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Abstract

Open-water disposal and capping is a promising solution for disposing of the 14
to 28 million m3 of contaminated sediment dredged annually in the United States
(National Research Council, 1997). Such practice raises concerns about the feasibility
of accurately placing the material in a targeted area and the loss of material to
the environment during disposal. To better predict the fate of these materials, the
objective of this research was to gain new insight into the physical processes governing
the mechanics of their convective descent.

Instantaneously released sediments form axisymmetric "clouds" resembling self-
similar thermals. Current particle cloud models employ thermal theory and an in-
tegral approach using constant entrainment (a), drag (CD), and added mass (k)
coefficients. The aim of this study was to investigate how real sediment characteris-
tics (particle size, water content, and initial momentum) affect cloud behavior (i.e.,
velocity, growth rate, and loss of particles) and time variations in a, CD, and k.

Flow visualization experiments were conducted using a glass-walled tank, special
sediment release and capture (i.e., "trap") mechanisms, and various cohesive and
non-cohesive particles. Particle sizes were scaled to real-world dimensions through
the cloud number (Nc), defined as the ratio of the particle settling velocity to the
characteristic cloud velocity. An "inverse" integral model was developed in which the
conservation equations were solved for a and k using measured velocity and radius
data. Based on the "inverse" model results, particle cloud experiments were simulated
with an integral model using constant and time-varying a and k.

The non-cohesive sediments evolved rapidly into "thermals" with asymptotic de-
celeration and large growth rates (a = 0.2 - 0.3). The particles eventually organized
into "circulating thermals," with linear growth rates obeying buoyant vortex ring
theory. In this phase, large particles (Nc > 10-) produced laminar-like vortex rings
with small a (0.1 - 0.2). Compared to the cohesive sediments, which exhibited a
wide range of growth rates, changes in water content and initial momentum of the
non-cohesive particles produced 10 - 20 % variations in a.

Material not incorporated into the cloud upon release formed a narrow "stem"



behind the cloud, which contained as much as 30 % of the original mass depending
on the release conditions. Much of the "stem" material either re-entrained into the
cloud later in descent or reached the bottom shortly after it. Material not incorporated
into the "stem," which may be advected by ambient currents, was found to be only
a small fraction (< 1 %) of the original mass.

Inverse integral model results suggest that CD and k are close to zero within the
"thermal" phase. In the "circulating thermal" phase, the reduction in a caused by
large particles (Nc > 10-4) increased k to a value similar to that of a solid sphere. In-
tegral model results confirm the suitability of using constant coefficients for modeling
particle clouds with Nc less than 10-. When Nc is greater than 10-4, time-varying a
and k are required to properly simulate cloud behavior in the "circulating thermal"
phase.

Thesis Supervisor: E. Eric Adams
Title: Senior Research Engineer
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Chapter 1

Introduction

In this chapter, the real-world problems motivating this work are described. The

scope of this investigation, as related to the ultimate fate of sediments discharged to

open waters is discussed next, followed by an outline of objectives for this work.

1.1 Motivation

An estimated 14 to 28 million m3 of contaminated sedimentary material is dredged

annually in the United States, which represents approximately 5 to 10 % of all sed-

iments dredged in the U.S. (National Research Council, 1997). A lack of low-cost

upland disposal alternatives has made open-water disposal followed by placement of

capping materials (e.g., sand) an attractive solution. Such practice raises not only

water quality concerns associated with the potential loss of contaminated material

to the water column during disposal, but also engineering challenges related to the

ability of barges or scows to accurately place dredged and capping materials within

a targeted area.

The Boston Harbor Navigation Improvement Project (BHNIP) provides a timely

example of the technological problems posed by a dredging disposal/capping project.

The project, which involves dredging portions of Boston Harbor to accommodate

newer and larger ocean vessels, is expected to ultimately generate about 1.0 million

m 3 of contaminated silt, 2.7 million m3 of underlying parent material (mainly clay),

19



and 0.1 million m3 of rock (Massport and USACE, 1995). The contaminated silt is

being disposed of in excavated in-channel disposal cells (15-20 m deep) and covered

with a 1 m layer of clean sand, while the parent material is being disposed of at

the Massachusetts Bay Disposal Site (approximately 90 m deep). Implementation

of a test cell in the summer of 1997 resulted in unanswered questions concerning

the amount of lateral spreading (surging) that occurred following disposal of the silt

material, as well as the amount of mixing that took place during placement of the

coarser sand cap on top of the softer sediments (SAIC, 1997).

Clearly, successful implementation of sediment disposal and capping technologies,

whether in shallow depths, such as Boston Harbor, or in deeper and more ecologically

sensitive areas, requires an understanding of, and the ability to predict, the short-

term mechanics of these materials in the environment (i.e., velocity, growth rate, and

loss of particles to the environment). As discussed in Chapter 2, a limited number of

studies have been performed to investigate the behavior of particle clouds as related

to the disposal of dredged material. Thescopes of these studies were rather limited in

that only gross comparisons were made between the motion of the particle clouds and

that of classical "thermals." No detailed studies have been performed to investigate

the influence of real sediment characteristics and release conditions (e.g., in-vessel set-

tling, water content, initial momentum) on the behavior of released sediments. Field

measurements suggest that the amount of material lost to the ambient environment

during disposal to be in the range of 1 to 5 % of the original mass. However, to date,

no studies have been conducted to investigate the physical mechanisms responsible for

this loss and how such mechanisms are affected by initial sediment conditions. Hence,

the aim of this research is to gain new insight intohow initial sediment characteristics

and release conditions affect the physical processes governing the short-term fate of

dredged and capping materials discharged into open waters.

The short-term behavior of materials discharged into open waters has been con-

ceptualized into the following three phases (Clark et al., 1971; Koh and Chang, 1973)

as shown in Figure 1.1:

e Convective Descent: Released sediments form a particle cloud that is trans-
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ported downward by its negative buoyancy (submerged weight).

" Dynamic Collapse: When the cloud impacts the bottom or reaches a level of

neutral buoyancy, the cloud collapses and spreads horizontally.

" Passive diffusion: When dynamic spreading has ceased, cloud particles advect

and diffuse through action of the ambient current.

The research discussed herein focuses on the first phase of particle clouds, convective

descent.

1.2 Qualitative Description of Convective Descent

It is most convenient to view the motion of suspended particles from a macroscopic

point of view in which the particle cloud is assumed to act as a distributed source of

negative buoyancy released suddenly (i.e., instantaneously) to its surroundings. In

this respect, the cloud of particles is viewed as a continuous, single-phase density

field, no different than a source of heavy fluid with the same average density. In

the meteorological and fluid mechanics literature, such a sudden release of buoyancy

(either positive or negative with respect to the ambient fluid) has been given the name

"thermal" (Scorer, 1958; Woodward, 1959) based on early studies of free convection

in the atmosphere due to temperature differences (e.g., cumulus cloud formation).

Herein, the term "thermal" will be used in the context of a heavy thermal, falling

through a fluid of lower density.

The typical velocity profile of a particle cloud has been categorized into the fol-

lowing three regimes (Rahimipour and Wilkinson, 1992; Noh and Fernando, 1993) as

shown in Figure 1.2:

" Initial Acceleration Phase

" Self-Preserving or Thermal Phase

" Dispersive or Particle-Settling Phase
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Figure 1-1: Idealized particle cloud phases (after Brandsma and Divoky, 1976).
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Initial Acceleration Phase:

Upon release, the sediment/fluid mixture accelerates and expands rapidly, entrain-

ing ambient fluid over all of its surface through the action of small, turbulent eddies

produced by the hydrostatic instability associated with density differences and veloc-

ity shear at the cloud boundary. It has been shown theoretically and experimentally

(Escudier and Maxworthy, 1973; Baines and Hopfinger, 1984) that the duration of

the initial acceleration phase is a function of the initial buoyancy, and that a thermal

will typically reach the self-preserving phase after it has traveled a depth equivalent

to 1 - 3 initial cloud diameters. Similar durations have also been observed for particle

clouds (Nakatsuji et al., 1990; Li, 1997).

Self-Preserving Phase:

In this phase, thermals and particle clouds undergo an asymptotic deceleration

caused by the rapid entrainment of less dense ambient fluid into the cloud. Since

there is no representative length scale in this region, it is typically assumed that the

thermal has reached a state of self-similarity in which all lengths are in proportion,

and the mean velocity and buoyancy profiles across a horizontal section of the cloud

are similar at all depths (Batchelor, 1954; Morton, Taylor, and Turner, 1956). Ini-

tially, the distribution of buoyancy must resemble either a tophat or gaussian-type

profile, with a maximum value in the center of the cloud. As the cloud grows, larger

eddies are produced which induce flow of ambient fluid into the rear of the cloud.

These large eddies are responsible for organizing the cloud into an axisymmetic, vor-

tical structure similar to a vortex ring, or more accurately, a spherical vortex as

described by Hill (1894). The buoyancy distribution in a vortex ring is bimodal, with

the buoyancy concentrated in the rotating core. The spherical vortex is characterized

by a downflow of fluid (and particles) through the center and upflow of fluid along

the edges. As this structure matures, the induced internal circulation cause the cloud

to flatten and evolve into the characteristic mushroom-shaped (upside-down) thermal.
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Dispersive Phase:

As the descending particle cloud decelerates and its velocity approaches the set-

tling velocity of the individual particles, the circulation is insufficient to keep the

particles in suspension. At this point, the particles settle out of the cloud leaving

behind a neutrally buoyant fluid volume descending only with the inertia it possesses

at that time. The settling particles descend as a particle "swarm" (Nakatsuji et al.,

1990; Papantoniou et al., 1990; Biihler and Papantoniou, 1991) that continues to ex-

pand (at a much slower rate) via weak inter-particle dispersive pressures (Rahimipour

and Wilkinson, 1992).

1.3 Objectives

The goal of this research is to improve our understanding of the factors influencing

the convective descent phase of particle clouds. The specific objectives of this work

are to answer the following questions:

" Under the expected range of sediment disposal scenarios, do real sediments orga-

nize into self-similar clouds that behave as dense "thermals" during convective

descent?

" What roles do the initial conditions, namely particle size, water content, and

initial momentum, play in determining cloud behavior within the initial accel-

eration and self-preserving phases?

" What mechanisms are responsible for the loss of cloud particles and fluid to the

environment during initial formation and convective descent?

" How accurately can the behavior of particle clouds be predicted using an integral-

type model with constant entrainment, drag, and added mass coefficients?
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* How do the entrainment, drag, and added mass coefficients vary in time and

space during convective descent, and how are they affected by the initial con-

ditions?
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Chapter 2

Background

As noted in Chapter 1, during convective descent, particle clouds behave similarly to

classical thermals and buoyant vortex rings, both of which have been the subject of

several key studies, some dating back to the late 1950's and early 1960's. Thus, an

understanding of the characteristics of these convective elements provides a basis on

which to investigate the dynamics of particle clouds. To this end, the results of early

studies of thermals and vortex rings are discussed in the first two sections, followed

by a synopsis of more recent particle cloud investigations.

2.1 Thermals

In this section, the theoretical analysis of thermals will be discussed first followed by

a review of some key laboratory studies. In this section, the terms "thermal" and

"cloud" are used interchangeably.

2.1.1 Theoretical Analysis of Thermal

In the analysis of thermals, it is convenient to use an integral approach in which the

thermal is treated as a moving, expanding control volume (e.g., sphere or hemisphere)

for which the following conservation equations apply in a uniform density environ-

ment (Koh and Chang, 1973):
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Conservation of Mass:

d (21
d (pr) = 3apar2w (2.1)

Conservation of Momentum:

d
- (V(p + kpa)w) = B - 0.5 paCD1TT 2  (22

Conservation of Buoyancy:

d d
-B = -(V(p - pa)g) 0 (2.3)

dt dt

where: r is the thermal radius; V is the cloud volume; p and pa are the densities of

the cloud and ambient fluid, respectively; k and CD are the added mass and drag

coefficients, respectively; and g is the gravitational constant. Equation 2.3 is based

on the assumption that no buoyancy is lost to the wake of the thermal. Equation 2.1

is based on the classic entrainment assumption that the mean entrainment velocity

is proportional to the mean center of mass velocity (w) through the entrainment

coefficient (a). Hence, the mean flow rate of ambient fluid into the cloud is equal to

the entrainment velocity multiplied by the surface area of the cloud. By assuming

p a Pa, setting w = L, and using the chain rule of differentiation, it can be shown

that:

r = az (2.4)

where z is the center of mass position.

Thus, use of the continuity equation and entrainment assumption results in a

linear relationship between r and z, in which case a can be regarded as both a

spreading angle (i.e., 1 = tana) and an entrainment coefficient. The assumption

that p pa represents a type of Boussinesq approximation, where it is assumed that

density changes are so small that they may be neglected in the inertia terms and are
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retained only in the buoyancy term.

Baines and Hopfinger (1984) used dimensional arguments to show that when the

Boussinesq approximation is not made, Equation 2.4 should be modified as follows:

r = a "3 z (2.5)

The authors noted that the functional dependency of r on the ratio P- made

physical sense since the static instability at the cloud surface producing the entrain-

ing eddies is known to depend on the density difference between the thermal and

the ambient fluid. Baines and Hopfinger also demonstrated both theoretically and

experimentally that the entrainment rate for thermals is so large that the Boussinesq

approximation is reached after the thermal descends about two initial diameters.

The three conservation equations contain three unknown variables (r, w, and

p) and three unknown coefficients (a, k, and CD), which are largely empirical in

nature and need to be determined by experiment. The equations do not permit an

analytical solution without the use of simplifying assumptions, since elimination of

two of the variables results in a second-order nonlinear differential equation in terms

of the remaining variable.

If constant pressure and inviscid conditions are assumed (i.e., rate of work done

by pressure and viscous shear forces is negligible), dimensional analysis can be used

to derive the following similarity solutions for the motion of an axisymmetric thermal

in a uniform density environment originating from a point source (Turner, 1973):

r = az

w = (B z- 1 fi (2.6)

Ba r

g' = (B)z-3f2 ()

where: r is a position vector relative to the axis of symmetry; g' is the modified

gravitational acceleration, (Q-~P")g; and fi and f2 are profile functions for w and g',
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respectively. Using an integral approach and neglecting the velocity and buoyancy

distributions within the interior of the cloud, the following time dependencies for r

and w can be deduced using w = d (Turner, 1973):

1

Pa

w (B- t (2.7)
Pa

Using some simplifying assumptions, Wang (1971) and Escudier and Maxworthy

(1973) derived asymptotic solutions to the three conservation equations that are ap-

plicable to very short (i.e., early in the initial acceleration phase) and long times (i.e.,

well into deceleration phase). The authors nondimensionalized the equations by in-

troducing the characteristic (i.e., initial) length scale, r0, and buoyancy, F, (PoP-P),Pa

and defining the following dimensionless variables:

r ~ agF' - ar =- ; t= t - w = l w (2.8)
To (ro roFog

Assuming that the drag forces are small and can be neglected, and that there is

no loss of fluid (buoyancy) to the thermal's wake, Escudier and Maxworthy (1973)

derived the following asymptotic solutions for a spherical thermal:

Short times, (f - 1) < 1:

2(1 + k) - Fo ' + k - Fo (2.9)

Long times, f > 1:

.21-1

2(~ k1 ; (1~k1 (2.10)
2(1 + k)'- 21(1 + k)l
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In dimensional form, Equation 2.10 yields the following:

3aB t 3B - 1_(2.11)
r = -~ w = (211

47rpa/ (2(1 + k)) ' 47pa I(2a)4( +k)(

Equation 2.11 is similar in form to Equation 2.7 except for the constant coef-

ficients, functionality in a, and inclusion of the added mass coefficient (k). These

differences are the result of the inclusion of k in the momentum equation by Escudier

and Maxworthy (1973) as well as their choice of nondimensional parameters and their

inclusion of a.

Morton et al. (1956) provided the first theoretical development of the behavior

of thermals in a stably stratified environment in which they used, in addition to the

mass and momentum conservation equations, the following conservation of buoyancy

principle:

dj J(P - pa(0))dV = 4r 2aw(pa - pa(0)) (2.12)

where pa(0) is the reference density of the ambient fluid taken at z = 0. In words,

Equation 2.12 states that the time rate of change in buoyancy, integrated over the

entire volume of the thermal, is equal to the inflow of buoyancy integrated over the

surface area of the cloud. By substituting the mass and momentum conservation

equations into Equation 2.12, neglecting the added mass and drag force, and using

the Boussinesq approximation, Morton et al. (1956) expressed the conservation of

buoyancy in terms of the Brunt-Viisils frequency (N) as follows:

-- (r3g (PPa) ) -r 3 N 2W (2.13)
dt Pa (0)

where N 2 = q P.a Morton et al. (1956) nondimensionalized the conservation
pa(o) dz*

equations and normalized the time scale by N (i.e., ti = Nt; 0 < ti 27), which

resulted in the following solutions for w and maximum, or "trap," depth (zmax):
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3 Bo 4
(1~-i - NsW

(Pa)

zm3 ~B) a-1 Ni (2.14)
Pa

where

sinti
W - Z ,8 Z-4(1-costi) , for ti <7r

(1 - costi) I

sinti iW=-aZ=8-2 4(3 +cos ti)' , f or ti ;>7r
(3 + costi)Z

Thus, for a negatively buoyant thermal, zmax is proportional to B0 4 and inversely

proportional to N2, since the falling cloud entrains positively buoyant fluid from the

upper layers thereby increasing its buoyancy. The cloud eventually reaches a point

where its velocity reverses sign and begins to oscillate around the level of neutral

buoyancy at the frequency, N. The oscillation results from the fact that the cloud

still possesses some momentum when it first reaches the point of neutral buoyancy,

causing it to overshoot this level. At this point, its buoyancy becomes positive with

respect to its surroundings causing it to rise and the oscillations to begin. Although

not included in Equation 2.14, drag forces eventually dampen the oscillations, and the

density stratification causes the cloud to collapse (i.e., enter dynamic collapse phase)

and spread horizontally as the interior fluid seeks a hydrostatic equilibrium with the

ambient fluid. By replacing the sine and cosine functions in W by their Taylor series

expansions and neglecting higher order terms (i.e., sin ti ~ ti; cos ti ~ 1 - }t 1
2 ), w in

Equation 2.14 reduces to a form similar to that of Equation 2.11 when ti approaches

zero.

2.1.2 Laboratory Studies of Thermals

Early experiments with thermals in the 1950's and 1960's were motivated by meteoro-

logical phenomena (e.g.. cumulus clouds), whereas dredged material disposal concerns
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provided the impetus for later experiments conducted during the past decade. Labo-

ratory procedures in the early experiments involved releasing a dense fluid, usually a

salt solution, into an illuminated, quiescent tank by manually inverting a hemispher-

ical cup at the water surface. The descent of the thermal was then recorded on video

tape from which velocity and entrainment estimates were made. In conjunction with

these experiments, Equation 2.4 was used to determine a, and dimensional analysis

was used to derive the following similarity solutions:

w = C(gFor)i (Scorer, 1957) (2.15)

2 -3Bz =cia- - t (Richards, 1961) (2.16)
Pa

where C and ci are constants.

Scorer (1957) reported values of a ranging from 0.20 to 0.34 with a mean of 0.25.

Woodward reported an average value of 0.27 for a, whereas Richards (1961) reported

a values between 0.13 and 0.53. These authors noted that the entrainment rate was

quite sensitive to the initial release condition (i.e., the manner in which the cup was

inverted), which was difficult to reproduce consistently, but that a remained roughly

constant in a given experiment. Scorer (1957) calculated a mean value of 1.2 for C,
which, not surprisingly, exhibited variability similar to that of a, since Turner (1964)

showed that the two coefficients are related as follows: C 2a(1 - a) = 1. In contrast,

Richards found that ci = 0.73 for nearly all of the thermals in his experiments.

Turner (1964) showed that ci is mainly a function of the shape of the thermal and

the associated added mass coefficient, with only a small dependence on a.

2.2 Buoyant Vortex Rings

2.2.1 Theoretical Analysis of Buoyant Vortex Rings

It is instructive to compare the motion of a thermal, which moves from rest under

its own buoyancy, to that of a buoyant vortex ring, which, in addition to buoyancy,
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is generated with initial momentum, or impulse (I), as well as circulation (K). The

hydrodynamic impulse, defined as the total mechanical impulse of body forces re-

quired to instantaneously generate a circulating volume (V) of fluid from rest, can be

expressed as follows (Lamb, 1932):

1
I = -p x x wdV (2.17)

where x is a position vector, and w is the vorticity vector. For an axisymmetric vortex

ring, which is a toroidal-shaped element with mean radius (r), and cross-sectional

radius (a), Equation 2.17 becomes (in cylindrical coordinates):

p7r r 2 wpdzdr (2.18)
A

where I is in the direction of motion (i.e., along z axis); A is the cross-sectional area

of the ring (Tra 2); and wo is the azimuthal vorticity component. The circulation is

related to w through the surface integral:

K = odzdr (2.19)
JA

Using Equations 2.18 and 2.19, Lamb (1932) defined the characteristic length

scale, r 2  K resulting in I ~ 7rpaKr2. The conservation of momentum (impulse)0 rPa K I

equation can now be expressed as follows:

dI dr 2

-~7rpaK = BO (2.20)dt dt

Recognizing that K = u ds, where u is the tangential velocity vector and ds is

an element of a contour enclosing A, leads to the following expression for the vertical

velocity of the ring (w):

W = C-- (2.21)
r

where c is a constant which is dependent on the shape of the vortex ring.
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Turner (1957) integrated Equation 2.20 and used Equation 2.21 along with w dzdt

to obtain:

B0r =z (2.22)
c27r paK 2

The author related this equation to Equation 2.4 for a thermal by defining a new

entrainment coefficient as follows:

BO
Bo = " (2.23)

c2ir paK 2

In deriving Equation 2.23, Turner assumed that the vorticity does not extend to the

axis of the ring. This assumption allowed him to invoke Kelvin's circulation theorem

along a circuit passing through the center of the ring and around the outside so that

dt 0, and thus K is constant. The assumption of constant circulation was based

on the heuristic argument that as the ring progresses, its diameter increases faster

than the rate at which entrained fluid can spread from turbulent diffusion (Turner,

1957). Through Equation 2.23, Turner argued that the buoyant vortex ring represents

a broader category of convective elements in which the buoyant thermal is a special

case.

The following expression for w can be obtained by integrating Equation 2.20 and

using Equation 2.21:

m~ a- Ko2 t 2 (2.24)

Thus, for a given initial KO, an increase in buoyancy produces a decrease in veloc-

ity, which, at first, seems counter-intuitive since this conflicts with Equation 2.7. The

physics can be explained by the fact that buoyancy serves to increase the expansion

of the ring, which decreases the velocity since w ~ j. However, as Turner pointed

out, B0 and K are not independent in a thermal since circulation is produced by the

buoyancy force. Hence, if BO is increased, the circulation should also increase. Since
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K - vB and B, is constant in a uniform environment, the circulation in a thermal

must be constant in a uniform environment. Obviously, this condition does not hold

for a thermal during the initial acceleration phase but only after it has reached the

self-preserving phase. As Scorer (1957) noted, at this stage, the buoyancy profile

within the thermal must change to a distribution that does not continue to produce

circulation, at which point an equilibrium is reached in which the drag forces balance

the portion of the buoyancy force producing the circulation.

The similarity solutions for the motion of a buoyant vortex ring in a stably strat-

ified environment are very similar to the preceding analysis of buoyant vortex rings

under isothermal conditions with the exception that the buoyancy is no longer con-

stant but varies with the ambient density profile as follows:

dB
= -cN 2 r w (2.25)

dt

Not surprisingly, the above equation is identical in form to Equation 2.13 for a ther-

mal. Hence, in addition to B, and K,, N must now be introduced into the similarity

solution. Dimensional analysis based on these variables gives the following relation

for the maximum height (zmax):

Zmax =C ( Ko i N- (2.26)

where ci is a constant. Expressions for w, r, and B may be obtained through nor-

malization and substitution into the governing equations in a manner similar to the

approach used by Morton et al. (1956) in their analysis of thermals. Based on his

analysis of I and K for a vortex ring, Turner (1960) showed that density stratification

serves to decrease the circulation as follows:

dK - -sN2r2 (2.27)
dt 2

where s is an empirical constant.

36



2.2.2 Laboratory Studies of Buoyant Vortex Rings

Though a wealth of literature exists concerning research of vortex rings, few exper-

imental studies have been performed on buoyant vortex rings. Turner (1957, 1960)

conducted experiments in uniform density and stratified environments using light

buoyant vortex rings with density differences ranging from 4 % to 18 %. Results from

these experiments yielded values for c in Equation 2.21 ranging from 0.13 to 0.27, a

mean value of 0.18 for a, and a value of 3 for s in Equation 2.27.

