is embodied in the linear-combinations-of-
views paradigm, where any object view can be synthesized as a combination of linearly-
warped example views.

A key issue in this framework is that of correspondence: how to describe features,
contours, and surfaces so that they can be recognized and matched from view to view.
One promising family of correspondence methods first computes a shape-intrinsic coordi-
nate frame for each object; correspondences are then computed in this alternate object-
centered coordinate frame. Unfortunately, most object-centered methods are sensitive to
parameterization, sampling, and noise. These problems are further complicated because
real-world objects appear differently depending upon sensor placement and type; also,
real objects can deform and move.

In order to better model how objects appear in sensor data we must account, at least
qualitatively, for their physics. This has motivated the use of physically-motivated, de-
formable models to exploit a priori knowledge about physics to interpolate and smooth raw
data, based on prior assumptions about noise, material properties, etc. Using a physically-
based shape representation allows us to better model nonrigid shape deformation, but the
initial formulation had the problem that it utilized a finite differences. This lead to problems

with sampling. To gain better robustness to sampling, we can employ the finite element
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method for building our physical models.

Physically-motivated representations are quite good for modeling deformation; how-
ever, they cannot be used for comparing objects. In general, the recovered parameters
for these physical models can be arbitrarily defined, and are therefore not invariant to
changes in viewpoint, occlusion, or nonrigid deformations. Thus, if our goal is to recover
descriptions for recognition and comparison, the physical modeling paradigm as such is
flawed.

This problem of non-uniqueness can be cured if we adopt an eigendecomposition
approach. In recent years there has been a revival of interest in eigendecomposition-
based pattern recognition methods, due to the surprisingly good results that have been
obtained by combining these methods with modern machine vision representations. In
these methods, image or shape information is decomposed into an ordered basis of or-
thogonal principal components. As a result, the less critical and often noisy high-order
components can be discarded in order to obtain overconstrained, canonical descriptions.
This allows for the selection of only the most important components to be used for efficient
data reduction, real-time recognition and navigation, and robust reconstruction.

The eigenvectors of a finite element model are known as eigenmodes. In some ways,
the eigenmodes are akin to an object’s generalized (nonlinear) axes of symmetry, in that
they describe the principal axes of deformation over a training set of shapes. This general-
ized coordinate system provides a robust representation for establishing correspondences
between similar shapes. Most importantly, the orthogonality of the eigen-representation
ensures that the recovered descriptions will be unique, thus making recognition problems

tractable.
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Approach

Our approach will combine many of the good features of the previous techniques. We
will develop a new view-based elastic matching framework that makes use of the eigen-
decomposition to ensure canonical descriptions and robustness.

The approach has three basic modules:

Modal Matching

At the core of this shape alignment and comparison framework is the idea of modal
matching for computing feature correspondences and model similarity. Modal match-
ing is a new method for establishing correspondence, computing canonical descrip-
tions, and recognizing objects that is based on the idea of describing objects by their

generalized symmetries, as defined by the object’s vibration or deformation modes.

Modal Descriptions

The resulting modal description will be used for object comparison, where object
similarities are computed in terms of the amounts of modal deformation energy
needed to align the two objects. In general, modes provide a global-to-local ordering
of shape deformation that allows us to select which types of deformations are to
be used in object alignment and comparison. In contrast to previous methods, this
method will allow us to compute the object’s deformation modes directly from available
image information, rather than requiring the computation of correspondence with an

initial or prototype shape.

34
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Modal Combinations of Models

We will also introduce a physically-motivated linear-combinations-of-models paradigm,
where the computer synthesizes an image of the object in terms of a weighted combi-
nation of modally deformed prototype images. This method is different from previous
linear combinations of models techniques, in that it employs a frequency-ordered
description of shape. As a result, we will be able to analyze and decompose shape
deformations (and then resynthesize shapes) in a flexible, principled manner. This
will have application in image and shape metamorphosis, since it will allow us to

synthesize novel images and shapes based on examples.

We will now give a brief overview of each of these components. The mathematical
details of the finite element formulation are provided in the last section of this chapter.
We introduce a new type of Galerkin interpolant based on Gaussians that allows us to
efficiently derive our shape parameterization directly from the data.

Though the primary application focus is matching shapes in 2-D images, the formulation
can be generalized to both solve correspondence problems and compute robust, canonical
descriptions for signals of any dimensionality (extension to N-dimensional problems is

provided in Appendix A).

3.1 Modal Matching

Modal matching uses the eigenmodes of a physical shape model to obtain a canonical,
frequency-ordered orthogonal coordinate system. This coordinate system may be thought
of as the shape’s generalized symmetry axes. By describing feature point locations in
this body-centered coordinate system, it is easy to match corresponding points, and to
measure the similarity of different objects. This allows us to recognize objects, and to
determine if different objects are related by simple physical transformations.

A flow-chart of our method is shown in Figure 3-1. For each image we start with feature
point locations X = [x4...x,,] and use these as nodes in building a finite element model
of the shape. Gaussian interpolants are centered at each feature, and mass and stiffness

are then integrated over the shape. We can think of this as constructing a model of the
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Figure 3-1: Modal matching system diagram.

shape by covering each feature point with a Gaussian blob of rubbery material; if we have
segmentation information, then we can fill in interior areas and trim away material that
extends outside of the shape.

We then compute the eigenmodes (eigenvectors) ¢; of the finite element model. The
eigenmodes provide an orthogonal frequency-ordered description of the shape and its
natural deformations. They are sometimes referred to as mode shape vectors since they
describe how each mode deforms the shape by displacing the original feature locations,
ie.,

Xgeformed = X + adi, (3.1)

where « is a scalar.

Figure 3-2 shows the low-order modes for an upright tree-like shape. The first three
are the rigid body modes of translation and rotation, and the rest are nonrigid modes.
The nonrigid modes are ordered by increasing frequency of vibration; in general, low-
frequency modes describe global deformations, while higher-frequency modes describe
more localized shape deformations. This global-to-local ordering of shape deformation will
prove very useful for shape alignment and comparison, as will be described in Chapter 5.

The eigenmodes also form an orthogonal object-centered coordinate system for de-

scribing feature locations. That is, each feature point location can be uniquely described
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(a)

(e)

Figure 3-2: The low-order 18 modes computed for the upright tree shape (a). The first three
modes are translation (b,c) and rotation (d). The others are nonrigid (e).

in terms of how it moves within each deformation mode, i.e., how it participates in each
deformation mode. The transform between Cartesian feature locations and modal fea-
ture locations is accomplished by using the eigenvectors as a coordinate basis. In our
technique, two groups of features are compared in the modal eigenspace.

The important idea here is that the low-order vibration modes computed for two similar
objects will be very similar — even in the presence of affine deformation, nonrigid defor-
mation, local shape perturbation, or noise. Figure 3-3 shows the low-order deformation
modes computed for four related tree shapes. We can see how the modes of one shape
correspond to the modes of another shape. This then allows us to match the feature
locations in one object with those of another object despite sometimes large differences in
shape.

Using this property, we can reliably compute correspondence in this modal space. The
concept of modal matching is demonstrated on the two similar tree shapes in Figure 3-4.
Correspondences are found by comparing the direction of displacement at each node.

The direction of displacement is shown by vectors in figure. For instance, the top points
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(b)

(d)

Figure 3-3: Similar shapes have similar low order modes. This figure shows the first five low-order
vibration modes for similar tree shapes: (a) prototypical, (b) stretched, (c) tilted, and (d) two middie
branches stretched.

on the two trees in Figure 3-4(a, b) have very similar displacements across a number
of low-order modes, while the bottom point (shown in Figure 3-4(c)) has a very different
displacement signature. Good matches have similar displacement signatures, and so the
system matches the top points on the two trees.

Point correspondences between two shapes can be reliably determined by comparing
their trajectories in this modal space. For the implementation described in this thesis, points
that have the most similar unambiguous coordinates are matched via modal matching, with
the remaining correspondences determined by using the physical model as a smoothness
constraint. Currently, the algorithm has the limitation that it cannot reliably match largely
occluded or partial objects.

Normally only the first n lowest-order modes are used in forming this coordinate system,
so that (1) we can compare objects with differing numbers of feature points, and (2) the
feature point descriptions are insensitive to noise. Depending upon the demands of the

application, we can also selectively ignore rigid-body modes, or low-order projective-like
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(b)

Figure 3-4: Correspondences are found by comparing the direction of displacement at each node
(shown by vectors in figure). For instance, the top points on the two trees (a, b) have very similar
displacement signatures, while the bottom point (shown in ¢} has a very different displacement
signature. Using this property, we can reliably compute correspondence affinities in this modal
signature space.

(b)

Figure 3-5: Two flat tree shapes, one upright and one lying flat (a), together with the obtained cor-
respondence (b). The 18 low-order modes were computed for each tree and then correspondences
were determined using the algorithm described in the text.

modes, or modes that are primarily local. Consequently, we can describe, track, and
compare nonrigid objects in a very flexible and general manner.

Example output of the modal matching is shown in Figure 3-5. The left-hand side of the
figure shows two views of a flat, tree-like shape, an example illustrating the idea of skewed

symmetry adapted from [58]. The first 18 modes were computed for both trees, and were
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compared to obtain the correspondences shown in Figure 3-5(b). The fact that the two
figures have similar low-order symmetries (eigenvectors) allows us to recognize that two
shapes are closely related, and to easily establish the point correspondences.

In summary, the correspondence algorithm is based on matching up each point’s trajec-
tory signature in this modal space. Point correspondences are determined by comparing
the two groups of features in the eigenmode coordinate system. That is, the set of points
for one object is compared with the set of points for the second. The points that have
the most similar and unambiguous modal signatures are then matched. The remaining
correspondences are determined by using the physical model as a smoothness constraint
[118].

3.2 Modal Descriptions

Given correspondences we can align or warp one shape into another. An important benefit
of our technique is that the modal vibrations computed for the correspondence algorithm
can also be used to describe the rigid and non-rigid deformation needed for alignment.
These deformations are measured in terms of mode amplitudes and are essentially a
recipe for how to build a shape in terms of deformations from a prototype shape. Once this
modal description has been computed, we can compare shapes simply by looking at their
mode amplitudes or — since the underlying model is a physical one — we can compute
and compare the amount of deformation energy (strain) needed to align an object, and use
this as a similarity measure. If the modal displacements or strain energy required to align
two feature sets is relatively small, then the objects are very similar.

Recall that for a two-dimensional problem, the first three modes will be the rigid body
modes of translation and rotation, and the rest are nonrigid modes. Such a global-to-local
ordering of shape deformation allows us to select which types of deformations are to be
compared. For instance, it may be desirable to make object comparisons rotation and
position independent. To do this, we ignore displacements in the low-order or rigid body
modes, thereby disregarding differences in position and orientation. In addition, we can

make our comparisons robust to noise and local shape variations by discarding higher-
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order modes. This modal selection technique is also useful for its compactness, since we

can describe deviation from a prototype in terms of relatively few modes.

3.3 Modal Combinations of Models

Using methods similar to those employed by Ullman and Basri[147] and by Poggio, et
al. [11, 69, 102, 103], we would also like to describe objects as linear combinations
of some collection of base models. The difference here is that we have a frequency-
ordered description of shape; as a result we can analyze and decompose nonrigid shape
deformation (and then synthesize shapes) in a principled way. One important advantage
of our framework is that the modal representation can be used to reliably compute the
necessary corresponding points in example views, despite relatively large deformations,
differences in sampling, or noise.

Our method starts by determining point correspondences between a new shape and
known extremal views. Given these correspondences we could use a standard technique
for solving the image interpolation problem; however, modal image interpolation combines
three important advantages. First, the physical model can be used to enforce elastic and
smoothness constraints in warping pixels that lie between features. Second, the modal
representation gives separate parameters; this allows for selecting and scheduling the
types of deformations that can occur. Lastly, the modal representation gives a frequency-
ordered description of the deformations needed to align the two feature sets. By discarding
highest-frequency modes, the image warp can be made more robust with respect to noise.

Thus the core technology of modal matching will yield an improved physically-based
framework for linear-combinations-of-views. The system interpolates between example
views using modal image warps, and uses strain-energy to measure the similarity between
the new shape and the interpolated shape. Thus we can describe entire categories of
objects in terms of a few modally-warped examples.

Using this framework, we can also obtain a parametric description of rigid, nonrigid, or
articulated motion in terms of its similarity to known extremal views, thus providing us with

a low-dimensional parameterization of the motion. We can derive this parameterization



CHAPTER 3. APPROACH 42

without knowing all the details of the physical system, although obviously such detailed
knowledge would help in obtaining a more accurate, physically-meaningful parameteriza-
tion. We thereby obtain a low-dimensional parametric representation of motion that we

can use to recognize and compare motion trajectories.

3.4 Mathematical Formulation

Perhaps the major limitation of previous methods is that the procedure of attaching virtual
springs between data points and the surface of the deformable object implicitly imposes a
standard parameterization on the data. We would like to avoid this as much as is possible,
by letting the data determine the parameterization in a natural manner.

To accomplish this we will use the data itself to define the deformable object, by building
stiffness and mass matrices that use the positions of image feature points as the finite
element nodes. We will first develop a finite element formulation using Gaussian basis
functions as Galerkin interpolants, and then use these interpolants to obtain generalized
mass and stiffness matrices.

Intuitively, the interpolation functions provide us with a smoothed version of the feature
points, in which areas between close-by feature points are filled in with a virtual material that
has mass and elastic properties. The filling-in or smoothing of the cloud of feature points
provides resistance to feature noise and missing features. The interpolation functions aiso
allow us to place greater importance on distinctive or important features, and to discount
unreliable or unimportant features. This sort of emphasis/de-emphasis is accomplished

by varying the “material properties” of the virtual material between feature points.

3.4.1 Brief Review of the Finite Element Method

A shape’s modal representation is based on the eigenvectors of its physical model. The
mathematical formulation of this physical model is based on the finite element method
(FEM), the standard engineering technique for simulating the dynamic behavior of an
object. This section provides a brief overview of the standard finite formulation. For an

in-depth treatment of the formulation and convergence its properties, readers are directed
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to [9, 125].

in the FEM, interpolation functions are developed that allow continuous material prop-
erties, such as mass and stiffness, to be integrated across the region of interest. Using
Galerkin’s method for finite element discretization, we set up a system of shape functions
that relate the displacement of a single point to the relative displacements of all the other
nodes of an object. This set of shape functions describes an isoparametric finite element.
By using these functions, we can calculate the deformations that spread uniformly over the
body as a function of its constitutive parameters.

In general, the polynomial shape function for each element is written in vector form as:
u(x) = H(x)U (3.2)

where H is the interpolation matrix, x is the local coordinate of a point in the element where
we want to know the displacement, and U denotes a vector of displacement components
at each element node.

For most applications it is necessary to calculate the strain due to deformation. Strain
e is defined as the ratio of displacement to the actual length, or simply the ratio of the
change in length. The polynomial shape functions can be used to calculate the strains (e)
over the body provided the displacements at the node points are known. Using this fact

we can now obtain the corresponding element strains:
e(x) = B(x)U (8.3)

where B is the strain displacement matrix. The rows of B are obtained by appropriately
differentiating and combining rows of the element interpolation matrix H.
As mentioned earlier, we need to solve the problem of deforming an elastic body to

match the set of feature points. This requires solving the dynamic equilibrium equation:
MU + DU + KU =R, (3.4)

where R is the load vector whose entries are the spring forces between each feature point
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and the body surface, and where M, D, and K are the element mass, damping, and

stiffness matrices, respectively.

Both the mass and stiffness matrices are computed directly:

M = [, pHTHdV and K = f;, BTCBdYV, (3.5)

where p is the mass density, and C is the material matrix that expresses the material’s

particular stress-strain law.
If we assume Rayleigh damping, then the damping matrix is simply a linear combination

of the mass and stiffness matrices:
D = oM + 8K, (3.6)
where o and § are constants determined by the desired critical damping [9].

3.4.2 Modal Analysis

This system of equations can be decoupled by posing the equations in a basis defined by
the M-orthonormalized eigenvectors of M—1K. These eigenvectors and values are the

solution (¢;,w?) to the following generalized eigenvalue problem:
K¢; = w?M¢;. (3.7)

The vector ¢, is called the ith mode shape vector and w; is the corresponding frequency
of vibration.
The mode shapes can be thought of as describing the object’s generalized (nonlinear)

axes of symmetry. We can write Equation 3.7 as

K® = M3Q? (3.8)
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where
%
®=[p1]...|dm] and N%= : (3.9)

2
Wi

As mentioned earlier, each mode shape vector ¢; is M-orthonormal, this means that
3TK® =02 and ®'M& =1. (3.10)

This generalized coordinate transform @ is then used to transform between nodal point

displacements U and decoupled modal displacements U:
U=4oU (3.11)

We can now rewrite Equation 3.4 in terms of these generalized or modal displacements,

obtaining a decoupled system of equations:

U, + DU + 020, = 87R, (3.12)
where D is the diagonal modal damping matrix

D = ®7D® = ol + 502 (3.13)

By decoupling these equations, we allow for closed-form solution to the equilibrium
problem [96]. Given this equilibrium solution in the two images, point correspondences
can be obtained directly.

