
CONFIGURATION MANAGEMENT FOR A DISTRIBUTED AND
COLLABORATIVE SOFTWARE DEVELOPMENT

ENVIRONMENT

BY

TERESA LIU

B.S., ENVIRONMENTAL ENGINEERING SCIENCE (1999)
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Submitted to the Department of Civil and Environmental Engineering in partial
fulfillment of the requirements for the degree of

Master of Engineering in Civil and Environmental Engineering

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2000

@ 2000 Teresa Liu. All rights reserved
The author hereby grants to MIT permission to reproduce and distributed publicly paper

and electronic copies of this thesis document in whole or in part.

AUTH OR
DEPARTMENT OF CIVIL AND ENVIROl NTAL ENGINEERING

MAY 18, 2000

CERTIFIED BYF...
FENIOSKENA-MORA

ASSOCIATE PROFESSOR OF CIVIL AND ENVIRONMENTAL ENGINEERING
THESIS SUPERVISOR

ACCEPTED BY.....................................
DANIELE VENEZIANO

CHAIRMAN, DEPARTMENTAL COMMITTEE IN GRADUATE STUDIES

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

MAY 3 0 2000 ENG

LIBRARIES

CONFIGURATION MANAGEMENT FOR A DISTRIBUTED AND
COLLABORATIVE SOFTWARE ENGINEERING ENVIRONMENT

By

TERESA M. LIU

Submitted to the Department of Civil and Environmental Engineering on May 18, 2000
in partial fulfillment of the requirements for the degree of Master of Engineering in Civil

and Environmental Engineering

Abstract

In the face of changing technology, the world is becoming more global by the minute.
This globalization has resulted in dispersed teams and collaborative opportunities, which
offer value and depth to projects. Software development also reflects this globalization,
as do all the processes involved in software development. It is important to understand
these changes and how they affect not only the entire development process as a whole but
also each individual part of the process.

Configuration management is an integral part of the software development process. In
order to perform good software development, it is imperative to understand and be able to
implement proper configuration management. Thus, as configuration management is
important to software development, it is also important to study the effects of how the
changing context of software development toward distributed and collaborative
environments affects configuration management. Not only does configuration
management influence the transition to this type of environment, it also is quite affected
by it.

In this thesis, I aim to examine the impact of a distributed and collaborative development
environment on configuration management. I will first give an overview of software
engineering with respect to configuration management; next, I will provide and
introduction to traditional configuration management, and in the following chapter, I will
discuss distributed and collaborative configuration management as it exists today. Next, I
will provide a case study of the ieCollab project, a project in which developers were
dispersed and a great deal of collaboration occurred, and finally, I will discuss the future
of collaborative and distributed configuration management.

Thesis Supervisor: Feniosky Pena-Mora
Title: Associate Professor of Civil and Environmental Engineering

Acknowledgements

I would like to first thank my parents Ed and Caroline Liu for their love and support and
for always providing me with the best, and my brother David for relieving my stress.

I would also like to thank Professor Feniosky Pena-Mora for his guidance on this thesis.

Great thanks also go out to my spiritual family at ABSK and Berkland Baptist Church. I
couldn't have made it through five years at MIT without your love and prayers.

Not to be forgotten are the MEng folks - thank for the memories...

Finally, I thank my Lord and Savior Jesus Christ for His faithfulness. To Him be the
glory.

This thesis is dedicated to the memories of my aunts Liu Lin and Chang Meng-Li.

3

Table of Contents

Acknowledgem ents .. 3
Table of Contents .. 4
List of Figures ... 7
List of Tables...8
1. Introduction ... 9

1.1 M otivation .. 9
1.2 Overview ... 10

2. Software Engineering ... 12
2.1 The Capability M aturity M odel... 13

2.1.1 Overview of CM M .. 13
2.1.2 Role of Configuration M anagem ent in the CM M ... 15

2.2 The Software Developm ent Process ... 16
2.2.1 Software Process Activities... 16

2.2.1.1 Fram ework Activities... 17
2.2.1.2 Um brella Activities ... 18

2.2.2 The Role of CM in the Software Development Process 19
2.2.3 Software Process M odels.. 20

2.2.3.1 Linear Sequential M odel .. 21
2.2.3.2 The Increm ental M odel .. 23
2.2.3.3 The Spiral M odel.. 25
2.2.3.4 Other Process M odels... 27

2.3 Software Developm ent Environm ents ... 27
2.3.1 Collaborative Software Development Environment 28
2.3.2 Distributed Software Developm ent Environm ent .. 29
2.3.3 Distributed and Collaborative Software Development 30

2.3 Sum m ary ... 30
3. Software Configuration M anagem ent .. 32

3.1 Purpose and Motivation of Configuration Management...................................... 32
3.1.1 Integrity .. 32
3.1.2 Visibility and Reproducibility .. 33
3.1.3 Traceability .. 34
3.1.4 Accountability and Coordination ... 34

3.3 Configuration M anagement Process ... 35
3.3.1 Key Definitions ... 35

3.3.1.1 Baseline ... 35
3.3.1.2 Change Control Board (CCB) ... 36
3.3.1.3 Configuration Item (CI) ... 37

3.3.2 Process Overview .. 37
3.4. Configuration M anagement Activities ... 38

3.4.1 Configuration Identification.. 38
3.4.1.1 Identifying Configuration Item s... 39
3.4.1.2 Storing and Acquiring Configuration Item s... 39

3.4.2 Configuration Control ... 41

4

3.4.2.1 Change control. 41
3.4.2.2 Version Control... 44

3.4.3 Configuration Status Accounting ... 46

3.4.4 Configuration Audits...--- 47

3.5 Summary ...-- - 48
4. Distributed and Collaborative Configuration Management 49

4.1 Challenges of Distributed and Collaborative Configuration Management..........50

4.1.1 Managerial Challenges .. 50
4.1.2 Process-Oriented Challenges...51
4.1.3 Technical Challenges .. 52

4.2 The Present State of Distributed and Collaborative Configuration Management... 54

4.2.1 CM Team Organization and Management ... 55

4.2.2 CM System Architecture .. 55

4.2.2.1 CM Repository .. 55

4.2.2.2 CM/Computing Network... 56

4.2.3 C M Process.. 57

4.2.3.1 Configuration Identification.. 58

4.2.3.2 Configuration Control ... 59

4.2.3.3 Configuration Status Accounting and Configuration Audits 59

4.3 Configuration Management Tools .. 60

4.3.1 Check Out/Check In Model...61
4.3.2 Composition Model.. 61

4.3.3 Change Set Model 62
4.3.4 Transaction Model.. .. 62

4.4 Summary ..-- 62
5. ieCollab - A Case Study for Distributed and Collaborative Configuration Management

.. . -------------------------.............. 64
5.1 Project Description.. 64

5.1.1 Background 65
5.1.2 Purpose ...-- 65

5.1.3 Development Environment... 66

5.1.3.1 Distributed Environment .. 66

5.1.3.2 Collaborative Environment .. 67

5.1.3.3 Distributed and Collaborative Environment... 67

5.1.4 Project Organization.. 68

5.1.5 Development Process .. 70

5.1.5.1 Roles...70
5.1.5.2 Process M odels... 73

5.1.6 Project Technology... ... 74

5.2 ieCollab Configuration Management Overview ... 75

5.2.1 ieCollab CM Team Organization ... 75

5.2.2 ieCollab CM Responsibilities...76
5.2.3 CM System Architecture .. 78

5.2.3.1 C M R epository .. 78

5.2.3.2 CM Network... 79
5.2.4 ieCollab CM Challenges .. 80

5

5.2.4.1 M anagerial challenges... 80
5.2.4.2 Process-Oriented Challenges.. 80
5.2.4.3 Technical Challenges ... 81

5.3 ieCollab Configuration M anagem ent Activities ... 82
5.3.1 Configuration Identification .. 82
5.3.2 Configuration Control ... 84
5.3.3 Configuration Status Accounting and Configuration Audits 87

5.4 CM Tools .. 87
5.4.1 CV S .. 87

5.4.2 CM /K M W eb Repository ... 92
5.5 Problems and Recommendations for ieCollab Configuration Management........93

5.5.1 Know ledge Problem s ... 94
5.5.2 Collaboration Problem s... 95
5.5.3 M iscellaneous ... 96

5.6 Sum m ary ... 97
6. Future Developments for Distributed and Collaborative Configuration Management. 98

6.1 System Architecture .. 98
6.1.1 CM Repository ... 99
6.1.2 CM N etw ork...100

6.2 CM Process ... 100
6.3 CM Tools .. 102

6.3.1 V ersioning System s .. 102
6.3.2 CM on the W eb .. 102

6.4 Conclusion...103
References ... 104
List of Appendices...107
Appendix ... 108

CIs involved in Change...122
Configuration Item Revision Changes .. 123

6

List of Figures

Figure 2-1 Five Levels of Process Maturity, Capability Maturity Model (Paulk et al,
19 9 3)...14

Figure 2-2 Common Process Framework (Pressman, 1997)...17
Figure 2-3 Linear Sequential Process Model, (modified from Pressman, 1997)..........22
Figure 2-4 Incremental Process Model (Modified from Pressman, 1997)....................23
Figure 2-5 Spiral Process Model (Pressman, 1997)..26
Figure 3-1 Wrong Versions of Same Code (Ben-Menachem, 1994)............................33
Figure 3-2 Configuration Management Process (Pressman, 1997)...............................37
Figure 3-3 CM Change Control Process (modified from Liu and Mantena, 2000)..........42
Figure 3-4 Change History of Configuration Items (Pressman, 1997) 45
Figure 4-1 Illustration of a Distributed and Diverse Environment (Gumaste et al, 1996)53
Figure 5-1 ieCollab Organizational Chart .. 69
Figure 5-2 ieCollab Change Control Protocol (Liu and Mantena, 2000)......................86
Figure 5-3 CV S UNIX interface ... 89
Figure 5-5 WinCVS ieCollab Project interface...90
Figure 5-5 CV S W eb Interface.. 91
Figure 5-5 CM/KM Web Repository (Whitehead, 1999). .. 92
Figure 6-1 Multiple Repositories Accessed as One across a WAN (Belanger et al, 1996)

.. 10 0
Figure 6-2 Quality of CM Process as a Function of Formality (Kliewer, 1998) 101

7

List of Tables

Table 5-1 CM Team Members (Liu et al, 2000)..75
Table 5-2 ieCollab Change Control Board (Liu et al, 2000)..76
Table 5-3 ieCollab Configuration Items (Liu et al, 2000)...83
Table 5-4 Sample CIs for ieCollab from the CollabServer class 84

8

1. Introduction

With the advent of the twenty-first century, we find the world becoming a smaller and

smaller place. The globalization of businesses is occurring at an astonishing rate,

information is more readily available than ever before, and suddenly fellow engineers,

colleagues, and even students on the other side of the world are only a mouse-click away.

Information Technology has been a mighty hand in these developments. The

commoditization of the personal computer, faster connections, and growing affordability

of technology in general are really making this the "information age."

As a result of the changing technology, the ways in which people live and work are being

redefined. For example, e-mail, which allows asynchronous yet immediate transfer of

electronic mail and enables people to communicate more efficiently, and the Internet and

the World Wide Web literally provide information at our fingertips. Physical distance

also no longer hinders us from working and communicating with others halfway across

the world, and the sharing of resources that is now possible enriches the experience of

each person involved. It is safe to say that nearly every industry has been or can be

affected by IT.

1.1 Motivation

The software industry is an industry that IT has affected in several different aspects. Not

only is the software itself IT, but the process in which the software is developed is very

dependent on IT. Just like in any business, technology now allows software developers

9

to be geographically dispersed and yet work closely together, and this situation is

allowing software projects to grow in both complexity and size. However, even as this

environment of distributed location and considerable collaboration have become more

popular and even commonplace, many projects still fail or experience massive delays.

These problems occur for a number of reasons, including the following (Williamson,

1990):

m increase in chances for error as complexity and size of the project increase

- difficulty in synchronization as the number of possible communication paths among a

group increases more for each new person.

- inefficiency and too much overhead as a result of dispersed teams

Thus the question is raised-- in such an environment, how can such software development

projects best be accomplished? It is obvious that the entire software development process

must change in order to remain effective in a distributed and collaborative environment.

How can these processes be accomplished the most effectively? Although there is no one

solution to these problems, there is a set of procedures that can help in alleviating them.

This set of procedures is referred to as configuration management, and it is the

motivation behind this thesis. A key process in software development, configuration

management will be particularly important in facilitating the transition to this

environment. Not only will it be very influential in this change, but configuration

management itself will also be greatly influenced by it.

1.2 Overview

This thesis will be structured in the following manner. First, a background on software

engineering, software development, and changes in the software development

environment will be provided in Chapter 2. A description of the configuration

management process, its role in software development, and the activities involved will

then be given in Chapter 3. The next topic of discussion, in Chapter 4, will be how

10

configuration management is affected by the move toward distributed and collaborative

environments, and following this discussion, in Chapter 5, I will present a case study on

ieCollab. ieCollab is an MIT-based software development project designed to study this

topic of distributed and collaborative environments. I would also like to give suggestions

for the improvement to configuration management in the context of the ieCollab project.

The last portion of the thesis, Chapter 6, will be devoted to the future of configuration

management in the face of changing technology. I will try to provide answers to

questions such as what kind of methodology should be used, as well as what kinds of

tools would be useful to configuration management.

11

2. Software Engineering

Configuration management is a key step in software development. Therefore, to truly

understand configuration management, it is first important to understand the software

engineering context in which it is carried out.

Over the past forty years, software engineering has gone through many changes. At

present, desktop computers are quickly reaching the state where they have become

commodities, and it is predicted that computers will soon be in even common household

items (D'Amico, 1999). As the prevalence of computers grows, so will the demand for

software. The field of software engineering is one of the fastest growing fields, both in

profit and development. Whereas software engineering was an uncertain and rather frail

area at its inception, today it is recognized as a legitimate discipline and a process that

merits serious research and study (Pressman, 1997).

The software engineering discipline is comprised of a set of definitions, processes, and

frameworks, all of which will be described in this chapter. For example, the Capability

Maturity Model is a well-known organizational framework for software development

processes. These processes, which are fairly standard across all development projects,

can be modeled differently according to the project needs and objectives and can occur in

different development environments as well.

12

2.1 The Capability Maturity Model

As stated earlier, Configuration Management is a very important process in software

engineering. Not only is it a key process in software development process, it is also a key

process in the Capability Maturity Model.

2.1.1 Overview of CMM

One problem identified by the careful study of software engineering over recent years is

the difficulty of managing the software development process. A software process is

defined as "a set of activities methods, practices, and transformations that people use to

develop and maintain software and the associated products" (Paulk, et al. 1997). This

definition has been put into practice by the Software Engineering Institute (SEI), which

has developed a framework for processes employed by software organizations for

developing and maintaining software. This framework is called the Capability Maturity

Model (CMM). The basic principle behind the CMM is that an organization's software

process becomes better defined and more consistently implemented as the organization

matures. By helping the organization determine its current process maturity and also

identifying the most critical areas for improvement, CMM is able to provide a model for

continuous and evolutionary improvement on the key process areas in software

development (Paulk, et al. 1993).

According to the CMM, the maturity of software processes can best be achieved in

incremental and evolutionary steps. An immature software organization's processes are

reactionary and inconsistent, and the product unpredictable. However, the processes of a

mature software organization are well defined and followed throughout the entire

organization, and the quality of the product is closely monitored. However, in order to

gage what kind of improvements it ought to make, an organization must be able to

determine its current maturity level.

13

Figure 2-1 Five Levels of Process Maturity, Capability Maturity Model (Paulk et al, 1993)

The CMM defines five levels of maturity for software processes, and each level is

characterized by key process changes that should be made to improve the process. These

levels are illustrated in Figure 2-1. Level 1 is the Initial Level, the level of process

maturity at which there are few stable processes and performance is not dependent on the

organization but rather the talent of the individuals. Level 2 is the Repeatable Level. At

this level, the organization has implemented basic but stable processes for project

planning and tracking and can repeat its previous successes. Thus its software process is

disciplined and its management is effective and operates based on past successes. The

next level defined by the CMM is Level 3, the Defined Level. At this level, the entire

organization follows a documented standard process for developing and maintaining

software. Thus both management and software engineering practices are well defined,

stable and repeatable. The fourth level of maturity in the CMM is the Managed Level.

At this level, the software process capability of the organization can be considered

14

Continuously Optimizing
improving (5)
process

Predictable Managed
process

Standard, Defined
consistent (3)
process

=Initial1),

predictable as a result of the measures taken to set goals and make quantitative

evaluations. In addition, the product will be of predictably high quality. The last level of

software process maturity is Level 5, the Optimizing Level. This level is characterized

by continuous improvement, with the whole organization committed and acting

proactively to improve the development process. This improvement occurs as a result of

learning from defects and also new innovations (Paulk, et al. 1993).

2.1.2 Role of Configuration Management in the CMM

The CM process is positioned differently in each level of the CMM. In an organization at

the Level 1 stage, a CM process has not yet been established or has just been established.

Thus, this organization has no successful CM experiences to look back on and imitate. If

CM is implemented, success depends on the talent and insight of those who implement it.

Along with requirements management, project planning, project tracking, subcontract

management, and quality assurance, configuration management is a key process area for

Level 2 in the Capability Maturity Model. CM practices contribute to the basic level of

discipline characteristic of Level 2 process maturity. This discipline is supported by the

goal of CM, maintaining the integrity of the product during the product evolution. CM

also helps to establish basic project management controls, offering the project the

stability necessary to repeat earlier successes and thus enable an organization to reach the

"Repeatable level" in process maturity (Paulk et al. 1993). At Level 2 maturity, for

example, the organization may have identified key items to be controlled and a simple

CM project repository and protocol for retrieving and replacing these items based on

previous experience, and change may be handled in a similar fashion.

Once an organization has reached Level 3 process maturity, CM processes have been

standardized and made an integral part of the development process (Paulk, 1993). For

instance, the organization will most likely have employed the IEEE standards (IEEE

1990) to create the organization-wide CM standards. Furthermore, at Level 3 maturity,

an organization most likely has designated a team of developers to oversee CM and

15

manage the administration of the project repository. A structured change control process

will also have been standardized, along with the instantiation of a Change Control Board

for approving changes.

At Level 4, the Managed Level, the organization examines the quality of the resulting

product as a way of measuring CM success and efficiency. The CM process is both

understood and controlled, and the organization may, for example, utilize an automated

tool to aid in making the process more efficient and orderly. Finally, at Level 5, the

Optimizing Level, the organization is looking into ways to optimize the CM process,

investigating innovative technologies for CM and disseminating knowledge on lessons

learned.

2.2 The Software Development Process

The software development process is a very important aspect of software engineering,

and it consists of several activities. These activities apply to all software projects,

regardless of the project complexity or size. These activities can occur at different stages

during the project and have different purposes, according to the individual project.

