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ABSTRACT

The Finite Element Method (FEM) is a widely popular method for the numerical solution
of Partial Differential Equations (PDE), on multi-dimensional unstructured meshes.
Lagrangian finite elements, which preserve C0 continuity with interpolating piecewise-
polynomial shape functions, are a common choice for second-order PDEs. Conventional
single-scale methods often have difficulty in efficiently capturing fine-scale behavior
(e.g. singularities or transients), without resorting to a prohibitively large number of
variables. This can be done more effectively with a multi-scale method, such as the
Hierarchical Basis (HB) method. However, the HB FEM generally yields a multi-
resolution stiffness matrix that is coupled across scales.

We propose a powerful generalization of the Hierarchical Basis: a second-
generation wavelet basis, spanning a Lagrangian finite element space of any given
polynomial order. Unlike first-generation wavelets, second-generation wavelets can be
constructed on any multi-dimensional unstructured mesh. Instead of limiting ourselves to
the choice of primitive wavelets, effectively HB detail functions, we can tailor the
wavelets to gain additional qualities.

In particular, we propose to customize our wavelets to the problem's operator.
For any given linear elliptic second-order PDE, and within a Lagrangian FE space of any
given order, we can construct a basis of compactly supported wavelets that are orthogonal
to the coarser basis functions with respect to the weak form of the PDE. We expose the
connection between the wavelet's vanishing moment properties and the requirements for
operator-orthogonality in multiple dimensions. We give examples in which we
successfully eliminate all scale-coupling in the problem's multi-resolution stiffness
matrix. Consequently, details can be added locally to a coarser solution without having
to re-compute the coarser solution.

This quality can be exploited in the adaptive solution of a wide range of problems.
By using an adaptive operator-customized wavelet basis, we achieve an optimal solution
speed for problems with concentrated local errors. We illustrate this with the
computation of a two-dimensional Green's Function on a bounded domain. We also
apply our adaptive solution technique to speed up barrier option valuation, governed by a
multi-dimensional diffusion-convection-reaction PDE with varying coefficients.

Thesis Supervisor: Kevin Amaratunga
Title: Associate Professor of Civil and Environmental Engineering





Acknowledgements

I would like to thank the following individuals and institutions for their support:
My research advisor, Professor Kevin Amaratunga, for his guiding and friendly

advice, supporting commitment, and trust.
My former and current fellow students, especially Julio Castrill6n-Candis and

Ragunathan Sudarshan, for the enlightening discussions on research and life.
The Belgian American Educational Foundation, for supporting me with a fellowship.
The National Science Foundation, for supporting this work under Grant No. 9984619.
The Department of Civil and Environmental Engineering at MIT, for their generous

commitment to my education.
My friends and roommates, for their encouragement and understanding.
My family, for their loving trust.

To my mother

Biographical Note

Stefan D'Heedene grew up in Belgium, where he obtained the degree of Burgerlijk
Ingenieur Architect at the Katholieke Universiteit Leuven Magna Cum Laude in June
2000. He started his doctoral studies at the Massachusetts Institute of Technology in
September 2000 with a Victor De Corte Fellowship. In 2001, he was awarded the H. Van
Waeyenbergh of the Hoover Foundation for the Development of the University of Leuven
Fellowship by the Belgian American Educational Foundation. In 2004, he received a
Financial Technology Option Certificate from the Massachusetts Institute of Technology.

5



6



Contents

1. Introduction .*...*.. *.. .. .................... . 13

1.1 B ackground ......................................... 13

1.2 O utline ............................................. 15

2. Hierarchical Basis FEM o..0 ....... ....... . ......... 19

2.1 HB Refinem ent ...................................... 19

2.2 Hierarchical Basis FEM ............................... 25

2.3 HB Pre-Conditioner ................................... 27

2.4 Conclusion .......................................... 27

3.1 Generalized HB: Wavelet Basis .......................... 29

3.2 Second-Generation Wavelet Construction ................. 33

3.3 W avelet Basis FEM .................................. 39

3.4 Operator-Customized Wavelets ......................... 42

3.5 Conclusion ......................................... 44

4. 1D Wavelet Customization ............ ......... 45

4.1 Poisson's Equation .................................... 45

4.2 Second-Order Partial Differential Equations ............... 50
4.2.1 Non-Lagrangian Wavelet Basis ............................ 51

4.2.2 Non-Compact Wavelet Basis ............................... 53

4.2.3 Compact Wavelet Basis ................................... 55

4.2.4 Special Operators ....................................... 59

4.2.5 Boundary Treatment ..................................... 63

7



4.3 Implementation .......................

4.4 Conclusion ..........................

5. 2D Wavelet Customization .......... ..

5.1 Poisson's Equation ....................

5.2 Second-Order Partial Differential Equations

5.2.1 Non-Compact Wavelet Basis .............

5.2.2 Compact Wavelet Basis .................

5.2.3 Special Operators .....................

5.2.4 Boundary Treatment ...................

5.3 Implementation .......................

5.4 Conclusion ..........................

6. Complexity Analysis: an Example .......

6.1 Green's Function Example ...............

6.2 Complexity Analysis ..................

6.2.1 Matrix Assembly Cost .................

6.2.2 Solution Cost .........................

6.2.3 Solution Transformation Cost ............

6.2.4 Complexity Comparison ................

6.3 Refinement Strategy ....................

6.4 Conclusion .........................

7. Application: Barrier Option Pricing . . . . .

7.1 Barrier Option Pricing Problem ...........

7.2 Operator-Customized Wavelet Basis FEM . .

7.3 Adaptive M ethod ......................

7.4 Conclusion ...........................

8. Research Extensions ..................

8.1 3D Problems .........................

8.2 Hermite Finite Elements ................

..... 64

..... 68

. .0 . 69

............... 69

............... 76

. . . . . . . . . .. . . . . . . . 76

. . . . . . . . . . . . . . . . . . 7 7

. . . .. . .. . ... .. .. . . 8 0

. . . .. . .. . ... .. .. .. 8 5

....... . ....... 86

............... 90

00000000 0.091
. ... . ..... ..... 9 1

..... . ........ 97

. . . . . . . . . .. . . . . . . . 9 7

................. 103

................. 108

................. 109

...... . ...... 109

.............. 110

. . . . . . . . . . . . 113

.............. 113

.... 118

.... 127

.... 132

... 135

.... 135

.... 136

8

......... 0

......... 0



Tables

6-1 Assembly costs [order of], non-adaptive and with telescopic adaptivity ....... 102

6-2 Solution costs [order of], non-adaptive and with telescopic adaptivity ........ 107

6-3 Transformation costs [order of], non-adaptive and with telescopic adaptivity . . 108

7-1 Parameters used in the Black-Scholes and Heston model .................. 120

7-2 Numerical solutions of Black-Scholes PDE with Table 7-1 parameters ....... 120

7-3 Numerical solutions of Heston PDE with Table 7-1 parameters ............. 120

7-4 Adaptive OCWB solutions of Black-Scholes ............................ 130

7-5 Adaptive OCW B solutions of Heston .................................. 130

Figures

2-1 Forcing function used in Equation (2.1) ................................ 20

2-2 Eight Lagrangian finite elements of first order ........................... 20

2-3 FE solution of Equation (2.1) on the grid shown in Figure 2-2 ............... 20

2-4 FE solution of Equation (2.1) on an adaptively refined grid ................. 20

2-5 Adaptive h-refinement of a one-dimensional first-order Lagrangian FE basis ... 21

2-6 Adaptive refinement of a one-dimensional first-order Hierarchical Basis ...... 21

2-7 Adaptive h-refinement of a one-dimensional second-order Lagrangian FE basis . 22

2-8 Adaptive refinement of a one-dimensional second-order Hierarchical Basis .... 22

9



2-9 FE solution of Equation (2.3) with first-order Lagrangian triangular elements ... 24

2-10 Adaptive h-refinement of a two-dimensional first-order Lagrangian FE basis ... 25

2-11 Adaptive refinement of a two-dimensional first-order Hierarchical Basis ....... 25

2-12 A first-order Hierarchical Basis ...................................... 26

3-1 Representation of functionf on two different scales; difference of the two ...... 30

3-2 Scaling functions for two different scales; wavelet functions ................ 30

3-3 Partitioning of one-dimensional mesh into k- and m-nodes of levels 1 and 0 .... 31

3-4 Level 0 and level 1 partitions of adaptively refined two-dimensional mesh ..... 31

3-5 First-order Lagrangian primitive wavelet basis on regular ID mesh ........... 32

3-6 Second-order Lagrangian primitive wavelet basis on irregular ID mesh ........ 32

3-7 First-order Lagrangian primitive wavelet basis on regular 2D mesh ........... 32

3-8 Scaling Equation for first-order wavelet basis ............................ 34

3-9 Scaling Equation for second-order wavelet basis .......................... 34

3-10 Wavelet Equation with lifting, for first-order wavelet basis ................. 35

3-11 Wavelet Equation with lifting, for second-order wavelet basis ............... 35

3-12 Wavelet Equation with stable completion, for first-order wavelet basis ........ 35

3-13 Sparsity of two-level first-order HB FEM stiffness matrix for 2D Poisson ...... 40

3-14 Sparsity of full resolution first-order HB FEM stiffness matrix for 2D Poisson . . 40

4-1 First- (a), second- (b), third-order (c) wavelets customized to Laplace operator . 48

4-2 Stiffness matrix for second-order Laplace-customized wavelets .............. 49

4-3 Stiffness matrix for second-order HB ................................... 49

4-4 Condition number of quadratic wavelet FE matrix for Poisson's Equation ...... 50

4-5 Condition number of quadratic wavelet FE matrix for non-Poisson PDE ....... 50

4-6 Non-compact lifting-only wavelet customized to a general operator .......... 55

4-7 Customized wavelet's support of three first-order elements ................. 57

4-8 Wavelet customized to general PDE, on support of Figure 4-7 ............... 57

4-9 Customized wavelet's support of more than three first-order elements ......... 58

4-10 Wavelet customized to general PDE, on support of Figure 4-9 ............... 58

4-11 Customized wavelet's support adjacent to a Dirchlet boundary ............... 63

4-12 Wavelet customized to general PDE, on support of Figure 4-11 .............. 63

4-13 Four-level FE matrix of first-order wavelets customized to a general PDE ...... 66

4-14 Four-level FE matrix of first-order HB for a general PDE ................... 66

5-1 Scaling function, and wavelets customized to Laplace operator .............. 71

10



5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

5-12

5-13

5-14

Customized wavelet's support of one scaling function .....................

Scaling function, three wavelets customized to Laplace, on support of Figure 5-2

Four-level FE matrix of first-order wavelets customized to Poisson's Equation . .

Four-level FE matrix of first-order HB for Poisson's Equation ...............

Non-compact lifting-only wavelet customized to Laplace ...................

Customized wavelet's support of two neighboring scaling functions ..........

One of three wavelets customized to Helmholtz Equation on Figure 5-7 support .

Derivative triangle for ID problem (a), and 2D problem (b) .................

Compact quadratic wavelets customized to Laplace operator ................

First-order Laplace-customized wavelet customized, near Dirichlet boundary ...

Non-crossing chains, connecting all the k-nodes ..........................

First-order wavelet customized to Laplace, along Dirichlet boundary ..........

Two-level FE matrix of first-order wavelets customized to Poisson's Equation . .

5-15 Two-level FE matrix of first-order HB for Poisson's Equation ............... 89

6-1 Level 0 mesh of k-nodes supporting scaling functions ...................... 93

6-2 Solution on level 0 mesh ........................................... 93

6-3 Level 0 non-adaptive, and level 1, 2 adaptive HB refinement ................ 93

6-4 (Non)-adaptive solutions for HB refinement ............................. 93

6-5 Level 0 non-adaptive, and level 1, 2 adaptive OCWB refinement ............. 94

6-6 (Non)-adaptive solutions for OCWB refinement .......................... 94

6-7 Error energy norm of Green's function solutions .......................... 96

6-8 Green refinement around refinement zones ............................. 100

6-9

6-10

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

Solving cost vs. dimension of non-adaptive solution of Green's function ...... 105

Solving cost vs. dimension of adaptive solution of Green's function ......... 105

Option price vs. underlying asset price, at different times .................. 119

Four-level HB system or mass matrix for non-adaptive Black-Scholes model .. 122

Four-level HB system or mass matrix for non-adaptive Heston model ........ 122

First-order FE wavelet customized to Black-Scholes operator ............... 123

First-order FE wavelet customized to Heston operator .................... 123

Four-level OCWB system matrix for non-adaptive Black-Scholes model ..... .124

Four-level OCWB system matrix for non-adaptive Heston model ........... 124

Four-level OCWB mass matrix for non-adaptive Black-Scholes model ....... 124

Four-level OCWB mass matrix for non-adaptive Heston model ............. 124

11

73

73

75

75

77

78

78

82

84

86

87

88

89



Adaptive Black-Scholes solution, function of asset price and time ........... 128

Corresponding scaling, wavelet (level 0, 1, 2) coefficients, in time .......... 128

Adaptive Heston solution, function of asset price and time ................. 129

Significant OCWB scaling, wavelet coefficients; times T, 2T/3, T/3, 0 ....... 129

Adaptive Heston solution, function of asset price and volatility, at time 0 ..... 129

Computed OCWB scaling, wavelet coefficients; times T, 2T/3, T/3, 0 ........ 129

12

7-10

7-11

7-12

7-13

7-14

7-15



1.0

Introduction
1.1 Background

The Finite Element Method (FEM) (e.g. Bathe, 1996 or Zienkiewicz et al., 2000)

is a widely popular method for the numerical solution of problems described by Partial

Differential Equations (PDE) over complicated multi-dimensional geometries. With the

growth in computational power and storage capacity, FE models have become

increasingly large-scale. In particular, problems that exhibit behavior over a range of

scales may be better handled by a multi-scale method than by a simple single-scale

method. We have in mind problems with geometrical anomalies (e.g. holes), material

anomalies (e.g. boundary layers), or detailed features in the loads or initial condition (e.g.

Green's function, wave front). For such problems, the mesh resolution can be increased

adaptively, only where needed. Hence, a given solution accuracy can be obtained with a

reduced problem size. In addition, multi-resolution methods, such as the multi-grid

method, can improve a FE system's iterative solving speed.

In the nineties, a more flexible multi-resolution technique, the Hierarchical Basis

(HB) FEM, has been proposed (Yserentant, 1992) as an alternative to the multi-grid pre-

conditioner. This method in essence consists of a change from the usual single-scale

13



FEM basis to a multi-resolution basis of HB functions that span the same space. More

recently, these Hierarchical Basis functions have been proposed for adaptive refinement

methods (Krysl et al., 2003). Indeed, whereas other adaptive mesh refinement methods

require either re-meshing or the resolution of hanging nodes, the HB method, by contrast,

performs mesh refinement in a natural way. When adding detail functions to a coarser

basis, we do not need to change the stiffness matrix of the coarser problem, but can just

plug-in the sub-matrix corresponding to the new detail functions. However, new details

generally cannot be added to a coarser solution without re-computing the entire solution.

Indeed, in general, the HB FEM stiffness matrix is fully coupled across scales.

Achieving decoupling between the detail part and the coarser part of the multi-resolution

stiffness matrix is the primary goal of this dissertation. Scale-decoupling will greatly

facilitate adaptive refinements. In addition, scale-decoupling will yield an optimal

solution speed for problems with high local concentration of the solution error.

Parallel to the development of Hierarchical Bases, the use of wavelet functions in

PDE simulations has been proposed (see e.g. Amaratunga et al., 1993, 1994, 1997,

Beylkin et al., 1992, Dahlke et al., 1993), because wavelets can lead to fast, hierarchical

and locally adaptive algorithms. However, their application in FEM analysis was

hindered by the 'signal processing' nature of traditional wavelet constructions (see e.g.

Daubechies, 1988, Mallat, 1988, Meyer, 1985, Strang et al., 1996). Indeed, traditional

wavelets consist of scaled and shifted versions of a single function on a regularly spaced

one-dimensional grid over a theoretically unbounded domain. Therefore, they cannot be

constructed on meshes commonly encountered in FEM analysis. This major restriction

on wavelet theory has been eliminated by the discovery of the lifting scheme (Sweldens,

1996), and stable completion (Carnicer et al., 1996). These new construction methods

have led to a generalization of traditional wavelets to the wider class of second-

generation wavelets, which can be built on irregularly spaced, unstructured, multi-

dimensional meshes over bounded domains.
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We now can look at the Hierarchical Bases from a wavelet perspective. The

generalization of the multi-wavelet concept to second-generation wavelets has led to the

construction of a family of Lagrangian wavelet bases (Strang et al., 1995, and Castrill6n-

Candais et al., 2001). They are piecewise polynomial of any given order, and flexible to

build on irregularly spaced, unstructured, multi-dimensional meshes over bounded

domains. They span the same space as single-scale Lagrangian finite elements,

commonly used for the analysis of second-order PDEs. In their simplest form these

wavelets correspond to traditional HB functions. However, we can customize these

wavelets to generate additional qualities for our multi-resolution basis.

In other research, wavelets (detail functions) have been customized to be

orthogonal to all scaling functions (regular shape functions), with the intention of

stabilizing the multi-resolution basis. Such orthogonality is not a natural quality of

traditional HB functions. In many cases, each of these orthogonal wavelets had support

all over the domain, albeit decaying fast enough to enable a local approximation (e.g.

Vassilevski et al., 1997). In other proposals each wavelet was in effect compact (Strang

et al., 1996, p.257, or Dahmen et al., 1999). Wavelets that are orthogonal to scaling

functions, or even feature additional vanishing moments, have been proposed for

applications ranging from system matrix compression based on operator smoothness to

system pre-conditioning. However, such orthogonal wavelets in general do not generate

full scale-decoupling in the stiffness matrix of a second-order PDE.

Our intent is to facilitate adaptive refinement schemes for large-scale problems

with local features. For this, we desire a full decoupling between the detail parts and the

coarser part of the multi-resolution stiffness matrix. At the same time, we would like to

keep the wavelet functions compactly supported. Indeed, if we achieve scale-decoupling

with compact wavelets (detail functions), cheaply computed details may be added locally

to a coarse solution without having to re-compute the coarse solution. We achieve such

scale-decoupling if and only if our wavelets are made operator-orthogonal to all scaling

functions, with respect to the weak form of the PDE. In general, traditional Hierarchical
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Basis functions do not scale-decouple the stiffness matrix, except for the first-order HB

applied to a trivial one-dimensional Poisson's Equation. We will focus specifically on

problems described by linear elliptic second-order PDEs. Indeed, adaptive refinement

becomes much more challenging for nonlinear problems. Note that the orthogonality

described in the previous paragraph is in fact a special case of operator-orthogonality.

Indeed, it corresponds to operator-orthogonality with respect to the identity operator.

Other researchers have proposed the construction of an operator-orthogonal

wavelet basis. Jawerth and Sweldens derived a basis of one-dimensional compact

wavelets that are operator-orthogonal with respect to non-trivial second-order elliptic

operators (Jawerth et al., 1993). However, their basis does not span a Lagrangian finite

element space, and their method is not readily extendible to higher-dimensional

problems. Dahlke and Weinreich proposed the construction of one- and two-dimensional

wavelets operator-orthogonal with respect to non-trivial second-order elliptic operators

(Dahlke et al., 1994). However, they used a basis of first-generation wavelets, restricted

to regular grids over unbounded domains.

We will propose a method to customize Lagrangian FE wavelets - on irregular,

unstructured meshes over bounded domains - such that they are compact and operator-

orthogonal with respect to any linear elliptic second-order operator of our choosing.

Then, we will apply this method to exploit scale-decoupling in one- and two-dimensional

adaptive refinement applications.

1.2 Outline
The following chapter, Chapter 2, discusses the benefits and limitations of the

Hierarchical Basis FEM. Hierarchical Basis functions handle adaptive refinements in a

natural manner (Krysl, 2002), without hanging-node issues. In addition, it is well-known

that the stiffness matrix for the one-dimensional Laplace operator, using a first-order

Lagrangian HB, is scale-decoupled, even entirely diagonal. This greatly facilitates

adaptive refinement. However, for any other second-order operator, for higher-order
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bases, as well as for two-dimensional problems, the HB stiffness matrix is fully coupled

across scales.

Next, in Chapter 3, we present second-generation wavelet theory and a wavelet

framework for the FEM. We apply the multi-wavelet idea to second-generation wavelets

(Strang et al., 1995, and Castrill6n-Candis et al., 2001), and build a wavelet framework

for Lagrangian finite element basis functions of any given order, on unstructured,

irregular, one-dimensional or two-dimensional (triangular) meshes. This inexpensive

wavelet construction method is based on the lifting scheme (Sweldens, 1996) and stable

completion (Carnicer et al., 1996). In their simplest form, these wavelets correspond to

traditional HB functions. However, we have the control to tailor the wavelet functions to

our needs.

Then, we will use this framework to customize wavelets to any given second-

order operator. We will cover all one-dimensional operators in Chapter 4, and all two-

dimensional operators in Chapter 5. In particular, we propose wavelets (i.e. detail

functions) that are orthogonal to the scaling functions (i.e. coarse basis functions) with

respect to the bilinear form induced by the operator, or operator-orthogonal in short. We

will study the influence of operator type on the compactness of customized wavelets.

Based on this analysis, we will propose implementation schemes that can handle different

operator types and accommodate any unstructured mesh.

In Chapter 6, we analyze the complexity of our customized wavelet method,

illustrated by a two-dimensional Green's function example. For problems with a high

local concentration in the solution error, such as our example, we achieve an optimal

solution cost of O(J), where J is the number of levels of refinement. This clearly

outperforms the Hierarchical Basis method.

In Chapter 7, we subsequently apply our customized wavelet method to a barrier

option pricing problem, to show the generality and effectiveness of our approach. This

dynamic problem is governed in the spatial domain by a one-dimensional or two-

dimensional diffusion-convection-reaction PDE with varying coefficients. The barrier
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feature causes a local concentration in the solution error that can be effectively exploited

by a highly adaptive method. We assume that finer solution details cannot pop-up in a

zone with no significant coarser detail coefficients, i.e. that details will be nested over

consecutive levels of refinement. Then, we can on each level use the details of a coarser

scale to determine where to compute finer details.

Finally, we conclude with research extensions in Chapter 8. We briefly discuss

the expected benefits of applying our method to 3D applications. We also mention the

extension of our wavelet framework and customization for Lagrangian finite elements

solving second-order PDEs, to the Hermite finite elements solving fourth-order problems.
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Hierarchical Basis
FEM

2.1 HB Refinement
In this section, we demonstrate the benefits and limitations of Hierarchical Basis

(HB) adaptive refinement. Let us consider the following example problem: the Poisson's

Equation over the one-dimensional domain [0,1], subject to homogeneous Dirichlet

boundary conditions:

2 U f(x) u(0)= 0

aX2 f u(1)= 0 (2.1)

The forcing function on the right-hand-side has a discontinuity and is plotted in Figure 2-

1. We can choose to numerically solve this Partial Differential Equation (PDE), with a

Finite Element Method (FEM) (see e.g. Bathe, 1996). For example, with a mesh of eight

linear Lagrangian elements, shown in Figure 2-2, we find a solution plotted in Figure 2-3.

