
Algorithms for Design and Interrogation of Functionally Graded Material
Solids

by

Hongye Liu

B.E., University of Science and Technology of China, 1993

Submitted to the Department of Ocean Engineering

and

Department of Mechanical Engineering
in partial fulfillment of the requirements for the degrees of

Master of Science in Naval Architecture and Marine Engineering

and

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000

@ Massachusetts Institute of Technology 2000. All rights reserved

E NG
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

NOV 2 9 2000

LIBRARIES

Author
DeDartme t of Ocean Engineering

ary 25, 2000

Certified by...
Nicholas M. Patrikalakis

W.-1l 1 %T!~d-i Professor of Engineering

Certified by
Emanuel M. Sachs

ichanical Engineering

A ccep ted by ...
Nicholas M. Patrikalakis, Kawasaki Professor of Engineering

Chairman -+1 "mmittee on Graduate Studies

A ccep ted by ...
Ain A. Sonin, Professor of Mechanical Engineering

Chairman, Departmental Committee on Graduate Studies

Algorithms for Design and Interrogation of Functionally Graded Material

Solids

by

Hongye Liu

Submitted to the Department of Ocean Engineering
and

Department of Mechanical Engineering
on February 25, 2000, in partial fulfillment of the

requirements for the degrees of
Master of Science in Naval Architecture and Marine Engineering

and
Master of Science in Mechanical Engineering

Abstract

A Functionally Gradient Material (FGM) part is a 3D solid object that has varied local
material composition that is defined by a specifically designed function. Recently, research
has been performed at MIT in order to exploit the potential of creating FGM parts using a
modern fabrication process, 3D Printing, that has the capability of controlling composition
to the length scale of 100 pm. As part of the project of design automation of FGM parts,
this thesis focuses on the issue of the development of efficient algorithms for design and
composition interrogation. Starting with a finite element based 3D model, the design tool
based on the distance function from the surface of the part and the design tool allowing the
user to design within a .STL file require enhanced efficiency and so does the interrogation
of the part. The approach for improving efficiency includes preprocessing the model with
bucket sorting, digital distance transform of the buckets and an efficient point classification
algorithm. Based on this approach, an efficient algorithm for distance function computation
is developed for the design of FGM through distance to the surface of the part or distance to
a .STL surface boundary. Also an efficient algorithm for composition evaluation at a point,
along a ray or on a plane is developed. The theoretical time complexities of the developed
algorithms are analyzed and experimental numerical results are provided.

Thesis Co-Supervisor: Nicholas M. Patrikalakis, Ph.D.
Title: Kawasaki Professor of Engineering
Department of Ocean Engineering

Thesis Co-Supervisor: Emanuel M. Sachs, Ph.D.
Title: Professor of Mechanical Engineering
Department of Mechanical Engineering

2

3

Dedication

This thesis is dedicated to my parents Guohua Liu and Tanghua Shen.

4

Acknowledgments

Foremost, my sincere gratitude goes to my advisor Professor N. M. Patrikalakis for his

expert guidance and strong support throughout the entire process. I also would like to

thank Professor E. M. Sachs for his insight and valuable advice. I am also grateful to Dr.

W. Cho, who helped me during my advisor's absence and provided useful comments on my

thesis. My special thanks to Mr. T. R. Jackson, who put the first footprint on the FGM

field that I followed. He showed me both warmth and wit throughout the project and gave

me help in many various ways, such as providing me with sample models for testing. I

also want to thank Dr. T. Maekawa, who helped me start research at MIT and showed

me encouragement through out the last two years. I also cherish the experience of working

with all the members of the Design Laboratory: Mr. G. Shen and Mr. G. Yu who helped

me a lot during my tenure here apart from talking Chinese to me; Mr. F. Baker, Design

Laboratory manager, without whose technical support my research would not be possible;

Ms. K. Gunst for improving the English composition in an earlier draft of this thesis and

all the rest of the Design Laboratory fellows whose friendship made my life at MIT easier.

Financial support of this project was provided in part by the National Science Foun-

dation (grant #DMI-9617750) and by the Office of Naval Research (grant #N00014-96-

1-0857). CAD models for this thesis were generated with SolidWorksT M , meshed with

Algor T M

Contents

Abstract

Dedication

Acknowledgments

Table of contents

List of tables

List of figures

List of symbols

1 Introduction

1.1 Background .

1.2 Motivation and objectives

1.3 Summary of methodologies

1.4 Thesis organization.

2 Review

2.1 Representation of FGM objects

2.1.1 Decomposition based method

2.1.2 Boundary representation based method

2.1.3 Extended cell-tuple structure based method

2.2 Design of FGM .

5

2

3

4

5

8

9

12

13

. 13

. 14

. 16

. 17

19

19

19

20

20

21

CONTENTS

3 Finite element based FGM model

3.1 Introduction

3.2 Data structure

3.3 Algorithm for the extraction of surface boundary

4 Preprocessing of finite element FGM model

4.1 Introduction .

4.2 Computation of the boundary facets of the model . .

4.3 Construction of 3D bucketing system

4.4 Placement of the triangular facets into buckets . . .

4.5 3D digital distance transform

4.6 Identification of solid buckets

4.7 Bucketing vertices

4.8 Point location algorithm

4.8.1 Point membership classification (PMC) . . .

4.8.2 Identification of the object tetrahedron . . .

5 Design through distance functions

5.1 Introduction .

5.2 Algorithm for efficient distance function evaluation .

5.2.1 Distance computation for a single query point

5.2.2 Distance computation for a single query point

5.2.3 Computation of the list of query points . . .

5.3 Design of FGM solids within given .STL boundaries

5.4

5.5

inside bounding box

outside bounding bo3

Complexity analysis of distance function computation

Experimental results comparison with exhaustive searching method . . .

6 Efficient evaluation of composition

6.1 Composition evaluation at a point using barycentric coordinates

6.2 Composition evaluation along a given ray at a given

resolution .

23

23

25

26

29

29

29

31

33

35

37

38

39

39

40

47

47

48

48

49

51

51

52

55

63

63

64

6

CONTENTS

6.3

6.4

6.5

Composition evaluation on a cutting plane

Volume integral of material

Tim e analysis .

6.5.1 Theoretical background

6.5.2 Time cost for the extraction of boundary

6.5.3 Time cost of point location algorithm . .

6.5.4 Time cost of ray casting algorithm

7 Implementation and numerical results

7.1 Implementation

7.2 Numerical results

7.2.1 Design from boundary

7.2.2 Design from .STL file boundary

7.2.3 Design within .STL boundary .

8 Conclusions and recommendations

8.1 C onclusions .

8.2 Recommendations .

A Development on FGMViewer

A.1 Extension to FGMViewer system .

A .1.1 Introduction .

A.1.2 M enu extension .

A.1.3 Major extension in classes .

A.2 Example of the use of FGMViewer .

B Geometric Algorithms

B.1 Algorithm for testing if a point is contained in a tetrahedron

B.2 Algorithm for testing if a point is contained in a triangle

B.3 Algorithm for testing if a line segment intersects a triangular facet

References

. 65

. 66

. 68

. 68

. 69

. 70

. 71

73

73

73

74

74

80

85

85

86

88

88

88

88

90

95

105

105

107

108

109

7

List of Tables

5.1 Efficiency enhancement on the example models 56

7.1

7.2

Parameters of the FEM example models . 74

Performance of program on the examples 74

8

List of Figures

1-1 Functioning of LCC of 3D Printing, adapted from [16] 14

1-2 Information flow of FGM modeling system, adapted from [16 15

3-1 Inheritance tree of FGMviewer object classes 25

3-2 Data Structure: Cube example . 25

3-3 Data structure . 28

3-4 Check to see if a face of a tetrahedron is interior 28

4-1 Preprocessing . 30

4-2 Calculating the normal vector of a boundary facet 32

4-3 Bounding box with buckets . 33

4-4 Distribute triangular facets into buckets . 34

4-5 Example of chamfer distance transform: 0 is the feature pixel 35

4-6 Example of chessboard distance transform: 0 is the feature pixel 35

4-7 Digital distance transform . 36

4-8 Chessboard DT Mask in 3D . 37

4-9 Identify the signs of non-boundary buckets 38

4-10 Bucketing vertices based on the original bucket system 38

4-11 Check if a given point is inside the body . 40

4-12 Intersection points coincide: da < db, choose facet a 40

4-13 Intersection points coincide: da = db , Kla - R > |7b - RI, choose facet a. . . 40

4-14 Idea of locating the tetrahedron containing a given point 41

9

LIST OF FIGURES

4-15 Case One: query point is connected with the starting vertex by a solid

straight line segm ent .

4-16 Case Two: Straight line segment between the query point and the starting

vertex is not solid .

4-17 Special Case: Starting vertex has to be changed

5-1 Idea of design FGM from the boundary of object

5-2 Compute exact Euclidean minimum distance for point inside bounding box

5-3 Euclidean minimum distance between a point and a triangular facet

5-4 Example A of distance function for points outside the bounding box of the

model

5-5 Example B of distance function for points outside the bounding box of the

model

5-6 Identify the vertices that are contained in the given .STL boundary

5-7 k is the chessboard distance of the query bucket to the boundary buckets;

number of non-empty buckets that the boundary occupied is 6n 2 / 3 , where

n is the number of total buckets; buckets in the shaded area are nearest

non-empty buckets needed to be searched for the query point

5-8 Model 'Pill'

5-9 Experimental results on 'Pill'

5-10 Model 'Propeller'

5-11 Experimental results on 'Propeller' . . .

5-12 Model 'Bracket'

5-13 Experimental results on 'Bracket' . .

5-14 Model 'Sump'

5-15 Experimental results on 'Sump'

6-1 Evaluate composition at a given point

6-2 Evaluate composition along a given ray

6-3 Parametric cutting plane

6-4 Tetrahedron natural coordinates

10

44

45

46

47

49

50

51

57

58

58

. 5 9

. 5 9

. 6 0

. 6 0

. 6 1

. 6 1

. 6 2

. 6 2

. 6 4

. 6 5

. 6 6

. 6 6

LIST OF FIGURES

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

7-11

7-12

7-13 Design within STL boundary according to the distance to the

7-14 Slice of above at Z=20 .

Pill

Bracket with a hole

W idget

Pill composition data

Pill slice at z = 0

Bracket's composition data

Bracket slice at z= I.

Bracket slice at z = 3.

Widget composition

W idget slice

Design from a stl file, range (0, 90)

Slice at Z = 20

7-15 Design first through distance to STL mesh (0-90) then design within that

STL boundary through distance to that STL mesh (0-40)

7-16 Design first through distance to STL mesh (0-90) then design within that

STL boundary through distance to that STL mesh (0-40)

7-17 Slice (Z=20): Design first through distance to boundary (0-90) then design

within a STL boundary through distance to that STL mesh (0-40)

7-18 Slice (Z=10): Design first through distance to boundary(0-90) then design

within a STL boundary a constant material

A-1 Inheritance tree of FGMviewer object classes

A-2 Inheritance tree of mfunction classes .

B-1 Test if a given point is contained in a tetrahedron

B-2 Test if a given point is contained in a triangular facet

B-3 Test if a line segment intersects a triangular facet

. 75

. 75

. 76

. 76

. 77

. 77

. 78

. 78

. 79

. 79

. 80

. 81

STL mesh. . 81

. 82

82

83

83

84

91

94

105

107

108

11

12

List of Symbols
Symbol Definition

n Number of buckets in the bucketing domain of the object

nbf Number of boundary facets of the object

nt Number of tetrahedra in the tetrahedral mesh of the object

nv Number of vertices in the tetrahedral mesh

nx, ny, nz Number of buckets along axes x, y, z respectively

l, lY, lz Length of object domain along axes x, y, z respectively

lb Side length of one bucket

X*, y z* Coordinates of a point in the bucketing frame

Bijk Bucket that is indexed i, j, k along axes x, y, z respectively

6i, 6j, 6k Absolute differences between two buckets in terms of the indices

of the buckets

Bq The bucket that contains the query point

ListBnr The list of nearest non-empty buckets relative to Bq

T The total time cost for an algorithm

Tyre The time cost for preprocessing step in an algorithm

Ti The time cost for distance computation for the ith query point

Ef Efficient enhancement factor of distance function algorithm compared to

exhaustive searching method

PT Experimental result of preprocessing time

u, v, w, rj Barycentric coordinates of a query point in a tetrahedron

6t Resolution in parametric form

Pa Integral volume ratio of material a in the object

Vm Volume of tetrahedron indexed m in the tetrahedral mesh

bk1 Structure constant of a homogeneous incidence structure from

k dimension element to 1 dimension element.

Chapter 1

Introduction

1.1 Background

Solid Freeform Fabrication (SFF) technology, also called Rapid Prototyping is a modern

Computer Aided Manufacturing technology through which prototypes, parts, and tools are

built in an additive fashion directly from CAD models. Among various SFF processes, the

3D Printing at MIT, the Selective Laser Sintering at University of Texas and the Shape

Deposition Manufacturing at Carnegie Mellon and Stanford Universities are among the

most prominent. 3D Printing [28] is one of the SFF manufacturing processes in which a 3D

structure is built layer by layer and completed near-pointwise. Compared with the other

SFF manufacturing processes, 3D Printing not only possesses the advantage of producing

new complex solids that traditional technologies such as subtractive machining, forming or

casting can not make or make efficiently, but also has better flexibility in exercising control

over composition. Via selective placement of different materials available to the machine,

3DP can achieve near-pointwise local composition control (LCC). A 3DP machine exercises

LCC in a fashion similar to ink-jet color printer printing which is illustrated in Figure 1-1.

The LCC characteristics of 3DP manufacturing opens the door to the production of

material with graded local composition that is called Functionally Graded Material (FGM).

FGM has many possible applications such as structural property control, thermal property

control, medicine delivery control, multicolor visualization, etc.

In current rapid prototyping practices, designers usually create a model using a tradi-

13

CHAPTER 1. INTRODUCTION

finish
st

--
v

Spread powder Apply binders Lower print bed Finished part

Figure 1-1: Functioning of LCC of 3D Printing, adapted from [16]

tional CAD system and obtain a tessellation of the boundary of the model in the form of

a collection of triangles. The file format storing the model is an industry standard known

as .STL [22]. The trimmed surface model is then processed into machine instructions to

control the fabrication.

