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Abstract

This thesis is a study of first order resonance between gravity, capillary and dilational
wave modes. Gravity, capillary and dilational waves, occurring at a visco-elastic
interface between two fluids, are different modes described by a single linear dispersion
relation. Gravity and capillary modes arise due to the restoring forces of surface
tension and gravity and result in oscillatory motions transverse to the surface. The
dilational, or Marangoni, modes arise due to the elastic nature of the interface and
result in longitudinal motion along the interface.

The visco-elasticity of the interface may be due to the interfacial nature of the
two fluids or it may be due to the presence of a monolayer of surfactant, such as a
film on the ocean surface. This visco-elasticity affects the interfacial stress balance
and is accounted for in the dispersion relation via interfacial rheological parameters.

We described resonance as coalescence of the roots of the dispersion relation in
complex frequency and wave number space. We used this description to explain
numerical and experimental resonance phenomena noted in previous studies.

We classified some of the roots of the dispersion relation as primarily gravity, cap-
illary or dilational modes. We numerically determined the dependence on interfacial
rheology of root coalescence (resonance) and the boundaries of spatial stability of
the modes. We used these diagnostic tools to characterize the conditions for both
gravity-capillary and capillary-dilational modal resonances.

We developed an inverse method from which interfacial rheological parameters
can be determined from experimental measurements of wave number, frequency and
spatial damping coefficient. We used this tool to construct the dispersion relation
solution space corresponding to experimental conditions to thereby interpret the ex-
perimental results. We tested this method on noisy simulated data sets and then
applied it to published experimental data sets.

We designed an experimental set-up to measure wave number, spatial damping
coefficient, and wave slope data for a 3 - 10 hertz frequency range of transverse
and longitudinal waves in a clean enclosed flume. We used kimball-mounted lasers
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whose beams passed through optical glass in the tank and lid to capture transverse
wave motion. The experimental conditions included waves traveling on fatty acid
monolayers on aqueous solutions and also waves traveling on a visco-elastic fluid at a
variety of temperatures. In addition to the wave data we obtained, we also measured
in-situ surface tension.

Analyzing the experimental data, we demonstrated the effects of modulation of
one wave mode on another. We obtained the rheological parameters for these exper-
imental systems by the inverse method. We used the inverse method to construct
the dispersion relation solution space corresponding to the experimental conditions.
We used the diagnostic tools for root classification, spatial stability together with a
graphical representation of the dispersion relation solution space to understand the
physics underlying our experiments.

We demonstrated resonance phenomena experimentally with the wave data from
the visco-elastic fluid and confirmed this resonance numerically: gravity - capillary
resonance near 4.2 hertz and capillary - dilational resonance near 5.3 hertz as pre-
dicted.

Among the applications for the work in this thesis are air-sea gas exchange, chem-
ical engineering manufacturing processes and ocean wave dynamics.

Thesis Supervisor: Dick K.P. Yue
Title: Professor of Ocean Engineering

Thesis Supervisor: Michael S. Triantafyllou
Title: Professor of Ocean Engineering
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Chapter 1

Introduction

This thesis began as a small project to explain some phenomena in published numer-

ical data which had been attributed to capillary-dilational resonance. Capillary and

dilational waves are separate modes arising from a single linear dispersion relation at a

visco-elastic interface of a two fluid system. These waves had been studied for the last

35 years by physical chemists. Recent numerical studies of the dispersion relation by

Earnshaw et al. (1991) had shown some interesting behavior of the two modes. Under

certain conditions the two modes exhibited simultaneous peaks and troughs in plots

of spatial damping coefficients while at other conditions, the two modes appeared to

switch character, a phenonmenon which the authors termed 'mode mixing'.

These phenomena were reminiscent of the effects of mode coalescence studied in

vibrational systems by one of my thesis supervisors, Professor Michael Triantafyllou.

My original project was to apply the complex analysis techniques used by Professor

Triantafyllou for vibrational systems to this fluid wave system with the goal of eluci-

dating how mode coalescence (resonance) between the two wave modes would result

in the sort of behavior seen in Earnshaw's numerical study. The project was success-

ful and the phenomena were well described by the complex analysis. Furthermore,

the project was able to provide analytical conditions necessary for resonance. Quite

a few published numerical studies and at least one set of experimental measurements

attributed some unusual phenomena to resonance. However, before this project, no-

body had ever quantified resonance for capillary and dilational waves. Now, with a
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rigorous definition, it was for the first time possible to clarify when it was occuring.

In the process of pursuing this project, I became well acquainted with the dis-

persion relation describing the two modes and the sorts of applications it was used

for. In physical chemistry, this dispersion has largely been used in conjunction with

experimentation for the elucidation of surface rheology. Because the fluid interface

is visco-elastic, this gives rise to entirely different boundary conditions than are typi-

cally studied in hydrodynamics. Both elasticity and surface viscosity are modeled into

these conditions. The set of physical parameters describing the surface phenomena

are called rheological parameters.

Because surface waves are measurable, the dispersion relation can be used to in-

fer the surface rheology. The dispersion relation is, however, unwieldy. Commonly,

researchers would approximate the values of the two roots or assume certain rheolog-

ical parameters were negligible when trying to estimate other parameters. I realized

two things from my work with complex analysis and resonance: these approximations

would lose the physics of these waves near resonance events and the dispersion relation

solution space appeared to be unique. If the solution space was indeed unique, then

it would be possible to create a numerical inverse method using the entire dispersion

relation to obtain a complete set of rheological parameters from wave measurements.

This inverse method would have two values: first, it would provide a diagnostic tool

for chemical engineers to find surface rheology and, second, it would provide me with

a tool to study what was physically (and hopefully resonantly) happening with exper-

imental data. The development of this inverse method and it's verification with both

numerical and previously published experimental data (Bock, 1987) was published in

the Proceedings of the Royal Society of London, Series A (Brown et al. 2002).

Although we had seen resonance in at least one numerical (Earnshaw et al. 1991)

and one experimental (Bock, 1987) study, we had no idea how common it might be

in physical systems. That it might be important, however, we knew. Resonant wave

interaction has long been looked to as a mechanism for wave attenuation but has

always been studied as a third order effect for gravity wave interaction. The disper-

sion relation for capillary and dilational waves is developed from linearized governing
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equations. Capillary-dilational resonance is a first order effect. A substantial amount

of research has gone into discovering how slicks at the ocean surface affect energy

transport. Of course, these slicks are visco-elastic and give rise to both capillary and

dilational wave modes. So, we hoped that by studying capillary-dilational resonance

we might gain some insight into what was happening at the ocean surface.

To begin with, I needed to discover what rheological conditions give rise to reso-

nance. This was done numerically by applying the analytical conditions for resonance

from the original project. The results were rather interesting and a significant amount

of resonant activity was discovered between 3 and 10 hertz for a variety of rheological

conditions. Examining the solution space, it was clear that not all of these resonances

were between the capillary and dilational modes. The dispersion relation has, in fact,

five roots. One of these roots had been previously identified with the capillary mode

and the other with the dilational mode. The other three had been considered spu-

rious. While the resonances might not be between capillary and dilational modes,

the effect of resonance of one of these 'spurious' roots on the capillary mode is the

minima in the group velocity of gravity-capillary waves near 4 hertz.

The discovery of the effect of the 'spurious' roots on physical ones led to the

identification of all of the roots as variously gravitational, capillary or dilational in

nature. And, the acknowledgment that these various roots may or may not be physical

and stable dependent on the rheology and wave conditions led to a numerical study

of stability of the various roots and the quantification of this stability based on the

rheological parameters.

Armed with the knowledge of how to look at the dispersion relation solution

space (complex analytical model), where to look at the dispersion relation solution

space (conditions for resonance), when to look at the dispersion relation solution

space (conditions for stable roots), and what to look for in the the dispersion relation

solution space (which roots corresponded to which wave modes - gravity, capillary or

dilational), I then had enough information to try to find resonance experimentally

and the ability to interpret the results.

I ran manyy experiments with water and with soluble surfactants before develop-
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ing both a good quality experimental set-up and technique for measuring resonance

effects. There is not much published wave number and damping coefficient data. I do

not doubt that this is because good precision data is difficult to obtain. Eventually

I obtained excellent data sets and, with the knowledge acquired from the analytical

and numerical studies, I was able to both apply the inverse method and to capture

resonance effects at precisely the expected frequency values. I was also able to show

modulation between the capillary and dilational wave modes and the appearance of

an energy bifurcation around 4 hertz as the primary mode of energy transport passed

from the gravity to the capillary and dilational modes.

Thesis contributions

The contributions of this thesis dissertation fall into three categories: explanations

of physical phenomena based on previous authors' work; new analysis techniques and

new results. For clarity of reading the thesis dissertation, these have been itemized be-

low with directions to the locations of their presentation within the thesis dissertation

body.

" Explanations of physical phenomena based on previous authors' work

- Clarification of the meanings of the rheological parameters used in the

derivation of the dispersion relation for gravity, capillary and dilational

waves at a visco-elastic two-fluid interface §2.3

- Mathematical description of interfacial wave mode resonance using com-

plex analysis §4.2.2

- Mathematical explanation of resonance phenomena noted in previous ex-

perimental and numerical studies §4.2.2

" New analysis techniques

- Inverse method to find surface rheological parameters from surface wave

data §6
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e New results

- Identification of separate gravity, capillary and dilational wave modes §3.4

- Numerically determined parametric bounds of modal stability §3.5

- Numerically determined identification of and conditions for various modal

resonances §4.3

- Demonstration of effect of resonance on the group velocity, Cg, damping

coefficients and energy spectrum §4.4

- Experimental interfacial wave measurements §5.5

* fatty acid monlayers on acqueos solutions

* viscous lubricant

- Analysis of wave modulation §5.4

- Application of the inverse method to experimental data - determination of

surfactant rheological parameters §6.5

- Experimental evidence of modal bifurcation §6.5

- Experimental evidence of resonances §7
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Chapter 2

Development of boundary

conditions and governing equations

2.1 Introduction

Gravity, capillary and dilational waves are separate wave modes arising from a single

linear dispersion relation describing motion at a visco-elastic interface of a two-layer

fluid system which may or may not be separated by a monomolecular layer of sur-

factant. The gravity and capillary modes which result in oscillatory motion normal

to the plane of the interface arise due to the restoring forces of gravity and of grav-

ity and surface tension combined, respectively. The dilational, or Marangoni, mode

arises due to elasticity at the interface and results in oscillatory motion in the plane

of the interface.

Elasticity at the interface may exist due to the presence of a surfactant film, but

may also exist due to the diffuse nature of an interface and the relative attractions

of the fluid particles in this region. This depends on the nature of bonding between

elements of the two fluids. An air-water interface is fairly inelastic while an air-oil

interface is quite elastic. All natural fluid interfaces (air-water) have some sort of

contamination, whether it be dust, biota, or even an oil spill. Unless the surface is

highly turbulent, this contamination forms a visco-elastic film which, in turn, results

in dilational wave motion. Thus, all two layer fluid systems are most properly de-
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scribed by a full visco-elastic dispersion relation with simplified dispersion relations

for gravity waves or for gravity-capillary waves as limiting cases.

This chapter presents the development of the dispersion relation at a visco-elastic

interface.

2.2 Literature review

The effect of surface films on water has been known since antiquity. The oldest written

observation of the dissipative effect of an oil film on ocean waves was made by Pliny

the Elder in AD 77. Pliny accounted both a practice amongst seamen of pouring oil

into the sea to calm the waves in storm and that of divers spreading oil at the sea

surface to calm the waves and allow more light to penetrate to a greater depth. The

earliest known experiments with oil on water were conducted by Benjamin Franklin

in 1774. From these experiments, Dr. Franklin conjectured that a mutual repulsion

between oil and water would cause a small drop of oil to spread out to a great extent

on the surface of a body of water and that this layer of oil would prevent friction

between the air and water so that the wind would be unable to produce small waves

at the surface.

Capillarity was discovered and described by Leonardo DaVinci in 1490. In 1881,

LaPlace provided the accepted mathematical theory of capillary action and called

the resultant attraction of particles on the surface of the liquid, surface tension. Lord

Kelvin (Thompson, 1871) showed that the small waves studied by Dr. Franklin are

mainly governed by surface tension and thus these waves became known as capillary

waves. He derived a dispersion relation governing both capillary and gravity waves.

Lamb (1932) extended Kelvin's relation to include the effects of bulk fluid vis-

cosity. Following the works of Reynolds (1880) and Aitken (1883), who noted that

the damping of capillary waves by oil on the surface of the water appeared to be

due to extensions and contractions of the surface as a result of variation of surface

tension, Lamb also considered the effects of variation of surface tension (elasticity)

on the surface waves for an inextensible surface and found the effect of elasticity on
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the damping rate of capillary waves small in comparison to constant surface tension

effects.

Levich (1941) made a much more detailed analysis than Lamb with the same

conclusions. Though he noted that the works of Shuleikin (1933) and Mayers and

Harkins (1938) suggested that the damping rate of capillary waves should be due to

the high viscosity of monolayers, he rejected this claim in favor of the hypothesis that

the damping effect of a film must be due to inextensibility. Dorrestein (1951), Hansen

and Mann (1964), and van den Tempel and van de Riet (1965) showed that Levich was

wrong, that the maximum damping rate of capillary waves would occur for surfaces

with extensibility, calculating it to be exactly twice that for an inextensible surface.

Based on these findings, Lucassen (1968) developed a general dispersion relation for

fluids with a visco-elastic interface and demonstrated that the cyclical elastic motion

of the interface results in one of its roots of the dispersion relation corresponding to

a dilational wave mode.

The rheological description of the behavior of the surface in terms of elasticity,

relaxation and viscosities has also developed over time. The earliest formulation

of the dynamics of a Newtonian fluid dependent on interfacial surfactant rheology

was given by Boussinesq (1913), and later formalized by Scriven (1960). Lucassen's

(1968) dispersion relation initially considered surface tension, elasticity, and dilational

viscosity. Goodrich (1981) and Baus (1982) relaxed the restriction of isotropy in

the normal direction, resulting in the appearance of two additional surface viscosity

coefficients, one normal and one tangential to the plane of the surface.

There has been a great deal of confusion in the literature over the correct meanings

of the rheological parameters with several different parameters being referred to by

the same name. Great pains were taken with section 2.3.2 to clarify these definitions.
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2.3 Dispersion relation governing interfacial wave

modes

2.3.1 Development of dispersion relation

We consider an idealized two fluid system whose interface is comprised of a monolayer

of surfactant. When the interface of system of this type is disturbed, both primar-

ily transverse (gravity and capillary) and a primarily longitudinal (dilational) wave

modes are produced. To investigate these modes, we examined the single dispersion

relation which governs all three.

Our development of the dispersion relation is very similar to that of Lucassen-

Reynders & Lucassen (1969) incorporating, however, the more general boundary con-

ditions of Goodrich (1981), the parameter conventions of Edwards et al. (1991), and

the notation of Earnshaw & McLaughlin (1991).

We consider a stable two fluid system with an interface which at rest coincides

with the plane z = 0 with the +z direction extending into the upper fluid. At this

interface are propagated two-dimensional plane waves in the -x direction. When the

amplitude of these waves is small, the quadratic terms in the Navier-Stokes equation

can be ignored, and the resulting x and z component equations become for the lower

fluid, respectively:

_v_ op + a2V+ a2V (
p- = +--+y)+ (2.1)at (9x- aX2 aZ2

apt - +p \ + &z2 -pg (2.2)

where v = (vx, vz) is the velocity, p the pressure, [t the viscosity of the fluid, p the fluid

density and g gravitational acceleration. The subscripts x and z indicate components

in these directions. The continuity equation is

VX a v(V = + -- _ + = 0. (2.3)
ax Bz
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Equations (2.1), (2.2) and (2.3) can be solved by considering the velocity field to be

the sum of an irrotational field and a divergence free field

V = -Vq + V x b, (2.4)

with, for nearly sinusoidal waves, the potential and stream functions having solutions

of the forms

- Aekz+i(kx+wt), p = Bemz+i(kx+wt), (2.5)

respectively, with

m2 = k2 + . (2.6)

The quantities k, m and w are allowed to be complex with Re(k) and Re(w) denoting

the wavenumber and frequency of the wavemodes and Im(k) and Im(w) denoting

spatial and temporal wavemode damping. We require that Re(k) > 0 and Re(m) > 0

so that all motion will vanish as z -- -oo. From (2.4), we find the velocity and

pressure components

x= [-ikAekz - mBemz ei(kx+wt)

VZ= [kAekz + ikBemzI ei(kx+wt),

p = po - pgz + iwpAekzei(kx+wt) (27)

At the surface, the velocity components can be written in terms of vertical (nor-

mal) and horizontal (tangential) displacements, ( and , of a surface element from

equilibrium. To the leading order of a small amplitude approximation:

vz = a, a = (2.8)at UX -at
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which can be integrated to give

-kA + ikB i(kx+wt) _ -ikA - mB i(kx+wt)
( -- ( .- (2.9)iw iw

By similar development, in the upper fluid (denoted by primed variables) we find

= Aekz+i(kx+wt), 4" = Bem'z+i(kx+wt),

r' 2 = k2 + (2.10)

and

V' = [ikA'ekz + m'e-m'z] ei'kx+wt)

V' = [+kA'ekz + ikB'e-m'z] ei'kx+wt), (2.11)

= - p'gz + iwp'A'e-kzei(kxwt) (2.12)

where Re(m') > 0 so that all motion will vanish as z -+ 0.

At the interface between two fluids, we require that momentum be balanced and

that there be no discontinuity in the velocity field. Here our formulation departs

from that of Lucassen & Lucassen-Reynders (1969) insomuch as we utilize the more

general momentum balance expressions of Goodrich (1981):

OUD a2 ( ~ V 2V
+(pt- 0') +' x-L + (K+rq) a2=0, (2.13)

Ox atOx Oz Oz 2

Da2( + P +P/-2(p/-P) =0, (2.14)
(9t ax2 (9X

The parameters r/N and Ti are surface shear viscosities normal and tangential, respec-

tively, to the interface, K a surface dilational viscosity tangential to the interface and

UD the surface tension of a deformed interface:

VX = v ,vz = V' (2.15)

applied on z = 0 to the leading order.
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The gradient of surface tension is commonly expressed in terms of a viscoelastic

response function

d9D _ duD d In A _ dUD d2
_ d22 (2.16)

dx d In A dx d ln A dx2  dx 2

where A is the area of a fluid element at the surface, and E is the dilational modulus.

This is somewhat more obvious if we consider that the surface tension is dependent

on the amount of stretching of the interface and can be expanded as follows (Hansen

& Ahmad 1971):

JD =o + E- -+ E2 a +' (2.17)ax kOx]

where uo is the surface tension of the unstretched surface (static surface tension) and

s = (+ ()1 dx, (2.18)

is the arc length of an element of surface that has been displaced from (x, 0) to

9x + , (). for small amplitude waves, Os/Ox = Of/ax to the leading order and thus

OUD/OX = E0akaX2 .

When the surface experiences a sinusoidally oscillating dilation, the dilational

modulus can be represented as a complex parameter (Edwards et al. 1991),

E = le'eO = Eo + iE"/ = E, + iWE', (2.19)

whose phase, 0, represents the phase lag between the stretching of the area of a surface

element, 6A, and a corresponding change in the surface tension, UD. The real part of

the dilational modulus, E., is referred to as the dilational elasticity and the imaginary

part, E", as the relaxational elasticity.

We incorporate (2.3), (2.15), (2.16), (2.17), (2.19) into the momentum balance
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equations such that

[E, + iW(E' + K + 7)] 2 + (v-) + = 0, (2.20)5x2 +z + x/

0 a2(+v 0. (2.21)
(J+ iW7N) 2 +P-P + [tLax

Not that uO has replaced cD and iCIMN replaced rN&4/&t in (2.21). By making a

change of notation,

6 = 60 +iw' = E0 + iW('+ r+ r), (2.22)

a = U, + iwU' = Co + iWN, (2.23)

we arrive at the same form of the boundary conditions as Lucassen & Lucassen-

Reynders (1969) with, however, important distinctions in the meanings of the param-

eters. Both o and c are now complex and incorporate viscous as well as viscoelastic

effects. The real part of 6, E0, is the dilational elasticity, while the imaginary part is

the product of frequency and E', an apparent surface viscosity combining relaxational,

dilational and shearing effects (Edwards et al. 1991). The real part of o, o-, is the

static surface tension and the imaginary part is the product of frequency and surface

normal shear viscosity. The simple complex forms of a = ao + iwu' and e = E, + iwe'

make use of the notation of Earnshaw et al. (1988) and Earnshaw & McLaughlin

(1991), who first used a fully complex form of a as well as E in their calculations.

The authors identified a' with surfaced shear viscosity transverse to the surface, but

E' only as a quantity affecting surface dilation and did not include the relaxational

and shearing effects in the more explicit expression given above.

Substituting (2.22) and (2.23), together with the velocity components for the

upper and lower fluids adn the expressions given for the displacements ( and , into

(2.15), (2.20) and (2.21), we obtain

-iwp - 2pk2 +i 3 + ig ]A + iwp' + 2pk42 + A'
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+ [2ipikm + -k3

-7 2i/p'tkim' - p'gk B' = 0,

2i pk2 _ k 1

+ [-mu(k2 + n2)+ ick2 ]

A + [-2ip'k2] A'

B + [p'(k2 + m/2)] B' = 0,

- ikA'+ mB+ m'B'= 0,

A + A'- iB +iB' = 0.

A nontrivial solution to these equations can only be found if the determinant of

the coefficients is zero. This results in the well known dispersion relation (Lucassen-

Reynders & Lucassen, 1969):

A = [p(k - m) - p'(k - n')]2 + E - S = 0,
ck 2

E = E + i [p(k + m) + p'(k + m')],

c-k 2  g(p-p') _ w(p+ P')=+ i[p(k~m)+p(k~rn)]+
WU WU k

(2.28)

2.3.2 Boundary conditions at a visco-elastic interface

Surface tension effects

Let the surface of separation between two fluids undergo an infinitesimal displacement,

66.

luid 2

luid 1

Figure 2-1: Slightly deformed two-fluid interface
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The total work, 6R done in displacing the surface (neglecting inertial effects) is

the sum of pressure, p, work done to change the volumes of the two separated media

plus the work connected with the change in surface area, if.

6R = - (P1 -P2)J( df + -6f (2.29)

The coefficient o- is termed the surface tension coefficient. In thermodynamic equi-

librium, 6R is zero.

Let z = ((x) be the equation of the surface. An element of surface area can then

be represented in terms of an arc length extended a unit distance in the y-direction:

f =f E1+ (, 2- )J dxdy (2.30)

If ( is everywhere small, then

1f + (
(\x) dxdy (2.31)

and the variation, if, is

dxdy. (2.32)

Integrating by parts we find

if =J J( dxdy.

Substituting (2.33) into (2.29), we obtain

0 J{- (Pl -P2)
-a 6 ( dxdy,

(2.33)

(2.34)
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or,

(Pi -P2) = (2.35)

Viscous stress balance for an undeformed fluid interface

luid 2

luid 1

Figure 2-2: Undeformed interface between two viscous fluids. The symbols T and p
indicate interfacial and bulk stresses respectively.

At an undeformed interface between two fluids, the normal and tangential stresses,

pik, must be balanced:

P2zz - P1ZZ

P2zx - PzZX

-0

- 0. (2.36)

These stresses have the form

Pik = -ikP + Pik (2.37)

where Pik is the viscous stress tensor. Furthermore, we require the velocity field to

be continuous at the interface:

v1x = v 2 . V1z = V2 z . (2.38)
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Deformed viscous interface

If we deform the interface between two viscous fluids then, as in section 2.3.2, surface

tension effects enter into the stress balance and equations (2.40) become

a2(
P2zz - PIzz + or-2 = 0

P2z - Pim = 0. (2.39)

Deformed viscous surface with surface tension gradient

If the surface tension varies over the surface, -(x), then an additional term is added

to the tangential stress condition:

P2zz - PIzz + C a2( 1092

P2X - PIX + - = 0. (2.40)
ax

Boundary conditions at a viscous interface of finite width separating two

viscous fluids

Let us consider two viscous bulk fluids separated by a transition region of finite

width which we call the interfacial region. We consider a fluid element situated in

the interfacial region with upper and lower boundaries at the edge of the two bulk

fluids. Viscous stresses will act on this element as pictured in figure 2-3.

