o

LogBoy Meets FilterGirl
A Toolkit for Multivariant Movies

by
Ryan George Evans

B.S. Computer Science and Engineering
Massachusetts Institute of Technology
Cambridge, MA
1991

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,
in Partial Fulfillment of the requirements of the degree of

MASTER OF SCIENCE
at the
Massachusetts Institute of Technology
February 1994
© Massachusetts Institute of Technology, 1994
All Rights Reserved
Signature of Author NP 1 g~ — —

Progratrin Media Arts and Sciences
January 14, 1994

—- TN
Certified by e o as »
Glorianna’lpavenport
Associate Professor of Media Technology

Program in Media Arts and Sciences

A~ Thesis Supervisor

Accepted by
SV Stephen A. Benton
Chairperson

MASSACIUISETTS NgTI Ty '
oererony ¢ Departmental Committee on Graduate Students

Program in Media Arts and Sciences

FEB 23 1994

LIBRARIES

LogBoy Meets FilterGirl
A Toolkit for Multivariant Movies

by
Ryan George Evans

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning
on January 14, 1994
in Partial Fulfillment of the requirements of the degree of

MASTER OF SCIENCE
at the
Massachusetts Institute of Technology

Abstract

This thesis describes two tools, LogBoy and FilterGirl, which are designed for
creating multivariant movies. Multivariant movies are movies which playout
differently each time they are presented. Variances in playout can be based
on viewer interaction, available content or viewing context. By making use of
annotated video databases, multivariant movies can be created which
sequence video autonomously based on viewer preferences rather than
driving playout through periodic viewer queries. Periodic viewer queries, an
interface technique used by most current interactive narratives, detract from
the storytelling process by interrupting the viewer’s immersion in the story.

LogBoy is a video database tool which helps moviemakers create the sketchy
video annotations that are needed for description-based multivariant movies.
Filtergirl is a tool for creating and editing the playout constraints that guide
the sequencing of video clips. This thesis describes the structure and use of
LogBoy and FilterGirl as well as exploring the issues involved in creating
tools for multivariant movie production. LogBoy and Filtergirl’s use in
multivariant movie production is illustrated with an extended example.

Thesis Supervisor: Glorianna Davenport
Title: Associate Professor of Media Technology

This work was supported in part by Kansa, Bellcore and British Telecom.

— 3

LogBoy Meets FilterGirl
A Toolkit for Multivariant Movies

by
Ryan George Evans

The following people served as readers for this thesis:
~7)

s o s P }
‘

Reader: L - ! ~
Kenneth W. HM

Assistant Professor of Media Arts and Sciences
Program in Media Arts and Sciences

Reader:

Mitchel Resnick
Assistant Professor of Media Arts and Sciences
Program in Media Arts and Sciences

Acknowledgments

The work described in this thesis could not have been accomplished without
the encouragment, support, patience and friendship of many people. I am
grateful to them all.

Glorianna Davenport, my advisor, provided me with the chance to begin this
work, the freedom to experiment, the encouragement to continue and the
guidance to create something useful. Thank you for giving me the opportunity
to pick up a camera rather than just watch.

My thesis readers, Mitchel Resnick and Ken Haase, kept me on track during
the course of my work. Thank you both for laying the foundations for this
research and taking the time to listen to my ideas.

Betsy Brown commented on drafts of this thesis and the papers that led up to
it. Thank you for a friendly voice when I needed it.

Mark Halliday has been a friend and tutor during my stay here at the lab.
Many thanks for taking the time to show me how and where to point a
camera. I hope we never lose touch.

I am grateful to the cast and crew of “Just One Catch”™ Ian Dowell, Steve
Dubin, Finnegan, Mark Halliday, Scott Higgins, David Kung, Graham G.
Ramsay, John Francis Shavel, Davd Tamés and Dan Zentner. Their patience
(and appetite) was endless during the shooting process.

The members of the Interactive Cinema Group and other residents of
Macondo provided invaluble assistance when I was working and numerous
recreational opportunities when I needed a break. Thanks to Thomas
Aguierre Smith, Kevin Brooks, Amy Bruckman, Stuart Cody, Eddie Elliott,
Stephan Fitch, Scott Higgins, Gilberte Houbart, Hiroaki Komatsu, David
Kung, Lee Morgenroth, Takeshi Nitta, James Seo, John Shiple, David Tamés
and Koichi Yamagata.

I can’t forget my parents, Charles and Mary Evans and my brother Matthew.
Their sacrifices, love and encouragement got me here in the first place and
continue to support me.

Finally, thank you to J. D. Darcy Duke for being there for me and with me as
long as I care to remember.

Table of Contents

1. Introduction -- m—n -- 12
1.1. The Structure of This Thesis --- -- ----16

2. An Extended Example, “Just One Catch” - --mmma-a 18
2.1. Interactive Modes -- ----18

2.2. A Plot Summary -- -- —-----19

3. Video Databases -- -- --23
3.1. Temporal Representation -- ---23

3.2. Granularity -- -- -- ----24

3.3. Descriptive Depth---- -- 25

3.4. Descriptive Language- -- e -26

3.5. Descriptive Context - -- 27

3.6. Overhead View of Descriptions -- e 28

4, Story Structures for Multivariant Playout -------=--------- 29
4.1. Schemes for Story Structure Specification -29

4.1.1. Hardwired Links -- e 30

4.1.2. World Models -- -- -31

4.1.3. Description Based Structures ----31

4.2. Issues in Selecting Story Structures --------- ----32

4.2.1. Interactive Modes - e LR TR PR 32

4.2.1.1. Conversational Interaction -33

4.2.1.2. Browsing -- ----33

4.2.1.3. Fluid Interaction -- ---34

4.2.2. Extensibility e e -- ----35

4.2.3. Understandability---- -- ---- -36

4.3. Layered Filters as Description Based Structures ------------------- 37

5. LogBoy Design -------- mmmmemmmmm—eem——————————e——————————— 39
5.1. Video Clips ----------- oo 39

5.2. Slots and Values ---- -- -- ---40

5.3. A Graphical Description Space - -- ---41

5.3.1. Slot Window Filters -------------e-ememmeemememeeeee- -44

5.4. LogBoy and Multivariant Movies --- ---- 46

6. FilterGirl Design -- -48
6.1. The Filter Types-- -- -- --------48

6.1.1. Basic Filter ------------mrmeem e 49

6.1.2. Description Filter -- - 50

6.1.3. Set Operation Filters S aneTEEEEEEEP R 51

6.1.3.1. Intersection Filter --- e 51

6.1.3.2. Union Filter -- -- -- ----52

6.1.3.3. Negate Filter ---- - —---=-52

6.14. Context Dependent Filters -- ---52

6.1.4.1. Rule Filter -- ---52

6.1.4.2. Eval Filter -- ---53

6.1.5. Template Filters --- e 53

6.1.5.1. Shot Template Filter--- ----53

6.1.5.2. Time Template Filter-- ----54

6.1.5.3. Advancable Template Filter 55

6.1.6. Interaction Filters -- -- 57

6.1.6.1. Global Variable Filter -- ---57

6.1.7. Canonical Filters -58

6.1.7.1. Continuity Filter ----- -58

6.1.7.2. Suppress Duplicates Filter --- 59

6.1.8. Filter Combinations ---- ---59

6.2. Creating and Editing Filters ---- -- -60

6.3. Running a Filter Story ----- -- 63

6.3.1. Debugging Output - -- 64

6.3.2. Creating an “EDL” --- -- 66

7. System Implementation 67
7.1. Video -------- -- T 67

7.2. Database -- -- 67

7.3. Filters - -- -- -- -- 68

7.4. Interface -- -- --- -- 68

8. Multivariant Movie Production ---=-=esssemeeeeeeemmmeccannnn-. 69
8.1. Preproduction -- -- -------69

8.2. Production e 71

8.3. Postproduction - —------T71

8.4. Top Down/Bottom Up Movie Makmg ----- ---T72

9. “Just One Catch” In Detail -------- -- ----74
10. Related Work e 80
10.1. Database Interfaces --- -- ----80

10.2. Video Databases mmmmmmmmmmean -- ----81

10.3. Descriptive Story Structures -- 81

11. Future Directions ------ 83
12. Conclusion me-- -- ---- 85
13. Bibliography -- -- 86

— 10 —

— 11—

1. Introduction

As digital video becomes a reality, moviemakers are beginning to experiment
with new ways of presenting stories to viewers. Traditionally cinema has
been a linear medium made up of strips of film glued together end to end to
tell a story. Each time a linear film is projected, the viewing experience is
identical. The same shots are presented in the same sequence. Digital video
provides filmmakers with a way to escape from the linearity inherent in film
construction and begin to explore non-linear techniques for playout. These
non-linear movies range from traditional hypertext applications with video
added as a media type to experimental video installations. One of the most
exciting consequences of the non-linear digital medium is multivariant
playout.

Multivariant playout is a term which describes movies which can present a
different sequence of shots each time they are viewed. A movie might play out
differently based on a viewer’s preferences (e.g. removing depictions of
violence from an R rated movie for family viewing), content available (e.g. a
news program which updates itself with incoming stories), viewing context
(e.g. a movie which chooses wide shots over close ups of the same sequence of
events based on whether it is shown on a high-resolution home television or a
low-resolution hand-held television) or arbitrarily (to provide a movie which
can be watched several times by the same person). Multivariant playout
provides a way to think about personalizing, updating and modifying movies
while maintaining the underlying narrative structures that tell a story to the
viewer.

Just as linear films are constructed out of a sequence of film clips,
multivariant movies are constructed out of sequences of digital video clips.
The difference is that multivariant movies must also contain information on
how digital video clips can be substituted and rearranged to adjust for
particular playouts while retaining narrative continuity. The movie must
contain a sense of the story it is trying to convey and how that story can be
molded to particular viewers and situations. This process is similar to the
way human story tellers change the way they tell a story for particular
audiences or situations. To change the way the story is told the human must
understand something about the story they are trying to tell, not just recite
the words in order.

—12 —

Currently, even the most sophisticated computers cannot understand stories
in the ways humans do. However, we can encode some of the ways in which a
story can be changed for multivariant playout. The aim of the research
described in this thesis is to provide a set of tools for moviemakers to encode
knowledge about multiple playouts and create multivariant movies easily and
intuitively. Several systems for making multivariant movies have been
created. Most of these systems make use of an underlying branching
structure to encode knowledge about how the movie should play out
differently based on differing inputs. There are several problems with this
approach. The most important problem is the way that the viewer becomes
locked into a pattern of periodic interaction with the movie. This type of
interaction can detract from the story being told.

The tools described in this thesis, LogBoy and FilterGirl, make use of a new
type of structure for encoding information about multiple playouts. This
encoding scheme, called descriptive story structures, searches databases of
annotated content rather than traversing hardwired links. Descriptive story
structures avoid periodic interaction and also make the moviemaker’s task
easier by providing a more understandable story format and easier methods
for editing and augmenting existing stories.

It is important to remember that the two tools described in this thesis,
LogBoy and FilterGirl, do not make up a system that understands stories.
Instead they provide a way for moviemakers to encode knowledge about the
" story they are trying to tell and the ways it can be changed for multivariant
playout.

Descriptive story structures frame the problem of building a multivariant
movie as a process of annotating content and sequencing that content based
on attached descriptions. Pieces of digital video, or video clips, are imported
into the system and described as to their relevance to the story. Later, story
constraints are built which take into account narrative structure, cinematic
continuity and user preferences. These constraints guide the movie through
playout by selecting pieces of digital video based on their descriptions and
sequencing them appropriately.

LogBoy and FilterGirl address the two major tasks in building a multivariant
movie using descriptive story structures. The first task, describing digital
video clips, is achieved by using LogBoy while FilterGirl allows the
moviemaker to build story constraints that govern the playout process.

— 13—

LogBoy is a video database tool that allows a moviemaker to categorize
segments of digital video which will be sequenced during playout.
Descriptions are constructed in LogBoy which characterize each piece of video
as part of the larger story and as unique segments for different types of
playout. Typical categories of description include “Scene”, “Setting”,
“Characters”, “Point of View”, “Framing”, “Length” and “Rating”. Each clip is
described relative to a set of categories and then these descriptions are used
as a basis of selection for multiple playouts.

FilterGirl is a story modeling tool that provides the moviemaker with a way
of specifying constraints which guide the sequencing of clips into a story.
FilterGirl allows the moviemaker to construct constraints using nested
filters. Each filter is a simple mechanism which selects video clips based on
their attached descriptions, weeding out clips which do not match a specified
description or set of descriptions. FilterGirl’s power comes from many
different ways in which filters can be combined to build stories. These
combinations of filters describe the relationship of the filters to each other,
but more importantly they describe the relationship of the filters to the story
itself. Filters can be combined temporally (to guide story structures over
time), logically (to provide for Boolean combinations of descriptions),
contextually (to calculate descriptions for continuity matching or conditional
selection) or based on viewer preferences (to provide for viewer interaction).

Currently, most schemes for building stories with multiple playouts
(interactive stories) rely on some type of branching. Pieces of content (video,
graphics, text) are joined with unchanging links which are traversed based on
the viewer’s choices. Ultimately, these choices are predetermined and
scripted by the author by means of a hard coded links. Under this scheme, a
viewer views a piece of content and then makes a choice as to which link to
traverse to the next piece(s) of content. This branching structure is
traditional hypertext molded to the purpose of telling stories. This approach
has some problems. First, it is difficult to add content to an existing story
because adding links to a new piece of content means considering how that
new piece might link to every existing piece of content in the branching
structure. This can become an exponential problem. Second, it is difficult to
edit branching structures because the number of links in a complicated story
can make it difficult to visualize and follow a particular narrative thread
through the structure. Third, and most important, the viewer must drive the
story manually by making a decision at each branch point. This periodically
interrupts the narrative experience and prevents the viewer from becoming
immersed in the story. Periodic queries are appropriate when a viewer is

— 14 —

trying to find a particular piece of information, but, in the context of
interaction within a fictional narrative, periodic queries can detract from the
story itself.

LogBoy and FilterGirl avoid these problems by making use of description
based story structures. Because each video clip is described in LogBoy and
sequencing is done based on these descriptions, it becomes very easy to add
clips to the database. For a clip to become part of the story, the moviemaker
need only import it into LogBoy and annotate it with the appropriate
descriptions. Since the filters that make up the story structure sequence clips
based on their descriptions, any new annotated clips are automatically
considered during the filtering process.

Collections of filters built in FilterGirl are easier to read as story structures
than traditional branching structures. The reason is two-fold. First, the many
types of filter combinations help illustrate exactly the type of story structure
the moviemaker intends for the story. The moviemaker can create temporal
combinations of filters which layout chapters in a story or conditional
combinations of filters which constrain clips to provide continuity during
playout. Second, the filters hold descriptions of what type of clip is needed at
a particular point in the story. This is much more informative than branching
structures which link specific pieces of content. By creating filters the
moviemaker automatically describes what makes a clip important at that
point in the story.