In order to fabricate an FGM part through LCC, it is necessary to build a CAD solid

modeling system by capturing graded material composition and generating appropriate ma-

chine instructions. The traditional CAD systems do not facilitate such an implementation

because the solid model they deal with is a digital representation of only the external geom-

etry of a physical object and therefore do not permit easy LCC manufacturing. In order to

go further to represent, design, and process models with graded material compositions, var-

ious research groups have investigated the extension methods concerning representing FGM

from traditional solid representation. Among them T. R. Jackson et al. has proposed and

developed a prototype FGM representation using an extension of cell-tuple data structure

[5] with volumetric, FGM cells [16].

Regardless of what representation method is chosen, in order to represent graded ma-

terial variation and plan the machine processing, the model is necessarily divided into

sub-regions. At M.I.T. , a method for piping information from CAD system to the 3DP

machine has been developed in order to produce an FGM part, see Figure 1-2.

1.2 Motivation and objectives

Although with the developed cell-tuple FGM modeling method, the users are able to capture

their ideas as models with graded compositions and then convert these models into machine

instructions for their fabrication, the modeling system also needs to be efficient in terms

14

CHAPTER 1. INTRODUCTION

Geometry intent Composition intent

3D gemetry3D geometry

3D geometry and
composition

Machine
instructions Design

rules

Figure 1-2: Information flow of FGM modeling system, adapted from [16]

of memory and speed of execution. For example, beginning with a model derived from

triangulated, STL model, the expected FGM model with uniform mesh of tetrahedra is

expected to be large. "In case of a cube subdivided into a structured mesh of tetrahedra,

the relationship between the number of tetrahedra nitet in the mesh and the number of

boundary facets nb in the STL model is: nitet = 5(nb/12) 3/ 2 . For a small STL model of only

9408 facets, the corresponding FGM model of cube with uniform mesh would have 497225

cells of dimensions 0 to 3 (24389 vertices, 138852 edges, 224224 faces, 109760 tetrahedron

regions) and requires a graph with 2690688 nodes to maintain the topology [16]." Estimating

from this observation, the model from a large STL model will have prohibitive large size.

Therefore, as stated before, for a large model it would be very useful to define a finite

element mesh FGM cell for graded composition in order to reduce the memory cost for

complete topology storage. Because it is desirable to achieve overall efficiency in terms of

both memory and speed, we do not want to discard all the topology information that can

help with faster query algorithms.

In addition, although the prototype system that Jackson et al.[15] developed based on

cell-tuple struture provides a useful tool for designing compositions in terms of distance

from a fixed feature in a straightforward manner, the efficiency of the distance function

becomes an issue especially when designing from the boundary of a model. For example,

the algorithm for assigning the control compositions must compute the minimum distance

from each query point (corresponding to a control composition) to the boundary of the

model. With the potential of a model having a large number of query points, the exhaustive

15

CHAPTER 1. INTRODUCTION

searching through all the boundary facets may be prohibitively time consuming.

The CAD modeling system not only needs to provide design tools, but also needs to

provide functionality for the user to evaluate the properties of the FGM model. The eval-

uation of composition of FGM will be most important for either the visualization or the

post-processing of the FGM model. Query of the composition may be in the form of the

query for a point, a ray, or a plane. Since the composition of the model is represented

by finite number of control compositions, given for an arbitrary point inside the solid, it

is necessary to evaluate the composition at that point using interpolation of the control

compositions.

As part of the CAD system project of FGM for 3DP, this thesis work addresses the

above efficiency problems and gives an effective solution.

1.3 Summary of methodologies

In order to model a general FGM cell with a finite element mesh efficiently, it is necessary to

keep some of the topology information of the mesh. In the case that the model is converted

from a tetrahedral mesh, the incidence relationship from a node to its incident tetrahedra

is maintained, which helps to speed up the querying algorithms.

In this thesis work, an efficient distance function algorithm is developed based on the

"Bucketing" algorithm and the digital distance transform of the buckets.

In our approach of the composition evaluation of an FGM model, an efficient point

location algorithm is developed to identify the sub-region (tetrahedron) corresponding to

the query point, and the control compositions of that tetrahedron are used to interpolate

for the query point. An efficient point location algorithm is developed based also on the

"Bucketing" method and the finite mesh structure with certain topology information and

boundary facets. Once an efficient point location algorithm is available, the composition

evaluation at a point is done via linear interpolation using barycentric Bernstein basis

polynomials. Composition evaluation along a given ray or on a given plane can be easily

developed by extending the composition evaluation algorithm at a point.

16

CHAPTER 1. INTRODUCTION

1.4 Thesis organization

Chapter 2 begins with a brief review of recent work on the representation and design of

FGM objects.

As a memory saving choice for FGM object representation, a finite element based FGM

model is described in chapter 3. In an attempt to facilitate efficient query algorithms,

the finite element structure maintains certain topology information. In addition, the data

structure and its relationship with a development environment of FGM modeling, design

and processing is described. At the end of chapter 3, an algorithm for the extraction of the

boundary facets is presented.

Chapter 4 contains the preprocessing methods of the finite element based FGM model

that are essential in helping generate efficient queries used for both the efficient distance

evaluation and efficient point location algorithms. The preprocessing of the model includes

bucket sorting of the boundary facets and vertices, 3D digital distance transform, solid

bucket identification and the point location algorithm. The point location algorithm is

included here not only because it is closely related with the preprocessing method but

because the algorithm itself is developed in order to enhance the efficiency of composition

evaluation of the FGM model; therefore, the point location algorithm is also considered a

preprocessing procedure.

In Chapter 5, the algorithm for design of FGM through the efficient distance function is

presented. As the spirit of this algorithm, the efficient evaluation of the distance function

to the surface of the model is analyzed and the experimental comparison with exhaustive

searching method is given.

Chapter 6 provides the method for the evaluation of the composition of the FGM model,

which is also useful in the rendering of the model. In addition, time complexity analysis of

the method is presented.

The implementation of all the algorithms from Chapter 3 to Chapter 6 is given in

Chapter 7 with numerical results on several sample models.

Chapter 8 concludes the thesis and provides potential directions for related future work.

Appendix A describes the implementation and integration of our algorithms into a

17

CHAPTER 1. INTRODUCTION 18

software called FGMViewer along with a user's manual.

Appendix B provides pseudo-code for some of the algorithms developed in this work.

Chapter 2

Review

2.1 Representation of FGM objects

In order to achieve FGM object fabrication, researchers in SFF community have been inves-

tigating the method of representing FGM objects by extending existing CAD representation

methods. The followings are some of the proposed methods. Among them, a cell-tuple struc-

ture based method has been developed sufficiently along with methods to transmit data to

the 3DPTM machine.

2.1.1 Decomposition based method

The traditional decomposition models represent objects by subdividing space into multiple

sub-regions. This method is often used in finite element analysis, medical data rendering

and so on by attaching physical properties to individual sub-regions. In order to repre-

sent FGM objects, the model can be enriched by attaching material information to each

sub-region [25]. This method has the advantage in that there are a lot of volume graphics

algorithms available, though the design and interrogation of FGM objects using this rep-

resentation is cumbersome because it does not maintain topological information about the

model. In addition, this method does not have the generality of describing free-form curves

and surfaces; similarly, it is not easy to represent arbitrarily graded composition using this

method. In terms of data exchange, methods compatible with the neutral standards such as

IGES [12], STEP [13] need to be developed to exchange models based on the decomposition

19

CHAPTER 2. REVIEW

method. In the case of representing FGM with a large constant material composition area,

using uniform decomposition (e.g. in a tetrahedral mesh) is not memory efficient compared

to boundary representation and an abstract structure such as the cell-tuple representation.

2.1.2 Boundary representation based method

In current CAD systems, the boundary representation (B-rep) is most used because of its

flexibility in modeling complex geometry precisely. Boundary representation describes solids

in terms of their bounding entities such as shells, faces, loops, edges and vertices [2]. As

described in Chapter 1, the traditional B-rep models do not contain material information

explicitly. Based on one of the traditional B-rep models, the r-sets model, a heterogeneous

solid model (rm-set) is developed as a finite number of subdivisions with each subdivision

being a material domain with a defined material variation function [19]. This approach

is first proposed for representing composite models (material within each domain is con-

stant) with the model constructed by using Boolean operators. Although in principle this

method is able to represent graded composition by choosing varied material function for

each domain, the transformation of the analytic composition variation information to spe-

cific process plans has not been presented.

2.1.3 Extended cell-tuple structure based method

In the traditional cell-tuple structure, a model M is represented in terms of a set of cells C

where each cell ck is a topological entity such as a vertex, edge, face or region. Here the

edge and face can be arbitrary curved-entities and the region can be any valid manifold

hemeomorphic to a topological open ball. All the component cells are connected through

a graph T. Geometrically the model is determined by the geometric information associated

with each cell (expect the region). A cell-tuple data structure can be constructed using data

from a neutral standard format with or without approximation. Without approximation,

the cell-tuple structure will be able to precisely describe the geometry of the original solid.

"To represent an FGM model within the cell-tuple structure, composition information

as well as geometric information is also associated with each cell. The information begins

with the concept of a material space M spanning the dm primary materials available to

20

CHAPTER 2. REVIEW

an SFF machine capable of LCC. The composition of the model is represented as a vector

valued function M(X) defined over the model's interior. Each component mj of m repre-

sents the volume fraction of the corresponding material in the material system present at

point XF within the model" [16]. As a general abstract data structure, cell-tuple structure

based FGM model has the possibility of describing graded material composition of arbitrary

degrees. And because of the generality of its cells, one can even construct a cell of finite-

element mesh, which is important for a large complicated model. In order to provide the

capability of describing how the FGM composition varies within a solid, the FGM modeling

has to decompose the interior of the solid into simpler sub-regions and each sub-region has

the information about the composition variation in its domain. Theoretically, models can

be arbitrarily subdivided into topologically simpler domains over which shape and compo-

sition functions can be more readily defined analytically. To simplify the procedure, the

prototype FGM system at MIT begins with models subdivided into tetrahedral meshes, and

the conversion from traditional solid models to FGM system is done by employing standard

meshing algorithms.

2.2 Design of FGM

The design of FGM is another important phase in the whole FGM modeling process. In

one of the definitions of "Solid Modeler", a solid modeling system is defined as a computer

program that provides facilities for storing and manipulating data structures that represent

the geometry of individual objects or assemblies [21].

Currently, there are two different categories of FGM design approaches. One is design

in top-down fashion, in which the CAD model is decomposed into simpler geometry sub-

domains, and then the designer designs graded composition over all the sub-domains. For

example, the system developed at MIT provides composition functions, especially a graded

composition in terms of volume fractions of the material over the domain of each sub-region.

Over each cell's domain Ck, the shape and composition is formulated in terms of a set of

control points and control compositions which are blended with the barycentric Bernstein

polynomials [11]. The degrees of control points and control compositions are determined

21

CHAPTER 2. REVIEW

according to the degree of variation of the geometry and composition of cells. With each

control composition of the model representing a degree of freedom, the design of the FGM

parts becomes the procedure of assigning values to each and blending over the whole domain.

The design tool that helps in design of control compositions in terms of distance functions to

a selected feature is developed. The selected feature may be a fixed reference in the model

space, such as a point, line or plane, or a feature of the model, such as a particular face

or its entire boundary, or an independent boundary shell in .STL format. After a feature

is selected, the designer specifies a variation for the FGM in terms of distance from the

feature: m(Y*) = M(r(Y*)), where r is the distance of a query point x* from the reference

feature. Next, the design tool automatically visits and assigns the control compositions for

each cell, and in this way defines the composition over the whole model domain. The other

approach is to design FGM by composition using a library of predefined components. The

composing of different components can be done by using operators specific to the chosen

data structures. This approach has not yet been fully explored but preliminary results are

reported by researchers at Stanford University and the University of Michigan [3][26].

22

Chapter 3

Finite element based FGM model

3.1 Introduction

In Chapter 2, we have reviewed three proposed approaches of representation of FGM objects

and one can see each method has its own advantages and disadvantages. In terms of

generality, flexibility and approximation precision, the B-Rep and Cell-Tuple approaches

are obviously better choices. But once we have the objective to provide the whole pipeline

including modeling, design of graded material composition and process planning into SFF

fabrication processes that are capable of LCC, it is necessary to discretize the model either

before the design phase, during this phase, before the process planning or embedding in the

process planning phase. The choice of designing composition before subdivision will limit

the design function in the scope of analytic function; subdividing before the interactive

design of composition cannot take into account the user's design intentions, etc, therefore

it is not ideal either; the ideal method therefore is to subdivide the model in the process of

design according to user's design intention and design rules that are defined in an expert

system.

Although the discretization is a very important issue in FGM modeling, it has not been

studied in depth yet. For example, in order to achieve FGM production, the approach

based on B-rep (extended r-set) method [20] [26] hasn't addressed automatic subdivision

issues and has only achieved composite composition, which means piecewise constant ma-

terial composition in each sub-region. In the case of graded composition, the proposed

23

CHAPTER 3. FINITE ELEMENT BASED FGM MODEL

design method [18] is to attach an analytical function to each sub-region, which will leave

further discretization to process planning, and also incur further problem of modeling de-

signer's (users) intuitive design intention in terms of analytic function in each sub-region.

In comparison, the approach based on cell-tuple structure [16] has simplified the subdivi-

sion procedure via subdividing the traditional CAD model in neutral standard format into

meshes of simpler subdivisions using commercial software, as described in Chapter 1 and

2. This approach has a memory bottleneck in the case of large dense uniform finite ele-

ment mesh input, because a cell-tuple structure maintains complete topology information

between the topology entities including internal structures.

From the above analysis, we can see the modeling of FGM still has a lot of open questions

and problems to solve, therefore it is difficult to draw a conclusion with an optimum solution.

When the development of a cell-tuple structure based on FGM modeling met the obstacle

of memory bottleneck for large mesh input, questions were raised such as "Which is the

best choice; cell-tuple alone, finite element alone, or a mix of these two?". In this context,

research was carried out on using a finite element based approach to represent FGM.

