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Abstract

Modern data networks are heterogeneous in that they often employ a variety of link technolo-

gies, such as wireline, optical, satellite and wireless links. As a result, internet protocols,
such as Transmission Control Protocol (TCP), that were designed for wireline networks,
perform poorly when used over heterogeneous networks. This is particularly the case for

satellite and wireless networks which are often characterized by high bandwidth-delay prod-

uct and high link loss probability. This thesis examines the performance of TCP in the

context of heterogeneous networks, particularly focusing on interactions between protocols

across different layers of the protocol stack.
First, we provide an analytical framework to study the interaction between TCP and

link layer retransmission protocols (ARQ). The system is modelled as a Markov chain with

reward functions, and detailed queueing models are developed for the link layer ARQ. The

analysis shows that in most cases implementing ARQ can achieve significant improvement

in system throughput. Moreover, by proper choice of protocols parameters, such as the

packet size and the number of transmission attempts per packet, significant performance

improvement can be obtained.
We then investigate the interaction between TCP at the transport layer and ALOHA

at the MAC layer. Two equations are derived to express the system performance in terms

of various system and protocol parameters, which show that the maximum possible system

throughput is 1/e. A sufficient and necessary condition to achieve this throughput is also

presented, and the optimal MAC layer transmission probability at which the system achieves

its highest throughput is given. Furthermore, the impact of other system and protocol

parameters, such as TCP timeout backoff and MAC layer retransmissions, are studied in

detail. The results show that the system performance is a balance of idle slots and collisions

at the MAC layer, and a tradeoff between packet loss probability and round trip time at

the transport layer.
Finally, we consider the optimal scheduling problem with window service constraints.

Optimal policies that minimize the average response time of jobs are derived and the results

show that both the job lengths and the window sizes are essential to the optimal policy.

Thesis Supervisor: Eytan H. Modiano
Title: Associate Professor of Department of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Background

1.1.1 History of Data Networks

Early forms of data networks date back to the smoke signals used by primitive societies

[12]. A more recent but still ancient example is the beacon towers along the Great Wall in

China more than two thousands years ago. There upon enemy approaching, the soldiers at

the frontier lightened their beacon fire. With significant fast speed, this signal was relayed

and spread by lighting of other beacon fires along the Great Wall, and eventually reached

everywhere throughout the region around the Great Wall. There the fire corresponds to

the binary signals in today's data networks, the beacon towers correspond to nodes, and

the routing protocol is flooding.

A major development of modern data networks was the development of ARPANET

around 1970, which is the first large-scale, general-purpose data network that connected

a number of geographically distributed computers together. The technologies ARPANET

implemented includes packet switching [31, 11, 32], layered protocols, mesh network topol-

ogy and across-the-network flow control [23, 24], all of which contribute significantly to

today's data networks. Subsequently, many other networks were developed, such as TYM-

NET and DECNET. Due to the technologies available at that time, these early networks

were all wireline networks. Yet many of their ideas and technologies, such as the layered

architecture and the TCP/IP (Transmission Control Protocol/Internet Protocol) protocol

suite, are still embodied in today's networks that have a much more heterogenous nature,

17



where heterogeneity refers to the fact that the networks have multiple types of links, such

as wireline links, wireless links and satellite links.

Each of these early networks was designed and manufactured by different groups or

companies and had different architecture and protocols. Consequently, computers within

one network could only communicate with other computers within the same network. In

order to allow interconnection of networks from different manufacturers, in late 1970s, the

International Standards Organization (ISO) developed the Open Systems Interconnection

(OSI) model [62, 23], which was soon widely accepted as an international standard for data

networks.

The OSI model has a layered architecture [62]. The basic idea of the layered archi-

tecture is to decompose functions at each node into layers. Each layer treats other layers

as black-boxes with certain inputs, outputs and their functional relation, and talks to the

corresponding layer of other nodes. In particular, the OSI model has seven layers, as il-

lustrated in Figure 1-1. From bottom to top, the seven layers are physical layer, data link

control layer (DLC), network layer, transport layer, session layer, presentation layer and

application layer, respectively. The DLC has one sublayer called Medium Access Control

(MAC) layer that manages multi-access links.

Each layer in the OSI model performs a given function in support of the overall function

of the system. Specifically, the physical layer is the lowest layer and is responsible for the

actual transmissions of bits over a physical link. It is essentially a bit pipe. The second layer,

the data link control layer, is responsible for packet transmissions across individual links. Its

sub-layer, the MAC layer, allocates multi-access channels so that nodes can transmit with

minimal interference from other nodes. The third layer, the network layer, performs routing

and some congestion control and provides a virtual link for end-to-end packets. The main

function of the fourth layer, the transport layer, is to provide end-to-end congestion control

and reliable end-to-end message transmissions upon session's requirement. The upper three

layers, the session, the presentation, and the application layer, are beyond the scope of this

thesis. We view them as layers that send data down to the transport layer.

On one hand, the layered architecture has many advantage, such as simplicity of design,

understandability, and standard, interchangeable, widely available modules. It allows easy

interoperation among different networks as well. On the other hand, layered architecture

also introduces inefficiencies in the form of cross-layer protocol interactions. Since many
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L-1 Physical Physical Physical Physical Physical Physical

IPhysical linkI

External site Subnet node Subnet node External site

Figure 1-1: OSI Model - Layered Architecture

protocols originated from wireline networks, such as the popular TCP/IP suite, these cross-

layer protocol interactions have been taken into account for wireline networks during the

design phase, and wireline networks hence perform reasonably well under these protocols.

However, with the development of new link technologies, such as satellite links and wireless

links, current networks have a more heterogenous nature. For these heterogenous networks,

there is a growing body of research indicating that these cross-layer protocol interactions

may significantly hurt system performance [4, 50, 49, 45, 7, 27, 3, 10]. The focus of this

thesis is to analyze these cross-layer protocol interactions in heterogenous data networks.

1.1.2 Heterogenous Data Networks

In the 1950s, when people started to connect computers in a centralized way, the link

connecting different terminals were telephone links (300-1200bps) [12]. Nowadays the

most common media include twisted pair (1.544Mbps), coaxial cable (multi-Mbps), optical

fiber(Gbps), radio (multi-kbps to 1Mbps), satellite (multi-kbps to Gbps), and microwave

(multi-Gbps). In the past two decades, great efforts have been made towards integrating

different links into one network. As a result, current data networks have a much more

heterogenous nature, that is, they include various types of links, such as the wireline links,

wireless links, satellite links or optical links. In this thesis, we consider heterogenous net-
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works that have wireline links, satellite links and/or wireless links.

Compared to traditional wireline networks, the heterogenous networks considered have

many special features, two of which are high bandwidth-delay product due to the large

propagation delay of satellite links and high link loss probability which is typical of both

wireless and satellite links. The cross-layer protocol interactions due to these features may

affect system performance significantly [4, 50, 49, 45, 7, 27, 3, 10]. In this thesis we focus

on two forms of cross-layer protocol interactions: the interaction between transport layer

and data link layer, and the interaction between transport layer and MAC layer.

Currently the dominate transport layer protocol is Transmission Control Protocol (TCP),

and the dominate reliable data link layer protocol uses Automatic Repeat reQuest (ARQ).

They have duplicate functions, that is, both TCP and ARQ perform loss recovery. In addi-

tion, the retransmissions of packets by ARQ at the data link layer introduces variability of

Round Trip Time (RTT) seen by the transport layer packets. This variability can be very

large in networks with high bandwidth-delay product, such as hybrid terrestrial-satellite

networks, and could potentially cause TCP timeouts that significantly degrade the per-

formance of TCP. These TCP timeouts were designed to relieve network congestion. The

adverse effect of initiating a TCP timeout due to link layer retransmissions is just one exam-

ple of the kind of interactions that we will study in this thesis. In particular, in Chapter 3,

we will investigate in detail the interactions between TCP and various link layer protocols.

Another form of interactions considered is the interaction between the transport layer

and the MAC layer. When a random access protocol such as ALOHA is employed at the

MAC layer, collisions occur with high probability. These MAC collisions directly affects

the TCP window evolution at the transport layer. Moreover, since the MAC layer accepts

packets from its corresponding higher layers, TCP window flow control algorithm controls

the packet arrival process at the MAC layer. Chapter 4 will discuss these interactions

between TCP and random access protocols in detail.

There are other cross-layer interactions in heterogenous networks, such as that among

network layer, data link layer and physical layer due to the time-varying network topology

and channel conditions in satellite networks and wireless networks. In this thesis we will

focus on the interactions between TCP and ARQ as well as TCP and ALOHA. Furthermore,

we also examines the problem of optimal transmission scheduling when packets availability

is limited by window constraints, for example, due to TCP window size limitation. This
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subject will be addressed in Chapter 5.

1.2 Thesis Contributions

In this thesis we examine the cross-layer protocol interactions between transport layer and

data link layer as well as transport layer and MAC layer. The thesis consists of three main

parts: the interaction between TCP and ARQ, the interaction between TCP and ALOHA,

and optimal scheduling policy with window service constraints.

1.2.1 Interaction between TCP and ARQ

The topic of interaction between TCP and ARQ comes directly from the observation of poor

TCP performance in heterogenous data networks with high link loss probability and high

bandwidth-delay product, such as hybrid satellite-terrestrial networks. We will focus on

this type of networks in exploring the interaction between TCP and ARQ. Our discussions

on high link loss probability is also applicable for heterogenous data networks with high

link loss probability but no high bandwidth-delay product, such as wireless networks. For

readers not familiar with TCP and ARQ, a brief introduction will be given in Chapter 2.

