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Abstract

Many systems of interest are dynamic systems whose behavior is determined by the

interaction of continuous and discrete dynamics. These systems typically contain
variables or signals that take values from a continuous set and also variables that

take values from a discrete, typically finite set. These continuous or discrete-valued
variables or signals depend on independent variables such as time, which may also be
continuous or discrete. Such systems are known as Hybrid Systems. Although widely
used, not much is known about analysis of hybrid systems. This thesis attempts to

take a step forward in understanding and developing tools to systematically analyze
certain classes of hybrid systems. In particular, it focuses on a class of hybrid systems
known as Piecewise Linear Systems (PLS). These are characterized by a finite number
of affine linear dynamical models together with a set of rules for switching among these
models. Even for simple classes of PLS, very little theoretical results are known. More
precisely, one typically cannot assess a priori the guaranteed stability, robustness, and
performance properties of PLS designs. Rather, any such properties are inferred from

extensive computer simulations. In other words, complete and systematic analysis
and design methodologies have yet - emerge.

In this thesis, we develop an entirely new constructive global analysis methodology
for PLS. This methodology consists in inferring global properties of PLS solely by
studying their behavior at switching surfaces associated with PLS. The main idea is
to analyze impact maps, i.e., maps from one switching surface to the next switching
surface. These maps are proven globally stable by constructing quadratic Lyapunov
functions on switching surfaces. Impact maps are known to be "unfriendly" maps
in the sense that they are highly nonlinear, multivalued, and not continuous. We
found, however, that an impact map induced by an LTI flow between two switching
surfaces can be represented as a linear transformation analytically parametrized by a

scalar function of the state. Moreover, level sets of this function are convex subsets of

linear manifolds. This representation of impact maps allows the search for quadratic
Lyapunov functions on switching surfaces to be done by simply solving a set of LMIs.

Global asymptotic stability of limit cycles and equilibrium points of PLS can this
way be efficiently checked. The classes of PLS analyzed in this thesis are LTI systems

in feedback with an hysteresis, an on/off controller, or a saturation. Although this
analysis methodology yields only sufficient criteria of stability, it has shown to be very
successful in globally analyzing a large number of examples with a locally stable limit
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cycle or equilibrium point. In fact, existence of an example with a globally stable
limit cycle or equilibrium point that could not be successfully analyzed with this new
methodology is still an open problem. Examples analyzed include systems of relative
degree larger than one and of high dimension, for which no other analysis methodology
could be applied. We have shown that this methodology can be efficiently applied
to not only globally analyze stability of limit cycles and equilibrium points, but also
robustness, and performance of PLS. Using the same ideas, performance of on/off
systems in the sense that bounded inputs generate bounded outputs, can also be
checked. Among those on/off and saturation systems analyzed are systems with
unstable nonlinearity sectors for which classical methods like Popov criterion, Zames-
Falb criterion, IQCs, fail to analyze. This success in globally analyzing stability,
robustness, and performance of certain classes of PLS has shown the power of this
new methodology, and suggests its potential towards the analysis of larger and more
complex PLS.

Thesis Supervisor: Munther A. Dahleh
Title: Professor

Thesis Supervisor: Alexandre Megretski
Title: Associate Professor
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Chapter 1

Introduction

The purpose of this first chapter is to give some background and discuss previous work
and related literature as well as to introduce the problem we propose to solve. This
chapter is divided into six parts. The first three introduce three major concepts in this
work: feedback systems, nonlinear systems, and hybrid systems, respectively. They
also express the need for analysis tools for these classes of systems. The following
two parts introduce a class of hybrid systems known as piecewise linear systems and
describes the kind of problems we propose to solve in the thesis. Finally, part six of
this section is dedicated to give an outline of how this thesis is organized.

1.1 Analysis of Feedback Systems

The main purpose of most feedback loops created by nature is to reduce the effect
of uncertainty on vital systems functions. For example, consider a man walking
down a corridor with no sensors, i.e., no vision, no ear, etc. Even if the man starts
walking perfectly aligned with the corridor, he will sooner or later bump into a wall
if this corridor is long enough. This is because the controller in our brain is not
perfect. If it were, the man would make it all the way to the end of the corridor
(independent of its length) without hitting any wall. Now, if he opens his eyes,
the controller in his brain receives information about his position relatively to the
walls and sends command instructions to the muscles. Thus, by using feedback he
counteracted against uncertainty and, as a result, he is able to walk down the corridor
without hitting the walls.

With the same principle, engineers design feedback loops to reduce the effect
of uncertainty. Indeed, feedback as a design paradigm for dynamic systems has the
potential to counteract uncertainty. Through feedback, one can obtain the desired be-
havior with only partial and imprecise knowledge of the plant. For standard references
on examples and general theory for feedback systems see, for instance, [48, 38, 19, 36].

But, design is not an easy task. Often the engineer finds himself/herself in sit-
uations where no design tools exist. In those circumstances, ad hoc heuristics and
trial-and-error are common techniques used to build feedback loops. In general, no
guarantees can be given that the system will perform as desired or will be robust to
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uncertainties. In fact, there are no guarantees that it will even be stable. In some
cases, such as the design of a on-off controller for a typical heating system, one can
just test and adjust the feedback loop until it performs satisfactorily. This adjustment
may simply be choosing Tmin and Tmax, where Tmin is the temperature that makes
the controller turn on the heating system if T < Tmin (T is the temperature in the
room), and Tmax is the temperature that makes the controller turn off the system
if T > Tmax. If Tmjn and Tmax are too close, the controller switches many times
which may lead to its premature failure. If they are too much apart, it may lead to
overheating or causing the room to be too cold. A solution is to choose the difference
between Tmax and Tmin relatively large and then make it smaller until the system
behaves satisfactory. In many cases, like this one, failure of the designed controller is
not expensive. If it does not work, we just make the appropriate modifications and
try it again. But, in other cases failure is just too expensive. For example, if an en-
gineer designs a controller for an autopilot of a commercial airplane, then he/she has
to guarantee somehow the system will work -be stable- once the autopilot is switched
on during a flight, even in the presence of severe weather. Failure is not an option
here. Therefore, it is essential to know beforehand whether a certain feedback system
is reliable (stable) or not.

Experiment
There are several ways to check if a feedback system is stable. The oldest and most
basic method is experiment. Basically, if you want to see if something works, just
turn it on and see what happens. In many situations this is a reasonable thing to
do. Like tuning an air conditioner controller: after building it, just test it through
experiments. But, there are several problems with this widely used approach. First,
the engineer cannot (or should not) just send an airplane up to test if a certain
controller works. The pilot's life and the cost of the airplane are crucial factors that
make experiment the last resort. Second, even if the feedback system is tested in
a large number of different situations and initial conditions, these will always be a
finite number of experiments. The fact that a certain experiment worked in a certain
setting does not mean it will work even when those settings change slightly.

Simulation
Another way of checking stability of a feedback system is using simulation. In this
case, a model of the physical system is needed. With the help of computers, several
scenarios can be recreated. On one hand, simulation losses over experiment since the
simulation models can never capture the complete dynamics of the physical system.
On the other hand, simulation gains over experiment since it can be much cheaper
and safer. But, as in experiment, we still have the problem that only a finite number
of scenarios can be simulated and there is no guarantee that other scenarios (even
very similar to the ones simulated) will be stable. Nevertheless, in spite of all this,
simulation is fairly used when the dynamics of the feedback system are too compli-
cated and no analysis tools are available [53]. And even if analysis tools exist, as a
first test, simulation can help understand inherent properties of the physical process
we have in our hands and also give an idea about the stability of the feedback system.
A big advantage of simulation is when a scenario is found to make the system unsta-

16



ble. When this happens, it can immediately be concluded that the feedback system
is not stable.

Analysis
A different approach is analysis. As in the case of simulation, analysis requires a model
of the physical plant. Mathematical analysis tools do not exist for every feedback
system. In fact, even very simple nonlinear dynamic equations can exhibit complex
behaviors and be extremely hard (if not impossible) to analyze. However, for certain
classes of systems, there exist many mathematical analysis tools that can be used

(see for example [48, 19, 15, 67]). For some of these systems, it is often possible
to determine if they are stable for any initial condition or at least for some sets of
initial conditions. In some cases, it is also possible to tell if the system is unstable.
However, analysis can reveal a lot more about feedback systems. Sometimes, it can
characterize, for example, sets of initial conditions that result in stable trajectories
and sets of initial conditions that result in unstable ones. Or it can determine which
trajectories will converge faster to the desired objective. The biggest advantage of
analysis versus experiment and simulation is that in many cases stability can be
guaranteed for an infinite number of initial conditions. In addition, sometimes this is
true even in the presence of perturbations and uncertainty.

Robustness Analysis
In general, what analysis can show about a certain feedback system depends on what
class of systems it fits in and what kind of analysis tools are available for that class
of systems. Unfortunately, only a few classes of systems have useful analysis tools.
This is the main reason why, due to the complexity of most plants, one is forced
to construct oversimplified and approximate models for the purpose of analysis and
design of a feedback control systems. This leads us to robustness theory. Broadly
speaking, robustness is a property, which guarantees that essential functions of the
designed system are maintained under adverse conditions in which the model no
longer accurately reflects reality. In modeling for robust control design, an exactly
known nominal plant is accompanied by a description of the plant uncertainty, that
is, a characterization of how the "true" plant might differ from the nominal one.

Although the basic robust synthesis and analysis problem has been studied for
many years, only in last few decades has received the proper attention. In 1932,
with his now classical stability criterion, Nyquist [47] presented a simple frequency
domain criterion to determine the stability of feedback systems in terms of its loop
gain. The Nyquist theory dictated how large the loop gain could possibly be if the
closed-loop stability was to be achieved. In [9], with the goal of analyzing networks
and designing feedback amplifiers for electronic circuits, Bode developed a theory of
robust system design. In 1966, Zames [69] presented for the first time the so-called
small gain theorem. Later, in the book by Desoer and Vidyasagar [17], quite an
extensive treatment and applications of this theorem in various forms are presented.
A collection of important results from the eighties ranging from robust stability theory
and performance design (with different approaches discussed) to applications can be
found in [18]. Some recent results in robust control theory of linear systems under
various uncertainty assumptions and perturbations may be found in [15, 70, 44].
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1.2 Nonlinear Systems

It is often possible to linearize a system, i.e., to obtain a linear representation of its
behavior. That representation may approximate the true dynamics well in a small
region. For example, the true equations of the pendulum are never linear but, for
very small deviations (a few degrees) they may be satisfactorily replaced by linear
equations. In other words, for small deviations, the pendulum may be replaced by a
harmonic oscillator. This ceases to hold, however, for large deviations and, in dealing
with these, one must consider the nonlinear equation itself and not merely a linear
substitute.

Basically, most physical systems are nonlinear from the outset. The linearizations
commonly practiced are approximating devices that are good enough or quite satisfac-
tory for most purposes. There are, however, certain cases in which linear treatments
may not be applicable at all. Frequently, many phenomena occur in nonlinear sys-
tems that cannot, in principle, occur in linear systems. In these cases, the engineer is
forced to make use of the nonlinear dynamics in order to do design or analysis. The
problem is that there does not exist a general theory capable of robustly synthesize
and analyze nonlinear systems. There are, however, several tools that can be applied
to certain classes of nonlinear systems. The following is a list of some of these tools
in no particular order:

* Linearization [36]. Linearization of nonlinear systems is a common practice as
approximating devices since for this class of systems there are many available
analysis and design tools [15, 70]. This is a good technique if the system is
evolving "close" to the equilibrium point from which the system was linearized.
Here, "close" depends on the nonlinearities of the system.

" Feedback Linearization [32, 67]. The idea here is to invert the plant dynamics
in order to get a simple and treatable mathematical model.

" Adaptive Control [37, 61]. The basic idea in adaptive control is to estimate un-
certain plant parameters (or, equivalently, corresponding controller parameters)
on-line based on the measured system signals, and then to use those estimated
parameters in the control input computation. This technique gives good results
when a good mathematical model of the physical system, with some uncer-
tain parameters, is available and those uncertain parameters are constant or
slowly varying. For instance, robot manipulators may carry large objects with
unknown inertial conditions. This technique is very often used together with
feedback linearization [61, 57].

" Sliding Mode Control [65]. Sliding mode usually results in discontinuous dy-
namic systems. Here, the design problem is usually reducible to the selection
of surfaces in the state space where all the trajectories tend to. Once in an
invariant surface, the state space trajectories belong to manifolds of lower di-
mension than that of the whole space. As a consequence, these trajectories
should be easier to control. Such performance, however, is obtained at the price
of extremely high control activity.
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" Lyapunov Control Techniques [20, 36, 57]. Although this approach is general
enough to cover all nonlinear systems, there is no assurance that an appropriate
Lyapunov function can be constructed for a given system.

" Gain Scheduling [56, 36]. This is an intuitive approach based on performing
several linearization-based control designs at many operating conditions and
then interpolating the local designs to yield an overall nonlinear controller.
This engine control technique is especially prevalent in flight control systems.
Although it is known to be used successfully in many applications, theoretically
there are still many fundamental open questions to be answered. There are,
however, some theoretical results in this area like analysis and design of slow
varying systems [56] and Lyapunov-based procedures [40, 39].

Both [36, 57] give complete introductions to all these and more methodologies. The
problem with all of them is that none alone is sufficient for satisfactory feedback
design or analysis of general nonlinear systems. Each of them works well only for
specific classes of systems. This is because nonlinear systems exhibit a very large
diversity of behaviors. This suggests that, with a single design approach, most of the
results would end up being unnecessarily conservative.

As mentioned before, the methodologies presented above work well for certain
classes of systems. There are, however, many other classes of nonlinear systems that
we do not know how to analyze, or they cannot be efficiently analyzed with available
methodologies. Simulation and experiment are frequently the only tools available to
check stability, robustness, and performance of such systems. In this thesis, we de-
velop constructive global analysis tools for some of those classes of nonlinear systems.

1.3 Hybrid Systems

Most of the nonlinear systems of interest in this thesis are dynamic systems whose
behavior is determined by the interaction of continuous and discrete dynamics. These
systems typically contain variables or signals that take values from a continuous set

(e.g., the set of real numbers) and also variables that take values from a discrete,
typically finite set (e.g., the set of symbols {a, b, c}). These continuous or discrete-
valued variables or signals depend on independent variables such as time, which may
also be continuous or discrete. Such systems are known as hybrid systems.

Reducing complexity was, and still is, an important reason for using hybrid models
to represent the dynamic behavior of physical systems. In fact, many physical systems
can be naturally represented as hybrid systems with very simple, but adequate for the
tasks at hand, models of the complex physical phenomena. For example, a very well-
known instance of a hybrid system is a sampled data system (see figure 1-1). Here, a
continuous-time linear time-invariant plant described by differential equations (which
involve continuous-valued variables that depend on continuous time) is controlled by
a discrete-time linear time-invariant plant described by linear difference equations
(which involve continuous-valued variables that depend on discrete time). A typical
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application is a digital control system where a computer (evolving in discrete-time)
controls a physical system (evolving in continuous-time).

Control >0 Plant Measurement
u EU yY

DA AD Interface

Symbol .igt. Symbol

OEO ~ Automaton E

Figure 1-1: Sampled data system

Another familiar example of hybrid systems (of particular interest to us in this the-
sis) are switching systems. Here, the dynamic behavior of interest can be adequately
described by a finite number of dynamical models that are typically sets of differen-
tial or difference equations, together with a set of rules for switching among these
models. A simple application of switching systems is the heating and cooling system
of a house. The furnace (providing the heat) and the air conditioner (providing the
cool), along with the heat flow characteristics of the house, form a continuous-time
system which is to be controlled. The thermostat is a simple asynchronous discrete-
event driven system which basically handles the symbols {hot, normal, cold}. The
temperature of the room is translated into these representations in the thermostat
and the thermostat's response is translated back to electrical currents, which control
the furnace and the air conditioner.

For a broad review of hybrid phenomenon we refer to [12]. There, several models
available in the literature are surveyed along with more examples and discussions on
design and analysis issues.

1.4 Piecewise Linear Systems

As described above, switching systems are characterized by a finite number of dynam-
ical models together with a set of rules for switching among these models. A class of
switching systems we will be particularly interested in this thesis is piecewise linear
systems (PLS). PLS are characterized by having both the logic in the controller and
the nonlinearities in the system model (such as saturations, hysteresis, etc.) appear-
ing as piecewise linear functions, with the system dynamics described by standard
integration elements as with linear systems. Therefore, this model description causes
a partitioning of the state space into cells. These cells have distinctive properties in
that the dynamics within each cell are described by linear dynamic equations. The
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boundaries of each cell are in effect switches between different linear systems. Those
switches arise from the breakpoints in the piecewise linear functions of the model. As
we will see in chapter 3, depending if the switching rule associated with the PLS has
memory or not, the cells may or may not intersect each other.

The reason why we are interested in studying this class of systems is to capture
discontinuity actions in the dynamics from either the controller or system nonlineari-
ties. On one hand, a wide variety of physical systems are naturally modeled this way
due to real-time changes in the plant dynamics. On the other hand, an engineer can
introduce intentional nonlinearities to improve system performance, to effect econ-
omy in component selection, or to simplify the dynamic equations of the system by
working with sets of simpler equations (e.g., linear) and switch among these simpler
models (in order to avoid dealing directly with a set of nonlinear equations). In the
next two sections we will talk about these two types of occurrences along with some
illustrative examples.

1.4.1 Modeling with Switches

There are numerous examples where a system changes its dynamic equations. For
instance, this can happen due to hitting certain boundaries (like a ball hitting a wall)
or due to certain control actions (like the space shuttle separating itself from the
rockets during a launch). A model for such systems can be seen in figure 1-2. Here
we have several models and a switch. The purpose of the switch is to decide at every
instant of time which model better represents the physical system. This decision is
based on all available information, which may include present and/or past values of
the states.

Model 1

Model p Switch

Figure 1-2: Switching between different models

Next we have some examples where this model can be naturally used.

" Friction. Another simple example is the modeling of static friction [49]. If an
engineer chooses, for example, the Coulomb model (see figure 1-3) to describe
friction on a certain physical system, then the dynamics of the system switches
(the friction force changes sign) every time the velocity changes sign. The
Coulomb friction model is an ideal relay that will be discussed in more detail
in chapter 5.

* Hysteresis. Many physical applications can be modeled as an LTI system in
feedback with an hysteresis (see figure 1-4). Such systems are similar to the
ideal relay, like in the example of static friction, but with the difference that
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Figure 1-3: Coulomb friction

the switches from "high" to "low" and from "low" to "high" do not occur at
the same values of y. In other words, the hysteresis differs from the ideal relay
in that it introduces memory into the nonlinearity. For instance, the single
information that y(t) = 0 is not enough to decide on the value of u(t). This
is determined not only by present values of y but also by past values of y. If
y(t) = 0 and if u(t - 0) = high then u(t) = high; otherwise, u(t) = low. Since
the switching rule has memory, the two cells, resulting from the two state space
partitions, intersect each other in a region containing the origin. More details
on hysteresis can be found in chapter 5.

L TI
U y

Figure 1-4: Hysteresis

* Saturation. Every actuator in physical systems eventually saturates if the input
command exceeds certain levels. A very common model of a saturated actuator
can be seen in figure 1-5. Here, y is the input to the actuator and u is the
approximate input to the plant. Saturation systems will be studied in detail in
chapter 7.

" Collisions. A system where its dynamics change as it hits certain boundaries is
a simple ball in a room under gravity. A usual way of modeling such a system
is to set instantaneously the velocity from v to -pv, where p E [0, 1] is the
coefficient of restitution, when the ball hits the floor.

* Spring with damage protection. Consider a spring connected with a mass. In
order to protect the spring from over extension and avoid its damage, a "stop"
device is placed at a desired position (see figure 1-6).
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Figure 1-5: Saturation

Stop
Spring

Mass
Force

Figure 1-6: Mass-spring with damage protection

Once the spring reaches the maximum allowed extension, the dynamics of the
system change. We have then a different model depending if the spring protec-
tion is touching the "stop" or not.

1.4.2 Control with Switches

It is well known that plant models are inherently inaccurate, and controllers regulat-
ing processes described by such models must be able to ensure satisfactory closed-loop
performance in the presence of exogenous process disturbances which cannot be mea-
sured. Modern linear control theories (e.g., pole-placement/observer theory, linear
quadratic theory, H, theory, and the like) are now very highly developed. Those the-
ories can be used to design controllers with such capabilities for processes admitting
linear models, providing the models uncertainties are time-invariant and "sufficiently
small". However, for "large" model uncertainties derived from real-time changes in
the plant dynamics, common sense suggests (and simple examples prove it) that no
single, fixed-parameter linear controller can possibly regulate in a satisfactory way.
This is the reason why control switching strategies like the ones in figures 1-7 and 1-8
must be used to control such systems.

Figure 1-7 shows a rather common approach in modeling and controlling physical
phenomena. In this case, we have sets of simpler equations and we switch among these
simpler models in order to avoid dealing directly with a set of nonlinear equations. A
controller is then designed individually for each model and a switch decides at every
instant of time which one to use.
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Controller 1 Model 1

Controller p Model p Switch

Figure 1-7: Switching between different pairs of models/controllers

Controller 1 T

Model

Controller p Switch

Figure 1-8: Switching between different controllers

In some cases (see figure 1-8), one model together with several controllers may
be enough (when compared with figure 1-7). Once again, a switch decides which
controller to use at any given time.

Next we present some examples of control with switches.

" Inverted pendulum. In [4], an inverted pendulum is modeled and controlled
differently in two distinct regions of the state space. The first objective is to
bring the pendulum close to the upright position. Once there, a linearize model
and controller can be used to keep the pendulum in the upright position.

* Anti-lock brake system (ABS) for a car. The aim of the ABS is to improve the
effectiveness of a vehicle to brake by maintaining the tire braking torque at or
near its maximum value. The key factor is the tire adhesion to the road as
braking torque is applied. A typical torque curve can be seen in figure 1-9.

Tyre

Adhesion

A B Wheel Slip

Figure 1-9: Typical tire adhesion curve for brake control

The tire adhesion is at its highest value between wheel slip A and B in figure 1-
9. If wheel slip increases beyond B the wheel 'locks', tire adhesion decreases,
and more importantly the driver looses the ability to steer the vehicle, i.e. the
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system is considered unstable. The aim of the ABS controller is to keep wheel
slip between A and B in the figure. A control strategy is proposed in [52]. There,
a rule-based controller of ten rules was constructed resulting in something like
50 cells dividing the state-space.

e Hopping robots. More complex examples are hopping robots [53] or the dribbling
of a basketball. In the case of the hopping robot, the boundary is the floor. As
for the dribbling of a basketball, besides the floor, we have the hand of the
player as another boundary (and also as the control). As they hit the floor
(and the hand in the case of the basketball), their dynamics change. These
phenomena can be captured by PLS making the mathematical representation
of their complicated dynamics simple.

Let's take the hopping robot, for instance. Consider a one legged robot (mono-
pod) that hops (see figure 1-10). As described in [53], the hopping cycle is
divided into three segments. Imagine we start when monopod touches the
ground (figure 1-10.a). The spring will then begin to compress until this is
fully compressed (figure 1-10.b). In this segment, gravity together with the leg
spring, damping, and the controller determines the monopod's motion. These
forces remain active during the second segment, except for the controller that
switches sign in order to decompress the spring. This continues until the spring
is completely decompressed (figure 1-10.c), indicating the end of the second seg-
ment. The third and last segment of the cycle starts when the monopod leaves
the floor. Here, gravity alone determines the monopod's motion. Eventually,
it reaches its highest altitude (figure 1-10.d) and, finally, comes back to the
ground (figure 1-10.a) where the cycle starts all over again.

a b c d

Figure 1-10: Different stages of a hopping monopod

In general, a hopping robot is to follow a certain prescribed nominal trajectory.
Since such nominal trajectory returns to its initial condition every cycle, we call
these closed trajectories (see figure 1-11). The idea is to make sure the robot
returns to this closed trajectory if, for some reason, it starts away from it, in a
way that it does not fall over.

* Automatic tuning of PID regulators and delta-sigma modulators. An important
application is the automatic tuning of PID regulators which is implemented
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System 1
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Figure 1-11: Closed trajectory switching among different systems

in many industrial controllers [6]. The basic idea behind this technique is to
induce an oscillator (closed trajectory) by introducing an hysteresis in feedback
with a stable open loop plant (see figure 1-4). Under certain assumptions,
it is possible to determine several points on the Nyquist curve of the plant
by measuring the frequency of the oscillation induced by the relay feedback.
With this information, it is possible to calculate suitable parameters for simple
controllers of the PID type.

Another application is the delta-sigma modulator as an alternative to conven-
tional A/D converters [2]. Here, a relay is again used to produce a bit stream
output whose pulse density depends on the applied input signal amplitude.

1.5 Analysis of Piecewise Linear Systems

As seen before, sometimes it is natural and easy to model systems as a hybrid sys-
tems. However, the same cannot be said about analyzing or designing controllers for
these systems. In practice, the designer of hybrid systems is usually confronted with
relations for which no general mathematical solutions exist. The problem is com-
pounded by the peculiar behavior of hybrid systems: superposition no longer applies,
the response of an hybrid system often depends on its initial state, and the nature of
the system transient usually changes at different nominal operating points in the state
space. For all these reasons, there does not exist a unified and generalized method of
hybrid system analysis. In fact, the large diversity of hybrid systems suggests that,
with a single design approach, most of the results would end up being unnecessarily
conservative. To deal with diverse hybrid systems we need to break this large class

of systems into several smaller classes. Each of these classes of hybrid systems should
consist of systems that have certain properties in common. For instance, static sys-
tems could be one class; or linear systems; or more complex ones like piecewise linear
systems (PLS). Then, a comparable diversity of design and analysis tolls and proce-
dures should be developed for each one of them. The goal of this thesis is to give
a step forward in understanding and developing tools for a class of hybrid systems
known as PLS.
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1.5.1 Previous Results

Although widely used and intuitively simple, PLS are computationally hard and very
few theoretical results are available to analyze most PLS. More precisely, one typically
cannot assess a priori the guaranteed stability, robustness, and performance proper-
ties of PLS designs. Rather, any such properties are inferred from extensive computer
simulations. But, despite the lack of good theoretical analysis tools, PLS are used
as an analysis and design methodology which is known to work in many engineering
applications (like hopping robots, ABS, inverted pendulum, missile autopilots [13],
robotic manipulators [14], autopilot of aircrafts [63]). However, in the absence of such
analysis tools, these designs come with no guarantees. In other words, complete and
systematic analysis and design methodologies have yet to emerge.

There are, however, some results for special classes of PLS. For instance, analysis
in the phase plane of second-order systems has been studied for a while now. Early
classical references discussing oscillations in mostly second-order systems using phase-
plane analysis can be found in [1, 10, 29, 31, 60]. Other more recent references
are [28, 36, 45, 46, 57]. Phase portrait analysis is a powerful graphical technique
that presents global dynamic behavior for linear, piecewise linear, and even many
nonlinear model descriptions. However, it is essentially restricted to models with two
states only (or perhaps three states with todays computational graphic tools).

In [28], sketches of analysis and numerical simulations of a few model problems
showed that "simple" differential equations of dimension three or greater can possess
solutions of stunning complexity. Since such systems play an important role in the
modeling, analysis, and design of nonlinear processes, an understanding of typical
structures of their solutions is essential.

In the analysis of equilibrium points of PLS, recent results on the stability of equi-
librium points for certain classes of PLS can be found in [34, 51, 30]. There, a search
for piecewise quadratic Lyapunov functions is performed using convex optimization.
Partitioning of the state-space is the key in this approach. For most PLS, construc-
tion of piecewise quadratic Lyapunov functions is only possible after a more refined
partition of the state space, in addition to the already existent natural state space
partition of the system. As a consequence, the analysis method is efficient only when
the number of partitions required to prove stability is small. In chapter 4 we show
that even for a simple second order system, the method can become computationally
intractable. Also, the method does not scale well with the dimension of the system.
For high-order systems, it is extremely hard to obtain a refinement of partitions in
the state-space to efficiently analyze PLS. Another disadvantage of finding Lyapunov
functions in the state space is that they are not capable of analyzing limit cycles.

Over many years, there has been extensive research on certain classes of PLS.
Relay feedback systems (RFS) (a simple PLS that will be the topic of chapter 5) is one
of these classes. Many results exist in the literature to analyze RFS. Research for this
class of PLS was motivated by relays in electromechanical systems and simple models
of dry friction (see the friction example in section 1.4.1). [8] and [64] are references
that survey a number of analysis methods and results. Rigorous results for analysis
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of local' stability of relay feedback systems can be found, for example, in [3, 33, 66].
In [23], reasonably large regions of stability around locally stable limit cycles were
characterized. However, even for this simple class of PLS, very little is known about
its global behavior. [60, 28] presents global analysis results for second order systems
and [41] presents global stability results that can be applied to systems of order higher
than two, including infinite-dimensional and uncertain systems. Unfortunately, many
important relay feedback systems are not covered by this result.

Another class of PLS that has received great attention from researchers is sat-
uration systems (see figure 1-5). The study of such systems is motivated by the
possibility of actuator saturation or constraints on the actuators, reflected in bounds
on available power supply or rate limits. These cannot be naturally dealt with within
the context of standard (algebraic) linear control theory, but are ubiquitous in control
applications. The fact that linear feedback laws when saturated can lead to instability
has motived a large amount of research. The well known result which states that a
controllable linear system is globally state feedback stabilizable, holds as long as the
control does not saturate. In many applications, more often than not, the control is
restricted to take values within certain bounds which may be met under closed-loop
operation. Because feedback is cut, control saturation induces a nonlinear behavior
on the closed-loop system. The problem of stabilizing linear systems with bounded
controls has been studied extensively. See, for example, [59, 55, 62] and references
therein.