It was decided to develop algorithms based on a finite element approach because both

the finite element based approach and the cell-tuple with finite element based approach

involve a finite element subdivision and it turns out that a finite element based structure is

easier for implementation. Under the assumption that we want to achieve efficiency based

on a decomposition approach, it was also decided to keep some of the topology information

of the model for better efficiency in query algorithms. Meanwhile, as an effort of developing

a newer approach of the FGM system, an exploratory environment of modeling, designing,

and post-processing of FGM has been developed and a pure finite element representation

implemented. Therefore it is natural to place this thesis work into that environment. Fig-

ure 3-1 demonstrates the inheritance tree of the finite element mesh with some topology

in this thesis from the implemented classes of that exploratory environment [14]. Following

this introduction, the data structure used in this work will be described and also the algo-

rithm of extraction of the boudary facets from the input finite element mesh is presented.

Appendix A. 1 also gives the extension of the computer-user interface developed in this work.

24

CHAPTER 3. FINITE ELEMENT BASED FGM MODEL

FGM domain

Trianular rPoint FGMTETBASE FGMFEMESH FGMSTL

FGMFEPOINT FGMFETET FGMFEMESH-HL

Vertex Tetra

Figure 3-1: Inheritance tree of FGMviewer object classes

7 6
Tetrahedra of the model: Vertices of the model:

2 - -. 1={ 2,7, 8, 9} 1 E (2, 4, 6, 7, 8)
2{ 1, 2, 7,, 9) 2 G (1, 2,3, 4, 5)
3=12, 4, 8, 9) 3E (5)
4=1 1, 2, 4, 9) 4(3, 5, 6,9)
5= 12, 3, 4, 8) 5 G (6, 8, 9, 10)

--- : 6=1 1, 4, 5, 9) 6G (7, 8, 10, 11)
7=1 1, 6, 7, 9} 76 (1, 2, 7, 11)

3 8 ={ 1, 5, 6, 9) 86 (1, 3, 5, 9, 10, 11)
9 =1 4, 5, 8, 9) 96 (1, 2, 3, 4, 6, 7, 8,9, 10, 11)
10 = 1 5, 6, 8, 9)
11=16, 7, 8, 9)

Figure 3-2: Data Structure: Cube example

3.2 Data structure

The data structure of an efficient finite element based FGM model is presented here. Specif-

ically, the data structure maintains an array of object "Vertex" pointers, an array of objects

"Tetrahedron" pointers, a list of indices of the tetrahedra that are boundary tetrahedra and

a bucketing system. The bucketing system has n number of buckets and several bucketing

parameters, where n is the number of boundary facets. Each bucket is associated with a

list of triangular boundary facets and a list of vertices. An object of "Vertex" is associated

with the geometric position of the vertex, a queue of incident tetrahedra indices and the

material composition vector at that vertex. A tetrahedron has an array of four vertices,

25

CHAPTER 3. FINITE ELEMENT BASED FGM MODEL

and the status of each tetrahedron with respect to it being a boundary tetrahedron or not;

in addition, if a tetrahedron is a boundary tetrahedron, the status of each face is stored

according to the face being a boundary face. Figures 3-2 and 3-3 demonstrate the data

structure for representing a model of a cube split into 11 tetrahedra.

3.3 Algorithm for the extraction of surface boundary

Because the finite element mesh does not have explicit surface boundary storage, it is

necessary to extract the boundary information for future use. This is done in the process

of initialization of the data structure. The initialization of the data structure and the

extraction of boundary procedures are as follow:

Algorithm 1 initDataStr(FEMesh M); initialize the data structure from finite element
mesh generated from Algor

1: for each node Nd E M do
2: construct new node newNd E newM;
3: for each tetrahedron T E M do
4: initialize newT E newM;
5: set each face status as exterior;
6: set four associated vertex pointers to newT;
7: for each of the four vertices do
8: add newT to the corresponding incidence list;
9: for each face F C newT do

10: check if F is interior and set the status; >see Algorithm 2
11: initialize BTL; >BTL is the boundary tetrahedra list
12: for each newT C newM do
13: if newT is boundary tetrahedron then
14: add newT to BTL;
15: else
16: delete face information.

Based on the assumption that the finite element mesh is conforming, for an interior face,

the two incident tetrahedra should appear in all the three parent tetrahedra lists according

to the three vertices of the face. Therefore, the two incident tetrahedra should each appear

3 times in the combined list of the parent tetrahedra lists of the three vertices. Under the

above assumption and observation, the algorithm for checking if a face of a tetrahedron is

interior is done as follows:

26

CHAPTER 3. FINITE ELEMENT BASED FGM MODEL

Algorithm 2 isInterior(faceNo F, Tetrahedron T); check if F G T is interior face

1: if F has the status as interior then
2: return;
3: else
4: for each vertex E F do
5: check out the incidence tetrahedra list;
6: if the three incidence tetrahedra lists overlap then
7: put the three lists into one list;
8: count the occurrence of each element of the list;
9: if there exists T 1 / T counted 3 times then

10: set F as an interior facet in T and T 1 ;
11: else
12: status remain;
13: else
14: no, the face status remains unchanged.

Figure 3.3 shows how the algorithm of checking interior faces works.

27

CHAPTER 3. FINITE ELEMENT BASED FGM MODEL 28

Bijk

Extraction of the
boundary facets TF234

FGMFEMESH-HL .No-: -1 0 - TF384
Placement of tri- :TF283
angular facets

p9 V 1 T1
p V2 tpeT2
p3 -V3 D trt T3
p4 V4 ,tp3 T4
p5 V5 (35 T5
p6 V6 -tp5 T6
p7 V7 T
p8 V8 t8T8
P9, V9 p

Array of Memory of Array of Memory of
pointers vertices pointers tetrahedra
type: Vertex type:Tetra

Figure 3-3: Data structure

Vertices Parent TetraList Integer Interval

2 1 (1,2, 3,4, 5) [1, 51]

0

Face No.2 of the Tetra-
hedron No.1.

8 J(1,3, 5,9,10,11) [1, 11]

9 (1,2,3,4,6, 7,8, [1,11]
9, 10, 11)

Do if the three integer intervals overlap:

a: Count the occurence of elements
in the three TetraLists;

Tetrahedron No. I and No. 3 counted 3 times.

b: Face No. 2 of Tetrahedron No. 1 is incident to
both Tetrahedron No. I and No. 3, i.e. set
face No. 2 as interior facet.

Figure 3-4: Check to see if a face of a tetrahedron is interior

Chapter 4

Preprocessing of finite element

FGM model

4.1 Introduction

In order to improve the efficiency for computing minimum distance from a query point

to the boundary of the model or a given .STL boundary, a preprocessing method using

bucket sorting technique [8] and digital distance transform [4] is employed. After such

preprocessing, computation of the Euclidean distance for a specific query point has to be

done with respect to triangular facets in the buckets which have the nearest digital distance

to the query point. Figure 4-1 graphically illustrates this preprocessing. Based on the

bucketing processing, an efficient 'Point Location' algorithm is developed, which is very

essential to the efficient evaluation of the composition of an FGM model. Because the

'Point Location' algorithm is very much related with the 'Bucketing' processing, it is also

placed in this chapter together with the 'Bucketing' preprocessing.

4.2 Computation of the boundary facets of the model

After the initialization of the data structure, the boundary tetrahedra list is obtained as

described in the previous chapter and each boundary tetrahedron has its boundary facets

identified explicitly. Based on this boundary tetrahedra list, an array of triangular facets is

29

PREPROCESSING OF FINITE ELEMENT FGM MODEL

boundary

Solid Model

0 0 0o 0 0 0 0 0

1 11 01 0/

/0 1 .2 2 1 11 0 0

0 1 1 1 1 1 1

0 0 0 0

Digital distance
transform

S0 0 0 0 0 -O 0

11 1 1 0 1 0

10 1 2 12 1 1 10)0

0 0- oa 0 0 j

Identify sign of digital distance

Bounding domain
with buckets

Distribute the boundary entities

Figure 4-1: Preprocessing

CH APT ER 4. 30

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL 31

constructed with their normal vectors calculated.

Algorithm 3 getTriFacets(BndTetList BTL); construct the boundary facets list from
boundary tetrahedra list

1: initialize TriFacetList;
2: for each boundary tetrahedron BT E BTL do
3: for each F (E [0, 3]) of T do
4: if F is a boundary facet then
5: initialize Tri;
6: calTrifrmF(Tri,F,T);
7: add Tri to TriFacetList;

Algorithm 4 calTrifrmF(Triangle Tri, faceNo F, Tetrahedron T) refer to Figure 4-2

1: set vertices of Tri;
2: identify vertex D;
3: if CA x CB CD > 0 then
4:

|CAxCB

>N is the normal vector of Tri
5: else
6:

- CA x CB

CA x CB

4.3 Construction of 3D bucketing system

Given n numbers in [0,1) ,K 1 , K 2 , .. .K, the bucketing technique [8] in one dimension divides

the interval [0,1) into n equal-sized subintervals, or buckets, and then distributes the n

input numbers into the buckets. The analogous bucketing process in 3D [6][7] is essentially

dividing the bounding box of the model into equal sized cubic sub-regions (buckets). Given

the number of facets of a solid model (n), we build the bucket system such that n, x ny x nz =

n, where ni, ny and nz are the number of buckets along the Cartesian coordinate axes x, y, z

respectively. If we define l, ly, lz as the lengths of the object along x, y, z axes, in order to

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL 32

C

N

D

A

Boundary facets B

Figure 4-2: Calculating the normal vector of a boundary facet

build cubic buckets, nx, ny and n, should obey the following formula

Y . ; lx .lz lx - ly

that relates them to the dimension lengths of the object, and therefore the side length of

one bucket is

b - I -_Z
Fn

Apparently lx , ly and lz can be found by computing the minimum of xi, minimum of yi,

minimum zi, maximum of xi, maximum of yi, maximum of zi. After we build the bucketing

frame system that originates at (Xmin, Ymin, zmin), we need to transfer the old coordinate

position of each vertex of the object to its new position in the new frame system. The

transform formulae are as follows

XX - min YY - Ymin; Z*= z - Zmin

lb lb lb

In the bucketing system as in Figure 4-3, a bucket that is the ith from left, the jth from

front and the kth from the bottom is denoted Bijk.

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

Figure 4-3: Bounding box with buckets

4.4 Placement of the triangular facets into buckets

The purpose of this procedure is to build the reference for each triangular facet on the object

boundary to the buckets that intersect it. For one single facet, the intersection detection

is divided into three phases: the first step is to find buckets that intersect the vertices of

the facet; the second step is to find buckets that intersect the edges of the facet, when

there is edge intersecting more than two buckets; the third step is to find buckets that pass

through the facet without intersecting the edges of the facet. All three steps are illustrated

in Figure 4-4.

STEP 1 Find buckets that intersect the vertices of the facet

This can be done easily by taking the floor (or integer part) of the bucketing co-

ordinates of each vertex. The resulting integer coordinates are the bucket indices.

i = [x*J, j = [y*J,k = [z*J

STEP 2 Find buckets that intersect the edges of the facet

After the buckets that intersect the vertices of the facet are obtained, we can trace

on each edge from one end point bucket to the new bucket that intersects the edge

until the other end. This can be done by identifying the side of the six sides of the

current bucket that is intersected by the edge in the tracing procedure. If the current

bucket is intersected at right, the index i of the new bucket should be increased by

5WW1WWWWW_ - - -- - - .- _ -",

33

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL 34

1, while decreased by 1 if intersected at left. Similar operations can be done if the

current bucket is intersected at other sides.

Bucket that

k

VP 2 Projecticn in j-k plame ich has the larges
projepticno area.

No.k sqarstctally
irulrb rMi the
projected trim f

VP'

VP 3

VP
2

Figure 4-4: Distribute triangular facets into buckets

STEP 3 Find buckets that pass through the facet but not intersect the edges of the trian-

gular facet

The detection work is divided into two parts. First, we find two of the three indices

of each such bucket by projecting the triangular facet along its maximum normal di-

rection, which means the direction that the normal vector has the maximum value

of projection area. For example, if the normal vector to a facet is (n,, ny, nz) and

1nx ;> |nyI, In,|, we project the triangular facet into y - z plane, and then first find

the index j, k of the bucket if square (j, k) is completely inside the projected triangle.

Since we have found buckets that intersect the edges, we can just scan for each pos-

sible k to see if there are some jo that satisfies j1 (k) < jo < J(k), where jj(k) means

the index j of the projected square that is on the lower edge and has index k. If Jo

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

* * * * * * *

* * * * * * *

* * * * * * *

***0 1 2 3
***1 2 3 4
***2 3 4 5
***3 4 5 6

After forward pass

Example of chamfer

* * * * * * *

* * * * * * *

* * * * * * *

***0 1 2 3
**1 1 1 2 3

*2 2 2 2 2 3
3 3 3 3 3 3 3

After forard pass

6 5
5 4
4 3
3 2
4 3
5 4
6 5

After

4 3 4 5 6
3 2 3 4 5
2 1 2 3 4
1 0 1 2 3
2 1 2 3 4
3 2 3 4 5
4 3 4 5 6

backward pass

distance transform: 0 is the feature pixel

3
3
3
3
3
3
3

3
2
2
2
2
2
3

3
2
1
1
1
2
3

3
2
1
0
1
2
3

3
2
1
1
1
2
3

3
2
2
2
2
2
3

3
3
3
3
3
3
3

After backward pass

Figure 4-6: Example of chessboard distance transform: 0 is the feature pixel

exists, then we find two of the indices of the bucket (see Figure 4-4). The next step is

to find the last index, which we can calculate by computing intersections of four lines

with the facet. These four lines are {(J = jo) n (k = ko)}, {(j = jo + 1) n (k = ko)},

{(i = jo) n (k = ko + 1)}, {(j = jo + 1) n (k = ko + 1)}. Finally, for each bucket that

intersects the boundary, we obtain a list of triangular facets which are contained in

the bucket.

4.5 3D digital distance transform

A distance transform (DT) in 2D is an operation that converts a binary picture, consist-

ing of feature and nonfeature elements, to a picture where each element has a value that

approximates the distance to the nearest feature element [4]. Borgefors [4] has extensively

studied digital distance transforms in arbitrary dimension for different families of digital

distances. Among different families of digital distances, the most popular one is the city

block/chessboard distance family. The algorithm for this family of distance transform is

given via examples in Figures 4-5 and 4-6.

