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by

Lincoln J. Chandler

Submitted to the Sloan School of Management
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Requirements for the Degree of SM in
Operations Research

ABSTRACT

Given the desire to create interactive websites that effectively engage and instruct
medical professionals, an alternative model for online case studies was developed. The
resulting application presents the user with a virtual patient, asks for information
regarding the treatment and care of that patient, and provides customized feedback to the
user. When a person uses this application, one could say the goal of the user is to make
the necessary decisions that will stabilize the patient, and the goal of the application is to
provide feedback regarding those decisions.

In order to adapt to user decisions, the design incorporates an unconventional use of
decision analysis. The source of uncertainty is the clinician's strategy, or sequence of
decisions. Given the user's decision, the appropriate system response is assumed to be
uncertain a priori. The proposed model requires the application to conduct an internal
analysis, and then condition the response on the circumstances under which the decision
is made. This conditioning approach informs the patient's behavior during the simulation,
and it determines the appropriate constructive feedback for the user. Intuitively, a system
constructed using the proposed model is better suited to address the educational needs of
an individual learner. Also, despite the context of this model, it is noted that the proposed
model need not be restricted to medical applications.

Thesis Supervisor: Richard C. Larson
Title: Professor of Civil Engineering and Engineering Systems Division
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CHAPTER 1:
INTRODUCTION

Motivation: Online Case Studies

Our discussion begins with a consideration of educational computer programs that support
interactive, online case studies. In the medical community, these modules are used to illustrate
issues of medical practice and theory to novice clinicians. Case studies are a popular teaching
method in medicine and other disciplines because they provide a way for seasoned professionals
to convert their actual experience into an educational narrative for the learner. In a case study, the
case author presents background information and assessment of a particular patient; the
interaction occurs when the learner is required to provide his or her own thoughts regarding care
and treatment.

Design of traditional case study modules

From observing a number of medical websites that feature case studies, one can conclude that
these case study modules are generally developed and presented in a deterministic, or fixed,
manner. Relevant information about the patient (e.g. vitals, X-Rays, lab results, etc.) is provided
in a specific order, at predetermined times throughout the case. Also, the user is generally not
required to request access to this data; it simply appears when the user reaches a certain part of
the case.

When the user submits a diagnosis or chooses a therapy, these modules associate a single
outcome with that decision and that outcome will never change. Also, with very few exceptions,
the design of these modules will only acknowledge one correct choice for any given situation.
This notion of a single correct decision is enforced explicitly; if an improper decision is made, the
user is immediately notified of the mistake and is either given the correct answer or instructed to
go back and try again. In either case, the arc of the case study operates along a single path that the

user must be guided back to before another decision can be made.

This "single path" structure is depicted in Figure 1; note that every potential decision has only
one possible outcome. For the first decision, the depiction shows that regardless of the user's
choice, the next system state is fixed. For the second decision, the user cannot move forward until
a particular option (i.e. the "correct" answer) is chosen. This methodology implies that all users
who navigate the course will be given a common set of decisions to make and, when the case is
over, that all users will be lead to a common conclusion.

The main advantage of this approach is the simplicity of implementation. Because all users will
have essentially the same experience, there is no need to keep record of an individual user's past
decisions. The online case module, in its entirety, is typically little more than a collection of static
HTML pages; the information used to link the pages is explicitly coded within the pages. Each
choice has a consistent, predetermined outcome, so once the links have been established, no
further computation by the system is necessary.

9



Figure 1 - Depiction of traditional case study structure

The user experience

When an online case study begins, the user is provided with a narrative describing the patient's
symptoms, and a set of supporting visuals, such as photographs, slides, etc. Over the duration of
the case, the user is presented with a series of decisions to be made. These decisions are typically
represented as multiple-choice questions that concern the care of the virtual patient and/or general
knowledge of the scenario presented. After each decision, the user is presented with feedback
regarding their choice, and any other comments regarding the decision. Also, updated statistical
and/or physical information is provided to help guide the user deeper into the case.

For the user, the current system typifies the trade-off between simplicity and realism. In its
current design, a user can navigate through a case relatively quickly and gain some level of
insight regarding the care of a patient. Given a patient and his symptoms, the case study
conclusion will reveal the treatment that gives the patient the best odds of recovery, as well as the
recommended tests to perform along the way. This information is a key component of a
clinician's expertise, but the case studies rarely mention potential side effects or efficacy rates,
which are crucial to consider in a field of very few absolutes. In practice, the lack of certainty in
medicine can sometimes lead to competing notions of a patient's care. In contrast, the case study
modules in use can only support a single treatment strategy, so alternative therapies are usually
mentioned only in passing, if at all.

This is not the only instance where realism lags behind simplicity. Another trade-off can be seen
in the way important test results and visual records are passively presented to the user. In a real
clinic, a clinician would need to decide what tests to run to evaluate the patient and a clinician
would also need to interpret the data received, i.e., figure out the relative importance of the
available metrics.

Limitations of the Existing Model

Although the traditional case study design is well-received by the medical community, its static
structure limits its effectiveness as an engaging, reusable online learning experience. In seeking to
improve the experience, there is an assumed correlation between the level of realism and the
ability to engage the learner. Suggestions for improvement are then made under the following
premises:

10



1. Clinicians could receive better training in a simulation style environment that offers a more
realistic model of patient-clinician interaction.

2. The introduction of probabilistic outcomes and alternative scenarios would naturally expand
the scope of any given case study; extending this idea, by developing a model for navigating
a stochastic case environment, the foundation is set for a learning environment with a broader
scope, increasing the potential for an engaging experience.

The case for improved realism

As noted earlier, case study modules tend to follow a "single path" methodology, so when a
decision is made, there is no variability in the outcome. The lack of variability limits the scope of
the case; once a user navigates a case successfully, the value of reuse (that is, the added
educational benefit of revisiting the case again) is low. Also note that, in the majority of cases,
there is a single strategy, or sequence of decisions, that represents the "correct" way to navigate
the case. When the user deviates from this sequence by making an "incorrect" decision, the case
study module is designed to either:

- provide a description of why the choice was incorrect and guide the user back, or;

- present the correct decision with justification followed by all of the incorrect decisions
and reasons why they are incorrect and move the user along.

In either case, the learner is never given accountability for making an improper decision. In the
latter case, this limitation is compounded by a standardized mechanism for feedback. As a result,
the user's insights are limited to following the case author's approach, rather than developing the
broader perspectives associated with experience - based learning.

By creating a more user-dependent educational experience, one can facilitate a more realistic
mode of learning. Although the same body of information is passed to the learner, the order of
presentation is conditioned on the user's actions. This property is especially powerful when a
learner is performing poorly; by allowing the user to stray from the "best path", a more realistic
model challenges the user to address and understand the consequences of their specific course of
action. Also, a model that permits the user to make mistakes can use this information
constructively to provide comments and feedback specific to individual performance.

The case for variation and alternative scenarios

The inherent uncertainty in clinical practice requires added care when providing feedback.
Clinicians using a case study module should receive feedback based on the decisions they make,
not on the outcomes of those decisions. Unlike the existing case study models, in which case
information and feedback are delivered together, an alternative model may seek to decouple the
analysis of the user's decisions from the presentation of outcomes in the case. One approach
would be to delay feedback until the simulation has ended. From an educational perspective, this
method provides a means to counter the perception that positive results imply sound technique,
and vice versa.

In addition to the individual benefits of adopting a more user-driven approach, there are long-
term benefits to consider as well. The lack of variation in the prevailing case study model implies
that the recommendation of a single "best path" is frozen in time. If a better approach to treating
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the patient were discovered, the recommendations (and therefore, the case) would become
obsolete. In a more realistic model, a new treatment approach would equate to adding a new path
and perhaps updating the feedback, but the functionality of the rest of the model would be
unchanged.

Overview of Proposed Model

To address the shortcomings of the traditional online case study, the alternative model proposed
in this paper has a dual functionality. The primary function is to support an interactive self-
assessment of the user's medical knowledge in a given area, and the secondary function is to
simulate a patient care experience. The proposed model achieves these means by defining a
system that initially behaves as a simulation would; while in this mode, the patient's response to
treatment is the primary source of information for the user. This mode of operation is allowed to
continue only if the simulated scenario is of educational value and if the user is exercising
reasonable judgment in caring for the patient.

If either of these conditions is violated, the system is defined to be in a "pruning state". The term
"pruning state" is motivated by the notion that the model design should circumvent undesired
states of the system as one would prune unwanted branches of a tree. Once the system enters a
pruning state, the current simulation is halted and the user is presented with feedback on their
performance. This feedback includes a description of the event that caused the pruning in addition
to an analysis of the user's overall strategy; i.e., all of the decisions made by the user. The user is
then prompted to backtrack and retry a previous decision, restart the simulation, or exit the
system.