Note that Lagrangian finite elements support interpolating piecewise polynomial shape

functions of a given order, guaranteeing CO continuity over nodes that connect different

elements. They are a popular choice for second-order PDEs. If we now desire higher
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2-1: Forcing function used in Equation (2.1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2-3: FE solution of Equation (2.1) on the grid
shown in Figure 2.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2-2: Eight Lagrangian finite elements of
first order.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2-4: FE solution of
adaptively refined grid.

Equation (2.1) on an

solution accuracy, a common option is to solve the problem on a mesh with a higher

resolution, a refined mesh. As shown in Figure 2-4, the problem's new size can be

reduced by only increasing the mesh's resolution locally where needed. Indeed, the

solution error is much higher close to the forcing discontinuity than near the boundary.

We refer to this selective refinement as adaptive refinement, or non-uniform refinement.

Such refinement can produce a solution with the same degree of accuracy as the solution

on a uniformly refined mesh, while keeping the problem size - and hence the solution

cost - low.

Adaptive refinements are most commonly achieved by h-refinement, or element-

refinement. Also p-refinement can be used, though this is often more difficult (see

Zienkiewicz et al., 2000). When desiring one more degree of freedom for the mesh of

four elements in Figure 2-5, h-refinement replaces an element of the coarser mesh by two

finer elements. This not only adds one degree of freedom to the FE stiffness matrix, but

20
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Figure 2-5: Adaptive h-refinement of a one- Figure 2-6: Adaptive refinement of a one-
dimensional first-order Lagrangian FE basis. dimensional first-order Hierarchical Basis.

also changes the matrix entries for the existing degrees of freedom that form the

connection between the new and the old mesh. The same goes for the right-hand-side

vector. Moreover, if we re-arrange the stiffness matrix to place the new degree of

freedom at the bottom right, we can assess that the matrix is coupled between the part

corresponding to the coarser mesh and the new part:

Ac 1eucoarse = coarse

coarse " ucoarse]__ coarse

CT Adetail Udetail detail (2.2)

In Equation (2.2), the coupling term C # 0, and the bars above entries denote a changed

value relative to the coarser system above. This means that in order to add this new detail

to the problem, we expect to re-compute the entire solution.

However, let us now view the four elements as five basis functions instead, shown

in Figure 2-6. Each basis function is built up of shape functions and is an interpolating

piecewise polynomial associated with one degree of freedom. Evidently, this is merely a

different perspective on the same FEM and yields the same solution. When we want to

refine this basis, we can keep the coarser basis functions, and throw in a new finer basis

function, associated with the new degree of freedom. Such refinement is referred to as

Hierarchical Basis (HB) refinement. It has been recently proposed as a natural

refinement method (Krysl et al., 2002), based on the earlier groundbreaking work on the

Hierarchical Basis FEM (Yserentant, 1992). Because we keep the coarser basis functions

in our basis without alterations, we do not need to update the stiffness matrix entries for
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--- - - - - -- - - -

............ ;w .................... ................ +... .....

Figure 2-7: Adaptive h-refinement of a one- Figure 2-8: Adaptive refinement of a one-
dimensional second-order Lagrangian FE basis. dimensional second-order Hierarchical Basis.

the existing degrees of freedom. In addition, for this particular problem, we find that

there is no coupling between the part corresponding to the coarser mesh and the new part:

Acoarseucoarse = fcoarse

coarse coarse coarse

0 Adetaii L ddetaii _ L9etail

We can check that for linear HB functions:

f detail aVocoarse dx = 0
ax ax

The advantage of scale-decoupling is that we can add new details to the problem, without

having to re-compute the coarser solution. This can save much work for problems

requiring a high degree of adaptivity, where the size of the sub-problem associated with

new details can be significantly smaller than the size of the coarser problem. This scale-

decoupling property is a well-known quality of the linear HB functions in combination

with the one-dimensional Poisson's Equation. However, such decoupling between the

coarse and detail part is not the case for HB refinements in general.

Indeed, let us revisit the one-dimensional Poisson's Equation described by

Equation (2.1), but now use quadratic (second-order Lagrangian) finite elements. Also

for this FE problem, adaptive refinements can increase the solution accuracy while

limiting the problem size. Again, as illustrated in Figures 2-7 and 2-8, we can avoid

updates to the coarser part of the stiffness matrix, by using HB refinement. With h-

refinement, we would replace one element by two new elements, thus introducing two
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new degrees of freedom. If we view the two elements, instead, as a basis of five basis

functions (of two distinct types), we can achieve the same refinement, by adding in two

HB detail functions. As in the case of a linear basis, the refinement basis functions are

finer interpolating piecewise polynomial basis functions of the same order. They are

shown in Figure 2-8. However, for the choice of a quadratic basis and a one-dimensional

Poisson's Equation, we do not have scale-decoupling in the stiffness matrix. Indeed, we

find:

Acoarseucoarse = fcoarse

[ coarse ii y coarsel ii coarse

C Aetail _ _ ddetail _ _ gdetail

With C s 0, because for quadratic HB functions, we have in general:

f a(Pdetail a( 9
coarse dx 0

c8x ax

Thus, in order to add these new details to the problem, we are forced to re-compute the

entire solution.

Next, we consider a problem, different from Poisson's Equation: a Helmholtz

Equation over the one-dimensional domain [0,1], subject to homogeneous Dirichlet

boundary conditions:

a D2u(x) u(0)=0
+ Ku(x)= f(x )ax2 U (1)=0

The forcing function f (x) remains as plotted in Figure 2-1. We also use again a first-

order Lagrangian FEM with linear shape functions. As in the case for Poisson's

Equation, we do not have to update the entries of the coarser part of the stiffness matrix,

if we use the linear HB refinements discussed above. However, unlike the Poisson case,

we have now full coupling between the coarse part and the new detail part of the stiffness

matrix. Indeed, we find:

f 1090detal acoarse dx + K fP9 deti ,,rdx # 0
J x ax 0
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Figure 2-9: FE solution of Equation (2.3) with first-
order Lagrangian triangular elements.

Thus, we have to re-compute the entire solution, when adding refinements.

Finally, let us consider the Poisson's Equation over a two-dimensional domain,

subject to homogeneous Dirichlet boundary conditions, and a delta function as forcing

function:

-V 2 u(x,y)=3__ u(x,y) r = 0 (2.3)

Note that the solution of this problem is the Green's function for the Laplace operator on

a bounded domain. We solve this problem with a first-order Lagrangian FEM on a

triangular mesh. Each element has three linear interpolating shape functions: one per

degree of freedom. In view of the FE solution plotted in Figure 2-9, it again makes sense

to increase the density of the mesh only locally around the delta, where the solution error

is concentrated. Note that we will graphically demonstrate adaptive refinement on a

mesh of equilateral elements, but the discussion is applicable to any triangular FE mesh.

To add with h-refinement one degree of freedom to the elements shown in Figure 2-10,

we replace one element by four elements. We thereby introduce five new degrees of

freedom, four of which are hanging nodes that require extra conditions to be coupled to

the neighboring coarser degrees of freedom. Thus, we need to replace parts of the

coarser stiffness matrix as well as introduce cumbersome additional equations. If we

view the ten linear elements of Figure 2-10 instead as ten piecewise linear basis

functions, each associated with a degree of freedom, refinement becomes much more

natural. Indeed, as shown in Figure 2-11, we can add that additional degree of freedom
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Figure 2-10: Adaptive h-refinement of a two- Figure 2-11: Adaptive refinement of a two-
dimensional first-order Lagrangian FE basis. dimensional first-order Hierarchical Basis.

by just adding one finer HB basis function. As we have stated before, with HB

refinement we do not need to change the coarser part of the stiffness matrix. However,

we do have coupling between the coarser part of the stiffness matrix and the detail part.

This is because for the two-dimensional Poisson's Equation with linear HB we have:

a(detai &oarse + aei #coarse 0
ax ax + y ay )

Thus, though HB refinements are natural and avoid cumbersome implementation issues,

in general we do not have the additional quality of scale-decoupling.

2.2 Hierarchical Basis FEM
We now can see that the multi-resolution basis, shown in Figure 2-12, spans

exactly the same function space as a finest resolution single-scale FEM basis. We can

construct this full Hierarchical Basis by adding uniform HB refinements to a coarser

basis, uniformly and over multiple levels of refinement. Because they span the same

space, substituting the single-scale basis functions by the Hierarchical Basis functions for

the chosen trial and test functions of the FEM, will not change the FE solution. As a

consequence, the HB FEM inherits single-scale FEM properties, such as rate of
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Figure 2-12: A first-order Hierarchical Basis.

convergence. Changing basis does, however, transform the stiffness matrix, forcing

vector and solution vector to a multi-resolution format. Not only does this format yield

more natural adaptive refinement methods (see section 2.1), it also can improve the

matrix' properties (see section 2.3).

As shown in the previous section, a Hierarchical Basis can be constructed for a

one- or multi-dimensional Lagrangian finite element space of any given order. The

guiding principle is to keep coarser basis functions unchanged, and to add for every new

degree of freedom a finer version of the same basis functions, as if we were building a

single-scale FE basis on the high-resolution mesh.

The Hierarchical Basis is truly hierarchical. Indeed, on every point in the domain

the presence of a certain scale basis function will guarantee the presence of all coarser

basis functions. However, the number of levels of refinement attained does not have to

be uniform over the domain (although it has to be uniform over each element). Thus,

while the coarse basis covers the full domain, the details could be distributed adaptively.

Although the HB method was initially presented for regularly spaced meshes -

using midpoint refinement -, the method is broad enough to cover any refined mesh. The

most important restriction for a Hierarchical Basis mesh is that all finer mesh points have

to lie on the straight line connecting neighboring coarser mesh points. This requirement

will automatically be satisfied for a subdivision mesh. Such mesh can be generated by

subdividing a coarse mesh, for each new refinement level adding a new degree of
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freedom between each pair of neighboring degrees of freedom. Meshes can be irregular,

which means that the spacing between all nodes is not of a fixed size, and that also

refinement does not have to be done mid-point. Two-dimensional meshes do not have to

be structured either. Indeed, the number of edges connected to a node (i.e. the node

valence) of the coarsest level can be different than six.

2.3 HB Pre-Conditioner
The Hierarchical Basis FEM has originally been proposed to serve as an effective

pre-conditioner to the single-scale FEM problem (Yserentant, 1992). Indeed, the HB

stiffness matrix has a significantly lower condition number than the equivalent single-

scale stiffness matrix. Note that the HB method is similar in spirit to the popular multi-

grid method, but more flexible to implement. A low condition number reduces the

number of iterations needed to converge to a solution with an iterative method, such as

the Conjugate Gradient method. We will discuss this in more detail in chapter 6, where

we will compare the complexity of the Hierarchical Basis FEM with our proposed

wavelet method.

2.4 Conclusion
The Hierarchical Basis perspective on the FEM yields several advantages. A HB

framework can handle adaptive refinements in a natural and simple manner, without

cumbersome implementation issues such as hanging nodes. For the one-dimensional

Poisson's Equation, the use of a linear HB results in a completely decoupled system.

However, in general, the HB FEM stiffness matrix is coupled between parts of different

resolution. Consequently, a coarser solution has to be re-computed when new details are

added. Furthermore, the Hierarchical Basis multi-resolution format pre-conditions the

FEM stiffness matrix, such that the problem can be solved much faster with an iterative

method.
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To overcome the limitations of the traditional Hierarchical Basis, while

preserving its flexibility and effectiveness in refinement, we propose a powerful

generalization of the HB FEM, based on a second-generation wavelet framework.
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3.

Wavelet Framework
3.1 Generalized HB: Wavelet Basis

To overcome the limitations of the Hierarchical Basis FEM, we will consider HB

from the broader perspective of wavelet theory.

The H' c- C4 function f , e.g. the FEM solution of a second-order PDE, can be

projected onto a finite element subspace, spanned by single-scale basis functions of a

specific resolution (see Figure 3-1). Because these compactly supported single-scale

basis functions can fully represent the function's projection f1 on a specific scale j, we

call them scalingfunctions. Scaling functions are denoted by the symbol lk, , associated

with a specific scale, or level of resolution, j, and each corresponding with a degree of

freedom, or node, k. They are shown in Figure 3-2, in which every round point

represents a k-node. The basis functions discussed in Chapter 2 - spanning a Lagrangian

finite element space of any given order and spatial dimension - are scaling functions.

However, note that not all imaginable single-scale basis functions are acceptable as

scaling functions in a wavelet theory context. Specifically, scaling functions have to

satisfy a Scaling Equation - a refinement equation that relates any coarser scaling

function to finer scaling functions. The Scaling Equation guarantees that a coarse
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fj+l +l,k

fi+ - fi ~'
Figure 3-1: Representation of function f on two Figure 3-2: Scaling functions for two different
different scales; difference of the two. scales; wavelet functions.

solution can also be represented by basis functions of a higher resolution. We will give

this relation for the Lagrangian finite element space in section 3.2. Now consider the

projection f1 of this function f on level j scaling functions, and the finer projection

f1+1 of the same function f on scaling functions of level j+1:

k

fiI= I±1j,koJ+l,k
k

The projection coefficients AMk and lk are called scaling coefficients. The difference

between these two representations is given by:

fi+i - fi = ri,.Vf,,n

This difference space is spanned by a basis of compactly supported detail functions,

which we may call wavelet functions. We denote them by the symbol y'j,. They are

associated with a specific scale, or level of resolution, j, and they correspond each to a

degree of freedom, or node, m. The m-nodes are represented in Figure 3-2 by small

squares, whereas a round point indicates a k-node. The projection coefficients Yj,m are

called wavelet coefficients. The wavelets can be chosen to be simple finer scaling

functions sitting on the m-nodes. Thus, as a primitive choice, we have VIj,, = .i+1,m
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Figure 3-3: Partitioning of one-dimensional mesh Figure 3-4: Level 0 and level 1 partitions of
into k- and m-nodes of levels 1 and 0. adaptively refined two-dimensional mesh.

Indeed, we can verify that these detail functions span the difference between f+1 and fj.

If we have scaling functions of the Lagrangian finite element space, such a wavelet

choice results in a traditional Hierarchical Basis, on an irregularly spaced, unstructured

mesh. However, we will show further in the Wavelet Equation of section 3.2 that this is

not the only possible wavelet choice. Indeed, we will be able to construct wavelet

functions customized to our needs.

The mesh supporting a wavelet basis can be obtained by splitting up a fine single-

scale mesh in partitions of different levels, according to a spatial hierarchy. Examples are

given in Figures 3-3 and 3-4, where both meshes support quadratic basis functions. The

partitions are nested, which means that a partition of a certain level must contain all

nodes of coarser level partitions. Levels will be numbered by j, with level 0 being the

coarsest level partition possible on the grid. Per level j, nodes are denoted by the

variable 1. This set has two subsets: the nodes that are part of the partition at coarser level
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Figure 3-5: First-order Lagrangian primitive wavelet

basis on regular ID mesh.
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Figure 3-6: Second-order Lagrangian primitive

wavelet basis on irregular ID mesh.

+1

Figure 3-7: First-order Lagrangian primitive wavelet

basis on regular 2D mesh.

j-1, are denoted by k, while the nodes that are not, are denoted by m. As we discussed

in Chapter 2, at level 0, and on all finer levels, m-nodes have to lie on the straight line

connecting the neighboring k-nodes. This can be guaranteed by building the mesh with

subdivision. Note that we do not need to attain the same level of refinement everywhere

over the mesh. Adaptive refinements, in which some partitions do not include all m-

nodes, are entirely permitted. This is illustrated in Figure 3-4.

In a FEM context, on each level j, the mesh can be divided into a set of

connecting elements, delimited by the points of discontinuity of the derivative of the

scaling functions #,, on that level. The support of an element will be denoted in this

dissertation by the symbol Qe '
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We refer to the space of scaling functions at level j as V, and the space of

wavelet functions at level j as W). The approximation space V1 , spanned by a single-

scale basis of scaling functions, equals the direct sum of the coarser level wavelet space

W._, and the approximation space Vj_1 . This can be iterated upon until the coarsest level,

level 0, is reached, resulting in a full multi-resolution decomposition of the space V. of

level J:

VJ = W@ V,_ = WJ_ @ W_2( ... (DWO (D O

In Figures 3-5 and 3-6, only the coarsest level - level 0 - has scaling functions 00,k

located at the k-nodes, while both coarsest and finer levels contain wavelet functions

f,,, 5built around the m-nodes. On each level, the scaling functions form a complete

basis for a piecewise polynomial of order n on that partition. The wavelets, at the other

hand, only span the difference between two piecewise polynomials of different

resolution.

3.2 Second-Generation Wavelet Construction
Traditional wavelet bases could only be constructed on regularly spaced and

essentially unbounded domains, since traditional wavelets (and scaling functions) were

required to be shifted and scaled versions of one single function (respectively). However,

recent developments in wavelet theory allow for the construction of so-called second-

generation wavelets on irregularly spaced, unstructured meshes over multi-dimensional,

bounded domains. This wavelet construction relies on two important relations between

functions of different resolutions: a Scaling Equation and a Wavelet Equation.

First, we have the Scaling Equation, a relationship between the scaling functions

of different levels (see Figures 3-8 and 3-9):

#j'k = ,,+ Ihkm V+i,,m Vj and Vk (3.1)

The filter coefficients h? can vary with j across scales and with k over the domain.

They will be equal to the function value of #,k at the node m, because of the
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Figure 3-8: Scaling Equation for first-order wavelet
basis.

interpolating nature of Lagrangian scaling functions. All filter coefficients h can be

collected into a sparse matrix HO per level j. Bases of higher polynomial order n will

have multiple types of scaling functions (and wavelets) per element (see e.g. Figure 3-9),

which can be grouped in n-dimensional multi-wavelet vectors (Strang et al., 1995, and

Castrill6n-Candis et al., 2001). The Scaling Equation, Equation (3.1), is illustrated in

Figures 3-8 and 3-9 for a one-dimensional regular grid, but is also valid for two-

dimensional and irregular-spaced unstructured meshes.

Next, we can build wavelet functions with the Wavelet Equation based on the

lifting scheme discovered by Sweldens (Sweldens, 1996) (see Figures 3-10 and 3-11):

/'j,m -- Oj+1, m - s #] ,k Vj and Vm (3.2)

Each wavelet is constructed by lifting a primitive wavelet - which is chosen to be a

simple scaling function from a finer level #,g,- with scaling functions #,k from its

neighborhood. This relation too will vary both across scales and over the domain. We
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Figure 3-10: Wavelet Equation with lifting, for first-
order wavelet basis.
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Figure 3-11: Wavelet Equation with lifting, for (3.3)
second-order wavelet basis.
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Figure 3-12: Wavelet Equation with stable

completion, for first-order wavelet basis.

can group all lifting coefficients sjkm into a sparse matrix S1 per level. An important

realization is that this relation gives us the opportunity to design the wavelets by choosing

appropriate lifting coefficients sjkm. Examples of wavelets constructed with this scheme

are given in Figures 3-10 and 3-11. Figure 3-10 illustrates a wavelet lifted with two

neighboring scaling functions, extending the wavelet's support over three linear elements,

while Figure 3-11 shows a wavelet lifted with only one scaling function, keeping its

support within one quadratic element.

Note that choosing all lifting coefficients zero defaults to a traditional HB. We

will call this choice a primitive wavelet choice. We will make extensive use of the free

parameters in Equation (3.2) to tailor the wavelets to fit our needs. However, we will

find further that we need additional capacity to custom-design our wavelets.

Around the same time as the discovery of the lifting scheme, a related method for

wavelet design was proposed (Carnicer et. al., 1996), called stable completion.
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Introducing this concept to our framework comes down to including gj,,m' in Equation

(3.2) (see Figure 3-12):

V/j,r' = Igj,m,m'j+i,m - skm Oj,k Vj and Vm'
rn k

This effectively builds a linear combination of primitive wavelets # , and then lifts

this combination to create the resulting wavelet Yjt ,. However, an important restriction

to the method is that the matrix G1 , formed by the stable completion coefficients gjmm',

has to be fully invertible. Only primitive wavelets within a local neighborhood should be

used in the construction in order to ensure a compactly supported wavelet and a sparse

matrix G1 . An example of stable completion is given in Figure 3-12. Note that Equation

(3.3) is a special case of Equation (3.2), with:

g7,rn , =5 -,_, Vj, m, m'

This construction generates a wider class of wavelets, generally referred to as second-

generation wavelets. They can easily be constructed in closed-form on multi-dimensional

unstructured meshes, which favors their use as basis functions in a FEM. Provided that

Gi is indeed invertible, these wavelet bases (including the scaling functions) are

guaranteed to span the same space as a single level space on the finest level, V,.

Also guaranteed is the existence of a set of dual scaling functions 0],k and

wavelet functions fj,m They fulfill the following bi-orthogonality conditions with

respect to the primary scaling functions and wavelets:

(0'jk , lj'm)=0 Vj, k and m

(Vi' I ,k) 0 Vj, m and k

(0j'k1  1 ,k2  (5kk1 -k2 Vj, k, and k2

jm 2  
Mrn-rn2 Vj, m1 and m2  

(3.4)

Note that the brackets in Equation (3.4) denote the L2 -inner product. It can be shown

that also the duals follow a scaling function and wavelet relation, featuring filters from

the primary relations, Equations (3.1) and (3.3):
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- , +Zsjkm/,jm Vj and Vk

g ,,,, = j+i'm- ho Vj and Vm (3.5)
m, k kmilk

Dual scaling functions span a dual space V, which is generally different from the

primary space V . A dual wavelet space V. can be defined similarly. The dual functions

are much less smooth than the piecewise polynomial primary functions, and are generally

not known in closed form, but this is not required for our analysis.

The projection of a C4 function f on a primary (or dual) wavelet basis will

result in a set of scaling function coefficients 2 j,k (or jk) and wavelet coefficients 7

(or Yj,,). We may use the dual (or primary) wavelet basis functions to extract these

coefficients from the function f . For example, using Equations (3.4):

f = ±10kOk+IIr'v'
k j=O m

with 2 Ok = (fIo,k ) Vk and rYm = (f, y,m) Vj,m

When a wavelet function is orthogonal to all polynomials of order n (in the L2 inner

product), the nth moment of that wavelet vanishes, and so do all moments from n -1

down to zero. Hence, that wavelet has n +1 vanishing moments. Having vanishing

moments in the dual wavelets is beneficial for reducing the norm of the projection of a

smooth function on the space of primary wavelets, Wj. For a Lagrangian wavelet basis

of order n , we have for a pure polynomial p of order n:

P= AO,kOO,k - Z2,kk + r ,mY'jm
k k j=0 m

Yjm = (P,#,m) =0 Vj,m

Therefore, we know that the dual wavelets will have at least n +1 vanishing moments.

Similarly, vanishing moments in the primary wavelets reduce the projection on the dual

space, Wj. Indeed, the magnitude of the wavelet coefficients, Y],m, decays as 0 (f )hJ)

where q is the number of vanishing moments of fm and h1 is the characteristic support
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of the basis functions at level j (see e.g. Strang et al., 1996). The primitive wavelets

corresponding with the Lagrangian Hierarchical Basis have no vanishing moments.