Analysis of saturation systems (SAT) does not have such an extensive list of
publications as synthesis. Some SAT can be analyzed by just using the circle or
Popov criterion. Both of these criterion, however, are expected to be very conservative
for systems of order greater than three. The Zames-Falb criterion [68] reduces the
conservatism of both the circle and Popov criterion by taking in consideration the
slope restrictions of the saturation. This method, however, is difficult to implement.
Integral quadratic constraints (IQC) [35, 16, 44, 42] gives conditions in the form of
LMIs that, when satisfied, guarantee stability of SAT. However, all of these analysis
tools fail to analyze SAT with unstable nonlinearity sectors.

Example 1.1 Consider the SAT on the left of figure 1-12. If the saturation in the
system is replaced by a linear constant gain of 1/2, the system becomes unstable (see
the right side of figure 1-12). This means the system has an unstable nonlinearity
sector. All the analysis tools described above fail to analyze systems with unstable
nonlinearity sectors, like this one.

As we will see in chapter 7, the origin of this system is globally asymptotically
stable. 0

Other PLS, like on/off systems (see figure 1-13), can also be analyzed with the
tools described above, basically with the same advantages and disadvantages as SAT.
On/off systems (OFS) system are characterized by an LTI system in feedback with

'The terms local and global stability will be rigorously defined in chapter 2.
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Figure 1-12: 3d-order system with unstable nonlinearity sector

an on/off controller defined as

u(t) = max {0, y(t) - d}

--LTI -
U y

d

Figure 1-13: On/Off System

OFS can be found in many engineering applications. In electronic circuits, diodes
can be approximated by on/off controllers. Transient behavior of logical circuits that
involve latches/flip-flops performing very fast on/off switching can be modeled using
on/off circuits and saturations. In general, on/off circuits have many applications in
electronics and circuit design. Another area of application of OFS is aircraft control.

For instance, in [12], a max controller is designed to achieve good tracking of the

pilot's input without violating safety margins.

1.5.2 Contributions

The fact that PLS must be studied as a whole is one of the reasons that makes this

class of systems so hard to analyze. This is due to their hybrid nature. It is not

enough, for instance, to study their subsystems separately. Even if each individual
subsystem is stable, there is no guarantee that the PLS is also stable (see example 3.4).
In practice, due to the unavailability of rigorous mathematical tools, exhaustive sim-
ulation and/or experiment are, in most situations, the only alternatives to analyze
most PLS.

In this thesis, we introduce an entirely new methodology to globally analyze PLS.
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The idea consists in finding quadratic Lyapunov functions on switching surfaces that
can be used to prove that impact maps, i.e., maps from one switching surface to the
next switching surface, are contracting in some sense. The search for surface quadratic
Lyapunov functions is done by solving sets of linear matrix inequalities (LMIs) using
efficient computational algorithms. Contractions of impact maps can then be used to
conclude about global stability, robustness, and performance of PLS.

The novelty of this work comes from expressing impact maps induced by an LTI
flow between two hyperplanes as linear transformations analytically parametrized by
a scalar function of the state. Furthermore, level sets of this function are convex
subsets of linear manifolds with dimension lower than that of the switching surfaces.
This allows us to reduce the problem of finding quadratic surface Lyapunov functions
to solving a set of LMIs, which can be efficiently done using available computational
tools.

The main difference between this and previous work, e.g. [30, 34, 50], is that we
look for quadratic Lyapunov functions on the switching surfaces instead of quadratic
Lyapunov functions on the state space. An immediate advantage is that this allows
us to analyze not only equilibrium points but also limit cycles. Another advantage
is that, for a given class of PLS, complexity of analysis does not increase with the
dimension of the system. Also, the analysis method proposed in [30, 34, 50] requires,
in general, a further partition of the state space (besides the natural one imposed
by the PLS). In our case, we only need the natural partitions imposed by the PLS.
In chapter 4, we have an example of a second order system for which the number
of partitions required in [30, 34, 50] is so high that it is computationally intractable.
Quadratic surface Lyapunov functions, however, are easily found.

In the first part of this thesis, we will study global stability analysis of limit cycles
and equilibrium points of PLS. We start with limit cycles. The study and under-
standing of limit cycles are of great interest in many applications. Hopping robots
are examples of such applications. Here, it is important to show a certain design
control strategy of a hopping robot is globally stable in its domain of operation. This
ensures that as long as the robot starts within its domain it will not fall and, more-
over, it will converge asymptotically to its nominal trajectory. However, no results are
available to prove such properties. Although many walking robots are known to walk,
their stability and robustness have only been shown through exhaustive simulations
and experiments. This is true, even for simple walking robots, like monopods. This,
together with the fact that walking robots is a very active area of research, motivates
the development of such analysis tools.

In general, there is little known about global stability of periodic solutions. In this
thesis, we will first give existence and local stability results of periodic solutions of
PLS, and then focus on global stability analysis. We start by analyzing a simple class
of PLS known as relay feedback systems (RFS). One of the motivations to consider
RFS first is that for symmetric unimodal limit cycles2 , only a single impact map
needs to be analyzed. Thus, this is a perfect class of systems to introduce global
analysis using quadratic surface Lyapunov functions. The idea is to find a quadratic

2A limit cycle is unimodal if it only switches twice per cycle.
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surface Lyapunov function for the associated impact map of a RFS. The search for
such function is efficiently done by solving a set of LMIs. Global asymptotic stability
of symmetric unimodal limit cycles of RFS can this way be efficiently checked. This
new analysis methodology gave us great confidence in analyzing more complex classes
of PLS since a large number of examples analyzed (with a unique locally stable
symmetric unimodal limit cycle) was proven globally stable. In fact, existence of
an example with a globally stable symmetric unimodal limit cycle that could not be
successfully analyzed with this new methodology is still an open problem. Examples
analyzed include minimum-phase systems, systems of relative degree larger than one,
and of high dimension, for which no other analysis methodology could be applied.

Next, we analyze equilibrium points of PLS. We chose to first analyze on/off
systems (OFS), for their simplicity when compared with other classes of PLS. In the
state space, an OFS has a unique switching surface. The main goals of analyzing
OFS are (1) to show that this new methodology can be used to not only globally
analyze limit cycles but also to globally analyze equilibrium points, and also (2) to
learn how to simultaneously analyze more than one impact map. Remember that
in RFS there was only one impact map to analyze. In the case of OFS, there are
two impact maps that need to be simultaneously analyzed. We will show that global
asymptotically stability of equilibrium points of OFS can be checked, even when these
do not belong to the switching surface. Moreover, a large number of examples was
successfully proven globally stable, including those OFS with unstable nonlinearity
sectors. As in RFS, existence of an example with a globally stable equilibrium point
that could not be successfully analyzed with this new methodology is still an open
problem.

The question of whether PLS with multiple switching surfaces can or cannot be
analyzed using quadratic surface Lyapunov functions is answered when we analyze
saturation systems (SAT). Here, the state space is divided in three regions by two
switching surfaces. As before, the goal is to show the origin is globally asymptotically
stable. The added difficulty from OFS is on how to deal with more than one switching
surface. As we will see, in the case of SAT this reduces to the analysis of an extra
impact map. Once again, the results were extremely positive in the sense that a large
number of examples was successfully proven globally stable, including example 1.1
where the system had an unstable nonlinearity sector. Again, existence of an example
with a globally stable equilibrium point that could not be successfully analyzed with
this new methodology is still an open problem.

The second part of the thesis is dedicated to robustness and performance of PLS
using impact maps and quadratic surface Lyapunov functions. In particular, we apply
these ideas to study OFS. There, we show that performance properties of many OFS
can be checked, including those OFS with unstable nonlinearity sectors.

The success in globally analyzing stability, robustness, and performance of certain
classes of PLS has shown the power of this new methodology, and suggests its potential
towards the analysis of larger and more complex PLS. Although much research is still
ahead of us, the goal is to use impact maps and quadratic surface Lyapunov functions
to systematically and efficiently analyze large classes of PLS.

31



1.6 Thesis Organization

This thesis is organized as follows. The next chapter presents mathematical tools that
will be used throughout the rest of the thesis. Among others, the S-procedure and
linear matrix inequalities will be introduced there. This chapter will also establish
standard notation and include a brief introduction to dynamic systems. Chapter 3 is
dedicated to introduce a class of hybrid systems known as piecewise linear systems.

The main results of this thesis can be found in chapter 4. There, we show that
an impact map induced by an LTI flow can be represented as a linear transformation
analytically parametrized by a scalar function of the state. Such representation allows
us to efficiently construct quadratic Lyapunov functions on switching surfaces that
can be used to globally analyze PLS in terms of stability, performance, and robustness.

The following three chapters show how the results from chapter 4 can be used
to globally analyze certain classes of PLS. Each of these classes was carefully chosen
to (1) separately deal with different issues and behaviors of PLS and (2) illustrate
with examples the efficiency of the developed tools. By increasing complexity, we
first analyze relay feedback systems (chapter 5), then on/off systems (chapter 6),
and finally saturation systems (chapter 7). The success in globally analyzing a large
number of examples of these classes of PLS demonstrates the potential of these new
ideas in globally analyzing other, more complex classes of PLS.

In chapter 8, we show that the idea of global analysis of PLS using impact maps
and quadratic surface Lyapunov functions can also be applied to study robustness
and performance of PLS. For that, we use on/off systems to develop the main results.
We show that many times, not only an OFS is globally asymptotically stable, but also
finite-gain L 2 stable, i.e., "well-behaved" inputs generate "well-behaved" outputs.

Finally, conclusions and future remarks are presented in chapter 9. Some of the
topics reported in this thesis are published in various journal and conference pa-
pers [25, 26, 24, 21, 22].
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Chapter 2

Mathematical Preliminaries

The purpose of this chapter is to introduce several mathematical concepts and tools
that will be used throughout the thesis. Mathematical tools like linear matrix in-
equalities and the S-procedure are the engines behind many results presented later.
For this reason, these topics are briefly introduced for completeness. We also include a
short introduction to dynamic systems, including equilibrium points and limit cycles.

2.1 Standard Concepts

Let the field of real numbers be denoted by R, the set of n x 1 vectors with elements
in R by R", and the set of all n x m matrices with elements in JR by R"'. Let I
denote the identity matrix and superscript (.)' denote transpose. A matrix D E Rnxn
is called symmetric if D = D' and positive definite (positive semidefinite) if x'Dx > 0
(x'Dx > 0) for all nonzero x E 1R". "D > 0 on S" stands for x'Dx > 0 for all
nonzero x E S C 1R". A matrix A is Hurwitz if the real part of each eigenvalue of A
is negative.

The p-norm of a vector x = (xI x 2  .. .X)' E Rn is given by

i=1

In this thesis, we reserve the notation |1 - 11 =11 - 112 for the 2-norm. This means
||xf| 2 = x'x. For some D > 0, define the weighted Euclidean norm of x as |x||2
|D /2XI2 = x'Dx. Let L denote the space of all real-valued functions on [0, oc) such

that

||u t||c,= |U (t)lPdt P < oo

For p = oc,

HUMt)11L.= sup lu(t)It>o

A set X C R' is convex if Ax + (1 - A)y E X whenever x, y E X and 0 < A < 1,
and is a cone if x E X implies Ax E X for any A > 0.
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A function f : R -s JR is piecewise constant if there exists a sequence of points

{tk} with tk+1 > tk and tk -+ + o as k -+ +00, tk -± -o as k - -o, such that
the function is constant in [tk, tk+1). Let f(t - 0) stand for the limE>o,,,o f(t - f) and
f (t + 0) for the limE>O,,o f (t + E).

The following definitions are taken from [54] and will be used throughout the
thesis.

Definition 2.1 All points and sets mentioned below are understood to be elements
and subsets of Rn.

(a) A neighborhood of a point p is a set NE(p) consisting of all points q such that

Ifp - qII < c. The number e is called the radius of NE(p).

(b) A point p is a limit point of the set X if every neighborhood of p contains a
point q # p such that q E X.

(c) If p E X and p is not a limit point of X then p is called an isolated point of X.

(d) X is closed if every limit point of X is a point of X.

(e) The closure of X is the set X = X U {pj p is a limit point of X}.

(f) A point p is an interior point of X if there is a neighborhood N of p such that
N c X.

(g) X is open if every point of X is an interior point of X.

(h) X is bounded if there is a real number M and a point q C IR" such that I p-qII <
M for all p E X.

2.2 Linear Matrix Inequalities

A linear matrix inequality (LMI) has the form

F(x) = Fo+ xiFi > 0 (2.1)
i=1

where x E R7 is the variable and the symmetric matrices Fj E Rflf, i = 0,1,...,n
are given. The LMI (2.1) is a convex constraint on x, i.e., the set {xl F(x) > 0} is
convex. Although the LMI (2.1) may seem to have a specialized form, it can represent
a wide variety of convex constraints on x. In particular, linear inequalities, (convex)
quadratic inequalities, and matrix norm inequalities can all be cast in the form of an
LMI. For more information on LMIs the reader is referred to [11].

Expressing solutions to problems in terms of LMIs is a common practice these
days. Mathematical and software tools available are capable of finding xi satisfy-
ing (2.1) efficiently. The strategy throughout this thesis is to write global stability,
robustness, and performance conditions of piecewise linear systems in the form of
LMIs.
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2.3 The S-procedure

We will often encounter the problem of determining if a quadratic function (or
quadratic form) is nonnegative when other quadratic functions (or quadratic forms)
are all nonnegative. In some cases, this problem can be expressed as an LMI in the
data defining the quadratic functions or forms; in other cases, we can form an LMI
that is a conservative but often useful approximation of the original problem using
a technique called the S-procedure (see [11] and references therein for a complete
discussion on the S-procedure).

Let oo, ,o-, be quadratic functions of the variable x C R' given in the form

o-i(x) = x'Pix + 2x'gi + aji, i = 0, ..., 7P

where Pi = PF'. We consider the following condition on -o, - - -, o-

o(x) > 0 for all x such that o-j(x) 0, i = 1, ..., p (2.2)

If there exist T1  0,..., 7T 0 such that

o(x) - ZTi-i(x) > 0
i=1

for all x, then (2.2) holds. It is a nontrivial fact that when p = 1 the converse holds,
provided there is some xo such that a-1(Xo) > 0.

2.4 Dynamic Systems

For completeness, this section contains a brief introduction to dynamic systems. For
a complete introduction to dynamic systems the reader is referred to any of the
following [48, 38, 19, 36].

In most cases, the evolution of physical systems can be approximately modeled by
real ordinary differential equations; that is, the state x(t) = (x1(t) x2(t) -- )
of the physical system at time t is a point along the solution of the coupled first-order
ordinary differential equations

s = fi (t, x, u) i = 1, 2, ... , n (2.3)

where ie denotes the derivative of xi with respect to the time variable t, u(t) =

(ui(t) u2 (t) ... up(t))' are specified input variables, and the state x passes through
the point x(to) at time t = to. Sometimes, we associate with (2.3) another equation

y = h(t, x, u) (2.4)

which defines a q-dimensional output vector that comprises variables of particular
interest in the analysis of the dynamical system, like variables which can be physi-
cally measured or variables which are required to behave in a specified manner. We
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call (2.4) the output equation and refer to equations (2.3) and (2.4) together as the
state space model. In general, the functions f = (fi f2 ... f,)' and h are nonlinear
functions of the state variable x.

In closed-loop, a control law u(t) = g(x(t), t) is selected. Thus, the closed-loop
dynamics can be written as

i= f (x, t) (2.5)

A special case of (2.5) is when the function f does not depend explicitly on t, that is,

x = f (x) (2.6)

In these cases the system is said to be autonomous or time-invariant.
For the sake of simplicity in analyzing (2.3) and (2.4), f and h are frequently

replaced by linear functions of the form

= Ax + Bu

y Cx+Du

In this case, we say the system is linear time-invariant (LTI).

2.4.1 Equilibrium Points

An important concept in dealing with the state equation is the concept of an equi-
librium point. A point x = x* in the state space is said to be an equilibrium point
of (2.6) if it has the property that whenever the state of the system starts at x* it
will remain at x* for all future time. The equilibrium points are then the real roots
of the equation f(x) = 0. An equilibrium point can be isolated (that is, there are no
other equilibrium points in its vicinity) or can be part of a continuum of equilibrium
points.

Equilibrium points can be characterized as stable, unstable, or asymptotically
stable in the sense of Lyapunov.

Definition 2.2 The equilibrium point x* of (2.6) is

" stable if, for each e > 0, there is a 6 = 6(e) > 0 such that

||x(0) - x*|| <6 - x(t) - x*|| < e, Vt > 0

* unstable if not stable;

* asymptotically stable if it is stable and 6 can be chosen such that

||x(0) - x*|| <6 = > lim x(t) = x*

* globally asymptotically stable if it is stable and, for any x(0), limtOo x(t) = x*.
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2.4.2 Limit Cycles

Oscillation is one of the most important phenomena that occur in dynamical systems.
A system oscillates when it has a nontrivial periodic solution

x(t + t*) = x(t), for all t > 0

for some t* > 0 (the period of the oscillation). The word "nontrivial" is used to
exclude constant solutions corresponding to isolated equilibrium points. The image
set of a periodic solution in the state space is a closed trajectory that is usually called
periodic orbit or a closed orbit. Limit cycles are special cases of system closed trajec-
tories. A limit cycle is defined as an isolated closed curve. That is, the trajectory has
to be both closed (indicating the periodic nature of the motion) and isolated (indicat-
ing the limiting nature of the cycle that attracts and/or repels nearby trajectories).
Thus, while there may exist many closed trajectories in the state space, only those
that are isolated are called limit cycles.

Although linear systems may have closed trajectories, these are never isolated.
The truth is that limit cycles are inherent properties of nonlinear systems. This is
the reason why limit cycles are so hard to analyze since the existing well developed
linear theory cannot be applied. The motivation behind the study of limit cycles in
this thesis is based on both the importance of limit cycles in real world applications
and the lack of mathematical tools to analyze them.

Periodic motions in R' which are described by differential equations or difference
equations are exceedingly important in practice. For instance, the motion of plan-
ets and the operating of an electric motor or steam engine can all be described by
differential equations. This explains the great importance of the theory of periodic
motions and the numerous publications in this area. The study of this type of motion
is indispensable for understanding many phenomena.

As equilibrium points, limit cycles can be characterized as stable, unstable, or
asymptotically stable. Let #(t) be a nontrivial periodic solution of the autonomous
system (2.6) with period t*, and let 7 be the closed orbit (limit cycle) given by the
image set of 0(t) in the state space, that is,

7 { E R'| x - 0(t), 0 < t < t*}

At first, it seems that the right thing to do in order to analyze the stability of the
limit cycle, is to make a change of variables z = x - # and then study the stability
of this system at the equilibrium point z = 0 in conformity with definition 2.2. The
problem with this approach is that, according to [29, theorem 81.1] or [45, chapter
5], the equilibrium point z = 0 is never stable in the sense of definition 2.2. We
need then a more suitable definition of stability of limit cycles. Before we present
such definition we need to introduce the concept of an c-neighborhood of -Y. This is
defined by

U, {x E R"J dist(x, y) < e}
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where dist(x, -y) is the minimum distance from x to a point in 7, that is,

dist(x, 7) = inf flx - yll
yEY

Definition 2.3 The limit cycle -y of (2.6) is

* stable if, for each f > 0, there is an 6 > 0 such that

x(0) C U =- x(t) E U, Vt > 0

* asymptotically stable if it is stable and 6 can be chosen such that

x(0) E U6 = lim dist(x(t), -y) = 0

" globally asymptotically stable if it is stable and, for any x(0)

lim dist(x(t), y) = 0t oo

This definition reduces to definition 2.2 when -y is just an equilibrium point.
Having defined the stability properties of limit cycles, we can now define the

stability properties of periodic solutions.

Definition 2.4 A nontrivial periodic solution 0(t) of (2.6) is

* orbitally stable if the limit cycle y generated by #(t) is stable;

* asymptotically orbitally stable if the limit cycle -y generated by #(t) is asymp-
totically stable;

* globally orbitally asymptotically stable if it is orbitally stable and the limit cycle
-y generated by #(t) is globally stable.

Notice that different terminology is used depending on whether we are talking about
the periodic solution or about the corresponding periodic orbit.
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Chapter 3

Piecewise Linear Systems

This chapter is devoted to introduce a class of hybrid systems known as piecewise
linear systems (PLS). Such systems arise in many applications like, for example,
linear systems with saturating inputs, hopping robots, approximations of nonlinear
systems, etc. This chapter gives a rigorous mathematical introduction to PLS. It
starts by defining the class of PLS we are interested. Then, sections 3.2 and 3.3
discuss equilibrium points and limit cycles of PLS, respectively. Finally, section 3.4
presents the problem we propose to solve.

3.1 Definitions

Piecewise linear systems (PLS) are characterized by a set of affine linear systems

Aax + Bc, (3.1)

where x E R" is the state, together with a switching rule to switch among them

a(x) E {I, ... , M} (3.2)

that depends on present values of x and possibly also on past values of x. By a solution
of (3.1)-(3.2) we mean functions (x, u) satisfying (3.1)-(3.2), where a(t) is piecewise
constant. t is a switching time of a solution of (3.1)-(3.2) if a is discontinuous at t.
We say a trajectory of (3.1)-(3.2) switches at some time t if t is a switching time.

In the state space, switches occur at switching surfaces consisting of hyperplanes
of dimension n - 1

S, = {x1 Csx +d. =O }

where Cj is a row vector and j = {1, ... , N}. Define

Xi {x a(x) = i}

for i ={1, ..., M}.
The switching rule may or may not be memoryless. In some cases, the value of

a depends only on the current state, like linear systems with saturating inputs. In
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other cases, the value of a depends also on past values of the state (or on past values
of oz), like relays with hysteresis. Next, we discuss both cases separately, starting with
memoryless switching rules.

When the switching rule has no memory-depends only on the present state x-
the state space Rn is partitioned into M (possibly unbounded) sets called cells, such
that Xi n X = 0, i : j. In each cell Xi, the system dynamics are given by the affine
linear system = Aix + Bi. Define Sji C Si as the boundary of cell i by hyperplane j
(see figure 3-1). If the hyperplane j is not part of the boundary of cell i then Sji = 0.
All together, there are N -M sets Sji, although some of them are the same or empty.
For example, in figure 3-1, S1 = S12, S21 = S2 4, S 3 3 = 0, etc. Here M = 7 and
N=3.

S1 k=Asx+B3 S2

S14 jc=A2x+B2

k=A4x+B4S2

S24 21x=Alx+B1 i

S31 3

Figure 3-1: Piecewise Linear System with a memoryless switching rule

Example 3.1 A simple example of a PLS with a memoryless switching rule is a
saturation system (see the left side of figure 3-2). Basically, an LTI system =
Ax + Bu, y = Cx is in feedback with a saturation controller of the form

-d if y(t) < -d
u (t) = y(t) if ly(t) < d

d if y(t) > d

In the state space, the system is partitioned in three cells (see the right side of
figure 3-2).

In this case, there are 2 hyperplanes (N = 2) and 3 linear subsystems (M = 3).
Also, Sji = Sj since the hyperplanes do not intersect. This class of PLS will be the
topic of chapter 7. 0

Another scenario is when the switching rule has memory and the decision of which
affine linear system to use may not depend solely on the actual values of the state,
but also on its past values. In this case, the intersection of different Xi may not result
in an empty set, as the next example shows.
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-- LTI -
k=(A+BC)x x=Ax+Bd

i=Ax-Bd .0

Cx=d
Cx=-d

Figure 3-2: Left-Saturation system; Right-state space cells

Example 3.2 A simple class of PLS with a switching rule with memory is relay feed-
back systems (RFS). Such systems are characterized by a linear system in feedback
with an hysteresis (see figure 3-3). This class of PLS will be the topic of chapter 5,
and the reader is referred to that chapter for a precise definition of RFS. Basically,
u, the input to the LTI system, can take values of 1 or -1 depending not only on the
present state but also on past values of the state (or u).

-LTI -
U y

Figure 3-3: Relay Feedback System

Just like in the saturation system, the state space is divided in 3 parts, although,
in this case, there are only two affine linear systems, corresponding to X 1 and X 2 .
In the outer cells, the PLS behaves just like a memoryless switching rule where u is
clearly either 1 or -1. In the open inner cell, the value of u depends on its previous
value. If u(t - 0) = 1 then u(t) = 1, else u(t) = -1. Thus, the inner cell is shared by
both affine linear systems and, in order to decide which system to use, it is necessary
to know information about the past of the state (or the past of u). The intersection
X1  X 2 is then exactly the inner cell. 0

In this thesis, we assume existence of solution is always guaranteed for any initial
condition. If an initial condition is an interior point' of a cell, then existence of
solution is guaranteed at least from the initial condition to the first intersection with
a switching surface. This follows since the system is affine linear in the cell. When
an initial condition belongs to a switching surface, however, there may be a unique,
multiple, or no solutions. In figure 3-4, we have an example of each of these three

1x is an interior point of a set X C R' if there exists a neighborhood W of x such that W C X.
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situations. On the left, the orientation of the vector field of both systems i and k
results in only one alternative for a solution starting at xo. In this case, the unique
trajectory will move downwards, to system k. In the center, the solution is not
unique. The trajectory can either move downwards or upwards. In the last case,
depicted on the right of figure 3-4, both vector fields point inwards to the switching
surface. As before, at xo the switching rule (3.2) can take values i or k. As soon as
a(xo) is assigned to either one, it must switch immediately. Since, by definition, a(t)
is piecewise constant, arbitrarily fast switches are not possible. Therefore, in this case,
no solution exists. Hence, in order to guarantee existence of solutions, throughout
this thesis we consider only those PLS that do not exhibit the behavior of the last
scenario.

x=Aix+Bi

x0 )1 xO X0 w
Si

k=Akx+Bk

Figure 3-4: Existence of solutions; from left to right: one, multiple, and no solutions

One way to solve the problem of existence of solutions in cases like the one on the
right of figure 3-4, is to define a dynamical system on the switching surface Sj, and
let the trajectory evolve in this surface until it can "escape" to either side of Sj. This
is typically known as sliding modes. Hence, the evolution of the trajectory along the
switching surface satisfies an n - I dimensional system defined in Sj. Although this
thesis does not explicitly address sliding modes, the analysis of such cases is actually
not that different from PLS without sliding modes.

In next chapter we will give further remarks about sliding modes.
Unlike linear systems that only have a single equilibrium point, PLS may exhibit

multiple equilibrium points and/or limit cycles. We will analyze each of these cases
separately in the following two sections, starting with equilibrium points.

3.2 Equilibrium Points

Remember that, by definition, a point is an equilibrium point if whenever the state
of the system starts at that point it will remain there for all future. In the case of
PLS, these may have none, one, or multiple equilibrium points.

Example 3.3 Consider again the saturation system described in example 3.1 and
let

A- -1/2 0 11-

where f E R, C = (0 1) and d = 1. This means that CA- 1B=3. Let f = 2.
Then the system has a single equilibrium point at the origin. On the other hand, if,
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for example, =3 -2, the system has 3 equilibrium points: one at the origin, one at
(2 2)', and one at (-2 --2)'. M

In many situations, checking stability of equilibrium points of PLS is not an easy
task. In some cases, even showing local stability can be quite challenging. This is not
the case, however, if an equilibrium point of some system i is an interior point of cell
i. Here, local stability is easily verified just like in linear systems, by checking if the
eigenvalues of Ai are in open left half plane.

If an equilibrium point belongs to a switching surface then this is a limit point 2

of two or more cells. In this case, it is not enough to simply check the eigenvalues of
all of the Ai matrices of the cells for which the equilibrium point is a limit point. A
well known example is the following.

Example 3.4 Let

[-0.1 1 -01 10
A,1-= -10 -0.1 , A2 = -1 -0. 1

and B 1 = B 2 = 0. The origin of each system ± = Aix, i = 1, 2, is globally asymptot-
ically stable. However, the switched system using system 1 in the second and fourth
quadrants and system 2 in the first and third quadrants is unstable.

3.3 Limit Cycles

Limit cycles and stability of limit cycles were defined in section 2.4.2. In this section,
we give existence and local stability conditions of limit cycles of PLS.

Assume the PLS (3.1)-(3.2) has a limit cycle y with period V, and that this
limit cycle crosses k switching surfaces per cycle. For simplicity, and without loss of
generality, assume the trajectory of the limit cycle evolves consecutively from system
1, to system 2, and so forth until it reaches system k, and finally, after completing
one cycle, returns to system 1. Assume also the switching surfaces are ordered the
same way (see figure 3-5). This means the trajectory 0(t) of the limit cycle, starting
at x* c Sk, satisfies 0(t*) = x* E S1. Then system 2 "takes over" until #(t* + t*) =

x2 c S2, and so on. The last affine linear system k takes the trajectory #(t) from
x*4 1 E Sk-1 to the point x* G Sk, i.e., #(t* + t* + -+ t*) = x* = x4 E Sk. Note
that t* = t* + t* + + -- t*. Note also that there is no loss of generality in this
characterization of a limit cycle. If, for instance, the limit cycle crosses the same
switching surface more than once, we simply have Si = Sj for some i, j.

x is a limit point of a set X C Rn if every neighborhood of x contains a point w 5 x such that
w E X.
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System k

0 System 1
Sk

S2  S,

System 3

System 2

Figure 3-5: Limit cycle -y

3.3.1 Existence of Limit Cycles

Next we present necessary and sufficient conditions for the existence of limit cycles

of PLS. For simplicity, we will first study the case where the limit cycle has only two

switches per cycle. Then, we extend the result to k switches. For k = 2, we have the

following result.