2.2.1 Software Process Activities

The process activities for a software development project can be organized into two types

of activities-- framework activities and umbrella activities. These framework and

umbrella activities make up the common process framework. Each framework activity is

made up of task sets; these tasks sets include all work tasks, milestones and deliverables,

and software quality assurance points (Pressman, 1997). Figure 2-2 illustrates the

common process framework.

16

2.2.1.1 Framework Activities

Framework activities are activities that are integral to the production of the software and

include the following activities:

Figure 2-2 Common Process Framework (Pressman, 1997)

System engineering

System engineering is the process that must occur before any plans for the software

begin. It uses a collection of top-down and bottom-up methods to examine not just the

software, but the entire system and the elements that will work together to help achieve

the goal of the product. System engineering activities include communicating with the

customer to understand the customer's desires and needs for product, evaluating the

feasibility of these needs, and creating a system definition that provides the foundation

for subsequent engineering work (Pressman, 1997). In some organizations, a "business

manager" or "marketing manager" may handle these activities.

Requirements Analysis

According to Pressman, requirements analysis is a software engineering task that bridges

the gap between the system engineering process and software design (Pressman, 1997).

Working with system engineers and based on previously defined needs, the primary task

17

of requirements analysis is to specify software function and performance, the interface

with other parts of the system, and constraints. Requirements analysis should then

provide models to software designers that can be translated into design.

Software design

Simply stated, the software design process essentially takes the "what" provided by

requirement analysis and describes "how" it should be done. Pressman (1997) defines

software design as "an iterative process through which requirements are translated into a

'blueprint' for constructing the software." It refines the requirements already specified

and provides the detail necessary for implementation.

Component Implementation

After the design process and modeling is complete, coding on the actual product can

begin. The design documents should provide enough specificity to produce algorithms,

and the requirements analysis specifications provide a reference for quality control. This

step in the software development process is arguably the one of the most important, as it

is the step where the actual product is produced (Scacchi, 1987).

Software Testing

Software testing occurs after the software product has been built. The main focus of

testing is to discover errors in the program, errors that will undoubtedly be present.

Although the testing concept is quite simple, good testing requires careful planning and

consideration of the requirements and should be planned before coding even begins.

2.2.1.2 Umbrella Activities

Umbrella activities can be described as activities that occur throughout the software

development process and not just at a particular time. Thus, they occur independently

from the framework activities described above. Umbrella activities include project

management, quality assurance, and configuration management.

18

Project management

As with any project, project management for a software project is a very important

activity. Project management activities manage three areas of a project: people, problem,

and process. The project management must ensure that there are appropriate people for

performing project tasks, continually ensure that the project objectives are being met, and

that the process being used to achieve these objectives is correct. Project management is

also responsible for defining a project plan and scope and scheduling (Pressman, 1997).

Quality Assurance

The simple explanation for the purpose behind quality assurance is the production of

high-quality software. This goal can be achieved through proper quality assurance by

numerous activities applied throughout the project duration, such as technical reviews,

testing, monitoring the proper adherence to standards, and measurement and reporting.

Software Configuration Management

Like the other umbrella activities, configuration management is applied throughout the

software development process. The main concern of configuration management is

change in the development process. These changes could include changes to code,

specifications, data, and other items. Thus the activities of configuration management

include identification, control, management, and reporting of changes. Because CM

controls all the items of a project, it is often considered the "memory" of the project.

However, for some organizations, a specially designated group handles the collection of

project knowledge. This group will be referred to as the Knowledge Management team

in this thesis. The role of configuration management in the software development

process will be discussed in the following section of this chapter.

2.2.2 The Role of CM in the Software Development Process

The main responsibility of CM in the Software Development Process is to ensure the

controlled evolution of the software product and to make sure that this evolution is

19

carried out in a manner which will preserve the product's integrity. The role that CM

takes in the software development process is a supporting role. It is often viewed as a

process closely related to project management, as well as quality assurance. However,

CM is important in its own right. It does not produce any part of the product, but instead

helps to manage risk. This is done in the CM process this by using technology and

management to:

- Identify the important system components discrete points in time and store these

components

= Record and trace changes to the system components

= Provide tools for controlling these changes

= Verify these changes and the way in which they were made

Along with managing risk, CM activities also facilitate reuse of system components and

repeatability of the project.

Thus, within the software development process, CM is an umbrella activity, not

associated with any particular framework activity but affecting all aspects of the software

development process. It is not performed at any particular time but is instead an ongoing

process. For example, in some of the software process models described in Chapter 2

such as the waterfall method, many of the software development processes occur only at

certain points in time, such as after the previous process has been completed. However,

CM occurs at all times and is not dependent on any other processes.

In addition to integrity, CM also provides measures for accountability, visibility,

reproducibility, coordination, and traceability (Ben-Menachem 1994).

2.2.3 Software Process Models

Every software project must adopt a development strategy depending on the nature of the

project and product, as well as tools and methods being used. To determine the right

20

strategy for a project, it is important to first look at the different activities involved in

software development and how they relate to one another and the overall process.

Process models provide a way to do this by organizing the activities into different stages

and defining how and when they should be done. Thus, these process models attempt to

bring some structure and order to the otherwise very chaotic software development

process and organize the software process into task chains. These task chains are

"idealized plans of what actions should be accomplished and in what order" (Scacchi,

1987). There are many process models, each offering a different view on the software

process, and configuration management, being an integral part of the development

process, has part in each of these models. A few examples of process models are

discussed below.

2.2.3.1 Linear Sequential Model

Also known as the "waterfall model" or "classic model," the linear sequential model

emphasizes a sequential approach to the stages in the development process. Modeled

after the conventional engineering cycle, the key activities in this model are analysis,

design, coding, testing, and maintenance, and they occur in this order. According to the

linear sequential model, the next activity in the process does not begin until the previous

one has been completed (Scacchi, 1987). Figure 2-3 illustrates the flow from one activity

to the next.

Configuration management activities occur during the entire life of the project; however,

they occur mainly at the end of stages, typically when items under CM control become

finalized. For example, after the analysis stage has been completed, CM will place

approved items in the project repository. However, once the design phase is complete

and once coding and testing begin, CM activities may occur continually, as change

occurs frequently (Bersoff and Davis, 1991).

Although it is the oldest and most widely used model, the linear sequential model does

have its disadvantages. For example, there is often a great deal of uncertainty at the

beginning of a project, making it difficult for the first steps to be completed quickly or

21

accurately. This inefficiency will affect the rest of the process, since each consecutive

step must occur only after the previous one has been completed. Furthermore, this model

also does not make the best use of resources, as teams working in a later stage of the

cycle can not work until the previous stages have been finished. Along the same lines,

Figure 2-3 Linear Sequential Process Model, (modified from Pressman, 1997)

the pure linear sequential model also does not allow for iteration, which is often

necessary when mistakes are made and changes are needed. Because of the successive

nature of the process, developers also often experience many unnecessary delays.

Another disadvantage of the linear sequential model is the unavailability of a working

model of the product until the end of the project life span (Pressman, 1997). Finally, the

linear sequential model may not be appropriate for distributed and collaborative

development, since using this model is very deliberate and often time-consuming for the

above-mentioned reasons, and the project speed would not be helped by the additional

time that is required for collaborating in a distributed manner.

22

...
projoOt M6009610011t..- '

..* * ..* * ...* ...I* * * * ..*0 ..- * ..

Coding Testing

I I

Configuration Management

Requirements Design
Analysis

J
IM rk Ii

Business/Markeetingg Management

........
......
........

................
..

Knowledge Management

Although this process model does have a number of disadvantages, it also has many

advantages and, thus, is still widely used. One advantage of the linear sequential model

is it's providing of an orderly sequence of transitions from one stage to the next in a

linear fashion. This order provides a much-needed structure to the software process,

which allows projects to be rather straightforwardly managed, which is especially

beneficial in large project situations or even distributed situations. This model is also

very easy to implement (Pressman, 1997). Furthermore, because of the sequential nature

of this model, CM resources are not strained, allowing other energy for other goals, such

as collaboration.

Knowledge Management

... pi6j a W 6.a0 mi6ht 0 ..: ...I**
.
.
.
. *
.

I
.
.
.
.
.
.
.
.
.
.
.

.
..
..
..
..
..
..Coding TestingII

Busines~keting Management..... - ...*III

........................... Requirements......................... Coding TestingAnalysis Design..

..........................I
.............:.*.,.*.*.,.,.*.,.,.*.* Configuration Management..............Qu;i RVA4

.. ..*

Figure 2-4 Incremental Process Model (Modified from Pressman, 1997)

2.2.3.2 The Incremental Model

The incremental model applies the sequential philosophy behind the waterfall method

while introducing iterative and prototyping concepts. As shown in Figure 2-4, the

incremental model employs staggered linear sequences. The main concept behind this

model is the delivery of the product in increments. A project using the incremental

model may deliver the product in modules, where each module provides a different

functionality in the product. However, the first delivery typically has the essential

23

operating functions, and subsequent deliveries add more features (Scacchi, 1987). After

delivery of each portion, the customer may evaluate the module, and provide suggestions

for what to improve for the next iteration. The process is repeated until the final product

is delivered.

Configuration management activities occur much more frequently throughout the process

life cycle in the incremental model than in the linear sequential model. Although CM

activities are concentrated at the end of each stage and during the actual production of the

product as they are in the waterfall model, CM, because the incremental model is

iterative, there are more opportunities for change, which is a key motivation for CM. To

elaborate further, according the linear sequential model, changes only occur when a

problem is found or an enhancement needs to be made. However, according to the

incremental model, not only are more iterations of the stages performed, giving

opportunities for new configuration items, but there are also more opportunities for

changes and modifications.

One of the main advantages of the incremental model is that it allows for feedback from

clients. This feedback can be extended so that other members of the development team

provide the feedback as well. This structured feedback is especially useful in the case of

collaborative development. Because the structure for feedback is already in place in the

process model, less initiative is needed to generate feedback on the product. The

incremental model also allows for better utilization of people and resources than the

linear sequential model does since different iterations of the cycle are being performed in

parallel yet staggered fashion (Pressman, 1997). This is particularly useful for a

distributed development environment because it provides more opportunities for

collaboration between stages.

However, though the incremental model does allow for better use of resources, this

allocation of resources may be difficult to coordinate, especially in a distributed

environment when resources are located in dispersed locations. This situation would

require a great deal of coordination and effort. Furthermore, the iterative nature may

24

cause a straining of CM resources at times, which could lead to disorganization and

confusion in the project. However, even with the disadvantages, the incremental model

may be one of the best choices for life cycle models, and the large number of commercial

firms using this model for software development evidences this (Scacchi, 1987).

2.2.3.3 The Spiral Model

Like the incremental model, the spiral model for software development is an evolutionary

process model that addresses many of the challenges raised by the traditional linear

sequential model by applying the systematic and controlled aspects of linear sequential

model while giving it an iterative and prototyping nature. The spiral model considers a

set of six framework activities, or task regions, as listed below (Pressman, 1997):

" customer communication

" planning

" risk analysis

- engineering

a construction and release

- customer evaluation

Figure 2-5 illustrates the spiral model. The process begins at the center of the spiral and

moves through each task region in the clockwise direction. After completing an iteration

of the cycle, a new one will begin based on the feedback received from the customer.

The inner cycles of the spiral represent more analysis and prototyping, where the product

of the first circuit may result in a product specification. Subsequent circuits of the cycle

follow the linear sequential model more closely, resulting in prototypes and more

complete versions of the product. Another important feature of the spiral model is that it

includes additional customer communication and evaluation steps at the end of each pass

through the cycle. Using the spiral model, a software product is developed in iterations of

the six framework activities, where the products developed in iterations begin as

prototypes and get increasingly complicated and complete with successive iterations

(Pressman, 1997).

25

Figure 2-5 Spiral Process Model (Pressman, 1997)

In the spiral model, CM activities are heavier in the outer levels of the spiral than in the

inner layers, since the outer cycles of the spiral take on the characteristics of the classic

linear sequential life cycle and the inner layers produce less in terms of CM items.

Furthermore, since what is produced at the end of each cycle is typically a prototype that

is "thrown away" and not changed, CM activities may be heavy with respect to handling

new configuration items. As with any iterative model, CM will also have to be very

active during the entire life of the process, especially as customers provide feedback that

will necessitate change.

The spiral model is a very realistic approach to developing large-scale systems and

software (Pressman, 1997). The customer feedback and iterative approach addresses

many of the challenges associated with the linear sequential model, such as wasted time

spent waiting for one activity to be finished and the discovery of errors. This model of

feedback is very useful for collaborative projects and takes risk into account as a large

consideration, which is also useful for collaborative and distributed projects, which are

often high risk. However, this process model takes a good deal of resources and

management to implement, and it is also still a relatively new model. Therefore,

although useful, it may be difficult to implement in a distributed environment.

26

2.2.3.4 Other Process Models

Other process models offer similar strategies for the software process, often adapting

another model to specific needs. For example, the Rapid Application Development

(RAD) model is an adaptation on the linear sequential model and is designed particularly

for projects where a very short development cycle is necessary (Pressman, 1997). In this

model, CM is especially important since all steps are being done at a very fast pace. In a

very fast-paced environment, CM practices are often done in a "quick and dirty" method,

which can result in complications later (Bersoff and Davis, 1991). The component

assembly model is another process model, based on the spiral model. However, it tries to

reuse software and components to reduce the cycle time by up to 70%. Reuse

complicates CM in this model, however, especially if the reused module is used by more

than one product. These two models, although producing results very quickly and

efficiently, require a great deal of management and commitment from those involved

(Pressman, 1997), qualities that are often harder to generate in distributed environments.

2.3 Software Development Environments

The software development environment is another important aspect of software

engineering, and it encompasses many aspects of the software project. Understanding the

development environment is crucial to every project. According to Brown et al. (1992), a

software development environment is "a complete, unifying framework of services

supporting most (or all) phases of software development and maintenance." This means

that a description of a project's software development environment will consider the

project's technical, managerial, and even political environments. The mechanisms, tools,

and processes used to address these issues are also a part of the development

environment.

In more recent years, since the popularity of computers and need for software has grown

and there have been many changes in software engineering in general. Thus, software

development environments have taken on new characteristics, as well as new needs.

27

2.3.1 Collaborative Software Development Environment

One type of environment that has very prevalent is a collaborative software development

environment. As software projects have become increasingly complicated, there has

been a greater need for collaboration in the software development process. The sheer

size of projects has made it necessary to divide work between many developers, and

organize developers by processes. Furthermore, the value of teamwork has also been

particularly emphasized in recent years (Belanger et al, 1996). Thus, working jointly

with other developers and teams has become quite standard. The main focus of this

collaboration is sharing. This involves the sharing of ideas, documents, project modules

that interact with other modules that need to be integrated form larger ones, code for

testing, as well as other items, all within a team or between teams. Collaboration can

even involve groups of people from completely different organizations or backgrounds

working together for one purpose.

The benefits of collaboration include allowing for enriching and enhanced experiences

that would not occur with individual work. Most people generally agree that better

results are achieved in collaborative settings, with more ideas being generated and more

feedback being given. The challenges of having a collaborative development

environment are mostly made up of the difficulties that come with many people working

together. For example, communication problems, differences of opinion, different

working styles, and personnel management all impact the success of a collaborative

effort.

As stated, collaboration is a very important part of software projects and is becoming

easier with advances in technology. Furthermore, the success of the collaboration is

often a very important factor for whether a project is successful and delivers on time.

28

2.3.2 Distributed Software Development Environment

Complementing the now common collaborative software engineering environment,

distributed software development environments are also being quite readily adopted.

"Distributed environment" can mean many things. One common use of this term at

present refers to the notion of shared services provided transparently by cooperation

between remote and local processors (Kramer, 1994). In this client-server environment,

clients may make requests for service, which is allocated by a server and relinquished

after use. Although "distributed environment" may sound as if users are far apart from

each other, in most cases, users are in the same office, building, or local area. The

benefits of this kind of distributed development environment include the benefits that

come with shared services and centralized services, such as lower costs and fault

tolerance (Kramer, 1994).

A "distributed software development environment" encompasses this concept of

distributed systems but includes another level of distribution. This additional level of

distribution refers to a group of people who are geographically distributed over a

considerable distance and yet have some common objective. Although it is quite

ordinary for two developers to be in offices across the street from each other and working

on the same team, truly physically distributed teams are still not as widespread, though

they are becoming more so. However, this kind of physically distributed development

environment can only occur because of the technology of the distributed systems

discussed earlier, which have made it feasible for two developers to be in different

countries and work together. Although this allows for a greater amount of collaboration,

integrating and coordinating distributed systems requires a great deal of effort. This

effort involves many choices as to how to configure hardware and software to achieve

successful distributed collaboration. In addition, such projects also introduce managerial

challenges (Belanger et al, 1996).

29

2.3.3 Distributed and Collaborative Software Development

The kind of distributed effort just described can only be achieved when done hand in

hand with collaboration. However, even though collaboration is necessary in a

distributed environment, the amount of collaboration that actually occurs may vary from

case to case. For example, one level of distributed collaboration occurs when a single

organization has offices in many different and distributed locations. In a software

development situation, this would probably mean communication and sharing of

resources between different sites yet having local systems that are tailored to each

location. However, another example of collaboration in a distributed environment would

be a case where several entities from different organizations collaborate together on the

same project. This phenomenon has been termed "virtual enterprises," and it is a

situation that is just beginning to occur in the software development industry (Noll and

Scacchi, 1997). Organizations in virtual enterprises usually require that some autonomy

over their own processes and tools; however, they still need to adopt common practices to

collaborate and work with other dispersed developers. These needs of distributed

collaborative software development environments are the needs that ought to be

considered when discussing software engineering for the future.

Thus, distributed and collaborative software environments are becoming more and more

important, especially with the globalization of companies and increase in collaboration

across the world, which necessitates tools for long distance collaboration. However,

distributed and collaborative environments also introduce many challenges to software

engineering, both technical and non-technical. Tackling these challenges is not an easy

task; it is difficult more often than not and requires a great deal of planning and

forethought.

2.3 Summary

In summary, software engineering is a very structured discipline that must be understood

before understanding configuration management. Many tasks and activities must be

30

accomplished by a software development project before a product is produced, and the

collection of these activities is referred to as the process. Configuration management is

only one of the processes in software development. Depending on the level of structure it

has reached in its development process and how consistent and deep its activities are, an

organization can be categorized into different levels of process maturity according to the

Capability Maturity Model.

Each type of activities in the software development process serves a different purpose in

a project. In addition, the processes that these activities are a part of occur at different

stages within the life of a project, and although there is a basic order to these stages, the

actual order depends on an individual project's goals, objectives, and environment. The

order and interaction of these processes can be modeled in many ways. Furthermore, the

environment in which they are performed also influences the processes and activities in a

development project.

Finally, configuration management has a position in each aspect of software

development, from the process to the life cycle. In order for one to truly understand

configuration management, it is necessary to understand the concept of software

development. The next chapter, Chapter 3, will explain the specific principles and

practices that make up configuration management.