Currently TCP is the dominate reliable transport layer protocol [52]. On the one hand,

TCP works very well in classical wireline networks, as evident by the current Internet. On

the other hand, TCP does not perform well in heterogenous data networks, especially those

with high link loss probability and high bandwidth-delay product [4, 50, 49, 45]. There

are two major reasons for TCP's poor performance in heterogenous data networks. One is

that TCP considers the link losses in such networks as congestion losses and consequently

reduces window size. Another reason is that the window increase rate in TCP congestion

avoidance phase is slow (ref. Chapter 2 Section 2.3). The high bandwidth-delay product

property means that this slow increasing rate takes TCP long time to raise its window size

comparable to the available network capacity. Combining these two factors, it is foreseeable

that in such networks, with high probability, TCP will operate at a window size far below

the available network capacity. As a result, the overall TCP performance is significantly

deteriorated.

There are mainly three solutions proposed to enhance TCP performance over this type

of heterogenous networks: TCP spoofing [8], split-TCP [6, 59], and link layer solutions.
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Although their detail operations are different, their main ideas are the same: solving the

link losses locally instead of leaving them to TCP. Comprehensive descriptions can be found

in [7, 27, 45, 3, 10].

Among all these solutions, link layer solution has the advantage that it fits naturally

into the layered structure of networks. The main idea is that it can "hide" the link losses

from TCP, hence greatly reduce the number of unnecessary TCP window reductions and

significantly improve the overall TCP performance. Two well-known link-layer solutions

are Forward-Error-Correction (FEC) and Automatic Repeat reQuest (ARQ). Since FEC

has the advantage that no retransmissions are needed to recover the link losses, it is a good

solution when it can be implemented efficiently. However, when the channel condition is

time-varying as in some heterogenous data networks with wireless links or satellite links,

it is usually hard to design and implement FEC code efficiently. As a result, the packet

loss probability could be significant even after FEC. In these scenarios ARQ becomes a

necessary option.

ARQ recovers link losses by retransmitting lost packets (See Chapter 2 Section 2.1 for

detail operations of ARQ). By doing so, ARQ can "hide" the link losses from TCP, hence

significantly improving the overall TCP performance. On the other hand, the presence of

an ARQ protocol can lead to other more subtle problems. In particular, due to the high

bandwidth-delay product, ARQ retransmissions introduce high variability of the packet

round trip time (RTT) seen by TCP, and lead to TCP timeouts due to ARQ retransmissions.

We call these timeouts false timeouts.

Recently a number of papers have examined the interaction between TCP and link layer

ARQ by examining the system performance with TCP at the transport layer and ARQ at

the link layer. Most of them involve simulations in wireless environment [7, 19, 20, 39,

58, 5, 13]. There is some analytical work on this topic as well [14, 16, 17, 18, 43]. These

papers provide approximate analysis of TCP performance over a link layer protocol with

the assumption of instantaneous ACK feedback. The large bandwidth-delay product of

heterogenous networks we consider here makes these models unsuitable. The authors in

[14] further assume independence between window size and RTT of each window, which is

inappropriate either.

In this thesis we study the interaction between TCP and link layer ARQ, examine

whether implementing ARQ is beneficial, and explore the influence of protocol and loss
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parameters on the overall system performance. The work is different from earlier works in

several ways. First, it studies heterogenous networks where the high link loss probability

and high bandwidth-delay product are essential to the system performance. Second, we

focus on TCP's window flow control mechanisms and deliberately disregard other aspects

of TCP, such as RTT measurements and estimation, the detail retransmission mechanism,

and timer granularity. Third, the ARQ protocols considered include both GBN and SRP

protocols. The delay of the ACK signals is also taken into account, which is significant for

links with high bandwidth-delay product. Lastly, we give an exact analysis of the system

instead of approximations and simulations, thus provide an analytical framework for future

joint study of TCP and ARQ in heterogenous networks.

Specifically, the thesis investigates a system consisting of two end nodes communicating

over a heterogenous network. The network includes one error-prone bottleneck link and

some other link, where the error-prone link has high bandwidth-delay product. The trans-

port layer of the two end nodes implements TCP, and the data link layer over the error-prone

link implements GBN or SRP retransmission mechanism to recover its link losses.

The system is modelled as a finite state Markov chain with reward functions, and queuing

models for GBN and SRP are also developed. The throughput of the system is derived by

the theory of Markov chain with reward functions. The numerical results show that in most

cases, implementing ARQ over the error-prone link can achieve significant improvement

in system throughput. Moreover, by proper choice of protocols parameters, such as the

packet size and the number of transmission attempts per packet at the link layer, significant

performance improvement can be obtained.

1.2.2 Interaction between TCP and Random Access Scheme

The second part of the thesis work is to explore the interaction between TCP and ran-

dom access by examining hybrid terrestrial-satellite networks. In such a network, a group

of ground terminals share the same channel to one satellite for transmissions. There are

mainly three categories of multiple access protocols: fixed assignment multiple access proto-

cols, such as Frequency Division Multiple Access (FDMA), Time Division Multiple Access

(TDMA) and Code Division Multiple Access (CDMA); random multiple access protocols

(also called random access protocols), such as pure ALOHA and slotted ALOHA; and hy-

brid of the above two, such as reservation systems. Compared to the fixed assignment access
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protocols, random access protocols have the advantage that they are simple to implement

and work well for users with bursty and sporadic traffic ([12] and Chapter 2). Moreover,

with random access protocols, it is easy to add and remove users as well. Hence, random

access protocols are widely employed in satellite and wireless networks. This thesis consid-

ers hybrid terrestrial-satellite networks with slotted ALOHA employed at MAC layers and

TCP employed at transport layers. For readers not familiar with TCP and ALOHA, a brief

description is given in Chapter 2.

Since ALOHA was first proposed in 1970s, there have been many papers analyzing its

performance. In [12] and the papers therein, the authors give comprehensive and rigorous

analysis on several aspects of ALOHA systems, such as the throughput, collision probability

and idle probability, and stability issues. These analysis considers ALOHA protocols only

and disregards the effects of other layers. For idealized slotted ALOHA, one of the main

assumptions these analysis make is that packets arrive at senders according to independent

Poisson processes. Two of the main results on its performance are that, the maximum

system throughput is l/e, and this throughput can be reached by adjusting the transmission

probability to make the system attempt rate be one. At other attempt rate, the system has

either too many idle slots or too many collisions, and the throughput is below 1/e.

In practical networks, MAC layers receives packets from their corresponding higher

layers. When a system employs TCP at its transport layer, the packets arrival process at

the MAC layer is no longer a Poisson process but under the control of TCP window flow

control scheme. Moreover, the maximum number of packets available at the MAC layer is

limited by the current TCP window size.

In addition, from the perspective of TCP, there have been many papers studying the

TCP performance in hybrid terrestrial-satellite networks [4, 50, 49, 45, 7, 27, 3, 10, 26, 40,

41]. Most of these work focuses on the properties of high bandwidth-delay product and

high link loss property. The paper [43] and [36] also analyze the performance of a normal

TCP session with random packet loss probability. This chapter also considers the TCP

performance in hybrid terrestrial-satellite networks, but focuses on its interaction with the

MAC layer random access scheme.

In particular, under random access protocols, packets enter the shared channel ran-

domly, and collisions occur at the MAC layer with some probability. These MAC layer

collisions directly affect TCP window evolution at the transport layer and hence the TCP
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performance. In addition, ideal ALOHA protocol resolves collisions by MAC layer retrans-

missions of collided packets. When the system employs TCP at the transport layer, there

is one more option, that is, resolving collisions by TCP retransmissions.

In this thesis we try to understand systems with TCP at the transport layers and

ALOHA at the MAC layers, and examine the impacts of different protocols and parameters

on the system performance, such as MAC layer transmission probability, TCP timeout

backoff and MAC layer retransmissions. Specifically, the system investigated is a hybrid

terrestrial-satellite network with a large number of identical persistent source-destination

pairs. Each pair employs TCP at its transport layer and each source employs the slotted

ALOHA random access scheme at its MAC layer.

An analytical model for the system considered is developed, and two simple equations

are derived from which the system performance, such as the system throughput, can be

obtained directly. The two equations show that the maximum possible system throughput

is l/e, which is the same as the ideal slotted ALOHA protocol. A sufficient and necessary

condition to achieve this throughput is also given. However, unlike the ideal slotted ALOHA

protocol, due to the impacts of TCP at the transport layer, this condition cannot always

be satisfied, and the throughput of l/e cannot always be achieved.

Moreover, the impacts of system and protocol parameters on the system performance

are also investigated, both analytically and numerically, which is further confirmed by sim-

ulations. The optimal MAC layer transmission probability at which the system achieves

its highest throughput is derived. The results show that due to the long duration of the

TCP backoff period, the throughput of systems with TCP timeout backoff is far below 1/e.

Whereas for systems without TCP timeout backoff, the results show that in cases when the

round trip time is small or the number of source-destination pairs is large, a throughput of

l/e can be achieved by setting the MAC layer transmission probability to its optimal value.

Otherwise, the maximum achievable throughput can be substantially smaller than 1/e.

The options of TCP retransmissions and MAC layer retransmissions for collision resolu-

tion are also investigated. The analysis shows that MAC layer retransmissions react faster to

collisions and hence inject more traffic into the channel. As a result, if the system operates

under heavy load, for example systems with large transmission probability, large number

of users, or small propagation delay, the system behaves better when retransmissions are

handled by TCP.

25



1.2.3 Packet Scheduling with Window Service Constraints

Finally we consider the optimal scheduling problem with window service constraints, such as

the problem of link layer scheduling subject to window service constraints that are imposed

by higher layer protocols such as TCP. In traditional scheduling problems, jobs arrives at

a server according to some random process. The response time of each job is defined to

be the difference between its departure and arrival times. The performance of different

scheduling policies is usually measured by the mean response time. It has been shown that,

among all policies, for a work-conserving queue, the Shortest-Remaining-Processing-Time

(SRPT) scheduling policy is optimal with respect to minimizing the mean response time

[46, 48]. The author in [47] further gives the distribution of the response time for M/G/1

queue under the SRPT policy. Recently a number of papers [9, 56, 42] study the fairness

property of the SRPT policy. The fairness is measured by slowdown (also called stretch),

which is defined to be the ratio of the response time and the processing time of a job. They

show that the SRPT policy not only minimizes the mean response time, but also is fair.