It is important to note that the patient and case updates (presented to the user per iteration) are
generated by the outcome. This is contrast to the user feedback, which is based on the conditions
under which the decision is made, and is determined earlier, before the outcome is known.
Although generated during the simulation, feedback on a user's strategy is not shown until the
simulation is halted. This approach allows for a learning tool that separates the analysis of the
user's decisions from the simulated effects of those decisions.

Review of Literature

Online Medical Education and Case Studies

Like practitioners in other fields, members of the medical community have been eager to embrace
new opportunities for education via the Internet. A prominent indicator of this interest is the
growth in the number of websites that are classified as examples of online continuing medical
education, or online CME. A practicing physician is required to stay abreast of advances in
medicine; the formal proof of this activity is the accrual of CME credits from certified providers'.
Traditionally restricted to coursework and computer programs on CDs, the Internet has afforded
the opportunity to build and distribute CME materials online. As evidence of the explosive
growth in online CME, a study conducted by Sklar in 2000[4] identified a total of ninety-six
websites offering over 3,000 hours of CME credit; by Fall 2004, Sklar's index of online CME

' The Accreditation Council for Continuing Medical Education (ACCME®) is the governing body for this
activity; more about ACCME can be found online at http://www.accme.org
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resources had identified over 280 sites, offering more than 13,000 courses and over 23,000 hours
of CME credit.2

Case studies, which are an established element of classroom education, have become a popular
feature on several online CME sites as well. The notion of a "case study" can vary depending on
the context; for this discussion, a suitable characterization defines a case study as an "active
learning strategy depicting a real-life event or situation that is relevant to the professional
activities of learners."[1] Case studies promote the use of learning from past observation; in a
conventional implementation, the elements of the case are examined via group discussion, with
an instructor as moderator. The discussions serve to promote critical analysis from the learner,
and to this end, the most effective cases tend to involve ambiguous situations with no "obvious"
course of resolution. Given the complexities of providing medical care, it should not be surprising
that case studies are a well- established tool of clinical training.

Uncertainty and Decision Analysis in Medical Research

There is a sizable body of research devoted to understanding uncertainty in the medical realm,
ultimately with the purpose of facilitating an analytic approach to patient care and medical
training. Drawing from Szolovits [5], one could argue that research on medical uncertainty tends
to belong to one of the following four categories:

- Efficacy evaluation of a given treatment methodology;
- Reduction of uncertainty in diagnosis via statistical analysis;
- Discovery and exploration of factors that influence a physician's decision-making; and
- Causal analysis of how patients make decisions about their own care.

The first category addresses a fundamental question; what treatment strategy is best for the
patient? Studies of this sort can be addressed quite effectively through the application of Decision
Analysis (DA). The value of DA to medical practice was recognized early on; an example
application can be found among Raiffa's earliest works on the topic [3]. In his example, Raiffa
posits the characterization of patient treatment as a multi-attribute decision tree; he also proposes
a method of developing a utility function to represent the overall state of the patient.

Extending Raiffa's example, prime application areas for Decision Analysis have included the
development of proper care protocols and within the last thirty years, the development of
"quality-of-life" metrics for describing the physical and emotional health of a patient.
Applications of the latter sort have proven to be somewhat controversial, as they require
practitioners to quantify and compare dissimilar and sometime subjective measures, such as
functional impairment and patient comfort. [2]

When considering the various applications of Decision Analysis research to medicine, it is noted
that typically, the immediate goal is to suggest the proper clinical decision, or sequence of
decisions, in an uncertain environment, i.e., patient care. In the long-term, these insights would
then be used to address the question of what should be taught in terms of clinical best principles.
The model presented here also has a similar immediate goal, but the long-term objective is quite
different. For this application, it is assumed that there exists a set of clinical principles regarding
the care and treatment of a particular patient. Given this body of knowledge, the goal of this
research is to create a more engaging and effective way to introduce these principles to a less
experienced clinician.

2 Sklar's index of Online CME sites can be found online at http://www.cmelist.com/list.htm
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CHAPTER 2:
PROBLEM ANALYSIS AND FRAMING

This section outlines the design notions that ultimately lead to the proposed alternative, referred
to hereafter as the Compressed Decision Tree (CDT) model. The basic inspiration is the
alternating decision tree model, which is developed first. For the intended domain, it is noted that
the educational content and analysis will generally not be exhaustive, a fact which exposes the
limitations of a standard decision tree implementation. Next, the notion of contextual analysis is
used to develop a method of overcoming these limitations, first by defining pruning conditions,
and then by generating a system response for each user decision as it is made. This process is
referred to as a contextual analysis test; these tests are then the basis for a new analytic structure,
the compressed decision tree (CDT). The CDT structure is the essential asset, as it enables the
model to simulate the clinician-patient experience.

The Alternating Decision Tree

Given an objective and a set of choices, a decision tree is visual tool that is used to assess the
relative value, or utility, of any given strategy (i.e., a sequence of one or more decisions). The
entity in charge of picking the strategy is the Decision Maker. The validity of a strategy is
dependent on the goal of the Decision Maker and the forecasted outcomes of the strategy. Each
outcome has a utility with respect to the decision maker's goal; the decision tree then serves as a
mechanism for comparing the desirability of decisions based on their expected outcomes. An
alternating decision tree reflects, in a more specific sense, the presence of another "decision
maker" (a competitor, or the element of chance, for example) with the power to affect the
outcome of a strategy.

The Clinician-Patient Experience

The use of an alternating decision tree model is motivated directly by the nature of a clinician -
patient interaction; in what follows, the clinician is the Decision Maker. In practice, a clinician
begins with some information about an unstable patient, and a set of decisions to make, such as
ordering tests or administering some form of treatment. The clinician makes a decision based on
the expected outcome, but the actual outcome is uncertain a priori. After the decision has been
made, an outcome is observed, and the clinician is given new information and a new set of
decisions. This begins a cycle of patient care that repeats until the patient stabilizes or dies; this
event referred to as an "end state" for this process.

By defining the patient's initial state as the root, the set of possible sequences of decisions and
outcomes forms an alternating decision tree, depicted in Figure 2. Note that, in this system,
choices can have multiple outcomes. The leaves of this tree represent multiple end states, each
corresponding to a different path taken by the user. If this entire decision tree was a
representation of the set of all possible case outcomes, then a traditional case study model, like
the ones described earlier, would only be capable of representing a single path in this tree.

15



Figure 2 - An Alternating Decision Tree Framework

Additional Needs

An alternating decision tree model may appear to be applicable as is, but proper implementation
requires some care. For educational purposes, the model must be able to provide feedback on any
strategy (or path) the user is allowed to take. This means that model will require a method of
eliminating, or pruning, the paths that the case author will not be able to accurately describe. Also,
for users who fail to show basic understanding of how to treat the patient, there is a need to detect
poor strategies as early as possible and prune those as well.

There should also be an efficient means to characterize identical sub-trees. Identical sub-trees
occur in a decision tree whenever there are at least two decision nodes for which the likelihood of
any future event is identical. Figure 3 illustrates this point using a decision tree that begins with a
coin flip; if the next decision is based on whether the decision-maker wins or loses the coin toss,
it doesn't matter whether the decision-maker calls heads or tails.

A decision tree model regards each sequence of decisions as a distinct path, but, for a simulation
of patient care, it is quite possible that two (or more) distinct paths may be probabilistically
identical. It follows that at these points, the model's behavior should be identical. A naive
implementation of a decision tree would generally not take advantage of this symmetry,
nevertheless, there is a need to quickly identify sub-trees and handle them in an efficient manner.

16

__ -- · __ �_�_�UI · ____· _�_



Figure 3 - Alternating Decision Tree for a Football Team

Contextual Analysis

It has been indicated that the alternating decision tree is a reasonable conceptual basis for a new
model. However, in order to provide flexible analysis of a clinician's decision-making, the
alternating decision tree model requires modification. In what follows, the use of contextual
analysis is motivated as a means to provide the necessary enhancements.

In this setting, the term "contextual analysis" is used to describe any process that accepts some
request as input, and then gathers information about the state of the process in order to determine
the appropriate output. For example, the game "20 Questions" progresses as a contextual analysis
would; the initial request is to determine an unknown object, and the player's task is to ask a
series of questions about the object with the goal of determining the correct answer. In the world
of medicine, contextual analysis appears frequently in the form of treatment flowcharts; for a
treatment flowchart, the appropriate treatment regimen (i.e., the output of the analysis) is
conditioned on the specifics of the patient's medical condition.

Initial Application: Pruning Conditions

Recall that the scope of a case study decision tree is limited by the amount of information the case
author is able to provide. Because of this, it is imperative that the "boundaries" of the simulation
space are explicitly defined. This provides an initial use for contextual analysis; if an analysis
were to indicate that a boundary has been violated, the simulation would be programmed to stop.
This measure ensures that' the user will only encounter scenarios that the simulation is
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programmed to handle, which implies that the simulation will remain pedagogically relevant to
the user's education.

