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Technology and Woods Hole Oceanographic Institution on January 18, 2002, in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography

ABSTRACT

Photochemical transformations of chromophoric dissolved organic matter
(CDOM) are one of the principal processes controlling its fate in coastal waters. The
photochemical decomposition of CDOM leads to the formation of a variety of
biologically available carbon substrates. Photomineralization of CDOM to dissolved
inorganic carbon may constitute a significant flux in the global carbon cycle.
Photoreactions ultimately lead to the destruction of the chromophores and hence to the
loss of absorption and fluorescence (bleaching), thus acting as a sink for CDOM.
Photodecomposition may proceed both via direct photochemical reactions, following
absorption of photons by CDOM, or via indirect processes, involving DOM reactions
with photochemically generated intermediates such as reactive oxygen species (ROS).

The reactions of CDOM with two important ROS, superoxide (02) and hydroxyl
radical (OH-), have different consequences. Superoxide reactions with CDOM did not
appear to degrade the CDOM. Instead, CDOM catalysed the dismutation of 02 to 02 and
HOOH. This reactivity has the effect of limiting the steady-state concentration of 02 in
most coastal waters. In contrast, reactions of CDOM with radiolytically produced OH*
formed CO 2 and several low molecular weight carboxylic acids, as well as bleached both
the absorption and fluorescence at slow rates. These reactions did not increase the
bioavailability of this material to a microbial consortium.

Both direct and indirect photochemical processes are expected to be accelerated
by the presence of iron. However, addition of iron to several coastal seawater samples
neither increased the rate of photobleaching nor the apparent quantum yield (AQY) of
CO. Similarly, the addition of the siderophore desferrioxamine B did not change the
photobleaching rates or the CO AQYs. The addition of 2 gM Fe to solutions of
Suwannee River Fulvic Acid did not increase the photobleaching rates. In combination
with prior results, these findings suggest that indirect photoreactions do not increase the
photobleaching rates of CDOM in coastal systems.

A model of CDOM photobleaching based on the assumption of negligible indirect
photobleaching processes and multiple non-interacting chromophores was created
utilizing photobleaching data produced with monochromatic light to calculate the spectra
and exponential decay rates of independent components. These components were then
used to calculate bleaching spectra for broadband light and compared with actual
bleaching spectra.

Thesis supervisor:
Bettina M. Voelker, Assistant Professor of Civil and Environmental Engineering, MIT
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Sea-Fever

I must go down to the seas again, to the lonely sea and the sky,
And all I ask is a tall ship and a star to steer her by,
And the wheel's kick and the wind's song and the white sail's shaking,
And a gray mist on the sea's face and a gray dawn breaking.

I must go down to the seas again, for the call of the running tide
Is a wild call and a clear call that may not be denied;
And all I ask is a windy day with the white clouds flying,
And the flung spray and the blown spume, and the seagulls crying.

I must go down to the seas again to the vagrant gypsy life,
To the gull's way and the whale's way where the wind's like a whetted knife;
And all I ask is a merry yarn from a laughing fellow-rover,
And quiet sleep and a sweet dream when the long trick's over.

-John Masefield (1878-1967)

4



Acknowledgements
First, and most importantly, I need to thank my advisor, Tina Voelker. Tina not

only got me into the Joint Program on extremely short notice (2 weeks in August!), but

gave me free rein to develop my own research interests. I am also glad to have the unique

opportunity of being her first graduate student. All the members of my thesis committee,

Ed Boyle, Neil Blough, Dan Repeta, and Ollie Zafiriou, have been extremely generous

with their time and attention. Ollie has also been generous with lab space and cruise time,

two very precious commodities. Rossana Del Vecchio and Neil Blough have been

extremely unselfish with their data, and Rossana in particular has been patient with my

desperate, last-minute emails asking for data.

A large cast of other people have been of invaluable help on the various research

cruises that I have managed to scrounge: Greg and Linda Cutter, Craig Taylor, John

Tolli, Lori Ziolkowski, Ray Najjar, Jen Werner, Bob Kieber, and Xie Hui, as well as the

crews of the R/V Cape Hatteras, R/V Cape Henlopen, R/V Endeavor and the R/V

Weatherbird II. Dave Glover, Urs von Gunten, and Michael Elovitz were of great help for

different aspects of this thesis. In particular, Dave's help with Matlab has allowed me to

develop a tolerance, at least, for matrix algebra. The members of the Voelker group,

Barbara Southworth, Megan Kogut (thanks for the 'Dissertation Station!'), Wai Kwan,

Mike Pullin, and Stefan Bertilsson have been tolerant labmates, appreciative audiences

for practice talks, and good friends. I must also thank Frieda for making a number of

meetings with Tina an excuse to play with an amazingly cute (but large!) puppy.

As a Joint Program student, I have been very fortunate to be able to interact with

two amazing communities: Woods Hole and Parsons Lab. The denizens of Fye Lab,

including Jim Moffett, Ed Sholkovitz, Tim Eglinton, Dan, Ollie, Chris Reddy, and many

others, have always been cheeful and welcoming. Parsons Lab has been my home for

these past five and half years, sometimes almost literally, although I've only slept over

once. Parsons could not be a home without a mom, and Sheila Frankel has amply filled

that role. She's even been generous enough to allow her husband Don to play ice hockey

with us. Through the years I've also managed to play soccer with an amazingly diverse

5



array of Parsonites, and I've always enjoyed the games, even when we lost. (Go Hydros!)

Many fellow students and postdocs in both Woods Hole and Parsons have been good

friends, willing to engage in both intellectual conversation and completely unintellectual

chat: Rebecca Thomas (and Muddy), Steve Fries (and Jasmine), Bridget Bergquist, Emily

Slaby, Mak Saito, Anna Cruise, Holly Michael, Matt Sullivan, Ana Lima, Vanya Klepac,

Sam Arey (thanks for the late night company at the computers), Andy Tolonen, Daniel

Pedersen, Janelle Thompson, Greg Noonan, John Gambino, Dave Senn, Nicole Keon,

Dan Brabander, Jim Gawel, Jenny Jay, Rachel Adams, Kirsten Findell, Dror Angel,

Debbie Lindel, and everyone else in Parsons who has ever spent time in the lunchroom.

My years in Cambridge and Somerville and at MIT have brought me many close

friends. Chris Morse in particular has been an amazing friend, and labmate, and

housemate. I'd give him his own paragraph, but I'm running out of room. Chris Long has

been another amazing friend, starting from our first meeting as randomly joined roomates

in Tang 19D eight! years ago. And 2 Brastow Ave. was never the same once Carlos

Navas left. Thank you for the sangria recipe. Ann and Ray, Deb and Brian, Catharine and

Brant, Tivol, and Rose and Brian have all made life enjoyable over the years here,

especially for many memorable birthday dinners.

Many family members, and my parents in particular, have been enthusiastic

supporters during my graduate career. Dad, thank you for asking if I was writing yet

(every week for the past three years). My grandfather, John H. Welsh, has been an

inspiration, even more so once I learned that he had been on research cruises aboard the

original R/V Atlantis in 1930 (the year WHOI was founded). Judy and Mark Handley

have been supportive and helpful throughout my years in the Joint Program, and I have

greatly enjoyed sailing with them. Finally, and most importantly, I need to thank Heather

Handley. This thesis would not have happened without her editing and support.

Research funding was provided by the National Science Foundation and the

Ralph M. Parsons Foundation. Different aspects of this work was supported by NSF

grants OCE-9529448, OCE-9521628, OCE-9811208, and OCE-9819089, which are

acknowledged at the end of each relevant chapter.

6



TABLE OF CONTENTS

ABSTRACT ................................................................................................................ 3
ACKNOW LEDGEM ENTS .............................................................................................. 5

TABLE OF CONTENTS......................................................................................................7

LIST OF FIGURES ....................................................................................................... 10

LIST OF TABLES............................................................................................................13

CHAPTER 1. INTRODUCTION: PHOTOCHEMISTRY OF CHROMOPHORIC DISSOLVED
O RGANIC M ATTER .................................................................................................... 15

INTRODUCTION........................................................................................................ 16
AQUATIC DISSOLVED ORGANIC MATTER: COMPOSITION AND PROPERTIES .................... 16

Autochthonous and allochthonous D OM ............................................................. 17
Hum ic and fulvic acids ....................................................................................... 17
M arine hum ic substances ................................................................................... 19
U ltrafiltered dissolved organic matter ................................................................. 19

CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM).......................................20
CDOM Absorption ................. ................. .......... 21
Fluorescent dissolved organic m atter (FD OM ).................................................. 22
CD OM and FD OM in estuaries..............................................................................23

CDOM PHOTOCHEMISTRY..........................................................................................23
Photochemistry as a sink of CDOM ................................................................... 24
Photochemical Mechanisms: Direct versus Indirect Photochemistry .................. 24

M ECHANISM S OF DIRECT CDOM PHOTOCHEMISTRY....................................................26
MECHANISMS OF INDIRECT CDOM PHOTOCHEMISTRY ................................................ 27

Reactive Oxygen Species................................................................................... 27
Fate of ROS: Reaction with D OM and m etals ........................................................ 28

ROLES OF FE .............................................................................................................. 29
M ECHANISM S OF PHOTOBLEACHING ........................................................................ 30
CONTRIBUTIONS OF THIS THESIS.............................................................................. 31
REFERENCES ........................................................................................................... 32

CHAPTER 2. CHEMISTRY OF SUPEROXIDE RADICAL (02) IN SEAWATER: CDOM
ASSOCIATED SINK OF SUPEROXIDE IN COASTAL WATERS ........................................... 57

ABSTRACT .............................................................................................................. 58

INTRODUCTION........................................................................................................ 59
M ETHODS.................................................................................................................60

Samples ................................................................................................................. 60
Kinetics ................................................................................................................. 61

RESULTS .................................................................................................................. 63

DISCUSSION ............................................................................................................... 65

7



Redox activity ........................................................................................................ 65
Steady state02-concentrations .............................................................................. 67

AcKNowLEDGmEw s ................................................................................................. 68

REFERENCES .............................................................................................................. 70

CHAPTER 3. ]REACTIONS OF HYDROXYL RADICAL WITH HUMIC SUBSTANCES:

BLEACHING9 MINERALIZATION9 AND PRODUCTION OF BIOAVAILABLE CARBON

SUBSTRATES .................................................................................................................. 91

ABSTRACT ................................................................................................................. 92

INTRODUCUON ........................................................................................................... 93

M ETHODS ................................................................................................................... 96

M aterials ................................................................................................................ 96
Radiolysis ........... ... ** 97
Analytical Techniques ........................................................................................... 98

Determination of low-molecular weight carboxylic acids ....................................... 99
Bioassays ............................................................................................................. 100

REsum .................................................................................................................. 102
DiscusSION ............................................................................................................. 106

LM W acid production .......................................................................................... 106
Production of bioavailable carbon substrates ........................................................ 107
DIC production .................................................................................................... 108
Bleaching ............................................................................................................. 109
OH* as a mechanism of DOM photoproduct formation ........................................ 109

AcKNOWLEDGEMENTS ............................................................................................. Ill

REFERENCES ............................................................................................................ 112

SRHA ...................................................................................................................... 116
SRFA ...................................................................................................................... 116

CHAPTER 4: A MULTICOMPONENT MODEL OF CDOM PHOTOBLEACHING ................ 131

ABSTRACT ............................................................................................................... 132

INTRODUCT10N ......................................................................................................... 133

Theory ................................................................................................................. 136

M ETHODS ................................................................................................................. 140

Data/Bleaching Samples ...................................................................................... 140
M odeling ............................................................................................................. 141

Broadband reconstruction .................................................................................... 144
REsuLTs .................................................................................................................. 145

Broadband reconstruction .................................................................................... 147

DiscusSION ............................................................................................................. 148

AcKNowLEDGEMENTS ............................................................................................. 150

REFERENCES ............................................................................................................ 151

APPENDix ................................................................................................................ 176



CHAPTER 5. IRON EFFECTS ON THE PHOTOBLEACHING OF CDOM AND THE
PHOTOPRODUCTION OF CO ........................................................................................ 187

ABSTRACT ............................................................................................................... 188
INTRODUCTION......................................................................................................... 189

Photobleaching .................................................................................................... 190
Estuarine processes..............................................................................................193

M ETHODS.................................................................................................................195
Samples ............................................................................................................... 195
Photobleaching .................................................................................................... 196
Gamm a Radiolysis...............................................................................................197
Analyses .............................................................................................................. 198
Carbon M onoxide Apparent Quantum Yields.......................................................199
Carbon M onoxide Optical Buoy Incubations........................................................200

RESULTS .................................................................................................................. 201
Photobleaching of fluorescence............................................................................202
Effect of Fe on photobleaching ............................................................................ 202
Excitation-em ission spectroscopy ........................................................................ 202
CO photoproduction ............................................................................................ 203
Fe effects on CO photoproduction........................................................................204

DISCUSSION ............................................................................................................. 205
Photobleaching of Absorption..............................................................................205
Photobleaching of Fluorescence...........................................................................207
Excitation-Em ission Spectra ................................................................................ 207
Fe effects on photobleaching................................................................................209
Fe effects on CO photoproduction in estuarine waters..........................................210
Conclusions ......................................................................................................... 211

ACKNOWLEDGEMENTS ............................................................................................. 211
REFERENCES ............................................................................................................ 213

CHAPTER 6. THESIS DISTILLATION AND FUTURE WORK.............................................249

GEOCHEMICAL SIGNIFICANCE...................................................................................250
FuTURE W ORK.........................................................................................................252
REFERENCES ............................................................................................................ 254

AUTHOR'S BIOGRAPHY...............................................................................................255

9



LIST OF FIGURES

Figure 1.1 UV-visible absorption spectrum of three different CDOM samples.......38

Figure 1.2 Primarly photochemical reactions of CDOM..............................................40

Figure 1.3 Photogeneration of reactive oxygen species via secondary CDOM reactions 42

Figure 1.4 M echanism of photodecarboxylation ............................................................ 44

Figure 1.5 Potential mechanism of photodecarbonylation ........................................... 46

Figure 1.6 Interconversion between the various oxidation states of oxygen................48

Figure 1.7 The most important mechanisms of OH- reactions with lignin models ..... 50

Figure 1.8 Redox cycling of dissolved and particulate Fe .......................................... 52

Figure 1.9 Two mechanisms of the role of Fe in CDOM photochemistry...........54

Figure 2.1 An example of a plot of kpseudo versus percent-sample-added.....................72

Figure 2.2 The correlation between the observed kpseudo and the absorbance of the water

sam p les .................................................................................................................. 7 4

Figure 2.3 The relationship between the observed kpseudo values and chlorophyll a (A),

nitrate (B), phosphate (C), and silicate (D) concentrations..................................76

Figure 2.4 The effects of several different sample treatments on kpseudo..........................78

Figure 2.5 Hydrogen peroxide produced during either the self-dismutation or the DOM

catalyzed dismutation of superoxide.................................................................... 80

Figure 2.6 The variation of observed kpseudo with initial superoxide concentration.....82

Figure 2.7 Suggested redox cycle between quinone, semiquinone radical, and

hydroquinone.........................................................................................................8 4

Figure 2.8 The observed kpseudo versus the optical absorption at 300 nm for several 10

mg/L hum ic and fulvic acid solutions................................................................. 86

Figure 2.9 Correlation between the observed kpseudo and (A) the organic radical content

and (B) the percent arom aticity .......................................................................... 88

10



Figure 3.1 Mineralization of 14C-formate in 5 mg C r1 SRFA and SRHA solutions ...... 118

Figure 3.2 Measured formation of formic, acetic, malonic, and oxalic acids from the

reaction of OH. with SRFA (A) and SRHA (B). .................................................. 120

Figure 3.3 Average bacterial abundance in incubated cultures of GF/F filtered seawater

amended 25% (v/v) with Suwannee River Fulvic Acid, SRFA, (A) or Suwannee

River Humic Acid, SRHA (B) with or without y-radiolysis treatment .................. 122

Figure 3.4 DIC production from irradiated SRFA without and with 0.3 M tert-butanol as

a radical scavenger...............................................................................................124

Figure 3.5 DIC production divided by OH* generated (gM/pM) for various treatments of

SR FA and SRH A solutions..................................................................................126

Figure 3.6 Bleaching of SRFA at 300 nm with and without oxygen, SRHA solutions with

and without oxygen, DOC-free seawater amended with SRFA prior to irradiation,

and a coastal seaw ater sam ple..............................................................................128

Figure 4.1 Fit components to monochromatic bleaching of 10mg 1- SRFA at different

w avelengths. ....................................................................................................... 156

Figure 4.2 Decrease in the reduced X2 for the residual values of the model fit to the data

............................................................................................................................ 15 8

Figure 4.3 Absorbance values of the four (top) and six (bottom) component fit to the

monochromatic bleaching data of SRFA. ............................................................ 160

Figure 4.4 Four component fit to monochromatic bleaching data of 10mg 1- SRFA at

different w avelengths...........................................................................................162

Figure 4.5 Six component fit to monochromatic bleaching data of 10mg 1- SRFA at

different w avelengths. ......................................................................................... 164

Figure 4.6 Graphical analysis for the determination of constant quantum yield for the four

com ponent fit. ..................................................................................................... 166

Figure 4.7 Graphical analysis for the determination of constant quantum yield for the six

com ponent fit.......................................................................................................168

11



Figure 4.8 Comparison of reconstructed spectra calculated with different numbers of

components with observed absorption values for broadband (Xj > 320 nm)

irradiation of SR FA . ........................................................................................... 170

Figure 4.9 Expanded view of the early timepoints for the comparison of the reconstructed

sp ectra ................................................................................................................ 172

Figure 4.10 Percent residual ((data-fit)/data) x 100% for the calculation of broadband

bleaching spectra of SRFA . ................................................................................. 174

Figure 5.1 Schematic diagram of the photobleaching apparatus ................................... 224

Figure 5.2 Irradiance spectrum of the solar simulator and a solar spectrum..................226

Figure 5.3 Normalized photobleaching curves of CDOM absorption in three unaltered

seawater samples from the Delaware Bay ............................................................ 228

Figure 5.4 Normalized photobleaching curves of CDOM fluorescence F/R values for

three unaltered seawater samples from the Delaware Bay and SRFA ................... 230

Figure 5.5 Normalized bleaching curves of CDOM absorption and fluorescence F/R

values for three treatments of two different seawater samples Fe, DFOM, and

unam ended .......................................................................................................... 232

Figure 5.6 Normalized bleaching curves of CDOM absorption and fluorescence F/R

values for additions of Fe to SRFA solutions ....................................................... 234

Figure 5.7 Excitation-emission matrix spectra (EEMs) for 4 different water samples...236

Figure 5.8 EEMs difference spectra showing the bleaching of the two peaks, A and H 238

Figure 5.9 EEMS difference spectra showing the bleaching of fluorescence by

radiolytically-produced O H -................................................................................ 240

Figure 5.10 Apparent quantum yields (AQY) of CO photoproduction from estuarine

seawater for different treatments: Fe added, DFOM added, and unaltered ...... 242

Figure 5.11 CO photoproduction from Sargasso Sea water during one daylight period as

determ ined using an optical buoy.........................................................................244

Figure 5.12 Bleaching of fluorescence versus bleaching of absorption for 4 different

samples: SRFA S4, S20FeB, and S29 ................................................................. 246

12



LIST OF TABLES

Table 2.1 Calculated O2 steady state concentrations in coastal waters ....................... 69

Table 3.1 OH. reaction rate constants with SRFA and SRHA as a function of cumulative

O H ' exposure ...................................................................................................... 115

Table 3.2 Ratio of mol carboxylic acid produced per mol OH' for SRFA and SRHA... 115

Table 3.3 Initial DOC measured in dilution culture bioassays and bacterial abundance,

cellular carbon content and total bacterial carbon at day 6....................................116

Table 4.1 ANOVA results testing goodness-of-fit for multicomponent fits to

m onochrom atic irradiation data sets.....................................................................153

Table 4.2 ANOVA tests of the significance of adding a component to multicomponent

fits of monochromatic irradiations of SRFA.........................................................153

Table 4.3 The relative bleaching decay constants (in units of hr-1 (mol photons m7 2)-) for

the best fits to the monochromatic data sets..........................................................154

Table 4.4 Sum of squared residuals for the comparison of calculated broadband bleaching

spectra w ith observed spectra .............................................................................. 154

Table 5.1 Characteristics of water samples used in photobleaching experiments .......... 217

Table 5.2 Measured Fe concentrations in irradiation samples.......................................217

Table 5.3 Spectral slopes (S) of absorption curves determined from least-squares

regression of log-linearized absorption values......................................................218

Table 5.4 Fitting constants for bi-exponential fits of absorption photobleaching .......... 219

Table 5.5 Fitting constants for bi-exponential fits of photobleaching of fluorescence... 220

Table 5.6 Excitation and emission peak wavelengths determined from EEMS ............. 221

Table 5.7 Apparent quantum yields of CO from seawater samples in mole per photon

absorbed at 3 different wavelengths ..................................................................... 222

13



14



CHAPTER 1.

INTRODUCTION: PHOTOCHEMISTRY OF CHROMOPHORIC DISSOLVED
ORGANIC MATTER
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Introduction

The fate of dissolved organic carbon (DOC) is an important part of the global

carbon cycle (1). Approximately 0.25 x 1015 g (0.25 Pg) of terrestrially-derived DOC is

discharged annually via rivers into estuaries and the coastal ocean. This represents about

60% of the annual total delivery of terrestrial organic carbon to the world's oceans (2,3).

This rate of discharge of terrestrial DOC is sufficient to replace the entire oceanic DOC

inventory every 3000 years, yet there is no evidence that this material accumulates in

marine systems (1,4-7). Well characterized removal processes, such as net heterotrophy

(8,9) and burial in coastal sediments (10), account for only 50% of the total input.

Photochemical reactions, such as DOC photomineralization to dissolved inorganic carbon

(DIC) and increases in DOC bioavailability, may represent a significant portion of the

remaining missing sink (11). This thesis is part of an investigation into the mechanisms

involved in photochemical processes affecting DOC in marine systems.

Aquatic dissolved organic matter: Composition and Properties
In order to determine the processes governing the cycling of DOM in natural

systems, the composition and properties of this complex material must be understood. A

significant confounding issue in aquatic chemistry is the use by different research

communities of a range of terminology and definitions, both operative and conceptual,

for components of the material that makes up dissolved organic carbon. Defining the

nature and components of aquatic DOC is an extremely complex problem that has not

been fully solved. An immediate distinction must be made between dissolved organic

carbon (DOC), which is actually the measured or calculated carbon content, and

dissolved organic matter (DOM), which is a more inclusive term that addresses the

extreme heterogeneity of this material. DOM contains large amounts of organic carbon,

but also can contain other associated elements such as nitrogen, phosphorus, and sulfur

bound in organic molecules. I will refer to DOM rather than DOC throughout this thesis

to distinguish between measured (or calculated) carbon and the general definition
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presented here. Broadly, natural DOM is material derived from organic (biological in

origin) sources that passes through a 0.2 gm filter (or, less commonly, a 0.45 gm or GF/F

filter, depending on the study). DOM contains almost every type of biomolecule,

including carbohydrates (polysaccharides), cellulose, lignins, proteins, tannins, cutins,

amino acids, and sugars, as well as abiotically modified and condensed products (1, 12-

20).

Autochthonous and allochthonous DOM

Freshwater aquatic chemists have traditionally divided DOM into two classes:

allochthonous (produced ex situ, or outside the aquatic system in question) and

autochthonous (produced in situ). These terms imply a further division between algal and

microbial DOM and terrestrial material, usually derived from decaying plant matter and

containing large concentrations of biomolecules that are highly specific to terrestrial

sources, such as lignins, cellulose, cutins, and tannins. Terrestrial sources of aquatic

DOM include organic carbon leached from decaying trees, leaves, grasses, and other

terrestrial plants into the soil, where it may be substantially altered by various microbial

and fungal decay mechanisms. This material may be immediately leached into surface or

groundwater or may persist in the soil for long periods of time, eventually reaching

ponds, lakes, and rivers with significant surface residence times (19,21).

The terms 'autochthonous' and 'allochthonous' have generally not been applied in

estuarine and coastal marine systems. However, these terms can provide useful

distinctions between DOM carried in by freshwater inflows and that created within the

marine ecosystem. A portion of both humic and fulvic acids in estuaries under this

definition will be allochthonous. The fraction of DOM that is formed within the estuary is

then 'autochthonous.'

Humic and fulvic acids

A portion of the total aquatic DOM pool can be separated and concentrated by

manipulating the pH and extracting the organic material from the water samples using an

organic resin . The sample to be fractionated is acidified with HCI to pH 2 and passed

through a hydrophobic resin column, such as XAD-8. The material that sorbs to the
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column and can be eluted with 0.1 M sodium hydroxide contains a mixture of humic and

fulvic acids. The fraction that precipitates in acid solution is known as humic acid, while

the supernatant contains the fulvic acid (22,23). Hydrophilic molecules such as simple

sugars and amino acids are not readily sorbed to the XAD-8 column, and thus are not

separated using this method. The terms 'humic acid' and 'fulvic acid' are operational

definitions based on the chemical behavior of the DOM fractions, and care must be used

when applying these terms. In this thesis, they are applied only to specifically defined

materials extracted using the published procedures (24).

The assignment of any fraction of DOM to a certain source based on these

operational definitions is necessarily extremely inexact, yet some useful generalities have

been drawn. Humic acids are generally both more aromatic and more chromophoric

(colored) per unit carbon than fulvic acids (15,25-29). The greater aromaticity in the

humic fraction of terrestrially-derived DOM relative to both fulvic acids and marine

humic acids is often ascribed to a larger lignin- and tannin-derived fraction. As these

products are solely derived from vascular plants, they have been used as biomarkers to

trace the persistence of terrestrial DOM in marine systems (1,5,13,14).

In addition to being more aromatic, humic acids are generally more hydrophobic

than fulvic acids, a property that has been exploited in their isolation. The portion of

DOM that is isolated by sorption onto hydrophobic columns such as XAD resins is

generally referred to as 'humic substances,' as a large portion of such material behaves in

a manner similar to the classically defined humic acids (30). Often this material is

subdivided into humic acid and fulvic acids based on the precipitation steps outlined

above. This hydrophobic extraction avoids the extremely alkaline conditions that may

cause structural changes in the traditional method of humic and fulvic acid extraction

(22).

Humic acids in general appear to be a more biologically recalcitrant fraction of

DOM than fulvic acids (31). Studies of the microbial utilization of DOM have indicated

that biological availability of terrestrial DOM to microbial assemblages appears to be
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positively correlated with aliphatic (saturated) carbon content and negatively correlated

with aromatic carbon content and color (32-34).

Marine humic substances

Humic substances isolated from marine sources can be fractionated into humic

and fulvic acids using the same procedures applied to freshwater DOM. Similarly to

freshwater humic substances, marine humic acids (MHA) display a greater aromatic

content, increased hydrophobicity, and larger optical absorption per unit carbon than

marine fulvic acids (MFA) (1,20,29,35). However, it has been observed that MHA and

MFA share far more characteristics than the corresponding freshwater isolates, leading to

the hypothesis that MFA and MHA are part of a continuum of marine DOM that share a

common source material and mechanism of formation (20).

Humic substances isolated from the open ocean have been found to be primarily

non-terrestrial in origin (1). Thus, while the largest proportion of humic substances in

coastal regions is terrestrial in origin, marine humic substances become relatively more

important farther from the riverine sources. Studies utilizing both ultrafiltration to isolate

the larger molecular weight fraction of DOM and XAD extraction to isolate hydrophobic

portions have found very small concentrations of lignin phenols in remote marine

systems, indicating that there is indeed a small quantity of terrestrial DOM (estimated to

be 2-10% of the total DOM) in remote marine systems (1,5,7). The extremely small

amount of terrestrial DOM raises a question regarding the fate of the terrestrially-derived

organic matter in the ocean. Only 50% of the terrestrial DOM can be well accounted for

by known processes, leaving a large flux of organic carbon to an unknown set of sinks.

Ultrafiltered dissolved organic matter

DOM can also be divided into high molecular weight fractions (HMW, >1 kDa)

and low molecular weight fractions (LMW, <1kDa) by ultrafiltration (36,37). This size

fractionation provides both a gentler method of separation of DOM from dissolved

inorganic material and a more complete picture of the different hydrophilic fractions of

DOM than acidification and XAD resin extraction. Ultrafiltration can also provide

information about the different size pools of DOM. For example, most of the color of
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swamp and river water samples is contained in the iHMW fraction (>1 kDa) of the DOM

isolates (38). In contrast, more of the color of marine samples is contained in the lower

molecular weight fraction (37).

Certain processes can alter the size distribution of DOM in different ways.

Increasing ionic strength, e.g. by mixing riverine water with seawater in an estuary, can

cause flocculation of a portion of the DOM (39-42). Photochemical reactions are

generally thought to increase the percentage of DOM in the smallest size class (43),

although 'photo-coagulation' of DOM has been observed in an iron-rich river (44).