By discarding high frequency eigenmodes the amount of computation required can
be minimized without significantly altering correspondence accuracy. Moreover, such a
set of modal amplitudes provides a robust, canonical description of shape in terms of
deformations applied to the original elastic body. This allows them to be used directly for

object recognition [96].
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3.4.3 Gaussian Interpolants

Given a collection of m sample points x; from an image, we need to build appropriate stiff-
ness and mass matrices. The first step towards this goal is to choose a set of interpolation
functions from which we can derive H and B matrices. We require a set of continuous

interpolation functions h; such that:
1. their value is unity at node ¢ and zero at all other nodes
2. "7, h; = 1.0 at any point on the object

In a typical finite element solution for engineering, Hermite or Lagrange polynomial inter-
polation functions are used [9]. Stiffness and mass matrices K and M are precomputed
for a simple, rectangular isoparametric element, and then this simple element is repeatedly
warped and copied to tessellate the region of interest. This assemblage technique has
the advantage that simple stiffness and mass matrices can be precomputed and easily
assembled into large matrices that model topologically complex shapes.

Our problem is different in that we want to examine the eigenmodes of a cloud of feature
points. It is akin to the problem found in interpolation networks: we have a fixed number of
scattered measurements and we want to find a set of basis functions that allows for easy
insertion and movement of data points. Moreover, since the position of nodal points will
coincide with feature and/or sample points from our image, stiffness and mass matrices
will need to be built on a per-feature-group basis. Gaussian basis functions are ideal

candidates for this type of interpolation problem [103, 105]:

gi(x) = elxxilP/2 (3.14)

where x; is the function’s n-dimensional center, and ¢ its standard deviation.
We will build our interpolation functions k; as the sum of m basis functions, one per

data point x;:
hi(x) = 2 a,'kgk(x) (315)
k=1
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where «;;, are coefficients that satisfy the requirements outlined above. The matrix of

interpolation coefficients can be solved for by inverting a matrix of the form:

g1(x1) ... g1(%Xm)
G=| | (3.16)

gm(x1) e gm(xm)

For the formulation described here, the basis function widths o; are kept the same at all
nodes. Assuming a roughly uniform sampling of features, the widths should be equal to the
average distance between feature points. If inter-feature distances vary greatly, then it may
become necessary to use variable-width Gaussian interpolants to avoid an ill-conditioned
finite element model.

To help visualize the resulting interpolants, Figure 3-6 shows graphs of three inter-
polants used in building a one-dimensional finite element. The element had twenty-five
evenly spaced nodes and the basis function width ¢ was set equal to the spacing between
nodes. The resulting interpolant for an internal node is shown in (a), the interpolant for
an endpoint is show in (b), and near-border node in (c). Note that the nodes near the
boundary have slightly different interpolant profiles. For evenly-spaced nodes, the internal
node’s interpolants will generally look like windowed sinc functions. When the element
nodes are unevenly-spaced, these interpolants will stretch and shrink.

By using these Gaussian interpolants as our shape functions for Galerkin approxima-
tion, we can easily formulate finite elements for any dimension. A very useful aspect of
Gaussians is that they are factorizable: multidimensional interpolants can be assembled
out of lower dimensional Gaussians. This not only reduces computational cost, it also has
useful implications for VLSI hardware and neural-network implementations [103].

Note that these sum-of-Gaussians interpolants are nonconforming, i.e., they do not
satisfy condition (2) above. As a consequence the interpolation of stress and strain be-
tween nodes is not energy conserving. Normally this is of no consequence for a vision
application; indeed, most of the finite element formulations used in vision research are

similarly nonconforming [141]. If a conforming element is desired, this can be obtained by
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Figure 3-6: Graphs showing typical interpolation functions for a uniform 1-D element. The
interpolant for an internal node is shown in (a), the interpolant for an endpoint is show
in (b), and near-border node in (c). Note that the nodes near the boundary have slightly
different interpolant profiles. These interpolants were constructed from linear combinations
of Gaussian basis functions as described in the text.

including a normalization term in &, in Equation 3.15,

azkgk(x)

s

hi(x) = (3.17)

Ms

>

j=1k

a]kgk

1

For most of the examples in this thesis, we will use the simpler, non-conforming interpolants,
primarily because the integrals for mass and stiffness can be computed analytically. The
differences between conforming and nonconforming interpolants do not affect the matching
results reported in this thesis. On the one hand, non-conforming interpolants can be used

to model an infinite-support, potential field of features. On the other hand, conforming
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interpolants can be used to model an object’s particular shape by using a support-map.

Both types of elements are formulated in the next section.

3.4.4 Formulating 2-D Elements

For the sake of illustration we will now give the mathematical details for a two-dimensional
implementation. The extension to dimensions three and higher is straight-forward and
provided in Appendix A.

Before formulating these 2-D elements, we will first need to provide some basic inte-

grals. The first three are infinite integrals of exponentials (adapted from [45]).

\Eeé (3.18)

(o0} 2 2
/ e P +29z g
—00

[o'e) 2
/ perit2r gy — 1 Tew (3.19)
-0 pvp
S 2 _pz242 1 ™ 2q2 _‘13
/ Rerttargy - L Ty S 5 (3.20)
—0 2p\p P

We can then use these integrals to derive the 2-D infinite Gaussian basis function

integrals:
I seededy = 7o? i (3.21)
e} 00 2
/_ /_ z gi(x) g;(x)dz dy = %(mi+xj)\/g7j (3.22)
0 0 2
[T evatgodedy = T (ke (4 05) VG (3.23)

00 oo, T ot (z; + )2
[T faaerdy = T3 (it w) (1+—§;r)¢97j (3.24)
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2-D Element with Infinite Support

We begin by assembling a 2-D interpolation matrix from the shape functions developed in

Equation 3.15:

hi ...hm O ... 0O
H(x) = : (3.25)
0 ...0 hy.. hn,

Substituting into Equation 3.5 and multiplying out we obtain a mass matrix for the feature

data:

. M 0
M = / pHTHAA = : (3.26)
A 0 M

where the m by m submatrix M is positive definite symmetric. The elements of M have

the form:

mi; = p/_o; /—oo Zaik aji gr(x) gi(x) dz dy. (3.27)

k1

We then integrate and regroup terms:
ms; = pﬂ'O'ZZaik aji\/Gkl (3.28)
k.l

where gi; = gx(x;) is an element of the G matrix in Equation 3.16.

This can be rewritten in matrix form:
M = pra?ATGA = pra?G16GT, (3.29)

where the elements of G are the square roots of the elements of the G matrix in Equation
3.16.
To obtain a 2-D stiffness matrix K we need to compute a stress-strain interpolation

matrix B and material matrix C. For our two dimensional problem, B is a (3 x 2m) matrix:

Dhy oo Zhm O 0
Bx)=| 0 ... 0 Zht ... fFha |> (3.30)
3 el 3 3
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where the partials are of the form

1 m
== Z Tk — .’12 QL gk(X) (331)
7" k=1
and
Z — y) ik g(X). (3.32)

?J -

The general form for the material matrix C for a plane strain element is:

1 a O
C=f8|la 1 0]. (3.33)
0 0 ¢

This matrix embodies an isotropic material, where the constants «, 3, and ¢ are a function

of the material’s modulus of elasticity £ and Poisson ratio v:

v _ E(1-v) 1-2v
Ty 'B_(1+1/)(1—21/)’

(3.34)

Substituting into Equation 3.5 and multiplying out we obtain a stiffness matrix for the

2-D feature data:

T Kaa Kab
K:/chmz (3.35)
A Ko Ko

where each m by m submatrix is positive semi-definite symmetric, and K, = Ky,. The

elements of K, have the form:

dgx 091 | ,Ogk _(?ﬂ]
aa,J ,8/ /oo%l: Ak 0/]1[8 a:l) + 5 ay 83] dz dy (336)

Integrate and regroup terms:

k'aa,,']' = Wﬂ Z QG Qg

k,l

2 ~2
) - 402 :\ v 9kl (337)
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where 5 = (zx — z;) and g = (yx — vi)- Similarly, the elements of K;; have the form:

~2 +€~2
by, = wﬁZazkaﬂ[ re_ (o 402x’°’) }\/gz (3.38)

Finally, the elements of K,; have the form:

[ Ogx 0g1 | ,0gx Ogi
ab”._ﬁ/ / Zazkaﬂ[aa—x 3y + 9y oz ] dz dy. (3.39)

® k,l

When integrated this becomes:

Eab, = Fﬁ(a + 3 Z ik @51 &kt Jrin/GKl- (3.40)

v

2-D Element with Finite Support

Given a support function we can “cut” the finite element sheet into any shape. We do this
by defining a support function s(x) that is zero anywhere outside the shape region R, and
greater than zero inside the shape region. Thus the support function can be used to define
both the shape and the thickness of the elastic model.
We will now use the conforming interpolants 4, of Equation 3.17 in our formulation of
a 2-D finite element model. The equivalent integral for the mass matrix Equation 3.35
becomes:
miy = p [ 5(x) b(x) i (x)dady (3.41)

Assuming that there is a large number of pixels, this is approximated by the following

discretization:

Y ainajigr(x)gi(x)
mij =y s(x) - 5
xer (Z &kgk(x))
k

(3.42)

where a;, = 2 ik

7
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The partial derivatives for the conforming interpolants »; take the form:

9 Y (z—a) [aran — araix] gi(x) gr(x)
g == 5 : (3.43)

2 (Z dkgk(x))
%

and
> (v —w) laraa — & ai] gi(x) gr(x)

d k,l
2
2 (Z &kgk(x))
k

—h;(x) =
55 1(%)
The elements of the stiffness matrix that correspond with those described in Equation

(3.44)

3.36 become discrete integrals of the form:

kaa;; = ﬂxze; s(x [ah Oh; %’; %’;] (3.45)
Similarly

kb, = ﬂ);s(x) [%—}Z %—}Z + 5%’; %}; } (3.46)
and

kab; = ﬁ%s(x)[ 82 Oh; + %Z’ %Z—J] (3.47)

In pseudocode, the algorithm for computing the 2-D finite-support mass and stiffness

matrices is as follows:

for each x € R if s(x) > 0.0do values and partials of basis functions
for each node @ do
glil = gi(x)
9z li] = (z —@i)g il /o
gy i = (y — yi)glil /o

2

end

h=Ag multiply basis vectors by coefficients
he = A gy

hy=Ag,
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a:Zh[i]
b:aéth[i]
c= azihy[i]

for each node i do
glil=h[i/a
gx["'] = h:c [i]/a_ h[l]/b
gylil = hy 1] /a — Rh[i] /c
end

G =Gpp =Gpy =Gy, =00
for each node ¢ do
for each node j do
G[l] = GLEIDT+ s(x)g [i1g 7]
Gy [11[7] = Gz [11U]+ s(X) g2 [1] 9 [1]
Gy L1151 = Gy [ L] + 5(X)gy [1] 9, 17]
Gy li] 1] = Gy 11131+ 5(X)g [i] gy (1]
end
end
end

My, = pG

Koo = Gor + £ny

Kybb = ny + fGa:x

Ki, = Koy = oGy + £GT,

3.5 Summary

54

interpolants must sum to 1

fill vectors of interpolants and partials

zero interpolant and partial matrices
fill matrices of products

fill mass and stiffness submatrices

We have formulated a family of physical models that use the feature data itself as nodes in

building a finite element; our stiffness and mass matrices use the positions of image feature

points as the finite element nodes. Through the use of Galerkin surface approximation,

we can avoid sampling problems and incorporate outside information such as feature

connectivity and distinctiveness. The eigenvectors or modes of the resulting matrices form

an intrinsic coordinate system for the shape and its natural deformation.

Building on this formulation, the next three chapters will develop the main system

components: modal matching, modal descriptions, and modal combinations of models.



Chapter 4

Modal Matching

In this chapter we will describe modal matching, a new method for determining corre-
sponding features on similar shapes. Modal matching utilizes a shape-intrinisic coordinate
system for robust correspondence computation. This intrinsic coordinate system is built
from the eigenvectors of the new physical shape model, and offers useful properties: in-
variance to scaling and translation, and robustness to nonrigid deformation and noise. We
will first formulate the fundamental correspondence method, and then extend it it two main
areas. First, we introduce the notion of multiresolution matching; this allows us to more
efficiently match up shapes that have potentially hundreds of features. Second, we derive

a rotation-invariant modal matching formulation.

4.1 Determining Correspondences

To determine correspondences, we first compute mass and stiffness matrices for both
feature sets. These matrices are then decomposed into eigenvectors ¢, and eigenvalues

A; as described in Section 3.4.2. The resulting eigenvectors are ordered by increasing

55
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eigenvalue, and form the columns of the modal matrix ®:

[ uf

S=[p1]...|poml=1| (4.1)

L J

where m is the number of nodes used to build the finite element model. The column
vector ¢; is called the i** mode shape, and describes the modal displacement (u,v) at
each feature point due to the :** mode, while the row vectors u; and v; are called the
ith generalized feature vectors, and together describe the feature’s location in the modal
coordinate system.

Modal matrices ®; and ®, are built for both images. Correspondences can now
be computed by comparing mode shape vectors for the two sets of features; we will
characterize each nodal point by its relative participation in several eigenmodes. Before
actually describing how this matching is performed, it is important to consider which and

how many of these eigenmodes should be incorporated into our feature comparisons.

4.1.1 Modal Truncation

For various reasons, we must select a subset of mode shape vectors (column vectors ¢;)
before computing correspondences. The most obvious reason for this is that the number
of eigenvectors and eigenvalues computed for the source and target images will probably
not be the same. This is because the number of feature points in each image will almost
always differ. To make the dimensionalities of the two generalized feature spaces the
same, we will need to truncate the number of columns at a given dimensionality.

Typically, we retain only the lowest-frequency 25% of the columns of each mode matrix,
in part because the higher-frequency modes are the ones most sensitive to noise. Another

reason for discarding higher-frequency modes is to make our shape comparisons less
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sensitive to local shape variations.

We will also want to discard columns associated with the rigid-body modes. Recall
that the columns of the modal matrix are ordered in terms of increasing eigenvalue. For a
two-dimensional problem, the first three eigenmodes will represent the rigid body modes
of two translations and a rotation. These first three columns of each modal matrix are
therefore discarded to make the correspondence computation invariant to differences in
rotation and translation.

In summary, this truncation breaks the generalized eigenspace into three groups of

feature vectors:

@1 =[p11 121 d13] pral. | d1p | P1pr1 |- | d12m]

rigid body intermediate high-order (4.2)
modes moges moges
®o=[¢o1| b2z | b2 | boal-- | bop| b2pst|---| bo2n]

where m and n are the number of features in each image. We keep only those columns
that represent the intermediate eigenmodes; thus, the truncated generalized feature space
will be of dimension 2(p — 3) for a 2D problem.

We now have a set of mode-truncated feature vectors:

=]l
Bl R

®=[¢a]...|¢)] = (4.3)

<
~

L ~m ]

where the two row vectors u; and v; store the displacement signature for the ith node
point, in truncated mode space. The vector u; contains the z, and v; contains the y,

displacements associated with each of the p — 3 modes.
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4.1.2 Computing Correspondence Affinities

Using a modified version of an algorithm described by Shapiro and Brady [127], we now
compute what are referred to as the affinities z;; between the two sets of generalized

feature vectors. These are stored in an affinity matrix Z, where:
i — i 24l 54— 50 |12
zij = || Ur; — g ||+ || 91,5 — V2,5 [I° (4.4)

The affinity measure for the i** and j** points, z;, will be zero for a perfect match and
will increase as the match worsens. Using these affinity measures, we can easily identify
which features correspond to each other in the two images by looking for the minimum
entry in each column or row of Z. Shapiro and Brady noted that the symmetry of an
eigendecomposition requires an intermediate sign correction step for the eigenvectors ¢;.
This is due to the fact that the direction (sign) of eigenvectors can be assigned arbitrarily.
Readers are referred to [126] for more details about this.

To obtain accurate correspondences the Shapiro and Brady method requires three sim-
ple, but important, modifications. First, only the generalized features that match with the
greatest certainty are used to determine the deformation; the remainder of the correspon-
dences are determined by the deformation itself as in our previous method. By discarding
affinities greater than a certain threshold, we allow for tokens that have no strong match.
Second, as described earlier, only the low-order twenty-five percent of the eigenvectors are
employed, as the higher-order modes are known to be noise-sensitive and thus unstable
[9]. Lastly, because of the reduced basis matching, similarity of the generalized features is
required in both directions, instead of one direction only. In other words, a match between
the it* feature in the first image and the j** feature in the second image can only be valid
if z;; is the minimum value for its row, and z;; the minimum for its column. Image points for

which there was no correspondence found are flagged accordingly.

4.1.3 Implementation Details: Mode Reordering and Selection

In cases with low sampling densities or with large deformations, the mode ordering can

vary slightly even though shapes may be similar. Such cases require an extra step in
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which neighborhoods of similarly-valued modes are compared to find the best matching
modes. Furthermore, certain low-order modes will match each other quite well while other
modes will not match as well (primarily due to the multiple eigenvalue problem mentioned
earlier). We will use distances between modes to select only the best-matching subset of
modes to use in computing feature correspondence affinities. As will be described in the
next chapter, these mode distances can also be used directly for determining rough shape
similarity.

One simple heuristic for measuring modal distance proceeds as follows. We first find
the centroids and moments for both shapes. Using the axes of intertia to define the outer
corners of a bounding rectangle, we then sample a coarse rectangular grid of points. If
the two shapes are at different orientations then we include an extra step in which the two
models are rotated into rough alignment.

The mode shape is then interpolated for each point in this rectilinear grid. We utilize
an interpolated modal matrix that describes each mode’s shape for the at the regular grid
points:
b= H. (4.5)

In this equation, the interpolation matrix H relates the displacement at the nodes (original

features) to displacements at the rectangular grid point feature locations x;:

H(x4)
a=| : |, (4.6)
H(x,)

where each submatrix H(x;) is a 2 x 2m interpolation matrix as in Eq. 3.25.