In determining the set of viable scenarios, it is not advisable to attempt to enumerate and evaluate
all of the possibilities; decision trees grow exponentially, so this approach is not scalable. Taking
another view, if given an arbitrary case simulation in progress, the interest lies in determining the
general conditions under which the simulation should be stopped. Formally, these are the pruning
conditions for the model. In this model, there are four types of pruning conditions defined. If any
of these conditions are satisfied, the simulation is said to be in a pruning state. These pruning
conditions provide a means to broadly describe the boundaries of a decision tree; the associated
pruning states represent the set of simulation scenarios that are "off limits" to users. The pruning
conditions are defined in Table 1. These conditions are not mutually exclusive, and any one is
sufficient.

PRUNING CONDITION INTERPRETATION

1. The program cannot convey or simulate the outcome of the

UNDEFINED user's decision.
2. The outcome of the user's decision can be described, however

the patient's condition is outside of the educational scope of the

OUT OF SCOPE module.
3. The user has made enough poor decisions to warrant

USER ERROR intervention.
4. The user has reached an end state (i.e. the patient is stable or

SYSTEM _QUIT dead), or the user has halted the simulation.

Table 1 - Pruning Conditions for the CDT Model

Applications Beyond Pruning

Contextual analysis can also be used to identify the presence of identical sub-trees in an
alternating decision tree. As mentioned earlier, identical sub-trees occur in a decision tree
whenever there are at least two decision nodes for which the likelihood of any future event is
identical. Plotted on a decision tree, the simulation patient state at a given point is uniquely
determined by the sequence of user decisions and patient outcomes that have occurred up to that
point.

The decision-outcome sequence provides a sufficient amount of information for the model to
simulate a response, however, this amount of detail can be much more than necessary. As an
alternative, a direct query of the patient's status is usually a more concise indicator of the
patient's probable response. Consequently, a well-formed contextual analysis of the patient state
can be equally as informative as the decision- outcome sequence, and typically more efficient.

On a larger scale, contextual analysis can be used to govern the behavior of the entire program.
As the simulation iterates, an analysis of the patient's state and the state of the system can be used
to determine whether the simulation should continue or halt. The same analysis can also
determine more specific behavior; for example, the availability of additional information may be
dependent on a measure of elapsed time.

18
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Creating the Compressed Decision Tree

In this section, the Compressed Decision Tree model is introduced. First, a fundamental
requirement of the model is addressed; that is, the ability to process a single decision. Ultimately,
the further application of contextual analysis is used to compress the functionality of a traditional
decision tree into a single-step tree.

The Contextual Analysis Test

When considering an executable prototype of the model, it is reasonable to model the simulation
process as a loop; the exiting condition for this loop would be the presence of a pruning condition.
The instructions within the loop represent the rules that govern the simulated effects of each user
decision. In order to process a single user decision (and simulate an outcome of that decision),
There are four criteria identified that need to be addressed; they are presented below, in order:

{Cl}
{C2}
{C3}
{C4}

Is the user performing well enough for the program to continue?
If so, is it possible for the program to assign the relative likelihood of outcomes?
If so, is the (randomly) chosen outcome describable and educationally relevant?
If so, should the simulation continue?

If all of these criteria can be met, the program will provide the information necessary to simulate
the effects of the decision on the virtual patient, and the simulation will continue. If not, then one
of the pruning conditions have been satisfied, and the current simulation will be halted. Together,
the four criteria represent a contextual analysis test (CAT) for the submitted decision. Each
criterion is addressed by considering a different set of system attributes and, as depicted in Figure
4, each criterion plays a specific role in carrying out the simulation. These roles are denoted by
italicized text in the picture; for example, user feedback (re: the given decision) is determined
during analysis of the first criterion.

Figure 4 - Illustration of the Contextual Analysis Test
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For each criterion, the model requires a minimal amount of information about the system in order
to determine the appropriate response. This set of information is defined in the model as a
conditioning event; this is because this information represents a set of conditions that, if met, are
sufficient to determine the behavior of the system and move the program along. The first three
criteria are decision-specific, meaning that the conditioning events that are checked depend on the
decision that is submitted. Question 4 is global; the conditioning events are the same for every
decision.

In this model, all of the information needed to properly simulate a single decision (and its
associated outcome) is managed by the decision-specific elements of the CAT. Furthermore, all
of the information regarding program behavior is managed by the global element of the CAT.
Consequently, there is no longer a need to store an entire decision tree in memory. By defining
conditioning events, specifically by using contextual analysis, the physical representation of the
tree is compressed into a compact, yet effective form.

The Compressed Decision Tree

If one were to connect a series of these CAT structures for the set of decisions that a user may
encounter, the resulting structure would contain enough information to govern the behavior of an
entire simulation. This new structure is referred to hereafter as a Compressed Decision Tree.
Figure 5 provides a visual representation of the Compressed Decision Tree (CDT) model. The
CDT model has the familiar structure of a traditional decision tree design, with a crucial
difference. The depth of this tree is two; the tree need only be deep enough to move the
simulation from iteration n to iteration (n +1). The elements D(1), ..., D(d) represent the decision
set for the current iteration.

As shown, the outcome node is surrounded by the CAT elements. Before an outcome is computed,
the CAT determines the aptness of the user's strategy and the relative likelihood of outcomes;
feedback for the user is collected at this point and held until the simulation ends. After the
outcome has been decided, the CAT determines the utility of the outcome and how the simulation
should proceed; updated case information, including the next decision set, is determined in this
step and presented to the user immediately.

When the program presents the user with a scenario and a series of (decision) choices, it is
analogous to posing a multiple-choice question to the user; the set of possible choices is referred
to as the decision set. In developing the CAT, it was assumed that the quality of a decision is
somehow dependent on the state of the patient, or the system in general. This is generally true
whenever the user is required to treat the patient. However, it is noted that in some cases, the
outcome of a decision will be the same regardless of the patient or system state.3 When this
occurs, there are fewer conditioning events to consider. In such cases, the analysis is simplified,
and only a subset of the criteria listed in the CAT definition is necessary.

Features of the CDT Model

For cases built using the CDT model, recall that the user is not given feedback regarding their
decisions until after a simulation has ended. This is a key departure from the traditional case
study module; this approach stems from the desire to make the experience more realistic.

3 For example, consider a general question about the behavior of a given disease. Such a query would have
little to do with the particulars of any given simulation; the query is rather a general test of user knowledge.
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However, when a simulation has been halted, it was decided early on that the user should be able
to view their feedback and retry the simulation without having to start from the beginning. This
functionality is referred to here as backtracking.
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Figure 5 - Physical Design of the Compressed Decision Tree Model

Once a response has been selected, it is checked to see whether pruning is required. If the node does not
require pruning, a copy of the system state is stored, and the program continues.

For the CDT model, the process of backtracking is facilitated by storing a copy of the system
attributes after each decision is processed. This copy includes the internal patient data, as well as
a record of case updates and onscreen information. The copies are stored in a vector, and should a
user decide to backtrack, the appropriate system copy is pulled from the vector and all future
copies are destroyed. The selected system copy is then used to reset the parameters of the system
and the simulation can continue.

It has been shown that the CDT Model provides the means to prune undesirable patient scenarios,
recognize identical sub-trees, and reset the simulation to any prior state. This section concludes
by noting an additional benefit: the support of multiple patient types. In practice, a clinician's
treatment strategy could very well depend on the age, sex, or prior history of a patient. Treatment
can also vary due to the progression of illness, presence of allergies, or a host of patient-specific
details. A traditional decision tree has a single root, which, in model would equate to having a
single patient, at a specific initial state. The advantage of the approach used in the CDT model is
that its functionality is determined by the attributes of the patient. Instead of a specific patient as
its "root node", the CDT model only assumes a patient in an arbitrary, unstable state. This
relaxation allows the model to simulate treatment of the same condition for a variety of patients.
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CHAPTER 3:
PROCESS DESIGN

In this chapter, the process flow for the model is defined. Readers should note that this chapter
focuses primarily on the mechanics of the CDT model, as opposed to the ideology; accordingly,
there is an examination of the primary elements of the model, and how they relate to each other as
a simulation progress. Also, there is an overview of the subroutines that drive the execution of a
program using the CDT model.

Key Process Elements

The proposed model evolves in successive stages, or iterations. An iteration of the model is
defined by the submission of the user's decision, coupled with the effects of that decision. In what
follows, let {n > I } be the index of an arbitrary iteration of the model. Although the CDT model
emulates the behaviors of a decision tree, the structure represents a single-step process that
repeats iteratively. Therefore, assuming the simulation has not been halted, it is perhaps helpful to
think of the CDT model as a single set of dependent elements with attributes that evolve over the
life of the program. Figure 6 provides a graphical interpretation of this view and serves as the
visual template for the process flows that are described later in this chapter. The arrows show
how these entities influence one another; the boxes depict the information flows that are
determined during execution and sent to the user. One should note immediately the relationship
of patient status (Patient(n)) to user error (Err(n)); both entities directly influence the overall
system (S(n)), but there is no direct influence on each other. This underscores the aspiration to
maintain the distinction between desirable decision-making and desirable outcomes.