Chromophoric Dissolved Organic Matter (CDOM)
A portion of the DOM in all aquatic systems is highly colored. This material is

known as chromophoric (or colored) dissolved organic matter (CDOM), or 'gilvin' or

'gelbstoff' due to the yellow color (45,46). CDOM is mostly composed of both

freshwater and marine humic and fulvic acids, and is both autochthonous and

allochthonous in origin, and constitutes a varying portion of the total DOM pool. The

percentage of DOM constituted by CDOM is unknown because the extinction

coefficients, F, and concentrations, c, of specific chromophores are unknown. In

freshwater systems the ratio of absorbance per mol carbon can be very large, as in the

case of humic bogs and blackwater rivers (46). Terrestrial DOM contains a higher

concentration of more intensely absorbing chromophores per unit carbon than aquatic

autochthonous DOM (46,47). In contrast, many oceanic systems have mostly non-colored

DOM (48). CDOM formation and dynamics in remote marine systems has been

thoroughly investigated only recently, but seems to follow similar source (condensed

biomolecules) and sink (photochemical) processes as in freshwater systems (48).

Coastal and estuarine systems generally fall between the two extremes. The

relationship between color and measured DOC concentration in coastal waters has been

explored a number of times (49-53). These studies have confirmed the presence of

uncolored DOM and in some cases attempted to calculate the conversion (presumably via

both photochemical and biological mechanisms) of CDOM to uncolored DOM (49).
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CDOM Absorption

The UV-visible absorption spectrum of CDOM is generally featureless, increasing

in a log-linear fashion with decreasing wavelength ((46); Figure 1.1). Different water

samples may have slightly different curves, but surprisingly, almost every CDOM sample

studied has exhibited the same type of smooth exponential absorption (46). The principal

transitions in organic compounds that produce absorption bands in the ultraviolet and

visible wavelengths are n-n*, and 7t -it*, typically observed in C=C, C=O, and aromatic

groups (54). These moieties exist in significant concentrations in the highly colored

portions of DOM, and are present at lesser concentrations in uncolored DOM. The

extended conjugation of these electronic systems in highly colored CDOM samples is at

least as important as the concentrations of these moieties for the absorption of UVB,

UVA, and visible radiation, although almost all organic compounds will absorb far UV

(UVC and below) radiation.

There are several possible explanations for the broad, featureless absorption

behavior of CDOM, none of which has been successfully tested. CDOM may consist of a

set of independent chromophores with overlapping absorption spectra, or it may be

instead a smaller set of extensively coupled chromophores. The superposition of a

number of vibrationally broadened electronic absorption bands in a molecule or

molecules with solvent broadening would produce spectra with the observed featureless

CDOM spectra (54).

CDOM in natural waters is the dominant absorber of light in the near UV region,

and often in the visible region as well (46). Thus, CDOM controls the penetration depth

of biologically harmful UV-B radiation and can contribute substantially to attenuation

with depth of photosynthetically active radiation (PAR) (46,55-57). Furthermore, CDOM

absorption of solar radiation can significantly influence the thermal structure of the water

column (46,58).

CDOM absorption significantly complicates the application of remote sensing to

the determination of chlorophyll in coastal waters (46,59), and renders remote sensing all

but useless without extensive in situ validation in inland waters (60). Substantial effort

has been aimed at determining the contributions of CDOM to remote measurements of
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color (47,49,55,61-63). It has been argued that CDOM in coastal environments

contributes far more color to remote observations than has been previously accounted for,

thus biasing the interpretation of remote sensing data (49,55,62,64).

Fluorescent dissolved organic matter (FDOM)

CDOM also exhibits significant fluorescence, a property that has been utilized to

examine the cycling of organic matter in a number of systems (49,65-69). CDOM

fluorescence must occur after absorption of light, indicating that fluorescence properties

are intimately tied to absorption properties and that fluorescence can act as a sensitive

probe into the photophysical and photochemical properties of CDOM (70,71). Thus,

fluorescent DOM (FDOM) is a subset of CDOM, although it is not currently possible to

determine what percentage of CDOM (or bulk DOM) is fluorescent. Reemission of

absorbed light as fluorescence also can have an impact on remote sensing in coastal

waters. CDOM fluorescence has a broad maximum in the 400-550 nm range, potentially

impacting the remote detection of chlorophyll absorption (62,72).

Progress in our understanding of the fluorescence properties of DOM has been

made recently using excitation-emission matrix (EEM) fluorescence spectroscopy (68,73-

76). Scanning the fluorescence emission of CDOM at many excitation wavelengths has

allowed investigators to begin characterizing the fluorescence behavior of this material,

and to differentiate between CDOM sources based on EEMS fluorescence patterns. These

studies have focused on characterization of the fluorescent properties of various DOM

samples and the alterations that may take place during mixing, rather than on

investigations into photochemical alterations to DOM fluorescence. EEM spectroscopy is

a useful tool for probing photochemical bleaching processes because EEM spectra can

provide information about fluorophores that are not as easily visualized with

conventional fluorescence spectroscopy. For example, the use of EEMS allows

simultaneous observation of the bleaching of fluorophores that are excited at light

wavelengths below those used in irradiations relative to fluorophores excited by longer

wavelengths.
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CDOM and FDOM in estuaries

CDOM and FDOM are involved in the many processes affecting organic matter in

estuaries. These include chemicophysical processes - coagulation, flocculation, and

sedimentation; biological modification and production; and photochemical alteration

(77,78). The transport of terrestrial DOM from some rivers through estuaries to the

coastal ocean has been observed to be relatively conservative (14,79,80), although the

loss of some fraction (an estimated 20%) has been observed in a number of other cases

(1,39,42,81). Humic acids may compose the largest fraction of DOM removed by

estuarine flocculation.

Thus it is surprising that despite the attention paid to DOM transportation in

estuaries, very few studies have focused on CDOM. A recent study found 21% of the

CDOM in the Tyne estuary was removed by adsorption onto suspended sediments (82).

However, this study is in contrast to other investigations that have found CDOM to be

relatively conservative in several systems (63,68,83). In fact, one of these studies also

observed an apparent strong, possibly seasonal source of CDOM to the Orinoco Estuary

(63).

A linear relationship between DOM absorption and fluorescence has been

observed in a variety of different systems (47,49-51,53,61,65). Fluorescent DOM

(FDOM) exhibits relatively conservative behavior in many estuaries (73,84), although

there is some evidence of slight FDOM production in some estuaries (66,67,69).

Estuarine optical properties (both absorption and fluorescence) have not been studied in

enough detail to determine if these are representative observations.

CDOM photochemistry
The photochemical decomposition of CDOM leads to a variety of organic

products including low molecular weight carbonyl compounds, dissolved inorganic

carbon (DIC), and carbon monoxide (11,85-91). Photochemical alterations of CDOM can

also lead to increased microbial availability of what would otherwise be recalcitrant

organic matter, thus ultimately allowing recycling of organic carbon to DIC as a crucial

part of the carbon cycle (11,92-96). Interestingly, photochemical alterations of algal
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DOM actually reduced its bioavailability, presumably through the photopolymerization

of biomolecules to recalcitrant products (97-99). This finding lends support to the

practice of distinguishing allochthanous terrestrial DOM and autochthanous aquatic

DOM.

Photochemistry as a sink of CDOM

Absorption of light by CDOM leads both to the production of various

photointermediates and products and to the eventual loss of CDOM absorption

('bleaching' or 'fading'). Thus photobleaching reactions act as a sink for CDOM

(49,100). Previous studies of CDOM photobleaching have demonstrated that this sink is

significant compared to the mixing residence time of CDOM in both coastal and

freshwaters. Bleaching half-lives on the order of days have been found in bottle

experiments in sunlight or simulated sunlight (11,100-102). Field studies of

photobleaching have found significant decreases in CDOM absorption in both stratified

ocean water and in lakes during the summer (49,103). Under certain conditions, the

seasonal stratification of the water column in marine systems causes CDOM

photobleaching to significantly increase the optical transparency of surface seawaters

(48,49,103).

CDOM light absorption drives all subsequent CDOM photochemistry. Hence an

understanding of the bleaching properties of CDOM is necessary for a thorough

understanding of the ultimate significance of CDOM photochemistry to the global carbon

cycle. In addition, because of the profound impact of CDOM light absorption on the

underwater light field (reduction of UVB, attenuation of PAR, effects on remote sensing),

understanding the mechanisms of CDOM photobleaching is also essential for

understanding other biogeochemical systems.

Photochemical Mechanisms: Direct versus Indirect Photochemistry

The investigation of photochemical mechanisms involved in the photobleaching

and photooxidation of DOM is complicated by the heterogeneity of the material and the

multiple reactions occuring in both the DOM matrix and the aqueous solvent.

Conceptually, CDOM photochemistry can be divided into two mechanistic pathways:
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direct and indirect. Direct photochemistry involves processes such as photofragmentation

or photoionization after absorption of photons by CDOM (Figure 1.2; (104-107)).

Indirect photochemistry involves the production of reactive intermediates arising from

primary photochemistry that react with CDOM to produce a chemical change.

Photointermediates include reactive oxygen species (ROS) such as superoxide, hydroxyl

radical, singlet oxygen, hydrogen peroxide, and peroxyl radicals (Figure 1.3). Other

radical photointermediates include the carbonate radical and the dibromide ion. A final

important class of photointermediates is composed of reduced metals such as Fe(II),

Cu(I), and Mn(II). Since these metals are potentially important in both primary and

secondary photoprocesses, investigations into their redox reactions as well as their direct

photochemistry have provided some insight into the relative contribution of direct and

indirect photoprocesses in the generation of various photoproducts (44,108,109).

The relative importance of direct versus indiret photochemical pathways must be

understood in order to be able to utilize laboratory studies of DOM photodecomposition

and product formation rates to estimate the rates of these processes in the environment. If

direct photochemical processes dominate, only the chromophoric portion of the DOM

will be broken down, and the rates of photodecomposition and product formation will be

proportional to the amount of light absorbed by CDOM. If indirect processes are

important, decomposition of non-chromophoric material is also possible, and the rate of

light absorption by CDOM will only control the rates of CDOM photo-oxidation and

photobleaching if CDOM photoreactions are the main source of the intermediates

involved.

There is no reason to assume a priori that the same general mechanism is

responsible for different processes of interest. For instance, photobleaching could proceed

mostly via direct mechanisms while photomineralization and photoproduction of low

molecular weight (LMW) organic compounds could proceed mostly via indirect

mechanisms.
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Mechanisms of direct CDOM photochemistry
Direct photochemistry of CDOM is difficult to investigate mechanistically due to

the heterogeneous nature of natural systems. Thus, many photochemical studies have not

attempted to separate the effects of direct versus indirect photoprocesses. One common

method of reducing the importance of indirect photochemical effects is to exclude

dioxygen (02) from the system being studied, reducing the formation of ROS

(43,44,110,111). For example, Gao and Zepp noted that the photoproduction rates of both

CO 2 and CO decreased during irradiation under an N2 atmosphere (44). It is often

difficult to completely exclude 02 from these systems, so if small concentrations of ROS

are important to the process of interest then the contribution of direct photoprocesses may

be overstated. The relative contribution of the two general pathways, direct and indirect,

may be assessed by explicitly examining the role of ROS or other reactive

photointermediates generated using non-photochemical methods or by using radical

scavengers.

Direct photochemical reactions often lead to the production of radical species

within the CDOM. These reactions lead to various fragmentation reactions, including the

photomineralization of DOM to both CO2 and to carbon monoxide, CO (112). These

reactions are known as (photo)decarboxylation and (photo)decarbonylation, and most

have been proposed to proceed via radical intermediates (Figures 1.4 and 1.5). One of

the postulated mechanisms of CO generation has been suggested to involve the acyl

radical as an intermediate (113).

The photoproduction of CO 2 (DIC) is at least one order of magnitude more

efficient that the photoproduction of CO, at least in river water (11,44). CO

photoproduction in the world's oceans has been calculated at 15 - 1400 Tg yr-, indicating

the potential size of DIC photoproduction (130-12 000 Tg yr-1). However, CO is

potentially an important tracer of photochemical mechanisms, especially in seawater or

other high-carbonate waters in which measurement of DIC photoproduction is extremely

difficult.
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Mechanisms of indirect CDOM photochemistry
The photochemical production of reactive oxygen species (ROS) via secondary

reactions between initial organic intermediates and dissolved oxygen (vide infra) can

affect metal redox speciation and influence the cycling of carbon, oxygen, and sulfur in

both marine and freshwater systems (106,109,114). Indirect CDOM photochemistry is

the reaction of intermediates formed during photolysis of CDOM with other solutes or

with CDOM. These reactions can have the same ultimate consequences that direct

processes do, but the mechanisms are very different since they involve reactive

intermediates that are distinct from CDOM and can thus also react with many other

constituents of the photolyzed system.

Reactive Oxygen Species

The processes and rates leading to the production of various reactive oxygen

species (ROS) have been thoroughly reviewed (106). Because of the relative reactivity

and high concentration (-250 M) of 02 in surface waters, it dominates the secondary

photochemical reactions involving CDOM. This reactivity has given rise to what Zafiriou

et al. term 'the oxygen wall,' a kinetic barrier set up by oxygen reactions that separates

the primary photochemical processes from the secondary processes (115). The oxygen

wall causes the time scale of primary radical interaction with the medium (water, 02, and

Br-) to be -1 ps. A variety of mechanisms transfer electrons from primary photoproducts

to 02 to produce secondary photoproducts (see Figure 1.3). Because of the unpaired

electron (triplet) ground state configuration of 02, a number of different states are readily

accessible (see Figure 1.6). Singlet oxygen (102) can be generated from singlet-triplet

intersystem crossing, and superoxide (02*, 0-0 bond order of 1.5) from single electron

transfer. Hydrogen peroxide (HOOH, 0-0 bond order of 1) results from either two

electron transfer (most likely consecutive, rather than concerted) or from superoxide

dismutation. Finally, hydroxyl radical (OH-) is produced by reduction of HOOH, from

hydrogen atom (H-) abstraction from water by excited states of CDOM, or from

photolysis of nitrate and nitrite (non-CDOM-dependent).
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The rates of photoproduction of all of the ROS (except nitrate/nitrite produced

OH*) are dependent on the amount and composition of available sunlight and CDOM.

Like other photochemical processes, ROS photoproduction increases with wavelength

from the visible into the ultraviolet. Midday formation rates range from 1042 (OH-) to 10-

8 (02-) M' s-1 (106). In all coastal seawater samples examined, 02~ seems to be the major

radical photoproduct, composing at least one-third of the total radical flux (116,117). As

HOOH is produced from both the catalyzed and uncatalyzed dismutation of superoxide,

and possibly from other photochemical reactions as well, it may be nearly as important a

photoproduct as 02~ (106,118). More importantly, the slower reaction kinetics of HOOH

relative to other photointermediates allows HOOH to persist and build up concentrations

of 10-7 M or greater in some systems (106). High concentrations of HOOH can have a

variety of biogeochemical consequences, possibly including direct effects on

phytoplankton ecology (119).

Fate of ROS: Reaction with DOM and metals
Some of the specific rates and mechanisms of ROS reactions with their ultimate

sinks are well known (106). These sinks include H20, DOM, Br-, C0 3
2-, and dissolved

and particulate metals. The dominant loss pathway of 102 is rapid solvent relaxation, as

there are few 10 2-reactive constituents under most circumstances (106). The primary

decay pathway for HOOH is particle associated, usually assumed to be reaction with the

biologically produced enzymes catalase and peroxidase (106,120). The steady-state

concentrations of HOOH in sunlit surface waters can be substantial enough to be

significant sources of OH- via Fenton-like reactions with reduced metals such as Fe(II)

and Cu(I)) (106,118,121). In aqueous systems, DOM is the principal sink of OH', an

important sink of 02~, and a possible sink of peroxyl radicals. Neither the rates nor the

ultimate consequences of many of the reactions of ROS with DOM are well known.

Superoxide reacts rapidly with reduced or oxidized metals to produce HOOH and

oxidized metals or 02 and reduced metals, respectively. Reduced metals, such as Fe(II),

may participate in the production of OH* via Fenton reactions with HOOH

(108,109,122,123). However, 02 also reacts with DOM, producing HOOH in a fashion
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similar to its redox reactions with metals. Chapter 2 is an examination of this mechanism

and its consequences for sunlit surface waters.

DOM is most likely the ultimate sink for the radical products of OH- reactions

with Bf and C0 3
2 - as well as for OH- itself (124-127). Reactions of OH* with model

lignin phenols suggest a number of different reaction mechanisms are possible with some

of the components of fulvic and humic acids (128-130). Some reaction pathways are

shown in Figure 1.7. Although many of these pathways do not lead directly to the

production of C0 2, continued reaction of OH* and 02/02 with the intermediate carbon

radicals formed by hydrogen atom extraction and aromatic ring hydroxylation will

eventually mineralize DOM. Furthermore, intermediate oxidation of acid residues can

lead to decarboxylation and formation of both Re and CO 2. Mineralization of

photoproduced intermediate low molecular weight carboxylic acids can also add to DIC

production, and hence the net photomineralization of DOM. The consequences of these

reactions are the subject of Chapter 3.

Roles of Fe
CDOM photochemistry may be important in the geochemical cycling of Fe in

aquatic systems (108,109,131-142). Figure 1.8 presents some of the possible light- and

ROS- driven reactions of both dissolved and particulate Fe. However, the converse

importance of Fe photochemistry to CDOM cycling has not received much attention

(44,85,108,143). A few investigators have noted the apparent catalytic effect of Fe in the

photochemical production of both DIC and CO in freshwater samples (44,85,144). No

studies have been performed in marine systems.

Despite the extreme insolubility of Fe in most natural waters, its abundance and

reactivity may make Fe photoreactions very important in DOM and ROS photochemistry.

Direct photochemical transformations of CDOM may be accelerated by Fe-induced

ligand to metal charge transfer (LMCT) reactions (Figure 1.9). Fenton chemistry, the

reaction of Fe(II) with HOOH to produce OH-, may also accelerate the mineralization of

DOM (121). The work presented in Chapter 5 is an examination of the role of Fe in the

photobleaching and photomineralization reactions of CDOM, primarily in a set of
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estuarine samples, but also in an extracted fulvic acid (Suwannee River Fulvic Acid,

SRFA).

Mechanisms of Photobleaching
The principal theories regarding the origin of CDOM absorption suggest distinct

chemical and photochemical behaviors that may be amenable to experimental testing.

CDOM may be a large set of independent chromophores with overlapping absorption

spectra, or it may be instead a small set of extensively coupled chromophores. Because

the absorption spectra of independent chromophores would be expected to be extensively

broadened by thermal (vibrational) effects, it might be possible to describe the absorption

spectra and photochemical behavior with a relatively small number of distinct

chromophore classes.(145,146). If, in contrast, CDOM were to contain chromophores

that are extensively electronically coupled, even a very large number of independent

chromophores might not be sufficient to describe the photobleaching behavior. A model

developed in Chapter 4 is an initial attempt at addressing this question.

A complicating issue is that CDOM may in fact exhibit mixed behavior: a few

independent chromophores with extensive photophysical and photochemical coupling. A

fourth possibility is that indirect photochemistry may play a significant role in the overall

photochemical behavior of CDOM. Secondary photoproducts, most notably reactive

oxygen species, may have a significant effect on CDOM photobleaching. The relative

contribution of several of these intermediates to photobleaching processes remains to be

completely determined.

The two different models of CDOM photoabsorption lead to different

photobleaching behaviors. A superposition of multiple independent chromophores leads

to the possibility of bleaching a 'hole' in the CDOM spectrum by using monochromatic

light to 'burn out' the chromophores absorbing at the irradiation wavelength. If instead

CDOM consists of molecules that absorb at many different wavelengths simultaneously

or otherwise electronically coupled chromophores, then irradiation at one wavelength

would cause the loss of absorption at distant wavelengths. As mentioned above, indirect

photobleaching processes could be a significant complicating factor in testing these
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theories. CDOM bleaching by ROS or by other photointermediates should be

independent of observation wavelength. The wavelength dependence of the bleaching

behavior of one ROS, OH-, is examined in Chapter 5.

Contributions of this thesis
The mechanisms of DOM photobleaching and photooxidation, particularly the

relative contributions of direct and indirect processes, are still poorly understood.

Chapters 2 and 3 represent attempts to improve our understanding of the reactions of two

different indirect photoproducts, 02 and OH., with DOM. The apparent catalytic

dismutation of superoxide by CDOM is described in Chapter 2, and steady state

concentrations of 02~ are calculated for a variety of surface waters. This chapter was

previously published as a paper co-authored with Bettina Voelker (147).

Chapter 3 examines the reaction of OH' with two extracted humic substances,

Suwannee River Fulvic Acid and Suwannee River Humic Acid, as well as some

bleaching reactions of OH- with a coastal seawater sample. The OH--driven production

of low molecular weight carboxylic acids and alteration to the bioavailability of the

extracted humic and fulvic acids by reaction with OH- was also probed. That chapter has

been accepted for publication, and was co-authored with two postdoctoral fellows in

addition to Bettina Voelker (148). Dr. Michael Pullin performed the carboxylic acid

analyses, and Dr. Stefan Bertilsson performed the analyses of the biological assays.

Chapter 4 details the development of a model for CDOM photobleaching that

begins to addresses the issues surrounding the different hypotheses regarding the

chromophoric properties of CDOM (vide supra). This model was developed using

monochromatic and polychromatic photobleaching data provided by Rossana Del

Vecchio and Neil Blough of the University of Maryland at College Park.

Chapter 5 addresses the both the role of Fe in CDOM photobleaching and CO

photoproduction and the relative contributions of the direct and indirect mechanisms to

the photobleaching of CDOM. Taken together, this thesis examines the mechanisms of

CDOM photobleaching and photomineralization, with emphasis on ROS-mediated

processes.
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Figure 1. 1

UV-visible absorption spectrum of three different CDOM samples: A: a humic bog water
B: an extracted fulvic acid (5mg/l SRFA) C: coastal seawater (Delaware Bay S29). Also
shown is the solar irradiance at the earth's surface in W m2 nm-1 (x 50) (right axis, dotted
line).
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Figure 1. 2

Primary photochemical and photophysical processes of CDOM. CDOM* represents the
excited state (usually Si) formed after photon absorption by the singlet ground state
(1CDOM, So). Radiative (fluorescence) and non-radiative relaxation return the excited
state CDOM chromophore to the ground state. This excited state can go on to form more
stable species, such as excited triplet states (3CDOM, TI), internally charge separated
radicals (CDOM*), and radical products (Re). Radical pairs produced from the singlet
state are likely to recombine, relaxing to the ground state with excess heat. Radicals
produced from triplet states are more likely to escape from the solvent cage and to take
part in further chemistry.
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Figure 1. 3
Photogeneration of reactive oxygen species via secondary reactions of CDOM
photointermediates with 02 and H20. Adapted from Blough and Zepp (1995).
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Figure 1. 4

Mechanism of photodecarboxylation, including mesolytic (bond cleavage of a
photoionized product), homolytic (equal electron partitioning) , and heterolytic (unequal
electron partitioning) cleavage mechanisms. Also shown is photodecarboxylation
initiated by indirect oxidation of an aromatic ring. Adapted from (112).
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Figure 1. 5

Potential mechanism of photodecarbonylation from CDOM involving the formation of an
acyl radical (a) within a solvent cage, followed by a variety of reactions including
recombination, decarbonylation, intramolecular recombination with another portion of
the CDOM molecule, intermolecular reaction with oxygen to form peroxyl radicals, and
hydrogen abstraction with different intermolecular reactants (R'H).
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Figure 1. 6

Interconversion between the various oxidation states of oxygen, centering on the ground
state triplet oxygen (302). Sequential one electron processes produce most of the different
ROS. Intersystem crossing (ISC) between the triple ground state and the excited singlet
state results in singlet oxygen.
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Figure 1. 7

The most important mechanisms of OH- reactions with lignin models, including ring
opening, demethoxylation, and Ca-Cp bond scission. Adapted from Gierer (1998).
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Figure 1. 8

Redox cycling of dissolved (right hand side) and particulate Fe (left hand side) with
reactive oxygen species and light. Adapted from B. Voelker (1996).
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Figure 1. 9

Two mechanisms of the role of Fe in CDOM photochemistry. Top: Direct ligand to metal
charge transfer (LMCT) reaction. Bottom: Indirect Fenton chemistry of photoproduced
Fe(II) (formed via LMCT or reaction of Fe(III) with 02) with photoproduced HOOH to
form the indirect oxidant OH*.
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CHAPTER 2.

CHEMISTRY OF SUPEROXIDE RADICAL (02~) IN SEAWATER: CDOM

ASSOCIATED SINK OF SUPEROXIDE IN COASTAL WATERS

Reproduced with permission from

Jared V. Goldstone and Bettina M. Voelker, The chemistry of superoxide in seawater:
CDOM associated sink of superoxide in coastal waters. Environmental Science and

Technology, 34 (6), 1043-1048 (2000).

@ 2000 American Chemical Society.
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Abstract
Colored dissolved organic matter (CDOM) and humic substances contain a non-

metallic redox-cycling component capable of catalyzing superoxide (02) dismutation.

First-order rate coefficients (kpseudo) measured for this 02 sink in a number of coastal and

Chesapeake Bay water samples range up to 1.4 s-, comparable in magnitude to catalyzed

dismutation by Cu species. A significant (r2=0.73) correlation is observed between kpseudo

and the optical absorption and salinity of individual coastal water samples, suggesting an

association with non-marine-derived CDOM. The activity of this sink is not changed by

acidification or boiling of samples, but is removed by photooxidation, indicating that it is

an organic compound, but that it is neither enzymatic nor likely to consist of tightly

bound metals. The stoichiometry of hydrogen peroxide formation from 02 decay

indicates that this sink is capable of a redox cycle catalyzing the dismutation of 02. This

CDOM sink combined with the organic copper sink previously described will produce a

steady-state superoxide concentration in coastal waters that is 100- to 1000-fold lower

than predicted from bimolecular dismutation alone. Catalyzed 02 decay was also

observed in a variety of humic and fulvic acid samples, possibly occurring through

quinone functionalities. Although the presence of quinone moieties in humic and fulvic

acids has been demonstrated, there do not appear to be good correlations between several

measures of quinone content and the 02 dismutation rates of these samples.
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Introduction
Superoxide radical (02) is the principal redox intermediate formed in sunlit

natural waters through the reduction of oxygen by photochemically excited colored

dissolved organic matter (CDOM). Superoxide plays a significant role in the redox

cycling of dissolved trace metal species in natural waters (1-5), may play a role in redox

transformations of aquatic pollutants (6), and is the key intermediate in the formation of

photochemically generated hydrogen peroxide (7-9). An understanding of the reactions

controlling the steady-state concentration of 02 is necessary to elucidate its role in

photochemical redox processes.

The steady-state concentration of superoxide ([02~]ss) is given by the balance of

its rates of production and destruction:

[02~Iss = Production

2kD[02 ss + XkM[M]x + kpseudo (1)

where kD is the pH dependent effective bimolecular dismutation rate constant for 02 (kD

= 5±1 x 1012 [H+] M s-1 in seawater (10)), km is the second-order rate constant of

reaction of O2 with metal species Mx (1, 2), and kpseudo is the sum of pseudo-first-order

rate constants of 02 with additional sinks. 02 production rates in several Caribbean

waters have been determined to be 10-" - 10-10 Ms~1, at least one-third of the total radical

flux in seawater (11). The role of Cu in controlling the steady-state concentration of

superoxide ( [020ss) in coastal waters is discussed in the preceding paper in this issue (1).

The contribution of non-metallic sinks has not previously been examined in

detail. Unknown sinks of 02~ in coastal and riverine waters were observed in earlier work

(9, 10). Zafiriou (1990) determined the rate of an unknown pseudo-first-order decay sink

in water from the Orinoco River and the Gulf of Paria to be 1-5 s-1 by utilizing

diethylenetriaminepentaacetic acid (DTPA) to remove the effects of kinetically labile

metals on 02 decay. Zafiriou calculated that this unknown riverine sink would
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outcompete bimolecular dismutation as the dominant sink of O2~ in coastal waters even if

extremely diluted.

Our purpose in this work was to examine the rates of non-metal catalyzed 02

decay (kpseudo) in a number of coastal waters and to identify the unknown sink or sinks if

possible. The use of high concentrations of 02~ and natural pH values in the previous

work by Zafiriou (1990) prevented the differentiation of slower first-order decay

processes in the presence of second-order bimolecular dismutation (kD in Equation 1).

The detection limit for kpseudo imposed by second-order decay under the conditions used

was >1.5 s-, thus giving rise to the large uncertainties in his calculated sink rates. By

photochemically generating lower concentrations of 02 at higher pH values we have

avoided competition from second-order decay. This method allows us to detect any sinks

that are at least as important as organically complexed Cu (kpseudo >0.1 s) (1).

Furthermore, we have investigated the apparent catalytic activity of this sink by

examining both the kinetics of 02 decay and the production of hydrogen peroxide.

Treatment of samples to eliminate the influence of potential sinks has allowed us to

narrow the identity of the sink, as has a field study in the Chesapeake Bay. In addition,

we have investigated the catalytic activity of a number of standard humic and fulvic

substances, including both allochthonous and autochthonous fulvic acids.