In our algorithm we use 3D chessboard distance transform to compute for each bucket the

Figure 4-5:

35

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

corresponding chessboard distance to the boundary buckets. Chessboard distance is defined

such that for a pair of buckets A(ii,ji,ki) and B(i 2 ,j 2 ,k2), it is equal to max(6i, 6j, 6k),

where 6i = ji1 - 12l and 6j, 6k are similarly defined. We can see graphically the difference

between Chessboard distance and Euclidean distance from the fact that buckets at equal

chessboard distance from a bucket form a cubic shell while points at distance from a point

form a sphere. Due to the symmetry of distance (d(p, q) = d(q,p)), we can conclude the

nearest boundary buckets to a specific bucket are located in the cubic shell which has unit

thickness and an offset equal to the digital distance. Although in our algorithm 3-D DT is

Forward mask

OV 0 0 o o 0 o 0" 0 0 0 0 0 0OOOO7~~ f

0 '0 * 0" C"

OD 00

(1)

1 0 1 11 1 1 Q 1

1 0 1 2 2 1 1 Q/ L

0 o

A
4--1

S 1 1 1 1 L 1
1 9,1 2 1

I mask (2)

0'/0 01 0 0 0
0 1 1 111 1 1 /

0 10

(2) (3)

Digital distance between pair of buckets:
max(6 i, 6j, 6 k)

Figure 4-7: Digital distance transform

used, let us briefly review DT in 2D using chessboard distance. The algorithm has three

steps. First, for each non-boundary bucket a digital distance equal to infinity is assigned.

Second, progress forward to compute for each bucket following the formula as follows:

new = min(Vcurr r + 1, currur + 1, + r_ + 1)
zJ zj 2v~-1,v i- 1 j 1 + '- 1,l~ I ±+,

Third, progress backward for each bucket and compute following the formula:

n = min(v",v 7V gur + 1, ?4rl j+1 + 1, vfcfur + I, Vcr+ +±1)

36

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

Here, vj is the value of digital distance for a raster unit (ith, Ith). Graphically speaking, the

operation for step 2 and step 3 is positioning the corresponding mask with 0 value square

covering the bucket, the new value for the bucket is the minimum of the five sums of pair

of mask value and current bucket value (Figure 4-7). Similar scheme can be applied to 3D

cases, the masks would be like in Figure 4-8 that is composed of two planar masks in two

planes. Considering that one 3D voxel has 26 neighbors, in each path of the transform,

the masks will transform 13 neighbors which is consistent with the 13 masks apart from

the feature voxel. The algorithm is also adapted for the buckets that are on the border of

the bounding box. For those buckets, the number of operators in mask should be reduced

accordingly.

Forward Masks Backward Masks

Figure 4-8: Chessboard DT Mask in 3D

4.6 Identification of solid buckets

From the previous work on the distance transform, the algorithm has identified the boundary

buckets and non-boundary buckets. Here for the purpose of efficiently searching the sub-

region location of a query point with Cartesian coordinates, the method involves processing

of all the non-boundary buckets in order to identify all the buckets that are inside the solid.

For convenience we call such buckets 'solid buckets'. Figure 4-9 illustrates the algorithm.

The method for identifying the solid buckets involves assigning a sign to the digital

distance value of each bucket. Solid buckets are non-boundary buckets, therefore, as long

as one point inside a bucket is inside the solid, then the bucket is a solid bucket. So

the algorithm is to use the center point of a non-boundary bucket as seed, check if this

seed is inside the solid. If the seed is inside the solid then the corresponding bucket is a

solid bucket, otherwise, the bucket is outside the solid. Therefore, the problem essentially

37

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

Test the seed point in each
non-boundary bucket

0 00 0 0 0 00

1 1 1 0 1 0
1 2 2 1 1 0 o

-S0 '4 - 0 1

Identify the solid buckets

(1 11 1 1 C 1 0
1 2 2 1 1 0 0

1 10
0 1 1 -1

Figure 4-9: Identify the signs of non-boundary buckets

becomes checking if a point is inside the solid, which will be explained in detail later together

with the point location algorithm.

4.7 Bucketing vertices

After the bucketing processing of boundary facets, all the vertices of finite element mesh

are also classified with respect to buckets, which will help the point classification queries

of the model. Figure 4-10 illustrates the method, in which the white vertices are represen-

tative vertices. The procedure is simply taking the integer parts of each vertex's bucket

coordinates, and insert the vertex into the list of vertices of the corresponding bucket. For

each bucket, the vertex that has the minimum number of parent tetrahedra is considered

as the representative vertex of that bucket.

4 1 we W
0 41

**

0 1 2 3 4 5 6 7

(1)

4

3

2

1

0 1 2 3 4 5 6 7

(2)

Figure 4-10: Bucketing vertices based on the original bucket system

38

4

3

2

1

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

4.8 Point location algorithm

Point location [24] is one of the classical problems in computational geometry and has been

extensively studied. One of the optimal algorithms is "Bucketing", see Asano et al.[1]. This

method can even achieve constant time for a uniformly distributed mesh and is chosen here.

"Bucketing" method is chosen also for the purpose of distance function evaluation. Here in

our application we define the problem as follows:

Given a query point Q,
If Q is not in the body, return not in;

If inside the body, return the tetrahedron that contains it.

4.8.1 Point membership classification (PMC)

Point Membership Classification involves testing if a given query point Q is contained inside

the body (or on its boundary) or not. The most popular algorithm of PMC with respect to

solids represented by their boundary is ray-casting. In our method, the steps are as follows:

Shooting a ray from Q to one of the six coordinate directions, using the stored digital

distance value to find the first boundary bucket in that direction, start from this bucket

to find the first boundary triangular facet the ray intersects. In this work, the shooting

direction is chosen such that the bounding box is nearest in that direction. By checking

the inner product of ray vector and the oriented normal vector of the triangular facet, one

can determine if a point is inside the solid; if the inner product is positive then the point

is interior otherwise exterior. Here the method for detecting the first boundary triangular

facet the ray intersects is to compare the parameter values of the intersection points. The

procedure is illustrated in Figure 4-11, where the thick-lined facet is the first boundary facet

that the ray intersects. If the intersection points happen to coincide, then the triangular

facet that has the smaller minimum distance to the query point will be chosen. If the facets

involved have the same minimum distance to the query point, then the boundary triangular

facet that has the bigger inner product magnitude with the ray is chosen. Figure 4-12

demonstrates two special cases of identifying the closest triangular facets relative to the

shooting ray, where da is the minimum distance to facet a and db is the minimum distance

39

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

Norm

Ray

Figure 4-11: Check if a given point is inside the body

to facet b.

OUT a
b

da

db

IN

OUT a
b

/ A
nb\

R A
na da= db

IN

Figure 4-12: Intersection points coincide: da < db, choose facet a

Figure 4-13: Intersection points coincide: da = db , ria - RI > lrfb - R1, choose facet a.

One other special case is that the intersection point has parameter 0, which means the

query point is on the boundary, hence we can use the corresponding boundary facet to

identify the tetrahedron it is located in.

4.8.2 Identification of the object tetrahedron

Once the algorithm concludes a query point is contained in the body, the identification be-

comes finding the tetrahedron that contains the query point. Using an exhaustive searching

method (checking every mesh element in the mesh) will be prohibitively slow in case of a

large FEM model and large number of query points, therefore development of an efficient

method is necessary. Here an algorithm relying on the bucketing of FEM vertices and the

topology information is developed. The idea of locating the object tetrahedron is to jump

onto a vertex that is near to the query point with the help of bucket sorting of vertices

40

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

and then trace the straightline segment between the starting vertex and the query point to

search and check each tetrahedron that intersects the line segment. The idea is illustrated

in Figure 4-14.

4

3

2

1

0 1 2 3 4 5 6 7 ,o

0

Query point

Object bucket

Starting vertex

Neighbor Mesh Ele.

Intersection mesh Ele.

Result Ele.

0

Representative vertex

Figure 4-14: Idea of locating the tetrahedron containing a given point

The following pseudo-code describes the algorithm.

In order to make the algorithm easier to understand, several cases of the input that are

handled are described in the following and illustrated in Figures 4-15 to 4-17.

41

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

Algorithm 5 pointLocus(Point Q); find the tetrahedron that contains Q
Require: The query point is correctly classified as interior point.

1: StartVert = findStartVertex(Q); >Q is the query point ;StartVert is the
starting vertex

2: while StartVert = NULL do
3: StartTet <= findStartTetra(Q, StartVert); >StartTet is the starting tetra
4: define Ray myRay;
5: myRay <= (StartVert -+ Q);
6: define point R;
7: if StartTet = NULL then
8: StartTet <- newStartTetra(Q,R);
9: myRay (R -+ Q);

10: modeFlag = true; >Starting with a nearest boundary tetrahedron
11: TrialTet e StartTet;
12: while TrialTet does not contain Q do
13: define newStartVert;
14: TrialTet -= findNextTetra(TrialTet, myRay, newStartVert);
15: if TrialTet = NULL then
16: if newStartVert $ NULL then
17: StartVert e newStartVert;
18: break;
19: else
20: StartVert = NULL;
21: TrialTet = newStartTetra(Q,R);
22: if modeFlag = true then
23: exit; >Q is not interior point
24: else
25: StartVert <- NULL;
26: objTet -- TrialTet;
27: return objTet;

42

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

Case 1 This is the situation that the query point is connected with the starting vertex by

a solid straight line segment; the algorithm for this situation is as simple as checking

out all the tetrahedra along the segment by querying the neighboring tetrahedron

along the line segment one by one until the object found. Here the solid straight line

segment means every abstract point on the straight line segment is occupied by the

solid. Figure 4-15 demonstrates this aspect of the algorithm.

Case 2 This is the situation that the straightline segment between the query point and

the starting vertex is not solid, in other words, there are points on this line segment

that are not contained in the solid. The algorithm for this situation is a modification

of that for Case 1 in that, at some step, when the algorithm for Case 1 can not

find the neighboring tetrahedron along the line segment, an alternative algorithm of

finding the nearest boundary facet the ray intersects is employed. Starting with the

found triangular facet, the tracing of tetrahedron along the line segment until location

is resumed. Figure 4-16 demonstrates this aspect of the algorithm.

Special case This is the situation that when the straight line segment between the query

point and the starting vertex intersects a vertex of the mesh. To deal with this

situation, the algorithm has to be modified to update the starting vertex with the

newly encountered vertex. The case of the line segment intersects an edge of the mesh

is dealt with by updating the starting vertex with the nearest vertex on that edge.

43

PREPROCESSING OF FINITE ELEMENT FGM MODEL

0 1 2 3 4 5 6 7

Figure 4-15: Case One: query point is connected with the starting vertex by a solid straight
line segment

4

3

2

1

CH APT ER 4. 44

I

0

4W

PREPROCESSING OF FINITE ELEMENT FGM MODEL

4

3

2

1

0 1 2 3 4 5 6 7

S.
I

S
Figure 4-16: Case Two: Straight line segment between the query point and the starting
vertex is not solid

WWWWWWWw- -. MW . - .11

CH APT ER 4. 45

am
4

CHAPTER 4. PREPROCESSING OF FINITE ELEMENT FGM MODEL

01 2 3 4 5 6 7

Figure 4-17: Special Case: Starting vertex has to be changed

4

3

2

1

WWW1WWWW1WW6- --.Mb ... mm - .

46

oil

Aft IdI&

1w

ELM

Chapter 5

Design of FGM solid using efficient

distance function algorithm

5.1 Introduction

Based on the developed FGM modeling system, the design of graded material composition

can be done by assigning composition value on each control composition vertex inside the

model. Nevertheless, this approach is ineffective because a model may have millions of

cells and millions of control compositions to assign. Furthermore, the approach of directly

assigning is not intuitive for users to implement their design ideas. Therefore, an efficient

design tool needs to be developed. One of the methods of designing FGM is to assign com-

boundary

gml

distanc

Designer

Given this tool

*ml:material 1; m2: material 2

Figure 5-1: Idea of design FGM from the boundary of object

the control compositions according to its minimum distance to the boundary of

For a single point inside the FGM body, the minimum distance to the boundary

47

position to

the object.

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

surface is the minimum of the minimum distances from the point to every boundary trian-

gular facet. As we can see immediately, the wanted minimum distance can be computed

repeatedly over each boundary facets, but since the represented real part model usually has

a large number of boundary facets, the direct computational method will be too costly in

time. Therefore an efficient algorithm is necessary for the design of FGM through distance

function. Figure 5-1 demonstrates how a user can design an FGM through distance func-

tion to the boundary automatically. Simply the user only needs to choose the materials

variation in terms of distance from the boundary. Here the variation of materials has to

satisfy certain design rules for matetial system [16].

The method of designing FGM as to the distance from the boundary of model can be

extended to designing FGM as to the distance from arbitrary .STL shell, which is in the

form of a bunch of triangular facets. Because of the similar reason as previously described,

minimum distance from a control composition, which is outside the shell to the shell needs

to be efficiently calculated.

Another design scheme is to allow users to design only the control compositions that are

contained in a given .STL shell, and the composition functions can be one of the distance

functions to different fixed features. It is necessary to efficiently identify those control

compositions that are inside the .STL among the whole set of control compositions. Because

of the large number of control compositions, the efficiency is also important here.

5.2 Algorithm for efficient distance function evaluation

5.2.1 Distance computation for a single query point inside bounding box

After the preprocessing described in Chapter 4, we can compute the exact minimum Eu-

clidian distance for each query point (interior) by computing minimum distances to those

facets that are located in the nearest buckets. Figure 5-2 illustrates the procedure in steps.

STEP 1 Find the nearest buckets ListBnr.

Suppose the bucket the query point lies in is Bq, the nearest non-empty buckets

relative to Bq make up a list of buckets called ListBnr. All Bi E ListBnr have the

48

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

(1)
0 0
0

(2)

Figure 5-2: Compute exact Euclidean minimum distance for point inside bounding box

chessboard distance from Bq of the value that is stored in Bq. ListBnr can be easily

constructed by checking each bucket in the cubic shell that is offset at that value.

STEP 2 Compute the distances between the point and the facets in the nearest buckets.