The elements shown in Figure 6 are defined below; although DSet(n) and the HALT subroutine
are not shown, their presence should be implied. These definitions are intended to provide a
physical interpretation of the elements required for the (active) model and how their values are
updated over the lifetime of a simulation. The following section will define a series of processes
that permit these elements to interact as intended.

S(n) - State of the model after the nth iteration. The main indicator within S(n) is binary;
either the simulation has been halted (HALT), or the simulation is still in progress (ACTIVE).
This binary value in S(n) is determined by the state of the patient and the severity of user error.

Patient(n)- State of the patient after the nth iteration of the simulation. This state is
representative of the medical condition and history of the patient. The range of possible values
grows with the complexity of Patient(n), but the implication is again binary; either the patient's
condition is either stable enough to continue the simulation, or prohibitive to going further.

The patient state is conveyed via a combination of the information presented to the user and the
underlying conditions that drive the behavior of the simulation. Its value is determined by the
outcome of the user's decision and the prior state of the patient, i.e., Patient(n-l).

Err(n)- The severity of the user's tactical error after the nth iteration. This permits the
model to keep track of the overall quality of the user's decision-making. When the severity

* Here and elsewhere in this section, the phrase "A is determined by B and C" is read as follows: "In all
cases, the value of A can and will be determined by some combination of the values of B and C (i.e., B
alone, C alone, or B and C together)."
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exceeds some threshold, the simulation is to be halted. Although correlation is to be expected, this
metric is not determined by the patient state at time n. The value of Err(n) is determined by the
previous state of the system (S(n-1)) and the user's decision.

Outcome(n) - This is the probabilistic effect of the nth decision on the patient. This outcome is
selected from a set of possible outcomes with a pseudorandom number generator. The relative
likelihood of those outcomes (P(n)) is determined by the decision made and the previous state of
the patient.

Decision(n)- This is the user's nth decision. Once submitted, it drives the aforementioned
elements of the model. Any feedback regarding the user's decision is determined by the previous
state of the patient and delivered after the simulation has been halted.

DSet(n) - The set of decisions available to the user for Decision(n). DSet(n) is determined
by the previous state of the system, S(n-1l).

HALT subroutine - Entered only when a simulation has been halted. In this subroutine, all
feedback regarding the user's performance is presented. The user then has the option of restarting
the simulation from the beginning, or from any earlier iteration.

Iteration nl1

| Iteration n 

I Iteration n+l 

0*ee

/ Decision .' Outcome Patient Err 
(n+l) i...........: (n+) ( n+l ) (n+l) (n+l)

................ .'. .. ... "' ..........." ......................
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~74...·.... . . ....

Figure 6- Influence Diagram of Key Model Elements at Iteration n (Active Simulation)

A decision is submitted by the user, and then evaluated to determine the outcome of the patient, as well as
the quality of the user's decision. DSet(n) and the HALT subroutine are not depicted here; their presence is

implied.
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Subroutines of the Model

Here, the set of subroutines for the CDT model is defined. Collectively, these Subroutines will
handle the task of updating the model. Accompanying each description. is a reproduction of
Figure 6 which reflects the impact on the model elements after that step. A solid circle reflects an
element whose attributes have been fixed, and a shaded circle reflects an element whose value
may be fixed, but not necessarily.

Initialization:

In order to initialize the simulation, it is necessary to first initialize the status of the Patient, i.e.
Patient(O). In traditional case studies, there is only one type of Patient considered, so this task is
fairly straightforward. In a case where treatment strategy may vary greatly (perhaps due to the
patient's age or time of presentation), a case author may want to simulate more than one type of
Patient. The randomized choice of Patient(O) is conducted here.

At the beginning of a simulation, it is assumed that the user has not committed any tactical error.
For various reasons, it may be necessary to raise or lower the error threshold for the user. If so,
these adjustments are made in the initialization phase.

With Patient(O) set, the appropriate introductory patient and case information can be presented to
the user and the value of S(O) is set. A copy of Patient(O) is created (for backtracking purposes)
and the user can begin.
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Preliminary Analysis (of Decision(n)):

This subroutine, along with the one described next, forms the first two parts of the Contextual
Analysis Test (CAT) developed in Chapter 2. Recall that the conditioning events for this process
depend on the decision made; in a worst-case scenario, there would be a separate subroutine of
this type for each decision that the user can make. For all subroutines of this type, the purpose is
the same, so the functionality need only be described once.

Given a decision, the first step is to determine whether or not the decision can be processed at all;
from the pruning definitions, it is possible that the effects of some decisions may be
UNDEFINED with respect to the active case. If this happens, Patient (n) becomes UNDEFINED
and S(n) enters the HALT mode. Assuming that the decision can be processed, the key task is to
determine the appropriate feedback to give to the user; this is done by analyzing Patient (n-i) for
a matching conditioning event.

While determining the appropriate feedback, it is also appropriate to assess the severity of any
perceived errors in judgment. If technical errors are detected, the value of Err(n) is increased. If
Err(n) meets or exceed the system's error threshold, S(n) will be immediately put in HALT mode,
otherwise, the model begins the process of Outcome Simulation.

Although determination of user error is not based on patient outcome, the status of Err(n) can not
yet be fully defined, or "set". This is because Err(n) is also dependent on the previous state of the
system, a check that occurs at the end of an iteration.
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Outcome Simulation: (assuming the simulation is still ACTIVE)

This process incorporates the third part of the CAT, as the model must determine its ability to
define a relevant outcome. Recall that S(n-1) denotes the most current status of the overall
program; that is, at the time Decision(n) is made. During this subroutine, the parameters of S(n-1)
are again analyzed for a particular type of conditioning event. This time, the conditioning event
found is used to determine P(nl S(n-1)), the relative likelihood of outcomes for Decision(n),
given S(n-l). The set of potential outcomes includes all relevant patient outcomes as well as any
outcomes that trigger a pruning condition. If a pruning condition can occur with positive
probability, the likelihood is captured by P(nj S(n-l)).

For individual outcomes, define the following:
Pil. = Pr { Outcome i will occurl S(n-1) = S }

Assuming R total outcomes, P(n IS(n-1)) is then represented as a stochastic vector, that is, a
vector of the form:

{ [ P1 P21s ... PRI: pil.= l, Pil. > 0),

The values of P1,, P21., etc. are determined by an appropriate set of conditioning events regarding
the state of the patient and possibly other system factors, such as elapsed time. Unless the set of
conditioning events is collectively exhaustive, P(n IS(n-1)) will have to have a default value. For
example, if no conditioning events can be found, P(nl S(n-1)) = [1, 0, ... , 0], with "Outcome 1"
representing an UNDEFINED (pruning) outcome.

Once P(nI S(n-1)) has been determined, the corresponding CDF is used to map the possible
outcomes to the numbers in [0,1]. A (pseudo-) random number on [0, 1] is used to select the
simulated result, Outcome(n). If Outcome(n) represents a pruning condition, the system is set to
HALT. Otherwise, the status of Patient(n) is updated; if any thresholds are violated as a result of
the update, the system is put in HALT mode.
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Systems Check: (assuming the simulation is still ACTIVE)

This process is essentially the fourth part of the CAT; in this subroutine, the overall state of the
simulation is analyzed and any additional updates to the case are provided. For example, when
there is a limit on the number of iterations, that condition is checked during this process. Also,
there is some information' that can only be provided to the user after a certain part of the case, or
"milestone", has been reached; these milestones are tracked in this part of the program. This
information is checked after every user input, regardless of the decision, which should be
expected, as the fourth part of the CAT was stated to be global.

After these checks have been made, the value of Err(n) can be finalized. Since the status of
Patient(n) is also understood, the state of the entire system at n, S(n), is certain as well. If S(n) is
ACTIVE, the model stores a copy of Patient(n) and Err(n), increments n, and continues the
simulation. If S(n) is in HALT mode, no copies are made and the model immediately enters the
HALT subroutine.
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Halt Subroutine:

Once a simulation has been halted, the user is presented with all of the accumulated feedback
regarding the case. This feedback usually will come from the case author; the feedback can also
contain links to other reference materials. Once the feedback has been provided, the user can
either exit the system altogether, or restart the simulation from any earlier point in time.