Proposition 3.1 Consider the PLS (3.1)-(3.2). Assume there exists a periodic so-

lution 'y with two switches per cycle and with period t* = t* + t* > 0, where t* and t*

are defined as above. Define

gi(t*,t*) = C1 (I - eA1A*eA2t*) 1 2teAt - I)A2'B 2 + (eAltt - I)A-1B1 + d,

g2 (t*,t*) = C 2 (I -eAst*eA1t*) [e~t(eAt - I)A- B1 + (eAst - I)Aj1B 2] + d2

Then the following conditions hold

92(t*,t*) = 0 (33)

and the periodic solution is governed by system 1 on [0, t*), and by system 2 on [t*, t*).

Furthermore, the periodic solution -y is obtained with either initial conditions

= (I - eA2t*eAt- [eA2t(eAlt* - I)AT1 B 1 + (eA2t* - I)A21B 2

(I - eA1t*eA2t - eAit* A2t - I)A2'B 2 + (eA1t* - I)AT1B 1

Example 3.5 For visualization purposes, consider two affine linear systems in 1R2,
1= Ax + BA where

A 1 =A 2 =( 0
1  -2) ' B 1 = ( , and

together with a switching rule with memory that uses system 1 until the trajectory
intersects the switching surface S1 , and then uses system 2 until the trajectory in-
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tersects the switching surface S2, and so on. The switching surfaces are given by
C1 = ( -1 1), di = -1, C2 = (1 0), and d 2 = -1. Solving (3.3) numerically we
get t* = 1.24, t* = 1.35, x*' x- = (1.0000 0.87), x* (-1.84 -0.84)'. The
resulting periodic solution -y can be seen in figure 3-6.

H4

Y~ '2

S x* -- so

Figure 3-6: Periodic solution of a second-order PLS

Proof of proposition 3.1: Let's first find 92. Integrating (3.1) for the first system
we get

x(t) = eAlt (x0 + Al 1B 1 ) - A--1B 1

If xO = x* C S2 is a point in y then

*t= e +(x; ± A-1B 1) -AB1

where xT E Si. In a similar way, for the second system

x= (x ± A B 2 ) - A'B 2

Replacing x* in the previous equation and noticing that x* x* we get

* (eAt (x* + A- 1B1 ) - A- 1B1 + A)IB 2) - A 1 B 2

which, after solving for x*, yields

X (i - eA2tCeAt1 l A2t(eAit - I)A7IB 1 + (eA2t - I)A2 B 2

Since x* E S2, C 2 x* + d2 = 0, and the desired result follows. x* and 92 can be found
in a similar way. 0

This result can be generalized to the case where a periodic solution -y switches
among k systems instead of just two. For the remainder of this section, for simplicity
of notation, let Ei = eA*i and zi = AZ B. Define

"k-1

k(t*,t z..t*= Ck (I - Ek ... E1)-' Ek .-- Ei+1(Ei -I)Zi +(Ek -- I)zk +de
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9k was found based on the switching sequence {1, 2, ... , k}. To find, gj, = 1, ..., k-1,
consider the switching sequence {j + 1, ..., k, 1, ..., j}, i.e., just replace the indexes of

9A in the following way: 1 by j + 1, 2 byj + 2 (or by 1 if j + 2 > k), up to k by j.

Proposition 3.2 Consider the PLS (3.1)-(3.2). Assume there exists a periodic so-
lution -y with k switches per cycle and with period t* = t* + t* + - t* > 0. Consider

the functions Yi, 92, ... , 9k defined as above. Then the following conditions hold

g 1(t* t t...,t) = 0

92 (t*, t*, .. ,t*) = 0(34

gk(tt*,...,t ) = 0

and the periodic solution is governed by system 1 on [0, t*), and by system i on [t* +
--- + ti_1, t -I- - + ti), i = 2, ... , k. Furthermore, the periodic solution -y can be

obtained with the initial condition x* E Sk

k-1

X* = (I-Ek ... E 1  EEk ... E1±(Ei - I)zi + (Ek - I)zk
1i

Proof: Integrating the linear dynamics between two switching surfaces we get

X = Eix*_ + (E, - I)zi

To find x* as a function of x* we solve recursively, starting at x*:

x4e = Ekxx4_ + (Ek - I)zk

Ek ( Ekx_1x_2 + (Ek_1 - I)zk_1) + (Ek - I)Zk

EkEklx4_2 + Ek(Ek_1 - I)zkl + (Ek - I)Zk

= Ek . Ex* + Ek ... E2 (El - I)z1 + -+EE_1(Ek-2 --I)zk2

+Ek(Ekl - I)zk_1 + (Ek - I)zk

The desired result can be obtained by knowing x* = x* and solving for x*. 9k can be
found by computing 9k Ckx* + dk = 0, since x* Sk. The rest of the proof follows
in a similar way.

As in the case where k = 2, (3.4) is a set of transcendental equations. Closed form

solutions can be given only for very special cases and, even numerically, this is a hard

problem. An alternative is to simulate the system for some time and get approximate

values for t*, t*, ... , t*. Then, use some numerical algorithm to compute t*, t*, ... , t*.

3.3.2 Local Stability

Consider the PLS (3.1)-(3.2). Assume there exists a periodic solution -Y with period

t*. Let x4 E Sk be the initial state that generates the periodic motion. Consider the
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map T from some point in a small neighborhood of x* in Sk, to the point when the
trajectory returns to Sk. Local stability of a limit cycle can be checked by looking at
the poles of the linear part of T. Stability follows if the poles are inside the unit disk.
The following proposition gives conditions for local stability of limit cycles of PLS.

Proposition 3.3 Consider the PLS (3.1)-(3.2). Assume there exists a limit cycle
-y with period t* as described above. Assume also the limit cycle is transversa3 to
the switching surfaces S1, ..., Sk at x*, ... ,x*, respectively. The Jacobian of the map T
defined above is given by W = WkWk_1 ... W 2W where

Wi = (I - viC )ei*
\Civil

with vi = Aix* + Bi, i = 1,..., k. The limit cycle -y is locally stable if W has all its
eigenvalues inside the unit disk. It is unstable if at least one of the eigenvalues of W
is outside the unit disk.

Proof: Consider a trajectory with initial condition x(O) = x*. Then, the solution
at time t* is x(t*) x* e^lt*(x* + A-'B 1 ) - A-7B 1 . Now, let x(O) = x* + 61x*
where 61x* is chosen so that x(O) is on the switching surface plane, i.e., such that
Ck(x* + ix*) + dk = 0. The solution to this initial condition is x(t) = e1Alt +
61x* + A- 1B 1) - A- 1 B1 . Assuming the solution reaches the switching surface Si at
time t* + 6it* we have

x(t* + 61t*) = eA1(t*+6 lt*) (xO + 61x* + A-IB1) - A-'B 1

Making a series expansion in 61x* and 6it* we get

x(t* + 61t*) = x* + eA1t6ix + e^1* (Aix* + B1) it* + )
=X* + e Alt, ix* + Vi6it* + O(j2) (3.5)

where we use the fact that e1* (AIx* + B1 ) = Aix* + B1 = v1 . Since x(t* + 6it*) is
on the switching surface Si, we have Clx(t* + 6it*) + d, = 0. Neglecting high-order
terms gives

Cix* + CieA1t61x* + Civi6it* + d= 0

and since C1x* + d, = 0 we have

CIv161t* = -Ce1t*61x*

Since, by assumption, the limit cycle is transversal to Si at x*, C1 ±(t*) # 0. Thus,
CI(Aix* + B1 ) ? 0 or Civ1 # 0, which means that

C1 eAlt 1*
61X1 = l - 1x*

C1 v1

3# is transversal to S = {x| Cx =d} at p = $(t) E S if C$(t - 0) $ 0.
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replacing in (3.5) yields

x(t* + 61t*) = x* + I - 1C1 e^MtU1x* + O( )

=X* + W161x* + O(6)

Similarly, we get
x(t* + 62 t*) = x* + W 2 62 x* + 2

with initial condition x* + 62 x* = x* + W1 61 x* + O(62). Neglecting high-oder terms,
we get 62 x* = W161x*. Replacing in the above equality yields

x(t* + 62 t*) = x* + W2 W1 61 x* + O(6 )

Repeating this procedure k -2 times, we get to the last system, system k. Letting the
initial condition to system k be x* 1 + ki xL + Wk_ - W 2 W1 61x* + O(62)

leads to

x(t* + 6 ktk*) = x* + Wk 6 k_ + O(
= x±* + WkWk_1 ... W 2 W161x*+O(6 )

where we used the fact x* = x. This proves the proposition.

Example 3.6 Coming back to example 3.5, we can compute W from W1 and W 2 .
Replacing the values we get

W=1-3 0 0W -1 (-0.29 0.32

which has all its eigenvalues inside the unit disk. Therefore the limit cycle in exam-
ple 3.5 is locally stable.

3.4 Problem Statement

After defining PLS and discussing equilibrium points and limit cycles of PLS, the
natural question is how to analyze such trajectories. Like in the example in figure 3-
7, PLS may have equilibrium points, limit cycles, or some combination of both of
these trajectories. One may ask: is the limit cycle stable? Or one of the equilibrium
points? Or both? Or all of these trajectories? If they are not unstable, what are their
regions of attraction? And, what if we are looking for global analysis? For instance,
if a PLS has a single equilibrium point or a single limit cycle, how can we guarantee
such trajectory is global asymptotically stable? That it meets certain performance
criteria? That it is robust to unmodeled dynamics? These are the sort of questions
we propose to answer with the results in this thesis.

The main purpose of this thesis is to develop an entirely new constructive global
analysis methodology. This methodology consists in inferring global properties of
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limit eq. point
cycle

eq. point

Figure 3-7: PLS with limit cycles and equilibrium points

PLS solely by studying their behavior at switching surfaces. The main idea is to
analyze impact maps, i.e., maps from one switching surface to the next switching
surface. These maps are proven globally stable by constructing quadratic Lyapunov
functions on switching surfaces associated with PLS. Impact maps are known to be
"unfriendly" maps in the sense that they are highly nonlinear, multivalued, and not
continuous. Thus, the first step is to find a representation of impact maps that allows
us to use them to conclude about stability, performance, and robustness of PLS.

Although analysis of nonlinear systems at switching surfaces has been studied
by others (e.g., Poincare), with the exception of very simple systems, no one really
knew how to use impact maps to study global analysis of hybrid systems. The reason
why in this thesis we are able use impact maps in global analysis of certain classes
of hybrid systems is based on the discovery that impact maps can be written in an
"nice", analytical way. We found that impact maps can be represented as a linear
transformation analytically parametrized by a scalar parameter of the state. This
parameter is simply the switching time associated with the impact map. When the
switching time is fixed, it turns out the impact map is linear along a subset of a
linear manifold of dimension smaller than the dimension of the switching surface.
Writing matrix inequalities that guarantee quadratic stability of impact maps is then
straightforward.

In the first part of this thesis we will mainly focus on global asymptotic stability
analysis of PLS with either a single limit cycle or a single equilibrium point. We will
analyze several classes of PLS: relay feedback systems, on/off systems, and saturation
systems. Then, in the second part of the thesis we show that performance analysis of
PLS can also be checked using the very same ideas: global analysis of impact maps
using surface quadratic Lyapunov functions. We show this can be done by applying
the results to on/off systems.

To summarize, we propose to develop a new methodology to analyze stability,
robustness, and performance of PLS. The main ideas will be presented in the next

chapter.
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Chapter 4

Main Results

This chapter includes the main contributions of this thesis. In the next section,
we motivate the need for analysis tools for PLS. We explain how available methods
are inefficient or even useless to analyze many important PLS. Such analysis tools
are mainly based on constructing quadratic Lyapunov functions in the state space.
Alternatively, we propose the construction of quadratic Lyapunov functions in the
switching surfaces. In section 4.2, we introduce the notion of impact maps, which are
simply maps between two switching surfaces. We show that impact maps induced by
an LTI flow can be represented as linear transformations analytically parametrized
by a scalar function of the state. This, in turn, allows us to reduce the problem of
quadratic stability of impact maps to solving a set of LMIs, as explained in section 4.3.
Then, section 4.4 briefly discusses how these results can be used in the analysis of
equilibrium points and limit cycles of PLS. Basically, section 4.4 gives an overview of
the following three chapters. In these chapters, different and specific issues of PLS are
separately addressed in detail. This will be done by studying three different classes
of PLS: relay feedback systems, on-off systems, and saturation systems.

4.1 Motivation

As discussed in introduction, there exist several tools to analyze PLS. One of the most
important [50, 34, 30], is based on constructing piecewise quadratic Lyapunov func-
tions in the state space. There are, however, several drawbacks with this approach.
These include:

" Lyapunov functions in the state space cannot be constructed to analyze limit
cycles.

" Partitioning of the state-space is the key of the approach proposed in [50, 34, 30].
For most PLS, construction of piecewise quadratic Lyapunov functions is only
possible after a more refined partition of the state space, in addition to the
already existent natural state space partition of the PLS. As a consequence,
the analysis method is efficient only when the number of partitions required
to prove stability is small. The following example shows that even for second
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order systems, the construction of piecewise quadratic Lyapunov functions can
be computationally too expensive due to the large number of partitions in the
state space required for the analysis.

Example 4.1 In this simple example, we are interested in showing the origin
of a second order PLS is globally asymptotically stable. Consider the PLS
in figure 4-1 composed of two linear systems. On the left side of the vertical
axis-x 2 axes-we have an unstable linear system and on the right side we have
a stable linear system parametrized by c > 0.

x 2

-1 I] X -1-E_

SE>0

Figure 4-1: PLS composed of an unstable and a stable linear systems

First, we show there is no global quadratic Lyapunov function for the system.
By contradiction, assume V(x) = x'Qx is a Lyapunov function of the system,
where Q > 0 has the following block partition

\q q2)

Consider the level set x'Qx = q2 . It must be true that for any initial condition
xo such that x'Qxo < q2 , the solution x(t) satisfies x'(t)Qx(t) < q2 for all
t > 0. Let xo = (0 -1 )'. xo belongs to the level set since x'Qxo = q2. Then,
x(7) = e' (0 1)' and x'(7)Qx(7r) = q2 e2 , > q2 , which is a contradiction. Thus,
there is no global quadratic Lyapunov function for the system.

We then turn to find piecewise quadratic Lyapunov functions. As seen in the
figure, the PLS divides the state space in two equal partitions. However, as we
will see, in order to construct piecewise quadratic Lyapunov functions, a much
larger number of partitions is required to prove stability of the origin.

We start with just the natural partition of the system. Using the software
developed by [34], no piecewise quadratic Lyapunov functions were found. This
was expected from the above proof.

A more refined partition of the state space is then required. This refinement
must be supplied to the software. We decided to partition the state space with
lines through the origin, including the x2 axes, and with each separated by an
angle of 27r/k radius, where k is a positive integer. This resulted in k equally
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sized partitions. Table 4.1 shows the number of required partitions for the
analysis of the system as a function of 6.

6 [k]

> 0.2 > 8
0.05 < c < 0.2 > 16

< 0.05 > ?

Table 4.1: Number of required partitions as a function of c

This table clearly shows that as c decreases, the required number of partitions
for the analysis of the PLS increases. For 6 < 0.05, the number of required
partitions is very high and it becomes computationally intractable to prove
stability of the origin using this method. Note that even for large values of 6,
the number of required partitions is always greater than 8, although the original
system is only divided in 2 partitions. M

9 Stability of equilibrium points using the approach proposed in [50, 34, 30] re-
quires the state space to be divided in simplex partitions. For high-order sys-
tems, it is extremely hard to obtain a refinement of partitions in the state-space
to efficiently analyze the PLS. In other words, the method does not scale well
with the dimension of the system.

The construction of piecewise quadratic Lyapunov functions for PLS proposed
in [50, 34, 30] imposes continuity of the the Lyapunov functions along the switching
surfaces. This means that the intersection of two Lyapunov functions with a switch-
ing surface-one from each side-defines a unique quadratic Lyapunov function on
the switching surface. Therefore, we conclude that if there are piecewise quadratic
Lyapunov functions for a certain PLS, then there are also quadratic Lyapunov func-
tions on the switching surfaces for that PLS. Note that the converse is not true. For
instance, piecewise quadratic Lyapunov functions cannot be constructed to analyze
limit cycles. However, as we will see in chapter 5, quadratic Lyapunov functions on
switching surfaces exist and can efficiently be constructed to analyze limit cycles. It
is then enough to look for Lyapunov functions on the switching surfaces instead of in
the state space.

An alternative to construct Lyapunov functions in the state space is to construct
Lyapunov functions in the switching surfaces. This is what we call Surface Lyapunov
Functions. Properties of many PLS can be inferred just by analyzing the behavior of
the system in the switching surfaces. Since a PLS behaves linearly inside a cell, only
one of three things can happen to a trajectory entering a cell at some point xO in a
switching surface:

1. The cell is unbounded and there exists a trajectory that will grow unbounded
without ever switching. In this case, xo belongs to an unstable region and, if
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the PLS only has one equilibrium point or limit cycle, then these can never be
globally stable.

2. There is a locally stable equilibrium point in the cell and the trajectory will
asymptotically converge to it without switching. If this is the case, the initial
point xO belongs to a stable region of that equilibrium point.

3. The trajectory will switch in finite time.

There are several ways to check if scenario 1 can happen or not. Some will be
discussed in later sections. For now, assume that scenario 1 does not happen. Then,
we are left with 2 and 3. If scenario 2 happens, we are done, i.e., the initial point xO
is a stable point and so it does not require any further analysis. So, we are left with
scenario 3. We can then ask several questions, like: what happens to the trajectory
after it switches? Will it switch again? And, will it converge to some equilibrium
point or some limit cycle? These are the sort of questions we propose to answer in
this thesis. The idea is to start by analyzing individual maps from one switching
surface to the next switching surface. This is the topic of this chapter. Then, in the
next chapters, we show that the analysis of PLS can be reduced to the analysis of
different maps from one switching surface to another switching surface.

Analysis of nonlinear systems at manifolds has been used by many researchers
for a while now. The so-called Poincari map was introduced in order to reduce the
study of an n-dimensional system to a discrete n - 1-dimensional system in a manifold

(see, for example, [36] for an introduction to Poincar6 maps). With the exception of
small and specific classes of PLS, the problem is that no one really knew until now
how to use these maps to globally analyze PLS. This thesis explains how it can be
done and shows that our results really work in the sense that a large number of
examples of certain classes of PLS, that could not be analyzed by any other method,
was successfully proven globally stable.

As explained by Poincare, there are several advantages in analyzing systems along
manifolds, or, in our case, switching surfaces. First, it is a natural way to prove sta-
bility of limit cycles. In fact, that's how local stability of limit cycles was proven in
section 3.3, similar to what Astr6m and Hagglund [5, 3] had done for relay feedback
systems back in 1984. Second, an analysis method based on surface Lyapunov func-
tions scales well with the increase of the dimension of the system. And finally, systems
like the one in example 4.1 are easily analyzed using surface Lyapunov functions. This
can be seen next.

Example 4.2 Consider again example 4.1. There, we showed that as f goes to zero
it becomes extremely hard to find piecewise quadratic Lyapunov functions to prove
stability of the system. However, there are surface Lyapunov functions for Poincar6
maps, for any E > 0, and these are easily found (see figure 4-2).

Let A1 be the linear matrix for the stable system and A2 for the unstable one.
For a given c > 0, both maps around the origin can be expressed as

A1 =H1(t)Ao

A2 H2(t2)AI
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k=[ii]x

A0

A,

X 2

x1

= _IE I ~
_-1 -1-] X

E>0

Figure 4-2: Maps from one switching surface to the next switching surface

where Hi(ti) - eAiti, for i = 1, 2. Since A, belong to the x2 axis, these can be
parametrized by A2 = fl'6i, where H' = (0 1) and i E R. Let

Fi(ti) = fl'Hi(t1 )H

Global asymptotic stability of the origin follows if there exist po > 0 and p, > 0 such
that

F'(tj)p1F1(ti) < po

F'(t2)POF2 (t2) < P1

for all expected switching times t1
for all expected switching times t2

Let q = pi/po > 0. Since the switching times are always t = r for any initial
condition on the switching surface, stability follows if there exists a q > 0 such that

[F1(7r)]2 <

[F2(7r)]2 q

or
1

[F2(7)]2 < q < 2

Since, for any c > 0, [F 2 (7r)F1(7r)]2 < 1, the following q

[F 2 (7r)F 1(r)]2 + 1

2 [F1 (7r)]2

satisfies the stability conditions. Therefore, the origin is
ble.

globally asymptotically sta-
E

This simple example serves not only to demonstrate some of the advantages of
surface Lyapunov functions but also to illustrate some of the ideas we will use to
analyze more complex PLS. In the example, no quadratic Lyapunov function exists
for the system and piecewise quadratic Lyapunov functions are extremely hard or even
impossible to construct when E is small. However, quadratic Lyapunov functions on
the switching surface are easily constructed for any c > 0. This, in turn, shows the
origin is globally asymptotically stable for all E > 0.
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4.2 Impact Maps

In order to analyze PLS using surface Lyapunov functions, we first need to under-
stand the behavior of the system as this flows from one switching surface to the next
switching surface. A useful notion that we will be using throughout this thesis is
that of impact map. An impact map is simply a map from one switching surface to
the next switching surface. Only after we understand the nature of a single impact
map can we look at a PLS as a whole, by combining all impact maps associated with
the PLS, to conclude about stability, robustness, and performance properties of the
system.

Consider the following affine linear time-invariant system

Ax + B (4.1)

where x E IR, A E ]R"", and B E R". Note that we are not imposing any kind

of restrictions on A. At this point, A is allowed to have stable, unstable, and pure

imaginary eigenvalues. Assume (4.1) is part of some PLS, and that (4.1) is defined

on some open set X c R'. Assume also a trajectory just arrived to a boundaryl of

X
So = {x E Rn : Cox = do}

and the system switches to (4.1). In this chapter, we are interested in studying the

impact map from some subset of So to some subset of

S 1 = { E Rn : Cix = d1 }

also in the boundary of X. In this scenario, some subsets of So and Si are switching

surfaces of the PLS.
By a solution of (4.1) we mean a function x defined on [0, t], with x(0) E So,

x(t) E Si, x(T) E X on [0, t]2 , and satisfying (4.1). In this case, t is a switching time

of the solution x of (4.1) and we say a switch occurs at x(t).

Let Sod be some polytopical subset of So where any trajectory starting at So

satisfies x(t) E S1 , for some finite t > 0, and x(T) c X on [0, t]. Let also S' C Si be

the set of those points x, = x(t). The set Sa can be seen as the image set of So. We

call So the departure set in So and Sa the arrival set in S1.

We are interested in studying the impact map, induced by (4.1), from x0 E S to

x, E S'. Since both x0 and x, belong to switching surfaces, they can be parametrized

in their respective hyperplanes. For that, let

X1 =z* + A1

where 4* E So, x* E S1, and A 0 , A, are any vectors such that COAO = C 1 A 1 = 0.

1The boundary of X is the set of all limit points p of X such that p X.

2X denotes the closure of X, i.e, the set X = X U {pJ p is a limit point of X}.
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Define also x*(t) as the trajectory of (4.1), starting at x*, for all t > 0. The impact
map of interest reduces to the map from Ao to A, (see figure 4-3).

0i So=Ax+B
X1

Ao A,

X1

Figure 4-3: Impact map from Ao E So - x* to A, E S' - xT

Note that the impact map from Ao E - x to A, E S' - xT defined above is
not continuous and it is multivalued. This is illustrated in the following example.

Example 4.3 Consider a 3rd-order system given by

-1 0 0 1
(0 -2

0 0 -3) 1

with the switching surfaces defined above given by Co = C= [-2 2 1], and do = 0.5,
d, = -0.5. Let X = {xj di < Cix(t) < do}. In the state space, the switching surfaces
are parallel to each other. Let x(0) ~ [-52 80 - 63]T E So. The resulting Cix(t)
can be seen in figure 4-4.

0.4

0.2 CXO Possible Switches

0-

-0.2 

-

-0.4

0 0.5 1 .5 2 25

t

Figure 4-4: Existence of multiple solutions

When t ~ 0.47, Cix(t) = di and y(t - 0) = 0. At this point, the trajectory can
return to X (dash trajectory), or it can switch. This means that a switch can occur
at either t = 0.47 or t = 2.85.

Let x* = x(0) and x* = x(0.47). The impact map from Ao to A1 , as defined
above, is also not continuous since in a small enough neighborhood W C S, of x*,
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0.6 -

0A4

0.2 Cix(t) for different
initial conditions

-0.2-

-0.4

0 011 0 .2 0.3 04 0.5 0 6 0.7 0.8 0.9 1

Figure 4-5: Map from Ao to A, is not continuous

there is no neighborhood Wo C So of x* such that every point in Wo is mapped in W4)

(see figure 4-5). In this figure, we have two initial conditions in a small neighborhood
of x*. One of these (in the figure, the one on the left) switches "close" to x* while
the other (the one of the right) switches "far" from x*. 0

Definition 4.1 Let x(0) = x* + Ao. Define tA0 as the set of all times ti > 0 such
that the trajectory x(t) with initial condition x(0) satisfies Cix(ti) = di and x(t) E X
on [0, ti]. Define also the set of expected switching times of the impact map from
A0 c So - x* to A1 E S' - x* as

T ={t t E tA, Ao S-x }
For instance, in the last example, tA0 = {0.47, 2.85} for the initial condition x(0).
As seen, the impact map is nonlinear, multivalued, and not continuous. Once an

initial condition in Sod is given, the first step is to find an associated switching time
t. However, solving for t involves solving a transcendental equation. Solution to such
equations cannot, in general, be written in a closed form, and numerical procedures
are typically the only way to solve for t. Once a switching time is found, we can
finally find the corresponding A1 .

The "non-friendly" nature of the impact map from A0 to A, has been the main
reason why global analysis of PLS has not been done using surface Lyapunov func-
tions. The following result, however, shows that this map is not as "bad" as it looks,
and opens the door to analysis of PLS in switching surfaces.

Theorem 4.1 Assume Cix*(t) :A d1 for all t E T. Define

(t) 
ieAt

di - Clx*(t)

and let
H(t) = eAI + (X*(t -x*) Wt

Then, for any Ao E Sod - x* there exists a t E T such that the impact map is given by

A1 = H(t)Ao (4.2)
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Such t G tA, is the switching time associated with A 1 .

This theorem says that maps between switching surfaces, induced by an LTI flow,
can be represented as linear transformations analytically parametrized by a scalar
function of the state. At first, equation (4.2) may not seem of great help in analyzing
the impact map from AO to A1 . There, A1 is a linear function of AO and a nonlinear
function of t, the switching time associated with Ao and A1 . The switching time,
however, is a function of A0 . A transcendental equation needs to be solved in order
to find t. Thus, by this reasoning, it seems (4.2) is saying that A, is a nonlinear
function of Ao. But, that we already knew.

This is, however, just one way of thinking about (4.2). Fortunately, there are
other ways to approach equation (4.2). Assume, for a second, the switching time t is
fixed. The result: the impact map (4.2) would be linear! But, what does it mean to
have the switching time t is fixed? In other words, what are the set of points x* + AO
in the switching surface So such that every point in that set has a switching time of
t? In that set, the impact map (4.2) is linear.

It turns out that the set of points in So that have a switching time of t is a convex
subset of a linear manifold of dimension n - 2 (see figure 4-6). Let St be that set,
that is, the set of points x* + AO E So such that t E tAO. In other words, a trajectory
starting at xo E St satisfies both x(T) C X on [0, t], and Clx(t) = di. Note that since
the impact map is multivalued, a point in So may belong to more than one set St.
In fact, in example 4.3, there existed a point in So that belonged to both So. 47 and

S 2.85 .

Si

x, (0)

x2(O)

St X(

so

Figure 4-6: Every point in St has a switching time of t

Note also that, as t E T changes, St covers every single point of So, i.e., So =

{xj x E St, t E T}. This follows since every point AO E So - x* can switch for the
first time at 1 , and therefore tAO is always a nonzero set. These results can all be
summarized in the following corollary.

Corollary 4.1 Under the assumptions of theorem 4.1, for a given t E T, the impact
map from AO E St - x* to A1 E S1 - x*, given by A1 = H(t)Ao, is a linear map.
Moreover, St is a subset of a linear manifold of dimension n - 2, and So = {x| x E

St, t E T}.
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As we will see in sections 4.3 and in succeeding chapters, this result is funda-
mental in the analysis of PLS using surface Lyapunov functions. It allows us to find
conditions in the form of LMIs that, when satisfied, guarantee stability, robustness,
and performance of PLS..

Before moving onto the proofs of the above results, it is important to understand
the meaning of the assumption in theorem 4.1. This says the trajectory x*(t) cannot
intersect the switching surface Si for all t C T. With a careful choice of x* E So
(the initial condition of x*(t)), there are many cases when this assumption is always
satisfied. The details on how this is done can be found in both chapters 6 and 7, and
are, therefore, omitted here.