31

3. Software Configuration Management

Although it is often viewed as an overhead expense and a "non-productive" part of any

software project, Software Configuration Management, hereafter known as Configuration

Management, is an integral and vital part of every software project. This chapter will

discuss the details of configuration management-what problem it addresses, an

overview of how it is done, and the specific activities that help to accomplish its goals.

3.1 Purpose and Motivation of Configuration Management

The purpose of configuration management (CM) is to maintain the integrity of a product

as it evolves to make its evolution more manageable (Buckley, 1993). As evolution

implies change, the main source of difficulties that corrupt integrity in a software

project's configuration management is change. However, change is inevitable in any

project, and thus, maintaining a protocol for change and evolution is very important to the

success of a project. Closely related to change are several other factors that drive the

need for CM. Each of these factors also affects the integrity of the product. These

factors are visibility and reproducibility, traceability, and accountability and coordination.

3.1.1 Integrity

Protecting the integrity of product components basically means preventing components

from becoming corrupted and erroneous. For example, one situation that CM helps to

32

prevent where integrity is compromised is simultaneous updates in the case where two

programmers are trying to modify the same module. With no configuration management

procedures or controls in place, the programmer who makes the most recent update will

have overwritten the update submitted by the previous programmer without realizing it.

C1 B A B

D C

Programmer 1 Programmer 2

Figure 3-1 Wrong Versions of Same Code (Ben-Menachem, 1994)

Another example of the problem with maintaining the integrity of the product is

illustrated in Figure 3-1. This figure shows how Programmers 1 and 2 could have copies

of the same piece of problematic code (i.e. code that has a bug). If Programmer 1 fixes

the bug without telling Programmer 2, Programmer 1 will be using the correct version,

C1, and Programmer 2 will still be using the unfixed module, C. Along with using an

outdated version of the code, Programmer 2 might also change the code so that there are

now two different versions of the same module.

3.1.2 Visibility and Reproducibility

Visibility is one of the basic needs in a software project. It means allowing those parties

that need to see elements of the product to see it and have access to it. For example, this

is important for management purposes, since management needs to be able to observe

progress on the product. Visibility control can also facilitate security, preventing those

who should not have access to a certain part of the project from having access to it (Ben-

Menachem, 1994).

33

Reproducibility is also a concern. However, the large size of many projects creates the

possibility of having many copies a problematic module held by a number of people. If

this module later becomes shared by multiple releases of a software customized for

different customers, the bug will have to be diagnosed by each person who owns a copy

of the problematic code and corrected several times after it surfaces. It is also often of

great interest to preserve the elements of a project in such a way that appropriate parts

can be reused. This situation necessitates having good storage of project items and

descriptions related to each item that will enable others to reproduce and repeat the

process.

3.1.3 Traceability

The need for traceability stems from the chaos that can occur when the linkages between

project deliverables are not preserved. For example, without appropriate protocols in

place, it is very possible to not know what requirements a particular piece of code fulfills.

This can become quite a problem in large projects especially (Williamson, 1990).

Another problem related to traceability is need for having a project history. Oftentimes a

part of a new release may not work properly, requiring that the old version of this part be

reinstated. Without tracking the history of the project and its components and storing

evolutionary components and keeping the appropriate linkages, it would be impossible to

ever restore previous versions of components in case a new version is unsuccessful. A

quote from a frustrated software engineer goes as follows: "what do you mean we can't

re-create the previous production version? We must fall back; this one doesn't work"

(Williamson, 1990).

3.1.4 Accountability and Coordination

CM is also very important when there is shared code. In these situations, accountability

and coordination are imperative to proper management and preserving the integrity of the

product. For example, without having CM protocols are in place, it would be impossible

to tell who is responsible for changes made to a project item or who has access to a0

34

project item. It would also be difficult to know what changes a particular person has

made. Without proper accountability, confused software engineers will continue to make

statements such as "if we could only find out what changes John made before he went on

vacation..."(Williamson, 1990). This situation illustrates the need for accountability in a

project.

Coordination is also a driving factor for CM. Without a CM protocol, affected parties

might not be notified of changes to project items, such as code, resulting in a breakdown

in coordination and an uniformed group. This could result in extraneous or erroneous

work. Therefore, there is a need to control versions of the software and track what is

under use and under testing or under development.

3.3 Configuration Management Process

Thus, in order accomplish the goal of controlling the evolution of the product, the

configuration management process is applied. However, before describing the CM

process, a set of key definitions and concepts must first be established.

3.3.1 Key Definitions

Three key concepts that should be defined before discussing configuration management

are Baseline, Change Control Board, and Configuration Item.

3.3.1.1 Baseline

One of the core concepts in CM is the concept of the baseline. The baseline is the

collection of configuration items for the project defined at particular points in time, often

at project milestones and formal technical reviews and approval. These items vary

depending on the project, but consist mainly of documents that help to define the project.

Before a document is set as part of the baseline, changes to the item may be made easily

and informally. However, once the document becomes part of the baseline by approval

35

or reaching of a milestone, a formal procedure must be performed in order to change it

(Pressman, 1997).

The project baseline can be divided into four sub-baselines: the functional, allocated,

developmental configuration, and product baselines. The functional baseline consists of

approved documentation of functional characteristics of the system as a whole and is

normally established at the time the contract is awarded. The allocated baseline consists

of the approved documentation of functional characteristics of the software such as the

requirement specifications. The developmental configuration baseline consists of

documents developed during the design, coding and testing of the product. These

documents might include design specifications and source code, not to mention other

documents. Therefore, this baseline is most likely the baseline that will experience the

most changes during the evolution of the product. Thus, although CM is a continual

process, the CM team will generally have the most activity during this developmental

period. The final sub-baseline is the product baseline. Established only on the

completion of testing, this baseline replaces all the other baselines and is the final

baseline. It includes the final code on electronic media, user manuals, and other items

that are needed for reproduction and maintenance of code (Buckley, 1993).

3.3.1.2 Change Control Board (CCB)

Changes to the project baselines can be made only after being evaluated by the Change

Control Board (CCB). The CCB is the central authority that evaluates the requests for

changes and approves or denies these requests. The membership of the CCB can vary

depending on the complexity and needs of the project. It can be made up of one

individual, generally the project manager, or a group of people, including members from

requirements analysis, design, testing, quality assurance, CM, the end user, etc. (IEEE,

1990). The CCB meets at regular intervals and holds other meetings when necessary.

Regular meetings are attended by all members of the CCB, and other meetings are

attended by relevant members.

36

3.3.1.3 Configuration Item (CI)

The documents and parts of the project that are controlled by the configuration

management process and make up the project baselines are referred to as Configuration

Items (CIs). The identification of these CIs will be discussed in greater detail later in this

document.

3.3.2 Process Overview

The actual configuration management process is centered mainly around the CM activity

of configuration control, which will be discussed in further detail in Section 3.4. It is

difficult to describe as the CM process as one single process. It is in fact a combination

of several processes occurring in parallel during a software project. Therefore it is more

useful to describe facets of this process. One aspect of the CM process is configuration

item control and how CIs are handled and managed. Another aspect of the CM process is

modified

- - Project database

approved
Software Formal

engineering SCle technical
tasks reviews

stored

Scis

extracted
SCM

controls

Figure 3-2 Configuration Management Process (Pressman, 1997)

37

change and how change is managed. The basic CM process from the perspective of CI

control is illustrated by analogy in Figure 3-2 and is as follows. CM stores all baselined

configuration items in a repository. This repository is represented in Figure 3-2 by the

"Project database," and CIs are referred to as SCIs (Software Configuration Items).

When modification on a particular baselined CI is necessary, the CI is extracted from the

repository. Configuration management controls, such as access controls, are represented

as swinging doors in the figure. After the CI is extracted from the project repository, it

undergoes various software engineering tasks, resulting in possible modifications to the

CI. These modifications can be made only by going through a formal change process,

which will be discussed in more detail in Section 3.4. Briefly, this process involves

requesting a change, receiving approval of the change, implementing the change, and a

review of the change. After these activities, the CI goes through formal technical

reviews, such as quality assurance reviews, and after it is approved, the CI is stored back

in the project database as a new addition or modification to the baseline.

3.4. Configuration Management Activities

The above process leads to the definition of four main CM activities: configuration

identification, configuration control, configuration status accounting, and configuration

audits.

3.4.1 Configuration Identification

According to IEEE standards, configuration identification activities "identify, name, and

describe the documented physical and functional characteristics of the.. .elements to be

controlled for the project" (IEEE, 1990). These controlled elements are the configuration

items. Configuration identification helps to answer the following questions (Williamson,

1990):

38

" What is this item?

" What application is it part of?

- What documents support and explain the functionality of this item?

- How is this version different from the prior version?

- If this item is changed, what else will have to be changed to prevent problems from

occurring?

3.4.1.1 Identifying Configuration Items

In identifying CIs, controlled items must at a minimum consist of the following:

= code

- documentation

m specifications and designs

m test designs, data, and reports

m change reports

In addition to indicating what items are CIs, the configuration identification activity also

provides a name and label for each CI, which will aid in versioning, and a description of

the item (Ben-Menachem, 1994).

3.4.1.2 Storing and Acquiring Configuration Items

The storage of CIs can vary from project to project. However, CIs will generally be

stored in a project repository. There are various ways to store document items because of

the different applications that may be necessary to view them, and there are even various

ways to store source code. However, all repositories should serve as a central location

for items. Having a repository that serves as a central location where CIs are kept allows

all members on the project to access the exact same version of a document. This

repository has the following functions (Paulk et al, 1993):

- Provide for storage and retrieval of configuration items

= Allow sharing and transfer of CIs between relevant groups

- Provide for storage and recovery of archived versions of configuration items

39

= Ensure proper creation of products from baseline

m Provide storage, update, and retrieval of CM records

The process of acquiring CIs from the project repository is one that should be carefully

monitored and controlled. It may be controlled manually or automatically. For example,

according to Williamson, in 1990 the method of one organization was to store master

copies of code on disks in a centrally located file cabinet. When a programmer needed to

check out code, he/she would remove the appropriate disk from the file cabinet and leave

a card with a name and date in the disk's place. In more recent years, it has become

common to store items such as source code on a central server. The acquisition of

configuration items can then be automated using a software tool. The software tool

serves as an "electronic librarian," checking code in and out at the request of the user

(Williamson, 1990).

Access privileges to this project repository will be defined differently for each project.

For example, for a certain project, programmers may have both "check-in" and "check-

out" access to certain code modules and only "check-out" access to others. These

restrictions serve as a method of controlling the scope of access. Allowing all users to

have full and often unnecessary access to all configuration items could cause great

confusion when configuration items are improperly handled, and traceability and

accountability would be extremely difficult. Allowing limited access to CIs also serves

as a security measure.

Furthermore, how tightly the configuration items are controlled will differ from project to

project. Basic access control such as the manual file-cabinet system described above is

very tight and active, requiring a great deal of surveillance. When control is very tight,

after a CI is checked out, it is basically locked. That is, there is no other access to it until

the item is returned to the repository. Automated (computerized) systems make this

process easier. However, the advancement of technology and distributed systems has

created other needs for access control, as will be discussed in the next chapter.

40

The acquisition of CIs in general is not to be confused with the process described in

Figure 3-2. Along with tracking baselined CIs, CM is also concerned with the tracking

and storage of preliminary versions of CIs that will be baselined in the future. Figure 3-2

presents an analogy for the retrieval of baselined configuration items that occurs when

changes need to be made to the baseline or when a new CI needs to be added to the

baseline. Though the baselined and non-baselined CIs are part of the same repository,

before a CI has been baselined, it can undergo changes easily and informally. It does not

have to go through the change process described. However, once a CI is added to the

baseline, it must go through the process described earlier in Section 3.3.2.

3.4.2 Configuration Control

Configuration control is the core of configuration management. The configuration

control process involves two main sub-processes that are very closely related, change

control and version control.

3.4.2.1 Change control.

One of the ways in which CM helps to manage risk is by providing methods for

controlling change. Change control helps to answer questions such as:

" "What changes have been made to my software?"

" "How do I inform others of changes I have made to the software?"

- "Do anyone else's changes affect my software?"

= "What is the status of changes I have requested?"

An overview of the change control process is shown in Figure 3-3. As shown in this

figure, change can occur at any point in the project. However, this formal change process

need only be applied to configuration items that have already been baselined. The left

column represents a basic software development process or life cycle such as the linear

sequential model. This figure can also be applied to other process models such as spiral

or incremental models, which involve several iterations of the linear sequential model.

41

As the project progresses through the different software development steps, changes can

be requested and addressed along the way. There are several steps in the change control

process. They are as follows:

Figure 3-3 CM Change Control Process (modified from Liu and Mantena, 2000)

Change Request

The change request is a key item in traditional, tight change control. The change process

must first be initiated by a change request. Valid reasons for changes may include errors

or problems discovered in the product, as well as modifications or enhancements to the

product. Items that might be affected include specifications, design, and code, to name a

42

few examples. Each project should have a specified procedure established to document

change requests. For example, the minimum information that should be provided on a

change request is as follows (IEEE, 1990):

m Name(s) and version(s) of the CIs where change is proposed to occur

m Originator's name and group/team

m Date of request

m Indication of urgency

m The need for the change

" Description of the requested change

After a change request has been generated, it is submitted to a central authority, the

Change Control Board for review.

Change ApprovallDenial

The CCB meets and reviews and evaluates the change request and makes a decision on

whether to approve or deny the request for change. Generally, the CCB will review

requests generated by problem reports before requests for modifications/enhancements.

When reviewing a request, the CCB considers the following information: size,

alternatives, complexity, schedule, tests, resources, impact on system, benefits, politics

(Favela, 1998), among other possible factors for whether the request should be approved.

Based on these factors, the CCB will either approve or deny the change request. After the

CCB reaches a decision, it notifies the originator of the request about the decision. If the

request is approved, the change is submitted for implementation. The change request

also then enters CM's status accounting process. If the change request is denied, the

change request originator receives an explanation of why the request was denied along

with the notification of denial (Ben-Menachem, 1994).

43

Change Implementation

Once a change request is approved by the CCB, the next step is implementation.

Implementation on the change should be handled through normal channels and by

appropriate technical authorities. However, before submitting the change for

implementation, the CCB will have determined which changes have higher priorities for

implementation. For example, requests for problem fixes will generally have higher

priority than enhancements, etc. The CCB may also have to determine what kind of

corrective action should be implemented in response to the change request, particularly in

the case of a problem report. Once the change has been made, it must be verified by the

CCB. Information recorded about the change should include at a minimum:

" The associated change request

- Names and versions of the affected items

m Verification date and responsible party

= Release or installation date and responsible party

m the identifier of the new version

Baseline Update

After the change process has been completed and the change has been implemented, the

CM updates the old baseline by incorporating the implemented change into the

appropriate baseline, functional, allocated, or developmental configuration baselines, as

shown in Figure 3-3. Only changed items approved by the CCB can be added to the

baseline. This in turn affects the overall project baseline. The changed baselines are then

subjected to quality assurance and testing activities (Pressman, 1997). Finally, the

appropriate parties are notified of the changes made.

3.4.2.2 Version Control

Another control process that goes hand in hand with change control is version control.

One of the main purposes of CM is to control the evolution of the product and the

44

Figure 3-4 Change History of Configuration Items (Pressman, 1997)

associated configuration items during the course of the project. Version control helps to

do this by providing a change history for each configuration item. When corrections or

changes are made to a CI, a new version of the item is created. Figure 3-4 illustrates this

process. For example, if a programmer takes Version 1.0 of a CI and makes a change,

the version number becomes Version 1.1. Minor changes to this item would result in

version 1.1.1 and so on, and a major change to the CI would result in 1.2. However, a

major change that results in a new evolutionary path would be named Version 2.0

(Pressman, 1997).

Another main function of version control is to support the concept of baselining by

preventing uncontrolled modification or deletion of configuration items. If a change has

been made to a baselined item, this change is noted by changing the version number of

the item. Furthermore, by assigning version numbers in tracking the evolution of the CIs,

it will always be apparent which version of the CI is the most recent so that changes are

not made to the wrong version. As mentioned before, different versions can also be

combined to form releases of the product that are tailored for different customers with

different features (Willamson, 1990).

45

Version control is essential to every project. However many methods are available for

addressing this need. Simple but rather primitive version control could be sufficient for a

very small project. For example, according to Williamson in 1990, one software firm

was using index cards pinned to a wall to represent code modules, and cards representing

different versions of these modules were pinned below. Every time a programmer made

changes to a module, he would add a new index card under the previous one with a new

version number written on it. Thus the evolution of the configuration item could be

examined by just looking at the hierarchy of the cards. Although this system might work

for some projects, however, as software projects become larger, more complex, and more

distributed, automated and more sophisticated systems may be required to effectively

manage versions. These will be discussed in greater detail later.

3.4.3 Configuration Status Accounting

Configuration status accounting, another configuration management activity, is the

recording and reporting of the information needed to manage and physical characteristics

of a project and its parts (Buckley, 1993). This activity is particularly important when it

comes to changes during the project. Throughout the duration of the project,

configuration status accounting helps to answer the following questions about change

(Ben-Menachem, 1994, Williamson, 1990):

- What happened?

m When did it happen?

- What were the reasons?

m Who authorized the change?

- Who performed the change?

m What items were affected?

- What is yet to be delivered?

This information is necessary for keeping members of the project informed about the

project status, which is especially important in large projects. Keeping members of the

46

project informed prevents many problems, such as two programmers trying to modify the

same configuration items with different intent or key people being uniformed about

changes that are to be made. This information is made available to various levels of

authority via reports. These reports fall into two categories, periodic configuration status

accounting reports and reports produced on demand, commonly known as "ad hoc"

reports (Pressman, 1997). The periodic status accounting reports list all approved

documents that make up the project baselines, as well as the proposed changes, and status

of implementation. Ad hoc reports are reports triggered by a problem that has arisen or

any other situation where information on CIs is needed (Buckley, 1993).

3.4.4 Configuration Audits

The main purpose of configuration audits is to ensure that change to a baselined

configuration item has been properly implemented. This is done using two processes,

formal technical reviews and the software configuration audit. Formal technical reviews

check the technical accuracy of the modified configuration item, assessing for whether

then change made properly reflects the change that was requested, possible side affects,

and consistency with other CIs. This review should be done for all changes except the

most trivial changes (Pressman, 1997).

The software configuration audit complements the formal technical review by

considering the characteristics of a configuration item that are not normally addressed by

the technical review. This audit is typically conducted jointly by Quality Assurance and

CM teams. The questions addressed by the audit mainly seek to ensure that the change

has been made following the proper procedures and are as follows (Pressman, 1997):

- Has the change specified in the change request been made? Have any additional

modifications been made?

- Has the change been examined for technical correctness by a technical review?

- Have software engineering standards been properly followed?

- Have the change date and author been specified?

47

- Have configuration management procedures been followed in making the change?

- Have all affected CIs been appropriately updated?