All primary and dual transforms on the wavelet and scaling function coefficients

can be derived by integrating Equations (3.1), (3.3) and (3.5) against the function f . For

example, the discrete wavelet transform analyzes primary coefficients from finer primary

coefficients:

I gMM = jmi +m - Zhlkm 2 j+1,k Vj and Vm
MI k

Zj'k = 
2

j+1,, + Isjkm' ,jm' Vj and Vk

And the dual discrete wavelet transform analyzes dual coefficients from finer dual

coefficients:

k , + Zhm Vj and Vk

=jv g1 ,m,m' j+],m - s,k,m' 2 j,k Vj and Vm'
m k

These wavelet transforms can be grouped into square transform matrices:

=[L .]=[I Sj]. I 0 Pk

J H . 0 1 -G-1H4 G-1 P"

Matrices Pk and P7m are permutation matrices. They re-order the level 1+1I k-nodes in a

~I I IH P

group of k-nodes and a group of m-nodes on level j. The matrix T. consists of a low-

channel L, and a high-channel H1 , and performs column-wise a discrete wavelet

transform over all coefficients from level j+1 to j. Similarly, the matrix t. is made up

of a low-channel Lj and a high-channel Hj, and executes column-wise a dual discrete

wavelet transform, and TT row-wise a dual discrete wavelet transform. Thus:
TI
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Yr_; = Ty1 [x 1  and = Tjl etc...

Note that T11 only transforms the level j scaling coefficients X1 , and not the wavelet

coefficients yj, previously generated by T.. Of course, the same goes for the dual

transform matrices t.. Because of the bi-orthogonality conditions given in Equations

(3.4), we have the following important property:

TTTT. =1I

For compactly supported wavelets, the sparse T. transform can be applied to a vector

with O(N) operation cost, where N is the number of degrees of freedom, or the

dimension of the problem. Moreover, this computation can even be done in-place, if

G. = I. However, the T1 = (tf) matrix will be fully populated in general, and thus Tj

cannot be cheaply applied to a vector. Only for compactly supported wavelets

constructed with only lifting and without stable completion, i.e. gj,,m, = 3,,_, or G = I,

will the T. transform be 0(N), and in-place.

3.3 Wavelet Basis FEM
A well-posed boundary value problem specified by a linear second-order elliptic

Partial Differential Equation can be solved numerically with a conventional Galerkin

Finite Element Method. For notational simplicity, we assume homogeneous Dirichlet

boundary conditions around the domain Q:

-V -(PVu) + q -Vu + ru = f
->A =

with A [ k',k] = a (p, 9, =J(PV p, -V op, +(q -V p, ) op, + rpp A)d2

and f [k'] = b((pk)= Jf(OpkdQ (3.7)

In Equation (3.7), the coefficient matrix P, vector q and scalar r may be functions of

the spatial coordinates, as are u and f. We choose the set of test functions qo,,
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Figure 3-13: Sparsity of two-level first-order HB
FEM stiffness matrix for 2D Poisson.
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Figure 3-14: Sparsity of full-resolution first-order
HB FEM stiffness matrix for 2D Poisson.

weighing the approximation error, to coincide with the set of trial functions gk. With

this choice, the method is referred to as a Ritz-Galerkin method. In particular, we choose

the commonly used Lagrangian FE basis functions ok . They are widely used in the FEM

community, flexible over geometries and dimensions, and formulated in closed-form.

Moreover, we showed in the previous paragraphs how to draw a multi-resolution wavelet

basis from these basis functions. Therefore, we will not search for a solution as a linear

combination of single-scale (finest level J) scaling functions:

U = I 2
ZJ,kAJ,k

k

But, instead, we will choose a multi-resolution basis for the basis functions q' and P,.

With a multi-resolution basis of only two scales, we have:

U = 1J_1,k'J-lk + jJ1mY'J-1m
k m

With a full multi-resolution basis, down to level 0, we can write the solution as:

U = O,kO,k + 1 Yjmv t jm
k j=0 m

These wavelet bases span the same solution space as the single-scale basis. Therefore,

the FE solution remains the same. However, a multi-resolution system can feature
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additional qualities: it can reduce the solution cost or facilitate adaptive methods. We can

use wavelet theory from paragraph 3.2 to construct transformations between the single-

scale system of level J and the corresponding two-level multi-resolution system:

Ai U = fi

T iAj Tj_1uj = tj fj because TITJ,_ = I

< A-1u = f- with A 1= ij, Aj

U = T_-1]
J TJ-1J

f =[J- _]f,

Superscript [J -1] signifies a multi-resolution entity with coarsest scale J -1. The

multi-resolution system above has the following internal structure, with sparsity shown in

Figure 3-13:

D,_A AJ Y- ti-[ax:1 I~:L~ = L1':z1
The sub-matrix A _1 is the single-scale stiffness matrix of a level J-1 FEM system,

basically a coarser version of the FE matrix A :

A _, = fi,

The sub-matrix A,_1 contains the wavelet-wavelet interaction of level J -1. The sub-

matrices Ci, and D, couple the finer wavelet (detail) part of the system with the

coarser scaling function part of the system. Note that the single-scale and multi-

resolution stiffness matrices are generally not symmetric, since a(p,,k) is not in

general. If a((k,(k,) is in fact symmetric, we have Dj, = CT_. The symbol u1

denotes the solution of a level j system, while ki stands for the projection of a (possibly

finer) solution onto a level j scaling function space.

The transforms i- can be repeated until J - i =0, and full multi-resolution is

achieved:

AJuJ =fi

AL' u1J-] = with A[J1] =ig_, A T_ ... Tj_

J ~ = Ti_,... u .

J J* =-i1... J
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The internal structure of this full multi-resolution system is plotted in Figure 3-14, and

given by:

A i_, CJ-i,Ai_, .. * * J-1,A _ _

DJ-i,Aii Ai-i Ji-I', - J-i _ J-i

DJ-1,Ai- _ DJ-I,A- AJ-1 1- /~l- - J-I -

Of course, we could also construct directly this multi-resolution system, without

transforming the finer single-scale system, since we have all scaling functions and

wavelets in closed-form. This system can be solved for u -i] which will produce the

solution u. , after performing inverse wavelet transforms on uf-']. The cost of the

transform operations will remain O(N) since we only use i 1, and do not need to

compute or apply Tjj . Indeed, we can compute the single-scale solution u. as:

U= jT _ jT U[J-l]

The cost of matrix assembly, solution and transformations will be discussed in detail in

Chapter 6, where we present the complexity of our wavelet method.

It is important to note that in general only Xi equals uj (the solution to

Aju1 = f,), while all coarser X1j_ differ from uj_, (the solution to Aju, = f1 _)

unless the coupling matrices C, are zero. This is generally not the case for the primitive

wavelet choice of a traditional Hierarchical Basis.

3.4 Operator-Customized Wavelets
We can now use the second-generation wavelet framework described in paragraph

3.2 to modify our wavelet basis and customize it to the operator. Indeed, we will propose

the construction of a basis of compactly supported wavelets that are operator-orthogonal

to all scaling functions. That is, we wish to satisfy the following condition for operator

orthogonality:

Cikm =a(fm ,#k )=0 Vm,k and 0O j J-1
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The resulting transform i,_, will effectively eliminate the coupling between scales, i.e.

C4 = 0. This is in contrast with a Hierarchical Basis (see e.g. Figure 3-13), where we

have Ci_, w 0 in general (with the exception of the linear HB for the one-dimensional

Poisson's Equation). Note that if C1 =0 for every level j, there will not be any

coupling between wavelets of different levels either, since both scaling functions and

wavelets are themselves linear combinations of finer level scaling functions. Thus:

C =0 > CA =0 and C, =0 Vi=1...j

The scheme to derive our wavelet transform will essentially be based upon the mesh

geometry (the connectivity in particular) and general enough to scale-decouple any

relevant operator for a Lagrangian finite element space of any given order.

The thus achieved decoupling across scales in the multi-resolution system can be

very suitable for adaptive methods. Indeed, if Cj,1 =0 we can find u. from simply

adding details - the solution of Aj_1y,_1 =(t,_1 -Di i) - to a coarser solution

U_, = X,_ 1, without having to update this coarser solution. For a symmetrical A. this

procedure simplifies because Dj_1 =0. Compact operator-orthogonal wavelets could be

particularly useful in solving large-scale problems where the solution error has large local

concentrations, and this solution can be computed adaptively by assuming zero details

everywhere else. Then, the dimensions of AJ_1 will be much smaller than AJ-1, so not

having to re-compute the coarser uJ_ = k, will surely pay off.

Note that a special case of operator-orthogonality is orthogonality. We define an

orthogonal wavelet basis as a wavelet basis for which:

JY/,jfdQ = 0 Vm,k and 0O! j ! J-1

This is the same as saying the basis is operator-orthogonal with respect to the identity

operator. Such a basis will yield a scale-decoupled mass-matrix. If we can build an

operator-orthogonal basis for any given operator, we can also generate an orthogonal

basis. Note that in our definition of orthogonality, the wavelets do not have to be

orthogonal to each other. Some other authors use the term semi-orthogonal - indicating
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orthogonality across scales, but not over the spatial domain - for what we will simply call

orthogonal.

We stress the importance of keeping our customized wavelets within compact and

local support. If the wavelets would not be compactly supported, but spread all over the

domain, our transform costs would dramatically increase, since none of the wavelet

transforms would be sparse. It then becomes impossible to transform a multi-resolution

solution to a full single-scale solution with only 0(N) cost.

3.5 Conclusion
To overcome the limitations of the Hierarchical Basis FEM, we generalized this

method to a more powerful Wavelet Ritz-Galerkin FEM. We applied second-generation

wavelet theory to construct multi-resolution bases that span the Lagrangian finite element

space of any given order, on multi-dimensional unstructured meshes. The construction

method allows us to tailor the wavelet basis to our needs. In general the multi-resolution

stiffness matrix is coupled across scales. However, by making our wavelets operator-

orthogonal to the scaling functions, with respect to the problem's operator, we can

eliminate all scale-coupling.

In the following chapter, we will propose the construction of a compact operator-

orthogonal wavelet basis for one-dimensional problems, by starting with the Poisson's

Equation and then generalizing this to any second-order PDE. Next, we will repeat the

wavelet customization for two-dimensional problems.
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4.0

iD Wavelet

Customization
4.1 Poisson's Equation

Now that we have the building tools to construct and tailor a wavelet basis, we

will use them to customize a wavelet basis to any given second-order operator. We first

start with a simple one-dimensional Poisson's Equation over the domain [x,x2):

a2u u(xi =0

ax2  f u(x 2 )=0 (4.1)

For simplicity, let us assume for now homogeneous Dirichlet boundary conditions. We

may solve this problem with a Ritz-Galerkin FEM, with both trial functions Pk and test

functions q', spanning a Lagrangian finite element space of any given order n:

Au=f

A[ k',k] = a(k,(ok), f -- Okd

f [k'] = b((pk) = ffg,dx
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The mesh can be irregular-spaced, as long as the FEM problem is well-conditioned. Note

that a highly irregular mesh could be dealt with by treating it as a non-uniformly refined

mesh. We now choose for q'k a multi-resolution wavelet basis instead of a single-scale

basis, both spanning the Lagrangian finite element space of any given order n. We will

propose, for any given order n, the construction of a specific compact wavelet basis that

is operator-orthogonal to the scaling functions, with respect to the Laplace operator.

Thus, all wavelets and scaling functions need to satisfy:

a ( ,,y,k)m J' dx = 0  Vj,m,k
a~y~m,~Ak 9zz ax

It is known in Hierarchical Basis theory that a multi-resolution basis of primitive

linear hats scale-decouples the FEM stiffness matrix for the Poisson's Equation on a one-

dimensional regular grid. Thus the linear primitive wavelets are operator-orthogonal to

the scaling functions with respect to the Laplace operator on a one-dimensional regular

grid. This property extends to linear hats on irregular meshes as well. However, this

property does not naturally extend to higher-order primitive wavelet bases (i.e. all

wavelets are chosen to be simple scaling functions from a finer level) (see e.g. Figure 4-

3). As our first main contribution, we propose the construction of a compact operator-

orthogonal wavelet basis for any given order n, on an irregular mesh. We can achieve

this by simply lifting our primitive wavelets, such that each wavelet V7,, has a number of

vanishing moments equal to n -1, where n is the order of the Lagrangian finite element

space spanned by # .

The proof starts with the following assessment of an inheritance of vanishing

moments property. Indeed, a wavelet's derivative inherits vanishing moments from the

compact support and vanishing moments of the wavelet itself, based on the integration by

parts formula:
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fV/dx = yX2 =0
ax X1

fxVx dx = xy| -f dx =o Jdx=0
Q ax Q

fx2 a dx = x27 - 2xydx =0 f xyidx =0
Q0 xX 0 Q

See Chapter 3 for an explanation of the term vanishing moment. If a wavelet is zero-

valued at the integration boundaries, the derivative of the wavelet will have one vanishing

moment. In addition, each vanishing moment in the wavelet will result in an additional

vanishing moment in the derivative of the wavelet. Now, note that the following is a

sufficient condition for operator-orthogonality between wavelets and scaling functions of

order n:

f "' t dx = '"' t dx =0 Vj,m, k m Q jee (4.2)

In Equation (4.2), t is any pure polynomial of order n -1 in x. Indeed, for any given

order n, a1 1k /ax will be a pure polynomial of order n -1 over the support of ql,, if

we keep the support of the wavelet Y'j,, within the element that contains its m-node

(Qel Im e Q ), and not outside that element. Let us define a scaling function #,k to be

interior with respect to a set of elements Q,,e, if the function's support lies completely

within those elements (i.e. k e Q,,, and also k 0,,totaset). In the remainder of this

paragraph, this definition for the term interior scalingfunction applies, with Q,,set as the

single element Q jel that contains the m-node associated with the primitive wavelet.

Now, we can easily check that, for any given order n, we have exactly n -1 interior

scaling functions for each element fjee With these n -I scaling functions per element

Qe, 9we can simply lift each primitive wavelet, using Equation (3.2), such that we

obtain n -1 vanishing moments in the resulting wavelet V7,,. This wavelet will have no

support outside Qjje, and because of the inheritance of vanishing moments, aV,m/ax

will have n vanishing moments. Hence, we have satisfied the sufficient condition for

operator-orthogonality for our wavelet basis. For first-order Lagrangians, we do not need
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(a) (b) (c)
Figure 4.1: First- (a), second- (b), third-order (c) wavelets customized to Laplace operator.

any vanishing moments: the linear element has no interior scaling functions and the

primitive wavelets of a Hierarchical Basis (see Figure 4-1) are naturally operator-

orthogonal. In the second-order case, we lift each primitive wavelet with the one interior

scaling function to enforce one vanishing moment (compare Figure 4-lb with Figure 3-

6). Thus, the first derivative of such wavelet inherits two vanishing moments, making it

orthogonal to the derivative of the scaling functions, which means that the resulting

wavelet is operator-orthogonal. In the third-order case, we can lift with the two interior

scaling functions to enforce two vanishing moments (see Figure 4-1). This results in

three vanishing moments in the wavelet's derivative, and hence operator-orthogonality.

We leave the higher-order cases for the reader's pleasure. It is important to stress that

nowhere in our proof we have assumed a regular-spaced grid. Therefore, our

construction is applicable to any irregular one-dimensional mesh.

If we use these Laplace-operator-orthogonal wavelet bases in a Ritz-Galerkin

FEM solving Poisson's Equation (Equation (4-1)), we obtain full decoupling across

scales (i.e. C3 =0 and D. = C =0). Moreover, the stiffness matrix will in this case

also be decoupled over the domain within each level, since wavelets associated with

different elements do not overlap. Hence, all detail matrices Ai are block-diagonal with

blocks of dimension n by n, and the resulting multi-resolution stiffness matrix A1 will

therefore be block-diagonal as well (see Figure 4-2). Consequently, if we would apply a
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Figure 4-2: Stiffness matrix for second-order
Laplace-customized wavelets.
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Figure 4-3: Stiffness matrix for second-order HB.

simple diagonal pre-conditioner to Afl (corresponding to a mere rescaling of the basis),

.Af would have a very low condition number that remains constant with increasing

problem dimensions (see Figure 4-4).

What happens at the boundary? At a Dirichlet boundary, we will force all

wavelets to be zero-valued on the boundary. Note that for one-dimensional problems no

primitive wavelet sits right on the boundary, because the boundaries are defined by k-

nodes only and not by m-nodes. In addition, Laplace-operator-customized wavelets

immediately next to the boundary will be always zero-valued on the boundary, since we

only lift with interior scaling functions. As a result, homogeneous or inhomogeneous

Dirichlet boundary conditions will be entirely absorbed by the scaling functions on the

boundary nodes. Consequently, we can solve for those scaling coefficients independently

of the rest of the system. Neumann boundaries are handled slightly differently. Such

boundary conditions will be absorbed by both the scaling functions near and at the
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single level FEM
-c-- no vanishing moment wavelets
-0-- 1 vanishing moment wavelets
-8- 2 vanishing moments wavelets
-v- 3 vanishing moments wavelets 106 . -v- 3 vanishing moments wavelets
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Figure 4-4: Condition number of quadratic wavelet Figure 4-5: Condition number of quadratic wavelet
FE matrix for Poisson's Equation. FE matrix for non-Poisson PDE.

boundary, and the wavelets near the boundary. We can follow exactly the same

procedure as for a single-scale FEM with a Neumann boundary.

In this paragraph, we have demonstrated how to build a basis of compactly

supported Lagrangian finite-element wavelets of any given order, operator-orthogonal to

all scaling functions with respect to the Laplace operator, on irregularly spaced one-

dimensional grids.

4.2 Second-Order Partial Differential Equations
How can we extend this achievement to other more general linear elliptic second-

order operators? Consider the following one-dimensional PDE with varying coefficients

over the domain [x1, x2 ]. At this point, we assume for simplicity homogeneous Dirichlet

boundary conditions:

S au +qau +ruf u(x 1)=0

ax ax ax u(x 2 )=0 (4.3)

Now, we wish to satisfy the following condition for operator-orthogonality with respect

to the operator of this PDE:

C =km a (Y, )0j-k)= f ' ' +q a 'a#j,k + rYm#jk dx=0

Vm,k and 0O! j J-1
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The primitive linear hat (first-order Lagrangian) wavelet basis is not operator-orthogonal

with respect to this general operator (except for the special case of Poisson's Equation).

Nor any of the higher-order primitive wavelet bases are naturally operator-orthogonal.

However, if we would use Laplace-operator-orthogonal wavelets in a Ritz-Galerkin FEM

solving a general PDE, we would find only minimal coupling across scales. It is

important to note that this applies to any order of Laplace-operator-orthogonal basis, as

constructed in the previous section (see Figure 4-1). In contrast, the primitive wavelet

bases all yield stiffness matrices that are highly coupled across scales. As a corollary, we

have found for a non-Poisson PDE a small and relatively constant condition number of

the Laplace-operator-orthogonal (pre-conditioned) multi-resolution system matrix A o,

contrasting a faster growing condition number for the primitive multi-resolution system

(see Figure 4-5). Although there surely could be benefits in using a wavelet basis with

'approximate' decoupling power, we still pursue our goal of complete operator-

orthogonality with respect to any given operator.

4.2.1 Non-Lagrangian Wavelet Basis

Such operator-orthogonality has been achieved by Jawerth and Sweldens for

Equation (4.3) with both q and r equal to zero (Jawerth et al., 1993). They also applied

this to the Helmholtz Equation, which is treated as a special case of the former. Their

method is based on the application of anti-derivatives to a basis of naturally orthogonal

wavelets. Looking at their work from our wavelet framework's perspective, we propose

to construct operator-orthogonal wavelets as follows. All wavelets need to satisfy the

following condition (note that p and t are functions in x):

a .jm,k) -- j'm a'jk pdX= jfM tdx =0 with t = '' P
Q ax ax fax ax

If we now make sure that t is nothing but pure polynomial of order n -1 over the

support of Vj, and we give ljm n -1 vanishing moments, we are guaranteed to have

operator-orthogonality. This has been shown in paragraph 4.1. To satisfy the first
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condition, we are forced to relax the choice of piecewise polynomial basis functions that

span a Lagrangian finite element space. However, we could work with scaling functions

that are derived from a set of parent scaling functions * that do span a Lagrangian

finite element space of any given order n. For example, we can build new scaling

functions $m satisfying the following relations:

lj,k p = t = tCtei k = dx = C c d
-dx =, Y f 'el daX el nP el Q P

where te, is obtained from te # = tIdx
el el C

In these equations, the function t is a discontinuous order n -1 piecewise polynomial,

which resembles the first derivative of the scaling function * corresponding to a

Lagrangian finite element space of given order n. The function is made up of

polynomial pieces tel per element, which are zero outside of that element. Those pieces

simply summed together form the first derivative of *b. However, in the function t,

each piece is multiplied by a parameter cel such that the integral of t/p is zero wherever

* is zero. This ensures the compactness of the resulting $j,k .In the linear case n =1,

for example, the sum of all plain pieces te, (with Cel = 1) is a piecewise constant function

spanning two elements, positive over the left element and negative over the right element.

The running integral of this function is exactly a compactly supported linear hat. Also

the function t will be piecewise constant, but with heights depending on the function p .

The thus created compactly supported scaling functions #bk will in general not anymore

be piecewise polynomial, though they are based upon piecewise polynomial #*
However, because the scaling functions #,,are based upon parent scaling functions $

with a scaling relation, they too will satisfy a scaling relation Equation (3.1). Wavelets

can be constructed with the lifting scheme of Equation (3.2). Moreover, we can lift each

primitive wavelet (equal to a finer level scaling function #+,m ) with n -1 interior scaling

functions, to enforce n -1 vanishing moments while staying within the support of the

primitive wavelet's element je,, . Thus, t will be pure polynomial of order n -1 over
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the support of each wavelet Vj,,, and because of the inheritance of vanishing moments

property, we have now an operator-orthogonal wavelet basis. Note that, since we did not

need to make any assumptions on the grid, this method can be applied to problems on any

irregularly spaced one-dimensional mesh.

Jawerth and Sweldens limited their discussion to modified linear hats on regular

grids. The paper mentions that their method does allow for bases derived from higher

order functions, but those would be based upon splines instead of our Lagrangian finite

element space. Such wavelets would be smoother, but less compact than our Lagrangian-

based higher-order extension. Thus, we were able to make a contribution in extending

their method to a higher-order Lagrangian finite element space, by applying our results

from section 4.1.

However, in the following section, we will continue our search for an operator-

orthogonal wavelet basis that spans a truly Lagrangian finite element space of any given

order. We choose to remain specifically within the Lagrangian family, because of the

generality of these bases, their flexibility and their ease in implementation. Moreover, we

wish to rely on well-established FEM theory (e.g. regarding convergence). In addition,

the method presented in this section would not be easily extended to multi-dimensional

problems.