Methods

Samples

Surface seawater samples from the Chesapeake Bay were collected using Go-Flo

bottles in late July 1997 during a cruise of the R/V Cape Hatteras. Supporting chlorophyll

and nutrient data were obtained from Greg Cutter (Old Dominion University). Other

samples were collected using stainless steel or plastic buckets or acid washed PTFE

containers from several sites near Cape Cod, Massachusetts, including Woods Hole

Harbor, Vineyard Sound, Stellwagen Bank, and Waquoit Bay. Seawater samples were 0.2

pM filter sterilized and refrigerated or frozen in acid-washed PTFE bottles until analysis.

Absorbance measurements were made in 5-cm quartz cuvettes using either a Hewlett

Packard 8452A or 8453 diode array spectrophotometer and referenced to Nanopure
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water. Acid-treated samples were acidified to pH 2 with HCl and returned to pH 8 with

NaHCO 3. Boiled samples were boiled for 10 minutes in acid-washed Pyrex flasks. Photo-

oxidation of seawater samples was performed using a medium pressure Hg lamp. Humic

and fulvic acid samples were obtained from the International Humic Substance Society

(IHSS) or from Durelle Scott and Diane McKnight (Institute of Arctic and Alpine

Research, University of Colorado). IHSS terrestrial humic substances used were: soil

humic acid (S-HA), Leonardite humic acid (L-HA), peat humic acid (P-HA), Summit

Hill humic acid (SH-HA), Suwannee River fulvic acid (SRFA) and Suwannee River

humic acid (SRHA). Other humic substances used were: Lake Fryxell fulvic acid (LF-

FA) and Nymph Lake sediment fulvic acid (NL-FA) (12). Humic and fulvic acid

solutions (10 mg/L in 1 mM NaHCO 3) were created by dissolving the samples in 0.2 M

NaOH and adjusting the pH to ca. 8.3 with HCl and NaHCO3. All chemicals were used as

received from Aldrich Chemical Company.

Kinetics

Superoxide was photochemically generated in 0.5 M NaCl solutions containing

isopropanol and benzophenone buffered with sodium borate (13). Volume percentages of

sample were added to 02 solutions and the resulting first-order decay curves were fit

using non-linear least squares regression (Figure 1 inset). Decay kinetics were observed

directly at 240 nm in 5-cm quartz cuvettes using the diode array spectrophotometer. This

method was chosen over traditional methods of superoxide detection, as indirect methods

such as ferricytochrome c reduction may be subject to interferences arising from

alternative reductants or oxidants present in natural waters (14).

The experimental design allowed us to eliminate the first two terms of the 02~

decay equation:

- d[0 2 1 = 2kD[O2]2 + EkM[M]X[O2~] + kpseudo[lO2] (2)

dt
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To avoid competition from metal-catalyzed dismutation, 15 gM

diethylenetriaminepentaacetic acid (DTPA) was added to all solutions, and allowed to

equilibrate overnight. MINEQL+ speciation calculations show that this concentration of

DTPA is sufficient to chelate >99.9% of trace Fe and Cu even in the presence of strong

ligands (" L1" ) known to complex Fe and Cu in seawater ($Fe=10 18 , [LFe]10 8 M,

$Cu=10 15 , [Lcu]=10 8 M). (15, 16). DTPA complexation constants were taken from the

National Institute of Standards and Technology Critical Stability Constants for Metal

Complexes Database (NIST Standard Reference Database 46, 1993). To avoid

competition from second-order bimolecular dismutation, solutions were buffered at pH

9.5 (kD = 1600 M~1s'1) and initial 02~ concentrations were below 10 pM. At seawater pH

(8.3), kD is 25 000 M1 s~1, precluding differentiation between first and second-order decay

rates (10). Data was plotted as sample percentage of total solution volume versus

calculated first-order fits to Equation 2 (Figure 1). By extrapolating to 100% sample, the

unknown pseudo-first-order rate constant kpseudo was obtained.

A significant aspect of the aqueous chemistry of 02 is the ability of 02 to act as

both a one-electron oxidant and reductant:

02 + Xred + 2 H+ 4 H2 02 + Xox (3)

02 + Yox + 02 + Yred (4)

Pseudo-first-order decay of [02] will be observed if the concentration of Xred or Yx is

much greater than [02-]. For simplicity, we assume a single significant Xred or Yo0

species; the arguments are easily extended to include the sum of the effects of a number

of different species. If a sink reaction is irreversible, the ratio of H20 2 generated per 02

should be 1 (sink is a reductant, Xred in Equation 3) or 0 (sink is an oxidant, Y0 x in

Equation 4). This behavior also implies that the kpseudo is equal to some decay constant

kred multiplied by the concentration of the sink, [Xred], or similarly, some kox multiplied
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by some sink concentration, [Yx]. If both Xred and Yox are present these reactions occur

simultaneously, and Equation 5 describes kpsendo :

kpseudo = krei[Xred] + kox[Yox] (5)

If a species is capable of functioning as both X and Y, that is, Xred = Yred and Xox = Yox,

(e.g. Cu(I) and Cu(II) (1, 4)) then a redox cycle may be established that catalyzes the

dismutation of 02~. A catalytic redox cycle would produce a stoichiometry of 0.5 H2 0 2

per 02~, and kpseudo would be described by a catalytic rate constant with [cat] = [Xred] +

[YOX]:

kpseudo = kcat[cat] (6)

In addition, while kpseudo will be indifferent to increases in initial superoxide

concentrations ([021o) if the sink is catalytic, pseudo-first-order decay will no longer be

observed in the non-catalytic case when [02-10 approaches initial concentrations of Xred or

Yox. By examining both the stoichiometry of H2 0 2 generation and the dependence of

kpseudo on [O2]1 we can distinguish between these two models. [H202] was determined

using the diethyl p-phenylene diamine (DPD) peroxidase method (17). Large but

consistent blanks derived from the isopropanol and benzophenone in the 02 solution

were observed using this method, decreasing its precision.

Results
The values of kpseudo measured in a number of local coastal waters and the

Chesapeake Bay range between 0.1 s4 and 1.4 s1. A significant (r2=0.73, P<0.001)

correlation is observed between the first-order 02 decay fits (kpeudo) and the optical

absorption of the individual water samples (Figure 2). The data point shown with an

absorption at 300nm of 2.5 m1 was not included in the fit, as later measurements of the

same sample did not reproduce these results. The poor reproducibility of this one

measurement may be due to contamination of the sample with particulate material during
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filtration. kpseudo did not correlate well with chlorophyll a (r2 = 0.46), phosphate (r2

0.07), nitrate (r2 = 0.37), or silicate (r2 = 0.45) concentrations in a transect of the

Chesapeake Bay (Figure 3).

To examine the identity of the unknown sink, we applied a number of treatments

to the seawater samples (Figure 4). Overnight equilibration of seawater samples with

DTPA is expected to eliminate the 02 dismutation effects of most metal species, and a

control experiment in which 100nM Cu as copper sulfate was added to a UV photo-

oxidized sample containing 15 pM DTPA confirmed this expectation (kpseuedo5 0.02 s-1).

However, kinetically inert metal species (e.g. those chelated by phytochelatins,

porphyrins, or siderophores) might not be chelated by DTPA on this time scale. To

release tightly bound metals from such complexes, we acidified the samples to pH 2 in

the presence of DTPA prior to measuring kpseudo at pH 9.5. A second treatment involved

boiling the seawater samples for several minutes. Boiling has been shown to remove most

of the activity of mammalian and bacterial superoxide dismutases (18), presumably by

denaturing the enzymes and releasing the metals that compose the active sites. Neither

boiling nor acidification removed the superoxide dismutation activity. The only treatment

that eliminated the observed kpseudo was UV-photooxidation, which also eliminated any

spectrophotometrically observable light absorption due to CDOM. Treatment of other

samples with the same or a similar UV-photooxidation apparatus has been shown to

remove all DOC. Control experiments in which UV-photooxidized samples were

acidified or boiled showed no first-order superoxide dismutation (kpseudo 0.02 s-1).

The observed stoichiometry of 02 decay in the seawater is approximately the

same as for bimolecular dismutation - that is, 0.5 H2O2 produced per 02 input into the

system (Figure 5). In addition, kpseudo does not change if the initial concentration of 02 in

the system is increased, as shown in Figure 6.

Freshwater fulvic and humic substances are also capable of catalytically

decomposing 02. The [O2] 0 -independent catalytic behavior of kpseudo and the

stoichiometry of hydrogen peroxide formation in the fulvic and humic acid solutions is

similar to that of the seawater samples.
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Discussion

The data presented above show that a non-metallic component of DOM is a

ubiquitous and significant sink of 02 in coastal waters. This sink does not seem to be a

biological product of marine organisms, such as superoxide dismutase (SOD) or a

marine-derived porphyrin, as suggested by the boiling and acidification experiments

(Figure 4), as well as the lack of correlation between sink activity and marine chlorophyll

a concentrations. Furthermore, UV-photooxidation destroys the activity of this sink.

Photooxidation would not remove dissolved metal oxyanions such as molybdate and

vanadate that are present in significant concentrations in seawater, thus demonstrating

that this sink is a part of the DOM rather than an inorganic constituent of seawater.

Both the kpseudo and the optical absorption of samples from the Chesapeake Bay

decrease with distance from land and are similarly correlated to salinity, suggesting that

CDOM and the associated 02 sink are dominated by terrestrial sources in this system.

Samples taken from the vicinity of Cape Cod (open symbols in Figure 2) and data from

the Orinoco River and the Gulf of Paria ((10), inset, Figure 2) also fit the correlation

derived from the samples taken from the Chesapeake Bay, indicating that there may be a

general similarity in the behavior of CDOM taken from different locations.

Redox activity

Redox cycling of portions of the CDOM may be responsible for the correlation

between kpseudo and CDOM color. This idea of a catalytic organic redox cycle is

supported by both the measurements of the stoichiometry of hydrogen peroxide

generation from O2 decay and the unchanging relationship between the initial 02

concentration and the observed kpseudo. The measurements of hydrogen peroxide

stoichiometry suggest that either this sink is catalytic, as in Equation 6, or the unlikely

situation that kreJ[Xred] is equal to k0x[Y 0,], producing reduced and oxidized 02 (H2O 2

and 02) in equal proportions (see Equation 5). For non-catalytic sinks to produce pseudo-

first-order behavior with [021 as large as 24 pM (Figure 6), they would have to be

present in excess concentrations, which is unlikely given that concentrations of DOC in

coastal marine systems are generally less than 300 pM (19). Furthermore, this material
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has been previously exposed to sunlight, and thus to 02, suggesting that the redox active

portions of DOM are resistant to alterations in redox activity over intermediate time

scales.

These redox-active structures might be quinone-hydroquinone functionalities

(Figure 7) which are considered to be ubiquitous components of terrestrial humic

materials (20). Zafiriou (1990) speculated that purely organic molecules such as quinone-

semiquinone or semiquinone-hydroquinone couples are plausible natural catalysts due to

their favorable redox potentials and demonstrated presence in natural organic matter (10,

12, 20-22). Various quinones, semiquinones, and hydroquinones have been shown to

react with 02~ (23, 24), and we have observed that 1,10-anthraquinone-2,6-disulphonate

(AQDS) displays 02 dismutation activity similar to that of the CDOM (e.g. pseudo-first-

order decay of 0.04 s-I observed with 1 gM AQDS and 10 M 02 at pH 9.5). However, it

is not clear that this AQDS dismutation activity is equivalent to the kcat mentioned above

as decay rates comparable to those observed for CDOM would require AQDS

concentrations large enough to invalidate the pseudo-first-order assumption.

The hypothesis that the 02 dismutase activity in CDOM is due only to a

quinonoid component of humic substances may be overly simplistic, however. Although

solutions of several humic and fulvic acids display similar 02 dismutase activity (Figure

8), these solutions display much lower kpseudo values per absorbance unit than coastal

CDOM samples. Furthermore, there is no clear correlation between the observed kpseudo

and the organic free radical content of these humic and fulvic acids determined by

electron spin resonance (ESR) spectroscopy (r2=0.46) as taken from Scott et al. (1998),

although there are slightly better correlations between kpseudo and the 13C NMR-derived

concentration of aromatic functionalities (r2=0.56) (Figure 9). Both of these

measurements have been taken to represent in some way the quinone content of non-

marine derived humic and fulvic acids (12).

The observed differences between isolated humic substances and the coastal

samples may indicate that quinones are not the only redox-cycling moieties in CDOM.

These differences might also be due to alterations in the properties of these humic
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substances during extraction, or to inefficient extraction of the unknown sinks by the

standard humic isolation procedures. Alternatively, it may indicate that these standard

humic substances are not well representative of the material found in the coastal systems

that we examined.

Despite the differences between the humic and CDOM samples, broad similarities

remain. There exists an intriguing possibility that the redox cycling portion of CDOM

could transfer electrons from 02 to other substances. Humic materials have been

demonstrated to act as electron shuttles in other contexts. Bacterial reduction of humic

material by Geobacter metallireducens has been observed, followed by reduction of iron

oxides by the reduced humic materials (12, 25). Reduced humic materials produced by

chemical reactions with a bulk reductant such as sulfide have also been shown to reduce

aquatic pollutants such as nitroaromatic compounds (26). Superoxide creates reduced

humic materials during catalytic dismutation, and therefore electron transfer to other

substances such as iron oxides or aquatic pollutants might occur at significant rates if the

steady-state concentration of reduced humic materials is high enough. This process might

be important in the photoreductive dissolution of iron oxides and in the photoreduction of

aquatic pollutants associated with DOM.

Steady state O2 concentrations

The results presented here indicate that [02~Iss in marine waters is at the lower end

of previously calculated ranges, that is, at most 10-11 - 1010 M in near surface waters. In

coastal waters where CDOM is dominated by terrestrial sources, both the 02 production

rate (11) and the sink examined here are well correlated to the sample absorption (a30 0).

This implies that whenever the CDOM-correlated sink is the principal 02 sink,

increasing CDOM concentration will not increase [2]ss. We can thus estimate a general

upper limit of 8 x 10-11 M for [02ss, using an absorption-normalized 02 production rate

for near surface solar noon (as approximately one-third of the total photoproduced radical

flux) of - 2 x 10-11 Ms'm based on the findings of Micinski et al. (1993) and Dister and

Zafiriou (1993) (11, 27), and the absorption-normalized 02 sink measured in this study

(kpseudo/a300 = 0.27 s'm). Calculations of [021ss including the reactions with Cu discussed
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in the companion paper (1), suggest that Cu can substantially lower [02,ss from this

upper limit, either when CDOM is fairly dilute or when waters are contaminated with Cu

(see Table 1). Due to the fact that most of the superoxide decay kinetics were observed at

pH 9.5 (vide supra), these results may not precisely represent the behavior of these sinks

at natural pH values (8.1-8.3 for seawater). However, no differences in kpseudo were

observed over the pH range 9.4 to 11, suggesting that any pH effect is small. This

analysis also assumes that other redox reactions do not become important at low natural

levels of 02.

Inclusion of the 02 production rates with estimates of the known 02 destruction

rates leads to the conclusion that the non-metallic sink represents a dominant sink for 02

in coastal waters, and thus may represent a significant intermediate in DOM

photochemistry. If this is indeed the case, then the indirect photoredox cycling of humic

substances by superoxide in aquatic environments warrants further study.
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Table 2. 1

Calculated 02~ steady state concentrations in coastal waters. These calculations assume a

02 photoproduction rate of 10-10 Ms-1 for the high CDOM cases and 1011 Ms-1 for the

low CDOM case (11). Values for Cu sinks are taken from Table 4 in Reference 1. Case 1

represents a relatively pristine estuarine environment, with low natural levels of Cu and a

high optical density. Case 2 represents a similar estuarine environment with significant

Cu contamination, while Case 3 represents a low DOM, low Cu environment.

CDOM sink (kpseudo) Cu sinks (XkM[M]X) [02]ss (calculated)

Case 1: "High CDOM" 1.4 s- 5 - 7 x 10-" M

"Low Cu" 0.2-0.5 s-'

Case 2: "High CDOM" 1.4 s-1 1 x 10~1 M

"High Cu" 7 s-1

Case 3: "Low CDOM" 0.1 s~ 2 - 3 x 1011 M

"Low Cu" 0.2-0.5 s~'
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Figure 2. 1

An example of a plot of kpseudo versus percent-sample-added. The linear fit is extrapolated

to 100% sample in order to obtain the kpseudo for the sample. This sample is surface water

from Station 11 (S = 26.2 %o) in the Chesapeake Bay, collected on 31 July 1997 during a

cruise of the R/V Cape Hatteras. The extrapolated fit is 0.38 ± 0.1 s-1, r2 = 0.87. Inset is

an example of a kinetic decay experiment showing data and non-linear regression fit with

seawater sample added to make up 20% of the total solution.
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Figure 2. 2

The correlation between the observed kpseudo and the absorbance of the water samples at

300 nm (in mf1), taken as a measure of CDOM in coastal waters. The solid circles are

samples from the Chesapeake Bay and the open circles are samples from the vicinity of

Woods Hole and Cape Cod Bay. The fit produces an r2 of 0.75 excluding the point at 2.5

m1 (see text). The vertical error bars represent one standard deviation in the extrapolation

of the kinetics data as in Figure 1. The inset shows the same fit and data, with the axes

expanded to include data taken from Zafiriou (1990) and Micinski et al. (1993) for

samples from the Orinoco River and the Gulf of Paria (diamonds).
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Figure 2. 3

The relationship between the observed kpseudo values obtained in the Chesapeake Bay and

chlorophyll a (A), nitrate (B), phosphate (C), and silicate (D) concentrations.
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Figure 2. 4

The effects of several different sample treatments on kpsenao. Samples were boiled for 5

minutes to remove enzyme activity, stored at pH 2 overnight in the presence of DTPA to

remove metals from any inert complexes, or photo-oxidized to destroy CDOM. Only

photo-oxidation removed the activity of the superoxide sink.
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Figure 2. 5

Hydrogen peroxide produced during either the self-dismutation or the DOM catalyzed

dismutation of superoxide measured using the diethyl p-phenylene diamine (DPD)

peroxidase method.
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Figure 2. 6

The variation of observed kpseudo with initial superoxide concentration. Different

concentrations of superoxide were generated and the same seawater sample was used

throughout the experiment.
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Figure 2. 7

Suggested redox cycle between quinone, semiquinone radical, and hydroquinone that

could catalyze the dismutation of superoxide into hydrogen peroxide and dioxygen.
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Figure 2. 8

The observed kpseudo versus the optical absorption at 300 nm for several 10 mg/L humic

and fulvic acid solutions. There does not appear to be as significant a linear correlation as

observed for coastal seawater samples (r2=0.65).
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Figure 2. 9

Correlation between the observed kpseudo and (A) the organic radical content (spins/g)

determined by ESR (r2=0.46) and (B) the percent aromaticity determined by 13C NMR

(r2=0.56). Data from Scott et al. (1998).
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Abstract

In this study, we examine the role of hydroxyl (OH*) radical as a mechanism for the

photodecomposition of chromophoric dissolved organic matter (CDOM) in sunlit surface

waters. Using gamma-radiolysis of water, OH. was generated in solutions of standard

humic substances in quantities comparable to those produced on time scales of days in

sunlit surface waters. The second-order rate coefficients of OH. reaction with Suwannee

River Fulvic (2.7 x 104 s-' (mg C/I) 1) and Humic Acids (1.9 x 104 s- (mg C/i)') are

comparable to those observed for DOM in natural water samples and DOM isolates from

other sources, but decrease slightly with increasing OH- doses. OHS reactions with humic

substances produced dissolved inorganic carbon (DIC) with a high efficiency of ~0.3 mol

CO 2 per mol OH-. This efficiency stayed approximately constant from early phases of

oxidation until complete mineralization of the DOM. Production rates of low molecular

weight (LMW) acids including acetic, formic, malonic, and oxalic acids by reaction of

SRFA and SRHA with OH- were measured using HPLC. Ratios of production rates of

these acids to rates of DIC production for SRHA and for SRFA were similar to those

observed upon photolysis of natural water samples. Bioassays indicated that OHO

reactions with humic substances do not result in measurable formation of bioavailable

carbon substrates other than the LMW acids. Bleaching of humic chromophores by OH-

was relatively slow. Our results indicate that OH' reactions with humic substances are

not likely to contribute significantly to observed rates of DOM photomineralization and

LMW acid production in sunlit waters. They are also not likely to be a significant

mechanism of photobleaching except in waters with very high OH' photoformation rates.
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Introduction
Aquatic dissolved organic matter (DOM) is in part composed of light-absorbing

polymers that are resistant to microbial assimilation and breakdown. The

photodecomposition of this chromophoric DOM (CDOM) in natural waters is of interest

for a number of reasons. First, CDOM photolysis could represent an important source of

nutrients and carbon substrates to microorganisms. Biologically available photoproducts

that have been identified include CO (1), low molecular weight (LMW) organic

compounds, including carboxylic acids and carbonyl compounds (2-7), and ammonia (8).

Second, CDOM has further ecological significance as the main absorber of UV-A and

UV-B radiation in natural waters, shielding aquatic organisms from sunlight's harmful

effects (9). Photodecomposition of this material results in the destruction of its light-

absorbing properties (photobleaching). Finally, photomineralization of CDOM to

dissolved inorganic carbon (DIC) may constitute a significant flux in the global carbon

cycle (10). In some cases, utilization of photoproduced carbon substrates by bacteria

seems to be the more significant pathway to mineralization (11-13), while in other

systems abiotic photomineralization of DOM is more significant (10,14,15).

Photodecomposition may proceed both via direct photochemical reactions,

involving energy and electron transfer after absorption of photons by CDOM, (16-19), or

via indirect (sensitized) processes, involving DOM reactions with photochemically

generated intermediates such as reactive oxygen species (ROS). The relative importance

of these two general classes of mechanisms must be understood in order to be able to

utilize laboratory studies of DOM photodecomposition and product formation rates to

estimate the rates of these processes in the environment. If direct photochemical

processes dominate, only the chromophoric portion of the DOM will be broken down by

this mechanism, and the rates of photodecomposition and product formation will be

proportional to the amount of light absorbed by the CDOM. If indirect photochemical

processes are important, photodecomposition of non-chromophoric material is also

possible, and the rate of light absorption by CDOM will only control the rates if CDOM

photoreactions are the main source of the intermediates involved. There is no reason to
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assume that the same general mechanism is responsible for different processes of interest;

for instance, photobleaching could proceed mostly via direct mechanisms while

photomineralization and photoproduction of LMW organic compounds could proceed

mostly via indirect mechanisms.

Of the various reactive intermediates produced in sunlit natural waters, hydroxyl

radical (OH-) is the likeliest candidate for having significant effects on DOM

decomposition. OH* is a powerful oxidant known to react with many organic compounds

at nearly diffusion-limited rates. Reaction rate constants of OHO with DOM measured in a

number of natural water samples and isolates, typically 1-7 x 104 s-1 (mg-C/) (20-24),

imply that DOM is the primary sink of OH' in most freshwaters. The rate of DOM

oxidation by OH- must then be approximately equal to the photoproduction rate of OH'.

Sources of OH- in sunlit waters include nitrate photolysis (22,25) and DOM photolysis

(26) (Equations 1-2).

N0 3~+ hv + H20 N N02 + OH + OH (1)

DOM + hv DOM- + OH- (2)

OH' production rates are dependent on the concentrations of these sources as well

as on the available sunlight. Mid-day near-surface production rates range from 10-13 M s-

to 10-10 M s4 in most natural waters, although production rates as high as 10-9 M s-1 have

been observed in samples from the Florida Everglades (27). Steep attenuation of OH'

production rates with water depth are expected, as UV irradiation is needed to produce

OH'.

Photo-Fenton reactions, the oxidation of photoproduced Fe(II) by photoproduced

HOOH, have also been suggested as a significant source of OH' in sunlit natural waters

(28,29) (Equation 3).

Fe(II) + H20 2 O- Fe(III) + OH' + OH~ (3)
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Ongoing studies in our own laboratory suggest that Fenton's reaction could potentially

result in OH* photo-production rates as high as 10~9 M s 1 in sunlit, organic-rich, iron-

rich, mildly acidic waters (30). Increases in OH- production rates due to Fenton

chemistry may explain observed increases in the rate of photoproduction of DIC and

other DOM photoproducts in the presence of Fe (14,31), as well as positive correlations

of photoproduction rates of DIC with Fe content in a number of Swedish lake water

samples (12). Alternatively, the Fe effect may be attributable to a direct photochemical

process, ligand to metal charge transfer (LMCT) reactions, that entail the oxidation of

CDOM with the concurrent reduction of Fe(III) to Fe(II) (29,31,32). While Fe effects on

LMW acid production were not observed in the Swedish lake study, Mopper and Zhou

(1990) suggest OH- involvement in the photoproduction of LMW carboxyl compounds in

seawater (27).

Although the effects of OH. on the decomposition of DOM have not been

extensively investigated in natural waters, these reactions have been studied in

engineered systems. Both the pulp and paper and the drinking water treatment industries

have been interested in the oxidative reactions of OH- with organic matter. Hydrogen

peroxide (HOOH) has been used as a bleaching reagent in the pulp and paper industry for

more than 50 years (33). Until recently, the perhydroxyl radical anion, HOf, was

believed to be the active species present during alkaline bleaching processes (33,34).

However, a number of studies have shown that OH- is an integral part of the bleaching

process (34-38).

The production of OH- is also thought to be one of the important processes

occurring during Advanced Oxidation Process (AOP) treatments of paper pulp,

wastewater, and drinking water, which replace chlorine-based oxidants with use of ozone,

ozone-hydrogen peroxide, UV-ozone, UV-hydrogen, or photo-Fenton chemistries (39-

41). Rapid bleaching and mineralization, as well as production of LMW mono- and

diacids, are observed during ozonation and other AOP and total-chlorine-free (TCF)

bleaching treatments (35,42-44). The specific contributions of OH' reactions to the
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observed rates of product formation from DOM decomposition processes has generally

not been assessed.

The purpose of this study is to determine whether reactions of DOM with OH.

play a role in the photomineralization and photobleaching of DOM and the

photoproduction of biologically available carbon sources in natural waters. Gamma

radiolysis of water was used to produce OHe non-photolytically, avoiding the

complicating effects of multiple reactions occurring in the DOM matrix and the aqueous

solvent during irradiation with light. Rates of bleaching and mineralization of extracted

fulvic and humic acids standards (Suwannee River humic and fulvic acids) by OH- were

examined under a range of conditions representative of natural waters. In addition, we

have examined the role of OH. in the production of LMW organic acids which are

important products of DOM photolysis. Because the production of LMW carboxylic

acids is not the only potential effect of OH on DOM bioavailability, we also used dilution

cultures with bacterial growth potential as an indirect measure of the impact of hydroxyl

radical on DOM substrate quality and bioavailability (45).

Methods

Materials

Suwannee River Humic and Fulvic Acid reference materials (SRHA 1R103H and

SRFA IRlO IF) were obtained from the International Humic Substances Society.

Seawater samples were collected from Delaware Bay using the Teflon flow system of the

R/V Cape Henlopen. Samples were 0.45gm and 0.2gm filtered through acid-washed and

extensively pre-rinsed cartridge filters and stored in the dark at 4*C in fluorinated HDPE

carboys. DOC-free seawater was produced by UV irradiating 0.2gm filtered Sargasso Sea

using an air-cooled medium pressure Hg lamp. Massachusetts Bay water for bacterial

growth experiments was sampled at Revere State Beach using an acid-washed Teflon

bottle and filtered through precombusted Whatman GF/F filters (3 hours at 450 'C,

nominal pore-size 0.7 gm). Argon (Grade 4.8) , oxygen (Grade 4.4), CO2-free air (TOC
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grade), and N20 (Grade 2) were obtained from BOC Gases. All reagents were purchased

from Sigma-Aldrich and used as received unless otherwise specified.

Radiolysis

By gamma radiolysis of N20-saturated aqueous solutions, the radiolytic

decomposition of water can be exploited to produce a stable, steady flux of OH- via the

reactions of hydrated electrons (e-(aq)) and hydrogen atoms (H-) with N2 0 (Equations 4-

8;(46)). In the presence of 02, the reducing radical H. is instead converted into HO2 (Eq

8) (>93 % and > 98% with 4:1 N20/air and N20/oxygen mixtures) while the reaction of

02 with e-(aq) is less significant, so that e~(aq) is still converted (>99 and >98 %,

H20 OH'-, e aq, He, H20 2, H +, H2  (4)

e aq+ N20+ H20 O N2 + OH* + OH~ (5)

e aq + 02 O 02 (6)

H*+N 20 i N2 + OH' (7)

He + 02 0 HO2  (8)

respectively) into OH. Gamma radiolysis was performed using a 60Co source

(GammaCell-220) emitting 0.13 kGy/hr of gamma radiation (1.2 MeV). Dosimetry was

performed using the standard Fricke dosimeter (47), and also by measuring hydrogen

peroxide production rates using acridinium ester chemiluminescence (48) or the N,N'-

diethyl-p-phenylenediamine - peroxidase method (49). Samples were saturated with N20

or with a 4:1 mixture of N20 and either C0 2-free air or 02, transferred under constant gas

purge to pre-combusted amber glass vials with Teflon@-lined silicone septa, and

irradiated in the GammaCell. The net radiation-chemical yield (G-value) for OH- in the

absence of 02 is 5.9 molecules/100 eV, while in the presence of 02 it drops to 5.3

molecules/100 eV (46). These values correspond to OH- production rates of 1.9 x 10-
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and 1.7 x 10-8 M s 1 in N20 and N20/air or oxygen-saturated solutions respectively.