After the nearest buckets are found, the exact minimum distance to the boundary

of the object can be calculated by computing the minimum distance from the query

point to every facet inside those buckets. The next step is to check and repeat the

procedure to guarantee the correct minimum distance is obtained because we were

using the biggest empty cube in probing instead of the sphere to find the minimum

distance. The minimum distance from one point to a triangular facet is either normal

distance or normal distance plus the minimum distance from the projected foot to the

edges of the triangle when the foot is outside the triangle (Figure 5-3).

5.2.2 Distance computation for a single query point outside bounding

box

When we extend the design method via distance to the model boundary to the design

method via distance to an arbitrary .STL boundary, an efficient evaluation of the distance

49

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

A) Minimun distance is
alcrg rmal to triargle

B) Minimum distance to ecbe

C) Minium distance to vateK

Projected footpoint is irsic

0

Projectei footpoint is asic the
faot ht mraest to cre edge

Projected foot point is tais tre
famt but rn st to a vmtEx.

Figure 5-3: Euclidean minimum distance between a point and a triangular facet

from a query point outside the .STL boundary bounding box needs to be developed. For

a query point outside the bounding box of the given .STL boundary surface, there is no

query bucket existing, therefore, we don't have the information available about the nearest

boundary buckets in terms of minimum digital distance. The method for this situation is to

calculate the worst estimated buckets that might have the minimum digital distance from

the virtual query bucket, then to search the minimum distance progressively further from

that shell of buckets. In the following Figures 5-4 and 5-5, examples of two cases for 2D

problem are given while a similar method is used in 3D. In Figure 5-4, the closest point from

the query point to the bounding box is on an edge of the bounding box, while in Figure 5-5,

the closest point from the query point to the bounding box is a vertex of the bounding box.

50

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

(1)

I I

(3)

Figure 5-4: Example A of distance function
model

-- -- - -- r

for points outside the bounding box of the

5.2.3 Computation of the list of query points

For sequence of query points, we can just simply repeat the steps stated in previous section,

but actually we can check if a new query point lies in the same bucket as the one before, so

time is saved in finding ListBnr.

5.3 Design of FGM solids within given .STL boundaries

Designing FGM within .STL boundary is done by assigning composition to the control

compositions that are contained in the .STL boundary. As it is said in the introduction,

efficient method is also necessary, the approach here is to efficiently identify the buckets

that intersect the bounding box of the .STL boundary, and then test the vertices in each

of such buckets to see if the vertices are contained in the .STL boundary using the efficient

point classification algorithm stated in Section 4.8.1. Figure 5-6 illustrates the method.

51

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

5.4 Complexity analysis of distance function computation

It should be noted that the performance of the bucketing algorithm does not just depend

on the number of facets on the boundary of models (nbf) and the number of query points

(m). Because different points require different computing time; i.e. the nearer a point is

to the boundary, the fewer buckets need to be searched. In addition, the geometry of the

boundary also influences the performance of the bucketing algorithm; the bigger amplitude

the boundary oscillates to (relative to the dimension of boundary), the fewer searches are

needed, because points are more locally confined. From these observations, we can deduce

that a cube is one of the most costly object geometry incidences for distance computation,

therefore we can use the cube to see the worst behavior of the algorithm. Here we only

consider the average of (m) operations of minimum distance computation. Recall from

previous parts of this thesis that query points correspond to control composition points

within the model and maybe distributed throughout the model. Here bellow, we will use

parameter n instead of nbf because the number of buckets n is equal to nbf.

For convenience of this complexity analysis, it is assumed that the query points result

from uniform rectangular meshing. Consider a cube object as in (Figure 5-7), with the

boundary meshed into nbf triangular facets. Asumming there are m number of interior

points uniformly distributed throughout the body, the total time cost T shall be

m
T = Tpre + Ti (5.1)

i=1

where Tpre is the time cost for the preprocessing and T is the time cost for the ith query

point.

From the algorithm of the preprocessing, one can see Tpre = Tk + Tdt, where Tbk denotes

the time cost for bucketing and Tdt denotes the time cost for digital distance transform.

It is obvious that Tbk is linear to the number of boundary facets (Tbk = 0(n)), and Tdt is

linear to the number of total buckets which is also n (Tdt = 0(n)).

Tpre = 0(n)

52

(5.2)

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

From the algorithm of the distance function, we can see query points that fall in the same

bucket basically cost the same amount of time except for those points that lies along the

diagonal lines and diagonal planes. Suppose the time cost for distance computation of query

points that lie in the buckets that have chessboard distance k to the boundary buckets is

Tq(k), we can rewrite E', T as follows:

m Ln,/2j

ZT= S Tq(k) -N(k) (5.3)
k=O

where n, = Cn and N(k) is the number of query points whose buckets have chessboard

distance value k to the boundary buckets. Since we sample query points uniformly, we can

define the density of number of query points per bucket as p, and because we have in total

n buckets and m query points, therefore p = m. Further, we define the number of buckets

which have chessboard distance value k to the boundary buckets as Nb(k). Graphically, we

can see those buckets make up the cubic shell that is between the cube with side length

n. - 2k and the cube with side length n, - 2k - 2. Therefore, one can deduce that

Nb(k) = [(n. - 2k) 3 - (n. - 2k - 2)3] (5.4)

and then

N(k) = Nb(k) - p = [(n, - 2k)3 - (n, - 2k - 2)3] - (5.5)n

From the algorithm for computation of distance for a single query point, one can deduce

that the time cost T(k) includes the time for searching for nearest boundary buckets in the

layer of buckets that have chessboard distance to the query bucket Bq and the time cost in

computing the exact Euclidean distances from the query point to all the boundary facets

that are in the nearest boundary buckets. Here we denote the time for searching as Tr and

the time for computing exact distances as Tmp. Therefore,

Tq(k) = Tsr(k) + Tcmp(k) (5.6)

For convenience of analysis, here we define several characteristic numbers that are related.

53

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS 54

We define Ntb(k) as the number of buckets that need to be searched for a query point that

has chessboard distance k to the boundary buckets. Buckets need to be searched are the

cubic shell of buckets that has offset of k to Bq, therefore,

(k) = (2k + 1)3 - (2k - 1)3 ifk> (5.7)
1 ifk=0

We also define Nb, as the number of boundary squares on the six outer sides of the cubic

shell.

Nb 5 6(2k + 1)2 (5.8)

We use Nft(k) as the number of facets in the nearest buckets that have to be calculated for

exact Euclidean distances.

Nft = Pf - Nbs(k) (5.9)

where Pf = which is the number of facets per square on the boundary of the cubic

object. After the above definitions, we can deduce that:

Tsr (k) = ci Ntb(k), (5.10)

Tcmp(k) =C2 Nft(k), (5.11)

where ci and c2 are constants, therefore

Ln./2J [ns/2j
T =O(n)+ E Tsr(k)-N(k)+ E Tcmp(k)-N(k) (5.12)

k=O k=O

After some algebra, we have:

Ln,/2J [ns/2J 4 24M 3 24m 2 6m 24m 8mS Tr(k)-N(k) = S 24c[k .m+k(2) +k2 2 +-)] (513)
k=O k=O s (5.s 1s)

Ln.,/2J Ln,/2j 6 . 12I6
Tcmp(k) -N(k) < c2 [k' - + k- 192m 96m

k=O k=O . n.

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS 55

2 144m 152m 24m_ 24m+k2-(24m -)+k(-)n. on n.
12rn 8m

+6m- + 2m (5.14)
n. S

Using the Euler summation equation [9]

n M m+1 + m mn-1-2(15
E k M+1 urn mmi + O(nm 2) (5.15)
k=1 rn-I 2 12

We can derive that
[ns/2J 5

u60' (5.16)
k=O

Ins /2] 4

- 64 (5.17)
k=O

[ns /2j 3

E k-2 (5.18)
k=O

Therefore, T reduces to:

3c1 i 2T =O(n) + - mn + -mn) (5.19)
5 10

5.5 Experimental results comparison with exhaustive search-

ing method

The efficient distance function was implemented on a Pentium II PC with 450MHz processor

and 128MB memory. The test runs are done on several models with uniform query points

chosen in the bounding domain of each model. Models are listed in Table 5.1 with the

corresponding factor of efficiency enhancement (Ef) and the preprocessing time (PT) for

each model. From this table, we can see for all the models, the efficiency enhancement is

better than the theoretical value from the previous worst case time complexity analysis.

The visualized models and the corresponding curves of experimental results comparison

with exhaustive searching method are also given in Figures 5-8 to 5-14. The factor of

efficiency enhancement is obtained through comparing the slopes of the linear regression

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS 56

of running curves with both methods. From these experimental results, one can conclude

that the bucketing method significantly improved the efficiency compared to the exhaustive

searching method by a large factor.

Model 'Pill' Model 'Propeller' Model 'Bracket' Model 'Sump'
nbf 9572 6210 2924 10296
Ef 15.79 24.42 13.9 44.82

PT(sec) 2.47 2.47 1.02 3.81

Table 5.1: Efficiency enhancement on the example models

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

0:
1:

- I

I I I

I I I

I I 0.

11~1111
- - - - - - I1/1111
- - - - - - Irrrir~

KtilI
- - - - - S[111-A I

(1) (2)

Ig

(3) (4)

J I

(5) (6)

I y

Figure 5-5: Example B of distance function for points outside the bounding box of the

model

57

CA

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

*

7 4

I N

Figure 5-6: Identify the vertices that are contained in the given .STL boundary

5

4

3

2

0 1 2 3 4 5

n = 125

= B3,2 ; k=1

Query point q

Figure 5-7: k is the chessboard distance of the query bucket to the boundary buckets;

number of non-empty buckets that the boundary occupied is 6n 2/ 3 , where n is the number

of total buckets; buckets in the shaded area are nearest non-empty buckets needed to be

searched for the query point

58

0

, e K

e *

*

5
4

------ -

Bq

F
4

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

Figure 5-8: Model 'Pill'

Figure 5-9: Experimental results on 'Pill'

59

Running time for computing distances vs.
number of query points

1200

-+- Efficient bucketing
1000- method

-.- Exhaustive searching
800 method

r600
G~e

400

200

0.
0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Numier of query points

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

F-- -MAI SVIEW EmON

Figure 5-10: Model 'Propeller'

Running time for distances computation vs.
number of query points

400-

350 -- Efficient bucketing
method

300 -- Exhaustive
B 2searching method

1 200

100 +

0

0 2000X 40000 60000 80000 1 0000Q 12000 140000

number of query points

Figure 5-11: Experimental results on 'Propeller'

60

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

FILE MATERLAL TooLs DEUN PROCESS ABOUTFGMVIEWES... E

Figure 5-12: Model 'Bracket'

Running time for computing distances vs.
number of query points

B00
-.- Exhaustive searching

S700amethod
600 --- Efficient bucketing

500method

400

300

200

100

0

0 10000 20000 30000 40000 50000 60000

Number of query points

Figure 5-13: Experimental results on 'Bracket'

61

CHAPTER 5. DESIGN THROUGH DISTANCE FUNCTIONS

FILE MATERtAL TOOLS DEON PROCESS Out FGMV*EM.E.

Figure 5-14: Model 'Sump'

Running time for computing distances vs.
number of query points

1400-

1200

1000

8 Efficient bucketing
800- method

--- Exhaustive searching
600 method

400

200

0- ----- -----

0 5000 10000 15000 20000 25000 30000 35000 40000

Number of query points

Figure 5-15: Experimental results on 'Sump'

62

'- FGM DOMAIN VIEWERA

Chapter 6

Efficient evaluation of composition

6.1 Composition evaluation at a point using barycentric co-

ordinates

The composition evaluation at a query point is done by interpolating the composition values

at the nodes of the object tetrahedron in which it is contained. In the case of tetrahdra mesh

using linear interpolation, we have the following formula for the composition interpolation.

Fig. 6-1 demonstrates the idea.

Volume of Tetrahedron(QVV 3 V4)
Volume of Tetrahedron(Vi V2 V3 V4)

Volume of Tetrahedron(QV1 V2 V4)
Volume of Tetrahedron (V V2 V3 V4)(6.2)

Volume of Tetrahedron(QV1 V2 V3)
Volume of Tetrahedron(V 1V2 V3V4)

q = 1 - u - v - w (6.4)

Compsition(Q) = q - Comp(V1) + u - Comp(V2) + v - Comp(V3) + w - Comp(V4) (6.5)

STEP 1 Determine if the query point is interior point: Use the algorithm described in

Chapter 4 to determine the status (Figure 4-11).

63

CHAPTER 6. EFFICIENT EVALUATION OF COMPOSITION

STEP 2 Identify the object tetrahedron if the query point is interior point: Use the algo-

rithm described in Chapter 4 Figures 4-15 to 4-17.

STEP 3 Calculate the barycentric coordinates: Use the formula as above.

STEP 4 Interpolate the composition

v4 (0, 0, 1)

(0,1,0)

*1 ...-'. ...-- .------ .. v3

(0,0,0)
U

v2 (1,0,0)

Barycentric coordinates of a point in tetrahedron space:
Q(U ,v, w,), 71 = 1 - u - v - w.

Figure 6-1: Evaluate composition at a given point

6.2 Composition evaluation along a given ray at a given

resolution

Based on the above algorithm for point evaluation, the efficient ray-casting algorithm for

the problem is developed to find the composition for all the points along a given ray at

a given resolution. The ray is represented by a starting point and an ending point, while

the ending point just guides the direction. The resolution is represented by an interval of

parameter 6t.

X(t) = (1 -t) -Xb+t -Xe (6.6)

STEP 1 Find the starting point that intersects the bounding box

STEP 2 Find the end point that intersects the bounding box

WOMOMMM- - t.1 ..

64

CHAPTER 6. EFFICIENT EVALUATION OF COMPOSITION

STEP 3 Evaluate the points at a given resolution using the parametric expression of

straightline.

STEP 4 Evaluate the composition for each point: Apply the algorithm

evaluation at a point.

for composition

Figure 6-2 illustrates the algorithm of evaluation of composition along a ray.