The stresses on the upper and lower faces of the fluid element, denoted by p's

are exerted by the upper and lower bulk fluids while the stresses on the sides of the

element, denoted by T's, are interfacial stresses which we assume to have the form

Tik = Tik (2.41)

which assumes that the only contribution of these stresses is viscous.

For a small (,

Tt ~ Txx, 7 tn 'xzI Pnn ~Pzzi Pnt Pzx (2.42)
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P2nn

Ptn

A A

An A
Tonn

Pinn

Figure 2-3: Deformed interface of finite width between two viscous fluids

At ~ Ax An ~/ Az (2.43)

The net forces due to the interfacial stresses are:

(TxxIx+Ax - Txxlx) AzAy = TX ATAZAY = 1AXAY,
ax ax

(TXZIX+AX - TXzlx) AzAy = aTz ADTza az AXAy,ax ax
(2.44)

where 1 = Az is the width of the interface.

Incorporating the interfacial stresses into the stress balance in equations (2.40),

we have:

P2.- Pi + +0
ax DX2

DTxx Do-
P2zx - P1ix + + -

Dx ax

= 0

A condition must also be placed on the velocity field at the interface.

(2.45)

As the

width of the interface is small compared to the vertical extents of the two bulk fluids,

we will require that the velocity field be continuous between the two bulk fluids with

no apparent jump across the interface so that

v1x = v2x V1z = V2 z. (2.46)
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Thus, the interior of the interfacial region will support no vertical velocity gradients,

and

V= 0 = 0 (2.47)
az az

within this region.

Forms of the viscous stress tensors

The bulk viscous stress tensor The are three conditions which must be met by

the viscous stress tensor:

* Viscous stresses, PI, arise due to internal friction resulting from velocity vari-

ation between different parts of the bulk fluid. Thus the viscous stresses must

be independent of the velocity itself and rely only on its spatial derivatives,

£9"vi/Oxk".

" Viscosity is important for slowly moving fluids. In such cases momentum trans-

fer is considered linear, relying only on the first order derivatives of the velocity.

As momentum transfer is linear, then so too is viscous stress considered.

" In uniform rotation, there can be no friction between adjacent fluid elements

and thus viscous stresses, Pik, must disappear.

Meeting the three above conditions, we find that p' must contain only combina-

tions of the form:

vi+ .Vk (2.48)
DXk Dxi

After a little bit of manipulation, we obtain the standard form of the viscous stress

tensor in an isotropic fluid:

(vi + Dvk 2 Dvi\ 0V1
P'k = + -p ik P*J ix (2.49)

( 0xk axi 3 axi ) x,
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where p, p-t* are called the first and second coefficients of viscosity, respectively. In an

isotropic fluid, as was assumed, p and p* must be scalars.

For an incompressible fluid the second coefficient of viscosity is disregarded. In

cartesian coordinates, we have:

,I i ,aN (vz
pl., =2= 222 2  az

Pa P1 + Ov 2 = P2 + (2.50)a ax az P2 ax + z

where subscripts refer to the two bulk fluids.

The interfacial viscous stress tensor In the interfacial region, similar conditions

to those outlined for the bulk fluids apply to the viscous stress tensor:

" The viscous stresses are independent of the velocity and rely only on its spatial

derivatives, "a k/8x.

" Momentum transfer, and thus viscous stress is considered linear, relying only

of the first order derivatives of the velocity.

Meeting the above conditions, we assume that i'k has the form:

cYk + 4e-a-- (2.51)

Now we come to the third condition:

* The interfacial region may be isotropic in the "plane" of the surface, but it

cannot be considered so in the direction normal to the surface. This anisotropy

may arise from a transition in density between the two fluids or the presence of

a surfactant material. Surfactant materials are surface acting precisely because

of a preferred orientation at the surface with one end of the molecule 'fluid 1'

- phyllic and the other 'fluid 2' - phobic. This preferred orientation creates a

normal anisotropy. Given this anisotropy, we can at most say that in a uniform
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rotation of the fluid around the surface normal, the interfacial viscous stress

tensor must vanish.

This results in viscous shear stresses of the form:

Dv.
Tik - aikDX +

DVk
aki DXi i, k = t, y

in nz D9xi

' i ani

Dvn
', = 2a," n 1V
n tn (nxn

As the interfacial region can support no vertical (normal) stress gradients,

D9Vn _0

x,9

avi
X= 0

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

we have:

8Dv-
' = ai OTxi k k

i D9Vk
+ Ci -- i, k= t,y

Txin i0Dv~
nZxi

Dv~
' = a"n (9Tn i0xi

n'f = 0.

For our stress balance with small (, in cartesian coordinates we have:

'x = 2ac

(2.57)

(2.58)

(2.59)

(2.60)

( vx'
Dx )

z= c () (2.61)
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Stress balance across the interfacial region

Incorporating the explicit forms of the viscous stress tensors from (2.50) and (2.61)

into the stress balance of (2.45) we arrive at

-P2 + 2Au2 a,+ pi -2y
zvz

P2 (K+ -z Pax az ax

(avz)
az )

av,+ a

laz ( avz+ axg

+ 2lax +ax /

At an air-water interface, the viscous stresses exerted by the upper fluid become

negligible compared to those exerted by the lower fluid and the boundary conditions

become

avz xz'v
p - 2p a- + lax a8z x I

avz
9x

+ U- = 0,
49X2

+ 2lax (Vx) +A vzOX

where the subscripts on the variables pertaining to the lower fluid have been dropped.

The gradient of surface tension is commonly expressed interms of a viscoelastic

response function

do- d- dlnA do- a2  9 2

dx dlnA dx dlnAq9x 2 ax2
(2.65)

where A is the area of a fluid element at the surface, E is the dilational modulus, and

( is the displacement of a surface element in the x-direction from equilibrium.

If we also replace the interfacial viscous shear stress coefficients

laxxx

2a, = r +'r7

= r7N (2.66)

(2.67)

then we arrive at the form of the boundary conditions (Goodrich 1981) used in the
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(924

--u 0.
5x_

=0.
ax



derivation of the dispersion relation, equation 2.28, for our work:

OV+
+ TIN (a)

-tt aI Ovz)
+ ax ) + (r, +'r1) +

02
j9X2

-0

= 0.
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Chapter 3

Roots of the dispersion relation -

gravity, capillary and dilational

wave modes

3.1 Introduction

Dispersion relations relate frequency and wave number with respect to the various

physical parameters describing the system in complex polynomials. The roots of these

polynomials represent the various wave modes. Three dispersion relations describing

wave motion at a fluid-air interface are studied in this chapter: Lucassen's relation for

a visco-elastic interface, Lamb's relation for non-visco-elastic interface with a viscous

bulk fluid and Kelvin's relation for a non-visco-elastic interface with an inviscid bulk

fluid. Both Lamb's and Kelvin's dispersion relations are simplifications of Lucassen's

relation and are helpful in elucidating the behavior and interaction of the various

wave modes.

This chapter discusses the roots of the three polynomial dispersion relations, the

identification of these roots with various wave modes and the conditions for their

physicality and stability.
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3.2 Expansions of the dispersion relations.

3.2.1 Lucassen's relation

Lucassen's dispersion relation,

(3.1)

E= k 2 (kE = - + iP(k + m),

W W
WP
kw (3.2)

with

0-= O + iWU

C = CO + iWE' (3.3)

is a complex polynomial with eight variables (w, k, Eo, E', -o, o', [, p, g). Both k and w

are complex. The factor m

m2 = k2 + WP
A

(3.4)

necessitates an expansion of A so that polynomials with integer powers for k and w

can be obtained. The resulting Aexpansion is 10th order in k and 8th order in w.

The expansion in m

(Am 2 + Bm +C)(Am 2 - Bm + C) = 0 (3.5)

produces ten roots for a polynomial in k and eight for a polynomial in W ,respectively.

Five of the k-roots and four of the w-roots satisfy the original dispersion relation

A = Am 2 +Bm+C=0 (3.6)

with Re(m) > 0. The additional five k-roots and four w-roots occur for Re(m) < 0,

54

=--2+ iy(k +m) + 9



satisfy

AlmI 2- Bim|+ C = 0, (3.7)

are spurious, and may be discarded.

3.2.2 Lamb's relation

A simplification of Lucassen's relation results from the assumption that elasticity

is negligible.

reduces to

The dispersion relation, without terms proportional to c = 6o + iwE',

w2+4 -
p

k2m (m - k) = gk + uk3

p

When expanded in m this relation is 8th order in k and 4th order in o. Four k-roots

and two w-roots of ALambexpansion satisfy ALamb for Re(m) > 0.

3.2.3 Kelvin's relation

A further simplification, that viscous effects are negligible results in Kelvin's relation:

2 = gk + V
p

(3.9)

This relation is 3rd order in k and 2nd order in w and requires no expansion in m.

3.3 Admissible solutions

Of the five roots in k of (3.2) which satisfy Re(m) > 0, admissibility is determined

by

Real(k) > 0, (3.10)
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and stability by

Imag(k) < 0, (3.11)

(for waves travelling in the -x direction). This follows from the assumption in deriv-

ing the dispersion relation that the potential function has the form

ekzei(kx+wt). (3.12)

Depending on the values of the rheological and bulk parameters, (eo, E', oo, -'p, g, A),

each of the five roots can be admissible.

3.4 Identification of the roots of the dispersion re-

lation

The roots of Kelvin's, Lamb's and Lucassen's dispersion relations can be variously

identified with three physical modes: gravity (gravity-capillary), capillary and dila-

tional waves. We will later see in section 4.4 that gravity and capillary (or gravity-

capillary and capillary) waves are two separate modes which resonate near 4 Hertz.

Gravity-capillary modes can be easily identified as gravity modes below 4 Hertz

by their adherence to the dispersion relation for deep water gravity waves,

W2 = kg. (3.13)

Above this frequency, this mode bifurcates into two typically non-admissible roots

(Re(k) > 0) which adhere to Kelvin's relation for capillary waves. These modes are

marked in red in figure 3-1. They follow the w2 = kg curve below 4 hertz (pictured

in magenta circles) and drop down and follow the lower w2 = rk3 /p curves above 4

hertz (pictured in yellow diamonds). The nature of the bifurcation of this mode from

a physical gravity to two non-physical "capillary" modes will be made clear in section

4.3. For ease of discussion, this mode will simply be referred to as a gravity mode as
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it only has physical character when it behaves like a gravity wave.

1500

0 W2=g-Fa kepm2=kg+a k/p 0
O w2=kg+a k3 /p0
o grav-cap mode 0
o cap mode 0

1000 0 grav-cap mode 0
o (o=kg 0

2= k3/p 
0

W=alp 0
W2= k 3/p 0 0 on ol 00000000

0500 000
0D

-500
0 5 10 15 20 25 30

real f

Figure 3-1: A comparison between modes of Kelvin's dispersion relation, w2 = kg +

uk3 /p, the modes of the deep water gravity-wave dispersion relation, w2 = kg, and

the modes of the deep water capillary dispersion relation, w2 = k3 /p.

The capillary mode can be identified above 4 Hertz by its asymptotic approach

to the physical root (Re(k) > 0) of Kelvin's relation for increasing frequency in the

absence of the the gravity term,

2 3  (3.14)
p

Below four Hertz, this mode bifurcates into two typically non-admissible Re(k) < 0

modes. The capillary modes are marked my blue, green and cyan in figure 3-1. The

dispersion relation roots for expression 3.14 are marked by yellow pentagons.

The dilational modes are dependent on elasticity, c, and can be identified by vary-

ing this parameter as in figure 3-2. One of these modes tends to be both admissible

Re(k) > 0 and stable Im(k) < 0 above approximately 4-6 Hertz.
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variation of modal shape for e0=0.05 and 0.01 kg s-2
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real f (hz)

Figure 3-2: A comparison between modes from Lucassen's dispersion relation for
CO = 0.05 and 0.01 kg S-2. The magenta and red modes, which are dependent on e,
can be identified as the dilational modes.

3.5 How many admissible modes can coexist?

Lucassen's dispersion relation has five roots corresponding variously to gravity, capil-

lary and dilational modes. The admissibility and stability (existence) of these modes

depends on the surface rheology. Lucassen (1969) analytically showed that in the lim-

its of zero (clean surface) and infinite elasticities, only the capillary mode can exist.

He predicted that the dilational mode would exist whenever the dilational modulus,

e had a finite value.

To get a comprehensive picture of the rheological conditions for which any number

of wave modes coexist, we can numerically search for a marginal curve of stability in

parameter space.
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3.5.1 Marginal curve of spatial stability

Let us consider the conditions for which the gravity, capillary and dilational wave

modes exist.

There are five possible roots of the dispersion relation

A(k, w, , p, g, -, e) = 0 (3.15)

corresponding to gravity, capillary and dilational wave modes.

To be physically realistic, these roots must satisfy

Real(m) > 0 Real(k) > 0 Real(w) > 0 (3.16)

and to be stable in space and time, respectively, they must satisfy

Imag(k) < 0 Imag(w) > 0. (3.17)

The range of rheological conditions under which a stable physical wave mode exists

is marked by a boundary in parameter space for each mode. The bound of the spatial

stability, or marginal curve of spatial stability, in rheological parameter space must

satisfy

Imag(w) = 0 Imag(k) = 0 (3.18)

for some neighboring values of the parameters. Inside this bound, all rheologies result

in roots of the dispersion relation satisfying

Imag(k) < 0. (3.19)

There can be multiple bounds defined: one for which there is one stable root,

another in which there are two stable roots, and so forth. Thus different regions of

parameters space will have n numbers of physical and stable roots associated with

59



them.

3.5.2 Non-dimensional parametric bounds of spatial stability

Rather than delinating the bounds of stability in rheological parameter space, we

non-dimensionalize the dispersion relation and define the bounds in the resulting

non-dimensional rheological and physical parameter space. Which non-dimensional

(ND) parameters control the bounds will be determined by examining the dependence

of the number of stable roots of the dispersion relation on the parameters.

Before proceeding, it is necessary to decide how to non-dimensionalize the disper-

sion relation. This relation has are eleven dimensional variables,

kR, k, WR, W1 , A, p, g, e, e', ., 0..

To find the spatially stable roots of the equation, we solve for k(w). On the marginal

curve of stability, w, = 0. To non-dimensionalize the dispersion relation, three scaling

variables must be chosen from the remaining eight:

WR, [, P, 9, Eo, E , Uo, 0'

There are eighty-one possible sets of three variables which can be made.

To gain some insight into which of these might be important to stability, we

can take advantage of the dimensional similarity of ao and E0 and of 0' and E' and

numerical investigate the dependence of the number of stable roots on

E0 Co 0

Note that w = wR as w, = 0.

To obtain ZQ, f and Z , the dispersion relation must be non-dimensionalized by
c, E, E:

E01, g, W:
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(3.20)[P1(k* - m*)] 2 + E*- S* = 0

E* = k*2 (1 +iP2) +iP1(k* +m*)

S* = k*2 (P3 +iP4)+iP1

-P 4 W=-- P4 =
60 E0

Ag _

P2=
cow E0

EOW W

To obtain the other parameters, other non-dimensionalizations can be made. For

ease of dicussion, these parameters will be referred to in terms of P1, P2, P3 , P4, and

P,so that

o-' P4

E' P2 '

o-'W _P 4

0-0 P3

E'W P2

Oo P3

(3.21)

A numerical investigation was made of the above parameters and also variations

of p and p with respect to c0, c', o-o and a':

pg =

EOW

pg PI
O-ow P3

p (g)3
cow W

p g3 p5

0-OW W P3

pg PI
E'W 2  P2

/9 P
a -'W2 P4

p (g)3
6 /W2 W

p
a /W2 k~w}

P5

P 2

_ P5

P4

and variation of p with respect to p,

p (g)2 P

This last parameter occurs in the expression for m* and affects the relative vertical

61

where

(k* +m*)+P (I-
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decay rates of the two wave modes. When its value is much greater than k*, and e

approaches zero, the flow is mainly potential (JAI >> IBI) (Lucassen-Reynders and

Lucassen, 1969).

It is possible to have many other non-dimensional parameters, however, the pa-

rameters considered above take into account variation of each of the dimensional

parameters with respect to the others and give us a full picture of the parametric

dependency of stability.

0 00
0 0 0

8 :8 8 010,
8g 80 0800 C0 8'

Q, 000 C 0 

0:0. 8 -0. 0-. 80

.:g(4/F2 -:5 -5 lg(F4

.00 :i!j 00 00 0 81
0 

0 ,

0 0150)* -10,

Figure 3-3: Figure 3-3a shows clear dependence on the three axes parameters,
log(P5), log(P1), log(-P2). Figure 3-3b shows a lack of dependence on the three
axes parameters, log(P5/P2), log(P4/P2), log(P4). The blue x's, cyan a's, red *'s
and green +'s correspond to 0, 1, 2 and 3 physical and stable roots, respectively.

The numerical investigation was made by calculating the number of stable roots

of a non-dimensional form of the dispersion relation dependent on the above param-

eters. One of the numerical codes for these calculations is described in Appendix A.

Colored symbols corresponding to the number of stable roots were then plotted in

ND parameter space. Dependence of root stability on these parameters was clearly

shown by regions of ND parameter space for which only the symbols for 0, 1 or 2

roots appeared. Non-dependence was shown by a mix of symbols for all parameter

values as in figure 3-3.
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The parameters were varied over many orders of magnitude in order increments.

Together, E'w/Eo, pLg/EOw and p/Ew(g/w) 3 were correlated to the number of stable

roots shown in figure 3-5, as well as p/E'w 2 (g/W) 3, p/U'W2 (g/W) 3 and p/wjt (g/w) 2

together as shown in figure 3-4.

10 10-

b10 x10

-0 -0

-10 -s -a -4 -2 0 2 4 0- 10 is (P4/ -10 in g r 3-4 1 ' 1s eg v.

Figure 3-4: Root dependence on e2 of stability:oeW2 tandrt t st r)ots
PS p 9g P5  p P5, P 9

blue x's, cyan a's, red *'s and green +'s correspond to 0, 1, 2 and 3 physical and

stable roots, respectively. In figure 3-4a, E' is positive and in figure 3-4b, E' is negative.

In figure 3-4, we see three regions of stability: one stable root, two stable roots

and three stable roots. These regions are defined in (P , 1 , _ 3)

parameter space. While this group of parameters shows a correlation to the number

of stable'roots, we will find e'w/E, pg/Ew and p/Ew(g/w) 3, (P2, P1 , P5 ), most useful

in classifying the conditions under which the various modes exist. These parameters

show that the the existence of more than one mode depends on the ratios of relaxation

and dilational viscous retarding effects to elastic propagation of energy

we,
DVE=-

Co

bulk viscous retarding effects to elastic propagation of energy

BVE = pg
E0WU
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Figure 3-5: The regions of stability defined in P2 = DVE = ,P= BVE = -, P = BIE = -P (2) 3)
parameter space. The four figures correspond to the four quadrants of c = e, + iwe'. The blue x's,
cyan o's, red *'s and green +'s correspond to 0, 1, 2 and 3 physical and stable roots, respectively.

and bulk inertial retarding effects to elastic propagation of energy

BIE = -g3

that controls stability of the wave modes. Stable gravity and capillary waves never

coexist and the two dilational modes, which do not appear as as physical and and

stable until the gravity mode does, are generally symmetric around the imaginary k

axis with one physical, Real(k) > 0 and one unphysical Real(k) < 0, thus when two

modes coexist, they are the capillary and dilational modes. The parameters above are
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all ratios retarding effects to elastic propagation of energy, they govern the dilational

modes. Thus, the conditions for the existence of the dilational mode are marked by

the boundaries of the region of two physical stable roots.

A third stable root of the dispersion relation is here predicted, but its physical

correlation is unlikely. For the reasons discussed above, it would have to be a second

dilational mode. It occurs in the forth quadrant of E for which, as discussed below,

6' < 0 and E,, > 0. It appears when Pi is small and thus bulk viscous effects are small

in comparison to the elasticity of the film. It also occurs at larger P values when P2 is

small and smaller P values when P2 is large. Thus, when the response of the film to

elastic forcing is large in comparison to the elastic forcing, the existence of the third

root requires the bulk viscous effects to be very small in comparison to film elasticity,

but when the response of the film is very small when compared to elasticity, the third

root can arise when bulk viscous effects are nearly balanced by film elasticity. Thus,

the third root could to be an artifact of fluids and films for which some longitudinal

viscosity is very low, however, the most likely explanation for a third stable root is

that it is an artifact of the numerical code. For extremely large or small values of

any parameter, as is the case here, errors inherent in the root solving algorithm an

cause anomalous results. As the conditions for which it occurs are quite extreme, it

is unlikely in any case that this third mode would ever be seen.

3.5.3 The four quadrants of c

The four figures correspond to the four quadrants of c:

6 = j6e'e" = 6o + i6" = 6o + 2W6'.

The reader will recall from chapter 1 that E itself is composed of E, K and 77N:

E = E + iW6' = E" + iW(E' + K + r/N) (3.22)
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Figure 3-6: The four quadrants of c.

where r and riN are dilational viscosities and

E = leeo = E+i" = &+iW6 ' = or
ax

(3.23)

is the dilational modulus. The angle 0 represents the phase difference between vari-

ation in surface tension and the elastic response of the film. The four quadrants in

complex E space are shown in figure 3-7. Within these quadrants are defined regions

rnruwbs i
UA

III

x /2

salutpki /srpl M hnbk

lbng ch, ~rndns m schto

Iv

Figure 3-7: The four quadrants of E.
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corresponding to certain phenomena in the physics of various films.

As E, and E" or wE' vary in the four quadrants, then so must E:

6 = E" + iW6'/ = 6, + iW(E'/ + r, + 77N~).

Thus the response, or relaxation, times of the surfactant films and the existence of

the dilational wave mode are linked.

It is not obvious how to separate the effects of K + riN from E' without a clearer

picture of the range of , +TN for the types of surfactants that lie in each quadrant in

E. We can though infer some effects of the nature from considering the four quadrants

of E.

The first quadrant of E can correspond to either the first or the fourth quadrant

of E.

1st quadrant: co > 0 E' > 0

E, > 0

2 = s + si +

2 ossibilities{I

The second quadrant of 6 can correspond to either the second or the third quadrant

of E.

2nd quadrant: E, < 0 6' > 0

E, < 0

(3.24)

2 possibilities{ (3.25)

e' < 0 but n +,q > -E'

The third quadrant of 6 corresponds to the third quadrant of E.
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3rd quadrant: e, < 0 e' < 0

E0 (3.26)

1 possibility ' ( <0

The forth quadrant of c corresponds to the forth quadrant of E.

4th quadrant: c, > 0 E' < 0

E0 > 0

1 possibility ' 0(3.27)

3.5.4 Special cases

2
2

2

III 1 Iv

Figure 3-8: The number of stable roots in figure 3-9 mapped into the four quadrants
of C.

Under certain conditions, which interestingly are quite common, the existence of

stable roots of the dispersion relation is entirely dependent on wE'/co. This occurs

when P1, the ratio of bulk viscous effects to film elasticity, is very small ( 10-), or

when P is somewhat small (< 10-1) and P5 , the ratio of bulk inertial effects to film

elasticity, is not too small (> 10-2). Then, the regions of numbers of stable roots can

be presented as in figure 3-9.