Given modes interpolated for both objects, we wish to select the subset of correspond-
ing modes whose similarity is strongest to within a threshold. This is done by either taking
the dot product or Euclidean distance between interpolated mode vectors ¢,. For each
of the first shape’s nonrigid modes, we check over a neighborhood of the second shape’s
modes (in our experience, a neighborhood of three is sufficient). Distances should be

computed for both the positive and negative directions of the eigenvectors. Finally, if we
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want to allow for symmetry, then we need to take the dot product for the four flip-symmetries
of the rectangular grid.

For this thesis, problems with sampling density were avoided by taking the dot product
of the normalized eigenmodes. As a result, the eigenmode match threshold was invariant
to sampling density and scaling. Sometimes it may be useful to instead normalize for

aspect ratio differences between the two shapes.

4.2 Multiresolution Models

When there are possibly hundreds of feature points for each shape, computing the FEM
model and eigenmodes for the full feature set can become non-interactive. For efficiency,
we can select a subset of the feature data to build a lower-resolution finite element model
and then use the resulting eigenmodes in finding the higher-resolution feature correspon-
dences. The procedure for this is as follows.

First, a subset of m feature points is selected to be finite element nodes. This subset can
be a set of particularly salient features (i.e., corners, T-junctions, and edge mid-points) or a
randomly selected subset of (roughly) uniformly-spaced features. As before, a FEM model
is built for each shape, eigenmodes are obtained, and modal truncation is performed as
described in Section 4.1.1. The resulting eigenmodes for the two shapes are then matched
and sign-corrected using the lower-resolution models’ affinity matrix.

With modes matched for the feature subsets, we now proceed to finding the correspon-
dences for the full sets of features. To do this, we use Equation 4.5 to obtain interpolated
modal matrices. In this case, the interpolation matrix H relates the displacement at the
nodes (original features) to displacements at the full-resolution feature locations x;; we
thereby compute matrices that describe each mode’s shape for the full set of features in
terms of the features used to build the low-resolution model.

Finally, an affinity matrix for the full feature setis computed using the interpolated modal

matrices, and correspondences are determined as described in the previous sections.
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Figure 4-1:  Transforming a modal displacement vector u = (u,v) into (¢,7). The angle ¢ is
computed relative to the vector n from the object’s centroid ¢ to the nodal point x. The radius r is
simply the length of u.

4.3 Coping with Large Rotations

As described so far, our affinity matrix computation method works best when there is
little difference in the orientation between images. This is due to the fact that the modal
displacements are described as vectors (u, v) in image space. When the aligning rotation
for two sets of features is potentially large, the affinity calculation can be made rotation
invariant by transforming the mode shape vectors into a polar coordinate system. In two

dimensions, each mode shape vector takes the form

b =[uq.. tm,v1...om]" (4.7)

where the modal displacement at the i** node is simply (u;,v;). To obtain rotation invari-
ance, we must transform each (u, v) component into a coordinate in (r, §) space as shown
in Figure 4-1. The angle 6 is computed relative to the vector from the object’s centroid to
the nodal point x. The radius r is simply the magnitude of the displacement vector u.
Once each mode shape vector has been transformed into this polar coordinate sys-
tem, we can compute feature affinities as was described in the previous section. In our

experiments, however, we have found that it is often more effective to compute affinities



CHAPTER 4. MODAL MATCHING 62
using either just the r components or just the § components, i.e.:
a a2
zij = || 01,0 — b2, [|°. (4.8)

In general, the » components are scaled uniformly based on the ratio between the object’s
overall scale versus the Gaussian basis function radius ¢. The § components, on the other
hand, are immune to differences in scale, and therefore a distance metric based on 6 offers

the advantage of scale invariance.



Chapter 5

Modal Descriptions

An important benefit of our technique is that the eigenmodes computed for the correspon-
dence algorithm can also be used to describe the rigid and non-rigid deformation needed
to align one object with another. Once this modal description has been computed, we can
compare shapes simply by looking at their mode amplitudes or — since the underlying
model is a physical one — we can compute and compare the amount of deformation energy
needed to align an object, and use this as a similarity measure. If the modal displacements
or strain energy required to align two feature sets is relatively small, then the objects are
very similar.

Before we can actually compare two sets of features, we first need to recover the
modal deformations U that deform the matched points on one object to their corresponding
positions on a prototype object. A number of different methods for recovering the modal

deformation parameters are described in the next section.

5.1 Recovering Modal Descriptions via Modal Alignment

We want to describe the deformation parameters U that take the set of points from the
first image to the corresponding points in the second. Given that &, and $;, have been
computed, and that correspondences have been established, then we can solve for the

modal displacements directly. This is done by noting that the nodal displacements U that

63



CHAPTER 5. MODAL DESCRIPTIONS 64

align corresponding features on both shapes can be written:
w; = Xq; — X2, (5.1)

where x4 ; is the i** node on the first shape and x,; is its matching node on the second

shape.
Recalling that U = ®U, and using the identity of Equation 3.10, we find:

U=¢""'U=8"MU. (5.2)

Normally there is not one-to-one correspondence between the features. In the more
typical case where the recovery is underconstrained, we would like unmatched nodes to
move in a manner consistent with the material properties and the forces at the matched
nodes. This type of solution can be obtained in a number of ways.

In the first and simplest approach, we are given the nodal displacements u; at the
matched nodes, and we set the loads r; at unmatched nodes to zero. We can then solve
the equilibrium equation, KU = R, where we have as many knowns as unknowns. Modal
displacements are then obtained via Eg. 5.2. This approach yields a closed-form solution,
but it has the disadvantage that we have assumed that forces at the unmatched nodes are

Zero.

5.1.1 Reducing the Degrees of Freedom via Modal Truncation

One way around this zero-force assumption is to solve a mode-truncated version of the
physical system. Assume that we have found correspondences for p of the m nodes. We
can reduce the degrees of freedom by discarding m — p of the high-frequency modes in
Equation 5.2, and then solve for the modes via a matrix inverse. This method proceeds as
follows.

Given that we know correspondences for some of the nodes, we reorder the columns
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of the matrix &~ ':

1 -1
q)known unknown Uknown Uvnknown
- : (5.3)

Uunknown 0

where Ugn.un iS the vector of known displacements at the p matched nodes, U, known 1S
the vector of unknown nodal displacements, and U, nknown is the vector of desired modal
amplitudes. In this formulation, it is assumed that the amplitudes for discarded modes are
zero.

We now regroup terms:

0 | | Uknown I|a;! U unknown
know — unknown k ) (54)

I 0 0 Uunknown

@—1

known

The desired mode amplitudes can now be obtained directly by inverting the right-hand
matrix. Note that we again obtain a solution in closed-form, but we have assumed that the

modal displacements @; = 0, for i > p.

5.1.2 Strain-minimizing Least Squares Solution

By imposing an additional constraint, it is possible to find a solution for the displacements
in which we allow the loads at unmatched nodes to be nonzero. To achieve this, we find

mode amplitudes that minimize the strain energy:

1. .
Er= EUTQZU. (5.5)
This strain energy equation enforces a penalty that is proportional to the eigenvalue asso-
ciated with each mode. Since rigid body modes ideally introduce no strain, it is logical that
their w; ~ 0.
We now formulate a constrained least squares solution, where we minimize alignment
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error that includes this modal strain energy term:

p=[u-20][U-20] + \07T0%0. (5.6)
strain energy

squared fﬁting error

As can be seen, this strain term directly parallels the smoothness functional employed in
regularization [139].
Differentiating with respect to the modal parameter vector yields the strain-minimizing
least squares equation:
U=[eT® + mz]_1 3TU. (5.7)

Thus we can exploit the underlying physical model to enforce certain geometric constraints
in a least squares solution. The strain energy measure allows us to incorporate some prior
knowledge about how stretchy the shape is, how much it resists compression, efc. Using
this extra knowledge, we can infer what “reasonable” displacements would be at unmatched
feature points.

Since the modal matching algorithm computes the strength for each matched feature,
we would also like to utilize these match-strengths directly in alignment. This is achieved

by including a diagonal weighting matrix:
. -1
U= |oTW2% + \Q?| &TW2U (5.8)

The diagonal entries of W are inversely proportional to the affinity measure for each feature

match. The entries for unmatched features are set to zero.

5.1.3 The Dynamic Solution

So far, we have described methods for finding the modal displacements that directly deform
and align two feature sets. It is also possible to solve the alignment problem by physical
simulation, in which the finite element equations are integrated over time until equilibrium
is achieved. In this case, we solve for the deformations at each time step via the dynamic

equation (Eq. 3.12). In so doing, we compute the intermediate deformations in a manner
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consistent with the material properties that were built into the finite element model. The
intermediate deformations can also be used for physically-based morphing.

When solving the dynamic equation, we use features of one image to exert forces that
pull on the features of the other image. The dynamic loads R(t) at the finite element nodes

are therefore proportional to the distance between matched features:
r,'(t + At) = ri(t) + k(XU + u,-(t) — Xg,i), (5.9)

where k& is an overall stiffness constant and u;(¢) is the nodal displacement at the previous
time step. These loads simulate “ratchet springs,” which are successively tightened until

the surface matches the data [49].

The modal dynamic equilibrium equation can be written as a system of 2m independent

equations of the form:
ii(t) + ditii (1) + w2 (t) = (1), (5.10)

where the 7;(t) are components of the transformed load vector R(t) = ®TR(t). These
independent equilibrium equations can be solved via an iterative numerical integration
procedure (e.g., Newmark method [9]). The system is integrated forward in time until the

change in load energy goes below a threshold ¢, e.g.:
| R(t + At) — R(1) || < 62. (5.11)

The loads r;(t) are updated at each time step by evaluating Equation 5.9.

5.2 Coping with Large Rotations

If the rotation needed to align the two sets of points is potentially large, then it is necessary
to perform an initial alignment step before recovering the modal deformations. Orientation,
position, and (if desired) scale can be recovered in closed-form via quaternion-based

algorithms described by Horn [52] or by Wang and Jepson [150].1

'While all the examples reported here are two-dimensional, it was decided that for generality, a 3-D orien-
tation recovery method would be employed. For 2-D orientation recovery problems, simply set z = 0.
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The following is a summary of Horn’s orientation recovery method. It is worth noting
that using Horn’s technique before recovering the modal deformations is unnecessary if
the rotation needed to align the two point sets is relatively small.

Using only a few of the strongest feature correspondences (strong matches have rela-
tively small values in the affinity matrix Z) we can solve for rigid body modes directly. This
initial orientation calculation is based on only the strongest matches, thus we are likely to
get a very good estimate of the rigid body parameters that take features in one image and
line them up with their counter parts in the other.

Once the two images have been aligned in this way, the features may not be completely
aligned. We can now solve for the modal deformations U that completely align the matched
features. This two step process of alignment allows us to independently solve for orientation
and deformation parameters, allowing for robustness in the face of large rotation and
translations.

This separation of orientation, efc. is a very important detail when it comes to dealing
with large changes in rotation. It is also very useful for animation, where it may be
necessary to separate scripts animation/morphing for changes in position, orientation, and
scale from scripts for deformation.

In addition, since only the strongest features have been matched and used to align
the images, we may want to go back and use this alignment information to determine
correspondences for the unmatched features, or recompute correspondences for features
for which the affinity measure z;; was above a threshold. This can be done by finding the
closest feature, or closest point on the other bodly.

As input, the method is given two sets of » matched points x1 and xz in the two images,

where x4 ; corresponds to xp ;. We first find the centroids for these two point sets:

x1=1% "xy; and xp=1) xo (5.12)
=1

=1

These centroids are then subtracted from the two point sets, so that they are now
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expressed in terms of their local coordinates:

X/1 i = X1 — X4 and X’g’i =Xp; — X2. (513)

’

We are now ready to recover the unit quaternion q = go + g, + jgy + kq. that describes

the rotation that orients x4 with x». This is done by first building the symmetric matrix

[ (Sprt Sy +52)  Sys— Suy S. _5.. 55 ]

M = Syz = Sy (Szz = Syy = Szz) Szy + Syz Sz + Szz

Sew = Bz Sey+Syz  (=Ses+ Syy — Sz) Sy + Say
i Szy = Sya B Syz + Szy (=Szz = Syy + 522) |
(5.14)

where
Sz = Zn:xIU 24, Say = Xn:$,1,i Yo, efc. (5.15)
i=1 i=1

We then find the most positive eigenvalue for the matrix M. Horn has shown that the
eigenvector associated with this eigenvalue represents the unit quaternion q that gives the
optimal rotation of x4 to x, (optimal in that it minimizes root mean squared error).

The scale s can be found independently of the rotation:

1
n n 3
5= (ZII X'z, ||2/§ ELF II2) : (5.16)
1=1 =1

in a departure from the Horn technique, we calculate the translation x, as the difference

between the centroids x; and X»:

Xg = X2 — X1. (5.17)

This modification allows us to express the optimal rotation and scaling in terms of the local

coordinate systems for each body.
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The matrix that describes the aligning rotation R is built from the recovered quaternion:

(B+E+E+d) 2y — 904:) 2(42q: + 90ay)
R=| 2qq+qe) (@B-E+E-d) 249 —90%) |- (5.18)
2(¢:9 — 904y) 2(q.qy + 904:) (@@ — 2 — a2+

5.2.1 Using Affinities as Confidence Weights

Appendix A.2 of Horn’s paper describes how to include point match confidence weights
w; into the recovery formulation. In our application, these weights can be made inversely
proportional to the affinity measure, e.g., w; = 1/(1+ z;). Since weights are used, the

centroids become weighted centroids:

n n n n
Xy =y wxy; [y wi and Xz =) wiXp, > wi (5.19)
=1 =1 1=1 =1

Computing the scale factor also includes the weights

1

n n 3
2 2
5= (Z wil| X2 |17 /> will x4 || ) ; (5.20)
=1 i=1
Finally, the entries in the matrix M change to:

n n
oo oo
See = Z Wik 24, Ooy = Z w;T'1;Y2,, elC. (5.21)
=1

=1
5.2.2 Recovering Deformations with Initial Orientation Step

In the modified technique, we first align the two point sets using the rotation, translation,
and scale recovered using the Horn method. The points can now be further aligned by
recovering the modal deformations U as described previously. As before, we compute
virtual loads R that deform the features in the first image towards their corresponding
positions in the second image.

Since we have introduced an additional rotation, translation, and scale, we must modify
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Equation 5.1 so as to measure distances between features in the correct coordinate frame:
1.7 _ _
Ui = (;R [X2,i — X0 — X4] + X1 — x1). (5.22)

Through the initial alignment step, we have essentially reduced virtual forces between
corresponding points; the spring equation accounts for this force reduction by inverse
transforming the matched points x;; into the finite element’s local coordinate frame. The
modal amplitudes U are then solved for via a matrix multiply (Eq. 5.2) or by solving the
dynamic system (Eq. 3.12).

The modal displacements now act in a rotated and scaled space; as a result, we must

update our displacement interpolation equation:
u(x) = sSRH®U (5.23)

where R is a rotation matrix.

This method of rigid alignment and deformation is shown for the two flat tree shapes
in Figure 5-1. This figure shows how the two shapes can be progressively aligned using
rigid body modes and then modal deformations. Given only a few of the strongest corre-
spondences between corner points on both trees, we use Horn’s algorithm to first recover
the rigid body modes and align the two trees. The trees are aligned further using modal
deformations. The number of modes used determines how closely the trees are aligned.
The bottom row of this figure shows the results using six and eighteen modes. As can
be seen, six non-rigid modes are sufficient to account for most of the deformation due to
shear. It has been our experience that the first six to nine non-rigid modes can adequately

model the standard affine deformations.

5.3 Comparing Modal Descriptions

Once the mode amplitudes have been recovered, we can compute the strain energy
incurred by these deformations by plugging into Equation 5.5. This strain energy can then

be used as a similarity metric. As will be seen in the next section, we may also want to
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Original tree shapes Aligned using rigid body modes

Deformed by first 6 modes Deformed by first 18 Modes

Figure 5-1: Using rigid body modes and then deformations to align two flat tree shapes. Given
correspondences between corner points on both trees, we use Horn’s algorithm to first recover the
rigid body modes and align the two trees. The trees are aligned further using modal deformations
that are recovered as described in the text. The number of modes used determines how closely the
trees are aligned. The bottom row of this figure shows the results using six and eighteen modes.

compare the strain in a subset of modes deemed important in measuring similarity, or the

strain for each mode separately. The strain associated with the it mode is simply:
1.2 2
Emode,' = Euz wi . (524)

Since each mode’s strain energy is scaled by its frequency of vibration, there is an inherent
penalty for deformations that occur in the higher-frequency modes.

If a metric distance function is desired, then this simple energy measure needs to be
modified: strain does not satisfy one of the three axioms for a metric space[146]:
Minimality:

§(A,B) > §(A,A)=0.

Symmetry:
6(A, B) = 6(B, A).
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The triangle inequality:
8(A,B) + 6(B,C) > 6(A,C).

While it satisfies minimality and the triangle inequality, strain energy does not satisfy
symmetry. The strain energy is not symmetric for shapes of differing sizes; i.e., if the scales
of two objects A and B differ, then the strain energy needed to align A with B may differ from
that needed to align B with A. The difference in strain will be inversely proportional to the
difference in square of the object scales. Therefore, when comparing objects of differing
scales we divide strain energy by the shape’s area. When a support map is available, this
area can be computed directly. In the infinite-support case, the area can be approximated
by computing the minimum bounding circle, or the moments, for the data.