3.5 Summary

In summary, the main purpose of CM is to preserve the integrity of the products being

produced in a project. Along with integrity, visibility, accountability, and traceabliity are

also key motivators for CM. In producing a piece of software, there are many activities

and tasks that can help in achieving this goal. These activities are the ones that make up

the CM process: configuration identification, configuration control, configuration status

accounting, and configuration audits. The core activity of these is configuration control.

As business is becoming more global and distributed and collaborative development

environments become more common, the software development process has experienced

the need to change and adjust to the new environment. CM also has experienced the need

to change even as it helps to ease the change. Chapter 4 will discuss the current state of

distributed and collaborative CM and how it has dealt with distributed and collaborative

environments.

48

4. Distributed and Collaborative Configuration
Management

As software development environments have become more distributed and collaborative,

configuration management has been more important than ever, dealing with problems and

challenges to evolve and support this environment (Allen et al, 1995). Distributed

configuration management has been defined as "simply a recognition of the true state of

software development in the 1990's - managing the evolution of software produced by

geographically distributed teams, working semi-autonomously, but sharing a common

software base" (MacKay, 1995). Distributed and collaborative configuration

management relies on the same principle but with an added emphasis on collaboration.

As the quote suggests, at present, distributed teams are redefining the way people work

and have even become quite commonplace, and collaborative efforts are also having a

profound impact. Collaboration, fueled by distributive technologies is enabling more

large-scaled development projects than ever before. As the product grows in terms of

number of developers, size of applications, and cost of product failure, the need for good

software configuration management strategy increases (Gumaste et al, 1996). Therefore,

it is important to identify and address the CM challenges that come with these new

situations.

Though CM faces many challenges in distributed and collaborative environments, the

present state of configuration management in distributed and collaborative environments

is encouraging. Addressing these challenges has not required much change in actual CM

processes, though the way in which these processes are carried out have changed in

49

considerable ways. The most significant changes have been technology-related, as many

tools have emerged to assist in the distributed CM process.

4.1 Challenges of Distributed and Collaborative Configuration

Management

Many of the challenges that configuration management faces because of increased

collaboration and greater distribution are similar to the challenges faced by other

processes in the same situation. For example, distributed and collaborative CM deal with

CM management challenges, as well as technical challenges, just as other processes in

the same circumstances.

4.1.1 Managerial Challenges

As with any distributed project that involves the cooperation of many people, many of

these challenges faced are project management and organizational issues. For example,

with a large physical distance separating members on the project, how can effective

communication be facilitated within the configuration management team? The first

difficulty to overcome is coordination problems. Many configuration management tasks,

such as CCB decisions on change requests, involve collaboration and group decisions.

However, coordinating a large group of people who work in places all over the world

requires some effort. For example, distributed and collaborative CM faces decisions such

as how its meetings should be conducted over long distances. Timing is difficult, as are

possible language barriers and other logistical issues. Although real-time long-distance

communication is possible by such technologies as "chat" programs, Microsoft's

"NetMeeting," and e-mail, technical difficulties still make these forms of communication

and collaboration imperfect at best.

Other managerial challenges for CM include "people" issues, such as how to keep people

accountable for their work. When teams are very distributed and have little "face to

50

face" contact, accountability and the feeling of responsibility may decrease for team

members. This phenomenon would affect activities not only within the CM team but CM

activities that involve other members of the software development team.

In the case where the development team is made up of members from several different

organizations, another challenge that project management will face is how to set project

standards. Although each organization may already have certain customized procedures

for certain tasks or CM procedure, it is necessary to set standards for a project so that

there is no confusion about how to perform certain procedures. On the other hand, it is

also important to make sure that these standards do not deviate so greatly from an

organization's individual system that it cannot be followed without major difficulty.

4.1.2 Process-Oriented Challenges

In addition to the above-mentioned challenges, distributed and collaborative CM also

must deal with challenges that are related to the CM process itself. One important issue

to consider is the size and efficiency of the CM process. For software development

projects, size and level of distribution are directly related. The more distributed a project

is, the larger the project in general, and the larger the project, the more opportunities for

distribution. Such large size over a distributed area often leads to configuration

management in a project becoming unwieldy, hard to handle, and inefficient. One CM

process that would be particularly affected is the configuration control process, which

includes change and version control. The concern is that the distributed and concurrent

development would inadvertently cause interference with others' work. The larger the

scope of the project and the more lines of code generated that are interrelated to other

parts of the project, the more chance for even small errors to wreak havoc on the project

(Ci et al, 1997). Making sure these processes do not become disastrous involves a great

deal of manual overhead, which only increases when the project is distributed (Dart,

1990).

51

The problem of size is often further complicated by another process-related challenge

introduced by distributed and collaborative CM, the question of how much bureaucracy

and project control to administer to the CM process (Dart, 1992). Tightly controlled CM

processes and activities are measures for preventing the activities from becoming

undisciplined. Control also ensures the integrity of the system, especially as there are

more chances for mistakes and errors in larger systems. However, on the side of the

developers, the possible inflexibility, amount of paperwork, and "red tape" in the project

resulting from tight control may be frustrating and inefficient and bog the project down

(Kliewer, 1998).

Another process-oriented question that CM must answer is the question of how

automated the CM process should be. There are many CM tools available that automate

(computerize) parts of the CM process. However, the amount of automation these tools

provide to the CM process is an issue that needs to be considered.

4.1.3 Technical Challenges

The distributed aspect of distributed and collaborative software development is probably

the greatest source of technological challenges for configuration management. When

developers are located in different geographical locations, it is necessary to use

geographically remote systems to develop the software. However, this requirement

presents some problems, especially when the distributed locations are located at great

distances from each other. Although technology has significantly improved in recent

years so that slow connections and expensive lines are no longer a problem when sites are

physically near each other, long-distance communication, such as communication

between different continents is often complicated by poor network connections (Allen et

al, 1995). Therefore, when planning such a project, it is important to carefully consider

the CM needs and what resources are available for addressing these needs.

Another technical challenge faced by distributed and collaborative CM is how administer

accessibility to configuration items. This problem is twofold. The first issue is how to

52

provide distributed accessibility for all necessary users at all geographical locations. The

question that needs to be answered when addressing this issue is whether CM items are to

be distributed or whether developers need only distributed access to a central CM

repository that holds CIs (Dart, 1992). The second issue that arises is how this

accessibility ought to be managed. In a distributed environment, people are separated

physically, making it very no longer feasible to manually manage configuration item

accessibility. For example, the "file cabinet" method is not longer valid for managing

configuration items. CI management must therefore involve a certain degree of

technology. Fortunately, many tools are available for the automation of the

configuration.

Figure 4-1 Illustration of a Distributed and Diverse Environment (Gumaste et al, 1996)

Distributed and collaborative CM also faces network difficulties, since most networks are

heterogeneous, made up of different components that interoperate. Working in a

heterogeneous network means that the computing environments of users on the network

can be very diverse, utilizing products from multiple vendors and running on different

platforms (Gumaste et al, 1996). Figure 4-1 illustrates such a distributed and

53

Distributed ad Die imnment -lustrin

SUNIX* NT -O wiow95

heterogeneous network. For example, the configuration management network connecting

the geographically distributed teams is probably made up of several different platforms.

In this situation, certain tools may have to be used to make sure all users can access the

necessary files across platforms (Kliewer, 1998).

Although the challenges and barriers for distributed and collaborative CM that are

described seem quite intimidating, they are not impossible to overcome. They should not

be taken lightly though, especially since they will only become more intimidating as the

project becomes larger and as more distributed sites are added. Overcoming these

challenges will require thought, careful planning, and in many cases, resources.

4.2 The Present State of Distributed and Collaborative

Configuration Management

Presently, distributed and collaborative CM can be viewed as being at a low to medium

level of complexity, especially since it is a relatively new development (van der Hoek et

al, 1996). However, it is also in a state of transition, especially with the rapid rate at

which technology is changing and enabling new collaborative CM opportunities. When

comparing distributed and collaborative CM to the "conventional" CM that was first

established before the advent of distributed networks, it is evident that the two are

actually not so different in process. Although the context that surrounds configuration

management continues to change, the core process itself and tasks that need to be

accomplished have changed little. However, what has changed more is the ways in

which the process is carried out. The changes that have occurred are more in the area of

team organization and management, system architecture, control, and specific techniques

for carrying out the CM activities.

54

4.2.1 CM Team Organization and Management

As the organization of projects changes, so must the organization of configuration

management for these projects. Presently, CM teams are organized in both centralized

and decentralized fashions. In the case where the project is organized by one

organization with collaborating satellite offices, CM teams still remain rather centralized,

monitoring and controlling software configuration from a central location. However, CM

teams are becoming increasingly decentralized. For example, in cases where

collaborating remote locations already have their own CM teams, the CM team is very

decentralized. People relevant to CM are scattered around the globe, and it may also be

necessary to have a representative from each remote location to aid in the collaboration

between remote teams. Thus, decentralization is necessary in these situations.

4.2.2 CM System Architecture

The CM system architecture both influences and is influenced by distributed and

collaborative project development environments. First of all, the CM process is a vital

part of distributed and collaborative software development (Ci et al, 1997). Therefore, it

is important that CM configure the project as well as possible with the tools and software

that will be most compatible with the established network and most helpful to the project.

For instance, one of the most important choices that CM makes is the selection and

design of the project repository. However, there are also many external factors that are

beyond the control of configuration management that influence CM. One such example

is of the system architecture that CM must work around is the established network

configuration.

4.2.2.1 CM Repository

At present there are a few main methods for the storage and acquisition of software

configuration items for a distributed and collaborative software engineering environment.

One method being used for configuration item storage and retrieval today is a central

global repository (Allen et al, 1995). Using this method, all users have access to the

central repository across a Wide Area Network through client/server relationships to the

55

repository (van der Hoek, 1996). For example, a user in California would be able to

access and update a repository located in Massachusetts. Documents and code are

available for users to withdraw from the system and work on, and these items are then

checked back in when the work has been finished, creating a new version. Since the

repository resides on one node, from the computer's point of view, all users have equal

access, accessing the repository using the same protocol and a standard shared file system

(MacKay, 1995). This method operates using the atomic transaction method. This

means that a file cannot be checked out by more than one person at a time to ensure that

simultaneous changes cannot be made on the same file (Dart, 1990). This method is

typical for the example of a software development project where there is one

organization, and control is centralized at one place, with all other nodes on the network

considered satellite offices. Since all the teams represent only one organization, it is

possible to allow shared access and enforce standard protocols.

Another way in which CIs are stored is referred to as the distributed components method.

This method also provides a central project repository; however, it allows the CIs to be

distributed to remote locations, and transparently (Dart, 1990). When a user needs to

access a CI, a snapshot or copy of the source is taken and sent to the remote locations.

Any changes that are made to configuration items are made at copy at the remote location

and then carefully merged back into the sources at the master site (Allen et al, 1995).

This is done using a CM tool, FTP or even the surface mailing of magnetic tapes

(Belanger, 1996).

4.2.2.2 CM/Computing Network

As technology has progressed and computing environments for software development

have changed, the homogeneous environment has become obsolete. The current standard

is the heterogeneous distributed environment mentioned earlier, which connects

distributed environments using a loosely coupled network (Gumaste et al, 1996). This

heterogeneous computing network also influences configuration management, as

configuration management must now also be performed over a heterogeneous network.

56

For instance, it is quite common for developers in remote locations to develop on

different platforms. However, the mixed platform networks make CM more difficult in

some ways. For example, in a mixed platform network, accessing CI repositories

becomes a challenge. In most cases, it is helpful to use a CM tool to aid in file handling

and security. The following is a list of four variations on handling a mixed platform

network with respect to configuration management. These variations are based on the

presence of a CM tool and a Network File System (NFS), a client/server application

which allows users to view, write, or store files on a remote server as if it were the

client's own computer (Kliewer, 1998).

m No client CM tool and no NFS. In this situation, developers must telnet to the

repository and use a protocol such as FTP to move files back and forth.

m No client CM tool, NFS available. In this situation, developers must still log into the

repository host. However, since there is an NFS, files can be accessed without

copying back and forth.

= No client tool, but NFS available. Because there is no NFS, the CM tool must find its

way to the files in the repository.

= CM tool and NFS available. In this situation, CM is transparent to all users, allowing

users check in/out files as if they were on a local disk. This is the most favorable

system.

Since most tools run on limited platforms, the configuration of the CM system will

influence the choice of tools and features for the project. If certain unsupported tools or

features are deemed necessary for the project, the network should be set up accordingly.

4.2.3 CM Process

The CM process is also currently undergoing a transition from traditional process

methods to more distributed and collaborative methods. However, the tasks still remain

the same; they are only approached and facilitated in new ways. The main activities that

are affected are configuration identification and configuration control.

57

4.2.3.1 Configuration Identification

In many ways, configuration identification for a distributed and collaborative software

development project is very straightforward, as the items to be identified are typically the

same as in any other development environment, such as the items discussed in Chapter 3.

However, at the same time, configuration identification in distributed and collaborative

environments at the present, particularly the storage aspect, still experiences many

challenges and inadequacies.

One positive aspect of the current method of configuration storage is the visibility it

allows to distributed developers. Although the current methods are not without

difficulties, they do provide a basic visibility to the distributed development team, be it

by providing access to the original item or by providing a replicated copy. In a central

repository situation, it is important and now typical to have some way for all

configuration items that have been made a part of the system to be made visible to an

authority, usually by using some kind of CM tool. In the same way, visibility of a CI can

be given to defined groups of people who may need to see an item before others (Feiler,

1990).

With respect to the actual identification and tracking of a CI, the challenges are still great.

Because developers are located in different areas and may handle different modules, it is

often difficult to know where a particular CI is located or who controls a particular CI,

especially if the CM repository is decentralized. In the case of decentralization where

copies of an item exit at different locations, it is often difficult to determine the original

item (Allen et al, 1995). In addition, according to current CM practices, it is up to the

owner of the module or CI to put the CI into the control of the CM system. Thus,

distributed and collaborative CM is also very dependent on establishing official CM

policies and on all members' of the development team knowing and following these

policies. Establishing policies are also important because of the collaborative nature of

this kind of software development. With so many people in different locations and parts

of the organization working together, a particular CI is relevant to a large number of

58

developers. Thus, these policies should are set by a central authority and followed

carefully (van der Hoek et al, 1996).

4.2.3.2 Configuration Control

Currently, the CM configuration control for most organizations is fairly tightly

controlled. As discussed in an earlier section, having tight control is typical of traditional

CM, and as projects become larger and more distributed, organizations are finding it

useful to exercise more strict control over CM. Automated tools are aiding in this

management, which is difficult to have over somewhat undisciplined networks, offering

better control and without the overhead normally associated with greater control (Dart,

1990).

The change control process is still partly manual and currently very controlled. Although

change control forms can be submitted to the appropriate parties via e-mail and approval

can be given in the same way. However, some CM tools take change control into

account by locking baselined CIs so that changes cannot be made without approval.

Version control also benefits from the extra measures of control offered by some

automated CM tools. Using these tools, a history of a configuration item over the

evolution of the product is kept, as well as the version number of the CI and its difference

from the previous version.

One difference from traditional non-distributed CM is the almost inevitable

decentralization of the Change Control Board. However, even though the CCB is

physically separated, it generally still functions as one unit, using of e-mail and other

electronic forms of communication to keep communication lines open.

4.2.3.3 Configuration Status Accounting and Configuration Audits

Configuration Status Accounting and Configuration Audits are two CM activities that

remain much the same in a distributed and collaborative environment. However, the

benefits to CI management, version handling, and control offered by CM tools also do

filter down to CM status accounting and audits. For example, the versioning tools enable

59

a history of changes for an CI to be tracked, allowing for easier audits and simpler

determination of whether the appropriate measures have been taken in making changes.

Tracking the status of change requests is also simpler, since CIs and changes are

available for viewing through versioning tools.

4.3 Configuration Management Tools

Tools that aid the configuration management process have become very widespread and

virtually indispensable for distributed and collaborative software development

environments. These tools generally automate the configuration control process and

drastically lessen the amount of overhead that is spent managing configuration items in

distributed environments. However, the degree of automation that occurs varies

depending on the organization and the tool being used. At present, the CM process for

most organizations is a combination of manual and automated procedures (Dart, 1990).

For example, the storage and acquisition of CIs, as well as version control, may be

automated with a CM tool, but with many tools, change control forms must still be filled

out manually to start the change process.

Choosing the right CM tool is often difficult, as there are currently many tools to choose

from but few that will be able to meet all the needs of an organization. In many cases, an

organization may choose to modify a "shrink-wrapped" CM tool or even develop its own

to meet the organization's needs (Dart, 1992). In any case, no shrink-wrapped tool will

be able to provide a total configuration management solution in a distributed and diverse

environment (Gumaste et al, 1996). Another problem that a project may run into with

respect to CM tools is that today's CM tools often cannot run on all the project platforms.

The CM tools currently offered can be divided into four categories, each representing a

different set of paradigms: Check Out/Check In, Composition, Change Set, and

Transaction (Dart, 1992).

60

4.3.1 Check Out/Check In Model

The Check Out/Check In model is based on the concept of a repository, as discussed in

Section 4.3.2.1. The key idea is that users access a central repository that holds all

configuration items and check out and check in items for modification, and concurrent

modification is facilitated by locking mechanisms. Versioning is independent using this

model (Chan and Hung, 1997).

This model has been widely adopted by earlier models of CM tools, such as SCCS

(Source Code Control System) and RCS (Revision Control System). SCCS one of the

most important first generation tools. A UNIX-based source code revision and version

control system, SCCS stores multiple revisions of source code files in an evolutionary

tree structure. It is also one of the first systems to incorporate change control into its set

of features. RCS is also a UNIX-based tool for configuration management. Organized in

a tree structure just as SCCS, RCS assigns versions labels using a numbering scheme.

Instead of storing whole files, RCS stores only the differences between versions in the

repository (Dart, 1990).

4.3.2 Composition Model

The Composition model improves on the Check In/Check Out model by first building a

system model based on an original configuration item to provide information on the

composition and structure of the configuration. This information will assist the tool in

maintaining the item's integrity in the future (Dart, 1992, Chan and Hung, 1997).

DSEE (Domain Software Engineering Environment) is a good example of a CM tool

based on the Composition model. Designed to handle large-scale development projects

in a distributed computing environment, DSEE provides the system-building mentioned

above and source code control very efficiently over a wide network (Chan and Hung,

1997).

61

4.3.3 Change Set Model

The Change Set model also utilizes a repository and allows a logical change to a CI and a

way to create any version of a configuration without requiring it to be related to the latest

version of the item. An example of a tool following this model is ADC (Aide-De-Camp)

(Chan and Hung, 1997). Using ADC, after a requested change is approved, the CCB

assigns a workspace to the developer. This workspace consists of a set of directories and

files, a local copy of the files in the repository. After the developer has completed the

changes, these local files are deleted and the changes are updated to the repository (Dart,

1990).