The regions of one and two stable roots can be simply viewed in complex e space

(figure 3-8). In this figure, the line tan e = -1 demarcates the boundary between

the c values for which the dispersion relation has two stable roots and those values
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Figure 3-9: The regions of stability defined in P=DVE = , P = BVE = 1, P = BIE = P (3)
parameter space. The four figures correspond to the four quadrants of f = E, + iwE'. The blue x's,
cyan o's and red *'s and green +'s correspond to 0, 1 and 2 physical and stable roots, respectively.
In these parameter ranges, only P2 = g controls the number of stable roots.

EO

of E for which it has one stable root. As c is a function of e, the dependency of the

number of stable roots on the phase of c indicates that the number of stable roots is

dependent on the film relaxation.
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Chapter 4

Analytical and numerical

descriptions of wave mode

resonance

4.1 Literature review

Evidence of resonant interaction between the capillary and the dilational wave modes

has been noted in numerical, experimental and field studies. This evidence includes

a peak in the damping rate of the capillary wave mode together with a concurrent

trough in the damping rate of the dilational wave mode and mixed-moode behaviour,

which suggests that neither wave mode has a predominantly capillary or dilational

character near resonance conditions.

Before the root of the dispersion relation corresponding to the dilational wave

mode was discovered by Lucassen (1968), peaks in the capillary wave mode damping

rate were found in numerical studies (cf. Dorrestein, 1951, Hansen & Mann, 1964,

van den Tempel & van de Riet, 1965). These were later noted experimentally by

Bock (1987) as well as in a field study by Wei & Wu (1992). After the discovery of

the second root, it was found numerically that a trough in the dilational wave mode

damping rate occurs concurrently with the peak in the capillary wave mode damping
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rate (Hiihnerfuss et al. 1985, Dysthe & Rabin, 1986, Cini et al. 1987, Ghia & Trivero,

1988, etc.). As this peak and trough both occurred when the frequencies of the two

wave modes coalesced, this behaviour was attributed to resonance between the two

modes.

A second piece of evidence occuring near frequency coalescence of the two wave

modes, termed 'mixed mode behaviour', has been found in a numerical studies (Earn-

shaw & McLaughlin 1991, Rednikov et al. 1998). Earnshaw & McLaughlin found that,

while for certain combinations of values of the surfactant film rheological parameters

(on which the roots of the dispersion relation depend) the two wave modes appear

to be either wholly capillary or dilational in behaviour, altering these parameter val-

ues led to the two modes adopting the opposite wave mode behaviour. The critical

values of the parameters for which the change occurs coincide with the values of the

parameters for which the two wave mode frequency roots of the dispersion relation are

closest to resonance. In this immediate region, neither wave mode can be classified

as wholly capillary or wholly dilational in nature. Such behaviour was described by

the authors as 'mixed mode'.

4.2 An analytical description of modal resonance

4.2.1 Evidence of resonance in previous numerical and ex-

perimental studies

Two behaviors attributed to resonance between the capillary and dilational wave

modes have been noted in numerous numerical and experimental studies. These

behaviors are peaks in the damping rate of the capillary mode and mixed mode

behaviour between the capillary and dilational modes.

Figure 4-1 shows both behaviors. These curves were produced from Lucassen's

dispersion relation with p = 11.3 x 104 kg m/s, k = 5 x 104 1/M 2, o-, = 65.0 x 10-

kg/s 2 , .' = 2.5 x 10' kg/s 2, p = 998 kg m/s, and g = 9.81 m/s. The upper set of

curves were made for Im(c) = we' = 0.0015 kg S-2 and the lower for Im(e) = 0.0006

72



0 10
16 000

14 000000

12- 0000 000

10 -
0000 P0

_- 0
0000000000000000

6- .0 .--.--.Oooooomooooo

2 0 0

10% 0.005 0.01 0.015 0.02 0.025 0.03 0.035

18x le0

14 -xx

12 - x

610- XXX

8 XXXXXXXXXXX

2 xx

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
real epsilon

X 104

10

S

8

6

3

7

6

4

3

00

00

00
* 00 0000000000

- 0 00 000000000000000 00

00000000
1 0.005 0.01 0.015 0.02 0.025 0.03 0.035

real epsilon

K 10'
X X

X 
XX

XX OX

XXXX

X XXxXXXXXX

XX~ XXX XXX XXXXXXXxXXXXXxXXX

MXXX

0 0.006 0.01 0.01 0 0.02 0.025 0.03 0.035
real epsilon

Figure 4-1: This figure shows plots of frequency, WR, and spatial damping rate, wr, versus elasticity,
C, for both capillary and dilational wave modes. The upper set of plots was made for Imag(E) =
0.0015 kg s-2 and the lower for Imag(c) = 0.0006 kg S-2. Labeling the four plots clockwise beginning
in the upper left hand corner, we see in plot (b) a peak in the capillary wave mode damping rate
concurrently with a trough in the dilational wave mode damping rate. Plot (c) shows mixed-mode
behavior. Neither wave mode appears to behave stictly as a capillary nor a dilational wave.

In figure 4-1(b), we see Im(w) plotted against Re(c) = E. Near Re(f) = 0.0102

kg/s 2 the two modes approach each other. This is the resonant peak (trough) men-

tioned in the literature. Away from this value of Re(e), the lower wave mode appears

to be nearly independent of Re(e). This is the capillary mode. The other mode, which

is highly dependent on Re(6), is the dilational mode. A similar two-dimensional nu-

merical result for Im(E) = 0.0 kg/s 2 was obtained by Earnshaw & McLaughlin (1991).

In figure 4-1(c), we see Re(w) plotted versus Re(e). The behaviour of the wave

modes is wholly different than in figure 4-1(a). In figure 4-1(c), the two modes appear

to switch character near Re(E) = 0.0102 kg/s 2 . In the neighborhood of this value of E,
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the wave modes cannot be identified as either wholly capillary or dilational in nature.

This is the phenomena labeled as mode mixing by Earnshaw & McLaughlin (1991).

It is more generally referred to as an avoided crossing.

Figure 4-2 shows the resonance effect of a peak in the capillary mode spatial

damping coefficient appearing in experimental data. This data is a reproduction of a

data set (Bock 1989) showing variation of spatial damping, (Im(k)), with frequency,

(f = w/27r), for capillary waves propagating across the surface of Hercolube C at

45'C. The data set is marked in o's with the peak in the damping rate occuring near

6 Hertz. The solid line corresponds to Bock's fit of the dispersion relation to his data

assuming that both f and o- are real and E = 0.0.

100
0 0

0

10 -

4 6 8 10 12 14 16 18 20 22 24
f (Hz)

Figure 4-2: Reproduction of a data set (Bock 1989) showing variation of spatial damping, (Im(k)),
with frequency, (f = w/27r), for capillary waves propagating across the surface of Hercolube C at
45 C. The data set is marked in o's. The solid line corresponds to Bock's fit of the dispersion relation
to his data assuming that both f and o are real and E = 0.0.

4.2.2 Description of mode to mode resonance

Although phenomena related to resonance between the capillary and dilational wave

modes have been noted in the literature, there was no mathematical description of

this type of resonance. In Brown et al. 2002, we presented a mathematical description

of first order wave mode resonance and demonstrated how all of the above mentioned
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phenomena could be accounted for with this description. A discussion of the work in

this paper follows.

General dispersion relation

A dispersion relation can be characterized by the expression

A(w, -ri) = 0, (4.1)

which provides the natural frequencies of the system, w, for some values of the physical

parameters of the system, ri, i = 1, 2, ... p. The set of all possible combinations of

parameters and frequencies that satisfy this equation is its solution space. If the

parameters and frequencies are complex, then the dispersion relation solution space

will also be complex.

Resonance occurs when there are two or more repeated roots of the dispersion

relation. In the complex solution space, this phenomenon is represented by root

coalescence points (wO, 7ro) of (4.1) which satisfy the conditions (Triantafyllou & Tri-

antafyllou, 1991):

anA (4.2)A (WO, 7r) = 0 -(WO, 7r0) = 0, n =,.. . ,7m - 1, 42

where m is the order of complex root (in this case, frequency) coalescence. The solu-

tion of (4.2) represents a multiply (m) repeated complex root, wo, for a corresponding

value of the complex parameter, 7ri = 7ro. An expansion around this point yields, for

a single parameter 7r:

A(w, ir) = 0 = a(w - wo)" + 0(wx - iro) + H.O.T., (4.3)

where H.O.T refers to higher order terms and a and 3 are nonzero constants.

Figure 4-3 shows how the solution space, w(7r), will look around a second order

(m = 2) root coalescence point. Lines of constant real and lines of constant imaginary

-x from the complex 7r plane are mapped into the complex w plane and lines of constant
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Figure 4-3: In figure 4-3a, lines of constant real and imaginary grin the complex iTr plane are
mapped via relation (4.3) with a = fi = 1 and w0 = r = 0 into the complex w plane and displayed
in (Re(w), Im(w), Re(7r)) three space. In figure 4-3b, lines of constant real and imaginary w in the
complex w plane are mapped via relation (4.3) with a = = 1 and w0 = r = 0 into the complex r
plane and displayed in (Re(rr), Im('r), Re(w)) three space.

real and imaginary w from the complex w plane are mapped into the complex wr plane.

The frequency coalescence point appears as a saddle point in the complex w plane

and as a branch point in the complex ir plane.

The distortion of the solution space near the frequency coalescence point is due

to the sensitivity of the shape of the solution space to the parameter wr. This can be

demonstrated mathmatically by looking at the mapping for w(7)

w - w0 = v/r -w 0r, (4.4)

where ~y = /3/a. From (4.4) we see that a small variation in wr of order 5 will produce

a variation in w of the order V 6. The sensitivity of w to variations in ir is calculated

as
1 (45

Thus, as we approach the wavenumber coalescence point, w becomes infinitely sensi-

tive to variation in ir and the space is drastically stretched.
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Figure 4-4: Projection of the solution space for A(w, k, c, o-) = 0 onto ( Re(w), Re(E), Im(E) )
three space. The viewer's perspective moves counterclockwise around the projection in figures (a)

- (d). The labels CWM and DWM indicate the portion of the solution space corresponding to

the capillary and dilational wave modes, respectively.

Capillary-dilational dispersion relation

The dispersion relation for capillary and dilational waves at an air-fluid interface can

be characterized by

A(k7 w, 6, 0, P, P, g) = 0, (4.6)

or, for a bulk fluid with known properties, p and p, simply as:

A(k, w, E, a) = 0 (4.7)

77

real epsilon real w



I

E

.03

0.02 
00

real epsilon 0 0 2 6 10

imag w

x 10,

0.01

0.2 0.03 10 8 6 02X104

real epsilon imnagew

X 10-,
5'.

-5

Figure 4-5: Projection of the solution space for A(w, k, c, o-) = 0 onto (Im(w), Re(E), Im(f) )
three space. The viewer's perspective moves counterclockwise around the projection in figures (a)
- (d). The labels CWM and DWM indicate the portion of the solution space corresponding to

the capillary and dilational wave modes, respectively.

where

k = kR + ikI W = WR +iWI

E = O + iWE' 0- = 0-o + iW-

The letters R and I denote the real and imaginary parts, respectively, of the quantities

they subcript.

The solution space for A(k, w, c, -) is eight dimensional - all four parameters are

complex. If we fix two variables, for example, k and o-, we can reduce the solution

space for e(w) to four variable dimensions. It is in the neighborhood of a root coa-

lescence point for e that the plots of the solution space in figure 4-4 are produced.

78

x 10,
5~

0 -

0.03

-5 0.02

x 10,

26 0.01

4 5

0 0

00

x1g real epsilon
irngw

0

0

0

(4.8)



The roots were obtained using Matlab's standard root solver. This root solver is

predicated on the solution of an equivalent eigenvalue problem written in terms of a

companion matrix for the original polynomial. The solution is accurate to within 0.1

percent.

Figure 4-4 shows a projection of the four-dimensional solution space onto ( Re(w),

Re(c), Im(E) ) three space. Figure 4-5 shows a projection of the solution space onto (
Im(w), Re(E), Im(e)) three space. The physical parameters in the dispersion relation

have been assigned the the same values as those in figure 4-1 which was a reproduction

of a figure in a numerical study by Earnshaw & McLaughlin (1991): p = 11.3 x 10-

kg m/s, k = 5 x 104 1/M 2 , o0 = 65.0 x 10- kg/s 2, o' = 2.5 x 10-7 kg/s 2 , p = 998 kg

m/s, and g = 9.81 m/s.

Our point of view travels counterclockwise around the projections to give four

views of the projected solution space. Each sheet of the projection represents the

portion of the solution space corresponding to a separate wave mode. The sheet

which does not significantly vary with c is the capillary wave mode. The other sheet,

which is highly dependent on e, is the dilational wave mode.

We can infer from figures 4-4 and 4-5 the shape of the four dimensional projected

solution space. The root coalescence point occurs at the intersection of the loci of

modal frequencies with identical imaginary parts and the loci of modal frequencies

with identical real parts and can be seen in both sets of plots as the point at which the

two sheets separate. It is in the neigborhood of this point that resonant interaction

between the two modes occurs. It is important to note that a pair of modal roots

with identical imaginary parts but not real parts, or equivalently, with identical real

parts but not imaginary parts does not imply resonance.

Numerical data

In figure 4-6, the solution space is projected into two single views of each of the

three dimensional parameter spaces. The lines marked by the symbols o and x are

transects of the solution space corresponding to a constant value of Im(C)= we'.

The transect above the frequency coalescence point for which Im(e) = .0015 kg/s 2
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Figure 4-6: Projections of the solution space of A(w, k, e, o-) = 0 onto ( Re(w), Re(E), Im(E)) and (
(Im(w), Re(E), Im(E) ) three spaces. The top transect, marked by o's, corresponds to Im(c) = .0015
kg/s 2 . The bottom transect, marked by x's, corresponds to Im(c) = .0006 kg/s 2 .

exhibits the behaviours of peaks (troughs) for the damping rate, while the transect

below the frequency coalescence point at Im(E) = .0006 kg/s 2 exhibits mixed mode

behaviour. This becomes clear when the transects are viewed from above as in figure

4-7, a reprinting of figure 4-1.

The transect above the frequency coalescence point is plotted in figures 4-7(a)

and 4-7(b). In figure 4-7(b), we see Im(w) plotted against Re(E) = E. Near Re(E) =

0.0102 kg/s 2 the two modes approach each other. This is the resonant peak (trough)

mentioned in the literature. Away from this value of Re(E), the lower wave mode

appears to be nearly independent of Re(E). This is the capillary mode. The other

mode, which is highly dependent on Re(e), is the dilational mode. A similar two-

dimensional numerical result for Im(E) = 0.0 kg/s 2 was obtained by Earnshaw &

McLaughlin (1991).

The transect below the frequency coalescence point is plotted in figures 4-7(c) and

4-7(d). In figure 4-7(c), we see Re(w) plotted versus Re(c). The behaviour of the

wave modes is wholly different than in figure 4-7(a). In figure 4-7(c), the two modes

appear to switch character near Re(E) = 0.0102 kg/s 2 . In the neighborhood of this

value of 6, the wave modes cannot be identified as either wholly capillary or dilational

in nature. This phenomena was labeled as mode mixing by Earnshaw & McLaughlin

(1991). It is more generally referred to as an avoided crossing.
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Figure 4-7: Transects above and below the frequency coalescence point in figure (4-6).

In figure 4-1(d), the imaginary parts of the two wave modes are identical twice.

It is only in the occurence near Re(E) = 0.0102 kg/s 2 that the effects of resonance are

felt (as seen by the mode mixing in the first plot), because it is near this value of E

in the solution space that the loci of frequencies with identical real parts and the loci

of frequencies with identical imaginary parts intersect. The occurence of identical

imaginary parts of the frequency near Re(E) = 0.0024 kg/s 2 has no meaning with

regard to resonance.

As was mentioned in the introduction to section 4.2 Earnshaw & McLaughlin

(1991) identified both peaks (troughs) in the damping rate and mixed mode be-

haviour in very similar two dimensional plots of w versus E. These authors attributed

these effects to resonance, but were not able to demonstrate exactly how modal reso-

nant interaction created the effects. Case in point, the variation of modal behaviours

from peaks in the damping rate to an avoided crossing, or, as they called it, mixed
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mode behavior, were not found by taking different transects of the solution space and

showing how the relative position of the frequency coalescence point, but rather by

varying the surface normal shear viscosity. They saw that variation in a parameter

affected the modal behavior, but did not account for why the various resonance re-

lated phenomena occurred. The analytical description of resonance in Brown et al.

(2002), by contrast, clearly demonstrates that resonance is linked to the occurence of

a frequency coalescence point and with this description, we are able to show that the

various resonance phenomena are linked to the position of a two dimensional transect

with respect to the location of the root coalescence point in parameter space. Thus

it becomes clear that the variation of the surface normal shear viscosity by Earnshaw

& McLaughlin (1991) had the effect of moving the frequency coalescence point in the

solution space from below the transect to above it, thus resulting in the alteration of

the modal behaviour.

Experimental data

The experimental data set presented in figure 4-2 is represented in figure 6-5. In

this figure, a peak in the capillary wave mode spatial damping coefficient value is

apparent.

The data set is reproduced from a plot of this data in Bock (1989). Bock used a

bulk fluid, Hercolube C, a pentaerythritol ester at 45.0 'C whose interface with air

behaves elastically. This fluid had the following properties: surface tension = 27.7

x 10-3 kg/s 2, density = 940 kg/m 3 and kinematic viscosity = 14.1 x 10-6 m 2 /s. In

the experiment, capillary waves were produced at the air-fluid interface by a vibrating

metal bar at a known frequency, Re(w). The spatial damping coefficent k, was

measured using a laser slope gauge in a manner similar to Sohl et al. (1978).

The line in figure 6-5 corresponds to Lucassen's dispersion relation with the as-

sumption that there was no temporal wave damping, w, = 0.0, no transverse surface

viscosity, o-' = 0, and no elasticity, c = 0.0. As we can see in the figure, this curve

is unable to account for the small bump appearing in his data near 6.0 Hz which he

attributes to resonance between the capillary and dilational wave modes.
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Figure 4-8: Reproduction of a data set (Bock 1989) showing variation of spatial damping, (Im(k)),
with frequency, (f = w/27r), for capillary waves propagating across the surface of Hercolube C at
45'C. The data set is marked in o's. The solid line corresponds to Bock's fit of the dispersion relation
to his data assuming that both f and o are real and E = 0.0.

With different values of the parameters, we were able to show in Brown et al.

(2002) that the dispersion relation is able to account for the peak in the spatial

damping rate and that this effect is, indeed, due to resonance. As will be explained

in fuller detail in section chapter 6, we used an inverse method to find the optimal

match of the dispersion relation solution space to the data. This optimal match has

a unique set of parameters (k, w, o-, ,, y, p, g) which describe the physical system.

The optimal match to this data was found for 60 = 59.1 x 10-3 kg/s2, 6,

-70.4 x 10-5 kg/s, -' = 0.542 x 10-5 kg/s and Im(f) = 0.176 Hz. These parameters

describe both the rheology of the surface as well as the likelihood that the waves

produced in the experiment were not steady, but slowly decaying in time.

The match to the data set in two dimensional (k1 , fR = w/27r) space is presented in

figure 6-7 and accounts well for the small bump near 6.0 Hz. The relative position of

this transect with respect to a root coalescence point marking resonance between the

capillary and dilational roots is shown in figure 6-9. The peak in the capillary wave

mode spatial damping rate is now well described by resonant interaction between the

capillary and dilational wave modes.
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Figure 4-9: Comparison on a semilog scale of capillary wave temporal damping vs. wave frequency
between the measured data, o (Bock, 1989), and the optimal match of the dispersion relation solution
space to the entire data set, -, obtained by the optimization program.
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Figure 4-10: Projection of the 'best match' solution space of A(w, k, , o-) = 0 onto
(Re(f), Im(f), Im(k)) three space. A frequency coalescence point is visible at the top of the figure.
The transect at Im(f) = 30.0, marked by o's, corresponds to the best match to the measured data
(Bock, 1989).

4.3 Where do we get gravity-capillary and capillary-

dilational resonances?

We are in interested in two types of wavemode resonance, gravity-capillary, between

the gravity and capillary modes, and capillary-dilational, between the capillary and
84
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dilational modes. Both the existence of these modes and the conditions under which

they resonate depend upon the boundary conditions at the surface. The existence

of gravity and capillary modes is independent of the presence of a surface film and

we will see that the conditions for these modes to resonate are completely described

by an analysis of Kelvin's dispersion relation. Dilational wave modes appear in the

presence of a surface film or a diffuse interface which has elastic properties similar to

a film. Resonance between the capillary and dilational wavemodes is dependent on

elastic properties, surface viscosities, and surface tension. The conditions for these

modes to resonate are described by an analysis of Lucassen's dispersion relation.

4.3.1 Capillary-gravity resonance and Kelvin's relation

Our first taste of capillary-gravity resonance comes from a complexified version of

Kelvin's dispersion relation

W = kg+ -k (4.9)
P

with complex wavenumber, k = kR + ik1 , and frequency, w = WR + iw1 , and the

complex combination of surface tension and surface normal viscosity, -= o-o + iwcr'.

The letters R and I indicate the real and imaginary parts of the quantities they

subscript. Surface normal viscosity, a', is unlikely to exist without surface elasticity,

e. For a filmless bulk fluid with an inelastic interface, a' will be zero. However, as

we will see later, the above formulation of Kelvin's dispersion relation is adequate to

describe gravity-capillary wavemode resonance even in the presence of elastic surface

conditions.

The resonance conditions

A =0 O - (4.10)
ak

described in section 4.2 can be satisfied in closed form solution for this simple case.

Figure 4-11 shows a projection of the dispersion relation solution space for clean
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water in k - (f = w/27r) space with the different Reimann sheets corresponding to

the gravity and capillary wave modes. Resonance is apparent near 4(1 i) Hertz.

-200 - 1 0 100 0 0 0 100 100 200r300 k2

mag k

Figure 4-11: Gravity-capillary root coalescence (resonance) for water in f - k space
where f = w/27r.

To distinguish which Reimann sheet corresponds to which modal behavior, we

consider the behavior of the the various sheets above and below the resonance points.

If we look at the right hand plot in figure 4-11 we can see that the center sheet

is twisted so that for frequencies greater than 4 Hertz the portion above the top root

coalescence point is aligned with the top of the right hand sheet and the portion

below the bottom root coalescence point is aligned with the bottom of the left hand

sheet., For these conditions, the right hand and left hand sheets each flow into the

center sheet:

For frequencies below 4 Hertz, we can see that the center sheet of figure 4-11 also

twists into two directions, above the top root coalescence point it aligns with the

bottom of the right hand sheet and below the bottom root coalescence point it aligns

with the top of the left hand sheet. For these conditions, the center sheet flows into

the right hand and left hand sheets.

Therefore, waves which have a modal behavior defined by the left and right hand

sheets below 4 Hertz have a modal behavior defined by the center sheet above 4 Hertz.

Waves which have a modal behavior defined by the center sheet below 4 Hertz have
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a modal behavior defined by the left and right hand sheets above 4 Hertz.

We can now identify the modal behaviors of the sheets. Figure 4-12 shows as

transect of the solution space at the real f axis. We recognize the curve corresponding
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Figure 4-12: A comparison of the roots of Kelvin's dispersion relation relation to those

of the dispersion relations for deep water gravity and capillary waves. The roots are

plotted in Real(k) - Real(f = w/27r) space.

to the center sheet as representing the physical root of f = w/27r versus k for Kelvin's

relation. Below 4 Hertz, the curve behaves asymptotically as a deep water gravity

wave governed by

w2 = kg. (4.11)

Above 4 Hertz, the curve behaves asymptotically as a capillary wave governed by

(4.12)2 ___

p

Thus below 4 Hertz the center sheet corresponds to the gravity mode and therefore

the left and right hand sheets correspond to the gravity mode above 4 Hertz. Above

4 Hertz the center sheet corresponds to the capillary mode and thus below 4 Hertz

the left and right hand sheets correspond to the capillary mode.