Most importantly, by relying on descriptions of content rather than
hardwired branching structures, LogBoy and FilterGirl move the task of
driving the movie playout from the viewer to the computer. This means that
rather than making periodic decisions as to where the story should go next,
the viewer can choose filters or set parameters, compile a sequence of clips
using the filters and watch it like a linear movie. Because of this the viewer
can concentrate on the narrative and become immersed in the story itself
rather than being constantly interrupted by the interface. In this way,
LogBoy and FitlerGirl provide movies with true multivariate playout.

This thesis describes the tools LogBoy and FilterGirl and how they work in
detail. It also tries to situate LogBoy and FilterGirl in the larger context of
video annotation, story understanding and movie making. When watching a
multivariate movie it is easy to ascribe too much narrative understanding to
the computer which generates the sequence of video clips. Viewers (and
readers of this thesis) should keep in mind that LogBoy and FilterGirl cannot

understand stories, but instead provide moviemakers with a way to think
about and construct multivariant stories from descriptions and constraints.

1.1. The Structure of This Thesis

The structure of this thesis is centered around an extended example of a
multivariant movie. Most of the issues and systems discussed in this
document use this example to illustrate various points.

Chapter 1 is the introduction to the thesis. (You are reading it.)

Chapter 2 lays out an extended example of a description-based multivariant
movie, called “Just One Catch”. The chapter describes the movie in general
terms, explaining the story it tells, how a user might change the way the
story plays out and the pieces of content that are sequenced to put the story
together. This chapter is intended to give the reader an idea of what
interacting with a multivariant movie can be like. The thesis returns to “Just
One Catch” in Chapter 9 to explain the relationship between LogBoy,
FilterGirl and the movie.

Chapter 3 explores design decisions that must be taken into consideration
when building a video database tool. Special attention is paid to ways of
representing content in a multivariant movie system. Issues of temporal
representation, granularity, descriptive depth, descriptive context and human
interface are touched upon in the context of representation for multivariant
playout.

Chapter 4 discusses various types of story structures for building movies with
multiple playouts. Design issues are explored including how easily structures
can be built and understood by moviemakers and how the structures affect
the viewer’s experience. This chapter concludes by describing a new type of
description-based story structure specifically designed for multivariant
playout, layered filter sets.

Chapter 5 is an informal specification of “LogBoy”, a tool for generating,
editing and viewing content descriptions for a movie with multiple playouts.
The underlying representation is discussed as well as the graphical interface.

Chapter 6 explains “FilterGirl”, a second tool designed for creating story
structures from sets of layered filters. About a dozen filter types are
presented with examples. FilterGirl’s interface is also discussed.

Chapter 7 gives details about the hardware and software that were used to
build LogBoy, FilterGirl and “Just One Catch”.

— 16 —

Chapter 8 provides a short discussion of the unique problems presented by
description-based multivariant movie production. Planning, shooting, editing
and story structure construction are discussed.

Chapter 9 returns to “Just One Catch” to explain in detail the production
techniques, video databases, filters and user interface that were built to
implement the movie introduced in Chapter 2.

Chapter 10 discusses previous research related to LogBoy and FilterGirl in
the areas of video databases, database interfaces and interactive story
structures.

Chapter 11 talks about possible future enhancements to the
LogBoy/FilterGirl system.

Finally, Chapter 12 sums up the arguments, descriptions and specifications
laid out in the body of the thesis.

A final note: Throughout the written portion of this thesis the terms
“moviemaker” and “viewer” are used to distinguish between two types of
users of the LogBoy/FilterGirl system. Moviemakers are people who create
multivariant movies. Viewers are people who watch playouts of multivariant
movies. This thesis makes a clear distinction between the two roles in order
to present clear arguments about the usage of LogBoy and FilterGirl.
However, it is important to realize that these two roles are actually two
endpoints of a continuum. As viewers begin to interact they become closer to
authors and as authors create movies with playouts they may have never
envisioned they become closer to viewers. LogBoy, FilterGirl and
multivariant movies in general begin to blur the previously clear distinctions
between these roles.

17 —

2. An Extended Example, “Just One
Catch”

“Just One Catch” is a small multivariant movie that was constructed with the
LogBoy/FilterGirl system. This chapter lays out the story that the movie tells
and describes how a viewer can change the ways it might play out. This brief
description of “Just One Catch” is intended to give readers an idea of what a
multivariant movie looks like. Chapter 9 will return to “Just One Catch” and
explain exactly how the movie was scripted, shot, logged and structured as an
example of using LogBoy and FilterGirl for multivariant production.

“Just One Catch” is a simple multivariant movie that was built to illustrate
the features of the LogBoy/FilterGirl system. It can play out in different ways
based on user preferences. The movie is constructed from a database of
approximately 125 video clips that range in length from a 5 to 90 seconds
long. A description-based story structure defines how these clips must be
sequenced to create the multiple playouts of the movie.

The two sections in this chapter detail a viewer’s experience with “Just One
Catch”. The first section describes how a viewer can change the way the
movie plays out. The second section is intended to give the reader an idea of
what a playout of “Just One Catch” is like. It includes a plot summary of the
movie along with excerpts from the script and still frames.

2.1. Interactive Modes

The viewer can change the way “Just One Catch” plays out with two separate
parameters. Figure 2.1 shows the viewer’s interface including playout
window and parameter sliders. The first parameter is length of movie
(labelled “Long” and “Short” in the figure). The playout time can be set
anywhere between five and ten minutes. The story of “Just One Catch” is not
substantially changed by modifying the length of the playout. Instead, clips
which characterize plot points in a shorter amount of time are preferred over
longer clips. The second parameter is called “Action vs. Dialog”. With this
parameter the viewer can change how much the playout emphasizes the
dialog-driven lunch scene or the action-packed chase scene. Again, all of the
major plot points are covered during the playout, but depending on this
parameter setting more screen time is allocated to action scenes or dialog

— 18 —

scenes. The viewer sets these parameters before playout begins and then the
LogBoy/FilterGirl system calculates an appropriate sequence of shots that
both tell the story and match the viewer’s preferences.

Just One Catch &

Long Action

Figure 2.1 The viewer's interface.

2.2. A Plot Summary

“Just One Catch” begins with the character Ian, a Super-8 film enthusiast,
strolling through the park with his new Super-8 camera in one hand and a
bag lunch in the other. As he walks along he pauses occasionally to get off a
quick shot of a tree or a squirrel to test out his camera. He walks by a park
bench and decides to eat his lunch. Ian sits down and carefully places his
camera on the bench beside him and then proceeds to empty the contents of
his lunch bag onto the bench. His lunch includes a banana, a sandwich, a bag
of chips and a cookie. This section of “Just One Catch” remains constant
across multiple playouts. Every time the movie is presented this section
remains unchanged.

Ian picks up the banana and starts to peel it when a friend, Graham, walks
by and stops to talk. Graham says he’s in a hurry for an appointment so he
can’t talk long, but he notices Ian’s new camera. He asks where Ian
purchased the camera, how much it cost and looks it over. Graham again
mentions his appointment and starts to leave, but notices Ian’s lunch on the
bench. Graham sits back down and explains to Ian that he was in such a
hurry for his appointment that he forgot to have breakfast this morning so
could he spare a banana for a starving friend. Ian is glad to help out and
hands over the banana. Graham thanks Ian, promises to replace the banana
later and takes off in a rush for his appointment. This section of the movie can
be presented in three different ways: long, medium and short. One version is
selected based on the viewer’s preferences. In the shortest version Ian simply
eats his banana and Graham never appears.

Ian now gets back to his lunch, unwrapping his sandwich. He’s just about to
take a bite when he hears a dog bark and come running towards him. He sits
the sandwich down on the bench and pets the dog as its owner comes over
retrieve it. “Come on, Finnegan! Come on, let’s go!” Ian notices the dog
owner’s Chicago Bulls hat and asks him if he saw the game last night. They
talk briefly about Jordan, Barkley and the race for the championship.
Suddenly, Ian hears this weird slurping, chomping sound. Both Ian and the
dog owner look down and realize that the dog has finished Ian’s sandwich in
two bites and is trying to reach the cookie. The dog owner snaps on
Finnegan’s leash and gives it a firm yank. Apologizing for the sandwich, the
owner and his dog beat a hasty retreat down the path. Ian is justifiably
frustrated at this point, but thinks the better of kicking the dog (or its owner)
as they leave. This section of the movie can be presented in three different
ways: long, medium and short. One version is selected based on the viewer’s
preferences. In the shortest version Ian simply eats his sandwich and the dog
owner never appears.

— 20 —

Ian cautiously gets back to what is left of his lunch. After looking around
carefully to make sure no one is walking his way, Ian picks up his bag of
chips. He gives the package a tug and then another, but it won’t open. He
gets a better grip and starts pulling hard. Just as the bag bursts open Ian
gets the feeling he is being watched. He looks up to see a drunken bum in
dirty clothes standing right over him and finishing off the last of a paper bag
wrapped bottle. The bum starts ranting on about being accused of having an
affair with Barbara Walters, but gets quickly to the point. He wants Ian’s
chips and he wants them now. Ian doesn’t see any way to reason with this
person so he hands over the bag of chips that he just opened. The bum stuffs
the bag in his jacket pocket and shuffles down the path trying to get the last
drop out of his bottle. This section of the movie can be presented in three
different ways: long, medium and short. One version is selected based on the
viewer’s preferences. In the shortest version Ian simply eats his chips and the
bum never appears.

Ian has almost given up on ever eating again, but then he realizes that he
still has his big chocolate chip cookie left to eat. Once again he looks around
cautiously and then begins unwrapping the cookie. He takes one bite, then
another, then another. It seems like he might actually get to eat something
this time. Then out of nowhere he hears the clacking of a skateboard on the
asphalt path. Instinctively, Ian hides the cookie against his chest. The
skateboarder comes zooming by and before Ian knows it the skateboarder has
grabbed his brand new camera and is heading down the path at top speed.
This section of “Just One Catch”, like the opening scene, is always the same.
No matter how the viewer has set the parameters, any playout of the movie
must move through this plot point.

— 91 —

This is the last straw. Ian drops what is left of his lunch and takes off
screaming after the skateboarder. They chase for what seems like hours
through the park, across flower beds, under trees, but Ian can never quite
catch up with the thief. Ian loses the thief a couple of times, but he seems to
be playing with Ian, staying just out of reach, waiting until Ian finds him
again to start skateboarding. Playouts of this section of the movie can vary
widely based on viewer input and on internal factors. Ian can chase the thief
through six different settings and these settings can be portrayed in many
different ways. Also, the entire length of this section can be shortened by
portraying fewer than the full six settings.

Ian finally finds the thief on the park path near a bench and decides this is
his last chance so he takes off at full run. The skateboarder takes off also, but
just as he reaches top speed the skateboard wheels lock on a twig lying in the
path. The skateboard and skateboarder flip onto the path and the precious
camera flies into the air, spinning. Ian sees the camera fly up and runs as if
in slow motion with his arms outstretched trying to catch it as it falls back
down. At the last second he makes an incredible dive and catches the camera
just before it hits the ground. He lies there and breaths a sigh of relief as he
cradles the camera to his chest with his hands. Unlike many interactive
movies, “Just One Catch” always ends in the same way. No matter how the
parameters are set or which video clips are sequenced the story always ends up
at this point.

— 922

3. Video Databases

At some level every interactive narrative system must rely on representation
of content. This representation may be implicit (such as a set of unlabeled
links which are traversed to view content chunks) or it may be explicit (such
as a news footage library which allows users to search for video based on
names, dates, locations). The question of how to represent content and how to
generate descriptions depends on many disparate factors including media
type, end use, query mechanisms and database size. This chapter introduces
some of the relevant design decisions and trade-offs which must be addressed
when building a video database for use in interactive story structures. These
issues include temporal representation, granularity, descriptive language,
descriptive thickness and user interface.

3.1. Temporal Representation

One of the fundamental aspects of any video database is the representation of
time. Video, like music and speech, is a temporal medium. To make sense,
annotations on a video stream must refer to specific points or sections of time.
There are two major paradigms for the temporal representation of
annotations: chunk-based descriptions and stream-based descriptions.

| O =]

DAL=D
EAO: Character: Jack :AO: Character: Jack
£ /\O[Location: London ~AOL Location Paris
TAOL Activity: Party A r
iANd) AO!

NO[]

iyNeJ .

im‘ Character: John AC
AO
K_O

7 AO[] Location: London
Figure 3.1 Chunk based temporal representation

Character: John
Location: London

T OO0 0 0 0 0 0

Chunk-based representation requires that the image stream be divided into
non-overlapping segments by choosing beginning and end points in the video.
Descriptions attached to each chunk are valid for the entire duration of the

—923 —

segment and the chunk is generally not subdivided. Chunk-based
representations are easy to understand since they are directly analogous to
relational databases (i.e. each chunk is one record in the database). On the
other hand, chunking imposes a particular meaning onto the image stream by
precluding alternate segmenting schemes.

Streamed representation avoids the segmentation problem by augmenting
the uncut image stream with descriptions which have temporal extents.
Annotations are attached by specifying time durations or beginning and end
points relative to a continuous image stream. In this way overlapping
description segments can be layered on top of the image stream to build a rich
descriptive base. A description at any point in the video can be generated by
taking a “cross-section” through the descriptive layers. Stream-based
representations provide a more flexible and extensible paradigm than
chunking since descriptions can be layered onto previous descriptions and the
image stream is never segmented.[ASD 92]

t—>

O 000 00 W_& 0 0 0_J0_ 0 0_0_W ¢

URIURIE

0009 O 0 o9

RIS
Location: ————London | |— Paris—]
Character: | Jack | John }
Activity: —— Party —]

Figure 3.2 Stream based temporal representation

Despite the descriptive flexibility of the stream-based metaphor, chunking is
a more appropriate technique for a video logging system which is to be used
in description-based story telling. Under a stream-based metaphor any
computational shot selector must not only pick a good shot based on attached
descriptions, but must also generate that shot (i.e. pick good beginning and
end points) since no chunking has been imposed on the stream by the
description process. A chunk-based metaphor implies a clear distinction of
duties: the moviemaker decides what constitutes a good shot while the shot
selection mechanism decides what constitutes a good sequence of shots.

3.2. Granularity

Granularity is one of the most basic aspects of a video database. The term
granularity refers to the relative size of descriptive segments attached to an
image stream. Databases with a fine granularity have small descriptive

— 924

segments while databases with a coarse granularity have large descriptive
segments. Both fine and coarse grained databases can be used for building
narratives depending on what type of story the moviemaker is trying to tell
and what types of personalization parameters will be available to the viewer.
A moviemaker who uses a fine grained database for building a multivariant
movie will be thinking about building cinematic sequences shot by shot. This
technique places a larger burden on the moviemaker to provide more detailed
story structures. On the other hand, a moviemaker who uses a coarse grained
database will be able to start building narrative structures at a higher level,
but will lose the flexibility of being able to change the way the movie plays
out on a shot by shot basis.