There are, however, cases where no choice of x4 E So satisfies the assumption.
Or, in other cases, X4 is fixed a priori, and it may not satisfy the assumption (like
in chapter 5, where the location of x* in So cannot be freely chosen). In these worst
case scenarios, there is at least one t, E T such that w(t,) is unbounded. This does
not mean we cannot obtain the desired linear representation for the impact map. For
some PLS, like RFS, at some t = t, the map is defined via continuation, and the
theorem follows. If this is not the case, the theorem needs to be slightly modified.
Basically, at t = ts, the impact map can still be written as a linear transformation
but parametrized by another variable at t,, i.e., A, = Hs(ts, 6)Ao, with Ao E St,.

4.2.1 Proof of Results

Proof of theorem 4.1: We start by expressing A1 as function of A0 and t, the
switching time associated with A1 . Let x(0) = o C St'. Integrating the differential
equation (4.1) gives

x1= eAt -+ eA(t -)BdT

Since xi = x* + Ai, i = 0, 1,

/tA, - e AtAo +eAt± j e AtrBdT - X

= eAtA 0 + X(t) - x

From the fact C1A 1 = 0 and Clx* = d, we get

Cie^MAo = di - Clx*(t) (4.3)

Since, by assumption, Clx(t) : di for all t E T, the last expression can be written
as

w(t)Ao = 1 (4.4)

which means A1 reduces to

A1 = eAO + (X(t) - xt) w(t)Ao

which proves the desired result.
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Note that if A is invertible, x*(t) is given by x*(t) = eAt(x* + A- 1B) - A- 1B.

Proof of corollary 4.1: The only thing left to prove is that St is a subset of a
linear manifold of dimension n - 2. Let xo = x + Ao E St. Since Cix(t) = d1 , Ao
must satisfy equation (4.3), and COAO = 0 since Ao E So - x4, which are both linear
equalities. Ao also satisfies a set of linear inequalities from the fact that xo E So,
x(t) E Sa, and x(T) E X on [0, t]. Therefore, St - x* has at the most dimension n - 2
and is linear.

4.3 Quadratic Surface Lyapunov Functions

Construction of Lyapunov functions for nonlinear systems is, and has been, a difficult,
and sometimes, frustrating task. As explained before, there has been some results in
constructing piecewise quadratic Lyapunov functions for PLS. Although these results
are able to analyze equilibrium points of certain classes of PLS, many important PLS
cannot be analyzed this way because either they have limit cycles or the method is
computationally too expensive.

An alternative to constructing Lyapunov functions in the state space is to con-
struct Lyapunov functions on switching surfaces. Define then two quadratic Lyapunov
functions on the switching surfaces So and Sa. Respectively, let V and V be given
by

Vi(x) = x'Px - 2x'gj + ai (4.5)

where P > 0, for i = 0, 1. These are Lyapunov candidates defined of the switching
surfaces with parameters P > 0, gi, and a , to be found.

Next, we want to show an impact map from So C So to Sa C Si is contracting in
some sense. In particular, an impact map is quadratically stable if there exist P > 0,
gi, a such that

V1(A 1 ) < Vo(Ao) for all Ao E s - * (4.6)

Let P > 0 on S stand for x'Px > 0 for all nonzero x E S. As a short hand, we
will be using Ht for H(t) and wt for w(t). The following theorem uses the results
from section 4.2 to derive a set of matrix inequalities equivalent to condition (4.6).

Theorem 4.2 Define

R(t) = Po - H'P1 Ht - 2 (go - H'g1) wt + w'awt

where a = Ce1 - 2. The impact map from Ao ESg-xtoA 1 ES -x* is a
contraction if there exist P, P1 > 0 and go, g1 , ce such that

R(t) > 0 on St - x* (4.7)

for all expected switching times t E T.

Basically, all this theorem does is substitute (4.2) in (4.6), and use both facts that
the map Ao to A, is linear in St and that, as t ranges over T, St covers every point
in So.

61



4.3.1 Approximation to a Set of LMIs

There are many ways to approximate condition (4.7) with a set of LMIs, which can
be efficiently solved using available software. A trivial one is to relax the constraints
on Ao in theorem 4.2. On one hand, this results in a more conservative condition.
On the other hand, such conditions are computationally efficient.

Corollary 4.2 The impact map from Ao E Sod -x to A1 E Sa - x* is a contraction
if there exist Po, P1 > 0 and go, g1 , a such that

R(t) > 0 on So - x* (4.8)

for all expected switching times t C T.

This result uses the ideas from the previous section to show that the problem of
quadratic stability of an impact map reduces to the solution of a infinite dimensional
set of LMIs. As we will see in later chapters, although condition (4.8) is more con-
servative than condition (4.7), in many situations it is enough to successfully and
efficiently analyze PLS.

(4.8) for all t E T forms an infinite set of LMIs. Computationally, to overcome
this difficulty, we grid this set to obtain a finite subset of expected switching times.
This grid consists of a finite sequence of switching times to < ti < ... < tk. In
other words, P > 0, gi, and a are found by solving a finite set of LMIs consisting
of (4.8) on t = {tj}, i = 0, 1, ..., k. For a large enough k, it can be shown that (4.8)

is also satisfied for all t E T. The idea here is to find bounds on the derivative of
the minimum eigenvalue of R(t) over (ti, ti+1), and to use these bounds to show that
nothing can go wrong in the intervals (ti, ti+1), i.e., that (4.8) is also satisfied on each
interval (ti, ti+1).

n - 1 Dimensional Map

Next, we show that condition (4.8) can in fact be written as an an equivalent set
of LMIs. Note that although the vectors Ao and A, are n-dimensional, the solution
generated by the impact map is restricted to the n - 1-dimensional hyperplanes So
and S1 (see figure 4-7). Thus, the impact map is actually a map from R"- 1 to R" 1 .
Let rIo E Co' be a map from R' 1 to So, where Co' are the orthogonal complements to
Co, i.e., matrices with a maximal number of column vectors forming an orthonormal
set such that COC' = 0.

Condition to (4.8) is equivalent to

A'R(t)Ao > 0 for all Ao E So - x*

Since CoAo = 0, we can write Ao = Hoo, where 60 E R"1. Hence, the last matrix
inequality is equivalent to

l/'R(t)flo > 0

which is an infinite dimensional set of LMIs.
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X* so =Ax+B S,
X*

(O H H(t)A

X11

Figure 4-7: n - 1 dimensional map

Meaning of condition (4.7)

It is possible to make condition (4.8) less conservative at a cost of an increase in
computations. This condition takes only into account that Ao C So - x*. The
remaining of this section, explains how to approximate condition (4.7) with a set of
LMIs.

Let's first see what exactly is condition (4.7). For every t E T, we want

A/'R(t)Ao > 0

for all Ao such that Ao E St, or equivalently, that{o E {x c SoI x can be reached by some trajectory of the PLS} - x*
C1H(t)Ao = 0 (4.9)
x(T) EX, for allTE [0,t]

Next, we explain in detail each constraint in (4.9), starting with the first inclusion.
The switching surfaces So and S1, together with (4.1), are part of some PLS. The set
Sod can exclude those points in So that cannot be reached by a trajectory of the PLS
starting somewhere in 1R" \ So.

Example 4.4 Figure 4-8 shows a PLS with both switching surfaces So and S1, and X
defined between them. Above the switching surface So we have system ,i = A 1 x + B 1 .
In the figure we see the vector fields of systems 1 and (4.1) along the switching surface
So (above and below, respectively), and the vector field of (4.1) along the switching
surface S1. The points to, 21, and 2t2 are the points where CO(A 1 20 + B 1 ) = 0,
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Co(Ai + B) = 0, and C1 (Ai 2 + B) = 0. Note that x1 must be to the left of to in
order to guarantee existence of solutions.

k=Alx+B1

x=Ax+B X

.Si. t~ t' t' t t 2 L ..
Figure 4-8: So C So and S' c Si are some sets defined to the right of to and t2,

respectively

As seen in the figure, points in So between :to and 2i cannot be reached by any
trajectory starting somewhere in R" \ So. Points to the left of tl do not belong to
the domain of the impact map from So to SI. Thus, only points to the right of to can
belong to Sg. Note that those are exactly the points that can be reached by system
1. Similarly, only some points to the right of t2 can be reached by (4.1). Hence,
S' c Si is some set defined to the right of t 2.

The first inclusion of (4.9) is then composed of a linear equality together with a set
of linear inequalities. The equality, CoAo = 0, comes from the fact that Ao E So - xo.
As seen before, all it is needed here is a change of variables Ao = Hoo, where
60 E R"- 1 . As for the inequalities, they are necessary to ensure that every point
in Sod can be reached by some trajectory of the PLS, starting somewhere in R" \ So

(see example 4.4 and figure 4-9). So, for each system i that shares a boundary with
X through So, consider those points in So for which the vector field along So points
inward (see figure 4-9). The set of points in So where the vector field of system i is
parallel to So are those where Co. = 0, i.e., Co(Aix + Bi) = 0, x E So. As in the
left of figure 4-9, assume Co orientation points towards X (if this is not the case, just
consider -Co and -do). The set of points in So that can be reached by system i is
some subset of the set of points such that CO(Aix + Bi) > 0, x E So.

.Xk
x=Aix+Bi Xi

C6\

so 4'9 X
so -X

Figure 4-9: Sets in So where Sod can be defined, for two different PLS
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The equality in (4.9) arises from the fact that A, C Si - x*, i.e., C1A1 = 0. In
terms of AO, we have equality (4.3), that we repeat here

Cie^MAo = d, - C1x*(t) (4.10)

This equality automatically excludes those points in So that do not intersect S1, since
such points do not have a finite solution t > 0 satisfying (4.10). Note that (4.10)
depends on t E T, contrasting with the first equality COzO = 0, which is independent
of t.

The last inclusion in (4.9) ensures that a trajectory x(T), starting at some point
in So, stays in the closure of X, i.e., in X, for all T E [0, t]. Thus, the first switch must
occur at Si (see figure 4-10). The inclusion consists of several infinite dimensional
sets of linear inequalities, one for each boundary of X. For instance, in figure 4-10, it
must be true that CjX(T) > dj, j = 0, 1, 2, for all T E [0, t], assuming Cj orientations
point towards X, as in the figure.

CO,

.... SO

X

C6
S2

Figure 4-10: Trajectories starting at So must remain in X

Less conservative conditions: equality plus one inequality

It was clear from the above description of the set St why condition (4.7) cannot, in
general, be written as a equivalent set of LMIs. Basically, the characterization of
the set St is too complicated. A straightforward transformation of (4.7) into a set
of LMIs was to use only the equality COAO = 0. This resulted in a more conserva-
tive condition (4.8). As for the others equality and inequalities, that is a different
story. To date, there is no non-conservative way to incorporate several linear and
quadratic inequality constraints and reduce the problem to a set of LMIs. Applica-
tion of the S-procedure, introduced in section 2.3, results in equivelent, and therefore
non-conservative, conditions, only when a quadratic function is subject to a single
quadratic constraint. However, this is not the case here.

In this subsection, we show how equality (4.10) plus one inequality can be used
to approximate (4.7) with a set of LMIs, resulting in conditions less conservative
than (4.8). In the next subsection, we briefly discuss how to include other inequalities
using the S-procedure.
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First, we are going to approximate St with a larger set. For a given t E T, let

St D St be the set of points in So where Cix(t) = di. This can be obtained from (4.10),
yielding

yil n x* + Ao E So : C e AtAo d , - C1x*(t)}

To see the differences between St and 5t, consider again example 4.3. Figure 4-11
shows the the solution Cix(t) for two different initial conditions in Sd.

\ I(/\\ \

d o .....- ..---- .......---------Z - ',--- .-- d o --------- --- ---------- - 2

d , -------------------- 
d 1.. .. -- - --'-- 

-

Figure 4-11: On the left: Clx(t) > d, for 0 < t < t2 ; on the right: Cix(t) < di for

tl < t < t2

On the left in figure 4-11, tA0 = {t1 , t 2}. This means x* + Ao belongs to both

St , and St2. The right side of figure 4-11 shows what would happen to C1x(t) if the
trajectory had not switched at t = t, (dashed curve). In that case, it would have
intersected Si again at t = t2 . This means that although t 2 is a solution of (4.10), it
is not a switching time since Cix(t) < 0 for ti < t < t2 . In other words, the switching
time t2 does not satisfy the inequality Cix(t) > di on [0, t 2]. Although both t1 and

t 2 satisfy (4.10), only t1 is a valid switching time, i.e., tA0 = {ti}. Thus, x* + Ao
belongs to St1 , St, and St2, but it does not belong to St2 -

Since St C St, condition (4.7) holds if there exist P1 , P2 > 0, g1 , g2, a such that

R(t) > 0 on -x* (4.11)

for all expected switching times t E T.
In order to transform the last matrix inequality into a set of LMIs, we need to

better characterize the set St. For that, we are going to use one inequality from (4.9)
together with equality (4.10). As discussed above, there are many inequalities to
choose from. For the purpose of demonstrating how this is done, just assume we
choose one of these inequalities, represented here by some L and m such that LAo >
m. A less conservative condition than (4.11) is then

R(t) > 0 on (5t g {x* + Aol LAO > m}) - x* (4.12)

for all expected switching times t E T (see figure 4-12).

As seen in figure 4-12, Ao E (5t n {x + Aol LAO > m}) - X satisfies a conic

relation
,A/'tAo > 0
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St-
LAO<m
LA 0 =m ....

Figure 4-12: Region in So defined by equality (4.10) and the inequality LAO > m
satisfies a conic relation

for some matrix ft (the construction of this matrix will be addressed in section 4.5).
Using the S-procedure, condition (4.12) is equivalent to

R(t) - rtft > 0 on So - x* (4.13)

for some scalar function Tt > 0, and for all expected switching times t E T. Note
that, for each t, (4.13) is now an LMI.

Less conservative conditions: other inequalities

It is still possible to improve conditions (4.13) further more. They do not take ad-
vantage of all other inequalities, including all of those arising from the last inclusion
in (4.9). In this subsection, we show how to incorporate other linear constraints,
and will also discuss tradeoffs between less conservative and computationally efficient
conditions.

In order to guarantee, for instance, that x(7) E X on [0, t], it is necessary that the
trajectory x(T) stays to the correct side of all switching surfaces that compose the
boundary X. In particular, it must be true that Cix(T) > di for all r E [0, t], i.e.,

C1 (e^Ao + x(-r)) > d1

for all T E [0, t]. This is an infinite dimensional set of linear inequalities. To overcome
this difficulty, we consider a finite number of values of r in [0, t]. For example, if
T = t/2, we could have the following linear constraint on AO

Cle At/ 2 Ao > d1 - C 1x*(t/2)

As before, this inequality, together with 9t satisfies a conic relation A'OYt/2Ao > 0 in

which (4.12) would be improved to

R(t) - T - Tltlt/2 > 0 on So - x* (4.14)

for some scalar function Tit > 0, and for all expected switching times t E T.
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There is an infinite number of constraints that can be added to condition (4.14) in
order to further reduce the level of conservatism. On one hand, the more constraints,
the less conservative conditions we get and, in turn, better chances of finding surface
Lyapunov functions (4.5). On the other hand, increasing the number of constraints
will eventually make the problem computationally intractable. In spite of this, and
as we will see later on, it is interesting to notice that many important PLS can be
analyzed with just conditions of the form (4.8), the most conservative of all the ones
presented.

4.3.2 Proof of Results

Proof of theorem 4.2: From (4.6) and using theorem 4.1, we have

A' PIA, - 2A'igi + a, < A' Poo - 2A' go + ao

A' H'P1HtAo - 2Af'Htg1 + ai < A'PAo - 2A' go + ao

Afd' (Po - Ht'P1Ht) Ao - 2A' (go - Ht'gi) + a > 0

Finally, using (4.4) we have

A' (Po - H'P1 Ht) Ao - 2A' (go - H,'gi) wtAo + A'w'awtAo > 0

Condition (4.7) follows from corollary 4.1, which proofs the desired result.

Proof of corollary 4.2: The proof follows since So D St.

4.4 Classes of PLS

We have seen how global analysis of a single impact map can be done using quadratic
Lyapunov functions defined on switching surfaces. The following chapters will answer
the question: how to combine different impact maps associated with a PLS to globally
analyze the system? Basically, for a general PLS, analysis of a single impact map
is not enough to conclude about global stability and performance properties of the
system. As we will see, the combination of several impact maps to globally analyze
PLS is straightforward in some cases, and more complex in others.

We will analyze several well known and very distinct classes of PLS by increasing
order of complexity. These are: relay feedback system (chapter 5), on/off systems
(chapter 6), and saturation systems (chapter 7). Next, we explain the reasons why
we analyze these particular classes of PLS, and what are the main difficulties we will
encounter in each one of them.

e Relay Feedback Systems (RFS). This is one of the simplest, if not the simplest,
class of PLS. But, make no mistake: this is already a very hard class of PLS
to analyze. To prove it are the many attempts by researchers to analyze RFS
over the last decades. In spite of all the efforts, no general global analysis
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methodologies resulted from all this research. In other words, the problem of
rigorous global analysis of RFS is still open.

In the state space, RFS consist of two affine linear systems together with two
parallel switching surfaces. In between the switching surfaces, the choice of the
affine linear system is based on past values of the state. In chapter 5, we will
analyze symmetric unimodal limit cycles3 , although the results there can be
generalized to study other classes of limit cycles.

The reason why we start with this class of systems is that there is only a single
impact map that needs to be analyzed. In fact, RFS are simple enough that
the results developed in this chapter can almost be directly applied. This gives
a chance to prove that the ideas in this chapter have great potential in globally
analyzing PLS. If the methodology introduced in this chapter would fail to
analyze RFS, most likely there would be no reason to expect it to successfully
analyze other more complex classes of PLS. As we will see in the next chapter,
this was not the case, and we successfully proved global asymptotic stability of
a large number of RFS analyzed.

" On/Off Systems (OFS). After successfully globally analyzing limit cycles of
RFS, the question is if we can use the same ideas to prove global asymptotically
stability of equilibrium points of PLS. The analysis of limit cycles at switching
surfaces was natural since we were simply checking if an impact map was getting
close to the intersection of the limit cycle with the switching surface. In case
of PLS with equilibrium points that do not belong to the switching surface, the
analysis of the corresponding impact maps is not as straightforward as in the
case of RFS.

OFS are characterized by an LTI system in feedback with a nonlinear static
controller that switches between closed loop (on) and open loop (off) depending
on the value of the output of the LTI system. In the state space, the system is
composed of two affine linear systems separated by a single switching surface
that may or may not include the equilibrium point being analyzed. The two
most important contributions of chapter 6 are (1) to show that the ideas from
chapter 4 can be used to globally analyze equilibrium points and (2) to explain
how more than one impact map is simultaneously analyzed.

Although several classic analysis methodologies exist to globally analyze OFS,
all fail when OFS have unstable nonlinearity sectors. We will show, however,
that this is no problem in our case. Even those OFS can be globally analyzed
using impact maps and quadratic surface Lyapunov functions.

* The last class of PLS that we will analyze is saturation systems (SAT). SAT
are characterized by an LTI system in feedback with a saturation controller. In
the state space they consist of three different affine linear systems, separated
by two switching surfaces. They are, therefore, perfect to show how the ideas

3A limit cycle is unimodal if it only switches twice per cycle.
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introduced in chapter 4 can be applied to globally analyze equilibrium points of
PLS with more than one switching surface. How to deal with multiple switching
is then the main contribution of this chapter.

4.5 Technical Details: Construction of Conic Re-
lations

We now describe how to construct the cones ft introduced in section 4.3.1. Remem-
ber that for each t > 0, the cone is defined by two hyperplanes in SO: one is the
hyperplane parallel to St containing x* and the other is the hyperplane defined by
the intersection of M = {x* +Ao e Sol LAO = m} and St, and containing the point

x (see figure 4-12). Let Holt and Host, respectively, be vectors in So perpendicular
to each hyperplane. Once these vectors are known, the cone that we are interested
can be easily found. The cone is composed of all the vectors Ao E So - x* such that
A'1fo(sil' + ls')1',Ao > 0. The symmetric matrix /t introduced in (4.13) is just

#t= flo!trl' where #t = stl' + its'. Remember that the cone is centered at x* and
note that after it is chosen, st must have the right direction in order to guarantee
(St n {x* + Ao LAo > m}) C {x* + Ao C So I A'OtAo > 0}.

We first find Holt, the vector perpendicular to St. Looking back at the definition
of St, it is given by

=(Cie^tUo)'
it (CieAti7o(d 1 - Cix*(t))

The derivation of st is not as trivial as it. We actually need to introduce a few extra
variables. The first one is H010 , the vector perpendicular to the set A, given by

1 (Lflo)'

Proposition 4.1 The hyperplane defined by the intersection of M and 5t, and con-
taining the point x* is perpendicular to the vector

H Olt 1101 ,0lili
||loII -- lo||

Proof: M can be parameterize the following way

M *+ AO E Sol AO =71o(lo + l-z), z E Rn-2

and St
± = + AO E Sol AO = lo(lt + itw), w E Rn2

The intersection of M and 9t occurs at points in So such that lo + 1'z = it + if w.
Multiplying on the left by I' we have N'o + l'1z = l'lt or

1111z = |1t|2 - 1/1o (4.15)
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We want to show that

( 1lo|| - ||t H) + liz)= 0

Using (4.15) we have

||o|| -- H ||HHi|| (io + li z) =|l || + |~i~H lo|H - ||__ ||
H it0 H HitHit~~~ ~ i11l0 Hi H0 +lti) (10H +1 Lio Ht" -101 +~o Hit1 H

IH i 101iltHI t1d II 11

The characterization of st is not complete yet. The orientation of st must be
carefully chosen to guarantee that the cone Ct contains St.

Proposition 4.2 If

st =- M 1 m Iliti - |t 1110|

then the cone {x + Ao E So I A'otzo > 0} contains St n {x + Ao I LAO > m}.

The proof, omitted here, is based on taking a point AO C (St n {x* + AoI LAO >
m}) - x* and showing that A'i3tAo > 0.

71



72



Chapter 5

Relay Feedback Systems

This chapter is dedicated to study relay feedback systems (RFS). There are two main
reasons why we study RFS. First, RFS are one of simplest classes of PLS. Thus, their
study and understanding are essential before analyzing more complex classes of PLS.
Second, RFS have been widely used in many real life applications, dating at least to
the beginning of the last century. The interest in such systems is clearly demonstrated
by the large number of publications on the topic.

RFS are indeed one of the simplest classes of PLS. Unfortunately, even for such a
simple class of PLS, not much is known about their global stability. It is well known
that for a large class of RFS there will be limit cycle oscillations. Conditions to check
existence and local stability of limit cycles for these systems are well known. Global
stability conditions, however, are practically non-existent. This chapter presents con-
ditions in the form of linear matrix inequalities (LMIs) that, when satisfied, guarantee
global asymptotic stability of limit cycles induced by relays with hysteresis in feedback
with LTI stable systems. Following the ideas introduced in chapter 4, the analysis is
based on finding quadratic surface Lyapunov functions for maps from one switching
surface to the next switching surface, by solving a set of LMIs.

5.1 Introduction

Analysis of RFS is an old problem. The early work was motivated by relays in
electromechanical systems and simple models of dry friction. Applications of relay
feedback range from stationary control of industrial processes to control of mobile
objects as used, for example, in space research. A vast collection of applications of
relay feedback can be found in the first chapter of [64]. More recent examples include
the delta-sigma modulator (as an alternative to conventional A/D converters) and the
automatic tuning of PID regulators. In the delta-sigma modulator, a relay produces a
bit stream output whose pulse density depends on the applied input signal amplitude

(see, for example, [2]). Various methods were applied to the analysis of delta-sigma
modulators. In most situations, however, none allowed to verify global stability of
nonlinear oscillations. As for the automatic tuning of PID regulators, implemented
in many industrial controllers, the idea is to determine some points on the Nyquist
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curve of a stable open loop plant by measuring the frequency of oscillation induced
by a relay feedback (see, for example, [6]). One problem that needs to be solved here
is the characterization of those systems that have unique global attractive unimodal
limit cycles. This problem is important because it gives the class of systems where
relay tuning can be used.

Some important questions can be asked about RFS: do they have limit cycles? If
so, are they locally stable or unstable? And if there exist a unique locally stable limit
cycle, is it also globally stable? Over many years, researchers have been trying to
answer these questions. [8] and [64] are references that survey a number of analysis
methods. Rigorous results on existence and local stability of limit cycles of RFS can be
found in [3, 33, 66]. [3] presents necessary and sufficient conditions for local stability
of limit cycles. [33] emphasizes fast switches and their properties and also proves
volume contraction of RFS. In [23], reasonably large regions of stability around limit
cycles were characterized. For second-order systems, convergence analysis can be
done in the phase-plane [60, 28]. Stable second-order non-minimum phase processes
can in this way be shown to have a globally attractive limit cycle. In [41] it is proved
that this also holds for processes having an impulse response sufficiently close, in a
certain sense, to a second-order non-minimum phase process. Many important RFS,
however, are not covered by this result. It is then clear that the problem of rigorous
global analysis of relay-induced oscillations is still open.

In this chapter, we prove global asymptotic stability of symmetric unimodall limit
cycles of RFS by finding quadratic surface Lyapunov functions for associated Poincard
maps.2 These results are based on the discovery in the last chapter that Poincare maps
associated with a RFS can be represented as linear transformations parametrized by a
scalar function of the state. Quadratic stability can then be easily checked by solving a
set of linear matrix inequalities (LMIs), which can be efficiently done using available
computational tools. Although this analysis methodology yields only a sufficient
criterion of stability, it has shown to be very successful in globally analyzing a large
number of examples with a unique locally stable symmetric unimodal limit cycle.
Systems analyzed include minimum-phase systems, systems of relative degree larger
than one, and of high dimension. In fact, existence of an example with a globally
stable symmetric unimodal limit cycle that could not be successfully analyzed with
this new methodology is still an open problem. This leads us to believe that globally
stable limit cycles of RFS frequently have quadratic surface Lyapunov functions.

Note that although the stability analysis in this chapter focuses on symmetric
unimodal limit cycles, the same ideas can be applied to prove stability of other types
of limit cycles. As we will see, analysis of symmetric unimodal limit cycles can be
done by analyzing a single map from one switching surface to the other switching

'Symmetric unimodal limit cycles are those that are symmetric about the origin and switch only
twice per cycle.

2Poincar6 maps play the same role here as impact maps did in the previous chapter. It turns
out that in the analysis of symmetric unimodal limit cycles, Poincar6 maps and impact maps are
equivalent notions. In this chapter, we choose to use the terminology of Poincar6 map since this
may be more familiar to the reader.
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surface. Other types of limit cycles require a simultaneous analysis of several maps
from one switching surface to the other switching surface. However, as we will see in
the next two chapters, multiple maps have been shown to work as well as the single
map described in this chapter.

Although the focus of this chapter is on RFS, it is important to point out that
most ideas behind the main results described here can be used in the analysis of more
general PLS.

This chapter is organized as follows. Section 5.2 gives some background on RFS
followed by the main result of this chapter in section 5.3. There, we show that
Poincar6 maps can be decomposed in a such a way that it is possible to reduce the
problem of quadratic stability of Poincar6 maps to solving a set of LMIs. Section 5.4
contains some illustrative examples. Improvements to the sufficient stability condition
presented in section 5.3 are discussed in section 5.5. Finally, section 5.6 considers
computationally issues associated with bounds on switching times of RFS.

5.2 Background

In this section, we start by defining RFS and talking about some of their properties.
Then, we present some relevant results from the literature on existence and local
stability of limit cycles of RFS. Finally, we define Poincar6 maps for RFS.

5.2.1 Definitions

Consider a SISO LTI system satisfying the following linear dynamic equations

= Ax+Bu 
(5.1)

where x E 1R" and A is a Hurwitz matrix, in feedback with a relay (see figure 5-1)

u = reld(y) (5.2)

where d > 0 is the hysteresis parameter. By a solution of (5.1)-(5.2) we mean functions

(x, y, u) satisfying (5.1)-(5.2), where u(t) is piecewise constant and

{ -1} if y(t) > d, or y(t) > -d and u(t - 0) = -1
reld(y(t)) E {1} if y(t) < -d, or y(t) < d and u(t - 0) =-1

{-1, 1} if y(t) = -d and u(t - 0) = -1, or y(t) = d and u(t - 0) = I

t is a switching time of a solution of (5.1)-(5.2) if u is discontinuous at t. We say a
trajectory of (5.1)-(5.2) switches at some time t if t is a switching time.

In the state space, the switching surfaces So and S1 of the RFS are the surfaces
of dimension n - 1 where y is equal to d and -d, respectively. More precisely,

So = {x E R" : Cx = d}
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LTI
U y

Figure 5-1: Relay Feedback System

and
1= {x E R : Cx = -d}

Consider a subset S6' of So given by

So={xE So: CAx+CB>0}

This set is important since it characterizes those points in So that can be reached
by any trajectory starting at S1. We call it the departure set in So (see figure 5-2).
Similarly, define Sa as

S ={xGS1: CAx-CB<O}

This is the arrival set in S1. It is easy to see that So = -Si and Sod = -S where
-X stands for the set {-xjx E X}.