4.2.2 Non-compact Wavelet Basis

Lifting alone can achieve decoupling across scales for any multi-resolution matrix

A[J-_'. This property holds for any given operator, a Lagrangian finite element space of

any given order, and on multi-dimensional unstructured meshes. We will refer to the

property as the decoupling power of lifting. It can easily be verified with a

dimensionality assessment. Consider the two-level multi-resolution FEM system with a

traditional Hierarchical Basis of any given order, for the general PDE of Equation (4.3)

(or a two-dimensional problem for that matter):
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AJ_, Cf

In general, we know that Cj4 0, and it is our goal to eliminate coupling in the multi-

resolution stiffness matrix. The wavelets in a Hierarchical Basis method are all primitive

wavelets, which may still be lifted with non-zero sj,k,m *Doing so results in the following

stiffness matrix, based on Equations (3.6):

C1C AC_ -,][I -S A C
-S,_ I D,_ A 0 I D'f_ A'

C',_ = -C_-- A _ASJA
with D',_ 1  D-1 - SJ _AJ_

A' =A_ +S A S ,_D -1SAC - D _ S _-

The sub-matrix A', contains the wavelet-wavelet interaction of lifted wavelets (instead

of the primitive wavelets), and sub-matrix C'_1 is the scale-coupling we now have to

eliminate. Since AJ_1 has full rank (it is a finite element stiffness matrix in its own

right), we are guaranteed to find a lifting coefficient matrix Sjj that will make C'- = 0 ,

explicitly S = A' C . However, in general S will not be sparse (except in the

Poisson case of paragraph 4.1). The corresponding lifted wavelets are operator-

orthogonal to all scaling functions with respect to the problem's operator, but are in

general not compact, boasting support over the entire domain (see e.g. Figure 4-6).

In wavelet literature, non-compact basis functions have been proposed to achieve

basis orthogonality (i.e. operator-orthogonality with respect to the unity operator, scale-

decoupling the mass-matrix). For this special case, a truncation of the lifted wavelets can

produce wavelets that are relatively compact and approximately orthogonal (e.g.

Lounsbery et al., 1997). Indeed, the perfectly operator-orthogonal wavelets have a fast

decay away from the primitive wavelet. Consequently, the error incurred by enforcing a

compact wavelet support is small enough for their use in wavelet pre-conditioners for

multi-resolution FE systems (e.g. Vassilevski et al., 1997). It is important to point out

that these methods rely on lifting only, and do not make use of stable completion.
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Figure 4-6: Non-compact lifting-only wavelet customized to a general operator.

As discussed in Chapter 3, we focus on building a basis of compactly supported

wavelets, since only those can guarantee low-cost solution transforms. In addition, we do

not want to incur truncation errors.

4.2.3 Compact Wavelet Basis

A compactly supported perfectly orthogonal wavelet basis has been built using

stable completion, combined with lifting. For example, Strang and Nguyen give an

example of a compact piecewise-linear one-dimensional orthogonal wavelet on a regular

grid (Strang et al., 1996, p.257). Further, Dahmen and Stevenson (Dahmen et al., 1999)

specifically use stable completion in their construction of compact wavelet bases,

spanning a Lagrangian finite element space, on multi-dimensional grids. These bases,

however, are not designed to be operator-orthogonal with respect to the problem's

operator, but rather to be simply orthogonal and have additional vanishing moments, for

the purpose of typical matrix compression for smooth functions. Unless, hypothetically

speaking, the problem's stiffness matrix is the mass-matrix, using an orthogonal wavelet

basis will not decouple the scales in the stiffness matrix. We propose to use the

framework of lifting and stable completion to enforce operator-orthogonality with respect

to any given operator. Then, we can take advantage of scale-decoupling in the stiffness

matrix to facilitate adaptive refinement methods.

Focusing now on the one-dimensional problem specifically, we will show how we

can assemble compact operator-customized wavelets as a linear combination of at most

three primitive wavelets, and interior scaling functions. Indeed, consider the set of three

55



i ' k0 i 2  11

set

Figure 4-7: Customized wavelet's support of three Figure 4-8: Wavelet customized to general PDE,
first-order elements. on support of Figure 4-7.

neighboring primitive wavelets 0j+m 0j+1,M2, 0+1,M3 (associated with m-nodes m,).

The compact set of all elements in which any of these functions has non-zero support is

denoted by Qj,set We are looking to construct a compact operator-customized wavelet

that falls entirely within this support. All scaling functions that overlap with Qset are

denoted by 0 ,,k, (associated with k-nodes k*,,). From these scaling functions, we

consider the subset of functions 0 that are all interior with respect to Q,se, (associated

with k-nodes k a subset of k*). In Figure 4-7, an example is given for basisset 9 e

functions of a first-order Lagrangian finite element space, with mset =[min, M 2 , iM3 ],

k,*, =[k1,k2,k3,k4 ] and kse, =[k 2,k3 ]. As discussed in Chapter 3, we can build wavelets

using lifting and stable completion, with Equation (3.3). If we are looking to construct a

wavelet within Qset we may use stable completion with the primitive wavelets #aim.

and lifting with the interior scaling functions O ,k,, without leaving Qjset Our new

wavelet has to be made operator-orthogonal to only the scaling functions that overlap

with Q,,set, We thus need to satisfy c constraints with dof degrees of freedom. Each

constraint corresponds with the enforcement of operator-orthogonality between the new

wavelet and one of c overlapping scaling functions #,k* .The degrees of freedom are

the weights g1 ,m,4n of the three primitive wavelets 0 j+lm and the weights Sj,km,,et of

the lifted scaling functions #jk that will create this new wavelet with Equation (3.3). In

particular, we need to satisfy:

56



Ma fjseI,kset,ms'e= 0 with Mne =[a #. , a ,#' 1,M
cxdof _ 9j,mse,,m'_ cxdof s e cxdof

dofxsol

dof = length (Mset) + length (kset)

and c = length (k*,)

sol = length(met) dof - c (4.4)

The mere dimensions of the interaction matrix Mn* ensure that Equation (4.4) has a

number of solution vectors sol dof - c. This matrix is actually a small sub-matrix of

the Hierarchical Basis stiffness matrix Al/' 1 (where wavelets are primitive). The

appropriate gj,m,',, and Sj,kst,m,,, per solution m', can be found by computing the
Set persoluion se

null-space of the interaction matrix Mn j. The dimension of the null-space determines

the number of linearly independent solutions sol. Irrespective of the order, n, or the

operator, this local problem will always have at least one non-trivial solution, resulting in

at least one operator-orthogonal wavelet within the support of j,,set .Indeed, because of

the geometry and our well-made choice of a set of three primitive wavelets, we are

guaranteed to find:

length(k *) - length(k,) 2
se s-> dof - c = 1

length (me) 3

Note that if we had chosen only one or two primitive wavelets for stable completion, we

would not have been guaranteed a solution. For a wavelet customized to a general given

operator, we effectively need to add one primitive wavelet for each lifting tail we want to

cut off, to create a truly compact wavelet. For our first-order Lagrangian example of

Figure 4-7, we can check that we have at least one solution within Q :

dof = length(mse,) + length(ke,)= 5 Mset = [mI,m 2 ,m 3]
c = length(k ,)= 4 with ke, =[k2 ,k3]

sol = length(m',e,) dof -c =1 e =[k1,k2,k3 ,k4]
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Figure 4.9: Customized wavelet's support of more Figure 4.10: Wavelet customized to general PDE,
than three first-order elements. on support of Figure 4.9.

In Figure 4-8, we show an example of such a compact wavelet customized to a given

general operator.

What happens if the m-nodes associated with the three primitive wavelets are not

adjacent (see Figure 4-9)? In that case, we make sure that Qset contains the three

primitive m-nodes without any gaps, and we look for a wavelet that has a compact

continuous support over 9,,e, . For every additional constraint imposed by an

overlapping scaling function, we will have one more lifting degree of freedom. Indeed,

every additional k-node added to k * is added to k as well. Thus, we are againset set

guaranteed to find at least one operator-orthogonal wavelet, made up from the three

primitive wavelets and scaling functions, within this less compact support (see Figure 4-

10).

It is important to note that a compact customized wavelet vjm will be also

operator-orthogonal to a non-compact wavelet VYj, if its support is entirely contained

within the lifted (non-primitive) part of this non-compact wavelet. Indeed, in that area,

the non-compact wavelet is only composed of scaling functions. Thus, also a non-

compact operator-orthogonal wavelet will be 'compact' in terms of its interaction with all

compact customized wavelets in the interaction matrix A1 . Indeed, we have:
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a (Vij,' v'j,m")

I g,,m. a ('Ki,' q 1+l,m) - ~~m a (V/j," Ojk,k)
m k

= gjmm' a (ym#, A+,,m) because a (fjm ,qk) =0

= 0 because Vjm does not overlap with any j+1,m

However, a non-compact customized wavelet will be in general not operator-orthogonal

to another non-compact wavelet. For example, the wavelets discussed in paragraph 4.2.2

would yield a non-sparse detail matrix Ai unless they are truncated. Thus, having one

single non-compact wavelet among a set of compact wavelets is much more convenient

than having several non-compact wavelets. Indeed, in that case we do not have to rely on

truncation to achieve a sparse scale-decoupled stiffness matrix.

4.2.4 Special Operators

Now that we have shown how to build wavelets that are operator-orthogonal with

respect to any given operator, we will make the connection between the general operator

case and the Laplace operator case. Why have the Laplace-customized wavelets from

paragraph 4.1 a smaller support than wavelets customized to a more general operator?

This is due to the inheritance of vanishing moments property, discussed in paragraph 4.1.

A key element in the construction of a wavelet basis customized to the Laplace operator

was the constraint on the wavelet's support Qj,,, *Indeed, keeping Qj,set limited to one

element f ,je guaranteed pure polynomial scaling functions over the wavelet's support.

However, if we increase the wavelet's support beyond one element - to deal with general

operators, as we did in paragraph 4.2.3 - scaling functions cannot anymore be assumed

pure polynomial over the customized wavelet's support ,,]set Nevertheless, we are

always able to build pure polynomials over Q,,set by taking simple linear combinations

of the scaling functions, spanning a Lagrangian finite element space of a given order n.

Indeed, away from the boundary, we can build - using all scaling functions associated

with ket - any pure polynomial of order n over the entire wavelet support Q,,s,. This
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means that we can find pol = n + 1 linearly independent linear combinations of scaling

functions, each determined by a vector b k , satisfying on Q :,setL k~"~k''etse , sands
Y xpojlib~i[ n o~~

This property directly affects the rank of the interaction matrix M , for the wavelets

within this support (see Equation (4.4)) customized to the Laplace operator in particular.

To show this, let us first make an adjustment to this matrix. Indeed, we know that in

order to benefit from higher-order vanishing moments in the wavelet's derivative, we

have to enforce vanishing moments in the wavelet itself. Thus, we add to Mset n - 1

rows, corresponding with constraints that enforce van = n --1 vanishing moments on all

customized wavelet solutions. This yields the following problem:

M( ,,gj ,sm'et '' I = 0 with M = e [a , ) a ,# -setm ,)

dof xsol (c+van)xdof [ X i/~set) (X' 1{i+i,Ms,)
(c+van)xdof

dof = length (Mset) + length (kset)

1xI C = length (k,*,
where x - and

van = n -i
.(n -) x n-2Jva=n1M o-(c+a)L - sol = length (m'et) > dof -(c + van)

Now, we can apply the inheritance of vanishing moments principle. Because primitive

wavelets #i+,ms and interior scaling functions bik all lie entirely within QJ,set, we know

that each is Laplace-operator-orthogonal to both x0 and x1 . In addition, any higher-

order inner-product with respect to the operator, up to x", (e.g. a (x", #ji,m,)) can be

eliminated with a moment of this function (e.g. #V'ji,m55 ) from one of the additional rows

in Mij sae:

x m dx = nx #iM -n (n -1) x- 2
1 ,m,, dx

-ax ax x,

aV ITbm-e, dx + n ftn-0) setb~md=
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And consequently:

b 1 0 0 2 0 0
M s B =0 with B= sej and L= 0 0 0 -. 0

dof x(c+ van) (c+van)xpoi [L L I
(c+vanpo 0vanxpol 4.5)

We can check that the rank of B equals pol = n +1. This allows us to eliminate

pol = n +1 constraints from our problem defined by MQ. , but we had to first add

van = n -1 vanishing moment constraints. Thus, for the Poisson's Equation we will find

pol - van = 2 more operator-orthogonal wavelets, compactly supported within Q ,setI

than for a general non-Laplace operator. We will find at least dof - c +2 Laplace-

customized wavelets within Qset For example, for first-order Lagrangian scaling

functions (n =1), over three elements Qse, as in Figure 4-7, we will find 5-4+2= 3

Laplace-operator-orthogonal wavelets within that support, in contrast to just 5-4=1

wavelet customized to a more general operator. For a Lagrangian finite element space of

any given order n, limiting the support to just one element Q,,l as in Figure 4-1, always

yields dof - c +2 = (2n -1) - (n +1) +2 = n Laplace-customized wavelets per element.

This is consistent with our findings in paragraph 4.1 of a Laplace-operator-orthogonal

wavelet basis, with all wavelets VI',m remaining within their respective element. Thus,

we have shown how the construction of a Laplace-customized wavelet basis can be

regarded as a very special case of a general construction method.

Note that the construction of higher-order Laplace-customized wavelets does not

strictly require adding vanishing moment constraints to the interaction matrix Me .

Equation (4.5) with b1 ,,,,n corresponding to only x0 and x 1 , and without L, would yield

the same (number of) solutions. Indeed, the gain for a Laplace operator over a non-

Laplace operator is (n +1) - (n -1) = 2, irrespective of the order n . The null-space of the

interaction matrix Mo, without vanishing moment constraints equals the null-space of

M,et from Equation (4.4). However, the longer derivation will be relevant for the two-

dimensional problem and does illustrate the generality of the approach. In addition, we

can use this derivation to show that the higher-order wavelets customized to the one-
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dimensional Laplace operator will have a specific number of vanishing moments. Note

also that a similar derivation can be done for pure orthogonality (i.e. with respect to the

identity operator), as opposed to operator-orthogonality with respect to the Laplace

operator. In that case, however, we have to exactly add as many constraints as we wish

to eliminate, even for higher-dimensional problems. Thus, we do not benefit from using

the B matrix in the construction of an orthogonal wavelet basis.

The Poisson's Equation is not the only PDE for which we can build operator-

orthogonal wavelets with less than three primitive wavelets. Indeed, consider the

following Diffusion-Convection Equation, Equation (4.3) with a non-constant coefficient

p, but with q constant and r equal to zero:

a (au au u(xi)=0

ax ax ax u(x 2 )=0

Because of the partition of unity property, our basis of scaling functions can always form

a constant function, away from the boundary:

k:, jkb lk ' 0se = [1]1 se

lxi

Therefore - irrespective of the properties of the wavelet and without any vanishing

moment constraints enforced on Mnse, - we know that:

MT B = MT b = "'' - 0fj,sel cx Qj,set I J,kst,Oa
dof xc dof xc cxl k /j+1,mset' )

because a((,1) p + 1 dx = axX = 0
ax ax ax ) ,

We can check that the rank of B equals one. Thus, we will find at least dof - c +1

wavelets customized to the Diffusion-Convection operator within Q ,.set Hence, for a

Lagrangian finite element space of any given order n, combining two primitive wavelets

and lifting with only interior scaling functions, will yield at least dof - c +1 =1 compact

wavelet customized to this special operator.
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A-kf

Figure 4-11: Customized wavelet's support adjacent Figure 4-12: Wavelet customized to general PDE,
to a Dirchlet boundary. on support of Figure 4-11.

4.2.5 Boundary Treatment

What happens at the boundary? As we discussed in paragraph 4.1, all wavelets

near a boundary will be forced to be zero-valued at a Dirichlet boundary. This means

that we cannot lift with Dirichlet boundary k-nodes. As a result, Dirichlet boundary

conditions will be only carried by the boundary scaling functions. Consequently, we can

solve for these scaling coefficients 2
1 k independently of the rest of the system, and

eliminate all coupling between the scaling functions and the rest of the system. Thus, we

do not need to make our wavelets operator-orthogonal to these boundary scaling

functions. In effect, we take every kfDirichlet out of both kset and k* Neumann

boundaries are dealt with differently. We do allow wavelets to be lifted with scaling

functions located on the Neumann boundary, and also force wavelets to be operator-

orthogonal to those scaling functions. Hence, all krNeumann are left in both kset and k .

In conclusion, when Q ,set has one boundary, Dirichlet or Neumann, we can build at least

one operator-orthogonal wavelet with only two primitive wavelets and the interior scaling

functions (see e.g. Figures 4-11 and 4-12):

length(k *, -lengthk,,)= 1
=2 } s dof - c =1

length (Me,) = 2

If Qj,set contains two boundaries, we can find at least one operator-orthogonal wavelet by

lifting just one primitive wavelet. This is consistent with the non-local operator-

63



orthogonal wavelet with support extending all over the domain, discussed in paragraph

4.2.2, shown to exist by the decoupling power of lifting property (see e.g. Figure 4-6).

For the special case analysis of the Laplace operator or Diffusion-Convection

operator, presented in paragraph 4.2.4, the presence of a Dirichlet boundary will reduce

the number of pure polynomials formed by the scaling functions. In effect, since the

scaling functions on the Dirichlet boundary are not part of k* (nor k,,,), they may not

be included in the formation of pure polynomials over the wavelet's support. This results

in a lesser rank of B. For the Laplace operator, we have an effective gain of one extra

solution for two primitive wavelets next to the Dirichlet boundary, while for the special

Diffusion-Convection operator, we have no gain next to the Dirichlet boundary. Note

that, alternatively, we can choose to add the Dirichlet constraint to ket, while preserving

the number of pure polynomials, effectively a net-net situation.

Consequently, irrespective of the boundary, wavelets customized to the Laplace

operator can always be build from only one primitive wavelet and interior scaling

functions, while wavelets customized to the Diffusion-Convection operator can be build

from only two primitive wavelet and interior scaling functions. Wavelets customized to

more general operators will be constructed, within the domain, from three primitive

wavelets and interior scaling functions, and from two primitive wavelets and interior

scaling functions, next to a boundary.

4.3 Implementation
One important issue we have not yet addressed is how to guarantee an invertible

stable completion matrix G1 . Indeed, the construction of wavelets with only lifting

guarantees the preservation of a full basis, whereas with stable completion this is

conditional upon the invertibility of G1 . If we fail to construct our wavelets by grouping

primitive wavelets in a fully invertible operation, the wavelets will not anymore span the

Lagrangian finite element space. This is of significant practical importance, because all

wavelets are to be constructed and customized on-the-fly, by selecting local supports
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j,set, with appropriate ms,, ks, and k e* Even though we may ultimately apply an

adaptive solution method and use only few of the wavelets, we want to be sure that with

all wavelets included we would obtain exactly the same solution as with a single-scale

Lagrangian FEM.

Away from the boundary, in zones of the domain where the operator does not

switch between the general and special cases, the compact operator-customized wavelets

described in paragraphs 4.2.3 and 4.2.4 are guaranteed to form a full basis. For the

general case and the case of the Poisson's Equation, the wavelet customization at the

boundary, discussed in paragraph 4.2.5, completes this wavelet basis perfectly. However,

for the special case of the Diffusion-Convection Equation, the boundaries force one of all

customized wavelets to be non-compact. Indeed, because both the compact customized

wavelets in the domain and the wavelets adjacent to the boundary are formed with two

neighboring primitive wavelets (and interior scaling functions), we would be one wavelet

short to form a complete basis. That extra wavelet can be taken as any of the primitive

wavelets, lifted with all the scaling functions of the domain. Such non-compact

customized wavelet has been discussed in paragraph 4.2.2. Though we can choose any of

the primitive wavelets for this additional customized wavelet, for an adaptive method we

would likely choose a primitive wavelet away from the zone with large solution error. A

non-compact operator-orthogonal wavelet will still be 'compact' in terms of the

interaction matrix A1 , as noted in paragraph 4.2.3, as long as its primitive support is

compact and all other customized wavelets are compact. The non-compact wavelet for

the Diffusion-Convection Equation is constructed from only one primitive wavelet, and it

is the only non-compact wavelet in the basis. In addition, its function value decays fast,

away from these primitive components. Thus, we expect this wavelet to be only included

in an adaptive basis when the error concentration is high near these primitive

components.

Furthermore, changes in operator could also cause some customized wavelets to

be non-compact. For example, a zone of the domain governed by the Laplace operator,
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Figure 4-13: Four-level FE matrix of first-order Figure 4-14: Four-level FE matrix of first-order HB
wavelets customized to a general PDE. for a general PDE.

surrounded by a zone governed by a more general operator, would yield two non-

compact wavelets. Each would span the Laplace zone with scaling function components,

and have two primitive wavelet components at one side of the Laplace zone and one

primitive wavelet at the other side.

Examples of compact operator-orthogonal wavelets are given in Figure 4-1 (for

the Laplace operator) and Figures 4-8, 4-12 (for more general operators). The

consequence of applying such an operator-customized wavelet basis to the FEM analysis

of a general PDE, is shown in the stiffness matrix of Figure 4-13. The stiffness matrix is

fully decoupled across all scales. As shown in Figure 4-14, this is not the case when

using a Hierarchical Basis for the same non-Poisson PDE.

We know from the analysis above that the support needed for each customized

wavelet depends on the operator, and on possible boundary contact. We propose an

implementation strategy that guarantees a full set of operator-orthogonal wavelets,

independent of the type of operator (allowing even a combination of different operators

over the domain) or the Lagrangian order n. Every wavelet will be the most compactly

supported achievable. The proposed algorithm works as follows. First, go over every

individual primitive wavelet, compute the null-space of the appropriate system, and if a
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solution exists assign the corresponding m-node to a newly added wavelet. Eliminate all

primitive wavelets assigned in the first round. Second, go over every pair of primitive

wavelets while skipping assigned m-nodes, compute the null-space of the appropriate

system, and if a solution exists assign one of the corresponding m-nodes to a newly added

wavelet. Eliminate all primitive wavelets assigned in the second round. Third, go over

every trio of primitive wavelets while skipping assigned m-nodes, compute the null-space

of the appropriate system, and if a solution exists assign one of the corresponding m-

nodes to a newly added wavelet. All wavelets have been found and assigned. The

algorithm can be written as follows:

m,siged [ =]

for iterl,2,3 do:

usable all assigned

for all m E musable do:

case iterl: mset = M

case iter2: m,, =[rmrM+1] (if M 1 0 Musable return)
case iter3: mset =m 1, m ,m 1] (if M1, rM1, usable return)

nj,mset = {2j,el I M e Mset, rM e QjeI

j,set = ,j,mset U jj,e I Qjei is surrounded by jrset}

kset ={k Ik e j,set, k jtota set kO j,Dirichlet

k* (I~~j o
kset = kk e j,,e,,k e jDirichlet

solve: La(# ,k#t IOks,) a#(0jsk.,'j+lM)] Sk] 0

if solution exist do: massigned = assigned I

Note that, although this procedure requires for each level three passes over the domain, it

still remains 0(N). For adaptive methods this algorithm could be applied in a modified

version.

If we do know at start the specific type of operator and boundaries, we can

directly solve for wavelets on the appropriate supports, with no need for the algorithm

described above. Moreover, in that case, we may fix the stable completion coefficient of
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one of the primitive wavelets (e.g. the middle one) to a non-zero value (e.g. one). By

doing so, we only have for each customized wavelet a cheap determined system to solve.