4.3.4 Transaction Model

The Transaction model incorporates repository and workspace concepts, as well as the

concept of atomic transactions (Dart, 1992). This model provides support for concurrent

changes to configuration items (Chan and Hung, 1997), allowing users to change the

same parts of the product.

An example of a tool using this model is NSE (Network Software Environment) (Chan

and Hung, 1997). NSE allows developers to work on the same configuration items by

providing private workspaces for development and synchronizes the changes made to the

parent environment (Chan and Hung, 1997). If developers have made conflicting

changes, NSE notifies the developers about the conflicts and assists in solving them

(Dart, 1990).

4.4 Summary

In many ways, configuration management of the present is very different than

configuration management of the past. Although many challenges have been introduced

by distributed and collaborative development environments even, they are at present

being sufficiently addressed. The actual CM processes have not changed greatly, but

many new technologies and tools now exist to aid CM in a distributed environment.

62

Thus, collaboration can also be assisted, as distribution and collaboration increase

together. Chapter 5 will present a case study on distributed and collaborative CM in

order to illustrate the points addressed in this chapter and also suggest some ideas for the

future of distributed and collaborative CM.

63

5. ieCollab - A Case Study for Distributed and
Collaborative Configuration Management

Distributed and collaborative software development environments have still yet to really

take off. However, many have acknowledged the importance in the future of software

engineering and are studying this topic both in the research world and in industry. As

mentioned earlier, the methodology of how to conduct CM in this environment has been

recognized as having significant impact and is of particular interest to many.

This chapter will describe the ieCollab project as a case study for distributed and

collaborative software development, particularly focusing on the role of configuration

management in the project. First a project description will be given, followed by an

analysis of the project's CM methodology. Finally, this chapter will aim to evaluate

problems that arose during the ieCollab project and make recommendations on how the

methodology could be improved.

5.1 Project Description

The following section will describe the ieCollab project concept, its background, purpose,

development environment, project organization, development process, and project

technology.

64

5.1.1 Background

ieCollab is the abbreviation for "intelligent electronic Collaboration." This is the name

of a software development project that was conducted by students from three universities

located around the western hemisphere:

- the Massachusetts Institute of Technology (MIT) in Cambridge, MA, United States

- Pontificia Universidad Catolica (PUC) in Santiago, Chile

m Centro de Investigacion Cientifica y Estudios Superiores de Ensenada (CICESE) in

Ensenada, Baja California, Mexico

The forum that allowed this collaboration to occur was the class "Distributed

Development of Collaborative Engineering Support Systems" otherwise known as 1.120,

a class spearheaded by MIT but taught jointly by the three universities. This alliance was

first formed between MIT and CICESE in 1996 and has been ongoing ever since. The

results of the first three years of collaboration are three versions of a software product for

distributed meeting management and resource sharing called Collaborative Agent

Interaction and Synchronization (CAIRO). In 1999, PUC joined MIT and CICESE so

that there were now three collaborating universities. Together, these universities

conducted the ieCollab project over a five-month period, beginning in November, 1999

and ending in April, 2000.

The ieCollab team was composed of 34 students, with five students from PUC, five from

CICESE, and 24 from MIT. During these five months, the students worked in a

distributed and yet collaborative manner with the goal of producing a software package

for distributed teams that is either based on or inspired by the CAIRO product.

5.1.2 Purpose

The ieCollab project and tool was motivated by the current influence of geographically

dispersed and collaborating teams and the challenges that are faced with this kind of

65

working environment. Thus, the purpose of the ieCollab project was two-fold. The first

purpose was to develop a product to aid in geographically independent collaboration.

During the course of the project, it was decided that this product would be an Internet-

based collaborative application with the following functionality (Abbot et al, 2000):

- Document Sharing

= Application Sharing

" JAVA meeting environment

= Meeting management facilities (provided to other web-portals like Yahoo, and Lycos,

as well as its own portal)

The development of this product served to help students meet the second goal of the

project, which was to provide a way for students to learn about the software development

process in a collaborative and distributed manner. By developing the ieCollab product in

a distributed and collaborative environment, students were able to understand both the

benefits challenges related to this kind of development environment and were also able to

see the need for a product such as ieCollab.

5.1.3 Development Environment

The ieCollab project was developed collaboratively and over a distributed geography,

allowing team members to experience both the difficulties and rewards of working in

such an environment.

5.1.3.1 Distributed Environment

As all developers worked on the project from their respective campuses, the ieCollab

project was a distributed project. As with any distributed project, there was a need for

document sharing, and because this was a software development project, there was also a

need for resource sharing. These requirements meant that reasonable network

connectivity between the three campuses was imperative. MIT, CICESE, and PUC all

66

have their own campus-wide networks, and these networks all connect to other outside

networks. This architecture forms a loosely coupled network connecting MIT, CICESE,

and PUC.

Thus, the ieCollab project required a certain level of connectivity between campuses and

made use of the networks connecting them.

5.1.3.2 Collaborative Environment

As described previously, the idea of collaboration and working together was a key aspect

of the ieCollab project. The geographic distribution of the developers also contributed to

the need for collaboration. This collaboration occurred in many forms. The first type of

collaboration that occurred is the collocated collaboration between developers from the

same school. Although software development is inherently rather collaborative, in

industry it is often very common for developers to work rather autonomously (Belanger

et al, 1996). However, because none of the students in the ieCollab project had received

prior education in the software development process, it was difficult for students to work

independently and much more useful for them to work collaboratively. Thus, students

became experts at their own roles and shared knowledge with others, and in this way,

they learned from each other.

With respect to working with the student developers from other universities,

collaboration and communication were important in addressing the many logistical,

cultural, and technological. For example, there was a great deal of attention paid to

communication and teamwork, since developers came from many backgrounds and

cultures represented. Dealing with these challenges required heightened and more

thoughtful collaboration to ensure that these barriers did not spiral out of hand.

5.1.3.3 Distributed and Collaborative Environment

Working from separate campuses required a considerable amount of collaboration on the

part of the team members, since almost every team was made up of developers from more

67

than one location. This combination of dispersed geography and collaborative work

presented a bit of a problem.

With respect to working with other universities, collaboration was imperative for any

kind of productive work between campuses. Situations where there was a lack of

collaboration resulted in a breakdown of communication and over-independence and

developers at different campuses becoming isolated, defeat the purpose of the whole

class. Thus, distance was an obstacle to collaboration in some ways.

Although the project faced many of these challenges, ieCollab was able to facilitate

collaboration over a long distance by utilizing many tools. The most important of these

tools is e-mail, since it is free and accessible to everyone. However, this method was not

without its difficulties, as the network downtime at CICESE was often a factor. For

example, the collaborate.mit.edu web repository was often inaccessible by the CICESE

team, and even e-mail was inaccessible to them at times. Tools that allowed immediate

and concurrent collaboration such as long distance phone calls, CARIO, ICQ, and

NetMeeting were also useful; however, the phone calls were expensive, and ICQ and

NetMeeting suffered from the same network downtime. Many of the tools were also

logistically difficult to handle, especially since the MIT, PUC, and CICESE are all in

different time zones.

5.1.4 Project Organization

The ieCollab team was divided by project roles, which are listed below:

- Project Manager

- Business Manager

- Marketing Manager

- Project Advisor

- Requirements Analyst

- Designer

68

- Programmer

- Tester

- Quality Assurance

- Configuration Manager

" Knowledge Manager

Project
Advisors

Prof. Pena-
Mora

Prof. Favela
Prof. David

Fuller

Business Marketing
Managers Managers

Jaime - PUC Sen-MI
Justin - MIT
Eswar - MIT Pubudu -MIT

I
Knowledge
Managers 1

Paul - MIT 1

Erik - MIT

I
Requirements

Analysts
Polo - CICESE

Rosa - PUC
Bharath - MIT
Li-Wei - MIT
Maria - PUC
Alan - MIT

Project
Managers

Erik - MIT
Octavio - CICESE

Ivan - MIT
Joao - MIT

Quality
Assurance

Nhi - MIT
Kaissar - MIT

Blanca - CICESE
SaeYoon - MIT

Configuration Testers
Managers

Chang - MIT

Teresa - MIT Kenward- MIT

Manuel - CICESE Cesar - CICESE

Anup - MIT Hermawan-MIT

Designers

Hao - MIT
Wassim - MIT
Rafael - PUC

Roberto - CICESE
Alberto - PUC

Programmers

Gyanesh - MIT
Sugata - MIT

Figure 5-1 ieCollab Organization Chart

The project was organized so that a team of students performed each of these roles, and

each team was generally organized to include students from at least two different

universities. In addition, virtually all students had more than one role. The ieCollab

organization chart is shown in Figure 5-1.

69

N

5.1.5 Development Process

The development process for ieCollab followed typical development techniques as taught

by the 1.120 instructors and followed by the industry. Most of the project roles listed

above are representative of the roles that developers take in a typical software

development project. However, these roles for ieCollab were customized for the project.

In some cases, new roles were created. These roles were incorporated into the entire

software development process of ieCollab, which also followed software development

industry standards (IEEE, 1990).

5.1.5.1 Roles

Project Manager

The ieCollab project manager (PM) team's responsibility was to handle the activities

associated with the project management umbrella activities discussed in Chapter 2 of this

thesis. For ieCollab, these included project organization, planning, monitoring and

control, as well as resource allocation among the teams. Furthermore, the PM team was

responsible for giving necessary support when needed (Abbott et al, 2000). This support

included conflict resolution, aiding in collaboration, delegation of responsibilities, and

allocation of resources, among others.

Business Manager

The business managers' main tasks correspond with the tasks for what is typically known

as the system engineering process. In the ieCollab project, the business manager team

was responsible for determining the market needs and defining the goals of the ieCollab

product. Working closely with the marketing manger team, the business mangers also

talked to the customers to identify the features that the product should have (Abbott et al,

2000).

70

Marketing Manager

In line with the system engineering process, the ieCollab marketing managers were

responsible for identifying the market characteristics, technology trends, and customer

needs, as well as competitors in the market. Using this information, they developed a

competitive strategy for what kind of features the product should have in order to be

competitive and address market demands and how the product should be positioned,

among other issues (Abbott et al, 2000).

Project Advisor

The project advisor role in the ieCollab project was a faculty advisor/professor who

helped to supervise the project and provide input to the business and marketing managers.

The project advisors could be viewed in a way as experts on the market in which the

ieCollab product would be introduced.

Requirement Analyst

The ieCollab requirement analyst (RA) team was responsible for taking the business

manager team's goals and translating them into software requirements. Using various

methods such as use cases, the RA team specified the desired functionality of the

software package, describing the interfaces with other systems and design constraints in

such a way that it could be translated into design terms (Abbott et al, 2000).

Designer

The main responsibility of the ieCollab design (DE) team was to translate the

requirements of the software defined by the RA team in such a way that the programming

team would be able to comprehend and turn into actual product code. This information

was also of interest to the testers for determining whether these design functions had been

met at the end of the project (Abbott et al, 2000).

71

Programmer

The role of the programming (PR) team in ieCollab was component implementation, as

described earlier in Chapter 1. The programmers strove to create well-documented and

quality software code for the ieCollab product that followed the design plan set forth by

the design team (Abbott et al, 2000).

Tester

The main goal of the ieCollab testing (TE) team was to verify the proper operation of the

product and to identify errors (Abbott et al, 2000) to ensure that what was delivered to the

"customer" was a quality product, able to perform what it professed to perform, and as

error-free as possible.

Quality Assurance

The ieCollab quality assurance (QA) team's main tasks were to conduct various activities

such as inspections, walkthroughs and audits in order to ensure that the proper standards

were followed during the creation of the product and that what was produced was a

quality product (Abbott et al, 2000).

Configuration Manager

The ieCollab CM team's main responsibility was to control the evolution of the products

generated in the project and to inform the necessary team members of the software status,

including changes, versions, and storage. This helped in preventing simultaneous updates

and informing those involved of common code modifications. This ieCollab CM process

will be discussed in further detail later in this chapter (Abbott et al, 2000).

Knowledge Manager

The ieCollab knowledge management (KM) team was responsible for maintaining the

project web site (www.collaborate.mit.edu) and defining the standard format for project

documents, as well as producing the User and Technical Manuals (Abbott et al, 2000).

72

Interestingly, KM is not a typical software process. However, it is a discipline used by

many organizations for acquiring and controlling knowledge within the organization.

However, since ieCollab was an educational endeavor, KM was introduced to pay special

attention to the memory of the project for future years (Wong, 2000). In fact, KM in

ieCollab took on some responsibilities of a typical CM team by controlling the

collaborate.mit.edu site, which tracked the evolution of non-code documents. ieCollab's

KM team also took on some responsibilities of the QA team by defining standard

document formats.

5.1.5.2 Process Models

The ieCollab team initially planned the project according to the waterfall process model.

Please refer to Figure 2-3 for an illustration of the waterfall model. Thus, each step was

to be completed before moving on to the next process. For example, the design process

would not begin until the RA process was completely finished, programming would not

begin until the design was complete, and so on. According to this waterfall process

model, at the end, the finished product would be rolled out all at once. However, the

process model for the project was modified halfway through the project along a

modification to the project scope. After this modification, the ieCollab product was

developed according the incremental model for software development, planning to

release two modules of the product at separate times. The incremental model is

illustrated in Figure 2-4. The first module, Version 1, described as the "Meeting

Management Environment," was to allow distributed users to set up and manage on line

meetings (Abbott et al, 2000). The second module was to be released a few weeks later.

Named "Version 2-Transaction Management," this module was to allow the ieCollab

server to track usage of ieCollab's meeting management service and charge fees on per-

transaction basis (Abbott et al, 2000).

Splitting the project up into two modules was both helpful and detrimental to the goals of

the ieCollab project. The incremental model was helpful to the project delivery, since

the overlapping work in the incremental model allows for better use of time and

73

resources, and time and resources were two particularly challenging areas in the project

because of the project's educational nature. It terms of resource allocation, the modular

aspect of the project allowed the parts to be divided between the different universities so

that it was easier for developers to develop within themselves at their own universities.

However, this division, was, in a way, detrimental to the collaborative nature of the

project. For instance, toward the end of the project, the project was so modular that the

two campuses still involved in the project at that point became rather isolated from one

another.

5.1.6 Project Technology

To create the ieCollab product, the development team made use of many technologies

and tools. For example, the programming language used was the Java language, JDK

1.2.2 to be exact, which was very useful for both distributed and collaborative natures of

the project. Since Java is platform-independent, this allowed all developers to participate

in the code generation independent of where they were located or what platform their

university used. Being able to use Java on any platform also made collaboration easier.

Also used was JDBC, or Java Database Connectivity, an interface that allows the Java

language to interface with databases (Chen et al, 2000).

Another key technology used in the project includes CORBA (Common Object Request

Broker Architecture) (Chen et al, 2000). CORBA is an architecture and specification for

creating, distributing, and managing distributed program objects in a network. This

makes software development much easier and provides clear interfaces for other

applications. CORBA was necessary for the ieCollab clients to access the ieCollab server

(Chen et al, 2000).

ASP (Application Service Provider) architecture was another technology incorporated

into the ieCollab product. ASP architecture allows organizations to access applications

that are not stored on their own enterprise servers but a special kind of application server

that is designed to interact with stripped-down thin client workstations. The ieCollab

server was to be an ASP server supporting the meeting management feature of the

74

ieCollab product, which was designed with distributed collaboration in mind

(whatis.com, 2000).

5.2 ieCollab Configuration Management Overview

The following chapter gives an overview of the configuration management role in the

ieCollab project, including its organization, challenges faced, responsibilities, and

processes.

5.2.1 ieCollab CM Team Organization

As virtually every other team in the ieCollab project, the CM team was made up of

students from more than one university. Table 5-1 shows the organization of the CM

team. The team consisted of two students from MIT and one from Mexico. Since the

majority of the team members were located at MIT, the team leadership was at MIT.

However, there was still quite a bit of opportunity for collaborative work.

Table 5-1 CM Team Members (Liu et al, 2000)

Title Name Location

Team Leader Teresa Liu MIT
Team Member Anup Mantena MIT
Team Member Manuel Alba CICESE

The Change Control Board, though a separate entity from the CM team, was also an

essential part of the Configuration Management process. The CCB also consisted of

almost all MIT students. Table 5-2 indicates breakdown of team members on the CCB.

The reason for this heavy imbalance in the representation on the CCB is that project

management defined the CCB as consisting of the team leaders from each team. Since

MIT students generally made up the vast majority of students in the ieCollab project, the

team leaders were concentrated at MIT. This organization of CCB members was helpful

75

in the case CCB meetings needed to be held, as it was fairly easy to arrange a meeting

time between the board members at MIT and one member in Mexico. However, PUC

was not represented at all in the CCB. This most likely did not present much of a

problem in the project, since the CCB met infrequently at most. If the project had gotten

an earlier start and if the CCB had needed to meet more frequently, on the other hand,

this lack of representation might have affected collaboration and awareness with respect

to PUC.

Table 5-2 ieCollab Change Control Board (Liu et al, 2000)

Team Team
Leader

Project Manager Joao- MIT
Business Manager Justin-MIT
Marketing Manager Steve-MIT
Requirement Polo-
Analyst CICESE
Designer Hao-MIT
Programmer Gyanesh-

MIT
Quality Assurance Nhi-MIT
Tester Kenward-

MIT
Configuration Teresa-MIT
Manager
Knowledge Paul-MIT
Manager I

5.2.2 ieCollab CM Responsibilities

The ieCollab CM responsibilities were for the most part very similar to the general CM

responsibilities for any software development project that were described in Chapter 3.

However, unlike most projects, ieCollab CM had a varied amount of control over some

configuration items. This situation occurred because the storage of certain CIs, namely

non-code CIs, such as project specifications and testing documents, was also to be

controlled by the knowledge management team. This situation was necessary since one

of the objectives of KM was to record the evolution of project documents for historical

purposes and future use. However, it was still the responsibility of CM to control these

76

documents once they had been approved and made part of the project's baseline. Thus,

CM and KM shared responsibility of non-code configuration items, and CM had

complete responsibility over controlling source code.

Thus, after developing a plan for configuration management (please refer to Appendix to

view the CM Plan), the CM team was responsible for setting up and managing a system

for managing the evolution of project configuration items. These tasks included: creating

a repository for CI storage, ensuring distributed access to it, setting standards and

protocols for accessing and changing configuration items, tracking and versioning them,

and reporting the status of the items, to ensure that these items were maintained with

integrity throughout that evolution of the product. This was to be done by carrying out

the four main CM activities, which will be discussed in greater detail later in this chapter.

The CM team also had to perform other project activities that were unrelated to CM

work.

Within the CM team, team members had different responsibilities:

CM Team leader

" Team management

= Create CM Plan

- Submit weekly reports to PM

- Serve as CCB liaison

- Aid in CM activities

CM Team members

- CM activities

= Help to create CM Plan

- Update CM leader on weekly progress

Each member of the CM team had different levels and areas of expertise; thus, different

team members were more involved in some activities than others. However, throughout

77

the project, the CM team strove to conduct their work in a collaborative way by trying to

have each member be involved in all activities to a certain degree, even if it was only by

providing input and suggestions.