Maxworthy (1974) conducted flow visualization experiments with vortex rings

(i.e., neutral buoyancy) produced by forcing a mass of fluid through a sharp-edged

orifice by the motion of a piston. This apparatus produced turbulent vortex rings

with a mean a value of 0.011. By taking the slope of nondimensionalized velocity

versus depth data, Maxworthy (1974) also estimated the value of the drag coefficient

(CD) to be in the range of 0.084 - 0.108 for an equivalent spherical volume.

In later experiments using more sophisticated flow visualization and laser-Doppler

techniques, Maxworthy (1977) observed that compact, "well-organized" vortex rings

grew at a much slower rate (mean c = 0.001) than those with "disorganized" cores

with much larger entrainment coefficients (mean a = 0.015). The author hypothe-

sized that the differences in entrainment rates were associated with the amount of

turbulence within the ring and surrounding fluid.

2.3 Particle Clouds

In this section, a theoretical analysis of particle clouds is presented first, followed by a

summary of laboratory and field studies conducted to date. The theoretical analysis

includes a discussion of scaling arguments using the cloud number (Nc) and a brief

summary of some theoretical and empirical relationships for particle cloud behavior

in the dispersive (particle settling) phase.

37



2.3.1 Scaling Analysis of Particle Clouds

For a particle cloud, the initial buoyancy (B0 ) can be computed simply from the

submerged weight of the particles as follows:

BO = m(1 - "a )g (2.28)
Ps

where m is the total mass of particles in the cloud, and p, is the density of an

individual particle.

For fully turbulent particle clouds for which viscous effects can be ignored, di-

mensional analysis can be used to derive the following characteristic cloud velocity

scale:

BO
wo = " (2.29)

Equation 2.29 can also be derived by equating the drag and buoyancy forces.

Rahimipour and Wilkinson (1992) defined the cloud number (Nc) as the ratio of

particle settling velocity (w.) to the characteristic cloud velocity (wo), which, using

Equation 2.29, simplifies to the following expression for non-cohesive particles:

Ne = wr Pa) 2 (2.30)
(B

Since Nc is proportional to the cloud radius, its magnitude continually increases as

the cloud descends and grows. Since w, is related to particle diameter (d,) and wo is

related to the total mass or volume of particles, the cloud number can be viewed as a

type of size ratio, relating the mean grain size of the individual particles to the overall

size of the cloud. Thus, Nc can be used to scale a small volume of small-diameter

particles in the laboratory to a larger volume of large-diameter particles released

from a full-scale barge. This type of scaling analysis was performed to determine

how a 40 g sample of particles (Bo = 23, 520 g cm s-2, V = 27 cm 3 ), used for most

of the experiments in this study, scales to much larger volumes in the real world.

The analysis was performed by calculating the fall velocity of particles contained in
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Table 2.1: Nc scaling of particle cloud grain sizes between 27 cm 3 laboratory volume
and barge volumes of 10, 100, 1,000, and 5,000 m3 .

different full-scale volumes (i.e., 10 m3 , 100 Mi3 , 1, 000 m 3 , and 5, 000 m3 ) by matching

the cloud numbers corresponding to the 40 g laboratory sample containing particles

ranging from 0.01 - 1.0 mm in diameter. Settling velocities were calculated from

particle diameters and vice versa using the following empirical relationship developed

by Dietrich (1982) for spherical particles:

w* = -3.76715 + 1.92944 log(D*) - 0.09815 log(D*)2  (2.31)

0.00557 log(D*)3 + 0.00056 log(D*)4

where

, wS3  , (s - 1)gd,3
(s - 1)gv 'v2

and s is the specific gravity of a sediment grain (e.g., s = P = 2.5 for glass beads).

The results of the cloud number scaling analysis are plotted in Figure 2.1 and

tabulated in Table 2.1. Since Dietrich developed Equation 2.31 using velocity data

for particles sizes ranging from 0.01 mm to about 100 mm in diameter, the accuracy

of the scaling analysis for particles above this size is uncertain.

As shown in Table 2.1, results of the Nc scaling analysis show that laboratory-

sized sand and silt particles scale to real-world dimensions by factors of - and ,

respectively. Thus, use of large particle sizes in the lab (i.e., 0.5 - 1.0 mm) scales
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Laboratory Real-World Diameter (mm)
Diameter (mm) 10 m3 100 m 3 1,000 m 3 5,000 m 3

0.01 0.027 0.033 0.040 0.045
0.05 0.172 0.221 0.290 0.353
0.10 0.418 0.572 0.807 1.05
0.50 5.97 13.0 33.3 64.8
1.00 33.0 83.3 165 258
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Figure 2-1: Particle size correlation between 40 g laboratory sample and real-world

barge sizes based on cloud number scaling.
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to extremely large particles in the field (i.e., gravels and cobbles). Particles of this

size must therefore be used with caution in the laboratory when attempting to repro-

duce the real-world dynamics of particles of similar size using Nc scaling. Strict Nc

compliance, however, may not be required to reproduce the dynamics of clouds with

very small Nc (i.e., cloud dynamics may be insensitive to Nc). The influence of Ne

on cloud behavior is discussed in Chapter 4.

As one might expect, flow visualization studies using different sizes of sand and

glass beads show that three-dimensional, axisymmetric clouds enter the dispersive

(particle settling) phase when the cloud velocity approaches the settling velocity of the

particles (i.e., Nc -+ 1) (Rahimipour and Wilkinson, 1998; Biihler and Papantoniou,

1991; Boothroyd, 1971).

Based on experiments with two-dimensional particle clouds (i.e., originating from

a line source), Noh and Fernando (1993) observed that the depth (Zd) associated with

the cloud's transition to the dispersive phase obeyed the following relationship:

ZdWs 
(2.32)

where Q is the buoyancy of the released particles per unit length.

The authors hypothesized that, in addition to Nc, the transition depth depended on

particle inertia, turbulent intensity, and inter-particle spacing. They noted that the

transition occurred when Nc was less than 1, possibly due to the increase in particle

settling velocity resulting from particle interactions and the downward background

fluid velocity of the cloud.

Biihler and Papantoniou (1991) studied the growth rate of the particle "swarm"

that emerges when the cloud transitions from the "thermal" to dispersive phase.

Upon integrating the momentum equation and solving for the velocity by invoking

the similarity assumption (i.e., !i- - w), the authors derived the following expression

for radial growth of the particle "swarm:"
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1
/Bz N

r ~ 2(2.33)
Paws2

Biihler and Papantoniou (1999) explained that the growth of the particle swarm is

caused by shear induced entrainment and lateral displacement flow resulting from the

wake behind each particle.

2.3.2 Laboratory and Numerical Modeling Studies of Parti-

cle Clouds

Bowers and Goldenblatt (1978) released samples of silty clay sediments containing

various amounts of water to determine the effect of moisture content on entrainment.

As will be discussed in Chapter 7, their results indicate that for cohesive materials,

the entrainment coefficient is quite sensitive to water concentration. The authors

note that samples with low water content tended to drop as clumps with virtually no

entrainment, whereas more dilute slurries behaved very much like negatively buoyant

thermals.

Nakatsuji et al. (1990) performed flow visualization experiments using 75-300

cm 3 volumes of 0.8 mm, 1.3 mm, and 5.0 mm diameter glass beads. The authors

derived a nondimensional expression for cloud velocity using conservation of mass and

momentum equations similar in form to Equations 2.1 and 2.2. Using a and k values

selected by the authors, their theoretical thermal velocity failed to accurately match

measured velocities in the acceleration phase, as well as the cloud's peak velocity,

which exceeds the predicted value by 20 %. The distance traveled during the initial

acceleration period was equal to approximately 2.5 initial cloud diameters. Under the

assumptions of constant a (0.4), constant k (1.0), no drag, and Boussinesq conditions,

the authors showed that the smaller beads (< 1.3 mm) behaved according to thermal

theory in the deceleration phase, whereas clouds formed from the larger 5 mm beads

descended at a relatively constant speed, close to the settling velocity of the beads

(Nc ~ 0.5). Cloud growth data and associated entrainment coefficients were not

provided by the authors.
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Tamai and Muraoka (1991) analyzed two-dimensional (i.e., line) particle clouds in

the laboratory using fine (0.15 mm) and coarse (3.4 mm) sand. Their results showed

linear growth rates (no a values given) and a velocity versus time profile that loosely

follows thermal theory (i.e., w ~'-1 t-) for a line thermal. No information was provided

by the authors as to how the theoretical curve was fit to the experimental data.

Rahimipour and Wilkinson (1992) conducted flow visualization experiments on

particle clouds using graded sand (d, = 0.15 - 0.35mm). They compared velocity

and growth rate data to analytical curves generated for a miscible thermal with the

same buoyancy. Similar to the study by Nakatsuji et al. (1990), the authors show that

thermal theory somewhat captures the decaying trend of cloud velocity in the asymp-

totic (deceleration) region, after the cloud has traveled about two diameters, but

does not predict velocities very accurately in the initial acceleration phase. By vary-

ing initial volumes and particle sizes, Rahimipour and Wilkinson (1992), developed

the following relationship between the entrainment coefficient and cloud number:

a= 0.31(1 - 0.44Nc1 2 5 ) for Nc < 1.5 (2.34)

The above equation shows that, for small cloud numbers (i.e., Nc < 0.3), the

entrainment rate remains approximately constant (a = 0.31), but decreases rapidly

once Nc exceeds unity. The authors did not explicitly comment on when they consider

the clouds to be in the dispersive phase (based on Nc) but note that the clouds are in

the dispersive phase when Nc = 1.5. Rahimipour and Wilkinson (1992) derived the

following empirical expression for the radial growth rate in the dispersive phase:

1

B 2 1
r f 1.5 f or Nc > 1.5 (2.35)

Pa Ws

Luketina and Wilkinson (1994) released particle clouds with various initial Nc

values into a linearly stratified environment and compared maximum and final pene-

tration depths to those predicted by an integral model based on the three conservation

equations. Their model predicted maximum and final penetration depths that were

consistently lower than measured experimentally. Their results confirmed the propor-
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tionality given by Equation 2.13 and also showed that the oscillations were damped

more rapidly than simulated by the model. The authors hypothesized that increased

drag on the particle cloud resulting from internal wave production was responsible

for these discrepancies. They also noted that the model's performance was relatively

insensitive to the drag coefficient.

Johnson and Fong (1995) conducted disposal tests at the USACE Waterways

Experiment Station using 1:50 scale replicas of a split-hull barge and multiple bin

disposal vessel. A series of tests was performed in water depths of 0.61 - 1.83 m using

crushed coal, clay, silt and sand. The study focused mainly on the mechanics of the

dynamic collapse and the associated the bottom surge rather than the initial accel-

eration and deceleration convective descent phases. Cloud growth and velocity data

during convective descent were not provided. The authors compared depth-averaged

and bottom surge velocities from test measurements to predictions generated by the

Short-Term Fate (i.e, STFATE) model, originally developed by Koh and Chang (1973)

and currently used by the U.S. Army Corps of Engineers (USACE) to predict the fate

of dredged materials released from barges or scows. Little information was provided

by the authors concerning the details of the model calibration and verification effort.

Johnson and Fong (1995) noted that large values of a produced the best results, and

that they used a value of 0.6 for a, which was estimated from on Mobile, Alabama

field data (Kraus, 1991) and held CD at 1.0, which was used in earlier USACE mod-

eling studies. Modeling results show differences between measured and simulated

depth-averaged velocities ranging from 9 - 47 %.

Wen and Nacamuli (1996) conducted flow visualization experiments by releasing

3 - 500 g quantities of different sand grain sizes (0.11 - 1.25 mm) and natural San

Francisco Bay mud (d = 0.005 mm) into a 1.2 m deep glass tank. The authors

observed that grain sizes larger than 0.11 mm produce "thermal-like" clouds with

a t-I velocity deceleration and a values ranging from 0.25 - 0.30. They referred

to these clouds as "vortex rings" because of their toroidal structure and associated

circulation. Wen and Nacamuli (1996) found that the smaller particles formed a fast-

moving "comet-shaped" element with a dense core and large wake of particles trailing

44



behind it. They refer to these clouds as "wakes." They also observed a t-- velocity

dependency for these elements but lower entrainment rates (a = 0.1). The authors

defined a Raleigh number for the cloud as Ra = B which is essentially the
(Paws 

2 r.
2 )'

inverse of the square of the initial Ne, and proposed that the clouds changed from a

"vortex ring" to a "wake" when Ra exceeded a critical value of 1000.

Li (1997) used a three-dimensional finite-difference model, based on the conserva-

tion of mass, buoyancy, and momentum (i.e., Navier-Stokes) equations, to simulate

the motion of particle clouds. He invoked the Boussinesq approximation and used

the Prandtl mixing length model to specify the spatial and temporal distribution

of eddy viscosity. In this model, the mixing length was scaled according to cloud

width through a proportionality, or mixing length, coefficient. Turbulent mass flux

was assumed to be related to the gradient of the time average density excess through

the turbulent Schmidt number. Li (1997) calibrated the model using Scorer's (1957)

experimental results for dense thermals and verified it using the particle cloud results

from Nakatsuki et al. (1990) and Biihler and Papantoniou (1991). For smaller par-

ticle sizes (0.15 - 0.30 mm), the numerical model reproduced the bimodal transverse

velocity and buoyancy distributions associated with the vortex ring structure. The

model did not simulate the double-peak distributions for the larger particles (0.6 -

1.18 mm), which the author claimed did not form well-organized vortex rings because

of their high settling velocities. A plausible explanation for this result is the rather

small initial volume used in the simulations (i.e., 1.52 cm 3 ).

While finite-difference models provide insight into the cloud's interior character-

istics, they often suffer problems associated with mass and momentum conservation,

boundary condition specification, turbulence closure, and definition of a coordinate

system appropriate for a rapidly expanding volume. Integral models avoid these prob-

lems by characterizing the gross motion of the cloud through the three conservation

equations and associated initial conditions. For particle clouds, integral models also

provide a convenient framework for simulating the settling of particles from the cloud

when the cloud's velocity approaches the particle fall velocity (i.e., transition from

"thermal" to dispersive phase). Several researchers (Koh and Chang, 1973; Abdel-
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rhman and Dettmann, 1993; Luketina and Wilkinson, 1994; and Swanson et al., 1994)

have used numerical integral models to evaluate the fate of particle clouds.

To date, few researchers have attempted to incorporate mechanisms into a model

for simulating the loss of particles to the environment (i.e., stripping) during convec-

tive descent. The loss of particles from the cloud is handled by the current STFATE

model (Johnson and Fong, 1995) in a generic manner by means of a user-specified

stripping coefficient, which gives the percentage of parent material that is "stripped"

away from the cloud as it descends. The flux of material leaving the cloud is calcu-

lated by simply multiplying this coefficient by the cloud's velocity and surface area.

In STFATE, the material that is periodically stripped from the cloud is formed into

separate smaller Gaussian clouds composed of the same particle size distribution as

the parent cloud. These separate clouds are transported by passive diffusion with a

vertical velocity equal to the mean settling velocity of the particles. The time incre-

ment associated with the frequency of stripping is completely arbitrary. Hence, at

this time, the stripping process in STFATE has no physical basis and is simply an

empirical means of allowing a pre-determined fraction of particles (e.g., based on field

observations) to strip away from the cloud as it descends.

Abdelrhman and Dettmann (1993) incorporated a mechanistic stripping process

into the STFATE model by simulating detachment of outer layers of the cloud (i.e.,

Ar) associated with the entrained volume for each time step. For each particle size

category, the authors assumed a different three-dimensional Gaussian distribution for

particle concentration. For each time step, the model compares the concentration

of particles in the outermost "Ar" layer to the value 0.01 9, a commonly cited

concentration associated with hindered settling (Teeter, 1984), and allows the outer

layer to detrain from the cloud when the concentration falls below this value. The

authors justified the hindered settling criterion because it characterizes the limit for

particle interaction in sediment suspensions. Thus, their major assumption was that

the entrainment and detrainment mechanisms are related to particle concentration,

which has not been supported by theoretical arguments or from experimental studies.

The authors applied the revised STFATE model to a hypothetical sediment material
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containing particle sizes ranging from silt to large clay clumps. The simulations

showed the finer fractions leaving the cloud first with only the coarse sand and clay

clumps remaining at deeper depths.

2.3.3 Field Studies of Particle Clouds

Over the past few decades, a limited number of field studies have been performed in

the U.S. to investigate the short-term fate of dredged material discharged into open

waters. The results of these studies are summarized below.

e Long Island Sound

Gordon (1974) was among the first researchers to quantify residual turbidity gen-

erated from open-water disposal of dredged material. The dredged material was

disposed in 20 m of water at the New Haven disposal site in Long Island Sound. The

material, consisting primarily of marine silt (silt - clay concentrations up to 90 %)

with high water content (70 to 75 %), was instantaneously released from scows of

1,200 and 2,000 m3 capacities. Based on a series of turbidity measurements, Gordon

estimated the amount of fines (i.e., silt and clay particles) lost to the water column

to be approximately 1 % of the material discharged.

e San Francisco Bay

In a dredged material disposal study at the Carquinez Site in San Francisco Bay

(Sustar and Wakeman, 1977), the U.S. Army Engineer District, San Francisco used

transmissometer and gravimetric analysis to measure water column suspended solids

concentrations resulting from disposal of silty clay material from twin 994 m 3 hopper

dredges in 13.7 m of water. Mass balance calculations suggest the amount of sediments

lost to the upper water column to be in the range of 1 to 5 % of the material released.

* Dredged Material Research Program Sites

As part of the U.S. Army Corps of Engineers' (USACE) Dredged Material Re-

search Program (DMRP), Bokuniewicz et al. (1978) investigated the mechanics of
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the placement of dredged material at six open-water disposal sites in which disposal

operations were performed from stationary barges. With release times ranging from

10 to 100 s, water depths from 15 to 67 m, and fall velocities on the order of 1 m/s,

the majority of discharges at these sites are described as semi-continuous jets of dense

fluid which entrain large volumes of ambient water as they descend to the bottom.

The authors hypothesize that under these shallow-water disposal scenarios, the in-

ward circulation caused by the descending jet serves to confine the released material

to a narrow zone and to inhibit the stripping of fine materials into the surrounding

water column. They estimated the material lost to the ambient water to be less than

5 % of the original material and surmised that this material represented additional

sediment released from the dredge after the jet phase is completed (i.e., material that

never makes it into the initial "jet").

* Mud Dump Site, New York Bight

Tavolaro (1984) performed a sediment dry mass study of 1980 clamshell dredging

and sediment disposal activities at the Mud Dump Site, located in 15 - 24 m of

water. The operations involved disposal of 658,500 m3 of New York Harbor sediment,

consisting predominantly of silt and clay. Using pre- and post-disposal bathymetric

data, Tavolaro compared the estimated total dry mass of sediment deposited at the

site to the dry mass of sediment in the barges and estimated the loss of fines to be

3.7 %.

e Foul Area Disposal Site, Massachusetts Bay

During 1982 - 1983 disposal activities at the Foul Area Disposal Site, currently

known as the Massachusetts Bay Deep Water Disposal Site, the USACE New England

Division undertook a study to determine the plume behavior of silt material disposed

from hopper dredges in 90 m of water compared to that previously observed during

clamshell/scow operations, which produced relatively small plumes (SAIC, 1984).

Studies of acoustic backscatter measurements revealed that the convective flow to

the bottom removed most of the sediment material from the water column within a
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few minutes, and a mass balance estimate indicated that sediment concentrations in

the remaining plume (5 to 12 mg/l) represented approximately 3 % of the total load.

* Rockland Disposal Site, Rockland, Maine

The USACE New England Division conducted multiple sediment plume measure-

ments in 1985 at the Rockland Disposal Site, Rockland, Maine (SAIC, 1988), involving

three separate discharges of silty clay material (1,205 to 2,780 m3 ) from towed scows

into approximately 65 m of water. Mass balance calculations using acoustic profil-

ing sediment concentration data indicated that approximately 6 % of the released

material would be transported out of the disposal area during maximum flood tide,

compared with only 1 % if disposal occurred evenly throughout the tidal period.

* Field Data Collection Project, Mobile, Alabama

Further insight into sediment plume dynamics was gained during the Mobile,

Alabama Field Data Collection Project (Kraus, 1991) conducted by the USACE

Waterways Experiment Station (WES) as part of the Dredging Research Program

(DRP). In this study, sediments were discharged into shallow water (7.6 m and 12

m depths) over a 10 to 20 s period from barges traveling at 4 to 6 knots. Field

observations from 18 disposal events indicated that only a small portion of the fine-

grained particles was lost to the water column, as a thin surface plume, with the bulk

of the material rapidly convected downward as a coherent mass. The surface plumes

appeared to be the result of shearing effects and dispersion caused by the moving

barge during release, suggesting that the amount of material remaining in the water

column was largely a function of the relative velocities of the ambient current and

discharge vessel. Results similar to the Mobile, Alabama study were obtained by

WES in the laboratory using 1:50 scale models of split-hull and multi-hopper disposal

vessels under both moving and stationary conditions (Johnson et al., 1993). Some

of the discharged silt material was sheared off into an upper water column plume

during tests with moving vessels; such shearing was not observed during stationary

experiments in quiescent water.
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Chapter 3

Experimental Methods

The majority of this work is based on a series of flow visualization experiments per-

formed with non-cohesive particles. Manufactured spherical glass beads and natural

ground silica silt were used for these experiments. A limited number of experiments

was also conducted using Boston Blue Clay, a cohesive material. A cross-reference

table is provided in Appendix A, which summarizes the particle sizes and other salient

features of all experiments conducted for this work. The particle types, equipment,

image processing techniques, and experimental procedure used for these experiments

are described in the following sections.

3.1 Particle Types

For the majority of particle cloud experiments, pre-sorted non-cohesive particles con-

sisting of four different sizes of glass beads and one nominal size of ground silica silt

were used. The glass beads, manufactured by Potters Industries, Inc. (Valley Forge,

Pennsylvania) under the trade name Ballotini Impact Beads, are composed of soda-

lime silica glass with a density of 2.5 9. The high reflectivity of the beads (refractive

index: 1.51 - 1.52) provided a strong imaging signal for the flow visualization system

discussed later in this chapter. The density of the ground silica silt, provided by

U.S. Silica Company (material code: SIL-CO-SIL 40 - 0.005 mm), was measured to

be approximately 2.67 -. In contrast to the spherical glass beads, the silica silt is
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Table 3.1: Particle specifications for non-cohesive particles.

known to have a very angular shape due to the grinding process.

Specifications, including the mean, range, and standard deviation associated with

each particle diameter (d,), are included in Table 3.1. For the two largest glass bead

sizes, the d, statistics were calculated from a randomly chosen group of 50 particles

for which the diameters were measured using a micrometer. For the two smallest glass

bead sizes, the d, statistics were derived from a randomly chosen set of 20 particles

for which the diameters were measured using a calibrated microscope. The minimum

percent round data shown in Table 3.1 were provided by the manufacturer. The

mean d, value shown for the silt is actually the median value taken from the grain

size distribution provided by the manufacturer. The standard deviations associated

with this value were also estimated from the grain size distribution data using the

estimated mean value of 0.014 mm.

Also included in Table 3.1 are the settling velocities (w,) of the particles. The

fall velocities of the two largest size glass beads were measured from settling column

tests (Socolofsky, 2000), and the fall velocities for the smaller beads and silica silt

were calculated using Stokes' Law (i.e., w, = d. 2 (P.-)9) with p = 1 x 10-6 based on a

water temperature of 200. The Boston Blue Clay is an illitic marine clay containing

about 60 % clay-sized particles (< 0.002 mm) with the remaining fraction consisting

mostly of silt particles with diameters less than 0.01 mm (Zreik, 1994).

52

Particle Type Mean d, (mm) Range (mm) True Round w,(c)
Silica Silt 0.010+ 0.011 0.001 - 0.045 - 9.1 x 10-3

Glass Bead 0.024+ 0.006 0.012 - 0.038 > 85 % 4.7 x 10-2
Glass Bead 0.129 + 0.019 0.075 - 0.148 > 85 % 1.36
Glass Bead 0.264 0.018 0.208 - 0.290 > 65 % 3.2
Glass Bead 0.556 + 0.033 0.445 - 0.597 > 60 % 7.1



3.2 Sediment Release and Capture Mechanisms

A release apparatus, shown in Figure 3.1, was design and constructed to enable both

wet and dry sediments (to be defined later) to be released in a controlled, repeatable

manner. Another design objective was to create a very rapid release device (i.e.,

instantaneous) that would facilitate a smooth discharge of material with minimal

disturbance associated with the opening of an orifice (i.e., via a valve, stopper, or

moving door). The release mechanism is constructed from aluminum and was de-

signed to hold a cylindrical LexanTM tube in which the material to be released is

placed. The cylinders were fitted with a rubber gasket inside of the bottom rim to

make them water-tight. Particles are released when a thin LexanTM lever arm, or

"trap door," connected to a spring, is allowed to swing open. The arm is held in place

by the cylinder itself, which is clamped down with a horseshoe-shaped aluminum arm

mounted on the top of the apparatus. The "trap door" swings open when the tension

on the release cylinder is relieved by turning a screw holding the aluminum arm in

place. The "trap door" was equipped with an electronic switch that automatically

triggers the image acquisition system described in the next section. Video images

indicate that the spring-loaded arm opens in less than one video frame (i.e., < - s).