4.4 Conclusion
We proposed the construction of a basis of compact wavelets that are operator-

orthogonal to all scaling functions, with respect to the Laplace operator, for a Lagrangian

space of any given order. We based this construction on a property we called the

inheritance of vanishing moments. After that, we proposed the construction of a basis of

compact higher-order wavelets, operator-orthogonal with respect to a more general

operator. Unfortunately, these bases do not span anymore a Lagrangian finite element

space, and are not easily extended to multi-dimensional problems. Then, after assessing

the option of building non-compact operator-orthogonal wavelets, we proposed the

construction of a basis of compact wavelets that are made operator-orthogonal with

respect to any given operator. We show how the Laplace operator is a special case that

allows for slightly more compact operator-orthogonal wavelets. Finally, we discuss an

implementation strategy that takes into account this difference in support.

With the techniques presented in this chapter in mind, we will now address the

slightly more complicated task of constructing a basis of compact operator-customized

wavelets for two-dimensional problems.
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5.

2D Wavelet
Customization

5.1 Poisson's Equation
Now that we can construct a basis of compact wavelets customized to a one-

dimensional operator, we will show how to customize wavelets to a two-dimensional

operator. A compact operator-orthogonal wavelet basis will yield a sparse scale-

decoupled FE stiffness matrix for problems governed by this operator. Before handling

more general second-order PDEs, let us first start with the two-dimensional Poisson's

Equation over the domain Q:

-V 2u = f with ul, =0 (5.1)

For simplicity, we assume for now homogeneous Dirichlet boundary conditions all

around the boundary. We choose a Lagrangian finite element space of a given order n

for both trial functions (0k and test functions pk,:

A u = f

69



A[k ,k] = a ((p,)= f('aok aOk' + a(Ok a(Ok, dxdy~'ax ax ay ay

f [k'] = b(pk,) = f p,,dxdy

The mesh, made up of triangles, can be irregular-spaced and even unstructured, as long as

the FEM problem is well-conditioned. We refer to Chapter 2 and Chapter 3, for details

on acceptable meshes. We now can choose for gk a multi-resolution wavelet basis

instead of a single-scale basis, both spanning the order n Lagrangian finite element

space. We will use wavelet theory to construct a Lagrangian basis of compactly

supported wavelets that are operator-orthogonal to all scaling functions with respect to

the two-dimensional Laplace operator. That is, we wish to satisfy the following

condition for operator orthogonality (with respect to the Laplace operator), with

compactly supported Vfjm :

C = (VImb.) = Jfra1,#m a,k + dxdy =0yax ax ay ay)
Vm,k and 0O! j J-1

In Chapter 2, paragraph 2.1, we saw that the two-dimensional Hierarchical Basis - a basis

of primitive wavelets, without lifting or stable completion (see e.g. Figure 2-11 or Figure

3-7) - lacks this quality. Even the linear hat wavelets are not naturally operator-

orthogonal to the coarser basis functions, with respect to the two-dimensional Laplace

operator. However, we can use lifting and stable completion to customize the wavelets to

the operator. In particular, the reader can verify that the following wavelet equations

yield compact first-order Lagrangian wavelets that are customized to the two-dimensional

Laplace operator, on a regular-spaced mesh of right triangles, away from the boundary:

1 - A l j+1 mj

0j,kt2> = 1 1 0 -1 -1- -+iM L 0 jk

V ,k2 _I 1 0 1 1 0 1i'M j
k(3) 1 ']( -. 2

L~j+,M6](5.2)
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Oj,k Vfj, k(1) ji,k(2) Vfj, k(3)

Figure 5-1: Scaling function, and wavelets customized to Laplace operator.

The wavelets of Equation (5.2) are shown in Figure 5-1. Note that we build three

wavelets around each k-node, instead of one wavelet per m-node. The wavelets have a

slightly larger support than the primitive wavelets shown in Figure 3-7, but still fall

within the support of one scaling function, which is the minimal support possible.

Because, away from the boundary, we always have three times the number of m-nodes as

k-nodes (each triangle of level j is subdivided into four triangles on level j+1), we find

that these wavelets span the full solution space within the domain.

Before presenting the details on the construction of compact Laplace-customized

wavelets on an irregular-spaced mesh, we first recognize the following two-dimensional

generalization of the inheritance of vanishing moments property for compactly supported

wavelets:

fJ dxdy = f- dy =0

fJ294/dxdy =Jy| dx =0

Thus, a compactly supported wavelet would be operator-orthogonal to any plane

t = a0o0 + a1 0x + a0 1y. Indeed:
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jff aY/vfdxaft J a av
xdy = aO dxdy + ao j dxdy =0 (5.3)

This easily extends to higher order functions t. For example, for a compact wavelet to

be operator-orthogonal to a quadratic function t, it should have one vanishing moment

(i.e. zero integral), so that the first derivatives of the wavelet are orthogonal to any plane:

dxdy = fjf|x dy = 0

y'dxdy = yX2 dy

fx YI~
x dxdy = xv|dy - ydxdy =0 < Jydxdy =0

Here we have only shown the conditions on the x-derivative; the conditions on the y-

derivative are satisfied likewise. Similarly, a cubic function t requires the additional

constraints (again shown only for the x-derivative):

rrx2a dxdy = JX2Vf 11dy- J2xVdxdy=o xyidxdy=0

y2 av _/dd 2 VfIX2 dy= 0ffy ax xIfy/d = fy242y

xy dxdy= xy|2 dy- fydxdy=0 J yydxdy=0ff ax X

These constraints also satisfy the conditions on the wavelet's derivatives in y. We thus

see that a compactly supported wavelet with one vanishing moment is operator-

orthogonal to any quadratic t = a0O0 + a10x + a01y + a11xy + a2 ,Ox 2 + a0 ,y
2 . Similarly, a

compactly supported wavelet with three vanishing moments (1, x and y) is operator-

orthogonal to any cubic. The inheritance of vanishing moments property was key in

finding compact operator-orthogonal Lagrangian wavelet bases for the one-dimensional

Poisson's Equation, and is again key here. Note that in the two-dimensional case, the

scaling functions are often piecewise polynomial over the support of the primitive

wavelet (see e.g. Figure 3-7), whereas in the one-dimensional case, the scaling functions

were pure polynomial over the support of the primitive wavelet (see Figure 4-1).
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Figure 5-2: Customized wavelet's support of one
scaling function.

Oj,k Vj, k(1) f, k (2) Vj,k(3)

Figure 5-3: Scaling function, three wavelets customized to Laplace, on support of Figure 5-2.

However, just as we did in paragraph 4.2.3 for supports of multiple one-dimensional

elements, we will effectively build pure polynomials t with linear combinations of

scaling functions.

Let us go back now to the customization of first-order Lagrangian wavelets to the

Laplace-operator on a two-dimensional irregular-spaced mesh. We will focus in this

paragraph on the clear-cut first-order Lagrangian basis functions, and will leave the

discussion of higher-order Lagrangian wavelet bases customized to the Laplace operator

to paragraph 5.2.3. For example, consider the irregular-spaced mesh given in Figure 5-2

for a first-order Lagrangian finite element space. If we are looking to build an operator-

orthogonal wavelet that lies entirely within the support of scaling function #j,k, , we need

to satisfy seven constraints with seven degrees of freedom. The constraints are that we

have operator-orthogonality between the wavelet and the seven overlapping scaling

functions #j,k, to #jk, . We denote the set of nodes [k,, k2,k3,k4 ,k5,k6,k7 ] as k*. The

degrees of freedom are the weights of the six primitive wavelets (located at the nodes
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m= [m,m 2 ,m3,m4 ,m5 ,m6 ]) and the lifted scaling function (on k7) in Equation (3.3).

Thus, we need to satisfy:

M [sj m = 0  with M= A C.
7x7 -9 ,' 7x7 k ,k7 7x k ,m

_ ijmm 7x7

k,,mi ~ ax ax ay 8y .

Note that whereas sjk7 M is a scalar, gj,m,m, has six rows. Similarly, A k-k7 has one

column and Ck*,m has six columns. There will only be a solution for an operator-

orthogonal wavelet within this support, if the interaction matrix M is singular. The

appropriate gjm,' and Sjk 7 M per m' can then be found by computing the null-space of

this matrix. To show that M is in fact singular, observe that we can build - using only

the seven scaling functions #jk, to #jk, - any pure plane t = ao + a10x + a01y over the

entire support of #jk, . This means that we can find three linearly independent linear

combinations b k. of scaling functions that satisfy over the entire support of :

k7]
L O,k, bk =[n x y] n = 1,2,3 (5.5)

_k,=kj
1x3

Because #7 1,,, to #j±1,m7 and #jk, all lie entirely within the support of # , we know

from Equation (5.3) that each is operator-orthogonal to the plane t = aoO + a10x + a01 y for

any ao , a10 and a0,1. In particular, this is true for the three planes t =1, t = x and

t = y , built in Equation (5.5). Consequently:

M T B=0 with B=[b.
7x7 7x3 _k ,n]

Because of Equation (5.5), we know that the rank of B equals three. Therefore, we are

guaranteed to have at least three operator-orthogonal wavelets within this support, which

we can find by computing the null-space of M. Consequently, we can find three

wavelets for each k-node in the interior domain.
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Figure 5-4: Four-level FE matrix of first-order Figure 5-5: Four-level FE matrix of first-order HB
wavelets customized to Poisson's Equation. for Poisson's Equation.

With the construction described above, we can build a piecewise linear (first-

order Lagrangian) wavelet basis that is operator-orthogonal to all scaling functions, with

respect to the Laplace operator, on an irregular mesh. Wavelets from such an operator-

orthogonal basis are shown in Figure 5-3. We may use these wavelets for the Poisson's

Equation on an irregular two-dimensional mesh as shown in Figure 5-6. Instead of the

fully coupled stiffness matrix of Figure 5-5, we have now a sparse scale-decoupled

stiffness matrix of Figure 5-4. Such decoupling across scales can be very useful in

adaptive refinement schemes. Details can be added locally, without having to re-compute

a coarser solution.

We leave the handling of boundaries, featuring Dirichlet or Neumann boundary

conditions, to a more general discussion in paragraph 5.2.3.

Now that we have been acquainted with this special case for first-order

Lagrangian wavelets customized to the Laplace operator, we will present the

customization of Lagrangian finite element wavelets of any given order, to more general

second-order operators.
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5.2 Second-Order Partial Differential Equations
Consider the following two-dimensional second-order elliptic PDE with varying

coefficients over the domain Q , instead of Equation (5.1):

-V.(PVu)+q.Vu+ru=f with uLj=0 (5.6)

We assume for now homogeneous Dirichlet boundary conditions. The mesh may be

again unstructured and made up of irregular-spaced triangles, as long as it yields a well-

conditioned single-scale FE problem. Just as for the Poisson's Equation, we can use a

multi-resolution basis instead of a single-scale basis, for both test and trial functions. In

particular, we will use a wavelet basis that spans a Lagrangian finite element space of any

given order. The resulting multi-resolution stiffness matrix is in general not decoupled

across scales, as discussed in Chapter 2. In order to achieve scale-decoupling, we need to

make all wavelets operator-orthogonal to the scaling functions, with respect to the

problem's operator. Thus, we wish to satisfy the following condition for operator

orthogonality with respect to the operator of Equation (5.6) (see Chapter 3):

CIkm = (i,., j,) = J VJP -V #,, + q V Vjm,#,k + r Y,,mO,,kdxdy = 0

Vm,k and 0Os jJ J -1

In addition, we will keep the support of the customized wavelets compact, such that the

stiffness matrix remains sparse. We will use the wavelet construction framework of

Chapter 3, and the techniques developed for one-dimensional problems in Chapter 4 to

construct a basis of wavelets customized to any given elliptic second-order operator.

5.2.1 Non-compact Wavelet Basis

As discussed for one-dimensional operators in paragraph 4.2.2, we could rely on

the decoupling power of lifting property to build such basis. The corresponding lifted

wavelets are operator-orthogonal to all scaling functions, but are - for the two-

dimensional problem - unfortunately not compactly supported. An example of such a

non-compact customized wavelet is given in Figure 5-6. This first-order Lagrangian
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Figure 5-6: Non-compact lifting-only wavelet customized to Laplace.

finite element wavelet is customized to the Laplace operator, on a quadrilateral irregular

mesh with Dirichlet boundary conditions. Whereas for the one-dimensional Laplace

operator we did manage to build compact customized wavelets without stable

completion, for the two-dimensional Laplace operator this is unfortunately not the case,

as shown in paragraph 5.1. We want to keep our basis functions compact, to ensure a

sparse stiffness matrix and sparse solution transforms, without resorting to basis function

truncation or other approximations.

5.2.2 Compact Wavelet Basis

Thus, we will use both lifting and stable completion to construct our wavelets.

For both one-dimensional and two-dimensional general elliptic second-order problems,

we are provided with an upper bound for the support of customized wavelets, away from

the boundary. Indeed, for one-dimensional problems, we have shown in paragraph 4.2.3

how we can always - for a Lagrangian finite element space of any given order - build a

compact operator-orthogonal wavelet from a maximum of three neighboring primitive

wavelets and interior scaling functions. Away from the boundary, such customized

wavelets form a complete basis. Now, we will show how we can construct in a similar

manner customized wavelets within compact two-dimensional supports Ose, made up
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Figure 5-7: Customized wavelet's support of two Figure 5-8: One of three wavelets customized to
neighboring scaling functions. Helmholtz Equation on Figure 5-7 support.

of a set of elements. Consider #i+,mset containing all primitive wavelets interior to ,setI

and #,- all scaling functions that overlap with Qj,,,, The subset of scaling functions

that are interior with respect to Q,se, is denoted by t,,k, . In Figure 5-7, an example is

given for first-order Lagrangian wavelets. Grouping these primitive wavelets with stable

completion and using only the interior scaling functions for lifting, we need to satisfy c

constraints with dof degrees of freedom. Thus, we need to satisfy:

[ 1,kset ,Ms'et1[a /
M setg,,,m = 0 with M njsel =[a # #,k:et '/~/, a ( 1 i,k:e# /j4,mse

cxdof _ JjMse,,e cxdof cxdof
dof xsol

dof = length (Mset + length (kset)

and c = length(k et)

sol = length (m'et dof - (5.7)

The appropriate g ,;, and sIk,,,m,, per solution met can be found by computing the

null-space of the interaction matrix Mns, which is actually a sub-matrix of A-1

formed for primitive wavelets (i.e. traditional Hierarchical Basis). The dimension of the

null-space determines the number of linearly independent solutions sol, which is the

number of customized wavelets we can find within f .

We are guaranteed to have a full-rank (rank sol) stable completion sub-matrix

,,' st the part of G1 corresponding with Q,,e, Indeed, if j,ms.,m;, would not be
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full rank, we would be able to produce a solution to Equation (5.7) for which g 1 , = 0.

Such wavelet, consisting of only scaling functions and no primitive wavelets whatsoever,

can never be operator-orthogonal to the other scaling functions with respect to the

problem's operator, since that would imply a singular single-scale FEM stiffness matrix.

The smallest support we can think of consists of one element. For a Lagrangian

finite element space of any given order n, within a one-element support Qj,,,, we have

dof = 3n (n -1)/2+(n -1)(n -2)/2 = (n -1)(2n -1) degrees of freedom to satisfy

c = n (n + 3)/2 +1 constraints. Consequently, we are guaranteed to find merely

sol dof - c = 3n (n - 3)/2 customized wavelets entirely within one element. Thus,

only for Lagrangian wavelets of very high order, will we have such compact customized

wavelets. For a first-order Lagrangian finite element space (n =1), we do not find any

solution within the support of one element (sol -3).

If we extend this support with one element to two neighboring elements, we

instead will have - for a Lagrangian finite element space of any given order n -

dof = n (3n -2) + (n - 1)2 degrees of freedom and c = n (n +2) +1 constraints.

Therefore, we are guaranteed to find sol dof - c = 3n (n -2) customized wavelets

entirely within the two-element support Q,,set, For a first-order Lagrangian finite

element space (n = 1), we do not find a solution within this support either (sol -3).

Therefore, let us look for a solution within the compact support of one scaling

function, sitting on a k-node with any given valence v. For this problem, we have

dof = vn (3n - 1)/2 + vn (n - 1)/2 +1 interior primitive wavelets and interior scaling

functions, while c =vn (n + 1)/2 +1 overlapping scaling functions. Therefore, we are

guaranteed to find sol dof - c = v3n (n - )/2 customized wavelets entirely within the

compact support of this scaling function. As we have discussed in paragraph 5.1, for a

first-order Lagrangian finite element space (n = 1), we do not find a wavelet solution

within such small support (sol (v + 1)- (v + 1) = 0), unless we are customizing to the

Laplace operator, or another special operator. We are guaranteed to find 3v second-
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order Lagrangian wavelets (n =2) within the support of one second-order Lagrangian

scaling function.

Finally, since we did not find operator-orthogonal wavelets within the support of

one scaling function, we will consider a larger support Qj,set We take the support of two

neighboring scaling functions, sitting on two neighboring k-nodes with any given valence

v, and v2 respectively. This gives us, for any given Lagrangian order n,

dof =(v1 + v 2 )n(3n -1)/2-n(3n -2)+(v, + v 2 )n(n -1)/2+2-(n -1) 2  degrees of

freedom to satisfy c = (vj + v2) n (n + 1)/2 +2- (n + 1)2 constraints resulting in at least

sol dof - c = (vj + v2 ) 3n (n - 1)/2 - 3n (n -2) solutions. Therefore, for a first-order

Lagrangian finite element space (n = 1), we can build at least three wavelets customized

to any given operator within the support of two scaling functions

(sol (vI + V2 +1) - (vI + v2 - 2) = 3). Figure 5-8 shows one of three linearly independent

wavelets customized to a general operator, on the irregular unstructured mesh section

given in Figure 5-7. Note that this result is irrespective of the valences v, and v2 of the

two k-nodes. For a second-order Lagrangian finite element space (n =2), we can find

3(v, + v2 ) second-order Lagrangian wavelets within the support of two neighboring

scaling functions. These are exactly the 3v, wavelets contained in the support of the first

scaling function alone, and the 3v 2 wavelets contained in the second scaling function.

Thus, we have specified how we can find compact wavelets customized to a

general operator. In paragraph 5.3, we will show that such compact wavelets do form a

complete basis, for the first-order Lagrangian case. We are convinced that the same is

true for two-dimensional Lagrangian finite element spaces of higher orders.

5.2.3 Special Operators

As in the one-dimensional case - wavelets customized to the Laplace operator are

slightly more compact than wavelets customized to more general operators. We have

illustrated this with the first-order Lagrangian wavelets in paragraph 5.1. To prove this
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for a Lagrangian finite element space of any given order, we will rely on the inheritance

of vanishing moments property for two-dimensional wavelets, derived in paragraph 5.1.

Scaling functions will in general be piecewise polynomial and not pure

polynomial over 0 ,,,. However, we are always able to build pure polynomials over the

entire wavelet's support, by taking simple linear combinations of the scaling functions.

Indeed, away from the boundary, we can build - using all scaling functions associated

with k* - any polynomial of order n over the entire set of elements Q j, . This means

that we can find pol = (n + 1)(n + 2)/2 linearly independent linear combinations bk. of

scaling functions, satisfying:

X~k Yjk ,X 2 2 n-i

_set f j~set

1Xpol

We will now study the effect of this property on the rank of the interaction matrix MQ

associated with the particular Laplace operator (see Equation (5.7)). However, we will

first make an adjustment to this matrix. Indeed, we know that in order to benefit from

higher order vanishing moments in the wavelet's derivative, we have to enforce

vanishing moments in the wavelet itself. Thus, for the Poisson's Equation, we add to

Mf, exactly van rows that will enforce van = n (n - l)/2 vanishing moments on any

customized wavelet solution:

M [ s '' =0 with Mje = La # , a ( , $Amse,)]

(C+Van)Xdof _ jIst~e (c+van)Xdof [ y (XY ik,kset) (XY',iJ1iM )
dofxsol 

(c+van)xdof

dof = length (Mset) + length (kset)

Xc = length (k*)
wh2-e , an van = n(n - 1)/2

sol = length(m'et) > dof - (c + van)

Because primitive wavelets #,4s,, and interior scaling functions #,,k all lie entirely

within Qset , we know that each is Laplace-operator-orthogonal to x0y0 = 1, x y0 = x

and x0y' = y. In addition, any higher-order inner-product with respect to the Laplace
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Figure 5-9: Derivative triangle for ID problem (a), and 2D problem (b).

operator up to x"-y' (e.g. a (x"'y' , $ 1 ,m,)) can be eliminated with a moment of this

function (e.g. #j+i,el ) from one of the additional rows in M ,s:

f ax -iY #i + ''" dxdy
Q ax ax

(ni - ly#jMe ' dy - (n- i) (n -1- i)x 'y' , dxdy

-> y j+1,M, dxdy + (n - i) (n- x n-2-i',i, dxdy=0
fax ax nYj1m ~ =

This is possible because of the inheritance of vanishing moment property: if the wavelet

has van= n(n - 1)/2 vanishing moments, its derivative will have (n + 1)n/2 vanishing

moments, such that the wavelet becomes automatically operator-orthogonal with respect

to pol = (n + 1)(n + 2)/2 polynomials. Thus:

W B =0 where B= [k:'"tl with multiplier L well-chosen
d an, (c+van)xpol vanxpol

dofx c+van)L

(c+van)x pol

In this equation B has a rank of pol = (n + 1)(n + 2)/2. This allows us to effectively

eliminate (n +1) (n + 2)/2 constraints from our problem defined by M 0 , for the

Laplace operator, but we had to first add n (n - 1)/2 vanishing moment constraints. Thus,

the number of solutions gained over a problem governed by a more general operator is

pol - van = (n +2) (n + 1)/2 - n (n - 1)/2 = 2n +1, for a Lagrangian finite element space

of order n. Hence, we will be able to build at least sol = dof - c + (2n +1) wavelets

customized to the Laplace operator within Q set .Note that this finding is consistent with
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the discussion of the first-order wavelets (n =1) in paragraph 5.1, where we had

pol - van = 3 extra wavelet solutions. For second-order Lagrangians, we will find for

the Poisson's Equation pol - van = 5 extra wavelets for a given compact domain. We

refer to the derivative triangle in Figure 5-9, to visualize why for two-dimensional

problems the gain for the Laplace operator over general operators is dependent on the

order n , whereas this is not the case for one-dimensional problems.

The Poisson case is not the only case in which we find more compact operator-

orthogonal wavelets. Indeed, consider the following Diffusion-Convection Equation,

basically Equation (5.6) with a non-constant coefficient matrix P, but with constant

vector q, and r equal to zero:

-V . (PVu)+ q . Vu = f with ul = 0

Because of the partition of unity property, our basis can always form a constant function.

By an argument similar to the one-dimensional case in paragraph 4.2.4, this leads to at

least sol > dof - c +1 operator-orthogonal wavelets within a compact set Q,,set for this

special Diffusion-Convection operator.

Thus, for the first-order Lagrangian finite element space, we are unable to build

customized wavelets contained within one element or two neighboring elements. On the

increased support of one scaling function, we always find three wavelets customized to

the Laplace operator, one wavelet customized to the special Diffusion-Convection

operator, but none customized to a more general operator, regardless of the valence v of

that scaling fucntion's k-node. Finally, on the combined support of two neighboring

scaling functions, we can build six (namely three around each k-node) wavelets

customized to the Laplace operator, at least four wavelets customized to the special

Diffusion-Convection operator (of which two are more compactly supported around the

k-nodes), and three wavelets customized to a more general operator. Away from the

boundary, all necessary operator-orthogonal first-order Lagrangian wavelets can be found

within such compact supports.