To examine resonance between the capillary and gravity modes, we proceed by
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the following non-dimensionalizations

k* = kLd w* = wTd (4.13)

Ld= -; Td = Ld
pg g

Then,

A* = 0 k* + (I + iw*)k*3 W* 2  = 0 = 1 + 3(1 + iw*r)k*2  (4.14)
Ok*

whereT= 7 .

When the surface normal shear viscosity, -' has negligible effect (recalling that

a complexified version Kelvin's relation will suffice to describe capillary-gravity res-

onance even for much more complicated visco-elastic fluid interfaces), then the term

with T is dropped in equations 4.14 and the resulting simple relations for resonance

points (w*, k*) for Kelvin's relation

0 =k* + k *3 __ 2 0 = 1 + 3k*2  (4.15)

are satisfied for k* = t with corresponding k = ±212.08i 1/i and w/2r =

+4.1914(1 ± i) 1/s for clean water. The solution space comprising all of the roots

of the dimensional dispersion relation appears as it does in figure (4-11). Resonance

occurs locations of the branch points of the Reimann sheets.

The purely imaginary values for the roots of k represent trapped energy - at the

exact conditions of capillary and gravity mode resonance the energy does not travel

away from its spatial location. However, in the neighborhood of this event (in k - w

space), when kR > 0, energy does travel with the waves, albeit with the capillary

wave mode significantly damped. This concept will be further elucidated in section

4.4.

It is important to note that the non-dimensional value of k* = + (and the_3

corresponding value of w*) at resonance is invariant with respect to the physical

parameters, (g, o-, p) in the system (figure 4-13). The values of w and k for resonance
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Figure 4-13: Locations of gravity-capillary resonance events in non-dimensional k* -
f* space. The values of k* = t 5 and f* = w*/27r = +0.07(1 ± i) are invariant with
respect to the physical parameters of the system.

in any physical system governed by the simple form of Kelvin's dispersion relation are

completely determined by the dimensional parameters, Ld and Td(Ld) as displayed in

figures (4-14 - 4-15).
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Figure 4-15: Locations of gravity-capillary resonance points in f - k space versus
variation of the length and time scales, Ld and Td.

In these figures we see that increasing the dimensional parameter

Ld=-

results in the gravity-capillary resonance points approaching the origin. An increase

in surface tension or decrease in density thus result in resonance at lower frequencies

and smaller spatial and temporal damping rates.

When surface normal viscosities are important in equations (4.14), then variation

of -', and thus T, alters the location of resonance points in f - k space, where

f = w/27r. By varying -' over 13 orders of magnitude from 10-7 to 105 we obtain

the plots of resonance values of f and k for clean water shown in figures (4-16) and

(4-18). In figures (4-16) we see four roots of equations 4.14. In actuality, there are
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Figure 4-16: Location in f -k space of gravity-capillary root coalescence (resonance)

for water for variation of a' in Kelvin's dispersion relation.

five, the fifth giving always (real(w =0)), as these equations can be combined to give

i-w*5 +w*4 + __ * 1 (.6

27 3[1 + iw*T]

or

6 2k* + 9k* + 6k* 2 +1= w* = 1 + 3 12 (4.17)

The tips of the tentacles in figure (4-16a) are the locations are the values f =

w/27r = ±4.1914(1 ± i) 1/s found for the negligible surface normal viscosity, -'. As

this value increases, all roots of the equations 4.16 or 4.17 converge to (f = 0, k = 0).

The values of (f, k) satisfying equations 4.16 and 4.17 do not represent physical or

stable modes themselves - all have either Real(k) < 0. Imag(k) > 0 or Imag(f) > 0.

These resonance events do, however, effect physical modes. We see this, for example,

when we examine the group speed of non-decaying waves governed by Kelvin's rela-

tion. The dip near 4 Hertz, we see in figure 4-17 is actually an avoided crossing. This

is a real physical phenomenon and has been measured experimentally. Thus, physical

and stable waves in the neighborhood of resonance point (w, k), which itself may be

representative of a non-physical or unstable wave, still feel its effect.

In figure (4-18) we see how the increase of the value of -' affects the complex values
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Figure 4-17: Group velocity, A versus frequency, f, calculated by Kelvin's dispersion
relation for "capillary-gravity" waves travelling at an air-water interface.

of k and w/27r. The greatest effect of o' on these parameters occurs in the range

10-4 < a- < 100. In this range, the introduction of a' results in modal resonance for

increasingly small waves with a minimum length of A = 5.7 cm for water corresponding

to Real(k) ~ 110 1/m. Concommitantly the frequency increases to nearly 5.5 hertz.
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(resonance) for water for variation of -' in Kelvin's dispersion relation.

4.3.2 Lamb's relation: effect of viscosity on capillary-gravity

resonance

Lamb's dispersion relation adds the effect of viscosity to Kelvin's relation and thus

provides a mechanism for the decay of the surface waves.

24 (A)2
W2 +4 _

P
k2m (m - k) = gk + -k 3

P
m 2 = k 2 +

%WP
AL

(4.18)

The solution to

A = 0 (4.19)B5 0
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for Lamb's relation is not closed form. These equations were solved numerically as

described in Appendix A.

The interesting result is that viscosity, p has absolutely no effect on the location

of the resonance points in (w, k) space. Note figures (4-19) and (4-20). There is no

variation of resonance point position for variation of p and exactly the same variation

of resonance point position for variation of -' as with Kelvin's relation. (The scatter

at each location is a result of the error bounds set in the numerical programs. ) As we

will confirm with our examination of Lucassen's relation, Kelvin's relation completely

describes capillary-gravity resonance.

-

Lamb rlaton for vaiation of = [0.5 0.75 1.0 1.25r10-3

4

3 -

2 -

0 -

3-2

4-

- - -3 -2 - 0 1 2 3 4 5
reaiQl Hz

Figure 4-19: Location in f space of gravity-capillary
water for variation of p by Lamb's relation.

root coalescence (resonance) for
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Figure 4-20: Location in f - k space of gravity-capillary root coalescence (resonance)
for water for variation of -' for values of positive k by Lamb's relation.

4.3.3 Lucassen's dispersion relation: effects of an elastic film

at the surface

Figure 4-21: A closeup view of two capillary-dilational resonances and one capillary-

gravity resonance in the projection of the the solution space of Lucassen's dispersion

relation in w - k space.
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We now come to Lucassen's dispersion relation which adds the effects of elasticity

and normal and transverse shear viscosities at the surface:

A = [p-(k - m) - f'(k -- M')]2 + E - S = 0, (4.20)

E = - + i [- (k + m) + p'(k + m')],

ak_ p_ ) _ w( p + p')S = + i [p( k +,m) + p'( k + m')] + CAk

m2 =k2+

With the addition of elasticity in the dispersion relation, dilational wave modes

appear. Two types of resonances are now possible: gravity-capillary resonance and

capillary-dilational resonance. Gravity-dilational resonance does not appear to occur.

In figure (4-21) we can see both types of resonances occuring. The gravity-capillary

resonance stretches the solution space far more than the capillary-dilational reso-

nances. Thus the effects of gravity-capillary have a much wider neighborhood of

influence. This implies that for capillary-dilational effects to be important in experi-

mental and field measurements, these resonances will need to occur very close to the

real w and k axes in w - k space.

To get a physical picture of how surface tension, a,, transverse shear viscosity, a',

dilational elasticity, c0 , longitudinal apparent shear viscosity, E', and bulk viscosity,

p effect the location of capillary-dilational resonance in (f = w/27r) - k space, we

examine a fluid with the same bulk properties as water, p = 1000 kg/M 3 and p = le-3

kg/ms.

Beginning with the effect of surface tension, we consider a film covered fluid in-

terface with p = 1000 kg/m3 , t = 1e- 3 kg/ms, c, = 10e- 3 kg/s 2 and c' = le-7

kg/s. Surface tension, a, was varied over the range [10 50 100] e- 3 kg/s. Examining

figure 4-22, we see that the gravity-capillary resonance points are visible near 4 hertz.

Three capillary-dilational points appear between 4 and 9 hertz. The locations of these

points are sensitive to surface tension, and a reduction in ao causes them to approach

the real f = w/27r and k axes .
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Figure 4-22: Location in f and k spaces of gravity-capillary and capillary-dilational
root coalescences (resonance) for a visco-elastic fluid for variation of surface tension,
UO.

Variation of dilational elasticity has the opposite effect as surface tension, increasing
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Figure 4-23: Location in f and k spaces of gravity-capillary and capillary-dilational
root coalescences (resonance) for a visco-elastic fluid for variation of dilational elas-
ticity, E".

6, causes the cap-dil resonance points to approach the real f = w/27r and k axes and

converge toward the origin

Similarly to dilational elasticity, an increase of apparent dilational surface viscos-

ity, e', causes the cap-dil resonance points to approach the real f = w/27r and k axes
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and converge toward the origin.
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Figure 4-24: Location in f and k spaces of gravity-capillary and capillary-dilational
root coalescences (resonance) for a visco-elastic fluid for variation of apparent dila-
tional surface viscosity, E'.

Note that in all of the figures in the section, the location of resonance points cor-

responding to gravity-capillary resonance (near 4 Hertz) is invariant with respect to

parameter variation. There is no effect of surface elasticity or viscosity on gravity-

capillary resonance and thus we can study this phenomenon simply by Kelvin's rela-

tion.

4.4 Effects of resonance

In section 4.2, resonance was described by coalescence between two roots of the dis-

persion relation. As will be presented below resonance affects modal group velocities,

the transverse wave energy spectrum and can result in bifurcations of the wave modes.

4.4.1 Group velocity

There are three quantities for wave modes, the group velocity, Cg, and the spatial,

k1, and temporal, w1, damping coefficients which determine how the wave amplitude
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diminishes in space and time, respectively. We have already seen that there are

peaks and troughs of the damping rates near resonance, now we look at the effect of

resonance on the group velocity.

The group velocity for fluid waves is defined as

BO
Cg =

ak
(4.21)

For gravity-capillary waves, it can be calculated from Kelvin's relation

A= O= -W2 + kg + u
p

Taking the partial derivative by k of each term in this equation we have

0 = -2w
ok

uk 2

+ g + 3
p

wave speed

10 20 30
f(Hz)

40 50 60

Figure 4-25: Group velocity, !, versus frequency, f, of capillary-gravity waves by

Kelvin's relation.
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which can be rearranged to give

Bo1g + 3
w = 1 (4.24)

ok 2 W

or, in terms of the dispersion relation,

aw 1aA 1
-- = - - - -. (4.25)
ak 2 o8k w*

As the conditions for root coalescence are defined by

OA
A = 0 = 0 (4.26)

ak

then at resonance, the group speed of the waves

Cg 0. (4.27)
9k

is zero.

We see this effect in the plot of group speed versus frequency for undamped

capillary-gravity waves traveling at an air-water interface. The dip near 4 Hertz is

due to resonance between the capillary and gravity modes at k = ±212.08i 1/m and

w/27r = ±4.1914(1 ± i) 1/s. The group velocity is approaching zero. These waves

are produced for physical conditions in the neighborhood of resonance conditions and

thus experience a reduced group velocity.

When there is capillary-dilational resonance as well as gravity-capillary resonance,

we can expect to see two dips in the plot of group speed versus frequency as shown

in figure 4-26. This figure also displays curves for an air-water and and air-viscous

bulk fluid interface which have only a single dip corresponding to gravity-capillary

resonance. The viscoelastic interface has the same values for the rheological param-

eters as given in section 4.2.2, o-, = 27.7 x 10-3 kg/s2, .' = 0.542 x 10-5 kg/s,

CO = 59.1 x 10- kg/s 2 ,e' = -70.4 x 10- kg/s, p = 940 kg/M 3 and v = 14.1 x 10-6

m2 /s. The air-viscous bulk fluid interface shares these values as well, but with no
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Comparison of group speeds for undamped capillary waves at an air water and at a viscoelastic interface
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- - air-viscous bulk fluid interface
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Figure 4-26: Comparison of group speed, , versus frequency, f, of "capillary-
gravity" waves at air-viscoelastic (Lucassen's relation), air-viscous bulk fluid (Lamb's

relation) and air-water (Kelvin's relation) interfaces.

surface elasticity or viscosity. The air-water interfacet is only dependent on surface

tension, Oo = 72.7 x 10-3 kg/s 2 , and density, p = 1000 kg/m 3 .

In comparing the curves in figure 4-26 of group velocity versus frequency for the

visco-elastic and air-viscous bulk fluid interfaces to that of water, we see that there is

a diminuation of the group speed for frequencies greater than 5.5 Hertz. Because the

surface tension of this fluid is relatively smaller to that of water, the location of the

gravity-capillary root coalescence point is closer to the real frequency axis and thus

its effect on neighboring frequencies is larger.

Furthermore, the curve for the visco-elastic interface has two dips. The first dip

occurring near 4 Hertz corresponds to resonance between the capillary and gravity

modes. The second dip occurring near 5.5 Hertz corresponds to resonance between

the capillary and dilational modes. The single point near zero is a numerical artifact.

Thus both modal resonances causes a dips in the group velocity.
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4.4.2 Energy spectrum

The effects of resonance can also be seen on the transverse wave energy spectrum. A

good demostration of this is a measured wind-wave energy spectrum. These spectra

show the amount of transverse wave energy at each frequency transported down-

stream of some forcing location. Figure 4.4.2 shows four plots taken from a study by

Huhnerfuss et al. (1985) in which wave spectra for clean water and for water with

various surface films were developed by wind forcing on a flume.
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Figure 4-27: Wind-wave spectra for clean water and four surfactants on water from
a study by Huhnerfuss et al. , 1985.

In every plot, both for the clean water and surface film spectra, there is a dip near

4 Hertz corresponding to capillary-gravity resonance. This dip shows that there is less

energy transported down flume at this frequency than at its neighboring frequencies.

The spectrum for OLA has a clear double dip, one near 4 Hertz and another near 6

Hertz. The second dip corresponds to capillary-dilational resonance. The spectrum
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for PME has a very large dip extending from 4 Hertz to 6 Hertz. This can have two

meanings. The location of the gravity-capillary root coalescence point is dependent

on surface tension, a significant decrease in surface tension can increase the effect

of gravity-capillary resonance on the group speed for nearby frequencies. A second

possibility is that this surfactant has properties whereby several capillary-dilational

resonances happen in the 4-6 Hertz range. This is also possible. The other two sur-

factants studied by Huhnerfuss et al. do not appear to introduce conditions conducive

to capillary-dilational resonance.

4.4.3 Mode bifurcation

Gravity-capillary resonance is accompanied by a bifurcation of the gravity mode below

4 hertz into two inadmissible modes above 4 hertz and a unification of two inadmissible

modes below 4 hertz into a capillary mode above 4 hertz.

Figure (4-28) is a simple illustration to demonstrate approximately when each

of the five wave modes is admissible Re(k) > 0. Below approximately four hertz for

common rheological conditions, there is generally one dilational and one gravity wave,

and above four hertz, there is generally one capillary and one dilational wave.

Admissibility, Re(k) > 0, does not also imply stability, Im(k) < 0. The dilational

wave is not always stable below four hertz for fluid interfaces of common rheology

and thus it is generally only the gravity mode which is apparent. In this case, all of

the wave energy travels in a gravity mode below 4 hertz and in both a capillary and

a dilational mode above 4 hertz. This means that below 4 hertz, all of the energy

travels as a transverse wave and above four hertz only some of the energy travels as

a transverse wave. As it is only the transverse wave component which is measured

with a wave gauge, necessarily, there will be a dip in the wave spectrum when modal

bifurcation occurs. Thus the dip at 4 hertz is a function of modal bifurcation.
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Figure 4-28: A rough sketch of dependence of the admissibility of the five wave modes
on frequency.

4.5 Comparison of wave mode resonance to vibra-

tion absorption

There is a very strong parallel between the redistribution of energy between coupled

interfacial fluid wave modes due to mode coalescence and the redistribution of energy

between coupled oscillators in mechanical systems due to vibration absorption at

natural frequencies. Both systems experience a decrease in the amplitude of the

motion of one mode (or mass-spring system) with an increase in the amplitude of the

motion of the coupled secondary mode (or mass-spring system).

In a mechanical system, a secondary mass-spring system is often used to absorb

energy at the natural (resonant) frequency of the primary system. Figure 4.5 shows

a vibration absorber coupled to a primary system.

Following the development in Rao (2004), the primary system has an equation of

motion,

mifi + ki 1x = F sin wt. (4.28)
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Figure 4-29: Undamped dynamic vibration absorber, m 2 - k2, coupled to a primary
oscillator, m, - k1 . The secondary system reduces the vibratory response of the
primary system at its natural frequency.

When the vibration absorber is added, the equations of motion become,

mifi + kixi + k2 (Xi - x 2 ) = F, sin wt

m 2Y2 + k2 (X2 - X1 ) = 0. (4.29)

Assuming harmonic solutions,

Xj (t) = Xj sin wt j = 1,2 (4.30)

the responses of the two oscillators are found to be

X1

st

X2 _

[1+

1k()212

E l

(4.31)
+_z_ fw\ L 2 [1 _(w\ 21Zka
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where

Fo ki 1/2 k2 1/2
6st = - Wi = - W2 = (4.32)

If the the absorber is designed so that

W2 = Wi, (4.33)

then the amplitude of the vibration of the machine operating at its natural frequency

will be zero.

Figure 4-30 shows the difference in the response of the primary system with and

without the absorber. The green line shows the response to periodic forcing of the

primary system without the absorber. The blue line shows the response of the primary

system with the coupled absorber and the red line shows the response of the absorber

to the periodic forcing. The effect of the dynamic absorber at the system is to

redistribute energy from the primary system to the secondary system at the natural

frequency of the primary system, w0. At frequencies much smaller or greater than

this frequency, the effect of the of the dynamic absorber on the primary system is

negligible. At the natural frequency of the primary system, the effect is to reduce the

response from infinite to zero. Near the natural frequency, there are now two new

resonant peaks of response, one at a slightly higher and the other at a slightly lower

frequency.

Like coupled fluid wave modes, a measurements of the response of only the primary

oscillator in the mechanical system will show a dip at the resonant frequency of

vibration absorption by the secondary oscillator.
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Figure 4-30: The ratios of the dynamics to static responses of the primary system,
X0 /3Jt, primary system with vibration absorber, X 1/68 t and secondary system (vi-

bration absorber), X1/6Jt versus the ratio of frequency to the natural frequency of

the primary system, w/w 0 .
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Chapter 5

Experimental measurements of

viscoelastic capillary waves

In the preceding chapters, wave mode resonance was described analytically and its

dependence on surface rheology characterized numerically. In the following chapters,

it is shown how resonance phenomena manifest themselves physically.

Experimental demonstration of resonance requires measurements of waves at a

visco-elastic interface and either good fortune or a foreknowledge of which two-fluid

systems possess the interfacial rheology for conditions amenable to measuring reso-

nance phenomena.

While there is a great body of literature wherein are published rheological param-

eters for two-fluid systems, finding a complete set of these parameters in the 3-11

hertz range (where resonant behavior is expected) proved extremely difficult. This

limited any foreknowledge of conditions amenable to resonance to the very few fluid

systemss for which published wave data showed evidence of resonance phenomena.

We found only two such data sets. We used the same fluid as one of the published

data sets, and made our own measurements successfully showing the effects of both

gravity-capillary and capillary-dilational resonances.

In an attempt to find additional fluid systems which might provide amenable con-

ditions for measuring resonance phenomena, we developed an inverse method whereby

the rheological parameters describing the visco-elastic interface are found from wave
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data. In addition to its usefulness in studying resonance, the inverse method provided

a powerful tool for determining all surface rheological parameters simultaneously at

the low end of the frequency spectrum where information about surfactants at the

ocean surface would be most needed. With a complete set of rheological parameters,

we could use our analysis in chapter 4 to determine if resonance phenomena would be

discernable for accessable experimental conditions. We applied the inverse method

to experimental measurements several fatty acids monolayers on distilled water with

mixed results for showing resonance.

Chapter 5 dicusses the methodology of obtaining wave measurements and presents

the results for three different two-fluid systems. Chapter 6 presents the inverse method

and its application to the experimental measurements. Chapter 7 presents experimen-

tal evidence of wave mode resonance phenomena.

5.1 Literature review

The earliest measurements of ripples (capillary waves) appears to be by Lord Rayleigh,

(Thompson, 1871) for the determination of surface tension. This method used a stro-

boscope to measure the lengths of the waves and then employing these measurements

in Kelvin's dispersion relation, determined the surface tension. Measurements of cap-

illary waves for this purpose and using similar methods continued with Dorsey (1897),

Watson (1901), Brown(1936), etc. Brown's measurements are particularly interesting

because they give the damping coefficient of capillary waves on distilled water. Data

of wave damping coefficients and wave numbers are rare.

A few other authors who made measurements of wave number, spatial damping

coefficient or wave velocity are Goodrich (1961), Mann & Hansen (1963), Garrett

(1963), Lucassen & Hansen (1967) and Bock (1987). These authors largely used laser

slope meter or electrical potentiometers to measure the wave characteristics.

Experimental measurements of frequency and temporal damping coefficient were

made by Hoard and Neuman (1986) and Earnshaw et al. (1988) using light scattering

techniques.
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Bock (1987) and Hiihnerfuss (1985) had experimental wave data which showed

the effects of resonance.

Measurements of rheological parameters are wide spread and use a variety of tech-

niques. It is worth noting that only light scattering techniques return a complete set

of parameters simultaneously (without having to resort to more than one measure-

ment technique to get them). Light scattering has, however, two drawbacks: one, it

uses an approximation of the dispersion relation to determine the parameters; and,

two, it only gives information rheological behavior at high frequencies. As rheology is

frequency dependent, this means that this information is not useful for understanding

rheological behavior at the low frequencies we are interested in studying.

There are several methods by which which the parameters we measure may be

obtained. The Gibb's or static elasticity is generally measured by use of a Langmuir-

Blodgett trough (Langmuir, 1917, Adam, 1922, Adam & Jessop, 1926, Adam &

Harding, 1932). When the barrier is oscillated dynamically, this method estimates

the dynamic elasticity.

Complex elasticity combining elastic, relaxational and viscous effects has been es-

timated using surface wave methods. Generally when capillary wave methods (both

mechanical and electrocapillary) are used, the relaxational and viscous effects are

ignored (Bock, 1987, Jayalakshmi et al. 1995, Giermanska-Kahn et al. , 1999). Lon-

gitudinal wave methods use an approximation to the dispersion relation for this wave

mode and relate longitudinal wave characteristics to the complex elasticity (Mass &

Milgram, 1998, Liu & Duncan, 2003). Light scattering methods observe both lon-

gitudinal and transverse waves (dilational and capillary) and related the scattered

intensity and frequency to a computed power spectrum of the waves. This power

spectrum is related to the dispersion relation of the waves and from this the var-

ious rheological parameters are estimated. Authors employing this method include

Langevin & Griesmar (1980), Langevin (1981), Hoard and Neuman (1986), Earnshaw

& McGivern (1987) and Earnshaw et al. (1988). Other authors used the oscillating

bubble method (Wantke et al. 1998).

The inverse method we developed is capable of determining the surface dilational
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elasticity, surface normal shear viscosity and an apparent viscosity combining the

surface relaxational elasticity, surface tangential shear viscosity and surface tangential

dilational viscosity simultaneously at the low frequencies found for ocean waves.

5.2 Description of experimental set-up

5.2.1 Laboratory equipment

Measurements were taken of planar capillary waves travelling at water-air interfaces

with monolayers of myristic and palmitic acids and at an air-pentaerithritol ester

interface with the aid of laser slope meters, a method pioneered by Sohl et al. (1978).

Wavelength and damping ratio were measured in the 3-10 Hertz frequency range.