5.2.3 CM System Architecture

As predicted in Chapter 3, the system architecture of the ieCollab project was determined

by a combination of choice and circumstance. The architecture chosen for the CM

repository and network are described below.

5.2.3.1 CM Repository

The repository that the ieCollab CM team chose for the code CIs in the project is

Concurrent Versions System, better known as CVS. Using CVS, the ieCollab team set

up a central project repository on an MIT UNIX server, cee-ta.mit.edu. This repository

operated on a central repository provided local copies such that developers from any

campus could access configuration items on the central server and make copies onto their

local workstations to make changes. These changes did not affect the "original" CI, nor

did they affect the local copies of other developers. Once the changes were made,

developers then committed them back into the repository, which made the changes on the

server. Access to this repository was given only to those who required access, mostly

programmers, testers, QA, and others who needed to view code. Other aspects of the

CVS tool will be discussed in more detail later in this Section 5.4.1 of this chapter.

There were several advantages realized by using this type of repository for the ieCollab

project. One advantage is the flexibility of checking out CIs. For example, utilizing a

global repository where only one developer could work on or even look at a file at a time

would have severely affected the efficiency of the project. Along the same line of

thought, the visibility of configuration items using local copies aided in the collaboration

with team members. Many members of the programming team were working together on

the same Java classes, and allowing them visibility to the same files was almost necessary

for feedback and collaboration between team members. Using an atomic transaction-

78

based repository would have hindered this kind of collaboration, since only one instance

of the file could exist and be viewed. Allowing multiple visibility also aided in the

learning process, helping to satisfy one of the project goals.

CM also created a separate repository for non-code configuration items. This was done

as a joint effort with the knowledge management team. This repository, called the

"CM/KM Web Repository," held all the approved and latest non-code CIs such as RA

specifications, testing documents, and other CIs. Although the CVS repository could

have handled these CIs, the CM team chose to create the web repository on-line for easy

viewing of these CIs (Liu et al, 2000). The CM/KM Web Repository will also be

discussed in more detail later in this chapter.

5.2.3.2 CM Network

The ieCollab CM network was a loosely connected, mixed-platform network. The main

operating system at MIT is UNIX. This UNIX environment was accessed either directly

by workstations or indirectly by telnet from a WindowsNT environment. PUC and

CICESE are also supported on UNIX and Windows 95/98/NT operating systems. As the

repository was located at MIT on the cee-ta.mit.edu server, PUC and CICESE used

telnet technology to access MIT's UNIX environment from their respective locations.

However, PUC and CICESE's access was limited to the cee-ta.mit.edu server and did not

include access to the MIT Athena system (Mantena, 2000). Each of the campuses'

connectivity is TCP/IP.

Because the central repository for code was served off a UNIX server, access from other

locations and platforms was fairly easy. Thus, the ieCollab CM system falls under the

category of having a CM tool and NFS. The CVS tool worked with the UNIX server to

provide these two things. The only configuring by the CM team that was needed was

giving access permissions to remote developers to the cee-ta.mit.edu server and providing

CVS accounts to the appropriate users. If the repository had resided on a Windows

95/98/NT server as part of a LAN at MIT, however, more work would have been needed

to provide access to remote users. This is because it is quite easy to access a UNIX

79

environment from a WindowsX platform using telnet, but harder to access other kinds of

servers. For example, as mentioned earlier, some sort of NFS system would have been

necessary to allow users to find their ways to the files in this situation.

The CM non-code CIs were also easily accessible from the Internet. This connection

required no work on the part of the CM team since all schools were connected to the

Internet.

5.2.4 ieCollab CM Challenges

The CM team faced many of the challenges that any software development in a

distributed and collaborative environment might face, including managerial, process-

oriented, and technical challenges.

5.2.4.1 Managerial challenges

The CM team tried to work in such a way that all members contributed to everything

produced by the team and every member participated in performing the CM activities.

This technique was only partially successful. Involving every team member in every

activity was often inefficient and even impossible for several reasons. One main reason

for the difficulty was the managerial and logistical problem of having every developer

involved in every activity. The three-hour time difference between Mexico and the

United States was rather difficult to work around. Thus, even meeting through ICQ was

difficult to coordinate. In addition, many of the students from Mexico were not at school

on the weekends and did not have access to email during that time. Thus, it was difficult

to communicate over these times.

5.2.4.2 Process-Oriented Challenges

Although process-oriented challenges are often of significant problem in distributed and

collaborative projects, ieCollab experienced few of such problems. For example, one

factor that adds many complexities to the CM process is the project size, as mentioned in

Chapter 3 of this thesis. Fortunately, the ieCollab project was a very small and research-

80

based software project. Thus, there were less lines of code to handle, for example, and

many of the challenges that come with a large project were avoided in ieCollab.

Using an automated tool for controlling the access and versioning of the source code CIs

was also very helpful in addressing the challenges of manual overhead in providing

project control. The challenge of deciding how much control to take over the process

was also not too difficult, based on the small size of the project and the freedom that was

needed for development.

5.2.4.3 Technical Challenges

The technical differences between universities also affected the amount of work that

could be done together. Many times, there were also additional days during which our

CM colleague from Mexico was not able to check his e-mail, because of conflicts or

network problems. These problems affected not only CM team member

communications, but they also affected the CM team's communication with other

members of the ieCollab team.

Furthermore, many ieCollab team members from Mexico also could not access the

collaborate.mit.edu site, which was an important resource for documents. Thus, the

unreliability of the network to Mexico is also an important challenge to note.

With respect to the general challenge related to distributed environments relating to file

sharing and access, when the networks were working, ieCollab did not face an

overwhelming amount of these challenges. Because each of the three universities are

tolerably well connected to WANs and the Internet, it was relatively painless for CICESE

and PUC to connect with the CM repository at MIT, provided that the network was

functional. MIT's rich UNIX Athena system also made it particularly easy for the other

schools to access the repository, since all that was necessary was telnet capabilities to the

cee-ta.mit.edu server and it was not necessary to worry about interoperability.

81

5.3 ieCollab Configuration Management Activities

The following section describes the CM activities for ieCollab. These activities are the

standard CM activities for any software development project: Configuration

Identification, Configuration Control, Configuration Status Accounting, and

Configuration Audits.

5.3.1 Configuration Identification

The configuration items for ieCollab were defined and identified by the CM team in the

CM Plan following the guidelines provided by IEEE standards and the literature (IEEE,

1990). Table 5-3 displays the list of CIs identified for the ieCollab project, taken from

the CM Plan. These CIs were named by the CM team according to the naming

convention adopted in the CM Plan, which is included in the Appendix. Most of these

items were available to developers at the CM/KM Web Repository.

For the completed part of the project, about eighty source code CIs were created, stored

on the server, and tracked by CVS. Table 5-4 displays the list of code CIs stored in the

repository for the CollabClient class to provide an example. These items were named by

the programming team and versioned automatically by the CVS tool.

Because of the small size of the ieCollab project, this task of CI identification was not

that difficult. CI identification was kept simple also because most of the CIs were created

or originated at MIT, the university where most of the CM team was located and the

repository was located. Thus, it was not as difficult to identify the CIs as if many of the

CIs were created at the other universities.

82

Table 5-3 ieCollab Configuration Items (Liu et al, 2000)

Configuration Item Description Configuration Item Author Present
Identifier status

ieCollab Transaction Management ieCollab-PR-Code-TM-*.java PR Available
Source Code
ieCollab Meeting Management ieCollab-PR-Code-MM-*.java PR Available
Source Code Available
CAIRO Source Code ieCollab-PR-CAIROCode- PR Available

*.java
Programming Team Presentation ieCollab-PR-Presentation.ppt PR Available
RA Meeting Management ieCollab-RA-Spec-MM- RA Available
Specifications V 1.4 1.4.doc
RA Transaction Management ieCollab-RA-Spec-TM-1.6.doc RA Available
Specifications V1.6
RA Presentation ieCollab-RA-Presentation.ppt RA Available
DE Transaction Management ieCollab-DE-Spec-TM-1.0.doc DE Available
Specifications V 1.0
DE Meeting Management ieCollab-DE-Spec-MM-0.2.doc DE Available
Specifications V 0.2
DE Client Interface Specifications ieCollab-DE-Spec-CI-0.3.doc DE Available
V 0.3
DE Presentation ieCollab-DE-Presentation.ppt DE Available
Testing Meeting Management icCollab-TE-Spec-MM-2.0.doc TE Available
Specification V 2.0
Testing Transaction Management ieCollab-TE-Spec-TM-2.0.doc TE Available
Specification V 2.0
Testing System and Integration ieCollab-TE-Spec-SI-1.0.doc TE Available
Specification V 1.0
Testing Reports ieCollab-TE-Reportl.doc TE Available
TE Presentation ieCollab-TE-Presentation.ppt TE Available
QA Plan V 2.0 ieCollab-QA-Plan-2.0.doc QA Available
QA Presentation ieCollab-QA-Presentation.ppt QA Available
CM Plan V. 1.0 ieCollab-CM-Plan-1.0.doc CM Available
CM Presentation ieCollab-CM-Presentation.ppt CM Available
KM Plan ieCollab-KM-Plan.doc KM Available
KM Presentation ieCollab-KM-Presentation.ppt KM Available
User Manual ieCollab-Umanual.doc KM Available

83

Table 5-4 Sample CIs for ieCollab from the CollabServer class

CI Description CI Name Revision Author
Number

GUI code Create.java 1.2 bharath
GUI code CreateMeeting.java 1.2 bharath
GUI code CreateWorkgroup.java 1.2 bharath
GUI code EditMeeting.java 1.2 bharath
GUI code EditWorkGroup.java 1.2 bharath
GUI code ErrorMessage.java 1.2 bharath
GUI code HelpWindow.java 1.1 bharath
GUI code IECollab.java 1.2 bharath
GUI code LoginWindow.java 1.2 bharath
GUI code ProfileWindow.java 1.2 bharath
GUI code RegistrationWindow.ja 1.2 bharath

va
GUI code SearchWindow.java 1.2 bharath
GUI code UserPublnfoWindow.ja 1.2 bharath

va

5.3.2 Configuration Control

As with many distributed projects and as mentioned earlier, the ieCollab project utilized

an automated tool to aid in configuration control, CVS. Using a CM tool made

configuration control much easier. To recap the function of CVS, CVS enabled

developers to have remote access to the project repository by copying the requested file

onto the user's local directory. Thus, any authorized user could access and modify a CI

this way and update the repository with changes when ready up until the CI was approved

and was added to the baseline. When updating the repository, the user created a log of

what he/she had changed, and CVS automatically assigned a version number to the

changed code. The user was also able to look at older versions of the code or compare

various versions for differences.

This method of file version control provided freedom and visibility to the developers

while supplying a necessary degree of control. It also encouraged more collaboration

since everyone could look at code and work together. This method also made it easy to

review changes made by others and even make further changes, which is precisely what

84

occurred in the ieCollab project. An important thing to note, however, is that once a CI

was baselined, the CI was considered "locked." This CI was then unavailable for change

without an approved of a change request.

Though version control was quite extensive with CVS, the change control process was

not included in this automation, primarily because CVS does not provide change

capabilities. However, as with many distributed development projects, the change

control process for ieCollab was quite controlled. This control was achieved through a

set change control protocol, which is illustrated in Figure 5-2.

Following standard procedures found in the IEEE standards (IEEE, 1990) and

suggestions from the literature, the key component of the ieCollab change control process

was the change request. This change request was necessary before any changes to

baselined CIs were considered. A sample ieCollab Change Request Form can be viewed

in the Appendix as part of the ieCollab CM Plan. This form requests information such as

a description of the change, reason for change, priority of change, CIs affected by change,

and other information. Once this request was approved as a submission from the entire

team, it was reviewed by the CCB. The CCB then decided to either approve or deny the

change request and notified the appropriate people that this decision affected. If the CCB

approved the request, the appropriate people were then "allowed" to check the CI out of

the project repository for changes. Once the changes were made by the appropriate

people, they were then checked into the repository, where a new baseline was established

for testing and quality check. If all the changes were done according to CM standards

and procedures, this change would result in a new version of the baselined CI.

85

Need for change is recognized
Need evaluated by team leader
Change request from team
Decision on change (CCB)

APPROVE DENY

-Request approved, Change Authorization Report generated (CCB) -Change request is denied (CCB)

-Team to make change, CIs involved designated (CCB) -Team informed (CCB)

-"check out" CI

-Make the change

-Review the change (CCB)

-"Check in" changed CI

-Establish baseline for testing (CM)

-QA and testing of CI (QA, Testers)

-Rebuild appropriate version of software

-Review/audit changes to all CIs

-Release new version

Figure 5-2 ieCollab Change Control Protocol (Liu and Mantena, 2000)

A similar process applied to non-code items. However, a change request to a non-code

item often did not always involve physically changing the document, but often it involved

changing a concept in the document. In this situation, after the CCB approved the

change, the developer would produce a document describing the change in concept, and

this document would be linked to the affected document.

It is evident through this discussion that the entire change process required quite a bit of

manual overhead. For instance, it required spending time to download the change request

form from the CMIKM Web Repository, filling it out either by hand or by computer, and

then e-mailing it to CM or posting it to the web, all of which required quite a bit of effort.

Though this entire process was never fully put into action in the ieCollab project because

of time constraints, had it been utilized, it would have been somewhat tedious. After

requesting the change, the requestor would have to wait for the change request to reach

the proper people and then wait for the CCB to meet and decide how to respond to the

request. Add to these things trying to organize all-member CCB meetings to

collaboratively approve change requests and the process became extremely long and

drawn out.

86

It is also apparent from this process that change control was very tightly controlled in the

ieCollab project. Using the described method, frequent changes to baselined CIs were

discouraged, since approved CIs were "locked" and could only be changed after having a

formal change request approved.

5.3.3 Configuration Status Accounting and Configuration Audits

As predicted in Chapter 4, configuration status accounting and configuration status audit

practices for ieCollab did not change fundamentally from the standard practices for non-

distributed CM. The automation of configuration control did in general mean that less

work was needed to carry out configuration status accounting and configuration audits,

however. For example, the ability to view the differences in code between versions using

CVS was very useful for reporting what changes were currently being made or whether a

change had been implemented. In the same way, viewing differences also provided an

audit trail for QA and CM to follow when making sure that the changes on a CI were

carried out properly.

5.4 CM Tools

As already discussed, incorporating tools into the CM process have had an enormous

impact on distributed collaboration in software development, and these tools were a

necessity in the ieCollab project as well. The main CM tools used for this project were

CVS and the CM/KM Web Repository.

5.4.1 CVS

CVS (Concurrent Versions System) is a popular CM tool, used by many distributed

development projects. Similar in many ways to RCS, it is a version control system,

which enables a project to keep a history of source files (Whitehead, 1999).

87

CVS is particularly useful in a distributed environment because it allows users to access

the project repository from remote locations. It is also very useful in a collaborative

environment. As already asserted, in a collaborative environment where there are many

people working together, it is very easy for disasters such as overwriting commonly used

code. CVS helps by allowing developers to work on the files they need while being

insulated from other developers. The changes made are merged with the changes of other

developers when each developer is done (Cederquist et al, 1993) using the update-edit-

commit work cycle (Whitehead, 1999). The way that CVS saves each version is actually

by saving the changes that were made, not an entire copy of each version. This helps to

save space in the database (Kliewer, 1998).

Although CVS does make configuration control much easier, it is not a substitute for

management, as there are many tasks that still should be carefully monitored, such as

schedules and releases (Cederquist et al, 1993). CVS also does not have change control.

Although certain functionalities of CVS can be used to aid in change control, such as the

"diff" function, they must be used in conjunction with management so that nothing falls

through the cracks.

CVS worked fairly well for the managing the ieCollab project. It provided a good

amount of control for versioning and allowing users to access CIs. However, one

challenge with CVS is the merging of changes from many developers on the same CI.

Even though these merges are automatic, it is not advisable to leave CVS to do this

without monitoring the merges to make sure they were done properly. CVS does

recognize anomalies and will notify users of these merges; however, it is difficult to tell

whether the finished product will represent what was really meant by developers. This

problem was not experienced in the ieCollab project; however, it might have been more

of a concern with more lines of code and more developers working on the same modules.

88

* *1. *. *1- * I x

Figure 5-3 CVS UNIX interface

Aside from the traditional UNIX view for CVS, which is shown in Figure 5-3, the

ieCollab project also made use of WinCVS. Used by only a few developers, WinCVS is

a Windows user interface for CVS on the front end, supported on the back end by the

cee-ta.mit.edu server. The WinCVS interface is shown in Figure 5-4. This application

allowed users to perform the same CVS commands by using a graphical user interface.

Another alternative to accessing CIs through the UNIX front-end was CVS Web

interface, implemented toward the middle of the project's programming process. The

CVS Web interface allowed users to view CVS tree of CIs on the Web but did not allow

users to upload or change these CIs. However, the Web interface did allow users to view

89

Figure 5-5 WinCVS ieCollab Project interface

the differences between versions of a CI. Figure 5-5 displays the CVS Web interface.

Most developers found this tool extremely useful and easier to use than the traditional

UNIX method, although the UNIX method was still the most popular method of

accessing CIs, since the UNIX interface was not limited in any way to the functions that

could be performed.

One automated feature that would have been useful for a CM tool for ieCollab is change

control. It would have been useful to use a CM tool that also automated the change

request process. For example, PVCS (Process Version Control System) is one such

product that also acts as a change manager.

90

ittp://cee-ta.mit.edu/cgi-bin/cvsweb.cgi/iecollab/iecollab/

Figure 5-5 CVS Web Interface

91

iecollab/iecollab/ - Netscape 59

5.4.2 CM/KM Web Repository

As mentioned earlier, non-code configuration items also resided on the cee-ta.mit.edu

server; however they were not under the control of CVS but rather the CMIKM Web

Repository. This web site was located at URL http://cee-

ta.mit.edu/1. 120/cm/index2.html.

e-ta.mit.edu/1.1 U/cm/index.html

CM/KM Web
Repository

This web repository is devoted to an integral
component of an ongoing software
development project at MIT, called ieCo/lab
(Intelligent Electronic Collaboration). The
repository site stores all approved documents
and presentations from each group of the
ieCollab team, which can be accessed by
clicking the links on the LEFT hand side.

Web Interface to the Project CVS Repository.

Figure 5-5 CM/KM Web Repository (Whitehead, 1999).

Unlike KM's collaborate.mit.edu web repository, the CM/KM Web was meant to be

more of a static "snapshot" of documents that were either approved or nearing approval,

92

the final authority on project non-code CIs, as defined by the project advisor. Another of

the site's purposes was to provide easy viewing and copying opportunities of documents

for a Windows environment. Most of the documents in this repository were in either .doc

or .ppt format. Thus, if these CIs had been managed by CVS, they would have needed to

be downloaded and then ftped to a Windows environment for viewing since the CVS

repository runs only on a UNIX environment.