83



-1 +1

+1 -1

Figure 5-10: Compact quadratic wavelets customized to Laplace operator.

For the second-order Lagrangian finite element space, however, we can find two

wavelets customized to the Laplace operator, within the support of one element (see

Figure 5-10). These wavelets have one vanishing moment, and consist each of a linear

combination of two of the three primitive wavelets interior to the quadratic element. We

do not have any wavelets customized to the special Diffusion-Convection operator or a

more general operator, within one element's support. If we take two neighboring

elements instead, we find a total of five wavelets (four of which are contained within a

single element) customized to the Laplace operator, one wavelet customized to the

special Diffusion-Convection operator, and still no wavelets customized to a more

general operator. Within the support of one scaling function, sitting on a k-node with

valence v, we have at least 3v +5 wavelets customized to the Laplace operator (of which

2v + (v-1) = 3v -1 are more compactly supported within one or two elements

respectively). We have at least 3v +1 wavelets (v -1 of which are contained within two

neighboring elements) customized to the special Diffusion-Convection operator, and at

least 3v wavelets customized to a more general operator. We leave the analysis of

further increased wavelet support to the reader, since we have chosen to focus on the

first-order Lagrangian wavelets for the implementation of our method. We are
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convinced, however, that as in the first-order case, we can build a basis of compact

customized wavelets for any given second-order operator. Indeed, we need to find only

twelve customized wavelets per scaling function, and with an average valence of six (true

for both structured as for unstructured meshes), we have found already per scaling

function eighteen wavelets customized to a general operator. Thus a subset of those

eighteen is expected to form a full basis, away from the boundary.

It is clear that the special Poisson's and Diffusion-Convection Equations yield

operator-orthogonal wavelets that are slightly more compact than in the general case.

This quality is caused by the inheritance of vanishing moments property and the partition

of unity property of our Lagrangian basis functions.

5.2.4 Boundary Treatment

Boundaries can be dealt with similarly as in the one-dimensional case. Note that

in two-dimensional meshes, also m-nodes can be located on a boundary. The primitive

wavelets associated with m-nodes on a Dirichlet boundary will not be used for stable

completion with other primitive wavelets. They will each be included as primitive

wavelets, not operator-orthogonal to the scaling functions, and then decoupled from the

rest of the system, when applying the Dirichlet boundary conditions to the system.

Within the support of one scaling function, sitting on a Dirichlet boundary k-node, we

find exactly one first-order Lagrangian wavelet customized to the Laplace operator, but

no first-order Lagrangian wavelet customized to the Diffusion-Convection operator or a

more general operator. An example of a compact wavelet, customized to the Laplace

operator, adjacent to a Dirichlet boundary of an irregular-spaced mesh, is given in Figure

5-11. The primitive wavelets associated with m-nodes on a Neumann boundary will be

treated the same as the wavelets from the inner domain. Thus, within the support of one

scaling function, sitting on a Neumann boundary k-node, we find three first-order

Lagrangian wavelets customized to the Laplace operator, but no first-order Lagrangian

wavelet customized to the Diffusion-Convection operator or a more general operator.
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Figure 5-11: First-order Laplace-customized
wavelet customized, near Dirichlet boundary.

5.3 Implementation
For simplicity, we will only discuss the implementation for first-order Lagrangian

wavelets customized to Laplace the operator and to a general operator, on irregular,

unstructured two-dimensional meshes. The most popular first-order Lagrangian finite

element space will be also used in our FEM example of Chapter 6 and application of

Chapter 7. We expect that a higher-order Lagrangian wavelet method can be

implemented with a similar, albeit more advanced procedure.

For the Laplace-case, away from the boundary, we can build three wavelets

around each k-node. The wavelets have a slightly larger support than the primitive

wavelets, but still fall within the support of one scaling function, which is the minimal

support possible. Because, away from the boundary, we always have three times the

number of m-nodes as k-nodes, we needed to find on average three m-nodes per k-node.

The three wavelets we find for one k-node are linearly dependent from the wavelets we

find for all other k-nodes. Thus, away from the boundary, all wavelets together will span

the full W,, and yield an invertible stable completion matrix Gj.

For a more general second-order operator, away from the boundary, we can build

three wavelets around each pair of k-nodes (see Figures 5-7 and 5-8). These operator-

orthogonal wavelets are less compact than the primitive wavelets or the Laplace-

orthogonal wavelets but are all still compact. Including all these wavelets to construct a

basis would result in three wavelets per m-node, which would be three times the number

we need. Thus, we propose the following scheme to guarantee a full (and not redundant)
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Figure 5-12: Non-crossing chains, connecting all the
k-nodes.

wavelet basis (see Figure 5-12). We picture continuous chains of k-nodes stretched over

the entire domain, with one and only one chain going through each k-node (chains never

cross). An example could be the typical minimum bandwidth numbering scheme for a

typical single-scale FEM implementation: all nodes have one and only one number,

consecutive numbers correspond with neighboring nodes (or with nodes both on a

boundary). Now, we only include customized wavelets associated with k-node pairs that

are part of a chain. Indeed, if we were to close a figure with the k-node pairs, the set of

corresponding customized wavelets would not anymore be linearly independent. With

this procedure, we find exactly three wavelets per k-node - even on unstructured grids.

All wavelets together span the full W, within the domain.

Thus, - away from the boundary - we could implement a wavelet customization

procedure, independently of the nature of the operator (e.g. for mixed operator problems),

by first iterating over all k-nodes, assigning the wavelets we find, and then iterating over

the chains of k-nodes, and only using combinations of primitive wavelets that had not

been used during the first run (since the supports overlap).

Boundaries slightly complicate this procedure. As discussed in paragraph 5.2.4,

we can handle boundaries by excluding from ms,, ke, and k * all nodes on a Dirichlet

boundary. An example of a Laplace-orthogonal wavelet adjacent to a Dirichlet boundary

is given in Figure 5-11. Unlike the one-dimensional case, however, this construction still
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Figure 5.13: First-order wavelet customized to Laplace, along Dirichlet boundary.

can lead to local dependencies of operator-orthogonal wavelets in specific corners of the

domain. We can eliminate those by always restricting to three the maximum number of

wavelets per k-node or k-node pair. When we find more than three wavelets in a patch,

we re-add (constraints associated with) Dirichlet boundary k-nodes to k ,, such that we

get only three wavelets. This effectively eliminates this local dependency.

However, for some meshes, we may need to include a single non-compact

wavelet customized to the Laplace operator to form a full wavelet basis. This is similar

to the single non-compact customized wavelet we needed to add for the one-dimensional

Diffusion-Convection operator (see paragraph 4.3). Fortunately, we can construct this

extra wavelet such that its support is restricted to the boundary area. An example of such

an operator-orthogonal wavelet near the boundary, for an irregular mesh on a

quadrilateral domain with Dirichlet boundary conditions, is given in Figure 5-13. This

Laplace-orthogonal wavelet consists only of primitive wavelets next to the boundary (no

lifting), and has no support away from the boundary. Consequently, this wavelet has

only interaction with wavelets near the boundary. Thus, when using an adaptive method

for a problem that has no significant solution error adjacent to the boundary, we may

exclude this wavelet from our adaptive analysis. Alternatively, we could rely on the

decoupling power of lifting, discussed in paragraph 5.2.1, to complete our wavelet basis

with an operator-customized wavelet consisting of only one primitive wavelet (preferably
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Figure 5-14: Two-level FE matrix of first-order Figure 5-15: Two-level FE matrix of first-order HB
wavelets customized to Poisson's Equation. for Poisson's Equation.

near the boundary), lifted with all the scaling functions over the domain (see Figure 5-6).

This wavelet would have the benefit of fast decay away from the primitive wavelet, and

also would be 'compact' in terms of the interaction matrix Ai . Note that for the

Poisson's Equation on a triangular domain instead, we would not need such an extra

wavelet. For the case of a more general operator, we do not need an extra boundary

wavelet either, and all wavelets of the customized wavelet basis are truly compact.

In Figures 5-14 and 5-15, we compare, for the Poisson's Equation on the two-

dimensional irregular mesh of Figure 5-13, the scale-decoupled stiffness matrices using

an Operator-Customized Wavelet Basis (OCWB) or a Hierarchical Basis (HB). Note

that the highest number Laplace-orthogonal wavelet in Figure 5-14 corresponds to the

non-compact boundary wavelet shown in Figure 5-13. In Figure 5-4, we had already

shown this example, but with an extra wavelet as shown in Figure 5-6, instead of the

wavelet of Figure 5-13. As discussed in paragraph 4.2.3, this non-compact customized

wavelet effectively behaves as a compact wavelet with respect to the sub-matrices A1 .
Note that in Figures 5-14 and 5-15, we apply a full multi-resolution basis instead of the

two-level multi-resolution basis of Figures 5-4 and 5-5.
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5.4 Conclusion
In this Chapter, we have shown how to construct, for a Lagrangian finite element

space of any given order, a basis of compact wavelets customized to any given second-

order operator, on an irregular-spaced unstructured two-dimensional mesh. As in the

one-dimensional case, the Poisson's Equation yields customized wavelets that have

slightly smaller support than the wavelets customized to a more general second-order

operator. A good understanding of this difference, caused by an inheritance of vanishing

moments property, is necessary to ensure the completeness of our customized wavelet

basis.

We will now first study the performance of such an Operator-Customized

Wavelet Basis (OCWB) FEM, and illustrate it with the computation of the Green's

function on a two-dimensional bounded domain. In Chapter 7, we will apply our OCWB

method to a real-world barrier-option pricing problem, governed by a more general two-

dimensional PDE.
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6.
Complexity Analysis:

an Example
6.1 Green's Function Example

We will now demonstrate the application of an operator-orthogonal wavelet basis,

with a standard problem: the computation of a Green's function G(x,y) on a bounded

domain. The Green's function for the Laplace operator can be computed as the solution

to the following equation:

V2 u(x, y) = 5 (6.1)

We choose the delta to be located in the center of the domain. We have homogeneous

Dirichlet boundary conditions all around the square domain:

u(-1,y)=O u(1,y)=O u(x,-1)=O u(x,1)=O (6.2)

Green's functions (see e.g. Roach, 1982) can have many different applications. They

may for example be used as auxiliary function in the solution of a boundary value

problem for a series of different forcing functions. Indeed, such problems' solutions can

all be found as specific integrals of the initially resolved Green's function. Green's
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functions are often numerically computed using a Fourier expansion. However, Fourier

basis functions are supported all over the domain. In this chapter, we will use a basis of

compactly supported wavelets instead, such that details can be added locally to the

Green's function, only where needed.

We can use a FEM to numerically solve Equations (6.1) with (6.2). For this

problem, we choose first-order Lagrangian elements, which is equivalent to a basis of

linear hat functions. They are built on a regular-spaced mesh made up of right triangles.

We choose a Ritz-Galerkin method, in which the trial and test basis functions are the

same.

As we can see from the solutions for different resolution meshes, shown in

Figures 6-2 and 6-4, the delta causes the bulk of the solution error to be centered in the

middle of the domain. Thus, we could drastically reduce the problem size, while keeping

practically the same accuracy, by refining the mesh only locally around the delta. Such

refinement can be easily implemented with a multi-resolution basis, such as a

Hierarchical Basis (HB). Using this adaptive basis for both test and trial functions

results in the following multi-resolution system, coupled across scales:

A[O]adu[ Had _ f[0]ad

A0  cad ... cad [ 1r
J0,A J-1,A

Cad T Aad cad ad tad

or equiv. 0,AO 0 J-1,AO O 0

Cad,_ C"a Aad [d ad

Figure 5-4 shows the sparsity of the non-adaptive HB stiffness matrix A101. The detail

functions are basically primitive wavelets. However, we may also use an adaptive

Operator-Customized Wavelet Basis (OCWB) to scale-decouple the multi-resolution

system. To accomplish scale-decoupling, we construct a basis of wavelets that are

operator-orthogonal to the scaling functions with respect to the Laplace operator. The

customized wavelets on this square mesh of right triangles are given by Equation (6.3):
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Figure 6-1: Level
scaling functions.
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Figure 6-5: Level 0 non-adaptive,
adaptive OCWB refinement.
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Using these basis functions for both test and trial functions results in the following

adaptive multi-resolution system:

A[O]adU[O]ad _f [O]ad
J J J

AO 0 --- 0 X0 fo
0 Aad 0 i" rkd

or equiv. . .0 . 0

a~d yad 1 ad
_0 0 A","_, _ _ J-1

Figure 5-4 shows the sparsity of the non-adaptive OCWB stiffness matrix A101

Let us now compare an HB refinement with an OCWB refinement. We start with

a coarse mesh, as shown in Figure 6-1. The problem on this resolution, defined as level

j = 0, has a dimension of N = 25 degrees of freedom. To gain accuracy, we increase

the resolution of the mesh. For the first level of refinement, level j = 1, we refine

everywhere in the domain. Each primitive wavelet of the HB method is located on an m-

node between two neighboring k-nodes of the coarser mesh (see Figure 6-3). In contrast,

the customized wavelets of the OCWB method are grouped in trios around individual k-

nodes of the coarser mesh (see Figure 6-5). Though, at the boundary these customized

wavelets are arranged differently, as explained in Chapter 5. The wavelets on the

Dirichlet boundary itself are chosen to be primitive wavelets. In addition, around each k-

node at the boundary, we have one operator-orthogonal wavelet. The set is completed

with one operator-orthogonal wavelet that runs adjacent to the boundary all around the

domain. For both the HB method and the OCWB method, the problem's dimension

increases with 56 added (wavelet) degrees of freedom to N = 81. The FE problem on

this resolution yields identical solutions whether under HB or OCWB non-adaptive

refinement. For all higher levels of refinement we opt to refine only locally, and to keep

constant the number of degrees of freedom added per level. We define telescopic

refinement as a nested multi-scale refinement in which each refinement level has a

dimension that remains of constant order for increasing levels of refinement. As we will

show further in this chapter, a scale-decoupled method is most effective for a problem
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Figure 6-7: Error energy norm of Green's function
solutions.

with telescopic refinement. On each level, we will refine only in the area around a patch

of 5 x 5 = 25 k-nodes of that level's mesh, in the middle of the domain. For the HB

method, this results in an addition of (11 x 11) - (5 x 5) = 96 primitive wavelet degrees of

freedom per level, as shown in Figures 6-3. For the OCWB method, we have 25(3) = 75

customized wavelets per level added, as illustrated in Figures 6-5. Note that we do not

have to deal with any special boundary wavelets under this adaptive refinement. The

plotted solutions per level of adaptive refinement are visually very close to the non-

adaptive solution. Figure 6-7 compares the convergence of these adaptive methods with

ad
the convergence of the non-adaptive method. The norm of the numerical error ej is

plotted against the total problem size, taking the true solution as the non-adaptive solution

U[01 on a much finer mesh:U7

ad , 1 [ ]a d ] - j [ ]ad
ejd - 7 -U10 A101 uJ -U[04

0 7 7 0 _

Both the HB and the OCWB telescopic adaptive refinement methods yield comparable

accuracy for significantly smaller problem sizes. However, the OCWB method can

produce this solution much faster than the HB method. To prove this, we will make a

detailed comparison of both method's operation costs of matrix assembly, solving and
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applicable solution transforms. Note that the storage cost needed for our method will be

of the same order as the matrix assembly operation cost.

6.2 Complexity Analysis
6.2.2 Matrix Assembly Cost

The operation cost to assemble a single-scale stiffness matrix is of the order of the

number of elements, or equivalently the number of degrees of freedom N. This is

irrespective of whether the problem is one-dimensional or higher-dimensional. Indeed,

we can build the matrix by iterating over the elements and plugging in the element's

stiffness matrix, or by iterating over the degrees of freedom and plugging in the

interaction of the corresponding basis function with overlapping basis functions. The

construction of an element's stiffness matrix, or of a basis function's interaction vector,

has a fixed operation cost, independent of the problem size.

If we were to directly construct a multi-resolution stiffness matrix for a

Hierarchical Basis method, we would incur not a cost of O(N), but instead a cost of

O(Nlog N). Indeed, for each wavelet (degree of freedom) we would need to compute

the interaction with the overlapping wavelets of the same level, as well as the interaction

with the overlapping wavelets of each other level j = 0,..., J -1 and the scaling functions

at the coarsest level j = 0. Consequently, the operation cost would grow as 0 (NJ).

Now, for a one-dimensional problem, we have:

N=2 +1 ->O(N)=0(2J) -> 0(log 2 N)= O(J)

For n-dimensional problems, this generalizes to:

N=(2j +1)" - O(N)=0(2"') -> (log2 , N) = O(J)

Thus, the operation cost for a direct construction of the HB stiffness matrix would be

O(Nlog N). However, we will preferably use an iterative method, such as the

Conjugate Gradient (CG) method, to solve the HB system. For such iterative method,

we do not need to have the multi-resolution matrix in explicit form, if we know a-priori

how many levels of refinement we need. We can effectively implement an iterative
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multi-resolution method with only the fine resolution (level J) single-scale stiffness

matrix and dual wavelet transforms. Indeed, we know that:

A = o ... _ ijA T  T...i'T  (6.4)

As discussed above, the single-scale matrix can be directly constructed in 0(N)

operations. For the dual wavelet transforms, we need to construct J square matrices iT .

A transform on level j-I applies only to the scaling function coefficients of the finer

level j. Therefore, the size of each transform matrix grows with the transform's level

j-1, as (2' +1)". We have pointed out before (in Chapter 3) that the dual transform

matrices i, are sparse for any choice of compact wavelet constructed by equations (3.3),

whereas the primary transform matrices Tj are only guaranteed to be sparse for compact

wavelets that are constructed without stable completion. The cost of building a matrix

row that corresponds with a wavelet is very small and independent of the problem size. It

is merely placing an off-diagonal entry of one. The cost of building a matrix row that

corresponds with a scaling function is also small and independent of the problem size. It

consists of filling-in the coefficients of the very compact filter h?,k, . Consequently, the

cost of constructing each transform matrix relates to the level as:

0 (2 + l) = 0 2 V

Thus, the total cost of constructing all J dual wavelet transforms will be 0(N):

0 N+ N+...+ 2" = 0(N) (6.5)

We will also use the dual wavelet transforms to transform the multi-resolution solution

back to single-scale format.

These costs are for a non-adaptive HB method. An adaptive method results in a

decrease in problem size N, for a given number of levels of refinement j= J. If we

have telescopic refinement - as in our example of the Green's function - we have the

following relation:

Nad = Cl + JC 2
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And consequently:

O(Nd) = 0(J)

If we were to build directly the HB multi-resolution matrix for a problem with

telescopic refinement, the operation cost would be 0 W(J). Instead, we again can use

Equation (6.4), under the assumption we know a-priori exactly where and how far we

will need refinement. However, it would be too expensive to use the non-adaptive

stiffness matrix AJ, since the assembly cost for this matrix is O(N) L O(Nad)'

Therefore, we propose to use a modified version of the non-adaptive Ai . This modified

stiffness matrix A* has the format of a single-scale stiffness matrix, but the mesh has a

varying resolution over the domain, corresponding to the finest level of refinement that is

locally required for the adaptive method. To handle the jumps in resolution, we hem-in

each patch of finer k-nodes with added 'hanging' k-nodes, and simply use green

refinement to connect these redundant k-nodes to the surrounding k-nodes of the coarser

mesh. Such green refinement is illustrated by Figure 6-8. In addition - to avoid

redundant renumbering in our wavelet transforms - we do not number the modified

matrix' degrees of freedoms according to the customary minimum-bandwidth rules.

Instead, we first number the k-nodes of the coarsest level (j=0 ) mesh, then the not-yet-

numbered k-nodes of one level finer, etc... ending with the finest level j = J. It is

important to note that we do not solve the problem on this 'refined' mesh, so we do not

have to worry about the shape of the transition elements, nor the matrix' bandwidth. The

modified matrix A* is merely an implementation aid. Since this matrix is constructed as

a regular stiffness matrix, with N,,d + JCh,,,,gi,,g degrees of freedom, its assembly cost

remains 0(J).

We now can build modified dual wavelet transform matrices associated with this

matrix. Their construction is as described above for the non-adaptive case, except that a

transform matrix on a particular level is only constructed for wavelets and scaling

functions that overlap with the refinement zone on that level. Wavelets associated with

the 'hanging' finer level k-nodes are not added in, since those degrees of freedom were
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Figure 6-8: Green refinement around refinement
zones.

added outside of the refinement zone. Wavelets outside of the refinement zone obviously

are not included either. They could not even be built from the modified matrix A* .

Scaling functions that overlap with the resolution jump can be easily constructed with

Equation (3.1) from the finer scaling functions in the refinement zone and the finer

scaling functions associated with the 'hanging' k-nodes. Scaling functions outside of the

refinement zone effectively default to the scaling functions of the 'finer' level. Because

of our convenient choice of numbering in the modified stiffness matrix A*, we do not

need to renumber these degrees of freedom. Hence, they do not need to be included in

the wavelet transform. Note that, although our adaptive method effectively has Nad

degrees of freedom, the modified system matrix has a slightly bigger size because of the

added 'hanging' nodes. Consequently, the adaptive modified transform matrices iTd* are

not exactly square. We have:

- adad* d*ai*0d*
T 

. ad*
T

In the case of telescopic refinement, each of the J dual wavelet transform matrices -ad*

has a fixed size, the number of wavelets and scaling functions overlapping with the

refinement patch. Thus, the total cost of assembly of all wavelet transforms, and the

modified stiffness matrix, is 0(J) for an adaptive HB method.
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If instead we are using an OCWB multi-resolution method, we can directly build

the multi-resolution matrix, as well as all wavelet transforms, with only 0(N) cost. We

first need to determine for each customized wavelet the appropriate set of stable

completion coefficients and lifting coefficients. Since practically all customized wavelets

are constructed within compact support, this will be an 0(N) operation. The details of

this customization are discussed in Chapter 5. For a wavelet on level j, we need to

compute the interactions - with respect to the weak form of the operator - of functions

related to a pre-selected support. The interactions between at one hand the level j

scaling functions overlapping with this support, and at the other hand the internal level

j -1 scaling functions (level j primitive wavelets) as well as the internal level j
scaling functions are placed in an interaction matrix M set (see Equation (5.7)):

M jst= [a (0jiks,Ii,k,.t) sa t (0~ j+ise)

cxdof cxdof

The null-space of this small matrix - of N -invariant size - yields the desired coefficients

for the customization of the wavelet. Of course, knowing the dimension of the null-space

of MQ, enables us to fix some of the coefficients, such that we can solve for the

remaining ones in a fully determined system. For two-dimensional Poisson's Equation,

we have one non-local wavelet, which runs along the boundary, as discussed in Chapter

5. This boundary wavelet has a support of 0(1K) and will clearly not affect the order

of the entire wavelet customization operation:

o(C, (N-1)+C,(K)) = 0(N)

In parallel with the customization, we can build the dual wavelet transform matrices T1.