All these previous works assume that upon the arrival of a job, any part of the job is

available for service. In practice, however, before being served, jobs are often broken into

smaller units, and there may exist a limit on the number of units that can be served within

a time interval. For example, in data networks, files are broken into messages and then

packets before being released from the transport layer. If the transport layer employs TCP,

then the number of packets that can be released to the lower layer is limited by the current

window size of TCP, denoted by W. That is, at most W packets can be released within

one round trip time. Another example is the transmission of frames at the data link layer,

where the number of frames that can be transmitted within one round trip time is limited

by the window size of the data link layer protocol.

This thesis considers the optimal scheduling policy that minimizes the mean response

time when there exists a limit on the number of units to be served within a fixed time

interval. The limit is called window size, the units are called packets, and the constraint

is called window service constraint. In particular, the effects of the window constraints are

investigated in detail, and an optimal policy and a more insightful suboptimal policy are

derived. The results shows that both the job lengths and the window sizes are essential

to the optimal policy. Moreover, instead of changing priority of jobs at different times, in
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most cases the optimal policy gives full priority to one job.

1.3 Thesis Overview

The rest of the thesis is organized as follows:

Chapter 2 briefly describes the three main protocols considered in this thesis: data link

layer protocol ARQ, MAC layer protocol ALOHA, and transport layer protocol TCP.

Chapter 3, 4 and 5 are the core of the thesis. We first examine the interaction between

TCP and ARQ in Chapter 3, then investigate the interaction between TCP and ALOHA

in Chapter 4, and finally in Chapter 5 we study the problem of optimal scheduling with

window service constraints.

Chapter 6 concludes the thesis.
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Chapter 2

Protocol Descriptions

There are three protocols that will be investigated in this thesis: data link layer retransmis-

sion protocols (ARQ), MAC layer protocol ALOHA, and transport layer protocol TCP. In

this chapter we briefly describe these three protocols with highlights on those aspects this

thesis is focused on.

2.1 ARQ Protocols

2.1.1 Overview of ARQ Protocols

ARQ was first proposed during World War II [24, 53] to ensure reliable link transmissions

between two nodes. Its basic idea is very simple: upon detecting an error/lost frame, the

receiver requests the transmitter to retransmit the frame. Yet it is very efficient as well. Over

the past decades, numerous advanced technologies have been developed, but ARQ remains

to be the fundament of many reliable data link layer protocols. In this section, we briefly

describe its basic operations. Readers interested in details can refer to [12, 35, 38, 51, 57].

ARQ protocols guarantee reliable transmissions by retransmitting error/lost frames.

Different versions of ARQ protocols have different ways to handle transmissions and re-

transmissions. In general they use some or all of the following techniques:

1. Positive acknowledgment and transmission: Upon receiving an error-free frame, the

receiver sends an ACK back to the transmitter. This ACK may allow the transmitter

to transmit more frames.

2. Negative acknowledgement and retransmission: Upon receiving an error frame, the
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receiver sends a negative acknowledgment (NAK) back to the transmitter. This NAK

requests the transmitter to retransmit the corresponding frame.

3. Retransmission after timeout: The transmitter sets a timer for each frame transmitted.

If a frame has not yet been acknowledged upon its timer expires, the transmitter

retransmits this frame.

Note that feedback frames containing ACKs and NAKs may also incur errors or losses.

There are three basic types of ARQ protocols: the Stop-and-Wait protocol, the Go-

Back-n (GBN) protocol, and the Selective-RePeat (SRP) protocol. The former the simplest

and the latter the most efficient. The Stop-and-Wait protocol is a special case of the GBN

protocol with the parameter N = 1, and the GBN protocol is essentially a sliding window

protocol. In the following subsections we first describe sliding window protocols, then

discuss the operations of the three types of ARQ protocols in detail, where all techniques

listed above will be discussed.

2.1.2 Sliding Window Protocols

In sliding window protocols, only packets within the window can be transmitted. Packets

are hence classified into four groups: packets that have been sent and acknowledged, packets

that have been sent but not acknowledged yet, packets that have never been sent before

but can be sent as soon as possible, and packets that have not been sent yet and cannot be

sent either until the window moves. Figure 2-1 illustrates the window and the four groups.

Specifically, in Figure 2-1, the window spans from packet 4 to packet 9. Within the

window, part of the packets have been sent but not acknowledged yet, which are packet 4,

5 and 6, while the rest packets are packets that have never been sent before but can be

sent as soon as possible, which are packet 7, 8 and 9. Outside the window, on the left are

packets that have been sent and acknowledged, which are packets 1, 2 and 3, and on the

right are packets that have not been sent yet and cannot be sent either until the window

moves rightward and they fall into the window, which are packets after 10. A new ACK

received will increase the number of packets that have been sent and acknowledged and

move the left edge of the window rightwards. If the window size is fixed such as that in the

GBN protocol, this movement allows more packets on the right to fall into the window and

become available to send as soon as possible. The name 'sliding window protocol' comes
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from this window 'sliding' behavior.

window size

sent, not ACKed Cannot send until window moves

sent and ACKed can send ASAP

Figure 2-1: Illustration of Sliding Window Protocols

Note that here we implicitly assume that the ACKs arrives in order. As will be shown

later, this is true with the GBN protocol, but not with the SRP protocol.

2.1.3 The Stop-and-Wait Protocol

The Stop-and-Wait protocol is the simplest type of ARQ protocols. Under this protocol, no

new frames will be transmitted until the previous one has been received correctly. Hence

the system has at most one frame in transmission.

Using the techniques described in Section 2.1.1, Figure 2-2 shows an example of how the

Stop-and-Wait protocol handles transmissions and retransmissions upon error-free frames,

error frames, lost frames and lost ACKs. Specifically, after receiving the error-free packet

1, the receiver sends back an ACK to the transmitter. This ACK allows the transmitter to

transmit a new packet, that is packet 2. Whereas upon detecting the error frame containing

packet 2, the receiver sends back a NAK, which requests the transmitter to retransmit

packet 2. In addition, both the lost frame containing packet 3 and the lost ACK for the first

transmission of packet 4 result in timer expirations and retransmissions of the corresponding

packets.

Since the Stop-and-Wait protocol allows only one frame in transit, no more packets can

be transmitted while waiting for an ACK/NAK/timer-expiration. Hence the link utilization

is highly inefficient. The GBN protocol and the SRP protocol improve the link utilization

by allowing more packets in transit.
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Figure 2-2: Example of the Stop-and-Wait protocol

2.1.4 The GBN Protocol

The GBN protocol is essentially a sliding window protocol with fixed window size N. Dif-

ferent from the Stop-and-Wait protocol, while waiting for ACK/NAK/timer-expiration, in

the GBN protocol the transmitter is allowed to transmit up to N successive packets. The

link utilization is hence greatly improved.

However, in the GBN protocol, the receiver has no buffer. Since there are multiple

packets in transit, the receiver may receive out-of-order packets. Upon receiving out-of-

order packets, the receiver discards the out-of-order packets and sends back a NAK to

request a retransmission of the packet it is waiting for.

Figure 2-3 illustrates the operation of the Go-Back-3 protocol upon error-free frames,

error frames, lost frames and lost ACKs, with the sliding window shown at the left. Specifi-

cally, at the beginning one window of packets are transmitted in order, that is packet 1 to 3.

Each time after the receiver receives an in-order error-free packets, the receiver sends back

a new ACK to the transmitter, that is ACK2 to ACK9. Correspondingly, each time after
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Figure 2-3: Example of the Go-Back-N Protocol

the transmitter receives a new ACK, the window slides rightwards and allow more packets

to be available to send as soon as possible.

In addition, although the first reception of packet 3 and 4 are successful, they are out-

of-order packets. The receiver hence discards them and sends back NAK2 to request packet

2 it is waiting for.

Moreover, upon detecting the error frame containing packet 2, the receiver sends back

NAK2 to the transmitter, which in turn retransmits packet 2. The transmitter then con-

tinues transmits successive packets, that is packet 3 and 4, until the window is used up.

Figure 2-3 also shows that lost packets can be retransmitted either upon a NAK or

a timer-expiration. For example, lost packet 3 is retransmitted upon NAK3, which was
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generated by out-of-order error-free frame containing packet 4. For lost packet 4 in Figure

2-3, neither ACKs nor NAKs are received by the transmitter before its associated timer

expires. This timeout triggers the retransmission of packet 4.

Furthermore, we can see from Figure 2-3 that ACKs in GBN are cumulative. For

example, although ACK6 is lost, ACK7 received by the transmitter indicates that packet 5

has already been correctly received. Consequently, the transmitter and the receiver moves

on to transmit successive packets.

From Figure 2-3 we can see that once one packet is retransmitted, all its successive

packets up to one window are retransmitted. In other words, all previous transmissions of

these packets are useless, no matter they are error or error-free. The GBN protocol can

hence be modelled as a queuing system, with packet service time to be the time between

its first transmission and its successful transmission [12, 60, 54, 34].

The above discussions on the Stop-and-Wait protocol and the GBN protocol shows that

the Stop-and-Wait protocol is actually a special case of the GBN protocol with N=1. On

one hand, because N = 1, in the Stop-and-Wait protocol there are no out-of-order packets

issue, and the operation becomes much more simpler. On the other hand, N=1 makes

the transmitter be unable to transmit more packets while waiting for an ACK/NAK/time-

expiration, which results in a waste of link capacity.

Note that in the GBN protocol, since the receiver has no buffer, all out-of-order packets

are discarded and will be retransmitted even if they are received correctly. This also leads

to a waste of link capacity. The SRP protocol allows the receiver to have buffer, which

reduces these unnecessary retransmissions and further improves the link utilization.