As will be discussed in later chapters, the release mechanism produced axisymmetric

"thermal-like" particle clouds with no signs of "lopsidedness" caused by opening of

the trap door. As verification that the release mechanism was not skewing the cloud

behavior in some manner, experiments conducted with the position of the release

mechanism rotated 1800 produced virtually identical cloud shapes.

Cylinders with five different diameters (D) were constructed to fit into the sedi-

ment release mechanism as shown below:

* 1.91 cm (0.75 in)

* 2.54 cm (1.00 in)

* 3.18 cm (1.25 in)

* 3.81 cm (1.50 in)
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* 4.45 cm (1.75 in)

The above cylinder sizes were used with the same initial volume of particles, resulting

in different height-to-diameter (ti) aspect ratios. After several trial experiments, the

smallest cylinder size was abandoned because the very large aspect ratio resulted in

semi-continuous releases that produced elongated clouds with "plume-like" features.

A sediment "trap" was constructed to facilitate quantification of particles not

initially incorporated into the cloud or stripped away from the cloud as it descended.

As discussed in Chapter 5, in some of the experiments, a "stem" of particles\fluid

formed behind the main cloud as it descends. The trap was suspended inside the

glass tank in a horizontal position by ropes (Figure 5.1 shows cross-sectional view).

As shown in Figure 3.2, the trap is constructed of an aluminum frame fitted with

a pre-rolled extendible curtain (i.e., a modified window shade) that is closed via an

attached string fed to the top of the tank. The shade is supported by a cross brace

and several strings which span the width of the aluminum frame. The cross brace and

strings did not appear to influence the motion of the descending cloud. A fluorescent

"flag," constructed from a plastic fastener, was attached to one of the strings (shown

in Figure 5.1) to indicate the precise time at which the curtain was pulled across the

trap (i.e., chops off the "stem"). Following passage of the cloud through the trap,

the shade was pulled to isolate particles in the main cloud from those left behind in

the water column, which subsequently settled on top of the shade. Video footage of

the moving flag showed that the curtain traversed the width of the "stem" (1 - 8 cm)

within one to four video frames (0.03 - 0.13 s). After the "stem" particles had settled

on top of the curtain, the tank was drained, and the mass of particles on the shade

measured after drying.

3.3 Flow Visualization

Flow visualization experiments were conducted in a 3,600 liter glass-walled tank mea-

suring 1.22 m on each side and 2.44 m high, as shown in Figure 3.3. The glass is

constructed of two fully tempered laminated lites, each 16 mm thick, separated by a
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Figure 3-1: Sediment release mechanism (scale: base is 15.2 cm x 15.2 cm).
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Figure 3-2: Sediment trap mechanism (scale: frame is 92 cm x 92 cm).
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1.22 m

High-carbon steel
frame

38 mm thick,
two-ply,
fully-tempered,
laminated glass -

High-carbon steel
base ,

- 2.12 m -
(by 1.6 m wide)

Figure 3-3: Flow visualization tank (after Socolofsky, 2000).
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6 mm thick clear layer of polyvinylbutyral. The frame and base are constructed of

structural C1010 carbon steel with an epoxy coating.

Flow visualization was accomplished by illuminating a thin vertical cross-section

of the particle clouds. Azimuthal symmetry of the cloud enabled its volume and

center of mass position to be calculated from a cross-sectional image, as explained

in the next section. The cross-sections were illuminated with a 20 mm thick vertical

sheet of blue-green laser light (488 nm and 514 nm primary wavelengths) produced

by a 6 watt argon-ion laser (Coherent, Inc. Model Innova 70). The light sheet was

created by first feeding the laser beam through a fiber optic cable and then passing

it through a cylindrical lens mounted at the end of the cable.

The argon-ion laser provided very good illumination of the glass bead particles

contained within the thickness of the light sheet, which easily penetrated the entire

width of the particle cloud. The silt particles, however, significantly attenuated the

light sheet as it passed through the cloud, resulting in a very dim image on the far

side of the cloud and making edge detection difficult. To alleviate this problem, a

small amount of rhodamine 6G dye, which fluoresces under the laser light, was added

to the silt solutions to brighten the cloud images. Numerous trial experiments were

performed to determine the optimal camera settings and lighting conditions necessary

for performing subsequent edge detection analysis.

Cloud images were recorded using a data acquisition system consisting of a black-

and-white charge-coupled device (CCD) progressive scan camera (Pulnix TM9701-

AN), computer frame-grabber board (Matrox, Inc., Model Pulsar PCI), and asso-

ciated image acquisition driver software (LabView Advanced IMAQ) provided by

Graftek Imaging, Inc. A schematic of the image acquisition system is shown in Fig-

ure 3.4. The frame-grabber board captures gray-scale analog images from the CCD

camera at a maximum frequency of 30 frames per second and converts them to binary

images with a 764 x 484 pixel resolution. The frame-grabber is controlled manually

by either the computer mouse or via an external trigger which reads an analog signal

(i.e., battery voltage) generated by the electronic switch mounted on the sediment

release mechanism. The captured images, each recorded into its own file (bitmap
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TANK

Figure 3-4: Image acquisition system (after Bruce, 1998).
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format), were first stored on the computer hard drive and then transferred onto

compact disks (CDs) for subsequent processing, as described in the following section.

The recorded images were calibrated using a 0.9 m by 1.2 m vertical sheet consist-

ing of a grid pattern of 5 cm x 5 cm squares. The calibration sheet was constructed

by sandwiching the grid pattern, plotted on a sheet of mylar, between two 3 mm thick

sheets of plexiglass. For each experiment, the grid pattern is placed inside the tank

(filled with water), aligned with the laser light sheet, and then recorded. The grid

provides a repeatable means of calibrating the horizontal and vertical dimensions of

the digital image (measured in pixels) to actual dimensions.

3.4 Image Processing

Processing of recorded images was conducted using customized computer programs

written in the MATLABTM numeric computing environment and utilizing commands

contained in the MATLAB Image Processing Toolbox (The Math Works, Inc., 1997).

For each recorded image, the intensity of each pixel is mapped to a grey-scale ranging

from 1 to 256, with a value of 1 corresponding to a totally dark (black) pixel and 256

representing a fully illuminated (white) pixel. The first image processing step was a

frame-by-frame analysis of the cross-sectional area of the cloud using edge detection

methods. Edge detection was accomplished by first observing the grey-scale intensity

values associated with the cloud image, as well as those for the ambient fluid (i.e.,

background intensity), and then selecting an appropriate threshold to distinguish

the cloud material from background fluid (i.e., threshold intensity level greater than

twice the background intensity level). Representative horizontal and vertical intensity

profiles from a recorded image from one of the 0.264 mm glass bead experiments are

provided in Figure 3.5.

Because CCD camera positions and lighting conditions (e.g., shutter speed and f-

stop settings) varied for different groups of experiments, threshold limits were selected

on a case-by-case basis, but were generally held constant for a particular group of

experiments utilizating the same camera location and settings. An automated
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Figure 3-5: Grey-scale intensity profiles for representative horizontal and vertical
cross sections of a 0.264 mm particle cloud image.
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MATLABTM program was developed to determine the maximum cloud diameter and

leading edge position using a pre-selected threshold value. These parameters were

calculated by cycling through the rows and columns of pixels comprising the image

matrix while keeping track of the minimum and maximum horizontal and vertical (i.e.,

x, z) locations of the pixels exceeding the threshold limit in each row and column of

pixels.

The horizontal center of mass location (t) associated with the illuminated cross-

sectional area is determined by dividing the first spatial moment (mean displacement

in the horizontal direction) by the zeroth moment (cross-sectional area) as follows:

-= (3.1)
zij VP

where zi and v, are the pixel location and pixel volume, respectively.

The cloud volume is calculated by spatially integrating pixel volumes as follows:

V = Zvp7r(xij - 2) (3.2)
ii

In the above equation, the horizontal summation adds up concentric semi-circular

rings of pixels for each side of the cloud (relative to the axis of symmetry) to form

a disc-shaped horizontal slice with a thickness of one pixel. The horizontal slices are

then summed in the vertical direction to obtain the total cloud volume. The vertical

center of mass location of the cloud volume (2) is then determined by dividing the first

spatial moment (mean displacement in the vertical direction) by the zeroth moment

(cloud volume) as follows:

- E ij Vpir(Xij - t)(3.3

MATLABTM functions allow exact pixel locations associated with a displayed

video image to be determined digitally using a point-and-click method with the com-

puter mouse. The cross-sectional dimensions (i.e., maximum diameter, leading edge

position) and the center of mass locations calculated by the automated MATLABTM
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program were verified using this procedure.

To accommodate time variations in cloud shape (i.e., elongation and flattening)
and corresponding changes in maximum radius, which may not necessarily be associ-

ated with entrainment mechanisms, cloud growth rates (i.e., entrainment coefficients)

were estimated using the radius of an equivalent spherical volume calculated as fol-

lows:

(3VVi
r = (3.4)

47

Using the equivalent radius defined above, the entrainment coefficient is calculated

from Equation 2.4 as follows:

Ar
'= A (3.5)

where Ar is the change in equivalent radius associated with a given change in center

of mass position (Az).

In Equation 3.5, A represents the slope of the curve produced from the (r, 2) data
pairs for a given experiment. Hereafter, all discussions of the cloud radius will refer

to the equivalent radius unless otherwise noted.

With respect to determining equivalent radius values and center of mass locations

for the parent cloud, the experiments that produced "stems" of particles trailing

behind the cloud required "image cropping," in which the material behind the cloud

is excluded from the calculations. To accomplish this in an automated and objective

manner, the MATLABTM image processing program "crops" the "stem" by omitting a

portion of the image above a certain elevation (depth), which the program calculates

by subtracting a multiple (i.e., 100 % or 150 %) of the maximum cloud diameter

from the maximum leading edge position. For the glass bead experiments, 150 %

of the maximum diameter was used to calculate this elevation, whereas for the silt

experiments, 100 % of the maximum diameter was used. The 150 % value was used

for the glass bead experiments to avoid "chopping off" the rear portions of some of

the particle clouds that experience an elongation during the first part of descent. The
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100 % value was used for the silt clouds since they did not elongate, and remained

roughly spherical in shape, and tended to have larger "stems" that should not be

counted as part of the parent cloud.

The two different percentages used for the "image cropping" had a relatively minor

effect (10 % variation) on the calculated a values for the glass bead experiments, but

had a more pronounced impact (28 % variation) on the a values measured for the

silt experiments. Entrainment coefficient values calculated using both percentages are

provided in Appendix D. The large variations in a associated with the silt experiments

were the result of the rather "fat stems" attached to the clouds. As discussed in

Chapter 5, the measured mass of particles in these "stems" was not proportional to

thickness of the stem in the recorded images because of the added fluorescent dye.

The two different percentages used for the "image cropping" had little influence on

the calculated velocity profiles for the silt and glass bead experiments.

The velocity of the cloud's center of mass is calculated by simply taking the slope

of the volumetric center of mass versus time curve as follows:

W = (3.6)At

The calculated center of mass positions exhibited small variations (i.e., "noise")

associated mainly with variations in light intensity of the laser light sheet. Nonunifor-

mities in the laser light sheet may have been caused by corruption of the collimated

laser beam within the fiber optic cable. The center of mass positions for the group

of twelve experiments discussed in Chapter 4 are provided in Appendix C. To filter

out (i.e., smooth) some of the experimental variations in the center of mass postions,

the velocity was calculated by taking the slope of a 5-point moving linear regression

of the center of mass versus time data. In Figure 3.6, the velocity profiles generated

by this approach are compared to those produced by taking frame-by-frame changes

in center of mass position (i.e., using At = s in Equation 3.6) as well as those gen-

erated with a 3-point moving linear regression. As shown in Figure 3.6, the 5-point

regression eliminates a significant degree of the variability within the deceleration
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Figure 3-6: Representative velocity profiles for a 0.264 mm particle cloud based on
2-point, 3-point, and 5-point resolutions.
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region without a significant loss in resolution within the initial acceleration phase.

3.5 Experimental Procedure

To quantify the repeatability of the experiments and the uncertainties in calculated

velocities and growth rates associated with experimental variability, each experiment

using the non-cohesive particles (glass beads and silica silt) was repeated a minimum

five times. Representative images of the five repetitions for the twelve experiments

analyzed in Chapter 4 are included in Appendix B. The entrainment coefficients and

cloud velocities were calculated using Equations 3.5 and 3.6 and the mean equivalent

radius and center of mass position values calculated for the five repetitions performed

for each experiment. For the majority of experiments, all five realizations were used

to calculate the mean equivalent radius and center of mass position values. In four of

the experiments, only four of the five realizations were used to derive the mean values,

and in one experiment, only three realizations were selected. The realizations were

excluded from the calculations for these experiments for one of two reasons: (1) either

their behavior (i.e., shape, velocity, growth rate) differed significantly from the other

three or four experiments because the particles failed to form well-mixed, axisymmetic

clouds; or (2) the light intensity of the recorded images contained an abnormal amount

of "noise," resulting in radius and center of mass profiles containing gross errors. One

possible reason for why the particles did not form well-mixed, axisymmetic clouds in

some cases is "clumping of the particles" due to interlocking or adhesion.
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Chapter 4

Particle Cloud Experiments

The results of particle cloud experiments are presented in terms of growth rate, veloc-

ity, and circulation characteristics in Sections 4.2, 4.3, and 4.4, respectively. Trends

in these characteristics, with respect to the various initial conditions, are analyzed

in Section 4.5. Of the twenty-six experiments performed, a subset of twelve experi-

ments was selected for in-depth presentation and discussion. The results of six other

experiments are also presented, but in less detail. The rationale for this approach is

discussed in the following section. The remaining eight experiments were performed

using the 0.556 mm glass beads, the results of which are provided in Appendix E.

Analysis of these experiments was complicated by the fact that the beads began to

settle out of the cloud after 2 - 3 s of descent, resulting in a very short period of

self-similarity. Clouds formed from these large beads, which scale to 3 - 6 cm cobbles

in real world dimensions based on Nc, quickly became laminar, as inter-particle col-

lisions effectively dampened turbulent motion. Nevertheless, within the first 1 - 2 s

of descent the behavior of the 0.556 mm particle clouds closely resembled that of the

0.264 mm clouds, therefore supporting conclusions discussed herein but providing no

additional insight.
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Table 4.1: Initial condition variables - experimental Groups I, II, and III.

4.1 Approach

For presentation and comparison purposes, the twelve experiments have been or-

ganized into three groups, denoted Group I, Group II and Group III. The initial

conditions varied for each group are shown in Table 4.1.

The salient features of each experiment are provided in Table 4.2. The experi-

ment nomenclature in Table 4.2 is used throughout this chapter to distinguish only

the differences between the experiments in each group, which are shown in boldface

type in Table 4.2. The initial dry mass of particles was maintained at 40 g for all ex-

periments, yielding a constant initial buoyancy (Bo) of 23, 520 gms- 2 . Only the 0.264

mm glass beads were used for experiments in Groups I and II, whereas, the 0.010 mm

silica silt and 0.024 mm glass beads were used for Group III. The 3.18 cm diameter

and 4.45 cm diameter release cylinders were used in the Group I experiments, while

the Group II and Group III experiments employed only the 4.45 cm diameter release

cylinder. The opening of the release mechanism in the experiments was positioned

either immediately above the water surface (i.e., within 2 mm) or was completely

submerged so that the height of material in the cylinder coincided with the ambient

water elevation in order to release the material without any initial potential energy

(i.e., initial momentum). In the tables and figures presented herein, the former types

of releases are denoted by an "AW" abbreviation, and the latter by a "BW." Par-

ticles were either released in a settled state, denoted as "Set.," or as a suspension,

abbreviated "Sus.," by stirring them with a glass rod prior to releasing them.

The particles in all of the Group I experiments were released in a settled state.

For the Group I experiments denoted as "wet," the glass beads were supersaturated
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Experiment d,(mm) D,(cm) I H20(cm 3) Pos. Sus./Set.
Group I Experiments

Group II Experiments

3.18 cm Cyl., Dry 0.264 3.18 1.1 0 AW Set.
3.18 cm Cyl., Wet 0.264 3.18 1.3 17 AW Set.
4.45 cm Cyl., Dry 0.264 4.45 0.4 0 AW Set.
4.45 cm Cyl., -Wet 0.264 4.45 0.5 17 AW Set.

Group II Experiments
40 cm3 H20, Sus., AW 0.264 4.45 0.8 40 AW Sus.
40 cm3 H20, Sus., BW 0.264 4.45 0.8 40 BW Sus.
40 cm3 H20, Set., AW 0.264 4.45 0.8 40 AW Set.
17 cm3 H20, Sus., AW ' 0.264 4.45 0.5 17 AW Sus.

Group III Experiments
0.024 mm Beads, AW 0.024 4.45 0.8 40 AW Sus.
0.024 mm Beads, BW 0.024 4.45 0.8 40 BW Sus.

0.010 mm Silt, AW 0.010 4.45 0.8 40 AW Sus.
0.010 mm Silt, BW 0.010 4.45 0.8 40 BW Sus.

Table 4.2: Release condition matrix - experimental Groups , II, and III.

with 17 cm 3 of water, compared to the approximately 10 cm3 required to just saturate

the initial 26 cm3 of dry beads. The additional water was added to accommodate any

volumetric measurement errors and to ensure that all beads in the test cylinder were

completely submerged before release. All particles in Group III were supersaturated

with 40 cm3 of water and released as a suspension (Sus.). Group I experiments

consisted of both settled and suspended releases with either 17 cm3 or 40 CM3 o

water added as indicated in Table 4.2

In addition to the twelve experiments, six other experiments were conducted using

the 0.264 mm beads to determine whether differences in cloud behavior between the

3.18 and 4.45 cm cylinder sizes resulted from differences in initial potential energy

(i.e., height of material above water surface) or initial release geometry characterized

by the aspect ratio of the height of material in the cylinder (H,,) to the cylinder

diameter (D,,). Three of the experiments (Group IV) involved changing H,, while

keeping -U-Q constant, whereas, the other three (Group V) involved varying -', while

holding the elevation of particles with respect to the water surface constant. In all six

experiments, the glass beads were released in a "settled" state. The release conditions
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Experiment ds(mm) Do(cm) HQ H 20(cm3 ) Pos.
Group IV Experiments

Group IV Experiments
4.6 cm AW, 0.0 cm BW 0.264 4.45 1.0 33 AW
2.3 cm AW, 2.3 cm BW 0.264 4.45 1.0 33 AW/BW
0.0 cm AW, 4.6 cm BW 0.264 4.45 1.0 33 BW

Group V Experiments
= 0.8, 1.2 cm BW 0.264 3.81 0.8 17 AW/BW
= 1.1, 1.6 cm BW 0.264 3.18 1.1 17 AW/BW
= 2.6, 4.8 cm BW 0.264 2.54 2.6 17 AW/BW

Table 4.3: Release condition matrix - experimental Groups IV and V.

of these experiments are summarized in Table 4.3.

4.2 Cloud Growth Analysis

In this section, cloud growth rates are analyzed in terms of the entrainment coefficient

(a) calculated by taking the slope of measured equivalent radius versus depth curves,

as discussed in Section 3.4. Based on the behavior of these curves, the clouds are

characterized as either well-mixed "thermals" or "circulating thermals."

4.2.1 "Thermal" Phase

One distinguishing feature of the Group I particle clouds compared to the other ex-

periments is the additional time required for the Group I clouds to become turbulent.

Representative images depicting the initial 0.6 s of descent for the two Group I "wet"

experiments are provided in Figure 4.1. Representative images showing the entire

recorded descent duration for Groups I - III are given in Figures 4.2 - 4.4. Represen-

tative images from the five repetitions performed for these experiments are provided

in Appendix B.

Initial cloud conditions for the twelve experiments are included in Table 4.4. In

Table 4.4, zo and zi refer to the cloud center of mass positions at times to (i.e., prior

to release) and t1 , respectively, where ti refers to the time required for the majority
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3.18 cm Cyl., Wet, 0.4 sec

4.45 cm Cyl., Wet, 0.2 sec 4.45 cm Cyl., Wet, 0.4 sec 4.45 cm Cyl., Wet, 0.6 sec

Figure 4-1: Selected cloud images for first 0.6 s of descent - Group I "Wet" experi-
ments. Actual size of frames is approx. 64 cm x 87 cm.
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3.18 cm Wet 4.45 cm Dry

Figure 4-2: Selected cloud images at 1 s, 2 s, 3 s, and 4 s - Group I experiments.
Actual size of frames is approx. 64 cm x 87 cm.
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40 cm3, Sus., BW 40 cm3, Set., AW 17 cm3 , Sus., AW

Figure 4-3: selected cloud images at 1 s, 2 s, 4 s, and 6 s - Group II experiments.
Actual size of "AW" frames is approx. 88 cm x 116 cm. Actual size of "BW" frames
is approx. 69 cm x 91 cm.
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40 cm3, Sus., AW



0.024 mm Beads, AW 0.024 mm Beads, BW 0.010 mm Silt, AW

Figure 4-4: Selected cloud images at 1 s, 2 s, 4 s, and 6 s - Group III experiments.
Actual size of frames is approx. 69 cm x 91 cm.
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Experiment zo(cm) ro(cm) zi(cm) ri(cm) ao ti(s) tr(s)
Group I Experiments

3.18 cm Cyl., Dry -1.81 1.87 1.55 2.32 0.14 0.10 0.10
3.18 cm Cyl., Wet -2.08 1.99 2.02 2.43 0.11 0.13 0.10
4.45 cm Cyl., Dry -0.89 1.87 1.58 2.43 0.23 0.10 0.10
4.45 cm Cyl., Wet -1.07 1.99 1.34 2.53 0.22 0.10 0.10

Group II Experiments
40 cm 3 H20, SUS., AW -1.81 2.37 1.07 3.01 0.22 0.10 0.10
40 cm 3 H20, Sus., BW -1.81 2.37 8.08 4.57 0.22 0.40 0.10
40 cm3 H20, Set., AW -1.81 2.37 0.94 2.84 0.17 0.10 0.10
17 cm 3 H20, Sus., AW -1.07 1.99 0.93 2.75 0.38 0.10 0.10

Group III Experiments
0.024 mm Beads, AW -1.81 2.37 2.76 4.30 0.42 0.20 0.10
0.024 mm Beads, BW -1.81 2.37 5.01 3.92 0.30 0.40 0.10

0.010 mm Silt, AW -1.77 2.36 2.18 3.59 0.25 0.13 0.10
0.010 mm Silt, BW -1.77 2.36 2.95 3.24 0.19 0.27 0.10

Table 4.4: Initial cloud conditions - experimental Groups 1, 11, and III.

of the particle mass to exit the release cylinder, based on visual observations of

recorded images. For all experiments, the bottom of the release mechanism base was

taken as elevation z = 0, resulting in negative z0 values. As expected, ti values are

higher for the "BW"' experiments in which the particles had less initial potential

energy than for their "AW" counterparts. The r, and r1 values in Table 4.4 denote

cloud radius (based on an equivalent spherical volume) at times t, and ti, respectively.

The a, values in Table 4.4, to be discussed later in this chapter, represent initial

"entrainment" coefficient values, calculated as ,--.

The release times, tr, estimated from the actual cloud images, are also shown in

Table 4.4. The tr times represent the time required for the main particle cloud to

exit the cylinder. As shown in Figures 4.3 and 4.4 and described in detail in Chapter

5, the Group III experiments and the "40 cm3 H2 0, Sus., BW" Group II experiment

produced particles clouds with an attached "stem" of particles trailing behind the

main cloud. For the other experiments, which generated little or no "stem," ti is

essentially identical to tr. For the clouds with an attached "stem," the ti values are

longer than the tr values because they include additional time required for most of
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the "stem" particles to exit the cylinder.

The theoretical releases times for the "AW" and "BW" were calculated by equating

the mass of initial material times its acceleration with the sum of the buoyancy and

gravitational forces as follows:

"AW" Release: pH Ao = pH0,A.g - paAgz (4.1)
dt

dz
"BW" Release: pH 0A,-- = pHAeg - paAcgHo (4.2)dt

where z is the center of mass depth relative to the water surface; A, is the release

cylinder cross-sectional area; and p and pa are the densities of the initial material and

ambient fluid, respectively. Using the initial conditions, z = -- and t = 0, the2 dt 0th
above equations were solved as follows:

IH
"AW" Release: z = Ho - + 1 - cos ( t ; - < z < (4.3)

pa p, 2 -- - 2

"BW" Release: z = - " P) gt 2 + H (4.4)
2 ( p ) 2

The theoretical release times for the twelve experiments were calculated using the

initial density and HO values for the various initial conditions. The average theoretical

release time for the nine "AW" experiments was calculated to be 0.09 s, compared to

the actual average t, value of 0.10 s for these experiments. The average theoretical

release time for the three "BW" experiments was calculated to be 0.16 s, which is

identical to the actual average t, value estimated for these three experiments.