We will need these transforms to transform the solution from multi-resolution to single-

scale format. As in the HB case, all dual wavelet transforms can be built in 0(N)

operation cost. The only difference is that, for the OCWB method, the cost of building a

wavelet row is a slightly higher constant. Instead of placing an off-diagonal matrix entry

of one - corresponding with a primitive wavelet -, we insert the stable completion and

filter coefficients. After we have determined the stable completion and lifting
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single-scale HB HB OCWB OCWB
direct solver direct solver iterative solver direct solver iterative solver

N NlogN N N N

adaptive j 2  1 J J

Table 6-1: Assembly costs [order of], non-adaptive and with telescopic adaptivity.

coefficients, we can directly build the multi-resolution matrix A101. Unlike in the HB

case, we only need to compute the local interaction between wavelets of the same level.

Indeed, by forcing decoupling between wavelets and scaling function on one level, we

have effectively eliminated also the coupling between those wavelets and all coarser level

wavelets and scaling functions, as discussed in Chapter 3. This enables us to directly

construct the multi-resolution matrix A101 with only 0(N) operation cost, whereas a

direct construction of the stiffness matrix would cost 0 (N log N) for the Hierarchical

Basis method.

The assembly costs for an adaptive OCWB method, with telescopic refinement

are 0(J) - as in the adaptive HB case. Although we now do not need to explicitly

construct a modified single-scale stiffness matrix A* we can build all dual wavelet

transforms Tad* based on such matrix in O(J) operations. However, if for the two-

dimensional Poisson's Equation our refinement patch were to include the non-local

boundary wavelet, the operation cost could be much higher than 0(J). This is not the

case for problems such as our Green's function example, where the solution error is

sufficiently small right on the boundary. In cases where telescopic refinement is

appropriate and we do want to include this non-local boundary wavelet, we could limit

the customization of the wavelet to where its support overlaps with the refinement patch.

Outside this area, we assume the wavelet is operator-orthogonal to the scaling functions,

without explicitly determining the stable completion and lifting coefficients. This does

not affect the stiffness matrix, since the customized wavelet has no interaction with the

scaling functions and it has no neighboring wavelets outside of the refinement patch. It
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does exclude part of the wavelet's participation from our solution, but that would be

tolerable under our assumption of telescopic refinement. This modification would bring

the assembly cost again down to O(J). After determining the customization, we can

directly construct the multi-resolution matrix in 0(J) operations as well. An overview

of assembly costs is given in Table 6-1.

6.2.2 Solution Cost

The critical operation cost of the solving phase will distinguish the OCWB

method from the HB method, and the adaptive methods from the non-adaptive. Although

the methods we compare have substantial differences, they will rely on either of two

well-known basic techniques for solving a system Au = f : Gaussian Elimination, or the

Conjugate Gradient method.

Gaussian Elimination is a direct solving method (see Strang, 1993) in which the

system is solved by transforming the augmented system matrix [A I f] with elementary

row operations into an upper triangular matrix, and then solving for u with back-

substitution. The complexity of Gaussian Elimination depends directly on the sparsity of

the matrix A, and is of the order O(Nb2), in which N is the dimension and b is the

bandwidth of the matrix A. The Conjugate Gradient (CG) method is an iterative solving

method (see Golub, 1996) for symmetric positive definite systems. Per iteration, a

solution approximation, the corresponding residual and search direction are generated.

The complexity of the CG method depends primarily on the matrix's condition number, a

measure of how close the matrix is to being singular. The condition number K is the

square root of the ratio between the highest and smallest eigenvalue of the matrix. The

number of iterations needed to obtain a sufficiently accurate solution is of the order

0 (.-N). The cost of one iteration is O(N) for compactly supported basis functions, in

which N is the dimension of u. In fact - apart from a few additions and scalar

multiplications -, this iteration cost is incurred by applying the sparse matrix A to the

search direction vector (with dimension N), and by computing the inner product of this
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search direction vector and of the residual (with dimension N). Therefore, the CG

solving cost is o(N4 K).

A single-scale FE system can by default be solved with Gaussian Elimination,

with a cost depending on the problem's spatial characteristics. The stiffness matrix'

bandwidth is constant for a one-dimensional problem, 0 (N1/2) for a two-dimensional

problem, and O(N 2/3 ) for a three-dimensional problem. Thus, the solving costs would

be O(N), O(N2) and O(N7/3) respectively.

We now consider instead a non-adaptive Hierarchical Basis FE method. The

Gaussian Elimination cost for this multi-resolution system is of the same order as for the

single-scale system, for higher dimensional problems. For one-dimensional problems,

the stiffness matrix' bandwidth has order 0 (NJ2). Indeed, each row - associated with a

level j wavelet - has non-zero entries corresponding to the interaction of this wavelet

with a compact set of scaling functions on level 0, compact set of wavelets on each of the

j-I coarser levels, compact set of wavelets on level j, and compact set of wavelets on

each of the J -1 - j finer levels. Thus, the bandwidth grows by:

0 (C, +... + Cj+... + CO)= 0(J)

Note that in the case of linear hats and a Poisson's Equation, the cost would be only

0(N), since such HB method actually corresponds to an OCWB method for which

C, = C,6>,_, with (,_- the Kronecker delta. For two-dimensional problems (n = 2), or

three-dimensional problems (n = 3), the bandwidth grows by:

n~ln ( 'n-0/n ( n-l0/nOl
0 N(-" + n +... + j = 0 N("1)/"

However, the HB method is well-recognized for its performance as an effective

stiffness matrix pre-conditioner. Because of this, the CG iterative method outperforms

direct Gaussian elimination, for multi-dimensional problems. Note that per iteration,

instead of explicitly constructing and applying the HB stiffness matrix Af to the search

direction vector pi, we apply a series of dual wavelet transforms and the single-scale

matrix to the search direction vector:

104



10 10

108

0
0
U

0

10 6[

1010 0

10 -

0 6
o 10
0

104

2 1
1 2
10 102 104

N (nonadaptive)

Figure 6-9: Solving cost vs. dimension of non-
adaptive solution of Green's function.

410
-- HB Gauss
---HB CG
-- OCWB Gat
--OCWB CG

-- HB Gauss
---- HB CG

-0- OCWB Gauss
-O- 0CWB CG

--- -----

0 100 200
N (adaptive)

X 106

300 400

RB Gauss
HB CG

-O- 0CWB Gauss
OCWB CG

_~0

0 100 200 300 400
N (adaptive)

Figure 6-10: Solving cost vs. dimension of
adaptive solution of Green's function.

A9p = 0 ...iATij ...Top,

Thus, we can avoid a costly explicit assembly of the HB stiffness matrix. Because of the

sparsity of the dual wavelet transforms and single-scale matrix Aj, and in view of

Equation (6.5), this is effectively an O(N) operation. For one-dimensional problems,

the stiffness matrix has a condition number of constant order, resulting in an 0(N) cost

for the CG method. For two-dimensional problems, the condition number is known to be

bounded by C (log N) 2 , whereas for three-dimensional problems by CN (Yserentant,

1992). Therefore, the CG method has a cost of order O(N log N) for two-dimensional

problems, and 0 (N3/2) for three-dimensional respectively.

Figure 6-9 illustrates the difference in computational performance between a

Gaussian elimination method and a CG method for a non-adaptive HB solution of the

105

102

3

2.5

2

o1.5

1

0.5

ss



two-dimensional Green function example discussed in this chapter. The floating

operation count (MATLAB 5.3.1 flops) for both procedures is plotted against the

problem's dimension. The CG method clearly outperforms Gaussian elimination

asymptotically.

A major reason for the use of a multi-resolution method is its effectiveness in

implementing an adaptive method. We have shown in Figure 6-7 how the exploitation of

strong (telescopic) adaptivity does not hurt convergence, for our example problem.

Comparing Figure 6-9 with Figure 6-10 shows how much we gain in solving speed by

reducing the full dimension N to an adaptive dimension Nd. Note that the x-axis of

Figure 6-10 is now linear instead of logarithmic.

The cost of a direct solver for the adaptive HB method is 0 (NaJ2 ) 3),for

one-dimensional as well as multi-dimensional problems. Indeed, the bandwidth of the

multi-resolution stiffness matrix will grow linearly with J only, since the number of

wavelets on each level remains constant.

For the iterative CG method, we rely again on a modified single-scale stiffness

matrix A* and adaptive modified transforms -7* . The iterative CG solving cost for a

one-dimensional HB problem with telescopic refinement is 0 (N,,d)= 0(J). We do not

have a close theoretical bound for the iterative solving cost for higher-dimensional

problems, as it depends on the condition number of the adaptive HB stiffness matrix. We

could assume the cost to be well above 0(Nad) = O(J), since it is highly unlikely for

the condition number to remain constant. We also consider 0 (Nd log N)= 0 (J2) an

upper bound for two-dimensional problems, and 0 (N,,dN/2) = 0(j 8 J/2) an upper bound

for three-dimensional problems. As shown in Figure 6-10, our results for the two-

dimensional Green function example - with telescopic refinement - support a value

closer to 0 (2) for two-dimensional problems.

To achieve an optimal solving speed of 0 (Nd) = O(J) for multi-dimensional

problems with telescopic adaptivity, we can customize our detail basis functions to scale-

decouple the multi-resolution stiffness matrix. By using an OCWB method, the stiffness
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ID

adaptive

2D

adaptive

3D

adaptive

single-scale HB HB OCWB OCWB
direct solver direct solver iterative solver direct solver iterative solver

N Nlog2 N N N N

J3  J J J

NN NN NlogN NN N logN )

j 3  j2 (*)

N4/3N N4/3N NN12 N4 /3 N

J 3 J J

Table 6-2: Solution costs [order of], non-adaptive and with telescopic adaptivity.

matrix breaks down to a block-diagonal matrix, with each block containing the (limited

bandwidth) wavelet interaction of one level. For a problem with telescopic refinement,

the dimensions (as well as bandwidth) of those blocks are J -invariant. Thus, they can

each be solved directly with a solving cost of constant order:

AO.. - 0 fo A = fo -> X0

0 Aad 0 ad I;d A4d ad ad = ad

0 0 A I _ " ad ad ad ad ad
L -1JLyd, J1 _1j1= - YJ-1

Therefore, the total solving cost remains O(J). In Figure 6-10, the solving cost of an

adaptive OCWB method is compared with the cost of an adaptive HB method. In order

to appreciate the significance of this difference, we have re-plotted the graph of Figure 6-

10 with a linear instead of logarithmic scale for the flop count axis. Indeed, with an

0(J) solving cost, the OCWB truly outperforms the HB method for problems with

telescopic refinement.

The non-adaptive OCWB method would have a direct solving cost of the same

order as a single-scale direct method. Indeed, the cost will be dominated by the cost of

solving the finest level detail block, which will have a dimension of (3/4)N and a

Based on numerical experiments.
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single-scale HB HB OCWB OCWB
direct solver direct solver iterative solver direct solver iterative solver

0 N N N N

adaptive 0 J J J 1

Table 6-3: Transformation costs [order of], non-adaptive and with telescopic adaptivity.

bandwidth of order o (N(n-')" ). Thus, the cost would be of order O(N"(3n2)n), which is

also the direct solving cost of a non-adaptive HB method. It is more difficult to gauge the

cost of an iterative solver for the non-adaptive OCWB method. Indeed, this largely

depends on the condition number of the finest level detail block, which is affected by the

condition number of the stable completion matrix G1 , of Equation (3.3). If this matrix is

well-conditioned, we will have a slow-growing condition number in the detail blocks.

Note that for a HB method, the stable completion matrix effectively is the unity matrix,

with condition number one. For the HB method, the condition number of each detail

block is constant. Notwithstanding this, it is possible for an OCWB iterative method to

slightly outperform the HB iterative solver, because of the scale-decoupling effect. This

is the case for the non-adaptive two-dimensional Green function example. Figure 6-9

compares the non-adaptive OCWB method's performance to the non-adaptive HB

method. Thus, even if we have absolutely no adaptivity, we may still choose the OCWB

over the HB method. An overview of all solving costs is given in Table 6-2.

6.2.3 Solution Transformation Cost

When using a multi-resolution method, we often need to transform the multi-

resolution solution - generated in the solving stage - back to a single-scale format.

Indeed, though for some problems only a local solution or solution properties are needed,

many problems will call for an explicit sample of the entire solution. This is best

achieved by applying J dual wavelet transforms to the multi-resolution solution:
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For the adaptive methods, we may use modified dual wavelet transforms Tad* instead.

The total cost of this operation has the same order as the total cost of assembly of these

transforms. This cost has been discussed in detail above. Thus, for both the HB as the

OCWB method, the cost of transforming the solution will be O(N) for non-adaptive

problems, and 0(J) for problems with telescopic adaptive refinement (see Table 6-3).

6.2.4 Complexity Comparison

The total costs of the different methods are all critically determined by the cost of

the solving phase, and are thus given in Table 6-2. Clearly an adaptive OCWB method is

optimal for problems with highly local features in the solution, e.g. the two-dimensional

Green function example, or the applications we will discuss in Chapter 7. For problems

that have less-local details, or even no adaptivity whatsoever, the OCWB method may be

outperformed by the HB iterative method, if the condition numbers of the stiffness

matrix' detail parts grow too fast. Those depend on the condition number of the stable

completion matrices G1 . For a two-dimensional Poisson's Equation, we found this to be

very well-behaved, and the non-adaptive OCWB slightly outperformed the non-adaptive

HB iterative method. For the applications of Chapter 7, with a more general operator, we

found the condition number to grow faster.

6.3 Refinement Strategy
When we anticipate local details and use an adaptive method such as the OCWB

method, we still have to determine where and how deep to refine. For our Green function

example, we had pre-specified the refinement zone, but for other applications, we might

need to determine the refinement zones and depth a-posteriori. In light of this issue, it is

important to stress that the OCWB method is truly a level-per-level method. We can start

by solving the problem on a coarse mesh, without an a-priori decision on the number of

levels or area of refinement. The assembly and solving of the detail parts can be done per

level. Therefore, on each level a decision can be made on whether and where to refine.
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Note that the same cannot be said for the HB method. For this method, an explicit

construction of the multi-resolution stiffness matrix is expensive, and when details are

added, the coarser solution needs to be re-computed. With an OCWB method, we can

base refinement decisions on a-posteriori error detection. In the application of Chapter 7,

we make the assumption that all details are nested over the levels. This means that we do

not need to refine in areas where we have no coarser refinement, or where the computed

coarser details were small enough. In that case, we can on each level j make an

appropriate refinement decision based upon the previously computed details of the

coarser level j-1. Convergence did not weaken under this assumption, for the problems

in Chapter 7. This of course would be an incorrect assumption for problems were high-

frequency details pop up in the solution, away from areas with coarser details. Note also

that an operator-orthogonal wavelet basis is a full basis for the numerical error. Indeed,

consider a coarse level j solution, and an OCWB of which we can add functions without

having to re-compute the coarser solution. If the FE method converges, we know that

this wavelet basis, from level j to oo, must span exactly the difference between the

coarse solution and the true solution, which is the numerical error. This is not the case

for a HB basis, where the wavelets only together with the level j scaling functions span

the numerical error, as well as the true solution for that matter. The operator-orthogonal

wavelet basis spans the numerical error on its own.

6.4 Conclusion
We compared the computational complexity of our Operator-Customized Wavelet

Basis (OCWB) FEM with the complexity of a Hierarchical Basis (HB) FEM and of a

standard single-scale FEM. The cost of the solution phase proved to be the critical part

of the total complexity for all three methods. We used both direct (Gaussian elimination)

and iterative (Conjugate Gradient) solvers in our analysis. For strongly adaptive

problems, problems with telescopic refinement in particular, the OCWB method achieves

a truly optimal solving complexity of O(J), where J is the number of refinement
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levels. This cannot be achieved by a HB method. We illustrated the theoretical results

with the computation of a two-dimensional Green's function on a bounded domain. For

this problem telescopic refinement yields good convergence. We found the adaptive

OCWB to significantly outperform other adaptive methods such as HB. Even the non-

adaptive OCWB slightly beats the non-adaptive HB, while well outperforming a single-

scale FEM.

In the following chapter, we will apply an adaptive OCWB to a barrier option

pricing problem, governed by a more general PDE, to demonstrate our method's breadth

and power.
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7.
Application:

Barrier Option Pricing
7.1 Barrier Option Pricing Problem

We now apply our wavelet method to a barrier-option pricing problem, in

particular an up-and-out call option. We will customize a wavelet basis to scale-decouple

an operator consisting of a diffusion, convection and reaction term with varying

coefficients. An adaptive method can exploit the local concentration of error in the

solution, to achieve critically fast and accurate pricing.

A call option (see e.g. Hull, 1989) is a contract that gives the owner the right but

not the obligation to purchase an underlying asset at a pre-specified price, the strike price,

at a given time in the future, the option maturity. The owner will only exercise his option

at maturity if the option is in-the-money - if the asset price is higher than the strike price.

The value of the option at maturity is straightforward: it is zero if the underlying asset is

cheaper than the strike price and increases proportional to the asset price for asset prices

above the strike price. The precise value of the option contract, option price, at any time

before maturity can only be determined by making assumptions on the behavior of the
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underlying asset over time, and the risk-free interest rate. The up-and-out barrier feature

imposes a constraint on the option contract: the contract will be void if the underlying

asset price exceeds the barrier price any time before or at maturity. An option with

special features such as a barrier is called an exotic option, as opposed to a regular vanilla

option. For the pricing problem in this dissertation, we will assume for simplicity an

underlying asset that does not pay dividends.

Options are commonly used in the financial world to hedge out asset risks, or to

speculate in a leveraged fashion. Barrier options (with a reasonably placed barrier) have

the benefit of being significantly cheaper, as the option ceases to exist when the

underlying asset crosses a certain threshold. Note that an up-and-out barrier on a call

option effectively cuts off a part of the option's payout where the payout is the largest,

though in most cases unlikely to be realized. If, for example, a speculator believes the

underlying asset price will not cross the barrier, he could buy this barrier option instead

of a regular vanilla option without barrier, and save a lot of money to place his bet.

The underlying assets could be stock, indices, interest rates, foreign exchange

rates, or anything that is liquid enough and carries sufficient investor interest.

Before the advent of close replication strategies, for each option contract two

parties with opposite interests were needed. Currently, however, many option contracts

are at one side neutralized by a replication strategy, attempting to exactly reproduce the

option's payout at the time of exercise. The cost of such a replication strategy determines

the fair price of that option. Unfortunately, any replication strategy, and therefore also

the option value, relies on assumptions on the time-behavior of the underlying asset.

Thus, your price is only as good as your assumptions. In addition, pricing also depends

on the achieved accuracy of any numerical method used to solve the pricing problem,

which in general depends on time. The more exact the price, the tighter the spread for the

party knowing this price, the higher stable business and/or margin profits for that party.

As a result, a fast and good pricing method is desirable.
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In a first approach, we assume that the price of the underlying asset, S, follows a

continuous geometric random walk:

dS = pSdt + cSdw

In this equation, w denotes a Wiener process. We also assume a world without

transaction costs or other trading frictions. This pricing model is called the Black-

Scholes model (see Black and Scholes, 1972). The asset price S and the option price

u(S,t) are stochastic, whereas the asset volatility a(St), the asset drift u(t), and the

risk-free interest rate r(t) are deterministic. Under these assumptions, the option price

satisfies the following Black-Scholes partial differential equation:

au 1 2 2 a 2u au
-+-.2S +rS--ru=0 (7.1)
at 2 as 2  as

Note that the option price does not depend on the drift p(t). The final condition of this

partial differential equation is given by the option payout at maturity:

(ST) )=0 OS<K
SU-K K : S<B (7.2)

We assume that the option contract is void when the underlying asset becomes worthless:

u(0,t)=0

Finally, the up-and-out barrier effectively imposes another boundary condition on the

option price:

u(B,t)=0

Equation (7.1) with final condition (7.2) and boundary conditions has a closed-form

analytical solution for constant coefficients r and a (see e.g. Haug, 1998):
2r+

S M B: u(S,t)= S(N(dj)-N(d2)) -S( -- (N(d3) - N(d4))
S

-Ke-r(T-t) (N (d, - uTt) - N (d 2 - af--t

+ Ke (N(d - ,T1t) - N(d 4 - uT -)

S>B: u(St)=O
(7.3)
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In these equations N(d) is the cumulative normal distribution function:

1 -1s2

V(d)= e 2 ds

d,= In r 2 (T-t))(aV-t)

wih d2 = (In + r+ (T -t) 1(,,I-t
with

d3 = (In (S)+ r+ 2)(T -t)/ a - t- )

d 4 = (In + (r+ 2I)(T -Tt) / -t)

We do not have an analytical solution for time-dependent or asset-price-dependent

coefficients r (t) and o-(S, t). For these problems we may use statistical methods such

as Monte Carlo simulations, or numerical methods such as Binomial Trees, the Finite

Difference Method (see e.g. Betaneli, 1998), or the Finite Element Method (FEM). We

will focus in this dissertation on the FEM (see Winkler et al., 2002), a fast and flexible

method that can also be applied to higher-dimensional problems, such as Heston's model

described in the next paragraph.

For vanilla at-the-money options - options with an underlying asset price close to

the strike price - the Black-Scholes model performs very well. Most actively traded

options in the market are at-the-money or not far away from that. For exotic options such

as an up-and-out call, however, it is well known that the strict assumption of a

deterministic volatility can lead to large pricing errors, even at-the-money.

Therefore, we now relax the assumption of a deterministic volatility a(S,t) to

allow for a stochastic variance y. Instead of a Black-Scholes model, we have the

following stochastic volatility model (Cox et al., 1985):

dS = pSdt + 4Sdw,

dy= (0-y)dt+ Jydw2

cov [ dw,dw2] = pdt
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In this equation, w, and w2 denote two Wiener processes with correlation p. Here too,

we assume a world without transaction costs or other trading frictions. The asset price

S, the asset variance y , and the option price u (S, y, t) are stochastic. The asset drift

p (t), long-term variance 0, rate of mean-reversion in variance KC, variance volatility ,

the correlation p, and the risk-free interest rate r (t) are deterministic. Under these

assumptions, named Heston's model, the option price satisfies the following partial

differential equation (Heston, 1993):

aU 1 2 2U a2U 1 2 2U au au- ±J-+-2 2+plyS +-yS a +(-y)-+rS--ru=0
at 2 yyaS 2 aS2  as

Note that the option price again does not depend on the drift P (t). We keep the

following final and boundary conditions, imposed by the option contract:

u(SyT) = { 0S<K
S-K K S<B

u(O,y,t)= 0

u(B,y,t) =0 (7.5)

Equation (7.4) with conditions (7.5) has no closed-form analytical solution. As in the

one-dimensional case, we may solve these problems with statistical methods such as

Monte Carlo simulations, or numerical methods such as the Finite Difference Method

(FDM) (see e.g. Kluge, 2002), or the Finite Element Method (FEM) (see Winkler et al.,

2002). Monte Carlo simulations generally are too slow, while the FDM can be difficult

to implement on irregular-spaced meshes, caused by the exotic features of some options.