There is an additional property that proves useful in defining a metric space, segmental
additivity:

§(A,B)+ 6(B,C) = 6(A,C),

if B is on the line between A and C.

To satisfy segmental additivity, we can take the square root of the strain energy:

1
. 1 ~2 2 2

where « is the shape’s area. This results in a weighted distance metric not unlike the
Mahalanobis distance: the modal amplitudes are decoupled, each having a “variance” that
is inversely proportional to the mode’s eigenvalue. As a result, this formulation could be
used as part of a regularized learning scheme in which the initial covariance matrix, €2 is

iteratively updated to incorporate the observed modal parameter covariances.

5.3.1 Modal Prototypes

Instead of looking at the strain energy needed to align the two shapes, it may be desirable
to directly compare mode amplitudes needed to align a third, prototype object C with each
of the two objects. In this case, we first compute two modal descriptions U, and U, that

align the prototype with each candidate object. We then utilize our strain-energy distance
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metric to order the objects based on their similarity to that prototype.

As will be demonstrated in the image database experiments of Chapter 7, we can use
distance to prototypes to define a low-dimensional space for efficient shape comparison.
In such a scenario, a few prototypes are selected to span the variation of shape in each
category. Every shape in the database is then aligned with each of the prototypes using
modal matching, and the resulting modal strain energy is stored as an n-tuple, where n
is the number of prototypes. Each shape in the database now has a coordinate in this
“strain-energy-from-prototypes” space; shapes can be compared simply in terms of their
Euclidean distance in this space.

We have used strain energy for most of our object comparison experiments, since it has
a convenient physical meaning; however, we suspect that it may sometimes be necessary
to weigh higher-frequency modes less heavily, since these modes typically only describe
high-frequency shape variations and are more susceptible to noise. For instance, we
could directly measure distances between modal descriptions, U. Our preliminary experi-
ments in prototype-based shape description have shown that this metric yields comparable

performance to the strain energy metric.

5.3.2 Mode-Similarity-Space

As was described in 4.1.3, we can measure the distance between modes and determine
how similar two shape’s modes are without computing feature correspondences. This
suggests an alternative coordinate space for describing distances between prototypes:
mode-similarity-space. In this formulation, we match and compare modes; consequently,
for each shape in the database we tally the number of modes that match each prototype’s
modes. Typically, mode distances are computed for only the lowest-order 25% of nonrigid
modes. As before, these tallies are stored as coordinates in an n-dimensional similarity
space; thus, shape similarity is proportional to the Euclidean distance in this space.
Finally, if two shapes have no modes falling within the reasonable tolerance for similarity,
then the shapes will be flagged as “no modes the same.” The lack of modal similarity is
a strong clue that attempting correspondence and alignment is unreasonable; the shapes

are probably from different categories.
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Modal Combinations of Models

We are given features in the original image and the recovered modal amplitudes U that
describe how to align them with features in the second image. We now want to use this
alignment information to warp and/or animate images. For the image warping, we want
to deform the whole image based on the displacements calculated at the feature points
scattered in the image. To do this, we will need to generate flow fields. For images, a flow
field is a dense 2-D vector field showing where features or pixels move from one frame to
another.

Given that we already have correspondences, there are standard techniques for solving
this warping and interpolation problem, but itis proposed that the finite element interpolation

functions #; be used because:

1. The underlying physical model enforces elastic and smoothness constraints in warp-

ing pixels that lie between features.

2. The modal representation gives separate parametric “control knobs” that allow for
selecting the types of deformations that can occur (affine vs. rigid vs. nonrigid

deformations). This has the useful side-effect that image transformations can be

scheduled, e.g., rigid alignment first, affine next, efc.

3. The modal representation gives a frequency-ordered description of the deformations
needed to align the two feature sets. By discarding highest-frequency modes, the

image warp can be made more robust with respect to noise.

75
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Figure 6-1: The total flow field for an image warp can be represented as the sum of many modal
flow fields. The mixture of these modal flow fields is modulated by the animation functions g;(¢).

Using the core technology of modal matching will yield an improved physically-based
framework for linear-combinations-of-views. In the rest of this chapter we first develop
the notion of modal image warping, where image deformations are described in terms of
the linear-superposition of modal flow fields. We then formulate algorithms for describing
categories of objects in terms of linear combinations of modally-warped examples, and for
characterizing non-rigid motions in terms of warps from extremal views. The resulting for-

mulation will also be useful for the computer graphics technique of image metamorphosis.

6.1 Modal Image Warping

Just as the nodal displacements can be represented as the linear superposition of the de-
coupled modal displacements, the image flow field can be represented as the superposition
of decoupled modal flow fields. This is illustrated in Figure 6-1.

Each of these modal flow fields corresponds with deformations whose flow at the nodes

is described by the mode shape vector ¢; and mode amplitude ;. For in between frames,
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these flow fields can be modulated by a function 3;(t). These functions act as animation
control knobs, choreographing the mixture of modal flow fields.

In general, these animation functions should satisfy the boundary conditions, i.e.:

Bi(t)=0, t=0
Bi(t)y=1, t=1
0<B(t)<1, 0<t<H

(6.1)

Animation functions can be simple linear ramps, sigmoid curves, splines, or any other

functions, as long as these conditions are met.

6.1.1 Computing Dense Modal Vector Fields

Recall that given nodal displacements, we can use the FEM interpolation functions H to

compute the displacement at any image location x:
u(x) = H(x)U. (6.2)

This allows us to compute the displacement vectors at the nodes, and then iterate over
the image, plugging each pixel’s image coordinate x into Equation 6.2, thereby computing
the vector field. As a result, the vector field for each non-rigid mode can also be easily
obtained.

For each mode, the nodal displacements are proportional to the mode’s shape vector
#;, and are stored as a column in the modal transformation matrix ®. It follows then that
the equation for the i** non-rigid mode’s vector field can be expressed in terms of the FEM

displacement interpolation function:
u(x) = @, H(x)d;. (6.3)

where i; is the recovered amplitude for the it» mode. All vector fields are linear and can

therefore be precomputed. When aligning the images requires a large rotation, then this
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linearization of the rotational field becomes invalid. In such cases, we need to include an

additional alignment step in our method as described in the next section.

6.1.2 Modal Flow with Additional Alignment Step

If the rotation or translation needed to align the two shapes is large, then additional rigid
alignment parameters are recovered as described in Section 5.2. We need to modify
the modal image warping method to incorporate this additional alignment information. In
the modified method, we are given the original image, the modal amplitudes U, and the

following additional alignment information:

X0 translation vector
q unit quaternion defining orientation
s scale factor

X1 and xo centroids
As before, we want to use the recovered alignment information to warp and/or animate
images through the use of image flow fields. To do this, we will need to include the
additional rotation, scale, and translation in our system, as shown in Figure 6-2. The
animation functions a4(t), aa(t), as(t), act as control knobs for the translation, scale, and
rotation, respectively. The animation functions a4(t) and a;3(t) satisfy the same conditions
described for the j;(t) of Equation 6.1. The animation function for scale is different; it

satisfies:
ap(t)=1, t=0
t)y=1, t=1
e(t) (6.4)
ap(t) isbetween 1 and 1, 0<t <1

The separation of rigid body from non-rigid deformation modes makes the warping
more robust to large rotations — this is due to the use of quaternions rather than linearized
rotation. The incremental rotation path for a warp can be defined in quaternion space using
spherical linear interpolation, as is described by Shoemake[130]. As mentioned earlier,
separation of rigid and non-rigid warping allows for “scheduled” warping, where groups of

modes can be interpolated sequentially in time (for instance, translate first, then rotate,
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Figure 6-2: Image warping diagram modified to include the extra alignment step. The total modal
flow field for an image warp passes through an extra rotation, scale, and translation stage. The flow
field mixture is modulated by the animation functions «;(¢) and g;(t). Note that image coordinates
x are translated into the local coordinate system defined by the centroid: x’ = x — xy.

then scale, and finally deform).
The memory required for storing many modal vector fields may be prohibitive. We can

get around this by directly generating the summed flow field:
Wsummed (X, ) = @1()%0 + a2(1)sR [x' + H(x)@0] -/, (6.5)

where j is a diagonal matrix, with the modulation functions 3;(t) along the diagonal. Note
that image coordinates x are translated into the local coordinate system defined by the

centroid: x' = x — x3.

6.2 Morphing: Physically-based Linear Combinations of Models

The computer graphics technique of morphing has become quite popular in advertise-

ments. Morphing is accomplished by an artist identifying a large number of corresponding
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control points in two images, and then incrementally deforming the geometry of the first
image so that its control points eventually lie atop the control points of the second image.
While this deformation is occurring, the pixel values of the two images are also interpolated.
If the artist selects control point correspondences that produce a geometrically smooth de-
formation field and a smooth transition in grey level, then a visually compelling transition

from the first image to the second is obtained [154].

6.2.1 Morphing between two images

Using modal matching, feature matching and smooth alignment can be computed efficiently
and automatically — rather than requiring hours of artist’s labor. To morph between two
base images, we first recover the modal deformations that align the two images as was
described in Chapter 5. We then proceed to warp and combine the two images, and
thereby generate an image metamorphosis.

To generate a morph, we utilize a modal image warping function W(B, U, A,1) that
descibes the warping at time ¢, where B is a base image, U is a vector of the modal
amplitudes used to warp the image, and A is a vector of animation functions. In actuality,
we will be morping between two base images B4 and B,. The animation functions for the

first base image are the complements of those for the second, e.g.,
BB,i(t) =1- BB, (6.6)

is the relationship between the animaton functions for the ith modes taking the first base

image to the second image and vice versa. These animation functions are assembled into

the vectors Ay and As.
A modal morph is then defined as a weighted combination of the two base images:

Lnorph = 7()W(B1, U, A1, 1) + (1 = 4(1))W(Bg, U, Az, 1), (6.7)

where 0 > ~(t) < 1.0 is a weighting function that controls the mixture of the two images.

Given this framework, we can interpolate any image that lies between two example images.
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6.2.2 Linear combinations of models

In the linear combinations of models scheme, we define an object class as all possible
morphs in the basis defined by a collection of base images B;. Take for instance, the case
where we have two basis images B and B,. Assume that we have the modal parameters
that align the firstimage with the second (we will denote this vector as Uq_,5). All members
of the class defined by the two base images can be obtained by varying the parameter ¢ in
Equation 6.7.

To map a candidate image C into this class, we attempt to synthesize it from the
basis images. We begin by matching up image features between the candidate and each
basis image, and then recovering the mode amplitudes U; that warp each basis image B;
into alignment with C. We can express the mixture of the two basis images needed to

synthesize the model as:

o 6(B1,C)? — §(By, C)?

- 2B, B (8

where the function § is the square root of strain distance metric of Equation 5.25. Given ¢
and U;_, we use Equation 6.7 to synthesize the model in terms of the two basis images.
This formulatation enforces the constraint that the deformations used to synthesize the
model be along the line between the two basis images.

Rather than using just two basis images to synthesize new images, we can generalize
this concept to many basis images [11, 102, 101, 147]. In this case, we employ a modal

morph defined by a weighted combination of » basis images:
Imorph = Z wiW(Bia fjia -A7 1); (69)

where U; is the vector mode amplitudes describing how to deform the ith basis image with
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the candidate image, and v); is a scalar controlling the mixture of the warped basis images:

1 |,__48:0

n (6.10)
Zé(BJ'?C)

6.3 Example-based Shape Comparison

Recall that since we have a physical model, similarity is measured in terms of the strain
energy needed to align an image with a prototype. If we use modal warps to align the
grayscale image with the prototype image, we can then incorporate a second measure
which accounts for the pixel-by-pixel difference between them. This two term comparison
measure is similar to the one employed by Uliman and Basri, where not only the necessary
deformation but also the “goodness of fit” are used to measure similarity.

If we align two images, then we can employ a distance metric that includes a measure

of the pixel-wise differences between them [147]:
d=d;(I,B,s)+ A\§(1,B) (6.11)

The first term d; measures the residual distance between the pixel values in the target
image I, and a basis image B after modal deformation U, over the region defined by the
support function s(z,y). The second term is the square root of strain metric of Equation
5.25.

For the linear combination of views paradigm, d; measures the pixel-by-pixel difference
between the synthesized image and original image, and the second term becomes a
weighted sum of the strain energy needed to align each basis image with the target image.
This is equivalent to determining if the target image lies within the convex hull defined by

the basis images.



CHAPTER 6. MODAL COMBINATIONS OF MODELS 83

6.3.1 Phase Plots for Nonrigid Motion Understanding

This suggests an important way to obtain a parametric description of rigid, nonrigid, or
articulated motion: interpolate between known views. Given views of the extremes of a
motion (e.g., systole and diastole, or left-leg forward and right-leg forward) we can describe
the intermediate views as a smooth combination of the extremal views. Importantly, we can
derive this parameterization without knowing all the details of the physical system, although
such detailed knowledge would help in obtaining a more accurate, physically-meaningful
parameterization. The resulting strain-energy can be used to generate a phase-plot, where
each axis represents distance from an extremal view.

All that is required to determine the view-based parameterization of a new image are
the extremal views, point correspondences between the new image and the extremal
views, and a method of measuring the amount of (nonrigid) deformation that has occurred
between the new image and each extremal view. The extremal views define a polytope in
the space of the (unknown) underlying physical system’s parameters. By measuring the
amount of deformation between the new image and extremal views, we locate the new
image in the coordinate system defined by the polytope.

This approach to describing motion is related to the view-based shape recognition pro-
posals of Ullman and Bastri [147] and Poggio, et al. [103]. It entails description by interpo-
lating among examples, rather than description by some more abstract, view-independent
representation.

However, it differs from their proposals in two important ways. First, we are interested
not only in recognizing shapes, but also in describing motion (including nonrigid and
articulated motion). We want to derive a low-dimensional parametric representation of
motion that can be used to recognize and compare motion trajectories, in the manner
of Darrell and Pentland [32]. Second, we cannot be restricted to a linear framework.
Nonrigid motions are inherently nonlinear, although they are often “physically smooth.”
Therefore, to employ a combination-of-views approach we must be able to determine
point correspondences and measure similarities between views in a way that takes into
account at least qualitative physics, and detailed physics if that information is available. In

computer graphics it is the job of the artist to enforce the constraint of physical smoothness;
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in machine vision, we need to be able to do the same automatically.

Modal matching provides the needed framework for (1) determining point correspon-
dences using a physically-based model, (2) warping or morphing one shape into another
using physically-based interpolants, and (3) measuring the amount of physical deformation
between an object’s shape and the extremal views of that object. The resuit is a low-
dimensional parametric representation of the object’s motion that is qualitatively related
to the underlying physical parameters. Such physically-based parametric descriptions are

useful for recognizing or classifying motions as will be demonstrated in the next chapter.



Chapter 7

Experiments

This chapter describes experiments in using the modal matching framework in a number
of applications. We will first present experiments in using modal matching for finding
corresponding features on shapes, and then use these correspondences as input to an
alignment and description module. Describing deformations in terms of modal parameters
makes it possible to pin-point the types of deformation needed to align shapes, thereby
making it possible to determine relationships between objects and categories. These ideas
are then extended to solve problems in shape-based image database search and shape
categorization. Finally, the concept of physically-based linear-combinations-of-views is

demonstrated on problems in nonrigid and articulated motion description.

7.1 Correspondence Experiments

In this section we will first illustrate the method on a few classic problems, and then
demonstrate its performance on real imagery. In each example the feature points are
treated independently; no connectivity or distinctiveness information was employed. Thus
the input to the algorithm is a cloud of feature points, not a contour or 2-D form. The
mass and stiffness matrices were then computed, and the M-orthonormalized eigenvec-
tors determined. In cases where there were greater than 100 feature points, a roughly
uniform subsampling of features was used as input to the multiresolution matching scheme

described in Section 4.2. Finally, correspondences were obtained as described earlier.

85
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Figure 7-1: Correspondence obtained for bumpy, warty, and prickly pears. Roughly 300 silhouette
points were matched from each pear. Because of the large number of data points, only two percent
of the correspondences are shown in this figure.

Figure 7-1 shows a classic example taken from [110]. Here we have pear shapes with
various sorts of bumps and spikes. Roughly 300 points were sampled regularly along
the contour of each pear's silhouette. A roughly-uniform subsampling of approximately
one quarter of the features was used to build a finite element model. Correspondences
were then computed for all the features using the first 32 modes. Because of the large
number of data points, only two percent of the correspondences are shown. As can be
seen from the figure, reasonable correspondences were found. This is because the low-
order symmetries (eigenvectors) of all the pears are similar. The fact that the low-order
descriptions are similar allows us to recognize that the shapes are “the same,” and to
establish a good point-to-point correspondence.

Figure 7-2(a) shows two wrenches: one prototypical straight-handled wrench, and
the other a bent wrench. The first 28 modes were computed for both wrenches, and
were compared to obtain the correspondences shown. The fact that the two wrenches
have similar low-order symmetries (eigenvectors) allows us to recognize that two shapes
are closely related, and to easily establish the point correspondences. Roughly 100
silhouette points were matched from each wrench. For clarity, only a few of the computed
correspondences are shown in the figure.

Figure 7-3(a) illustrates a more complex correspondence example, using real image
data. Despite the differences between these two hands, the low-order descriptions are
quite similar and consequently a very good correspondence is obtained, as shown in Figure
7-3(b). Roughly 400 points were sampled from each hand silhouette and correspondences

were computed using the first 32 modes. As in the previous example, only two percent of



CHAPTER 7. EXPERIMENTS 87

Figure 7-2: Correspondence found for two wrenches, one straight and one bent, together
with the obtained correspondence. The 28 low-order modes were computed for each tree
and then correspondences were determined using the algorithm described in the text.