Figure (a) depicts a simulation that has been halted due to user error. Suppose the user would like
to change a previous decision, Decision(m). Recall that the CDT model stores a copy of every
previous system state; in order to allow this change, the copies of Patient(m-l) and Err(m-1) are
accessed. The information therein is sufficient to reset the simulation, as shown in Figure(b),
and the user can now submit a new choice for Decision(m).
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Process Algorithm:

This section concludes with an algorithm that summarizes the process flow of the model. The
subroutines are denoted by bold type, and the text and media updates, which are provided to the
user, are underlined.

{Initialization)

1. Determine the patient's initial state; call this Patient(O)
Initialize Err(O);
Let n = 1;

2. Given DSet(n); user submits Decision(n)

{Preliminary Analysis)

3. Using Decision(n) and Patient(n-1), collect any Feedback and/or determine the relative
likelihood of decision outcomes, P(nl S(n-1))

{Outcome Simulation}
4. Using P(nl S(n-1)), determine Outcome(n), which updates Patient(n)

5. Using Patient(n), output Patient Information and update Err(n)

(Systems Check)

6. Use System Parameters to output any new Case Information and determine S(n),

7. Using S(n), determine DSet(n+l)

8. If S(n) denotes an ACTIVE simulation,
Then save a copy of S(n)

n = n+l; go to step 2
Else, go to step 9

{Halt Subroutine)

9. Output all Feedback to the user.

10. The user will either quit the program or want to restart from decision m < n.
If the user quits, then EXIT the program and close the application.

11. Set n = m (Note: for all m, S(m) is ACTIVE; otherwise, the system would have halted earlier.)

12. If m = 0, go to step 1.

13. Retrieve Patient(m -1) and Err(m-1); go to step 2.

14. Set n = m; go to step 2.
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CHAPTER 4:
IMPLEMENTATION - TECHNICAL NOTES

This section chronicles the steps taken to create the first implementation of the CDT model. The
starting point was a traditional case study; after a review of the structure and content of the case,
the educational objectives of the author are presented here to motivate the design of a stochastic
analog. Next, the abstract elements of model (as defined in Chapter 3) are revisited in order to
establish their relationships to the data structures present in the implementation. This section
concludes with a series of visuals of the finished prototype.

About the case4

The case concerns a middle-aged man suffering from what is later revealed to be a listeria
infection. Within the confines of the case, the user is required to recommend test procedures and
antibiotic treatments on the patient's behalf; also, the user is presented with supplemental
questions to test the user' s general understanding and knowledge of the disease.

Dr. Sigal Yawetz, of the Brigham and Women's Hospital, provided the initial (deterministic)
version of the case. The initial case study, which can be found in the Appendix, consisted of five
questions; for context, they are paraphrased below:

* Given the patient state at arrival, what should the clinician (user) do first?
* Which antibiotics should be included in the initial treatment regimen?
* After viewing the result of a lumbar puncture, what is the likely cause?
* For patients allergic to ampicillin, which antibiotic is an appropriate substitute?
* Given the patient's lifestyle, how did the infection most likely occur?

Of the five, Questions 1 and 2 were predicted to generate the most incorrect answers. For
Question 1, the author felt that early clinicians would likely delay treatment by performing some
type of diagnostic; although this approach is taught regularly in medical school, the severity of
this particular patient's condition requires immediate attention. Regarding Question 2, the author
noted that experienced clinicians might neglect to include ampicillin in the initial treatment
regimen. Ampicillin is specifically useful for treating listeria infections; the other antibiotics are
not effective. Without knowing the cause of infection, it is not typical to assume the presence of
listeria; however, best practice maintains that ampicillin should be provided just in case.

Because Questions 1 and 2 were considered the most critical elements of the case, the decision
was made to introduce variability into the case at these points. In the original case, Question 1
only requires the user to declare the first step in patient care; the order of other actions is assumed.
In contrast, the stochastic case study would require the user to provide the explicit order of patient
care. For Question 2 of the original case, the user must submit the choice of antibiotics, but the
patient's response is independent of the user's decision. In the stochastic case study, the behavior
of the patient throughout the case is directly related to the user's choice of treatment. The core
mistake in treating this particular patient is to delay ampicillin; the longer the patient goes without
treatment, the more likely the patient is to become comatose, which would halt the simulation.

4 The reader should note that the case used to develop this prototype is rather short and would not ordinarily
require the tools developed in this paper. The model proposed in this paper would enable future case
authors to construct much richer case environments; the implementation provided here serves primarily as a
tangible, operational example of a case study created with the CDT model.
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Representation of Model Elements

This section recalls the key elements of model design and relates them to the design of the
prototype.

Decision(n), DSet(n):

In the original case, there were five multiple-choice Questions presented to the user; accordingly,
a user's potential decision was dependent on the Question being asked. In the stochastic case
study analog, the set of possible user choices is also organized into five decision sets. The user's
decision at iteration n (Decision(n)) comes from the union of two entities: the set of potential
decisions at iteration n (DSet(n)); and the decision to HALT the simulation, which is always
available. Table 2 provides an overview of the decision sets for the prototype.

Questions 3-5 were not modified, but it is noted that Question 3 assumes that a lumbar puncture
has been provided, and that Question 4 assumes that Ampicillin has been administered. Also, the
decision was made to avoid "unlucky" patient scenarios; if the user navigates the case according
to the author's recommendations, the simulation proceeds as originally written, without exception.
In general, this is a very generous assumption to make, but, in this case, the recommended course
of action is generally reliable and agreed upon. If a mistake is made regarding patient care (that is,
regarding Questions I and 2), the simulation may or may not continue, depending on the severity
of the error. Conceptual errors (such as misreading a lab result) do not impact the patient's health
directly and are counted separately; the simulation would also halt if there were too many
conceptual errors.

Table 2 - Decision Sets (DSets) defined for Prototype Case
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Name Objective Potmtlal DDesions Comnts

decideOrder: Decide how next to treat the patient Antibiotics The preferred order is to administer

CT- scan of the head antibiotics, provide plasma for the LP, and

Lumbar puncture (LP) with fresh frozen plasma then conduct a CT scan. It is never advisable
to conduct the LP without plasma

Lumbar puncture without plasma

decieTherapy: Choose which antibiotics to administer to (Any combination of thefollowing) The recommend initial therapy is to provide
the patient Anmpicillin anmpicillin, ceftriaxone, and vancomycin. All

Ceftazidime three are recommended as initial therapy, but
Ceftriaxofne in the end, ampicillin is the only drug that will

Doxyclinhelp this patient.

Vancomycin

analyzeGS: Observe the gram stain from the lumbar Streptococcus pneumonia The organism depicted is Listeria. All other
puncture and determine the causative Escherichia coli choices are incorrect.

organism Listeria monocytogenes

Neisseria meningitis

reviseTherapy: After an allergy to ampicillin is revealed, Ceftazidime Of the choices, trimetoprim is the only
determine a good replacement antibiotic Erythromycin acceptble answer

Trimetoprim-sulfamethoxazole (bactrim)

Doxycycline

determineCaue: After learning about the patient's Prior travel to Vietnam and China. The dietary habits are the only reasonable
lifestyle, determine the most likely cause A tick bite while in Cape Cod. cause of listeria.
of infection. Dietary habits

A scratch sustained from a cat.

Rose thorn prick while gardening.

HALT IThe user wishes to stop the simulation HALT Always available; begins HALT subroutine
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Err(n):

Recall that Err(n) is a record of the cumulative tactical errors committed after n iterations. Once a
decision is made, the first part of the contextual analysis test is performed to determine the
validity of the decision. The validity of the user's decision is determined at the discretion of the
case author.

If an error in judgment is detected, a penalty point is added to Err(n). Once a user receives two
penalty points, the simulation is halted. The choice of two as a threshold is arbitrary and can be
lowered (raised) in order to decrease (increase) the number of allowable scenarios. The penalty
points that define Err(n) are the internal output of this contextual analysis.

The external output of error-checking is the author's commentary on the user's decision; i.e., the
feedback the author wishes to provide the user. In implementation, this information is stored in an
array called Feedback. As stated earlier, the information within Feedback is not revealed to the
user until the simulation has been halted.

Patient(n), Outcome(n):

This implementation employs a combination of external and internal information to characterize
the patient and the various outcomes that affect the patient. The external information consists of
the narrative text and supporting visuals that guide the user through the simulation. The internal
information consists of the data points and outcome probabilities that drive the behavior of the
patient.

The external information is maintained within three separate arrays:

-DecisionHistory: A text record of each decision made by the user.

-CaseHistory: The full case narrative; a record of each user decision, plus every
decision outcome and any supplemental information

-MediaHistory: The set of supporting visuals; any slides, x-rays, etc. that have been
displayed during the case.

During an active simulation, the DecisionHistory and CaseHistory arrays are updated once per
iteration; the MediaHistory vector is updated as needed. As a convention, any initial information
about the case is stored in the dh position (i.e., the head) of the array; consequently, at iteration n,
the length of each array is bounded above by n+l.