4

3

2

1

0 1 2 3 4 5 6 7

Figure 6-2: Evaluate composition along a given ray

6.3 Composition evaluation on a cutting plane

For the purpose of evaluating compositions of materials, the program will find the composi-

tion for the points on a given plane at a given resolution. Here the plane is given in general

form

A -x + B - y + C -z - D = 0 (6.7)

The method is calculating the intersection points of the plane with the bounding box of the

model, using the intersection points coordinates one can express the plane in parametric

form as following:

X(u,v) = Xb1 + (Xb2 - X 1)u + (Xb - Xb2)v (6.8)

After the parametric expression of the plane is obtained, one can repeatedly call the ray

casting method to evaluation compositions of the query points on the given plane.

lot

65

Ray

CHAPTER 6. EFFICIENT EVALUATION OF COMPOSITION 66

(1')

bL2

(0,0)-

Figure 6-3: Parametric cutting plane

6.4 Volume integral of material

It is very necessary to evaluate the volume ratio of different materials of a FGM object after

the design of composition on the control compositions inside the body. Here the control

compositions are the interior vertices of the tetrahedra mesh. Given the fact that we have

calculated the volume ratio of one specific material at all the control compositions, one

can integrate the volume ratio with respect to the whole object for that material using

barycentric coordinates.

To derive the formula of the integration of volume ratio of material a (noted Pa) within

the whole body, it is convenient to use the natural coordinate system for each tetrahedron

as demonstrated in Figure 6-4.

y v4 (o, o, 1)

x

s--...... .----------- v3
V1
(J, 0, 0)

r

v2 (L 0, 0)

Figure 6-4: Tetrahedron natural coordinates

For a tetrahedron indexed m, we define that the volume ratio of material a at a point

which has coordinate (r, s, t) as Ca,m(r, s, t). Therefore, we can express the relation between

EFFICIENT EVALUATION OF COMPOSITION

Pa and Ca,m(r, s, t) in the following formula.

M=1 fm Ca,m(r, s, t)dvm

Z=1 Vm
(6.9)

For tetrahedron m, we define the volume ratio of material a at the four vertices as

c1 , c2, c3 and C4 respectively. Using the natural coordinate like in Figure 6-4, we have:

X = (1 - r - s- - - X1 + r - 2 +S - 3 + t - X4

y = (1 - r - s - t) -yi + r -Y2 + s -Y3 + t-y4

z = (1 - r - s - t) - z 1 + r - z 2 + s - z 3 + t - Z4

(6.10)

(6.11)

(6.12)

and similarly we have for the composition interpolation as:

Ca,m(r, s, t) = (1 - r - s - t) - cl + r - c2 + s c3 + t -C4 (6.13)

Therefore, the Jacobian matrix is:

J =

O2x
Or

Os

Ox

Or

Os

at

az1
Or

C z)z
Os7

O9Z

X2 - X1

= 3 - £1

£4 - X1

Y2-1 Z2-Z1]

Y3 - Y1 Z 3 - Z1

Y4 - Y1 Z4 - ZI

(6.14)

and then,

detJ = 6 - vm (6.15)

Hence we can derive that,

J Ca,m(r,s,t)dvm = Ca,m(r, s, t) - detJdrdsdt
I r-s

ds fo C,,m(r, s, t)dt

CH APT ER 6. 67

detJ fdr f (6.16)

CHAPTER 6. EFFICIENT EVALUATION OF COMPOSITION

if

then

{r+s+ t=u

S + t = UV

t = uvw

r = u(1 - v)

s = uv(1 - w)

t = uvw

therefore the Jacobian matrix J' from (r, s, t) to (u, v, w) will have a determinant

detJ = u v

hence,

- detJ du do v

+ (c3 -c 2)uv +

- detJ fdu do v

+ (c3 - c 2)uv +

C1+ (c2 - c1)u

(C4 - c3)uVw} - detJ'dw

J0 f{c1 + (c2 - c1)u
0 -

(C4 - C3)UVW} - U 2vdw

1
= 2detJ -(cl+ c2 + c3 + c 4)24

Vm

4
(6.20)

Plug the above equation into (1), we derive that,

Pa _ M=1 Vm . (ci + c2 + C3 + c4)

4M=1 Vm
(6.21)

6.5 Time analysis

6.5.1 Theoretical background

For a 3D or higher degree space object represented by incidence structure, if the structure is

homogeneous, there is a structure constant bkl which is the number of pointers from any k-

(6.17)

(6.18)

(6.19)

J Ca,m(r, s,t)dvm

68

CHAPTER 6. EFFICIENT EVALUATION OF COMPOSITION

dimension element to 1-dimension elements. Suppose ak is the total number of k-dimension

elements, from the Matching Theorem ("Principle of Double Counting") [30], the following

formula gives the relation between ak and bkl:

ak bkl = al - bk 0 < kil <n (6.22)

where n is the dimension of the space.

In our case, 3D objects are subdivided into tetrahedra, and then elements in the inci-

dence structure are vertices, edges, faces and tetrahedra. For convenience, we suppose the

FEM data is near homogeneous. Our interest is to find the relation between the number

of tetrahedra and the number of vertices. It is obvious that each tetrahedron points to 4

vertices, which means b30= 4. Therefore by the matching formula we have:

b3 a b30 _ 4nt (6.23)
ao n

where nt is the total number of tetrahedra, n, is the total number of vertices.

6.5.2 Time cost for the extraction of boundary

Because the extraction of boundary is done in the initialization of data structure, first we

need to analyze the time cost for reading FEM data into my data structure, time cost for

that part is apparently O(n, + 4nt), where n, is the total number of vertices, nt is the

total number of tetrahedra. And also after we extract the boundary, we need to delete the

interior faces and put the boundary facets into a list, which costs O(4nt).

Using the algorithm described before, the time cost for extracting boundary would be:

flt

T = 4 Tc, (6.24)

where Tcf is the time cost of checking one face of a tetrahedron if it is interior. Given a

triangular face Fabc, we define that the number of incident tetrahedra to vertex a is Pta,

and similarly Ptb and Pt, for vertex b and c. The time cost Tcf is virtually the sum of

69

CHAPTER 6. EFFICIENT EVALUATION OF COMPOSITION

Pta, Ptb and Pta, that is:

Tef = O(Pta + Pt + Ptc) (6.25)

From the background theory we know on average one vertex has 4- number of incident

tetrahedra, therefore,

Tcf = 12 - O(") (6.26)
nv

In summary, the total cost for extracting boundary will be:

T = O(48. - . nt) (6.27)
nv

and the total cost for initialization of the data structure will be:

2

Ti = O(ci - nv + C2 -nt + C3 -" (6.28)
nt

6.5.3 Time cost of point location algorithm

From the algorithm described in the previous text, we can see the time cost of point location

for a single query point is:

T = Tin + Tmch, (6.29)

where Tin is the time spent on checking if the query point is inside the body, here this time
1

will be linear to the number of boundary facets in one bucket, which is about n'f /6 for a

cube, where nbf is the total number of boundary facets. Hence,

Tin = O(n f) (6.30)

Tmch here is the time spent on marching all the tetrahedra from a starting vertex to the

query point. If we define the number of tetrahedra we checked as Ntc, the number of faces

we checked to find the neighbor tetrahedron along the line as Nfc and the time for each

neighboring check as Tcnb, we have the following formula.

Tmch = O(Ntc) + O(Nfc - T(nb)

70

(6.31)

CHAPTER 6. EFFICIENT EVALUATION OF COMPOSITION 71

We use a modified version of the algorithm used for checking interior faces to check the

neighboring tetrahedron, hence,

Tcnb = 12 - O() (6.32)
nv

Since for each tetrahedron visited, we need to check 0 - 1 face for neighboring, therefore,

Tmch = O(Nc) + O(Nc -) (6.33)
nv

From all the above, we can deduce that:

1 nit
T = O(c, - n3 + c2 - NtC + c3 NC - -) (6.34)

It will be interesting if we can give an expectation of the value of !L. We know for a

Delaunay mesh, the worst case would be quadratic, and in problems of practical relevance,

this degree is expected to be constant [23].

6.5.4 Time cost of ray casting algorithm

In order to analyze the time cost of ray casting, we define several parameters as follows: ft

as the resolution which is a number between 0 - 1; nr as the number of query points inside

the bounding box along the ray; Nbr as the number of boundary buckets that intersect

the ray; nbq as the number of query points in boundary buckets along the ray; p as the

number of query points per bucket that intersects the ray. From our ray casting algorithm

described before, we know that the total time of the algorithm T should be equal to the

time spent on checking each point for interior (Tkikn) status plus the time spent on locating

the sub-regions for points identified as interior (Tep,). Therefore, we have:

T = Tekin + Tcpo (6.35)

Tckin = nbq - O(n 3) + (nr - nbq) - 0(1) (6.36)

Tekin = nbq O(n) (6.37)

nbq = Nbr p((6.38)

CHAPTER 6. EFFICIENT EVALUATION OF COMPOSITION 72

1
nr ;I + 1 (6.39)

Suppose the bounding box is a cube, that is n, = ny = nz, then the shooting ray can at

least intersects Vn-bf buckets. Hence

nr 1
P < r < (6.40)

/-b-iif -6 f- nf

Therefore,

n 1 < ; 0 < t < 1 (6.41)

Hence

Tein = O() (6.42)
6t

As to the time of locating positions, supposing that all the query points are inside the body,

we know that:

Tlcpo = nr * Tmch (6.43)

where Tmch is defined as in the last section. Therefore,

TlcPo = O(Nc - [1 +]) (6.44)
6t nv

T = 0(+ [I + n) (6.45)
6t 6t n

Chapter 7

Implementation and numerical

results

7.1 Implementation

The algorithms developed in this thesis are implemented in Microsoft Visual C++ [10]

on a Intel Pentium II CPU 450M with SRAM 128MHz. The algorithms include all the

described algorithms in Chapters 3 - 6. As described already in Chapter 3, this thesis work

is integrated with an existing environment of modeling, designing, and postprocessing of

FGM. The approach is using object oriented programming techniques such as inheritance

of classes and virtual functions. For details of the mentioned environment, refer to Jackson

[14]. For the newly developed functionalities, the relevant user interfaces are extended using

also OOP and Microsoft Foundation Classes programming [17][10]. The extension will be

given in Appendix A.1.

7.2 Numerical results

Results on three models are given here, a model named 'Pill' (Figure 7-1) which has 1329

vertices, 6091 tetrahedra, a model named 'Bracket' (Figure 7-2) which has 2356 vertices,

8503 tetrahedra and a model named 'Widget' (Figure 7-3) which has 18683 vertices, 83827

tetrahedra.

73

CHAPTER 7. IMPLEMENTATION AND NUMERICAL RESULTS

Table 7.1: Parameters of the FEM example models

Table 7.2: Performance of program on the examples

The Table 7.2 gives the experimental running results of the above three models, where

IT is the time spent on the initialization of data structure and extraction of the boundary

tetrahedra, BP is the time spent on creating the bucketing system, DT is the time spent

on digital distance transformation, ST is the time spent on identifying the signs of buckets,

DBT is the time spent on the designing composition as to the distance from boundary and

PCT represents the time spent on the evaluation of composition on one slice.

7.2.1 Design from boundary

In Figures 7-4 to 7-10 all the composition designs are done via distance function from

boundary. For model "Pill" a planar cutting as in Figure 7-5 costs about 7 secs.

For a model in Figure 7-2, which has 2356 vertices, 8503 tetrahedra, a planar cutting as

in Figure 7-8 costs about 7 secs. There are about 10000 query points on each plane.

For a model in Figure 7-3, which has 18683 vertices, 83827 tetrahedra, one slice costs

6.43 secs. There are about 10000 query points on the plane.

7.2.2 Design from .STL file boundary

Figures 7-11 to 7-12 demonstrate the example of designing from STL file. When designing

according to the distance from .STL file, distance calculation also involves nodes that are

Model 'Pill' Model 'Brack' Model 'Widget'

nbf 788 2884 11038
nv 1329 2356 18683
nt 6091 8503 83827

Time (sec) Model'Pill' Model 'Brack' Model 'Widget'
IT 10.88 16.26 382.01

BT 0.11 0.22 0.88
PT DT 0 0.11 0.39

ST 0.38 1.21 4.61
DBT 6.43 6.26 31.75
PCT

7t = 0.01 1 6.4 3

74

CHAPTER 7. IMPLEMENTATION AND NUMERICAL RESULTS

Figure 7-1: Pill

i I-- F G M D O TM N V OE W E SI N P C O
M.E MLAtLTOSD~D RC6 B TGVEE.

Figure 7-2: Bracket with a hole

75

CHAPTER 7. IMPLEMENTATION AND NUMERICAL RESULTS

FGM DOMAN VIEWERPEWE

FILE MATERIAL TOOLS DEGION PROCESS ABOUTFGMVIEWESR...

Figure 7-3: Widget

.g timrrtn vwwer M
Film LahmeJ Tnn fl"n" Pm A wu#FYW'AAma

Figure 7-4: Pill composition data

76

CHAPTER 7. IMPLEMENTATION AND NUMERICAL RESULTS

F. FGM DOMAIN VIEWER

FILE MATERIAL TOOLS DESION PROCESS ABOtrrFGMVAEWER..

Figure 7-5: Pill slice at z = 0

.. FGM DOMAIN VIEWER pn
FE MATTUIML TOOLS DESIGN PROCESS AJSOJTFGMVEWER...

Figure 7-6: Bracket's composition data

77

CHAPTER 7. IMPLEMENTATION AND NUMERICAL RESULTS 78

- FGM DOMAIN VIEWER PC mnU EV R
F1LE MAITRAL TOOLS DESION PROCESS ABOLJTFGMVMEWER.

Figure 7-7: Bracket slice at z = 1

FGM DOMAIN VIEWER

FILE MATERIAL TOOLS DESION PROCE95 A4OtfFGMVIEER.

Figure 7-8: Bracket slice at z = 3

CHAPTER 7. IMPLEMENTATION AND NUMERICAL RESULTS 79

- FGM DOMAIN VIEWER o-e
FILE MATERIAL TOOLS DESIGN PROCESS BOUTFGMVIE1AER..

Figure 7-9: Widget composition

FGM DOMAIN VIEw ES OE m
FILE MATEIAL TOOLS DESIGN PROCESS ABOUT FGM VE'WEIL..

Figure 7-10: Widget slice

CHAPTER 7. IMPLEMENTATION AND NUMERICAL RESULTS

outside of the STL boundary.