Analyses were performed immediately after irradiation.

Phosphate buffers were used to control the pH of the solutions where indicated.

Because the reaction rate constants of phosphate species with OH- are all < 3 x 106 M's 4

(46), keeping the buffer concentrations low ( 2mM) assured that phosphate reactions

with OH. would be negligible.

Analytical Techniques

Measurements of [OH*]5 s were accomplished using 14C-labeled formate as an OH-

probe. In the presence of 02, formate anion reacts with OH' to produce CO 2 with a rate

constant of 3.2 x 10 9 M-'s' (46). Formate does not react with 02, the only other radical

present in significant steady-state concentrations during these radiolysis experiments (k

<0.01 M-s 1 ) (50). Irradiations were performed in glass scintillation vials with foil-lined

caps. To measure 14C-formate remaining in solution, 14C0 2 was purged from the pH 6-

buffered sample with argon prior to the addition of scintillation fluid in a 6:1 ratio of

ScintiSafe Econol (Fisher Scientific) to sample. Scintillation counting was performed

using a Beckman Model 6500 Scintillation Counter.

Measurements of DIC were performed using a TOC-5000 (Shimadzu Corp.) in IC

mode. In order to eliminate the interference of N20 during the near-infrared (NDIR)

detection of C0 2 , all samples were purged with argon following the addition of C0 2-free

NaOH to prevent the loss of the CO2. Measurements of DOC were performed using a

TOC-5000 (Shimadzu Corp.) on samples acidified with concentrated HCl to pH 1.

Samples to be analyzed were purged for 4 minutes using C0 2-free air (TOC grade) to

remove DIC prior to injection. Optical spectra were obtained on a HP8453 diode-array

spectrophotometer (Agilent Technology) using 10cm quartz cuvettes and referenced to

Milli-Q water. Hydrogen peroxide was analyzed using the chemiluminescent acridinium

ester method (48).
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Determination of low-molecular weight carboxylic acids

Low-molecular weight (LMW) carboxylic acids were determined by HPLC of

their 2-nitrophenylhydrazide derivatives (51-53). The HPLC separation was optimized to

detect a set of carboxylic acids previously observed to be produced by the irradiation of

natural waters or aqueous solutions of humic materials: formic, acetic, oxalic, malonic,

and levulinic acids (3,12,54,55).

2-nitrophenylhydrazine (2-NPH) was purchased from Acros Organics and was

recrystallized from hot water, removed from the supernatant by filtration, and stored as a

wet paste at room temperature until use. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

hydrochloride (SigmaUltra grade) (EDC) was obtained from Sigma Chemical Company.

Pyridine (99.9+%) and concentrated HCl (99.999%) were obtained from Aldrich

Chemicals and used without further purification. Stock solution of the 2-NPH (0.050 M

in 0.25 M HCl) and EDC (0.30 M) were made in advance and frozen in 5-10 ml aliquots,

which were defrosted immediately prior to use. Concentrated HCl and pyridine were

mixed in 1:1.25 volume ratio to make the derivatization reaction buffer. In our low

alkalinity samples, this gave a reaction pH of 4.5 which is ideal for the derivatization

reaction (52,56).

The derivatization reaction was carried out in acid washed (10% HNO 3

overnight), rinsed (UV treated 18 M water), and combusted (450 'C for 12 hours) 8 ml

glass vials with Teflon@-lined silcone septa closures (acid washed and rinsed). 0.1 ml

buffer, 0.1 ml EDC stock, and 0.2 ml 2-NPH stock were added (in order) per 1 ml sample

and allowed to stand in the dark at room temperature for 1.5 hours. 0.1 ml 40% w/w

KOH (SigmaUltra) per 1 ml sample was then added and the vial was heated at 70 'C for

10 minutes in a water bath. The derivatized sample was either analyzed immediately or

stored overnight at 4 'C.

The various acids derivatives were quantified using a Hewlett Packard 1150

HPLC system. The samples were preconcentrated on a polymeric reversed phase guard

column (Dionex IonPac NG1 10 [tm, 4 x 35 mm) used in place of the manual injector

sample loop (52). 100 g1 of sample were passed through the concentrator column,
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followed by 1.0 ml water to expel the alkaline derivatization reaction medium and

remove some interfering reaction byproducts.

Separation used an isocratic ion-pairing eluent with a reversed phase column and

(Phenomenex Luna 5 Rm C18(2), 250 x 4.6 mm) and guard cartridge (Phenomenex

Securityguard C18, 4 X 3.0 mm). The mobile phase consisted of 20% acetonitrile and

80% aqueous phase containing 7.5 mM tetrabutylammonium bromide and 3 mM

phosphate at pH 7.0. This system gave baseline resolution of the five acids in 35

minutes.

The derivatives were detected by absorbance at 230 and 400 nm. Quantitation

used external standardization with solutions containing known concentrations of the

derivatives of the pure acids and SRFA or SRHA in the same concentration as in the

related experiments. The system responded linearly up to 100 [LM, with a detection limit

of approximately 100 nM. It should be noted that even the high concentration of humic

substances used here do not interfere in the determination of the small organic acids using

this method. It is not surprising that the presence of measurable concentrations of LMW

acids in unirradiated SRFA and SRHA solutions has not been previously reported, as the

concentration of acids observed in these solutions is less than 0.2% of the total organic

carbon.

Bioassays

Dilution cultures were prepared from Massachusetts Bay water sampled at Revere

State Beach filtered through precombusted Whatman GF/F filters (3 hours at 450 'C,

nominal pore-size 0.7 [tm) to remove bacterivorous protists. This filtering also resulted in

a reduction in bacterial abundance from 6 x 106 cells ml-1 to 6 x 105 cells ml 1. The final

concentration of DOC in the filtered sample was 3.6 mg C 1- (300gM C). This coastal

water was amended with filter-sterilized aqueous solutions of SRHA (36 mg C liter-,

3mM C) and SRFA (45 mg C liter', 3.75 mM C) dissolved in Milli-Q water. Identical

solutions of SRHA (36 mg C liter') and SRFA (45 mg C liter') that had been exposed to

gamma radiolysis for 30 minutes (approximately 30 gM OH-) as described above were

also added to seawater (y-SRHA, y-SRFA). In each case, one part of humic or fulvic
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solution was added to 3 parts of seawater (v/v) so that the final DOC concentrations in

the incubated cultures were 11.7 mg C 1-1 (SRHA) and 14.1 mg C 1- 1 (SRFA), of which

2.7 mg C 1-' (225 gM C) were from the DOC originally present in the coastal seawater.

Each culture was also amended with NaH2PO4 and NH4Cl to final N and P concentrations

of 100 gM to achieve carbon limited growth conditions. For each amendment, triplicate

cultures were incubated in darkness at 23 'C in acid-washed glass bottles sealed with

Teflon-lined screw caps. Samples for bacterial abundance were taken daily from the

cultures during the 6 day incubation and were preserved by adding 0.2 gim-filtered

sodium tetraborate buffered formaldehyde to 2 % final concentration. Samples were kept

at 4 *C until analysis (within 2 weeks). As a result of the gamma radiolysis, initial

hydrogen peroxide concentrations were 1.8 gM but declined to less than 500 nM by the

fourth day of the incubation.

Bacterial abundance was analyzed using a FACScan flowcytometer (Becton

Dickinson) (57). Samples containing formaldehyde-fixed bacterial cells were stained with

the nucleic acid stain Syto 13® (50 gM final concentration, Molecular Probes). Counting

was performed at low flow (12 gl minute-') with detector voltages set to 400 (side scatter)

and 560 (green fluorescence). Fluorescent microspheres (Carboxy YG, 1.58 gm diameter,

Polysciences) were added to all samples at a final concentration of 4.5 x 106 beads m11

for use as internal reference. Cells were separated from fluorescent beads in a log-log dot

plot of side scatter and green fluorescence and bacterial cell abundance was determined

using the fluorescent beads as an internal standard. Samples were run for 20 seconds or

until a minimum of 2000 beads had been counted.

Epifluorescence microscopy and image analysis were used to estimate bacterial

cell size and to assure that predatory flagellates were absent in the cultures at the end of

the incubations. Formaldehyde-fixed bacterial samples were stained with 4'6-diamidino-

2-phenylindole (DAPI) (58) and cells were visualized with an Axioskop 2 fluorescence

microscope (Zeiss) equipped with an Atto-Arc variable light source. For each culture,

duplicate images were acquired with a Magnafire cooled CCD camera (Optronics).

Images were exported to the Scion Image 4.0.2 image analysis software and an edge
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detection operator was used to define individual area, length, and width of >100 cells per

individual culture. Cell volumes were then estimated by approximating the shape of

bacterial cells as a cylindrical cell with hemispherical end caps. Volumes were converted

to bacterial carbon biomass for individual cells using the volume to dry weight

relationship previously reported by Loferer-KriSpbacher et al. (1998) and assuming that

carbon comprises 50 % of the bacterial dry weight (59). Total bacterial carbon was

calculated using bacterial abundance and average carbon content per cell in individual

cultures.

Results
We have determined the second-order reaction rate coefficients for OHO with

5mg/L (416 iM C) SRFA and SRHA using 14C-labeled formate as a probe for OH- in

solutions of the acids saturated with a 4:1 N20/02 mixture and buffered at pH 6. By

utilizing 14C-formate we can add very small probe concentrations (100 nM), and as DOM

is the only significant sink of OH' in this system, we can assume that the OH- steady

state concentration ([OH-]s,) is determined by the scavenging rate of the DOM in the

system. The concentration of formate anion after irradiation time t, [formate]t, is

described by the equation:

In [formate]t/[formate]. = -kformate [OH-]ss t (9)

where [formate]. is the initial formate concentration and kformate is the second-order rate

constant of reaction of OH' with formate (the reaction of OH' with formic acid is

insignificant at this pH). If [OH-]s, is constant, a plot of ln[formate]t/[formate]. versus t

should be linear, and [OH-]ss can then be obtained from the slope. Since the OH'

production rate POH in our radiolysis apparatus is known (1.7 x 10-8 Ms 1 in the presence

of 02), [OH-]ss can then be used to determine the sum of the rates of the reactions of OH-

with its sinks, where each rate is given by the second-order rate constant of the reaction

of OH' with sink i, ks,j, multiplied by the concentration of the sink, [S]j:
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Yksj [S]i = PoH/[OH]ss

Plots of In[formate]t/[formate]. versus irradiation time in fulvic and humic acid

solutions exhibit a slope becoming steeper with increasing irradiation time, indicating

that [OH-]ss is also increasing (Figure 1) and therefore that lks,j [S]i is decreasing. Values

of lks,j [S]i calculated from the observed slopes all greatly exceeded the contributions of

formate and phosphate species to the sum, showing that DOM is the only significant sink

of OH* in this system, and that Xksj [S]i, is therefore equal to kDOM[DOM]. DIC

measurements (see below) indicate that [DOM] did not decrease significantly during the

course of this experiment so that the observed decreases in lks,j [S]I, with longer

irradiation time must be due to decreases in kDOM- Calculated kDoM values for SRFA and

SRHA in the early, middle, and later parts of the irradiations (normalized to carbon

content) are shown in Table 1.

We have observed the production of LMW carbon acids during the reaction of

OH- with SRFA and SRHA (Figure 2). Production rates of acetic, formic, malonic, and

oxalic acids per mole of OH' were approximately constant in the SRFA and in the SRHA

solutions (Figure 2). Production rates of these acids determined from least squares

regression of the data are shown in Table 2. No production of levulinic acid was observed

in our experiments. The large flux of OH- used in these experiments could also react with

the acids, reducing their observed concentration and cause an underestimation of their

production rates. However, maximum loss rates from reaction with OH' of oxalic and

acetic acids were less than 4% of the net production rates shown in Table 2 ([OH-]s, = 4 -

6x 10~4 M, rate constants of deprotonated acids with OH- < 108 M-1 s4 (50)). The loss

rate of malonic acid is at most 17% of the production rate in the SRFA experiment and

18% in the SRHA experiment (rate constant of the malonate reaction with OHO is 3x10 8

M-'s-1). In the case of formic acid, the rate of reaction with OH' is much faster (rate

constant of formate 3x10 9 M-'s'; (46)). The observed net formate production rates of 3.2

x 1010 M s- (SRFA) and 7.3 x 10-10 M s-1 (SRHA) can be corrected for the loss of

formate by two independent methods. The half-life of loss due to reaction with OH' is 60
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minutes (SRHA) or 90 minutes (SRFA), so that approach of a formate steady-state

concentration might be expected in our 120 minute irradiation experiments. By assuming

the maximum formate concentration represents a steady state concentration and using

calculated [OH*]ss concentrations of 4 x 10-14 M (SRFA) and 6 x 10-14 M (SRHA),

formate production rates of 4.9 x 10-10 M s- (SRFA) and 9.9 x 1040 M s-1 (SRHA) can be

calculated. Dividing these calculated formation rates by the OH- production rate of 1.6 x

10-8 M s- leads to the calculated production ratio of 0.03 ptM formic acid/ gM OH- for

SRFA, and the corresponding SRHA value of 0.06 gM acid/ pM OH* (Table 2). The

larger correction for the SRHA solutions is due to the lower reaction rate constant of OH-

with SRHA and hence a larger calculated [OH*]ss. These revised rates can be arrived at

independently by calculating the formate loss rate at each time point and performing a

linear regression of the resulting corrected data. The values arrived at by this method are

within 2% of those derived from the steady-state calculation.

The microbial growth experiment provided a measure of the total change in

bioavailable substrates by the OH*-driven alteration of SRFA and SRHA. Samples

exposed to 30 gM OH-, a dose equivalent to 15 days of near-surface solar irradiation

assuming a relatively high OH- production rate of 10-10 M s- for six hours per day (see

Introduction), were inoculated with a natural consortium of coastal bacteria and incubated

for six days. During the course of the six day incubation, bacterial abundance increased >

10-fold in all cultures. There were no visible protozoan contaminants in any of the

cultures at the end of this period. Radiolysis treatment of SRHA and SRFA resulted in a

slightly lower bacterial abundance throughout the incubation (Figure 3), but neither the

cell abundances nor the carbon content per cell differed significantly between irradiated

samples and controls at maximum cell concentration (Students-t, p> 0.1; Table 3).

Radiolysis of the SRFA and SRHA solutions produced significant concentrations

of DIC, showing that OH* and/or 02 reactions with DOM macromolecules are important

in photomineralization processes. Since DIC production can be eliminated by the addition

of t-butanol, which scavenges OH- but not 02, OH- must be responsible for this

mineralization (Figure 4). The rate of DIC production from a 0.5 mg C 1- 1 (42 [tM DOC)
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solution of SRFA remains relatively constant until complete mineralization occurred (40

gM DIC produced, Inset Figure 4). A further indication that neither 02~ nor 02 is

responsible for a significant portion of the DIC production comes from the fact that there

is no significant decrease in the DIC production rate when 02 is excluded from the

radiolysis experiments, as shown in Figure 5. The molar ratio of DIC produced to OH'

generated is approximately 0.3 both in the SRFA solutions and in the SRHA solutions.

This ratio is not significantly altered within the range of pH values found in natural

waters (pH 4- pH 10).

OH* radical reacts very rapidly with Br- in seawater (60) and in other bromide-

containing natural waters (61) to produce Br2~ and BrO~, which may then react with C0 3
2-

to produce C0 3' radical (60,62). Any of these intermediate radicals may react more

selectively with DOM than OH- does. Large concentrations of added Br- (up to 0. 1M) do

not affect the production of DIC (Figure 5), indicating that these intermediate radicals are

as effective as OH- in mineralizing DOM. Bromine species (BrO- and BrOH) have been

shown to be rapidly reduced by DOM at doses of 1.6 gM (mgC 1') 1 (63). Thus, although

>97% of OH' in seawater reacts initially with Br- (60), the final sink of these radicals is

most likely DOM.

OH' was observed to be capable of bleaching SRFA and SRHA in the UV-B

region of CDOM (300 nm) at a rate of approximately 2.1 (±0.1) x 10 m 1 per molar OH'

produced for SRFA and 4.3 (±0.06) x 104 m1 per molar OH' for SRHA (Figure 6). Both

DOC-free seawater amended with SRFA and coastal seawater samples from Delaware

Bay exhibited similar bleaching rates (1.3 (±0.2) x 104 m-1 per molar OH'). These rates

were only slightly lower than the bleaching observed in N20-saturated, buffered Milli-Q

solutions of SRFA (Figure 6), although there is significant scatter, possibly due to pH

changes in these unbuffered solutions. The addition of 02 to the radiolysis solutions

increased the bleaching efficiency of OH' to 3.0 (±0.1) x 10 4 m1 per molar OH' for

SRFA and 5.1 (±0.1) x 104 mI per molar OH' for SRHA, possibly by increasing the

efficiency of the OH--mediated aromatic-ring opening reactions (see Discussion).
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Discussion
The second order reaction rate coefficients of OH- with SRFA and SRHA (kDOM)

determined in this work (Table 1) fall within the range of values for aquatic DOM

determined by previous investigators (1-7 x 104 s-) (20,21,64). Previous investigators

have used similar techniques to determine the rate coefficients of the OH. reactions with

SRFA and SRHA (23,24). The rate constants determined were 30-40% lower than those

found in this work, but were determined at OH- doses that were 30% higher than used

here. A decrease in the rate coefficients with increasing OH- dose, which cannot be

accounted for by mineralization of the organic matter, has not been previously reported,

although Peyton (1993) speculated that this result might occur (65). The decrease is not

unexpected, since these rate coefficients are the averages of the reaction rate constants of

OH- with the many different constituent parts of the fulvic and humic acids. As the more

rapidly-reacting portions of the DOM are oxidized, the average rate coefficient decreases.

The rate of DOM scavenging of OH- in natural waters, which often determines [OH-]s,

should therefore be considered a function not only of the DOM concentration, but also of

the extent of DOM oxidation, although the magnitude of the effect that we observed is

small compared to the variability in reactivity of DOM from different sources observed

by others (20,21,23,24,28).

LMW acid production

OH- reactions with organic compounds fall into two basic mechanisms: addition

(hydroxylation), generally to an aromatic ring, or hydrogen atom (H') abstraction, both of

which may lead to formation of LMW acids. Hydroxylation of aromatic moieties of the

precursor material followed by ring opening can produce both mono- and diacids

(35,44,66). Both hydroxylation and Ho abstraction from phenols can break the

aromaticity of an aromatic ring, forming hydroxycyclohexadienyl radicals (35,44).

Rearomatization is a significant driving force towards O2/02~-driven scission of

conjugated carbon-carbon bonds adjacent to the aromatic ring (C-Cp), leading to

subsequent fragmentation and the formation of smaller oxidized products (see Figure 6 in

(36)). Another possible mechanism is H' abstraction from an unsaturated carbon-carbon

106



bond to form a carbon-centered radical (Ro) followed by reaction with 02 to form a

peroxyl radical and subsequent decomposition to a carboxylic acid (67,68).

We observed that the production of LMW acids from OH- reactions with SRFA

was very similar to the rates observed in the SRHA solutions. In principle, SRFA

represents a fraction of humic substances that contain more extensively substituted

aromatic rings (69), which exhibit increased reactivity towards OH- (70), and are thus

more easily broken down further by OH-. However, we did not observe large differences

between SRFA and SRHA in the overall LMW acid production. Both SRFA and SRHA

contain significant concentrations of carboxylic acid (11.2 versus 7.85 mol kg-1) and

phenolic (2.89 versus 1.86 mol kg-1) residues (69). Substituted phenolic residues in

particular might contribute to the production of LMW acids (35,36).

Production of bioavailable carbon substrates

The exposure of SRFA and SRHA samples to an environmentally relevant dose of

OH- (30 [tM) did not have any measurable effect on bacterial growth potential

(differences between irradiated and unirradiated incubations 1 (± 2) x 106 cells ml~1, 0.1

( 0.4) mg C 1-1 for SRHA; 2 (± 2) x 106 cells ml', 0.1 (± 0.2) mg C 1' for SRFA; Figure

3; Table 3). There is an extensive literature supporting a photochemically driven increase

in bioavailability of terrestrially derived DOM such as humic materials (reviewed by

Moran and Zepp, 1997). Furthermore, OH- has been shown to selectively depolymerize

cellulose in pulps (37) and has also been suggested to cleave cross-links in the rigid

lignin matrix (34). Either of these mechanisms would serve to facilitate enzymatic

degradation of high molecular weight DOM (e.g. humic and fulvic acids) into monomeric

compounds that are available for bacterial utilization (45). In contrast, some recent

studies have demonstrated that photochemical processes can have a negative impact on

the ability of DOM to support bacterial growth (71-73), but these negative effects have

generally been associated with the presence of more recent, algal-derived DOM and are

therefore less likely to be significant in our experiment. While the simplest explanation of

our result is that the reaction of DOM with OH- does not result in measurable formation
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of bioavailable products, we cannot rule out the possibility of counteractive positive and

negative effects on DOM bioavailability with a zero net result.

The low production rates of LMW carbon acids by OH- are consistent with the

lack of effect of OH- on bacterial growth in the bioassay results. The 30 gM dose of OHO

used for the bioassay experiments would have produced total LMW acid carbon

concentrations of - 0.07 mg C F' (5.5 gM C) in the solutions (Table 2). Conservatively

assuming a 50 % growth efficiency and a carbon content of 106 fg C cell-1 (Table 3), the

carboxylic acid carbon produced in SRFA or in SRHA cultures could support the growth

of 3.3 x 105 cells. Although there is considerable uncertainty in the growth efficiency of

microbial communities on carboxylic acids (range of 20-80%; (3)), the formation rates of

the LMW acids we measured are clearly too low to be a significant source of bioavailable

carbon in these experiments.

The bacterial growth in our dilution cultures suggests that a fraction of the added

SRFA and SRHA was bioavailable; the yield of biomass we observed is consistent with

what we would expect based on observations made on a variety of other humic materials

(74,75). While the contribution of the 2.7 mg C 1 (300 pM C, 19-23% of total) DOC

originally present from the Massachusetts Bay seawater is not clear, previous reports of

"labile" fractions of natural aquatic DOM (19 ± 12% for marine DOM; (76)) and an

expected growth yield of less than 50% suggest that the bacterial growth is not

attributable solely to this material.

DIC production

Since the average oxidation state of carbon in SRFA and SRHA is approximately

zero (69), an average DIC production rate of 0.25 mol DIC per mol OH- would be

expected if OH- is the only oxidant participating in the mineralization reaction. Given the

lack of effect of oxygen on the rate of mineralization, then, the observed production of

-0.3 mol DIC per mol OH- is consistent with our expectations. The same is true in the

presence of Br-, as long as Br- is ultimately regenerated so that the overall outcomes of

the reaction are reduction of OH* to OH- and oxidation of DOM to DIC. Our parallel

measurements of LMW acid production during irradiation show that production of DIC
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from OH- reaction with LMW acids is an insignificant fraction of the overall DIC

formation rate, indicating that most of the mineralization of humic substances does not

proceed via LMW acids as intermediates. The observation that the rate of DIC production

remains relatively constant from the beginning of the experiment until complete

mineralization of the DOM (Inset, Figure 4) suggests that breakdown of DOM into LMW

molecules other than the LMW acids we measured is also not a necessary precursor for

mineralization.

Bleaching

Bleaching (or 'fading') of CDOM is an important photoprocess that leads to

increased light penetration into the water column and to decreased photochemical rates

(since light must be absorbed in order to cause a photochemical reaction). The addition of

02 to these solutions increases the bleaching rates of SRFA by 35% and SRHA by about

20% (Figure 6), possibly due to the formation of peroxyl radicals followed by the

decomposition of aromatic rings and conjugated double bonds. The presence of oxygen

has been shown to increase the bleaching of paper pulps, most likely through a similar

mechanism (35,36,38). Solutions of humic acids display increased bleaching relative to

fulvic acid solutions (Figure 6). These differences may be due to the greater aromatic

content of the humic reference material (77), which may be more readily bleached by

OH- without being mineralized. Although the reactions of OH- with Br- in seawater

result in intermediates which we expected to react more selectively with chromophoric

material, we did not observe an increase in the effectiveness of bleaching per OH.

generated in seawater.

OH- as a mechanism of DOM photoproductformation

Assuming that the product formation efficiencies (mol product per mol OH') for

the materials we examined are similar to those for DOM from other sources, we can

assess whether OH' could be a significant mechanism for photoformation of these

products observed in previous studies. For example, in sunlight irradiation of water from

Lake Skarshultsjon, a humic-rich, iron-rich Swedish Lake (12.4 mg C 1 (1.03mM C),

300 gg Fe 1- 1), a total LMW acid production rate of 1.6 RM C per hour was observed,
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with formic acid being produced in greatest amount (3). In addition, photochemical

irradiations of a series of lake waters showed that LMW acid carbon production was 20-

30% of the concurrent DIC production (12). We observed formation of similar relative

abundances of individual acids to each other and to DIC in both of these samples,

including LMW acid carbon production rates of 30-40% of concurrent DIC production.

Although it is difficult to generalize from SRFA and SRHA to other materials, if SRHA

and Lake Skarshultsjon DOM behave similarly, a photoproduction rate of 8-9 gM OH-

per hour (-2x10~9 Ms 1) would be required to produce the quantities of LMW acids and

DIC observed to be photoproduced in Lake Skarshultsjon. Similarly, to explain the

difference in DIC photoproduction in Satilla River water with and without addition of a

ligand to eliminate Fe photoreactions (14), a difference in OHO production rates of -16

pM OH- per hour is required if indirect, OH--mediated chemistry is solely responsible

for the Fe-related DIC production. Based on these estimates, it seems unlikely that OH- is

responsible for a large fraction of the photochemical production of DIC or LMW acids

observed in these waters. In addition, exposure to OH- corresponding to an average solar

exposure of 15 days (assuming OH- photoproduction rates of 10-10 M s-1 for 6 hours per

day) did not have any significant effect on bacterial growth potential (Figure 3; Table 3),

in contrast to previous work that has shown enhanced bacterial growth potential after

only 12 hours of simulated surface UV radiation (73). Finally, for an OH- production rate

of 2gM d-' (10-10 M s4 for six hours/day), the maximum bleaching rate of SRFA due to

reactions with OH. was 6x10-2 m-1 d1 , less than 20% of photobleaching rates of -0.33

n 1 d 1 observed in similar solutions irradiated by simulated sunlight (Chapter 5; (78)).

Thus, indirect photobleaching of SRFA via the photointermediate OH- is only a

candidate as a significant mechanism of total photobleaching in waters with very high

OH* photoproduction rates, for example in iron-rich acidic systems where Fenton

chemistry may be important. To the extent that SRFA and SRHA are representative of

aquatic DOM, then, we can eliminate OH. reactions with humic substances as a

significant mechanism for formation of DOM photoproducts.
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Table 3. 1

OH- reaction rate constants with SRFA and SRHA as a function of cumulative OH-

exposure. Standard errors derived from the slopes of the lines in Figure 1 are in

parentheses.

OH* range SRFA (104 s- (mg C/1)-I) SRHA (104 s-I (mg C/l)-I)
Early (0-2 gM) 3.8 (0.6) 3.8 (1.8)
Middle (5.2-10.3 pM) 2.5 (0.1) 2.4 (0.2)
Late (15.5-30.9 IM) 2.7 (0.2) 1.6 (0.07)
All data 2.7 (0.05) 1.9 (0.05)

Table 3. 2

Ratio of mol carboxylic acid produced per mol OH- for SRFA (14.0 mgC 1-1) and SRHA
(14.2 mgC 1- 1). Ratios were calculated by linear regression of the individual experiments
for which the average values are show in Figure 2. The numbers in brackets are the
standard errors of the slopes calculated during the regression analysis. Corrected formic
acid production ratios from SRFA and SRHA were calculated by assuming the maximum
formate concentrations represent steady-state concentrations and using calculated [OH*],,
to obtain formate production rates (see Results). Losses of other acids via reaction with
OH- are less significant compared to formation rates and were neglected.

Acid produced per OH*
acid SRFA SRHA
formic 0.020 (0.003) 0.045 (0.003)
formic 0.031 0.061
(corrected)
acetic 0.013 (0.003) 0.008 (0.001)
malonic 0.017 (0.005) 0.028 (0.008)
oxalic 0.032 (0.005) 0.017 (0.004)
total C 0.17 0.19
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Table 3. 3

Initial DOC measured in dilution culture bioassays and bacterial abundance, cellular
carbon content and total bacterial carbon at day 6 (final day of the dilution culture
bioassay). Mean values of triplicate incubations are given with standard deviations in
parentheses.