Prior to release, the 0.264 mm glass beads used in the Group I experiments were

mechanically homogenized in the cylinder (i.e., stirred with a glass rod) and then

allowed to settle, which occurred almost instantaneously due to their high fall ve-

locity (2.3 '). While not tightly packed, such as in a sandy soil or other porous

medium, the close spacing of the beads caused sufficient interlocking and internal
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friction to result in initially smooth-edged particle clouds exhibiting no signs of tur-

bulence (Figure 4.1, 0.2 s images). Since no turbulent eddies are present with which

to entrain ambient fluid, particle cloud growth in this initial phase is likely the re-

sult of inter-particle collisions and associated random particle velocity fluctuations.

In the literature, the breakup of similar particle suspensions has been referred to as

hydrodynamic diffusion (Eckstein et al., 1977; Davis, 1996) and hydrodynamic dis-

persion (Powell and Mason, 1982; Nitsche and Batchelor, 1997). Whether viewed

as a diffusive or dispersive process, it appears that a certain degree of inter-particle

spacing must be achieved before destabilizing forces associated with density disconti-

nuities can overcome internal friction. Though difficult to discern in Figure 4.1, the

development of a waviness around the cloud perimeter and subsequent cauliflower-like

protuburences can be seen in larger video display images. The time required for the

onset of turbulence, characterized by the wave-like structures was observed visually

for all experiments and is recorded as tt in Table 4.5.

As indicated in Table 4.5, the initially "dry" Group I clouds took slightly longer

(about 0.2 s) to exhibit turbulence than did their "wet" counterparts. This delay is

attributed to the presence of trapped air within the "pore" spaces of the particle cloud,

which increased the internal friction by inhibiting particle motion and the flow of water

into the cloud and between particles. In essence, the trapped air temporarily locks

the particles in place until it fully escapes from the cloud. In the "dry" experiments,

air bubbles on the order of 1 mm in diameter were observed flowing out of the cloud

during the first 0 - 1 s of descent.

All clouds in Group III and one Group II cloud were basically turbulent upon their

release (i.e., tt = ti). As one might expect, suspending the beads by stirring them

before release sped up the transition to turbulence. Furthermore, the addition of

excess water (23 cm 3 ) to the settled beads produced the same effect. In other words,

the bulk of the excess water, or supernatant, becomes incorporated into the cloud as

it exits the cylinder, dispersing the beads and reducing internal particle friction. As

discussed in Chapter 5, the amount of this excess water that becomes incorporated

into the cloud was quantified using a silt tracer.
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Table 4.5: Cloud growth parameters - experimental Groups 1, 11, and III. Time t,
and depth zc denote the time and depth associated with the transition to "circulating
thermal."

It is evident in Figure 4.1, as the Group I clouds become turbulent, they also

undergo an elongation in the vertical direction, which is more pronounced in the ex-

periments with the higher O aspect ratio. The elongation occurs from approximately

0.3 to 0.7 s for the smaller aspect ratios and from 0.3 to 1.0 s for the larger H ratio.

This phenomenon is likely caused by the fact that the interior of the cloud retains

more of its initial momentum than does the outer region, which shares its momentum

with entrained ambient fluid. As a result, the denser interior core falls through the

outer turbulent region, which ends up towards the rear of the cloud causing the ob-

served elongation. The elongation process dies out as the developing eddies penetrate

into the interior of the cloud, at which point the cloud is fully mixed. The significance

of the elongation effect, which was not observed the Group II and Group III clouds,

is related to the circulation produced, to be discussed later in this chapter.

Once the clouds are fully mixed, whether immediately upon release or after a

short dispersive phase, they enter the classic "thermal" phase in which velocity and
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Experiment a1  a 2  ti(s) tc(s) ze(cm)
rt r"

Group I Experiments
3.18 cm Cyl., Dry 0.18 0.14 0.5 1.7 38.8 2.0 4.5
3.18 cm Cyl., Wet 0.17 0.08 0.27 2.3 50.7 3.3 5.1
4.45 cm Cyl., Dry 0.20 0.16 0.47 1.3 30.9 1.9 4.1
4.45 cm Cyl., Wet 0.22 0.14 0.30 1.3 26.4 2.3 3.9

Group II Experiments
40 cm3 H20, Sus., AW 0.27 0.18 0.13 1.0 19.0 2.3 3.3
40 cm 3 H20, Sus., BW 0.29 0.18 0.40 1.4 23.2 2.0 3.8
40 cm 3 H20, Set., AW 0.23 0.16 0.20 1.4 28.2 2.4 3.9
17 cm 3 H20, Sus., AW 0.31 0.19 0.17 1.1 21.5 2.7 4.0

Group III Experiments
0.024 mm Beads, AW 0.23 0.12 0.20 3.0 37.5 2.8 5.4
0.024 mm Beads, BW 0.28 0.20 0.40 2.7 29.0 2.6 4.5

0.010 mm Silt, AW 0.27 0.20 0.13 5.2 54.9 6.8 6.8
0.010 mm Silt, BW 0.29 0.24 0.27 2.6 33.4 4.8 4.8



Table 4.6: Entrainment coefficient values - experimental Groups IV and V.

buoyancy profiles across the width of the cloud are assumed to be self-similar and

the cloud radius is proportional to depth (i.e., r = az), as described in Chapter 2.

As will be shown, all clouds depicted in Figures 4.2 - 4.4 at the 1 s time frame have

entered the "thermal" phase.

One measure of self-similarity in thermals is the linearity of r versus z (i.e., con-

stant slope, a). The measured equivalent radius data are plotted against their respec-

tive cloud center of mass positions in Figures 4.5 - 4.7 for Groups I - III. The data

shown in these figures represent mean values calculated from the data generated by

the five repetitions performed for each experiment. The radius data for each of the

five realizations is provided in Appendix C. As shown in Figures 4.5 - 4.7, the radius

versus depth plots have varying slopes that generally decrease with depth. However,

linear segments of data points are evident in the upper and lower regions of the curves.

As shown in Figures 4.5 - 4.7, linear regression lines were fit to the measured data in

each region, resulting in two different entrainment coefficient values, referred to

hereafter as a1 and a2. The ai and a2 values for the twelve experiments are summa-

rized in Table 4.5. The ai and a2 values for the experimental Groups IV and V are

summarized in Table 4.6.

The entrainment coefficient values in Table 4.5 were calculated from the mean

radius versus depth data for the five repetitions performed for each experiment. The

standard deviations in a associated with the standard deviations of the five radius

versus depth curves are tabulated in Appendix D. Representative profiles depicting

the mean and standard deviations of the radius versus depth curves are also provided

in Appendix D. For the majority of experiments, the standard deviations associated
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Group IV Group V
Experiment a1 a2 Experiment a1 a2

4.6 cm AW, 0.0 cm BW 0.18 0.12 ---a - 0.8 0.21 0.17
2.3 cm AW, 2.3 cm BW 0.21 0.14 _ - 1.1 0.21 0.16
0.0 cm AW, 4.6 cm BW 0.23 0.13 - 2.6 0.29 0.23
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of mass position.
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with a1 and a2 were less than 0.02 (10 %).

In many cases, the initial linear regression line associated with ai can be extrap-

olated back to the pre-release point (ro,zo), shown as open circles in Figures 4.5 - 4.7.

In other words, the initial entrainment coefficient (ao) values, characterizing cloud

growth during release/formation, can be approximated by the calculated ai values

for the well-mixed " thermal" phase. This result is clearly convenient for predictive

modeling, as discussed in Chapter 6. For some of the experiments, the first few data

points fail to fall on the ai linear regression line, suggesting that the clouds have yet

to achieve self-similarity. The time corresponding to when the first data point falls

on the ai line generally coincides with the observed turbulent transition time (tt).

4.2.2 "Circulating Thermal" Phase

While there is clearly a smooth, continuous transition between the upper and lower

portions of the radius versus depth curves and their corresponding ai and a 2 values,

the curves often show a rather abrupt transition in slope (i.e., sharp kink), suggesting

a sudden change in flow regime and related entrainment mechanisms. After evolving

into well-mixed "thermals," the particle clouds formed from the 0.264 mm beads

eventually organize into elements resembling a vortex ring structure, as can be seen

in Figures 4.2 and 4.3, particularly in the 3.0 s and 4.0 s images from the Group

I " Wet" experiments. As described in Chapter 2, a vortex ring contains counter-

rotating vortices and is shaped like a torus, or doughnut, with a hollow center and

cross-sectional radius, a. The vortex ring structure is first recognizable in the 3

s image for experiment "3.18 cm Cyl. Wet" and in the 2 s frame for experiment

"4.45 cm Cyl., Wet." The ring is shown more clearly in Figure 4.8, depicting a

top view of the "4.45 cm Cyl., Wet." experiment at 4 s. The top view and cross-

sectional images show the particles concentrated in the two counter-rotating cores,

in which the (negative) buoyancy and vorticity are also concentrated. The particle

clouds shaped like a vortex ring are referred to herein as a "circulating thermals," to

distinguish them from Turner's buoyant vortex rings, which were produced with an

initial circulation, produced by the initial impulse and independent of the initial
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Figure 4-8: Top view of cloud at 4 s - 4.45 cm Cyl. "Wet" experiment.
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buoyancy. Thus, the particle clouds are not true vortex rings in the sense that they

possess little or no initial circulation, with the bulk of their circulation generated

through the buoyancy force.

The intersection of the two regression lines was used as an objective means to

identify the time (tc) and depth (zc) associated with the transition from well-mixed

"thermal" to "circulating thermal", whose values are summarized in Table 4.5. The

subscript "c" was used to denote the onset of circulation. The ratios of the cloud radii

at times tc and tt (i.e., 1) are also shown in Table 4.5 as well as the ratio of the radius

at time tc to the initial radius (r,). A frame-by-frame analysis shows the toroidal

structure emerging at 2.3 s and 1.3 s for the "3.18 cm Cyl., Wet" and "4.45 cm Cyl.,
Wet" experiments, respectively, coinciding with the te values. Thus, it appears that

prior to tc, the particle clouds behave as classic "thermals," with self-similar buoyancy

profiles (i.e., tophat or Gaussian), and after this time evolve into buoyant vortex rings

with bimodal buoyancy distributions. As discussed in Chapter 2, using the continuity

equation and entrainment assumption, one can show that cloud radius is proportional

to depth for both thermals and vortex rings, with constant spreading angles under the

assumption of self-similarity, regardless of the buoyancy configuration. The constant

entrainment coefficients (ai, a2 ) derived from the measured data appear to support

this assumption for the "thermal" and "circulating thermal" phases.

The rather quick transition from well-mixed "thermal" to buoyant vortex ring can

be explained in terms of turbulent eddy growth. As initial small-scale eddies engulf

ambient fluid, they grow in the outward radial direction as well as penetrate into the

cloud's interior. Thus, assuming that the inward growth rate is roughly equal to the

outward rate, the eddies arising on opposite sides of the cloud should meet at the

cloud's axis of symmetry when the cloud has essentially doubled in size. Excluding

the two highest values, a mean value of 2.3 was computed for - for the ten glass

bead experiments. With respect to the initial cloud volume, a mean value of 4.3 was

computed for r for the ten glass bead experiments. One explanation as to why manyro

of the r ratios are slightly larger than 2.0 is that the inward and outward growthrt

of turbulent eddies is not completely symmetric in the radial direction so that the
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cloud is slightly larger than twice its size when the eddies converge in center. Another

possibility is that once eddy size approaches the cloud radius, the particles and fluid

require a little more time to completely organize into a well-structured vortex ring.

The large ' value computed for the "3.18 cm Cyl. Wet" experiment was the resultrt

of the initially large aspect ratio (H = 1.3), which caused the cloud to elongate for

approximately 1.0 s, in turn delaying establishment of the circulation pattern by

about the same amount of time. Since only minor slope transitions were observed

for the 0.010 mm silt experiments, the existence and location of the "kink" remains

in question. The radius versus depth curves for both experiments are rather linear,

and both exhibit several small kinks over their entire depths. Hence, the validity of

the large r values computed from the selected "kinks" for these experiments mustrt

be questioned.

The decrease in growth rate experienced by the particle clouds as they transition

from a well-mixed "thermal" to a "circulating thermal" is explained by the stabilizing

effect created by the rotating cores in the vortex ring. As Turner (1957) describes, the

circulating core stabilizes the motion by preventing material in the core from spread-

ing over the entire moving region, similar to the way stable stratification suppresses

the instability of shearing flows in a gravitational field, except that the gravitational

force is replaced by the centrifugal force generated by rotation. In other words, in a

"circulating thermal" the ability of turbulent eddies to entrain ambient fluid and mix

it with interior particles is reduced by the stability of the rotating cores.

As can be seen in Figures 4.2 - 4.4, particle clouds produced with the larger

0.264 mm beads evolved into more organized, laminar-looking circulating thermals

compared to the Group III clouds, generated with the smaller-sized beads and silt.

As the larger beads became organized into the ring structure, they clearly had a

dampening effect on the initial turbulent eddies. One can see that this dampening

effect is much less effective with the 0.024 mm particle clouds and still less, or virtually

nonexistent, with the 0.010 mm silt clouds. Hence, the 0.264 mm particle clouds

formed laminar "vortex rings", while the smaller particle clouds produced turbulent

"vortex rings". As noted by Turner (1973), laminar vortex rings tend to have a
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constant volume, becoming thinner as the ring expands laterally, whereas in turbulent

rings, the cross-sectional radius, a, remains proportional to the ring radius, R. The

laminar ring observation appears to also hold true for the particles clouds from the

"4.45 cm Wet" experiment in Group I in the "circulating thermal" phase (Figure 4.2).

Using the ratio f = 4.3 and a, = 0.25, the transition depth (zc) associated withro

the particle cloud transition from well-mixed "thermal" to "circulating thermal" was

estimated for three real-world barge volumes as follows:

" volume = 100 m 3 : z_ = 49.5m

e volume = 1, 000 m 3 : zc = 107m

* volume = 5, 000 m 3 : zc = 182m

4.3 Velocity Analysis

Velocity profiles were generated by computing the slope of the center of mass position

versus time curves as described in Chapter 3. The resulting profiles are shown in

Figures 4.9 - 4.11 for experimental Groups I - III. The profiles shown in these figures

were calculated from the mean center of mass versus time curve of the five repetitions

performed for each experiment. The center of mass versus time curve for each of

the five realizations is provided in Appendix C. The velocity parameters for the three

experimental groups are summarized in Table 4.7. The standard deviations associated

with the initial (wi) (i.e., first measured) and maximum (wmax) velocity values are

tabulated in Appedix D. Representative profiles depicting the mean and standard

deviations of the velocity profiles are also provided in Appendix D. For the majority

of experiments, the standard deviations associated with wi and wma, were less than

10 %. The initial acceleration phase is apparent in all Group I profiles (Figure 4.9),

whereas for most of the Group II and III clouds, the first calculated velocity point

falls immediately in the deceleration phase. For these latter experiments, the initial

acceleration duration, ta, is less than the release time, t1 . The duration of the initial

acceleration phase was extremely short, with a mean ti or ta of 0.25 s calculated for
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3.18 cm Cyl., Dry
3.18 cm Cyl., Wet
4.45 cm Cyl., Dry
4.45 cm Cyl., Wet

4.5cy. e 0,715 04
Group II Experiments

40 cm 3 H20, Sus., AW 64.8 32.6 32.6 0.10 0.2 -0.51
40 cm 3 H20, Sus., BW 64.8 31.0 31.0 0.40 1.7 -0.46
40 cm3 H20, Set., AW 64.8 32.8 32.8 0.10 0.2 -0.51
17 cm3 H20, Sus., AW 77.1 29.6 29.6 0.10 0.2 -0.48

Group III Experiments
0.024 mm Beads, AW 64.8 12.2 16.0 0.20 0.6 -0.47
0.024 mm Beads, BW 64.8 21.0 21.0 0.40 1.1 -0.49

0.010 mm Silt, AW 65.0 18.1 25.4 0.30 1.2 -0.47
0.010 mm Silt, BW 65.0 22.4 28.5 0.30 0.8 -0.50

Table 4.7: Velocity parameters - experimental Groups I, II, and III.

the twelve experiments. For scaling purposes, the ratio of the cloud depth measured at

ta, to the initial diameter (d,) was calculated. As shown in Table 4.7., most particle

clouds attained their maximum velocity after traveling a distance of less than two

initial cloud diameters, consistent with findings of previous researchers (Escudier and

Maxworthy, 1973; Baines and Hopfinger, 1984). The very low -- ratios are the result

of the initial shape of the particle cloud, which resembles an oblate spheriod with a

height to width ratio of about 0.4.

The velocity profiles were plotted on log-log scales to investigate how closely the

cloud deceleration rates resemble the theoretical velocity decay rate for a true thermal

(i.e., w ~ t-0-5). For comparison, the theoretical linear line of slope m = -0.5 was

superimposed on these profiles, as shown in Figure 4.12. The curves in this figure

indicate that once the particle clouds enter the "thermal" phase, their deceleration

rate closely resembles that of the true heavy thermal (i.e., dense liquid). Unlike the

radius versus depth profiles, no change in slope is evident to mark the transition from

well-mixed "thermal" to "circulating thermal," consistent with the fact that buoyant

vortex rings also decelerate according to t-0 -5, as discussed in Section 2.2. The sudden
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Table 4.8: Normalized velocity comparison.

decrease in slope for the Group I clouds at t = 5.0s (i.e., log t = 0.7 ) is attributed

to the settling of particles from the cloud (i.e., beginning of the dispersive phase), in

which the particle settling velocity (mean w, = 3.2w) begins to approach the cloud

velocity (w = 77). For each experiment, a least squares linear regression line was

fit to the measured data falling within the deceleration region. The majority of the

slopes of these lines, denoted by "m" and tabulated in Table 4.7, fall close to the -0.5

mark predicted from thermal theory.

Included in Table 4.7 is the characteristic velocity, wo = (r)0.5, derived in Chap-

ter 2. The utility of w0 as a scaling factor can be seen by comparing normalized veloci-

ties from the "4.45 cm Cyl., 4.6 cm AWS" Group IV experiment (BO = 57, 036 gms- 2)

to the "3.18 cm Cyl., Wet" Group I experiment (BO = 23, 520 gms- 2), as shown in

Table 4.8. The data in Table 4.8 show that the four normalized velocities calculated

for the Group I experiment fall within about 10 % of the corresponding Group IV

velocities. The small discrepancies may be due to the 30 % difference in initial aspect

ratio between the experiments.

4.4 Circulation Analysis

The final characteristic of cloud behavior to be analyzed in this chapter is the circu-

lation ( K). As discussed in Section 2.2, the circulation can be calculated via simple

dimensional analysis or by integrating the tangential velocity component around a

closed circuit containing one of the two rotating cores (as viewed in a two-dimensional

cross section) resulting in the following expression:
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K 1 wr (4.5)

where Turner's (1957) form for the proportionality term I has been adopted. AsC

will be discussed, the value of c, referred to herein as the "circulation coefficient," is

related to the geometry of the vortex ring, or more specifically, the region in which

the bulk of the vorticity is contained. As outlined in Chapter 2, Turner derived the

following expression for the entrainment coefficient:

a = B(4.6)
27cK 2 Pa

Combining Equations 4.5 and 4.6 and solving for c yields:

27raw2r 2pa
c = Bo(4'7)Bo

Using Equation 4.7, time-varying values for c were calculated using the equivalent

radius, velocity and entrainment coefficient data obtained for the twelve experiments.

Time-varying K values were then computed by inserting the coefficient, radius, and

velocity data back into Equation 4.5. Two representative plots for c and K are

shown in the upper two plots in Figure 4.13 for two of the Group I experiments. The

discontinuities shown in Figure 4.13 are the result of using a step function for the

entrainment coefficient (i.e., ai and a2). Though small oscillations are present due

to experimental "noise," the values of c and K appear to remain relatively constant

within the "thermal" and "circulating thermal" phases. However, only data

calculated within the "circulating thermal" phase can be considered valid since Equa-

tions 4.5 - 4.7 apply only to a vortex ring structure with bimodal distributions of

buoyancy and vorticity.

Time-averaged values of c and K within the "circulating thermal" phase were cal-

culated for the twelve experiments, as shown in Table 4.9. "Theoretical" entrainment

coefficients, denoted a2c were calculated using Equation 4.6 as shown in Table 4.9.

The a 2 values are also included in Table 4.9 for comparison. The K and a2c values

included in Table 4.9 were derived using the average value of c for all the experiments
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Experiment tth(s) - a2 a2c
Group I Experiments

3.18 cm Cyl., Dry 0.30 2.1 0.46 240 0.14 0.13
3.18 cm Cyl., Wet 0.37 3.1 0.38 276 0.08 0.10
4.45 cm Cyl., Dry 0.33 2.2 0.42 216 0.16 0.16
4.45 cm Cyl., Wet 0.37 2.2 0.48 245 0.14 0.12

Group II Experiments
40 cm3 H20, Sus., AW 0.47 1.1 0.46 202 0.18 0.18
40 cm3 H20, Sus., BW 0.40 1.7 0.37 210 0.18 0.18
40 cm3 H20, Set., AW 0.20 0.8 0.52 231 0.16 0.14
17 cm3 H20, Sus., AW 0.23 1.1 0.51 212 0.19 0.17

Group III Experiments
0.024 mm Beads, AW 0.43 1.3 0.43 234 0.12 0.14
0.024 mm Beads, BW 0.40 1.1 0.38 183 0.20 0.22

0.010 mm Silt, AW 0.40 1.7 0.66 239 0.20 0.14
0.010 mm Silt, BW 0.67 2.3 0.55 200 0.24 0.20

Table 4.9: Circulation parameters - experimental Groups I, II, and III.

(i.e., c = 0.46), since there currently is no a prior means of determining a value

of c from the initial conditions. The 0.46 value for c is the mean for the 10 glass

bead experiments. The lower two plots in Figure 4.13 show K values calculated

using c = 0.46. With the exception of the "AW" silt experiment, the calculated a 2 c

values fall within 20 % of the measured a 2 data. Compared to the other experiments,

the radius versus depth curves for the five repetitions performed for the "AW" silt

experiments exhibited a high degree of variability (see Appendix C), resulting in a

standard deviation of 0.08 for the calculated a 2 value.

Circulation versus time plots were developed for all twelve experiments using

c = 0.46. Representative profiles for two of the Group I experiments are shown in

Figure 4.13. Following an initial phase, the circulation remains relatively constant

for the life of the particle cloud as it should since K ~ wr and w ~ t~0-5 and r -~ to..

Though K does not have a true physical meaning within the "thermal" phase, the

time when K becomes constant can be used to signal the point when the cloud enters

this phase and w ~ t~ 0.5 and r ~, tO.5 both hold. Thus, the time required for the
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product wr to reach a steady-state value can be regarded as the "thermal" formation

time (tth). The estimated tth times for the three experimental groups are listed in

Table 4.9 along with the corresponding t ratios. The range of h values (1.1 -

3.1) is slightly higher than the range of l values (0.2 - 2.5) shown in Table 4.7.

The mean values of 0.36 s and 1.7 for these parameters are close the values of 0.25 s

and 1.6 for ta and g- , respectively, suggesting that the assumption of self-similarity

at the time of deceleration is more or less valid; i.e., the deceleration and "thermal"

phases begin at roughly the same time and depth.

The geometric significance of the circulation coefficient can be seen by equating

the right hand side of Equation 4.5 with the integral of the tangential velocity taken

around a closed circuit containing one the cores of radius, a , (i.e., 27rwa) to yield:

c ~, - (4.8)
27ra

Hence, c can be viewed as a type of scaling parameter between the overall cloud

radius and the core radius. Equation 4.8 was derived under the assumption that the

tangential velocity can be approximated by the cloud velocity (w) (i.e., K = 27rwa),

which has not been verified. Under this assumption and using the values of c derived

from Equation 4.7, Equation 4.8 was solved for a . In addition, the diameter of the

center hole in the vortex ring (Dhlee) was estimated by:

Dhole = 2(rmax - 2a) (4.9)

where rmax is the maximum cloud radius.

Using Equations 4.8 and 4.9, a and Dhole were estimated for two Group I and

two Group II experiments as shown in Table 4.10. Representative images for these

experiments, taken at 4 s, are provided in Figure 4.14. Superimposed on these images

are vertical lines depicting the diameters of the rotating cores (i.e, 2a), with the

distance between the two inner lines equivalent to Dhoee. As shown in Figure 4.14,

the diameter boundaries associated with the calculated a values essentially align

with the width of rotating cores. The "3.18 cm Cyl., Wet" image in Figure 4.14,
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Table 4.10: Predicted geometric parameters for circulating thermals.

showing the poorest agreement between calculated and visual core radii, was actually

the most organized of the five repetitions performed for this experiment. The four

other realizations resulted in larger, more diffuse cores indicative of the large a and

small Dhole shown in Figure 4.14.

4.5 Discussion and Summary

Compared to saturated conditions, the release of initially dry particles results in

slightly lower entrainment rates in both the turbulent and circulating thermal phases.