Any video database tool designed for building description-based story
structures should provide for moviemakers working with a fine-grained or
coarse-grained database or a combination of both. This means that the
database tool should have a scalable interface which does not favor one
particular time scale. The database should also be able to display the length
of clips or descriptors relative to each other, providing a way to compare
pieces of the database by granularity.

3.3. Descriptive Depth

Another important characteristic of video databases is descriptive depth.
Descriptive depth is a term which refers to the relative number of
descriptions attached to a particular piece of video. For instance, a database
with a thick descriptive base has many annotations while a database with a
thin descriptive base has few attached annotations. In general, thick
description bases are used for multi-purpose, multi-user databases in which
searches take place for many different purposes. The thickness of the
descriptions allows multiple users to search based on varied characteristics of
the video. On the other hand, thin or sketchy description bases are generally
useful only to a single person and perhaps for only a single purpose. The thin
descriptive base narrows down the selection of descriptive characteristics to
only those which are relevant to the task at hand.

Description-based interactive narratives make use of sketchy descriptive
bases because the domain of queries is limited by their relevance to the story
structure. Queries to databases are made within the context of sequencing
the movie so only descriptions relevant to the flow of the narrative need to be
recorded. Thick descriptive bases are more suitable to video databases where
the user is making queries directly rather than indirectly through the context
of a narrative. In this case the creator of the database generally wants to

— 925 —

record every possible description to give maximum searching power to the
end user. A news footage database is a good example of a video database
which could make use of a thick descriptive base.

Any annotation system for use in description-based story production should
both encourage sketchy descriptions and take advantage of the fact that a
minimum number of descriptive structures will probably be used. This means
that graphical interface metaphors can be used which would otherwise break
down as the number of descriptive characteristics grows large.

3.4. Descriptive Language

Descriptive language becomes an issue in the design of any database tool.
Descriptive language is a term which refers to the actual form of descriptions
in the database. These descriptions range from unstructured free text to fully
canonicalized iconic languages. The trade-off between structured and
unstructured languages is similar to the trade-off between thick and thin
descriptive depths. Highly structured and canonicalized languages are good
for databases which will be searched by many different people for many
different purposes. This is because similar descriptions will be grouped
together into the same categories. However, the set of descriptors must be
chosen carefully so that every possible annotation type is accounted for. At
the same time duplication of annotation will result in difficult to search
databases. Unstructured descriptive languages are much easier to log in
because the intended descriptions do not need to be translated into a
canonical language. The drawback is that it is difficult for multiple users to
generate or retrieve content in such a database since each user will word
descriptions slightly differently.

Description-based story structures are generally built by a single moviemaker
for a single purpose (the construction of a multivariant movie). For this
reason, annotation languages for description-based story structures should
tend towards the unstructured side of the spectrum. More structured
languages provide too many categories for personal use and might not

provide the proper categories for a moviemaker’s very personal descriptions.
It must be kept in mind, however, that databases for description-based

stories must ultimately be searched to find appropriate clips. To facilitate
this, the database should allow the moviemaker to create new descriptors and
easily describe new content using the set of already created descriptors.

One descriptive language that addresses most of these problems is keyword
classes [AS 92]. Keyword classes allow moviemakers to create new keywords

— 926 —

easily and organize them into categories (e.g. names, places, etc.). These
classes and keywords are then available for use as descriptors for specific
pieces of video content.

3.5. Descriptive Context

Most interfaces to video logging applications are structured around the
content that is being logged [Bruckman 91; Davis 91]. The person annotating
the video examines a segment of video and then generates all of the
descriptions relating to that piece of content. The interface represents the
video once as an unchanging stream and repeats descriptors as necessary to
show annotations. This representation answers the question “What are all of
the descriptors attached to this piece of video?”. This linear interface
paradigm is adapted from traditional database applications which usually
require the user to generate or edit one record at a time.

There is another interface paradigm which is better suited to building
databases for multivariant movies. This interface paradigm is centered
around the attached descriptions rather than the video stream. Each
descriptor is represented in the interface once and video clips are repeated as
necessary to show how they relate to the descriptors. This representation
answers the question “What are all of the pieces of video that have this
descriptor?”.

This second representation presents a kind of descriptive context for the
moviemaker in which pieces of video can be easily compared to other pieces of
video relative to a particular descriptor. This is very helpful in description-
based multivariant movies because most of the logged characteristics of the
footage are both very subjective and gear primarily towards building on
particular type of playout experience. Characteristics such as “mood”, “humor
content” and “action level” are often used as descriptive types. When using
subjective characteristics, descriptions must be created with other similar
descriptions in mind. The moviemaker must be able to answer questions like
“How funny is this chunk of video relative to the database as a whole?” and
also be able to easily log one characteristic of the database continuously
without being constrained to the linear structure of the video itself.

A descriptive context allows the creator to attach descriptions within the
more relevant context of the entire set of characteristics. Systems centered
around descriptive contexts require a very different type of interface which
can display and manipulate the entire base of video content relative to one
particular characteristic. The importance of providing a relevant global

—97 —

context as well as detailed local information is addressed in G. W. Furnas’
Generalized Fisheye Views [Furnas 86].

3.6. Overhead View of Descriptions

When a moviemaker is creating or editing a database for use with a
description-based story structure, descriptive coverage becomes an important
concern. Coverage is a term borrowed from traditional movie making
terminology which means having enough footage to be able to edit a sequence
which tells the intended story. Coverage in a description-based story
structure means not only having enough footage to be able to tell the
intended story (or stories in the case of a multivariant movie), but also having
enough correct annotations to be able to find the right clips.

The creator needs ways to query for specific combinations of descriptions as
well as get a general encompassing view of all of the logged footage. Dividing
the logging process along characteristics rather than the content itself
provides a descriptive context which allows the creator to look for missing
annotations or pieces of footage. A graphical representation of annotations
within each of these characteristics can further assist the moviemaker to get
a quick feel for the layout of descriptions. To help the moviemaker make more
specific queries about descriptive coverage, the logging tool can be extended
with a simple query system which graphically depicts pieces of video content
which match combinations of characteristics.

— 98 —

4. Story Structures for Multivariant
Playout

To create a cinematic narrative, pieces of film or video content must be
sequenced in meaningful ways. Traditional film editors sequence images
relative to their understanding of the structure of the story being told. The
rules of cinematic language constrain the ways the editor can tell the story in
a manner understandable to the audience.

To create a multivariant movie cinematic sequencing can be different for each
playout of the movie. Because of this, sequencing of video clips must take
place computationally. To accomplish computational sequencing, segments of
video content must be ordered according to the story that is being told, to the
accepted rules of cinematic language and to input from the viewer. These
sequencing constraints are expressed with story structures which the
computer uses as a guide for sequencing video.

Computational story structures can take many different forms including
hypertext links, world models and description-based story structures. Several
issues must be considered when selecting a story structure for a particular
narrative presentation or storytelling system. The type and amount of viewer
interaction in the final presentation plays a role in the decision process as
well as issues like extensibility of the story, understandability of the
structure to the moviemaker and type of content.

This chapter briefly describes several different types of story structure
schemes and then explores issues related to selecting a story structure for
storytelling with multivariant movies.

4.1. Schemes for Story Structure Specification

Story structure specification schemes range from simple tools for traditional
screen writers to systems based in artificial intelligence which generate
stories from descriptions of characters, locations, goals and plans. This
section describes some of the different types of story structures that have
been used to create interactive narratives.

—929

4.1.1. Hardwired Links

Hardwired links are the most common type of story structure used in
interactive narratives. Hardwired links are essentially hypertext systems
adapted to storytelling. In this type of linked story structure individual pieces
of content (video, graphics, text) are joined temporally with typed links. The
viewer interacts with this system by viewing one piece of content and then
choosing which of the outgoing links to follow. Many familiar games and
multimedia applications are based on this type of structure.

FQlo0
Customer: I
feel scared,
Joe.

FF1

Joe: You ghould be.

Your finances are a Joe: There's

disaster. nothing to worry

_______ about.

Customer: You too, Customer: Nothing to

Joe? All I get is worry about?!

lectures. Everything 1is going
wrong

Joe: I don't meann to
lecture yau, hit...

2 it

Joe: Are you afraid Customer: I'll blow up
you're getting whenever I want to. I
deeper and deeper thought you were my
into debt? friend, Joe. Now I see
what you really are.

Customer: I am.
That's why I need

7T\ o
this loan so badly]. FQ1

Figure 4.1 A story structure built with hardwired links [luppa 88].

A classic example of a story structure based on hardwired links is illustrated
in the book Advanced Interactive Video Design by Nicholas V. Iuppa [Iuppa
88]. Here a flow chart (Figure 4.1) shows the story structure behind a video

— 30 —

disc training application designed to teach people skills to bank tellers. The
disc tells a story about a man in financial trouble who is applying for a loan.
At branch points the viewer, playing the role of the teller, can decide how to
react to the questions and comments of the applicant. The flow chart shows
video clips (represented by rectangles) and branch points (represented by
diamonds). The labeled triangles connect to other points in the larger
structure. At each branch point the system pauses and asks the viewer to
make a decision

Many computer games are also built on top of a branching structure similar
to this one. Often the branching structure represents a physical layout of a
space and the viewer navigates the space by selecting which direction to move
at each branch point.

4.1.2. World Models

A few systems have been built which use symbolic models of a physical space,
characters and objects within that space to create a simulated world from
which stories can be generated. In these worlds, characters have goals and
create plans computationally to achieve those goals within the simulated
world. A story is generated by allowing the characters to play out their plans
within the world. The story is composed of a (usually textual) description of
the character’s attempts to achieve their goals.

A classic example of generating stories from world models is James Meehan’s
“Talespin” system [Meehan 81]. In Talespin characters are created who want
to achieve simple goals. Characters create plans to achieve these goals which
can include moving to other physical spaces, manipulating objects,
communicating with other characters (honestly and dishonestly) and
negotiating with other characters to get something they want.

Another more recent experiment into generating stories from world models is
Joseph Bates’ Oz project [Bates 90]]. This project is more sophisticated than
“T'alespin” in two ways. First, viewers become a character within the
simulated world, manipulating objects and communicating with other
characters. Second, there is a “drama manager” that has global control over
all the elements of the simulated world. The drama manager can guide a
story over time according to the author’s specifications.

4.1.3. Description Based Structures

Description based story structures rely on databases of annotated content to
put together multivariant movies. These databases are searched for

—31 —

appropriate pieces of video, graphics or text to present in sequence to the
viewer and create a story. The driving mechanism for description based story
structures is some type of filtering process which selects content based on
their annotations. The selection criteria can include plot points, continuity
concerns and viewer preferences.

One of the first multivariant movies built with a description-based structure
is the New Orleans Interactive project by Glorianna Davenport [Davenport
87]. This movie contains about three hours of video which spans four years
and illustrates the city of New Orleans and its officials planning for and
executing the 1987 Worlds Fair. Footage of city council meetings, community
meetings and interviews documents a large scale urban renewal project on
the waterfront of New Orleans. The movie was used as a teaching aid in
urban design classes at MIT.

Within New Orleans Interactive, video descriptions are used such as date the
video was shot, who appears in the video, what part of the city is being
portrayed and what part of the World’s Fair project is being discussed.
Viewers can select a particular theme to follow across the entire movie such
as “The role of the Jax Brewery in the renewal project.” or “The mayor of New
Orleans’ affect on the World’s Fair selection process.” A movie is created by
filtering out video clips which match the theme and sequencing them in
chronological order.

4.2. Issues in Selecting Story Structures

Several different issues become important when a moviemaker is selecting a
story structure language for a particular interactive narrative. These issues
include the type and extent of viewer interaction, how the narrative might
later be extended and how understandable/editable the story structure itself
needs to be. This section describes these issues in detail.

Amy Bruckman’s “The Combinatorics of Storytelling: Mystery Train
Interactive” [Bruckman 90] is an interesting paper which discusses some of
the issues of extensibility and understandability that are presented in this
section.

4.2.1. Interactive Modes

When selecting a story structure for a multivariant movie the moviemaker
must consider how viewers will interact with the system and how much
control should be given to the viewer. Viewers can interact by stating
preferences before the movie starts, by periodically choosing from a list of

32

alternatives or even selecting a few pieces of content from a larger database.
Interaction also involves giving control over to the viewer. Interactive control
can be defined by how much flexibility the viewer has in changing the way
the movie plays out. At one end of the spectrum lie linear movies in which the
viewer has no control over how the movie plays out. At the other end of the
spectrum lie systems in which the moviemaker plays little part in guiding the

story.
4.2.1.1. Conversational Interaction

Conversational interaction is the most widely used interface mode for
interactive narrative. Interaction takes place in a manner that is similar to a
conversation going on between the computer and the viewer. The viewer
examines a piece of content presented by the computer (e.g. video, graphics,
text) and then the computer queries the user to determine how the viewer
wants the story to continue. The viewer then makes a choice and the
computer presents another piece of content. In this type of interaction the
computer and the viewer take turns driving the story, much like in a human
conversation. This type of interaction is similar to the way most people
interact with computers.

Conversational interaction is a natural outgrowth of a branching story
structure. The viewer examines the content at a node and then is presented
with a list of links to follow to the next content node. One of the problems
with this type of interaction is that it is often difficult for the viewer to
become immersed in the flow of the story. Conversational interaction
presumes that the viewer will pause periodically to make a decision about
where the story should go next. This causes a periodic interruption in the
narrative which interrupts the reverie of story telling. This constant barrage
of questions is generally appropriate when the user is searching for a
particular piece of information, however when a user is trying to be
entertained or understand a story, questions detract from the experience.

4.2.1.2, Browsing

Browsing is a less used interactive mode that provides a much more flexible
environment for the viewer. In a browsing environment the viewer is
presented with a collection of loosely organized pieces of content. Viewers are
then free to make their own connections between the pieces to build up a
story. The resulting experience is little like skimming a book. Instead the
viewer looks carefully at a small set of pieces of content and mentally
constructs a coherent narrative from them. Some interactive narratives

— 33 —

which use browsing change the available pieces of content based on
estimations of the viewers preferences. These estimations come from looking
at previously selected pieces or explicitly querying the viewer.

One successful system which makes use of a browsing interactive mode is the
Elastic Boston Map [Perey 92]. The map was built by students in Professor
Glorianna Davenport’s 1992 Elastic Movie Time class. The map presents
different graphical views of the city of Boston. These graphical views are
populated with short pieces of video which give a portrait of a place, interview
a resident, advertise a shop or give a particular person’s view of the city.
Many different people contributed video clips to the database. These pieces of
content are organized in several categories such as neighborhood, type of
content (e.g. shops, landmarks, interviews, etc.) or a particular person’s vision
of the city. As the viewer moves through the system the selections of video
clips change based on the viewer’s preferences. A kind of path is found
through the pieces of video and a loose narrative thread is built up in the
viewer’s mind. The threads take various forms such as a portrait of a place, a
particular person’s vision of the city or a tour through a neighborhood.