Initial DOC Bacterial biomass

Material Treatment (mg C 1-1) (cells ml-1) (fg C cell-) (mg C 11)

SRHA Control 11.7 1.3x10 7 (0.2x10 7) 82(34) 1.0(0.4)

y 11.7 1.2x10 7 (0.03x10 7) 91(8) 1.1 (0.1)

Control 14.1 1.3x10 7 (0.05x10 7) 102 (16) 1.2 (0.2)
SRFA

y 14.0 1.1x107 (0.2x10 7) 106 (24) 1.1 (0.2)
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Figure 3. 1

Mineralization of 14C-formate in 5 mg C 1 SRFA (0) and SRHA (0) solutions saturated
with N2 0 and 02 (4:1) and buffered to pH 6 with phosphate. Initial 14C counts are 8000
and 7800 dpm for SRFA and SRHA respectively, approximately 42 nCi (100 nM
formate). The error bars are derived from counting statistics.
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Figure 3. 2

Measured formation of acetic (0), formic (V), malonic (0), and oxalic (0) acids from the
reaction of OH- with SRFA (A) and SRHA (B). Error bars represent one standard
deviation from the mean values of three separate irradiations. The analytical error for
each determination would be smaller than the symbol.
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Figure 3. 3

Average bacterial abundance in incubated cultures of GF/F filtered seawater amended
25% (v/v) with Suwannee River Fulvic Acid, SRFA, (A) or Suwannee River Humic
Acid, SRHA (B) with (0) or without (0) y-radiolysis treatment. Initial DOC
concentrations were 11.7 mgC 11 for SRHA cultures and 14.1 mgC 1~1 for SRFA cultures,
of which 2.7 mgC 1- was from the seawater inoculum and the rest from the humic
substances. Error bars represent the standard deviation of triplicate incubations.
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Figure 3. 4

DIC production from irradiated SRFA (5mg C 1~1 (430 FM C), 2mM phosphate buffer at

pH 6), without (V) and with (0) 0.3 M tert-butanol as a radical scavenger. Also shown is
the lack of production of DIC from 0.3 M t-butanol (0). Solid lines are linear fits to all
the data. DIC is produced at a similar rate from a lower concentration of SRFA (0, 0.5

mg C 1- 1 (43 RM C)). The inset shows the complete mineralization of the 43 FM C SRFA
solution at very high OH'. The dashed lines represent a theoretical formation rate of 1

mol DIC per 4 mol OH- until complete mineralization of 43 RM C.
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Figure 3. 5

DIC production divided by OH- generated ( M/gM) for various treatments of SRFA and
SRHA solutions. Unless specified otherwise, all solutions are 5 mg C 1-1 (430 RM C)
SRFA, 2 mM pH 6 phosphate buffered, and saturated with both N20 and 02. The first bar
(FA avg) is the average of 3 different SRFA irradiations, with the error bar as the 95%
confidence limit. Other error bars represent one standard deviation of the linear fits to the
data.
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Figure 3. 6

Bleaching of SRFA at 300 nm with (0) and without (0) oxygen, SRHA solutions with

(V) and without (V) oxygen, DOC-free seawater amended with 5 mg C 11 (430 gM C)
SRFA prior to irradiation and saturated with N20/02 (E), and a coastal seawater sample

from Delaware Bay saturated with N2 0/02 (A). All SRFA and SRHA solutions are 5 mg

C 1~' (430 gM C), 2 mM pH 6 phosphate buffer and saturated with N20 or N20/0 2 as

noted in the Methods. The dotted lines are linear fits (all r2 >0.88).
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CHAPTER 4:

A MULTICOMPONENT MODEL OF CDOM PHOTOBLEACHING
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Abstract
Light absorption by the chromophore-containing constituents of dissolved organic

matter (CDOM) plays a number of roles in aquatic systems, including both control of the

underwater light field and the initiation of many photochemical reactions. We have

developed a multicomponent model describing the effects of monochromatic UV and

visible radiation on the optical absorption spectra of CDOM in a Suwannee River fulvic

acid standard (SRFA). This model used a constrained minimization technique to fit

exponentially bleaching independent spectral components to the observed bleaching

behavior of SRFA under monochromatic irradiation. Bleaching spectra calculated from

the components derived from these fits have been compared to the bleaching behavior of

SRFA under polychromatic irradiation (X >320nm). The calculated spectra underpredict

the bleaching at longer irradiation times, but reproduce the broadband photobleaching

behavior very well at times < 48 hours.
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Introduction

Light absorption by the chromophore-containing constituents of dissolved organic

matter plays a number of roles in aquatic systems. Absorption of ultraviolet wavelengths

has important ecological consequences (1,2), and the transformation of UV and visible

wavelengths to heat can influence the thermal structure of aquatic systems (3). Another

significant process is the formation of many primary and secondary photoproducts, such

as dissolved inorganic carbon (4), carbon monoxide (5), low molecular weight carbonyl

compounds (6), and various reactive oxygen species (7,8). Light absorption also leads to

alterations in the bioavailability of CDOM (1,9-15).

The absorption and fluorescence spectra of CDOM in surface waters have a

significant effect on the remote sensing of ocean color and therefore the remote

determination of chlorophyll (3,16-20). The optical properties of ocean waters are

typically divided into two principal domains: those in which phytoplankton absorption

dominates the variable component (Case I) and those in which detritus particles and

terrestrially derived CDOM play an important role (Case II; (21)). Case II waters

incorporate the majority of coastal regions throughout the globe. Thus, the determination

of the component of light absorption due to CDOM is essential to the remote

determination of other optical properties, such as chlorophyll absorption.

The various photochemical reactions initiated by light absorption eventually lead

to the destruction of the chromophores, and thus to the loss of CDOM light absorption

(22-26). The CDOM 'bleaching' that ensues causes changes in the rates of

photoprocesses such as reemission of light as fluorescence (27-29). In addition, the

absorption of light is a necessary precursor to all CDOM-initiated photochemical

processes.

Bleaching spectra of marine CDOM have been commonly described at various

observation wavelengths, Xobs, by a bi-exponential decay equation (24-26):

aXesb,/,Xob, = f-kr(Xobs) + fs e- ks(obs) t M
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where ax/a0 ,x is the normalized absorption at wavelength Xobs, and fr and f, are amplitude

factors corresponding to wavelength-specific exponential decay functions, kr(Xobs) and

kS(XbS), that describe the rapid (fr,kr) and slow (f,,ks) parts of the total decay at that

wavelength. Attempts to replace bi-exponential bleaching functions with simple

exponential terms tend to underpredict the early, fast bleaching phase, and overpredict the

slower, longer-term bleaching phase. This empirical bi-exponential description is

unsatisfactory for compressing the data into matrices suitable for predictive

manipulations because of the non-linearity of these functions.

A larger problem is that in most of the exponential fits described above, each

different observation wavelength must be described by a different set of exponential

decay functions and amplitude factors. The two exponential amplitude factors cannot be

thought of as two chromophores, as chromophore bleaching rate coefficients should be

independent of the observation wavelengths. Furthermore, combining the modeling of

photochemical 02 uptake and associated CDOM photobleaching required at least three

chromophore pools, suggesting that seawater CDOM photolysis cannot be thought of in

terms of only two pools of photoreactive material (30). A possible solution to this

problem is the description of CDOM absorption spectra as multiple chromophores with

narrow absorption bands. A problem with this theoretical description of CDOM spectra is

the bleaching of absorption at wavelengths far from the irradiation wavelengths ('off

axis') observed during monochromatic photobleaching experiments (31).

A description of the 'off-axis' bleaching due to monochromatic irradiation

requires the invocation of different mechanisms. Chromophores that have broad or

multiple absorption bands, including the irradiation wavelength(s) of photobleaching,

would be bleached at wavelengths other than the irradiation wavelengths. The rate of

photobleaching of these chromophores at wavelengths away from the irradiation

wavelength would be directly proportional to the rate of light absorption at the irradiation

wavelength(s). Clearly, more than two such chromophores would be necessary in order to

describe the observed photobleaching behavior. A second possible mechanism is indirect

photobleaching of CDOM by photoproduced reactive intermediates such as OH-. This
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process is expected to display little wavelength selectivity in bleaching reactions,

although there is a wavelength dependence of OH. formation from CDOM (32).

A third mechanism that might account for the bleaching at wavelengths away

from the irradiation wavelengths is electronic coupling of the absorbing chromophore

with another portion of the CDOM (e.g. via energy or charge transfer). One method of

describing this situation is to propose 'inter-chromophore' interactions (33). These

interactions arise from electronic coupling, and are most likely to be large for species that

are closely adjacent to each other, and should decrease rapidly with distance. A

conformational change, e.g. induced by a pH change, or a chemical disruption that alters

the orientation or distance between two interacting species will also alter the magnitude

of this electronic coupling. pH-induced changes in absorption and fluorescence spectra of

CDOM have been observed for a number of different CDOM sources, although it is not

clear that these changes are due to this phenomenon (34,35).

One method of investigating the various possibilities for chromophore behavior is

to model the bleaching behavior of CDOM under monochromatic irradiation. By limiting

the irradiation wavelengths to a narrow band it is possible to examine the absorption loss

at wavelengths that are not irradiated. The different hypotheses explaining off-axis

photobleaching (bleaching at wavelengths other than irradiation wavelengths), namely,

several independent chromophores; indirect, sensitized photobleaching; or coupled

electronic states, might plausibly result in different kinetic behavior. Indirect bleaching

caused by OH*, as noted above and described in Chapters 3 and 5, does not contribute

substantially to short-term photobleaching of CDOM. OH- may, however, have some

effect on the long-term bleaching behavior of freshwater samples (see Chapter 5).

The simplest photochemical hypothesis of photobleaching consists of

independent, non-interacting chromophores each bleaching with a constant quantum yield

to transparent products (the 'simple hypothesis'). If CDOM bleaching reactions arise

from a single excited state (most likely the lowest excited singlet state, S1), then the

quantum yield of bleaching of each independent chromophore ($i) should be independent

of the wavelength of light used to excite the chromophore (the irradiation wavelength,
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X). Many other more complicated photochemical reaction pathways are possible. For

example, the population in the S1 excited state might not react to produce a bleached

product, but might instead undergo intersystem crossing (ISC) to form triplet states (T1).

It is also possible that charge transfer to solvent (CTTS) states are important parts of

photochemical bleaching mechanisms. These mechanisms would not necessarily have the

same hypothesized wavelength-independent quantum yields.

The successful application of the 'simple hypothesis' to the modeling of spectra

of CDOM samples bleached with monochromatic light would argue that simple

multicomponent chromophore behavior was the dominant mechanism of photobleaching.

In this work, an initial model was developed by loosening the constraints of the 'simple'

hypothesis. This 'relaxation' is performed by allowing the bleaching quantum yield ($jk)

to vary as a function of irradiation wavelength, Xj (the 'relaxed model'). By relaxing these

constraints, we can still attempt to fit photobleaching data and examine the simple

hypothesis. If the simple hypothesis of wavelength-independent quantum yields is a

reasonable approximation of chromophore behavior, it should produce a minimum in the

solution space of the model fit. Thus the relaxed model should still allow us to investigate

the validity of some of the assumptions of the simple hypothesis. We plan to address the

simple hypothesis more directly in the future with a more constrained model.

Regardless of the ability of the relaxed model to address the simple hypothesis,

the development of a fitting method based on monochromatic bleaching data sets that can

be used to successfully reproduce broadband bleaching spectra would be of general utility

in the modeling of photochemical phenomena.

Theory

An approach to modeling photo-bleaching rates is possible if CDOM behaves as a

mixture of independent chromophores that bleach to uncolored products (i.e. minimal

electronic coupling, no significant sensitization by other chromophores, and no

intermediate chromophore formation). These are important, non-trivial assumptions. This

model may hold true even if the different molecular components are chemically bonded

to each other, as long as the chromophores are not electronically coupled and do not
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sensitize chromophore destruction through the production of reactive intermediates. An

important assumption is that these components bleach to uncolored products, that is, that

there is not the production of intermediate products with different bleaching rates. This

assumption cannot be readily tested with the model presented here, but it is an issue that

should be addressed in future work.

The direct proportionality of bleaching rate with photon absorption rate is derived

as follows. The rate of destruction of a chromophore i present at concentration ci is

described by:

dc, = W x iGO (2)
dt 1000D

where Wi,xj is the rate of photon absorption of chromophore i (E/m2day), $i,xj is the

quantum yield of i (moles of i bleached per E of photon absorbed) at wavelength Xj, D is

the depth of the water column, and the factor 1000 converts m3 to 1. The sum over

wavelengths Xj is the sum over multiple irradiation wavelengths. The observed loss of

absorption as a function of time for such a mixture of chromophores can then be derived

from the treatments outlined in (36) and (37):

In the presence of a mixture of chromophores, the solution's total absorption a (in

m-1) at wavelength X is given by:

a(X) = aw(X) + F-EI(X) ci (3)

where aw(X) represents the absorption coefficient of the medium (water), and Ei(X) is the

molar extinction coefficient (in M1m-1) of chromophore i. a(X) is easily measured, but

this measurement provides no information about the individual chromophores present. If

light scattering is insignificant (i.e. under conditions of low turbidity) and if the light

beam enters the solution perpendicular to the surface, the attenuation of light intensity

with depth z is given by:
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Iz,X = Io,X (e-aX)z) (4)

where Io,x (E/m2 day) is the intensity of light at wavelength X entering the water and Iz,x

is the intensity penetrating to depth z. By Beer's Law, for a pathlength dz short enough so

that Iz+dz,X Iz,X, the rate of light absorption by chromophore i at wavelength Xj in this thin

slice of solution is given by:

dWi,xj = Iz,x Ei(X) ci dz (5)

The rate of absorption of light of wavelength Xj by chromophore i, Wi,xj, for a water

column of depth D is obtained by integration (Equation 7, below):

D f i (X~c icdz = I O, e_ i( D a() zdz - I 0 ,ke(X)c~ i e -a(X)D)
Wi,xj = fI , Ix (fcd ,, i( e a zd a~c aR

(6)

For optically thin solutions (a(X)D <<1) the above simplifies to

Wi,xj = I0,x E(A) ci D (7)

A first-order decay of each chromophore will thus be observed:

dci - (8)
dt

where, from Equations 2 and 7,

k'= O'Xj (X d (9)
1000
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Given an observation wavelength X and n chromophores, the initial contribution of

chromophore i to a(X) is defined as bi(X) so that

bi(k) = Ei(A)ci,o (10),

and from Equation 4, referenced to water to eliminate the c.(X) term,

a(t=O,X) = bi(X) (11)
i=1 to n

From Equation 8,

ci,t = ci,o e kI t2)

so that

a(t,X) = bi(X) e -k'it (13)
i=1 ton

For monochromatic irradiations at wavelength Xj, as are modeled here,

k'Xj = ki Io,xj (14).

The bleaching rate coefficient of the ith component chromophore, ki,x, must be

independent of observation wavelength for a given irradiation wavelength, since these

photobleaching kinetic constants are directly proportional to the absorption of light at the

irradiation wavelength, bi,x, the apparent quantum yield of photobleaching, $i, and the

irradiance at wavelength Xj, Io,xj. For example, a single chromophore absorbing at

multiple wavelengths would exhibit the same bleaching rates at different observation

wavelengths under monochromatic irradiation.
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The simplest hypothesis of photobleaching mechanisms leads to the quantum

yield of photobleaching, $j, being independent of the irradiation wavelength:

ki(Xj) oc bi,x - -e Io,x (15).

In the model presented here (the 'relaxed model') this constraint is relaxed by allowing

the quantum yield to be a function of the irradiation wavelength, such that

ki(Xj) oc bi,xj - $i,xj - Io,x (16).

Methods

Data/Bleaching Samples

Data for this modeling effort was provided by Rossana Del Vecchio and Neil

Blough (31). Briefly, monochromatic bleaching spectra were obtained by irradiating

several Suwannee River Fulvic Acid (SRFA) samples with monochromatic light. The

samples were bleached using five wavelengths between 296 nm and 407 nm

corresponding to the maximum emission lines of a high pressure mercury lamp. These

wavelengths also span the range of energy considered most effective for photochemical

and photobleaching reactions: UV B (280-315 nm) through blue-violet (400-430nm). A

monochromator was used to isolate 10 nm band widths. Spectral absorption values are

reported as absorption coefficients in units of m-.

Broadband irradiation experiments were also conducted on the same samples.

High pressure xenon arc systems were used to simulate solar radiation, with cutoff filters

used to exclude wavelengths below 320 nm and water filters used to exclude infrared

radiation (heat) so as to avoid thermal effects.

Bleaching spectra were obtained using a Hewlett Packard HP8452A diode-array

spectrophotometer or a Shimadzu 2401-PC spectrophotometer using quartz cuvettes and
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referenced to Milli-Q water. Irradiation intensities were determined using both a IL 1700

radiometer and a Licor UW1800 spectroradiometer.

Modeling

All calculations were performed in MATLAB (Mathsoft Corp., Malden, MA.).

Absorption spectra were measured as a function of observation wavelength, irradiation

time, and irradiation wavelength and arranged in a matrix A. Bleaching spectra as a

function of time are arranged such that each column represents a spectrum. Each row is

thus a set of absorption values at observation wavelength X (280 nm - 410 nm in 10 nm

intervals) as a function of time. This data set is composed of five different sets of

bleaching spectra, with each set being an experiment in which the CDOM sample was

bleached with monochromatic light at a different wavelength Xj (296, 313, 334, 366, 407

nm). Because we are attempting to use the same set of chromophores to describe all the

different data sets, we have concatenated the five different experiments. The first

subscript on the t's indicates the time point of the measurement, while the second

subscript denotes the different irradiation wavelengths for each monochromatic bleaching

experiment. The values after the commas are the observation wavelengths at which the

absorption value is measured. Thus a(to, 296,280) is the initial absorption at time zero (to)

of the bleaching experiment irradiated with light at 296 nm (Xj) and observed at 280 nm

(X), and the array has the form:

A=

a(to,296,280)... a(tf,296, 2 8 0) a(to,313,280) ... a(to,407,280)... a(tf,4o7, 2 8 0)

a(to,296,290)... : a(to,313,290) ... a(to,407,290)...

a(to,296,300)... : : ... a(to,407,300)...

a(to,296,410)... a(tf,296,410) a(to,3 13,410) ... a(to,4 07,410)... a(tf,4o7,4 10)

Two matrices B and P need to be determined such that B times P (B x P) is a good fit to

the data matrix, A. The matrix B contains the spectra of the n chromophores arranged in
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columns such that each column is the spectrum of the ith chromophore bi, where the

numbers in parentheses are the observation wavelengths (X):

B=

bi(280) b2(280) ... bn(280)

b1(290)

b1(410) b2(410) ... bn(410)

P is a 'model' of the behavior of the spectral components in B. We have assumed that

each spectral component in B behaves independently, that is, that components do not

become different absorbing species but instead bleach towards zero independently of

each other. We have further approximated that these bleaching experiments were carried

out under optically thin conditions. We can thus derive first order decay behavior for

each component bi (see Theory section) so that each bi has been bleached by a factor of

exp(-ki,xj Io,x t) at time t. For example, the column of A corresponding to the spectrum of

SRFA bleached with light of intensity I at wavelength 313 nm (I313) at time x is:

A(tx,3 13 , X) = b1 (X) exp(-kl,313I 313tx,313) + b2(X) exp(-k 2 ,3 1313 13 tx,3 13) + ... ...

+ b(X) exp(-kn,313I31 3 tx,3 13 ) (17)

Note that in this model, because the irradiance values, iXj, are known, we explicitly

include them in the exponential term (see Equation 14).

Our model matrix P is a description of the bleaching behavior of the chromophores in B,

which each row representing a different component and each column a different time

point of a monochromatic bleaching experiment:
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exp(-ki, 296tO,296I2 96) exp(-k, 296t, 2961296) exp(-k, 3 13to, 3i3 13 13) exp(-k, 407t, 407I40 7)

exp(-k2,296tO,296 I296) exp(-k 2,296t, 296I296) ... exp(-k2 ,407t, 4 07 Io7)

exp(-k 3,296tO, 296 I296)

exp(-kn,296t, 296I296) exp(-kn,296t,296I296) exp(-kn,313to,313I313) exp(-kn,407t,4071407)

Because different experiments used different wavelengths of light to produce the

bleaching, we have fit different rate constants ki,xj (where ki is the rate constant

appropriate to chromophore i at bleaching wavelength Xj, where Xj is 296, 313, 334, 366,

or 407 nm) for the same chromophore set bleached in each experiment. Therefore, our

results are expressed in a n x 5 matrix of ki,xj's, representing the 5 different wavelengths

of light used in bleaching and the n different chromophores:

k=

ki,296 kl,313..... ki,407

k2,296 :k2,407

kn,296 ........... kn,407

In order to determine these rate constants and the spectra of the independent

chromophores, we have set up an algorithm to find the B and P that gives us the best fit

to A:

A=B*P (18)

(1) Initial guess at ki,xj gives an initial guess at P

(2) Initial guess at B

(3) Calculation of the sum of squared residuals of A - BP as the cost function.

(4) Iteration to determine a better set of ki,x and B using a geometric search algorithm in

Matlab (boundary constrained search routine utilizing sequential quadratic programming,

fminc on). The search routine was constrained to find only positive values of ki,x and B.
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An additional constraint held the sum of bix less than or equal to the initial aox. For any

irradiation experiment, then, A can be calculated if the spectral characteristics of the light

source, IO?,j, , the irradiation-wavelength dependent bleaching characteristics (product of

sixj $iNj in Equation 16, that is, kixj), and the spectrum (B matrix) of each chromophore

are known. This algorithm does not provide protection against finding local minima (see

below).

Broadband reconstruction

The determination of the spectral components and decay rates from the

monochromatically bleached SRFA spectra is an exercise in model fitting. That is, model

parameters were adjusted according to criteria (defined above) to produce a good match

between the model and the observed data. Reconstruction of the broadband bleaching

spectra is not a fitting exercise, but instead a calculation produced by applying the

experimental parameters of the polychromatic irradiation experiments (time and

irradiance) to the model obtained during the monochromatic fitting exercise.

Reconstruction of broadband bleaching spectra was performed by binning the

polychromatic irradiance in 10nm wide bins around the monochromatic bleaching

wavelength bands, Xj. The decay rate constant kia, determined for each component bi at

monochromatic irradiation wavelength Xj from the monochromatic bleaching

experiments was multiplied by the appropriate irradiance value, producing the

exponential rate coefficients ki' from Equation 15. The decay rate coefficients for each

component bi are thus the sum over i of the irradiation-specific rate constants multiplied

by the irradiance at each irradiation wavelength Xj: ikix Ixj. The spectra were

reconstructed by assuming single exponential decay of each independent component i

using this decay constant and the times, tbb, from the broadband photobleaching

experiment and summing the resulting contributions of each component. Thus, each

component i contributes bi exp (-[Zkix I x.]tbb) total absorption at time tbb. These

calculated broadband predictions were then compared with the actual broadband

bleaching spectra obtained using a 320 nm cutoff filter.
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Results
Utilizing the 'relaxed model' of independently varying component spectra, bi, and

irradiation-wavelength-dependent decay constants, kixj, we have been able to determine

the spectra of independent components and the associated decay constants for a series of

monochromatic bleaching data sets using the minimization technique described above

and included in the Appendix. To examine the possibility of returning local minima as

solutions, the algorithm was initiated with different initial values, including minimum

(zero) and maximum (maximum absorption at observation wavelength) values of the

components and rates. Iteration of the minimization algorithm using previous solutions

was also performed. Identical solutions were returned with up to four components. The

use of more than four components (5-9), in some cases returned very slightly different

solutions for the same number of components.

The component spectra for the monochromatic bleaching of a SRFA solution are

shown in Figure 4.1. Obviously, different numbers of distinct components can be used to

describe all the monochromatic bleaching series. By employing statistical methods we

can begin to deal with the empirical questions of how many components are necessary to

arrive at a good description of the data and whether or not adding a component improves

the fit.

One method of deciding the significant number of spectral components involves

the use of a generalized analysis of variance (ANOVA) test of goodness-of-fit. This test

is based on the assumption that the population of the dependent variables (the data) is

normally distributed around the regression lines. A series of F-tests may be performed

after separating the total variation into variation due to the fit and variation due to the

deviation from the fit (38). The F-test for significance of fit is a ratio of the mean sum of

squares of the model fit to the mean sum of squares of the residual value. It is a test of the

null hypothesis that there is not a significant regression. If the computed value of F

exceeds the critical value of the F distribution, then the null hypothesis is rejected with a

given probability level. In a similar manner, an F-test for the significance of added terms

can also be performed, in which the contribution of additional components to the fit can

be assessed. Again, the null hypothesis that the added component does not increase the
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goodness of fit significantly is rejected if the computed value of F exceeds the critical

value of the F-value at a given probability level. The F values for the significance of fit

and for the significance of added terms are given in Tables 4.1 and 4.2, respectively.

Another measure of the goodness-of-fit, the reduced chi-squared value of the

residual, Z, 2 , is plotted as a function of number of distinct components in Figure 4.2. The

r is also based on the assumption that the residuals (data-fit) are normally distributed.

This measure includes an estimate of analytical uncertainty, in this case approximated as

both an absolute uncertainty of ±0.04 m 1 and a relative uncertainty of ±0.4% , based both

on our experience with this instrumentation and on an estimation of the error in the

monochromatic bleaching data. As the Xr2 is the root mean squared deviation normalized

to the measurement error, if the model is an accurate description of the data, the Xr2 will

tend towards one. Figure 4.2 shows that after four components the Zr 2 does not continue

to decrease rapidly, although the minimum value for xr2 is found with six components. As

the Zr2 appears to approach seven, rather than one, it is likely that our estimation of the

analytical uncertainty has been overly optimistic.

The ANOVA tests show that six components supplies the largest F value for

goodness of fit, and that adding a seventh component does not significantly increase the

fit quality for the SRFA monochromatic bleaching data set. In fact, the fit quality declines

very slightly upon addition of an eighth and ninth component. There is no guarantee that,

although these are significant fits, these computed components represent the best fits (the

global minima). The four component fit is also a reasonable choice for a good fit, based

on a large F-value for the goodness of fit from Table 4.1, and a large reduction in the

significance of adding another component from Table 4.2 (although it is still above the p

<0.01 value of significance to add another component). Both the four component fit and

the six component fit are show in an expanded view in Figure 4.3. The values of the

bleaching rate constants for these two different fits are shown in Table 4.3.

The multicomponent fits to the monochromatic data share some general

characteristics. Each fit contains a single component contributing a large portion of the

absorption that has a shape similar to the original SRFA spectrum. This component is
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slow bleaching (see b3 and b5 in Table 4.3 for the four and six component fits,

respectively). Both the four and the six component models produce excellent fits at all

wavelengths in the time courses of absorption loss in each individual monochromatic

bleaching experiment (Figures 4.4 and 4.5).

The four and six component fit values of rate constants for the monochromatic

bleaching experiments are shown in Table 4.3. Note again that the quantum yield, $i,xj,

has not been constrained to be wavelength-independent here. However, by plotting the

rate constants, ki,x versus the absorption values of the spectral components at the

irradiation wavelengths, the relationship between the rate constants and the absorption

values of the spectral components can be investigated. If there is a direct proportionality

(a straight line with an intercept of zero) between the rate constants and the calculated

component absorption, then the quantum yield is independent of irradiation wavelength.

If this analysis is performed (see Figure 4.6 and Figure 4.7), only a subset of the

components in each fit appear to have a constant quantum yield. These are b2 for the four

component fit and b3 and b6 for the six component fit. Interestingly, component b2 in the

four component fit and b6 in the six component fit have approximately the same shape

and amplitude. The largest component in each set (b4 and b5, respectively, for the four

and six component fits) displays a smoothly curving relationship between the absorbance

value of the component and the rate.

Broadband reconstruction

The calculation of the monochromatic fits is valuable as a probe of chromophore

behavior, as noted above, but is also valuable as a possible applied model of broadband

bleaching. Broadband bleaching spectra calculated from the components and rate

constants determined from the monochromatic bleaching experiments were used to

reconstruct the spectra of a CDOM sample bleached with broadband light (Xbb >320 nm).

The computed absorption bleaching curves (lines) are shown in Figures 4.8 and 4.9, and

compared to actual broadband bleaching spectra obtained on the same water samples

(circles). The percent residual values ((data-predicted)/data) at each wavelength for

increasing numbers of components used to model the broadband bleaching data are
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presented in Figure 4.10. The summed squared residual values are presented in Table

4.4. These residual values suggest that six components provides a good reconstruction of

the broadband data. However other numbers of components also provide reasonable

reconstructions of the data. This result can be observed in Figure 4.10 as well: there are

few obvious differences in the percent residual values after three components. In fact, one

component provides a reasonably good reconstruction of the broadband bleaching data!

However, as can be noted by the disagreement between the computed broadband spectra

(lines) and observed absorption values (circles) in Figure 4.8, and more obviously in

Figure 4.10, the computed broadband spectra slightly underestimate the bleaching of all

wavelengths at long time periods.