Air trapped in the pore spaces increases internal friction and decreases turbulence in

the first phase and interferes with the circulation of particles in the next phase. The

dry particles resulted in clouds that were less organized than the saturated clouds in

the circulating thermal region. The trapped air in the initially "dry" clouds appeared

to disrupt establishment of the vortical flow pattern, resulting in cores that were less

dense and more poorly defined than their "wet" counterparts. In the "wet" clouds,

the momentum associated with the inner core of more tightly packed particles appears

to serve as a vortex generator by inducing counter rotation as it falls through the outer,

less dense layers of the cloud. The net result was a well-organized vortex ring structure

with a high degree of circulation (average K = 261 C
2 ) and lower entrainment

coefficient in the circulation phase. In contrast, the air trapped in initially dry beads

prevents organization of the particles, reducing the amount of circulation generated

(average R = 228 c 2 ) and increasing the spreading rate. Hence, on average, there

was only a 24 % difference between a1 and a 2 for the "dry" experiments compared
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Experiment a(cm) rmax(cm) dhole(Cm)
3.18 cm Cyl., Wet 5.0 11.0 1.0
4.45 cm Cyl., Wet 4.0 13.9 5.9

40 cm 3 H2 0, Sus., AW 4.5 15.6 6.6
17 cm3 H20, Sus., AW 4.2 14.4 6.0



3.18 cm Cyl., Wet

40 cm3 H20, Sus., AW 17 cm 3 H 20, Sus., AW

Figure 4-14: Predicted vortex ring core and hole diameters superimposed on selected
cloud images at 4 s.
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to a 58 % difference for the "wet" experiments.

The addition of excess water appears to have a similar effect on cloud behavior

in that it lowers circulation and increases the entrainment. For example, for the

0.264 mm glass bead experiments, the average a2 and k values for the three ini-

tially suspended bead experiments were 0.18 and 208 2, respectively, compared to
2S

0.13 and 251 i for the three settled bead experiments. Suspending the beads byS

stirring also enhanced the initial amount of turbulence and associated entrainment

rate, increasing the value of a1 by 25 %. The growth rates and velocity profiles for

the "40 cm 3 H20, Sus., AW " and "40 cm 3 H2 0, Set., AW " experiments were very

similar (i.e., within 15 %), suggesting that the same amount of excess water, whether

initially mixed with the beads or present as a supernatant, became incorporated into

the cloud as the material entered the ambient water. The amount of excess water that

becomes incorporated into the cloud was investigated using a silt tracer, as discussed

in Chapter 5.

Only minor variations in particle growth rates were observed due to changes in

initial momentum resulting from differences in the potential energy associated with

initial height of material above the water surface. For the three pairs of "AW \BW"

experiments included in Groups II and III, releasing the particle slurry above the water

surface lowered ai by 6 - 18 % compared to the "BW" experiments. This decrease

in a1 appears to be due to the fact that the clouds possessing initial momentum

travel slightly farther than those without initial momentum in the same amount of

time, resulting in a larger Az. No trends in a 2 were observed for the "AW/BW"

pairs of experiments, suggesting that the clouds have lost all memory of their initial

momentum by the time they have entered the "circulating thermal" phase.

The data for the Group IV experiments (Table 4.6) reveal the same trend in a1

as observed in the other "AW/BW" experiments. That is, providing the clouds with

an initial impulse results in a slightly lower entrainment coefficient in the thermal

phase (about 25 % lower in this case) compared to releasing the material from rest.

The data for the Group V experiments (Table 4.6), as well as the "4.45 cm Cyl.,

Wet" Group I experiment (H - 0.5) indicate that the release geometry (i.e., g)
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Nc d,(cm) ai a 2

4x10- 2  0.2640 0.28 0.18
7x10- 4  0.024 0.264 0.16
5x10 5  0.010 0.28 0.22

Table 4.11: Entrainment coefficient comparison based on Nc.

has a minor effect (i.e., < 15 %) on entrainment rates. The larger ai and a 2 values

calculated for the "Q = 2.6" experiment most likely resulted from the fact that theD,,

beads in the narrowest cylinder required a substantially longer release time than they

did with the wider cylinders (i.e., 0.4 s versus. 0.17 s), significantly reducing the

initial momentum.

The influence of particle size, or cloud number (Nc), on cloud growth rates can

be seen in Table 4.11, in which the average ai and a 2 values are compared for the

three pairs of "AW/BW" experiments using the 0.264 mm, 0.024 mm, and 0.010 mm

particle sizes. The particle clouds produced with the larger glass beads differed in

appearance from the 0.024 mm bead and 0.010 mm silt clouds, in that they possessed

smaller "stems" and evolved into more organized, laminar vortex ring structures. The

"stem" of particles associated with these particle clouds will be discussed in Chapter

5. Despite these differences, there appears to be no statistical difference between their

corresponding entrainment coefficients given their standard deviations, which ranged

from + 0.02 to + 0.08 (see Appendix D.1). Thus, these results suggest that the basic

entrainment mechanisms for the three particle sizes are similar.
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Chapter 5

Sediment Trap Experiments

Using the sediment trap apparatus described in Section 3.2, a series of experiments

was conducted to evaluate particle stripping mechanisms associated with convective

descent. Three general types of experiments were performed. The first experimental

group involved the release of well-mixed suspensions of different particle sizes from

above and below the water surface ("AW" and "BW"). The second group involved

releasing initially "dry" and "wet" settled 0.264 mm beads from above the water

surface. The third group of experiments consisted of an "AW" and "BW" release of

0.264 mm beads in which the beads were mixed with excess water and allowed to

settle prior to release, producing an initial "supernatant" layer of fluid on top of the

beads. Results from the three suites of experiments are discussed in Sections 5.1 -

5.3 with conclusions summarized in Section 5.4.

5.1 Suspended Particles

5.1.1 Quantification of "Stem" Particles

The objective of this group of experiments was to investigate the influence of particle

size, or cloud number (Nc), and initial potential energy ("AW" versus. "BW") on

particle stripping mechanisms. As with the experiments discussed in Chapter 4, five

repetitions were performed for each experiment. The following four particle sizes and
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associated initial cloud numbers were used:

* 0.010 mm silt (Nc = 1 x 10-4)

* 0.024 mm beads (Nc = 7 x 10-4)

* 0.129 mm beads (Nc = 2 x 10-2)

* 0.264 mm beads (Nc = 5 x 10-2)

For each experiment, 40 g of particles were mixed with 40 cm 3 of water and

agitated prior to release. The 4.45 cm release cylinder was used for all experiments in

this group, which was positioned either immediately above the water surface("AW")

or below the water surface ("BW") so that the top of the particle suspension was

flush with the water surface. For each experiment, the sediment trap was positioned

at either a shallow depth (i.e., 13.3 cm below release cylinder) or deep depth (i.e., 34.3

- 36.8 cm below release cylinder). The slight variation in trap positions for the deeper

depth was due to knot slippage in the ropes suspending the trap, which occurred over

the 5-day experimental period. The two trap depths were used to evaluate the time

variation of particle concentration in the stem. In other words, to determine whether

the stem was gaining particles (i.e., by detrainment from the cloud) or losing particles

(i.e., by re-entrainment into the cloud) as the cloud descended.

For most of the suspended releases discussed in Chapter 4, a plume, or "stem"of

particles attached to the cloud can be observed, as shown in Figures 4.3 and 4.4. The

objective in each experiment was to isolate as much of this "stem" as possible from

the main cloud without disturbing or "chopping off" any of the particles near the

rear of the cloud. Hence, the entire clouds were allowed to pass through the trap

before the stem was separated by closing the trap curtain. This procedure resulted in

separation points located approximately 1.1 - 1.3 cloud diameters above the leading

edge of the cloud. To ensure proper closure time, all experiments were recorded to

verify the precise time of trap closure using the fluorescent trap flag, as described in

Section 3.2. The curtain was closed 1.2 - 1.5 s after release for the shallow trap depth

and 4.0 - 5.1 s after release for the deep depth. Figure 5.1 includes sample images
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4.5 sec

5.0 sec

Figure 5-1: Before and after images of 0.264 mm particle cloud descending through
sediment trap.
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Trap Depth/Closure Time 0.010 mm 0.024 mm 0.129 mm 0.264 mm
(cm)/(s) "AW" Experiments

13.3 / 1.2 - 1.5 7.9 2.7 % 5.8 +4.4 % 5.7 1.1 % 1.6 0.4%
34.3/4.0 3.5 +0.7% -

"BW" Experiments
13.3 / 1.2 - 1.6 22 7% 21 5 % 31± 7% 21+ 5 %

34.3 - 36.8 / 4.4 - 5.1 8.4 1.2 % 13± 3% 18 4 % 9.2 1.8 %

Table 5.1: Sediment trap results - suspended particle experiments. Trap depth de-
notes elevation of sediment trap. Closure time denotes time shade was drawn after
release of particles. Percentages denote mass of "stem" particles retained on shade
expressed as the percent of original mass.

from one of the 0.264 mm particle cloud experiments showing the cloud descending

through the trap as well as the presence and disappearance of the trap flag before

and after closure of the curtain. The release apparatus was removed from the top of

the tank approximately 10-15 s following release of the particles. Following closure

of the curtain, the trap was removed from the tank after waiting approximately 3 - 5

minutes to ensure that the stem of particles had collapsed onto the trap curtain. The

mass of particles retained on the curtain was subsequently measured as described in

Section 3.2.

All particle sizes were released "AW" and "BW" with the trap located at the

shallow (13.3 cm) depth (i.e., eight experiments). For the deep trap experiments, only

the 0.010 mm silt suspensions were released from both "AW" and "BW" positions.

The larger beads were released only from below the water surface, resulting in a total

of five experiments at this trap depth. The results of all thirteen experiments are

summarized in Table 5.1. The percentages shown represent the percent of original

mass of solids (40 g) retained on the curtain. The data in Table 5.1 represent the

mean value of the five repetitions conducted for each experiment. Standard deviations

for each experiment are included in Table 5.1.

When experimental variability indicated by the standard deviations is taken into

account, little trend in the data is discernible with respect to particle size or cloud

number (Nc). The percentages of particles retained on the curtain for the four particle
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sizes essentially fall within the same range for a given trap depth and release condition.

The one exception is the 0.264 mm bead "AW" experiment for which only 1.6 % of

the original material was captured on the trap. The discrepancy here is attributed

to the very short release time (0.1 s) for this experiment compared to 0.2 - 0.4 s for

the other releases. Unlike the smaller glass beads and silt, the 0.264 mm beads did

not cling to the cylinder side walls, allowing them to accelerate very rapidly when

released above the water surface. Thus, the entry speed and associated release time

appear to have played a dominant role in determining how much of the initial material

made it into the cloud during release and formation. Averaging results from the three

smaller particle sizes, one finds that approximately 25 % of the initial material failed

to become incorporated into the cloud when it was released below the water surface

compared to only 6.5 % when released in the "AW" position. The average release

time for the "BW" experiments was 0.36 s compared to 0.18 s for the "AW" releases.

To verify that the percentage of material in the "stem" was independent of Nc, one

additional sediment trap experiment was conducted in which 20 g of the 0.010 mm

silt and 20 g of 0.264 mm beads were released below the water surface ("BW"). As

with the other "suspended" experiments, 40 cm 3 of water was added to the particles

and the mixture stirred prior to release. The sediment trap was positioned 34.3 cm

below the water surface, and the shade was closed 5 s after release. The quantities

of 0.010 silt and 0.264 mm beads retained on the shade, expressed in terms of mass

retained and percent of original mass (shown in parentheses), are shown below:

* 0.010 mm silt: 1.78 g (4.5 %)

* 0.010 mm beads: 1.75 g (4.4 %)

* Total: 3.53 g (8.8 %)

As shown above, the measured distribution of silt and beads in the "stem" was

almost identical to the original silt/bead ratio in the pre-released material. This

result suggests that the cloud and "stem" are well-mixed, and that there are no

size-dependent "stripping" mechanisms associated with either the "parent" cloud or
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"stem" that would cause fine particles to detrain from larger particles descending

within either of these elements.

Comparison of the shallow (1.2 - 1.5 s) and deep (4.0 - 5.1 s) sediment trap

results (Table 5.1) indicates that a large percentage of the material contained in the

"stem" eventually "caught up" to the cloud and became re-entrained. For the "BW"

releases, an average of 24 % of the original solids mass was retained on the shallow

trap compared to 12 % on average on the deep trap. The same trend is evident for

the "AW" releases for the 0.010 mm silt slurries in which the percentage decreased

from 7.9 % to 3.5 %. Hence, after the cloud descended a distance equivalent to about

seven initial diameters, about half of the material that failed to make it into the

cloud upon formation had sufficient density and momentum to catch up to the main

cloud. The narrow "stem" of particles trailing behind the cloud, with its small frontal

area, experienced less drag and lateral growth than did the main cloud. In addition,

the circulation set up by the main cloud helped to advect the "stem." The "stem"

therefore decelerated at a slower rate than the cloud enabling the material closest to

the cloud to become re-entrained.

5.1.2 Mass Distribution of Particles in "Stem"

To determine the distribution of particles within the "stem" of the 0.010 mm silt

"BW" experiment from an Eulerian standpoint, four experiments were conducted in

which the sediment trap was positioned at four different depths(13.3 cm, 20.3 cm,

27.9 cm, and 34.3 cm), as shown in Figure 5.2. In each experiment, the trap curtain

was closed after 4.4 s to investigate how the total 8.4 % (3.35 g) of material not

incorporated in the cloud at t = 4.4s (see Table 5.1) was distributed in the "stem"

as well as in the release cylinder. The results of these experiments are provided in

Table 5.2.

As shown in Table 5.2, an estimated 0.7 g of material remained in the cylinder after

4.4 s. To determine how quickly material was discharged from the release cylinder, a

set of experiments was performed in which the cylinder trap door was closed at various

times following release of silt suspension. The closed cylinder was then removed from
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Figure 5-2: Sediment trap locations for determining "stem" mass distribution for
0.010 mm "BW" silt experiment.
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Depth Interval Mass (g) Percent Mass/Depth (g/cm)
< 0 cm (Cylinder) 0.7 1.8

0.0 - 13.3 cm 0.9 2.3 0.068
13.3 - 20.3 cm 0.8 2.0 0.114
20.3 - 27.9 cm 0.5 1.3 0.066
27.9 - 34.3 cm 0.4 1.0 0.063

Table 5.2: Mass distribution in "stem" - 0.010 mm silt "BW" experiment. Percent
values denote the amount of mass contained within the depth interval relative to the
total mass in "stem."

the water and the isolated mass of particles measured. This set of experiments was

also conducted using the larger 0.264 mm glass beads. The results of both sets

of experiments are plotted in Figure 5.3 along with fitted exponentially decaying

functions extrapolated back to the original mass at time zero (40 g). As shown

in Figure 5.3, the glass bead suspension was released from the cylinder at a much

faster rate than the silt slurry, which tended to cling to the cylinder side walls.

Approximately 8 g of silt remained in the cylinder after 1 s compared to 2 g of

glass beads at this time.

The data in Table 5.2 indicate that at time t = 4.4s, the distribution of mass over

the length of the "stem" was nearly uniform. This result appears to contradict the

image in Figure 5.2, depicting a wider stem near the cloud, as well as the exponential

release of material shown in Figure 5.3, suggesting that the concentration of particles

in the stem should decrease with distance away from the cloud. This apparent incon-

sistency can be explained by examining the behavior of motion occurring at opposite

ends of the "stem" from a Lagrangian viewpoint. As the cloud descended, material

towards the front of the "stem," possessing an appreciable amount of momentum,

caught up to and became re-entrained into the cloud, as suggested by the shallow

and deep sediment trap data in Table 5.1. At the same time, new material, possess-

ing less momentum, was fed into the rear of the "stem" from the release cylinder.

Thus, as time progressed, the particle concentration profile within the "stem" changed

from one that initially increased with depth (e.g., before 1 s) to a more uniform (i.e.,
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Figure 5-3: Time-variation of particle mass remaining in release cylinder for 0.010
mm silt and 0.264 mm bead "BW" experiments. Open circles denote measured data.
Solid lines show fitted exponentially decreasing functions.

111

0;)

E



constant) profile (e.g., after 4 s).

The fact that particles near the front of the stem fell faster than those near

the rear caused the portion of stem nearest to the cloud to thin out, as particles

were re-entrained, eventually resulting in the detachment of the upper portion of

the "stem" from the main cloud. This process is evident in the images shown in

Figure 5.4 for the 0.264 mm glass bead experiment. The horizontal lines in Figure

5.4 represent the approximate location of the the shallow and deep sediment trap

positions. The light intensity from the larger glass beads appears to give a truer

indication of particle concentration than does the intensity generated by the 0.010

mm silt, which contained a small fraction of fine colloidal material as well as the

rhodamine 6G dye added to the initial suspension. The light intensity of the large

glass beads rapidly diminishes with decreasing concentration. In contrast, there is no

correlation between the concentrations of silt particles and associated light intensity.

For this reason, it is quite possible that the lower "fat" portion of the silt "stem"

shown in Figure 5.2 contained a smaller amount of particles than the upper portion,

consistent with the sediment trap findings.

The "thinning out" of the lower portion of the "stem" (Figure 5.4, 3 s image)

reveals the separate, secondary plume of particles falling behind the cloud. Formation

and detachment of this secondary plume may have resulted from, or at least be

influenced by, the flow of water around the cloud after the initial slug of material

had exited. Water initially displaced by the main slug flowed back around the rear

of the descending cloud with upward velocity components, mixing with the "stem"

material and retarding its descent. For the "BW" releases, the displaced water may

have actually swept some of the particles back into the release cylinder, while for

the "AW" releases, the material was simply pushed towards the water surface. This

process may explain the secondary release of particles that is observed exiting the

cylinder from about 0.2 - 0.5 s. Example images depicting the "head" of the secondary

plume, just after emergence from the cylinder, are provided in Figure 5.5. In each

image, the plume "head" can be identified by noting the roundish mass of material

located directly above the contraction in the "stem."
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1.2 sec 4.9 sec

3.0 sec 6.0 sec

Figure 5-4: Selected images from 0.264 mm bead "BW" experiment showing shallow
and deep sediment trap locations.
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Time Interval (s) Silt Cloud Silt "Stem" Bead Cloud Bead "Stem"
1.5 - 2.0 10.6 5.0 10.0 8.1
2.0 - 2.5 9.3 6.7 8.8 7.6
2.5 - 3.0 8.4 5.7 8.0 7.9
3.0 - 3.5 7.8 5.5 7.3 7.4
3.5 - 4.0 7.2 5.7 6.8 8.6
4.0 - 4.5 6.8 6.2 6.4 7.4
4.5 - 5.0 6.4 5.2 6.1 8.1
5.0 - 5.5 6.1 6.0 5.8 8.3

Mean + Std. Dev. 5.8 + 0.5 7.9 + 0.4 - -

Table 5.3: Comparison of cloud center of mass velocity and secondary plume leading
edge velocity for 0.010 mm silt and 0.264 mm bead "BW" experiments. Units for all
velocities are ".

The leading edge velocities of the secondary plumes formed from the "BW" 0.010

mm silt and 0.264 mm bead releases were estimated by manually determining the

leading edge position at 0.5 s intervals. As shown in Figure 5.5, the secondary plume

is quite discernible in the 0.264 mm bead experiments. Identification of the leading

edge of the plume in the silt experiments was more difficult; however, the approx-

imate location of the leading edge could be determined in one of the five repeated

experiments. Four representative images from this "BW" silt experiment are included

in Figure 5.6, with the approximate leading edge location indicated by the superim-

posed horizontal lines. The estimated leading edge velocities of the secondary plumes

associated with the 0.010 mm silt and 0.264 mm bead experiments are compared to

the "smoothed" mean center of mass velocities for their respective "parent" clouds

in Table 5.3. The "smoothed" cloud center of mass velocities shown in Table 5.3

were derived by fitting a smooth curve to the measured data (i.e., w = 14.0t-0.5 for

0.010 mm silt and w = 13.2t~0 5 for 0.264 mm beads). As shown in Table 5.3, by 1.5

s, each secondary plume has apparently reached a fairly constant terminal velocity

which eventually exceeds that of the main cloud (e.g., after 6 s for 0.010 mm silt cloud

after 3 s for 0.264 mm bead cloud), allowing it to ultimately catch up and become

re-entrained (at approximately 23 s for 0.010 mm silt cloud and 11 s for 0.264 mm
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0.010 mm Silt, AW, 1.0 s

0.024 mm Beads, AW, 1.0 s 0.264 mm Beads, BW, 0.7 s

Figure 5-5: Selected images showing emergence of secondary plume in sediment trap
experiments.
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1.5 sec

2.5 sec 4.5 sec

Figure 5-6: Selected images from 0.010 mm silt "BW" experiment showing approxi-
mate leading edge locations of secondary plumes.
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bead cloud). The faster velocity calculated for the glass bead plume was most likely

the result of its larger initial momentum (i.e., faster release time from the cylinder).

The faster particle settling velocity of the individual beads (3.2T) compared to the

silt (0.0097) may have also contributed to the quicker plume descent.

5.1.3 Mass of Particles Excluded from "Stem"

As discussed in the previous section, the "stem" of particles and fluid that forms

behind some clouds descends at a velocity that greatly exceeds the particle settling

velocity (w.), allowing it to either become re-entrained into the "parent" cloud or

impact the bottom shortly after it. Thus, material that may be "lost" to the envi-

ronment during convective descent (e.g., carried away by ambient currents) consists

primarily of particles and fluid that fail to become incorporated into the "stem." Vi-

sual observations from the various experiments discussed in Section 5.1 suggest that

the amount of this material was a very small fraction of the total "stem" material and

likely represented less than 1 % of the original sediment mass. To quantify this per-

centage, one additional sediment trap experiment was conducted in which the "0.010

mm silt BW" experiment discussed in Section 5.1 (i.e., 40 g silt with 40 cm3 of water)

was repeated but with a longer shade closure time (i.e., 30 s instead of 4.4 - 5.1 s). In

this experiment, the shade was pulled 30 s after release of the silt suspension to allow

the "stem" of material to completely pass through the sediment trap and to capture

only the fraction of material suspended in the water column; that is, material that

was last to exit the cylinder and failed to be transported with the "stem"). Thus,

any "stem" material descending with a velocity greater than about 1 c would have
S

passed through the trap before the shade was pulled at 30 s. After allowing the silt

material suspended in the water column (i.e., falling with average w, = 0.0097) to

settle on top of the shade, the shade was then removed from the tank and the mass of

silt measured. The mass of silt retained on the shade was approximately 0.1 g or 0.25

% of the original mass. The amount of material that fails to become incorporated into

the "stem" is likely to be less than this amount for initially "settled" sediments, since

the "stems" associated with these particle clouds (Table 5.4) contained considerably
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Trap Depth / Closure Time "Dry" Beads "Wet" Beads
12.7 cm /1.0 - 1.5 s 5.0 + 0.7% 1.6 + 0.2 %
63.5 cm /7.0 - 8.0 s 5.8 +1.5 % 1.9 +0.4 %

Table 5.4: Sediment trap results - settled particle experiments. Trap depth denotes
elevation of sediment trap. Closure time denotes time shade was drawn after release
of particles. Percentages denote mass of "stem" particles retained on shade expressed
as the percent of original mass.

less material than those produced by the "suspended" particles (Table 5.1).

5.2 Settled Particles

The objective of this group of experiments was to investigate the influence of water

content and settling on particle stripping mechanisms. As with the suspended experi-

ments, 40 g of particles and the 4.45 cm release cylinder were used for all experiments

in this group. For the "wet" experiments, 17 cm 3 of water was added to the beads

prior to release. The release cylinder was positioned immediately above the water sur-

face("AW") for all experiments. The sediment trap was positioned at either a shallow

depth (i.e., 12.7 cm below release cylinder) or deep depth (i.e., 63.5 cm below release

cylinder), yielding a total of four experiments. As with the other experiments, five

repetitions were performed for each experiment. The results of the four experiments

are summarized in Table 5.4. The percentages shown again represent the means and

standard deviations of the percent of original mass of solids (40 g) retained on the

curtain.

As can be seen in the images in Figure 4.2, clouds formed from the "wet" particles

fell as discrete volumes with little or no material trailing behind them as a "stem."

Thus, virtually all (> 98 %) of the initial material became incorporated into the

cloud upon release. In contrast, when the beads were released in a "dry" state,

approximately 94 - 95 % of the initial material made it into the cloud during formation.

The material that did not make it into the cloud formed a small "stem" as evident

in Figure 4.2. In addition, following release of the main cloud, a secondary "puff" of
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material emerged from the cylinder, similar to the secondary plume discussed in the

previous section. Based on visual observation, it appears that the bulk of the 5 - 6

% of the original mass not incorporated into the cloud was present in this secondary

"puff." The absence of this secondary release in the "wet" experiments suggests that

the added water helps to keep the initial volume intact, possibly through interparticle

cohesion.