Figure 7-3: (a) Two hand images, (b) correspondences between silhouette points, (c),(d) cor-
respondences after digital surgery. Roughly 400 points were sampled from each hand silhouette.
Correspondences were computed for all points using the first 32 modes. For clarity, only correspon-
dences for key points are shown in this figure.



CHAPTER 7. EXPERIMENTS 88

Different views

Quite different planes Very different planes

Figure 7-4: Correspondence obtained for outlines of different types of airplanes. The firstexample
shows the correspondences found for different (rotated in 3D) views of the same fighter plane. The
others show matches between increasingly different airplanes. In the final case, the wing position
of the two planes is quite different. As a consequence, the best-matching correspondence has the
Piper Cub flipped end-to-end, so that the two planes have more similar before-wing and after-wing
fuselage lengths. Despite this overall symmetry error, the remainder of the correspondence appears
quite accurate. Roughly 150 silhouette points were matched from each plane. Because of the large
number of data points, only critical correspondences are shown in this figure.

the correspondences are shown.

Figures 7-3(c) and (d) show the same hand data after digital surgery. In Figure 7-3(c),
the little finger was almost completely removed; despite this, a nearly perfect correspon-
dence was maintained. In Figure 7-3(d), the second finger was removed. In this case a
good correspondence was still obtained, but not the most natural given our knowledge of
human bone structure.

The next example, Figure 7-4, uses outlines of three different types of airplanes as seen
from a variety of different viewpoints (adapted from [155]). In the first three cases the de-
scriptions generated are quite similar, and as a consequence a very good correspondence
is obtained. Again, only two percent of the correspondences are shown.

In the last pair, the wing position of the two planes is quite different. As a result,
the best-matching correspondence has the Piper Cub flipped end-to-end, so that the two
planes have more similar before-wing and after-wing fuselage lengths. Despite this overall

symmetry error, the remainder of the correspondence appears quite accurate.
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Figure 7-5: Finding correspondence for one view of a Volkswagen (a) and a two views of a Saab
(b) taken from[147]. Each car has well over 1000 edge points. Note that both silhouette and interior
points can be used in building the model. As described in the text, when there are a large number
of feature points, modal models are first built from a uniform sub-sampling of the features as is
shown in (c,d). In this example, roughly 35 points were used in building the finite element models.
Given the modes computed for this lower-resolution model, we can use modal matching to compute
feature matches for the higher-resolution. Correspondences between similar viewpoints of the VW
and Saab are shown in (e), while in (f) a different viewpoint is matched (the viewpoints differ by
307). Because of the large number of data points, only a few of the correspondences are shown in
this figure.
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Our final example is adapted from [147] and utilizes multi-resolution modal matching
to efficiently find correspondences for a very large number of feature points. Figure 7-5
shows the edges extracted from images of two different cars taken from varying viewpoints.
Figure 7-5(a) depicts a view of a Volkswagen Beetle (rotated 15° from side view) and Figure
7-5(b) depicts two different views of a Saab (rotated 15° and 45°). If we take each edge
pixel to be a feature, then each car has well over 1000 feature points.

As described in Section 4.2, when there are a large number of feature points, modal
models are first built from a roughly uniform sub-sampling of the features. Figures 7-5(c)
and 7-5(d) show the subsets of between 30 and 40 features that were used in building the
finite element models. Both silhouette and interior points were used in building the model.

The modes computed for the lower-resolution models were then used as input to an
interpolated modal matching which paired off the corresponding higher-resolution features.
Some of the strongest corresponding features for two similar views of the VW and Saab
are shown in 7-5(e). The resulting correspondences are reasonable despite moderate
differences in the overall shape of the cars. Due to the large number of feature points, only
a few of the strongest correspondences are shown in this figure.

In Figure 7-5(f), the viewpoints differ by 30°. Overall, the resulting correspondences are
still quite reasonable, but this example begins to push the limits of the matching algorithm.
There are one or two spurious matches; e.g., a headlight is matched to a sidewall. We
expect that performance could be improved if information about intensity, color, or feature

distinctiveness were included in our model.

7.2 Alignment and Description

Figure 7-6 demonstrates how we can align a prototype shape with other shapes, and
how to use this computed strain energy as a similarity metric. As input, we are given the
correspondences computed for the various airplane silhouettes shown in Figure 7-4. Our
task is to align and describe the three different target airplanes (shown in gray) in terms
of modal deformations of a prototype airplane (shown in black). In each case, there were

approximately 150 contour points used, and correspondences were computed using the
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first 36 vibration modes. On the order of 50 strongest corresponding features were used
as input to the strain-minimizing version of the Equation 5.2. The modal strain energy was
computed using Equation 5.5.

The graphs in Figure 7-6 show the values for the 36 recovered modal amplitudes
needed to align or warp the prototype airplane with each of the target airplanes. These
mode amplitudes are essentially a recipe for how to build each of the three target airplanes
in terms of deformations from the prototype.

Figure 7-6(a) shows an airplane that is similar to the prototype, and which is viewed
from a viewpoint that results in a similar image geometry. As a consequence, the two
planes can be accurately aligned with little deformation, as indicated by the graph of mode
amplitudes required to warp the prototype to the target shape.

Figure 7-6(b) depicts an airplane which is from the same class of airplanes as the
prototype, but viewed from a very different angle. In this case, the graph of deformation
mode amplitudes shows a sizable strain in the first few modes. This makes sense, since
generally the first six to nine deformation modes account for affine-like deformations which
are similar to the deformations produced by changes in viewpoint.

The final example, Figure 7-6(c), is very different from the prototype airplane, and is
viewed from a different viewpoint. In this case, the recovered mode deformations are large
in both the low and higher-frequency modes.

This figure illustrates how the distribution of strain energy in the various modes can be
used judge the similarity of different shapes, and to determine if differences are likely due
primarily to changes in viewpoint. Figure 7-6(a) shows that similar shapes can be aligned
with little deformation; (b) shows that viewpoint changes produce mostly low-frequency
deformations, and (c) shows that to align different shapes generally requires deformations

of both low and high frequency.

7.2.1 Determining Relationships Between Objects

By looking more closely at the mode strains, we can pin-point which modes are predominant
in describing an object. Figure 7-7 shows what we mean by this. As before, we can describe

one object’s silhouette features in terms of deformations from a prototype. In this case,
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Figure 7-6: Describing planes in terms of a prototype. The graphs show the 36 mode amplitudes
used to align the prototype with each target shape. (a) shows that similar shapes can be aligned with
little deformation; (b) shows that viewpoint changes produce mostly low-frequency deformations,
and (c) shows that to align different shapes requires both low and high frequency deformations.
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we want to compare different hand tools. The prototype is a wrench, and the two target
objects are a bent wrench and hammer. Silhouettes were extracted from the images, and
thinned down to approximately 80 points per contour. Using the strongest matched contour
points, we then recovered the first 22 modal deformations that warp the prototype onto the
other tools. A rotation, translation, and scale invariant alignment stage was employed as
detailed in Section 5.2.

The strain energy attributed to each modal deformation is shown in the graph at the
bottom of the figure. As can be seen from the graph, the energy needed to align the
prototype with a similar object (the bent wrench) was mostly isolated in two modes: modes
6 and 8. In contrast, the strain energy needed to align the wrench with the hammer is
much greater and spread across the graph.

Figure 7-8 shows the result of aligning the prototype with the two other tools using
only the two most dominant modes. The top row shows alignment with the bent wrench
using just the sixth mode (a shear), and then just the eighth mode (a simple bend). Taken
together, these two modes do a very good job of describing the deformation needed to
align the two wrenches. In contrast, aligning the wrench with the hammer (bottom row of
Figure 7-8) cannot be described simply in terms of a few deformations of the wrench.

By observing that there is a simple physical deformation that aligns the prototype
wrench and the bent wrench, we can conclude that they are probably closely related in
category and functionality. In contrast, the fact that there is no simple physical relationship
between the hammer and the wrench indicates that they are likely to be different types of

object, and may have quite different functionality.

7.3 Recognition of Objects and Categories

In the next example (Figures 7-9 and 7-10) we will use modal strain energy to compare
three different prototype tools: a wrench, hammer, and crescent wrench. As before,
silhouettes were first extracted and thinned from each tool image, and then the strongest
corresponding contour points were found. Mode amplitudes for the first 22 modes were

recovered and used to warp each prototype onto the other tools. Total CPU time per trial
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Figure 7-7: Describing a bent wrench and a hammer in terms of modal deformations from a pro-
totype wrench. Silhouettes were extracted from the images, and then the strongest corresponding
contour points were found. Using these matched contour points, the first 28 modal deformations
that warp the prototype’s contour points onto the other tools were then recovered and the resulting

strain energy computed. A graph of the modal strain attributed to each modal deformation is shown
at the bottom of the figure.
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mode 6 mode 8 modes 6 and 8 all 28 modes

mode 11 mode 23 modes 11 and 23 all 28 modes

Figure 7-8: Using the two modes with largest strain energy to deform the prototype wrench to two
other tools. The figures demonstrates how the top two highest-strain modal deformations contribute
to the alignment of a prototype wrench to the bent wrench and a hammer of Figure 7-7.

(match and align) averaged 11 seconds on an HP 735 workstation.

The resulting modal strain energy was then used as a similarity metric in Photobook,
an image database management system developed at the MIT Media Lab [95]. Using
Photobook, the user selected the image at the upper left, and the system retrieved the
remaining images sorted by strain energy (shape similarity) from left to right, top to bottom.
The similarity measure is shown below each image.

Figure 7-9 depicts the use of modal strain energy in comparing a prototype wrench
with thirteen other hand tools. As this figure shows, the shapes most similar to the wrench
prototype are those other two-ended wrenches with approximately straight handles. Next
most similar are closed-ended and bent wrenches, and most dissimilar are hammers and
single-ended wrenches. Note that the matching is orientation and scale invariant (modulo
limits imposed by pixel resolution).

Figure 7-10 continues this example using as prototypes the hammer and a single-ended
wrench. Again, the modal strain energy that results from deforming the prototype to each
tool is shown below each image.

When the hammer prototype is used, the most similar shapes found are three other
images of the same hammer, taken with different viewpoints and illumination. The next

most similar shapes are a variety of other hammers. The least similar shapes are a set of
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Figure 7-9: Using modal strain energy to compare a prototype wrench with different hand tools.
The user selected the image at the upper left, and the Photobook system returned the remaining
images sorted by similarity (strain energy) from left to right, top to bottom. As in Figure 7-7,
silhouettes were first extracted from each tool image, and then the strongest corresponding contour
points were found. Mode amplitudes for the first 22 modes were recovered and used to warp the
prototype onto the other tools. The modal strain energy that results from deforming the prototype
to each tool is shown below each image in this figure.
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Figure 7-10: Using modal strain energy to compare a hammer with different hand tools, and a
prototype crescent wrench with different hand tools. The user selected the image at the upper left;
the remaining images were sorted by similarity from left to right, top to bottom. The modal strain
energy that results from deforming the prototype to each tool is shown below each image.
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wrenches.

For the single-ended wrench prototype, the most similar shapes are a series of single-
ended wrenches. The next most similar is a straight-handled double-ended wrench, and
the least similar are a series of hammers and a bent, double-ended wrench.

The fact that the similarity measure produced by the system corresponds to functionally-
similar shapes is important. It allows us to recognize the most similar wrench or hammer
from among a group of tools, even if there is no tool that is an exact match. Moreover, if for
some reason the most-similar tool can’t be used, we can then find the next-most-similar
tool, and the next, and so on. We can find (in order of similarity) all the tools that are likely

to be from the same category.

7.4 Structuring Image Databases for Interactive Search

The last set of examples shows progress towards structuring image databases into cat-
egories in terms of a few prototype shapes. The images in this experimental database
are digitized from children’s field guides [1, 46]. Currently, there are 96 images in the
database: 12 rabbits and 74 tropical fish. Each image depicts an animal from nearly the
same canonical viewpoint (side view). The goal is to structure a potentially huge image
database in such a way as to allow multiple interactive shape-based searches.

We use the prototype-based shape description method formulated in Section 5.3.1,
where each shape’s strain-energy distance to the prototypes was precomputed and stored
for interactive search later. First, for each image, a support map and edge image was com-
puted, a finite-support shape model was built, and then the eigenmodes were determined
as before. For the shapes in this experiment, approximately 60-70 finite element nodes
were chosen so as to be roughly-regularly spaced across the support region.

Each shape in the database is then modal matched to seven prototype images. There
were two rabbit prototypes (shown in Figure 7-11) and five fish prototypes (shown in Figure
7-12). The prototype images were selected by a human operator so as to span the range
of shapes in the database. For rabbit prototypes, we chose one seated rabbit (Fig. 7-11(a))

and one standing rabbit ( 7-11(b)). For fish prototypes, we chose prototypes that span the



CHAPTER 7. EXPERIMENTS 99

(@)

(d) (€)

Figure 7-11: The two prototype rabbit images (a) a European Hare, and (d) a Desert Cottontail.
Their associated support maps are shown in (b,e) and their edge maps in (c,f). The original color
images were digitized from [1].

(@)

(d) (e)

Figure 7-12: The five prototype fish used in the image database experiments: (a) Squirrel Fish,
(b) Spot Fin Butterflyfish, (c) Coney, (d) Horse Eye Jack, and (e) Southern Sennet.
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prototype

fish that had no modesvmatching this prototype

Figure 7-13: Six fish had no modes that came within tolerance of matching modes for the Butterfly
Fish prototype in Figure 7-12(b), and are clearly not in the Butterfly Fish category.

range from skinny fish (Fig. 7-12(e)), to fat fish (7-12(b)), and from smooth fish (7-12(c)) to
prickly or pointy-tailed fish (7-12(a,d)).

Not all shapes in the database have similar modes (similarity is measured to within a
threshold). For instance, shapes from the rabbit class do not have similar modes to those
shapes in the fish class, and vice versa. Sometimes, as is shown in Figure 7-13, even
shapes within the same category do not have similar modes. In this particular case, the
modes of the wide-bodied, Butterfly Fish prototype of Fig. 7-12 did not match well with
the modes of the most narrow-bodied fish. When modes are nowhere near being similar,
no attempt at alignment and strain energy computation is made. Such shapes are simply
flagged as being “not at all similar” to a particular shape prototype.

When a shape’s modes match a particular prototype, then the modal alignment pa-
rameters are recovered, and the strain energy is computed. The resulting modal strain
energies are stored as a seven-tuple that maps the shapes into a space where each axis
represents deformation from one of the prototypes.

Figure 7-14 shows a scatter plot of the two-dimensional “rabbit subspace.” The graph’s
z-axis depicts the square-root of strain energy needed to align the European Hare prototype

with each rabbit shape, while the y-axis shows the energy needed to align the Desert
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Figure 7-14: Scatter plot of square-root modal strain energy for rabbit prototypes used in the
image database experiment. Each axis depicts the square-root of strain energy needed to align
a shape with a rabbit prototype. Thus each rabbit shape has a coordinate in this space. The
rabbits are clustered in terms of their 2-D shape appearance: long-legged, standing rabbits cluster
at the top-left of the graph, while short-legged, seated rabbits cluster at the bottom right. There
are two rabbits that map between clusters, showing the smooth ordering from long-legged, to
medium-legged, to short-legged rabbits in this view-space.

" 3
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Cottontail prototype with each rabbit shape. Each rabbit shape has a coordinate in this
strain-energy-from-prototype subspace. As can be seen, the rabbits are clustered in terms
of their 2-D shape appearance: long-legged, standing rabbits cluster at the top-left of
the graph, while short-legged, seated rabbits cluster at the bottom right. There are two
rabbits that map between clusters, showing the smooth ordering from long-legged, to
medium-legged, to short-legged rabbits in this view-space.

The next examples demonstrate how the full seven-dimensional coordinate system can
be used for interactive database search. Interactive database searches were conducted
using the Photobook system [95] on HP 735 workstation. In this system, the user can select
example images and then the computer displays a number of “similar’ images ordered in

terms of a similarity metric. In this case, the similarity metric was Euclidean distance in
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Figure 7-15: Searching an image database for similarly-shaped rabbits in the Photobook system.
Using the prototype-based coordinate system described in the text, we can search the image
database for similarly shaped animals. The user chooses an example image, and the system
retrieves other rabbit shapes, ordered in terms of their similarity to the user's example. This figure
shows two examples of the ordering that resulted in such searches: (a) Blacktail Jackrabbit, and
(b) Pygmy Rabbit. The system retrieved a reasonable ordering of similar rabbits that progressed
from long-legged to short-legged rabbits. The number shown below each image in the figure is the
Euclidean distance in prototype strain-space.
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our strain-energy-to-prototype space.

Figure 7-15 shows the results of searches for similarly shaped rabbits. In Fig. 7-15(a),
a Blacktail Jackrabbit was selected. The most similar rabbit was a Jack Rabbit, the next a
European Hare, etc.. The matches are shown in order, starting with the most similar. The
number shown below each image in the figure is the Euclidean distance in the prototype
strain-space. As can be seen, the system returned a reasonable ordering, starting with
other long-legged rabbits, moving to medium-legged rabbits, and finally short-legged (or
seated) rabbits. Figure 7-15(b) shows similar performance for a search based on the
Pygmy Rabbit shape.

As suggested in Chapter 5, the similarity of two shapes’ modes can be measured
directly, thus avoiding the need to recover alignment parameters. In our experiments,
there appears to be only slightly improved performance in using strain energy over this
more easily-computed modal similarity.