Having this site on the Web was useful since all of the collaborating universities either

primarily use or have access to Windows applications and using a web browser with a

plug-in would enable immediate viewing of the document by the correct Windows

application. This web site was accessible to any developer with Internet connection and a

web browser, and documents were also available for download. However, uploading

capabilities were not available to the general user as they were for the KM

collaborate.mit.edu project site. Only CM team members were given upload permissions

through the cee-ta.mit.edu server. Figure 5-5 displays a sample page from the CM/KM

Web repository.

5.5 Problems and Recommendations for ieCollab Configuration

Management

Throughout the project, the CM team ran into a number of difficulties and problems.

Some of these difficulties could have easily been avoided and others were unavoidable.

Thus there are different things that could be tried to solve these problems or at least

alleviate the pain in the future. Generally, relating to the ieCollab CM team, the problems

that were encountered can be described using the following categories: knowledge,

collaboration, and technology problems.

93

5.5.1 Knowledge Problems

One of the most obvious problems that the CM team faced was only realized toward the

end of the project. This problem is that CM had not been practiced as a continual process

throughout the duration of the project since the CM team (and project management) was

under the impression that CM was practiced only at the end of the project during code

generation. The CM team did not realize that this was a problem until researching the

role of CM late into the project. As the programming period approached, it became clear

that CM would be absolutely necessary. Essentially, the CM team was not

knowledgeable about its role. The consequences of this mistake were not grave,

considering the limited timing of the project and the many delays experienced. However,

it did mean that the configuration management team did not do much meaningful work

until very late into the project. Certain tasks that ought to have been done early on in the

project, such as the identification of CIs, were also not done until later, and standards that

should have been set by CM early on, such as naming standards, were difficult to enforce

at the end of the project. Because the CM team was unaware of what it needed to do

from the beginning of the project, it was unable to prepare key CM tools ahead of time.

For example, it would have been very useful to set the CVS repository and CM Web

Repository up before programming began. Although the CM team was able to set these

tools up in time, they would have been much better organized with advance preparation.

The CM team was also unclear about its tasks with respect to the knowledge management

team, which was a team not typical to the software development process and rather

unique to the ieCollab project.

One way that CM team knowledge could have been improved is through the provision of

CM guidelines, outlining key tasks that should be researched from the beginning of the

project. Although it would have been possible for the CM team to research this

information themselves, there was little or no incentive. Furthermore, the CM team was

in a way misled by the project management team, who did not really understand CM well

either. The PM team set a very late date for the submission of the CM Plan. Because this

date was set to be so late, this created the impression that CM processes did not need to

94

occur until after the due date. The creation of the CM Plan would have been a necessary

task to have completed in order for CM to begin its work.

5.5.2 Collaboration Problems

Although communication lines between CICESE and MIT CM team members were

relatively open, collaboration with the team member in CICESE was still difficult at

times, from MIT's point of view. For example, the only CICESE team member, although

he was sufficiently active during the beginning of the project, "disappeared" from the CM

team toward the end of the project, not responding to e-mails about contributing to

documents, presentations, and other tasks.

Although the disappearance of that team member was never explained, other

communications deficiencies between different universities can be explained by a number

of reasons. The first reason is the lack of accountability from not having regular face to

face communication. As the forms of communication most commonly used in the project

such as e-mail and ICQ are fairly anonymous, it was very easy for team members to feel

less pressure to accomplish tasks. Furthermore, as it was often in the best interest of time

and efficiency to divide tasks separately between universities, team members most likely

became very comfortable working only with students from the same location, leaving

little incentive for collaboration.

Technological difficulties also very likely affected the collaboration problems

experienced in the CM team and in the ieCollab team in general. For example, though

the plan had been to broadcast all team presentations that occurred at MIT to CICESE,

because of difficulties with the video conferencing, this never occurred. Thus, it is very

possible that the CICESE campus did not feel as much a part of the ieCollab team.

Furthermore, it was very common for servers at Mexico to be down so that project web

sites could not be accessed and even e-mail could not be received. This served to hinder

collaboration as well in CM team communications. Another example of the limitations

of technology's affecting collaboration occurred because of the difficulty of hosting a

95

mirror site to the CVS repository at CICESE. Since this was a key component of the CM

process, from a collaborative point of view, it would have been very beneficial to mirror

this site at Mexico so that the CM team at CICESE could also take part in maintaining

part of the repository. However, in examining this possibility, it became apparent that

this would not be possible because of technology limitations. Mexico essentially decided

that mirroring the site would also not be worth the time and effort. Thus, all of the CVS

administration and monitoring occurred at MIT without any collaboration from the CM

team in CICESE.

It is difficult to say how these collaborative problems described above could have been

solved. One way perhaps to address the accountability problem would be to have a

meeting before the start of the project so that all CM team members and ieCollab

members could meet and develop a sense of camaraderie and mutual respect. Another

technique that might have worked would be to enforce a weekly meeting between

distributed team members to touch base, using the team's technology of choice, where

the default would be long distance phone. Enforcing this meeting would make it so that

there is no way that team members can ignore or put off the tasks that need to be done.

Even if a task could not be done, this communication would at least alert other team

members of potential problems.

In addressing the technological problems that influence CM problems, it has been very

difficult for those at MIT to provide a solution for how to overcome network problems

with CICESE or PUC when almost all problems with technology so far have been from

the side of Mexico or Chile. Thus, perhaps the best way to deal with these problems

would be not to try to "fix" the technology, but to ask teams to find alternative ways to

communicate, such as by telephone.

5.5.3 Miscellaneous

Many of the problems that occurred were out of the CM team's control. For example,

after the CM team set up the CVS repository for the first time and put a great deal of time

96

and resources into it, the repository was completely wiped off the server in an accident.

This resulted in CM team having to reinstall the CVS program on a new server, which

was very time consuming and frustrating. A solution to this problem might have been to

provide a dedicated server for the CM tasks. This would have ensured that only the CM

would be able to access this server. It is a feasible suggestion, since in most cases, the

CM repository must hold many files, be freely accessible, and provide security measures,

and requirements are not always possible to fulfill when the server is shared by other

applications.

5.6 Summary

Thus, to summarize the main points of this chapter, one of the main goals of the ieCollab

project was to demonstrate and study collaboration in distributed software development.

This goal was met by allowing students to practice software development roles first hand

in a distributed and collaborative environment.

ieCollab's CM process is a good example of how the configuration management role is

carried out in a real distributed and collaborative environment. By studying the CM

process and experiencing it first hand, it is possible to understand the challenges of

distributed and collaborative CM and evaluate what can be done to address these

challenges. Many times, technology and tools are both a help and a hindrance.

For example, the distributed and collaborative environment makes some kind of CM tool

an almost must. These tools free up people's time by automating certain processes, and

this time can now be spend focusing on more meaningful things, such as improving

collaboration. However, the technology needed for this kind of collaboration also often

proves to be of great trouble, as experienced in the ieCollab project. Nonetheless,

learning from the problems and successes that this project experienced will help

determine what kind of developments would be useful for CM in the future.

97

6. Future Developments for Distributed and
Collaborative Configuration Management

Distributed and collaborative CM is a changing process. Distributed networks have only

started to take off within the last five to ten years, and as technology is always rapidly

changing, it is clear that distributed networks have yet to reach maturity. Furthermore,

the opportunities for collaboration are still just being discovered. The organization of the

future will be the "virtual organization," a development team created from different

organizations collaborating together on a specific project across a wide area network and

then disbanding at the end to form new alliances and virtual organizations. These teams

will want to maintain autonomy of their own processes, policies, tools, and environments;

however there will still need to be set CM policies for the project, data sharing, and

common items to the project. The questions that remain to be answered then is--how can

a project adopt and enforce a common policy for CM while preserving the autonomy of

the individual organizations? (Noll and Scacchi, 1997) Many aspects of CM will have to

be examined to answer this question, such as the CM system architecture.

6.1 System Architecture

The architecture of CM systems is continuing to evolve as a result of the changing nature

of distributed and collaborative CM. Components especially affected are the CM

repository and network.

98

6.1.1 CM Repository

In the future of configuration management, the architecture of the CM repository will

most likely need to change. As projects grow larger, more distributed, and more

collaborative, the currently popular global centralized repository may turn out to be

inadequate to handle these growing needs. The centralized repository where all CIs are

stored on one server works very well for many organizations; however, it has many

disadvantages, such as the following (Allen et al, 1995):

= Subjecting this central repository to frequent accesses will make it susceptible to

network problems such as partitioning.

- Performance bottlenecks at peak loads.

m Central repository suffers from lack of scalability. As the system grows larger, the

repository will probably not be able to handle the larger loads of users since it is

located on a single server.

One possible solution to this problem is having a repository that is decentralized

physically, but centralized logically. In this situation, the CIs are located on different

nodes, along the network, but are viewed as one repository. This configuration is perfect

for a virtual organization, since each individual organization that joins the project will

have its own system, and this configuration will allow the repositories to be joined

logically. An example of a tool that can handle this kind of task is NUCM (Network-

Unified Configuration Management), a testbed being developed that provides a model for

a distributed repository and common interface and allowing the implementation of two

very different CM policies (van der Hoek et al, 1996). Figure 6-1 illustrates the

infrastructure for wide area software development for a similar project done by AT&T

called GRADIENT (Global Research and Development Environment). GRADIENT

takes multiple repositories (one in Taiwan and one in Murray Hill, NJ, for example) and

allows users to access files on all repositories, while maintaining the autonomy of each

individual site.

99

ftob'I working area TaiwanMrayHl

Figure 6-1 Multiple Repositories Accessed as One across a WAN (Belanger et al, 1996)

6.1.2 CM Network

Another feature that will be almost mandatory for truly distributed and collaborative CM

is interoperable CM systems. Because individual organizations will have their own CM

systems in place, it will be necessary to be able to combine these systems under one

system. Some CM systems on the market already have some interoperability with other

systems. For example, ADC allows the importation of SCCS files into the ADC

repository (Dart, 1992).

It is generally acknowledged that "in most software projects, collaborating sites are

loosely connected and poorly integrated" (Belanger, 1995). Thus, CM networks of the

future will require more tightly coupled and integrated systems.

6.2 CM Process

The CM process is also changing to reflect the changing software development

environment. Many of these changes have to do with the amount of control that is

exercised over the process. For example, more and more, people are favoring more

loosely controlled change control. Traditional CM is rather tightly controlled, and

100

...........
..

Murray Hill
7

frequent changes are discouraged, since they create manual overhead and delays.

Organizations may be tempted to have exert more control as projects become larger, and

tend to get a bit out of control. However, for the future, the exact opposite may be

needed.

According to the literature, though control is very important to managing a software

development project, it is also important that an organization balance the amount of CM

control it uses carefully. In a distributed environment particularly, too much control

becomes counterproductive, choking the project activities with paperwork and adding to

the difficulties of being distributed. It should be mentioned, however, that a certain

amount of control is necessary to track the work done by developers and prevent errors

Figure 6-2 Quality of CM Process as a Function of Formality (Kliewer, 1998)

and mistakes. As shown in Figure 6-2, as formality and paperwork in CM (i.e. control)

increase toward the optimal level, quality and productivity also increase. However, once

this control reaches too great an amount, the quality and productivity of a project

decrease (Kliewer, 1998).

101

6.3 CM Tools

CM tools will continue to play an integral part in configuration management in the future.

Along with versioning systems, web CM systems are now available to enable more

collaboration than ever before.

6.3.1 Versioning Systems

Although many versioning systems have been discussed in this thesis, many other exist

and provide very good functionality. However, the nature of software development is

such that every project is different and has different needs in a CM tool. Other tools that

are important consider include ClearCase, DCVS (Distributed CVS), and Continuus/CM,

among others.

6.3.2 CM on the Web

One technology that is really changing the way that projects and teams interact is the

Internet and the World Wide Web. Because of the ease of access and its near-ubiquitous

state, it is an excellent medium for distributed collaboration. And now, according to the

literature, "web-based development is a reality."

For example, there are currently some research efforts under way to provide versioning

and configuration management capabilities for the Web. One such product is "Delta-V."

Delta-V aims to allow editing of source code, documents, and other CIs, all on the web.

Documents are edited directly onto a web server instead of a download. Although this

concept is still very new, it is currently being tested in applications such as Internet

Explorer 5 (Whitehead, 1999).

However, utilizing the web for CM would introduce security issues. The openness of the

Internet and Web based languages such as HTML and Java are ideal for developers, but

102

also ideal for intruders. Encryption methods would be needed to ensure proper security

(Gumaste et al, 1996).

6.4 Conclusion

In conclusion, configuration management is a vital part of any software development

project. As development environments become more distributed and software

development becomes more collaborative, good CM will be of even greater importance

than before, adding a measure of necessary control to a rather chaotic situation. By

ensuring the integrity of software configuration items over the evolution of the product,

CM helps to make a project more stable and repeatable, as well.

With this relatively new distributed and collaborative environment comes many

challenges to CM. For example, how will the CM team itself deal with these changes,

and how will the rest of the development team adjust to the changes with respect to the

CM process? Furthermore, there are many factors to consider when planning out a

proper CM protocol for distributed collaboration, such as the technology needed to make

it successful, managerial and logistical issues, and core process issues that may need to

change.

ieCollab is a good example of a distributed software development project where

collaboration was particularly emphasized. In this project, it was possible to examine

configuration management in a distributed and collaborative environment and apply

certain technologies and protocols to experiment on what makes CM work in this kind of

environment. Although it is difficult to give definitive answers to these questions, much

was learned in during the project, and what was particularly important was the learning

that can be applied to future developments for CM.

103

References

Allen, Larry, Gary Fernandez, Kenneth Kane, David Leblang, Debra Minard, and John
Posner. "ClearCase MultiSite: Supporting Geographically-Distributed Software
Development." in Software Configuration Management: ISCE SCM-4 and SCM-5
Workshops Selected Papers. Springer: New York, 1995.

Abbott, Erik, Joao Arantes, Ivan Limansky. "Project Management Plan Version 1.2." for
ieCollab. MIT, 2000.

Belanger, Dave, David Korn, and Herman Rao. "Infrastructure for Wide-Area Software
Development." inn Software Configuration Management: ISCE'96 SCM-6 Workshop
Selected Papers. Springer: New York, 1996.

Ben-Menachem, Mordechai. Software Configuration Management Guidebook. McGraw-
Hill: London, 1994.

Bersoff, Edward and Alan Davis. "Impacts of Life Cycle Models on Software
Configuration Management." Communications of the ACM. August, 1991. from
http://www.acm.org.

Brown, Alan W., Peter H. Feiler, and Kurt C. Wallnau. "Understanding Integration in a
Software Development Environment." SEI: Pittsburgh, 1992.

Buckley, Fletcher J. Configuration Management: Hardware, Software, and Firmware.
IEEE: New York, 1993.

Cederquist, Per et al. "Version Management with CVS for CVS 1.10." Signum, 1993.
from http://www.loria.fr/~molli/cvs/doc/cvs 1.html. Last visited 3/5/00.

Chan, Agnus K. F and Sheung-lun Hung. "Software Configuration Management Tools."
IEEE paper. IEEE, 1997. From http://www.ieee.org.

Chen, Hao, Wassim Solh, Manuel Alba, Sugata Sen, and Anup Mantena. "ieCollab
Transaction Management Design Specification 1.0." MIT, 2000.

Ci, James X., Mustafa Poonawala, and Wei-Tek Tsai. "ScmEngine: A Distributed
Configuration Management Environment on X.500." in Software Configuration
Management: ISCE'97 SCM-7 Workshop Proceedings. Springer: New York, 1997.

D'Amico, Mary Lisbeth. "Siemens Previews High-Tech Gadget." http://www.PC
World.com/shared/printablearticles/0, 1440,9728,00.html

104

Dart, Susan. "The Past, Present, and Future of Configuration Management." Technical
Report. SEI:CMU, 1992. from http://www.ieee.org

Dart, Susan. "Spectrum of Functionality in Configuration Management Systems."
Technical Report. SEI:CMU, 1990. from http://www.ieee.org

Favela, Jesus. "Configuration Management." Instructive presentation for 1.120.
November,1998.

Feiler, Peter. "Software Process Support Through Software Configuration Management."
SEI Paper. IEEE, 1990.

Gumaste, U.V., Ti-Chung R. Hsueh, Andrew A. Nocera, and Yiu Kwan Wo.
"Configuration Management Strategy for Distributed and Diverse Software Development
Environments." Proceedings of The IEEE International Conference on Industrial
Technology. IEEE, 1996. from http://www.ieee.org.

IEEE. "Standard for Software Configuration Management Plans: IEEE Std 828-1990."
IEEE, 1990.

Kliewer, Chris. "Software Configuration Management." University of Calgary. 1998.
from http://www.sern.uclagary.ca/~kliewer/SENG/621/SCMEssay.html.

Kramer, Jeff. "Distributed Software Engineering." IEEE paper. IEEE, 1994.

Liu, Teresa, Anup Mantena, and Manuel Alba. "Configuration Management Plan For
ieCollab Version 1.0." MIT, 2000.

Liu, Teresa and Anup Mantena. "ieCollab CM Presentation." MIT, 2000.

MacKay, Stephen A. "State of the Art in Concurrent, Distributed Configuration
Management." in Software Configuration Management: ISCE SCM-4 and SCM-5
Workshops Selected Papers. Springer: New York, 1995.

Mantena, Anup. Personal correspondence on April 15, 2000.

Noll, John and Walt Scacchi. "Supporting Distributed Configuration Management in
Virtual Enterprise." in Software Configuration Management: ISCE'97 SCM-7 Workshop
Proceedings. Springer: New York, 1997.

Paulk, Mark C., Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. "Capability
Maturity Model for Software, Version 1.1." SEI Technical Report. February, 1993.

Pressman, Roger S. Software Engineering: A Practitioner's Approach. McGraw-Hill:
New York, 1997.

105

Scacchi, Walt. "Models of Software Evolution: Life Cycle and Process." SEI paper. SEI:
Los Angeles, 1987. from http://www.ieee.org.

van der Hoek, Andre, Dennis Heimbigner, and Alexander L. Wolf. "A Generic Peer-to-
Peer Repository for Distributed Configuration Management." Proceedings of ISCE-18.
IEEE, 1996.

www.whatis.com. Last visited, May 5, 2000.

Whitehead, Jim. "The Future of Distributed Software Development on the Internet: From
CVS to WebDAV to Delta-V." Web Techniques Magazine. Freeman, 1999. from
http://www.webtechniques.com/archives/1999/10/whitehead.html.

Williamson, Mickey. Automated Software Configuration Management: Issues,
Technology, and Tools. Cutter Information Group: Salem, 1990.

Wong, Paul Koon Po. "Knowledge Management Plan v 1.0 for ieCollab." MIT, 2000.