The experimental set-up included a polyeurithane tank and lid with optical glass

inserts with optical coatings to account for the index of refraction between glass and

air. This tank was supported by four legs on an optical mounting plate. The mounting

plate was suspended on a Bosch frame that rested on a vibration isolation table. The

table was not floated using its pneumatic system as this would produce seiching of

the liquids in the tank. The benefit of the vibration isolation table was weight - at

500 pounds, most high frequency vibrations in the floor were damped out.

On the optical mounting plate were optical equipment rails by which two helium-

neon can lasers on kimball mounts with positioning micrometers could be positioned

along the length of the tank. The kimball mounts together with the positioning

micrometers and the optical rail allow for two-dimensional lateral positioning and

three-dimensional angular positioning.

Above the tank was mounted an upside down rail on which was attached two

position sensing diodes (PSD's) on kimball mounts with positioning micrometers.

Waves were produced at one end of the tank by a polyeurithane blade nearly the

width of the tank with a 45 degree triangular cross section. The blade was forced

by an audio speaker to which was attached a cigar tube stabilized by a ring of balsa

wood. The audio speaker was mounted independently of the Bosch framing and the
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isolation table to insure that no mechanical vibrations affected the measured signal.

Figure 5-1 shows the tank, wavemaker and optics measurement system.

PSD2 PSD1

FROM
COMPUTER

Figure 5-1: The tank, optics and wavemaker set-up.

The audio speaker was driven by a signal from a lock-in amplifier routed through

an audio amplifier by which its amplitude was controlled.

The two PSD's captured the laser signals and transmitted via two currents to

a combiner box which combined the two current signals and sent them to a PSD

amplifier which converted the current signal to two voltage signals. This signal was

then routed through an oscilloscope to the lock-in amplifier for analysis. The results

of this analysis were then downloaded to a computer.

Figure 5-2 shows the route of the data signals from the PSD's to the combiner

box, PSD amplifier, oscilloscope, lock-in amplifier and computer. It also show the

signal from the lock-in amplifier to the audio speaker.

The wave signal is captured as follows. First the lasers are aligned so that their

beams pass through a small pinhole at the emission point of the laser, the optical

glass in the bottom of the tank, the fluid in the tank and the optical glass at the top

of the tank, finally impinging on the PSD surface where they are reflected and pass

back through all of the above media until the return beam comes back identically to

the pinhole. The lasers are focused on the PSD surfaces.

When a wave travels down the tank, the laser beam is refracted. This refraction
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PSD 2

Figure 5-2: The signal routing from the PSD's to the combiner box, PSD amplifier,
oscilloscope, lock-in amplifier and computer.

causes the beam to describe a sinusoidal excursion on the face of the position sensing

diode as depicted in figure 5-3.

The PSD consists of a photo-sensitive silicon diode wafer which acts as a variable

resistor. The laser impinging on the surface acts as a voltage, the lengths of the PSD

from the point of impingement to the two ends provide variable resistance resulting

in two currents, C1 and C2 as shown in figure 5-4.

The PSD circuitry then combines these currents so that

I C1 - C2
I1= .0+0 (5.1)2 C1 + C2*

The signals from each PSD are eventually routed to the lock-in amplifier where

they are analyzed. The phase lock-in amplifier has multiple functions in this exper-

imental set-up. It both provides an oscillatory signal (oscillatore out) which drives
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II LASER

Figure 5-3: Refraction of the laser beam by the passing wave.

Cl C2

LASER

Figure 5-4: PSD operation. The impinging laser beam causes two currents on the

variable resistance photo diode detector. The variable resistance is due to the differ-

ence in distance from the laser beam to each of the two ends of the detector.

the wavemaker speaker and extracts signal phase and magnitude information at the

same frequency as the oscillator out signal.

The lock-in amplifier uses a combination of digital and analog technology for

extremely low-noise analysis. A block diagram of this instrument is shown in figure

5-5.

In addition to the wave measurements, surface tension measurements were taken.

The measurements were made with a Wilhelmy plate suspended from a high precision

balance. The Wilhelmy plate is a small platinum blade which can be attached at one

end to a wire. Surface tension is calculated from the maximum force required to
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Figure 5-6: Wilhelmy plate - balance set-up.
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Figure 5-7: In-situ Wilhelmy-Blodgett trough
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5.2.2 Extra-laboratory measurement equipment

The laboratory set-up did not include equipment for measuring density or viscosity,

nor surface tension as a function of temperature. Measurements of these quantities

were made in two other laboratories on campus.

Density was calculated from the specific gravity of the fluid. The specific gravity

of the sample was determined using a 10 mL glass pycnometer or specific gravity

bottle (Kimble Glass, Inc., Vineland, NJ). This device consists of a small spouted

beaker outfitted with a thermometer cap. The beaker is weighed when empty, when

filled with distilled water and when filled with the bulk fluid. The fractional weight

of the fluid with respect to that of the distilled water gives the specific gravity of the

fluid from which the density is easily calculated. The beaker containing the water

and the bulk fluid was heated in a water bath to give the specific gravity of water at

a variety of temperatures. The spout allows the excess fluid to escape as it expands

with temperature, keeping a constant volume for both water and the bulk fluid in the

beaker.

Figure 5-8: Pycnometer.

Dynamic viscosity measurements were made with the aid of a rheometer. The

fluid is placed in the gap between two circular plates one of which rotates (usually

the upper plate). From a measurement of the torque, T and the angular velocity y
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one can find the viscosity

T/27rR3  dIn (T/27rR3)
V) = .- 3+ din. (5.2)

where R is the radius of the circular places and ' = wR/H is the angular velocity

of the upper disk with a separation distance of H.

Figure 5-9: Rheometer.

Temperature dependent measurements of surface tension were made with a Kruss

K11 tensiometer (Kruss USA, Charlotte, NC) and a platinum Wilhelmy plate. The

plate was brought in contact with the sample and the surface tension determined

from the resulting force, which is measured by a high-precision force balance. The

temperature of the sample was regulated by a sample jacket through which water

was pumped from a thermostatically controlled Neslab Model RTE-211 water bath

(Neslab Instruments, Inc., Newington NH).
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5.3 Description of experimental and data process-

ing methods

5.3.1 Serial communications with the lock-in amplifier

The functions of the lock-in amplifier are controlled via serial communications with

a PC. A program was written in C++ to control a multitude of functions. It

" starts and stops the wave maker

* sets the amplitude and frequency of the oscillation of the wave maker

" sets time length of data acquisition for each channel (data from two PSD's)

" sets which types of data will be downloaded

" downloads lock-in data to PC

The amplitude of the wave maker is further modified by the stereo amplifier.

The time length of data acquisition for each channel refers to the need to switch

from channel A (PSD 1 data) to channel B (PSD 2 data) . The lock-in amplifier is

unable to take data at both channels simultaneously, so data is taken at the upstream

location (PSD 1) first, and then the downstream (PSD 2) location. The total length

of time for data acquisition is less than the time before reflection of the wave from

the far end of the tank returns the wave to the downstream location (PSD 2).

Early experimental measurements used this PSD switching technique to take data.

Later measurements were made without switching channels. These data sets were

aquired by taking data at a single location with a PSD/laser combination and then

moving the combination to a different location and taking data there.

The lock-in amplifier has 20 different options for data taking. Four of them are

employed in our experiments: signal magnitude, signal phase, sampled signal from

PSD1, sampled signal from PSD2. The signal magnitude and phase are the lock-in's

analysis of the sinusoidal signals from the two PSDs. The sampled signals are 200

hertz samples of each of the PSD signals.
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5.3.2 Analysis of data

The transverse waves produced in the tank refract the laser beams, the excursion of

the incident beam on the position sensing diode results in a current which is translated

into a voltage signal and fed into the lock-in amplifier. The lock-in amplifier both

samples this signal and using its internal circuitry, calculates its magnitude and phase.

A typical sampled signal is shown in figure 5-10.

signal amplitude versus timne

3260

3240

322

S320

318

316

3140 10
seconds

1

Figure 5-10: Sampled voltage signal in ten thousandths of a volt versus time in

seconds.

To verify that the lock-in's magnitude and phase outputs were correct, sampled

signals were analyzed via a signal processing program written in Matlab and the

magnitude and phase of the signal relative to the wave maker motion were determined.

The lock-in magnitude and phase outputs well matched the results from the signal

processing.

121

111=1 I M



5.3.3 Analysis of magnitude and phase data

Data collation

For every wave frequency measured, the lock-in amplifier produces data curves of

magnitude and phase versus time. The magnitude, phase and sampled signal data

for each of these measurements is downloaded to the PC. For early experimental runs

which use the channel switching technique, these data appear as the do in figure (5-

11) with the first level after two seconds corresponding to the magnitude or phase of

the signal at PSD 1 and the second level corresponding to the magnitude or phase

of the signal at PSD 2. With later runs that used the single channel technique, the

data appear as they do in figure (5-12).

For any given data curve of wave number or damping coefficient versus frequency,

there are two hundred odd PSD signal measurements which must be taken. This

corresponds roughly to 65 or 70 frequencies, with three measurements taken at each

frequency for repeatability. These data are analyzed by a series of Matlab programs

as described in appendix A.1. The first set of programs extracts an average magnitude

and phase from each of these data sets for each of the PSD locations. The second set

of programs collates the magnitude and phase versus frequency data and calculates

wave numbers and damping coefficients.

Obtaining wave number and spatial damping coefficient data

The wave number, kR, is obtained from the phase difference between the two PSD

signals,

kR=(2 - #1) _ (n -M)
(x 2 - x 1 ) (x 2 -x 1 ) (

where the phases, q, at each PSD location, x, are

1 = kRxl + n27r

02 = kRx 2 + m27r. (5.4)
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Figure 5-11: Sampled signals, magnitude and phase versus time, for myristic and

palmitic acid data sets

where m and n are the winding numbers corresponding to the number of cycles the

waves have passed through travelling from the wave maker to the sensor location.

These values must be estimated if the first sensor lies more than one wavelength

away from the wave maker. This is done by assuming an unbroken phase curve

with increasing frequency. This will, indeed, be the case unless the mode of energy
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signal magnitude versus time
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Figure 5-12: Sampled signals, magnitude and phase versus time, for Hercolube C
data sets.

transport changes from one wave mode to another. This would be equivalent to the

case of a branch cut being passed in the dispersion relation solution space. When this

happens, the two modes will separate and a factor of ir must be added or subtracted

from the expressions in equations 5.4.

The spatial damping coefficient, k1, is obtained from the amplitude variation
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between the two PSD signals,

= in A 2/A 1

(X2 - X1 )

where the amplitudes, A at each PSD location are

A1 = Ae--kix1

A 2 = Ae-k 1x2

(5.5)

(5.6)

(5.7)

where A, represents the capillary wave amplitude at the wave maker.

The wave number and spatial damping coefficient are calculated for each fre-

quency's magnitude and phase data and all of these values are collected into the

single data curves of sections 5.5.1, 5.5.2 and 5.5.3.

5.3.4 Calculating group velocity from wavenumber measure-

ments

Group velocity, C is defined as

aw
C9 = O (5.8)

When the frequency spacing of the data is fine compared with the scale of the effect

of resonance on the group velocity, the group velocity can be adequately calculated

numerically between either adjacent points

(5.9)w(n + 1) - w(n)
k(n + 1) - k(n)'

or, between sets of three points

C w(n +1) - w(n - 1)
S -k(n +1) - k(n - 1)'

(5.10)

When the frequency spacing is not very small with respect to the scale of resonance
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effects, it is necessary to first fit a polynomial through the wave number data

kR = alwk +a 2W-i ...aOikR +ao (5.11)

and then to differentiate this polynomial to obtain an estimate of the group velocity.

This method gives a somewhat limited accuracy for demonstrating resonance effects

associated with the group velocity as the order of the polynomial will affect the

curvature of the wave number estimate and will thus affect the appearance of the

dips in group velocity curve associated with resonance.

5.3.5 Surface tension measurements

As described in section 5.2.1 platinum Wilhelmy plate is brought into contact with

the fluid surface. Surface tension is calculated from the maximum force required to

detach the blade.

_gm

WO (5.12)
2L

where ao is surface tension, g, gravity, m, the mass measured by the balance and L

the length of the plate.

5.3.6 Calculating static elasticity from in-situ Wilhelmy-Blodgett

trough measurements

Elasticity is defined as

du0Sdu. (5.13)

The Wilhelmy-Blodgett trough measurements give us surface tension, cO, in an

ever decreasing trough area, A. There are only a few measurements and the scatter
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of the data requires that we fit a polynomial through the data

o = aiAa + a 2Aa-1 ... a,_1 A + a,3 (5.14)

and differentiate this polynomial to obtain an estimate of the static elastic modulus.

5.4 Data quality and modulation of measured sig-

nal due to the dilational wave mode

5.4.1 Data modulation

Because each of two wave mode, capillary and dilational has a transverse component,

measurements of transverse waves will show capillary wave characteristics modulated

by the dilational wave mode. This can be readily seen in the wave slope, damping

coefficient and wave number spectra as seen in figures (5-13) and (5-14), respectively.

7000

a"0

SM0

14000

000
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1000

VMVO slope fMW-CY SP--t-

000 0?00000 0000 00 000000

3 4 S 6 7
Hz

8 9 10 1

Figure 5-13: Wave slope spectrum, signal magnitude versus frequency, with modula-

tions apparent at the higher frequencies. This figure was constructed from data taken

at a single location for 3.5 - 10.5 hertz waves.
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Figure 5-14: Damping coefficient, kj, and wave number, kR, versus frequency, f =

w/27r, data with modulations apparent at the higher frequencies. These figures were
constructed from data taken at three locations for 3.5-10.5 hertz waves.

The spacing of the oscillations is dependent on the placement of the sensors. This

phenomenon can be elucidated by the following calculations.

Both the capillary and the dilational wave modes have transverse and dilational

components. A wavemaker oscillating at a single frequency will produce both wave

modes. The combined surface displacement, r, can be most easily represented as,

r7 = Ae-"ei(kAx+wt) + Be-exei(kBX-Wt)
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= [Ae-axei(kAX) + Be-x ei(kBX)] eiWt (5.15)

where A and B are the amplitudes, a and 13 are the spatial damping coefficients, and

kA and kB are the wave numbers of the two wave modes. Let the A wave correspond

to the capillary mode and the B wave correspond to the dilational wave mode.

If we take the fast fourier transform (FFT) of this wave, we can extract the

magnitude, IMI, and phase, <), of the bracketed expression in equation 5.15.

Letting

A = Ae-cx (5.16)

B = Be-x (5.17)

the magnitude squared has the form

|M 2 = [A cos(kAx) + Bcos(kBX)] + [Asin(kAX) + fsin(kBX)2

SA 2 + 3 2 + 2Af cos(kAx) cos(kBx) + 2AB sin(kAX) sin(kBX)

A 2 + f 2 + 2AB cos(kA - kB)x. (5.18)

Defining 6 = B/A, this expression simplifies to

Mi 2 = A 2 (1 + c2 + 2Ecos(kA - kB)XI (5.19)

At the lowest oder of c the magnitude becomes,

|MI = A[1 + c cos(kA - kB)x] (5.20)

and we see that the apparent magnitude of the signal is the magnitude of the primary

wave form plus a sinusoidal modulation whose "frequency" is the location of the

sensor. It is the wave number that varies, not the sensor location. Thus the sensor

location is in a sense the frequency of the sinusoid. The further from the wave maker

the sensor is, the higher the "frequency" of modulation. Thus the modulation has a
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sort of Doppler effect. This modulation is apparent in figure (5-13).

To find the spatial damping coefficient of the waves we need magnitude information

at two locations, x, and x2 :

|MiI = Ce-x1 = O(xi)

IM 2 1 =Ce -6x2 = (X2)

(5.21)

(5.22)

where C and 6 are some general expressions for amplitude and damping.

The damping coefficient is then calculated as

(5.23)In M21 - IMi I

X2~- 1

With the two waves present, the calculation of a damping coefficient is slightly

more complicated. The squared wave magnitudes at the two locations are composites

of both wave modes are

M1=2 A2 (Xi) 1 + 61 + 2e1 cos(kA - kB)xl]

M2|2 A 2 (x 2 ) [1+ E + 2E2 cos(kA

Noting that

InIM12 = 2lnjMI

InIM 2 1 - lniMi! = ln Il 2!
il 1!

In M212 - In IM1 2 = 2 l1n !M = 2 [ln IM21 - lnAM1]
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(5.24)

(5.25)

and

(5.26)

then

(5.27)

(5.28)



so that the apparent damping coefficient, let's call it -- y, is:

-[InM212 _ In M112 (5.29)
X2 - X1

(I M212/I 12) (5.30)
2(x 2 - X1 )

1 A2(x2) [1 + 62 (X2) + 2E(x 2) cos(kA - kB)X1
-in (31
2(x 2 - xi) A 2 (x1) [1 + E2 (x1 ) + 2E(xi) cos(kA - kB)x1]

1 nA2(x2)
2(X2 - xi) A2 (X1)

1 [1 + 62 (X2 ) + 2e(x2) cos(kA - kB)x1] 1
2(X2 - XI) I [1 + 62 (Xi) + 2e(x1) cos(kA - kB)X1] (5.32)

Since

A2(x2) A2 e- 2ax2 -2a(X2-(.3

A 2 (xl) A2e-2 =)x(

f Be-Ox B __
E= A = Ae-e A (5.34)

equation 5.32 becomes

1
y= ({-2a(x 2 - X1 )

2(X2 -XI)

+ in [1 + e2 (x 2 ) + 2e(X2) cos(kA- kB)x1] (535)
[1 + E2 (X1 ) + 2e(xi) cos(kA- kB)X1] J

1 A12(x2)1
= -- a+ I In

2(x2 - xi) IA2(xI)
1 f [1 + 62 (X2 ) + 2E(x 2) cos(kA - kB)x1] (

+2(X2 - x 1) I [1 + E2 (X1 ) + 2E(xi) cos(kA - kB)Xli (5.36)

= -a+E (5.37)

and we find that the apparent damping coefficient comprised the damping coefficient

of the capillary mode plus an error function that modulates this value.

The error function can be simplified when the relative amplitude of the transverse

component of the dilational wave is small in comparison with the capillary wave so

that c << 1. Then
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-a + 2E2 cos(kA - kB)X2 - 2E, cos(kA - kB)Xl

+ 2 - 2 + 4 cos 2 (kA - kB)x 2

- 4 2cos 2 (kA - kB)Xl (5.38)

Neglecting second order effects

- -a + 2E2 cos(kA - kB)X2 - 261 cos(kA - kB)Xl

= -a + 262 cos [(kA - kB)X1 + (kA - kB)(X 2 - X 1)] - 261 Cos [(kA - kB)X1]

= -a + 2E2 cos [(kA - kB)Xi + b, - 2Ei cos [(kA - kB)X1] (5.39)

where

4 =(kA - kB)(X 2 - X1 ). (5.40)

So, we can see that for a small tranverse contribution of the secondary wave form,,

the spatial damping coefficient for the double wave form is the damping coefficient

for the primary wave plus a sinusoidal modulation with a "frequency" equal to the

location of the first sensor. A sensor at twice the distance of another would have

a frequency of modulation twice as large and, in fact, we see exactly this effect

in our measurements as seen in figure 5-15. In this figure, the top graph shows the

absolute value of an average damping coefficient versus frequency calculated from data

taken at three locations 16, 17 and 18 centimeters from the wave maker, respectively.

The bottom graph shows the absolute value of an average damping coefficient versus

frequency calculated from data taken at three locations 26, 27 and 88 centimeters from

the wave maker, respectively. Note that the ratio of the periods of the oscillation of

.5/.75 is roughly the inverse of the ratios of the distances of the sensors from the wave

maker 17/27. This is exactly what we would expect from our calculations.
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Figure 5-15: The top graph shows an average of the absolute value of the damping

coefficient, Ik I, versus frequency, f, calculated from data taken at three locations 16,
17 and 18 centimeters from the wave maker, respectively. The bottom graph shows

an average of the absolute value of the damping%-veeint, Ik1I, versus frequency,
f, calculated from data taken at three locations 26, 27 and 28 centimeters from the

wave maker, respectively. The inverse ratio of the periods of oscillation corresponds

to ratio of the distance of the sensor locations from the wave maker.

To see the modulation of the wave number calculated from measurements, we

begin with a calculation of the tangent of the phase of equation 5.15 which has the

form

AsinkAx + sinkBx
tanqA cos kAx + B cos kBx.
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sin kAx + Esin kBX

cos kAX + 6 cos kBX

sin kAx

cos kAx

= tan kAxE4

1 + 6 SikBx
sin kAx

1+6 COsk~xL cos kAXJ

(5.41)

which we see comprise the tangent of the phase of the primary wave modulated by

the presence of the secondary wave form. To the first order in E the error function

can be represented as

E 1 + sin kBX cos kBX

sin kAX cos kAx

The apparent wave number is calculated from

k - (x 2 ) - O(xi)
X2 - X1

When the error function is small,

arctan(EtankAx) ~ EkAX

so we can represent the apparent wave number as

(5.42)

(5.43)

(5.44)

k E 2 kAX 2 - ElkAx1

x 2 - X1
_kA

= kA (E2x 2 - Ex 1 )
X2 - X1

kA sin
= E2 sin

X2 -X1 s

( sin kBx1

sin kAxI

= kA{ 2 X1+62
x 2 - x1

x1
- 6 X

UBX2

OAX2

cos kBx1

cos kAx1i

sin kBx2

sin kAx2

sin kBx1

sin kAx1

Xi

cos kBx 2

cos kAx 2 )

cos kBx1

cos kAx1 ) }
and we see that the apparent wave number, k, is a combination of the primary
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wave number, kA, and a sinusoidal function which can be seen in figure (5-14). In

this figure, the sensor positions x, and x2 are close together (approximately one

centimeter) and the modulations in the wave number are very apparent. When the

sensors are much further apart (approximately ten centimeters), the modulations are

greatly ameliorated as seen in figure (5-16).

250

200

100

3 5 6 7 8

wavenumber versus frequency

Hz

Figure 5-16: Average wave number, kR, versus frequency, f, calculated from data

taken at three locations, each ten centimeters apart.

5.4.2 Data quality

Oscillations pose a difficulty for application of the inverse method to surfactant wave

data as will be discussed in chapter 6. However, despite these oscillations, the overall

quality of the experimental data is quite good.

To test this quality, measurements of water waves were taken and the damping

coefficient calculated from these data compared to theory and other published exper-

imental data. As can be seen figure (5-17), our data is significantly closer to theory

than other published data.
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Figure 5-17: My measurements of damping coefficient, kj, versus frequency, f for
water compared to other published experimental data. My measurements are marked
in green and all other authors' measurements in red. The blue line represents the
analytically predicted spatial damping coefficient of pure water.

5.5 Experimental measurements

Having now described in some detail the experimental set up and data processing

techniques, we present the data taken in our laboratory.

Early experiments were done with myristic and palmitic acids surfactant monolay-

ers on a dilute aqueous solution of hydrochloric acid. The bulk fluid was made to be
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a dilute aqueous solution of 0.01 N HCl in distilled water. The surfactants films were

made of myristic and palmitic acids in hexane solutions. The hexanes allowed the the

surfactant solutions to spread across the surface before evaporating and leaving only

the myristic and palmitic acid films. The surfactant solutions were deposited on the

surface with a micro-liter syringe.

Waves were produced in the 2.5 - 10 hertz range in our tank and data sets compris-

ing time records of the wave slope at two locations, 10 centimeters apart, were taken

with the position sensing diodes, PSDs, and the two lasers as described in section

5.2.1. These data sets were processed as described in section 5.3.2 to obtain magni-

tude, phase, spatial damping coefficient and wave number data versus frequency.

With early measurements, we had trouble obtaining good quality damping coeffi-

cient data. Thus the wave data presented for palmitic and myristic acid monolayers

on aqueous solutions is comprised solely of plots of wave number versus frequency.