Under a browsing interactive mode almost all of the burden of constructing
the narrative falls on the viewer. The moviemaker provides only a loose
organization for the content and the viewer strings the pieces together. One
of the biggest problems with a browsing interactive mode is that it is almost
impossible for a moviemaker to know exactly what type of story the viewer
will come away with.

4.2.1.3. Fluid Interaction

A new type of interactive mode has recently been explored which recognizes
the viewer’s need for uninterrupted immersion in the narrative and the
moviemaker’s need for narrative control. This paradigm, called fluid
interaction, allows the viewer to personalize the playout of the movie within
constraints provided by the moviemaker. After personal parameters have
been set the movie plays out much like a linear film, but personalized for one
particular viewer. Parameters such as violence level, length of playout and
point of view can be imagined which would affect the content of the movie.
Rather than the constant interruption of conversational interaction, fluid
interaction provides viewers both control over the way the movie plays out
and the opportunity for immersion in the story telling process [Galyean 92].

Fluid interactive modes fit most easily onto world models and descriptive
story structures. The reason is that the viewer no longer drives the narrative.

— 34 —

In the case of a world model story structure the computer simulates actions
in the world over time resulting in a story. With description-based story
structures, the computer drives the narrative within the viewer’s parameters
and the moviemaker’s constraints. This means that the computer must have
some algorithm for selecting pieces of content within the set of constraints for
a particular playout.

A few successful description-based movies have been built to explore fluid
interaction. “An Endless Conversation” was among the first [DEH 93]. “An
Endless Conversation” is a small scene which presents a dialog between two
characters, Tom and Dave. As the scene progresses, the characters ask
questions, tell stories and react to each other’s statements. The viewer can
change two parameters before the movie plays out, “Rating” and “Pacing”.
The rating parameter has two settings “R” and “PG” (two of the American
movie ratings). Under the “R” setting rude comments are included in the
dialog. Under the “PG” setting no rude comments are included. The pacing
parameter allows the viewer to change how snappy the dialog is as it plays
out. A fast paced dialog uses shorter utterances, while a slow paced dialog
uses longer utterances. The viewer sets these parameters before the movie
starts and then the movie plays out based on those parameters.

4.2.2. Extensibility

Another factor in selecting a story structure for multivariant playout is
extensibility. Linear films are generally not changed once the final editing is
finished. The movie is planned, shot, edited and projected with little change
in content or editing after this process is finished. (The recent profusion of
“Director’s Cuts” seems to be changing this rule.) Multivariant movies by
definition can be different each time they are watched. This opens the door
for movies in which the content base or story structures are periodically
updated.

To accommodate for this possibility moviemakers must take into
consideration how a story structure might be augmented or changed in future
versions. The extensibility of the content base and the story structure must
both be considered.

Hardwired link structures are perhaps the most difficult structures to change
or extent due to the fact that the links connect individual pieces of content. In
the worst case a moviemaker must look at how a new piece of content might
link to every other piece of content already in the database.

35 —

World models and description based structure are the easiest story structures
to extend with new content. In a world model structure the moviemaker need
only create new characters, places, objects and goals. The world simulator
will then incorporate these new features into subsequent narratives.
Description based structures search for pieces of content based on their
descriptions rather than relying on links to particular pieces of content. This
means that annotated pieces of content added to the database will become
part of newly generated narratives.

4.2.3. Understandability

Ease of comprehension is another important factor in selecting a story
structure for multivariant playout. A moviemaker must be able to easily
transcribe a vision for a multivariant story into a computational story
structure without having to mentally translate story ideas into arcane
structures. The story structures built for the movie must map easily from
narrative structure to multivariant playout.

Hardwired link structures make it easy for a moviemaker to see exactly how
a movie might playout. The links show exactly what piece of content might be
presented next based on the user’s preferences. A big problem with link
structures, however, is that the resulting web of pieces of content and
annotated links bear little resemblance to the narrative structure that the
moviemaker is trying to convey. It is difficult to translate the links into the
coherent beginning, middle and end that make up a story. One of the reasons
for this is that links preclude abstraction within their structure. Abstraction
allows a creator to divide a story into conceptual chunks such as sentences,
paragraphs and chapters or shots, sequences and scenes.

World model story structures make it easy for a moviemaker to see how a
character might react to a particular situation or why a character is
attempting a particular action. This is because goals and plans are explicitly
laid out within the world model. However, if a creator is interested in plot
points and temporal structures in the story, world models break down in
terms of understandability. This is because a small change in the model of
the world can have a great effect on the way the story plays out. It is almost
impossible to generalize about how a change in a character’s goals, the layout
of the world or placement of objects might affect the resulting story.

Description based structures provide moviemakers with the easiest
translation from narrative to computational story structure. One reason is
that description based structures allow narrative abstraction. The

— 36—

moviemaker can build a story structure which clearly lays out a beginning,
middle and end with more complicated structures nested inside of each.
Another reason that description based structures are easier for moviemakers
to work with is the fact that they are built from descriptions of content rather
than specific pieces of content. This means that the story structure contains a
record of why a particular piece of content should be used at any point in the
story.

4.3. Layered Filters as Description Based
Structures

This thesis describes two tools, LogBoy and FilterGirl, which allow
moviemakers to build movies using description based story structures.
Description based story structures can be implemented in many ways ranging
from sophisticated template systems to simple annotated chronologies.
FilterGirl uses layered filter sets as a way of building simple or complex
multivariant movies. Filters, in this context, are simple selectors which take
a video database as input and return some subset of that database as output.
A simple filter might select only clips which are described as containing the
character “Jack” (see figure 4.2).

Figure 4.2 A simple filter.

— 37 —

The power of layered filters comes from combining (layering) the filters in
different ways. Filters can be combined with simple set operators such as
intersection, union and negation. With Boolean operators each filter to be
combined is run on the database and then the resultant sets are combined.
Filters can be combined in sequence temporally. Temporal combination
allows creators to layout the sequence of the resulting playouts. Filters can
also be combined contextually to build complex dependencies between filters.
Contextual combinations of filters resemble simple rules which can use
transcripts of playout, lists of active filters, real time clocks and viewer input
to select which filters to run.

FilterGirl further adds simple abstraction constructors so that complex but
understandable story structures can be built. This is achieved by defining
combinations of filters as filters themselves which can be named and
combined again with other filters.

One pitfall in using layered filter sets is over constraining the video clip
selection process. This can happen when filters are layered which require
mutually exclusive descriptions to be attached to a single video clip. Any tool
for moviemakers which makes use of layered filter sets must take this into
account. The simplest way of addressing this problem is by prioritizing
layered filters. The driver which runs the filters can then try to match as
many filters as possible from most important to least important before an
empty set of video clips is reached. Some kind of simple debugging tool which
flags over constraint situations can also help.

— 38 —

5. LogBoy Design

LogBoy is a database tool for creating and editing descriptions which are
attached to video clips. LogBoy differs from traditional video loggers and
computer database applications in three respects. First, LogBoy is designed
specifically as a tool for creating descriptions for multivariant movies which
rely on description-based content selection. As such it provides the
moviemaker with an “overhead” view of the database which can point out
database properties in relation to a particular story structure. Second,
LogBoy allows the author of a multivariant movie to engage in truly iterative
design since it is part of a single-platform, integrated toolkit for creating and
editing. Finally, LogBoy encourages sketchy descriptive bases for content.
Sketchy descriptions, annotations which form a thin, highly-personal
description base, provide an efficient representation paradigm for content
designed for limited reuse (e.g. multivariant movies).

5.1. Video Clips

LogBoy’s basic unit of content is the video clip. A video clip is a non-
overlapping segment of video with a specified beginning and end point. Under
this paradigm all descriptive structures associated with a clip are valid for
the entirety of the segment. The presentation of a multivariant movie is
ultimately made up of a computationally selected sequence of video clips.
Video clips are, by definition, always shown in their entirety. One of the
major reasons that LogBoy uses the video clip as a database model is to avoid
the problem of computationally choosing valid in and out points for a segment
of video. This provides a well defined division of labor between the human
author and the computational clip selector. The human decides what
constitutes a good clip while the clip selector (with guidance from human
created story structures) decides what constitutes a good sequence of clips.

— 39—

Figure 5.1 A collection of four video clip icons.

Video clips are represented graphically within the LogBoy environment as
draggable icons. Figure 5.1 shows a collection of four video clip icons. Each
icon shows a key frame from its associated video clip along with two buttons
used for obtaining more information. The info button, indicated by the
question mark, opens a window which displays important information about
the video clip. Currently, this includes the location of the clip on the hard
disk, the title of the clip and descriptions which have been attached to this
clip in LogBoy. The playout button, indicated by the greater-than sign, opens
a digital video playout window in which the video clip can be previewed in its
entirety.

5.2. Slots and Values

Descriptions in LogBoy are stored in a simple slot and value structure. This
means that each database (collection of video clips) has some associated
characteristic types called slots. Each clip has one or more values associated
with it for each slot. This means that each clip has the same set of slots as
every other clip in the database, while the values within those slots are
unique to each clip. Typical slots might include “characters that appear
within the clip”, “location where clip takes place” or “part of the story”. (Often
slots are given shorter, mnemonic names such as “Characters” or “Setting”.)
Values take on meanings only in relation to these slots. For example, a
particular clip might have the value “Betty” within its “Characters” slot or

—) —

the value “New York” in its “Setting” slot. The slot/value structure is
discussed in more detail in Chapter 2. The LogBoy system allows the
moviemaker to associate zero, one or multiple values with each slot for a
video clip. Figure 5.2 shows a conceptual model of slots and values attached
to video clips.

Characters: Darcy

Framing: Closeup

Story Part: Character Intro

Location: Boston

Figure 5.2 A conceptual model of slots and values attached to a video clip.

The LogBoy application does not limit the moviemaker to a specific set of
standard slot types, nor does it limit the number of slots that may be
associated with a clip database. This is because LogBoy is designed to create
video databases in conjunction with multivariant story structures. In creating
content-based multivariant movies, the descriptions in the content database
are generally paired closely with the content selection mechanisms and
interactive story structures. This means that the creator can use sketchy
descriptive bases and highly personalized description spaces that might not
make sense within some more generalized content selection scheme.

5.3. A Graphical Description Space

LogBoy represents the three major components of its database structure
(video clips, slots and values) graphically to create a description map of the
database. As described above, video clips are represented on the screen as key
frame icons. The position of an icon on the screen gives the user information
about the descriptions attached to it. Additionally, these icons can be
repositioned to change their descriptions.

To show the descriptions attached to a video clip, slots and values are also
shown graphically on the screen. Slots are represented as windows within the

— 41 —

Macintosh environment (called “slot windows”) and values are represented as
colored, rectangular areas within slot windows (called “value areas”). If a
video clip icon is positioned within a value area which is in turn located
within a slot window then that value is attached to that video clip for that
slot. Repositioning the clip icon into a different value area will change its
attached description for that slot. Multiple slot/value pairs may be attached
to a particular video clip by using multiple instances (copies) of its key frame
icon.

Figure 5.3 A typical LogBoy session with three slot windows.

— 42

Figure 5.3 shows a typical LogBoy session including clip icons, slot windows
and value areas. In this example the database currently includes six video
clips and three slots. Each of the three windows (“Mood”, “Setting”,
“Characters”) depicts the descriptive structures for its associated slot. Each
slot window contains value areas and video clip icons. Video clip icons within
value areas gather slot/value pairs based on the window in which they appear
and the value area in which they reside. The same icon can appear in
multiple slot windows so that multiple slot/value pairs may be associated
with it. For example, the icon which appears in the “Alice” value area of the
“Characters” slot gets the “Characters” “Alice” slot value pair. The same icon
also appears in the value area “Happy” within the slot window “Mood” and
the area “New York” in the window “Setting”. Thus the slot/value pairs
associated with this clip are “Characters”/ “Alice”, “Mood”/ “Happy” and
“Setting”/ “New York”. Pressing the info button (marked with a question
mark) on the bottom of the clip icon opens a description window for that clip
which lists all of the associated slot/ value pairs (see Figure 5.4).

EEF===="Info on Video Clip 0047

Name - Video Clip 0047
Path - "Wild Bunch:Movies:
¥Yideo Clip 0047"

Characters — Alice
Mood - Happy
Setting — New York

Figure 5.4 A dlip description window showing the slot/value pairs attached to a
video clip.

LogBoy not only displays descriptions graphically, but the logging process is
also graphical. Slot/ value pairs attached to clips can be changed by simply
dragging the clip icon to another value area within a slot window. Value
areas as well as slot windows are draggable and resizable. Value areas can be
added and deleted through the “Value Operations” menu available in each
slot window. Slot windows and video clips can be manipulated via LogBoy’s
control window. (A typical control window is shown in Figure 5.5. This control
window corresponds to the session shown in Figure 5.3.) The control window

— 43 —

contains a list of all currently defined video clips in the database (listed by
their titles) along with a list of all currently defined slots in the database.
Slots can be added and deleted via the “Slot Operations” menu. Video clips
can be added and deleted via the “Clip Operations” menu. Slot windows can
be opened by double clicking on their title in the list. Video clip description
windows can also be opened by double clicking on their description in the list.

Figure 5.5 The LogBoy control window showing a list of video clips and a list of slots.

5.3.1. Slot Window Filters

Slot window filters provide a way for the creator to effectively make simple
database queries and also manage icons within slot windows by showing or
hiding the clip icons in a slot window. Slot window filters work in a similar
way to the story filters described in the next chapter, however slot window
filters (currently) only come in one flavor while story filters come in about a
dozen different types. Slot window filters simply include or exclude clips that
have a particular description (slot/value pair) attached to them in LogBoy.

Slot window filters can be applied via the two menus available at the top of
each slot window. The top menu allows the user to select between “Show All
Clips”, “Show Only If” and “Show Only If Not”, while the bottom menu allows
the user to select a slot/ value pair from a list. All possible slot/ value pairs
are available in this menu even if they are not currently used. Figure 5.6
shows the effect of different filters on the “Characters” slot window originally
shown in Figure 5.3. The top window in Figure 5.6 shows the “Characters”
window with a “Show Only If” “Mood = Happy” filter applied. This filter hides
all clip icons which do not meet this descriptive criterion. Similarly, the
bottom window shows the “Characters” window with a “Show Only If”
“Setting = Paris” filter in effect. This hides a different selection of icons.

— 44 —

Matthew

Show Only If

L‘harﬂcters HIl[:E
Characters=Charlie
Characters=Darcy
Characters=Matthew
Mood=Happy
Mood=Indifferent
Mood=5ad
Setting=New York
Setting=Paris

Eharacters

Mu:nn l]peratluns snuw Only If vl
Ualue l]peratlons - :

Setnng=Fﬂns
Eharhe

Flgure 5. 6 Slot wmdow filtlers can be applied wﬂh the menus available at the top of
every slot window.