= Ax-B

so

i= Ax+B

Si

Figure 5-2: The arrival set Sod

5.2.2 Existence of Solutions

If an initial condition does not belong to a switching surface then existence of solu-
tion is guaranteed at least from the initial condition to the first intersection with a
switching surface. This follows since in that region the system is affine linear. When
an initial condition belongs to a switching surface, however, depending on the RFS, a
solution may or may not exist. If d > 0 then existence of solution is always guaranteed
since there is a "gap" between both switching surfaces. This gap allows a trajectory
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to evolve according to an affine linear system.
In the case of the ideal relay, i.e., when d = 0, for some RFS there are initial

conditions for which no solution exists. In figure 5-3, we have two examples of ideal
RFS. The figure shows the vector field along both sides of the unique switching surface
S {xJ Cx = 0}. Above, the vector field is given by i = Ax - B, and below by
x - Ax+B. p+ and p_ are those points in S such that C(Ax± CB) = 0, respectively.
On the left in figure 5-3, CB < 0, and on the right CB > 0. When CB < 0, every
point in S has at least one solution. For an initial condition on the left of p-, the
trajectory moves downwards, and on the right of p+ it moves upwards. In between
p_ and p+, the trajectory can move either upwards or downwards. When CB > 0,
however, there is no solution if a trajectory starts between p+ and p-. The reason for
this is that the vector field on both sides of the switching surface points towards the
switching surface. In these situations, and in order to guarantee existence of solution,
an hysteresis with d > 0 can be introduced to avoid chattering, or the definition of
relay in (5.2) can be slightly modified to allow trajectories to evolve in the switching
surface, leading to the so-called sliding modes. Although RFS with sliding modes are
not considered in this thesis, we expect that such systems can be analyzed using the
same ideas described here. Sliding modes are currently under investigation and will
be the topic of future publications.

Hence, in this paper, we only consider those RFS where existence of solution is
guaranteed for any initial condition. Existence of solution is guaranteed if d > 0, or
if d = 0 and CA k B < 0, where k E {0, 1, ..., n - 1} is the smallest number such that
CAkB : 0 (see [33] for details).

CB<O x=Ax-B CB>O x=Ax-B

Cx>0 V Cx>0

Cx=- Cx=6
Cx<0 Cx<O

x=Ax+B x=Ax+B

Figure 5-3: Existence of solutions when d = 0

Note that trajectories of ± = Ax - B starting at any point x0 E So will converge
to the equilibrium point A- 1B. When connected in feedback with the relay, one of
the following two possible scenarios will occur for a certain trajectory starting at x0 :
it will either cross S, at some time, or it will never cross S1. The last situation is not
interesting to us since it does not lead to limit cycle trajectories. One way to ensure
a switch is to have CA 1 B + d < 0, although this is not a necessary condition for the
existence of limit cycles. However, if we are looking for globally stable limit cycles,
it is in fact necessary to have CA- 1 B + d < 0. Otherwise a trajectory starting at
A-'B would not converge to the limit cycle. Throughout this chapter, it is assumed
CA- 1B + d < 0.

As mentioned before, for a large class of processes, there will be limit cycle oscil-
lations. Let (t) be a nontrivial periodic solution of (5.1)-(5.2) with period 2t*, and
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let -y be the limit cycle defined by the image set of (t). The limit cycle -y is called
symmetric if (t+t*) = -- (t). It is called unimodal if it only switches twice per cycle.
A class of limit cycles we are particularly interested in is the class of all symmetric
unimodal limit cycles.

The next proposition, proven in [3], gives necessary and sufficient conditions for
the existence of symmetric unimodal limit cycles. This proposition is a special case
of proposition 3.2, with k = 1.

Proposition 5.1 Consider the RFS (5.1)-(5.2). Assume there exists a symmetric
unimodal limit cycle - with period 2t*. Then the following conditions hold

g(t*) := C(eAt* + I)-1(eAt* - I)A-1 B - d = 0 (5.3)

and

y(t) = C [eAt(x* - A- 1B) + A-1B] > -d for 0 ; t < t*

Furthermore, the periodic solution -y is obtained with the initial condition x* E Sod

given by
x(0) = x* = (eAt* + I) (e At* - I)A- 1 B

5.2.3 Poincard Maps of RFS

Before defining Poincare maps, it is important to notice an interesting property of
linear systems in relay feedback: their symmetry around the origin (see figure 5-4).

i= Ax-B
x(t)

-x- i

-x(t) = Ax+B

Figure 5-4: Symmetry around the origin

Proposition 5.2 Consider a trajectory x(t) of i = Ax - B starting at xO G So.
Then -x(t) is a trajectory of , = Ax + B starting at -xO G S1.

Proof:- Assume xO E So. Since

-z~t = ( Ax(t) - B)

=A(-x(t))+ B

-x(t) is a trajectory of =Ax + B starting at -xo E S1.
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This property tells us that the stability analysis of a limit cycle only needs to be
considered from one switching surface (say So) to the other switching surface (S1).
In other words, for analysis purposes, it is equivalent to consider the trajectory from
x, E So to the next switch x2 E S, or the trajectory starting at -xi E Si and
switching at -x 2 E So. We then focus our attention to trajectories from So to S1.

Next, we define Poincar6 maps for RFS. Typically, such maps are defined from
one switching surface and back to the same switching surface. In the case of RFS,
however, a Poincard map only needs to be defined as the map from one switching
surface to the other switching surface, due to the symmetry of the system. Note that,
as mention before, Poincar6 maps play the same role here as impact maps did in the
previous chapter. In this chapter, the Poincare map we consider is defined from one
switching surface to the other switching surface, just like impact maps were defined
before.

Consider a symmetric unimodal limit cycle 'y, with period 2t*, obtained with the
initial condition x* E Sg. This means that a trajectory x(t) starting at x* crosses the
switching surface Si at -x* = x(t*) E S' (see figure 5-5).

Y

so -x* A

Si

Figure 5-5: Definition of a Poincar6 map for a RFS

To study the behavior of the system around the limit cycle we perturb x* by A
such that x* + A E Sg. Consider a solution of (5.1)-(5.2) with initial condition x* + A
and let -x* - A, C Si be its first switch. We are interested in studying the map
from A to A, (see figure 5-5). As seen in example 4.3, this map is not continuous
and is multivalued. In general, there exist A C Sod such that A1 is not unique. This
is illustrated in the next example. Note that this is the same as example 4.3, but now
applied to a RFS.

Example 5.1 Consider the RFS (5.1)-(5.2) where the LTI system is given by

H(s) = -+s-4
(s + 1)(s + 2)(s + 3)

and the hysteresis parameter is d = 0.5. Let u(0) = -1, y(O) = d, y(0) ~ -6.36, and
() 1-- 31.67. The resulting y(t) can be seen in figure 5-6.

When t ~ 0.47, y(t) = -d and Q(t - 0) = 0. At this point, the trajectory can
return to the region where Cx > -d and u(t + 0) = u(t - 0) = -1 (dash trajectory),
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0.2-

y(t) Switch, u(t)=1
0 -

-0.2 -

- - No switch, u(t)=-1

-0.4 - I

-d -- - - - -
-0.6 -

0 05 1 15 2 25

Figure 5-6: Existence of multiple solutions

or it can move into the region where Cx < -d with u(t+0) = 1 (dash-dot trajectory).
This means that a switch can occur at either t = 0.47 or t = 2.85. 0

Let x(0) = x* + A E Sod. Define tA as the set of all times ti > 0 such that
y(ti) = -d and y(t) > -d on [0, ti]. For the initial condition considered in the
previous example, tA = {0.47, 2.85}. Let -x* - A, E x(tA). Since -x* - A, E Sa
then x* + A, E So. Consider the multivalued Poincard map To : 0 -+ So defined by
x* + A, E To(x* + A). Since x* is fixed, the Poincar6 map can be redefined as the
map T: - x -+ S - x* given by A, E T(A), where T(A) To(x* + A) - x*. In
result, A = 0 is an equilibrium point of the discrete-time system

Ak+1 c T(Ak) (5.4)

The following proposition, proven in [3], gives conditions for local stability of sym-
metric unimodal limit cycles. This result, based on the linearization of the Poincare
map around the origin, is a special case of proposition 3.3, with k = 1.

Proposition 5.3 Consider the RFS (5.1)-(5.2). Assume there exists a symmetric
unimodal limit cycle -y with period 2t*, obtained with the initial condition x* G So.
Assume also the limit cycle is transversal3 to So at x*. The Jacobian of the Poincari
map T at A = 0 is given by

= - I) e^'
CV

where v = -Ax* - B. The limit cycle - is locally stable if W has all its eigenvalues
inside the unit disk. It is unstable if at least one of the eigenvalues of W is outside
the unit disk.

Define T, the set of expected switching times of the Poincar6 map T, as in defi-
nition 4.1, i.e.,

T = {t| t tA, A Sod x*}

'0 is transversal to So at p = 0(t) E So if Ck(t - 0) : 0.
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Note that t* E T.
In this chapter, we are interested in systems that have a unique locally stable

unimodal limit cycle. For such systems, the idea is to find a quadratic Lyapunov
function on the switching surface and show that the Poincar6 map from one switching
surface to the other switching surface is globally stable. This, in turn, shows that the
limit cycle is globally asymptotically stable. The next section shows that the Poincar6
map from one switching surface to the other switching surface can be represented
as a linear transformation analytically parametrized by the switching time. This
representation will then allow us to reduce the problem of quadratic stability to the
solution of a set of LMIs.

5.3 Poincar6 Map Decomposition and Stability

This section contains the main result of this chapter. Here, we show that Poincard
maps induced by an LTI flow between the switching surfaces So and Si can be rep-
resented as a linear transformation analytically parametrized by a scalar function of
the state. This proposition is similar to theorem 4.1.

Proposition 5.4 Consider the Poincari map T defined above. Let

vt = (eAt - eAt*) (x* - A-1B)

and assume |Cvt| > K||vtJ|, for some K > 0 and all t G T. Define

H(t) = (t"- I) eAt
(Cet

for all t E T (for t t*, H(t) is defined by the limit as t -+ t*). Then, for any
A * xo and A1 E T(A) there exists a t E T such that

A1 = H(t)A (5.5)

Such t E tA is the switching time associated with A1 .

This result says that Poincare maps induced by an LTI flow between two hyper-
planes can be represented as a linear transformation analytically parametrized by a
scalar function of the state. The advantage of expressing such map this way is to
have all nonlinearities depending on only one parameter t. Although t depends on
A, once t is fixed, the map becomes linear in A. Note that H(t) defined above is
continuous in t E T.

The assumption in proposition 5.4 is somehow similar to the assumption in the-
orem 4.1. Here it is slightly different since at t = t*, Cvt* = 0 and vt* = 0. By
continuation, the quotient vt/(Cvt) (and, in turn, H(t)) is well defined t*. What the
assumption in the proposition says is that the trajectory x* (t) of ± = Ax - B starting
at x* does not intersect Si for t > t*. As we have mentioned in section 4.2, however,
even if this assumption is not satisfied for some t, E T, it is still possible to obtain
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a linear representation for the Poincare map. This linear transformation would need
to be parametrized by another variable at t, i.e., A1 = H,(t, 6)A 0 .

Proof: The proof is similar to the proof of theorem 4.1. Let x(O) 'o S .
Integrating the differential equation (5.1) gives

x(t) e^txo - eA(tT-)Bdr

= eAt(x - A-B) + A-B

If x(O) = x* and t = t* then x(t*) = -x*, i.e.,

-x* = eAt* (x* - A- 1 B) + A 1 B (5.6)

Now, let x(O) = x* + A E So and A1 E T(A). Let also t E tA be the switching time
associated with A 1 . Then

-X* - A1 = eAt (x* + A - A- 1 B) + A- 1B

Using (5.6), the last equality can be written as

-A 1 = eAt (x* - A- 1B + A) - eAt* (X* - A- 1B)

= etA +vt

Since -x* - A1 E S 1, C(-x* - A1 ) = -d, or CA1 = 0, that is,

Ce AA + CVt = 0 (5.7)

Therefore, it is also true that vtCeAtA + vtCvt = 0. Since, by assumption, 1Cvt1 >
Kjjvtjj, for some K > 0 and all t E T,

Vt = e^CeA
Cvt

is well defined for t C T, (for t = t* it is defined via continuation) . Replacing above
we get

A,= -I e AtA
(Cvt

for t E T.

This result agrees with proposition 5.3. Via continuation, H(t) at t = t* is given
by

VC
H(t*) = - I) eAt*

where v = eAt* (Ax* - B). Using equality (5.6), v can be written as v = eAt* (Ax* -
B) = -Ax* - B. This means H(t*) is exactly the Jacobian of the Poincar6 map T
at A = 0.
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As explained in chapter 4, based in this theorem, it is possible to reduce the
problem of quadratic stability of Poincar6 maps to the solution of a set of LMIs.
The Poincar6 map T defined above is quadratically stable if there exists a symmetric
matrix P > 0 such that

TT(A)PT(A) <ATPA, VA E S- x*, A # 0 (5.8)

Success in finding a P > 0 satisfying (5.8) is then sufficient to prove global asymptotic
stability of the limit cycle 7.

A sufficient condition for the quadratic stability of the Poincar6 map can easily
be obtained by substituting (5.5) in (5.8):

AT (p - HT(t)PH(t)) A > 0 (5.9)

for some P > 0 and for all A E So, with associated switching times t E tA.
There are several alternatives to transform (5.9) into a set of LMIs. A simple

sufficient condition is

P - HT (t)PH(t) > 0 on So - x* (5.10)

for some P > 0 and for all t E T. In the next section, using some illustrative
examples, we will see that although this condition is more conservative than (5.9), it
can prove global asymptotic stability of many important RFS. Other less conservative
conditions are considered and discussed in section 5.5. These are based on the fact
that T is a map from Sod to Sod, and that the set of points in So with the same
switching time t is a convex subset of a linear manifold of dimension n - 2.

Before moving into the examples, it is important to notice that condition (5.10)
can be relaxed. Since A is Hurwitz and u ± t1 is a bounded input, there is a bounded
set such that any trajectory will eventually enter and stay there. This will lead to
bounds on the difference between any two consecutive switching times. Let t_ and t+
be bounds on the minimum and maximum switching times of trajectories in that set.
The expected switching times T can, in general, be reduced to a smaller set [t_, t+]-
Condition (5.10) can then be relaxed to be satisfied on [t_, t+] instead of t E T. See
section 5.6 for details.

5.4 Examples

The following examples were processed in matlab code. The latest version of this
software is either available at [27] or upon request. Before presenting the examples,
it is important to understand these matlab functions. Overall, the user provides an
LTI system, together with d, the hysteresis parameter. If the RFS is proven globally
asymptotically stable, the matlab functions return a matrix P > 0 that is guaranteed
to satisfy (5.10) for all expected switching times t E [t_, t+], where t_ and t+ are
found as explained in section 5.6.

In more detail, after providing the LTI system and d, the software confirms that
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certain necessary conditions are met. Then, it checks if there exists a unique locally
stable symmetric unimodal limit cycle. This is done by first finding t*, the zeros
of (5.3). A symmetric unimodal limit cycle exists if, for some i, y(t) + d > 0 for all
t E (0, ti), and is unique if this is true for only one i.

As explained in section 4.3.1, although the vectors A and A1 are n-dimensional,
the solution generated by the Poincard map T is restricted to the n - 1-dimensional
hyperplane So (see figure 5-7). Therefore, the map T is actually a map from R"-1

to R"- 1. Let 1 c C' be a map from R" 1 to So, where C' are the orthogonal
complements to C, i.e., matrices with a maximal number of column vectors forming
an orthonormal set such that CC' = 0. An equivalent condition to (5.10) is then

Q - F T (t)QF(t) > 0 (5.11)

for some symmetric (n - 1) x (n - 1) matrix Q > 0 and all expected switching times
t E [t_, t+], where F(t) = HTH(t)H. P > 0 in (5.10) can be obtained by letting
p = lQrT.

S X*H(t) S

AA
x*+A

-x*- Al

F(t) =H H(t)H

Figure 5-7: T is a n - 1-dimensional map

(5.11) on [t, t+] forms an infinite set of LMIs. Computationally, to overcome
this difficulty, we grid this set to obtain a finite subset of expected switching times
t_ = to < ti < -.. < tk = t+. In other words, Q > 0 is found by solving a finite set of

LMIs consisting of (5.11) on t = {tj}, i = 0, 1, ..., k. For a large enough k, it can be
shown that (5.11) is also satisfied for all t E [t_, t+]. The idea here is to find bounds
on the derivative of the minimum eigenvalue of Q - FT(t)QF(t) over (ti, tj+1), and
to use these bounds to show that nothing can go wrong in the intervals (ti, ti+1), i.e.,
that (5.11) is also satisfied on each interval (ti, ti+1).

Solving a set of LMIs allows us to find Q > 0 in (5.11). In the examples below,
once Q > 0 is found, we confirm (5.11) is satisfied for all expected switching times by
plotting the minimum eigenvalues of Q - FT(t)QF(t) on [t-, t+], and showing that
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this in indeed positive in that interval.

Example 5.2 Consider the RFS on the left of figure 5-8. Since for this system any
state-space realization of the LTI system in relay feedback results in CB < 0, it is
possible to consider the ideal relay, i.e., d = 0. Although very simple, this system has
never been proved globally stable.

04-o 6ei

Figure 5-8: 3 d-order non-minimum phase system

From the center of figure 5-8 it is easy to see the RFS has one unimodal symmetric
limit cycle with period approximately equal to 2 x 1.4. This corresponds to x* ~
[0.60 -0.44 0 .3 2 ]T E So. We analyzed this same RFS in [23]. There, we characterized
a reasonably large region of stability around the limit cycle. Using the software
described above, however, we were able to find a Q > 0 satisfying (5.11) for all
expected switching times [t_, t+], showing, this way, that the RFS is actually globally
asymptotically stable. The right side of figure 5-8 confirms the result. N

Example 5.3 Consider the RFS in figure 5-9. Let d = 0.25. As seen in figure 5-9,
the RFS has one unimodal symmetric limit cycle with period approximately equal to
2 x 0.94.

Figure 5-9: 3rd-order minimum phase system

Again, a Q > 0 satisfying (5.11) for all expected switching times [t-, t+] exists,
which means the limit cycle is globally asymptotically stable. This is confirmed from
the right side of figure 5-9. 0

Example 5.4 Consider the 6th-order RFS in figure 5-10. In this case, sliding modes
occur if d = 0 (CB = 1). However, stability was proven for d as low as 0.061.
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Figure 5-10 shows the result to d = 0.061. Note that, in the figure on the right, the
function depicted is always positive although, due the bad resolution, it may seem
otherwise. This is due to the fact that d = 0.061 is the lowest value for which we can
still prove global stability.

Figure 5-10: 6th-order system

It is interesting to notice that more than one limit cycle exist for 0 < d < 0.061.
Thus, for this example, condition (5.10) is not conservative. M

Example 5.5 Consider the RFS in figure 5-11 consisting of an LTI system with
relative degree 7 in feedback with an hysteresis, where d = 0.1. As seen in the center
of figure 5-11, this RFS has a symmetric unimodal limit cycle with period 2t*, where
t* ~6.89. Note how
parameter d.

1

(s + 1

the period of the limit cycle is much larger than the hysteresis

Figure 5-11: System with relative degree 7

Again, from the right side of figure 5-11 we conclude that the limit cycle is globally
asymptotically stable U

5.5 Improvement of Stability Condition

As mentioned before, there are several alternatives to transform (5.9) into a set of
LMIs. Here, we explore some of these alternatives to derive less conservative con-
ditions than (5.10). Since many of the ideas in this section were discussed in sec-
tion 4.3.1, we will skip some of the details.
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The Poincare map T is a map from Sod to Sod and, for each point in Sod, there
is at least one associated switching time t. An interesting property of this map is
that the set of points in So with the same switching time t forms a convex subset
of a linear manifold of dimension n - 2. Let St be that set, i.e., let St be the set of
points x* + A E So that have t as a switching time, i.e., t E tA (see figure 5-12). In
other words, a trajectory starting at xO E St satisfies both y(t) ;> -d on [0, t], and

y(t) = -d. Note that since T is a multivalued map, a point in So may belong to more
than one set St. In fact, in example 5.1, there existed a point in So that belonged to
both SO.47 and S2.85 .

00

S, xit)

sd

Figure 5-12: Example of a set St (in R 3 , both St and its image in Si are segments of
lines)

Condition (5.10) can then be improved to

P HT (t)PH(t) > 0 on St - x* (5.12)

for some P > 0 and for all expected switching times t.

The problem with condition (5.12) is that, in general, the sets St are not easily
characterized. An alternative is to consider a set St D St obtained from equation (5.7),
given by= * + A E S : CeAtA = -CVt

To see the difference between St and 9t, refer to figure 4-11 and the discussion fol-
lowing the figure.

Since St C 9t, condition (5.12) holds if there exists a P > 0 such that

P - HT(t)PH(t) > 0 on 9t - z* (5.13)

for all expected switching times t E [t, t+.-
As seen in figure 5-13, A E 9t - x* satisfies a conic relation

87



for some matrix #3 (section 4.5 explains how this matrix is constructed). Let

Ct {I *+ A E So : A7L3A > 0}

It is important to notice that it is equivalent to say that some matrix M satisfies
M > 0 on 5t-X* or that M > 0 on Ct -x*. This has to do with the fact that quadratic
forms are homogeneous. To see this, assume ATMA > 0 for all A E 5t - x*. Let
x = AA where A E R\{0}. Then xTMx = A2 ATMZA > 0, which is to say M > 0 on
Ct - x*. The converse follows since St C Ct.

boundary
Of Sa

Figure 5-13: View of the cone Ct in the So plane

Condition (5.13) is then equivalent to:

P - H T (t)PH(t) > 0 on Ct - x* (5.14)

for some P > 0 and for all expected switching times t. Using the S-procedure,
condition (5.13) is again equivalent to

P - HT (t)PH(t) - Tt!t > 0 on So - x* (5.15)

for some P > 0, some scalar function Tt > 0, and for all expected switching times
t E [t_, t+]. Note that, for each t, (5.15) is an LMI .

Example 5.6 Consider again the system with relative degree 7 analyzed in exam-
ple 5.5. For small values of d > 0 there is no P > 0 satisfying condition (5.10). Using
condition (5.15), however, a P > 0 and a positive function Tt satisfying (5.15) are
known to exist for values of d as small as 0.00404. Figure 5-14 shows the result to
d = 0.00404. Again, the function depicted on the right in the figure is always positive
although, due to bad resolution, it may seem otherwise.

Note that the g function on the left of the figure has 3 zeros. However, only one
corresponds to a limit cycle.

Although condition (5.10) was not able to prove global stability of the RFS for
small values of d, the less conservative condition (5.15) proved that the limit cycle
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Figure 5-14: System of relative order 7 with d = 0.00404

is globally asymptotically stable for small values of d. An interesting fact is that for
0 < d < 0.00378 there is more than one limit cycle.

It is possible to improve condition (5.15) further more. This does not take advan-
tage that a trajectory starting at x* +A E St must satisfy y(T) > -d on [0, t]. This is
captured by condition (5.12) but not by (5.15) since St D St. Constraint y(r) > -d
on [0, t] can be expressed as

CeAT A > -C, (5.16)

for all [0, t]. However, this last inequality would lead to an infinite dimensional set
of LMIs. One way to transform the problem into a finite set of LMIs is to consider
certain samples of time in (0, t). For instance, if r = t/2 then we would have the
following constraint on A

Ce 2A > -CVtl2

This, together with A E S', satisfies a conic relation AT'Yt/ 2 A > 0 in which case (5.15)
could be improved to

P - HT(t)PH(t) - Ttt - Tlt't/2 > 0 on So - x* (5.17)

for some scalar function Tit > 0

There is an infinite number of constraints that can be added to condition (5.17)
in order to further reduce the level of conservatism. On one hand, the more con-
straints, the better chances to find surface Lyapunov functions. On the other hand,
increasing the number of constraints will eventually make the problem computation-
ally intractable. In spite of this, it is interesting to notice that many important RFS
were proven globally stable with just conditions (5.10) (the most conservative of all
presented in this chapter).

We want to point out that the value of all these results lie in the fact that they
work well. In fact, we have not been able to find a RFS with a unique locally stable
symmetric unimodal limit cycle that could not be proven globally stable. This led us
to believe that globally stable limit cycles of RFS frequently have quadratic surface
Lyapunov functions.
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5.6 Computational Issues: Bounds on Switching
Times

In this section we will talk about computational aspects related to finding P > 0
in (5.10) and (5.15). First, we show that since A is Hurwitz and u = ±1 is a bounded
input, there is a bounded and invariant set such that any trajectory will eventually
enter. This will lead to bounds on the difference between any two consecutive switch-
ing times. This way, the search for P > 0 in (5.10) and (5.15) becomes restricted to
0 < t_. < t < t+ < oo-

For a fixed t E T, condition (5.10) is an LMI with respect to P, while (5.15) is
an LMI with respect to P and Tt. We want to show that it is sufficient that condi-
tions (5.10) or (5.15) are satisfied in some carefully chosen interval [t-, t+], instead
of requiring them to be satisfied for all expected switching times t E T. In order to
do so, one must guarantee there exists a to such that the difference between any two
consecutive switching times of a trajectory x(t) for t > to is higher than t_ but lower
than t+. Before we find such bounds, we need to show there is a particular bounded
set such that any trajectory will eventually enter and stay there (i.e., will not leave
the set).

Proposition 5.5 Consider the system ± = Ax + Bu, y = Fx, where A is Hurwitz,
u(t) = ±1, and F is a row vector. Then, for any fixed t > 0,

lim supIFeAx(t)If c FeAB dT < f|FeAtB|1
t-*oof

Proof: At time t, x(t) is given by

x(t) = eAtxo + J0t eA(tT-)Bu(T)dT

Therefore

lim sup Fe Aix(t) lim sup Fe A (eAt xo + je^A( t-)Bu(T)dT)
t-+oo to\ 0

" lim sup Fe Afe At xO + lim sup FeA ft eA(t-)Bu(T)dT
t-*oo t-4oo

" 0 + lim sup] Fe A(t+t-r)Bu(T) dT
t-+00 0

" lim sup Fe A(t+ft-r)B dT
t-+oo 0O
tp00

- f OFeATB dT

< Fe ATB dT

which is equal to ||FeAtB |1.
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We now focus our attention in finding an upper bound for t+. First, remember
from the proof of theorem 5.4 that a trajectory x(t) starting at xo E Sd is given by
x(t) e^t(xo - A- 1 B) + A- 1B. Then the output y(t) = Cx(t) is given by

y(t) = CeAt (xO - A- 1 B) + CA- 1 B

By definition of So, y(t) > -d at least in some interval (0, e), where c > 0. However,
since we are assuming CA-'B < -d, and A Hurwitz, it is easy to see that y(t) cannot
remain larger than -d for all t > 0 (see figure 5-15). For any initial condition xO,
CeA,(xo - A-B) -+ 0 as t -+ oc. Hence, since for sufficiently large time t, x(t) is
bounded (from the above proposition), an upper bound t+ on the expected switching
times can be obtained.

d --------\-------
y~t)

d ----------- -
CA- B ------------------------------

Figure 5-15: If there were no switches, y(t) -+ CA- 1B

Proposition 5.6 Let t+ > 0 be the smallest solution of

J Ce AB dT + ICeAt+A-BI < -(CA- 1B + d) (5.18)

If ta and tb are sufficiently large consecutive switching times then |ta - tb t+-

Proof: Assume that after a sufficiently large time the trajectory is at xo E So.
Without loss of generality, assume x(0) = xo. Then y(t) will be positive in some
interval (0, e). We are interested in finding an upper bound on the time it takes to
switch. That is, we would like to find an upper bound t+ > 0 of those t > 0 such
that y(t) = -d, i.e.,

CeAt+(xo - A- 1B) = -(CA- 1 B + d) > 0

Using proposition 5.5 with F = C and t t+, we can get a bound on the left side of
the inequality

CeAt+xo - CeAt+ A-1B < CeA+xo| + ICeAt+A-lB|

t jCeATB dr + |CeAt+AlB|

Therefore, t+ > 0 must satisfy (5.18).
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Remember that if xo c s, y(t) will be positive at least in some interval (0, c). The
next result shows that in the bounded invariant set characterized in proposition 5.5,
e cannot be made arbitrarily small. Basically, for sufficiently large time t, x(t) is
bounded, and a lower bound on the time it takes between two consecutive switches
can be obtained.

Proposition 5.7 Let kd = -2CB, kdd = ||CA2 eAtRI||+maxt>o |CeAtAB|, and kdl =

IICAeAB||1 + maxt>o ICeAtB and define

k 2+ k + 4kaati-kd±+ Vk±4ddd

kdd

and
2d
kdl

Also, let t_ = max {t1, t2}. If ta and tb are sufficiently large consecutive switching
times then |ta - tbl > t.

Proof: There are many ways to find bounds on t. We will show two here: t, and

t2. Since they are found independently of each other, we are interested in the larger
one. We start with t1.

Assume again that after a sufficiently large time the trajectory is at xo C Sod.
Without loss of generality, assume x(0) = xo. This means that right before the
switch (at t = 0-), y'(0) > 0, i.e., CAxO + CB > 0. Therefore, after the switch at
t = 0+, '(O+) = CAxO - CB = CAxo + CB - 2CB > -2CB. That is, y(O+) > kd.