Discussion
The utilization of a constrained minimization technique has allowed us to

determine multiple sets of spectral components and associated decay rate constants that

successfully model the photochemical bleaching behavior of SRFA under

monochromatic irradiation. As discussed above, this model includes decay rates that were

allowed to vary with irradiation wavelength (kixj).

Iteration of the model with different initialization points produced slightly

different results for both bi and kixj. A comparison between the different results indicated

that these differences were very slight (a shift of < 10nm in the peak locations of similar

components), suggesting that the calculated 'best-fit' solutions are reasonably robust.

However, it is not currently possible to definitively state that these solutions represent

global minima.

The broadband bleaching spectra calculated by the insertion of broadband

irradiance values into this multicomponent model match the observed bleaching spectra

quite well. The development of a fitting method based on monochromatic bleaching data

sets that can be used to successfully reproduce broadband bleaching spectra may be of

general utility in the modeling of photochemical phenomena. Although the reconstructed

spectra are in excellent agreement with the observed bleaching behavior at short times (<

30 hours), they do not reproduce the observed bleaching behavior at long time periods.
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More specifically, the reconstructed spectra bleach more slowly than the observed

behavior of the SRFA. Because this model underestimates the bleaching due to

broadband irradiations, while assuming negligible electronic interactions and sensitized

(ROS-mediated) photoreactions, this result suggests that a portion of the photobleaching

occuring at longer time scales could be due to these two mechanisms or to another

mechanism that performs similarly.

Despite these shortcomings, this multicomponent model does appear to create a

reasonable approximation of the time evolution of CDOM photochemical bleaching. A

prior model of the photochemical bleaching spectra based on a mono-exponential decay

function underestimated the bleaching at all wavelengths and all times (31). The

approximation developed here may be useful in the modeling of the alterations to the

underwater light field caused by CDOM photobleaching, the development of which is

necessary for the accurate assessment of the production of important photochemical

products such as carbon monoxide and carbon dioxide.

We can begin to examine the validity of the simple hypothesis by investigating

the relationship between the calculated decay constants, kxj, and the spectral components,

bi. As discussed above, only a subset of the components in the different calculated fits

appear to have a direct proportionality between their decay rate constants and their

absorption values. Assuming that these calculated solutions represent true solution

minima, this result argues that the simple hypothesis is not the correct description of

photobleaching. An interesting result that arises from this analysis, however, is that there

may be a (few) components that do behave as 'simple' chromophores (i.e. have a

wavelength-independent quantum yield and bleach to transparent products), an idea that

deserves further investigation.

This model only represents an initial investigation of the photobleaching behavior

of CDOM. The 'relaxed' constraints included in this model do not constitute a direct test

of the 'simple hypothesis' of photobleaching. It is also unclear that the solutions

determined here represent global minima, and hence the results of graphical analysis of

the decay constant-component absorption relationship presented above should be taken
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cautiously. In order to fully examine this hypothesis, the full constraints of this

conception of photobleaching must be incorporated into a version of this model.
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Table 4. 1

ANOVA results testing goodness-of-fit for multicomponent fits of monochromatic
irradiations of SRFA. The F-test value is a ratio of the variance due to regression and the
variance due to deviation. This ratio is taken as a measure of 'goodness-of-fit' and used
to determine whether the fit is a significant description of the variation in the data. These
values are all significant (p < 0.01).

Number of F-test value for
Components goodness of fit

SRFA
1 15561
2 15874
3 24235
4 35165
5 30917
6 37732
7 28997
8 29135
9 24817

Table 4. 2

ANOVA tests of the significance of adding a component to multicomponent fits of
monochromatic irradiations of SRFA. All of the significant values (p < 0.01) are
indicated by a star. The negative F-test values are due to a decrease in the fit quality.

Number of F-test value for increasing
Components the number of components

SRFA
1 246.5*
2 163.0*
3 217.5*
4 45.0*
5 76.8*
6 14.0
7 -5.7
8 -5.7
9
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Table 4. 3

The relative bleaching decay constants (in units of hr§' (mol photons m-2 s-')-') for the
best fit to the monochromatic data sets. Also shown are the irradiance values for the
SRFA monochromatic bleaching experiments (in mol photons m-2 s-1 x 10-~).

Sample
identity
SRFA
4 components

Component
number

b1
b2

b3
b4

Bleaching decay constants at monochromatic
k296  k313  k366

332 1313 1294 751
16868 7747 26 0

106 81 84 975
237 87 39 12

wavelengths
k407

0
1970
1671

0

SRFA
6 components

213
681
0
0

174
7710

112
297

3795
8420
72

3871

98
253

6709
13780

27
54

643
513

13160
7
5
0

3202
0

48
3158

4
0

Irradiance 2.72 6.60 2.57 7.25 3.68

Table 4. 4

Sum of squared residuals (X(data-model) 2) for the comparison of calculated broadband
bleaching spectra with observed spectra obtained under polychromatic irradiation (>320
nm).

Number of Sum of squared residuals
Components SRFA

1 253
2 263
3 326
4 191
5 176
6 125
7 134
8 220
9 128
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Figure 4. 1

Fit components to monochromatic bleaching of 10mg 1 SRFA at different wavelengths.

These components are calculated using a constrained minimization technique.
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Figure 4. 2

Decrease in the reduced x2 for the residual values of the model fit to the data,

I(A-B*P) 2 /(VD * a 2), where VD is the degrees of freedom and a is an estimate of the error

in each measurement. This error is approximated as both an absolute uncertainty of ±0.04

rnd and a relative uncertainty of ±0.4%.
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Figure 4. 3

Absorbance values of the four (top) and six (bottom) component fit to the monochromatic

bleaching data of SRFA. This figure is an expanded view of the four and six component

fits from Figure 4.1. The rate constants presented in the top part of Table 4.3 correspond

to the four component fit, while those in the bottom half are for the six component fit.
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Figure 4. 4

Four component fit to monochromatic bleaching data of 10mg 1 1 SRFA at different

wavelengths. The model results are lines, while the data is shown as points. Only selected

wavelengths are shown, with colors corresponding to 300 nm (blue), 320 nm (green), 340

nm (red), 360 nm (cyan), 380 nm (magenta), and 400 nm (yellow). The legends indicate

the irradiation wavelengths: A. 296 nm B. 313 nm C. 336 nm D. 366 nm E. 407 nm.

Composite residuals (the difference between the model and the data) are provided for all

observation and irradiation wavelengths to show that the residuals are all less than 3%.
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Figure 4. 5

Six component fit to monochromatic bleaching data of 10mg 11 SRFA at different

wavelengths. The model results are lines, while the data is shown as points. Only selected

wavelengths are shown, with colors corresponding to 300 nm (blue), 320 nm (green), 340

nm (red), 360 nm (cyan), 380 nm (magenta), and 400 nm (yellow). The legends indicate

the irradiation wavelengths: A. 296 nm B. 313 nm C. 336 nm D. 366 nm E. 407 nm.

Composite residuals (the difference between the model and the data) are provided for all

observation and irradiation wavelengths to show that the residuals are all less than %.
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Figure 4. 6

Graphical analysis for the determination of constant quantum yield for the four

component fit. The absorbance of each component, bi, at the irradiation wavelengths is

plotted against the wavelength-dependent kinetic rate constants determined by the model,

kxj. A straight line with intercept near zero would be produced if there is a direct

proportionality between the two variables. As can be observed, only one of the

components exhibits this behavior (b2), indicating that this model does not fulfil the

requirement of a wavelength-independent quantum yield for each modeled component.

The inset shows the zero intercepts. Component b4 has a significantly non-zero intercept.
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Figure 4. 7

Graphical analysis for the determination of constant quantum yield for the six component

fit. The absorbance of each component, bi, at the irradiation wavelengths is plotted

against the wavelength-dependent kinetic rate constants determined by the model, kxj. A

straight line with intercept near zero would be produced if there is a direct proportionality

between the two variables. As can be observed, only two of the components exhibit this

behavior (b3 and b6), indicating that this model does not fulfil the requirement of a

wavelength-independent quantum yield for each modeled component. The inset shows

the zero intercepts. Component b5 has a significantly non-zero intercept.
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Figure 4. 8

Comparison of reconstructed spectra calculated with different numbers of components

with observed absorption values for broadband (Xj > 320 nm) irradiation of SRFA. The

six component fit is the best fit to the monochromatic data, and also provides the best fit

to the broadband data. Only selected observation wavelengths are shown, with colors

corresponding to 300 nm (blue), 320 nm (green), 340 nm (red), 360 nm (cyan), 380 nm

(magenta), and 400 nm (yellow).
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Figure 4. 9

Expanded view of the early timepoints for the comparison of the reconstructed spectra

calculated with different numbers of components with observed absorption values for

broadband (Xj > 320 nm) irradiation of SRFA. Only selected observation wavelengths are

shown, with colors corresponding to 300 nm (blue), 320 nm (green), 340 nm (red), 360

nm (cyan), 380 nm (magenta), and 400 nm (yellow).
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Figure 4. 10

Percent residual ((data-fit)/data) x 100% for the calculation of broadband bleaching

spectra of SRFA. Only selected observation wavelengths are shown, with colors

corresponding to 300 nm (blue), 320 nm (green), 340 nm (red), 360 nm (cyan), 380 nm

(magenta), and 400 nm (yellow). The bleaching spectrum at time -3.5 hours appears to

have a significant analytical error, and hence that time point is not included in these

residual plots.
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Appendix

This appendix consists of the Matlab m-files (program) for the minimization and

plotting routines. The percent sign is used in Matlab to indicate comments, and is

reproduced here as well. The three routines presented here are mrunmodel3.m, the initial

data management and iteration program, model3fun.m, the minimization function, and

statistics.m, the function created to compare modeled broadband spectra with the actual

data and to perform the statistical analysis of goodness-of-fit for all the components of

the models.

%-
%0

%
%0

%-
%0

%
%0

%-

This program is a revised attempt to fit multiple

chromophores to bleaching spectra.

Rather than fitting a set of decay constants, k, and

pseudoinverting an exponential decay term P to

calculate the components, B, this model

fits both B and k simultaneously using fmincon

Requires model function model2fun.m and

data to be in the form[ 0 T

x A
%
% Created 1/7/02

R=input('File name to load:\n','s')
files

eval(sprintf('load %s.txt;',R));

eval(sprintf('data=%s;',R));

tic
[y,z]=size(data);
x=data(2:y,1);
T=data(1,2:z);

A=data(2:y,2:z);

%loading data

%first column minus first row
%first row minus first colum

%rest of data.txt

q= input('Select maximum number of factors to use: ');

iternum= input('Select number of iterations: ');

Rcomp='srfa2'; % srfa2 is slightly cut (at 407 esp) raw
data
if strcmpi (R, Rcomp) ==1

t1=T(1:21); %298nm irr
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t2=T(22:37);
t3=T(38:54) ;
t4=T(55:71);
t5=T(72:81);
id=4;

end

%313nm irr
%334nm irrs
%365nm irrs
%407nm irrs

Rcomp='delaware10';
if strcmpi(R,Rcomp)==1

tl=T(1:20);

t2=T(21:38);
t3=T(39:54);
t4=T(55:69);
t5=T(70:91);

id=2.2;
factor=[11.5188 9.67

4.85115 4.06296 3.39
1.68691]';

A=factor*ones(1,z-1).*

end

%298nm
%313nm
%334nm
%365nm
%407nm

irr
irr
irrs
irrs
irrs

588 8.13954 6.84869
65 2.83441 2.36735

5.77028
1.99281

A;

Bff=[];
rchi2ff=[];
koutff=[];

reconall=[];
runt=[];
for n=1:q

tlm=ones(n,1)*

t4m=ones(n,1)*

t5m=ones(n,1)*

ml=length(tl);

m2=length(t2);

ti;
t4;
t5;

t2m=ones (n, 1) *t2; t3m=ones(n,1)*t3;

m3=length(t3);m4=length(t4);m5=length(t5);

irrwav=[298 313 334 366 407]; %irradiation wavelengths

I = le-6*ones(n,1)*[27.2 66.0 25.7 72.5 36.8]; %in E m-2 s-
1 (mol photons)

options=optimset('DiffMaxChange',0.0005,'LargeScale','off',

'MaxFunEvals', 2e6, 'MaxIter',5e4,'TolFun',le-

8,'TolCon',le-7,'TolX', le-7);%,'Display','iter');
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%upper and lower bounds for k

lb=zeros(y+4,n);
ub=[max(max(A))*ones(y-1,n); le5*ones(5,n)];

kin=ub./[n*ones(y-1,n);2e3*ones(5,n)];

[koutl,sspout,exitid,iter]=fmincon('model3fun',kin, [], [],[]
,[],lb,ub,'nonlconl',options,x,T,A,n,I,id);

if id==4
k=I.*koutl(15:19,:)';
elseif id==2.2
k=I.*koutl(13:17,:)';
end

klin=k(:,1)*ones(1,m1);
k3in=k(:,3)*ones(l,m3);
k4in=k(:,4)*ones(1,m4);

k2in=k(:,2)*ones(1,m2);

k5in=k(:,5) *ones(1,m5);

p1=[exp(-k1in.*tm),exp(-k2in.*t2m)

k4in.*t4m),exp(-k5in.*t5m)];
,exp(-k3in.*t3m),exp(-

if id==4
Bl=koutl(1:14,:);
elseif id==2.2
Bl=koutl(1:12,:);
end

residuall= (A-B1*p1);

for ii=l:iternum-1

[kout2,sspout,exitid,iter]=fmincon('model3fun',koutl, [], [],
[],[],lb,ub,'nonlconl',options,x,T,A,n,I,id);
koutl=kout2;

end

if iternum<2
kout2=koutl;

end
Bf=B1; pf=pl;

if id==4
kf=I.*kout2(15:19,:)';
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elseif id==2.2
kf=I.*kout2(13:17,:)';
end

klfin=kf(:,1)*ones(1,ml); k2fin=kf(:,2)*ones(1,m2);
k3fin=kf (:,3) *ones (1,m3);
k4fin=kf(:,4)*ones(1,m4); k5fin=kf(:,5)*ones(1,m5);
pf=[exp(-klfin.*tlm),exp(-k2fin.*t2m),exp(-
k3fin.*t3m),exp(-k4fin.*t4m),exp(-k5fin.*t5m)];

if id==4
kkf=I.*kout2(15:19,:)';
elseif id==2.2
kkf=I.*kout2(13:17,:)';
end

if id==4
Bf=kout2(1:14,:);
elseif id==2.2
Bf=kout2(1:12,:);
end

residualf=(A-Bf*pf);

runtime=toc/60 %runtime in minutes

chi2=sum(sum(((Bf*pf-A).^2)./((0.04*ones(y-1,z-

1)+0.004*A) .^2) ));

rchi2=(chi2/((y-l)*(z-1)-(n*(y+4))-1))

Bff=[Bff,Bf];
rchi2ff=[rchi2ff;rchi2];
koutff=[koutff;kkf];
runt=[runt;runtime];

if id==4
save mod3res3 Bff rchi2ff koutff
else

save mod3del2 Bff rchi2ff koutff runt
end

figure(10)

eval(sprintf('subplot(3,3,%d)',n));
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plot(x,Bf);xlabel('wavelength

(nm) ');ylabel ( 'absorbance');

axis([280 450 0 15]);

eval(sprintf('title(' '%d components'') ',n));

if n==1
title ('1
end

for j=1:n

component');

eval(sprintf('text(410,Bf(y-1,%d),''- %d'')',j,j));
end

mm=1: n;
figure (11)
plot(mm' ,rchi2ff, 'o-')

end
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function ssp=model3fun(kin,x,T,A,n,I,id)
% This m-file is the minimization routine for fmincon
% in mrunmodel3.m
if id==4 %'srfacut and srfa2
tl=T(1:21); t2=T(22:37); t3=T(38:54); t4=T(55:71);

t5=T(72:81) ;

id==2.2 %'delawarelO'
20); t2=T(21:38); t3=T(39:
91);

54); t4=T(55:69);

[y, z]=size (A) ;
tl=ones(n,1)*tl; t2=ones(n,1)*t2; t3=ones(n,1)*t3;

t4=ones (n, 1) *t4;
t5=ones (n, 1) *t5;

ml=length(tl);

m2=length(t2);m3=length(t3);m4=length(t4);m5=length(t5);

if id==4
k=I.*kin(15:19,:)
elseif id==2.2
k=I.*kin(13:17, :) ';

end

klin=k
k3in=k
k4in=k

1) *ones(1, ml)
3)*ones(1,m3)

:,4) *ones(1,m4);

k2in=k(:,2)*ones(1,m2);

k5in=k(:,5)*ones(1,m5);

p=[exp(-klin.*t1),exp(-k2in.*t2)

k4in.*t4),exp(-k5in.*t5)1;

if id==4
B=kin(1:14,:
elseif id==2
B=kin(1:12,:
end

, exp (-k3in. *t3) , exp (-

);
.2

ssp=sum(sum((A-B*p). 2));
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function [c,ceq]=nonlconl(kin,x,T,A,n,I,id);

% Nonlinear inequality and equality constraints on fmincon
% for model3.m

if id==4
C=[sum(kin(1:14,:),2)-37.5933*ones(14,1); -kin(15:19,1)];
elseif id==2.2
C=[sum(kin(1:12,:),2)-37.5933*ones(12,1); -kin(13:17,1)];
end

ceq= [];
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% This mfile calculates the general ANOVA for increasing
% numbers of components. Requires Bff, koutff, data A, T,

% and m's.

% This file also calculates the broadband fits for SRFA.
% Thus it requires the data file bbsrfa.txt, which
% is in a form similar to the monochromatic bleaching data:
% 0 0 time

% 1 I Ab
% where 1 is the observation wavelengths, I is the
% irradiances, time is the time points of observations

% and Ab is the data

m=0;

for n=[1,2,4,7,11,16,22,29,37]

eval(sprintf('Bf%d=Bff(:,%d:%d+%d);',m+1,n,n,m));

eval(sprintf('kf%d=koutff(%d:%d+%d,:);',m+l,n,n,m));

m=m+1;

end

SSfm=[];SSrm=[];MSfm=[];MSrm=[];

Ftest=[]; Fitest=[];

Ssf=[]; MSi=[];

for n=1:9

I = le-6*ones(n,1)*[27.2 66.0 25.7 72.5 36.8];
eval(sprintf('k=I.*kf%d;',n))

ml=length(tl);
m2=length(t2);m3=length(t3);m4=length(t4);m5=length(t5);

k1in=k(:,1)*ones(1,m); k2in=k(:,2)*ones(1,m2);

k3in=k(:,3)*ones(1,m3);
k4in=k(:,4)*ones(l,m4); k5in=k(:,5)*ones(1,m5);
tlm=ones(n,1)*tl; t2m=ones(n,1)*t2; t3m=ones(n,1)*t3;

t4m=ones (n, 1) *t4;
t5m=ones(n,1)*t5;

p=[exp(-klin.*t1m),exp(-k2in.*t2m),exp(-k3in.*t3m),exp(-

k4in.*t4m),exp(-k5in.*t5m)];

eval(sprintf('fit=Bf%d*p;',n))

if n>1
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SSf0=SSf1;
end
SSf1=sum(sum(((fit).^2)/1134));
%SSfl=sum(sum((fit)).A2)/1092;

SSr1=sum(sum((A-fit).^2))/1134;
%SSr1= sum(sum((A-fit) A 2.))/1092;

MSf1=SSf1/(19*n);
MSr1=SSr1/(1134-19*n-1);
F=MSfl/MSr1;

if n>1

SSi=SSfl-SSf0;
MSi=SSi/(19*n-19*(n-1));
Fi=MSi/MSr1;
Fitest=[Fitest,Fi];

end

Ftest=[Ftest,F];

SSfm=[SSfm,SSfl]

SSrm=[SSrm,SSrl]

MSfm=[MSfm,MSf1]

MSrm=[MSrm,MSr1]

end

figure(13)

n=1: 9;
subplot (3,2,1)
plot(n,SSfm); t

subplot(3,2,2)

plot(n,SSrm); t

subplot(3,2,3)

plot(n,MSfm); t
subplot(3,2,4)
plot(n,MSrm); t

subplot (3,2,5)
plot (n,Ftest);
subplot (3,2,6)
q=1:8;
plot(q,Fitest);

itle('SSf')

itle('SSr')

itle('MSf')

itle('MSr')

title('Ftest')

title('Fitest')

figure (14)
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for n=1:9
eval(sprintf('subplot(3,3,%d)',n));

eval(sprintf('plot(x,Bf%d);',n));

xlabel('wavelength (nm)');ylabel('absorbance');
axis([280 450 0 40]);

eval(sprintf('title(''%d components'')',n));
if n==1
title('l component');

end

for j=1:n
eval(sprintf('text(410,Bf%d(y-1,%d),''-

%d' ')',n,j,j)

end

end

load bbsrfa.txt
datab=bbsrfa;

[yb,zb]=size(datab);
xb=datab(2:yb,1);

row

Tb=datab(1,3:zb);

Ab=datab(2:yb,3:zb);
values

Ib=datab(2:yb,2);

%first column minus first

%first row minus first colum
%normalized irradiation

%irradiation intensities

[37 .4772
16.3506
5.90144

32.7105
14.0024
4.98559]

28.5143 24.8415
11.8627 10.0228

'; %converts from

21.6676
8.42413

normalized data

Ab=factor*ones(1,zb-2).*Ab;

Ib=3*[6.39e-9 2.18e-7 2.87e-6 4.92e-6 6.73e-6]';
% E m-2 s-1
% factor of 3 is a correction

% for the use of low irradiances
% in the monochromatic fit

for n=1:9

eval(sprintf('Abcalc=Bf%d*exp(-((kf%d*Ib)*Tb));',n,n));

resid=((Ab-Abcalc)./Ab)*100;

figure(15)

eval(sprintf('subplot(3,3,%d)',n));
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plot(Tb,Ab',
eval (sprintf
xlabel (' time

'o'); hold on; plot(Tb,Abcalc');hold off
('title('' %d Component fit'')',n));

(hr)'); ylabel( 'Normalized absorbance')

f igure (16)
eval(sprintf('subplot(3,3,%d)',n));

plot (Tb, resid' )
eval(sprintf('title(' '%d Component fit'')' ,n));
axis([O 100 -100 100])
xlabel('time (hr)'); ylabel('Percent Residual')

end
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CHAPTER 5.

IRON EFFECTS ON THE PHOTOBLEACHING OF CDOM
AND THE PHOTOPRODUCTION OF CO
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Abstract
The photochemical transformations of terrestrially-derived chromophoric

dissolved organic matter (CDOM) in coastal waters are as yet poorly understood. In

particular, the effects of Fe on the photochemical transformations of CDOM are

relatively unexplored. Strong spatial and temporal correlations have been observed

between dissolved organic carbon (DOC) and Fe concentrations, and dissolved Fe in

marine systems is dominated by organic complexes. Photochemical rates of Fe(III)

reduction support the notion that Fe-related photochemistry may be important in CDOM

photobleaching and photooxidation.

We conducted photobleaching experiments using a filtered xenon arc solar

simulator on water samples collected from the Delaware Bay and on solutions of

Suwannee River Fulvic Acid (SRFA). Fe was either added as FeCl3 or rendered

photochemically inactive by the addition of desferrioxamine B, a fungal siderophore. No

differences in the photobleaching of either optical absorption or of CDOM fluorescence

were observed.

We also examined the Fe dependence of the photochemical production of CO in

the estuarine samples collected from the Delaware Bay. No systematic effect of Fe or

DFOM addition on CO production from the estuarine samples was observed. This is in

contrast to an optical buoy experiment conducted in the Sargasso Sea that indicated an

-20% reduction in the photoproduction of CO due to the addition of DFOM.

The results of these experiments suggest that neither indirect (OH--mediated) nor

direct photochemistry of Fe plays a significant role in photobleaching in estuaries,

although OH--mediated photobleaching may be of some importance during long-term

photobleaching of some CDOM samples.
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Introduction

The decomposition of nonliving organic matter, especially terrestrial plant matter,

in part results in the formation of dissolved organic polymers that are somewhat resistant

to further microbial breakdown and assimilation. A portion of this material is highly

colored and is found in both freshwater and coastal marine aquatic systems (1,2). This

chromophoric portion of dissolved organic matter (CDOM) plays many important roles

in surface waters. CDOM is the dominant absorber of light in the near ultraviolet (UV)

region, and often in the visible region as well. Thus, it protects the underwater ecosystem

from the deleterious effects of UV (3-5) and contributes substantially to attenuation with

depth of photosynthetically active radiation (PAR) (1,5-7), as well as influences the

thermal structure of the water column (8). The photochemical decomposition of CDOM

leads to the formation of a variety of organic products, including low molecular weight

carbonyl compounds, dissolved inorganic carbon (DIC), and carbon monoxide (3,9-16).

Photochemical alterations of CDOM also lead to increased microbial availability of what

would otherwise be recalcitrant organic carbon, further contributing to the recycling of

carbon to DIC as a crucial part of the carbon cycle (12,17-22).

CDOM absorption significantly complicates the application of remote sensing to

the determination of chlorophyll in coastal waters (1,23), and renders remote sensing all

but useless without extensive in situ validation in inland waters (24). Re-emission of

absorbed light as fluorescence can also have an impact on remote sensing in coastal

waters. CDOM fluorescence has a broad maximum in the 400-550 nm range, potentially

impacting the detection of chlorophyll absorption (25,26). Substantial effort has been

aimed at determining the contributions of CDOM to remote measurements of color (6,26-

30). It has been argued that CDOM in coastal environments contributes far more color to

remote observations than has been previously accounted for, thus biasing the

interpretation of remote sensing data (6,26,28,31). Understanding the processes that

control the absorption characteristics of coastal waters can help in the development of
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more globally relevant algorithms for the deconvolution of the components of ocean

color.

Photobleaching

Light absorption by CDOM is a necessary precursor to the photochemical

reactions that significantly affect aquatic ecosystems. Photoreactions also ultimately lead

to the destruction of the chromophores and hence to the loss of absorption and

fluorescence ('bleaching' or 'fading'). These photobleaching reactions thus act as a sink

for CDOM (28,32). Previous studies of CDOM photobleaching have demonstrated that

this sink is significant compared to the mixing residence time of CDOM in both coastal

and freshwaters. Absorption bleaching half-lives on the order of days have been found in

bottle experiments in sunlight or simulated sunlight (12). Field studies of photobleaching

have found that both minimum values of diffuse attenuation coefficients in lakes and

significant decreases in CDOM absorption in stratified ocean waters relative to

intermediate waters occur during the summer (28,33). Under certain conditions, the

seasonal stratification of the water column in marine systems causes CDOM

photobleaching to significantly increase the optical transparency of surface seawaters

(28,33,34). These bleaching processes are thus important for understanding both the

distributions of CDOM and the dynamics of CDOM influences on the aquatic

environment.

Fluorescence has been observed to be directly correlated with absorption, and thus

could potentially serve as a remote proxy for ocean color (27,29,35). Bleaching of

fluorescence has also been observed to occur at significant rates in surface waters (28,36-

38). This bleaching is most obvious in lower salinity 'lenses' of riverine or estuarine

water in near coastal regions, where the mixing depth is constrained by the salinity

gradient (39). Bleaching of absorption is also seen in these cases, and has been used to

calculate the in situ photobleaching half-life of CDOM in coastal waters (28).
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Role of Fe in CDOM photochemistry

A number of studies have indicated that Fe may play an important role in the

photochemical reactions of CDOM (9,40-47). Previous investigators have found that Fe

catalyzes the photochemical consumption of dissolved oxygen and the

photomineralization of CDOM to DIC (9). A more recent study showed that the

complexation of Fe by a non-photochemically active ligand reduced the photoproduction

rates of DIC and CO from riverine CDOM by 55% and 27%, respectively (48).

Photochemical reactions of CDOM-Fe complexes may take place either as

homogeneous reactions (molecular association) or as heterogeneous reactions (on

surfaces). Photochemical reactions occur at the surfaces of iron (hydr)oxide particles at

appreciable rates (49). These photoreactions may include all the types of reactions seen in

solution, such as the production of dissolved Fe(II) and H2 0 2 , and the mineralization of

DOM. Due to the formation of Fe and DOM colloids in estuaries, heterogeneous

photoreactions may be very significant contributors to Fe photochemistry in these waters.

If direct photochemical processes dominate, only the chromophoric portion of the DOM

will be broken down, and the rates of photodecomposition and product formation will be

proportional to the amount of light absorbed by the CDOM. If indirect photochemical

processes are important, significant photodecomposition of non-chromophoric material is

also possible. In this case, the rate of light absorption by CDOM will only control CDOM

decomposition rates if CDOM photoreactions are the main source of the intermediates

involved. There is no reason to assume that the same general mechanism is responsible

for different processes of interest. For instance, photobleaching could proceed mostly via

direct mechanisms while photomineralization and photoproduction of low molecular

weight organic compounds could proceed mostly via indirect mechanisms.