— 45 —

Slot window filters are helpful in two ways. First, the moviemaker can make
simple Boolean queries in a slot window. For instance, in the first window it
is very easy to pick out all of the clips which both contain the character
“Matthew” and are described as being “Happy”. Second, the set of video clips
within a particular slot window can be simplified to include only clips which
are relevant to the characteristic described by the slot. This can be helpful in
more complicated databases when a particular characteristic (i.e. slot) is not
relevant to an entire set of clips. For instance, imagine a multivariant movie
which includes both a chase scene and a dialog scene. Each of the clips in the
dialog scene might need to be categorized according to the topic of the
conversation depicted. To this a “Conversation Topic” slot would be created in
the database. Obviously, this characteristic has no bearing on clips intended
for use in the chase scene. A slot could be created called “Scene” with two
values “Chase” and “Dialog”. If all of the clips in the database were logged
within this slot then within the “Conversation Topic” slot window all of the
irrelevant clips could be hidden. In many cases this greatly increases the
understandability of a slot window and reduces visual complexity.

5.4. LogBoy and Multivariant Movies

LogBoy’s graphical interface to the database provides the moviemaker with a
way to visually scan and evaluate a collection of clips for specific descriptions,
anomalies and general trends. In LogBoy it is very easy to quickly get an idea
for how the database as a whole is divided under a certain characteristic. For
instance, in the small database shown in Figure 5.3 we can see very quickly
that there are many more “Happy” clips than “Sad” clips in the “Mood” slot
window.

This interface works particularly well for designing databases for
computational shot selectors and multivariant movies. This is because the
moviemaker must make sure that the shot selector has a fully populated
database into which it can make queries. The selector cannot ask the
database for a close-up of Alice in New York when none exists. The graphical
nature of LogBoy allows the moviemaker to quickly scan the database to
make sure it is fully populated. FilterGirl also helps in the task of fully
populating a database. This process is described in the next chapter.

These same qualities which make LogBoy ideal for use in creating
description-based multivariant movies detract from it’s use as a more general
database tool. The LogBoy interface has a practical limit on the number of
clips which may be stored in one database. The screen and windows can
become very cluttered with icons when working with large databases. This is

— 46 —

almost never a problem when creating multivariant movies since the number
of clips for a particular movie is generally small because each clip is designed
for use in that movie alone. Similarly, there is a practical limit on the number
of descriptive structures (slots and values) that can be built in one LogBoy
database. Again, screen real estate can become cluttered with slot windows
and value areas. Luckily, this is even less of a problem in creating
multivariant narratives since only those descriptors which are relevant to a
particular story will appear in any one database.

47 —

6. FilterGirl Design

FilterGirl allows a maker of interactive movies to create, edit and preview
simple story structures in conjunction with a database of video clips created
in LogBoy. FilterGirl’s design centers around filters which come in several
different types. Each filter takes a set of annotated video clips as input and
returns a subset of those clips, narrowing down the selection to the most
appropriate clip for that point in the narrative. The several filter types
provide a flexible, hierarchical language within which time dependent and
context dependent movie structures can be built. This chapter describes the
filter types and their behaviors, how the author can create and edit filter
instances, how filter based movies can be previewed and debugging options.

6.1. The Filter Types

At the simplest level a filter takes a set of video clips as input and returns
some selected subset of those clips as output (see figure 6.1). Filters can select
clips based on descriptions which have been created in LogBoy (e.g. all of the
clips containing the character Nicole). More complicated filters can be
constructed by taking advantage of the simple interface between any
particular filter and the clip database (i.e. a set of clips as input, some subset
of those clips as output). This simple interface allows the creator to combine
multiple filters in many interesting ways. Set operations (e.g. set intersection
or set union) become possible for clip selection by chaining the inputs and
outputs of filters. Dynamic, time-dependent story structures can be modeled
by swapping filters with other filters as the viewing experience plays out.
Additionally, filters can be selected in real time based on viewer input or
more complicated context dependent means (e.g. rule bases).

48 —

Figure 6.1. A typical filter.

FilterGirl effects many of these filter combinations by providing the creator
with a varied set of filter “types” from which to create story structures. Filter
types have been constructed which implement clip selection by set operations,
simple templates, time dependent structures, context dependent means and
viewer interaction. The more complicated filter types may contain other,
simpler filters within themselves and combine their behaviors according to
predefined rules. For example, the “intersection filter” filter type (see below)
implements traditional set intersection by containing two or more other
filters within itself. Each of the defined filter types is described below.

6.1.1. Basic Filter

The basic filter is also sometimes called the identity filter. It outputs exactly
the same set of clips which are given to it as input. It is useful as a place
holder in time dependent structure when the creator does not want to filter
out clips, but needs to place a filter between two other filters. It is also useful
when creating new types of filters since the basic filter forms the CLOS
super-class from which all other filter types inherit their basic behavior.

— 49 —

Clips whose
"Character" slot
contains the
value "Jack".

Figure 6.2. A description filtler which selects clips described as containing the
character Jack.

6.1.2. Description Filter

The description filter is the simplest and most widely used of all of the filter
types. Any particular instantiation of a description filter selects only clips
which have a particular description attached in the LogBoy application. Thus
a moviemaker can create a description filter which selects only clips in which
a particular character appears, which take place at a certain location or have
some other particular characteristic described in a LogBoy database. Each
instantiation of a description filter only selects clips on one specific
description. Figure 6.2 illustrates a description filter which selects only clips
in which the character Jack appears. When selecting on combinations of
descriptions the creator must rely on more complicated filters to combine
description filters (e.g. the intersection filter). As noted in previous chapters,
descriptions in LogBoy are annotated as slot/value pairs (e.g.
Character/Nicole). This is the format in which descriptions are specified
within a description filter.

— 50 —

Description Filter:

Character = Location =
Nicole Beach

Clips showing
Nicole on the
Beach..

Figure 6.3. An infersection filter which selects clips described as showing Nicole at
the beach.

6.1.3. Set Operation Filters

The set operation filter family implements simple set operations such as
intersection, union, negate, etc. As such, they are not dependent on an
internal clock, viewer interaction or the context of their operation. The set
operation filter types provide the means to produce Boolean combinations

»” K«

(e.g. “and”, “or”, “not”) of slot/value pairs.

6.1.3.1. Intersection Filter

The intersection filter allows the moviemaker to combine two or more filters
with a set intersection operation. Each of the combined filters is run in turn
and the common clips which are selected by all of the filters are gathered as
the output of the intersection filter. Figure 6.3 shows an intersection filter
instance which combines two description filters. The first of the description
filters selects only clips in which the character Nicole appears. The second
description filter selects clips which are located on the beach. The intersection
filter combines the outputs of its contained filters using set intersection so the

—51 —

output of the filter consists only of clips which are described as containing
Nicole at a beach location.

6.1.3.2. Union Filter

The union filter implements the set union operation on two or more inner
filters. Each of the inner filters are run in sequence and all of the clips
returned by the filters are gathered as the output of the union filter
(duplicate clips are removed). For example, a union filter could be used to
combine a “Character = Jack” description filter with a “Character = Nicole”
description filter to return all clips in which either Jack or Nicole appears.

6.1.3.3. Negate Filter

Any instantiation of the negate filter type contains exactly one filter inside of
it. The negate filter essentially inverts the behavior of its contained filter by
returning all clips given as input to the negate filter which are not returned
by the inner filter. A simple example: by putting a “Location = Beach”
description filter inside of a negate filter one can create a filter which selects
all clips which do not take place at the beach.

6.1.4. Context Dependent Filters

There are two generalized types of context dependent filters: the rule filter
and the eval filter. Their behavior can depend on arbitrary aspects of the
movie playout state and viewer interaction. Other filter types not in this
section also depend on particular parts of the movie context, but rule filters
and eval filters allow the moviemaker access to any part of the movie state by
allowing arbitrary lisp expressions.

6.1.4.1. Rule Filter

The rule filter makes use of an arbitrary lisp predicate (a predicate is a
function which returns either true or false) to choose which of two contained
filters to make valid. If the predicate returns true the “then filter” is chosen.
If the predicate returns false the “else filter” is chosen. The predicate function
has access to all parts of the movie state such as viewer interfaces, previously
shown clips (the movie transcript), the entire clip database and the state of
other filters in the movie. For example, suppose one wanted to build a filter
which would introduce the character Jack only if he has not been introduced
yet. A rule filter could be built with a predicate which would reference the
movie transcript to see if any clips of Jack have been shown yet. If clips of
Jack have been shown then it might choose a different character. If clips of
Jack have not been shown then it would choose an introductory clip of Jack.

— 52 —

6.1.4.2. Eval Filter

Rather than containing and combining other filters, the eval filter contains
arbitrary lisp code which evaluates into a filter object. This allows the
moviemaker a way to construct filters on the fly which can depend on any
part of the movie state including the clip database itself, the transcript of
previously shown movie clips, viewer interfaces and the state of other filters
in the movie. Eval filters also provide a way to hook into existing lisp
programs which might be useful in creating more complex interactive
behaviors (e.g. network applications, expert systems, etc.).

6.1.5. Template Filters

The template family of filters includes filter types which apply their
contained filters over time. This makes it simple for the creator to sequence
clip playout over time or across a viewing experience. Cinematic structures
such as shot/reverse shot and narrative structures such as
beginning/middle/end can be built with template filters.

6.1.5.1. Shot Template Filter

The shot template filter is the most familiar of the template filters. It
provides the capability of making filters valid in sequence, one filter per clip,
as the viewing experience plays out. This capability allows the creator to
guide the playout of the final movie at the finest granularity possible, clip by
clip. Figure 6.4 shows a shot template filter which contains four filters inside
of it. The filters represent four steps in the process of a character, Woody,
cooking an omelet. In this example, the shot template filter is currently set to
the third internal filter, meaning that the first two shots have already been
shown in this movie and that only the third filter will be used in selecting a
subset of the clips on the input.

Any instantiation of the shot template filter type can be set to repeat when it
reaches the end of its filter sequence. This option can be used to create simple
looping structures.

— 53 —

Clips in which
Woody gets a
pan.

Figure 6.4 A shot template filter which buillds a sequence about Woody cooking an
omelet.

6.1.5.2. Time Template Filter

The time template filter allows the moviemaker to specify clocked lengths of
time over which specific filters are valid. This is done by associating a “start
valid time” and an “end valid time” with each filter inside the time template
filter. The time template filter watches the system clock and routes its input
through the appropriate internal filters. For example, we could make a movie
which starts with 60 seconds of clips featuring the character Nicole, continues
with 120 seconds featuring the character Jack and ends with 30 seconds of
clips featuring both characters. If two or more filters are scheduled to be valid
during the same time period their outputs are combined with set intersection,
as with the intersection filter. If other combinations are desired more
complicated filter structures can be built with multiple time template filters.
(Note: Filter valid times only specify when filters are turned on and off. The
clips that are selected may in fact run over these times.)

— 54 —

The time template filter has a repeat mode much like the shot template filter,
which zeros its internal clock when all filter valid times have been run
through. Also, the time template filter can run off of one of two separate
internal “clocks”. The first choice is the absolute clock provided by the system.
This behaves as expected. The second choice is to add up the length of all
clips which have already been viewed and match this time against the filter
valid times. This allows the viewer to skip over unwanted clips and move on
to later clips without disturbing the normal playout.

6.1.5.3. Advancable Template Filter

The advancable template filter is the most powerful of the template filters. It
is useful when the moviemaker wishes to abstract the development of a
multivariant movie into sections or scenes. The advancable template filter
works much like the shot template filter in that it contains a list of filters
within itself and makes them valid (turns them on and off) in sequence.
Unlike the shot template filter, the advancable template filter does not move
to the next filter in its sequence after each shot is played out. Instead, it
advances to the next filter when it receives a special signal.

This signal, called the end of filter signal, can be generated by any type of
filter which can contain another filter. This is because the end of filter signal
can take the place of a normal filter. When an end of filter signal is called
upon to filter a set of clips, it instead sends a signal to the advancable
template filter which contains it. This signal tells the advancable template
filter to call on the next filter in its sequence to narrow the clip set.

For example, suppose a moviemaker wanted to make a simple multivariant
movie which was divided into two conceptual chapters, an introduction and a
conclusion. Each of these chapters might consist of several types of shots
which must be called in sequence. The creator could make two shot template
filters each of which represented one of the chapters in the movie. To combine
the two sequentially the creator would add an end of filter signal to the end of
each shot template (remember, the end of filter signal can take the place of
any other filter.) Then, the two shot templates could be combined sequentially
in an advancable template filter. When the first shot template, the
introduction, finished it would send an end of filter signal and the advancable
template would move to the next shot template, the conclusion. When the
conclusion chapter finished it would also send a signal and the advancable
template would then be completed. See Figure 6.5 for an illustration of a two
“chapter” advancable template filter. In the figure, four shots have already
played out in the viewing experience. Since the first shot template filter

— 55 —

contained in the advancable template filter contains two shots (plus the end
of filter signal), the current filter setting is the third filter of the second shot
template.

Shot Temp|c1te: Conclusion

(1) Woody steals
Francis' car

(1) Introduce Woody

(2) Francis chases
Woody

(3) Woody crashe

e car

(4) End of Filter
Signal

(2) Introduce Francis

Filter

Clips showing
Woody
crashing car.

Figure 6.5 A simple advancable template filter that builds a sequence about Woody
stealing Francis’ car.

Some details about advancable template filters: First, more interesting
behaviors can be constructed with the advancable template by embedding end
of filter signals inside of context dependent filters or interaction filters. This
allows for movies of variable lengths. Second, if an end of filter signal has no
advancable template filter “containing” it to catch the signal, then the signal
is caught by the top level filter driver, the movie experience ends and the
viewer is notified that the experience is over. Third, advancable templates
have a repeat flag just like shot template filters, which allow the construction
of simple looping structures.

_—

6.1.6. Interaction Filters

Interaction filters provide simple on-screen interfaces to the viewer which
allow him or her to easily change the behavior of specific filters, thus
affecting the playout. Currently only one simple type of interaction filter has
been implemented, but more complicated interaction filters could be built
which were more suited to particular types of multivariant movies (e.g.
sliders for ranges of values, graphical dialog items which related to the theme
of the multivariant movie).

6.1.6.1. Global Variable Filter

The global variable filter allows moviemakers to build viewer interfaces to
their movies and easily connect them into a filter structure. With the global
variable filter this connection takes place through a global variable in the lisp
environment. The filter itself contains a list of filters of which one will be
selected as the active filter and the name of a global variable. The global
variable polls the global variable each time it is called upon to filter the
database. The global variable must contain an integer and this integer is
used as an index into the contained list of filters. This very simple
mechanism allows moviemakers to build whatever interface components they
wish and easily hook them up to the filter structure.

Figure 6.6 shows an instance of a global variable filter and the global variable
it polls to influence its selection. In this example the global variable must
contain an integer between 1 and 3 inclusive which is then used as an index
into the list of contained filters (baseball, biking, skiing). The figure also
illustrates a simple radio button interface component which lists the three
sports from which the viewer can select. (Radio buttons allow the viewer to
choose one and only one button from the list.) This radio button set feeds into
the global variable, changing its value. The global variable filter polls this
value to find out which contained filter it should choose.