2.1.5 The SRP protocol

The main difference between the GBN protocol and the SRP protocol is that in the SRP

protocol, the receiver has buffer. The out-of-order packets can then be stored in the buffer,

and the unnecessary retransmissions are thus avoided.

Specifically, upon receiving an out-of-order packet, the receiver stores this packet in its

buffer and sends back to the transmitter an ACK that acknowledges this packet. Once the

missing packets arrive at the receiver, the receiver will deliver a batch of packets in order

to the higher layer.

Note that unlike the GBN protocol, in the SRP protocol out-of-order packets no longer
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generate NAKs to request missing packets. As a result, a lost packet will eventually lead

to a timeout. In addition, since out-of-order receptions are possible, ACKs no longer arrive

at the transmitter in order and are not cumulative anymore. Consequently, a lost ACK or

NAK will also lead to a timeout. Moreover, out-of-order receptions also lead to the result

that some packets within the window may be packets that have been sent and acknowledged.

Hence the SRP protocol is no longer a sliding window protocol.

window
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Figure 2-4: Example of the Selective RePeat Protocol

Figure 2-4 gives an example of the SRP protocol with window size of 3. The window is

shown at the left. As shown in the figure, out-of-order packets (packet 3, 4, 6 and 7) are

saved at the receiver buffer until the missing packets (packet 2 and 5) arrive. At this point

batch of packets are delivered to the higher layer (packet 2, 3 and 4 together and packet 5,
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6 and 7 together).

Figure 2-4 also shows that the error-frame containing packet 2 results in a NAK, which

further leads the transmitter to retransmit packet 2. Whereas both lost packet 5 and lost

ACK5 result in timeouts and retransmissions of packet 5 by the transmitter.

By investigating the window shown at the left of Figure 2-4, we can see that here within

the window, there are not only packets that have been sent but not acknowledged and

packets that have not been sent yet but are available to send as soon as possible, but also

packets that have been sent and acknowledged. As mentioned previously, this is due to the

out-of-order packets allowed in the SRP protocol.

For convenience, define packet service time in the SRP protocol to be the time between

its first transmission and the reception of the ACK that acknowledges its successful trans-

mission. From Figure 2-4 we can see that unlike the GBN protocol, in the SRP protocol,

the retransmission of one packet does not lead to retransmissions of its successive pack-

ets. Although physically the system is still a queuing system, the service times of different

packets overlap with each other. Nevertheless, the transmissions of different packets are

independent, in the sense that transmissions of one packet depend only on the previous

transmissions of the same packet, and totally independent of the status of other packets.

Many models of the SRP protocol is based on this independent property.

2.1.6 Discussions

This section briefly describes the three main types of ARQ protocols: the Stop-and-Wait

protocol, the GBN protocol and the SRP protocol. If each frame incurs a loss independently

with probability p and the round trip delay is D, it can be shown that the throughput,

denoted by rj, of the three protocols are: 77Stop-and-Wait = (1 - p)/D, 77GBN = (1 - p)/(1 -

pD) and 7SRP = 1 - p, respectively [12, 51].

For these three protocols, the authors of books [12, 35, 38, 51, 57] give the details of

their algorithms at the transmitter and receiver and rigorous proofs of the reliability, as well

as some other aspects such as framing. In addition, the authors in [34, 54, 60] developed

queuing models for these protocols and derived the expected queue length and average

delay. Currently queuing analysis is one of the main mathematical tools to analyze ARQ

protocols.
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2.2 MAC Layer Protocol ALOHA

2.2.1 Overview of MAC Layer Protocols

Multiple access issue emerges when there are multiple transmitters sending data to one

receiver. In this case system resources must be divided among all transmitters. Currently

there are three main categories of multiple access protocols: fixed assignment multiple

access, random multiple access (also called random access) and hybrid of the above two.

Fixed assignment multiple access protocols include Frequency Division Multiple Access

(FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA)

and their variations and modifications. Random access protocols include ALOHA [2] and

its variations and modifications, such as splitting algorithm [15] and Carrier Sense Multiple

Access (CSMA) [33]. Reservation systems and spread ALOHA are examples of hybrids of

fixed assignment and random multiple access. In general, fixed assignment multiple access

protocols divide the resources into m portions, where m is the number of users, and allocate

one portion to each user. Whereas random access protocols allow users to access the full

resource at the expense of collisions.

Different multiple access protocols have different properties and are suited for different

scenarios. If we view the multiple access system as a queuing system, it can be shown that

in terms of average and variance of delay, fixed assignment protocols such as FDMA and

TDMA work well for regular users, and random access protocols such as ALOHA are good

to users with bursty but sporadic traffic [12]. One limitation of fixed assignment protocols

is that it is more difficult to add or remove users by implementing them than that by

implementing random access protocols. One limitation of random access protocols is the

collision problem that can be solved by retransmissions.

There are two types of random access protocol ALOHA: pure ALOHA and slotted

ALOHA. The main difference between them is that in slotted ALOHA, time is divided into

slots and the system becomes discrete time systems, while in pure ALOHA, slots play no

role. The resulting performance is different as well. Slotted ALOHA will be part of the

subjects of this thesis. The following section describes its main features in detail.
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2.2.2 Slotted ALOHA Protocol

In idealized slotted multiple access system [12], there are m senders and one receiver. All

transmitted packets are assumed to have the same length and require one time unit, called

slot, for transmission. All senders are synchronized. In addition, packets are transmitted

in the following way: each new arrived packets are transmitted immediately. Each packet

involved in a collision will be retransmitted in the next slot with some probability. This

retransmission continues until the packet is successfully received. A complete description

of the idealized slotted multiple access system can be found in [12].

It has been shown that with slotted ALOHA protocol, the system throughput, denoted

by A, is also the probability of a successful transmission in a slot. Moreover, the throughput

can be expressed as follows:

A = G(n)e-G(n) (2.1)

where G(n) is the attempt rate, defined to be the expected number of attempted transmis-

sions in a slot when the number of backlogged senders is n.

Similarly, the probability of an idle slot, denoted by PR, can be shown to be:

P = e-G(n). (2.2)

The above equations shows that the number of packets transmitted in a slot is well

approximated as a Poisson random variable. The maximum possible throughput is 1/e,

which can be achieved when G(n) = 1.

Further analysis on the system also shows that when m goes to infinity, the system is

unstable. A great amount of work has been done on stability issues, estimation of number

of backlogged senders, as well as the way to set the retransmission probability to achieve

maximum throughput of 1/e. These issues are beyond the scope of this thesis. Interested

readers can refer [25, 37, 55, 12].
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2.3 Transport Layer Protocol TCP

2.3.1 TCP Overview

As mentioned in Chapter 1, the main function of transport layer in data networks is to per-

form congestion control and provide reliable end-to-end message transmission if required

by higher layers. Currently TCP is the dominate reliable transport layer protocol in data

networks [52]. For a reliable transport layer protocol, generating and receiving acknowledge-

ments (ACKs) by the transmission nodes is essential to guarantee reliable transmissions. To

achieve better throughput while performing congestion control, it is also desirable for the

end nodes to maximize the utilization of the available bandwidth provided by the network.

The beauty of TCP is that it can simultaneously provide reliable transmissions and ex-

plore the available bandwidth in the network without requiring any additional information

beyond the necessary ACKs.

Specifically, TCP guarantees reliable transmissions by retransmitting lost packets and

performs congestion control as well as exploring available bandwidth by window flow control.

Different TCP versions have different mechanisms for retransmissions and window flow

control. The most popular two TCP versions are TCP Tahoe and TCP Reno. The following

section describes their retransmission and window flow control mechanisms.

2.3.2 TCP Retransmission and Window Flow Control Mechanisms

Packet transmissions of both TCP Tahoe and TCP Reno follow sliding window protocol

(see Section 2.1). The window size is determined by their window flow control schemes.

Upon a loss, both TCP Tahoe and TCP Reno retransmit the first lost packet detected and

resume sliding window protocol from this packet. The way TCP Tahoe detects losses is

the timeout signal. TCP Reno has one more way to detect losses, that is duplicate ACKs.

Timeout signal and duplicate ACKs are also signals that trigger window close/shrink in

TCP Tahoe and Reno, as described later in their window flow control mechanisms.

For TCP Tahoe and Reno window flow control mechanisms, this thesis works on the

following simplified versions: both TCP Tahoe and TCP Reno keep two parameters: current

window size W and window threshold Wt. In addition, based on its available buffer size,

TCP at the receiver side also announces a window size called receiver's advertised window

size WM. TCP Tahoe window flow control algorithm works as follows:
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" The initial window size is 1.

* Upon an acknowledgment:

- If W < Wt, then W <- W +1;

- If W > Wt, then W <-W +1/Wj.

If the resulting window size W > WM, then W <- WM.

* Upon a loss signal, Wt +- W/2 and W <- 1.

TCP Reno window flow control algorithm consists of the first two of the above rules

that TCP Tahoe algorithm has and the following addition rule:

* Upon a timeout signal, Wt <- W/2 and W - 1.

Upon three duplicate ACKs, Wt <- W/2 and W +- Wt.

In both mechanisms, the phase with W < Wt is called slow start phase, and the phase

with W > Wt is called congestion avoidance phase. Figure 2-5 illustrates the window

evolution in these two phases.

Slow start phase

Window threshold

Congestion avoidance phase

1 2 3 4 5 6 7 8
Round Trip Times

Figure 2-5: Illustration of TCP Window Evolutions

Notice that the actual TCP Tahoe and Reno window flow control mechanisms include

many details. For tractability and clarity, the above simplified versions disregard those

details but extract their essential parts. The above versions are also versions widely accepted

and used by other researchers working on TCP [36].
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Also notice that since what we are interested in are TCP's retransmissions and conges-

tion control, we deliberately disregard other TCP issues, such as connection establish and

termination, and time granularity. For interested readers, the details of TCP retransmission

and window flow control and other aspects can be found in Steven's book [52].