Fe can play a role in both direct and indirect photochemical reactions. Fe-DOM

interactions have been investigated, and the association between DOM in both freshwater

and marine waters has been established (vide infra). Depending on the system, DOM may

form surface coatings on iron-oxide surfaces and participate in surface reactions or

molecular Fe-DOM complexes may form that react directly in a number of ways. These
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reactions could include ligand to metal charge transfer (LMCT) reactions that would

produce reduced Fe(ll) and oxidized CDOM (Equation 1) and usually lead to

photodecarboxylation (Equation 2):

RCOO-Fe(III) -- > RCOO + Fe(II) (1)

RCOO' -> R + CO2  (2)

Decarboxylation leads to the formation of a second radical (R'+), most often a carbon-

centered radical that then can react further with oxygen, leading to the formation of ROS

such as superoxide (02) and organic peroxides:

Re+02 -> ROO -+ Rx+02'- (3)

The superoxide thus formed may redox cycle with Fe, Cu, or with CDOM itself,

eventually forming hydrogen peroxide in an overall 2:1 stoichiometry (40,41,50-52).

2 02.- + 2 H+ -+ H2 02 + 0 2  (4)

In addition to stimulating the photoproduction of DIC, Fe may also play a role in

the photoproduction of another form of inorganic carbon, carbon monoxide (CO). Zuo

and Jones (1997) found a non-linear correlation between CO photoproduction rates and

Fe concentrations in a variety of freshwaters, and were able to increase the

photoproduction of CO by adding Fe to a sample from a humic lake (53). Gao and Zepp

observed that addition of an iron ligand decreased the rate of CO photoproduction in

Satilla River water by up to 27% (48). Pos et al. also suggested that transition metals in

seawater might increase the photoproduction of radical intermediates that lead to acyl

radicals and thence to CO (54).

The photoreduction of Fe(III) to Fe(H) must have an associated oxidation

reaction, thus arguing that the rate of CDOM oxidation from Fe-associated mechanisms

can be calculated from the rate of Fe(III) reduction. Photo-oxidation rates of CDOM in

fulvic acid solutions due to several different mechanisms were calculated to be between

1.1 x 1010 Ms-' (dark reduction of Fe(III)) and 2.4 x 10-10 Ms 1 (LMCT surface reactions)

for a system (pH 3-5) containing 40 gM crystalline iron oxide and 10 mg/L DOM (40).

Previous work in seawater supports the inference that Fe could have a substantial effect

on photo-oxidation in coastal waters. High concentrations of dissolved Fe(II) (-1-40 nM)
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have been observed in sunlit waters (55-59), and typical H20 2 concentrations in these

waters are also high (100 nM) (60). The higher Fe(II) steady-state measurements may be

due to the measurement of reducible Fe, rather than reduced Fe. Regardless, at these

concentrations, H 20 2 is probably the dominant sink of Fe(II). As the rate constant of the

reaction of H20 2 with Fe(II) is 5 x 104 M 1 s 1 (61), in order to maintain a steady state

concentration of 1 nM Fe(II) in sunlit seawaters (a concentration more commonly found

using different types of Fe(II) measurement techniques), something (e.g. an organic

ligand) must be oxidized by Fe(III) at a rate of at least 5 x 10~2 M s4 (0.0 18 [tM hr 1) to

balance the loss of the Fe(II). If LMCT reactions of organic matter are responsible for all

of the reduction of Fe(III), then DOM is being photo-oxidized at this rate. In addition, the

production of OH- by the reaction of Fe(II) with H20 2 may be as high as 5 x 10-12 Ms-1

based on the calculations above, and photobleaching of CDOM by OHS might be another

important contributing mechanism of photooxidation. Rates of total DOC oxidation in

seawater are on the order of 10"-1104O Ms- (0.036 - 0.36 gM hr1), comparable in

magnitude to these calculated oxidation rates (12,62). Additional DOC photo-oxidation

reactions may take place on particle surfaces. These photoprocesses are not reflected in

dissolved Fe(II) concentrations, as the Fe(II) produced during these photoreactions is

most likely not released into solution (63). Photodecomposition may proceed both via

direct photochemical reactions, following absorption of photons by CDOM, (60,64-66),

or via indirect (sensitized) processes, involving DOM reactions with photochemically

generated intermediates such as reactive oxygen species (ROS) (Chapter 3; (60)).

Estuarine processes

All previous studies of Fe effects on CDOM photochemistry have focussed on

freshwater samples or extracts. Changes to both Fe and CDOM speciation occur as river

water mixes with seawater in estuaries. The transport of terrestrial DOM from rivers

through estuaries to the coastal ocean has been observed to be relatively conservative

(67-69), although the loss of some fraction (an estimated 20%) has been observed by a

number of investigators (70-73). Humic acids may compose the largest fraction of DOM

removed by estuarine flocculation. Despite the attention paid to DOM transportation in
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estuaries, very few studies have focussed on CDOM. A recent study has found 21% of

the CDOM in the Tyne estuary to be removed by adsorption onto suspended sediments

(74). On the other hand, CDOM may behave conservatively in some tropical riverine

systems, although this conservative behavior appears to be seasonal in the Orinoco River

system(30,75).

In contrast to the loss of CDOM observed in some estuarine systems, the

production of fluorescent DOM (FDOM) has been observed in several estuaries

(37,38,76). This contrasting behavior between the production of FDOM and loss of

CDOM seen in a number of different estuaries is very interesting and apparently

contradictory, as a linear relationship between DOM fluorescence and absorption has

been observed a number of times (27-29).

The speciation and size distribution of Fe also appears to be substantially altered

during estuarine mixing (71-73,77-80). In most estuaries studied, riverine Fe appears to

coagulate to form colloids upon mixing of river water with seawater in the estuary. This

may be due to aggregation of dissolved iron and small colloids to form larger colloids as

a result of the reduction of electrostatic repulsion caused by the increased ionic strength

of estuarine waters (79). These colloids are not necessarily removed from estuaries by

settling, and total iron may for the most part be conserved within some estuaries (78). In

particular, once initial coagulation occurs at low salinity, substantially less Fe may be

removed during mixing to higher salinities. For example, in one study conducted during

two different seasons, Fe losses ranged from only 15-30% of total dissolved Fe during

mixing between estuarine waters (22 %c) and offshore waters (30 %o) of New Jersey (81).

Concentrations of dissolved and colloidal Fe (<0.4 pm filtered) measured in a number of

different estuarine and near coastal waters ranged from 5 nM to 4.67 gM, supporting the

idea that Fe could be important to CDOM photochemistry in these systems (81-84). Most

measured <0.2 p[m filtered Fe concentrations in the literature for salinities between 10-30

%o (estuaries and near coastal) fall between 15-100 nM (84-86). One exception is the

New Jersey coastal region, which exhibited both high 'inshore' Fe concentrations (mean
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(±la) 970 (±140) nM, mean salinity 22%o) and high 'offshore' Fe concentrations (320

(±20) nM, salinity 30 %o) in 1986 and 1987 (81).

The size of Fe colloids and solubility of dissolved Fe in all marine waters appears

to be controlled by organic matter (72,87-90). In estuarine and near coastal regions, this

control may be exerted via co-coagulation of DOM with Fe and other metals. There

appears to be a near linear relationship between measured DOM and Fe in several

estuaries (91), supporting the idea that there is a physical association between Fe and

DOM, or, more specifically, between Fe and humic acids (72,79), which compose the

most highly colored portions of DOM.

The evidence for the role played by Fe in the photochemistry of CDOM in

freshwaters led us to believe that Fe might play a role in the photobleaching of CDOM.

To examine this hypothesis, we conducted photobleaching experiments on a set of

estuarine samples and on an extracted freshwater fulvic acid sample to which we added

Fe or a photochemically inert Fe ligand, desferrioxamine (DFOM). The concentration of

Fe used (100 nM in most experiments) was chosen to fall at the high end of the measured

range of filterable (< 0.2 gm) Fe concentrations (15-100 nM for salinities 10-30%o ). We

followed the photobleaching of both absorption and of fluorescence during irradiation

with simulated sunlight (Xe arc). In addition, we examined the photoproduction of CO

with and without photolabile Fe, and determined the apparent quantum yield of CO in

these estuarine samples.

Methods

Samples

Seawater samples were collected during a transit of the Delaware Bay in April

1999 from the Teflon@ surface water (-2 m) flow system of the R/V Henlopen. Samples

were filtered online using sequential 0.45 gm and 0.2 gm cartridge filters (Gelman

AquaPrep and MaxiCapsule) that had been acid-washed and extensively pre-rinsed.

Samples were then stored in fluorinated HDPE carboys at 4* C in the dark until use, and

refiltered before irradiation. Station S29 was located at the mouth of the Bay (salinity of
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29%o), station S20 was located in the middle of the Bay (salinity of 20.1%0), and station

S4 was located at the entrance to the Chesapeake Canal (salinity of 4%o).

Suwannee River fulvic acid reference material (SRFA) was obtained from the

International Humic Substances Society. Solutions of 3 mg/L SRFA (1.5 mg C/1) were

made up in unbuffered 18 MQ deionized water (Millipore Co., Milli-Q).

Bog water was collected from Thoreau's Bog in Concord, MA by pressing an

acid-washed Teflon bottle into the floating sphagnum moss bed. Samples were

subsequently 0.2 gm filtered (Gelman MaxiCapsule).

Photobleaching

Photobleaching was performed using a 400 W ozone-free Xe arc in a Research

Arc Housing (Oriel Corp.). The Xe-arc was run at 75% of maximum power

(approximately 300 W). Airmass 0 and 1 (AMO and AM1) filters were used to filter out

wavelengths below 290nm and to simulate sunlight at a solar zenith angle of 00 at the

earth's surface. The spectrum produced approximates solar irradiation at solar noon on

the summer solstice at 43.4 N, 71.1 W as calculated for the same time using the program

TUV, available from the National Center for Atmospheric Research (92) (Figure 5.2).

An IR filter containing chilled Milli-Q water was used to minimize thermal effects.

Solutions were contained in a specially-designed jacketed glass solar cell with a quartz

window at the bottom. This design was chosen to minimize the surface-to-volume ratio of

the irradiation vessel so as to minimize surface effects arising from interactions of the

CDOM and Fe with the glass walls. A water jacket allowed the temperature to be

maintained between 25 and 28 'C. Solutions were stirred from above using a Teflon

paddle on a glass shaft (Figure 5.1). Sampling ports were sealed using Teflon stoppers.

All glassware and Teflon was acid-washed using 5 M nitric acid and extensively rinsed

with Milli-Q. Sample handling was performed in a positive-pressure clean room using

acid-washed Teflon bottles. Irradiations were performed under optically thin conditions

and samples were withdrawn periodically for analysis using pre-rinsed plastic pipettes.

Care was taken to minimize changes in the optical pathlength of the samples to < 20%.
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In order to examine the effects of Fe on photobleaching, Fe was either added to

irradiation experiments or naturally present Fe was complexed by desferrioxamine B

mesylate (DFOM, Sigma-Aldrich Chemicals), a fungal siderophore that produces

photochemically inactive Fe complexes (see Results). Fe was added as Fe(III)C 3 from

acidic stock solutions (pH < 2) and allowed to equilibrate for 30-60 minutes. DFOM (500

nM) was added at least 12 hours before irradiation experiments to allow any strongly

chelated Fe to exchange. A recent study found that DFOM had a conditional stability

constant in seawater (KFe'L) with respect to [Fe'] (all the inorganic dissolved Fe(III)) of

12.1, and a conditional stability constant with respect to free hydrated Fe3+ (log KFe3+L) Of

22.1, versus a mean a conditional stability constant (log KFe3+L) of 20.3 for the strong

unknown ligand in surface waters from the Northwestern Atlantic (89,93). MINEQL+

(94) calculations support the idea that all the dissolved Fe should be complexed by 500

nM DFOM. Marine ion concentrations and stability constants for DFOM were obtained

from Morel and Hering (1993).

SRFA samples were treated similarly to seawater samples except that pH was

controlled by the addition of small amounts of NaOH and continuous bubbling with a

C0 2/air mixture. This bubbling allowed the adjustment of pH to pH 8 (near seawater) or

to pH 6 ± 0.2. Unless noted, SRFA solutions were irradiated at pH 8.

Contrary to previous reports (48), the DFOM-Fe complex exhibits a photostable

absorption band in the visible region, with an extinction coefficient (E430) of 2200

M 1cm 1 . At the concentrations of iron complexed in this study (up to 100 nM), this

absorption is negligible. At the higher concentrations of iron in other studies (up to 14

jiM, giving an absorption value of 0.07 cm' centered at 430nm) the DFOM-Fe complex

might have contributed as much as 40% of the absorption value at 430nm, potentially

biasing apparent quantum yield determinations above 400nm for both CO and DIC (48).

Gamma Radiolysis

Gamma radiolysis was performed as previously described (Chapter 3; (95)).

Briefly, solutions to be exposed to gamma radiolysis were saturated with either N2 0 or

N20/0 2 (4:1 v/v) prior to radiolysis. Seawater samples were irradiated for 40 minutes,
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producing 38 gM OH*, equivalent to -20 days of surface sunlight, assuming 2 pM OH-

d 1 (see Chapter 3). Bog water samples were irradiated for 70 minutes, producing 72 M

OH-. Samples were analyzed immediately for absorption and fluorescence.

Analyses

CDOM absorption was determined with an HP 8453 diode-array

spectrophotometer using 10 cm cells. Milli-Q water served as the blank. The absorbance

data was baseline corrected using the average absorbance from 700-725 nm. A peak at

735-740nm was identified as a thermal effect and seen in many spectra (96-98). Spectra

were converted to spectral absorption coefficients, acM (k) using the relation

acm (X) =2.303 A(X)/l (5)

where A(X) is the optical density at wavelength X and 1 is the cell pathlength (35). The

spectral slopes (S) were obtained from plots of the natural log of the absorption

coefficients versus wavelength by linear regression over the interval from 290 nm to 400

nm:

a(X) = a(Xo)eS(XoX) (6)

where X. is 400 nm. Bi-exponential fits of bleaching spectra were generated for

normalized absorption plots using a non-linear fitting routine (SigmaPlot). The method of

spectral decomposition developed in Chapter 4 was successfully applied to these

broadband bleaching data. However, to be consistent with previous investigators, the data

are presented here as bi-exponential fits.

CDOM fluorescence spectra were obtained on a Perkin-Elmer LS50

spectrofluorometer using 355 nm excitation, 4 nm slits, and 0.1 s integration and

averaging 10 scans to reduce the signal to noise ratio. The fluorescence signal at the

CDOM emission maximum (444-455 nm) was normalized to the water Raman signal at

394-405nm to produce the F/R ratio values, with relative units (29). The F/R values were

transformed to Fn(355) values by standardizing with a 10 jg 1- solution of quinine sulfate

in 0.1 N sulfuric acid scanned in an identical way. The F/R value determined for quinine

sulfate at this concentration is defined to be 10 Fn(Xex).
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Excitation-emission spectra (EEMS) were obtained by scanning emission

wavelengths from 250 to 650 nm in 0.5 nm increments and excitation wavelengths from

230 to 470 nm in 10 nm increments using 4 nm slits. Data analysis was performed using

MATLAB. Spectra were normalized to a 4 nm wide band centered at the water Raman

peak at Xex = 330 nm and Xem = 372 nm. Fluorescence values at Xem below Xex + 6nm and

above 2 X Xex - 6nm were set to zero to avoid including the Raleigh scattering peaks.

Analyses of total iron were performed by spectrophotometric measurement of

Fe(II) in 10cm quartz cells using 0.147 mM 4,4'--[3-(2-pyridinyl)-1,2,4-triazine-5,6-

diyl]bis-benzenesulfonic acid (ferrozine) following acidic (HCl, pH 1) reduction of FeT to

Fe(II) using hydroxylamine hydrochloride (6.00 mM). Although the recovery of Fe

standards spiked into seawater and allowed to equilibrate was very good (vide infra), this

method may not reduce all the Fe strongly bound to organic matter. The method of

standard additions was used, in which known concentrations of Fe were added to samples

containing an unknown concentration of Fe and a linear relationship was developed

between the concentration of added Fe and measured Fe. All reagents were of the highest

purity available and used as received from Sigma-Aldrich. The blank concentration of

[Fe]T was 8±4 nM, most of which was derived from the reductant. Reported Fe

concentrations are blank corrected. Recovery of Fe(III) spiked into seawater samples was

94±7%. This method has an inherent uncertainty of ±4 nM derived from the photometric

precision of the spectrophotometer (0.001 AU).

Carbon Monoxide Apparent Quantum Yields

The spectral dependence of carbon monoxide (CO) apparent quantum yields were

determined using monochromatic irradiations of samples in long-path length cells (28

cm) from a Hg-Xe arc lamp and monochromator (Spectral Energy). This experimental

setup is described in more detail in Xie et al. (in press). Samples to be irradiated were

degassed with CO-free air ('zero-air') for 1-2 hours using acid-washed glass frits in

methanol- and acid- rinsed Teflon bottles. Samples were then siphoned into cuvettes prior

to irradiation to avoid contact with ambient air, which contained appreciable

concentrations of CO (-2 ppmv). Glass rods encased in silicone rubber were used as
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stoppers to minimize sample contact with organic materials. Samples were irradiated at

different wavelengths corresponding to Hg emission lines (313 nm, 356 nm, and 405 nm)

for different amounts of time, ranging from 10-100 minutes depending on the predicted

CO production rates. Dark controls were maintained at room temperature during the

course of all irradiations and analyzed after all prior CO analyses were performed on

irradiated samples. Apparent quantum yields were calculated from initial absorption

values:

(= moles CO produced min' (7)

moles of photons absorbed min-

The determinations of CO photoproduction are apparent quantum yields rather than true

quantum yields, as the concentrations and molar absorption of the specific chromophores

that produce CO are unknown. Thus, CO production rates were scaled to the total CDOM

absorption. Irradiation intensities were determined by ferrioxalate actinometry. CO

analyses were performed by gas chromatography with Hg detection after HgO oxidation

of the reducing gas (CO) on a Trace Analytical Reduction Gas Analyzer (RGA-3) after 3

minutes of headspace equilibration of 35 ml aqueous samples in glass syringes with 5 ml

CO-free air (99).

Carbon Monoxide Optical Buoy Incubations

Optical buoy experiments were conducted in the Sargasso Sea near the BATS

station (32.03 N, 64.01'W) in March 2000 during Cruise EN335 of the R/V Endeavor. A

brief description of the methods used is presented here. The use of optical buoys to

determine CO production rates in surface waters is discussed more fully in (100)

Seawater for the optical buoy experiment was collected at local midnight from a

depth of 20 m using a 30 L Go-Flo (General Oceanics) attached to a standard CTD

rosette approximately 30 hours before optical buoy deployment. The water was pressure-

filtered with clean N2 using a prerinsed 0.2 gm membrane filter in a Teflon lined filter

holder through Teflon tubing into acid rinsed 20L HDPE carboys. The sample in one 20L
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carboy was allowed to equilibrate for 30 hours with 500 nM DFOM at room temperature

in the dark. 50 nM Fe was added from acidic Fe(III)C 3 stock immediately prior to the

beginning of the incubation. The water was then drained into 15 L acid-rinsed glass

carboys and degassed through glass frits with CO-free air (medical grade) to reduce

background CO prior to being sub-sampled into methanol- and acid-rinsed 500-mL

quartz flasks. The optical buoy consisted of quartz flasks attached to stainless steel racks

suspended at multiple depths beneath an open tripod of rods and floats. The quartz flasks

were sealed with glass stoppers and attached to the cages upside down to minimize

shadowing. The optical buoy was deployed near local dawn (0630) and retrieved near

sunset (1830). Dark samples were maintained at room temperature (-20 C). CO was

analyzed immediately after buoy retrieval using the headspace method as noted above,

taking care to avoid any contact of the irradiated water with the atmosphere. Fe was

analyzed in the initial sample using acidic reduction with hydroxylamine hydrochloride

and ferrozine as noted above.

Results

Photobleaching of the CDOM in 0.2 gm filtered samples from three different

stations in the Delaware Bay produced bleaching spectra that exhibit similar absorption

bleaching curves (Figure 5.3). These curves are all best described by bi-exponential fits,

with an initial fast loss of absorption followed by slower long-term bleaching (Table

5.4). The fast bleaching phase represented the majority (66±8%, range 59-85%) of the

color bleached at 300nm in the initial 12 hours of each irradiation. This was followed by

slow, nearly linear bleaching of a second portion. Both the initial spectra and the

bleached spectra follow the characteristic pattern of featureless exponentially increasing

absorption with decreasing wavelength (data not shown). However, SRFA absorption

bleached more slowly than any of the seawater samples (Figure 5.3), despite containing

approximately the same concentration of carbon (-1.5 mg C/l; 125 pM C). The fast-

bleaching phase of SRFA was much smaller than the corresponding fast-bleaching phase

of the seawater samples, and although the slower, long-term bleaching rates were similar,

long-term bleaching rates for SRFA were also smaller (Table 5.4). The initial absorption
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coefficients of the SRFA samples were comparable to that of the intermediate salinity

samples (S20) and slightly less than that of the lowest salinity sample (S4). Bleaching of

these samples caused the slope, S, of the optical spectra to increase in all cases (see Table

5.3). In agreement with previous studies, there is not a good correlation of S with salinity

(30,75). The bleaching reaction of 70 pM OH9 with 10 mg C 1- 1 SRFA solutions did not

change the spectral slopes significantly, but the reaction of S29 with half that amount of

OH* measurably increased S.

Photobleaching offluorescence

The bleaching of DOM fluorescence in the Delaware Bay samples was very

similar to that of CDOM absorption. Comparable bi-exponential behavior was observed

(Figure 5.4; Table 5.5). The initial rapid phase of photobleaching represented 87±7%

(range 75-95%) of the total photobleaching of fluorescence in the first 12 hours of

irradiation. This rapidly-bleaching portion made up more than 75% of the bleaching even

after 30 hours of irradiation (equivalent to approximately 5 days of solar radiation,

assuming 6 hours of insolation per day). The initial bleaching rates were significantly

faster for fluorescence than absorption, while the slower, long-term rates were similar.

This lead to greatly enhanced bleaching of fluorescence as compared to absorption for the

same irradiation times. The more rapid fluorescence bleaching behavior was also

observed in SRFA samples.

Effect of Fe on photobleaching

Neither the addition of 100 nM Fe nor the complexation of the Fe with DFOM to

form a non-photoreactive Fe complex affected either the photobleaching of absorption or

of fluorescence in any of the samples investigated (S4, S20, and SRFA solutions; Figures

5.5-5.6). The addition of larger concentrations of Fe, up to 2 jiM, and a decrease of pH to

6, did not increase the photobleaching of SRFA (Figure 5.6).

Excitation-emission spectroscopy

Excitation-emission matrix spectroscopy (EEMS) is a fluorescence spectroscopy

in which emission spectra are scanned at a number of different excitation wavelengths to
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produce a matrix of fluorescence values. EEMS spectra of CDOM fluorescence for

Delaware Bay seawater samples and for a solution of SRFA (Figure 5.7) exhibit the

characteristic peaks identified as 'humic-like': one stimulated by UVC excitation (peak

A), and one by UVA excitation (peak H, also known as peak C) (101). The peak

positions for the lower salinity sample (S4) are A: Ex.ax/Emmax = 240/425 nm, and H:

ExmaxEmmax = 320/420 nm. All sample peak positions are listed in Table 5.6. Peak H

appears to be missing in the higher salinity sample (S29), and peak A is shifted toward

lower excitation and emission wavelengths (Exmax/Emmax = 230/410 nm) in accordance

with the findings of Coble (1996). Both peak A and peak H were photobleached, despite

the fact that the excitation wavelength of peak A is lower than the lowest wavelength of

bleaching light (Figure 5.8). However, as might be expected, broadband light bleached

peak H more than peak A, as can be seen by the increased values of the ratio of peak A to

peak H after photobleaching (Table 5.6). Similarly to the emission spectra studied above,

no alteration in the bleaching pattern of the EEMS upon addition of Fe or DFOM was

observed.

EEMS spectra of seawater samples exposed to radiolytically-produced OH-

indicate that both peak A and peak H are bleached by OH-. In the seawater samples, the

A/H ratio increases as it does during photobleaching, although there A/H ratios in the

difference spectra are less than in any of the photobleached spectra. This shift indicates

that there is increased bleaching of peak A relative to peak H during bleaching with OH-.

The A/H ratio is very close to 1 in the humic bog water difference spectrum, indicating

almost equal bleaching in both peaks. This finding supports the possibility of OH- being

partially responsible for the bleaching of a fluorophore that was not directly irradiated

during the photobleaching experiments.

CO photoproduction

The spectral dependence of the apparent quantum yield (AQY) of CO in

Delaware Bay seawater was also investigated (Figures 5.10). As has previously been

described for both seawater and freshwater samples, the apparent quantum yield of CO

photoproduction declined sharply from the UVB portion of the spectrum to the visible
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(102). The values determined here (Table 5.7) are approximately one order of magnitude

less than those previously determined for humic freshwaters, including the Suwannee

River and the Satilla River (48,102), but extremely similar to CO AQY's determined in

the Gulf of Maine and the Damariscotta River estuary (103). These values are only

slightly larger than the AQY's determined for Sargasso Sea water (100). Interestingly, the

AQY at 313 nm does not increase in a monotonic fashion with salinity (Table 5.7), but

instead exhibits a lower value at S20 than at S4 or at S29. It is not clear what might

produce this pattern specifically in the UVB region of the spectrum without affecting

other portions of the spectrum. The CO production rate in S20 might have been decreased

by the addition of Fe or DFOM, as was observed in the higher salinity sample, although

the opposite result was obtained in the low salinity sample. As the CO production rate

from an unmodified sample of S20 was not determined, this cannot be verified.

Fe effects on CO photoproduction

Fe did not appear to have a significant effect on CO photoproduction (Figure

5.10). Contrasting additions of Fe or DFOM to estuarine samples had similar, although

inconsistent, results. In S4, both treatments increased the CO AQY slightly, while in S29

(and possibly S20) both decreased it slightly. The decreases in the CO AQY in S29 due

to the addition of Fe or of DFOM might be a result of increased light scattering or

absorption at 313 nm due to the formation of Fe colloids, or the tailing of the strong

DFOM absorption band into the UVB region The lack of replicate samples for S4 at

313nm does not allow a conclusion to be drawn as to the significance of the difference

between the modified samples and the unamended sample. However, based on the errors

in similar experiments, there is no significant difference between the sample treatments.

In contrast to the results in estuarine water, a -20% decrease in CO

photoproduction in marine surface waters after DFOM addition was observed during

preliminary experiments performed in Sargasso Sea water during a cruise in March 2000

(Figure 5.11 and (100)). The comparison between DFOM-incubated and 'unamended'

Sargasso Sea water may not be completely valid due to a slight contamination of the

Sargasso Sea water with Fe during sample manipulation. An Fe concentration of -15 nM
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was measured for the uncomplexed sample, far above Fe concentrations measured in the

Sargasso Sea using clean sampling techniques (82). Additional preliminary experiments

on the same cruise suggested that addition of Fe increased the photoproduction of CO

slightly during deck incubations, although no increase was observed during the added-Fe

optical buoy, and that DFOM reduced the photoproduction of CO by approximately 20

%, in accordance with the optical buoy work.

Discussion

Photobleaching of Absorption

The bi-exponential bleaching of CDOM absorption observed in this study was

similar to that described by several previous investigators (12,28,39,104). The rapid

initial bleaching may represent the preferential destruction of high-absorption

chromophores, or the conversion of such chromophores into lower-absorbing, more

bleaching-resistant chromophores which continue to be bleached at a much slower rate.

This bi-exponential bleaching has been the observed pattern in previous studies of

seawater samples (28,32). In several humic freshwater samples, investigators have

instead observed mono-exponential (first order) decay of absorption (33,48). These same

studies have found an increase in the slope S of logarithmic plot of absorption versus

wavelength, in contrast to this study and to a number of other photobleaching studies

(28,39,105). The difference between these observations may be due to a compositional

difference between extremely humic riverine and lake water and the CDOM found in

estuaries and coastal environments. However, in our bleaching of dilute SRFA solutions,

we observed a very small rapid-bleaching component followed by slower, nearly linear

bleaching. The extreme extraction processing that SRFA undergoes may cause

compositional or structural changes that produce a small amount of rapidly bleaching

material.

Our initial understanding suggested that indirect reactions of Fe, in particular the

production of OH- via Fenton reactions, might be an important route to CDOM

photooxidation. OH- reacts with CDOM with a bleaching efficiency of 3.0 (±0.1) x 104

m1 per molar OH- for SRFA and 1.3 (±0.2) x 104 m per molar OH- for S29 (Chapter 3;
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(95)). The OH* production rate we expect in the low Fe systems (< 1 [iM Fe) is a

maximum of 1 x 1040 M s- (0.36 RM hf). The maximum bleaching rates we would

expect from OH- are 0.01 m 1 hr 1 in the SRFA solutions and 0.005 m4 hr§ in the

seawater samples. For the seawater samples, these rates are 0.3-1.3% of the initial rapid

photobleaching rates observed, but 14-50% of the slower, long term photobleaching rates.

For SRFA, the lower Fe samples would produce a OH*-supported bleaching rate that is

0.3-0.6% of the fast initial photobleaching, and 66-84% of the longer slow

photobleaching (see Table 5.4 for bleaching rates). Thus, OH*-supported bleaching may

in fact be of some importance to long-term photobleaching rates. Because the SRFA

bleaching experiments were performed in non-seawater matrices, it is possible that some

component of seawater (such as Br~ or F) reduces the bleaching efficiency of OHO.