The database searches in Figures 7-16 and 7-17 were conducted using distance in
mode-similarity-space. In Fig. 7-16(a), a Banded Butterflyfish was selected. The matches
are shown in order, starting with the most similar. Based on mode-similarity-distance, the
system retrieved the animal shapes that were closest to the Banded Butterfly Fish shape
(other Butterfly Fish, and other fat-bodied fish). In the second search, shown in Fig. 7-
16(b), a Trumpet Fish was selected. In this case, the system retrieved similar long and
skinny fish. In both searches, the fish judged “most similar’ by the system appeared on
the same page in the field guide, and in the same taxonomic category.

Figure 7-17 continues this example, this time searching for shapes most similar to a
Crevalle Jack and a Dog Snapper. Again, the matches are shown in order, starting with
the most similar. The shapes most similar to a Crevalle Jack (Fig. 7-17(a)) are other fish
with similar body and tail shapes. In this case, the system rates Jolt Head Porgy over a
closer relative (Yellow Jack). This is fairly reasonable, since all are closely-related, open
water fish.

In the last example, Fig. 7-17(b), the user selected a Dog Snapper. Again the system
rated fish from the same pages in the field guide as “most similar” In each example, search

and display took less than a second on an HP 735.
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Figure 7-16: Searching an image database for similarly-shaped fish. In this example, distance in
mode-similarity-space was used as a shape similarity metric. This figure shows two examples of
the ordering that resulted in searches for similar fish: (a) a Banded Butterfly Fish, and (b) a Trumpet
Fish. The matches are shown in order, starting with the most similar. Based on mode-similarity-
distance, the system retrieved the animal shapes that were closest to the Banded Butterfly Fish
shape (other Butterfly Fish, and other fat-bodied fish). In the second search the system retrieved
similar long and skinny fish. In both searches, the fish judged “most similar” by the system appeared
on the same page in the original field guide book, and in the same taxonomic class.
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Figure 7-17:  Searching an image database for similarly-shaped fish (continued). Two more
examples of the ordering that resulted in searches for similar fish: (a) a Crevalle Jack, and (b) a
Dog Snapper. Again, the matches are shown in order, starting with the most similar. The shapes
most similar to a Crevalle Jack are other fish with similar body shapes and pointed tails (other open
water fish). In the second search the user selected a Dog Snapper. The system rated fish from the
same page in the field guide as “most similar.” In each example, search and display took less than
a second on an HP 735.
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Database queries like those just described were performed for each of the 72 fish
images in the database. Overall, another fish from the same page in the field guide was
judged as most similar over 70% of the time. This type of similarity judgement performance
is an encouraging result, since fish appearing on the same page in the field guide are
usually in the same taxonomic category. To gain enhanced performance in capturing
animal taxonomies, we suspect that modal matching would need to be part of a combined
system that includes local feature and color information.

In related work, Strachan [132] has developed a prototype fish recognition system
based on both shape and color discriminants. The ultimate goal is to develop a vision
system that can perform on-board sorting of fish for commercial fishing boats. The shape
component of the system uses two simple descriptors: aspect ratio, and area ratio of the
front and back halves of the fish. In the preliminary system, it was assumed that the fish
was laying flat, long axis aligned with the horizontal, and that there was only one fish
present on a uniform background.

Under these restricted conditions, Strachan deals with deformation by using a grid-
based technique. To place this deformable grid, a medial axis is first extracted (based on
the contour from a threshold image), and then a regular grid laid out perpindicular to the
medial axis at ten regular intervals. A combined shape and color discriminant analysis
was done using the widths of the fish at each of the ten stations along the medial axis, and
the average color in each grid rectangle. This preliminary system has been tested for over
20 different fish varieties, getting promising recognition results (> 90%).

Unfortunately, the underlying shape representation is not rotation invariant, cannot
handle occlusion or clutter, and is not really robust to deformation (the grid layout is
somewhat arbitrary and noise-prone due to reliance on medial axis extraction). A modal
model could be used to overcome many of these limitations. In addition, modal models
could be used to build aspect graphs that encode 3-D rotation, thereby loosening the

restriction that the fish lay flat and horizontal.
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7.5 Modal Combinations of Models

As can be seen from previous image database experiments, a subset of prototype shapes
can be used to define a low-dimensional coordinate system for shape, resulting in an
interactive framework for shape-based searches of large image databases. This concept
will now be extended to the linear-combinations-views framework.

Figure 7-18(a) shows a shape space defined by three prototype models. As before,
correspondences were determined and similarity (strain energy) was computed. Each
edge is labeled with its associated strain. Traveling along an edge in this triangle performs
a linear blend, using the modal deformations, from one prototype model to another. Thus,
each edge of the triangle describes a family of models which can be represented as linear
combinations of the two prototypes. Similarly, we can describe an entire family of shapes
by moving around inside the triangle defined by three models.

Adding a fourth model to the triangle creates a pyramid, unless the new model can
be exactly described as a linear combination of the prototype models. Figure 7-18(b)
shows how the fourth plane model was synthesized from a combination of the three base
models. As before, the edges connecting the new model to the pyramid’s base have
lengths proportional to the strain energy required to align each of the base models with the
new model.

In this example the three base models cannot completely account for all of the new
plane’s shape (there are missing nacelles, for instance). As a result, the fourth model
does not lie in the plane defined by the three base models. The distance between the new
plane and the triangle of base shapes is the similarity between the new plane and the class
of shapes defined by linear combinations of the prototype models. Using this similarity
measure, we can decide whether or not the new shape is a member of the class defined
by the prototype models.

The same methods can also be extended to model grayscale information. Figure 7-22
shows the modal blending of two hand images as we move along the edge between the two
base images (a) and (b). This image warping is accomplished by describing the deforma-

tion of the whole image in terms of the displacements calculated at feature points (typically



CHAPTER 7. EXPERIMENTS 108

(a) (b)

Figure 7-18: Given three gray models in (a), we can define a triangle with edge lengths proportional
to the amount of strain needed to align each model; thus, each model is a vertex in this triangle.
When we encounter a new model (shown in black), we want see how it can be synthesized from
deformed versions of the original three models. As is shown in (b), by adding a fourth model we
typically create a pyramid, where the edge lengths are proportional how “easy” it was (how much
strain it required) to synthesize the model from each of the three known models.

example 3
example 1

example 2

synthesized images synthesized images

Figure 7-19: Physically-based linear combinations of images. Using three example images, we
form a triangle that describes a shape space. Modal matching is used to determine corresponding
features, and modal flow fields are used to warp and linearly combine the examples to synthesize
intermediate, novel images. By using a combined distance metric, we can measure a shape’s
similarity in terms of: (a) the deformation energy needed to synthesize the candidate shape from
examples, and (b) the pixel-by-pixel differences between the synthesized image and the candidate

image.
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(b)

Figure 7-20: An original image and its extracted contour are shown in (a). The first six nonrigid
modes for the heart image are shown in (b).

edge points) for which correspondences have been determined. These displacements can

be calculated by generating flow fields using the finite element interpolation functions.

7.5.1 Nonrigid and Articulate Motion Tracking

Fig. 7-20(a) shows an X-ray image of a heart ventricle together with its bounding contour.
Fig. 7-20(b) shows the first several nonrigid modes of the heart, computed using a qualita-
tive “rubber sheet” model of the heart’s elasticity. Note that it is easy to incorporate more
detailed information about the physical properties of the heart if this is desired.

Fig. 7-21(1-9) shows a series of nine frames in which the bounding contours deform as
the heart beats. Frames 1 and 5 were chosen to represent extremal views of the heart’s
deformation, and are used to parameterize the heart’s motion.

Silhouettes were first extracted and thinned to approximately 60 contour points from
each image. Point correspondence and similarity to the extremal views was then measured
using the first 18 modal deformations, as described above. The computation included strain

due to rotation and scaling. Total CPU time per comparison (build FEM model, match, align,
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Figure 7-21: Representing a beating heart in terms of warps of extremal views. Given a modal
model for the heart as shown in Fig. 7-20, we code a series of frames (1-9) in which the bounding
contours deform as the heart beats. Frames 1 and 5 represent extremal views of the heart’s
deformation, and are used to parameterize the heart's motion. The resulting graph shows a plot
of the strain energy needed to align each contour in the sequence with these extremal views. The
result is a “phase portrait” in this physically-based similarity shape space.
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and compare) was approximately 10 seconds on an HP 735 workstation. The similarities
for each frame of the heart sequence are plotted in the graph shown at the bottom of
Fig. 7-21. As can be seen, the beating of the heart forms a nice “phase portrait” in this
physically-based similarity shape space. Such phase portraits can be used to analyze and
recognize motion using methods described by Shavit and Jepson [129].

The general methods can also be extended to model articulated motions, although
for large, complex articulated motions the correspondence problem becomes too hard to
solve by the method described above. Fig. 7-22(a) shows two extremal views of a moving,
articulating hand. Correspondences between these hand images were automatically de-
termined as described above, and intermediate images synthesized using the modal flow
method. Fig. 7-22(b) shows two intermediate images at points between the two prototype
hand shapes. These intermediate images can be directly compared to new hand images,
thus allowing us to describe new hand images in terms of their similarity to these two
prototype images.

Fig. 7-23 shows the first nine nonrigid modal warps used to deform the first extremal
view in Fig. 7-22(a). Most of the warps seem natural (the bending of the thumb for
instance); however, a few warps are inconsistent with our knowledge of human bone
structure. This example pushes our current system to its representational limits: motion of
articulated structures can be only roughly approximated by the deformation modes for a
single isotropic sheet. However, if the hand is modeled as an articulated structure, then the
resulting nonrigid modes will better capture a hand’s actual modes of variation. As will be
discussed in the next chapter, our modal framework can be extended to model articulated
shapes and anisotropic materials. In addition, we will describe methods for physics-based

active part detection along the lines of [57].
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Figure 7-22: Modal image synthesis. Given example images (a,b,c) and their corresponding
features, we can use modal flow fields to synthesize intermediate images as linear combinations
of modal-deformed versions of the examples. Images (e,f) were generated by morphing between
examples (a) and (b), and (g,h) were generated by morphing between (b) and (c). In-between
images were produced by the image warping system described in Chapter 6.
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Figure 7-23: The first nine nonrigid modal warps for the first extremal view in Fig. 7-22(a). The
metamorphosis between extremal views is described in terms of modal warps for an 2-D elastic
hand shape using the algorithm described in the text. The warped grayscale images are drawn over
the original hand image silhouette (shown in black).



Chapter 8

Discussion

8.1 Shape-based Image Database Search

One of the main motivations for this research was to provide improved shape represen-
tations for query by image content. While the shape comparison algorithms developed
in the machine vision and pattern recognition communities can serve as a good starting
point for developing shape-based image database search methods, retrieval by shape is
still considered to be one of the most difficult aspects of content-based image search [39].
The results presented in the previous chapter for databases of animals and hand tools
represent some clear improvements over previous shape-based search methods.

IBM’s Query By Image Content system (QBIC) [39, 85] is perhaps the most advanced
image database system to date; it is available as a commercial product. QBIC can perform
searches that combine information about shape, color, and texture. For its shape-based
search, the system utilizes a whole cadre of shape features: area, circularity, eccentricity,
major axis of inertia, and higher-order algebraic moment invariants. These shape features
are combined into one feature vector, and shape similarity is measured using a weighted
Euclidean distance metric. As input, the system assumes non-occluded, planar shapes
that are represented as a binary image. Shape-based search in QBIC is primarily contour-
based, and cannot deal well with nonrigid deformation. Algebraic moment invariants
[136] were intended for modeling rigid objects only. In addition, the higher moments

are dominated by points that are furthest from the centroid; therefore, they are highly
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susceptible to outliers. Similar moments do not necessarily guarrantee perceptually similar
shapes.

Other shape indexing schemes have been based on local boundary features [79, 48],
and are therefore not very robust to noise, scale, and sampling. Another system, proposed
by Chen [26] identified 2-D aircraft shapes using elliptic Fourier descriptors. Because it
is Fourier descriptor-based, Chen’s system suffers from problems with samping and pa-
rameterization. Jagadish introduced a multidimensional indexing scheme that offered the
advantage that it could index images much faster than previous techniques [56]. However,
the system had limited descriptive power, because the shape similarity measure was too
simple (the area difference between two shapes) and the underlying shape representa-
tion was polyhedral (representing shapes in terms of K-d-b trees of overlapping minimum
bounding rectangles).

In contrast to previous formulations, the FEM integrals used in the modal model for-
mulation provide greater robustness to sampling, outliers, and missing data. Furthermore,
modal models provide quasi-invarinace to different types of nonrigid deformation, while
also providing an ordered, orthogonal, encoding of the nonrigid deformation that relates a
candidate shape to a shape prototype or shape category. Finally, as was demonstrated
in Figure 7-5, the modal representation does not have the requirement that a shape be
represented as a contour or binary image.

Besides being able to select example images, users can make a sketch of what they are
looking for in QBIC. A reduced edge-map representation is then computed and corellated
in eight by eight blocks. Shape similarity is then measured as the sum of the corellation
scores for each local block. While this representation is handy for detecting the presence
of a shape in an image, and is somewhat robust to occlusion, it is prohibitively slow, and
cannot deal well with nonrigid deformation. Modal matching has yet to be tested in a
sketch-based search scenario. It is likely that modal matching would do better at dealing

with deformation, but may not perform better under occlusion.
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8.1.1 Matching Human Similarity Judgments

For a image database search to be useful, it is critical that the shape similarity metric be
able to match human judgments of similarity. This is not to say that the computation must
somehow mimic the human visual system; but rather that computer and human judgments
of similarity must be generally correlated. Without this, the images the computer finds will
not be those desired by the human user.

For human shape similarity judgments, sometimes scale and rotation invariance are
important, other times not [82]; it is therefore desirable to duplicate this performance in our
image database search algorithms. In QBIC, the weighted metric allows for subset selec-
tion, and thus it provides selective invariance to size and orientation. Modal matching also
provides this invariance to size and orientation, but unlike any of the shape representations
used in QBIC, a modal representations can also be made invariant to affine deformations,
and thus selectively invariant to changes in camera viewpoint.

In an effort to better duplicate human similarity judgments, an experimental version
of QBIC was developed and tested [116]. The extended system incorporates curvature
and turning angles, in addition to the Hausdorff distance [53], and parametric curve dis-
tance and its first and second derivatives. Unfortunately, none of these metrics performs
consistently well, particularly when there is nonrigid deformation. Curvature descriptors,
while invariant to rotation and translation, are exterior-based, and therefore unstable and
sampling-dependent [82]. The Hausdorff distance is very sensitive to outliers and is reliable
for compact shapes only. Finally, parametric curve representations are highly susceptible
to outliers, sampling, and parameterization problems.

As mentioned above, the modal formulation avoids many of these problems with ro-
bustness and nonrigid deformation. More importantly, the modal representation provides
deformation “control knobs” that correspond qualitatively with human’s notions of percep-
tual shape similarity [90, 96]. Shape is thought of in terms of an ordered set of deformations
from an initial shape: starting with bends, tapers, shears, and moving up towards higher-

frequency wiggles.
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8.1.2 Speed of Image Database Search

Another concern in image database search is the computation speed. Shape-based
image database search must be efficient enough to be interactive. A search that requires
minutes per image is simply not useful in a database with millions of images. Furthermore,
interactive search speed makes it possible for users to recursively refine a search by
selecting examples from the currently retrieved images and using these to initiate a new
select-sort-display cycle. Thus users can iterate a search to quickly “zero in on” what they
are looking for.

Until recently, shape-based search for a QBIC database with over 1000 images could
take over 40 seconds. To improve performance, a truncated principal components analysis
is computed for all the feature vectors, and truncated to only the first two principal compo-
nents. Database searches are done using a candidate shape’s projection onto these two
components. This speeds database search time up so as to make it negligible (search is
now bound by I/O).

As demonstrated in the previous chapter, the modal matching system search speeds
are comparable. Searches on a database containing nearly 100 image takes less than a
second (including image display) on an HP 735 workstation. Without the use of category
information, search time in our system scales linearly on the number of shapes in the
database. The notion of building up protoype-based modal categories for content-based
search is a unique and powerful idea. It allows databases to be structured into taxonomic
trees for inference, and can be used for further improvement of search time/performance.
Furthermore, the underlying energy-based representation has a clear connection to sta-

tistical estimation and learning, as will be explored further in the next section.

8.2 Modal Models, Estimation, and Learning

As has been pointed out by Boult [20], there has been a well understood link between
energy formulations and statistical estimation for over 25 years now. Splines were per-
haps some of the first “physically-based” models employed in statistical estimation [62];

they are particularly well-suited to modeling data sampled from a Markov Random Field
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(MRF), where Gaussian noise has been added [15, 44]. The same principles hold true for
regularization [15, 47, 104, 139], where the energies of a physical model can be related
directly with measurement and prior probabilities used in Bayesian estimation [134, 43].
Following [20, 106], energy-based formulations can be related to maximum likelihood
estimation in the following way. Suppose we are given a set of N observations y;, each
having an error that is independently random and normally distributed around y(z), and
each having the known variance 02. We assume that these observations were generated
by known z, and by a known function y(z) = y(z;a). We want to estimate the unknown

parameters a that maximize the joint probability P of the observations, namely:

Maximimizing the product of the probabilities is equivalent to minimizing its negative loga-
rithm:

_InP= Z Ly = ”“’“ a)f (8.2)
Thus, if we express our energy measure as £ = — In P, then minimizing the energy of a

spline or regularization model is equivalent to maximum likelyhood estimation.