The array-based implementation allows the program to store the information regarding each
iteration stage separately, but in chronological order. The contents of an array are accessible via a
simple loop, providing a convenient method for displaying and updating the application interface.
The contents of these arrays figure prominently in the finished prototype, which is shown in the
following section.

For the internal information, there are two structures defined that are sufficient to capture the
conditioning events that determine the behavior of patient. The first of these is an array
(NodeHistory) that records the sequence of user decisions and patient outcomes. Each entry of
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this array is an ordered triple of indices representing a decision set, a decision, and the outcome.
For example, the array information NodeHistory[3] = { 1, 5, 2 has the following interpretation:

At iteration 3:
The user was presented with "Decision set 1";
The user chose "Decision 5", and
The result was "Outcome 2".

The other structure used to record internal information is a list of the medications that the patient
is using at time n. The antibiotics referenced in the "decideTherapy" decision set are considered
ACTIVE or INACTIVE and are represented by a Boolean array called RDActive. The "RD"
stands for "recurrent decision", which reflects the fact that the provision of antibiotics would have
an ongoing impact on the patient's health. In the model that was constructed, the patient's
underlying condition (infection by listeria) is assumed, so the structures mentioned are sufficient
to simulate the patient's state; again, any available information is revealed to the user in text and
images.

The Prototype Program

This section introduces the prototype program that was created from the CDT model. The
program was written in the JavaTM programming language; the NetBeansTM IDE was the primary
tool used to develop, test, and debug the code. Notes regarding the code for this simulation can be
found in the Appendix of this document; a CD containing this code is available as well.

The application interface is divided into five regions, which are continuously refreshed as the
simulation progresses; see Figure 7. The top center panel (in white) is the primary information
source for the user. The left and right panels serve as secondary information sources for the user.
Directly below the white panel is the input panel that the user employs to maneuver the case. Also,
a large button is provided at the bottom of the input panel, which allows us to halt the simulation
at any time. The next several pages contains screen captures of the prototype at various states of
execution; these screen captures serve to demonstrate the manner in which the external
information described in the previous section is organized and presented to the user.

Media Panel

User Input

HALT button -

Information Panel

Decision History

Figure 7 - Design of the Prototype Interface
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Active Case - Introduction

The first image depicts the look of the application shortly after the user decides to begin a
simulation. Once a simulation has begun, the introductory case information appears in the central
panel. During an active simulation, the case narrative is displayed here; as explained in the
previous section, this narrative is stored in the caseHistory array.

During program execution, the panel at left is referred to as the "media panel"; its purpose is to
provide links to any supplemental visual information for the case, including such as X-Rays,
culture slides, photographs, etc. The media for this panel is stored within the mediaHistory vector.

The panel at the right provides a running history of the decisions made by the user during the
simulation. This information is read from the decisionHistory array, described in the previous
section. At the beginning of the simulation, this panel is empty; this is because no decision has
been made by the user at this point.

The input panel has been updated to present the user with the first decision set, decideOrder. In
an active simulation, the input panel will always presents the current decision set; i.e., the set of
allowable decisions at the given state. The decision to HALT the simulation is always available to
the user during an active simulation.

Java Aolet Window
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A 51 y/o man presents to the emergency room at midnight with severe headache of 2 days
duration, fever, malaise, and lethargy.

The patient is from California (out of state) and has been staying with family in Massachusetts
in the past 3 weeks. He reports a h/o aggressive non-Hodgkin's ymphoma diagnosed 4 years
ago, for which he received 2 full courses of chemotherapy followed by autologous bone-marmw
transplantation 19 months prior to his presentation. Hie also has a recent left lower extremity
deep vein thrombosis for which he is taking coumadin, although he has not taken any since he
has been ill.

He was weil until 2 days prior to his presentation when ne noticed some abdominal cramps
followed by a fever to 101.8, chills, and headache which gradually became very severe, and
associated with light sensitivity and stiff neck. On examination his temperature is 102.4, pulse
rate 116, blood pressure 140/90, and RR 26, saturation 98% on room air He is Initially alert
and oriented but within 10 minutes becomes increasingly drowsy. He has no rash or mucosal
lesions. He has severe photosensitivity, a stiff neck, and positive meningeal signs. He has no
papilledema and no focal neurologic deficits The rest of his examination is unremarkable. He
has no central venous catheter. The Emergency room staff is concerned about a lumbar
puncture given his coumadin therapy Initial blood tests are drawn (including complete blood
count, coagulation parameters, blood cultures) and you are asked for your advice
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Active case - decideTherapy

The decideTherapy decision set presents the user with a list of the different treatments available.
The user is allowed to start or stop use of the treatments throughout the duration of a simulaiton.
Once a combination of therapies has been selected, the user must press the "OK" button in order
for the simulation to store the information. From that point, the program will assume that the
selected therapies remain active in the Patient for the remainder of the simulation, or until the
user decides to alter the current (stored) therapy.

When the user submits the information, the results of the decision are shown and the user is given
the next set of possible decisions. The simulation continues to operate in this way until the
bounds of the simulation, as defined by the pruning criteria, have been reached. Any event
defined as a pruning event serves as a signal to interrupt the user; if the patient dies, or if the case
has been handled in an unsatisfactory manner, or if the patient's condition is indeterminable or
otherwise outside of the educational scope of the simulation, the simulation halts. Of course, by
pressing the red button, the user can opt to halt the simulation at any time.

lesions. He has severe photosensitivity, a stiff neck, and positive meningeal signs. He has no
papilledema and no focal neurologic deficits. The rest of his examination is unremarkable. He
has no central venous catheter. The Emergency room staff is concerned about a lumbar
puncture given his coumadin therapy. Initial blood tests are drawn (including complete blood
count, coagulation parameters, blood cultures) and you are asked for your advice.

YOUR DECISION:
Order Intravenous antibiotics

Antibiotics have been ordered; you have five options at your disposal, to be used n any
combination you choose.

Intravenous catheter is placed and a laboratory evaluation (including blood cultures) is
ordered. The patients white blood count is 12,600/ml with 85% PMNs and 6% lymphocytes. His
Hematocrit is 36 and Platelet count 260,000. His sodium is 128 and Creatinine of 1.1 (within
normal limits).
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Halt simulation screen:

When the simulation has been halted, the central panel and the input panel are modified as needed
to guide the user forward. Immediately after a simulation has been halted, the main information
panel is used to present feedback to the user; this includes commentary regarding the case, as well
as any other guidance for the user. As mentioned before, this information is stored in the
Feedback array.

The input screen is updated to provide the user with four options. Option 4 exits the entire
program. Options 2 and 3 both reset the simulation from the beginning, with a slight difference. If
the patient's initial condition is always the same at the start of a simulation, options 2 and 3 will
be the same. However, if we allow for a randomized initial patient, option 2 will allow the user to
restart the simulation with that same particular patient. Option I represents the backtracking
option, which would allow the user to review the previous decision sequence and try a different
strategy.

FEEDBACK

Regarding this case:
This patient Is immunocompromised and has suspected Bacterial meningitis with rapid alteration
in mental status, a poor prognostic factor. This is a life-threatening emergency. Although no
prospective data are available, delay in the administration of antibiotics has been shown
retrospectively to have a deleterious effect on outcome.

Decision 2 Adjustments to treatment:
-Start Ceftazidime;
-Start Deoxycyline;
-Start Vancomycin;

Ampicillin is only therapy listed that is effective againstlisterosis. It Is therefore, a necessary part
of recommended first-line therapy.

Ceftazidime Is not recommended as a first-line therapy.
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Backtrack screen:

The final element of functionality discussed here is the backtracking option. Recall that this is the
feature that allows the user to restart the halted simulation from an arbitrary point in the past; as a
result, the user has an opportunity to immediately apply the lessons learned from feedback and
roll back to an earlier decision.

As can been seen here, the information screen updates again; this time, to show the history of all
decisions made in this case. This is precisely the same information that can found in the panel at
right; i.e., the information from decisionHistory. At this point, the user has the opportunity to
change any decision that was made and restart the case from that point. Events occurring after
that point are erased, and all events before that point are preserved.

Decision 1:
Order intravenous antibiotics

ACoustments to treatment:
-Start Ceftazidime,
-Start Deoxycyline;
-Start Vancomycin;

Decision 3:
Provide fresn plasma, order lumbar puncture

Decision 4:
Diagnose gram stain as Menengitis
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CHAPTER 5:
IMPLEMENTATION - USER IMPACT:

As stated in the introduction, the purpose of developing this model was to create a more engaging,
durable approach for learning this material. The approach presented here lead to three major
changes to the existing model. The fundamental change was to provide a model that supports
stochastic (i.e., probabilistic) patient behavior. This modification prompted the second major
change: the separation of user feedback and patient status. The separation of feedback is
accomplished by delaying the presentation until the end, when all feedback is presented at once.
With all of this information being delivered at once, it was necessary to enable users to identify
and isolate specific errors in decision-making; the backtracking feature was developed to allow
this functionality.