OH--induced bleaching of CDOM does not exhibit multi-phased behavior.

Instead, bleaching of CDOM is linear with increasing OH- dose (Chapter 3). The large

percentage of the slow bleaching rate possibly attributable to OH- might help to explain

both the linearity of these portions of the bleaching curves and the fact that these portions

of the curves are almost parallel for different samples. However, the addition of Fe did

not increase the bleaching rates in these samples (vide infra), suggesting either that

indirect photoprocesses are not responsible for the bleaching behavior of CDOM, or that

the addition of Fe did not stimulate the production of intermediates capable of indirectly

bleaching CDOM.

Several factors may play a role in limiting the importance of OH. to CDOM

bleaching. From previous work, we know that the reaction rate constants of OH- with

DOM decrease with increasing dose (or in this case, photolysis time; Chapter 3, (95)).

Other sinks of OH- will become increasingly important over time. Secondly, OHO

photoproduction by CDOM will most likely decline during the course of a photolysis as

chromophores are exhausted (106). The maximum OH- production rates used here are

probably overestimates of the true OH* production rates. Thus, especially as regards to

the long-term photobleaching rates, these estimates of the importance of OH--mediated

photobleaching may be large overestimates.
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Photobleaching of Fluorescence

Similarly to absorption, the bi-exponential decay of fluorescence suggests either

the presence of multiple fluorophores or the conversion of more rapidly bleached

fluorophores to more slowly bleaching fluorophores. Similar bi-exponential fluorescence

bleaching behavior has been previously observed, also in marine samples (36,107,108).

The loss of the rapidly bleaching FDOM may be slowed in estuaries by vertical mixing of

material, thus decreasing the residence time a particular parcel of FDOM-containing

water spends undergoing photolysis, and allowing the material to be advected out of the

estuary and into the coastal ocean. Alternatively, FDOM might be produced by biological

activity, and this fresh material might be the source of the rapidly bleached fluorescence.

In the lower salinity samples studied here (SRFA, S4, and S20), fluorescence

bleaching occurred more rapidly that absorption bleaching. The non-linear bleaching

relationship between these two optical properties is illustrated in Figure 5.12. This is an

interesting finding in light of field observations that fluorescence and absorption exhibit

linear relationships in the Western North Atlantic (28,29). However, De Haan (1993)

observed more rapid loss of fluorescence than absorption in a peaty freshwater lake

(109). Interestingly, the highest salinity sample studied here (S29) actually exhibits a 1:1

relationship between absorption and fluorescence. These findings taken together suggest

that during the course of FDOM residence time in this estuary, the extremely rapid

photobleaching of a terrestrial DOM derived fluorescence leads to the loss of this

material and the eventual establishment of a linear relationship, in which both CDOM

and FDOM exhibit the same photobleaching rates. Alternatively, there could be

significant non-photochemical alterations to the CDOM and the FDOM that reduce the

bleaching differences between the two parameters such that FDOM becomes less

bleachable.

Excitation-Emission Spectra

EEM spectra of low salinity samples from the Delaware Bay (S4, 4%o) exhibited

characteristic 'humic-like' peaks A (Exmax/Emmax ~ 240/420 nm) and H (Exmax/Emmax ~

320/420 nm). As has been previously observed in the Orinoco River/Gulf of Paria system
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(75) and a number of other waters (101), the higher salinity sample (S29, 29%o) exhibited

a much reduced peak H and a hypsochromic (blue) shift in both excitation and emission

wavelengths of Peak A. This blue shift may be due to chemical changes to the

fluorophores during CDOM transit through the estuary resulting in the shortening of

conjugated systems, the elimination of substituents that contribute to hyperconjugation,

and increases in the rigidity of the DOM molecules (75). Photobleaching of the higher

salinity samples also leads to a slight hypsochromic shift in peak A, possibly due to the

photooxidation of extended conjugated systems, such as highly absorbing aromatic

systems.

Interestingly, peak A can be photobleached, although not as extensively as peak

H. The ratio of peaks A/H increased in all samples and treatments during photobleaching

(Table 5.6). Because peak A is excited by wavelengths of light below those used during

irradiation ('ex = 230nm), this result suggests two different possibilities: (a) there is

intramolecular transfer of energy during photobleaching that leads to the destruction of

fluorophores absorbing below 290 nm, or (b) indirect photoproducts such as OH- are

significant factors in these bleaching reactions.

Indirect photochemistry may play a significant role in certain systems, but the

lack of any systematic significant effect of Fe or DFOM on the bleaching ratio of A/H

suggests several possibilities. Assuming that Fe-driven photochemistry produces

significant fluxes of indirect oxidants, either indirect photobleaching is a subtle effect in

our systems or indirect photochemistry is not responsible for the bleaching of peak A.

Alternatively, there may only be significant photo-Fenton production of OH- at low pH's

and high Fe concentrations.

The role of one important indirect oxidant in bleaching processes was examined

by examining the effect of radiolytically produced OH- (see also Chapter 3; (95)). During

gamma radiolysis of two estuarine samples, the ratio of peaks A/H increased, in a fashion

similar to the pattern observed during photolysis (Table 5.6). The fluorescence A/H ratio

of the difference spectra (initial spectra - final spectra) produced from OH- bleaching

was smaller than that produced during photobleaching. There is no reason to assume that
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the quantum efficiency of fluorescence of the two fluorophores is similar. All that can be

concluded is that OH- appears to bleach fluorophore A relative to fluorophore H more

efficiently than photolysis does. This phenomena deserves further attention.

Similar results were obtained during the bleaching of humic bog samples,

although the A/H ratio in the difference spectrum was very close to 1, indicating that this

effect is not limited to seawater samples. However, as noted above, there is no systematic

change in the A/H ratio of difference spectra upon addition of Fe, indicating that either

OHe is not produced in significant enough concentrations to be an effective indirect

photobleaching reagent or that indirect photobleaching processes are not completely

responsible for the bleaching of fluorophores excited by shorter wavelengths than the

lowest irradiation wavelengths.

Fe effects on photobleaching

We found no significant effect of Fe on the photobleaching rates of either

estuarine samples or of low concentration solutions of SRFA. These findings are

surprising in light of the extensive Fe photochemistry that has been described by a

number of investigators (46-49). Most previous work on Fe photochemistry that has

shown significant effects on DOM photoproduct formation rates has been performed in

freshwater samples with very high Fe and DOM concentrations (9,43,45,48). Fe should

have both direct and indirect effects on photoreactions. For Fe additions or

photochemical inactivation via DFOM to fail to increase or decrease photobleaching rates

indicates that neither mechanism of Fe photoreaction is significant in photobleaching

reactions in estuarine waters or in dilute SRFA solutions.

One important issue that was not resolved in this study is the form taken by the Fe

added to the samples. Much of this added Fe(III) most likely formed colloidal Fe(III)

(hydr)oxides very rapidly. It is also likely that these Fe colloids incorporated some

fraction of organic matter via coagulation with DOM or sorption of DOM to the freshly

formed surfaces (79,110). In a number of different estuaries Fe has been found to occur

largely in the colloidal phase (1kDa-0.2 gm) as has a significant fraction of the total

organic matter (< 0.2 gm) (91,111-113). These natural colloids may form as riverborne
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Fe comes into contact with seawater in estuaries. Thus, although the form and speciation

of Fe in our experiments was not examined, it is reasonable to suggest that they are not

completely dissimilar from the naturally occuring forms of Fe. The results of the DFOM

addition experiments suggest that Fe already present in the samples, which presumably is

more closely associated with the CDOM than the added Fe, also does not play a

significant role in CDOM photobleaching.

Fe effects on CO photoproduction in estuarine waters
Fe does not appear to have a significant effect on CO photoproduction in

estuarine waters. Contrasting additions of Fe or DFOM to estuarine samples either both

increase the CO AQY slightly (S4), or both decrease it slightly (S29, possibly S20, vide

supra). As mentioned above, these findings are surprising in light of the observations of

Gao and Zepp (1998) that addition of DFOM decreased the rate of CO photoproduction

in Satilla River water by 27%, and the preliminary experiments in the Sargasso Sea that

indicated DFOM decreased CO photoproduction rates by -20% in near-surface waters

(48,100). The decreased photoproduction rates in the optical buoy experiments was

observed only in the top 3 meters of the water column. It is possible that the CO

photoproduction due to Fe is stimulated by short wavelength UV radiation that is rapidly

attenuated by water. However, the optical conditions in the Sargasso Sea usually allow

the penetration of most UV irradiation to depths greater than 3 m (a300 = 0.2-0.4 m1 ;

(34)). The contamination of the filtered samples with small amounts of Fe (15 nM) also

confounds the issue of what effect Fe might have on in-situ CO photoproduction at

natural Fe concentrations. The technical problems of maintaining both trace metal and

organic clean conditions on a ship in rough weather may preclude the determination of

these CO photoproduction values by the use of optical buoy techniques and instead

require laboratory studies. In spite of the conflicting evidence from oceanic samples, the

lack of an effect of Fe on CO photoproduction quantum yields in estuarine waters

indicates that Fe does not have an effect on at least one important product of estuarine

CDOM photooxidation. Oceanic CO photoproduction remains to be examined more

closely.
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Conclusions

Despite evidence for the involvement of Fe in the photooxidation of terrestrially-

derived CDOM in fresh water, there appears to be no significant effect of Fe on the

photobleaching or photoproduction of CO from estuarine samples. Furthermore, Fe does

not increase the bleaching rates of an isolated terrestrial fulvic acid (SRFA). These

findings lead to the conclusion that neither the direct nor the indirect OH--mediated

photochemistry of Fe plays a significant role in CDOM photooxidation processes in

estuarine systems. CDOM photochemistry has been shown to have a significant effect on

Fe speciation in marine systems, but a number of different processes, including the

formation of Fe colloids, may have an inhibitory effect on the obverse processes of Fe-

influenced CDOM photooxidation.

Photobleaching results obtained in this study support previous observations of

spectral slope (S) increases and bi-exponential bleaching behavior observed in estuarine

and coastal waters, and confirm differences between freshwater and estuary samples.

More rapid fluorescence bleaching than absorption bleaching in low and intermediate

salinity samples appears to preferentially remove a rapid-bleaching set of fluorophores,

leading to a linear correlation between fluorescence and absorption in higher salinity

samples, similar to that previously observed in the Mid-Atlantic Bight (28). Finally, the

EEM spectral studies indicate the existence of so called 'off-axis' bleaching at

wavelengths outside the irradiation wavelengths. This behavior is not completely

explainable via OH*-induced bleaching, and suggests that the photochemical behavior of

CDOM is more complicated than the simple superposition of multiple independent

chromophores bleached by direct and indirect photoprocesses that had been the previous

model.
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Table 5. 1

Characteristics of water samples used in photobleaching experiments.

Sample Salinity (%o) Initial acM( 3 0 0 ) (m') Initial F/R (FLU)
S4 4 9.39 2.2
S20 20 5.80 0.8
S29 29 3.62 0.2
SRFA n.a. 6.82 1.0

Table 5.2

Measured Fe concentrations in irradiation samples. [Fe(II)] was measured
spectrophotometrically using ferrozine after acid reduction of [Fe]T (see Methods). The
errors are ly for the averages of two or three replicate determinations.

Sample Measured [Fe]1T (nM)
SRFA 7±1.5
SRFA +Fe 27±3

S4 Initial 20±5
S4 Fe 54±5

S20 Initial 13±4
S20 Fe 143±4

S29 Initial 33a
a This sample may have been inadvertently contaminated with Fe
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Table 5. 3

Spectral slopes (S) of absorption curves determined from least-squares regression of log-
linearized absorption values (a(X), m-) from 250 nm to 450 nm. All fits have r2 > 0.98. In
all cases, S increases or does not change significantly (SRFA) as a result of bleaching.
The effect of OH- bleaching on the spectral slope of two samples is also shown. The
SRFA solution was 10 mg C 1-1 and was exposed to 70 pM OH', while the S29 sample
was exposed to 35 pM OH'.

Sample Initial acM(3 0 0 ) (m-) Slope at to Slope at t - 78hr (±2 hr)
S4 9.39 0.0156 0.0170
S4 + Fe 9.36 0.0157 0.0174
S4 +DFOM 9.36 0.0157 0.0173

S20 a 0.0176 0.0190b

S20 +Fe 5.99 0.0159 0.0167
S20 +DFOM 5.79 0.0163 0.0170

S29 3.62 0.0115 0.0185

SRFA 6.82 0.0158 0.0169
SRFA +Fe 6.92 0.0160 0.0162
SRFA +DFOM 6.81 0.0160 0.0164

SRFA + OH' 29.3 0.0180 0.0181c
S29 + OH' 2.95 0.0171 0.0183
a This sample was 0.02 gm filtered prior to irradiation. b Irradiation time is 48 hours (final
timepoint). ' Exposed to 70 mM OH'. d Exposed to 35 mM OH'.
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Table 5. 4

Fitting constants for bi-exponential fits of absorption photobleaching. Normalized
absorption values at 300nm were fit to the equation A = a1 exp(-kit) + a2 exp (-k2t), with t
in hours, using a non-linear fitting routine. These values must thus be multiplied by the
initial absorptions in Table 5.1 to obtain the rates in m~1 hfr1. Note that there are
extremely small differences between sample treatments, although there are different rate
constants for different samples. Note also that SRFA seems to have a much smaller
rapidly bleaching component, as can be seen in Figure 5.3.

Sample a1  k1 (hr-') a 2  k2 (hr-')
S4 0.079 0.168 0.915 3.23e-3
S4 + Fe 0.065 0.182 0.934 3.69e-3
S4 +DFOM 0.109 0.108 0.885 3.1le-3

S20 +Fe B 0.0670 0.103 0.928 2.88e-3
S20 +DFOM 0.0564 0.239 0.943 2.99e-3

S29 0.233 0.108 0.787 2.79e-3

SRFA 0.0376 0.462 0.962 2.19e-3
SRFA +Fe 0.0348 0.225 0.965 1.99e-3
SRFA +DFOM 0.0400 0.310 0.959 1.75e-3
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Table 5. 5

Fitting constants for bi-exponential fits of photobleaching of fluorescence. Normalize
fluorescence/Raman values were fit to the equation Fl = fi exp(-kit) + f2 exp (-k2t), with t
in hours, using a non-linear fitting routine. These values must thus be multiplied by the
initial fluorescence values in Table 5.1 to obtain the rates in FLU hfr1. Note that there are
extremely small differences between sample treatments, although there are different rate
constants for different samples.

Sample f, k1 (hr-) f2  k2 (hr')
S4 0.355 0.166 0.626 7.17e-3
S4 + Fe 0.284 0.448 0.711 1.06e-2
S4 +DFOM 0.394 0.134 0.582 6.63e-3

S20 +Fe B 0.449 0.124 0.576 3.43e-3
S20 +DFOM 0.349 0.119 0.644 4.57e-3

S29 0.434 0.028 0.613 5.53e-4

SRFA 0.489 0.177 0.493 6.50e-3
SRFA +Fe 0.245 0.248 0.753 8.88e-3
SRFA +DFOM 0.475 0.291 0.513 9.90e-3
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Table 5. 6

Excitation and emission peak wavelengths (in nm) determined from EEMS. Peaks A and
H are the so-called 'humic-like' fluorescence peaks. The ratio of peak A to peak H in the
initial material, the final spectrum, and in the difference spectrum ('Bleached': the
fluorescence lost during photobleaching) are shown in the final columns.
The samples bleached with OH- were exposed to -40 gM OH*, corresponding to
approximately 20 days of solar bleaching, assuming an OH. production rate of 2 pM d-.

Sample

S4
S4 Fe
S4 DFOM

S20 Fe
S20 DFOM

S29

SRFA
SRFA Fe
SRFA DFOM

Hours
irrad.
110.3
78.5
104.9

106.3
123.2

97.8

123.8
95.7
120.8

S4 bleached with OH.
S29 bleached with OH-
Bog bleached with OH-

Peak A
(Exmax/Emmax)

240/425
240/425

240/425 (0)

240/415
240/420

230/410

230/430
230/430
230/430

240/425
230/410
250/445

Peak H
(Exma/Emx)

320/420
320/420

320/420 (5)

320/420
320/420

nonea

320/440
330/435
320/440

320/420
nonea

340/450

Initial
1.95
1.96
1.95

Ratio A/H
Final Bleached
2.04 1.81
2.15 1.89
2.04 1.89

2.15 2.18
2.17 2.61

2.12
1.80

(2.57) b (2 77 )b (2.07) b

2.29
2.49
2.33

1.97
(2.12)

0.78

3.42
3.53
2.95

2.19
(2.9 1 )b

0.71
a ePeak was not present. bThe value at 320/420 was used to calculate A/H.

1.87
1.61
2.01

1.56
( 1 .8 3 )b

0.94
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Table 5. 7

Apparent quantum yields of CO from seawater samples in mole per photon absorbed at 3
different wavelengths. The values in parentheses are standard deviations from duplicate
determinations.

Sample Apparent Quantum Yield x 10 5

313nm 365nm 405nm
S4 5.67 1.44 0.758
S4 Fe 7.17 1.78 0.497
S4 DFOM 7.31 1.36 0.267

S20 Fe 2.71(0.11) 0.826 0.397
S20 DFOM 2.65 (0.22) 0.819 1.00 a

S29 5.18 (0.07) 0.742 (0.06) 0.260
S29 Fe 3.26 (0.7) 0.757 (0.02) 0.347
S29 DFOM 3.23 (0.06) 0.653 (0.3) 0.254
S29 Cu 8.36 (0.39) 1.09 (0.03) 0.959
a This value was biased by an anomalous absorption value for this sample at 405nm. The
CO production rates (nM/hr) were the same for both S20 Fe and S20 DFOM at 405 nm.
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Figure 5. 1

Schematic diagram of photobleaching apparatus. A: Research lamp housing 400 W Xe
arc. B: IR filter containing chilled Milli-Q water. C: Dichroic mirror. D: Custom solar
cell with sampling ports, quartz bottom, outside waterjacket for cooling, and mechanical
stirring rod.
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Figure 5. 2

Irradiance spectrum of solar simulator and a solar spectrum at 43.4 N, 71.1 W at solar
noon calculated using TUV.

226



2.5
-- Solar Simulator

--........ Calculated Solar (TUV)
2.0-

1.5

~1.0

0o.5 ..

0.0
300 350 400 450 500

wavelngth (nm)



Figure 5. 3

Normalized photobleaching curves of CDOM absorption at 300nm in three unaltered
seawater samples from the Delaware Bay (S4, 4%o, V ; S20Fe, 20%o, E ; and S29,
29%o,$) and one fulvic extract (SRFA, 2.5 mg C/ in Milli-Q water, 0). The lines are bi-
exponential fits to the data.
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Figure 5. 4

Normalized photobleaching curves of CDOM fluorescence F/R values (see Methods) for
three unaltered seawater samples from the Delaware Bay (S4, V ; S20Fe, E ; and S29,-)
and one fulvic extract (SRFA, @). The lines are bi-exponential fits to the data. Note that
the bleaching of the CDOM fluorescence is significantly faster than the bleaching of the
CDOM absorption.
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Figure 5. 5

Normalized bleaching curves of CDOM absorption and fluorescence F/R values for three
treatments of two different seawater samples: Fe (100 nM Fe(III) added, S and 0),
DFOM (500 nM DFOM incubated, V and V), and unamended (nothing added, M and
0). A: S4, B: S20. There is no significant difference in the bleaching rates of either the
absorption or of the fluorescence.
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Figure 5. 6

Normalized bleaching curves of CDOM absorption and fluorescence F/R values for
additions of Fe to 2.5 mg C/ SRFA solutions: unamended (nothing added, 0 ), 500nM
DFOM (V), 100 nM Fe pH 8 (M), 100 nM Fe, pH 6 (b), 2 gM Fe, pH 6 (A). The lines
are bi-exponential fits.
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Figure 5. 7

Excitation-emission matrix spectra (EEMs) for 4 different water samples: S4, S20Fe,
S29, and SRFA.
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Figure 5. 8

EEMs difference spectra showing the bleaching of the two fluorescence peaks (A and H).
From top to bottom: S4, S20Fe, S29, and SRFA.
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Figure 5. 9

EEMS difference spectra showing the bleaching of fluorescence by radiolytically-
produced OH-. From top to bottom: S4, S29, humic bog water.
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Figure 5. 10

Apparent quantum yields (AQY) of CO photoproduction from estuarine seawater for
different treatments: unaltered (M), 100 nM Fe(III) (0), 500 nM DFOM (V), or 50nM
Cu(II) (0). These values are calculated from short term (< 90 min) irradiations at the
given wavelengths. Where error bars are present, they are the standard deviation of
duplicate determinations. A: S4, B: S20, C: S29.
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Figure 5. 11

CO photoproduction from Sargasso Sea water during one daylight period as determined
using an optical buoy (see Methods). Quartz flasks were suspended from an open frame
at predetermined depths from dawn to dusk. 500 nM DFOM (V) was added to one set of
flasks, and duplicate determinations were made for each flask. Samples were 0.2 Rm
filtered sterilized. Left: effects of added DFOM (500 nM). Right: effects of added Fe (50
nM).
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Figure 5. 12

Bleaching of fluorescence versus bleaching of absorption for 4 different samples: SRFA
(0), S4 (V), S20FeB (0), and S29 (4). The lines are single exponential fits, except for
S29, which has a linear fit. Note that as the sample becomes progressively less
'terrestrial' in nature, the slope of the relationship flattens out.
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CHAPTER 6.

THESIS DISTILLATION AND FUTURE WORK
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Geochemical Significance

Significant transformations of terrestrial dissolved organic matter take place in

estuarine and coastal waters. These transformations are in part effected by photochemical

processes. In particular, there is a significant loss of chromophoric dissolved organic

matter (CDOM). Photobleaching of the chromophores responsible for light absorption

leads both to the greater penetration of light into the ocean and to a reduction in the

production rates of photolysis products, including reactive oxygen species (ROS), carbon

monoxide, and possibly reduced metals such as Fe(II). The photochemical decomposition

of CDOM leads to the formation of a variety of biologically available products, including

carbon monoxide and low molecular weight carboxylic acids and carbonyl compounds,

that could represent an important source of carbon substrates to microorganisms.

Photomineralization of CDOM to dissolved inorganic carbon (DIC) may also constitute a

significant flux in the global carbon cycle. CDOM photochemistry may also have an

effect on the cycling of iron, a biogeochemically important element in marine systems. In

order to further the study of these processes, this thesis has focused on several main

issues: the photobleaching of CDOM, the roles of reactive oxygen species in the

photochemistry of CDOM, and the roles that iron may play in CDOM photochemistry.

Photodecomposition may proceed both via direct photochemical reactions,

following absorption of photons by CDOM, or via indirect processes, involving DOM

reactions with photochemically generated intermediates such as reactive oxygen species

(ROS). Prior work on CDOM photobleaching has not attempted to investigate the relative

importance of these two mechanisms. If the mechanisms of photobleaching can be

understood, then it may be possible to make predictions of CDOM photobleaching rates,

given a few measurements of important parameters and knowledge of solar irradiance

values. These predictions would be useful in modeling light penetration in marine

systems, a crucial factor in many models of oceanographic surface processes.

The ROS that appear to play important roles in DOM chemistry are superoxide

(02) and hydroxyl radical (OH-). Of these, OH- is the likeliest candidate for having

significant effects on DOM decomposition. OH- is a powerful oxidant known to react
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with many organic compounds at nearly diffusion-limited rates. In this thesis I have

determined the OH--mediated bleaching rates of CDOM. In most natural systems, the

production rates of OH- are too low to allow indirect bleaching reactions of OHO to play a

significant role in CDOM photobleaching. However, there are indications that 0H-

contributes to long-term photobleaching rates, especially in freshwater systems, and to

the bleaching of CDOM fluorescence. In particular, OH- may be responsible for

bleaching fluorophores that absorb light at wavelengths below 290 nm, the lowest

wavelength in the solar spectrum at the earth's surface.

Fe has been established to be of some importance in the photochemistry of

CDOM in freshwaters (1-3). In this thesis I established that Fe does not play a significant

role in the photobleaching and photooxidation of CDOM in coastal and estuarine waters.

These results indicate that Fe does not have to be taken into account when examining the

photobleaching of CDOM in coastal systems. In addition, Fe does not play a significant

role in CO photoproduction, at least in coastal waters. These findings stand in contrast to

the fact that Fe can affect photochemical processes in atmospheric and fresh waters.

It is clear that in both marine and freshwater systems, CDOM photochemistry

plays a role in Fe speciation (4-11). One mechanism by which this occurs is through the

redox reactions of 02 with Fe. Prior investigations suggested that dissolved Fe might

control 02 steady-state concentrations. We found that CDOM appears to act as an

organic redox catalyst in the decomposition of 02~ to 02 and HOOH. In combination with

the catalytic activity of various organic and inorganic copper complexes, this activity

severely limits the steady-state concentration of 02 in seawater. Instead of controlling

02~ steady-state concentrations, dissolved Fe speciation may be significantly affected by

02~ steady-state levels (12). The effect of 02 on CDOM is less clear, but as CDOM

appears to catalytically cycle with 02, the net effect may be null.

This thesis adds to the few measurements of CO photochemical quantum yields in

coastal waters. Photoproduction of carbon monoxide (CO) is potentially an important part

of CDOM mineralization. Furthermore, CO is nearly always supersaturated in the surface

ocean relative to the atmosphere, and in the atmosphere CO is a scavenger of gas phase
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OH*. As OH- is an important atmospheric oxidant, especially of organic pollutants,

understanding the photoproduction of CO in the surface ocean is also important for our

understanding of atmospheric chemistry. The quantum yields determined for the

Delaware Bay seawater are extremely similar to the pooled quantum yields determined

for three stations in the Gulf of Maine (13). The extension of these numbers to global

photoproduction rates of CO produce an estimated annual CO photoproduction of 250-

415 Tg CO yr-1, a much smaller range than the previous estimates (150-1400 Tg CO yr~
1;(13-15)). Note that these are estimates of total production and not of fluxes, as they do

not take into account the sinks of CO. These photoproduction rates are smaller than the

estimated anthropogenic contribution of 1560 Tg CO yfr (16).

A model of CDOM photobleaching that can successfully reproduce CDOM

photobleaching under simulated solar irradiation was developed. This model incorporates

time- and bleaching-wavelength-dependent behavior that represents an improvement over

current models photobleaching. Although the mechanistic investigations of CDOM

photobleaching chemistry in this thesis may not yield results of immediate use in

predicting CDOM photobleaching, this model provides an empirical method of predicting

CDOM bleaching, and thus may be of general utility in the modeling of geochemical

phenomena affected by light penetration into marine surface waters.

Future Work

Each part of this thesis leads to a myriad of different investigative paths. I will

highlight a few of the more interesting directions for future inquiry. I am indebted to my

advisor and thesis committee members for the fruitful interactions which have stimulated

these ideas.

A broader examination of 02 photoproduction rates would enable investigators to

better asses the roles of this important photointermediate. Measurements of 02~

photoproduction rates have so far been limited to the western North Atlantic and the

Caribbean due to the extreme difficulty of these analyses(1 7,18). All estimates of the 02

steady-state concentration, and thus the results of redox modeling of trace metals in

seawater, are based on these values.
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The indirect photoredox cycling of humic substances by O in aquatic

environments warrants further study. Reduced humic materials produced by chemical

reactions with a bulk reductant such as sulfide have also been shown to reduce aquatic

pollutants such as nitroaromatic compounds (19). Superoxide creates reduced humic

materials during catalytic dismutation, and therefore electron transfer to other substances

such as iron oxides or aquatic pollutants might occur at significant rates if the steady-state

concentration of reduced humic materials is high enough.

Hydroxyl radicals may play a role in the photolytic decomposition of certain types

of biomolecules that are otherwise recalcitrant to decomposition. In this thesis, bacterial

growth potential as an indirect measure of the impact of hydroxyl radical on DOM

substrate quality and bioavailability was assessed for very limited types of DOM

(Suwannee River fulvic and humic acids) that are not good representatives of most

aquatic DOM. A valuable addition would be an examination of the role of OH. in

altering the bioavailability of the DOM in both marine and non-marine whole water

samples, especially in conduction with an equivalent assessment of the similar role of

photochemical processes on the same material.

The role that OH- plays in the long-term photoreactions of CDOM in seawater is

another avenue of inquiry. Some component of seawater may interfere with the reactivity

of OH- with CDOM, for example by acting as a sink for both OH' and any reactive

radical species produced from the reactions of Br- and OH'. In addition, due to analytical

constraints, I was unable to examine the possible role of OH' on DIC photoproduction in

seawater. This line of investigation may also lead to a greater understanding of the

mechanisms of photolytic mineralization.

Finally, the development of an accurate predictive model of CDOM

photobleaching that could be applied to depth-dependent irradiance models would greatly

aid not only photochemists but also the remote sensing community. The multicomponent

model presented here is a step in the direction of providing such a model, but more work

remains to be done to asses the validity of this approach.
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