We also need bounds on the second derivative of y for t > 0. From y(t) we get
= CAeAt(XO - A- 1 B), and j(t) - CA2eAt(xo - A-1B). This means that

I VO |= |CA2eAt(xo - A- 1 B)

< ICA 2eAtxol + |Ce^tAB|

< ||CA2eAt BI + max |Ce AtB|

= kdd

So, -kdd < j(t) < kdd. In order to find a lower bound on the switching time, we
consider the worst case scenario, that is, we consider the case when p(t) = -kdd and
y(O) = kd. This implies that y(t) = -kddt + kd. Integrating once more and knowing
that y(O) = d, yields

y(t) =- t2 + kdt +d
2

We are looking for values of t = ti such that y(ti) = -d and ti > 0. y(ti) = -d has
two solutions

kd ± kk + 4kddd

kdd
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However, only one is positive (the one with the + sign) since j(t) < 0 for all t and
either y(O) > 0 (if d> 0) or y(0) > 0 (if d 0 and CB < 0).

To find t2 we find a bound on the first derivative of y for t > 0

|y M|I= CAeAt(xo - A- 1B)

< |CAe^Axo| + ICeABI

< ||CAe^ 'B|I| + max |Ce AB|
t;>O

- kdl

So, -kdl < y(t) < kdl. The worst case scenario is the case when y(t) = -kdl (with
y(O) = d). Therefore, y(t) = -kdlt + d. Again, we are looking for values of t = t2
such that y(t 2 ) = -d and t 2 > 0, i.e., the solution of -kdlt 2 + d = -d. 0
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Chapter 6

On/Off Systems

This chapter addresses the problem of global stability analysis of on/off systems
(OFS) using quadratic surface Lyapunov functions. In the last chapter, quadratic
surface Lyapunov functions were successfully applied to prove global asymptotic sta-
bility of limit cycles of relay feedback systems. Now, we show that these same ideas
can be used to prove global asymptotic stability of equilibrium points of piecewise lin-
ear systems (PLS). We consider an OFS, which is characterized by an LTI system in
feedback with a nonlinear static controller that switches between closed loop (on) and
open loop (off) depending on the value of the output of the LTI system. We present
conditions in the form of LMIs that, when satisfied, guarantee global asymptotic sta-
bility of an equilibrium point. A large number of examples was successfully proven
globally stable, including systems with unstable nonlinearity sectors, for which clas-
sical methods like small gain theorem, Popov criterion, Zames-Falb criterion, IQCs,
fail to analyze. The main contribution of this chapter is to show that the tools devel-
oped in chapter 4 can be used to not only analyze limit cycles (as seen in chapter 5),
but also equilibrium points, even when these do not belong to a switching surface.
This opens the door to the possibility that more general PLS can be systematically
analyzed using quadratic surface Lyapunov functions.

6.1 Introduction

The ideas introduced in chapter 5 were very successful in proving global stability of
limit cycles of RFS. On the switching surfaces we found quadratic Lyapunov functions
that were used to prove that the impact map, i.e., the map from one switching surface
to the other switching surface, was contracting in some norm. Such contraction, in
turn, proved the limit cycle to be global asymptotically stable. This lead to the
discovery that quadratic surface Lyapunov functions can be used in the stability
analysis of limit cycles of RFS.

In chapter 5 there was an obvious choice on how the stability problem needed to
be setup since the fixed point, consisting of the intersection of the limit cycle with the
switching surface, belonged to the switching surface. Therefore, all we needed was to
show that consecutive switches were getting closer in some norm to the fixed point.
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This could even be done by just analyzing a single impact map due to the symmetry
of RFS. In this chapter, we show that the approach introduced in chapter 4 can also
be used to prove global asymptotic stability of equilibrium points, even when these
equilibrium points do not belong to the switching surface. In case an equilibrium point
belongs to the switching surface, the problem is similar to the one in chapter 5 , with
the added difficulty that now we have to simultaneously analyze two impact maps,
instead of just one. If an equilibrium points does not belong to the switching surface,
setting up the stability problem on the switching surface is not so straightforward.
This particular aspect, together with the problem of analyzing simultaneously more
than one impact map, will be the main focus of this chapter. We show that even in the
case where equilibrium points do not belong to the switching surface, analysis using
quadratic surface Lyapunov functions can still be applied. When quadratic surface
Lyapunov functions are appropriately selected, they can be used to show contraction
of impact maps, that, in turn, prove global asymptotic stability of equilibrium points.

To demonstrate these ideas, we chose a class of PLS known as on/off systems
(OFS). An OFS can be thought of as an LTI system that switches between open
and closed loop. The switches are determined by the values of the output of the
LTI system. OFS can be found in many engineering applications. In electronic
circuits, diodes can be approximated by on/off controllers. Transient behavior of
logical circuits that involve latches/flip-flops performing very fast on/off switching
can be modeled using on/off circuits and saturations. In general, on/off circuits have
many applications in electronics and circuit design. Another area of application of
OFS is aircraft control. For instance, in [12], a max controller is designed to achieve
good tracking of the pilot's input without violating safety margins.

We are interested in checking if a unique locally stable equilibrium point of an
OFS is also globally stable. The idea is to construct quadratic Lyapunov functions
on the switching surface of the OFS to show contraction in some sense of impact
maps. Under certain easily verifiable conditions, quadratic stability of impact maps
is equivalent to globally asymptotically stability of the equilibrium point. The search
for quadratic surface Lyapunov functions is efficiently done by solving a set of LMIs.

As in relay feedback systems, a large number of examples was successfully proven
globally stable. These include systems with an unstable affine linear subsystem, sys-
tems of relative degree larger than one and of high dimension, and systems with un-
stable nonlinearity sectors, for which classical methods like small gain theorem, Popov
criterion, Zames-Falb criterion, and integral quadratic constraints [68, 35, 16, 44, 42],
fail to analyze. In fact, existence of an example with a globally stable equilibrium
point that could not be successfully analyzed with this new methodology is still an
open problem.

This chapter is organized as follows. Section 6.2 starts by formulating the prob-
lem. Section 6.3 presents the main results of this chapter followed by some illustrative
examples in section 6.4. In section 6.5 we show a way to improve the stability condi-
tions presented in section 6.3. Section 6.6 presents a special case of OFS where the
switching surface includes the origin. Finally, section 6.7 discusses some technical
details.
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6.2 Problem Formulation

The main purpose of this section is to introduce the problem we plan to solve. We
start by defining OFS followed by some necessary conditions for the global stability of
a unique locally stable equilibrium point. We then talk about some of the properties
of this class of systems.

An OFS is defined as follows. Consider a SISO LTI system satisfying the following
linear dynamic equations

,= Ax + Bu (6.1)
y =- CX

where x E lR", in feedback with a on/off controller (see figure 6-1) given by

u(t) = max {0, y(t) - d} (6.2)

where d E R. By a solution of (6.1)-(6.2) we mean functions (x, y, u) satisfying (6.1)-
(6.2). Since u is continuous and globally Lipschitz, Ax + B max {0, Cx - d} is also
globally Lipschitz. Thus, the OFS has a unique solution for any initial state.

LTI
U y

Figure 6-1: On/Off System

In the state space, the on/off controller introduces a switching surface composed
of an hyperplane of dimension n - 1

S = {x E R' : Cx = d}

On one side of the switching surface (Cx < d), the system is given by i = Ax. On
the other side (Cx > d) the system is given by ± = Ax + B(Cx - d) = Aix + B 1,
where A1 = A + BC and B1  -Bd. Note that the vector field is continuous along
the switching surface since for any x E S, Aix + B1 = Ax.

An OFS has either zero, one, or two equilibrium points. We are interested in those
cases where the system has a unique locally stable equilibrium point. Only here can
the OFS have a globally stable equilibrium point. Next, we give necessary conditions
for the existence of a single locally stable equilibrium point for different values of d.

If d > 0 there is at least one equilibrium point at the origin. In this case, it
is necessary that A is Hurwitz to guarantee the origin is locally stable. It is also
necessary that A1 is invertible or otherwise there would exist a continuum of equi-
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librium points. The affine linear system ± = Aix + B1 has an equilibrium point at
-A- 1B 1. In order to guarantee an OFS has only the origin as an equilibrium point,
it is necessary that -CA- 1B1 < d. It is also necessary that A1 has no real unstable
eigenvalues or, otherwise, the system will have trajectories that grow unbounded1 .
To see this, let A be a real unstable eigenvalue of A1 with associated eigenvalue v.
Let xO = av - AlB 1 , where a is chosen such that CxO > d. The trajectory starting
at xO is given by x(t) = aeiAtv - AjlB 1 . Hence, the trajectory will grow unbounded
without switching since Cx(t) = aeAtCV - CA- 1B1 > aCv - CA- 1 B1 > d, for all
t > 0. Note that aCv > d +CA- 1B1 > d - d =0.

When d = 0, the origin is the only equilibrium point. For the same reasons as
above, it is necessary that both A and A1 do not have real unstable eigenvalues. Note
that in this case, there is no "easy" way to check if the origin is locally stable or not.

When d < 0, it must be true that -CAI B1 > d or otherwise the system will
have no equilibrium point. It is also necessary that A1 is Hurwitz and A has no real
unstable poles.

We can assume without loss of generality that d > 0. If d < 0 and all necessary
conditions are met, with an appropriate change of variables (Xnew -(x + ATB 1 )),
the problem can be transformed to one of analyzing the origin with dnew > 0. In this
case, Anew = A1, Ainew = A, Bnew = A A- 1B1, and dnew = -d - CA- 1B 1 > 0.

Consider a subset S+ of S given by

S+= {x E : CAx > 0}

This set is important since it tells us which points in S can be reached by trajectories
starting at any xO such that CO < d (see figure 6-2). Similarly, define S_ C S as

S_={xES: CAx<0}

=Alx+Bl

SS

S_

x= Ax

0*

Figure 6-2: Both sets S+ and S_ in S

'Possible exceptions occur when the eigenvector associated with the unstable real eigenvalue is
perpendicular to C'.
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Note that S = S+ U S_ and S+ n S_ = {x E S : CAx = 0}. From here on, we
assume d > 0. In terms of stability analysis, d = 0 is a special case of when d > 0,
and will be considered separately in section 6.6.

Since A must be Hurwitz, there is a set of points in S- such that any trajectory
starting in that set will never switch again and will converge asymptotically to the
origin. In other words, let S* C S_ be the set of points xO such that the following
equation

CeAtxo = d

does not have a solution for any t > 0. Note that this set S* is not empty. To see
this, let P > 0 satisfy PA + A'P = -I. Then, an obvious point in S* is the point
x*, obtained from the intersection of S with the level set x'Px = k, where k > 0 is
chosen such that the ellipse x'Px = k is tangent to S (see figure 6-3).

x= A1x+B1

xS

0 *

x'Px=k

Figure 6-3: How to obtain x*

The problem we propose to solve here is to give sufficient conditions that, when
satisfied, prove the origin of an OFS is globally asymptotically stable. The strategy
of this proof is a follows. Consider a trajectory starting at some point xO E S+ (see
figure 6-4). Since A1 has no unstable real poles, the trajectory x(t) will eventually
switch at some time ti > 0, i.e., Cx(t1) = d and Cx(t) > d for t E [0, t1]. Let
X1 = x(ti) G S. If x1 E S*, the trajectory will not switch again and converge
asymptotically to the origin. Since we already know S* is a stable set, we need
to concentrate on those points in S_\S* since those are the ones that may lead to
potentially unstable trajectories. So, assume the trajectory switches again at time
t 2 > t1 , and let x 2 = x(t 2 ) E S+. Again, we would switch at x(t3 ) = x 3 and so on.
The idea is to check if x3 is closer in some sense to S* than x1. If so, this would
mean that eventually x(t2N-1) E S*, for some positive integer N, and prove that the
origin is globally asymptotically stable. This is the idea behind the results in the next
section.
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S

X1V2(- )

S* X3

XO

Figure 6-4: Trajectory of an OFS

Before we present the main results, it is convenient to notice that xo, X1 , x 2 E S
can be parametrized. Let xo = x* + A0 , x1 = x* + A1 , and x 2 = x* + A2 , where
x*, x* E S, and CA0 = CA1 = CA 2 = 0. Also, define x*(t) (x*(t)) as the trajectory
of = Aix + B1 (± = Ax), starting at x* (x*), for all t > 0. Since x* can be any
points in S, we chose them to be such that Cx*(t) < d for all t > 0. As explained in
section 6.7.1, this is always possible, even when A1 is unstable (as long as it has at
least one stable eigenvalue with an associated eigenvector that is not perpendicular
to C'). The reason for this particular choice of x* and x* is so that Cx*(t) - d $ 0
for all t > 0. This will be necessary in proposition 6.1.

As in RFS, the impact maps associated with the OFS are multivalued. Define the
expected switching times T and T2 as in chapter 4.

6.3 Global Asymptotic Stability of On/Off Sys-
tems

Before presenting the main result of this chapter, we first show that each impact
map associated with the OFS can be represented as a linear transformation analyt-
ically parametrized by the correspondent switching time. This result is similar to
theorem 4.1.

Proposition 6.1 Define
CeAlt

W ) M d - Cx*(t)

and
CeAt

d - Cxt (t)

Let H1 (t) - eAlt + (x*(t) - xt)wi(t) and H2(t) = e At ( - x*)w 2 (t). Then, for
any A0 E S+ - x* there exists a t1 E '71 such that

A1 = H1(ti)Ao

Such t1 is the switching time associated with A1 . Similarly, for any A1 E S_\S* - x*
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there exists a t 2 C T2 such that

A 2 - H 2 (t2 )A1

Such t 2 is the switching time associated with A 2.

Next, define two quadratic Lyapunov functions V and V2 on the switching surface
S

Vi(x) = x'Px - 2x'gi + ai (6.3)

where P > 0, for i = 1, 2.
there exist P > 0, gi, ac suc

V2(A 1)

V1 (A 2)

Global asymptotically stability of the origin follows if
h that

< V(Ao) for all Ao E S+ - x* (6.4)

A 1) for all A1 E S_\S* - x* (6.5)

The next theorem is an extension of theorem 4.2 for the case where we have to
simultaneously prove contraction of two impact maps. Let P > 0 on S stand for
x'Px > 0 for all x c S. As a short hand, in the following result we use Hit = Hi(t)
and wit = wi(t).

Theorem 6.1 Define

R1 (t)
R 2(t)

- Pi - H'P 2 H1t - 2 (g1 - H'tg2 ) Wit + WI'awlt

= P2 - HitP1H2t - 2 (g2 - H2,g 1 ) W2t - W aCeW2t

where a = a, - a 2 . The origin of the OFS is globally asymptotically stable if there
exist P1, P 2 > 0 and g1, g2, a such that

{R1 (t1 ) > 0
R 2 (t 2 ) > 0

on S+ - x*
on S_\S* - x*

for all expected switching times.

A relaxation of the constraints on Ao and A, in the previous theorem results in
computationally efficient conditions.

Corollary 6.1 The origin of the OFS is globally asymptotically stable if there exist
P1 , P2 > 0 and g1,g 2, a such that

{R1 (ti) > 0
R 2 (t1 ) > 0

on S - x4
on S - x*

(6.6)

for all expected switching times.

For each ti, t2these conditions are LMIs for which we can solve for P, P2 > 0 and

91, g2 , a using efficient available software. As we will see in the next section, although
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these conditions are more conservative than the ones in theorem 6.1, they are already
enough to prove global asymptotic stability of many important OFS.

Proof of proposition 6.1: This proof is similar to the proof of theorem 4.1. If
x(0) = xo + Ao E S+, integrating the dynamic equations (6.1) with u = Cx - d yields

A1 = eAltdo A-+ x(t) - X*

From the fact that CA, = 0 we get CeAltAo = d - Cx*(t). Since x* was chosen such
that d - Cx* (t) > 0 for all t > 0 we rewrite the last expression as

wi(t)AO = 1 (6.7)

which means that A1 can be written as

A1 = eAltAo -+ (x*(t) - xt) wi(t)Ao

The same way, we can find A2 as a function of A, and t, the switching time
associated with A 2. The dynamic equations now are simply s = Ax. Therefore,
x 2 = eAtxi. SinceX2= x* + A2,

A 2e AtA + x (t) - X

Again, from the fact that CA 2 = 0 we get Ce^tA1 = d - Cx* (t). Since x* was chosen
such that d - Cx* (t) > 0 for all t > 0 we rewrite the last expression as

W2 (t)A1 = 1 (6.8)

leading to
A 2 = e AtAi l+ (xt(t) - xO) W2 (t)A1

which proves the desired result.

Note that equations (6.7) and (6.8) tell us that for a given switching time t, Ao
and A, are restricted to n - 2-dimensional sets consisting of the intersection of S+ -x*
with the set of AO that satisfy (6.7) and the intersection of S-\S* - x* with the set
of A1 that satisfy equation (6.8), respectively.

Proof of theorem 6.1: From (6.4) and using proposition 6.1, we have

A'1P2A1 - 2A' 2 + a 2 < ,A'PiAO - 2A/'gi + a,

SA'OHji'P 2HjtAo - 2A'H'tg2 + a 2 < A' PiAO - 2A' gi + a,

A A' (P - Hj/P 2Ht) Ao - 2A' (g, - Hjtg2) + a > 0

Finally, using (6.7) we have

A' (P - H'tP2Ht) Ao - 2A' (g, - H'tg2) w1tAO + A'w'tawtAIo > 0
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which is the desired result. R 2 (t) can be obtained in a similar way.

6.4 Examples

The following examples were processed in matlab code. The latest version of this
software is either available at [27] or upon request. Before we present the examples,
we briefly explain the matlab function that we used. The input to this function is a
transfer function of an LTI system and the displacement of the nonlinearity switch
d. If the OFS is proven to be globally stable, the function returns the values of
the parameters of the Lyapunov functions (6.3). The matlab function also returns
a graphic showing the minimum eigenvalues of each Ri(ti) in (6.6), which must be
positive for all expected switching times ti.

For most OFS, the expected switching times include t, = 0 and large values of t,.
Thus, before moving into the examples, it is important to explain how the analysis
is done when t2 is close to zero and when tj is very large. We start with the analysis
near zero.

Zero switching time corresponds to points in S such that CAx = 0. At those
points, the Lyapunov functions (6.3) must be continuous since this is the only way

{ V2 (A 1 ) V1 (AO)
V1 (A2) 5 V2(A 1 )

can be satisfied simultaneously, for all AO, A1 , A 2 = AO such that xz + Ao = x* +
A1 = x and CAx = 0. Therefore, we need V1(AO) = V2(A 1 ). This imposes certain
restrictions on P 1, P 2 > 0, g1 , g2 , and a. The details can be found in section 6.7.2.

Just like in RFS, we would like to obtain bounds on the expected switching times.
With the exception of 3rd-order systems, however, finding upper bounds timax on
switching times is, in general, not an easy task. The idea is to first guarantee con-
ditions (6.6) are satisfied in some intervals (0, timax) and then check if they are also
valid for all tj > timax. This is considered in section 6.7.3.

Note that for 3-rdorder systems, at least one of the upper bounds of the expected
switching times is easily calculated since the switching surface is an hyperplane of
dimension 2, which can be visualized.

Example 6.1 Consider the OFS on the left of figure 6-5 with d = 1. It is easy to
see that the origin of this system is locally stable.

Using conditions (6.6), we show that the origin is in fact asymptotically globally
stable. The right side of figure 6-5 illustrates this fact: the minimum eigenvalues of
both conditions (6.6) are positive on (0, timax). Bounds on the expected switching
times for this example are t1 E (0, 1.85) and t2 E (0, 5.4). In this case, if, for instance,
t1 > 1.85, there is no point in S+ with switching time equal to t1 .

Note that this system has an unstable nonlinearity sector. If the on/off nonlin-
earity is replaced by a linear constant gain of 1/2, the system becomes unstable (see
figure 6-6). This is very interesting since it tells us that analysis tools like small gain
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Min(eig(R(t))); Want them always positive

- -2 s+s+6
s3+2s 2+2s+3

1

Figure 6-5: 3d.-order system with unstable nonlinearity sector

U I

Figure 6-6: On/off controller versus constant gain of 1/2 (dashed)

theorem, Popov criterion, Zames-Falb criterion, and integral quadratic constraints,
would all fail to analyze OFS of this nature. 0

Example 6.2 Consider the OFS on the left of figure 6-7 with d = 1 and k > 0. Once

again, it is easy to see that the origin of this system is locally stable for any k > 0.

Min(eig(R(t))); Want them always positive

k

1

Figure 6-7: System with relative degree 7 (left); global stability analysis when k = 2

(right)

Note that ||CeAtBIIz = k. Thus, small gain theorem can be applied whenever

k < 1. However, when k > 1, the small gain theorem fails to analyze the system.

Let k = 2. Using conditions (6.6), we show the origin is globally asymptotically

stable. The right side of figure 6-7 shows how conditions (6.6) are satisfied in some

intervals (0, timax), Z = 1, 2. The intervals (0, timax) are bounds on the expected
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switching times. The results in section 6.7.3 guarantee the stability conditions are
satisfied for all t > timax. For details on how to find such bounds see section 6.7.3. m

Example 6.3 Consider the OFS in figure 6-8 with d = 1. It is easy to see that the
origin of this system is locally stable. A1, however, is unstable.

Min(eig(R (t))): Want them always positive

-4 s2-s+0.05
s3+2s 2+2s+O.1

Figure 6-8: System with unstable A1

Although A1 is unstable, since this is a 3rd-order system, it is easy to find bounds
on the expected switching times for the subsystem ± = Aix + B 1 . In this case, no
point in S+ has a switching time higher than 21.8. As for t2 , we use the same ideas as
in the previous example, based on the results in section 6.7.3. Using conditions (6.6),
we show that although A1 is unstable, the origin is asymptotically globally stable.
The right side of figure 6-8 shows how conditions (6.6) are satisfied in the intervals
(0, timax), i = 1, 2 (the minimum eigenvalue of the second condition in (6.6) is scaled
by 500 in figure 6-8, for purpose of visualization).

6.5 Improvement of stability conditions

Conditions (6.6) are sufficient conditions for the global stability of the origin. These
conditions do not take into account that both Ao and A1 are restricted to S+ -
x* and S-\S* - x*, respectively. Using the same ideas in sections 4.3.1 and 5.5,
conditions (6.6) can be improved.

For each point xO E S+, there is an associated switching time ti. Define St, as
the set of initial conditions xO E S+ such that y(t) > d on [0, ti], and y(ti) = d. This
set St, forms a linear and convex set of dimension n - 2. Analogously, define St, as
the set of initial conditions x1 E S_\S* such that y(t) < d on [0, t 2 ], and y(t 2 ) = d.
Given this, conditions (6.6) can be improved to

SR1 (ti) > 0 on St, - x (6.9)
R 2 (t 2 ) > 0 onSt2 - x*

for some P1, P 2 > 0, gi, 92 , a', and for all expected switching times t1 , t 2 .
The problem with conditions (6.9) is that, in general, the sets St,, i = 1, 2, are not

easily characterized. An alternative is to consider the sets St, D St, obtained from
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equations (6.7), (6.8) given by

St ={x* +Ao E S+ : w 1  o = 1}

and
St2 = {x* + A1 E S_\S*: W2 tAi =1

Since 5t, D St,, conditions (6.9) hold if there exist P1, P2 > 0, g1, g2, a such that

SR1 (ti) > 0 on St1 - X6.10)

R 2 (t 2 ) > 0 on St2 0- x*

for all expected switching times t1 , t2 . The same way as in section 4.3.1, Ai E Si
satisfies a conic relation

A'ot,,Ai > 0

for some matrices #t, (to see details of the construction of these matrices please refer
to section 4.5. Using the S-procedure, conditions (6.10) are equivalent to

R 1 (ti) - Tt/ 3 t, > 0 on S - x* (6.11)
R 2 (t 2 ) - Tt 2 > 0 on S - x*

for some P > 0, gi, a, some scalar functions Tt, > 0, and for all expected switching
times ti. For each t1 , t2 these conditions are LMI which again can be solved using
efficient available software.

It is still possible to improve conditions (6.11) further more. They do not take
advantage that a trajectory starting at x0 E St, (x1 E Sf2 ) must satisfy y(t) >
d (y(t) < d) on [0, t1] ([0, t 2 ]). This is captured by conditions (6.9) but not by
conditions (6.11) since St, D St,. See sections 4.3.1 and 5.5 for more details.

6.6 Special case: d = 0

When d = 0 we can write stability conditions that are, in general, much less conser-
vative than conditions (6.11). First, since the origin belongs to both systems ± = Ax
and ± = (A + BC)x, it is only required that both systems do not have real unstable
poles. d = 0 also means x* = x* = 91 = 92 = 0 and a = 0. All we need to find is

P1, P2 > 0.
In this case, A, - eAitilAo and A 2 = eAt2Ai. Thus, the stability conditions come

down to

A'1P 2A1 < A'PiAo

e A' (P 1 - eA1 P2eAi 1) A0 > 0

and

A2P 1 A 2 < A1P 2 A 1
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A-/' (p 2 - eA't2p eAt2) A, > 0

for some P1, P2 > 0, all expected switching times t1 , t2, and all AO E S+, A1 E S\S*.
Notice that CAO = 0, CAI = 0, and CA 2 = 0. Therefore CeAltAo 0 and

CeAt2A, = 0. That is, for fixed values of t, and t2 , A1 and A 2 are restricted to a
subspace of dimension n - 2. Let H E CL, where C' are the orthogonal complements
to C, i.e., matrices with a maximal number of column vectors forming an orthonormal
set such that CC' = 0. Let also lt E (CeA1t1f) and it 2 E (CeAt2H)I. We have the
following result.

Theorem 6.2 The origin of the OFS with d = 0 is globally asymptotically stable if
there exist P1 , P2 > 0 such that

f lrU' (P1 - eA'tP 2 e Ati ) Hit1 > 0 (6.12)
lt2H' (P2 - eA't2PieAt2) Hit2 > 0

for all expected switching times.

6.7 Technical Details

6.7.1 Choice of x* and xT

We now explain how we chose x* and x* such that both Cx*(t) < d and Cx*(t) < d
for all t > 0. We start with xT.

x* is found as explained in section 6.2 (see figure 6-3). In this case, x* is given by

1= PlC' d

where Pd > 0 satisfies PdA + A'Pd = -I.
The choice of x* is more tricky since A1 may be unstable. If A1 is stable then we

can use the same ideas as we did for x*. First, let P > 0 satisfy PsA1 + A'P = -I.
Then

P AC'
x* (d + cA- 1 Bi) Cu -C' A7 1 B 1

If A1 is not stable (but it has at least one stable eigenvalue) then we need to find
a point in S such that it belongs to a stable mode of A1 . If A1 has real poles then
these must be stable. Let A be a real eigenvalue of A1 with associated eigenvector
v (assume Cv # 0). Then, if we find a point in S that only excites this mode, the
trajectory x(t) will converge to -A7lB 1 and Cx(t) < d for all t > 0. such a point in
S is given by

d + CA 'B 1x* = -Al B1+ Cv V

In case A1 only has complex poles, pick a stable complex conjugate pair of eigenvalues
A, A with associated eigenvectors v, 1, where x stands for the complex conjugate of
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x. Let, Va = v + v and Vb = i(v - v). Then, any initial condition starting in the
hyperplane defined by -Aj-1B, + aaVa + abVb, aa, ab E JR will converge to -Al B,
as time goes to infinity since it only excites this stable complex conjugate mode. An
orthogonal basis in this plane can be defined by letting v, = -(V'Vb)Va + Vb. The
basis is then given by

Va V c
V =

||Va| ||Ve | _

The trajectory in this basis satisfies & = V'A 1Va = Ava. We need to find an ao such
that C (-A-AB1 + Vao) = d and C (-A-1B, + Va(t)) < d for all t > 0. This is a
similar problem to the one we dealt a ove when finding x*. In this case, ao is given
by

d + CA-B jB 1

CVP- 1 V'C' V

where P, > 0 satisfies PvAv + A'JP, = -I. Finally,

x*= -A-'Bi + Vao

If A, only has complex unstable eigenvalues, then for any choice of x*, Cx(t) = d
will have an infinity number of solutions for t > 0. In this case, x* must be chosen
such that the smallest solution t > 0 of Cx(t) = d is higher than the maximum
possible switching time t1 .