This ideas presented here represent a mathematics-based approach proposed by engineers; the
inherent risk in promoting the CDT model would be that the proposed modifications would
ultimately be of little use to the intended end user, the medical professional. With this thought in
mind, it is instructive to get perspective from members of the medical community on stochastic
case studies and the CDT approach and potential impact of developing future cases in this manner.
Of particular interest are the perceived advantages and disadvantages of the modifications that
help define the CDT model.

In order to get this perspective, a review of the prototype was solicited from the primary medical
contact and original case author, Dr. Sigal Yawetz. Despite extensive familiarity with traditional
case studies, Dr. Yawetz had not considered this style of case study prior to this project. Upon
completion of the prototype, Dr. Yawetz was invited to use the system and asked for feedback
regarding its functionality. Supplemental feedback was also provided by Ms. Melinda Cerny, who
has served as project manager on a series of educational websites for medical professionals. As of
this writing, she is preparing to launch a website on Transplant Infectious Diseases; the website
project provided the early motivation for the work presented herein. Given Ms. Cerny's
familiarity with the development and functionality requirements for these projects, her assessment
of the model is of special interest for identifying any barriers to implementation.

On the use of uncertainty

The use of uncertainty in the CDT model represents the core departure from the traditional case
study method; accordingly, it was predicted that this part of the approach would be the most
controversial. Contrary to expectation, when the model was demonstrated for an audience, user
comments regarding this feature of the model were extremely positive. The project manager
surmised that from a pedagogical standpoint, the notion of providing cases with alternative
outcomes would be a very welcome addition to her project websites. After being presented with
the CDT model, she was "excited" about the future prospects for these cases; also, she expressed
interest in incorporating the existing prototype into the current project.

Overall, the case author was also very supportive of the CDT approach. Throughout the
development phase, she remarked that clinicians, as case authors, are not used to thinking about
cases in a probabilistic manner; the narrative is generally drawn from a particular patient
interaction, and the specifics of that interaction are treated as absolute truth with respect to the
case. However, she opined that, over time, stochastic case studies would serve as a valuable
proxy for clinical experience, and that future case authors would benefit from thinking through
alternative scenarios as a case is developed.
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Other CDT functionality

Other features introduced in the CDT model were also well received. The separation of program
simulation and user feedback implies that the user is given minimal assistance while navigating a
case. The case author noted that users of the system would be unaccustomed to the concept of
delayed feedback, and would probably prefer the traditional method of instant feedback for
decision-making. Still, because the CDT model is a better approximation of patient care, she felt
it more than reasonable to sacrifice comfort for realism and develop more cases using the CDT
model.

The ability to backtrack past decisions was developed as a means of minimizing the negative
effects of delaying feedback, and the added functionality was noted in the implementation. In
constructing the model, it was reasoned that the ability to backtrack would be sufficient to allow
the user to address specific development needs, just as in the traditional model. After viewing the
prototype, the project manager agreed with this view, even suggesting that, from a functional
standpoint, the CDT model "sacrifices nothing" in providing a rich learning environment for
clinician training.

Notes on Future Implementation

In addition to providing feedback on the functionality of the CDT model, colleagues were also
asked to share their views regarding effective implementation and adoption of the CDT model.
While noting the benefits of stochastic cases, it was made clear that the CDT model should not be
viewed as a replacement for traditional case studies. Instead, the consensus opinion was to treat
stochastic cases as part of a multi-pronged approach to clinician training.

With regard to clinician training websites, a stated goal is to develop the content necessary to
create and support clinician certification. The case author noted that the variability of a stochastic
case would ultimately hinder the ability to assess performance across a group of users. The
presence of uncertainty allows for dissimilar experiences across a group, a concept contrary to the
notion of standardized group assessment, which generally assumes a common test environment.
With this in mind, the case author promoted the use of stochastic case studies as a supplemental
certification tool. In other words, a user would be required to attempt and complete stochastic
cases as a means of experimental learning, but users would never be penalized for substandard
performance.

An understated, but obvious, disadvantage of the CDT model is the increased workload for the
case author. As the complexity of a stochastic case increases, so does the amount of case
commentary and event conditioning. It was reasoned that the extra work required to build
stochastic cases would slow down the production of new cases as well as dissuade potential
authors from embracing the CDT model. For this reason, project manager suggested that the
number of stochastic cases be kept to a relative minimum, with perhaps no more than two or three
on a website. In this format, the user could gain basic skills through traditional case studies, and
use the stochastic cases as a more rigorous self- test of their decision-making ability.
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CHAPTER 6:
REVIEW AND FUTURE WORK

This paper concludes with an argument for continued exploration in this area of research and
some suggestions on how to proceed. After reviewing the breadth of the work presented here, the
long-term impact of the CDT approach is considered, for program users and case authors. Given
this assessment, there are a number of potential avenues for continued research in this area.

Review of Presented Research

Given the notion of a case study, the challenge posed was to extend the functionality in a manner
that would best serve the needs of an interactive medical website. The goal was to create an
online "living document" that would accessible to clinicians around the world and extensible to
future case modifications by practicing clinicians.

In the course of analysis, a structure was developed - the Compressed Decision Tree (CDT) - that
facilitates simulation over a set of potential outcomes despite imperfect knowledge of all possible
outcomes. This simulation is achieved using a four-step Contextual Analysis Test that uses
information about the current state of the system to determine decision outcomes and future
model behavior. The development of the CDT structure provided a basis for an alternative
approach to structuring case studies, referred to here as the CDT model.

Assessment of Long-Term Benefits

The CDT model provides a method of producing stochastic case studies, which, as indicated by
the response to the prototype, are a fairly novel approach to training clinicians. More important
than the novelty of the approach is the common perception that stochastic cases could provide a
significant contribution to the field of web-based medical education.

This optimism is bolstered by the various benefits associated with stochastic case studies. The
end user is provided with a dynamic learning environment and tailored guidance, providing a
more personalized experience. The use of uncertainty in a case provides the user with a variety of
patient scenarios, which increases the likelihood that a case is accessed more than once. This
notion of reusable educational content is of immediate relevance to creators of educational
websites, many of whom depend on the use of engaging, enduring content

Perspectives on Future Research

In anticipation of a broader implementation, it should be made clear that there are multiple
avenues for continued research and development of the CDT model. Perhaps the most pressing
among these is the creation of a case development interface for case authors. The case presented
in the prototype had to be manually converted from a traditional case, a process that required
extensive editing and computer programming. In contrast, the functionality of the development
interface would allow case authors to develop stochastic cases directly, without explicit use of a
programming language.

Looking ahead, it would also be worthwhile to revisit the CDT model and discover areas for
improvement. The purpose of developing the CDT model was to facilitate and promote the
development of a more engaging and effective interactive experience; regardless of the means,
future research should focus on making user-centric case studies and educational tools a reality.
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APPENDIX A: TEXT DRAFT OF CASE MATTER5

The following text is a draft copy of the case study narrative written for the prototype case. For
the case questions, the suggested responses are denoted with an asterisk. Comments for the user
and narrative feedback are italicized.

"Patient with Listeria"

Author: Dr. Sigal Yawetz, Brigham and Women's Hospital, Boston MA

A 51 y/o man presents to the emergency room at midnight with severe
headache of 2 days duration, fever, malaise, and lethargy.

The patient is from California (out of state) and has been staying with family
in Massachusetts in the past 3 weeks. He reports a h/o aggressive non-
Hodgkin's lymphoma diagnosed 4 years ago, for which he received 2 full
courses of chemotherapy followed by autologous bone-marrow
transplantation 19 months prior to his presentation. He also has a recent left
lower extremity deep vein thrombosis for which he is taking coumadin,
although he has not taken any since he has been ill.

He was well until 2 days prior to his presentation when he noticed some
abdominal cramps followed by a fever to 101.8, chills, and headache which
gradually became very severe, and associated with light sensitivity and stiff
neck. On examination his temperature is 102.4, pulse rate 116, blood
pressure 140/90, and RR 26, saturation 98% on room air. He is initially alert
and oriented but within 10 minutes becomes increasingly drowsy. He has no
rash or mucosal lesions. He has severe photosensitivity, a stiff neck, and
positive meningeal signs. He has no papilledema and no focal neurological
deficits. The rest of his examination is unremarkable. He has no central
venous catheter. The Emergency room staff is concerned about a lumbar
puncture given his coumadin therapy. Initial blood tests are drawn (including
complete blood count, coagulation parameters, and blood cultures) and you
are asked for your advice.