Taking into account the experimental variability indicated by the standard de-

viations, the data in Table 5.4 show that little or no mass was lost to the water

column (i.e., stripped from the cloud) during descent. That is, once particles were

incorporated into the cloud during initial formation, they remained in the cloud until

they settled out of the cloud when the cloud velocity approached the particle set-

tling velocity (i.e., Nc -4 1). The entrainment mechanisms essentially sequestered

the material within the cloud during descent. The results presented in the previous

section suggest that any "stem" attached to the cloud was generated from material

that failed to make it into the cloud upon release, rather than from some type of

"stripping" mechanism acting as the cloud descends.

5.3 Settled Particles with Excess Water

This set of experiments consisted of "AW" and "BW" releases of 0.264 mm bead

mixtures produced by adding 42 cm 3 of water to 40 g of beads and allowing them to

settle prior to release, producing an initial "supernatant" layer of fluid on top of the

beads. The goal of these experiments was to determine how much of the supernatant

becomes incorporated into the cloud during formation and how much is left behind

in the "stem." This information is important from an environmental perspective,

because real-world dredged sediments may contain an appreciable amount of water

(generated by using a closed "environmental" bucket) mixed with fine particles to

which toxic contaminants are adsorbed. To measure these quantities, 10 g of the

0.010 mm silt was added to the water\bead mixture to serve as a tracer for the initial

water. The entire mixture was first homogenized and then allowed to settle 2 - 3 s
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Release Type/Closure Time % of Total Mass % of Supernatant
"AW" / 5.0 - 6.0 s 5.1 + 1.7 % 7.0 + 2.4 %
"BW" /7.5 - 8.5 s 15 +2.3 % 20 +3.2 %

Table 5.5: Sediment trap results using silt tracer - settled particles/excess water
experiments. The % of total mass denotes the amount of captured silt relative to the
total added silt. The % of supernatant denotes the amount of captured silt relative
to the silt contained in the overlying water.

before release, enabling the beads to settle while keeping the silt particles suspended

in the water. Based on a bead porosity of 0.4, approximately 11.5 cm 3 of the added

water was contained within the beads as "pore water," with the remaining 30.5 cm3

present as a supernatant. Hence, of the initial 10 g of silt, approximately 2.7 g was

contained within the beads and 7.3 g in the overlying water.

Only one sediment trap depth (63.5 cm) was used for the "AW" and "BW" ex-

periments, with five repetitions conducted for each experiment. The results of the

two experiments and the associated standard deviations are given in Table 5.5. Two

percentages are included in Table 5.5, the first representing the percent of the total

mass of silt (10 g) retained on the curtain, and the second expressing the mass on the

curtain as the percent of silt contained in the original supernatant (7.3 g).

The results shown in Table 5.5 indicate that the particles were capable of incor-

porating a large percentage of overlying water (80 - 93 %) into the cloud upon their

release. Consistent with the sediment trap results for the suspended particles, the

data show that speeding up their release (i.e., decreasing release time from 0.4 s to

0.1 s) by increasing their height above the water surface (i.e., potential energy) sig-

nificantly increased the amount of material that became incorporated into the cloud.

The ability of the particles to incorporate the majority of any overlying water and

transport it downward with the descending cloud clearly has positive benefits for

real-world disposal/capping projects in which the water may contain dissolved and

particulate contaminants from dredging operations.
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5.4 Discussion and Summary

Sediment trap results using both suspended and settled particles suggest that material

incorporated into the cloud during initial formation is sequestered via entrainment

mechanisms until the dispersive phase, in which solid particles begin to settle out of

the cloud.

The amount of material not initially incorporated into the cloud is directly depen-

dent on the initial potential energy and associated release time, with quicker releases

resulting in more material being incorporated into the cloud. Material not incorpo-

rated into the cloud ranged from 2 - 8 % of the initial mass for the "AW" experiments

compared to 21 - 31 % for the "BW" releases. The large percentage of "stem" material

produced by the "BW" releases was likely a result of the "stalling effect" caused by

ambient fluid flowing, and carrying particles, back into the submerged cylinder after

the bulk of the particles was released. Though sediments from real barges and scows

are released below the water surface (due to their hydrostatic equilibrium elevation),
the "stalling effect" would not be expected in a real barge because of the decrease

in the vessel's draft (i.e., rise in elevation) as the material is released. Thus, the two

ranges of percentages associated with the "AW/BW" experiments may bracket the

amount of "stem" material the would be expected under real-world release conditions.

Particle size, or cloud number (Nc), does not appear to have a major influence

on the ability or inability of particles to become incorporated into the cloud upon

formation. By reducing sidewall cohesion, large particles (i.e., Nc > 10-2) may be

more easily incorporated into the cloud than smaller particles that tend to adhere to

the release vessel walls.

By increasing inter-particle cohesion, saturating particles prior to release improves

the ability of the particles to remain intact during their release, particularly with

respect to the last particles to exit the release vessel, which have the most difficulty

being incorporated into the cloud.

The material that fails to enter the cloud upon formation forms a "stem" of mate-

rial behind the descending cloud. For the experiments conducted here, approximately
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half of the material located near the front of the "stem" possesses sufficient momen-

tum to enable it to become re-entrained into the main cloud within a distance equal

to about seven initial diameters. The other half of the material in the stem falls more

slowly as a separate density plume that, in some cases, detaches from the main cloud.

This rather narrow secondary plume decelerates more slowly than the main cloud,

allowing it to either become re-entrained into the main cloud, with sufficient water

depth, or impact the bottom soon after the collapse of the main cloud. The motion

and distribution of particles in the "stem" may be influenced by the flow of displaced

ambient fluid around the falling cloud, serving to sweep particles upward retarding

their descent.

Failure of the last particles and fluid that exit the release vessel to become incor-

porated into the falling "stem" is the predominant mechanism by which material is

lost to the environment. The amount of this material was quantified to be less than

1 % of the original sediment mass (0.25 %) for the 0.010 mm silt "BW" suspension.

The amount of material that fails to become incorporated into the "stem" is likely

to be less than this amount for initially "settled" sediments, since the "stems" as-

sociated with these particle clouds (Table 5.4) contained considerably less material

(1.6 - 5.8 %) than those produced by the "suspended" particles (Table 5.1). Thus,

sediment trap results from the 0.010 mm silt "BW" experiment represents a "worst

case"7 scenario.

Settled particles in the cylinder appear capable of incorporating a large percentage

of overlying water into the cloud upon release. The amount of supernatant fluid

incorporated into the cloud upon formation is dependent on the initial potential

energy of the material and resulting entrance velocity. Approximately 93 % and 80 %

of the excess water was incorporated into the cloud for material released above and

below the water surface, respectively.
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Chapter 6

Integral Model Analysis

In this chapter, application of a numerical integral model to eight of the twelve Group

1, 11, and III particle cloud experiments, described in Chapter 4, is discussed. The inte-

gral model was applied in the "normal" mode in which cloud characteristics (i.e., size

and velocity) were determined by solving the conservation laws using user-specified

"calibration" parameters, namely the entrainment (a), drag (CD), and added mass

(k) coefficients. When used in this traditional mode, the integral model will be re-

ferred to herein as the "forward model." In addition to the "forward" mode, the

integral model was run in a backward, or "inverse" mode, in which the momentum

equation was rewritten to solve for either the drag or added mass coefficient using

measured entrainment and velocity data. When used in this backward mode, the

integral model will be referred to herein as the "inverse model." As will be discussed,

the inverse model was formulated to solve for the apparent mass coefficient (Cm),

which was then used to calculate the added mass coefficient.

The first section of this chapter outlines the governing equations on which the

forward and inverse models are based. The next section includes the results of a

brief analysis of the forward model's sensitivity to the three "calibration" coefficients.

The third section provides the results of the inverse model analysis, including time-

varying relationships for the added mass coefficient. In the next section, results

of the forward model simulations using both constant and time-varying calibration

coefficients is presented. In the final section, the forward model is applied to two
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shallow-water case study simulations: (1) Boston Harbor, representing a very shallow

sediment disposal scenario (15 - 20 m); and (2) Massachusetts Bay, representing a

deeper (100 m) disposal site. In addition, the final section includes a brief analysis

of particle cloud mechanics under the influence of density stratification at a generic

deep-water (610 m) site. The STFATE model (Johnson and Fong, 1995) was used for

this analysis.

6.1 Model Development

The forward model essentially solves the initial value problem posed by the mass, mo-

mentum, and buoyancy conservation equations (presented in Chapter 2) by convert-

ing the ordinary differential equations into difference equations using Euler's method.

Since the mass of solid particles in the cloud was assumed constant (i.e., no stripping

or settling) and only an ambient fluid of uniform density was used in the experiments,

the forward model tracks the growth in cloud volume (V) using the entrainment as-

sumption and volume conservation equation as follows:

V = Vti + 4rr2 1wt-1aAt (6.1)

where the subscripts t and t - 1 refer to the discretized times separated by the

interval At. A At of 0.01 s was used in all forward and inverse model simulations,

which yielded converged solutions.

The change in momentum (M) is tracked by summing the buoyancy (B) and drag

(D) forces as follows:

Mt = Mt- 1 + (Bt 1 - Dt_1 )At (6.2)

where Mt_1 = Cmmt_1wt_, D_ 1 = 0.5PaCD7ft- 1 2 Wt1 2, and Bt- 1 = B, = V_1(pt_1-

p,)g, as discussed in Chapter 2. For the simulations discussed herein, the initial mo-

mentum (M) is given a value of zero, since the forward model is run with the cloud

starting from rest. The cloud velocity is then computed by dividing the momentum
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by the cloud's apparent mass:

Wt = Cmmt (6.3)

Using the experimental velocity and radius values to compute M and the force

terms in the inverse model, Equation 6.2 can be solved for either CD or k, while

holding the other coefficient constant. A time-varying drag coefficient is computed

from the measured data by rearranging Equation 6.2 as follows:

CDt = 2 (BO (6.4)

A time-varying apparent mass coefficient is computed by reformulating Equation 6.2

as follows:

(mw)t - (mw)t_1

(mw)t-1
+±

(B - D)At

(mw)t_

The initial value for Cm is calculated by holding it constant over the first time step

yielding:

(B - D)At
(mw)t - (nw)t_ 1

(6.6)

The added mass coefficient can be computed from Cm as follows:

kt = (Cmt1)
Pa

(6.7)

After the cloud descends about two initial diameters, - ~ l and k ~- Cm - 1.

6.2 Sensitivity Analysis

As discussed in Chapter 2, researchers have proposed values for the entrainment,

drag, and added mass coefficients that generally fall within the following ranges:

. a: 0.1 - 0.5
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e CD: 0.01 - 0.5

o k: 0.01 - 0.5

The entrainment coefficient values shown above represent the approximate range

of values determined experimentally, encompassing values measured for heavy ther-

mals (i.e., dense liquids), buoyant vortex rings, and particle clouds. The upper value

of 0.5 for the added mass and drag coefficients is based on the theoretical value de-

rived for a solid sphere. The lower limit of 0.01 for CD and k is based on estimates

made from thermal experiments as well as from heuristic arguments as discussed in

Chapter 2.

The sensitivity analysis was performed for the entrainment coefficient by running

the forward model using the upper and lower limits on a while holding CD and

k constant at a " mean" value of 0.25. The model's combined sensitivity to CD

and k was evaluated by running the model with CD, k - 0.01 and CD, k 0.5,

while holding a constant at 0.25. For all sensitivity analysis simulations, the initial

buoyancy and volume were held constant at the values used for the 0.010 mm silt

experiments (i.e., B, = 23, 520 gms- 2 , V = 56 cm 3 ). In addition, all particle

volumes were started from rest (i.e., w0 = 0) and from a submerged state ("BW").

The results of the sensitivity analysis, as characterized by predicted cloud velocities,

radii, and center of mass positions as functions of time, are shown in Figure 6.1.

As depicted in Figure 6.1, the forward model is far more sensitive to variations

in a than it to changes in CD and k. The upper and lower limits for a resulted in

velocity variations ranging from 74 % to 100 %, and a radius variation of about 40 %

after 6 s of descent. In contrast, the upper and lower values for CD and k resulted in

velocity variations ranging from about 10 % to 19 %, and a radius variation of about

11 % after 6 s of descent. When the center of mass locations are taken into account,

and velocities are compared on a depth basis, the variation becomes considerably

larger (i.e., 21 % compared to 10 %).

The lack of model sensitivity to the added mass and drag coefficients is a direct

result of the feedback mechanism between the entrainment and momentum equations.
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Figure 6-1: Forward model sensitivity analysis results. In left column plots, CD, k =
0.25 and a = 0.1 and a = 0.5 denoted by solid and dashed lines, respectively. In
right column plots, a = 0.25 and CDk= 0.01 and CD, k = 0.5 denoted by solid and
dashed lines, respectively.
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To a large extent, any increase in the drag force caused by a higher CD is offset by a

corresponding decrease in the radius resulting from the smaller entrainment velocity

caused by the increased drag force (due to CD). Similarly, any increase in the apparent

mass caused by a higher k is offset to a large degree by a corresponding decrease in

actual mass resulting from the smaller entrainment velocity caused by the increase in

k. In essence, the cloud dynamics are dominated by the entrainment mechanisms.

6.3 Inverse Modeling Results

Eight of the twelve Group I, II, and III particle cloud experiments, described in

Chapter 4, were selected for application of the forward and inverse model as listed

below:

* 4.45 cm Cylinder, Wet (0.264 mm beads set., 17 cm 3 H 2 0)

* 40 cm3 H2 0, Settled, "AW" (0.264 mm beads, 4.45 cm cyl.)

* 40 cm 3 H 20, Suspended, "AW" (0.264 mm beads, 4.45 cm cyl.)

* 40 cm 3 H 20, Suspended, "BW" (0.264 mm beads, 4.45 cm cyl.)

* 0.024 mm beads, "AW" (4.45 cm cyl., 40 cm 3 H2 0)

* 0.024 mm beads, "AW" (4.45 cm cyl., 40 cm 3 H 20)

0 0.010 mm silt, "AW" (4.45 cm cyl., 40 cm 3 H2O)

0 0.010 mm silt, "BW" (4.45 cm cyl., 40 cm3 H2 0)

The eight selected experiments provide a good representation of the major initial

conditions investigated in Chapter 4; that is, potential energy ("AW" versus "BW"),

settled versus suspended particles, and particle size (cloud number, Nc). The above

list includes the nomenclature used in Chapter 4 for the various experiments with

additional descriptive details shown in parentheses. All experiments involved the
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release of "wet" beads from the 4.45 cm cylinder, and 40 cm 3 was added to the

particles in all cases with the exception of the first experiment.

The first objective of the inverse model analysis was to determine actual values

for CD and k using Equations 6.3, 6.4, and 6.5 and the measured velocity and radius

data from the eight experiments. To reduce the "noise" associated with the random

fluctuations in the measured velocity and radius data, smooth functions were fit to

the data, from which discrete values were entered into the model instead of the raw

data. Functions with a t-. 5 dependency were fit to the velocity data within the

deceleration region. Because of the nonlinear radius versus depth profiles (i.e., dual

a), single functions with a t0 -5 dependency could not be fit to the entire radius versus

time data sets. For this reason, the radius data were fit using 6th-order polynomials.

Two examples of the fitted velocity and radius data are included in Figure 6.2. To

verify that the inverse model was properly coded, the forward model was run with the

actual k values generated by the inverse model, which produced velocity and radius

profiles identical to smooth functions used to fit the experimental data.

6.3.1 Determination of Drag Coefficient

The inverse model was first used to compute time-varying CD values using Equation

6.3 and the fitted velocity and radius curves from the eight experiments. The fitted

curves were sampled at a 0.01 s time step (i.e., At = 0.01s). For these model simula-

tions, the added mass coefficient was held constant at either the lower (k = 0.01) or

upper limit (k = 0.5) used in the sensitivity analysis. Results of these model simula-

tions are shown in Figures 6.3 and 6.4. As shown in these figures, the higher value of

k produces lower values for CD and vice versa since both coefficients have a similar

effect on cloud velocity; that is, higher values both decrease velocity.

For the four 0.264 mm bead experiments shown in Figure 6.3, the average time

associated with the transition from well-mixed "thermal" to "circulating thermal" (tc)

was 1.2 s, as can be seen in Table 4.5. Regardless of the k value used, the inverse model

yielded negative CD values for this time period. Most of the inverse model simulations

for the 0.024 mm bead and 0.010 mm silt experiments (Figure 6.4) also produced
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Figure 6-2: Examples of smooth curves fitted to measured velocity and radius data
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Figure 6-3: Inverse model results for drag coefficient (CD) for 0.264 mm bead ex-
periments. Results using k = 0.01 and k = 0.5 denoted by thick and thin lines,
respectively.
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negative CD values for the majority of the "thermal" phase. The negative values,

while having no physical meaning, suggest that the drag force is extremely small,

with a CD value close to zero. The negative values are a result of the inverse model's

hypersensitivity to the magnitude of the cloud's velocity and radius, which appear as

squared quantities in the denominator of Equation 6.3. This sensitivity can be seen by

comparing the fitted velocity and radius curves for the "AW" and "BW" experiments

with the 0.024 mm glass beads shown in Figure 6.5. The velocity profiles for these

two experiments are very similar. The radius profiles are also similar with respect to

slope but differ by about 1.6 cm in magnitude. With k = 0.01, this difference results

in negative values during the first 1.5 s for the "AW" experiment (i.e.,-0.2 < CD < 0)

and positive values for the "BW" experiment (i.e.,0.2 < CD < 0-5). Given the inverse

model's sensitivity to the measured data coupled with the inherent variability of the

measured data, firm conclusions cannot be drawn from the shape, or functionality, of

the CD curves for individual experiments. When taken as a whole, the CD data within

the "thermal" phase for the eight experiments do suggest a value of CD close to zero

rather than the 0.5 value for an equivalent solid sphere. This result is consistent with

arguments made by Turner (1973) and Escudier and Maxworthy (1971) that the drag

on thermals should be quite small because there is no flow separation at the cloud's

boundary and thus no form drag.

One trend that is apparent in the CD results for the six glass bead experiments is

an increase in magnitude near the transition time (tc), marking the transition from

ai to the lower a2 values. With a constant entrainment coefficient, the product w2r2

in the denominator of Equation 6.3 should remain constant, since velocity decreases

as t-0 .5, while radius increases as to0 5 . However, this product does not remain con-

stant but decreases as the entrainment coefficient decreases from ai to a 2, essentially

causing the radius profile to shift to a new t' curve. The resulting decrease in cloud

radius does not produce an associated increase in velocity, which remains on the same

asymptotic t-0-5 curve. The resulting decrease in w2r 2 is not offset by the decrease

in the term in Equation 6.3, since the time derivative of the cloud volume (and

mass) scales with t-0-5 and r 2 scales with t. Hence, CD must increase in some fashion,
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the rate of which is dependent on the transition from ai to a 2 .

As shown in Figure 6.4, the inverse model results for the two silt experiments did

not show the increasing trend in CD, a result of the relatively constant entrainment

coefficients compared to the glass bead experiments. Regardless of the k value, most

of the CD values fall near or below zero, supporting the case for a very small drag

coefficient.

6.3.2 Determination of Added Mass Coefficient

The inverse model results depicting time-varying added mass coefficients based on

Equations 6.4 and 6.5 are included in Figures 6.6 and 6.7 for the eight experiments.

As with the drag coefficient calculations, the "k" version of the inverse model was

run using either the upper or lower limit of CD, which was held constant for a given

simulation. Similar to the behavior of the drag coefficient, computed k values also

show a high degree of sensitivity to the measured radius and velocity data, which

determine the values of the denominator terms in Equation 6.4. Again, the results

from the 0.024 mm bead experiments illustrate the model's sensitivity to cloud radius,

as k varied from -0.2 for the "AW" experiment to 0.4 for the "BW" experiment.

Similarly to the drag coefficient results, the time-varying behavior of k exhibits

increasing trends for the glass bead experiments, associated with the a1/a2 transi-

tions, and more constant values for the two silt experiments, reflective of the rather

constant entrainment coefficients. In total, the results for the eight experiments for

the "thermal" phase suggest that the added mass associated with turbulent particle

clouds is closer to zero than to the theoretical 0.5 value for a corresponding solid

sphere. These results, which are consistent with the findings of Neves and

Almeida (1991), suggest that the volume of surrounding fluid being accelerated by

the moving cloud is much less than the volume associated with a solid sphere, which

must be due to the entrainment mechanisms. Much of the work being done on the

surrounding fluid is shared with the kinetic energy of the turbulent eddies that are

engulfing ambient fluid on all sides of the cloud. This interaction between the cloud

eddies and the displaced fluid results in the reduced added mass as well as drag.
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respectively.

136

-0.5 0 0.5
k

1

0-

1-

2-

3
i-

4-

5-

6-
-1 -0.5



0.024 mm Beads, AW
0-

1 -

2-

3-

4

5-

6-
-1

0-

1 -

2-

3-

4

5-

6-
-1

0.010 mm Silt, AW

-0.5

E

0 0.5 1
k

-0.5 0 0.5 1
k

0.010 mm Silt, BW

-1 -0.5 0 0.5 1
k

Figure 6-7: Inverse model results for added mass coefficient (k) for 0.024 mm bead
and 0.010 mm silt experiments. Results using CD = 0.01 and CD = 0.5 denoted by
thick and thin lines, respectively.

137

-0.5 0 0.5 1
k

0-

1

2

C3

4-

5-

6-
-1

0.024 mm Beads, BW



The increase in the added mass coefficient caused by the lower entrainment in the

"circulating thermal" phase for the glass bead experiments may be associated with the

suppression of turbulent eddies within this phase. In contrast to the silt clouds, which

remain highly turbulent, energy dissipation from inter-particle collisions of the glass

beads causes the clouds to appear more laminar with time, with smoother boundaries.

The suppression of entraining eddies and the resulting smoothing of cloud boundaries

may provide a physical explanation for why the inverse model tends to increase k to

values approaching 0.5 for a solid sphere.

6.4 Forward Model Analysis

The forward model was first calibrated to the subset of eight experiments using con-

stant coefficients (i.e., a, CD, and k) followed by a more complicated suite of simula-

tions using time-varying functions for the entrainment and added mass coefficients.

The objective here was to first evaluate the performance of the simplest "baseline"

model employing constant coefficients, and then determine what improvements, if

any, could be gained by using time-varying coefficients. For both cases, selected co-

efficient values were based on the measured radius data presented in Chapter 4 and

the inverse modeling results discussed in the previous section.

6.4.1 Model Simulations Using Constant Coefficients

The forward integral model was first applied to the eight experiments using constant

coefficients, as outlined in Table 6.1. Based on the inverse model results, the drag and

added mass coefficients were held constant at 0.01. With respect to the entrainment

coefficient, two ai values were used for the glass bead experiments; the mean ai

value of the "settled" experiments (0.22), and the mean ai value of the "suspended"

experiments (0.27). The ai values were used to obtain the optimum performance

within the "thermal" phase and to determine how well the model performs in the

"circulating thermal" region while holding ai constant. An average of the ai, a 2

values could have been used in lieu of this approach, which possibly would yield
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Table 6.1: Forward model parameters - constant coefficients.

improved model performance in the "circulating thermal" phase at the expense of

performance in the "thermal" phase. For comparison purposes, model results using

this second approach are presented for the two settled experiments. Because of the

uncertainty in the te transition points selected for the two silt experiments and the

associated ai, a2 values, mean entrainment coefficients were calculated for these

experiments by fitting linear lines over the entire depths. This approach resulted in

a mean a of 0.25 for both silt experiments.

With respect to initial conditions, the z0 and r, values shown in Table 4.4 were

used to define the initial cloud depth and volume. In all simulations, the cloud was

started from rest assuming it was completely submerged. No special provisions were

added to the model to account for differences in release times or initial potential

energy (i.e., "AW" versus "BW"), since no velocity differences based on these factors

were observed. Furthermore, no special provision was made to account for possible

differences in the initial growth rate associated with the release of particles from the

cylinder (i.e, is was assumed that ao = a1). As shown in Table 6.1, the initial mass

of solids was adjusted based on the sediment trap data presented in Chapter 5. The

adjustments were made by subtracting the average of the mass quantities captured

in the shallow and deep sediment trap experiments from the initial solids mass (40

g). For the deep sediment trap experiments performed only with the 0.010 mm silt

(i.e, "BW" releases), it was assumed for the larger particles, that the same percentage

decrease in stem material would occur between the shallow and deep trap locations as
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Experiment a CD k ms )
4.45 cm Cyl., Wet 0.22 0.01 0.01 40.0

40 cm 3 H2 0, Set., AW 0.22 0.01 0.01 40.0
40 cm 3 H2 0, Sus., AW 0.27 0.01 0.01 39.4
40 cm 3 H2 0, Sus., BW 0.27 0.01 0.01 34.0
0.024 mm Beads, AW 0.27 0.01 0.01 39.0
0.024 mm Beads, BW 0.27 0.01 0.01 33.2

0.010 mm Silt, AW 0.25 0.01 0.01 37.7
0.010 mm Silt, BW 0.25 0.01 0.01 33.9



observed in the silt experiments. Thus, the loss of initial material from the cloud was

handled in a rather crude manner, with no mechanisms added to the model to account

for the motion of the trailing "stem" or subsequent re-entrainment of "stem" material

into the cloud at some time later in its descent. In short, application of the integral

model under the conditions in Table 6.1 represents the most simplistic modeling

approach and provides a baseline against which potential model enhancements can

be compared.