6.7.2 Constraints Imposed When ti = 0

As seen in section 6.4, when ti = 0, V1(Ao) = V2 (A1), for all AO, A, such that
CA(x* + Ao) = CA(x* + A,) = 0 and CAO = CA 1 = 0. This is equivalent to have
Ro = R1 (0) = R 2 (0) = 0. Since analyzing R1 (t) or R 2(t) near zero will lead to the
same results, we analyze R,(t) at t = 0. From section 6.3, Ro = R,(0) is given by

Ro = P - P2 - (g1 + P 2vO - g2) w - w' (91 + P2vO - g2)' + w'w (a + 2v'g 2 - v'P 2vo)

where vo = x* - x* and

CA
wAO = limwi(t)Ao - CAx O

Let I = w 1 , z = w'/(ww'), and P = P1 - P2 . Since RO = 0, then l'RO1 = l'Pl = 0.
This means that in the basis (1, z), the matrix P looks like

PF =( 0 F)
F F /1 F2/

for some F, E JRfll and F 2 E R. In other words, P = FPFF', where F = [1 z].
Therefore, once P2 > 0 is fixed P, > 0 must satisfy

P1 = FPFF' + P2
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The same way l'Roz = 0, or 1' (Pz - gi - P2vO + 92) = 0. Hence, Pz -91 - P2vo+g 2 =
kz for some k E R. For a given 92, 9i is then given by

1 =- (P - P2 )z - P 2vO + 92 - kz

Finally, it must be true that z'ROz = 0 leading to

Oz = -Z'(P1 - P2) z + 2z' (g1 + P2vo - 92) +v P2vo - 2v'g2

6.7.3 Checking Stability Conditions for ti > timax

For simplicity, we are going to present the case when d = 0. The other cases follow
analogously. Assume conditions (6.12) are satisfied for all ti < timax. We would like
to easily check if they will also be satisfied for all ti > timax. Let's concentrate on
condition

i e A't2 eA1 p i At2 it2 < 42 1P 2 fit 2

It is sufficient to show that

'eIA't2lQrIeAt2f1 < Q2

for all t > t2max, and where Qj = f'Pi7. Next, we find an upper bound on the left
side of the last inequality. Let A, = H'AH. If A is a stable matrix, it is possible to
find a Q and a A > 0 such that

QA, + A'Q < -AQ

This in turn implies that
z'(t)Qz(t) < e-At z0 Qzo

where z(t) is the solution of i = Azz. Using the fact that eAzt - 'eAtfl, we have

z'l'e A't2flQHIeAt2flzo < e-Atz'Qzo

or simply
f'eIA't2flQfIeAt2fl < e-t Q

Therefore, for some k

IeA't2fl flIAt2f < fleA't2HkQ'eAt2H

< ke-AtQ

< ke-At2max Q

Finally, all we need is to guarantee

ke-At2maxQ < Q2

Note that we want to chose the largest A and the smallest k.
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If A1 (and also A if d = 0) has unstable complex poles, then this approach will
not work since either eAt or eA1t is unbounded when t -+ oc. In these cases, it is
fundamental to get upper bounds for timax or t2max (depending if it is A1 or A that
has unstable eigenvalues). How to find such bounds is currently under investigation.
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Chapter 7

Saturation Systems

This chapter considers impact maps and quadratic surface Lyapunov functions in
the study of global asymptotic stability of the origin of saturation systems (SAT).
Both impact maps and quadratic surface Lyapunov functions, introduced in chap-
ter 4, were first successfully used to globally analyze stability of limit cycles of relay
feedback systems (chapter 5). Later, we showed that equilibrium points of piecewise
linear systems (PLS) could also be globally analyzed by applying quadratic surface
Lyapunov functions to on/off systems (chapter 6). In the state space, on/off systems
are composed of a single switching surface. In this chapter, we show that global anal-
ysis using quadratic surface Lyapunov functions can still be applied when a PLS has
more than one switching surface. For that, we consider saturation systems (SAT).
A SAT is characterized by an LTI system in feedback with a saturation controller.
Again, we present conditions in the form of LMIs that, when satisfied, guarantee global
asymptotic stability of equilibrium points. A large number of examples was success-
fully proven globally stable, including systems with unstable nonlinearity sectors, for
which classical methods like small gain theorem, Popov criterion, Zames-Falb crite-
rion, IQCs, fail to analyze. In fact, existence of an example of a SAT with a globally
stable equilibrium point that cannot be successfully analyzed with this new method-
ology is still an open problem. The results in this chapter confirm that quadratic
surface Lyapunov functions are a viable and powerful approach to globally analyze
PLS.

7.1 Introduction

The ideas introduced in chapter 4 and applied in chapters 5 and 6 were very successful
in proving global stability of limit cycles and equilibrium points of certain classes
of PLS. On the switching surfaces, we efficiently constructed quadratic Lyapunov
functions that were used to show that impact maps associated with the PLS were
contracting in some sense. These results opened the door to the possibility that limit
cycles and equilibrium points of more general PLS be systematically globally analyzed
using surface Lyapunov functions.

The results in chapter 6 represented the first step in analyzing equilibrium points of
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PLS using quadratic surface Lyapunov functions. In the state space, on/off systems
are partitioned in two parts by a switching surface. Therefore, the analysis was
focused on studying a single surface. In the present work, we want to show that
quadratic surface Lyapunov functions can also be used in the analysis of PLS with
the state-space divided in more than two parts, by more than one switching surface.

To demonstrate these ideas, we chose a class of PLS known as saturation systems
(SAT). The class of SAT we consider consists of an LTI system in feedback with a
saturation. Every time the absolute value of the output of the LTI system exceeds a
certain value, a switch occurs and the closed loop system dynamics change. The study
of such systems is motivated by the possibility of actuator saturation or constraints
on the actuators, reflected sometimes in bounds on available power supply or rate
limits. These cannot be naturally dealt within the context of standard (algebraic)
linear control theory, but are ubiquitous in control applications. The fact that linear
feedback laws when saturated can lead to instability has motived a large amount
of research. The well known result which states that a controllable linear system is
globally state feedback stabilizable, holds as long as the control does not saturate. In
many applications, more often than not, the control is restricted to take values within
certain bounds which may be met under closed-loop operation. Because feedback
is cut, control saturation induces a nonlinear behavior on the closed-loop system.
The problem of stabilizing linear systems with bounded controls has been studied
extensively. See, for example, [59, 55, 62] and references therein.

In this chapter, we focus on global stability analysis of saturation systems. We are
interested in those SAT where the origin is locally stable and is the only equilibrium
point. Then, we ask the question if the origin is also globally asymptotically stable.
Rigorous stability analysis for SAT is rarely done. The Zames-Falb criterion [68] can
be used when the nonlinearities slope is restricted, like in this case, but this method
is difficult to implement. The Popov criterion can be used as a simplified approach
to the analysis, but it is expected to be very conservative for systems of order greater
than three. IQC-based analysis [35, 16, 44, 42] gives conditions in the form of LMIs
that, when satisfied, guarantee stability of SAT. However, none of these analysis tools
can be used when a SAT has an unstable nonlinearity sector.

Here, we propose to construct quadratic Lyapunov functions on the switching sur-
faces of SAT to show that impact maps associated with the system are contracting in
some sense. This, in turn, proves the origin of a SAT is globally asymptotically stable.
The search for these quadratic surface Lyapunov functions is done by solving a set of
linear matrix inequalities, which can be efficiently done using available computational
tools.

As in the case of on/off systems, a large number of examples was successfully
proven globally stable. These include high-order systems, systems of relative degree
larger than one, and systems with unstable nonlinearity sectors for which all classical
methods fail to analyze. In fact, existence of an example with a globally stable
equilibrium point that could not be successfully analyzed with this new methodology
is still an open problem.

This chapter is organized as follows. Section 7.2 starts by formulating the problem.
Section 7.3 presents the main results of this chapter followed by some illustrative
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examples in section 7.4.

7.2 Problem Formulation

The main purpose of this section is to introduce the problem we intend to solve in this
chapter. We start by defining a saturation system (SAT) followed by some necessary
conditions the global stability of a unique locally stable equilibrium point. We then
talk about some of the properties of this class of PLS.

Consider a SISO LTI system satisfying the following linear dynamic equations

= Ax + Bu (7.1)

where x E IR", in feedback with a saturation controller (see figure 7-1) defined as

-d if y(t) < -d
u(t) = y(t) if ly(t)l < d (7.2)

d if y(t) > d

where d > 0 (if d = 0 then the system is simply linear). By a solution of (7.1)-(7.2)
we mean functions (x, y, u) satisfying (7.1)-(7.2). Since u is continuous and globally
Lipschitz, Ax + Bu is also globally Lipschitz. Thus, the SAT has a unique solution
for any initial state.

LTI

U y

Figure 7-1: Saturation system

In the state space, the saturation controller introduces two switching surfaces
composed of hyperplanes of dimension n - 1

S={ExGR': Cx=d}

and
S = {x E R: Cx = -d}

On one side of the switching surface S (Cx > d), the system is governed by =
Ax + Bd. In between the two switching surfaces (Cxj < d), the system is given by
x = Ax+BCx = Aix, where A1 = A+BC. Finally, on the other side of S (Cx < -d)
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the system is governed by ± = Ax - Bd. Note that the vector field is continuous along
the switching surfaces since, for any x E S, Aix = (A + BC)x = Ax + Bd, and for
any x E S, A 1 x = Ax - Bd.

SAT can exhibit extremely complex behaviors. Some SAT may be chaotic, others
may have one, three, or a continuum of equilibrium points, or limit cycles, or even
some combination of all these behaviors. We are interested in those SAT with a
unique locally stable equilibrium point. Only here can the SAT have a globally stable
equilibrium point. Several necessary conditions must be imposed on the system.
For instance, it is necessary that A has no eigenvalues with positive real part, or
otherwise there are initial conditions for which the system will grow unbounded (see
for example [58]). A cannot have eigenvalues at zero since that would lead a continuum
of equilibrium points. It is also necessary that A+BC is Hurwitz in order to guarantee
the origin is locally stable, and -CA 1 B < 1, so that the origin is the only equilibrium
point.

Consider a subset S+ of S given by

S+ = {x E S: CAix > O}

This set is important since it tells us which points in S can be reached by trajectories
starting at any x0 such that Cxo < d, and without switching (see figure 7-2). Similarly,
define S_ C S as

S = {x E S: CAix < 0}

iAx+Bd

S. Cx>d

S

i=A1x -d<Cx<d

Figure 7-2: Both sets S+ and S_ in S

Note that S = S+ U S_ and S+ S- = {x E S: CAx = 0}. Define also S+ =
-S+ and S_ = -S_.

As in on/off systems, analyzed in chapter 6, since A1 must be Hurwitz, there is
a set of points in S- such that any trajectory starting in that set will never switch
again and will converge asymptotically to the origin. In other words, let S* C S_ be
the set of points x0 such that the following equations

CeAltxo = kd

do not have a solution for any t > 0. Note that this set S* is not empty. To see this,
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let P > 0 satisfy PA1 + A'P = -I. Then, an obvious point in S* is the point x*
obtained by the intersection of S with the level set x'Px = k, where k > 0 is chosen
such that the ellipse x'Px = k is tangent to S and S (see figure 7-3).

i= Ax+Bd

x* ' S

1= A1x 0*

x'Px=k

_S
1= Ax-Bd

Figure 7-3: How to obtain x*

The problem we propose to solve is to give sufficient conditions that, when sat-
isfied, prove the origin of a SAT to be globally asymptotically stable. The strategy
of the proof is a follows. Consider a trajectory starting at some point xo E S+ (see
figure 7-4). Since by assumption -CA- 1B < 1, the trajectory x(t) will eventually
switch at some time ti > 0, i.e., Cx(ti) = d and Cx(t) > d for t E [0, ti]. Let
X1 = x(ti) E S_. If x1 E S* then the trajectory will not switch again and converges
asymptotically to the origin. Since we already know S* is a stable set, we need to con-
centrate on those points in S_\S* since those are the ones that may lead to potentially
unstable trajectories. Here, two scenarios can occur: either the trajectory switches at
some point in S or it switches at some point in S. Let Sd C (S_\S*) (S-d C (S_\S*))
be the set of points that will eventually switch in S (S). If x1 E Sd (x 1 E S-d) the
trajectory switches at some finite time t2a > ti (t2b > ti) at X2a = X(t2a) E S+

(X2b = X(t2b) E S+). Again, it would switch at X(t3a) = X3a (x(t3b) = X3b) and so on.
Just like RFS, an interesting property of SAT is their symmetry around the origin.

In other words, if x(t) is a trajectory of (7.1)-(7.2) with initial condition xo, then
-x(t) is a trajectory of (7.1)-(7.2) with initial condition -xo. This means that it is
equivalent to analyze the trajectory starting at xO or the trajectory starting at -xO.
This symmetry property is due to the fact that the vector field is symmetric around
the origin. If Cx(t) > d then , = Ax + Bd. Therefore, -.- = A(-x) - Bd and

C(-x(t)) = -Cx(t) < -d. If |Cx(t)l < d then ± = A 1 x. Hence, -± = A1(-x).
Due to this symmetry, whenever a trajectory intersects S (like, for example, at X2b

in figure 7-4), for purposes of analysis, it is equivalent to consider the trajectory
continuing from the symmetric point around the origin in S (-X2b in figure 7-4).
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As in [211, the idea is to check if X3a or -X3b are closer in some sense to S* than
x1 . If so, this would mean that eventually x(tN) E S*, for some N, and prove that
the origin is globally asymptotically stable. This is the idea behind the results in the
next section.

S

X1 2(

S* X3a

x2a *00

V(-)
00 0_.0

S

Figure 7-4: Possible state-space trajectories for a SAT

Before we present the main results, it is convenient to notice that xO, x 1, X2a E S
and X2b E S can be parametrized. Let xO = x* + AO, x1 = x* + A1 , X2a = X* + A2a
and X2b = -x* + A2b, where x*, x* E S and CAO = CA = CA2a = CA 2b = 0-
Also, define x*(t) (x*(t)) as the trajectory of ± = Ax + Bd (± = Aix), starting at
x* (x*), for all t > 0. Since x* are any points in S, we chose them to be such that
Cx*(t) < d for all t > 0. The reason for this particular choice of x* and x* is so that
Cx*(t) - d = 0 for all t > 0. This will be necessary in proposition 7.1.

This choice of x* and x* is always possible. x* is found as explained above (see
figure 7-3). In this case, x* is given by

, PViC'

where Pd > 0 satisfies PdAl + A'Pd = -I. The same way, x* is given by

x*= (d + cA- 1 Bd) - - A-Bd
U

where Pu > 0 satisfies PuA + A'Pu = -I.

7.3 Global Asymptotic Stability of Saturation Sys-
tems

There are three impact maps of interest associated with a SAT. The fist impact map
(impact map 1) takes points from S+ and maps them in S_. The second impact map
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(impact map 2a) takes points from Sd c S_ and maps them back to S+. Finally,
the third impact map (impact map 2b) takes points from from S-d C S_ and maps
them in S+. As in RFS and OFS, these impact maps are multivalued. Define the
sets expected switching times T1 , T2a, and T2b as in chapter 4. In section 7.5 we show
how to get bounds on these sets.

Before presenting the main result of this chapter, we show that each impact map
associated with a SAT can be represented as a linear transformation analytically
parametrized by the correspondent switching time.

Proposition 7.1 Define
CeAt

d- Cx*(t)

CeAlt
ndW2ak) =d - Cx (t)

and
CeAlt

W2bk) = -d - Cx*(t)

Let H,(t) = e + (t) - xt)wi(t), H 2a (t) = eA1t+ (t) - xo)W 2a(t) , and H2b(t) =

e^1t+(x (t)+ x*)w2b(t). Then, for any AO E S+ - x* there exists a t1 E 'T1 such that

A1 = H1(ti)Ao

Such t 1 is the switching time associated with A 1 . Similarly, for any A 1 C Sd - x*

there exists a t2a E T2a such that

A2a = H2a(t2a)AI

Such t 2 a is the switching time associated with A 2 a. Finally, for any A 1 C S-d - x*
there exists a t2b E T2b such that

A2b = H2b(t 2b) A1

Such t 2b is the switching time associated with A2b.

We need to show that these three impact maps are contracting in some sense. For
that, define two quadratic Lyapunov functions on the switching surface S. Let V

and V2 be given by

Vi(x) = x'Px - 2x'gi + ai (7.3)

where P > 0, for i = 1, 2. Global asymptotically stability of the origin follows if
there exist P > 0, gi, ai such that

V2(A 1 ) < V 1 (Ao) for all Ao c S+ - x*

Vi(A 2a) < V2 (A 1 ) for all A, C Sd - x*

Vl(-A 2b) < V2('A) for all A1 E S-d - X* (7.4)
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Note that in (7.4) we have mapped the point A2b E 3+ + 4 into 5+ - 4, taking
advantage of the symmetry of the system. Let P > on S stand for x'Px > 0 for all
x E S. As a short hand, in the following result we use Hit = Hi(t) and wit = wi(t).

Theorem 7.1 Define

R 1 (t) P1 - HItP2Hut - 2 (g1 - H'tg2 ) Wit + W'awit
R2a(t) P 2 - H~atP1H2at - 2 (Y2 - H2atg1)W2at -WataW2at

R 2b(t) = P 2 - H2btP1H2bt - 2 (g2 + H 2g1) W2bt - W2btOW2bt

where a = a1 - a2 . The origin of the SAT is globally asymptotically stable if there
exist P1 , P2 > 0 and g1, g2, a such that

R 1 (t1 ) > 0 on S+ - x0
R 2a (t 2 a) > 0 on Sd - x*

R2b(t2b) > 0 on S-d - x*

for all expected switching times.

A relaxation of the constraints on Ao and A1 in the previous theorem results in
computationally efficient conditions.

Corollary 7.1 The origin of the SAT is globally asymptotically stable if there exist
P1, P 2 > 0 and g1, g2, a such that

R 1 (t1 ) > 0 on S - x0
R 2a(t 2 a) > 0 on S - x* (7.5)
R2b(t2) > 0 on S - x*

for all expected switching times.

For each ti, t2b, these conditions are LMIs which can be solved for P1 , P2 > 0
and g1, 92 , a using efficient available software. As we will see in the next section,
although these conditions are more conservative than the ones in theorem 6.1, they
are already enough to prove global asymptotic stability of many important SAT.

The proofs of these results are similar to the ones in sections 5.3 and 6.3, and are
therefore omitted here.

Conditions (7.5) are sufficient conditions for the global stability of the origin.
These conditions do not take into account that both A0 , Aia, and Alb are restricted

to S+, Sd, S-d, respectively. Using the same ideas as in sections 5.5 and 6.5, condi-
tions (7.5) can be improved. For each point xO E S+, there is an associated switching
time ti. Define St, as the set of initial conditions xO E S+ such that y(t) > d on
[0, ti], and y(ti) = d. This set St, forms a convex set in S of dimension n - 2. Anal-
ogously, define St2 a (St2b) as the set of initial conditions xla E Sd (xlb E S-d) such
that -d < y(t) < d on [0, t2 a], and y(t 2 a) = d (y(t) < -d on [0, t2b], and y(t2b) = -d).
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Given this, conditions (7.5) can be improved

R 1 (t 1) > 0 on St, -x*
R 2a(t 2a) > 0 on St -* (7.6)
R2b (t2b) > 0 on X-x

for some P 1, P2 > 0, g1 , 92, a, and for all expected switching times ti, t2a t2b. Sufficient
equivalent conditions to a set of LMIs can be obtained just as in sections 4.3.1, 5.5,
and 6.5.

Note that in many cases, conditions (7.5) and (7.6) do not need to be satisfied for
all expected switching times. Section 7.5 shows that bounds on the expected switch-
ing times can be obtained. Basically, since Jul < d is a bounded input, and when A is
Hurwitz, there exists a bounded set such that any trajectory will eventually enter and
stay there. This will lead to bounds on the difference between any two consecutive
switching times. Let ti- and ti+, i = 1, 2a, 2b, be bounds on the minimum and maxi-
mum switching times of the associated impact maps. The expected switching times
77 can, in general, be reduced to a smaller set [t-i, ti+]. Conditions (7.5) and (7.6) can
then be relaxed to be satisfied only on [ti_, ti+] instead on all t E 77. See section 7.5
for details.

7.4 Examples

The following examples were processed in matlab code. The latest version of this
software is either available at [27] or upon request. Before we present the examples,
we briefly explain the matlab function that we developed. The input to this function
is a transfer function of an LTI system together with a parameter d > 0. If the
SAT is proven globally stable, the matlab functions return the parameters of the
two quadratic surface Lyapunov functions (7.3). We then confirm conditions (7.5)
are satisfied by plotting the minimum eigenvalues of each Ri(t) on (ti, ti+]), and
showing that these are indeed positive in those intervals.

Before moving into the examples, it is important to explain how the bounds on
the expected switching times intervals (ti, ti+) are found. First, notice that t1_ =
t 2 a- = 0. Zero switching time for the first impact maps AO -+ A, and the second
impact map A1 - A 2a corresponds to points in S such that CAix = 0. At those
points, the Lyapunov functions (7.3) must be continuous since this is the only way

{ V2 (A 1 ) < V1 (O)
Vi(A 2a) V2 (A1)

can be satisfied simultaneously, for all AO, A1 , A2a= AO such that x* + AO = x* +
A1 = x and CAx = 0. Therefore, we need 1(AO) = 2 (A 1). This imposes certain
restrictions on P 1, P 2 > 0, 9i, 92, and a. See section 6.7.2 for details. The analysis of
zero switching time for these two impact maps of SAT is similar to OFS.

As for the map A, -+ A2A, zero switching never occurs since there is a "gap"7
between S and S, resulting in a nonzero switching time for every trajectory starting
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in S-d. For certain large values of IZAI|J, however, the switching times can be made
arbitrarily small. But, when A is Hurwitz, we know all system trajectories eventually
enter an invariant bounded set, just like in relay feedback systems. This can be seen
from the fact that the open loop system is stable and Jul < d is bounded. In this
invariant bounded set, switching times for the impact map A1 -+ A2b cannot be

made arbitrarily small, and a lower bound can be found. Using the same ideas, upper
bounds on expected switching times for all impact maps can be found. All the details

are in section 7.5. The case when A has imaginary eigenvalues is currently under
investigation.

Example 7.1 Consider the SAT on the left of figure 7-5 with d = 1. It is easy to

see the origin of this system is locally stable. The question is if the the origin is also
globally asymptotically stable.

min(eig(R(t))). Want them to be always positive

-2 ss+6
s 3+2sk2s+3

Figure 7-5: 3d.-order system with unstable nonlinearity sector

Using conditions (7.5), we show that the origin is in fact asymptotically globally
stable. The right side of figure 7-5 illustrates this fact: the minimum eigenvalues of all
conditions (7.5) are positive in some intervals (0, tima). These intervals are bounds
on the expected switching times. In this example, these are ti E (0, 3), t 2 a E (0, 6),
and t2b E (0, 3.1). For instance, for ti > 3, there is no point in S+ with switching
time equal to t1 .

U

Figure 7-6: Saturation controller versus constant gain of 1/2 (dashed)

Note that this system has an unstable nonlinearity sector. If the saturation is
replaced by a linear constant gain of 1/2, the system becomes unstable (see figure 7-
6). This is very interesting since it tells us that analysis tools like small gain theorem,
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Popov criterion, Zames-Falb criterion, and integral quadratic constraints, would all
fail to analyze SAT of this nature. N

Example 7.2 Consider the SAT in figure 7-7 with d = 1 and k > 0. The origin of
the SAT is locally stable for any k > 0.

-min(eig(R(t))). Want them to be always positive

k
(S + 1)7

Figure 7-7: System with relative degree 7 (left); global stability analysis when k 2
(right)

As seen in example 6.2, 11CeABlI 1 = k, and the small gain theorem can only be
applied when k < 1.

Let k = 2. Using the software described above, we were able to find surface
quadratic Lyapunov functions that satisfy conditions (7.5) for all expected switching
times. This means that the origin is in fact asymptotically globally stable. The
right side of figure 7-7 shows how conditions (7.5) are satisfied in some intervals
(timin, timax), which are bounds on the expected switching times. Section 7.5 explains
in detail how such bounds are obtained. 0

7.5 Technical Details: Bounds on Switching Times

In this section, we will talk about computational aspects related to finding P > 0,
gi, and a in (7.5) or (7.6). For many SAT, the set of expected switching times is
the set [0, oc). Thus, in general, it is impossible to check directly if the stability
conditions (7.5) or (7.6) are satisfied for each value of expected switching time. An
alternative is to find some intervals (ti_, ti+) such that if (7.5) or (7.6) are satisfied
in those intervals, then stability follows.

In chapter 5, and in particular, in section 5.6, we showed that for RFS there is
a bounded invariant set where every trajectory will eventually enter. Hence, bounds
on the expected switching times could be found by computing bounds on switching
times of trajectories inside that bounded invariant set. This same idea can be used
here whenever A is Hurwitz. In fact, since u = id is a bounded input, a bounded
and invariant set such that any trajectory will eventually enter can be found. This
will lead to bounds on the difference between any two consecutive switching times.
This way, the search for P > 0, gi, and a in (7.5) and (7.6) becomes restricted to
0 < ti_ < t < ti+ < oc, i = 1, 2a, 2b.
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As explained before, t1_ t2a_ = 0 since the associated impact maps are defined
on the same switching surface, and are allowed to have zero switching time. We then
focus on upper bounds for all impact maps and on the lower bound t2b- of the impact
map 2b. Notice there are many ways to finds such bounds and the method we propose
next is not unique, and can surely be improved.

Before we find such bounds, we need to show there is a particular bounded invari-
ant set such that any trajectory will eventually enter and stay there. This proposition
is similar to proposition 5.5. Thus, the proof is omitted here.

Proposition 7.2 Consider the system ± = Ax + Bu, y = Fx, where A is Hurwitz,
u(t) = ±d, and F is a row vector. Then

lim sup|Fx(t)| < d||Fe^tB||c1t-*oo

Remember that, by definition, ||FeAtB|lc1 is given by

||FeAtB|II =f Fe^tB dt

As a remark, if F = C and f|Fe AtBI 1c < 1, it follows the origin is globally
asymptotically stable. When lim sup,,oo ICx(t) I < d, eventually all trajectories enter
the set {x| ICxI < d}, where the system is linear and stable. Note that this remark
also follows from the well known small-gain theorem.

We first focus our attention on upper bounds of the switching times ti+, starting
with t1+. A trajectory x(t) starting at xo E S+ is given by x(t) = eA, (XO + A- 1 Bd) -
A- 1 Bd. Thus, the output y(t) = Cx(t) is given by

y(t) = Ce^ (x0 + A- 1 Bd) - CA- 1 Bd

Since we are assuming -CA- 1 Bd < d, and A Hurwitz, it is easy to see that y(t)
cannot remain larger than d for all t > 0. For any initial condition xO E S+, CeAt (Xo +
A- 1 Bd) -+ 0 as t -+ oo, which means y(t) = d for some t. Thus, a switch must occur
in finite time. Since for a sufficiently large time t, x(t) is enters a bounded invariant
set (from the above proposition), an upper bound on this switching time ti+ can be
obtained. The following proposition is similar to proposition 5.6.

Proposition 7.3 Let t1+ > 0 be the smallest solution of

f00I CeAtB dt + CeAtl+AlBI < (CA- 1B + 1)
tl+

If ta and tb are sufficiently large consecutive switching times of the first impact map
then |ta - tb t 1+-

Next, we find upper bounds on the expected switching times of impact maps 2a
and 2b. The idea here is to find the minimum t2 > 0 such that

|y(t) = CeAltxo < d
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for all t > t2 and all xO in the bounded invariant set. In this derivation, t2a+ = t2b+ -
t 2 -

Proposition 7.4 Let t2 > 0 be the smallest solution of

jCeA112eAtB dt < 1 (7.7)

If ta and tb are sufficiently large consecutive switching times of impact maps 2a or 2b,
then Ita - tb| t 2 , and t2a+ = t2b+ = t 2 .

We now focus on the lower bound on the expected switching times of impact map
2b, i.e, t2b_. Remember that if xo E S+, then y(O) = d. Since d > 0, it must be true
that y(t) > -d at least in some interval (0, e). Basically, the time it takes to go from
S to S must be always nonzero. The next result shows that when a trajectory enters
the bounded invariant set characterized above, e cannot be made arbitrarily small.
Thus, a lower bound on the time it takes between two consecutive switches from S
to S can be obtained.

Proposition 7.5 Let kdd- =|C A 'etB|I|c, and kdl =|ICAeAtB|I| and define

2 2
tl - t22kdi kdl

Let t2b-- = max {t 21,t 22}. If ta and tb are sufficiently large consecutive switching times
of impact map 2b, then |ta - tbl t2b-.

The proof is similar to the proof of proposition 5.7.
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Chapter 8

Robustness and Performance of
PLS

The previous chapters were dedicated to study global stability analysis of PLS. The
notions of impact maps and quadratic surface Lyapunov functions, introduced in
chapter 4, were successfully applied to prove global asymptotic stability of limit cycles
and equilibrium points of PLS. Two important assumptions behind these results were
(1) the model of a PLS accurately represented the physical system of interest and
(2) the system was autonomous, i.e., it did not depended on any external input. In
this chapter, we want to show that similar ideas to those in chapter 4 can be used to
guarantee finite gain £2 stability, i.e., "well-behaved" inputs generate "well-behaved"
outputs, of many PLS. For that, we use on/off systems (OFS). This is the simplest
class of PLS with globally stable equilibrium points. The formulation and solution
of the problem for this class of systems serves as an example and demonstration that
robustness and performance of many and more complex classes of PLS can done using
impact maps and quadratic surface Lyapunov functions.

Global stability analysis of OFS was studied in chapter 6. Here, we show that
many OFS are not only globally asymptotically stable, but also £2 to £2 bounded. By
solving a set of LMIs, a quadratic Lyapunov function on the switching surface of an
OFS can be constructed to prove performance of the system. As in chapter 6, exam-
ples analyzed include systems with unstable nonlinearity sectors, for which classical
methods fail to analyze.