1. The following should be done next:

1. Head CT to exclude the presence of an intra-cranial lesion
2. Empiric intravenous antibiotics*
3. Fresh frozen plasma, followed by lumbar puncture (CSF examination)
4. Lumbar puncture (CSF examination) without fresh frozen plasma
5. None of the above

[Answer narrative] This patient is immunocompromised and has suspected
bacterial meningitis with rapid alteration in mental status, a poor prognostic

5 This material is used with the permission of the case author and should not be redistributed or used in any
part without the author's consent.
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factor. This is a life-threatening emergency. Although no prospective data are
available delay in the administration of antibiotics has been shown
retrospectively to have a deleterious effect on outcome.

[For answers 3 or 4 LP]: Although the use of antibiotics may affect the
accuracy of CSF gram stain and culture result it is crucial that ant microbial
therapy not be delayed due to an inability to immediately perform a spinal
tap. Given the concern about this patient's coumadin therapy a CSF
examination could not be performed promptly. However appropriate
antibiotics should be immediately provided.

[For answer 1, ct] A common mistake is to delay antimicrobial therapy and
CSF examination by obtaining a head CT to exclude an intracranial lesion.
However, it has been shown that this practice has led to significant delays in
therapy. It has been shown that the likelihood of hernia ion is low in the
absence of papilledema and focal neurological findings (<1.2% as compared
with 12%) as in this case. In cases where the risk of herniation appears to be
high, antimicrobial therapy should be initiated before obtaining a head CT,
even if this will delay a lumbar puncture.

2. Empiric antibiotic choice in this case should include the following agents
(mark all that apply):

o Doxycycline
o Ceftriaxone*
o Ceftazidime
o Vancomycin*
o Ampicillin*

[Answer narrative]

General principles: Factors influencing the choice of empiric antibiotics for
suspected purulent meningitis include:

Ability to penetrate the blood-brain-barrier in the presence
inflammation

Bactericidal activity, even in a purulent environment (with an acidic
pH_)

Activity against microorganisms specific to the host's age, medical
history immune status

Specific agents:
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Doxycycline - is a bacteriostatic agent with poor penetration of the
blood-brain barrier. It is not recommended as first line empiric therapy
for meningitis.

Ceftriaxone - a third generation cephalosporin, is the beta-lactam of
choice in the empiric treatment of meningitis in adults. It penetrates
the BBB well and has activity against the major pathogens of bacterial
meningitis including most strains of Streptococcus pneumoniae
including penicillin-resistant strains, Neisseria meningitis, most
Escherichia coli isolates, and Haemophilus influenza with the notable
exception of Listeria.

Ceftazidime, a third generation cephalosporin, is less active against
penicillin-resistant pneumococci than cefotaxime and ceftriaxone. Its
use is reserved for patients with neutropenia, cerebrospinal fluid
shunts, and neurosurgical procedures or trauma due to the higher risk
of resistant gram negative organisms in these populations.

Vancomycin - is inconsistent in its penetration of blood-brain-barrier.
However given the increasing rates of beta-lactam resistance in
Streptococcus pneumoniae, it is used with third generation
cephalosporins in area where high-level penicillin resistance is seen.
Vancomycin is continued if resistant Streptococcal pneumoniae is
suspected or isolated, and the MIC to third generation cephalosporins
is >0.5 Jg/mL

Ampicillin - is added for empiric coverage for Listeria monocytogenes,
a common cause of CNS infections in the transplant patient and in
patients with lymphoprolifertive diseases. Third generation
cephalosporins such as ceftriaxone have no activity against this
organism. Listeriosis may occur in the early or late post-transplant
period, and a common mistake is to omit Ampicillin from the initial
empiric regimen in those patients. Listeria should be suspected and
empirically treated in any meningitis patient older then 50 or
immunocompromised.

Intravenous catheter is placed and laboratory evaluation (including blood
cultures) is drawn. Vancomycin, ceftriaxone, and ampicillin are provided. The
patients white blood count is 12,600/ml with 85% PMNs and 6%
lymphocytes. His Hematocrit is 36 and Platelet count 260,000. His sodium is
128 and Creatinine of 1.1 (within normal limits). Fresh frozen plasma is
ordered, but the INR is 1.1 and lumbar puncture is performed. Analysis of
the cerebrospinal fluid (CSF) shows 1580 WBC with 96% polymorphonuclear
cells. The CSF protein concentration was 98, and the CSF glucose
concentration was 45 (serum 116). The gram stain reveals the following
organisms [show picture of large gram positive rods].

3. The most likely causative organism is:
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1. Streptococcus pneumonia
2. Escherichia coli
3. Listeria monocytogenes*
4. Neisseria meningitis

A CT scan of the head is unremarkable. In the CT scanner the patient is
noted to be wheezing and has hives. He is more confused and requires
intubations and mechanical ventilation. The patient wife and brother arrive
and report a penicillin allergy, although he has received Ceftazidime in the
past for fever and neutropenia without problem. He has no other known drug
allergies.

4. Which of the following agents is an alternative to ampicillin for the
suspected organism:

1. Ceftazidime
2. Erythromycin
3. Trimetoprim-sulfamethoxazole (bactrim) *
4. Doxycycline

[Answer Narrative]

Penicillin-allergic patients with listeriosis may be desensitized to penicillin if
this is feasible. In this critically ill patient this may not be possible.

Ceftazidime - cephalosporins are inactive in vitro against listeria and
have been shown to be clinically ineffective.

Erythromycin has in vitro activity against listeria, although is
bacteriostatic. It is not recommended as a second line agent for CNS
listeriosis.

Trimethoprim-sulfamethoxazole is penetrated the blood-brain-barrier
well, has is bactericidal against Listeria, and has been shown to be
clinically effective at high doses (20mg/d of trimethoprim divided into
4 daily doses).

Doxycycline has in vitro activity against listeria, although is
bacteriostatic. Although it is used for other CNS infections, docycycline
is not recommended as a second line agent against systemic or CNS
listeriosis.

The following additional information is obtained from the patient's wife: the
patient is a freelance journalist and travels throughout the country usually by
air. He has not traveled outside of the US since his illness, but has previously
been to Vietnam, China, Brazil, Mexico, Hawaii, Canada, France and
Germany. He had no recent respiratory or gastrointestinal infections and did
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not use any antibiotics. He often forgets his coumadin when traveling. He
does not smoke or drink, and has no history of injection drug use. No other
family member is currently ill. He is a vegetarian. The family ate mostly at
home. He has a dog and his hosts have two cats. The family spent the past
three weekends on Cape Cod but had not experienced tick bites. He
sustained a rose thorn prick while at his brother's garden.

The CSF cultures remain negative, but within 30 hours the blood cultures
reveal a gram-positive rod, later identified as Listeria monocytogenes.

5. Which of the following may have contributed to his illness?

1. Prior travel to Vietnam and China.
2. A tick bite while in Cape Cod.
3. Dietary habits.*
4. A scratch he sustained from his hosts' cat.
5. Rose thorn prick while gardening.
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APPENDIX B: PROGRAMMING NOTES FOR PROTOTYPE

This section provides supplemental information regarding the code (.java files) for the prototype.
The actual code is viewable on the included CD. As a guide, some basic notes about the classes
are provided below. With the exception of the Viewer class, the classes listed below were
developed by the author.

For those who wish to test a demo of the program, please try the online version, located at
http://orc-pumba.mit.edu/lic/applet/Simulation.html. (Note: The computer must be able to run
Java(TM) applets.)

If the link above becomes inactive, please notify the author: Ijchandler@alum.mit.edu

CLASSES OF THE PROTOTYPE
Decision
This class is used to define a set of general behaviors associated with a user-submitted decision.
For the prototype, this class contains the functions necessary to generate pseudo- random
outcomes.

GUI
The GUI class is the key executable; it is responsible for relaying information from the user to the
underlying model and vice versa. Settings for the physical dimensions and appearance of the user
interface are also located here.

HLink
The HLink class was developed as a compact means of storing information regarding past
decisions and outcomes. A new HLink object is created for every decision the user makes. An
HLink is structured as an ordered triple with elements representing the Decision Set presented to
the user, the Decision chosen by the user, and the resulting Outcome.

MediaButton
The MediaButton class is invoked by the GUI class. When a new image is available for viewing,
a MediaButton object appears on the user interface, as a small button. When the user presses the
button, the requested image is displayed in a (Viewer) window.

Model
The Model class is the logical center of the case module. The Compressed Decision Tree and all
Contextual Analysis tests reside in this class. Additionally, all commentary relating to the case is
kept here, including user feedback.

Node
The Node class contains the functions necessary to create storable copies of the simulation in
progress. Should a user decides to backtrack to an earlier point in the case, a Node structure will
contains all of the information needed to reset the program to the desired state.

Viewer
The Viewer class is used to facilitate the viewing of images in the user interface. The code for the
Viewer class was provided by a department colleague. The apparent author of the code is Marco
Schmidt; further information about the class can be found online at the following address:
http://www.geocities.com/marcoschmidt.geo/java-load-image-toolkit.html
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