106

List of Appendices

Appendix: Configuration Management Plan for ieCollab v 1.0.............................108

107

Appendix

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CIVIL AND ENVIRONMENTAL ENGINEERING DEPARTMENT

1.120 Information Technology Master Engineering Project
Distributive Software Engineering Laboratory

Fall 1999, IAP 2000, Spring 2000

Configuration Management Plan For ieCollab Version 1.0

Updated by: Teresa M Liu, Anup V Mantena
Participants on Modification :

Manuel Alba, Anup V Mantena, Teresa M Liu

3/12/00

References and Links:
IEEE Standard for Software Configuration Management Plans 828-1990

108

Table of Contents

1. Introduction ... 110
1.1 Purpose .. 110
1.2 Scope ...110

1.2.1 Project O verview .. 110
1.2.2 CM Environm ent..110

1.3 Term s and Abbreviations .. 111
2. Configuration M anagem ent...111

2.1 CM M anagem ent..111
2.1.1 Organization ... 112
2.1.2 CM Responsibilities ... 113

3. CM Activities .. 114
3.1 Configuration Identification..114

3.1.1 Identifying Configuration Item s...114
3.1.2 N am ing Configuration Item s..115
3.1.3 A cquiring Configuration Item s .. 116

3.2 Configuration Control ... 116
3.2.1 Requesting Changes ... 117
3.2.2 Evaluating Changes..117
3.2.3 Approving or D isapproving Changes...117
3.2.4 Im plem enting Changes...118

3.3 Configuration Status Accounting .. 118
3.4 Configuration Audits and Review s ... 119

4. CM Schedules ... 119
5. CM Resources ... 119
6. Conclusion...119
Appendix ... 120

109

1. Introduction

This Software Configuration Management Plan describes the Configuration Management
(CM) organization and practices applied consistently and uniformly throughout the life
cycle for Computer Software Configuration Items that are developed or maintained by
1.120 for the ieCollab project. Software Configuration Management is the process used
during software development and maintenance to identify, control, and report functional
and physical configurations of software products (e.g., source code, executable code,
databases, test scenarios and data, and documentation).

1.1 Purpose

The purpose of this document is to define CM responsibilities (requirements), resources,
and processes used during the development and maintenance of the ieCollab system. By
reading this document, all interested will be able to gain a better understanding of the role
of CM's role in the ieCollab project.

1.2 Scope

The scope addresses CM applicability, limitations, and assumptions on which the Plan is
based.

1.2.1 Project Overview

This plan establishes the CM methods used during the development and maintenance of
the ieCollab system. ieCollab is an Internet-based collaborative application service
provider for communicating information and sharing software applications in a protocol-
rich Java meeting environment. It will be the result of a joint effort of students from the
Massachusetts Institute of Technology in the United States, Pontificia Universidad
Catolica (PUC) in Chile, and Centro de Investigacion Cientifica y de Educacion Superior
de Ensenad (CICESE) in Mexico as a project for the class "Distributed-Collaborative IT
Development," also known as 1.120.

1.2.2 CM Environment

This section outlines the hardware and software platforms used in the project. Table 1
details the development environment on the servers used in this project. The server used
for storing Configuration Items is a Solaris 2.6 machine and uses a TCP/IP protocol to
connect to the code library. The machine that serves the project repository, located at
collaborate.mit.edu/1.120.html, and future CM web site is running of a Microsoft Internet
Information Server.

110

Table 1. Development Environment on Server for ieCollab project

Hardware I
Domain
IP Address
Operating System
Connectivity
Web Management

mit.edu
18.58.0.164, 18.58.2.155
Solaris 2.6, WinNT
TCP/IP, HTTP
N/A, Active Server Pages

Table 2 details the development environment on client machines. Programmers will
work in both UNIX and WindowsNT environments on their own directories, using JAVA
and CORBA development platforms.

Table 2. Development Environment on Client Machines

Hardware

Operating System UNIX, WindowsNT
Directory multiple directories
Development Platform JAVA, CORBA

1.3 Terms and Abbreviations

The following acronyms appear within the text of this standard:

CCB
CI
CM
KM
PM
QA
TE
PE
RA
CVS

Change Control Board
Configuration Item
Configuration Management
Knowledge Management
Project Management
Quality Assurance
Testers
Programmers
Requirements Analysts
"Concurrent Versions System"

2. Configuration Management

2.1 CM Management

The responsibilities of the CM team include configuration identification, configuration
control, configuration status accounting, configuration audits and reviews, interface
control, and change control.

111

2.1.1 Organization

The CM team is organized and located as shown in Table 3. However, though the CM
team is allocated specifically for configuration management tasks, all members of
ieCollab team are active participants in the Software Configuration Management plan;
their adherence to the CM plan is essential to the success of the project and to the
organization.

Table 3. CM Team organization

Title Name Location
Team Leader Teresa Liu MIT
Team Member Anup Mantena MIT
Team Member Manuel Alba CICESE

Although the CM team is an independent team within the ieCollab project structure, it
will work very closely with other teams. These teams in particular are:

Change Control Board (CCB)
Knowledge Management
Project Management
Quality Assurance

The CCB, though a separate entity
Configuration Management process.
leaders of all teams in the project.

from the CM team, is an essential part of the
The members of the CCB will include the team

Table 4. Composition of Change Control Board (CCB)

112

Team Team
Leader

Project Manager Joao- MIT
Business Manager Justin-MIT
Marketing Manager Steve-MIT
Requirement Bharath-
Analyst MIT
Designer Hao-MIT
Programmer Gyanesh-

MIT
Quality Assurance Nhi-MIT
Tester Kenward-

MIT
Configuration Teresa-MIT
Manager
Knowledge Paul-MIT
Manager

Through working with the CCB, CM will indirectly cooperate with all teams in the
ieCollab project.

2.1.2 CM Responsibilities

The Configuration Management process consists of many activities, most of which are
handled by the CM team. However, a few of these activities fall under the responsibility
of other teams, such as the CCB, QA, and Testing teams. In addition, as any
Configuration Item is subject to change, all teams will be expected to make the changes
that have been requested and approved.

Table 5 lists Configuration Management activities and who is responsible for carrying
these activities out.

Table 5. Configuration Management Activities and Responsible Parties

CM Activity Function Responsible Team
Identify CIs Configuration Identification CM
Version code CIs Configuration Identification CM
Name document CIs Configuration Identification CM
Store CI s Configuration Identification KM
Store Approved CIs Configuration Identification CM
Define Baselines Configuration Identification CM
Request Change Configuration Control Any Team
Evaluate Change Configuration Control CCB
Approve/Disapprove Change Configuration Control CCB
Notify appropriate team to Configuration Control CCB
make change
Make requested change Configuration Control Team Owning CI
Review, audit the change Configuration Control CCB
Establish new baseline for Configuration Control CM
testing after change
QA and or Testing activities Configuration Control QA, Testers
on new baseline
Rebuild appropriate version Configuration Control CM
of software
Distribute new version Configuration Control CM
Review changes to CIs Configuration Audit and CM

Review
Track controlled CIs Configuration Status CM

Accounting
Track/report status of Configuration Status CM
requested changes Accounting

113

3. CM Activities

CM activities can be grouped into four functions: configuration identification,
configuration control, status accounting, and configuration audits and reviews.

3.1 Configuration Identification

Controlled items will include source code, user documentation, data bases, test cases, test
plans, specifications, management plans, and group presentations.

3.1.1 Identifying Configuration Items

The exact items to be tracked are listed in Table 6. These CIs will be stored in the
appropriate repository, and this list may grow as the project progresses and new
Configuration Items are identified.

Table 6. Configuration Items to be tracked by CM Team

Configuration Item Configuration Item Author Present
Description Identifier status
ieCollab Transaction ieCollab-PR-Code-TM-?.java PR Team Available,
Management Source Code In Progress

ieCollab Meeting Management ieCollab-PR-Code-MM-?.java PR Team Available,
Source Code In Progress

CAIRO Souce Code ieCollab-PR-Code-CAIRO.java PR Team Available
Programming Team Presentation ieCollab-PR-Presentation.ppt PR Team Available

RA Meeting Management ieCollab-RA-Spec-MM-1.4.doc RA Team Available
Specifications V 1.4
RA Transaction Management ieCollab-RA-Spec-TM-1.6.doc RA Team Available
Specifications V1.6
RA Presentation ieCollab-RA-Presentation.ppt RA Team Available

DE Transaction Management ieCollab-DE-Spec-TM-1.0.doc DE Team Available
Specifications V 1.0
DE Meeting Management ieCollab-DE-Spec-MM-0.2.doc DE Team Available
Specifications V 0.2
DE Client Interface ieCollab-DE-Spec-CI-0.3.doc DE Team Available
Specifications V 0.3
DE Presentation ieCollab-DE-Presentation.ppt DE Team Available

Testing Meeting Management icCollab-TE-Spec-MM-2.0.doc TE Team Available
Specification V 2.0
Testing Transaction ieCollab-TE-Spec-TM-2.0.doc TE Team Available
Management Specification V 2.0
Testing System and Integration ieCollab-TE-Spec-SI-1.0.doc TE Team Available
Specification V 1.0
Testing Reports ieCollab-TE-Report?.doc TE Team Not

Available
TE Presentation ieCollab-TE-Presentation.ppt TE Team Available
QA Plan V 2.0 ieCollab-QA-Plan-2.0.doc QA Team Available

114

QA Presentation ieCollab-QA-Presentation.ppt QA Team Available
CM Plan V. 1.0 ieCollab-CM-Plan-1.O.doc CM Team Available
CM Presentation ieCollab-CM-Presentation.ppt CM Team Available
KM Plan ieCollab-KM-Plan.doc KM Team Not

Available
KM Presentation ieCollab-KM-Presentation.ppt KM Team Not

Available

User Manual ieCollab-Umanual.doc KM Team Not
I_ , Available

Project baselines will be defined at control points within the project life cycle. Events
that create the project baselines are the reaching of a milestone in the project or a request
to change the baseline. The project baselines can be divided into four categories:
Functional, Allocated, Product, and Developmental Configuration baselines.

The baselines for the ieCollab project before reaching the first milestone are as shown in
Table 7.

Table 7. Baselines for ieCollab project

Baseline Configuration Items in Baseline
Functional Baseline Business/Marketing Manager documents
Allocated Baseline Requirement Analyst documents
Developmental Configuration Baseline Design documents

Project Manager Plan
Testing documents

Product Baseline We are unable to determine product baseline
at this point.

The product baseline is generally determined at completion of product and delivered
formally to the customer; thus, it is not possible to determine the product baseline at this
time.

Aside from the evolution of the baseline from milestone to milestone, a baseline can be
changed through the change control process. Any change request that is submitted, if
approved by the CCB, can result in the changing of the baseline.

3.1.2 Naming Configuration Items

Naming configuration items encompasses both naming conventions and version marking
of CIs. The naming convention of the CIs will be handled in a few different ways.
According to the Programming Standards, program files will be named according to the
class name. Other documents will be named according to the following standard:

project-team name-description-versionnumber. extension

For example, the Requirement Analyst Specification for Meeting Management V 1.0
would be expressed as ieCollab-RA-Spec-MM-1.0.doc.

115

Version marking of the source code will be done according to the configuration

management software tool we will use, Concurrent Versions System (CVS). CVS
automatically assigns a version number to code that has been checked in and changed.
After every milestone, a new version will be created manually by CM team.

3.1.3 Acquiring Configuration Items

This project has two controlled software libraries at this point in the project. The first

library is the Code Library, which includes all source code for the project, including
intermediate software development products. This library is housed on a server and
controlled using CVS. User access will be authorized by PM but will include
programmers, testers, QA, and CM team at the very least. Privileges granted, for
example, for software will include check-in and check-out.

The other controlled software library will be called the Document Repository (DR), and it
is the controlled collection of non-code documentation. The collaborate.mit.edu web
repository currently serves as the DR; however, in the future, CM team's own web site
will serve as the DR. The DR will house only approved documents and specifications, as
well as the latest versions of each team's documents. Unlike the collaborate.mit.edu web
site that provides an evolutionary view of the project documents, the CM web site serving
as DR will house all documents that are Configuration Items and provide a static
snapshot of CIs.

To begin with, all source code will reside on our server and be accessible using CVS.
This code includes CAIRO source code, as well as all code produced by the
Programming Team. As new versions and files are created, they will also be added to the
server using CVS. Users will be able to check out files to make changes and check the
files back in to update these changes. This process will be closely monitored by CM.
Authorization by the relevant groups will be required before any changes can be made to

the files in the repository, and only those with login names and passwords will be allowed
to access the system for check in and check out.

All other documents such as standards, plans, specifications, etc. will be available
through the project repository, located at collaborate.mit.edu/1.120.html or the future CM
web site. All members of the project team will be able to read and download documents
off the DR. In the case of the CM web site, which holds links to only approved
configuration items, uploading is allowed only by the CM team.

3.2 Configuration Control

Members of the project team may request changes, encompassing both error correction
and enhancement. The change process consists of the following steps:

1) Identification and documentation of the need for a change
2) Analysis and evaluation of a change request
3) Approval or disapproval of a request

116

4) Verification, implementation, and release of a change

3.2.1 Requesting Changes

Changes will be identified by change requestors, submitted to CM, and recorded by CM.
When requesting a change, the requestor should provide the following information, by
the way of a change request form, which will be recorded by CM:

1) The name(s) and version(s) of the CIs where the problem appears
2) Originator's name and organization
3) Date of request
4) Indication of urgency
5) Classification of the problem
6) Description of the requested change

CM will assign a change request number to each change request, and changes will be

classified as described in Table 8. See the Appendix for a Change Request template.

Table 8. Categories used for classifying problems in software products

Category Applies to problems in:

Other Other software problems

3.2.2 Evaluating Changes

CM will forward the change request to the Change Control Board (CCB) for evaluation

of technical feasibility and analysis of the change request. The members of the CCB will

consist of the team leader from each group and be lead by the Project Manager.

3.2.3 Approving or Disapproving Changes

The CCB will provide the final decision on whether the request is approved or

disapproved Changes will be evaluated according to their effect on the deliverable and

their impact on project resources. The Board will approve or disapprove the request and
return a Change Authorization form if the change is approved.

117

Plans One of the plans developed for the project

Concept The operational concept

Requirements The system or software requirements

Design The design of the system or software

Code The software code

Test information Test plans, test descriptions, or test reports

Manuals The use, operator, or support manuals

3.2.4 Implementing Changes

After approval of a change request, CCB will notify the group that the change request
affects using a Change Authorization Form. Once the requested change is complete, the
CCB will verify that the changes made reflect the changes requested.

The information recorded by CM for the completion of a change shall contain the

following as a minimum (with more added later):

1) The associated change request(s)
2) The names and versions of the affected items
3) Verification date and responsible party
4) Release or installation date and responsible party
5) The identifier of the new version

CM will then establish a new baseline for testing, and QA and/or Testing group will then

perform a review and audit of the baseline software. Once the changed version passes
review and audit, CM uses it to rebuild the appropriate version of the software and
release it as a new version.

3.3 Configuration Status Accounting

This section describes the process used to provide configuration status accounting (CSA).
CSA is the recording and reporting of information needed to manage configuration items
effectively, including the items listed below.

To handle CSA, CM plans to utilize the project's repository, collaborate.mit.edu web site.

Although it is often useful to automate the CSA process, we have been unable to come up
with a feasible software solution.

Input data includes CCB decisions, such as approving or disapproving change requests,
establishing configuration baselines, and approving the release of software for
distribution. Input data also includes status information of CIs and change requests.

Output data is formatted as CSA reports. These status reports will be produced when

requested by PM, although CM plans to submit them once every two weeks.

The first type of report generated is the record of the approved configuration
documentation and identification numbers and their overall status. Another type of report

will be a report of the status of change requests and the implementation status of

approved changes. A final type of CSA reports would be a report stating the results of a

configuration audit of a changed CI.

118

3.4 Configuration Audits and Reviews

Configuration Audits will occur, at a minimum, before a new version of a CI is released.
They determine to what extent the actual CI reflects the required physical and functional
characteristics. After this approval occurs, CM can release the new version of the CI. See
the Appendix for an example.

4. CM Schedules

CM works during the entire life cycle of the project, although most work is done during
the programming stage. At this point it is difficult to determine the schedule of work
since the programming schedule has not been set. However, since CM work is continual,
it is not entirely critical to have the programming schedule in place.

5. CM Resources

CM resources are listed in Table 9. Our main tools are CVS and the Microsoft Internet
Information Server, as well as the Active Server Projects technology. Training and
research were necessary in learning about CVS.

Table 9. CM Tools/Resources

Tool Location Type of File Stored
CVS cee-ta.mit.edu source files
Microsoft Internet Information collaborate.mit.edu .doc, .ppt, .pdf
Server
Active Server Projects collaborate.mit.edu .doc

6. Conclusion

Configuration Management is a very critical part of the project life cycle. Done correctly
and with the help of all members of the team, it can mean the success of the project.

119

Appendix
Software Change Request

Change No: Date of Initiation: Page of
Change Name:

Submitted by (Name, Team):
Date of Submission:

Reason For Change: 1. Requirement Change 2. Design Change
3. Error Discovered 4. Quality Assurance

Priority of the change HIGH () MEDIUM () LOW ()

Change Description:

CIs Involved in Change
Cost of Evaluation: hours Cost to Implement: days hours

CI Identifier Documentation Affected
Plans Concept Req Design Code Test Manuals Other

Info

Comments or Alternative Solution:

Proposed date of implementation:

Request Denied Date:
CCB Decision: To be Evaluated Name:

Request Frozen Signature:

120

121

Software Change Authorization

Change No: Change Name: Page of
Formn No: Date of Authorization:

Changes To be Implemented

No. Responsible Team Date Due SCN Date* SCN Form No.*

* filled in when Software Change Notice (SCN) is completed

CIs involved in Change

CI Identifier Documentation Affected
Plans Concept Req Design Code Test Manuals Other

Info

Comments:

Approved By: Date:
SCCB Approval Name: Date:
Signature:

122

Software Change Notice

Submitted by (Name, Team):
Date of Submission:

Changes Implemented

No. Implementation Status Responsible Team Date

Configuration Item Revision Changes

Configuration Item Configuration Item Configuration Item
Description Identifier Prior to Change Identifier After Change

Comments

Approved By: Date:
Title: Signature:

CCB Approval: Name: Date:
Title: Signature:

Received By CM: Name: Date:

123

Configuration Audit

Name of auditor:

Date of the audit:

Please ask and answer the following questions.

1. Have changes specified in the Software Change Request or any other forms been made
or considered?

YES / NO
comments:

2. Have formal technical reviews been conducted to achieve technical correctness?

YES / NO
comments:

3. Have comments or suggestions from formal technical reviews been considered or
incorporated?

YES / NO
comments:

4. Have software engineering standards been properly followed?

YES / NO
comments:

5. Have CM procedures for documenting changes been followed?

YES / NO
comments:

124

6. Have all related CIs been properly updated?

YES / NO
comments:

7. Any additional comments?

125