In modal models, as in regularization, a direct connection can be drawn between
the uncertainty measures familiar in statistical estimation and the energy formulation of
our physical model. In statistical estimation, we need to combine knowledge about the
uncertainty of our measurement data with confidence in our prior model. In our energy-
based paradigm, the confidence in the prior model is expressed both as the model’s initial
resting shape (the mean) and the local material stiffnesses of the model (the covariance).

If we assume independent distribution of measurement data, the stiffness matrix and
inverse covariance matrix are equivalent [29, 76]. Similarly, there is an inverse relationship
between the eigenmode frequencies and the principal variances (modulo a scale factor)
[77]. In this thesis, we used modal strain energy for comparing objects. This strain energy
is computed by taking the dot product of the modal amplitudes with the modal frequen-
cies. The modal amplitudes are decoupled, each having a “variance” that is inversely

proportional to the mode’s eigenvalue. Our modal strain energy measure therefore yields
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a Mahalonobis distance metric that can be directly related to multi-dimensional Gaussian
probability distributions.

Thus it is plausible to use principal components analysis to learn an shape category’s
eigenmodes from training data. Using a modal model as an initial estimate, we would then
iteratively learn the “true” modes via recursive principal components analysis [87, 88]. As a
result, we would obtain a regularized learning scheme in which the initial covariance matrix,

Q2 s jteratively updated to incorporate the observed modal parameter covariances.

8.3 Material Properties, Preset Parameters, and Robustness

8.3.1 Material Properties

For modal matching, we have assumed an isotropic material of uniform thickness, and
that both shapes are modeled by the same material. Under these assumptions, how the
material parameters are chosen has no observed affect on the modal matching correspon-
dence algorithm. What happens if we loosen these constraints somewhat, allowing the
two shapes to be modeled of different materials?

As was detailed in Section 3.4, our finite element formulation has three parameters
that describe the material: mass density p, Young’s modulus of elasticity F, and the
Poisson ratio v. The first two parameters uniformly scale the mass and stiffness matrices
respectively. Changing these material parameters results in a uniform scaling of the
eigenvalues; however, it does not affect either the mode ordering or the mode shapes.’
Since our correspondence algorithm relies on the eigenvalue order not their scale, varying
p and/or E will have no affect on the modal matching algorithm.

Changing the Poisson ratio, however, does change the mode shapes. Intuitively, this
third parameter controls a shape’s resistance to shear. As a resuit, allowing two shapes to
have different values of v can alter the resulting mode shapes and their ordering, thereby

hampering the correspondence computation.

This holds true if we replace the M-orthonormality constraint, M@ = I, with the orthonormality
constraint, ®7® =1
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8.3.2 Preset Parameters

Aside from material properties, the modal matching system has three preset parame-
ters: the FEM interpolation function widths, the threshold for what constitutes a matched
mode, and the threshold for picking out strong correspondences from the affinity matrix.

Experiments with each of these have yielded the following observations and heuristics:

Basis Function Widths

In the formulation used in the experiments, the finite element basis function widths were
constant for all nodes of a shape. It was assumed that the shape’s nodes were roughly
evenly-spaced, and thus it was reasonable to set the basis function size to the average
distance from each feature to its nearest neighbor. Under this assumption, eigenmode
shapes and magnitudes are scale-invariant — only the eigenmode’s eigenvalues change
as the object is scaled.

If inter-feature distances vary greatly, then it may be necessary to use variable-width
Gaussian interpolants to avoid an ill-conditioned finite element model. This problem was
not dealt with in the thesis, and it is not clear how variable-width basis functions will affect
the invariance of eigenmode ordering and shape over scale.

Lastly, in the hand experiments it has been noticed that if the basis function widths get
large enough with respect to overall object size, then there will be a coupling between the
finger tips. In other words, the Gaussians get wide enough to glue the fingers together. As
a result, the modes for the hand will be “mitten modes,” rather than modes that wiggle the
fingers as if they were independent parts attached at the palm of the hand. To solve this
problem, we could modify the interpolant at finger tip nodes to exclude the basis functions

at other finger tips.

Eigenmode Match Threshold

As was mentioned in Chapter 4, there is a sign ambiguity in matching eigenvectors,
and as shapes get more and more different, their modes can change ordering. Thus,

before feature correspondences can be computed, eigenmodes for each shape have to be
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matched and sign-corrected. Given all of the modes computed for both objects, we select
the subset of corresponding low-order modes whose dot product falls below a threshold.
These matched modes form the object-centered coordinate system used for computing
feature correspondence.

For this thesis, problems with sampling density were avoided by taking the dot product
of the normalized eigenmodes. As a result, the eigenmode match threshold was invariant
to sampling density and scaling. Nonetheless, the threshold was still ad hoc, and was
set at 0.7 for the experiments described in Chapter 7. Experience has shown that this
threshold is somewhat conservative; threshold values between 0.6 and 0.8 work well in

our experiments.

Feature Affinity Threshold

Once a subset of best-matching eigenmodes has been selected, feature correspondence
affinities are computed. This is done by measuring Euclidean distance in the generalized
coordinate system formed by the eigenmodes. Features whose modal distance falls below
a threshold are considered to be strong matches and are used as input to the alignment
and description routines.

While the correspondence measure is scale-invariant and robust to deformation, there
can be problems in setting a hard threshold that does not account for the number of modes
included in the match. This can be easily circumvented by multiplying the affinity threshold
by the number of modes included in computing the feature correspondences.

Setting this threshold conservatively large will allow only a few matches to get through
to the alignment phase, and thus only low-order deformations can be recovered. A less-
conservative threshold will let more matches through for alignment, but it may pass a few
incorrect matches. By including match strengths in the modal alignment recovery, it is
possible to weigh stronger matches more heavily than weaker ones. For details, see the
weighted least squares formulation described in Section 5.1.2.

In practice, if higher-order alignment is needed (i.e., for image metamorphosis), it is
reasonable to employ a multistage process: (1) obtain low-order alignment using only con-

servative matches, (2) recompute the finite element model using the low-order deformed
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features, (3) obtain high-order alignment using liberal matches. Alternatively, additional
feature correspondences can be found in a manner similar to snakes: by using the physical

model as a smoothness constraint as described in Chapter 4.

8.3.3 Robustness to Noise and Missing Features

As the experiments with matching pears, cars, airplanes, and hands indicate, modal match-
ing is relatively robust to noise. This robustness is the direct result of the stability of
low-order eigenmode shape in the face of noise and nonrigid deformation. This prop-
erty extends to small missing parts, as was evidenced by the missing fingers in the hand
matching experiments and missing nacelles in the airplane matching experiments.
However, the modal matching algorithm has the limitation that it cannot reliably match
largely occluded or partial objects. For instance, if a shape is cut in half by occlusion, then
the algorithm will treat the single object as two separate shapes, with two separate sets of
eigenmodes. Furthermore, the eigenmodes cannot be used to match parts of shapes to
whole shapes — even if the part is distinctive. For example, in the current system it would
be difficult to identify a person by only seeing the top half of the silhouette, since modes for
half a shape can be quite different from the modes for the whole shape. To get around this
problem the algorithm would need to utilize some combination of global (modal) measures

and local (feature) measures to match distinctive substructures of shapes.

8.3.4 Robustness to Rotation

Using the special formulation described in Chapter 4, modal matching and description
can be made invariant to in-plane rotations. In our experiments we have observed that
modal matching is robust for out-of-plane rotations of up to +15 degrees. In fact, the
modal matching system often performs well up to 45 degree rotations (for examples see
the plane matching and hand matching experiments). In general, however, the feature
correspondences begin to degrade for out-of-plane rotations of greater than +15 degrees;
out-of-plane rotation drastically changes the overall aspect-ratio for the shape. This causes

the sequencing and shape of low-order modes to change as the aspect ratio changes.
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There are two heuristics that could be used to extend modal matching’s immunity to
larger out-of-plane rotations. The first method is simple: while matching up eigenmodes,
look for matches over a wider range of modes. The second method is more complicated:
prior to matching up eigenmodes for the two shapes, normalize each shape’s eigenmodes
by the shape’s inverse aspect-ratio. Both of these heuristics operate under the assumption

that in-plane rotation and nonrigid deformation between views would be relatively small.

8.4 Limitations

8.4.1 Segmentation and Detection

Currently, the algorithm assumes that the shape has been segmented from the back-
ground. For the experiments, shapes were segmented from the scene simply via image

thresholding.

8.4.2 Computational Efficiency of Building Modal Models

The model building phase is slow since it requires the computation of a stiffness matrix
and eigenmodes for each shape. Two well-known numerical techniques — subspace
methods [9] and perturbation methods — can be used for computing these more efficiently.
Model building efficiency is not a critical issue for the image database application, since
it was assumed that shape representations are precomputed and used repeatedly. It
may be more important for image morphing or for real-time vision applications. In such
applications, better efficiency can be achieved via the multiscale technique formulated in
Section 4.2 and demonstrated in the car matching experiment.

The current implementation requires that correspondences are found by explicitly
matching up eigenvectors. There may be a way to measure similarity that does not first
require solving this optimization problem. Given the precomputed modes for a prototype,
it may be possible to just see if these modes directly diagonalize the stiffness matrix for a

candidate shape.
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(a) (b) ()

Figure 8-1: A change in topology can sometimes affect modal matching performance, particularly
when the difference in topology occurs at a larger scale. Although the three gaskets shown above
may in some ways appear similar, each has a different topology. For the first two gaskets (a,b), the
difference in topology occurs at a small scale. The low-order modes are relatively unaffected by this
difference, and therefore, modal matching performance will be relatively undegraded. For the third
gasket (c), a cut yields a difference in topology at a larger scale. In this case, modal matching will
degrade because the low-order mode shapes for (c) differ from those for the other two gaskets.

8.4.3 Multiple Eigenvalues and Symmetry

It is sometimes the case that a couple of eigenmodes have nearly equal eigenvalues.
This is especially true for the low-order eigenmodes of symmetric shapes and shapes
whose aspect ratio is nearly equal to one. In our current system, such eigenmodes are
excluded from the correspondence computation because they would require the matching
of eigenmode subspaces.

Conversely, multiple eigenvalues are clues to symmetry. Thus, we could use this
information to detect when there may be more than one valid shape correspondence. The
most severe cases of this are a square (four possible alignments) or a circle (an infinite
number of possible valid alignments).

The modal matching system can be used to match mirrored shapes if the rotation
invariant formulation is employed. Mirror symmetry would need to be treated as a special
case during the modal alignment stage. The correct alignment for a mirrored shape would

require less strain, since it would not require an object to fold over on itself.

8.4.4 Topology and Low-order Modes

A change in topology can sometimes adversely affect modal matching performance, when
the difference in topology occurs at a larger scale. This is because large scale topological

differences can alter the low-order mode shapes used for modal matching, making it
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difficult to match similar but topologically different shapes. On the other hand, topological
differences that occur at small scales have little or no affect on the low-order modes,
therefore modal matching performance in such cases remains unaffected.

Figure 8-1 demonstrates this concept on three gasket shapes. While in some ways,
these three gaskets appear to be similar, their topology differs. The first two gaskets Fig.
8-1(a,b) have a topological difference that occurs at a small enough scale, in that (b) has
a small drilled in the tab where (a) does not. Since this type of difference has a minimal
affect on the low-order mode shapes, the accuracy of correspondence would be relatively
unaffected.

In contrast, the third gasket Fig. 8-1(c) has a cut in it that yields a difference in topology
at a larger scale. If the gap created by this cut is larger than the basis function radius
used in building our finite element model, then the low-order mode shapes for gasket (c)
will differ from those for the other two gaskets. This in turn makes it difficult to use modal
matching to find corresponding features on (a,c) or (b,c).

In general, if the topological difference between two shapes occurs at or below the scale
of basis function radii (e.g., small cracks or small holes), then modal matching will work
because the basis functions are sufficiently large to smooth in gaps. If the gaps are larger,
however, then modal matching would need to be coupled with a local correspondence

algorithm.

8.5 Future Work

8.5.1 Trainable Modal Descriptions

Itis possible to train the system to select a weighted subset of modes that are crucial when
dealing with a particular category of objects, or when viewing in a particular context. This
can be achieved by computing the principal components for the shape deformation over
a training set (see Section 2.4.2). These context-specific principal variations can then be
used to select a subset of deformation modes that will be used to adequately capture the
variation over the training set.

Adequacy can be determined by projecting the principal components into the general
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modal eigenspace. It can be shown that these principal components can be spanned
by some subset of the modal vibrations. The amount of each vibration mode needed
to achieve this projection can be used to weigh how much of each vibration mode is

considered important for object matching in a particular category or context.

8.5.2 Recursive Update of Physical Model Parameters

In a similar vein, a modal model could be recursively refined to capture the material proper-
ties of the object being observed [98]. Suppose that we have a set of eigenvectors (vibration
modes) that describe how our prototype shape will deform under general conditions — we
have assumed certain material properties: isotropic material, elasticity, Poisson ratio, and
mass. The resulting a priori finite element stiffness matrix can be updated to incorporate
observations as they are acquired. Similar work towards combining observations with our

modal matching formulation has been undertaken recently by Cootes [29].

8.5.3 Automatic Part Detection

The current modal matching system has no notion of parts (for instance, in the hand motion
example the hand was modeled as one continuous rubber sheet). However, the modal
model could be extended to infer parts from example image sequences in much the same
way suggested for recursively updating material properties.

Take, as an example, tracking a human hand gesture. The system starts out tracking the
entire hand shape using a single homogeneous rubber sheet. As the hand moves through
a gesture, ridges of high stress/strain energy will occur at part boundaries (knuckles, joints).
These ridges are clues to where to cut the single rubber model into parts. Part boundaries
could be added in such a way as to optimally reduce the strain energy needed to track the
hand shape through the motion sequence. A similar technique for tracking and inferring
human body parts based on fuzzy clustering has recently been proposed by Kakadiaris,
et al. [57].

It may also be possible to infer parts from static images to obtain decompositions along

the lines of [51, 66, 63]. To do this, the algorithm would first build a homogeneous rubber
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sheet model for the shape, and then randomly apply forces at extremal nodes (e.g., finger
tips). As each force is applied, the method would keep track of large stress/strain contours.

A region of frequent stress/strain would be used as evidence for a part boundary.

8.5.4 Automatic Example Selection and Shape Categories

In the current image database system, a human operator selects a few example shapes
that approximately span a category of shapes. System performance is therefore dependent
on the user’s ability to select an adequately diverse and sufficient set of examples. We
could devise an unsupervised method for selecting the prototype shapes based on modal
matching and modal strain. Such an energy-minimization scheme has parallels in theories
for human category representation in terms of prototypes [111].

A first-cut algorithm for this would first randomly choose a prototype shape, and then
sequentially compare the other shapes to it by matching modes and computing modal
strain. If a shape is encountered that has eigenmodes matching none of the current
prototypes, and/or there is no prototype that is close in terms of strain needed for alignment,
then that shape would be used as an additional prototype. This would be repeated until all
of the shapes in the database were accounted for (within some tolerance).

Unfortunately, this greedy algorithm selects prototypes dependent on the ordering of
shapes in the database. Furthermore, it cannot guarantee that an optimal set of prototypes
will be chosen. To get around this problem, the algorithm would need to do a second pass
to look at how the shapes clustered in prototype strain-space. New “generic” prototypes
would then be chosen from each cluster, or an average prototype could be synthesized

from each cluster. The database would then be restructured using these new prototypes.

8.5.5 Modal Aspect Graphs

The above-mentioned principles can be used to automatically generate aspect graphs for
a shape. As before, there would be issues of determining generic views and updating
prototypes. In addition, the physically-based combinations of views paradigm of Chapter

6 could be employed to model pixel-by-pixel appearance. Given that pixel-by-pixel ap-
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Figure 8-2: Spiral galaxies: deformed shapes that can be described in terms of their density
patterns (taken from [40]). Using the method described in the text, modal models can be modified
to incorporate such grayscale density information. This would make it possible to match, compare,
and categorize these shapes in terms of modal deformations.

pearance can vary independently of shape deformation, we may also want to compute
an eigenpicture representation for each generic view (see Section 2.4.3). The resulting

representation would more efficiently capture grayscale variations due to lighting.

8.5.6 Including Grayscale in Modal Models

Rather than computing separate representations for an object’s shape and pixel-by-pixel
appearance, it may be appropriate to build a combined model. Three-dimensional modal
models could be used to represent image features in terms of (z, y, ) components, where
i represents the image intensity at the image location (z,y). However, some care would
be required in using edge features, since the intensity values at edge points tend to be
unstable.

We can avoid this problem by using an alternative formulation in which image intensity
information could instead be included in the model by varying the finite element support
function s(z) for a two-dimensional element (see Section 3.4.4). This would have the effect
of varying the thickness of the shape based on the image brightness throughout the shape.

The resulting density representation would allow us to represent and match up structures
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like those found in the spiral galaxies of Figure 8-2.

8.5.7 Psychophysical Study of Deformed Shape Similarity

As in Saund’s PhD thesis [115], it would be useful to do a small-scale psychophysical
study to determine how human subjects order deformed shapes based on their similarity.
Instead of arranging shapes in terms of features, subjects would be asked to arrange them
in terms of overall shape similarity.

In Saund’s “arrange the shapes” study, he reported that some subjects attempted to
order the shapes by identifying a few prototype shapes, and then classifying the others
according to which prototypes they were most similar to. The fish or hand tools image
masks could be used as stimuli in the study. The subjects would be asked to arrange the
shapes in order of similarity from a test shape. This would help verify our image database
shape ordering tool, or point to areas where the modal matching ordering algorithm needs

refinement.