— 57 —

Eﬁ s p 0 rt isistinin

() Baseball
(@ Biking
() Skiing

sport-selection

value = "Biking"

Cli

bi

‘J(s containing
ing scenes.

Figure 6.6 An instance of the Global Variable filter type showing how it can poll a
global variable which is updated by a user interface component.

6.1.7. Canonical Filters

The canonical filter family includes specialized filters which could be created
with the other filters types, but are so commonly used that they are included
as part of the primitive filter types.

6.1.7.1. Continuity Filter

The continuity filter is a specialized type of context dependent filter which
keeps track of descriptive “variables” as the movie plays out. It allows the
author to specify one descriptive slot which is to be matched or not matched
from clip to clip as it plays out. In this way, continuity constraints can be
modularized and expressed separately from the other filter types that they
are combined with. For instance, a moviemaker might be building a short
sequence of a man taking his dog for a walk. The database could contain

— 58 —

shots of the same man walking both a poodle and a greyhound. As a
continuity constraint the moviemaker wants to make sure that the man is
always walking the same dog during the sequence. A temporal filter could be
built that describes how the sequence plays out over time (e.g. establishing
shot, medium shot, close-up, medium shot from another angle). A continuity
filter would express the fact that the dog should be the same type throughout
the entire sequence. It would be combined with the temporal filter (perhaps
with an intersection filter) abstracting out the continuity constraint from the
temporal playout.

Options available within the continuity filter include “match slot value to
last clip’s slot value”, “match slot value to next to last clip’s slot value”,
“match slot value to first clip’s slot value”. The inverse of each of this is also
available (e.g. “do not match slot value to last clip’s slot value”). This provides
“continuity” for the movie at the most basic level. For example, a continuity
filter could be used to make sure all the clips in a movie featured the same

character. More complicated continuity structures can be built with the eval
filter.

6.1.7.2. Suppress Duplicates Filter

The suppress duplicates filter removes clips which have already been
presented to the viewer (i.e. appear in the clip transcript). This is often a
desired behavior when several similar types of clips might be used in
repeated sequences.

6.1.8. Filter Combinations

Most of the power of using FilterGirl as a language for dynamic content
selection comes from combining the many different types of filters in
interesting ways. Some of the simplest combinations are easy extensions of
the filter types mentioned above. For example, the intersection filter can be
used to combine two or more description filters and create a more closely
specified selection of the database (e.g. clips in which the characters Nicole
and Woody appear on the beach flying a kite).

Another interesting use of the intersection filter is to combine the different
types of template filters. For example, we could use a intersection filter to
combine two shot template filters to create a dialog between two characters.
The first template filter would define the structure of the dialog (e.g. a
question then a story then a reaction and so on) while the second template
would define the cutting back and forth between the two characters (e.g. first
show a clip with the character Dave then the character Thomas). The

— 59 —

intersection filter would take the intersection of these templates at each point
resulting in a question from Dave then a story from Thomas and so on. In
this way we have abstracted away the structure of the dialog from the
character specification. Now, assuming our clip database is rich enough, we
can change the dialog structure without modifying the way the characters
appear and we can modify the characters that appear without changing the
nature of the dialog (e.g. an argument between the two characters or a
normal dialog between new characters).

Many other interesting types of combinations can be imagined such as
advancable template filters which advance based on signals from interaction
filters, advancable template filters which advance based on signals from rule
filters, eval filters which create time template filters (to give the viewer
control over playout time) or time templates combined with repeated shot
templates.

6.2. Creating and Editing Filters

Instances of all of the filter types can be created and edited interactively with
the FilterGirl application. The command center of FilterGirl is the “filter
control window”. The filter control window contains a list of all currently
defined filter instances along with a list of currently running filters and
controls for editing and manipulating the filters. Figure 6.6 shows a snapshot
of the filter control window during a typical session with FilterGirl. The list
in the upper left corner includes all currently defined filter instances while
the list at the bottom includes all of the currently running filters. Remember,
even if a filter is not shown in the running list, it can be called during a filter
session if it is contained within and called by one of the running filter. The
buttons along the right hand side allow the author, among other things, to
start a playout with the currently running filters, create new filters and open
editing windows for filters.

— 60 —

Filter Contrel

i Pun Filter Si_;;_ry

Joe Accuses Nick
Joe and Nick Argue
| Joe Apologizes
|ty Filter

| Nick Retorts

| Nick Stalks off

Eill Filter Story |

Open Filte

Hew Fiiter

Dglgte Filter

; Joe and Nick Argue

Figure 6.6 The filter control window during a typical FilterGirl session.

To create a new filter instance, the moviemaker selects a filter type from the
“new filter” pull down menu and a new instance is created. An editing
window is opened for the new instance that allows the author to change the
internal parameters which vary the behavior of the filter. Opening edit
windows for existing filter instances takes place in a similar way. The filter
instance is selected in the top list and the “open filter script” button opens the
editing window. Double clicking on a name in any filter list (including lists of
filters included within other filters) has the same effect.

Figure 6.7 shows a prototypical filter editing window. It is an editing window
for the basic filter type and includes features common to all filter editors. All
editing windows display the filter type, the filter name and comments about
the filter. They also include a button which allows the user to redefine the
attributes at any point. Redefining the filter records all of the currently
displayed (perhaps new) information as the parameters of this filter instance.

— 61—

redefine filter

h\’&m@&.@.\\.\ﬂa& T

i T =
"O;WA‘(&AW‘VM&Q\-%Q °§ﬂ°"$“¢¢%:§3§f’¢3’,{§’§£}v&¢

s 1This template sequences clips ﬁluch
«3%purtray an argument between the
. icharacters Joe and Nick.|]

.oa.
@W@%&%x&ﬁmvgf SRR

e ;
R
e

Nick Retorts

Joe Apologizes
Stalks Off

Figure 6. 8 An ecllhng wmdow for an instance of the shot temp|c:te filter type.

Edit windows for more complicated filters add more parameters below the
common parameters. Figure 6.8 shows an edit window for a typical instance
of the shot template filter. In addition to the filter type, instance name and
comments there are two more parameters which correspond to the
parameters described in the section on shot template filters above. First, the

— 62 —

template list contains an ordered list of all of the filters within this shot
template. Filters can be added by dragging and dropping from any other filter
list (including the filter control window). Filters can be removed from this list
by dragging to the “trash” icon at the bottom. Second, the repeat-template-p
checkbox is a flag which tells the shot template filter to repeat when it
reaches the end (rather than sending an end of filter signal). Edit windows
for other filter types work in similar ways by adding interfaces for the various
parameters below the standard information.

Filter sets can be saved out through the menu bar. By selecting “Save Filter
Set” from the main menu, the author is prompted for a file name to which all
currently defined filters are to be saved. Similarly, a filter set can be loaded
through the same menu.

6.3. Running a Filter Story

FilterGirl provides facilities for previewing filter based story structures while
filters are being built. This requires not only that a set of filters be defined in
FilterGirl, but also that a clip database created in LogBoy be loaded. Loading
a clip database is accomplished through FilterGirl’s main menu. Previewing
takes place by pushing the “run filter story” button on the filter control
window. This opens a playout window which displays the movie as a viewer
would see it. The playout window includes buttons to pause, resume and skip
ahead one clip in the current playout.

Previewing the movie is accomplished by applying in sequence the filters in
the running filters list to the loaded database. Each application of the filters
results in some non-empty subset of clips. One is chosen arbitrarily and
presented to the viewer. When FilterGirl has finished presenting the clip, the
filtering/presentation process is repeated. This continues until an end of filter
signal or an end of movie signal is passed out of one of the filters in the
running filters list. Either of these signals will end the current playout.

There is one caveat to the layered filtering process explained in the previous
paragraph. The empty set rule (described at the end of Chapter 3) is in effect
during the filtering process. This means that the filters in the running filter
list are applied in top to bottom order. If any of the filters returns an empty
set of clips then FilterGirl stops the filtering process and returns (as its
ultimate output) the input to the filter which returned the empty set. This
provides a simple way to assure that FilterGirl will never come up empty
handed when trying to select a clip to present to the viewer. This rule also
means that the moviemaker must prioritize the running filters. In this

— 63—

prioritization scheme, the most important filters (e.g. basic story structure)
come first in the list while the less important filters (e.g. user interaction,
stylistic structures) come later in the list.

6.3.1. Debugging Output

Used by itself, the playout window simulates the viewer’s experience closely,
but provides a poor representation of the inner workings of the layered
filtering process. To help provide a clearer view of how the filters manipulate
the database FilterGirl has a debugging output which presents textual
information regarding the input and output of specific filters in the running
filter set.

The debugging output feature of FilterGirl can be turned on via the main
menu. In the debugging output the filter layers are listed down the left-hand
side of the text window while a histogram of the number of clips presented as
input to each filter layer is printed on the right-hand side of the window. The
two streams of information are interleaved so that the filter layers are
synchronized with their input and output on the histogram (i.e. the number
of clips fed into the filter layer is printed on the line directly above the filter
layer’s line and the number of clips output from the filter layer is printed on
the line directly below). Additionally, each filter layer name is indented to
represent how deep it is within the filter hierarchy. Unindented filter names
are at the top level (i.e. the running filters list in the filter control window)
while each successively indented filter name is contained within the previous
filter name. This interleaved filter and clip histogram output is repeated for
each clip selection. When the empty set rule is called into effect (i.e. when one
of the filter layers returns an empty set of clips) a warning is printed in the
debugging output window.

— 64 —

khkhkkhkhkhhkkhkdhkdkkhrrkdhhdhhkhhkhkdhrhkkhkhhhkhdhdhkhhkhkhhkx

>> Joe and Nick Argue <<
B R R R R R EEE R E R R R R R R R R o

>> Joe Accuses Nick <<
PR R R R R R R E R EE TR R R R R R R R R R R O o e

>> Speaker = Joe <<
khkkkhkdkxdhkhkhkkrkrhkkhkhkkhhkk

>> Utterance Type = Accusation <<
* Kk kk kk ok ok ok

>> Listener = Nick <<
* *

>> Suppress Duplicates <<
*

Selected Clip: “Digital Film Clip 23~

kkhkhkhkhkhkhkhkhkhkhkrhkdhhrhkhdhhhhkhrhkhhhkkrhhhrhkdhkdhhdhkhrd

>> Joe and Nick Argue <<
Ak K KA KA A K hddd ok ko kkk ok ok ok ok ok ok k ok ok ok k ok ok ok ok ok ok ok ok ok ok ok ok ke ke ok ke

>> Nick Retorts <<
khkkkhkhkkhkrkhkhkrkhkhkhkhkhkrhkkkkkhkkkhkhkhkhkhkhbhhhdhhkkhkkkkhkhkhkhkx

>> Speaker = Nick <<
kkhkdkhkkkhkhkkhkkkk

>> Utterance Type = Rebuttal <«

* %k Kk k Kk k

>> Suppress Duplicates <<
* %k k)

Selected Clip: “Digital Film Clip 08”

Figure 6.9 Part of a typical debugging output.

Figure 6.9 shows a typical FilterGirl debugging output for two clip selections.
There are two top level filters in this scenario. The first is a shot template
filter named “Joe and Nick Argue” while the second is a suppress duplicates
filter named “Suppress Duplicates”. In the first selection the filter “Joe
Accuses Nick” has been selected from the shot template filter list. It is a
intersection filter which contains three description filters which each
successively narrow the selection. The suppress duplicates filter narrows the
selection to a single clip which is then presented to the viewer. The second
clip selection is very similar, except now the next filter in the shot template
filter list has been selected and it contains two description filters.

The debugging output provides a good picture not only of how each filter
affects the clip selection process, but also exactly which filters are called upon
during each stage of the movie experience. This provides an interactive
previewing and debugging environment for multivariant movies.

65—

6.3.2. Creating an “EDL”

FilterGirl has a second previewing option which can be used to create
multiple linear non-interactive edits from a set of filters. This feature, rather
than actually playing each digital movie file, creates a list of the pathnames
of each digital movie file. This list can then be used to create a linear digital
movie which represents a specific playout of the multivariant movie. The list
of pathnames serves a similar function to creating an edit decision list (or
EDL) in a traditional video editing suite. Conceivably the pathname based
EDL created by FilterGirl could be used as a template for creating higher
quality linear analog edits of the same material if a lookup table was created
to translate between digital movie pathnames and time code numbers on a
physical video tape.

— 66 —

7. System Implementation

This chapter briefly describes the implementation of LogBoy and FilterGirl
and the issues involved. There are four sections pertaining to the four major
software subsystems: video, database, filters, interface.

7.1. Video

The LogBoy and FilterGirl applications currently use Apple’s QuickTime
software as a disk-based digital video standard. Disk based digital video
storage provides the random access video capabilities essential to
computational movie generation. Digital video has several benefits in
addition to other random access formats (e.g. videodisc). First, images from
the video source material can be easily sampled and manipulated within the
screen space. One example of this is LogBoy’s video clip icons which
incorporate a still frame. Second, QuickTime is a read/ write format. This
means that source material can be added to the database quickly and easily.
Read/ write formats allow a more flexible creative process as the moviemaker
is not committed to a particular set of source material at any particular point
in the production process. This also opens the door on serialized movies to
which the creator is continually adding content. Finally, QuickTime digital
video can be edited on the desktop using a Macintosh computer. Software
packages allow the creator to digitize, compress, edit and present footage all
on the same piece of hardware.

7.2. Database

The video clip database holds the locations of the digital video clips along
with the descriptive slots and values attached to each clip. The LogBoy
application must be able to create, present, edit, load and save this database
structure while FilterGirl must be able to load and access the descriptors.
Framer[Haase 92] was chosen for the database implementation because it
supports all of these characteristics along with providing other sophisticated
features which can be made use of in the future.

Framer’s hierarchical structure maps easily onto LogBoy’s extensible slot/
value database architecture. Framer files are implementation independent
and can be read with libraries provided for several platforms in several
computer languages. This flexibility allows moviemakers to experiment with

67 —

data paths other than the intended LogBoy -> FilterGirl. For instance, a
Framer database created in LogBoy could be loaded into some other story
structure driver or databases could be created in another logger and loaded
into FilterGirl. Framer also provides inferencing capabilities which can be
taken advantage of by sophisticated story structure editors/ generators.

7.3. Filters

FilterGirl is designed around a hierarchical filter language which supports
personalized video sequencing. This filter language is based on Macintosh
Common Lisp’s (MCL’s) implementation of the Common Lisp Object System
(CLOS). CLOS provides class inheritance which is useful in situations where
there are many types of objects which have similar, but slightly different
characteristics. For example, every filter type exhibits a different filtering
behavior, however each filter must implement the empty set rule (explained
in Section 6.3). This is implemented with a basic filter type from which all
other filter types inherit their basic behavior. Thus, the empty set rule is
implemented once for the basic filter type and all other filter types make use
of this implementation.