2.3.3 Observations from TCP Operations

From the above retransmission and window flow control mechanisms, we have the following

observations:

1. TCP window size determines how many packets of this connection can be injected

into the network within one round trip time (RTT). Therefore, together with RTT,

TCP window size directly determines the send rate of this connection, which is closely

related to TCP performance.

2. TCP window size is also the maximum number of outstanding packets of this connec-

tion. Smaller window size means less packets of this connection in the network and

vice versa. Window size is thus directly related to the congestion level of the network.

This is the fundament how TCP performs its congestion control, that is, by regulating

its window size.

3. TCP window flow control mechanisms say that the only moment when the window

size can be increased is when an ACK is received. In slow start phase, the window size

is increased by one upon each ACK. The increase rate is actually very high (contrary

to its name. See Figure 2-5). Whereas in congestion avoidance phase, the window size

is increased by one upon W ACKs, or per RTT. The increase rate becomes slow. The

reason behind this is that TCP interprets its send rate corresponding to the window

threshold Wt as compatible with the available bandwidth provided by the network.

Hence when the window size is below Wt, it increases the window size very fast up to

this level to fully utilize the available bandwidth; while after the window size reaches

Wt, it increases its window size slowly to explore extra bandwidth available without

causing sudden congestion.

4. TCP window flow control mechanisms also say that upon a loss (timeout signal in

both Tahoe and Reno and duplicated ACKs in Reno only), TCP closes/shrinks its
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window size. Recall that the purpose of TCP window flow control is for congestion

control. That is, TCP regards all losses as congestion losses and performs congestion

control correspondingly. Saying it in another way, each loss signal not only triggers

retransmission of lost packets, but also leads to window close/shrink.

5. The way TCP Reno reacts the two type of loss signals, timeout signal and duplicate

ACKs, are different. When timeout occurs, TCP interprets it as that the network is

heavily congested, and greatly reduced its window size to 1. Whereas when duplicate

ACKs are received, there are still packets getting through the network. TCP thus

interprets it as that although there are some congestion in the network, the level is

light. Accordingly, TCP reduces its window size to the window threshold Wt, and

restarts exploring extra bandwidth in its congestion avoidance phase.

6. TCP window flow control has Markov property. That is, given current window size W

and window threshold Wt, the future window evolution is independent of its past. In

many cases, this property allows to model the system considered as a Markov chain.

However, when the window size W can be big, the state space could be very large.

7. TCP has self-clocking behavior. That is, the spacing of ACKs returned to the sender

is identical to the spacing of packets [52] (In reality they are different due to different

queuing delay and path packets go through).

The above observations are important for the later discussion on TCP interaction with

other protocols, as we will see later in Chapter 3 and 4. They also provides us some

intuition on why TCP may not perform well in heterogenous data networks. For example,

observation 3 says that the window increase rate in congestion avoidance phase is slow. For

a heterogenous data networks with high bandwidth-delay product, once TCP jumps into

the congestion avoidance phase with small window size, this slow increase rate leads to a

waste of significant amount of available bandwidth. Another example is that observation 4

says that TCP regards all losses as congestion losses and reduces window size accordingly.

For a heterogenous data networks with high link loss probability, the link losses will also be

interpreted as congestion losses and TCP will 'falsely' reduce its window size. As a result,

the available bandwidth is significantly under-utilized. For a heterogenous data networks

with both high bandwidth-delay product and high link loss probability, such as satellite
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networks, the above discussions show that fundamentally TCP alone cannot perform well.

We will have comprehensive discussions on these issues later.

2.3.4 TCP Timeout Value

One last thing about TCP we would like to discuss here is its timeout value. TCP timeout

value, used to generate the timeout signal and denoted by RTO, is updated upon RTT

measurements. The details about update rules can be found in [28, 52]. Here we would

like to point out its exponential backoff and Karn's algorithm [30]. The former considers

successive timeouts, and the latter considers RTO update upon retransmissions.

After a timeout and before an acknowledgement is received for a packet that was not

retransmitted, RTO is doubled each time a timeout occurs until it is 64 times of its original

value or it is more than 64sec. This is called exponential backoff. The reason behind to

do so is that TCP interprets multiple timeouts as that the network is heavily congested.

Accordingly TCP greatly reduces the send rate by this exponential backoff to relieve the

congestion level. Figure 2-6 illustrates this timeout exponential backoff, where the white

boxes indicate successful transmissions and the gray boxes indicate unsuccessful transmis-

sions. In the figure, packet 2 incurs a timeout three times and is retransmitted three times.

No ACK is received between these timeouts. Hence RTO is doubled each time a tiemout

occurs.

timeout timeout timeout

21 2E 2 2

4----RTC 2RTO )( 4TO

Figure 2-6: Illustration of TCP Timeout Backoff

The purpose of Karn's algorithm is to resolve so called retransmission ambiguity prob-

lem. When an acknowledgement of a packet that has been retransmitted before is received,

we do not know if this ACK is for the original transmission or for one of its retransmissions.

Karn's algorithm specifies that the RTT estimates and RTO should not be updated upon

this ACK. In addition, since the packet is retransmitted, the exponential backoff is applied

to RTO. This backed off RTO is reused until an ACK for a packet that has never been

retransmitted is received.
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timeout timeout timeout
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Figure 2-7: Illustration of Karn's Algorithm

Figure 2-7 illustrates Karn's algorithm. In this figure, packet 2 is transmitted three

times in total, and the third transmission is successful. The corresponding ACK triggers

the transmission of packet 3. However, we do not know which of the three transmissions the

ACK is for. Therefore, instead of being updated by this ACK, RTO continues to be backed

off. This backed off RTO is used when packet 3 incurs a timeout. Note that although there

are successful transmissions (the third transmission of packet 2 in Figure 2-7), RTO may

still be backed off.
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Chapter 3

Interaction between TCP and ARQ

This chapter considers interaction between TCP and ARQ in networks with high link loss

probability and high bandwidth-delay product. We will first introduce the background of

this topic, then describe in detail the system under consideration and develop analytical

model for it. Finally, we will discuss the numerical results for different protocol and packet

loss parameters, and give our conclusions on this subject.

3.1 Background

Currently TCP is the dominate reliable transport layer protocol in data networks [52]. As

such, the beauty of TCP is that it can simultaneously provides reliable transmission and

explore the available bandwidth in the network without requiring any additional information

beyond the necessary ACKs. Specifically, TCP makes use of the rate and order of ACKs

to regulate its window size, thus its transmission rate, to perform congestion control and

explore the available bandwidth [52].

TCP works very well in classical wireline networks, as evident by the current Internet.

Unfortunately, TCP does not perform well in heterogenous data networks, especially those

with high link loss probability and high bandwidth-delay product [4, 50, 49, 45]. There are

two major reasons for TCP's poor performance in such heterogenous data networks. One is

that TCP regards all losses as congestion losses and reduces window size accordingly. For

data networks with high link loss probability, the link losses will thus lead TCP to 'falsely'

reduce its window size, which further results in low transmission rate and significant waste of

link capacity. Another reason is that the window increase rate in TCP congestion avoidance



phase is slow. For data networks with high bandwidth-delay product, this slow increasing

rate takes TCP a long time to raise its window size comparable to the available network

capacity, which lead to significant waste of the capacity. For networks with both high

link loss probability and high band-width delay product, it is foreseeable that with high

probability, the frequent window shrinks/closes due to link losses plus the slow window

increase rate result in TCP operating at a window size far below the available network

capacity. As a result, the overall TCP performance is significantly deteriorated.

Many solutions are proposed to enhance TCP performance over this type of heterogenous

networks, such as window scaling, time stamps, selective acknowledgements, TCP spoofing,

split-TCP, and link layer solutions. Comprehensive descriptions of the above solutions can

be found in [7, 27, 45, 3, 10]. Among all these solutions, link layer ARQ has the advantage

that it fits naturally into the layered structure of networks. The main idea of implementing

ARQ is that it can "hide" the link losses from TCP. In this sense, implementation of ARQ

can greatly reduce the number of unnecessary TCP window shrinks/closes and significantly

improve the overall TCP performance. However, the presence of an ARQ protocol can lead

to other more subtle problems. In particular, due to the high bandwidth-delay product,

ARQ retransmissions introduce high variability of the packet round trip time (RTT) seen

by TCP, and lead to TCP timeouts due to ARQ retransmissions. We call these timeouts

false timeouts.

Recently a number of papers have examined the interactions between transport layer

TCP and link layer ARQ protocols. Most of them involve simulations in wireless environ-

ment [7, 19, 20, 39, 58, 5, 13]. There is some analytical work as well [14, 16, 17, 18, 43].

These papers provide approximate analysis of the system performance with transport layer

TCP and a link layer protocol with the assumption of instantaneous ACK feedback. The

large bandwidth-delay product of heterogenous networks we consider here makes these mod-

els unsuitable for our scenario. The authors in [14] further assume independence between

window size and RTT of each window, which is not suitable for our scenario either. In

addition, there are many papers on the analysis of ARQ as well. In [54] queuing models are

developed for the Go-Back-N (GBN) protocol, and [34] provides queuing models for both

the GBN and Selective-Repeat (SRP) protocols. Generally queuing models are used as a

tool to analyze the ARQ protocols for different channels and network structures [60, 63].

This chapter studies the interaction between TCP and link layer ARQ in the context of
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heterogenous networks with high link loss probability and high bandwidth-delay product,

examines whether implementing ARQ is beneficial, and explores the influence of protocol

and loss parameters on the overall system performance. This work is different from earlier

works in several ways. First, it studies heterogenous networks where the high link loss

probability and high bandwidth-delay product are essential to the system performance.

Second, we focus on TCP's window flow control mechanisms and deliberately disregard

other aspects of TCP, such as RTT measurements and estimation, the detail retransmission

mechanism, and timer granularity. Since the window size evolution is the main factor that

affects TCP throughput, we believe that for the purpose of investigating TCP throughput,

the protocols considered capture the essence of TCP. Third, the ARQ protocols considered

include both GBN and SRP protocols. The delay of the ACK signals is also taken into

account, which is significant for links with high bandwidth-delay product. Furthermore,

we give an exact analysis of our system instead of approximations and simulations, thus

provides an analytical framework for future joint study of TCP and ARQ in heterogenous

networks.