The results of the forward model simulations for the eight experiments are pro-

vided in Figures 6.8 - 6.11. As shown by the velocity profiles, the forward model

performs quite well in capturing cloud velocity for the entire deceleration phase. The

majority of predicted velocities fall within 10 % of the experimental data. Agree-

ment between measured and predicted velocities in the initial acceleration phase is

considerably more variable between the eight experiments, with absolute differences

between measured and predicted maximum velocities falling between 4 % and 30 %.

This agreement is still quite good considering the simple assumptions made for the

release conditions.

Perhaps a better measure of model performance is how well the model tracks

the cloud center of mass position over time, which basically accumulates errors in

predicted velocities. With the exception of the "40cm 3H 20, Sus., BW" experiment

(Figure 6.9), at the 6 s mark, simulated center of mass positions fell within 5 % of

the measured data. The 14 % difference in center of mass positions for "40 cm 3 H2 0,

Sus., BW" experiment was caused by the slight underprediction of velocity for this

experiment.

As can be seen from the radius versus time profiles, the forward model performs

well in capturing the radial growth rates in the initial "thermal" region but, as ex-

pected, begins to diverge from the measured data (i.e., overshoot) as the clouds tran-

sition into the "circulating thermal" phase. The divergence is essentially due to the

differences between the a, and a 2 values. For the glass bead experiments, predicted

radius values exceed measured values by 9 - 24 % after 6 -7 s of descent. As shown in

Figure 6.11, the forward model simulates radial cloud growth extremely well for both
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Figure 6-9: Forward model results using constant coefficients for 0.264 mm bead
"Suspended" experiments. Simulation results denoted by thin lines.
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Figure 6-10: Forward model results using constant coefficients for 0.024 mm bead
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the "AW" and "BW" silt experiments. The lack of divergence between the measured

and predicted curves suggests a constant entrainment coefficient (i.e., a = 0.25) as

opposed to the ai and a 2 values shown in Table 4.5.

As noted earlier, rather than using the ai values for the constant entrainment

coefficient for the glass bead experiments, the mean values for ai and a 2 cloud have

been used. Forward model results using this approach are shown in Figure 6.12 for

the two "settled" 0.264 mm bead experiments in which an average value of 0.185

was used for a. As one might expect, employing this approach produces slightly

better performance in radial cloud growth predictions at the expense of predictions

in velocity and center of mass locations.

6.4.2 Model Simulations Using Time-Varying Coefficients

As discussed in the previous section, for the six glass bead experiments, the forward

model overpredicts cloud growth during the "circulating thermal" phase when a con-

stant entrainment coefficient is used. To overcome this problem, the mean a1 and a 2

values for the "settled" and "suspended" experiments were used in conjunction with

the forward model, as shown in Table 6.2. As discussed in Section 4.2, the transition

from "turbulent" to "circulating thermal" occurs when the cloud radius has approx-

imately doubled with respect to its size when turbulence arises (i.e., I = 2). Forrt

modeling purposes, the transition to "circulating thermal" must be related to the

initial size, or cloud radius (r,). The r ratios for the six modeled experiments are
To

included in Table 6.2. The average of the six ratios is approximately 4 (i.e., 4.1),

indicating that the initial diameter approximately quadruples in size when the cloud

transforms into a "circulating thermal." To simulate a smooth, continuous transition

from ai to a 2 , centered around the time and depth corresponding with g = 4, the

following hyperbolic tangent function was adopted:

a = a 2 + (a -a 2 tanh (2 (4 -) (6.8)
2 2 / ro /

The factor 2 within the tanh function in the above equation controls the slope of
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Figure 6-12: Forward model results using constant coefficients with mean a for 0.264
mm bead "Settled" experiments. Simulation results denoted by thin lines.
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Experiment a1  a2 CD k1  k2  ms(g)
4.45 cm Cyl., Wet 0.22 0.15 0.01 0.01 0.5 40.0 3.9

40 cm 3 H20, Set., AW 0.22 0.15 0.01 0.01 0.5 40.0 3.9
40 cm 3 H2 0, Sus., AW 0.27 0.17 0.01 0.01 0.5 39.4 3.3
40 cm 3 H2 0, Sus., BW 0.27 0.17 0.01 0.01 0.5 34.0 3.8
0.024 mm Beads, AW 0.27 0.17 0.01 0.01 0.5 39.0 5.4
0.024 mm Beads, BW 0.27 0.17 0.01 0.01 0.5 33.2 4.5

Table 6.2: Forward model parameters - time-varying coefficients.

the line passing through the inflection point located at ! = 4, with small values

corresponding to a gentle slope and large values yielding a sharper transition.

The revised model prompts the user for the upper and lower limits for a (i.e., ai

and a2) and then uses Equation 6.8 to force a smooth transition with an inflection

point occurring when -- = 4. The variations in entrainment coefficients with respectr0

to - and time are shown in Figure 6.13 for the "settled" and "suspended" bead

experiments.

To illustrate the effect of using a time-varying entrainment coefficient with the

forward model, the model was run for two "settled" 0.264 mm bead experiments

using Equation 6.8 while holding CD and k constant at 0.01. As shown in Figure

6.14, incorporation of the time-varying a improves the model's ability to simulate

proper cloud growth compared to using a constant a (Figure 6.8) but precludes the

model's ability to maintain correct deceleration once the entrainment rate begins to

change. The overpredictions in velocity shown in Figure 6.14 result from the fact that

the time rate of change in cloud momentum, arising from a constant buoyancy force

and comparatively small drag, remains fairly constant (i.e., -- t) while the cloud mass

decreases in accordance with the time-varying a). The net result is an increase in the

computed velocity based on Equation 6.4. Hence, one approach for maintaining the

correct deceleration rate (i.e., ~ t-0-5) in this case is to increase the added mass, which

basically is what the inverse model did when the velocity and data were "hard-wired"

with the measured data.

To determine an appropriate time-varying function for k, the inverse model was
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Figure 6-14: Forward model results using time-varying a and constant k for 0.264
mm bead "Settled" experiments. Simulation results denoted by thin lines.
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run using Equations 6.1 and 6.8 to compute cloud growth rather than importing the

actual measured radius data (i.e., fitted radius curves) as was previously done. As

evident in Figure 6.15, this approach resulted in a new set of time-varying k values

exhibiting different time variations but overall increasing trends, similar to the values

generated from the actual (smoothed) radius data. As shown in Figure 6.15, in some

cases, the inverse model again generated negative k values within the "thermal" phase

as well values exceeding 0.5 in the "circulating thermal" region.

For modeling purposes, the curves in Figure 6.15 were approximated with a hy-

perbolic tangent function similar to Equation 6.8, using an inflection point at - = 4r.

but a with a more gentle transition produced by decreasing the coefficient inside the

tanh function from 2 to 1 as shown below.

k1 + k2 (k1 - k2)r

+ tanh (1.0(4 - -) (6.9)
2 2 ro

The above equation was added to the forward model allowing the user to specify

the upper and lower limits for k (i.e., ki and k2 ), which, as shown in Table 6.2, were

taken as 0.5 and 0.01 for simulating the six glass bead experiments using both time-

varying a and k. The variation in k with respect to I and time, using Equation 6.9,ro

is shown in Figure 6.16. The upper and lower values selected for k basically bracket

the range of plausible values with physical significance. As previously hypothesized,

the increase in added mass in the glass bead experiments may be related to the

transition from highly turbulent flow to more laminar motion resulting from energy

dissipation due to particle collisions.

The results of the forward model simulations using the time-varying added mass

and entrainment coefficients are presented in Figures 6.17 - 6.19. First comparing

the results with time-varying a only (Figure 6.14) to those with variable a and k

(Figure 6.17), one can see that the addition of the time-varying k function helps to

correct the velocity decay rate, bringing the predicted profile closer to the measured

data and improving the agreement in the center of mass positions. With respect to

cloud growth, use of the time-varying k improved model performance for the "4.45
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Figure 6-17: Forward model results using time-varying a and k for 0.264 mm bead
"Settled" experiments. Simulation results denoted by thin lines.

153

0

2

a)

E 4

6

0

2

. 4
-

6

0

0

2

()

.E 4

6

4.45 cm Cyl., Wet



40 cm3 H20, Sus., AW

0 10 20 30
Velocity (cm/s)

5 10 15
Radius (cm)

40 cm3 H 20, Sus., BW

0

2
6D

a)

.9 4

6

40 50 0 10 20 30 40 50
Velocity (cm/s)

0

2

C6
.9 4

6

0

0

2

. 4

6

0 20 40 60
Center of Mass (cm)

5 10 15
Radius (cm)

0 20 40 60
Center of Mass (cm)

Figure 6-18: Forward model results using time-varying a and k for 0.264 mm bead
"Suspended" experiments. Simulation results denoted by thin lines.

154

0

2

4

6

0

2

4

6

0

0

2

E 4

6



0.024 mm Beads, AW

0 10 20 30 -40
Velocity (cm/s)

5 10 15
Radius (cm)

0 20 40 60
Center of Mass (cm)

0

2

4

6

50 0 10 20

0

2

. 4

6

0

0-

2-

a6
.9 4

6

30 40 50
Velocity (cm/s)

5 10 15
Radius (cm)

0 20 40
Center of Mass (cm)

60

Figure 6-19: Forward model results using time-varying. a and k for 0.024 mm bead
"AW" and "BW" experiments. Simulation results denoted by thin lines.
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cm Cyl., Wet" experiment while causing the model to underpredict cloud radius for

the "40 cm 3 H 20 Set., AW" experiment (Figure 6.17).

The addition of Equations 6.8 and 6.9 to the forward model improved radius

predictions for some of the experiments by as much as 20 % compared to the constant

coefficient simulations (Figures 6.8 - 6.10) with little sacrifice in the model's capability

for simulating cloud velocity. As evident in Figures 6.8 - 6.10, the velocity profiles

do not precisely follow a t-0  type function as they did with constant a and k.

In general, however, the velocity and center of mass values generated by the time-

varying model are within 10 % of the measured data. The discrepancies are the result

of approximating the time-varying k values shown in Figure 6.15 with the hyperbolic

tangent function (Equation 6.9).

6.5 Real-World Scaling - Case Study Simulations

To provide insight into how the experimental data and associated model simulations

scale to real-world dimensions, the "calibrated" forward model was applied to a 500

m deep disposal site. The ambient water was assumed to have a uniform density for

this disposal depth, as it did in the laboratory experiments.

The results of the 500 m deep model simulations were analyzed from the perspec-

tive of three case studies: Boston Harbor, corresponding to a very shallow disposal

scenario (15-20 m); Massachusetts Bay, representing a 100 m depth disposal scenario;

and a third generic "deep-water" (500 m) disposal scenario.

The model simulations were conducted using both constant coefficients (i.e., a,

CD, and k) and time-varying a and k using the hyperbolic tangent functions described

in Section 6.4.2 and the associated a1 /a 2 and ki/k 2 limits. The initial conditions

and model parameters used for the real-world simulations are summarized in Table

6.3. Representative initial barge volumes of 1,00 m3 , 1,000 m 3 , and 5,000 m 3 were

selected to bracket the range of split-hull barge sizes most commonly used in dredged

material disposal operations. The initial density was chosen under the assumptions

that sediment contained 50 % solids by weight prior to release. The ai and a 2 values
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Simulation a1  a 2  CD k1  k2  (s)

Constant a and k 0.25 0.25 0.01 0.01 0.01 1.43
Time-varying a and k 0.25 0.16 0.01 0.01 0.5 1.43

Table 6.3: Model parameters and initial conditions - shallow-water simulations.

were selected to represent their average values based on the twelve Group I, II, and

III experiments discussed in Chapter 4.

Model results for the three barge volumes are shown in Figure 6.20. In Figure

6.20, the predicted velocities and radii are plotted against center of mass depth to

show how these characteristics compare at the shallow Boston Harbor depth (15-20

m), the deeper Massachusetts Bay disposal site (100 m), and the generic deep-water

(500 m) disposal site.

As discussed in Section 4.2, the depth (zc) associated with the particle cloud

transition from well-mixed "thermal" to "circulating thermal" was estimated for the

three representative barge volumes as follows:

" barge volume = 100 m3 : ze = 49.5m

" barge volume = 1, 000 m3 : ze = 107m

" barge volume = 5, 000 m 3 : zc = 182m

As shown in Figure 6-20, the velocity profiles generated using both constant values

and time-varying functions for a and k are very similar for all three barge volumes,

particularly at depths less than 100 m, corresponding the Boston Harbor and Mas-

sachusetts Bay disposal sites. With respect to the predicted equivalent radius, the

two curves generated with the constant and time-varying a and k values begin to

diverge at the above transition z, depth calculated for each barge volume. Hence, for

disposal projects involving large volumes of sediment (i.e., > 1, 000 m3 ) released at

relatively shallow depths (i.e., < 100 m), the use of a time-varying a and k does not

appear to be justified, given their rather minor influence on predicted cloud velocities
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and radii at these depths. As the disposal depth increases beyond 100 m, the benefit

of using time-varying a and k functions increases accordingly. At a 500 m deep site,

for example, differences in predicted radius values using the constant and time-varying

coefficients ranged from 28 % for the 5,000 m3 volume to 39 % for the 100 M 3 volume,

suggesting that use of constant a and k for deep-water sites would yield predicted

radius values with similar accuracies.

As previously mentioned, the real-world model simulations were performed using

a uniform density environment. Stratification regimes in temperate climates under

fully stratified conditions (i.e., late August in the Northern Hemisphere) typically

have a uniform density profile (i.e., well-mixed layer) within the upper 50 - 100 m

of water (McLellan, 1965). Hence, the assumption of uniform density is valid for

Boston Harbor and possibly also for Massachusetts Bay. Depending on the strength

of stratification, the omission of ambient density stratification may not be justified at

deeper sites, since the density gradient would decrease the (negative) buoyancy of the

cloud and may ultimately cause it to collapse if the cloud reaches neutral buoyancy.

6.6 Conclusions

Sensitivity analysis results using the forward model indicate that predicted cloud

velocities and growth rates are far more sensitive to variations in a than it is to

changes in CD and k. Variations in a resulted in velocity variations of more than 100

% compared to velocity variations of 10 - 20 % for similar changes in CD and k.

Inverse model results using measured cloud radius and velocity data suggest that

values of the drag (CD) and added mass (k) coefficients are close to zero for particle

clouds within the "thermal" phase in contrast to their values for an equivalent solid

sphere ( 0.5). The small CD value can be explained by the lack of flow separation

around the cloud and associated form drag, as proposed by Escudier and Maxwor-

thy (1973). The small added mass may be explained by the large entrainment rate

associated with turbulent eddies. For larger particle sizes (Nc > 104), the increase

in k values resulting from the transition from well-mixed "thermal" to "circulating
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thermal," and the corresponding reduction in a, may be explained by the dampening

of turbulence by inter-particle collisions.

Forward modeling results suggest that an integral-type model, such as STFATE,

used with constant coefficients, performs quite well (i.e., 10 % accuracy) in simulating

particle cloud behavior (i.e., velocity deceleration and radial growth rate) in the

"thermal" phase but overpredicts cloud growth in the "circulating thermal" phase by

approximately 10 - 25 %. The results also suggest that time-varying entrainment and

added coefficients are required to properly capture cloud velocities and growth rates

for larger particle clouds (Nc > 104) within the "circulating thermal" phase. These

coefficients must be carefully co-varied so that velocity increases caused by decreases

in a are properly offset by corresponding increases increases in k. Co-variations in a

and k using hyperbolic tangent functions improved model radius predictions by 10 -

20 %.

The real-world scaling and model analysis suggest that disposal projects involving

the release of large sediment volumes (i.e., > 1, 000 m3 ) into shallow waters (i.e.,

< 100 m) can be accurately simulated with an integral model employing constant

coefficients, as the use of time-varying a and k has little impact on model performance

at these depths. When Nc is greater than 10-4 and the depth exceeds 100 m, radius

predictions in the "circulating thermal" phase can be improved by 10 - 50 % with the

use of time-varying a and k.
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Chapter 7

Boston Blue Clay Experiments

In addition to the experiments described in the previous chapters, performed using

non-cohesive particles, a limited number of experiments was conducted with the help

of Christopher Resto (1999) using natural Boston Blue Clay, a cohesive sediment

excavated from Boston Harbor. The results of these experiments are compared to

similar experiments performed by Bowers and Goldenblatt (1978). In their study,

Bowers and Goldenblatt (1978) released silt suspensions with various water contents

into tanks ranging from 0.46 m (18 in) to 2.74 m (9 ft) in depth. No information

was provided with respect to particle size distribution other than to state that the

materials consisted of silt sediments collected from New England and San Francisco

Harbors.

7.1 Approach

The objective of this group of experiments was to investigate the influence of moisture

content, or solids concentration, on the behavior of cohesive sediments. In contrast

to the behavior of non-cohesive particles, Boston Blue Clay can be characterized as

a Bingham plastic. A Bingham plastic will begin to deform ("flow") when the shear

stress (r) applied to the material exceeds a certain threshold, known as the yield stress

(T). Below ro, the material behaves like a solid. Once T is exceeded, the shear stress

and shear rate are related through the apparent viscosity (pa), which is not constant
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for an ideal Bingham plastic. Though most clay materials are not truly ideal Bingham

plastics, the behavior of many clay suspensions can be approximated by the Bingham

plastic model (Brodkey, 1967). As one might anticipate, the yield stress of a clay

material is inversely proportional to its water content. More specifically, Davies and

Rideal (1961) demonstrate that for various types of clay suspensions (0.0004 - 0.013

mm diameters), T is proportional to the cube root of the solids volume fraction and

inversely proportional to the particle diameter. Based on the relationship between

T, and solids concentration, one would expect cohesive sediments with a high water

content to form "thermal-like" particle clouds, similar to the the silt particle clouds,

and those with a very low water content to behave like a solid (i.e., fall as solid

clump). To investigate this range of behaviors, four experiments were conducted

using the solids fractions and associated water contents shown below:

* 36 % solids, 178 % moisture

* 40 % solids, 150 % moisture

. 44 % solids, 127 % moisture

* 48 % solids, 108 % moisture

The percent solids values were derived by dividing the mass of solids by the total

mass, whereas, the percent moisture was calculated by dividing the mass of water by

the mass of solids.

Based on experiments using natural harbor sediments with high silt contents,

Bowers and Goldenblatt (1978) determine that sediments containing less than about

75 % moisture fall as one solid clump with little or no entrainment, while those con-

taining more than about 175 % moisture form "thermal-like" particle clouds with

similar entrainment coefficients (a = 0.25 - 0.30). Between these limits, the authors

observe a transition phase in which entrainment coefficient varies in a nonlinear man-

ner. The range of solids concentrations shown above was chosen to investigate the

behavior of cohesive sediments within this transition range. A handful of experiments

162



were performed using a 50 % solids concentration, which show the sediment falling

as one solid clump.

For each experiment, the initial buoyancy was held constant (BO = 23, 520 gcms 2 )

by mixing 40 g of clay with the appropriate volume of water to produce the percent

moistures shown above. The 4.45 cm release cylinder was used for all experiments

in this group, which was positioned immediately above the water surface ("AW").

Before placement in the release cylinder, all clay suspensions were homogenized in a

blender and then stirred inside of the cylinder prior to release.

Three repetitions were performed for each experiment. Upon release from the

cylinder, the clay suspensions formed flocs and clumps of various sizes. that settled

out of the cloud at different times, precluding edge detection using the automated

MATLABTM program described in Chapter 3. Furthermore, the greyish-colored clay

suspensions significantly attenuated the laser light sheet, resulting in a poor contrast

in intensity levels between the cloud and ambient water. For these reasons, cloud

volumes and center of mass positions could not be calculated by the methods out-

lined in Chapter 3. In lieu of these methods, the leading edge position and maximum

radius values were determined manually for each image using the "point-and-click"

approach with the computer mouse and associated MATLABTM commands. Hence,

the estimated entrainment coefficients and cloud velocities presented in the next sec-

tion were based on the maximum cloud radius and leading edge position rather than

the equivalent radius and center of mass. Leading edge positions were determined

by estimating the approximate front edge of the parent cloud excluding any settling

flocs or clumps preceding the cloud.

7.2 Cloud Growth and Velocity Results

Representative images for the four experiments, showing the descent of the particle

clouds at selected time intervals, are presented in Figure 7.1. As shown in Figure

7.1, clouds formed from the most dilute clay suspension (36 % solids) are similar in

appearance to the silt clouds shown in Figure 4.4. Since these clouds remained
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Figure 7-1: Selected cloud images at 0.5 s, 1 s, 2 s, and 3 s - Boston Blue Clay
experiments.
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relatively spherical in shape, the maximum radius for this experiment should roughly

equal the equivalent radius. As evident in the 3.0 s image for the 36 % solids cloud

in Figure 7.1, at this concentration, the clay particles aggregated into pea-sized flocs

that eventually settled out of the cloud. The pea-sized flocs were not the result of

inefficient mixing, as the flocculation process was observed when a small quantity of

the clay slurry was added to a beaker of water. Flocculation was not observed in

later experiments in which potassium hydroxide was added to the initial slurry to

raise the pH and inhibit inter-particle attraction. The images for the 40 %, 44 %,
and 48 % solids experiments reveal larger-sized clay clumps with increasing solids

concentration. After about 2 s of descent, the clay suspensions containing 48 % solids

typically broke into several (2 - 4) smaller clouds that fell very quickly with little

entrainment. The radial cloud growth evident in this experiment may be mostly the

result of dispersion of the clumps rather than turbulent entrainment.

Also evident in Figure 7.1, are "stems" of material trailing behind the main cloud,
similar to the silt "stems" discussed in Chapter 5. Separation of these "stems" from

the main cloud can be observed in the images for the 40 %, 44 %, and 48 % solids

experiments. The behavior of the "stems" was likely influenced by the solids con-

centration in the original material. Though difficult to discern in the Figure 7.1
"snapshots," video footage shows material shearing off, or "stripping" away, from the

large clay clumps falling in the 48 % solids experiment. No sediment trap experiments

were performed to quantify this material.

In Figure 7.2, the mean values of the maximum radius data for the three repetitions

are plotted against the mean leading edge depths for each experiment. Radius versus

depth profiles for all repetitions are provided in Appendix F. Superimposed on the

measured data are the corresponding least squares linear regression lines whose slopes

were used to determine the mean entrainment coefficient for each experiment. The

resulting mean and range of entrainment coefficients for the three repetitions are listed

in Table 7.1. Also included in Table 7.1 are the approximate corresponding a values

taken from the curve used by Bowers and Goldenblatt (1978) to fit their measured

harbor silt data, which is provided in Figure 7.3.
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Experiment a (Boston Blue Clay) .a (Harbor Silt)
36 % Solids, 178 % Moisture 0.22 + 0.02 0.30
40 % Solids, 150 % Moisture 0.18 +0.02 0.23
44 % Solids, 127 % Moisture 0.17 +0.01 0.12
48 % Solids, 108 % Moisture 0.14 +0.01 0.06

Table 7.1: Entrainment coefficient results - Boston Blue Clay experimental results and
interpolated values based on harbor silt experiments (from Bowers and Goldenblatt,
1978).

With respect to increases in solids concentration, the entrainment coefficient re-

sults from the Boston Blue Clay and harbor silt experiments show similar decreasing

trends. Differences in a values between the two sets of data may be due to differences

in material composition. Bowers and Goldenblatt (1978) used larger silt particles

that may have also contained organic matter. Thus, the cohesive forces between par-

ticles in their materials, and associated viscosity, may have been weaker than those

in the Boston Blue Clay. As shown in Figure 7.3, there is a high degree of uncer-

tainty associated with the form of the hyperbolic tangent-type curve used by Bowers

and Goldenblatt (1978), since it is based on only a handful of sparse data points.

Similarly, the limited number of a values for the Boston Blue Clay experiments do

not permit formulation of an explicit function correlating a with solids concentration

within the transition region, other than to show that the relationship appears to be

nonlinear. A complex, nonlinear growth rate behavior in the transition region is not

unexpected due to the influence of viscosity, which continually decreases as the solids

concentration decreases in the entraining cloud. For dilute suspensions, the relation-

ship between apparent viscosity (pa) and volume fraction solids has been shown to

obey various power laws (Thomas, 1963). The mixing length associated with tur-

bulent entraining eddies may scale in proportion to the apparent viscosity divided

by the scale of velocity fluctuations. In addition to entrainment, variations in the

(macro) particle size distribution in the cloud, caused by the flocculation and subse-

quent breakup (shearing) of particles, undoubtedly play a role the time-variation of

pa. These factors, when taken together, result in a very complicated, material-specific
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cloud behavior within the transition region.