7.4. Interface

Both LogBoy and FilterGirl use a window based graphical user interface to
allow the moviemaker to create and edit databases and story structures. Both
interfaces are created in Macintosh Common Lisp’s (MCL’s) implementation
of interface objects which is based in CLOS. Many of the interface objects in
both LogBoy and FilterGirl make use of class inheritance to reduce the
amount of duplicated code when many objects share behaviors. For example,
all of the filter editing window types in FilterGirl have several common
interface items. The window definitions are built with a class hierarchy such
that there is a basic filter editing window class which implements all of the
common characteristics and each different type of filter editing window
inherits from this superclass. This is analogous to the inheritance scheme for
the filters themselves. Each of these specific editing window types can
specialize the canonical window to suit its own needs. Similarly, LogBoy has
two types of interface items, clip icons and value areas, which share the
behavior of dragability. This behavior is implemented with a “draggable-
object” superclass from which they both inherit.

— 68 —

8. Multivariant Movie Production

Building a multivariant movie is, in many ways, different from building a
traditional linear movie. Traditional movie production goes through several
steps beginning with a story idea in the filmmaker’s mind. This idea goes
through three written stages, plot treatment, script and shooting script,
which get more and more specific about exactly how the movie is to be shot.
Storyboards are then created which graphically layout how each shot must
look. After all of the planning stages are taken care of then production can
start. This involves actually recording the scenes onto film. Postproduction
mainly involves editing the film, but can also include special effects, dubbing
and music.

The creation of a multivariant movie begins in much the same way, however,
the moviemaker’s vision must encompass multiple playouts. The underlying
narrative structure must account for playing out a story in many different
ways or presenting many different types of stories. More practical differences
appear during the building of the multivariant movie. The preproduction (or
planning) process of a multivariant movie must not only include a story
structure with multiple playouts, but detailed shot lists or storyboards must
be constructed to insure proper coverage during shooting. The actual shooting
of the multivariant movie is similar to linear production, except that much
more content must be gathered to account for many playouts. Postproduction
not only includes editing (in this case editing video clips rather than the
entire movie), but also logging video clips and tweaking the story structure.

8.1. Preproduction

The preproduction process for a multivariant movie includes the traditional
steps of refining a story idea and planning for shooting. But multivariant pre-
production also includes considering the different ways in which the movie
might play out and what video clips will be needed to account for these
multiple playouts. The moviemaker must go into production with a detailed
list of video clips to gather during production. This is because multivariant
playout often calls for multiple versions of the same scene with slight
differences (e.g. R rated dialog with rude words and PG rated dialog without
rude words). Many similar versions can become difficult for the moviemaker
to keep track of and plan for.

— 69 —

One way a moviemaker can begin to visualize many slightly different
versions of video clips is by mapping a multivariant story onto axes of
playout. Each axis of playout defines a different way in which multiple
playouts of a single movie might vary. Most often these axes come from
parameters selected by the viewer, but they can include variations controlled
by other influences (e.g. available news stories) or random factors. For
instance, a multivariant movie might allow a viewer to control the rating
(either PG or R) and the amount of humor (funny or serious). In addition the
movie might include a random factor which controls whether the movie takes
place in Boston or New York (to add variety and try to get viewers to return
for multiple viewings). This movie would have three axes of playout: rating,
humor and location. These three axes define a three dimensional space which
must be filled with video content. Each video clip that makes up the
multivariant movie must have alternate versions which take into account
every possible combination of the various axes of playout. In this case, each
clip must have every combination of an R rated and a PG rated version, a
funny and a serious version, a Boston and a New York version. This adds up
to eight versions for each clip.

This exponential problem of adding axes of playout may seem to pose an
insurmountable task for the moviemaker, but in reality it is not nearly as bad
as it seems. In many instances a clip will work equally well for different
settings of an axis (e.g. a close up of a character that will work in either the
Boston version or the New York version). Very few clips in the movie will
actually have eight different versions.

This axes technique of visualizing needed content breaks down in some cases,
especially when selected video clips depend heavily their context (e.g. what
clips have already been presented). But on the whole it provides a simple way
of imagining the amount and types of content needed to populate a database
for a multivariant movie.

Axes of playout provide one way for a moviemaker to plan shot lists for
production. Another way to help plan for multivariant movie production is by
using the same tools that are used to build the movie itself. The moviemaker
must build some kind of multivariant story structure (either on paper or on
the computer) as part of the story scripting stage. If the moviemaker were to
formalize this story structure on the computer (with a tool like FilterGirl) and
then simulate running the movie, a detailed list of the required video clips
could be produced. The filter mechanism can work on dummy clips which
contain no video (perhaps illustrated with a video frame) and compile

— 70 —

sequences for possible playouts. The annotations attached to the clips in
these virtual playouts would then form a kind of simple shot list that the
moviemaker can then flesh out to help guide production.

8.2. Production

Production for a multivariant movie is not so different from production for a
linear movie. The camera must still be pointed at the characters and someone
must yell “Action!” and “Cut!”. The main difference is that much more content
must be gathered to cover all of the different versions of playout.

A device that could ease the amount of logging necessary during the
postproduction process is some type of smart camera. This smart camera
would transcribe information already known about the footage onto the
recording media as it is being shot. The reason that this is possible is that at
the time the footage is actually shot almost everything is known about it (e.g.
what scene in the script is this portraying, what characters appear, what is
the focal length of the camera, how does the camera move). Currently, the
moviemaker returns to the studio and the footage itself is the only record of
the shoot. Each video clip must be manually matched to the appropriate
descriptions.

A smart camera like this would require a recording deck that could record
textual data alongside video and audio data, a computer system with an on-
line version of the script (i.e. multivariant story structure) which can
interface to this text track and perhaps sensors on the camera which record
lens adjustments, movements, etc. By matching each point on the video tape
with a particular scene in the script during the shooting process the
moviemaker has already accomplishéd much of the logging process. Such a
smart data camera is described briefly in [DAP 91].

8.3. Postproduction

Postproduction for a multivariant movie is very different from postproduction
for a traditional linear movie. The postproduction process for a linear movie
generally consists of editing pieces of video content end to end to make a
single long playout. Other tasks might also be required such as creating
special effects or compositing footage.

Postproduction for a multivariant movie has three separate tasks that must
take place after shooting. First, rather than edit the footage into one long
playout video clips must be extracted and constructed from the video footage.
These clips will later be sequenced for individual playouts. Second, these

— 71—

video clips must be logged for use within description based story structures.
Generally the categories for logging are decided upon long before shooting
starts, but now the clips must be organized according to these categories.
Third, the story structure must be constructed that will guide the various
playouts. Usually this story structure is completely or partially constructed
during preproduction, but when the annotated video is actually worked into
the story structure many inconsistencies and faults will appear that must be
corrected.

One interested thing to note is that logging the footage and
constructing/modifying the story structure do not generally take place in
sequence. Instead they are simultaneous processes which feed off of each
other. As the story structure becomes complete, problems in the log will
become apparent and as the log gets corrected, problems in the story
structure must be fixed. This iterative process is because of the symbiotic
nature of the two processes in trying to make a coherent story. Lee
Morgenroth has explored this concept including the idea of a story structure
driver that automatically generates appropriate video logs [Morgenroth 92].
LogBoy and FilterGirl are described in this thesis as two separate
applications, however they can both be run simultaneously to provide the
moviemaker with an environment in which this iterative process can take
place.

8.4. Top Down/Bottom Up Movie Making

One of the interesting artifacts of using a nested story structure like layered
filters is the way that the story structures get built. Much like a procedural
programming language the filters for a multivariant story can be built either
in top down or bottom up style. These two strategies work best for different
types of movies.

Top down style story structuring seems to work best for projects where a
single moviemaker is carrying a single vision from idea to movie. The top
down style allows the creator to divide the movie into conceptual chapters
(perhaps using a temporal filter like the advancable template filter) and then
work on filling in the details of those chapters. This is much like building an
outline for a novel and filling it in.

Bottom up style story structuring works well for projects in which many
people are collaborating to produce a finished project. One example is
“Boston: Renewed Vistas”, a multivariant movie currently under construction
at the MIT Media Lab. “Boston: Renewed Vistas” uses footage which has been

— 79

collected by twelve students in a class taught by Professor Glorianna
Davenport. The footage portrays the process of a huge highway construction
project going on in downtown Boston. The students have collected footage on
planning meetings, community meetings, interviews with officials and
portraits of neighborhoods affected by the construction.

The students in the class are making use of a bottom up style of multivariant
movie making. Each student edits, logs and structures their personal footage,
constructing small vignettes about a place, a person or a process. These
vignettes are then collected into larger multivariant pieces that might make
up a portrait of a place or illustrate a stage in the construction process. These
larger pieces are collected into an interface from which viewers can express
preferences or interests and get a coherent movie.

This bottom up, collaborative movie making points towards a new type of
movie which will allow creators to add small pieces to a larger whole and
viewers to get a coherent narrative which illustrates a sampling of the entire
collection.

73—

9. “Just One Catch” In Detail

“Just One Catch”, the multivariant movie described in Chapter 2, was built
using the LogBoy and FilterGirl system. The movie itself is composed of
approximately 170 video clips annotated according to eight characteristics in
LogBoy. Almost every defined filter type is used to build the story structure
for “Just One Catch” including Boolean, temporal, contextual and interaction
filters. This chapter explains in detail the video database and story structures
that were built in LogBoy and FilterGirl for “Just One Catch”.

The story portrayed in “Just One Catch” can be divided into five separate
scenes: opening, lunch, stealing, chasing, retrieving. The opening scene shows
the entrance of Ian into the park and creative credits for the movie. The
lunch scene includes the three people that meet Ian on the park bench while
he is eating lunch. The stealing and chasing scenes portray the skateboarder
stealing and running with Ian’s Super-8 camera. The retrieving scene ends
the movie with Ian getting his camera back.

Figure 9.1 The highest level filter structure showing the five scenes of the movie.

This five part structure is echoed at the highest level of the filter set which
makes up “Just One Catch”. The top level filter, called “Top Level Story
Structure”, is an advancable template filter made up of five filters. Each of
the filters presents one scene in the movie. Each of the filters is run in

— T4 —

sequence to create a playout of the movie. This five part structure is
illustrated in Figure 9.1.

“Just One Catch” is different from many interactive movies in that it always
begins and ends in the same way. The middle of the movie, however, can play
out in hundreds of different ways. The first scene, the opening, is always the
same. To accomplish this the “Opening” segment in the top level advancable
template filter simply contains a shot template filter with a single description
filter which selects the opening clip. The opening clip includes the credits and
Ian walking down the park path, sitting down on a bench and opening his
lunch bag.

Figure 9.2 The filter structure for the lunch scene showing the three segments (one for
each lunch item) and the global variable filter that selects one version of each.

75 —

The second scene, the lunch scene, consists of three distinct parts: eating the
banana, eating the sandwich and eating the chips. Thus the second filter in
the “Top Level Story Structure” filter is another advancable template filter
called “Lunch Scene” which holds three filters: “Banana Segment”, “Sandwich
Segment” and “Chips Segment”. This structure can be seen in Figure 9.2.

“Just One Catch” can be manipulated by the viewer to have a longer or
shorter playout and to have more action or more dialog. The three segments
of the lunch scene will mold themselves to fit these preferences. To create a
longer total movie or to increase the amount of dialog in the movie there are
three possible versions of each lunch segment. These three versions, ranging
from longest to shortest, include a long version in which a secondary
character (Graham, the dog or the bum) talks Ian out of one part of his lunch,
a shorter version of the secondary character talking Ian out of his lunch and
the shortest version in which Ian simply eats that part of his lunch.

Each video clip in the lunch scene is described with which lunch item Ian is
eating (banana, sandwich, chips) and which version is portrayed in the clip
(short, medium, long).

The selection of shorter or longer segments in the lunch scene is accomplished
through the use of a global variable filter which is intersected with a
description filter. The description filter ensures that only clips portraying the
correct lunch item are selected while the global variable filter is used to select
a long, medium or short version of the segment. The viewer’s sliders which
manipulate the total length parameter and the action vs. dialog parameter
feed into a global variable in the FilterGirl environment. These global
variables then influence exactly which version of each segment is chosen.

An interesting consequence of the fact that three different versions of each of
three different segments can be selected is that variations in continuity must
be taken into account. For instance, if a segment portraying Ian eating his
banana and then laying the peel on the bench beside him is shown then
subsequent shots of the bench must show the banana peel. If instead Graham
talks Ian out of his banana then subsequent shots of the bench must show no
banana or banana peel.

This matching is taken care of with continuity filters within each lunch
segment which select different shots of the bench. Thirty-two different
versions of a close-up of the bench were collected which include all possible
combinations of present and absent lunch items. Each of these thirty-two
different closeups is described with which lunch items are present and which

— 76 —

item Ian is picking up to eat next. A continuity filter selects which
combination of items is shown based on which versions of lunch segments
(short, medium, long) were previously shown.

The stealing scene is much like the opening scene in that it always plays out
in the same way. It is represented by one clip in the database and the filter at
this point in the movie always selects this clip.

The chase scene also changes the way it plays out based on the viewer’s
preferences. Each playout of the chase scene is constructed of several chase
segments. These segments are in turn constructed shot by shot from the
database. To create a longer playout or to add more action to the movie a
global variable filter selects how many chase segments to add to a particular
playout (more segments for a longer movie or more action).

Video clips which make up the chase scene portray Ian and the skateboarder
running through different locations. These are described with where they
take place (one of six locations), how the shot fits into the development of a
chase segment (entering into a space, exiting from a space, insert shot, whole)
and what point of view is used (Ian’s, the skateboarder’s or neutral).

— 77—

Figure 9.3 The filter structure for a singlle chase segment. Several of these are
sequenced using a global variable filter to create the chase scene.

Each chase segment is built based on three filters which take advantage of
these descriptions. The “Chase Segment Development” filter takes care of the
temporal development of the segment. The “Spatial Continuity” filter takes
care of changing locations logically. The “Avoid Jump Cuts” filter handles
basic cinematic language constraints. These three filters are combined with
an intersection filter so that they are run in parallel on the database (i.e. all
three constraints affect the playout of a chase segment). The filter structure
of a chase segment is illustrated in Figure 9.3.

The first of these filters, the “Chase Segment Development” filter, builds each
chase segment temporally. This is accomplished with one of three shot
template filters (selected randomly with a select random filter): enter-insert-
exit, enter-exit or whole. The enter-insert-exit shot template filter builds the
chase segment across three shots: entering into a space, an insert (close-up) of
one of the characters, exiting from the space. The enter-exit shot template
does the same thing in two shots with no insert shot. The whole template
selects only video clips which portray Ian and the skateboarder entering and
exiting from the space in one shot. By structuring each segment around an

— 78 —

entrance and an exit it becomes possible to sequence chase segments in
arbitrary orderings.