Specifically, the system investigated consists of two end nodes communicating over a

heterogenous network that includes one error-prone bottleneck link and some other links.

The error-prone link has high bandwidth-delay product. One example of such networks

are hybrid space-terrestrial network, where the satellite link corresponds to the error-prone

link. The sender has unlimited number of packets to be sent to the receiver, and the

performance metrics considered is the throughput. The losses incurred by packets include

the link losses of the error-prone link and other random losses, for example, losses of other

links and congestion losses. The error-prone link implements GBN or SRP retransmission

mechanism to recover its link losses. The transport layer of the end nodes implements a

variation of the Additive-Increase-Multiplicative-Decrease (AIMD) protocol that is similar

to TCP window flow control protocols, which will be described in detail later.

We model the system as a finite state Markov chain with reward functions. The transi-

tion probabilities and the reward functions are expressed in simple window-based product

form and sum form, respectively. Moreover, queuing models for GBN and SRP are also

developed. These models are used to obtain the probabilities needed for solving the tran-

sition probabilities and the reward functions of the Markov chain, and the throughput of

the system is derived by the theory of Markov chain with reward functions. The numerical
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results show that in most cases implementing ARQ over the error-prone link can achieve

significant improvement in system throughput. Moreover, we show that by proper choice

of protocols parameters, such as the packet size and the number of transmission attempts

per packet at ARQ, significant performance improvement can be obtained.

The chapter is organized as follows: Section 3.2 describes in detail the system under

consideration. Section 3.3 and 3.5 model different systems considered, and Section 3.4

provides the simple queuing models for the ARQ protocols. Finally, Section 3.6 discusses

the numerical results for different protocol and packet loss parameters, and Section 3.7

concludes the chapter.

3.2 System Description

The system we consider consists of two end nodes communicating over a heterogenous

network with one error-prone link and some other links, as shown in Figure 3-1. The sender

has unlimited packets to be transmitted to the receiver, and these packets have fixed length.

The transport layer (TL) at the end nodes implement a variation of AIMD protocol, which

is similar to TCP window mechanisms and will be described in detail later. The link layer

over the error-prone link, called (ARQLL), implements an ARQ protocol, where both GBN

and SRP are considered. The other link layers (LLs) do not employ ARQ.

The error-prone link in the system is the bottleneck link and has long bandwidth-delay

product. The time for the error-prone link to transmit one packet is defined to be one

time unit. In this way, the time is divided into time slots. The round trip delay of one

transmission over the error-prone link, defined to be the interval between the time the error-

prone link sender sends out a packet and the time the sender receives the acknowledgment

of this transmission, is fixed to be d time slots. The remaining time needed for the packets

to go through the network is assumed to be negligible, a reasonable assumption since the

error-prone link has long bandwidth-delay product.

Packets in the system incur two types of losses. One type refers to losses over the error-

prone link. For brevity, we call those link losses. The other type refers to all the losses

other than the error-prone link losses, such as congestion losses and link losses at the other

links that do not employ ARQ. We call those random losses. Note that the link losses can

be recovered by the employed ARQLL ARQ, and the random losses can only be recovered
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random loss probability p

sender receiver

Figure 3-1: System with Two Nodes Communicating over a Heterogenous Network

by the end-to-end transport layer retransmissions.

Packets incur losses independently of each other. Each packet incurs a random loss

with probability p, and each transmission over the error-prone link incurs a link loss with

probability pl. The probability that a packet incurs no random loss and a transmission over

the error-prone link incurs no link loss, denoted by q and qj, respectively, are thus q = 1 -p

and q= 1 - pl. All acknowledgements (ACKs), including both the transport layer ACKs

and the ACKs of ARQ, are assumed to be loss free. Notice that by proper choice of the

above loss probabilities, one can also model systems employing no ARQLL ARQ.

The TL has two ways to detect losses, the timeout signal and the random loss

signal. When the age of an unacknowledged packet exceeds the TL timeout value, denoted

by TO, a TL timeout occurs. We also assume that any random loss can be detected by the

node where the loss happens after a fixed time interval td. After detecting the loss, the node

will generate a signal indicating this loss and send it via the same path as that of a packet

to the receiver. We call this signal the random loss signal. The timeout signal is essential

for reliable TL transmissions [61], and the random loss signal is used to approximate the

duplicate ACKs used in TCP and allows us to examine the fast retransmit and fast recovery

mechanism.

The AIMD protocol employed at the TL works as follows. The TL sends packets in

batches. The size of the batches is the current window size of the TL. Once the TL receives

all the acknowledgments of its previous window of packets, it sends out the next window of

packets. After either a timeout signal or a random loss signal is received, the TL changes

the window size according to its window-update algorithm, and restarts the transmission
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from the packet that incurs the loss signal.

We consider two window-update-algorithms, the Tahoe window update algorithm and

the Reno window update algorithm [52] 2.3, corresponding to TCP Reno and Tahoe respec-

tively. Both algorithms have two parameters: current window size W and a threshold Wt.

In addition, there is a maximum window size WM that the window size can never exceed,

which resembles the maximum window size in TCP advertised by the receiver. The Tahoe

algorithm works as follows:

" The initial window size is 1.

" After receiving all the acknowledgments of the last window:

- If W < Wt, the window size is doubled;

- If W 2 Wt, the window size is increased by 1.

If the resulting window size is larger than WM, set the window size to be WM; other-

wise, keep it.

* Upon a timeout signal, the window size is set to be 1, and Wt is set to be half of the

window size when the timeout occurs.

The Reno algorithm consists of all the above rules that the Tahoe algorithm has and

the following addition rule:

* Upon a random loss signal, Wt is set to be half of the window size when the loss signal

is received, and the window size is set to be Wt.

One can see that both algorithms are variations of Additive-Increase-Multiplicative-

Decrease (AIMD) algorithms. They are similar to the TCP Tahoe and Reno window-

update algorithms, respectively. The two phases, W < Wt and W > Wt, correspond to

the slow start phase (SS phase) and the congestion avoidance phase (CA phase) of TCP,

respectively. For convenience, we also call these two phases the SS phase and the CA phase.

The maximum window size WM corresponds to the receiver advertised window size. The

differences between the two algorithms and the TCP Tahoe and Reno lie in two aspects. One

is that in TCP the window size is updated upon receiving each acknowledgment, while here

the window size is updated when a batch of acknowledgments is received. Nevertheless,
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upon receiving a loss signal, the rates of window update are the same for TCP and our

corresponding algorithms. The other difference is that in the TCP Reno fast retransmit and

fast recovery is triggered by duplicate ACKs, while in our Reno window update algorithm

fast retransmit and fast recovery is triggered by random loss signals. The random loss

signals are used to simplify the analysis of the protocols. Note that our goal is to explore

whether or not implementing ARQ at the error prone satellite link will improve the TCP

performance, and the key factor is the window size. We therefore believe that our model is a

reasonable model for this purpose and can give us useful insights of the system performance.

The ARQLL employs the standard GBN or SRP [12] 2.1. The GBN or SRP window

size is no less than the round trip delay d, so that the error-prone link capacity can be fully

utilized and the actual transmission rate over it is limited only by the TL window size.

Furthermore, negative acknowledgement (NAK) signals are assumed to be used. The order

of packet transmissions follows the standard GBN or SRP rules and packets are delivered

to the corresponding higher layer in order [12].

In the next two sections, we will first model the system with the Reno algorithm and

ARQ (both GBN and SRP), and then derive the system throughput as a function of the

protocol and loss parameters. This model can be easily extended to systems with the Tahoe

algorithm and sytems with some variations of ARQ, which will be shown in Section 3.5.

3.3 Modelling the System with Reno Algorithm

3.3.1 System Markov Model and Throughput

Consider the system behavior after the TL receives a loss signal. Let We denote the window

size upon the loss signal and S indicate the type of loss signal received, with S = TO

referring to a timeout signal and S = RL referring to a random loss signal. Let W and

Wt denote the window size and threshold right after the loss signal. Then, according to

the Reno window update algorithm, Wt = W'/2 and if S = TO, W = 1 or if S = RL,

W = W'/2 . This means that the pair (We, S) uniquely determines W and Wt. Moreover,

by the algorithm, W and Wt together are the state of the system, that is, given W and Wt,

the future behavior of the system is completely determined and is independent of its past.

Therefore, the pair (We, S) is also a state of the system. The system can thus be modelled

by the following Markov chain: the states are the (We, S) pairs, and the transitions take
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place when the TL receives a loss signal. Furthermore, since the window size will never

exceed the maximum value WM, the system chain is a finite state Markov chain.

Figure 3-2 (a) and (b) plots the transitions from a typical state i with Si = TO and

Si = RL, respectively. Here the subscript i denotes the state. Later in the next subsection,

we will explore in detail the system behavior during one transition and derive the transition

probabilities.

Wj,TO

(a) W,TO

WXVRL

W,TO
(b) Wf,RL

WfRL

Figure 3-2: Typical Transitions in Markov Chain for System with Reno Algorithm

In order to obtain the throughput of the system, for each transition of the Markov chain,

we further define the following two reward functions:

" Vn: the expected number of successfully transmitted packets during the transition

from state i to state j.

" V: the expected time taken for the transition from state i to statej.