The wave number data were extremely precise with variation of data from repeated

measurements generally much less than 1 %. Each wave number data curve presented

in this section comes from three measurements taken at each frequency. As the data

have so little variation, the symbols for the data from each measurement at a single

frequency lie virtually on top of each other. Thus the data is presented without error

bars - the error is generally smaller than the size of the symbols. A red line is drawn

through the average wave number values for visual clarity.

Wilhelmy-Blodgett trough measurements as described in section 5.2.1 were also

made for each surfactant.

5.5.1 Palmitic acid monolayers

The palmitic acid solution became a scaly shiny film on the surface. The film ap-

peared to be made of connected individual patches. This may be the reason why the

Wilhelmy-Blogett trough measurements were so discontinuous at different surfactant

concentrations.

Wave measurements were taken for six different film densities (concentrations) of
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palmitic acid monolayers, 52, 39, 31, 26 and 19 angstroms per molecule.
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Figure 5-18: Wave number, kR, versus frequency, f, measurements for waves traveling
on a 0.01 N HCl aqueous solution with a palmitic acid film of concentration 52 square
angstroms per molecule at a temperature of 21.2 *C. The red symbols denote values
of wave number determined from individual measurements. The blue line gives the
average values of wave number for all measurements.
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Figure 5-19: Wave, kR, versus frequency, f, measurements for waves traveling on a

0.01 N HCl aqueous solution with a palmitic acid film of concentrations 39 and 31

square angstroms per molecule, respectively, at a temperature of 21.2 'C. The red

symbols denote values of wave number determined from individual measurements.

The blue line gives the average values of wave number for all measurements.
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Figure 5-20: Wave, kR, versus frequency, f, measurements for waves traveling on a
0.01 N HCl aqueous solution with a palmitic acid film of concentrations 26 and 19
square angstroms per molecule, respectively, at a temperature of 21.2 *C. The red
symbols denote values of wave number determined from individual measurements.
The blue line gives the average values of wave number for all measurements.
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Figure 5-21: Wave, kR, versus frequency, f, measurements for waves traveling on a

0.01 N HCl aqueous solution with a palmitic acid film of concentration 15 square
angstroms per molecule at a temperature of 21.2 'C. The red symbols denote values

of wave number determined from individual measurements. The blue line gives the

average values of wave number for all measurements.
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Figure 5-22: Static elastic dilational modulus estimated from measurements of surface

tension versus surfactant concentration of palmitic acid monolayers on a 0.01 N HCl

aqueous solution made with an in-situ Wilhelmy-Blodgett trough at a temperature

of 21.2 'C.
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5.5.2 Myristic acid monolayers

These monolayers spread very easily and evenly over the surface. The Wilhelmy-

Blodgett measurement was made with a single initial surfactant film concentration

and thus appears continuous with respect to film concentration.

Wave measurements were taken for three different film densities (concentrations)

of palmitic acid monolayers, 36, 29 and 21 angstroms per molecule.
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Figure 5-23: Wave measurements for waves traveling on a 0.01 N HC1 aqueous solution
with a myristic acid film of concentration 36 square angstroms per molecule at a
temperature of 21'C. The red symbols denote values of wave number determined from
individual measurements. The blue line gives the average values of wave number for
all measurements.
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Figure 5-24: Wave measurements for waves traveling on a 0.01 N HCl aqueous solution
with a myristic acid film of concentration 29 square angstroms per molecule at a

temperature of 21'C. The red symbols denote values of wave number determined from

individual measurements. The blue line gives the average values of wave number for

all measurements.
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Figure 5-25: Wave measurements for waves traveling on a 0.01 N HCl aqueous solution

with a myristic acid film of concentrations 21 square angstroms per molecule at a

temperature of 21 C. The red symbols denote values of wave number determined from

individual measurements. The blue line gives the average values of wave number for

all measurements.
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Figure 5-26: Static elastic dilational modulus estimated from measurements surface
tension versus surfctant concentrations of myristic acid monolayers on a 0.01 N HCl
aqueous solution made with an in-situ Wilhelmy-Blodgett trough at a temperature
of 210C.
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5.5.3 Hercolube C measurements

One of the only published data sets showing the effect of resonance on the capillary

wave damping coefficient was taken from wave experiments on Hercolube C (Bock

1991). The effects of modulation in this data set do not appear to be significant.

Unfortunately, Bock did not publish accompanying wave number data. As will be

discussed in chapter (6), this would be very useful for the application of the inverse

method. To get good quality spatial damping coefficient and wave number data sets

simultaneously, we decided to obtain our own sample of Hercolube C.

Hercolube C is a pentaerythritol ester made by the Hercules Chemical Company

which is used as a lubricant for jet aircraft engines. It is not a surfactant. It is

the bulk fluid in the flume and its interface with air is visco-elastic. We model this

interface in the same way as we would one with a surfactant - as a monomolecular

depth interface.

Waves were produced in the 2.5 - 10 hertz range in our tank and data sets com-

prising time records of the wave slope were taken at six locations for three different

decibel settings of the wavemaker. Three of the six locations were upstream, each 0.5

centimeters apart: XO, X1 , x2 , where x1 = xo+.5 cm, x2 = xi+.5 cm = xo+1.0 cm, and

three downstream, each 0.5 centimeters apart: x 3 , X4, X5 , where x3 = x0 +10 cm, x 4 =

X3 +.5 cm, X5 = x 4 +.5 cm = X3 + 1.0 cm. The first downstream location was located

10 centimeters away from the first upstream location.

Like the palmitic and myristic acid data sets, wave number data at a single location

were highly repeatable. Variation was of the order of 1%, smaller than the size of the

symbols. We were able to improve our measurement technique and thus were also

able to obtain good quality spatial damping coefficient as well. The variation of this

data was also of the order 1%, smaller than the size of the symbols.

No Wilhelmy-Blodgett data was taken as this method is only applicable to insol-

uble surfactants.

An initial data set at a single wavemaker decibel setting of -17 and all six locations

was taken to establish the amount of variability of the data due to sensor location. The
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fluid temperature was 22.5 'C. As can be seen in figure (5-27), there is some variability

in the damping data which is exacerbated at the higher end of the frequency spectrum

where the effects of modulation are apparent. The dips in the lower end of the

frequency measurements will be described in chapter 7, "Experimental measurements

of resonance effects". There is less variability in the wave number data, again, the

spatial damping coefficent versus frequency
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Figure 5-27: The upper graph shows the damping coefficient calculated from ex-
perimental data at three different location pairs, xO/X 3 , x 1 /X 4 and x2 /X5 , each pair

separated by 10 centimeters. The upper graph shows the wave number calculated
from experimental data at three different location pairs, xO/X 3 , X1 /X 4 and x 2 /X5 ,
each pair separated by 10 centimeters.
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largest variability corresponds to the data at the higher end of the frequency spectrum

where modulation is apparent.

spatial damping coefficient versus frequency
Cf 1

-5

-10

-15

-20 k

-25

-30
3 4 5 6 7 8 9

Hz

wavenumber versus frequency

4 5 6 7 8
4 6

Figure 5-28: The upper graph shows the average damping coefficient calculated from

experimental data at three different location pairs, xO/X 3, Xi/X 4 and x2 /X 5 , each pair

separated by 10 centimeters. The lower graph shows an average calculated wave

number from experimental data at three different location pairs, xo/X 3 , Xi/X 4 and

X2 /X5 , each pair separated by 10 centimeters.

The data in figure (5-27) were averaged and the wave number and damping coeffi-

cient calculations are shown in figure 5-28. Note that while the effects of modulation

are still apparent, they are reduced.

The wave number can also be calculated between the three upstream locations

and between the three downstream locations. Figure 5-29 shows these results. Note
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that the modulation of the capillary wave signal is very large for these calculations.
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Figure 5-29: The upper graph shows the wave number calculated from experimental
data at three different location pairs made of the upstream locations, xO/x 1 , xo/X 2

and Xi/X 2 , separated by 5, 10 and 5 millimeters, respectively. The upper graph shows

the wave number calculated from experimental data at three different location pairs

made of the downstream locations, XO/X 1 , xo/x 2 and xi/x 2 , separated by 5, 10 and 5

millimeters, respectively.

The second set of Hercolube C data was taken at wavemaker power levels of -19,

-17 and -15 dB. As shown in figure (5-30), the data had no amplitude dependence.

The average of the three amplitude data sets shown in figure (5-30) is shown in

figure figure (5-31).
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Figure 5-30: The upper graph shows the calculated damping coefficient calculated

from experimental data at three different location pairs, each pair separated by 10

centimeters. The lower graph shows the calculated wavenumber from experimental

data at three different location pairs.
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spatial dawping coefficient versus wave frequency
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Figure 5-31: The upper graph shows the average calculated damping coefficient cal-
culated from all of the location pairs. The lower graph shows an average calculated
wavenumber from all of the location pairs.
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Wave slope spectra were produced for each of the six locations.

X 10, wave slope versus frequency for -1 dB waves

3 4 5 a 7 8 9 10 1
f (hertz)
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Figure 5-32: Wave slope spectra of Hercolube C at six tank locations. The upper

and lower figures were made for wave maker power setting of -15 dB and -17dB,
respectively.
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Figure 5-33: Wave slope spectra of Hercolube C at six tank locations. The figure was
made for a wave maker power setting of -19dB.

Additional wave slope data was taken at 23, 23.5, 17.5 and 15.5 0 C.
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Figure 5-34: Wave slope versus frequency data taken at 23, 23.5, 17.5 and 15.5 C.
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In addition to the wave data, independent laboratory measurements of surface

tension, density and viscosity were made with the equipment described in section

5.2.1.
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dynamic viscosity versus temperature
10

10-
10'

dynamic viscosity versus shear rate

10

102

10102

Figure 5-35: Dynamic viscosity versus temperature and dynamic viscosity versus
shear rate.

Viscosity measurements showed linearity over most of the shear stress range in

figure 5-35 with a small hysteresis at the lower end of the range for fluid at 20 degrees

Celsius.

Density and surface tension were linear over the entire temperature range as shown
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in figures 5-36 and 5-37. The values obtained for Hercolube C at 23 degrees Celcius
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Figure 5-36: Hecolube C density versus temperature.
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Figure 5-37: Hercolube C - air surface tension versus temperature.

were: surface tension, a, = 1019.75 kg s-2, density, p = 30.42 kg m- 3, and dynamic

viscosity, p = 28.34 kg s-m -.
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Chapter 6

Inverse method

6.1 Introduction

One of the most interesting applications of the dispersion relation for capillary and di-

lational waves is using it to determine unknown surfactant film rheological parameters

which may be difficult to measure directly. Experimental values can differ depending

on whether the measurements are static, quasi-static, or dynamic, sometimes by as

much as an order of magnitude (Hiihnerfuss et al. 1985). A single (complex) pa-

rameter can be found by solving the dispersion relation (Jayalakshmi et al. 1994,

Giermansta-Kahn, et al. 1999) directly. In this chapter, we will demonstrate that

if some of the physical parameters of a system are known or can be obtained apri-

ori, (p, p, o-,), and we have a data set, (w, k), it is possible to analytically determine

approximate values of multiple unknown parameters, (60, E', -'), over the frequency

range of the data by finding the optimal match of the solution space of the dispersion

relation to the data set. This work has been previously discussed in Brown et al.

(2002).
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6.2 Description of the inverse method - obtaining

surface rheological parameters from wave mea-

surements

Once we have obtained data curves of wave number, kR, and spatial damping coeffi-

cient, k, versus frequency, JR or f, we can find the rheological parameters governing

surface behavior by solving an inverse problem. An inverse problem is one in which

the solution to an equation is known, but the parameters of the equation are not.

In this case, we have a dispersion relation for which we know the wave number, spa-

tial damping coefficient, frequency, temporal damping coefficient, bulk viscosity, bulk

density and surface tension, kR, k1 , WR, WI, p, p and a,, respectively, but are ignorant

of the surface normal shear viscosity, surface dilational elasticity and apparent surface

dilational viscosity, a', E, and E', respectively. For experimental data, it is relatively

simple to measure the static surface tension, ao, and to obtain values for the kinematic

viscosity, v, and density of the underlying bulk fluid, p, thus we have considered these

as known values. The unknown parameters can be found by solving an optimization

problem by which each parameter is "guessed at", the dispersion relation is solved

for k(w) and compared to the data curve. The best match of the dispersion relation

solution space to the data will occur for the correct set of parameters, a', C' and e'.

That we can obtain the rheological parameters in this fashion follows from the

assumption of uniqueness of the shape of the complex solution space as determined by

the physical parameters of the system. Underlying this assumption is the knowledge

that the locations of both the mode sheets and the root coalescence points are highly

dependent on the values of the parameters. To demonstrate this, we examine figure 6-

1. This figure shows the movement of the two wave mode sheets in complex frequency

- elasticity, w-E, space as surface tension, a, is varied. The other parameters have the

same values as given in section 4.2. The value of a,- affects the location of the frequency

coalescence point and indeed the shape of the solution space, i.e. the location of the

two sheets within the three-dimensional projection space. This strong dependence
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Figure 6-1: Three dimensional projections demonstrating the movement of the sheets of the

solution space projected onto complex f - w space due to the variation of surface tension, o- =

45.0,55.0,65.0,75.0 x 10- kg s-2.

on the parameters implies uniqueness of both the solution space and its projection

into the data curve parameter space. If the projection is unique, then for a particular

combination of the parameters, p, p, k, a-, and -', the shape of the solution space of

the dispersion relation in -w space is uniquely determined. We will discuss later how

the inverse method can be used to verify the uniqueness of the solution space and

thus the surfactant rheological parameters associated with a data curve.

The optimization program forming to backbone of the inverse method is based

on the simplex method (Press et al. 1995). It varies the parameter values, solves the

dispersion relation for k(w), compares each of the five roots to capillary wave data

by calculating the error and optimizing the minimum of these values. Our program

has three possible error algorithms, two which assume the availability of a single data

curve, Imag(k) vs. Real(w), or, Real(k) vs. Real(w), and one which considers two

data curves, Imag(k) vs. Real(w) and Real(k) vs. Real(w):

Imag(kdata) - Imag(k)
Error(e, o-, Imag(w)) = Imag(kdata) (6.1)

n Imag(kdata)
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Error (c, a, Imag(w)) = Real(kdata) - Real(k)
Real(kdata)

[(Real(k) - Real(kdata) 2

Error(c, a-, Imag(w)) = ZRa~dt) I
n _( Real(kdata)

+ Imag(k) - Imag(kata) \21 1/2

Imag(kata)

over n data points.

It is important to note that e is function of w. Therefore we cannot project the

solution space for constant values of (eo, e', a') onto (w, k) and expect to find an exact

match to experimental data, which will have been affected by a variable E(w). When,

however, conditions are such that E varies slowly with w over the data frequency

range (E() (w - wo) << 1), we can obtain approximate values of the parameters

over this range. In such cases, we are provided with a simple analytical method for

determining difficult to measure quantities from relatively easy to measure capillary

wave data.

We demonstrate the inverse method by matching the complex solution space first

to a simulated data set and then to an experimental data set (Bock 1989).

6.3 Evaluation of inverse method on noisy simu-

lated data

6.3.1 Simulated data

To create the simulated data set pictured in figure 6-2 we chose values of the surface

dilational elasticity and surface tension, co = 30.0 x 10-3 kg/s 2 and ao = 70.0 x 10-3

kg/s 2 , to fall within typical ranges of published data for naturally occurring ocean

surfactants (Wei & Wu 1992, Barger 1991, Garret 1967, Peltzer et al. 1992, Frysinger

et al. 1992, Frew & Nelson 1992 ). The values of density and kinematic viscosity, p =

1024 kg/M 3 and p = 1.1264 x 10-3 kg/ms, were chosen to correspond to seawater at

20.0*C. Both the apparent surface dilational viscosity and surface transverse viscosity,
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E = 1.0 x 10-5 kg/s and a' = 15.8 x 10-3 kg/s, were chosen so as to create a data set

near to a frequency coalescence point, little is known for certain about their probable

values.

With the above values of the rheological parameters, the dispersion relation was

solved for the solution space k(w). A transect of this space was taken at Imag(w) =

0.0 (waves with no temporal damping) to produce the data set pictured in figure

6-2. The curves marked by o's correspond to the capillary wave mode and the curves

marked by x's to the dilational wave mode. This capillary wave root is the simulated

data set. The avoided crossing apparent around 5.8 Hz indicates the presence of a

nearby root coalescence, in this case wavenumber coalescence, point.
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-2 0000 00000

-00 00 000 .. X

-00 000 0000000 0 60 'X
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Figure 6-2: Transects at Imag(f = w/27r) = 0.0 Hz corresponding to the simulated data set of
k(w). The capillary wave data corresponds to the mode marked in o's, while the dilational wave
data corresponds to the mode marked in x's.

The inverse method was applied to the simulated data to find the dilational elas-

ticity, apparent surface dilational viscosity and surface normal shear vicosity, E0, E'

and a', respectively. As the data set was simulated for constant parameter values,

there was no frequency dependence of E to be concerned with. The optimization pro-

gram converged to the exact values of EO = 30.0 x 10-- kg/s 2 , E' = 7.0 x 10- kg/s,

and a' = 100.0 x 10- kg/s for the full range of data for both algorithms.
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As a test for the uniqueness of the solution space, and thus the goodness of the set

of rheological parameters that are found from the match of the solution space to the

data set, the simplex was initialized to widely disparate initial conditions. For each

initialization, the parameters found from the match converged uniquely to the exact

values of c, c' and a'. We considered smaller subsets of the data, both near to and

away from the effects of wavenumber coalescence. All subsets converged uniquely to

the correct parameter values. Away from the effects of the wavenumber coalescence

point, no less than 5 data points were required for our optimization program to

converge to the correct parameter values when the simplex was very poorly intialized.

6.3.2 Robustness of the inverse method - noisy simulated

data

In an experimental data set, noise will be present and will affect the quality of the

match. To examine its effect, we have added zero mean gaussian noise to the simulated

data set and found optimal matches of the solution space to two smaller subsets of

the data: one subset from the middle of the the curve, points (20:40), where the

presence of the wavenumber coalescence point is felt, and the other from the high

frequency end of the curve, points (50:70), away from the effects of the wavenumber

coalescence point. Optimal matches of the solution space to each data set using

all three error schemes, (6.1), (6.2, and (6.3), were found for increasing signal to

noise ratios. The relative (percent) errors of the parameters compared to their actual

values are displayed in in the left hand column of figure 6-4. With no noise present,

the match to each of the subsets converged to the exact values of 6", E' and 0'.

When error scheme (6.1) is used, the matches to data subset (20:40) provide

significantly better parameter values than the matches to data subset (50:70). This is

the benefit of the presence of the wavenumber coalescence point as a natural marker.

In section 4.2, we showed that the solution space is drastically stretched in the region

of a root coalescence point - the roots of the dispersion relation becoming infinitely

sensitive to variations in the parameter values as this point is approached. The
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Figure 6-3: Capillary wave data, wave number and spatial damping coefficient versus frequency,
k(w), with added noise. Data points can be considered numbered 1:70, from the lowest frequency
point to the highest frequency point. Points 20:40 are centered around the area most affected by
the nearby presence of a wavenumber coalescence point while 50:70 are higher frequency data points
away from the effects of wavenumber coalescence.

streching near this point makes it an unusual feature within the solution space -

making it thereby easier to match the solution space to a data set within this region

than to match it to a data set in a relatively flat region away from the effects of root

coalescence. However, it also follows that because of this increased sensitivity, the

match of the solution space to a data set near root coalescence is correspondingly

more sensitive to noise.

Let us imagine a data set with some noise, (kN = k+Nk, WN = w +Nw), for which

we are trying to find the correct value of the constant in the mapping -- o y.

With our data we calculate

WN Wo + N - wo W 0  l 1+ + (6
-kN ko k + Nk- k0  vk- -k 1+ N. (6.4

k-ko k-k 0

If the noise is small or if we are far from the wavenumber coalescence point, then

YN ~ -y. But if the noise is large or if we are very close to the wavenumber coalescence

point, we will be unable to get a good match. Thus, it is necessary to balance the

161



benefit from the wavenumber coalescence point providing a natural marker for the best

match against increased sensitivity to noise in this region. We found that increasing

the number of data points by extending the range of the data subset beyond the

immediate area of the wavenumber coalescence point was effective in ameliorating

the noise. The same benefit comes from matching both the wavenumber and the

spatial damping data sets using error scheme (6.3) rather than by matching only the

spatial damping data set using error scheme (6.1). The former doubles the number

of data points, thereby reducing the sensitivity of the match on the noise present.

When error scheme (6.3) is used, the matches to the surface dilational viscosity

and surface normal shear viscosity, E, and a', are excellent for both data subsets,

both near to wavenumber coalescence, (20:40), and away from its effects, (50:70).

The match to the apparent surface dilational viscosity, E', is not nearly as good, even

in the region of the wavenumber coalescence point. This indicates that the shape

of the solution space throughout this region and the mapping of the roots to the

parameters at the wavenumber coalescence point are all relatively insensitive to this

parameter. (Recall that the simulated data set was created for a constant value of E'

and therefore variation with respect to w has no effect on this match.) The relative

insensitivity of the match to this parameter means that, for this particular frequency

range, it is obtained with less accuracy than the other parameters.

In general, for all parameters, the surface dilational elasticity, surface apparent

dilational viscosity and surface normal shear viscosity, Ec, E' and a', respectively,

we find that error scheme (6.3) utilizing both wave number and spatial damping

coefficient data gives much better results than either error scheme (6.2) or (6.1).

Error scheme (6.1) gives better results than (6.2) for E, and (6.2) better than (6.1) for

a'. This implies that the values of the spatial damping coefficient are more dependent

on co and the values of the wave number more dependent on a'. Note also that all

schemes give much better results for a' in the 20:40 range than in the 50:70 range.

This implies that a' is more important at the lower end of the frequency range where

gravity-capillary resonance occurs. As was seen in section 4.3, it has little to do with

capillary-dilational resonance. None of the error schemes gives a particularly good
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Figure 6-4: In the left hand column are plotted the relative, or percent, errors of optimized values
of the surface dilational elasticity, surface apparent dilational viscosity and surface normal shear

viscosity, E,, E' and o-', obtained by the inverse method when compared to the actual values of the

simulated 'data set versus the noise to signal ratio (NSR) of the data set. In the right hand column

are plotted the sensitivity indices of e,, c' and o-' versus the NSR of the data set. The solid lines

indicate the set of data points taken from the region of the simulated data set affected by the presence

of a nearby wavenumber coalescence point. Relative errors and sensitivity indices for this portion of

the simulated data set are marked with *'s. The dashed lines indicate points taken from the higher

frequency range of the simulated data set which is away from the effects of wavenumber coalescence.

Relative errors and sensitivity indices for this portion of the simulated data set are marked with o's.
The cyan lines indicate relative errors and sensitivity indices found for the error scheme (6.2), the

blue lines indicate relative errors and sensitivity indices found for the error scheme (6.1), and the

dashed line indicate the same found for error scheme (6.3).

results for c'.

We can calculate a noise sensitivity index for each of the parameters for each of
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the error schemes above, where we define this index as:

SI- = (6.5)

where EQ is the error in the estimate of parameter Q, O-N is the standard deviation of

the noise in the signal and k is the mean value of the data without any noise present.

These values are presented in the right hand column of figure 6-4. We see that the

noise sensitivity index corresponds well with the relative error of the parameters.

6.3.3 Application of inverse method on published experimen-

tal data

Next we will look at a match to an experimental data set. Both the effects of noise

and variation of the parameters with respect to frequency will now effect the quality

of the match, and therefore the values of the parameters obtained.