This chapter is organized as follows. Next section gives some background on L2
gain stability. Section 8.2 reviews some results on H2 optimization, followed by the
main results of the chapter in section 8.3. Using OFS, we find conditions in the form
of LMIs that can be used to show the system is £2 to L2 bounded. This section
includes several illustrative examples, including OFS with unstable nonlinearity sec-
tors. Finally, section 8.4 summarizes the results obtained in this chapter and discusses
topics of further research in robustness and performance of PLS.
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8.1 Preliminaries

Consider a system whose input-output relation is represented by

y = Gu

where G is some mapping or operator that specifies y in terms of u (see figure 8-1).
The input u belongs to a space of signals, which in our case is the normed linear space
L2 of functions u : [0, oo) -+ R that are square-integrable, i.e., satisfy

|U2 = / 2 (t)dt < oo

U -- G Y

Figure 8-1: Input-output relation

In order to allow dealing with unstable systems as well as stable ones, G is usually
defined as a mapping from an extended space L2e to an extended space L2e, where
L2e is defined as

L2e = {ul ut C L2, Vt > 0}

and ut is a truncation of u, given by

u_ (T)u(T), 0<T<t
0t( > t

The extended space L2e is a linear space that contains the unextended space L2 as a
subset.

If we think of u E L2e as a "well-behaved" input, the question to ask is whether
the output y will be "well-behaved" in the sense that y E L2e. A system that has the
property that any "well-behaved" input will generate a "well-behaved" output will
be defined as a stable system. More precisely, we say a mapping G : L2e -+ L2e is
finite-gain L2 stable if there exists a nonnegative constant -y such that

II(Gu)t 112  7|UY lli 2  (8.1)

for all u E L2 and t E [0, oc). Note that (8.1) can be written as

/ t 
t

jY2(T)dT < y Jo U 2(T)dT

for all u C L2 and t C [0, oc) which, in turn, is equivalent to

min (YU 2 (T) _ y 2 (T)) dT > 0
uEL2 0
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for all t > 0.
A similar definition can given if the system is in its state-space model

f = f(x) + g(x)u (8.2)
y = h (x)

where x(t) E R', u(t), y(t) E R, f(x) and g(x) are smooth vector fields, and h(x) is
a smooth function. Assume also f (0) = 0 and h(0) = 0.

Definition 8.1 The system (8.2) is finite-gain L2 stable if the response x(t) of (8.2)
with initial state x(0) = 0 exists for all t > 0 and satisfies

min t yu2 (T) - h2 (x(T))) dT > 0 (8.3)
UEL2 fIt

for some - > 0 and for all t > 0.

A function V(x) is positive definite if V(0) = 0 and V(x) > 0 for all x : 0. A
sufficient condition for system (8.2) to be finite-gain £2 stable is the following.

Proposition 8.1 The system (8.2) is finite-gain L2 stable if there exists a positive
definite function V(x) such that the response x(t) of (8.2) from the initial state x(0)
0 exists for all t > 0 and satisfies

min (Yu2(T) - h2(x(7))) dT > V(x(t))

for some -y > 0 and for all t > 0.

The proof follows since, by definition, V(x(t)) > 0.
A result that is of particular interest to us is the following.

Proposition 8.2 Consider a sequence of times {tk}, k = 1, 2, ..., where t1 > to = 0,
tk+1 > tk, and tk -+ oc as k -+ oc. The system (8.2) is finite-gain L2 stable if there
exists a positive definite function V(x) such that the response x(t) of (8.2) from the
initial state x(0) = 0 exists for all t > 0 and satisfies

Itkmin (1u2(T) - h2(x(T))) dT > V(x(tk)) - V(x(tk_1)) (8.4)
uEL2 tk-1(

for some y > 0 and for all k = 1, 2,....

To prove the result, take any T > 0. Let N be such that tN > T. Summing each
side of (8.4) for all k = 1, 2, ..., N, we get

min tN (-Yu2(T) - h2(x(T))) dT > V(x(tN))
UEL2 fO

Proposition 8.1 can now be applied and the result follows.
For a more detailed introduction to L2 stability the reader is referred to any of

the numerous references in the field like, for example, [15, 36, 32].
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8.2 H 2 Optimization

In this chapter, we are interested in minimizing over u C 122 the functional

J(u(-)) = (Yu2(t) _ y2(t)) dt

subject to

± = Ax+Bu

y = Cx, x(0) =X0, x(T) = XT

and T > 0 (for T = 0, J(u(-)) = 0). This is a typical linear quadratic optimal control
problem which can be solved using the well known Pontryagin's maximum principle.
For completeness, we include here the derivation of the solution. Let

Io T(_yu2 - x'C'Cx + 2V'( - Ax - Bu)) dt

where 7P is the adjoint vector. It is a well known result that if u* is
to (8.5) then u* minimizes L. Thus,

OL
Ox
aL
i9u

From the last equality,

the solution

= -20 - 2C'Cx - 2A'7P=O 0

= 2yu - 2B'b = 0

1
u* (t)= -B'p(t)

yielding the linear time-invariant system known as the Hamiltonian system

(~)
where

H = A -IBB')- C'C -A'

and xo = x(0), XT = x(T) are given. Then, the optimal cost J(u*) = J*(XO, XT, T) is

J*(XO, XT, T) = 'OTxT - 0'X

where V) = $(T) and 4o = 0(0).

The solution to the Hamiltonian system is simply the solution of a linear time-
invariant autonomous system

[x(t)

'(t)
eHt -XO

1 0 II
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In order to find J(u*) we still need to write #b and V/ as functions of T, x 0 , and

XT. At t = T, the solution to the Hamiltonian system is

T) _ HT (XO
\OT / \bo

Define

eHT _( ell e1 2
e2 1 e22 ,/

Note that for simplification of notation we write eij, although these are actually
functions of T, i.e., eij = eij(T). Then,

e 1 (XT - eiixO)

and
bT e2  -- el) 1 XT

Finally, the optimal cost J(u*) = J*(xO, XT, T) can be written as

J*(XO XTT ) = T (XT) (8.6)

where WT is the symmetric matrix

- ( - 122 ee - (eT)') /2
WT = - (e2l 2 (8.7)

(e 21 - e22en - (e-)/)' /2 J-e

Optimal control references are numerous. For more detailed and general solutions
see, for example, [7, 43].

8.3 Performance of On/Off Systems

As mentioned earlier, the purpose of this chapter is to show that impact maps and
quadratic surface Lyapunov functions can be used in the analysis of performance of
PLS. For that, we choose to first analyze on/off systems (OFS) for their simplicity. We
will start with OFS with d = 0, i.e., with the origin belonging to the switching surface.
This is simplest class of PLS with globally stable equilibrium points. Figure 8-2 shows
the system we will be analyzing for the remaining of the chapter.

After showing the origin of a certain OFS is global asymptotically stable, the
question is if there exists a nonnegative -y satisfying (8.1).

In figure 8-2, the input to the LTI system is given by

e = u + max(0, CX)
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yu =& LTI =

Figure 8-2: On/off system with output disturbance u

Thus, the closed loop dynamics are

= Ax + Bu + B max(0, Cx) (8.8)

In the state space, the on/off controller introduces a switching surface that does
not depend on the input u. This switching surface

S = {x E 1R': Cx = 0}

divides the state space in two equal parts. On one side (Cx > 0), the system is given
by ± = Ax + BCx + Bu = Aix + Bu, where A1 = A + BC. On the other side
(Cx < 0) the system dynamics are given by ± = Ax + Bu. For purposes of analysis,
we assume the origin of the OFS is globally asymptotically stable when u = 0. This
can be checked using the results from chapter 6.

Define the Catersian product X x Y of two sets X and Y as

X x Y = {() x E Xy E Y}

Let y > 0. Define
A1 -!BB'

H, C'C -A'l

and
HiT - (e 11 e12

\e 21 e 2 2 1/

where T > 0. Define also WT1 as in (8.7). Let

A -1BB'
H2 -CC -A'

and WT2 be given in a similar way as WT1. In the following result, Q > 0 on X stands
for x'Qx > 0 for all x E X.

Theorem 8.1 The OFS (8.8) is finite-gain 122 stable if there exists a y > 0 and a
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matrix P > 0 such that

WT-P 0 > n X
( 0  (8.9)

WT2 - > 0 onSxS0 -P

for all T > 0.

There are several ways to improve the computationally aspects of conditions (8.9).
Conditions (8.9) involve the computation of the inverse of e12 . This matrix is com-
posed of both stable and unstable modes of H. As T goes to zero and as it grows
large, this matrix approximates non-singular matrices. Computationally, it is very
hard to find the inverse of e12 for extreme values of T, and numerical errors occur.
In order to reduce numerical errors and have high confidence on the results, it is
necessary to find equivalent conditions to (8.9) that do not involve the computation
of an inverse of a matrix. Also, as we will see, this will help in the analysis when
T -+ 0.

From section 8.2, we know the optimal cost (8.5) is given by

J*(xo, XT, T) = 4xT - 0V1xo

The outline of proof of theorem 8.1 is as follows. For each condition in (8.9), we use
the Hamiltonian system to solve for 4 T and 4'o as functions of xo, XT, and T, and then
replacing them in the optimal cost, resulting in (8.6). Thus, the optimal cost (8.5) is
a quadratic function of x0 and XT. The solution of /T and '0 as functions of x0 and
XT, however, involves inverting e12.

Another way to look at the problem is that since e12 is invertible for all T > 0,
it makes no difference in writing the optimal cost as a function of x0 and XT or as a
function of x0 and 0 . Given x0 and XT, 0o is uniquely defined, and vice versa.

Define
STi = ({ESXR (C 0)e HiT x= 0}

and
ST2 = {xESXR| (C O)eHTX-O}

The results in the following theorem are equivalent to the results in theorem 8.1.

Theorem 8.2 The OFS (8.8) is finite-gain L2 stable if there exists a 'y > 0 and a
matrix P > 0 such that

eH'T ( 1/2 eH1T - (P 1/2) >0 on ST1
I1/2 0 ) I/2 0 (810

eHT ( 1/2) eH2T/2 0 ) i/ 2 0 on

for all T > 0.
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For each T > 0, these conditions are LMIs which can efficiently be solved for
P > 0 using available software.

8.3.1 Examples

The following examples were processed in matlab code. The latest version of this
software is either available at [27] or upon request. Both stability conditions (8.9)
and (8.10) need to be satisfied for all T > 0. Computationally, the idea is to show they
are satisfied in some interval [tmin, tmax] and then guarantee they are also satisfied for
all 0 < T < tmij and T > tmax.

The analysis near T = 0 is done in several steps. First, we notice that if T = 0
then the cost function is zero. Thus, both conditions are zero for T = 0. The next step
is to check if the derivatives at zero are positive semidefinite. This can be done using
conditions (8.10). Details can be found in the technical details section (section 8.3.3).
Then, for a small enough tmin, it can be shown that conditions (8.10) are satisfied
for all 0 < T < tmin. The idea is to find bounds on the second derivative of the
stability conditions over (0, tmin), and to use them to show nothing can go wrong in
that interval.

The analysis when T is large is done by first guaranteeing the stability conditions
are satisfied at T = oc. This can be done using conditions (8.9). Details can also
be found in section 8.3.3. Then, for a large enough tmax, it can be shown that
conditions (8.9) are satisfied for all T > tmax. The idea is to take a function r(t) that
maps (0, oo) to (0, 1), and then find a rmax close enough to 1 such that the bounds
on the derivative of the stability conditions on (rmax, 1) are small enough to show
nothing can go wrong on that interval.

Example 8.1 Consider the OFS in figure 8-2 where the LTI system is given by

C(s) = 2s-42 (s + 1)(s + 2)(s + 3)

First, we need to check if the origin is globally asymptotically stable. Using the results
from chapter 6, the origin is found globally asymptotically stable (see figure 8-3).

Min(eig(R(t))); Want them always positive

Figure 8-3: Origin is globally asymptotically stable
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The question is if this system is also finite-gain L2 stable. Using the software
described above, we were able to to find a P > 0 satisfying both (8.9) and (8.10), for
all T > 0. Figure 8-4 shows the minimum eigenvalues of conditions (8.9) (on the left)
and conditions (8.10) (on the right) on some intervals (0, tmax).

, Minimum eigenvalues of stability conditions Minimum eigenvalues of stability conditions

Figure 8-4: Minimum eigenvalue of stability conditions

Therefore, we conclude the system is not only globally asymptotically
also finite-gain L2 stable.

stable, but
0

Example 8.2 Consider the OFS in figure 8-2 where the LTI system is given by

G(s) = - ±s+6s83±2s2+2s+3

Note that this system has an unstable nonlinearity sector
that all classical methods fail to analyze the system.

(see figure 8-5). This means

U

y

Figure 8-5: Unstable nonlinearity sector with constant gain of 1/2 (dashed)

Nevertheless, the system is global asymptotically stable, as we see in figure 8-6.
In this figure, we see the stability conditions (6.12) satisfied in some bounds of the
expected switching times.

In terms of performance, using again the software described above, we were able
to to find a P > 0 satisfying both (8.9) and (8.10), for all T > 0. Figure 8-7 shows the
minimum eigenvalues of conditions (8.9) (on the left) and conditions (8.10) (on the
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Min(eig(Ri(t))); Want them always positive

Figure 8-6: Origin is globally asymptotically stable

right) on some intervals (0, tmax). For purpose of visualization, the second conditions
in (8.9) and (8.10) in figure 8-7 are scaled.

Minimum eigenvalues of stability conditions Minimum eigenvalues of stability conditions

Figure 8-7: Minimum eigenvalue of stability conditions

Therefore, we conclude the system is not only globally asymptotically
also finite-gain L2 stable.

stable, but
E

8.3.2 Proof of Results

Proof of theorem 8.1:
"worst" input u E L2 from

switch, this can be written

According to proposition 8.2, all it is left to show is the
one switch to the next switch satisfies (8.4). Over a single
as

= 
TJ(u*()= min

UEL2e fO ( 2() _ y2(_)) d (8.11)

where T > 0 is the switching time associated with a single impact map. We are
interested in finding the control action u* that takes a point x0 E S and maps it to
x, c S such that the cost function J(u(-)) is minimized. This is a typical optimal
control problem, whose solution can be found in section 8.2.

Note that in order to guarantee the assumptions of proposition 8.2, we need to
guarantee (8.11) is satisfied for both impact maps: one when the system is governed
by ± = A 1x+Bu (Cx > 0), and the other when the system is governed by ± = Ax+Bu
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(Cx < 0). Each impact map will lead to a different stability condition. We will show
how the first condition in (8.9) is obtained. The second condition follows similarly.

Let the switching time T > 0.
x(0) =0 c S, x(T) = XT E S, and
optimal control problem as explained
Ji(u*) = J*(XO, XT, T)

Consider a trajectory of i = AIx + Bu with
the minimization problem (8.11). Solving the
in section 8.2, yields the following optimal cost

J~(o~T,)_ (XT)'w (TJ1* (x, x7 XT ) = TW X1\O x0/ \x0

We need

where Vi (x)
x E S, Pi >

J* > V1 (XT) -VO (xo) = T) ( x'PI 0 ) ( XT)
l) \XO0 0 -Po \X0 )

are quadratic forms defined on the switching surface S, i.e., Vi(x) = x'Px,
0. Conditions on the second map can be found similarly

J2* > Vo(xT) - V(xO)

for all T > 0, and X0, XT E S.

Note that when the switching time is equal to zero, J;* = J2* = 0. Thus,

0 > V(xO) - V(xO)
0 ;> VO(x) - V(xO)

which implies that
Vo(x) = V(x), Vx E S

Therefore, PO = PI = P > 0, and the result follows. E

Note that conditions (8.9) are conservative in the sense that they do not take in
account the trajectory starting on the switching surface, stays on one side of S until
it switches again at S, at the specified switching time. Finding the optimal control
under such assumption is not an easy task. Moreover, the optimal cost would most
likely not be given in a quadratic form in terms of the initial and final conditions, as
it is in theorem 8.1. A less conservative condition based on these considerations is
part of future research.

Proof of theorem 8.2: Again, we show how the first condition in (8.10) is obtained.
The second, follows similarly. The cost function over one switch is given by

J* (xo, XT,T = O xT - VOXO (8.12)

and we know the relation between these variables is given by the solution of the
Hamiltonian system

XT

\OT

H1T (£O)
\0/
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Thus, the cost function can be rewritten as

1 ( T T ( 0 I - 7T ) 1 ( ( 0 J1) ( x 0o
2 OT) \I 0/ \)T 2 )o \I 0 )

1 (xO HT ( 0 eH1T (XO) - XO 0 1 (O
2\'Oo I 0) 0 2 Oo \I 0) 'O

_ 1 (X) [eHT ( D eH1T (0 )] (X)

On the other hand

V1(XT) - V(xO) = (XT' (P 0) (XT (X )' (P 0) (X)

\ OT/ 0 T 0 0

S() (P 0)] (XO)
\00 \0 0) 0 0) 0

From the fact that we need

J > V1(xT) - Vo(xO)

we get

xo ) R 1 (T) () > 0 (8.13)

where
R1 (T) = e H'T -(7 / 2 eH1T _-P 1/2)

I1/2 0 1 /2

The last part of the proof is to find out for what values of x0 and 40' must condi-
tion (8.13) be satisfied on. We already know that x 0 E S. Also, XT E S, i.e., CXT = 0,
or

(C 0)X =0(CT

Hence,

(C 0)e 0H1T O)=0
0/

Therefore,

which proves the result.

8.3.3 Technical Details: Analysis at T = 0 and T oc

Analysis at T = 0

Computationally, conditions (8.9) and (8.10) can both be easily checked in some
intervals [tmin, tma] using efficient available software. Although we can check the
stability conditions for arbitrarily small and large values of T, it still remains to show
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that they are satisfied for 0 < T < tmin and T > tma. The analysis for large values
of T is currently under investigation. Here, we focus on the analysis for small values
of T.

Since both conditions are equivalent, we concentrate on conditions (8.10). To
recall, these conditions are

Ri (T) > 0 on Sj

for i = 1, 2, where R2 (T) is defined similarly as R 1 (T) was defined in the proof of
theorem 8.2.

When T = 0, XT = xo and 'OT = o. Thus, the optimal cost (8.12) is J* = 0.
This means we need to guarantee the derivative of the stability conditions at T = 0
are positive semidefinite.

We focus on the first condition in (8.10). The second follows similarly. Let So =

IiMT-W STi, i.e.,
So={xESxR" (C 0)Hx=0}

Note that limTO ST1 = limTo ST2 since

(C 0) H1 (O

where we use the fact Cxo = 0.
Finding the derivative of RI(T)

= (CA 1 CBB') )
1

= C(A + BC)xo + -CBB'bo

1
- CAxO + -CBB'@o

= (C 0)H
\'0/

is straightforward

dR 1 (T) = R1 (T) = eH T H, P
dt \I/2

which means
-P

RI(0) = H' (/2
Therefore, it is necessary that

1/2 H1T
0 )

1/2 +

0 )+ (/ P

±eH'T 
~ j
Ie1(/2

12HeH1T
0 )

1/2 H
0 )H

R1 (0) > 0 on So

This derivative also helps to choose a small enough value of
stability conditions are guaranteed to be satisfied for all T E

tmin > 0 such that the

(0, tmin).

Analysis at T = oc

In this subsection, we present a result that gives us LMIs at T = oc. These are based
in finding the limits of WT1 and WT2 in (8.9) as T -+ oc. We will show how to find
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the LMI for the first condition in (8.9). The other follows similarly.
Remember that the eigenvalues of an Hamiltonian matrix are symmetric around

the jw axis. This means we can always find a representation for H1 of the form
H1 = VEU, where the matrices V and E, are real, U = V- 1 , and

0D)
-D

where the eigenvalues of D are all the stable eigenvalues of H1 . Consider the following
block partition of V and U

V= V
V 2 1 U2 1

U2

We have the following result for the first condition in (8.9). A similar results can be
obtained for the second condition.

Proposition 8.3 If P > 0 satisfies conditions (8.9) and (8.10) then it also satisfies

V22 V 1 - P > 0 on S

U2 1U2 1 + P 0 on S

Proof: We need to find the limit when T -+ oc of
we need the

lim WT1
T-+oo

First notice that eHIT can be written as

e H T
VneDTUni + V12 e-DTU2 1

V2 1eDTUnl + V22 e-DTU21

the first condition in (8.9). Hence,

VneDTU12 + V12 e-DT U 22

V2 1eDT U12 + V 22 e-DTU22

Since eDT - 0 as T -+ oc

e H1T

as T -+ oc. Each block of the matrix WT1
starting with block (1, 1), is given by

V12 e-DTU22

V2 2e-DTU22 I

(in the form of (8.7)) when T -+ oc,

e 22 el 2 -* V22eDTU22 U22eDTV2 1

= V22 VI2 1

Noticing that

-1- D V -~~
e 22 el 2 ell -+ V 2 2 e-DTU22 U22 2DT VI2 eDTU21

= V22 e-DTU2 1

e2=

138

12 e-DTU21

V 22 e-DTU2 1

(D0



block (1, 2) given by

e21 - e22 e12 ell - (e '-+ e2 1 - e21- (U2eDT
-+0

Block (2, 1) is just the transpose of block (1, 2). Finally, block (2, 2) is given by

-17e1 e1  - U eDTv1 l 2 -DTU 2 1

= U12

This proves the result. U

8.4 Discussion

In this chapter we showed that performance analysis of PLS can be done using impact
maps and quadratic surface Lyapunov functions. Although the results are still pre-
liminary, they were enough to convince that the ideas developed for stability analysis
are also powerful in performance and robustness analysis of PLS.

The class of PLS we analyzed was on/off systems, with d = 0. This class had al-
ready been studied in chapter 6. There, the focus was stability analysis of equilibrium
points of OFS. Since this is the simplest class of PLS with global asymptotic equilib-
rium points, it was the best place to develop new concepts and results. The goal was
to show the system was finite-gain L 2 stable. As in stability analysis, the approach
was to analyze the system at the switching surface. Using several well known results
from H 2 optimization, we were able to find conditions in the form of LMIs that,
when satisfied, guarantee finite-gain L 2 stability of OFS. Through the use of several
illustrative examples, we showed the methodology can be efficiently and successfully
applied to a wide range of OFS, including those with unstable nonlinearity sectors,
for which all classical methods fail to analyze.

Several topics in this area are still open and in need of further research, and will
most certainly be the topic of future publications. One is the technical detail related
to guaranteeing the stability conditions are satisfied for all T > tmax, knowing they
are satisfied for all [0, tmaxl, where tmax is some large positive number. Although this
is a very important detail that needs to be solved, numerically, by increasing tmax,

we can get a high level of confidence that the stability conditions are in fact satisfied
for all T > 0. This is exactly what we have done in the previous section.

The next logical step is to analyze performance of OFS for which the switching
surface does not include the origin. As in stability analysis in chapter 6, there should
not be much difference from what we have done here. In fact, here, the difference is
even smaller since we do not take advantage of the sets St,, i.e., the sets of points is
the switching surface that have same switching time.

Then, we believe saturation systems can also be analyzed using similar ideas.
In time, the goal is to develop a general framework where large classes of PLS can
systematically be globally analyzed, not only in terms of stability analysis, but also
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in terms of robustness and performance analysis.
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Chapter 9

Conclusions

Motivated by the need of better, more general, and more efficient global analysis
tools for certain classes of hybrid systems, this thesis developed a new constructive
analysis methodology using impact maps and quadratic surface Lyapunov functions.
The main idea came from the discovery that impact maps induced by an LTI flow
between two switching surfaces can be expressed as linear transformations analytically
parametrized by a scalar function of the state. Furthermore, level sets of this function
are convex subsets of linear manifolds. As a result, the problem of finding quadratic
Lyapunov functions on switching surfaces was reduced to solving a set of LMIs, which
can be efficiently done using available computational tools.

The success and power of this new methodology were well demonstrated in globally
analyzing equilibrium points and limit cycles of several classes of piecewise linear
systems (PLS): relay feedback systems (RFS), on/off systems (OFS), and saturation
systems (SAT).

The first class of systems we analyzed was RFS. It is well known that for a large
class of RFS there will be limit cycle oscillations. Although RFS is a very simple
class of PLS, there were almost no results available to globally analyze such limit
cycles. However, with these new results, a large number of examples with a locally
stable symmetric unimodal limit cycle were proven globally asymptotically stable.
Systems analyzed include minimum-phase systems, systems of relative degree larger
than one, and of high dimension. In fact, existence of an example with a globally
stable symmetric unimodal limit cycle that could not be successfully analyzed with
this new methodology is still an open problem. Such positive results led us to believe
that globally stable limit cycles of RFS frequently have quadratic surface Lyapunov
functions.

After demonstrating the success of this methodology in globally analyzing limit
cycles of PLS, we showed that the same ideas can be used to check global asymptotic
stability of equilibrium points of PLS. For that, we used OFS, the simplest class of
PLS with globally stable equilibrium points. This simplicity comes from the fact that,
in the state space, OFS are characterized by a single switching surface. Equilibrium
points of OFS analyzed included those that did not belong to the switching surface.
Although the analysis in this case was different from RFS, we were able to prove
global asymptotic stability for a large number of examples analyzed. These included
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systems with an unstable affine linear subsystem, systems of relative degree larger
than one and of high dimension, and systems with unstable nonlinearity sectors, for
which no results existed so far. In fact, existence of an example with a globally stable
equilibrium point that could not be successfully analyzed with this new methodology
is still an open problem.

The next natural step was to show the same ideas hold even when a PLS has more
than one switching surface. We considered a class of PLS known as SAT. In the state
space, these systems are characterized by two switching surfaces, separating three dif-
ferent affine linear subsystems. As before, we were able to express stability conditions
as sets of LMIs, which can be solved efficiently. Moreover, a large number of examples
of SAT analyzed was successfully proven to have a globally stable equilibrium point.
Systems analyzed included high-order systems, systems of relative degree larger than
one, and systems with unstable nonlinearity sectors for which all classical methods
failed to analyze. In fact, existence of an example with a globally stable equilibrium
point that could not be successfully analyzed with this new methodology is still an
open problem. With SAT, we confirmed the idea that global asymptotic stability of
equilibrium points of PLS can be checked using impact maps and quadratic surface
Lyapunov functions. In particular, we showed that this new methodology successfully
globally analyzes PLS with more than one switching surface.

The last part of this thesis was dedicated to show that impact maps and quadratic
surface Lyapunov functions can be efficiently and successfully used to not only check
stability, but also performance and robustness properties of PLS. We found condi-
tions in form of LMIs that, when satisfied, guarantee finite-gain L2 stability of OFS.
These conditions were use to show that many globally asymptotically stable OFS are
also finite-gain L2 stable. Systems analyzed include OFS with unstable nonlinearity
sectors, for which all classical methods fail to analyze.

This work has open a door to a new area of research and, as a consequence, has
left numerous open problems. Some of these are currently under investigation. Topics
of future work are include:

* The main goal of this research was to build a framework where piecewise linear
systems can be systematically analyze in terms of stability, robustness, and
performance. We have already seen this is possible for certain classes of PLS.
The questions now are: given a PLS, how to set up the analysis problem? How
to address it? And, how to solve it? Ideally, one would like to have a software
package that, through a user friendly interface, allows a user to supply a PLS.
In terms of stability, the first result of this software would be a characterization
of all equilibrium points and limit cycles. Then, the user could decide which
one of these trajectories to analyze. If there are several of these trajectories,
then maybe we are interested in a reasonably large region of stability of the
specified trajectory. If there is only one, the software would check if the specified
trajectory is globally stable.

In terms of robustness and performance, the applications are endless. As a non-
linear system is approximated by a linear system, an hybrid system could be
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approximated by a PLS together with external perturbations and a set of uncer-
tainties, modeling not only the nonlinearities inherent to the hybrid system, but
also unmodeled dynamics. Once characterized, structured and unstructured un-
certainties, and external perturbations, could be supplied to the software, and
have this return robustness and performance properties of the PLS.

The ultimate goal is to have a theory for PLS somehow similar to the existent
theory for linear systems. Although such general framework is still faraway, we
believe that with the present work we have taken the first steps in that direction.

" There are several physical systems that can be modeled and analyzed as a PLS.
Among these are several classes of walking robots. As a cases study, we intend
to apply quadratic surface Lyapunov functions to analyze walking robots.

" When studying RFS, we mention that certain classes of RFS exhibit sliding
modes. Although sliding modes were not considered then, the analysis of such
systems is not that different from what we have done so far. With the definition
of a relay in chapter 5, there may exist points in the switching surface for which
no solution exists. This can happen when the vector field on both sides of the
switching surface points towards the switching surface. Changing slightly this
definition to allow trajectories to evolve in the switching surface, leads to the
so-called sliding modes. Thus, whenever a trajectory enters the set of points
leading to sliding modes, we consider a new affine linear system of dimension
lower than the one of the original system, defined on the switching surface.
This system evolves until it reaches a certain linear manifold on the switching
surface. Then, the trajectory is again free to evolve in the state space. Hence,
the analysis is similar to other cases considered in this thesis.

To be more general, quadratic surface Lyapunov functions can be used to ana-
lyze PLS that switch between affine linear systems of different dimension.

" An important topic of research following this thesis is to find conditions that do
not depend on the parameters of the Lyapunov functions but guarantees their
existence. Such conditions should depend on the plant or on certain properties
of a class of systems, and should, obviously, be easier to check than the ones
presented here.

" Many PLS have more than one equilibrium point and/or limit cycle that is lo-
cally stable. The question here is: what is the region of attraction for each of
these locally stable trajectories? Before studying global analysis, we dealt with
this exact problem for RFS. The work reported in [23] characterizes reasonably
large regions of stability around limit cycles. After the discovery that impact
maps could be represented as linear transformations parametrized by the asso-
ciated switching time, this line of research became secondary, and the focus was
then on globally analysis. Using these new tools, it would be very interesting to
go back and see how they could be used to guarantee regions of stability around
locally stable trajectories. The ideas reported in this thesis would undoubtfully
improve the results in [23].
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