As shown in Figure 7.4, the mean leading edge velocity profile for 36 % solids

experiment resembles the typical asymptotic shape produced by the glass bead and

silt particle clouds. Velocity profiles for all repetitions are provided in Appendix F.

As the solids fraction increases, the deceleration rate decreases due to the decrease

in entrainment rate. The mean velocity profile for 48 % solids experiment begins to

resemble that of a solid sphere (i.e., constant terminal velocity). The mean velocity

versus time data for each experiment were plotted on a log-log scale to compare their

deceleration rates to that of a true thermal (i.e., w - t-0 .5 ). The data in these plots

were fitted with linear regression lines from which the following slopes were obtained:

* 36 % solids: m = -0.44

* 40 % solids: m = -0.32

* 44 % solids: m = -0.28

* 48 % solids: m = -0.14

The above data show that cloud deceleration approaches "thermal-like" behav-

ior as the solids fraction decreases below 36 %, while cloud velocity becomes more

constant (i.e., similar to a solid) as the percent solids increases above 50 %.

7.3 Conclusions

The results from the Boston Blue Clay and Bowers and Goldenblatt (1978) exper-

iments suggest that cohesive sediments containing less than 36 % solids by weight

(percent moisture > 175 %) form "thermal-like" clouds with constant entraiment

coefficients (a = 0.2 - 0.3) and asymptotic deceleration (w ~ t-0-5). Sediments con-

taining more than 50 % solids (percent moisture > 100 %) can be expected to fall

as one or more solid clumps descending at their terminal velocities with minimal de-

celeration and entrainment ((a < 0.1). The lack of entrainment results in material

being sheared away from the solid clumps. In between these solids fractions
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(36 - 50 %), particle clouds exhibit a hybrid-type behavior, breaking into several to

many smaller-sized clumps with a values ranging from 0.1 - 0.2.
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Chapter 8

Conclusions and Recommendations

for Future Work

The general conclusions of the work are outlined in this chapter followed by a list of

recommended areas for future work.

8.1 Conclusions

The overall conclusions based on the research discussed herein are summarized below.

" Non-cohesive sediments evolve rapidly into turbulent particle clouds character-

ized by asymptotic deceleration (velocity (w) ~ t-) and linear growth rates

(radius (r) - z) similar to "classical thermals" with entrainment coefficients

(a) in the range of 0.2 - 0.3.

" For fine-grained cohesive materials, sediments containing less than 36 % solids

(by weight) form self-similar clouds with "thermal-like" characteristics (w

t-2; a = 0.2 - 0.3). Sediments within the transition range (36 - 50 % solids)

exhibit a hybrid-type behavior with entrainment rates that vary in a non-linear

manner (a - 0.1 - 0.2). Sediments containing more than 50% solids fall as

one or more solid clumps, with a constant terminal velocity and little or no

entrainment.
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" Once the largest eddies approach the scale of the cloud radius, particle clouds

evolve from well-mixed "thermals" into "circulating thermals" characterized by

a bimodal buoyancy distribution and linear growth rate predicted by buoyant

vortex ring theory (a ~ B). The transition to "circulating thermal" occurs

when the cloud equivalent radius doubles in size relative to its initial submerged

radius or quadruples in size relative to its initial (pre-release) radius.

" In the "circulating thermal" phase, large particles (Ne > 10-4) dampen small-

scale eddies, resulting in lower entrainment rates (a = 0.1 - 0.2) and dense,

rotating cores exhibiting laminar characteristics.

" Compared to cohesive sediments, which exhibit a wide range of behavior, varia-

tions in the initial conditions of non-cohesive sediments, namely water content,

particle settling, and release time (momentum), produce relatively minor vari-

ations (10 - 20 %) in cloud velocities and growth rates.

* Results from sediment trap experiments suggest that there is no "stripping"

mechanism associated with the convective descent of entraining particle clouds

in unstratified waters, as material incorporated into the cloud during initial

formation is sequestered via entrainment mechanisms. There also appears to

be no size-dependent particle "stripping" mechanism that causes fine particles to

separate (detrain) from larger particles in a heterogeneous cloud. Shear forces

can "strip" material from cohesive sediments falling as one or more solid clumps

and experiencing little or no entrainment.

" Sediments released as a suspension form a narrow "stem" of material behind the

cloud, containing 2 - 8 % of the original mass for above-water releases and 21 - 31

% for below-water releases. The majority the "stem" falls as a density plume

that ultimately becomes re-entrained into the cloud or impacts the bottom

shortly after it (in unstratified waters). Particle size, or cloud number (Nc), does

not appear to influence the "stem" formation process. The large percentage of

"stem" material produced by the below-water releases appears to be due to
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the "stalling effect" caused by the return flow of water and particles into the

cylinder, which would not occur in actual barge releases. The "stems" generated

from initially "settled" beads contained considerably less material (1.6 - 5.8 %)

than those produced by "suspended" particles. Hence, the amount of "stem"

material expected to form under real-world conditions is likely within the 2 -

21% range.

e The last fraction of material to exit the release vessel fails to be incorporated

into the "stem" and thus may be transported by passive diffusion and ambient

currents. Experimental observations and measurements suggest this fraction to

be less than 1 % of the original mass for non-cohesive sediments.

When applying an integral model to particle cloud descent, the following recommen-

dations are suggested:

e The "stripping" of particles from the cloud is best simulated by subtracting the

last fraction of material to exit the vessel from the initial mass.

" The volumetric growth associated with initial cloud formation can be approxi-

mated by the "thermal" phase entrainment coefficient (ai).

" Sediment volumes can be released from rest (i.e., with no initial momentum)

without consideration of initial potential energy (release height) and associated

entrance velocity since these factors have little influence on cloud mechanics in

the deceleration ("thermal") phase.

" Sensitivity analysis results show that model performance in the deceleration

phase is most sensitive to a and relatively insensitive to the drag (CD) and

added mass (k) coefficients. Thus, most attention should be paid to selecting

the appropriate value for a.

" With small particle sizes (Nc < 10--4) and in shallow depths (< 100 m), a

value should be held constant in the range of 0.2 - 0.3, with the upper limit

corresponding to loose, suspended sediments and the lower limit corresponding
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to dense, settled materials. When using a constant a, small values (i.e., 0.01 -

0.1) should be used for k and CD-

e When Nc is greater than 10-4 and the depth exceeds 100 m, radius predictions

in the "circulating thermal" phase can be improved by 10 - 50 % by decreasing

a by 33 % and increasing k to 0.5. The amount of improvement increases with

water depth.

8.2 Recommendations for Future Work

Future research needs based on the findings of this work are summarized below.

" With respect to the influence of the initial conditions on the convective descent

dynamics of particle clouds, cohesive characteristics (e.g., yield strength, liquid

limit) of fine-grained sediments appear to play the largest role in determining

the type of behavior (i.e., "thermal-like" or "solid-like") and associated particle

stripping mechanisms. A better understanding is therefore needed as to how

dredging techniques (e.g., clam-shell bucket type and size) and pre-release set-

tling affect the composition of (i.e., clump sizes) and cohesive characteristics of

barged sediments on a macro-scale. In conjunction with this effort, more ex-

perimental research is needed to investigate the behavior of such heterogeneous

and cohesive materials.

" To better predict the amount of material that may be "lost" to the environment

(i.e., transported by ambient currents), the process of "stem" formation (i.e.,

inclusion/exclusion of material during release) must be better understood. More

insight into the convective descent dynamics of the "stem" itself is needed as

well as its influence on the behavior of the parent cloud, such as subsequent

re-entrainment or detachment.

" Laboratory experiments show "stem" formation to be highly dependent on how

quickly the sediment is released. Most of the sediment trap experiments pre-

sented herein were performed over a limited range of release geometries (i.e.,
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cylindrical vessel with L = 0.8) and solids concentrations (50 % solids). Thus,

more research is needed on how the composition and dynamics of the "stem" are

affected by the range of real-world sediment compositions and release geometries

of scows and split-hull barges.
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Appendix A

Experiment Cross-Reference

Tables

In the table below, experimental groups refer to experiments discussed in Chapter 4.

Initial particle mass denoted by m. Cylinder diameter denoted by D,. Amount of

water added denoted by H 20. AW'and BW refer to releases above and below the

water surface, respectively. Set. and Sus. refer to particles released from an initially

settled or suspended state, respectively.

179

Number Experiment m,(g) Do(cm) H 20(cm3 ) Cyl. Pos. Sus./Set.

0.556 mm Glass Bead Experiments

bOO1 4.45 cm Cyl., Dry 40 4.45 0 AW Set.

b002 3.81 cm Cyl., Dry 40 3.81 0 AW Set.

b003 3.18 cm Cyl., Dry 40 3.18 0 AW Set.

b004 2.54 cm Cyl., Dry 40 2.54 0 AW Set.

b006 4.45 cm Cyl., Wet 40 4.45 17 AW Set.

b007 3.81 cm Cyl., Wet 40 3.81 17 AW Set.

b008 3.18 cm Cyl., Wet 40 3.18 17 AW Set.

b009 2.54 cm Cyl., Wet 40 2.54 17 AW Set.



Number Experiment mo(g) Do(cm) H 2 0 Cyl. Pos. Sus./Set.

Group I Experiments

d020 4.45 cm Cyl., Dry 40 4.45 0 AW Set.

d021 4.45 cm Cyl., Wet 40 4.45 17 AW Set.

d022 3.18 cm Cyl., Dry 40 3.18 0 AW Set.

d023 3.18 cm Cyl., Wet 40 3.18 17 AW Set.

Group IV and V Experiments

d027 4.6 cm AW 97 4.45 33 AW Set.

d028 2.3/2.3 cm AW/BW 97 4.45 33 AW/BW Set.

d029 4.6 cm BW 97 4.45 33 BW Set.

d030 R = 0.8 40 3.81 17 AW/BW Set.

d031 H = 1.1 40 3.18 17 AW/BW Set.

d032 -H= 2.6 40 2.54 17 AW/BW Set.

Group II Experiments

d040 40 cm 3 H2 0, Sus. 40 4.45 40 AW Sus.

d041 40 cm 3 H2 0, Sus. 40 4.45 17 AW Sus.

d042 40 cm 3 H2 0, Set. 40 4.45 40 AW Set.

d053 40 cm 3 H2 0, Sus. 40 4.45 40 BW Sus.

Group III Experiments

i004 0.024 mm Beads 40 4.45 40 AW Sus.

i005 0.024 mm Beads 40 4.45 40 BW Sus.

s003 0.010 mm Silt 40 4.45 40 AW Sus.

s004 0.010 mm Silt 40 4.45 40 BW Sus.

0.002 mm Boston Blue Clay Experiments

bc09 36 % Solids 40 4.45 71.2 AW Sus.

bc1O 40 % Solids 40 4.45 60.0 AW Sus.

bc11 44 % Solids 40 4.45 50.8 AW Sus.

bc12 48 % Solids 40 4.45 43.2 AW Sus.
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Appendix B

Selected Images for Group I, II,

and III Experiments

The following pages depict selected cloud images of the five repetitions performed

for each of the twelve experiments included in Groups 1, 11, and III. The experiment

numbers included in each group are listed in the cross-reference table provided in

Appendix A.
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d4020, 1.0 sec d6020, 1.0 sec

d1020, 2.0 sec

d1020, 3.0 sec

d1020, 4.0 sec

d2020, 2.0 sec

d2020, 3.0 sec

d2020, 4.0 sec

d3020, 2.0 sec

d3020, 3.0 sec

d3020, 4.0 sec

d4020, 2.0 sec

d4020, 3.0 sec

d4020, 4.0 sec

d6020, 2.0 sec

d6020, 3.0 sec

d6020, 4.0 sec
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d1 020, 1.0 sec d2020, 1.0 sec d3020, 1.0 sec



d4021, 1.0 sec d5021, 1.0 sec

d1021, 2.0 sec

d 1021, 3.0 sec

d1021, 4.0 sec

d2021, 2.0 sec

d2021, 3.0 sec

d2021, 4.0 sec

d3021, 2.0 sec

d3021, 3.0 sec

d3021, 4.0 sec

d4021, 2.0 sec

d4021, 3.0 sec

d4021, 4.0 sec

d5021, 2.0 sec

d5021, 3.0 sec

d5021, 4.0 sec
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d1 021, 1.0 sec d2021, 1.0 sec d3021, 1.0 sec



d1022, 1.0 sec d2022, 1.0 sec

d1022, 2.0 sec

dl 022, 3.0 sec

dl 022, 4.0 sec

d2022, 2.0 sec

d2022, 3.0 sec

d2022, 4.0 sec

d3022, 2.0 sec

d3022, 3.0 sec

d3022, 4.0 sec

d4022, 2.0 sec

d4022, 3.0 sec

d4022, 4.0 sec

d5022, 2.0 sec

d5022, 3.0 sec

d5022, 4.0 sec
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d4022, 1.0 sec d5022, 1.0 secd3022, 1 .0 sec



d1023, 1.0 sec d2023, 1.0 sec

d 1023, 2.0 sec d2023, 2.0 sec d3023, 2.0 sec d4023, 2.0 sec d5023, 2.0 sec

d 1023, 3.0 sec d2023, 3.0 sec d3023, 3.0 sec d4023, 3.0 sec d5023, 3.0 sec

d1023, 4.0 sec d2023, 4.0 sec d3023, 4.0 sec d4023, 4.0 sec d5023, 4.0 sec
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d3023, 1.0 sec d4023, 1.0 sec d5023, 1.0 sec



d4040, 1.0 sec d5040, 1.0 sec

dl 040, 2.0 sec

d1040, 4.0 sec

d1040, 6.0 sec

d2040, 2.0 sec

d2040, 4.0 sec

d2040, 6.0 sec

d3040, 2.0 sec

d3040, 4.0 sec

d3040, 6.0 sec

d4040, 2.0 sec

d4040, 4.0 sec

d4040, 6.0 sec

d5040, 2.0 sec

d5040, 4.0 sec

d5040, 6.0 sec
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d3040, 1.0 secd 1040, 1.0 sec d2040, 1.0 sec



d1041, 1.0 sec d2041, 1.0 sec

d1041, 2.0 sec

d1041, 4.0 sec

d1041, 6.0 sec

d2041, 2.0 sec

d2041, 4.0 sec

d2041, 6.0 sec

d3041, 2.0 sec

d3041, 4.0 sec

d3041, 6.0 sec

d4041, 2.0 sec

d4041, 4.0 sec

d4041, 6.0 sec

d5041, 2.0 sec

d5041, 4.0 sec

d5041, 6.0 sec
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d3041, 1.0 sec d4041, 1.0 sec d5041, 1.0 sec



d1042, 1.0 sec d2042, 1.0 sec

d1042, 2.0 sec

d1042, 4.0 sec

d1042, 6.0 sec

d2042, 2.0 sec

d2042, 4.0 sec

d2042, 6.0 sec

d3042, 2.0 sec

d3042, 4.0 sec

d3042, 6.0 sec

d4042, 2.0 sec

d4042, 4.0 sec

d4042, 6.0 sec

d5042, 2.0 sec

d5042, 4.0 sec

d5042, 6.0 sec
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d3042, 1.0 sec d4042, 1.0 sec d5042, 1.0 sec



d4053, 1.0 sec d5053, 1.0 sec

d1053, 3.0 sec

d1053, 5.0 sec

d2053, 3.0 sec

d2053, 5.0 sec

d3053, 3.0 sec

d3053, 5.0 sec

d4053, 3.0 sec

d4053, 5.0 sec

d5053, 3.0 sec

d5053, 5.0 sec

d1053, 7.0 sec d2053, 7.0 sec d3053, 7.0 sec d4053, 7.0 sec d5053, 7.0 sec
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d3053, 1.0 secd 1053, 1. 0 sec d2053, 1 .0 sec



1004, 1.0 sec i2004, 1.0 sec

i 1004, 3.0 sec

1004, 5.0 sec

1004, 7.0 sec

i2004, 3.0 sec

i2004, 5.0 sec

i2004, 7.0 sec

13004, 3.0 sec

3004, 5.0 sec

13004, 7.0 sec

4004, 3.0 sec

i4004, 5.0 sec

14004, 7.0 sec

5004, 3.0 sec

5004, 5.0 sec

15004, 7.0 sec
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i3004, 1.0 sec i4004, 1.0 sec 15004, 1.0 sec



13005, 1.0 secs

i 1005, 3.0 sec

11005, 5.0 sec

i 1005, 7.0 sec

i2005, 3.0 sec

i2005, 5.0 sec

i2005, 7.0 sec

3005, 3.0 sec

3005, 5.0 sec

13005, 7.0 sec

4005, 3.0 sec

i4005, 5.0 sec

14005, 7.0 sec

65005, 3.0 sec

5005, 5.0 sec

5005, 7.0 sec
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I

H1005, 1.0 sec i4005, 1.0 seci2005, 1.0 sec 65005, 1.0 sec



s2003, 1.0 sec

s1 003, 2.0 sec

si 003, 3.0 sec

s1003, 4.0 sec

s2003, 2.0 sec

s2003, 3.0 sec

s2003, 4.0 sec

s3003, 2.0 sec

s3003, 3.0 sec

s3003, 4.0 sec

s4003, 2.0 sec

s4003, 3.0 sec

s4003, 4.0 sec

s5003, 2.0 sec

s5003, 3.0 sec

s5003, 4.0 sec
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s1003, 1.0 sec s3003, 1.0 sec s4003, 1.0 sec s5003, 1.0 sec



s1004, 1.0 sec s2004, 1.0 sec

s1004, 2.0 sec s2004, 2.0 sec s3004, 2.0 sec s4004, 2.0 sec s5004, 2.0 sec

s1004, 3.0 sec s2004, 3.0 sec s3004, 3.0 sec s4004, 3.0 sec s5004, 3.0 sec

s1 004, 4.0 sec s2004, 4.0 sec s3004, 4.0 sec s4004, 4.0 sec s5004, 4.0 sec
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s3004, 1.0 sec s4004, 1.0 sec s5004, 1.0 sec



Appendix C

Radius and Center of Mass Profiles

for Group I, II, and III

Experiments

The following pages depict the center of mass versus time and radius versus depth

data for the five repetitions performed for each of the twelve experiments included in

Groups I, II, and III. The experiment numbers included in each group are listed in

the cross-reference table provided in Appendix A.
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Appendix D

Entrainment Coefficient and

Velocity Statistics

The standard deviations in the entrainment coefficient (a) associated with the stan-

dard deviations of the five radius versus depth curves are tabulated in Section D.1.

The standard deviations in the first measured velocity (wi) and maximum velocity

(Wmax) associated with the velocity profiles for the five realizations of each experi-

ment are also provided in Section D.1. Representative profiles depicting the mean

and standard deviations of the radius versus depth curves and velocity profiles are

provided in Section D.2. A side-by-side comparison of entrainment coefficients cal-

culated using the 100 % and 150 % cropping values (as discussed in Chapter 3) is

included in Section D.3. The experimental Groups I, II, and III are described in the

cross-reference table provided in Appendix A and discussed in detail in Chapter 4.

The experiment numbers included in each group are also listed in the cross-reference

table provided in Appendix A.

209



D.1 Entrainment Coefficient and Velocity Statis-

tics - Experimental Groups I, II, and III.

Experiment a1 a2 w i( -) Wmax (L)_

Group I Experiments

3.18 cm Cyl., Dry 0.18 +10.01 0.14 + 0.01 31.1 + 1.6 34.2 + 1.8

3.18 cm Cyl., Wet 0.17 ± 0.03 0.08 ± 0.03 37.4+ 5.0 44.1 + 0.9

4.45 cm Cyl., Dry 0.20 + 0.02 0.16 + 0.01 27.0 1.6 29.9 + 6.3

4.45 cm Cyl., Wet 0.22 + 0.02 0.14 + 0.01 24.9 + 0.9 29.1 ± 0.4

Group II Experiments

40 cm 3 H20, Sus., AW 0.27 + 0.02 0.18 + 0.01 32.6 + 1.2 32.6 + 1.2

40 cm 3 H2 0, Sus., BW 0.29 + 0.05 0.18 + 0.01 31.0 ± 0.7 31.0 + 0.7

40 cm 3 H2 0, Set., AW 0.23 + 0.01 0.16 + 0.01 32.8 + 2.6 32.8 + 2.6

17 cm 3 H2 0, Sus., AW 0.28 + 0.01 0.20 + 0.01 29.6+ 1.4 29.6 + 1.4

Group III Experiments

0.024 mm Beads, AW 0.23 + 0.01 0.12 + 0.02 12.2 ± 1.5 16.0 + 6.4

0.024 mm Beads, BW 0.28 + 0.06 0.20 + 0.02 21.0 + 1.3 21.0 ± 1.3

0.010 mm Silt, AW 0.27 + 0.02 0.20 + 0.08 18.1 + 0.1 25.4 ± 6.9

0.010 mm Silt, BW 0.29 + 0.03 0.24 ± 0.01 22.4 + 1.1 28.5 ± 1.1
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Radius and Velocity

Standard Deviations

In the following figures, mean values are denoted by the center dotted lines, and the

associated standard deviations are denoted by the outer continuous lines.
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D.3 Effect of 100 % and 150 % Cropping Criteria

on Entrainment Coefficients

1 - Cropping criterion = 100 % of

2 - Cropping criterion = 150 % of

maximum diameter.

maximum diameter.

216

Experiment j a1l a2 I , 2 2

Group I Experiments

3.18 cm Cyl., Dry 0.18 0.16 0.18 0.14

3.18 cm Cyl., Wet 0.15 0.10 0.17 0.08

4.45 cm Cyl., Dry 0.20 0.16 0.20 0.16

4.45 cm Cyl., Wet 0.22 0.14 0.22 0.14

Group II Experiments

40 cm 3 H2 0, Sus., AW 0.27 0.18 0.27 0.18

40 cm 3 H2 0, Sus., BW 0.27 0.17 0.29 0.18

40 cm 3 H2 0, Set., AW 0.23 0.16 0.23 0.16

17 cm3 H20, Sus., AW 0.28 0.20 0.28 0.20

Group III Experiments

0.024 mm Beads, AW 0.23 0.14 0.23 0.12

0.024 mm Beads, BW 0.24 0.20 0.28 0.20

0.010 mm Silt, AW 0.27 0.20 0.32 0.32

0.010 mm Silt, BW 0.29 0.24 0.34 0.30



Appendix E

Results for 0.556 mm Glass Bead

Experiments

Eight experiments were conducted using the 0.556 mm glass beads and all four release

cylinder sizes. The buoyancy was held constant for all experiments with an initial

solids mass of 40 g. Four of the experiments were performed using initially dry beads

("Dry" experiments), and four experiments were performed with 17cm 3 of water

added to the initial volume of beads ("Wet" experiments). All experiments were

conducted with the bottom of the release cylinder positioned immediately above the

water surface ("AW").

As with the other experiments, each experiment was repeated five times. Selected

images depicting all five repetitions for the particle clouds produced by the "wet"

experiments are provided in Section E.1. Equivalent radius versus depth curves and

center of mass velocity versus time profiles based on mean values of the five real-

izations are provided in Section E.2. Entrainment coefficients estimated from the

equivalent radius versus depth curves are provided in Section E.3 along with the

initial and maximum velocity values for each experiment. Only one a value was es-

timated for each experiment, since the transition from a1 to a 2 was not as apparent

in these experiments as it was in the plots generated from the experiments using the

smaller glass beads. The transition is more apparent in the "Wet" experiments, oc-

curring at a depth of about 30 cm for the two narrowest cylinders and at about 18 cm
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for the two largest cylinder sizes. The absence of a marked transition in a associated

with the "turbulent thermal" and "circulating thermal" phases may be attributed to

the following: (1) the fact that turbulence was quickly suppressed in the first phase,

as the clouds took on a laminar appearance within the 1 s of descent; (2) particles

began to settle out of the cloud early in the "circulating thermal" phase (after 2 s)

decreasing the circulation and increasing a.
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E.1 Selected Images for "Wet" Experiments
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E.2 Equivalent Radius and Velocity Profiles
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E.3 Entrainment Coefficients and Velocity Data
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Experiment a W1 Wmax(c)

2.54 cm Cyl., Dry 0.20 36.8 37.9

2.54 cm Cyl., Wet 0.15 32.8 49.5

3.18 cm Cyl., Dry 0.19 29.9 35.7

3.18 cm Cyl., Wet 0.12 32.0 36.6

3.81 cm Cyl., Dry 0.15 24.5 35.5

3.81 cm Cyl., Wet 0.16 23.8 32.8

4.45 cm Cyl., Dry 0.21 21.9 37.9

4.45 cm Cyl., Wet 0.23 22.1 28.4
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Appendix F

Radius and Velocity Profiles for

Boston Blue Clay Experiments

The following two pages depict the leading edge velocity and maximum radius profiles

for the three repetitions performed for each of the four Boston Blue Clay experiments

described in Chapter 7. The experiment numbers included in the figures are described

in the cross-reference table provided in Appendix A.
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