In addition, the weak formulation of the FEM requires fewer smoothness constraints on

the final conditions and boundary conditions. Since the barrier feature of the option

causes a discontinuous, non-smooth final condition, we choose the FEM for Heston's

model as well.
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7.2 Operator-Customized Wavelet Basis FEM
We can numerically solve Equations (7.1) or (7.4) by first choosing an implicit

discrete time-stepping scheme over t:

au-

at

an+mu

aS"aym

U'-I -u'

At
an+m t-I

aS na m Vn,m:n+m<2,n>O,m>0

Then, we may use a FEM for the spatial coordinates S, or S and y respectively. Note

that Equations (7.1) and (7.4) could be simplified by transforming the variable S:

x =ln -
B

However, with the large local error caused by the discontinuity in our barrier option

payoff at S = B, such variable transform significantly slows the FE convergence. We

have the following system matrix entries in the spatial coordinate S, corresponding to

the weak form of Equation (7.1):

a,_1 ((Pral, , tet) = 2 2 ±' +
(r_> - 0-,_12 ) S as 'Pt,, - ;II2triI,DestdSj At

+ kPtria,PesdS Vt

For Equation (7.4), we have instead an expression in spatial coordinates S and y:

a,_ ( (I,il, 9,e,,) =

[ Ptest
"a "otria1 P as + a 'tr"al qa ( _trl e, - r_a,p,, ,testdSdy At

aysjaes, a I as ay _
LayJ

+ J,,,IriaIVtedSdY Vt

The coefficients in this equation are given by:

r - P S
2

qt- 2

_2 2, 2 y
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Figure 7-1: Option price vs. underlying asset price, at different times.

In general, both expressions will be dependent on t, but in our further example we will

take the coefficients in Equations (7.1) and (7.4) constant in time. Linear hat - first-order

Lagrangian - basis functions are chosen as FE test functions for the numerical solution,

as well as trial functions. Since Heston's model does not impose any boundary

constraints on y, we choose for y a lower boundary near y = 0 and a sufficiently high

upper boundary, and restrain those boundaries with Neumann conditions, satisfying the

weak form of Equation (7.4) on the boundary. Per time step, we will solve the following

system for u-':

(KjAt+Mj)u7'=M U'

< A7u" = M Ut (7.8)

We work backward in time from the final condition u', = u to u, at time 0. For both

the one-dimensional and the two-dimensional problem, the time step is chosen in

function of the smallest spatial resolution (Equation (7.9)):
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1.1789 N/A analytic value

1 1 T option maturity

100 100 K option strike

120 120 B option barrier

0.1 0.1 r risk-free rate

100 100 S asset price

0 0 t time

0.2 stochastic a asset volatility

N/A 2.5 K variance mean-reversion rate

N/A 0.04 0 long-term variance

N/A 0.5 5 variance volatility

N/A -0.1 p correlation

Table 7-1: Parameters used in the Black-Scholes and Heston model.

level 0 1 2 3 4 5 6 7 8

N 12 23 45 89 177 353 705 1409 2817

AS 10 5 2.5 1.25 0.625 0.313 0.156 0.078 0.039

At lyear 3months 23days 6days 34hours 9hours 128min 32min 8min

price 1.7475 1.4487 1.2526 1.1975 1.1836 1.1801 1.1792 1.1790 1.1789

Table 7-2: Numerical solutions of Black-Scholes PDE with Table 7-1 parameters.

level 0 1 2 3 4 5

N 84 299 1125 4361 17169 68129

AS 10 5 2.5 1.25 0.625 0.313

At lyear 3months 23days 6days 34hours 9hours

price 2.0422 1.9021 1.8045 1.7714 1.7596 1.7554

Table 7-3: Numerical solutions of Heston PDE with Table 7-1 parameters.
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At = (AS) 2

100

We assume an a-priori selection of the number of levels of refinement J, in order to fix

the time step At in Equation (7.9). The mesh is regular-spaced, with right triangles for

the two-dimensional problem. The coarsest - level 0 - mesh is eleven elements long in

S and six elements wide in y. Note that we fixed the lower boundary for S at S =10.

Table 7-1 contains all the parameters chosen for our barrier option pricing problem. The

solutions corresponding to different resolutions (number of levels of refinement) in Table

7-2 and Table 7-3 show the convergence for the non-adaptive one-dimensional and two-

dimensional FEM problems. The FEM for the Black-Scholes model converges to the

known analytical solution of 1.1789, computed with Equation (7.3). The FEM for

Heston's model converges to a price of around 1.754, well above the Black-Scholes

price. We do not have an analytical solution to the Heston's model, but we believe that

this significant difference is caused by the different model assumptions. Figure 7-1

shows the option price as a function of the underlying asset at time zero, for the Black-

Scholes model as well as the Heston model. The negative correlation between asset price

and stochastic variance means that if the option becomes more in-the-money the volatility

is likely to decrease, which reduces the risk of hitting the barrier. Reversely, when the

option becomes out-of-the-money we are more likely to see bigger moves, which can

only help us getting back in-the-money. This is one of the causes of the Heston model's

higher price. Note that with a choice of parameters that eliminate the volatility's

stochasticity (K = 0.0001, =0 and p = 0), the two-dimensional FEM yields solutions

that swiftly converge to those of the one-dimensional problems of equal spatial

resolution, as given in Table 7-2.

Instead of a single-level FEM, we choose a multi-resolution basis for the trial and

test functions. This produces an identical FE solution, but also allows for an adaptive

reduction of the problem's dimensions. With a Hierarchical Basis, we would have a
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Figure 7-2: Four-level HB system or mass matrix Figure 7-3: Four-level HB system or mass matrix

for non-adaptive Black-Scholes model. for non-adaptive Heston model.

multi-resolution system matrix, fully coupled between scales. For example, for a two-

level approach we have:

A'-u'" = M U

-T,A_ -T'I T 1u =ujTj MJTJ1 T ul

o A'1-['~4utlJl =

A'M[[J C[J1]

w ith C A, DA, 1  I = , D 1 C , 0

The sparsity patterns of the multi-resolution system matrix A'l"10 and mass matrix M 01

(in full multi-scale format, instead of only two-level) are shown in Figure 7-2 for the one-

dimensional and Figure 7-3 for the two-dimensional problem respectively. However, by

choosing a wavelet basis - spanning the first-order Lagrangian finite element space - that

is customized to the respective operators of Equation (7.1) and (7.4), we will decouple

the multi-resolution system matrix across scales. We refer to this method as an

Operator-Customized Wavelet Basis (OCWB) FEM. Such decoupling will be optimal for

problems that allow for telescopically adaptive refinement.

Because of the asymmetry in the weak form (see Equations (7.6) and (7.7)), and

consequently the asymmetry in our FE system matrix, we need a different customization
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Figure 7-4: First-order FE wavelet customized to Figure 7-5: First-order FE wavelet customized to
Black-Scholes operator. Heston operator.

for the FE test functions than the trial functions, in order to achieve full scale-decoupling

in both the upper-right and lower-left of the system matrix. We choose our trial function

wavelets to be operator-orthogonal to the scaling functions with respect to the weak form:

a,_, (V i,$-')= 0 Vjt

We refer to Chapter 5, for the construction of a compact wavelet basis with this property.

The dual wavelet transform matrices t1 contain the filters associated with these

customized wavelets. The wavelets have each a support that spans the support of two

neighboring scaling functions, away from the boundary. Examples of these wavelets, for

the parameters of Table 7-1, are shown in Figures 7-4 and 7-5. This wavelet choice

eliminates all upper-right hand coupling in the multi-resolution matrix. The test

functions are chosen to be operator-orthogonal with respect to the transpose of the weak

form:

at(-,yj)=o V],t (7.10)

Consequently, the customized test function wavelets are built with another set of dual

wavelet transforms ij . They have the same support as the customized trial function
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Figure 7-9: Four-level OCWB mass matrix for

non-adaptive Heston model.

wavelets, and a similar shape. For a non-adaptive method both customized bases still

span the same space, and thus we have effectively a Ritz-Galerkin method.

Note that alternatively we could have chosen for the test functions a primitive

wavelet basis (HB). This would have resulted in a system matrix scale-decoupled in the

upper-right while scale-coupled in the lower-left, which we still may solve as a scale-

decoupled system, iterating from coarse to finer scales. However, this would be less easy
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to implement for adaptive methods, as the wavelets would have different supports,

leading to a difference in wavelet number overlapping with any given refinement zone.

For a two-level multi-resolution system, we now have:

Afu" = M Uj

[AZ A^'] [jD '- A fl-xz]
_ J- _ J-1 J - J-1 J 1

with C -,''- w-1 0

The multi-resolution matrices A'1[0 and M 1101 (in full multi-resolution format) are

shown in Figures 7-6 and 7-8 for the Black-Scholes model and in Figures 7-7 and 7-9 for

the Heston model respectively. Instead of using just a two-level approach, we will

benefit from a full multi-resolution approach (see Chapter 3):

A'J-O1ul71O = M'-"[Olu'"4 (7.11)

Achieving scale-decoupling in system matrix AI' 01 results in a coupled mass matrix

M'1[o1. We believe it is impossible to decouple both at the same time. Consequently, the

details on each particular level are affected by the coarser solution and lower-level details

from previous time-steps. Thus, for each time step we need to solve for all levels of

refinement, instead of being able to generate an answer per individual scale.

To start the iteration over time, we have to input the final condition uO on the

right-hand-side of Equation (7.11). It would be too expensive to input this final condition

in multi-resolution format. Indeed, transforming the single-scale final condition to multi-

resolution format would involve applying the non-sparse wavelet transform matrices

T-1, with a higher than 0(N) operation cost (see Chapter 6), to the sampled final

condition. Instead, we can apply a mass matrix M"[0) specifically for multi-resolution

test functions and single-level trial functions, and apply this to the final condition in

single-level form:
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A-1[01 "0 = M'-I[4)u' where M',1) = io" ... T-i .M

This operation has an 0(N) cost. We directly compute the integrals of the test wavelets

against the final condition, without explicitly forming M1[4). We choose to integrate the

wavelets against the 'true' final condition, including the discontinuity at the barrier, and

not against its approximation as a continuous function of the trial function space. As we

will see further, this yields good convergence, even though the final condition is - unlike

the FE solution - not contained in H' because of the discontinuity. To start the next and

subsequent time steps, we can directly plug-in the previous multi-resolution solution u'1]

in Equation (7.11), without any transform. The full multi-resolution mass matrix M'1 0 1

is applied to the solution vector. This operation will be 0(N), if we do not form M110o

explicitly, but apply it as a series of dual wavelet transforms and sparse single-scale Mj:

Mt-7'j~[0 ] -1n ... Tr" M J (I )T t-1 (> T U tO]

After the last time step, we can transform the multi-resolution solution back into single-

scale format, by simply applying a series of dual wavelet transforms:

o =(i-O\T (- 0 T Uo[o]
,=i ) ... (TO 1 ",4 (7.12)

This is in total an 0(N) operation, as discussed in Chapter 6. If we would be pricing an

option that can be exercised before maturity - a so-called American option -, we would

have to threshold the solution samples at each time-step. This cannot be done in multi-

resolution format. However, for such pricing problems, we could every time-step

transform the multi-resolution solution into single-scale format, as in Equation (7.12),

with only O(N) cost. The single-scale solution u' can then be compared to another

sample. For example, for an American option, we should threshold the solution against

the final condition u4 - the option's value on immediate exercise:

u7' = max (u't-1,u#)

Then, we apply the special mass matrix M'_,11) directly on the single-scale solution to

obtain the right hand side of Equation (7.11). Indeed, it would be too expensive to

transform the solution first to multi-resolution format. Note that in our example, we do
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not need to follow this longer procedure, since the option cannot be exercised before

maturity.

When the parameters in Equations (7.1) or (7.4) are constant over time, the

system matrix is identical for every time step. In that case, we only need to solve the

system of Equation (7.11) one time, for example using an LU decomposition, and we can

use this result to cheaply solve for all other time steps. Most applications, however, are

expected to result in a time-dependent system that needs to be solved for each time step.

Indeed, for time-invariant parameters, Equation (7.1) has an analytical closed-form

solution, and a numerical method would not even be required.

7.3 Adaptive Method
We can further exploit the local concentration of error in the solution, caused by

the discontinuity in the final condition. Indeed, we will use an adaptive method - with

only local refinements where needed - instead of a non-adaptive method - with

refinement everywhere. Such adaptivity can be easily implemented with a multi-

resolution wavelet basis. In addition, we can achieve a faster solution speed by using

operator-orthogonal wavelet refinements, resulting in a scale-decoupled system matrix.

As discussed in Chapter 6, this method works best when we have telescopic adaptivity,

that is when we can keep constant the number of details added on each level of

refinement. Then, we can solve the problem with only order 0(J) cost, where J is the

number of levels of refinement. Note that we will rely on modified single-scale system

matrices A*'-' and a modified single-scale mass-matrix M*, as discussed in Chapter 6,

to keep low the operation cost of the dual wavelet transforms. Our results show that for

both the one-dimensional problem and the two-dimensional problem the solution details

are local, nested over the levels and fast-decaying. When details are nested over the

levels, i.e. when details will not surface in an area where there are no coarser details, we

can on each level decide where to refine based on the coarser solution details. When we

have scale-decoupling in particular, the coarser solution details do not depend on the finer
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details we are planning to add. This supports an adaptive refinement method for which

on each level we only add details r5-i m in areas with significant coarser details '-'.

We could choose to apply a diagonal pre-conditioner D'i to the multi-resolution

system. Such pre-conditioner could be merged with the dual wavelet transforms,

effectively inserting the re-scaling into the filters of the Wavelet and the Scaling

Equation. For notational simplicity, we show the application of D'-1 to a two-level

system:

D"-ifA"' (i_ T) D' (D'-) T;-u'-I = D''-t -MJ (i D'- (DI ;)I TIu'

We have not applied rescaling to the wavelet functions. We use a cut-off threshold xj to

determine which coarser details r, are significant enough to call for further refinement.

The threshold decreases each level j, to facilitate convergence. For the one-dimensional

problem, we apply a threshold of xj = 4' r-' with a base of z = 1.1, to compute a

solution with finest resolution J. We chose a base of 4 for the finest resolution, because

the non-adaptive solution error converges at that rate. Since the two-dimensional non-

adaptive solution converges at a slightly slower rate, we impose a threshold of

zi = 3-' r- with the same base of r = 1.1, to compute an adaptive solution for the two-

dimensional problem. Under these parameters, we achieve similar convergence between

the adaptive and non-adaptive methods.
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In Figure 7-10 the adaptive solution of the one-dimensional Black-Scholes

Equation is plotted, as a function of the underlying asset price and time. For every level,

only a few of the OCWB detail functions are computed, depending on the significance of

the coarser details. Figure 7-11 shows the fast decay of the wavelet coefficients over

time, over the asset price away from the barrier, and with increasing level of refinement.

The coefficients correspond to a level 3 customized wavelet basis, consisting of level 0

scaling functions, and level 0, 1 and 2 customized wavelets. Similarly, we show in

Figure 7-12, the adaptive OCWB solution of the two-dimensional Heston model, as a

function of the underlying asset price and time, for the value of the deterministic asset

volatility. In Figure 7-14, the same solution is shown in function of the asset price and
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level 0 1 2 3 4 5

Nad 12 23 31 49 85 155

AS 10 5 2.5 1.25 0.625 0.313

At lyear 3months 23days 6days 34hours 9hours

price 1.7475 1.4487 1.2600 1.1991 1.1838 1.1801

Table 7-4: Adaptive OCWB solutions of Black-Scholes.

level 0 1 2 3 4

Nad 84 299 597 1841 7611

AS 10 5 2.5 1.25 0.625

At lyear 3months 23days 6days 34hours

price 2.0422 1.9021 1.7994 1.7748 1.7589

Table 7-5: Adaptive OCWB solutions of Heston.

asset volatility for time zero. The discontinuity caused by the barrier at option maturity

has visibly smoothened out over time. Also for this model, we compute only a sub-set of

the OCWB detail functions, shown in Figure 7-15, depending on the significance of the

coarser details, given in Figure 7-13. Again, the details decay over the asset price away

from the barrier, and over time. However, there is less significant decay over volatility.

We could decide to manually limit refinement to a zone close to the deterministic asset

volatility. Note that this would be consistent with the local mesh refinement proposed for

this area, in other research (see e.g. Kluge, 2002). However, in the results discussed in

this dissertation, we have consistently based all adaptive refinement on the threshold rule

described above.

The adaptive solutions of the Black-Scholes model and of the Heston model, by

our OCWB method, are given for different numbers J of level of refinement in Tables 7-

4 and 7-5 respectively. For both the ID and the 2D case, the adaptive problem sizes are

significantly smaller than the non-adaptive problem sizes. Note that in Tables 7-4 and 7-

130



5, the problem size Nd denotes the adaptive problem size averaged over all time-steps.

This problem size is - per time-step - the sum of the sizes of all sub-problems, each

associated with a level j. The number of degrees of freedom remains quasi-constant (as

opposed to doubles) per level for the ID problem, and quasi-doubles (as opposed to

quadruples) per level for the 2D problem. For an increasing highest resolution J,

additional details are added on all levels j to achieve a higher overall accuracy.

Comparing the results of Tables 7-4 and 7-5 with the non-adaptive solutions of Tables 7-

2 and 7-3 respectively, shows that - with fully (ID) or partially (2D) telescopic

refinement - we achieve similar convergence. We can solve independently the J

smaller detail parts of the multi-resolution system matrix, with Gaussian Elimination.

Hence, as discussed in Chapter 6, such adaptive OCWB method would be faster than a

Hierarchical Basis adaptive or non-adaptive FE method.

Note that since the above described method of refinement works very well, we do

not need to use the information contained in the multi-resolution solution u101 of the

previous time-step, nor the multi-resolution right-hand-side of Equation (7.11),

' J , to determine where to refine at time t -1. For each time step, we make an

independent decision, level per level, as to where to refine.

As an interesting corollary, the piecewise linear test wavelets, customized to these

particular operators, vanish constant and linear functions. This property is shared by

Equation (7.1) as well as Equation (7.4), and it will be explicitly shown for the two-

dimensional problem. Imposing operator-orthogonality of wavelets to individual scaling

functions, as in Equation (7.10), leads to operator-orthogonality to any linear combination

of scaling functions. Consequently, test function wavelets away from a Dirichlet

boundary are operator-orthogonal to the constant and linear functions:

at, (, ' -= 0

a,_ (S, t -)= 0

a, _(y,y-1) =0 (7.13)
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Test function wavelets near a Dirichlet boundary are operator-orthogonal to linear

functions that satisfy the boundary condition. Equations (7.13) yield:

Jf-r_<'-dSdy At + J.y<'dSdy =0

S 2 t y 1 +- 1 +_ _S- yr ~ d t + S ~ y =S 2 t-1 y2y as 2 -y + Kis-y- - , 'dSdy At+ y f dSdy =0

2 S 2 ay 2 2)

Under the reasonable assumptions of At < 1 and a risk-free interest rate r <1, we can

be sure that r,i At 1. Furthermore, we assume that (K + .ri ) At # 1 as well. Then, using

integration by parts for the first derivatives of compact wavelets:

f J~lt-1dSdy =0
Q

JSy'- dSdy =0

yft 1dSdy =0

And therefore the test function wavelets t -1 vanish all functions that are constant or

linear over the wavelet's support. Note that these vanishing moments are caused by, but

not a sufficient condition for operator-orthogonality. Vanishing moments in the test

wavelets will reduce the right hand side of Equation (7.11) for smooth solutions u'.

Indeed, if u, were linear over the support of a test wavelet the corresponding right-hand-

side row entry would be zero:

nJjZj>A f}<'dSdy =0

Since our solution smoothens over time, the right-hand-side of Equation (7.11) will

diminish as well.
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7.4 Conclusion
We successfully applied our Operator-Customized Wavelet Basis (OCWB) FEM

to solve a barrier option pricing problem. Under Black-Scholes' assumptions, we can

price such options by solving an iteration over time of one-dimensional PDE problems.

If we allow for a stochastic volatility of the underlying asset, we can price them with an

iteration of two-dimensional PDEs instead. These second-order PDEs consist of a

diffusion, convection and reaction term, with time-dependent varying coefficients, and

may be solved with a first-order Lagrangian FEM. For both the one-dimensional as the

two-dimensional problem, the barrier introduces a local concentration of the solution

error, which can be exploited by an adaptive method. An OCWB allows for scale-

decoupled local refinements, whereas a Hierarchical Basis (HB) does not have this

advantage. Because the number of details added at each level does not grow

substantially, the OCWB FEM yields a solution speed close to the optimal speed of

0(J) per time-step, where J is the number of levels of refinement. This is not the case

for an HB FEM.

We will now conclude this dissertation with a brief discussion of two possible

extensions to this research, in Chapter 8.
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8.

Research Extensions
8.1 3D Problems

An obvious extension to this research would be the customization of wavelets for

three-dimensional problems. As discussed in Chapter 6, for a problem with J levels of

telescopic adaptive refinement, we have a solution method that has an operation cost of

only O(J), irrespective of the number of spatial dimensions. For one-dimensional

problems, this does not beat a single-scale direct solver (Gaussian Elimination) or a

Hierarchical Basis iterative solver (Conjugate Gradient Method). For two-dimensional

problems, we outperform the 0 (J) cost of the HB direct solver, as well as the between

0(J) and 0 (j2) cost of the HB iterative solver. Note that for our example in Chapter

6, we found the HB iterative solver to have a cost close to the upper range 0(J2). For

three-dimensional problems, we expect to outperform the other methods as well,

probably even stronger. Indeed, we would have again an HB direct solving cost of

0 (j3), and we would expect an HB iterative solving cost of at least over 0(J) but

below 0 (J3J). If the latter is effectively above 0 (J2), there is more to be gained in

three-dimensional than in two-dimensional applications, for which local (telescopic)

refinement is appropriate.
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We do not expect any strong theoretical challenges in extending the one-

dimensional and two-dimensional approach to three-dimensional problems. Indeed, we

believe it is possible to construct a multi-resolution framework for basis functions of a

three-dimensional Lagrangian finite element space of any given order. After establishing

a scaling relation, we may use second-generation wavelet theory to build the wavelets.

We also expect to be able to benefit from the compactness inherent to the mesh geometry

to find enough compactly supported wavelets that satisfy the operator-orthogonality

constraint, just as in the one-dimensional and two-dimensional case. In addition, we

anticipate finding more compact support for wavelets customized to the Laplace operator,

than for wavelets customized to more general operators. Indeed, we believe that also the

inheritance of vanishing moments property is extendable to three-dimensional problems.

8.1 Hermite Finite Elements
An important extension to the work described in this dissertation is the

customization of basis functions of the Hermite finite element space to higher-order

operators. The Hermite finite element basis functions are pure polynomial over an

element, with C' continuity (basis functions and their first derivatives are continuous)

from an element to a neighboring element. Each node supports two degrees of freedom:

a translation and a rotation component. The basis functions for a Lagrangian finite

element space - the focus of our study - are pure polynomial over an element, but with

only C0 continuity (basis functions are continuous) from one element to a neighboring

element. Each node has only a translation degree of freedom. Whereas Lagrangian finite

element basis functions can be used to numerically solve second-order partial differential

equations, the Hermite finite element basis functions can be used for fourth-order

operators, for which a higher degree of basis function continuity is required. Sudarshan

Ragunathan, of the Department of Civil and Environmental Engineering at MIT, is

writing a doctoral dissertation on the customization of cubic Hermite wavelets to the bi-

harmonic operator on quasi-regular multi-dimensional grids. With respect to the

136



customization, it is interesting to note that the inheritance of vanishing moments property

for the Laplace operator with Lagrangian basis functions extends to the bi-harmonic

operator with Hermite basis functions, where vanishing moments are inherited over two

levels of differentiation.
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