8.5.8 3-D Modal Matching

The results described in this thesis can be easily extended to matching 3-D structures in
volumetric data sets, and also the space-time volumes generated by video sequences. A
3-D finite element formulation is provided in Appendix A, although some issues regarding
rotation-invariance in 3-D remain to be worked out. To avoid large rotations, perhaps
shapes can be initially aligned as in [76] or moments of inertia methods can be used to

obtain a rough initial alignment.

8.5.9 Extension to Other Signal Domains

The modal matching concept can be applied to deformed signal shapes in dimensions
other than two. For instance, the method may be useful for matching up oil well-log data,
seismic data, or other one-dimensional geological data. The methods described in this
thesis could also be applied to higher-dimensional shapes; an N-dimensional finite element

formulation is provided in Appendix A.
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Figure 8-3: Using modal matching to compare and/or synthesize periodic textures. Given images
of a periodic texture like lizard skin, we use the corresponding DFT magnitude images as input
to a peak detection routine. The resulting peaks are a good reduced-description of the harmonic
component of the texture [100]. These peaks rotate and deform due to changes in viewpoint or

due to stretching of the skin over the lizard’s body, and can be used as input to the modal matching
algorithm described in the text. The DFT and magnitude peak images were provided by Fang Liu.

In applying modal matching to other types of signal shapes, it may sometimes be
necessary to employ an intermediate representation. In the sound domain, for instance,
the signal might be represented as a constant-Q spectrogram. Details of the application
to sound are provided in Appendix B.

Figure 8-3 shows another application where an intermediate representation would be
useful: matching and classifying periodic textures. Given images of a periodic texture
like the lizard skin, we use the corresponding DFT magnitude images as input to a peak
detection routine [100]. The extracted peaks serve as an intermediate representation for
the harmonic component of the texture. In general, the overall pattern of these magnitude
peaks can deform (rotate, stretch, shear, etc.) due to changes in viewpoint or due to
stretching of the skin over the lizard’s body. Modal matching could be used to match up

these deformed DFT peak patterns, and then to describe what kinds of deformations relate
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the patterns. Such a framework may prove useful for texture classification.
Lastly, may be possible to resynthesize textures given deformed DFT peaks, phase
information, plus the non-deterministic (random) components of the texture. This would

make it possible to generate novel textures via modal morphing of the DFT peaks.



Chapter 9

Conclusion

The advantages afforded by our method stem from the use of the finite element technique
of Galerkin surface approximation to avoid sampling problems and to incorporate outside
information such as feature connectivity and distinctiveness. This formulation has allowed
us to develop an information-preserving shape matrix that models the distribution of “virtual
mass” within the data. This shape matrix is closely related to the proximity matrix formu-
lation [122, 126, 127] and preserves its desirable properties, e.g., rotation invariance. In
addition, the combination of finite element techniques and a mass matrix formulation have
allowed us to avoid setting initial parameters, and to handle much larger deformations.

Moreover, not only does the transformation to modal space allow for automatically
establishing correspondence between clouds of feature points; the same modes (and the
underlying FEM model) allow for describing the deformations that take the features from
one position to the other. The amount of deformation required to align the two feature
clouds can be used for shape comparison and description, and to warp the original images
for alignment and sensor fusion. The power of this method lies primarily in its ability to
unify the correspondence and comparison tasks within one representation.

By using Gaussian interpolants as our trial functions for Galerkin approximation, we can
easily formulate finite elements for any dimension. A very useful aspect of multidimensional
Gaussians is that they are factorizable; this not only reduces computational cost, it also
has useful implications for VLSI hardware and neurobiological implementations.

We have also introduced a physically-motivated linear-combinations-of-models scheme,

132
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where the computer synthesizes an image of the object in terms of a weighted combina-
tion of modally deformed prototypes. In contrast to previous linear-combinations-of-models
techniques, our method offers the advantages that: (a) it uses the physical model to enforce
smoothness constraints for better image warping, and (b) it provides a set of orthogonal
deformation parameters, making it possible to select the types of deformations that can
occur. For the computer graphics application of image metamorphosis, this has the useful
side-effect that image transformations can be scheduled, e.g., rigid alignment first, affine
next, efc.

Finally, we note that the descriptions computed are canonical, and vary smoothly even
for very large deformations, thus allowing the descriptions to be used directly for object
recognition (as illustrated by the recognition experiments of Chapter 7). Because the
deformation comparisons are physically-based, we can determine whether or not two
shapes are related by a simple physical deformation and thereby identify shapes that

appear to be members of the same category.
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Appendix A

A FEM Formulation for

Higher-dimensional Problems

This is a description of how to extend the 2-D finite element matrix formulation to 3-D,
and then how to generalize this formulation to solve n-dimensional (» > 3) problems.
The idea of an n-dimensional finite element may seem bizarre (and computationally im-
practical!) from a mechanical engineering standpoint. However, this physical analogy will
prove useful in applying our method to higher dimensional feature matching and alignment
problems. And, as has been noted before, we can significantly curtail the computational
cost associated with computing in higher dimensions by using factorizable basis functions

(Gaussians).

For ease of notation, we define # to be a row vector which contains the finite element
interpolation functions h;:
H:[h1 hz hm . (A1)

We define x to be an n-dimensional coordinate whose components are written 21, zo, ...
Tn.

Finally, we define the partial derivative of H with respect to z; to be:

0
%H = gaz—_;h1 %hg . é—%hm . (A2)
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A.1 Formulating a 3-D Element
The Gaussian interpolants are assembled into 3 x 3m interpolation matrix,

hi ... hp H
H(x) = hi ... hn = H . (A.3)

where m is the number of finite element nodes.

We the substitute this into the standard equation for the mass matrix:

M= / pHTHAV =
1'%

M
0 (A4)
0

0 o
M 0
0 M
where the m by m submatrix M is positive definite symmetric. The elements of M have

the form:
m; = P/V S ik aji ge(x) gi(x)dV = pria® /gi;. (A.5)
K

where q;; are the interpolation coefficients, g, and g; are 3-dimensional Gaussian basis
functions, and gx; = gx(x;) is an element of the G matrix in Equation 3.16.

This can be rewritten in matrix form:
M = ,07r§a o3ATGA = pwg G7ga, (A.6)

where the elements of G are the square roots of the elements of the G matrix as in Equation
3.16.

To calculate the stiffness matrix, we will need to first formulate a strain interpolation
matrix B. Strain for at a 3-D element node is defined as € = [ezz, €y, €225 Yrys Yozs Tyzl- »

where:

ou ov ow
exa::b_x ny=a—y 62225
(A7)
_Ou | Ov ou Ow _OJw  Ov

7xy—3_:y'+8—w 733225;'*'5; 73/2—'8_y‘+5;
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where u = (u, v, w) is the displacement vector at the node.
The corresponding strain displacement matrix B is obtained by appropriately differen-
tiating the interpolation functions h;. For the three dimensional problem, B is a (6 x 3m)

matrix:

B(x) = (A.8)

Included in the formula for the stiffness matrix is a material matrix C which expresses

the simulated material properties:

1Y . (A.9)

This particular matrix embodies an isotropic material, where the constants «, 3, and ¢ are

a function of the material’s modulus of elasticity £ and Poisson ratio v:

v E(1-v) 1-2v

’ ﬂ:(1+l/)(1—2v)’ and Caa-y (A-10)

It is possible to use other material matrices which model anisotropic materials. An
anisotropic material would be useful in modeling the difference between deformations

in time and space — for instance, modeling “fibers” along the time axis in a 3-D volume
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created by a motion picture image sequence.

The 3-D stiffness matrix of the element is then computed directly:

K1 K2 Kis
K= /V BYCBdV = | KI, Ky Kz |- (A11)
K% K% Ka3

Note that this stiffness matrix K is symmetric. Since we use Gaussian basis functions, its
actually the case that the submatrices themselves are symmetric.

The elements of K¢ have the form:

9gx g1 (8gk dg1 | Ogx Qg)}
1ij ﬂ/ / / zaikaﬂ[a a$+§ By 8y+ 57 Oz dzdydz. (A12)

kil

Integrate and regroup terms:

.2 2 | 52
3 1+ Tt &\t 2n
:ﬂ-ggﬁZaikaﬂ[ 26— 4(.0'2 ) \/515’ (A13)
kil

where &x; = (zx — 1), 9 = (Y& — w1), and 2y = (2 — 1) Similarly, the elements of Kz

and Kas have the form:

-2 22 52
3 1+4¢ T +&(Tut 2
k22ij: ngﬂzaik a]ll: 2 E - 5 2 ) \/gklv (A‘14)
k|l g
and ( 2)
52 22 -
3 1 Za + 6\ Tt Ik
k33‘_j = ﬂgaﬂ Z Gk aj [ Z 3 - 402 vV Ikl (A'15)
kl

The elements of K4, have the form:

2;; ﬂ/ / / Zama;z[ 91 5%%] dz dydz. (A.16)

gl
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When integrated this becomes:

7r2 o+
k1z;; = ﬂga d Zazk ajt Tkl Yrin/Ghl- (A7)

Similarly, the elements of K43 and K3 have the form:

_m2f(a+
k13, = ﬂgo; 3 Z ik @i Tkl Zxin/Gkl- (A.18)
and
7r2 a+
kas;; = ﬂ(% ) Z ik @51 Gkl ZriN/ Gkl- (A.19)

A.2 Formulating Higher-Dimensional Elements

It can be shown that the mass matrix for an n-dimensional problem will be a block diagonal

matrix of the form i

M

. M
M = / pHTHAV = (A.20)
14

M

where the submatrix M is positive definite symmetric. The elements of this submatrices
are computed by using n-dimensional Gaussian basis functions in Equation A.5.

In general, the n-dimensional mass submatrix takes the form:
M=przo"ATGA = prz oG GG, (A.21)

To determine what the components of the n-dimensional strain vector will be, we can
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build an upper triangular matrix of the form:

r 7
€oyzy Yrime VYoima --0 Tzzpoq Vzyzn
€rozp  Vzpmg -+ Vwpma—s Vzozn
€ . o
a3 T3Tn_1 T3 (A.22)
ezn—1zn-—1 ’71:71—11771
- €‘rn‘rn -

where z; is i*» component of the n-dimensional vector x.
Thus, to generalize the notion of strain to n dimensions, we note that the strain can be

represented by a "2—}” vector which contains the elements of this upper triangular matrix:

el = €oiays -+ -Conzn > Torwe Vormer - - Tono1zn 1y (A.23)
diagonal elements upper triangle elements
where
Ou; Ou;  Ou;
.. =— and = — J A.24
eﬂ’f'al'z (?.’17@‘ 73«';1’3 815J + 8£Ci’ ( )

where the u; are components of the n-dimensional displacement vector at the particular
FEM node.
To get the n-dimensional stiffness matrix, we use a generalized version of Equation

A.9. Assuming an isotropic material, the n-dimensional material matrix C will take the

form: _ }
1 « o
a 1 «a
o a ... 1
g (A.25)
3
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n2—n

where the upper submatrix is n x n, and the lower submatrix is 22—2‘—" X 5
The n-dimensional strain displacement matrix B is obtained by appropriately differen-

tiating the interpolation functions #;. The matrix B is a (%42 x nm) matrix of the form:

I2)
[ ERY
5]
%'H
8
dza
9
e 1
9 o)
3oz /L | 3o 1L
— o )
B(x) = =M = H . (A.26)
I5) 9
5o By 1
9 9
3o /L | 3 1Y
) 9
e Bz
ete.

The stiffness matrix for a general n-dimensional element can be computed directly:

[ K11 K12 e K1n ]
Kf, K»p, ... K
K = / B'CBdV = | 2 T2 2 (A.27)
y S .

As before, each of the submatrices is symmetric.
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Lastly, the general formulae for the elements of the submatrix K, are as follows. If

p = ¢, then

52 ~2
(wpkl + 62 xrkl
1+¢

Kpgi; = w%g"”zﬁz aik 41| — 7] Trfp ) NS (A.28)
k|l g

otherwise

W%U““‘ﬁ(a +¢ .
k'pq,-j = - 4 ) Z Qik Q51 Tpyy Tap v/ Gkl (A29)
k,l




Appendix B

Sound

Nearly any signal can be represented as an n-dimensional shape; thus, the modal matching
method could be used to analyze and manipulate the signal in terms of features and/or
signal shapes. To handle sound, forinstance, we could map sound energy (a spectrogram)
into a two dimensional mass distribution with some elastic interconnections. Given such a
framework, we could then employ each of the modal matching and manipulation techniques
described in this thesis. For instance, the representation could be used to “morph” sounds
for analysis, recognition, and sound synthesis.

Figure B-1 shows an example of deformed signals in the sound domain. Here we can
define “shape” as peaks found in a time-frequency plot (spectrogram). In Figure B-1(a,b)
we have two different instances of the 1-D signal for the spoken word yellow. Differences
in these sounds give rise to deformations of formant shapes (shown as white ridges) in the
Constant-Q spectrograms for these sounds as is shown in Figure B-1(c,d).

In a constant-Q spectrogram, the time-frequency kernel shape used to transform sound
energy to image intensity is meant to mimic the variation in frequency bandwidth found
in mammalian cochleae [37]. In the constant-Q spectrograms shown in the figure, image
intensity is an inverse function of magnitude (highest energy is shown as black, lowest as
white), and the two image axes are time and frequency.

Ellis has formulated a tracks representation, where a spectrogram is represented in
terms of energy peaks and phase information extracted from a spectrogram. These tracks

serve as a convenient reduced representation for sounds. Ellis has shown that perceptually
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(a)

(c)

(b)

Time (d) ime

Figure B-1: An example of matching deformed signals in another domain. In this example we
have two different instances of the 1-D signal for the spoken word yellow (a,b). Differences in these
sounds give rise to deformations of formant shapes (white ridges) in the Constant-Q spectrograms
for these sounds as is shown in (c,d). Note that the time axis goes from left to right, and that
the frequency plot is shown on a log scale to preserve harmonic structure. To measure similarity
between these two sounds, we could match up these formant ridges, and then measure the amount
and types of deformations needed to align the two spectrograms.

similar sounds could then be resynthesized by playing back just the tracks [35] (rather than
the full signal). The input to the modal matching and morphing paradigm would be a track
representation such as this. To measure similarity between these two sounds, we would
then match up these tracks, and then measure the amount and types of deformations
needed to align the two spectrograms.

For synthesis, the concept is simple: given such a framework, we could match and
morph between sound effects. Once a set of tracks has been deformed, it can then be
resynthesized for playback. For instance, we should be able to smoothly morph between
the sounds produced by two different types of balls bouncing. Thus we could produce
new sound effects from existing tracks. Another application would be speech, where
we could morph between words or between speakers of different ages, genders, etc.
Another interesting application in speech is modeling formant deformation which is due to

coarticulation of phonemes.
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Coarticulation in Speech

One could naively think of speech production as the process of stringing phonemes to-
gether to form words. Stated in such terms, the problem of producing intelligible speech is
mainly a control problem, where there is a sequence of phonemes to be produced, and the
brain generates a control plan/schedule for their production via gestural patterns — within
the physical limitations and perturbations of the vocal tract. Even when we cast aside
basic considerations about cross-speaker differences like gender, age, dialect, and native
language, and context dependencies like emotion, stress, and emphasis, phoneme shape
still varies a great deal depending on the phonemes produced before and after it. Nearby
sounds actually deform each phoneme (represented as tracks in the spectrogram) from
its ideal shape. This effect of temporal interleaving and overlap among nearby gestures is
known as coarticulation.

It is clear that 2-D deformations of an elastic sheet can be used to model many of the
deformations observed in formants; however, not all 2-D vibration modes are consistent
with the detailed physics of speech. Take for instance modes which stagger the formant
onsets or offsets (shear, for instance). Though onsets could be delayed slightly (depending
on frequency) the fact that the same power sources are generating the formants rules out
staggering like this. Another example is rotation: in the worst case, this means that
the production mechanism could transpose time and frequency, which is not plausible.
An interesting unlawful mode is compression: this corresponds with a sound medium
change (i.e., water or air). Modes which keep onsets aligned are more likely to be lawful:
translation, scaling, bending, and tapering frequency over time are good examples. What
we want in general is to choose a subset of p lawful modes, and then match and morph
sounds using this mode-truncated system.

From an implementation standpoint, it is unclear what would be the appropriate time-
frequency kernel for building the spectrograms. Though the constant-Q kernel offers the
advantage that it mimics what is known about mammals’ hearing, modally deforming the
tracks of a constant-Q spectrogram may not yield satisfactory resynthesis. This type

of spectrogram finely resolves the frequency of the lowest harmonics, while higher har-
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monics are more finely resolved in time (making pitch cycles visible). Therefore, simple
deformations would transform the tracks in a way which would not preserve the formants’
periodicity [36]. This leaves the open question of which type of filter to use: narrow-band,
wide-band, or constant-Q — in so doing, we would need to balance resolution in frequency
with resolution in time.

A fixed-bandwidth, wideband analysis looks promising, since it yields a “spot” represen-
tation, where the features are a set of isolated points corresponding to local maxima in the
time-frequency plane. These spots would then be centers for the Gaussian interpolation
functions used to describe the finite element. Thus the spots would be connected in an
infinite rubber sheet, with mass concentrated at the feature points. This representation
could then be matched and warped to generate a set of modified (time, frequency, energy)
spots which could then be resynthesized. The trick in resynthesis would be to assure
that the features are remote enough that phase interactions would not be perceptually

important [36].