The corresponding reward functions associated with state i, denoted by v and vi, respec-

tively, are thus

v VPnPT and v>= VF-, (3.1)

where PT is the transition probability from state i to state j. Here the superscript T denotes

transition. Let 7ri be the steady state distribution of the Markov chain. The steady state

expected rewards per transition are therefore given by [22],

v = rivn and v = 7riV. (3.2)

Theorem 3.1. The throughput of the system described is A = .
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Proof. Starting from time 0, let N(t) and M(t) be the number of successfully transmitted

packets and the number of transitions of the Markov chain up to and including time t,

respectively. Let Ni be the number of successfully transmitted packets during the ith

transition, and T be the time taken by the ith transition. Moreover, let to be the epoch of

the first transition. Then:

M(t) M(t)+1

N(to) + Ni N(t) N(to)+ Ni
i=2 i=2

M(t) M(t)+1

to + ( Ti t to+ E Ti
i=2 i=2

Therefore, N() is upper bounded by N(to)+i(-)+ 1 N and lower bounded by N(to)+ -2 N
o+ 2 Ti to+E;_2 Ti

For the upper bound, we have:

. N(to) + Zm'±)+ 1 Ni
oo + M(t) T

. N(to) + Zmt)+1 Ni
M~t)-o (OM(t)-+oo to + i= Ti

. (N(t 0 ) + Zm(t+1 Nj)/M(t)

M(t)-oo (t + 2t) T-)/(M(t) - 1)

Si EM(t)+1 N./M(t)
M(t)-oo EM(t) T./(M(t) - 1)
vn

Similarly, the limit of the lower bound as t -- oo can be shown to be 9 as well. Thus, the

throughput of the system is:

A = lim N(t) = v- (3.3)t-oo t Vt

In the next subsection, we derive the transition probabilities of the Markov chain as

well as the reward functions for each transition. Then the throughput of the system can be

obtained using Equation (3.1), (3.2) and (3.3).
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3.3.2 Transition Probabilities and Reward Functions

First consider the system behavior during the transition from an arbitrary state i with

(We, Si = TO) to state j. By the definition of states and the algorithm, at the beginning

of the transition, W = 1 and Wt = Wf/2. The window size then evolves as 1,2,4,...,W,

We + 1,...,WM, where We is the least integer that is a power of two and greater than Wt.

Denote this set of window sizes by Li and the kth element by Wik. Notice that Li is a

function of state i only. Obviously, any possible end state j must have We E Li. Let Nij

denote the integer such that wiNIJ = W. Then by the definition of the system, we know

exactly how the system behaves during the transition for state i to state j as follows: the

TL sends out windows of packets with size wi1 ,wi 2,---,WiNij. All packets in the previous

Nij - 1 windows were successfully received, and at least one packet in the last window (the

Nijth window) incurs a loss. The first loss detected within the last window is of type S3 .

For state i with Si = RL, the system behaves similarly during the transition from state

i to state j. The only difference is that now the set Li {Wt, W + 1, ... , WM}.

The system behavior described above shows that the system can be analyzed based on

windows. Specifically, since each window incurs a timeout or a random loss independently,

the transition probability from state i to state j, PT, becomes the product of probabilities

of no loss on the first Nij - 1 windows multiplied by the probability of loss Sj on the

last window. For the same reason, the probabilities that no loss signals are received for

different windows with same size w are the same. Denote it by Q", where the subscript w

is the window size and the superscript W denotes that the quantity is related to a window.

Similarly, the probabilities that a timeout signal or a random loss signal is received for
WTOdifferent windows with same size w are the same as well. Denote them by PL' and

rW, RL
P L respectively. Then, the transition probability can be expressed as:

0 if W Li{T (Hftj- Qw)~ ifO

Mi n-1 O if W Li and S = TO (3.4)

n=1 Qi PWi~ ' if W e E Li and Sj = RL

The reward function Vg can be obtained in a similar way as follows. From the system

behavior presented previously, the number of successfully transmitted packets during the

transition from state i to state j is the sum of the first Nij - 1 windows of packets plus the

number of successfully transmitted packets of the last window (the Nijth window), that is,
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EZNj-1 win + k - 1, where k is the integer such that the first k - 1 packets in the Nijth

window were successfully received and the kth packet incurs the loss of type S3 . Note that

k is a random variable.

PTO PRLLet P;' and Pk' denote the probabilities that a timeout signal and a random loss

signal on the kth packet of a window is received, respectively. Here the superscript P

indicates that the quantity is related to packets. Since within the same window, packets

incur losses independent of later packets, these two quantities are independent of the window

size, given that the window size is larger than or equals to k. Then, by straightforward

derivation, the expected reward VP can be shown to have the following window-based sum

form:

0 if W $ Li
jWiN.. P,TO

V" = ni1 Win + - pWTO if W Li and Sj = TO (35)
rwNij 1pPRIzNi1_win + WRL )P, if W c Li and S= RL

PwNij

Similarly, the reward function V is the sum of the expected time taken by the Nij

windows. Let T% denote the expected time taken by a window with size w and no loss, and
W RLTZ' denote the expected time taken by a window with size w and a random loss signal.

Notice that the expected time taken by a window with a timeout signal is fixed to be TO.

Then V has the following window-based sum form:

0 if W Li

VTN +TO if W5 Li and Sj = TO (3.6)

in(ter To + TzWTRL ifTWV (E Li and S = RL

Equation (3.4), (3.5) and (3.6) express the transition probabilities and reward functions

in terms of five unknown probabilities QY, P 'T and P' PwTo and P,'RL as well as

two expected time Tir and TrL . The next subsection further examines the relationship

between different probabilities and reduces the number of unknown probabilities to two.

3.3.3 Relationship between Probabilities

As mentioned before, the possible long time taken by the retransmissions of the ARQLL

ARQ due to the error-prone link transmission errors can cause the TL timeout. Since the
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TL timeout signal is designed to recover the losses that cannot be recovered by the ARQLL,

we call the TL timeout caused by the ARQLL retransmissions the false timeout, and let

QP,F denote the probability of no false timeout on the first k packets of one window, given

no random losses on the first k packets. Here the superscript P indicates that the quantity

is related to packets, and F means false timeout.

Let QP be the probability that no loss signal is received on the first k packets of a

window with size larger than or equals to k, and Pf be the probability that a loss signal

on the kth packet of a window is received. Here again, the superscript P means that the

quantity is related to packets. Since each packet incurs a random loss independent of each

other and independent of the ARQLL retransmissions, we have:

Q P=Q,F kQkPQk Fk (3.7)

By definitions of the following probabilities and noting that the events of receiving a

timeout signal and a random loss signal are exclusive, we have

Q = ) Q(3.8a)

P = Qk-1 - with QP = 1, (3.8b)

Pt =P 'TO +PPRL (3.8c)

PWTO PTO (3.8d)
k=1

PWRL E P RL

k=1

The above equations show that once we have QPF and P,RL we can obtain the five

probabilities needed, QW, P'To and P' ,T and P, RL. Specifically, Equation

(3.7) gives Qk from QkPF. Then Q, can be obtained from (3.8a). Equation (3.8b) then

PRL PTO
gives Pf. Together with the given P P, can be obtained from (3.8c). Finally,

WTO WRL otie
Pl'rw and PL, can be obtained from (3.8d) and (3.8e). From these five probabilities,

together with the quantities Ti and TL' , we can solve the transition probabilities and

the reward functions. The next section derives the LL queuing models for both GBN and

SRP and gives us these two probabilities, QPF and PRL , and the two expected times T'J
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3.4 Link Layer ARQ Queuing Models

Section 3.3 shows that for the system with the Reno mechanism, the throughput of the

system can be obtained once we know the four quantities QPF P,RL, and T!' .

This section develops simple queuing models for the ARQLL ARQ protocols with batch

arrivals and derives these four quantities.

3.4.1 Queuing Model for the GBN Protocol

This subsection first considers the distribution of packet round trip times and describes the

GBN queuing model. Then based on the queuing model, the four quantities required are

derived.

Let RTTHk denote the TL round trip time of the kth packet given that the kth packet

incurs no random loss, and RTTLk denote its ARQLL round trip time. Since in GBN the

packets are acknowledged in order at ARQLL and delivered to the corresponding higher

layer in order as well, we have

RTTHk = RTTLk, (3.9a)

RTTHI < RTTHk for all 1 < k. (3.9b)

Moreover, the GBN protocol in our model can be modelled as a queuing system with

independent service time (Chapter 2 Section 2.1 and [12]), denoted by X, with distribution

Pr(X = md + 1) = p'qi, where m is the total number of retransmissions. Since packets

arrive at the ARQLL in batches and are acknowledged in order, the ARQLL round trip

time of the kth packet RTTLk is thus the sum of its service time and the service times of

the k - 1 previous packets within the same window. Therefore, RTTLk, so does RTTHk,

has the following distribution:
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Pr(RTTHk md+k+d - 1)

=Pr(RTTLk md+k+d- 1)

( m +k -1 ) mqk (3.10)

where m is the total number of retransmissions of the first k packets in the window. Note

that extra d - 1 slots are added for allowing the GBN ACK to come back to the ARQLL

sender after the packet leaves the ARQLL sender's queue.

Next we derive the four quantities based on the distribution of RTTHk given in Equation

(3.10). First consider QPF . By the definition of QPF, together with Equation (3.9b) and

the distribution of RTTHk in (3.10), QPF is given by

k

P,F ARTTH < TO)Qk' Pr(nRT i< O
1=1

- Pr(RTTHk < TO)

- p1 q1 , (3.11)

where MTO - [TO-k-dj. Notice that the physical meaning of Mk' 0 is the maximum

number of retransmissions for the first k packets without causing a false timeout.

Now consider P ,RL. Let Fk be the event that the first k - 1 packets of a window

incur no random losses but the kth packet incurs a random loss. Then Fk is independent

of RTTH1 for all I and Pr(Fk) = qk-1p. The probability P ,RL, which is defined before to

be the probability that a random loss signal on the kth packet of a window is received, can

thus be obtained from its definition as follows:

k-i
PRL '

PR Pr( 1 RTTHI < TO, RTTHk +td < TO, Fk)
1=1

- qk-1pPr(RTTHk < TO - td)

Mk- 7 m+k-1
= k-i ( pqi, (3.12)

m=0 T

where MRL TO-td-k-d+1]. The second equality follows from Equation (3.9b), and the
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third equality follows from Equation (3.10). Notice that contrary to M7', the physical

meaning of MRL is the maximum number of retransmissions for the first k packets such

that a random loss on the kth packet will be detected by a random loss signal, but not by

a timeout signal.