The “Spatial Continuity” filter simply makes sure that each video clip
selected for a chase segment takes place in the same physical location. This is
accomplished with a continuity filter which matches the location slot to the
first location of the chase segment.

The “Avoid Jump Cuts” filter defines one aspect of traditional cinematic
language, the jump cut. In the simplest terms a jump cut can be defined as a
discontinuity in movie time (a cut) with no change in the physical location of
the camera. Each video clip in the chase scene is described with a point of
view which indicates where the camera is physically located relative to the
action. Clips described as having an “Ian” or “skateboarder” point of view are
shot from that character’s location. Clips described as having a “neutral”
point of view are shot from some other third-person viewpoint. The “Avoid
Jump Cuts” filter is a continuity filter which makes sure that the point of
view of any clip in a chase segment does not match the point of view of the
most recently present clip. This avoids jump cuts in the simplest way by
making sure that the movie never cuts to a camera angle which is similar to
the most recent camera angle.

The final retrieving scene is the same for every playout so it is represented by
a single video clip in the database. The filter active at this point in the
playout always selects this clip.

All together, “Just One Catch” was constructed using approximately 170
video clips, 8 descriptive slots containing 42 descriptive values and 34 filters
of 9 different types.

—79 —

10. Related Work

This chapter illustrates previous work related to the LogBoy and FilterGirl
system. The first section looks at precedents in database interfaces and video
databases. The second section traces work in description based story
structures.

10.1. Database Interfaces

LogBoy’s graphical layout of database information has its roots in the Spatial
Data Management System (SDMS) of MIT’s Architecture Machine Group
[Bolt 80; Bolt 79]. SDMS provided the user with a graphical “world view”
populated with iconic representations of photographs, letters, television sets
and hand-held calculators. A large screen close-up of the world view
permitted the user to examine and manipulate a particular section of the
data world. While SDMS allowed graphical perusal of information (including
video information) and some limited manipulation of data structures, the
data structures and interface were hard-coded. A later SDMS prototype
developed at the Computer Corporation of America by C.H. Herot[Herot 80]
graphically displayed data derived from a symbolic database.

More recent graphical interfaces for querying symbolic databases can be
found in Chris Hancock’s Tabletop system [HKG 92] and in Anselm Spoerri’s
Query Spreadsheet [Spoerri 93]. The Tabletop system creates icon based
displays using Venn diagrams and/or two-dimensional tables. The display
space is similar to LogBoy’s slot windows, however data can only be viewed
graphically. Any manipulation of the underlying data structures must be
carried out on a textual representation of the database. Spoerri’s Query
Spreadsheet provides for a graphical visualization of complex database
queries which can give a comprehensive overview of multiple combinations of
Boolean query constraints. This is accomplished through an iconified
generalization of Venn diagrams.

A system which makes use of positionable video micons in a two-dimensional
space is Eddie Elliott’s Video Collage [Elliott 93]. This system acts as a kind
of “video sketchpad”, allowing the user to freely grab, arrange and analyze
multiple pieces of digital video footage. In the current version, symbolic
annotations cannot be attached to video footage, however bitmapped sketches
can be superimposed on the collage to provide visual cues to the user.

— 80 —

10.2. Video Databases

Amy Bruckman’s Electronic Scrapbook [Bruckman 91] includes a video
annotation system with design goals similar to LogBoy. The Electronic
Scrapbook’s logger is intended for describing home movie footage for use in a
story template system which would automate some of the editing process. The
Electronic Scrapbook makes use of an inferencing mechanism which aids the
moviemaker by trying to “guess” descriptions for new pieces of footage. The
logger makes use of a chunk-based temporal representation, but the logging
interface uses a linear logging paradigm which precludes logging within a
descriptive context.

Thomas Aguierre Smith’s Stratograph [AS 92] and Marc Davis’ Director’s
Workshop [Davis 91] represent two approaches to logging video using a
stream-based temporal representation. The Stratograph system was
originally designed for annotating video footage shot in the course of scholarly
research. The stream-based representation provides an ideal setting for the
multiple layers of description that must be added to the video. The
Stratograph gives the user a keyword-based descriptive language that
organizes keywords into “keyword classes”. Keyword classes help the user to
maintain consistent annotations across several logging sessions. These
keyword classes were echoed in the way LogBoy presents value areas within
slot windows.

Davis’ Director’s Workshop also makes use of a stream-based representation
for video annotation, however the descriptive language is very different. The
descriptive language is based on a hierarchy of icons intended to present a
complete ontology for logging video. This approach is intended to allow
multiple users to retrieve video from large databases by constraining the
descriptive language to a canonical form.

10.3. Descriptive Story Structures

Amy Bruckman’s work on the Electronic Scrapbook also included a facility for
modeling stories. Users who had logged their home movie footage could then
automatically generate simple stories by selecting from a range of story
structures. These structures included themes such as “our son at age two”
and “important firsts in the lives of our children”. The story structures are
built using selection criteria to produce a set of relevant video segments.
These segments are then sorted based on chronology and filtered based on
other criteria such as “sensitive subject matter” or “bad audio” to produce a
sequence.

— 81—

Homer is a system developed by Lee Morgenroth [Morgenroth 92] which
works with Aguierre Smith’s Stratograph to allow moviemakers to produce
linear movies more efficiently. Moviemakers are presented with a time line
which represents the final linear presentation of the movie. Descriptions are
then layered onto this timeline and searches into the video database are used
to fill the timeline based on these descriptions. The moviemaker then refines
the descriptions until the desired movie is achieved.

A final project, Ben Rubin’s Constraint-Based Cinematic Editing system
[Rubin 87], used three fixed filtering layers to produce a movie with multiple
playouts. Each of the layers would look for repeated action, length of clip,
narrative importance and cinematic grammar to produce personalized
playouts for viewers. Viewers were able to change how long the entire playout
should take and what the pacing should be.

FilterGirl builds on top of all of these works by providing a more generalized
story-structure environment to moviemakers. FilterGirl is not fixed into a
already existing ontology for describing video clips, allowing creators to log
only characteristics of the video which are important. Also, FilterGirl
provides ways of building contextual constraints across playouts. This can
help creators to produce multivariant movies which adhere to traditional
continuity rules across multiple playouts.

— 82—

11. Future Directions

There are many ways that the LogBoy/FilterGirl system could be extended in
the future. These include enhancements to the logging and story structure
interfaces, reworking the underlying filtering paradigm and experimenting
with new types of movies suggested by a description based story structure
system.

One of the biggest problems, currently, with using FilterGirl is the fact that
FilterGirl’s filtering mechanisms do not provide any type of lookahead into
the playout of the movie. This can present problems when the database is not
fully populated. For instance, at a particular point in a chase scene between
two cars the filters might select two appropriate clips: a clip of the two cars
turning onto a residential street or a clip of the two cars entering onto the
highway. If the database does not include the correct clips to allow the chase
scene to resolve on the highway, but does include clips to allow resolution on
the residential street then the residential street clip should be chosen. This
choice would be based on availability of subsequent clips.

Currently, FilterGirl does not provide any way to select clips based on the
availability of subsequent clips. One simple way to do this is to simulate
running the movie to completion every time a clip is selected. This means
that when the filters present several possible clips for a point in the database
each one could be checked for viability by seeing if the movie would playout to
completion without running into a dead end (i.e. a situation with no available
clips). Some kind of debugging interface could also be provided to help the
moviemaker to find out exactly where and how the movie is breaking down.

FilterGirl’s interface is currently usable, but not a very pleasant environment
for creating stories. In general, too many windows must be created even to
construct a simple story. A simpler interface should be provided that allows
the moviemaker to easily scan all of the defined filters. This might be similar
to outlining tools that writers often used during word processing. Filters
which contain other filters could be “folded” and “unfolded” to hide or reveal
their inner structure. A scripting language for creating filters is another
possibility.

LogBoy’s interface currently works very well, however it could use a more
traditional “clip at a time” interface for fine tuning descriptions. The interface

— 83—

would take the place of the current clip description window. It would allow
the moviemaker to not only view the descriptions attached to a particular
clip, but also modify them. This would require an algorithm for automatically
moving clip icons within slot windows when their descriptions are changed
through this new interface.

New types of movies can be created with tools like LogBoy and FilterGirl.
One way is to abandon the traditional moviemaker/viewer model that has
been used throughout this thesis. With LogBoy and FilterGirl viewers can
take on roles that are now the responsibility of the moviemaker.

For example, imagine a system which includes several predefined categories
for logging video footage and a few predefined filter sets. The viewer (now
closer to a creator) logs footage based on the predefined categories and then
runs the filter sets on these newly created video logs. This could provide
viewers with a way of categorizing their personal footage and easily creating
simple stories. Amy Bruckman’s “Electronic Scrapbook” system does
something similar to this for home movies.

Other new combinations of the moviemaker’s and viewer’s roles are possible.
Viewers could build their own filter sets from scratch for previously logged
footage, possibly making their own music videos or designing business
presentations. Several moviemakers could collaborate on a single movie by
each providing a set of annotated video which will then be combined with
other video and appropriate filter sets. Glorianna Davenport’s “Boston:
Renewed Vistas” project is one model for this type of collaboration. Also, a
moviemaker could create a type of movie serial in which each episode does
not consist of a complete movie in itself, but instead a set of annotated footage
that incrementally extends an existing database. As new footage was added
new sequences and stories would appear for the viewer.

— 84 —

12. Conclusion

It has only been possible for the past few years to consider creating a movie
under viewer control with multiple playouts. Description-based story
structures seem to be the most promising method of building these
multivariant movies. Description-based structures allow moviemakers to
structure narratives that are based on descriptions of content rather than on
hard-coded links to specific pieces of content. This is an advantage in terms of
extensibility and understandability. Most importantly, description-based
structures can provide viewers with personalized playouts that are also
uninterrupted by periodic interaction.

Description-based story structures rely on video databases with complete,
correct annotations. This means that video loggers must be designed
specifically for building description-based movies. LogBoy addresses this in
several areas, including temporal representation, descriptive depth and
descriptive context. It provides moviemakers with an environment in which
relevant descriptions can be simply and easily created, scanned and
examined.

FilterGirl gives moviemakers a way to think about building description-based
story structures that is centered around sets of layered filters. Individually,
these filters are simple selection mechanisms, but when combined in various
ways can create multivariant movies with complex dependencies and
sequencings.

Description-based multivariant movies not only require revisions in the ways
movies are currently produced, but also hint at new mediums for narrative
expression. These new forms not only encompass movies which play out in
multiple ways, but also new types of collaborations between moviemakers
and viewers. Multivariant movies blur traditional distinctions between
moviemaker and viewer as it becomes possible for viewers to personalize
playouts and create original movies using existing video databases and story
structures.

— 85 —

13. Bibliography

[AS 92]

[ASD 92]

[Bates 90]

[Bolt 80]

[Bolt 79]

[Bruckman 90]

[Bruckman 91]

Aguierre Smith, Thomas. If You Could See What I Mean...:
Descriptions of Video in an Anthropologist’s Video Notebook.
Master’s Thesis (MIT Media Lab: 1992).

Aguierre Smith, Thomas and Glorianna Davenport. “The
Stratification System: A Design Environment for Random
Access Video.” In Proceedings of Workshop on Networking
and Operating System Support for Digital Audio and Video
(San Diego, CA: 1992).

Bates, Joseph. “Computational Drama in Oz.” In Working
Notes of the AAAI-90 Workshop on Interactive Fiction and
Synthetic Realities (Boston, MA: 1990).

Bolt, Richard. “ ‘Put That There’: Voice and Gesture at the
Graphics Interface.” In Proceedings of SIGGRAPH ‘80
(1980).

Bolt, Richard. Spatial Data Management. (Cambridge: MIT,
1979).

Bruckman, Amy. “The Combinatorics of Storytelling:
Mpystery Train Interactive.” Interactive Cinema Group:
Working Paper (MIT Media Lab: April 1990).

Bruckman, Amy. The Electronic Scrapbook: Towards an
Intelligent Home-Video Editing System. Master’s Thesis
(MIT: 1991).

[Davenport 87]

[DEH 93]

[DAP 91]

[Davis 91]

[Elliott 93]

[Furnas 86]

[Galyean 92]

Davenport, Glorianna. “New Orleans in Transition, 1983-
1986: The Interactive Delivery of a Cinematic Case Study.”
Remarks given at The International Congress for Design
Planning and Theory (Boston, MA: August 1987).

Davenport, Glorianna, Ryan Evans and Mark Halliday.
“Orchestrating Digital Micromovies.” Leonardo (26-4: 283-
288, 1993).

Davenport, Glorianna, Thomas Aguierre Smith and Natalio
Pincever. “Cinematic Primitives for Multimedia.” IEEE
Computer Graphics and Applications (67-74, July 1991).

Davis, Marec. “The Director’s Workshop: Semantic Video
Logging with Intelligent Icons.” In Proceedings of AAAI-91
Workshop on Intelligent Multimedia Interfaces (Anaheim,
CA: 1991).

Elliott, Edward Lee. Watch ® Grab * Arrange * See:
Thinking With Motion Images via Streams and Collages.
Master’s Thesis (MIT: 1993).

Furnas, George W. “Generalized Fisheye Views.” In
Proceedings of CHI ‘86: Human Factors in Computing
Systems (Boston, MA: 1986).

Galyean, Tinsley A. “Continuous Variables for Interactive
Film.” Computer Graphics and Animation Group: Working
Paper (MIT Media Lab: February 1992).

— 87 —

[Haase 92]

[HKG 92]

[Herot 80]

[Tuppa 88]

[Meehan 81]

[Morgenroth 92]

[Perey 92]

[Rubin 87]

Haase, Ken. “Framer: A Database System for Knowledge
Representation and Media Annotation.” Music and
Cognition Group: Technical Note (MIT Media Lab: August
1992).

Hancock, C. M., J. J. Kaput and L. T. Goldsmith.
“Authentic Inquiry With Data: Critical Barriers to
Classroom Implementation.” Educational Psychologist (27-
3: 337-364, 1992).

Herot, C. F. “Spatial Management of Data.” ACM
Transactions on Database Systems (5-4: 493-514, 1980).

Iuppa, Nicholas V. Advanced Interactive Video Design: New
Techniques and Applications. (White Plains, NY:
Knowledge Industry Publications, 1988).

Meehan, James. “Tale Spin”. In Inside Computer
Understanding, edited by R. Schank and C. K. Riesbeck.
(New Jersey: Lawrence Erlbaum Associates, 1981).

Morgenroth, Lee Hayes. Homer: A Video Story Generator.
Bachelor’s Thesis (MIT: 1992).

Perey, Christine. “A New Map of Boston.” The QuickTime
Forum (2-3: 1-6, 1992).

Rubin, Benjamin. Constraint-Based Cinematic Editing.
Master’s Thesis (MIT: 1987).

— 88 —

[Spoerri 93] Spoerri, Anselm. “Visual Tools for Information Retrieval.”
In Proceedings of Visual Languages 93 (Bergen, Norway:
1993).

— 89 —