100

0,10

100

ODO

4 6 8 10 12 14 16 18 20 22 24
f (Hz)

Figure 6-5: Reproduction of a data set (Bock 1989) showing variation of spatial damping,
(Imag(k)), with frequency, (f = w/27r), for capillary waves propagating across the surface of Her-
colube C at 45'C. The data set is marked in o's. The solid line corresponds to Bock's fit of the
dispersion relation to his data assuming that both f and o are real and E = 0.0.

The experimental data set shown in figure 6-5 is reproduced from a plot of this data

in Bock (1989). Bock offered the following properties of the surfactant, Hercolube C, a

pentaerythritol ester, at 45.0 'C as surface tension = 27.7 x 10-3 kg/s 2, density = 940

164



kg/m 3 and kinematic viscosity = 14.1 x 10-6 m2 /s. In the experiment, capillary waves

were produced at the air-surfactant interface by a vibrating metal bar at a known

frequency, Real(w). Complex k was measured using a laser slope gauge. Bock's fit of

the dispersion relation to his data assumed E = 0.0, with neither o- nor W considered

to be complex. As we can see in the figure, this fit is unable to account for the small

bump appearing in his data near 6.0 Hz which he attributes to resonance between

the capillary and dilational wave modes.

Although it is not necessary to solve a fully complex dispersion relation to obtain

a match (for example, an experimental data set may be assumed to have negligible

temporal damping, Imag(w) = 0.0), it is propitious to do so. As we will see below, a

small amount of damping may have a significant effect on the shape of the dispersion

relation solution space. Allowing Imag(w) to vary may not only result in a significant

improvement to the match to the data, but in this case allowed us to capture the

physics of the experimental waves when the match with the assumed real paramenters,

W, E and -, by the author could not.

To try to find a better match to Bock's data using our optimization program, we

varied four parameters, O-', E, E' and Imag(w = 27rf). As we only had the curve

of spatial damping versus real wave frequency available, we used error scheme (6.1)

for the match. In table 6.1 we display the parameter values from matching both the

entire data set and subsets both near and away from the wavenumber coalescence

point.

This data set is in many ways unfortunate. There is no wavenumber data to aid in

the match. Although there are a good number of closely spaced points near the region

of the wavenumber coalescence point, the higher frequency points are spaced much

further apart making it difficult to distinguish the effects of noise from parameter

variation. Both the increased number of data points and the increased senstivity

of the solution space in the region of the bump near 6.0 Hz cause this feature to

dominate the match of the full data set. In fact, as we can see in figure 6-6, we

are unable to obtain any match to the data which passes neatly through the higher

frequency points.
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6o (10-- kg/s 2 ) 6' (10- kg/s) a' (10-' kg/s)
Data Set: 1 2 3

Data Point Range: 3:24 3:15 16:24
Parameters

EO 59.1 62.5 64.7
6' -70.4 -84.1 -61.2
0-' 0.542 -3.453 .979

Imag(f) 0.176 0.23 .61

Table 6.1: This table gives the values of 6o, c', and o-', determined by an optimal match of the
solution space to three data ranges, each denoted a:b. Data points can be considered numbered
1:24, from the lowest frequency point to the highest frequency point. The first range is the entire set
neglecting the first two points, the second and third ranges run over points near to a wavenumber
coalescence point, the last range is located away from the effects of the wavenumber coalescence
point.

50

-50 -

- 3:24

3:15

16:24

4 6 8 10 12 14 16 18 20 22 24
f (Hz)

Figure 6-6: This figure presents the fits to Bock's data, damping coefficient, Imag(k),
versus, frequency, f, from the parameters found from the matches of the solution space
to the data ranges listed in table 6.1.

From our efforts with the simulated data set, we have learned that when using

error scheme (6.1) the optimal data set is one which is near to a root coalescence point

but also has several points extending beyond this region to ameliorate the effects of

noise. This most nearly corresponds to our match to the entire data set. We also note

that the values obtained for c, and E', the parameters which depend on frequency, do

not vary significantly over the short data ranges, [(3:15),(16:24),(3:24)], despite the

incompleteness of the data set and the probability of noisy high frequency data. This

implies that the inverse method is applicable to this data set - the values obtained
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for E, and E' can be thought of as approximate values over this frequency range.

The variability of a', which does not depend on the frequency of the disturbance,

indicates that the solution space is relatively insensitive to this parameter in this

frequency range.

102

o~10

10 
-

10, -

5 10 15 20 25
f(Hz)

Figure 6-7: Comparison on a semilog scale of capillary wave temporal damping vs. wave frequency
between the measured data, o (Bock, 1989), and the best fit to the entire data set, -, obtained by
the optimization program.

This best fit, depicted in figures 6-7 and 6-23, was found for co = 59.1 x 10-3 kg/s 2,

E' = -70.4 x 10-5 kg/s, a' = 0.542 x 10-5 kg/s and Imag(f) = 0.176 Hz and accounts

well for the small bump near 6.0 Hz. Note that it was necessary for both a and w

to be complex to achieve this fit as was also true for all the other fits listed in table

6.1. This implies that the surface normal shear viscosity is important to the match

of the solution space to this experimental data. Despite the relative insensitivity of

the solution space to this parameter as compared to other parameters, it cannot be

neglected. Furthermore, we see that the assumption of the production of constant

amplitude waves was not correct. For whatever reason, the vibration of the bar did

not remain steady, but produced waves of slightly lower amplitude as time passed.

Thus w was complex and the waves decayed in time as well as space.

We can understand the match to the data by examining figures 6-23(a) and 6-

9. In figure 11(a), we see an avoided crossing. The two modes appear to exchange

character around 5.5 Hz. In figure 6-9 we see that it is this frequency at which
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Figure 6-8: These plots show the results of the optimization program to find the best match to the
entire range of Bock's data (1989), marked in o's. CWM and DWM correspond to the capillary
and dilational wave modes respectively. The optimization program found Eo = 59.1 x 10- 3 kg S2,
E' = -70.4 x 10- 5 kg s, o-' = 0.542 x 10-5 kg s and Imag(f) = 0.176 Hz and accounts well for the
small bump near 6.0 Hz.

the branch cut lies, the branch or frequency coalescence point occuring at a larger

imaginary frequency. Because of the cut at this location, the physical waves exchange

modal solutions. We can see in figure 6-23(b) that the root which passes through the

data points at low frequencies is not the same root which passes through the data

points at high frequencies. It is at the cut around 5.5 Hz where the physical modal

solution switches roots, ensuring that the roots which pass through the data points at

frequencies both greater and less than 5.5 Hz do, indeed, correspond to the capillary

wave mode.

Unfortunately little is known or can be said about the properties of Hercolube

C. While roots of the dispersion relation for the parameters obtained well match the

data curve, the expected values for these parameters are unknown. In addition, very

few experiments with other surfactants are conducted at the low frequency range we

are investigating. At best we can say that the value obtained for the surface dilational

elasticity, Ec, is of the order of magnitude of values found for experiments with other

surfactants at a variety of frequency ranges ( Earnshaw et al. 1988, Frew and Nelson

1992, Hiihnerfuss et al. 1985, etc.), and that the magnitudes of the values obtained

for the apparent viscosity term, E', and the surface normal shear viscosity, -', are
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Figure 6-9: Projection of the 'best match' solution space of A(w, k, , o-) 0 onto

(Real(f), Imag(f), Imag(k)) three space. A frequency coalescence point is visible at the top of

the figure. The transect at Imag(f) = 30.0, marked by o's, corresponds to the best match to the

measured data (Bock, 1989).

several orders of magnitude larger than values found for other surfactants with wave

disturbances of O(lO 4 Hz) (Earnshaw et al. 1988, Haard and Neumann, 1981).

The negative sign attached to the value of c' is entirely possible within the context

of its development:

c=t EI e+iOw(, + ) cosO+iw Esn + + (6.6)

If the phase difference between 6arD and 6A, 0, is between ! and 27r, then I F e'9 will2

make a positive contribution to Eo and a negative contribution to e'. If the negative

contribution of I E I sin 0/w to E' is larger than that of r. + q, then E' will be negative.

This implies a relaxation time of the order .1 s, roughly the period of the waves.

6.4 Recommendations for field data analysis

Field samples of surfactant films are often analysed ex-situ and presented in terms of

7r - A, , 1e1 - A, or wr - EJ ,isotherms with the eventual goal of developing models
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for microlayer films to predict the viscoelastic effect they will have in the field (Frew

& Nelson, 1992). These isotherms are found in terms of quasi-static quantities: the

modulus of elasticity, le1 corresponding to 6 with zero phase (no sinusoidal dilation

of the interface); surface pressure, 7r = Ue - o where a. refers to the static surface

tension of a fluid uncontaminated by a surfactant film, and film surface area A which

is varied stepwise.

The difficulty is that these quasi-static isotherms are not generalizable to dynamic

conditions. For these conditions, we need in addition to determine the phase of 6 as

well as the surface viscosities, TN and q. These parameters can be found from ex-

amining ex-situ sample dynamically. Assuming that bulk viscosity, A, and density, p,

are known for the lower bulk fluid, with measurements of frequency and wave num-

ber, w(k), and static surface tension, uo(c, T), (where c and T refer to concentration

and temperature), the values of surface dilational elasticity, E, surface apparent dila-

tional viscosity, e', and surface normal shear viscosity, a', can be found by matching

the complex solution space to the data. Once E0 = e is found, it should be possible to

obtain the phase of the complex elasticity parameter, 9, by using the value obtained

for e1 from the 7r - 1 | isotherm using the expression 1E cos 9 = co. It is possibilities to

measure the sum of the surface dilational and shear viscosity, V, + ', directly using a

method such as Hirsa et al. (1997), or to measure r, and 7 separately (see Edwards et

al. 1991 for example). With these data, it is possible to find the relaxational elasticity,

F', from

E = E0 +iWE'= E+iw(E'+K+ ?). (6.7)

6.5 Application of inverse method on experimen-

tal data

The inverse method was applied to the palmitic and myristic acid and Hercolube C

data sets. The palmitic and myristic data sets only have good quality wave number

data. This meant that the application of the inverse method was limited to the use
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of algorithm

Error(E, a) z Real(kdata) - Real(k)
Real(kdata)

As discussed in section 6.3.2, when using only wave number data, we expect an

accurate estimate of a', a less accurate estimate of c and a poor estimate of E'.

6.5.1 Palmitic acid monolayers

The inverse method converged excellently to all six data sets with the error criterion

for the match of the dispersion relation solution space to the data curve less than 2

percent in all cases. These matches are depicted in figures 6-10 - 6-12.

400 40

360 .360 -

250 - 50- A

Figure 6-10: Matches of inverse method to wave number versus frequency data for

waves traveling on a 0.01 N HCl aqueous solution with a palmitic acid film of con-

centration 52 and 39 square angstroms per molecule, respectively.

The values of c,, as shown in figure (6-13) and given in table (6.2) are remarkably

fiat across the frequency spectrum and relatively small. This was unexpected, given

the results of Adam (1932) in figure 6-14b which predicts much higher values of the

static elastic modulus at similar surfactant concentrations. However, it is consistent

with the in-situ Wilhelmy-Blodgett measurements shown in figure 6-14a. There is

no data for comparison with the obtained values of surface relaxational elasticity or

surface tangential elasticity. Note that we expect values of the surface tangential

elasticity to be good due to its strong dependence on wave number data as this is
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Figure 6-11: Matches of inverse method to wave number versus frequency data for
waves traveling on a 0.01 N HCl aqueous solution with a palmitic acid film of con-
centrations 31 and 26 square angstroms per molecule, respectively.
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Figure 6-12: Matches of inverse method to wave number versus frequency data for
waves traveling on a 0.01 N HCl aqueous solution with a palmitic acid film of con-
centrations 19 and 15 square angstroms per molecule, respectively.

the data used in algorithm 6.2. Also, Wilhelmy-Blodgett measurements are of static

elasticity while the inverse method finds dynamic elasticity.
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Figure 6-13: Values for the surface rheological parameters for different concentrations

of palmitic acid monolayers found by applying the inverse method to wave data.

Table 6.2: Results of the inverse method: rheological parameters for various concentrations of

palmitic acid monolayers on 0.01 N HCl aqueous solution.

173

Sirfas. rologin pananalm oof paiic soid monofayers found by inoerse metiod

0 00

0 0 0

AO2/molec. o-o mN/m Eo mN/m E' N s / m -' N s/m
51.785 71.07 0.48 0.4238e-5 0.10595e-5
38.839 64.81 0.78 2.5912e-5 8.6757e-5
31.071 57.1 0.46 12.927e-5 2.7964e-5
25.892 53.49 0.42 7.0375e-5 10.494e-5
19.419 51.5 0.6 3.4441e-5 13.901e-5
15.157 48.8 0.6 1.1874e-5 16.695e-5
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Static elastic modulus from Wilhelmy-Blodgett trough compared to dynamic diatonal elasticity from inverse method
so
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Figure 6-14: The upper plot is a comparison of static elastic modulus measurements
made with the in-situ Wilhelmy-Blodgett trough (colored symbols) to dynamic dila-
tional elasticity measurements found from applying the inverse method to wave data
(black squares). The lower plot shows static elastic modulus calculated from surface
tension measurements made by Adams (1932).
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6.5.2 Myristic acid monolayers

Inverse method match to 21 Aat per moloc. mytistic acid data

40
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nverse method match to 29 A2 per molec. myristic acid data
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Figure 6-15: Matches of inverse method to wave number versus frequency data for

waves traveling on a 0.01 N HCl aqueous solution with a myristic acid film of con-

centrations 21 and 29 square angstroms per molecule, respectively.
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Inverse method match to 36 A per moe. my'istic acid data
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Figure 6-16: Matches of inverse method to wave number versus frequency data for
waves traveling on a 0.01 N HCl aqueous solution with a myristic acid film of con-
centrations 36 and 46 square angstroms per molecule, respectively.
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Inverse method match to 65 A2 per molec. myntisc acid data
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Figure 6-17: Matches of inverse method to wave number versus frequency data for

waves traveling on a 0.01 N HCl aqueous solution with a myristic acid film of con-

centrations 65 and 112 square angstroms per molecule, respectively.

Like the results with palmitic acid, the values of the dilational elasticityEc, as

shown in figure (6-13) and given in table (6.3) are remarkably flat across the fre-

quency spectrum and relatively small. They are consistent with the in-situ Wilhelmy-

Blodgett measurements shown in figure 6-19a. The values of static elastic modulus

calculated from the surface tension measurements of Adam (1932) have a wholly dif-

ferent trend. There is no data for comparison with the obtained values of surface
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surface rofobgc pareters of paidmifo acid murolayers found by mese method
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Figure 6-18: Values for the surface rheological parameters for different concentrations
of myristic acid monolayers found by applying the inverse method to wave data.

relaxational elasticity or surface tangential elasticity. Again we expect values of the

surface tangential elasticity to be good due to its strong dependence on wave number

data as this is the data used in algorithm 6.2. And again, Wilhelmy-Blodgett mea-

surements are of static elasticity while the inverse method finds dynamic elasticity.

AO2/molec. -o mN/m I Eo mN/m E' N s / m -' N s/m

112.07 6.96 1.17 -7.42e-5 87.3e-5
65.37 5.66 1.07 -3.42e-5 6.52e-5
46.15 4.84 0.98 -1.00e-5 5.35e-5
35.66 4.32 1.09 -4.95e-5 76.8e-5
29.06 3.97 1.0 -2.13e-5 68.5e-5
21.20 3.54 1.0 -2.59e-5 68.0e-5

Table 6.3: Results of the inverse method: rheological parameters for
myristic acid monolayers on 0.01 N HCl aqueous solution.

various concentrations of
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Figure 6-19: The upper plot is a comparison of static elastic modulus measurements

made with the in-situ Wilhelmy-Blodgett trough (colored symbols) to dynamic dila-

tional elasticity measurements found from applying the inverse method to wave data

(black squares). The plot shows static elastic modulus calculated from surface tension

measurements made by Adams (1932).
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6.5.3 Hercolube C

Rather surprisingly, the inverse method was not able to converge to the data set as

it was. It was not possible to converge to the entire range of the damping coefficient

data (figure 6-20) at the same time that it converged to the entire range of the wave

number data (figure 6-21). A convergence to the wave number could only be found

for the lower end of the range.

Furthermore, there was the issue of the the match capturing the physics - did

the resulting solution space from these matches of the inverse method to the data

show the resonances near 4.5 and 5.5 hertz that were apparent from the wave slope

spectrum in figure 6-22?

The answer was no. The match to the damping coefficient data had a resonance

event near 4 hertz and the match to the lower portion of the wave number data had

one at 5.5 hertz. But neither match described both the precipitous dip in the wave

slope spectrum near 4.5 hertz as well as the small dip near 5.5 hertz.

So, what was happening? The data were highly repeatable and amplitude indepen-

dent. The modulation was small enough to have little effect on the inverse method's

ability to unambiguously match a curve. The inverse method itself had been rig-

orously tested on simulated data, published data and experimental data. The input

parameters, surface tension, dynamic viscosity and density of the bulk fluid, had been

carefully measured in outside laboratories. Even efforts at varying these parameters

had not improved the match of the solution space to the data.

The answer lies in the presence of a branch/saddle point in the solution space near

5 hertz. It was often noted while varying the above rheological parameters in the hope

that one of these might have ill affected the inverse method's ability to match the

data, that the wave number curve above approximately 5 hertz of the solution space

generally paralleled the data curve. The distance between the parallel curves was

generally of the order of about 30 1/m, roughly r divided by the distance between

sensors, 0.1 m.
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Figure 6-20: Match of the inverse method to damping coefficient data.

The reader will recall that the wave number is calculated as

02-#1 n27r
kR = + . (6.9)
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Figure 6-21: Match of the inverse method to the lower end of the wave number data

range.

Factors of 27r have to do with the number of wave lengths between the signal measured

at the two sensor locations. The winding number, n, is estimated to make the curve

appear smooth along the whole frequency range.
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wave slope versus frequency for -19 dB waves
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Figure 6-22: Wave slope spectra of Hercolube C at six tank locations. The figure was
made for a wave maker power setting of -19dB.

To see if, indeed, a factor of w, rather than 27, would affect the ability of the

inverse method to match the data, the wave number data was recalculated as

ki = 2 -01 + .2-+7 (6.10)
X2 - X 1  X2 - X1

above 4.7 hertz. The result was a nearly perfect match of the solution space to

the data as shown in figure 6-23 with c, = 0.545 kg s-2, E = -0.0019 kg s- 1 and

0' = 2.052 x 105 kg s- 1 for Im(f) = 0.2 hertz at a temperature of 23 deg C.

These parameters compare favorably to the parameters found for the match to Bock's

(1987) Hercolube C data at 45 deg C: E, = 0.0591 kg s-2, E' = -0.0007 kg s-1 and

a-' = 0.542 x 10- kg s-1 for Im(f) = 0.176 hertz.

Taking a look at the solution space from this match projected into k - W space

in figure 6-24, we see the presence two root coalescence points. They are apparent

in the upper figure (projection) in the righthand two Riemann sheets. One point is

above the real frequency axis and the other below. In the lower figure (projection),

the two points appear on either side of the real wave number axis.

To see the location of these two points along the real frequency axis, we examine
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Figure 6-23: Match of the inverse method to the data range above 4.7 hertz with the
wave number calculated with an extra factor of wr/.1

the lower figure (projection) of figure 6-24 from above in figure 6-25. From this

vantage point, we can see that the upper root coalescence point is near 5.2 hertz and

the lower root coalescence point near 5.0 hertz.
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Figure 6-24: Projections of the dispersion relation solution space found for match of

the inverse method to the data range above 4.7 hertz with the wave number calculated

with an extra factor of 7r/.1 The upper figure (projection) shows all five roots of the

dispersion relation, the lower figure (projection) only shows 3 roots to preserve the

scale of the root coalescence.
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Figure 6-25: Above view of the lower projection in figure 6-24.

The match to the solution space found by the inverse method characterized the

appearance of resonance near 5.5 hertz very well. The actual root coalescence point

lay at 5.15 + 1.02i hertz, and it is at 5.35 hertz that the dip in the wave slope spectra

shown in figure 6-22 begins.

It -is interesting to note in figure 6-26 that the solution space matches the wave

number data below 4.3 herz (not altered by a factor of 7r). It does not, however,

match the damping coefficient data.

This brings us to that region between 4.3 hertz and 4.7 hertz where we see the pre-

cipitous dip in the wave slope spectrum. It is unlikely that gravity-capillary resonance

causes the enormity of this dip. If we look at figure 6-27, we see that gravity-capillary

resonance occurs out near 4.2(1 t i) hertz. Gravity-capilllary resonance is apparent

in the upper plot of this figure between two Reimann sheets furthest to the right.

The capillary-dilational resonance which was visible in figure 6-24 is hidden the the

cluster of three sheets in the center of the plot. Both resonances are visible in the
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Figure 6-26: Match of the solution space to data below 4.3 hertz and above 4.7 hertz.

lower plot. Capillary-dilational resonances are visible at the ends of the small oblong

opening between the two most left hand sheets. Gravity-capillary resonance can be

seen at the top of the plot where the two outermost sheets stretch together. The three

innermost sheets cross over the neighboorhood of resonance, partially obscuring the
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Figure 6-27: Two projections of the dispersion relation solution space showing gravity-

capillary and capillary-dilational resonances.

view.

The curvature of the space due to gravity-capillary resonance is small near Im(f) =

0.2 hertz, having virtually no effect on the damping coefficient. The typical effect of
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this resonance is to cause an inflection point in the wave number curve and thus a

dip in the group velocity near this frequency. While this reduction in group velocity

should translate into a small dip in the wave number (related to energy) spectrum,

it is unlikely to cause such a large effect as we see in the data.

Gravity-capillary resonance is also predicted for pure water. If this resonance

would cause a large dip in a water wave energy spectrum, we would expect to see it,

and yet in the data of Hiihnerfuss (1981) shown in figure 6-28, we see only a small

00 100

1g-2 0' 10-2
clean water w clean water

to-& J 0-4

a

CEA a-E

to- a. to'

to-' too to, 102 10-1 too 101 102
FREQUENCY HZ FREQUENCY HZ

too o
10-2 1O0

.0 clean water clean water

10-6 10-6 ItEA

10-1 to 10 t1 102 10-1 100 og 102

FREQUENCY HZ FREQUENCY HZ

Fig. 1. Wind wave spectra (wind speed U - 8 s, fetch about 16 m, degrees
of freedom 66) of a clean water surface (solid lines), and in the presence
of a hexadecanol (CEA)* hexadecanoic acid methyl ester (PHE), 9-octadeconoic
acid methyl ester, Z-isomer (OLME, and 9-octadecon-l-ol, Z-isomer (OLA)
surface film.

Figure 6-28: Wind-wave spectra from a study by Hiihnerfuss et al. , 1981. Each figure
shows the measured spectra for water compared to that of a surfactant film spread
upon the water.

dip near 4 hertz for the water spectra - the large dips in Hiihnerfuss' data are not

apparent until a surfactant has been spread upon the surface.

If the large dip in the wave slope spectrum is not entirely due to gravity-capillary

resonance, then there must be another cause. If we look at figure 6-29 where the roots

to the dispersion relation are shown for a transect at Im(f) = 0.0 hertz, we see that

189



10 -

8 -

6-

4- 0 0

2-00 0 0 0

- 1 0
S

-2-0 0

-40

-68

-101
:: 3.5 4 4.5 5 5.5 6

real f (hz)

Figure 6-29: The gravity mode going unstable near 4.25 hertz.

the gravity mode, marked in cyan, crosses the real wave number axis around 4.3 hertz

and goes unstable. (Recall that, for waves travelling in the -x direction represented

by phase kx + wt, a value of Im(k) > 0 is unbounded in -x and, therefore, unstable.)

Somewhere between 4.3 and 4.7 hertz, the primary mode of energy transport

switched from the cyan root to the yellow root of the dispersion relation in figures

6-26 and 6-29. The most likely explanation is that it happened when the cyan root

went unstable. This would offer one possible explanation for the sudden drop in the

wave slope spectrum beginning at 4.3 hertz - the gravity mode goes unstable and

the primary mode of energy transport is now the (yellow) capillary mode. As the

total energy is split between the capillary and dilational modes, the transverse waves

measured experimentally are smaller - they have less energy.