FGM DOMAIN viEwxr
F"H MARMIAL TOOLs nFaItN PRocrFq AROrrFCiM Vfw&wR

80

Figure 7-11: Design from a stl file, range (0, 90)

7.2.3 Design within .STL boundary

Figure 7-13 to 7-18 demonstrate the design method within a STL boundary, which means

user can select only nodes inside an input STL boundary to design the compositions based

on various distance functions.

CHAPTER 7. IMPLEMENTATION AND NUMERICAL RESULTS

FL ATRFGM DOMALN VIEWER PE U M RFILE MATERIAL TOOLS DESIGN PROCESS A13OUTFGMVIER-.

Figure 7-12: Slice at Z = 20

FGM DOMAIN VIEWER

FILE MATERIAL TOOLS DESIGN PROCES2 AA0UTFGMVWE6R

Figure 7-13: Design within STL boundary according to the distance to the STL mesh

-- - .w ... 6- -

81

CHAPTER 7. IMPLEMENTATION AND NUMERICAL RESULTS

FM DOMAIN VIEWERj

Figure 7-14: Slice of above at Z=20

DFGM DOMAIN VIEWE
Le-F MAERML TOOLs DESma PROCEss AaoUT FGMVIEwAE

Figure 7-15: Design first through distance to STL mesh (0-90) then design within that STL
boundary through distance to that STL mesh (0-40)

82

F'H S: AAAMMILI T^" a rWal PlOnt-944t AA^1 rr Fri-P.A VWUWD

IMPLEMENTATION AND NUMERICAL RESULTS

FGM DOMAN VIEWE
PILE MATFRiAL Toots 111RiaN PRncqsS ABOUt FrftMfvIEW

Figure 7-16: Design first through distance to STL mesh (0-90) then design within that STL
boundary through distance to that STL mesh (0-40)

Figure 7-17: Slice (Z=20): Design first through distance to boundary (0-90) then design
within a STL boundary through distance to that STL mesh (0-40)

CHAPTER 7. 83

CHAPTER 7. IMPLEMENTATION AND NUMERICAL RESULTS

-- FGM DOMAIN VIEWER R

Figure 7-18: Slice (Z=10): Design first through distance to boundary(O-90) then design
within a STL boundary a constant material

84

Chapter 8

Conclusions and recommendations

8.1 Conclusions

As part of the larger project of "Modeling and Designing Functionally Graded Material

Components for Fabrication with Local Composition Control", this thesis addresses the

issue of the development of efficient algorithms for design and composition interrogation

of FGM solids. In order to represent graded material composition, a model has to be di-

vided into sub-regions. Enhancement of the efficiency in designing FGM becomes inevitable

when the representation of the FGM model has a large number of sub-regions. Similarly

the algorithm for composition evaluation of an FGM has to be efficient as well. Starting

with a finite-element with topology model, efficient algorithms for design and composition

evaluation have been developed through the methods of bucket sorting, distance transform,

and point classification, etc. The analysis on the developed algorithms and experimental

results demonstrated these algorithms are effective. The developed algorithms have also

been integrated into an existing FGM modeling, designing and post-processing program

through software development techniques, which provides the pathway for the designer to

design and model FGM and then see an FGM part fabricated through LCC, especially

through 3D Printing process.

85

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

8.2 Recommendations

There are many potential directions for future work on the topic of FGM design. First, more

composition design functions need to be developed, for example, the composition can be

designed as a function of the minimum distance function and the corresponding boundary

facet on which the projection of the query point happens. In order to enable the users to

design the compositions as piecewise polynomial or rational forms functions of the minimum

distance function, the maximum of the minimum distance values for all the points inside a

solid needs to be calculated. Another prospective plan is bringing the design tool to a higher

level to enable more design methods to capture users' real world design intentions that are

often physical, descriptive or even an esthetic. Design in different dimensions may allow

more varieties of FGM parts, i.e. in 2D plane domain, 2.5D domain or 3D domain or even

design on the 3D surface of a model then offset both geometry and materials based on design

intention. For the sake of effective design and redesign, good visualization is also necessary.

The visualization methods can be isosurface extraction, cuberilles and color-coded planar

sections. In order to produce FGM successfully through SFF processes, it is also necessary

for the design system to be adjusted according to design rules that come from the process

limits, etc. A dithering algorithm plays an important role as an interface between the ideal

CAD model and its 3DP machine instructions. The current 2D dithering algorithm may

extended to volume dithering algorithm that can minimize the low frequency textures. In

order to evaluate the functionality of an FGM part, it is necessary to analyze the physical

properties as functions of material composition. The design system may provide the basic

information, such as maximum material gradient, minimum material gradient, iso-surfaces

etc. or more advanced algorithms for analyzing physical properties directly. When we think

about the nature around us, we can see the world is full of natural FGM, therefore, it is also

possible that the design of FGM be assisted by reverse engineering to take a model from

reality. Apart from the application directly in SFF fabrication, the research on design of

FGM can be also oriented to model exchange, distribution through Internet etc. Design of

FGM is closely related with the representation scheme of FGM, therefore the development

of a general, efficient and flexible modeling method is very important. For example, general

86

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 87

adaptive subdivision of a solid model could reduce the model size while keep the accuracy

of the model, the subdivision of the models can be either structural or non-structural and

subjected to different applications. Similar to the fact that complex mechanical parts are

often an assembly of simpler parts, FGM can also be designed using a library of FGM

components, with each component representing a subdivided element.

Appendix A

Development on FGMViewer

A.1 Extension to FGMViewer system

A.1.1 Introduction

As mentioned in the thesis, the algorithms developed in this thesis have all been integrated

with an existing FGM domain viewer that has a pure finite element implementation. Using

object oriented programming methods, the efficient finite element mesh based model is

developed from the pure FEM mesh, the data structure is already described in Chapter

3. In this appendix, the extension of the interface and the major classes are described. In

order to learn about the whole FGM viewer system please refer to [14].

A.1.2 Menu extension

A.1.2.1 File

The file access window Convert/Load/save has been extended to load a tetrahedral mesh

into the efficient FEM representation, and also an input of .STL (ascii format) file is allowed

to view geometry represented in triangular facets.

A.1.2.2 Utilities

Integral Evaluator Apart from the tools in the existing FGM domain viewer, an item

for evaluation of the integral composition volume ratios and volume of the object is

88

APPENDIX A. DEVELOPMENT ON FGMVIEWER

FGM DOMAIN CONVERT/LOAD/... X

Fename: IPill. cor

Convert Algoi Save FGMD Load FGMD

Load.CON Load.STL

added. Once the button evaluate is pressed, the program will give

of each material and the volume of the object in a matrix form.

FqLE DMA N TOOL DESIGN PROCE s AOUTFGMVIEWER.

VEwMOoIFIER
G"O"TR EVA"ATOR

the volume ratio

Geometry evaluator The Geometry evaluator menu is connected to efficient method.

Translate and scale Extend the translation and scale to the efficient FEM structure in-

cluding bucketing system.

View Modifier The Geometry and Composition rendering are done by only rendering the

geometry (or composition) of the boundary triangular facets. The rendering of slices

(material) are realized by ray tracing method.

A.1.2.3 Design

From STL shell This window is extended to incorporate design through distance function

to the boundary of the solid except for a given .STL shell.

Within STL This window is added to allow user to design only the control compositions

that are in a given .STL region through distance functions.

NTEGRAL EVALUATO x
0.6928489 iiaat
0.3071511
87747.3

OK

Cancel

-do .. ddb_. .

89

APPENDIX A. DEVELOPMENT ON FGMVIEWER

STL fIename Range Blerd Sty4e
Ifilenamesti RQ Urinmm

Rl:

Quadatic(RO)
Composiin at R Composition at R1 Quadat1)

1: a
1 0 28: 10

lr 10 %C 10 Cancel

%D:10 %

F im bndFM T

SFGM DOMAIN VIEWER PRI1
FILE MATERIAL TOOLS DESON PROCESS ABOUTFGMNVEWER...

FROM POINT
FROM LINE SEGMENT
FROM PLANE
FROM STL SHELL

DIALOGDESIGNINSTL E

X411 F _ Cne

%B-F-

%cF F- ri F%DF F _ " F 4

pi t CtJ
Qui1J SCuicJo

A.1.3 Major extension in classes

A.1.3.1 FGMFEMesh-hl

The class FGMFEMesh.hl has already been described in Chapter 3. Being derived from

class FGMFEMesh by inheritance, this class shares all the data members of FGMFEMesh.

Apart from the common data of FEM mesh, this class maintains the list of tetrahedra that

contain boundary facets and a bucket sorting system. Because this class is a descendent of

class FGMDomain, it inherited all the methods from class FGMDomain and FGMFEMesh.

In addition, it possesses its own methods that are implementation of the algorithms de-

scribed in this thesis.

A.1.3.2 BucketSys

The class "BucketSys" provides the bucket sorting methods and other algorithms that are

described in this thesis.

90

APPENDIX A. DEVELOPMENT ON FGMVIEWE R9

FGM domain

fait l r Point FGMTETBASE FGMFEMESH FGMSTL

FGMFEPOINT FGMFETET FGMFEMESH-HL

Vertex Tetra

Figure A-1: Inheritance tree of FGMviewer object classes

A.1.3.3 Composition design function classes

mfunctionSTL "mfunctionSTL" class is extended to have distance either to an input

.STL boundary or the boundary of the solid itself.

mfunctionSTLRegion "mfunctionSTLRegion" class is added to allow applying various

distance functions to certain part of the solid that is defined by an input .STL bound-

ary.

91

APPENDIX A. DEVELOPMENT ON FGMVIEWER

FGMFEMesh-hl:FGMFEMesh

BoundTetraList: The list of tetrahedra that contain boundary facets.

MyBuckets: The bucket sorting system of FGMFEMesh.

initModel(datastream): initialization of the model

invokeBkt(double, double ,double, double, double, double): invoke
bucket system and preprocess the model by bucket sorting bound-
ary facets and digital transform,etc.

setVertsToBucko: bucket sorting vertices.

getU(datacontainer & X): get barycentric coordinates of query point

getTris(Triangle tris, int n):get boundary facets list

pointLocus(Point & Q): efficient point location searching method

faceNotBound(int fi, int tind);

nbrOfTetAtFace(int Tind, int find);

get bndTetra(fgmfepoint vpl, fgmfepoint vp2, fgmfepoint vp3);

TetraOfBdFt (Triangle& nearWall);

rayTracer(Point& Bp, Point& Ep, double rslu);

planeCut(Point& p1, Point& p2, Point& p3, double rslu);

clusterPlPlane(Point& p1, Point& p2, Point& p3, double d, double
rslu);

Tetra:FGMFETET

stat[4]: status of four faces

Vertex:FGMFEPoint

PrTetras: back indices to parent tetrahedra.

92

APPENDIX A. DEVELOPMENT ON FGMVIEWER

BucketSys

nt: total number of buckets in the system

nx, Iny, Inz: number of buckets along 3 coordinate axes

xmin, ymin, zmin, xmax, ymax, zmax: extreme coordinates of the
bucket system

lb: side length of bucket in Cartesian coordinates.

BucketCon BA; pointer to a three dimensional pointer array.

BucketQueue CurrentQueue: queue of buckets stored for operation.

readSTL(char infile): initialization with .STL boundary

prePro(Triangle tris, int n): preprocessing with a list of triangular
facets

PutInBuckSys(Triangle tris): distribute a list of triangular facets into
buckets

DistTranso: distance transform of buckets with respect to the input
trimmed boundary

setBktsSigno: calculate the sign of buckets with respect to the bound-
ary

computeR(Point Q): distance function from a query point to the bound-
ary

Pointln(Point& p): test if query point is contained in the boundary

scale(scale factor)

translate(Ax, Ay, Az)

93

APPENDIX A. DEVELOPMENT ON FGMVIEWER 94

mfunction

ImfunctionBrick mfunctionDist

mfunctionPoint mfunctionLine

mfunctionPlae mfunctionSTL mfunctionSTL
Region

Figure A-2: Inheritance tree of mfunction classes

mfunctionSTLRegion:mfunctionDist

BucketSys bucketsort: Bucket sort of facets

evaluatem(Point Q): evaluate composition only if Q is inside
the boundary

APPENDIX A. DEVELOPMENT ON FGMVIEWER

A.2 Example of the use of FGMViewer

STEP 1 Start the FGM Domain Viewer by double clicking its desktop icon and click

OK to close the welcome About FGM Domain Viewer dialog.

STEP 2 Choose the Convert/Load/Save menu item from the File menu.

STEP 3 Enter the .con file name in the edit box of FGM Domain Convert/Load/Save

dialog; here it is M7030.con and click the Load CON button.

STEP 4 Choose the View Modifier menu item from the Utilities menu and the FGM

View Modifier dialog will appear.

STEP 5 Click the Geometry button to see the geometric boundary of the part and click

the Scale arrow to enlarge the image.

STEP 6 Choose the Translate and Scale menu item from the Utilities menu.

STEP 7 Click the Position at (0,0,0) button and then click the Apply button.

STEP 8 Click the Geometry button twice and check the two lines of coordinates on the

left bottom corner of the FGM View Modifier dialog to see if the first line is(0,0,0); if

not, repeat STEP 7 and STEP 8 until it is (0,0,0).

STEP 9 Choose the Create material system menu item from the Material menu.

STEP 10 Enter the name and representing color of each material and click the Add

material button; here we have two materials binder (A, represented in red) and steel

(B, represented in green).

STEP 11 Click the Done button after you defined all material. (you can change the color

of the materials using the dialog Adjust Material Colors).

STEP 12 Choose the within Brick menu item from the Design menu.

STEP 13 Enter a box that is large enough to include the part. Check the coordinate on

the left bottom corner of the FGM View Modifier dialog. This is the bounding box

95

APPENDIX A. DEVELOPMENT ON FGMVIEWER

of the part. Enter a coordinate with larger values for all three axis. Here the value is

(150, 110, 50).

STEP 14 Enter a composition value that will be assigned to the whole area inside the

above box. Here for example, we choose 0.85 for B, 0.15 for A, which means 85% B,

15% A.

STEP 15 Click the Commit button and then click the OK button in the Elapse time

reporting dialog.

STEP 16 Choose the from STL shell menu item from the Design menu.