At this point, it might be helpful to identify the various wave modes. Figure

6-30 shows the damping coefficients of three of the five roots calculated both for

the match of the inverse method to the data with E,, = 0.0513 kg s-2 marked by
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diamonds and with E, = 0.06 kg s-2 marked by hexagons. The tricolored root is a

dilational mode - this can be seen by the change in it's value for a change in E, - a

change in it's dependence on elasticity. The same can be said for the yellow root for

frequencies less than about 7 hertz and the cyan root for frequencies above about

4.5 hertz. The yellow and cyan roots are forming an avoided crossing around 5 hertz

with the dilational character of one root "jumping" to the other across the intervening

space. This is occurring because these roots lie on a transect between two the two

capillary-dilational root coalescence points as seen in figure 6-24. The other parts of

the yellow and cyan curves, cyan below 4.5 hertz and yellow above 7 hertz have a

gravity-capillary character. The cyan curve below 4.5 hertz behaves asymptotically

as a gravity root and the yellow curve above 7 hertz asymptotically as a capillary

root. Again, the jump between these curves occurs because the transect they lie

on is between the two capillary-dilational root coalescence points. The gravity and

capillary curves for part of the two Riemann sheets corresponding to the gravity and

capillary modes which resonate near 4.2(1 ± i) hertz.
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realf (hz)

Figure 6-30: Change of the positions of the roots of the dispersion relation for varia-

tion of elasticity. The portions of the roots whose positions change are identified as

dilational while those which do not are identified as gravitational and capillary.

So, we have a gravity-dilational root (cyan) which goes unstable near 4.25 hertz
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and a dilational-capillary root (yellow) which is always stable. The experimental

data, follows the gravity portion of the gravity-dilational root to around 4.3 hertz,

then jumps to follow the capillary portion of the the dilational-capillary root above

4.7 hertz. In other words, we see a transverse displacement when the gravity mode

is present below 4.3 hertz and a smaller transverse displacement when the capillary

mode is present above 4.7 hertz - hence the large dip in the wave slope spectrum

between 4.3 and 4.7 hertz.

This brings us to an interesting point. We see modulation in the wave slope

data. However, above 4.25 hertz, the solution space only has one stable mode for our

rheological conditions - the capillary mode. For most of our data range the dilational

mode is unstable, Im(k) > 0. In order for there to be modulation, two modes must

exist - this implies that the unstable dilational mode is present in our experiments.

For an unstable mode to grow in space, it needs an energy source. The only source

available is the capillary mode. In this case we would expect to see a rapidly decaying

capillary mode and a fairly constant or growing dilational mode. If we examine figure

6-31, this is exactly what we do see. The wave slope spectrum damps rapidly at the

higher end of the frequency spectrum, but the modulations do not.

wave slope versus frequency for -19 dB waves

26000

0 0 01=X0+1cm
14000- x 2-oxO+2crv

C] x3--xO+10cm

12000- C" 0 x4=x3+lcm

4 0000- -

2000-

03 4 5 6 7 8 9 10 11
f(hertz)

Figure 6-31: Wave slope spectra of Hercolube C at six tank locations. The figure was
made for a wave maker power setting of -19dB.
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The presence of an unstable dilational mode is quite surprising as it is generally

accepted that the dilational mode is far more damped than the capillary mode. If

this is, indeed, the proper interpretation of what is happening with the various wave

modes, then it provides a starkly different vision of what happens to wind waves when

there is a film upon open water. Given a film with similar rheology to the one we have

just been studying, gravity-capillary waves would, upon encountering a film, to split

their energy between a capillary and a dilational mode. The capillary mode would be

more strongly damped than it would be upon open water. The dilational mode would

bleed energy from the capillary mode until no energy was available, at which point

the dilational waves must die out as well. This picture provides a much more general

mechanism for energy decay than simply loss of energy from the capillary mode due

to resonant wave interaction.
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Chapter 7

Experimental measurements of

resonance effects

7.1 Introduction

In chapter 4 we discussed three types of resonance effects: dips in the wave slope

(energy) spectrum, peaks and troughs in the wave damping coefficient spectrum and

dips in the wave group velocity. For certain rheological conditions we can expect to

see two types of resonance in the 3 - 10 hertz range: gravity-capillary and capillary-

dilational.

Finding a surfactant or bulk fluid with these rheological conditions, turned out to

be a bit difficult. Section 4.3 allows us to estimate which sets of rheological parameters

will yield root coalescence (resonance) near the real k and w axes (wave number and

frequency). Resonance near the real axes would provide the most experimentally

amenable conditions to measuring resonance effects. Although there may be many

surfactants whose rheology would give rise to wave mode resonance and although

there are many reported values for rheological parameters in the literature, due to

a paucity of published values of complete sets of surface tension, surface normal

shear viscosity, surface dilational elasticity and surface apparent dilational viscosity,

o-, a', co, and c', respectively, in the 3-10 hertz range, it was unclear which surfactants

would provide us with the most experimentally amenable conditions to measuring
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resonance. Thus the only two-fluid systems we knew for sure to have experimentally

demonstrable resonance effects were those published by Bock (1987) for Hercolube C

and by Hiihnerfuss for palmitic acid methyl ester and oleyl alchohol.

It was hoped that the application of the inverse method to measurements of

palmitic and myristic acids might yield the correct conditions for an experimental

demonstration of resonance. As will be seen in sections 7.2.1 and 7.2.2, estimation

of the group velocity from wavenumber measurements yielded an evidence of both

gravity-capillary and capillary-dilational resonances, however this indication was not

strong. This was likely due to another difficulty in measuring resonance effects: extri-

cating the effect of wave mode modulation from the often subtle appearance of dips

in the group velocity and damping coefficients due to capillary-dilational resonance.

For this reason only a very strong capillary-dilational resonance event will be clearly

demonstrable by a dip in the group velocity. This difficulty is not much of a concern

for gravity-capillary resonance. This resonance is strong and appears regularly in

measurements of the group speed of water waves.

The strongest demonstration of capillary-dilational resonance at a viscoelastic

interface is seen in our measurements of wave slope spectra and damping coefficient

for Hercolube C will be seen section 7.2.3. Dips in the group velocity for these waves

are, like those of the curves for palmitic and myristic acids, not strong and clearly

affected by the modulation of the amplitude and phase measurements.

7.2 Measurements

7.2.1 Palmitic acid

Group velocity

The following plots of group velocity versus frequency were calculated using the

method outlined in section 5.3.4 from the experimental wave number versus frequency

curves obtained for palmitic acid shown in section 5.5.1.

All of these figures show dips near 4 and 7 hertz where we would expect gravity-
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Figure 7-1: Group velocity, Cg, versus frequency, f, of capillary waves traveling on
a 0.01 N HCl aqueous solution with a palmitic acid monolayer of concentrations 52
and 39 square A.U. per molecule, respectively.

capillary and capillary-dilational modal resonances to be. As any modulation effects

in the palmitic acid wave number data were very small, it is possible that theses dips

do, indeed, indicate gravity-capillary and capillary-dilational resonances.
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Group speed versus frequency
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Figure 7-2: Group velocity, Cg, versus frequency, f, of capillary waves traveling on

a 0.01 N HCl aqueous solution with a palmitic acid monolayer of concentrations 31

and 25 square A.U. per molecule, respectively.
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Group speed versus frequency
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Figure 7-3: Group velocity, Cg, versus frequency, f, of capillary waves traveling on
a 0.01 N HCl aqueous solution with a palmitic acid monolayer of concentrations 19
and 15 square A.U. per molecule, respectively.
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7.2.2 Myristic acid

Group velocity

The following plots of group velocity versus frequency were calculated using the

method outlined in section 5.3.4 from the experimental wave number versus frequency

curves obtained for palmitic acid shown in section 5.5.2.

7I

Gmp speed versus frequency
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Figure 7-4: Group velocity, Cg, versus
a 0.01 N HCl aqueous solution with a
square A.U. per molecule.

frequency, f,
myristic acid

of capillary waves traveling on
monolayer of concentration 36

All of these figures show dips near 4 and 7.5 hertz where we would expect gravity-

capillary and capillary-dilational modal resonances to be. As, like the palmitic acid

data, any modulation effects in the myristic acid wave number data were very small,

it is possible that theses dips do, indeed, indicate gravity-capillary and capillary-

dilational resonances.
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Group speed versus frequency
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Figure 7-5: Group velocity, Cg, versus frequency, f, of capillary waves traveling on

a 0.01 N HCl aqueous solution with a myristic acid monolayer of concentrations 29
and 21 square A.U. per molecule, respectively.
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7.2.3 Hercolube C

From the numerical studies in section 4.3, we expected to see evidence of gravity-

capillary resonance near 4 hertz and capillary-dilational resonance somewhere be-

tween 3 and 8 hertz.

Wave slope spectra

The wave slope spectra of the Hercolube C measurements show the effect capillary-

dilational resonance quite clearly near 5.4 hertz. As described in section 6.5.3, they

also show the effect of the gravity mode going unstable around 4.3 hertz and the

transition of energy transport to the capillary mode - an effect of gravity-capillary

resonance.

Figures 7-6 and 7-7 show, at six locations in the tank, the spectra resulting from

a single power setting of the wave maker.

Figure 7-8 shows spectra taken at four separate temperatures, 23, 23.5, 17.5 and

15.50 C. We are able to see that lowering the temperature alters the rheological

conditions and that this reduces the appearance of the effect of capillary-dilational

resonance near 5.4 hertz on the spectrum. Gravity-capillary resonance and the switch

from the gravity mode to the capillary mode as the primary mode of energy transport

around 4.3 hertz is much less affected by changes in temperature.

Damping coefficient

It is unclear whether the small peak in the damping coefficient seen in figure 7-9

is due to ravity-capillary resonance or energy bifurcation. In either case, this peak

corresponds to a reduction in the damping coefficient in the measured transverse wave

mode. Capillary-dilational resonance is a much more subtle effect occurring near 5.4

hertz. This resonance is apparent only by the inflection point in the curve at this

frequency. The change in general curvature at this location is more easily seen in

figure (7-10).
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Figure 7-6: Wave slope spectra of Hercolube C at six tank locations. The upper

and lower figures were made for wave maker power setting of -15 dB and -17dB,
respectively.

Group velocity

The two resonances are not apparent in the curve of group velocity versus frequency

shown in figure 7-11. The effects of wave mode modulation are too strong for the

subtle effect of a dip in the group velocity to be successfully extracted.
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Figure 7-7: Wave slope spectra of Hercolube C at six tank locations. The figure was
made for a wave maker power setting of -19dB.
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Figure 7-8: Wave slope versus frequency data taken at 23, 23.5, 17.5 and 15.50 C.
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Figure 7-10: Semilog plot of the absolute value of the average calculated damping

coefficient versus frequency for Hercolube C.
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group velocity versus frequency
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Figure 7-11: Group velocity calculated from wave number measurements.

206

0.3

0.25

0.2

0.15F

0.
3.5

0
0 0
0 0

0
0 0

0 %
0 0000

0 00
%0 o 0 0 0 C

0~ %-00
0 0P#~3~ 9c0 0

0~
0 0
CLP 0 0

000

6.5 7 7.5 8 8.5



Chapter 8

Conclusions

This thesis was a study of first order resonance between gravity, capillary and dila-

tional wave modes occurring at a visco-elastic interface between two fluids, described

by a single linear dispersion relation. In it, we described resonance as coalescence of

the roots of the dispersion relation in complex frequency and wave number space and

used this description to explain numerical and experimental resonance phenomena

noted in previous studies.

We classified the roots of the dispersion relation as primarily gravity, capillary or

dilational modes. These roots appeared as Reimann sheets when we displayed the

dispersion relation solution space in parameter space.

We numerically determined the dependence on interfacial rheology of root coa-

lescence (resonance) and the boundaries of spatial stability of the modes and then

used these diagnostic tools to characterize the conditions for both gravity-capillary

and capillary-dilational modal resonances. It was determined that for a wide variety

of typical rheological conditions for naturally occuring surfactants gravity-capillary

resonance should occur in the neighborhood of 4 hertz and that capillary-dilational

resonance might occur anywhere between 3 and 8 hertz.

We developed an inverse method from which interfacial rheological parameters

can be determined from experimental measurements of wave number, frequency and

spatial damping coefficient. We used this tool to construct the dispersion relation

solution space corresponding to experimental conditions a with which, together with
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the classification of the roots of the dispersion relation, we would be able to interpret

the experimental results. We tested the inverse method's ability to obtain the correct

rheological parameters on noisy simulated data sets and then applied it to published

experimental data sets.

We designed an experimental set-up to measure wave number, spatial damping

coefficient, and wave slope data for a 3 - 10 hertz frequency range of transverse and

longitudinal waves in a clean enclosed flume. We used kimball-mounted lasers whose

beams passed through optical glass in the tank and lid to capture transverse wave

motion. We used a balance and Wilhelmy plate to measure in-situ surface tension.

The experimental conditions included waves traveling on fatty acid monolayers on

aqueous solutions and also waves traveling on a visco-elastic fluid at a variety of

temperatures.

Analyzing the experimental data, we demonstrated the effects of modulation of

one wave mode on another. We obtained the rheological parameters for these exper-

imental systems by the inverse method. We used the inverse method to construct

the dispersion relation solution space corresponding to the experimental conditions.

We used the diagnostic tools for root classification, spatial stability together with

the graphical representation of the dispersion relation solution space found from the

inverse method to understand the physics underlying our experiments.

We demonstrated resonance phenomena experimentally with the wave data from

the visco-elastic fluid and confirmed this resonance numerically: gravity - capillary

resonance near 4.2 hertz and capillary - dilational resonance near 5.3 hertz as pre-

dicted.
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Appendix A

Description of numerical codes and

methods used throughout thesis

A.1 Signal processing

To compare the data independently sampled by the lock-in amplifier to the MAG

and PHA data it calculates from the analog signal, I wrote a simple signal process-

ing program. This program takes the fast fourier transform of the sinusoidal wave

slope signal obtained from each position sensing diode (PSD). The resulting spectra

is filtered by a variable width window and the magnitude and phase of the signal

estimated from the inter-window spectral data.
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A.2 Description of the inverse method

A.2.1 Flow chart

V
opimization

capdilsimplex

MAIN: initalizes paramelers
inilales simplex

ecks Iolerancos

sets simplex

rootinder

realmag sort

errinder

Figure A-1: Flow chart of functions of inverse method program

A.2.2 Main program body

At the beginning of this program, values are set for any parameters which are not

being calculated by the inverse method and the data being matched by the inverse

method is inputted. The parameters and data are then non-dimensionalized as a non-

dimensional form of the dispersion relation will be used in the subsequent programs.

The simplex is initialized. The simplex is a matrix of non-dimensional values

corresponding to the non-parameters the inverse method is searching for. These

values are initialized to encompass the entire range of possible parameter values. The

values in this simplex will be subsequently optimized until they converge upon the

set of values which provides the best match of the solution space to the data.
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Roots of the dispersion relation are calculated via the program rootfinder and an

error condition is found for each of the roots via the program errfinder. The main

program then checks the tolerances for these error conditions, if the tolerances are not

met, then the program enters a while loop in which it begins to optimize the simplex

via optimizationprog. Because the simplex method is robust but not adaptive, it is

necessary to reinitialize the simplex to new values (keeping the best value from the

previous optimization) and run through the optimization scheme until the change

in the values satisfies a set tolerance. In this way, the inverse method converges

upon the best answer. Tests with noisy numerical data sets show that the inverse

method converges unambiguously to the correct answer with no dependence on the

initialization of the simplex other than it be adequate to encompass the entire range

of parameters.

A.2.3 Rootfinder

This program calculates roots of a non-dimensionalized version of the dispersion re-

lation. In it's fully expanded form, the dispersion relation has 10 roots in non-

dimensional wave number , k*. Five of the roots are spurious and result from squaring

the term

m= (k2+ wp1/2 (A.1)

in the dispersion relation. To separate the spurious from the good roots, positive and

negatives values of non-dimensional m, m*, are calculated for each of the roots in k*

and the two values are put back into the dispersion relation. If the positive value of

m * together with k* satisfies the dispersion relation better than the negative value of

m * together with k*, then the root is good, if not, it is spurious. Good roots must

satisfy the condition that m > 0.

Once the five good roots in k* have been ascertained, they are sorted in ascending

order by either their real or their imaginary parts. This will be useful later when

making plots of the solution space.
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An option for discarding non-physical kR < 0 and unstable k, > 0 roots exists in

this program.

A.2.4 Errfinder

There are several error schemes used in the errfinder algorithm - one for matching wave

number data, one for matching damping coefficient data and another for matching

both.

The schemes are are simple and merely calculated the percent different of the real,

imaginary or real and imaginary parts of each root to each data point at that data

point's frequency. The root contributing the minimum error is saved and all of these

minimum errors summed to give an error index for the optimization scheme.

A.2.5 Optimizationprog

The optimization program is the heart of the inverse method. This program varies the

values of the simplex, calls the rootfinder and errfinder programs and checks how well

the variation went. This program internally checks tolerances for each optimization

run (the run between reinitializations of the simplex). This program is based on the

simplex method published in Press et al. , 1995.

A.2.6 Capdilsimplex

This subroutine to the optimization program replaces the simplex values with largest

error and sees if the new values have a smaller error.

A.3 Noisy simulated data and the inverse method

To test the inverse method we used noisy simulated data. We examined the robustness

of the inverse method by applying it to two portions of the data set, the first subset,

labeled 20:40, near a resonance event, the second subset, labeled 50:70, at a higher

frequency range. Three different error schemes were used to determine goodness
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US

Data Set: 20:40 50:70
Parameters

as(k 1 ) 7.04 5.44
as(kR) 7.27 7.05

Table A.1: This table gives the values of the standard deviations for both real and imaginary k
data, a- (kR), and o-,(k 1 ), for the data set subranges 20:40 and 50:70.

of fit of the final answer. These error schemes considered wave number, kR, spatial

damping, k1 , and both wave number and spatial damping coefficient data respectively.

These results are presented in section 6.3.

The challenge of making a comparison between the three error schemes for the two

portions of the data set was that the conditions of the data must be comparable. The

noise to signal ratio (NSR) must be the same for both the wave number and spatial

damping data for both the 20:40 and the 50:70 frequency ranges of the data. This

meant that, in reality, different amounts of noise must be added to both the wave

number and damping coefficient data sets for each NSR for both of the frequency

ranges.

The data sets were created in Matlab in the the following manner. A simulated

data set of wave number, kR, and spatial damping coefficient, k1 , was created for EO =

30.0 x 10-3 kg/s 2 and o = 70.0 x 10-3 kg/s 2 , p = 1024 kg/M 3 and p = 1.1264 x 10-3

kg. The standard deviations, as for both kR and k, were calculated for each of the

data set subranges 20:40 and 50:70. These are given in table A.1.

Next, noise was manufactured using Matlab's random number generator, RANDN,

which generates a matrix of random numbers with mean zero and variance one. The

standard deviation of the noise, UN, was calculated and, from this, the

2

NSR= N (A.2)

To modify the standard deviation of the noise, and thus the NSR, the noise was
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Table A.2: This table gives the values of the mean values for both real and imaginary k data for
the

weighted by a factor, n, so that

UN = U(nR) (A.3)

where R is the random number set. Three noise to signal ratios were examined, 0.056,

0.084 and 0.112. To produce the same NSR for each of the two data curves kR and k1 ,

and two data subranges, 20:40 and 50:70, twelve different values of n were applied to

the random number set. The modified random number sets were then added to the

simulated data, producing the twelve noisy data sets used for analysis of the inverse

method.

The sensitivity index,

EQ/Q %errorSI- N-
UN/k U'Nk

(A.4)

was calculated with

UN/k = ON/kI

uN/k = UN/kR

UN/k = V(UN J) 2 + (N /1R) 2

(A.5)

(A.6)

(A.7)

for each of the three error schemes with the following values:
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k (1/m)
Data Set: 20:40 50:70

Parameters

-31.62 -61.30
kR 89.20 126.14



A.4 Resonance

To find the combinations of rheological and wave characteristic parameters for which

modal resonance occurs, the following criteria were applied:

A = 0 (A.8)

= 0 (A.9)

where A indicates the dispersion relation and k is the wave number.

These caculations use two nested programs. Both programs used non-dimensionalized

versions of the two above criteria to reduce the number of variables which must be

searched to find all of the combinations of rheological and physical parameters result-

ing in wave modal resonance.

The outer program looped through large ranges of each of the non-dimensional

parameters. Using a range of the wavenumber, k as an input parameter, it calcu-

lated the roots (all in w) of the second criterion above, subjecting them to all of the

physicality, stability and sorting criteria of the rootfinder algorithm. These roots (in

w) were then used as the input to the second program. This program calculated the

roots (all in k) of the first criterion above and compared these roots to the values

of k inputed into the outer program. When the roots matched, the non-dimensional

parameters were dimensionalized and the dimensional parameters stored.

A.5 Stability

A heuristic method was used to determine which of the 81 sets of non-dimensional

parameters were most helpful in describing the bounds of stability of the roots of the

dispersion relation. The dispersion relation was non-dimensionalized repeatedly and

expanded in Maple. Programs looped through the parameters sets and calculated the

roots of the non-dimensional dispersion relation and counted the number of physical

kR > 0 and stable k, < 0 roots. Color coded symbols of the number of stable roots

were then plotted in three dimensional non-dimensional parameter space where they
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could be evaluated for dependence on the axes parameters.
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SYMBOLS LIST

Chapter 2

p density

v velocity

t time

p pressure

x, y, z principal directions of inertial reference frame

g gravity

< potential

divergence

A, B amplitudes

k wave number

m divergence vertical decay coefficient

w frequency

( vertical displacement

( tangential displacement

E, S parameters

YD surface tension of deformed interface

K surface tangential dilational viscosity

TN surface normal shear viscosity
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,q surface tangential shear viscosity

Ae area

s arc length

o-, static surface tension

U- = TiN

- + iW I

e, dilational elasticity

e" relaxational elasticity

Eo = E0

E' apparent dilational elasticity

E 60C + iWC1

6R change in work done in displacing surface

6f change in surface area

pij viscous stress tensor

Tij interfacial stress tensor

5ik delta function

6n6t area of interfacial element

A, p* 1st and 2nd coefficients of bulk viscosity

Chapter 3

Pi non-dimensional parameters
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DVE non-dimensional parameter: dilational viscous retardation to elastic propaga-

tion of energy

BVE non-dimensional parameter: bulk viscous retardation to elastic propagation of

energy

BIE non-dimensional parameter: bulk inertial retardation to elastic propagation of

energy

6 phase

Chapter 4

7w parameters

a, , y coefficients

kR wave number

k, spatial damping coefficient

k = kR+ik,

WR frequency

w, temporal damping coefficient

W =WR +i'WI

f frequency

Td non-dimensional time factor

Ld non-dimensional length factor

A wave length

Cg group velocity

Fo force
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ki spring constant

xi displacement

mi mass

6st static displacement

Chapter 5

Ci currents

I current

v kinematic viscosity

T torque

R radius

angular velocity

H separation distance

<0 phase

n, m winding numbers

xi position

7 pi

Ai amplitudes

m mass

L Wilhelmy plate length

A area

ai coefficients
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A, B amplitudes

a, # coefficients

M magnitude

ki wave numbers

xi positions

6, , e, E parameters

Chapter 6

N noise

y mapping constant

yN mapping constant with noise

SI sensitivity index

EQ error in the estimate of Q

Q parameter

ON standard deviation of noise in signal

-k mean value of data

0 phase of c

w surface pressure

Appendix A

NSR noise to signal ratio

as standard deviation of the signal

R random number set

n coefficient
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