STEP 17 Define the range of the region that this operation will influence; here the range

is from the boundary (0mm) to 5mm inside the part.

STEP 18 Enter the composition value at the boundary of the region; here the composition

is 0% steel, 100% binder on the boundary and 15 % binder, and 85% steel 5 mm inside

the part.

STEP 19 Define how the composition vector changes from the values on the boundary to

the values at 5mm inside the part; click the Linear button to give a linear interpola-

tion.

STEP 20 Click the From bnd button to perform the design.

STEP 21 View the designed product; choose the menu item View Modifier from the

Utilities menu.

STEP 22 Click the Composition data button to see the composition at control points.

You can select the proper view to see clear by selecting angles, scale. When you choose

the Cube scale with a value less than 1, the viewer displays the exploded view in

cuberille. You can also click the Composition button to see the composition on the

boundary.

STEP 23 Click the Composition data button again to clear the view.

96

APPENDIX A. DEVELOPMENT ON FGMVIEWER

STEP 24 View the composition on a cutting plane; enter the values that define the cutting

plane in the edit boxes A,B,C,D, if you want to cut a cluster of parallel planes, enter

the number of planes and the step distance too.

STEP 25 Click the Go button and then click the Slice (material) button. If you want

to clear the view, click the Clear rendered slices button.

STEP 26 Evaluate composition at a point you are interested; select the Geometry eval-

uator menu item from the Utilities menu.

STEP 27 In the appeared dialog, enter the coordinates of the query point and click the

Evaluate composition button, the composition vector will appear in the upper right

read-only text box, then close the dialog.

STEP 28 Evaluate the volume percentage of each material and the volume of the part;

select the Integral evaluator menu item from Utilities menu.

STEP 29 In the popped dialog, click the Evaluate button, the volume percentages of

materials will appear in vector format, and the last value is the volume of the part.

Then click the Cancel button to exit.

STEP 30 Choose the Translate and Scale menu item from the Utilities menu.

STEP 31 Enter 1000 in the Scale edit box and click the Apply button. This step changes

the unit from mm to micron. It is the preparation for the slicing.

STEP 32 Choose the Slice to file menu item from the Process menu.

STEP 33 Enter the layer thickness in the corresponding edit box (in micron) ; here it is

170 micron.

STEP 34 Enter the name of the file that you want for the generated material slice (.HIN

file); here it is Midget.HIN.

STEP 35 Click the Process FGM object into layers button and click the OK buttons

in the two elapse time reporting dialog.

97

APPENDIX A. DEVELOPMENT ON FGMVIEWER

STEP 36 Redesign the FGM; select the From STL shell menu item from the Design

menu, enter the .STL file you want to design from in the upper left edit box. Here it

is Midget.STL.

STEP 37 Do the same as in STEP 17-19.

STEP 38 Click the From STL button to perform the design.

STEP 39 Repeat the STEP 21-25 to view the redesigned part.

STEP 40 Redesign the FGM; select the Within STL menu item from the Design menu.

STEP 41 Enter the .STL file that you want to design within.

STEP 42 Enter the range distance value from the .STL file.

STEP 43 Enter the composition vector values at two ends of the range.

STEP 44 Click the Linear button to perform linear interpolation between the range.

STEP 45 Click the Commit button to perform design and then click the Cancel button

to cancel the dialog.

STEP 46 Repeat the STEP 21-25 to view the redesigned part.

STEP 47 Select the Clear model menu item from the File menu to cancel the current

model.

STEP 48 Load another model; choose the Convert/Load/Save menu item from the

File menu.

STEP 49 Enter the .stl file name in the edit box of FGM Domain Convert /Load/Save

dialog; here it is Midget.stl and click the Load STL button.

STEP 50 Select the View modifier menu item from the Utilities menu to view this

STL model.

STEP 51 Select the Exit menu item from the File menu.

98

APPENDIX A. DEVELOPMENT ON FGMVIEWER

STEP 2

FGM DOMAIN CONVERTLOAD/.. x

Fklmw Iw;occKt

FAmI7.o.L

STEP 3

STEP 4

99

APPENDIX A. DEVELOPMENT ON FGMVIEWER

xl

STEP 5

STEP 6

TZ date Scale

Z: 0Apl

STEP 7

NOUN""-

100

APPENDIX A. DEVELOPMENT ON FGMVIEWER

MatmW~ flfl jEnter new -materi~AddMaera
Assigni o~j~ Dmnemia

red 1 1

ueen: 1 -0
bke, 10

STEP 10

STEP 12

Low Vertexc High Vertex Compositian [i]
X: Y,15t %A: 0.15

Cancel
Y: [y 11- %8 0.85
ZF[5 Z 5O - % ____0

%D: 0

0. < x< 150.
0. < y < 110.
0. < z < 50.

STEP 13

101

anooouvrmen itGM

APPENDIX A. DEVELOPMENT ON FGMVIEWER 102

STEP 16

FIE WTEUIAL UThEB DEt PROMc APOVTFGMVWE"
51LM rl- NOOK

ernma N-W %WW

pk&-1 fl15 w~

" ~ ~ r5 - f- ..

STE 17.

STEP 17

STEP 21

APPENDIX A. DEVELOPMENT ON FGMVIEWE R0

STEP 24

STEP 26

x 0
Y. 13

1.

a-

V~~V~Fi

STEP 27

FGM GEOMETRZYE... RR2E3,

103

APPENDIX A. DEVELOPMENT ON FGMVIEWER

STEP 28

0.4334152 EYlae
0.588848
509407.2

OK

CarmC

STEP 29

Layer thcknss (n micronm 170

Outpt llenam grading.HIN

Number of ayer: 288

Process FGM object into Iayers.

STEP 32

'Wow-

104

Appendix B

Geometric Algorithms

B.1 Algorithm for testing if a point is contained in a tetra-

hedron

Q .

V---------~2<

V 1

~ ~ V4

V
3

Figure B-1: Test if a given point is contained in a tetrahedron

105

APPENDIX B. GEOMETRIC ALGORITHMS

Algorithm 6 isQinTet(Point Q, Tetrahedron VV 2V3V4); (Figure B.1)

calculate the mixed product (V3V x V3 V2) V3Q;
calculate the mixed product (V4 V3 x V4 V2) V4Q;
calculate the mixed product (V1V4 x V1V2) V1 Q;
calculate the mixed product (V1 V3 x V1V4) VIQ;
if all four mixed products are positive or all four mixed products are negative then

return true;
else

if any of these mixed products is zero then
if query point is on the corresponding face then

return true;
else

return false;
else

14: return false;

1:
2:

3:

4:

5:

6:
7:

8:

9:

10:

11:

12:

13:

106

APPENDIX B. GEOMETRIC ALGORITHMS 107

B.2 Algorithm for testing if a point is contained in a triangle

A

Q

B

C

Figure B-2: Test if a given point is contained in a triangular facet

Algorithm 7 isQinTri(Point Q, Triangle ABC); (Figure B.2)

Require: The given point is on the plane of the triangular facet
1: V1 < QA x QB;
2: +QB x QC;
3: -= QC x QA;
4: if ?i - i3 > 0 and ?J - 5- > 0 and i-i - 5- > 0 then
5: return true;
6: else
7: if any of these inner products is zero then
8: if query point is on the corresponding edge then
9: return true;

10: else
11: return false;
12: else
13: return false;

APPENDIX B. GEOMETRIC ALGORITHMS 108

B.3 Algorithm for testing if a line segment intersects a tri-

angular facet

A

0
T

B

C

Figure B-3: Test if a line segment intersects a triangular facet

Algorithm 8 isOQinscTri(Point 0, Point Q, Triangle ABC); (Figure B.3)

1: calculate the mixed product (CA x CB) CO;
2: calculate the mixed product (CA x CB) CQ;
3: if the two mixed products have different signs then
4: calculate the intersection T of OQ and Triangle ABC;
5: if T C ABC is true then
6: return true;

7: else
8: return false;
9: else

10: if only one of these mixed products is zero then
11: if the corresponding point is E ABC then
12: return true;
13: else
14: return false;

15: else
16: if both mixed products equall zero then
17: for each edge of ABC do
18: if it intersects OQ then
19: return true;

20: return false;

Bibliography

[1] T. Asano, M. Edahiro, H. Imai, M. Iri, and K. Murota. Practical use of bucketing

techniques in computational geometry. In G. T. Toussaint, editor, Computational

Geometry, pages 153-195. 1985.

[2] L. Bardis and N. M. Patrikalakis. Topological structures for generalized boundary

representations. MITSG 94-22, MIT Sea Grant College Program, Cambridge, Mas-

sachusetts, September 1994.

[3] M. Binnard. Design by composition for rapid prototyping. PhD thesis, Mechanical

Engineering, Stanford University, San Jose, CA, February 1999.

[4] G. Borgefors. Distance transformations in arbitrary dimensions. Computer Vision,

Graphics, and Image Processing, 27:321-345, 1984.

[5] E. Brisson. Representing geometric structures in d dimensions: Topology and order.

Discrete and Computational Geometry, 9:387-426, 1993.

[6] W. Cho, T. Maekawa, and N. M. Patrikalakis. Topologically reliable approximation of

composite Bezier curves. Computer Aided Geometric Design, 13(6):497-520, August

1996.

[7] W. Cho, T. Maekawa, N. M. Patrikalakis, and J. Peraire. Topologically reliable ap-

proximation of trimmed polynomial surface patches. Graphical Models and Image

Processing, 61(2):84-109, March 1999.

[8] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press, Cambridge, MA, 1990.

109

BIBLIOGRAPHY

[9] D. H. Greene. Mathematics for the Analysis of Algorithms. Birkhauser, 1990.

[10] S. Holzner. Microsoft Visual C++ 5. SYBEX Inc., 1997.

[11] J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric Design. A.

K. Peters, Wellesley, MA, 1993. Translated by L. L. Schumaker.

[12] IGES/PDES Organization, U.S. Product Data Association, Fairfax, VA. Digital Rep-

resentation for Communication of Product Definition Data, US PRO/IPO-100, Initial

Graphics Exchange Specification (IGES) 5.2, November 1993.

[13] American National Standards Institute. Product Data Exchange Using STEP (PDES)

Part 42, Integrated generic resources: geometric and topological representation. 1995.

[14] T. R. Jackson. Analysis of Functionally Graded Material Object Representation Meth-

ods. PhD thesis, M.I.T., Cambridge, MA, January 2000.

[15] T. R. Jackson. FGM object modeler. Design Laboratory Memorandum 2000-2, MIT,

Department of Ocean Engineering, Cambridge, MA, February 2000.

[16] T. R. Jackson, H. Liu, N. M. Patrikalakis, E. M. Sachs, and M. J. Cima. Model-

ing and designing functionally graded material components for fabrication with local

composition control. Materials and Design, 20(2/3):63-75, June 1999.

[17] R. Johnsonbaugh and M. Kalin. Object-Oriented Programming in C++. Prentice Hall,

1995.

[18] V. Kumar, D. Burns, D. Dutta, and C. Hoffmann. A framework for object modeling.

Computer Aided Design, 31(9):541-556, August 1999.

[19] V. Kumar and D. Dutta. An approach to modeling multi-material objects. In C. Hoff-

man and W. Bronsvort, editors, Fourth Symposium on Solid Modeling and Applica-

tions, Atlanta, Georgia, May 14-16, 1997, pages 336-353, New York, 1997. ACM SIG-

GRAPH.

110

BIBLIOGRAPHY

[20] V. Kumar, P. Kulkarni, and D. Dutta. Adaptive slicing of heterogeneous solid models

for layered manufacturing. Technical Report UM-MEAM-98-02, University of Michi-

gan, Ann Arbor, MI, January 1998.

[21] M. Mintyli. An Introduction to Solid Modeling. Computer Science Press, Rockville,

Maryland, 1988.

[22] A. Marsan, V. Kumar, D. Dutta, and M. Pratt. An assessment of data requirements

and data transfer formats for layered manufacturing. Technical Report NISTIR 6216,

U.S. Department of Commerce, Geithersburg, Maryland, 1999.

[23] E. P. Miicke, I. Saias, and B. Zhu. Fast randomized point location without preprocess-

ing in two- and three-dimensional delaunay triangulations. Computational Geometry,

12:63-83, 1999.

[24] J. O'Rourke. Computational Geometry in C. Cambridge University Press, 1993.

[25] J. Pegna and A. Safi. Cad modeling of multi-modal structures for free-form fabrication.

In Presentation at Solid Freeform Fabrication Symposium, Austin, Texas, August 1998.

[26] S. Rajagopalan, R. Goldman, K. Shin, V. Kumar, M. Cutkosky, and D. Dutta. Design,

processing and freeform-fabrication of heterogeneous objects. Technical Report UM-

MEAM-99-10, University of Michigan, Department of Mechanical Engineering, Ann

Arbor, MI, 1999.

[27] D. F. Rogers. Procedural Elements for Computer Graphics. McGraw-Hill, 1985.

[28] E. Sachs, J. Haggerty, M. Cima, and P. Williams. Three-dimensional printing tech-

niques. U.S. Patent No. 5,204,055, April 20 1993.

[29] E. M. Sachs, N. M. Patrikalakis, D. Boning, M. J. Cima, T. R. Jackson, and R. Resnick.

The distributed design and fabrication of metal parts and tooling by 3d printing. In

Proceedings of the 1998 NSF Design and Manufacturing Grantees Conference, Cinter-

mex Conference Center, Monterrey, Mexico, January 1998, pages 35-36. Arlington,

VA: NSF, 1998.

III

BIBLIOGRAPHY 112

[30] K. Voss. Discrete Images, Objects, and Functions in Zn. Springer-Verlag, 1993.

[31] M. Woo, J. Neider, and T. Davis. OpenGL Programming Guide, second edition.

Addison-Wesley Developers Press, 1997.

[32] H. Wu, E. M. Sachs, N. M. Patrikalakis, D. Brancazio, J. Serdy, T. R. Jackson, W. Cho,

H. Liu, M. Cima, and R. Resnick. Distributed design and fabrication of parts with local

composition control. In 2000 NSF Design and Manufacturing Grantees Conference,

Vancouver, BC, Canada, January 2000. http://deslab.mit.edu/3dp/3dppapers.html,

http://www.engr.washington.edu/ uw-epp/nsf/.