For the same reason, i.e., the packets are delivered to the corresponding higher layer in

order, the time taken by each window without loss signals is the TL round trip time of its

last packet, i.e., Tw = RTTHw. Equation (3.10) therefore gives Tw as follows:

RTTH lno timeouts, no random losses

(md+w-d-1) m w-1 A (
m=O m

P)F QPFPF F

Notice that QP, is the previous defined Qk with k = w. By the definition of Qk, QW

is the probability of no timeouts and no random losses on a window with size w. Also notice

that MZ 0 is the previous defined MTO with k = w.

Similarly, T.'WRL can be obtained as follows:

TWwRL = RTTHk + tdIa random loss signal on the kth packet is received

k=1

W k

= qk-1p (md + k + d - 1 + tk) p q P/W,RL
k=1 m=O m

SML qk-1p(md + k) (m k- 1 pq PW,RL (3.14)zd - I1+td + Y q / W
k=1 m=O m

where in the second equality, we use Equation (3.12).

Equations (3.11) to (3.14) give us the four quantities needed for solving the system

Markov chain when the ARQLL employs the GBN protocol.

3.4.2 Queuing Model for the SRP Protocol

As with the GBN protocol, the SRP protocol also delivers packets to the corresponding

higher layer in order and Inequality (3.9b) still holds. Therefore, the first two equalities
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for Q'F and P,RL in Equation (3.11) and (3.12) still hold. However in SRP, at the

ARQLL the packets are not acknowledged in order anymore, and a packet is delivered to

the corresponding higher layer only when all the previous packets and itself are correctly

received by the receiver. Thus

RTTHkZ= max RTTL1 , (3.15a)
1=1,2,...,k

RTTH1 < RTTHk for all I < k. (3.15b)

For convenience, define the function f(k, z) to be the probability that the TL round trip

time of the kth packet is less than or equal to a variable z, that is,

f(k,z) = Pr(RTTHk < z). (3.16)

Then from the first two equalities in Equations (3.11) and (3.12), QP, and P can be

expressed in terms of f(k, z) as follows

PF
Qk'

P' RL

f (k,TO-d1),

q k-1pf (k, TO - td)-

(3.17)

(3.18)

Now express Tf' in terms of the function f(k, z). Again as in the GBN protocol, in

the SRP protocol the in-order delivery of packets from ARQLL to the corresponding higher

layer means that Tj = RTTH. Moreover, T7 is a non-negative integer valued random

variable. Together with its definition, its expected value can thus be expressed as:
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00

E Pr(T7 > zIno timeout, no random loss)
z=O

00

Z Pr(RTTHw > zIno timeout, no random loss)
z=O
TO-2

=S (z < RTTHW < TOIno timeout)
z=O

TO-2

= 5 (1 - Pr(RTTH, z~no timeout))
z=O

TO-ITO-2 Pr (RT TH, < z)=TO-1-

z=o Pr (no timeout)

TO-2 r w RTTLj < z)

z=0 Pr(= 1 RTTLi <TO)

TO-2

= TO-1- 5 f(w, z)/f(w, TO-1). (3.19)
z=w+d-1

where in the last equality, we use the fact min(RTTHw) = w + d - 1.

T, RL can be obtained in the similar way as that for TW. We omit the details and the

result is:

min(wT,w) ETO-1-td
T ,RL __5z=k+d-1 f(kZ) PRL pW,RLfu'k, TO - td P R/P WL (3.20)

k=1 f (k, TO - td k

where WT = TO - td - d + 1 is a constant.

Equation (3.17) to (3.20) show that once we know the function f(k, z), the four quantities

QF P,RL, and TuRL can be obtained. For the two cases when k < d and k > d, the

following paragraphs derive queuing models for SRP to obtain the function f(k, z). Note

that by Equality (3.15a) and the definition of f(k, z) (Equation (3.16)), we have

k

f (k, z) = Pr(n RTT Li < z). (3.21)
l=1

For convenience, starting from the time the ARQLL sender receives a window of packets,

we index the packets and time slots in order, that is, packet k is the kth packet and slot k
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is the kth slot.

The Case of k < d

When the ARQLL employs the SRP protocol, the service times of packets, denoted by X1

for packet 1, are independent of each other and independent of the waiting times of the

packets (Chapter 2 Section 2.1). The distribution is Pr(Xi = (m + 1)d) = p'q, where m

is the number of retransmissions before the successful transmission of packet 1. Moreover,

in the case of k < d, the waiting time of packet I is fixed to be 1 - I for all 1 = 1, k.

The ARQLL round trip times of the packets are thus RTTL1 = 1 - 1 + X1 for 1, ... k,

and therefore independent of each other. Together with Equation (3.21), f(k, z) can then

be written in the following simple product form:

k k

f(k, z) = flPr(RTTLi <; z) = fJ(1 - p" (3.22)
l=1 l=1

where Mt = [z- +1] - 1 is the maximum allowed total number of retransmissions of packet

I such that RTTL1 < z.

Equation (3.22) gives the function f(k, z) when k < d.

The Case of k > d

When k > d, packet service times are still geometrically distributed and independent of

each other. However, the waiting times of packets are no longer fixed and independent of

each other. As a result, RTTL1 for = 1,.. ., k are no longer independent of each other,

and f(k, z) no longer has the simple product form as with the case k < d in equation (3.22).

Nevertheless, we'll show that given the waiting time of packet k, denoted by Rk, to be r, the

conditional probability Pr(ft RTTL1 < zIRk = r) still has a simple product form. Bayes

rule then gives a simple sum-product form of f(k, z). In the following we will first derive

the distribution of Rk, then find the conditional probability Pr(fn RTTL I R = r)

and thus f (k, z).

First consider the distribution of Rk. The event Rk = r means that the first transmission

of packet k takes place at slot r + 1. See Figure 3-3 for illustration. According to the SRP

protocol, this happens if and only if the transmission at slot r - d + 1 was successful and at

slot r+1, packet k is the head-of-line packet that has never been transmitted yet. The latter
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successful packet k (first transmission)

k-d successful.transmissions d packets packet s

II I II 1 1 I I I >
r-d+1 r-d+1+s r r+l slot

r-d slots d slots

Figure 3-3: Transmission Pattern for the SRP Protocol when k > d

happens if and only if the number of successfully transmitted packets before and including

slot r - d + 1 is k - d. Since each transmission incurs a loss independently with probability

pl, the joint probability that this number is k - d and the transmission at slot r - d + 1 is

r - d-+ -successful is i 1)pk+ k-d We therefore have

Pr(rRk = r)) = p r-k+1 k-d (3.23)
k - d -1I

kp I qT 1  < I = r) Sic th

Next consider the conditional probability Pr(l= RTTL1  zIRk r). Since the

service time of packet k is at least d, given Rk = r we have RTTLk > r + 1 + d. Therefore,

Pr(nlz1 RTTL1 < z) = 0 for z < r+1+d. We henceforth only consider the case z > r+1+d.

Moreover, for packets that were successfully transmitted before and including slot r-d+1

(see Figure 3-3), their round trip times satisfy RTTL1 < r - d + 1 + d = r + 1 < z. We

hence have f (k, z) = Pr(fk RTTL1 < zIRk = r) = Pr()c1 s RTTLI < z|Rk = r), where

S is defined to be the set of packets transmitted between slot r - d +2 and r + 1. Note that

the size of S is d.

For an arbitrary packet in S, let slot r - d + 1 + s be the slot when it is transmitted and

call it packet s (see Figure 3-3 for illustration). Due to the memoryless property of geometric

distribution, the remaining service time of packet s is also geometrically distributed with

Pr(X, = (m + 1)d) = p7"ql, where X, denote the remaining service time and m is the

remaining retransmission times. Notice that X, is independent of each other for all s =

1, ..., d. We hence have RTTLs = r - d+1+s+X, and given Rk = r, RTTL, is independent

of each other for all s = 1, ..., d as well. The conditional probability then becomes
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k

Pr(n RTTL i < z|Rk r)
1=1

= Pr(nRTTL, < z|Rk r)
sES

= f Pr(RTTL <
sES

d

- Pr(r -d+1
8=1

d

- Pr(r - d + 1
8=1

s=1 m=0

d

-f(1 -pi's+1)
8=1

where Mz z L-si

The sum-product form of the function f(k, z) thus follows:

k

f(k,z) - Pr(nRTTLi < z)
11

k

- Pr(nRTTLi <z|Rk = r)Pr(Rk = r)
r i=1
z-d d

= Q (1 -+ ur+)Pr(Rk = r),r fl(i- p- sk
r-k-1 s=1

(3.24)

where Pr(Rk = r) is given in Equation (3.23). Here in the third equality, we use the fact

that the minimum waiting time for packet k is k - 1 and the maximum waiting time of

packet k such that its round trip time is less than or equal to z is z - d. Equation (3.24)

together with Equation (3.23) gives us the function f(k, z) when k > d.

We conclude this section by giving the outline to numerically obtain the throughput of

the system:

Given the system, protocol and loss parameters p, pi, d and TO:
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1. For w E [1, WA/)] and k < w, use the ARQLL ARQ queuing model to obtain the four

quantities QkP, P,RL T and T,' j as follows:

For GBN, plug the parameter numbers into equation (3.11) to (3.14);

For SRP, first plug the numbers into equation (3.22) or (3.24) to get f(k, z), then

equation (3.17) to (3.20) give the four quantities.

2. From the two quantities QP and P,RL and relationship (3.8), solve for the five

Q -PTfl PRL WTO WRLprobabilities, Q , P and P' , and P,!

3. From Equation (3.4) to (3.6), compute the transition probabilities and reward func-

tions.

4. Solve the system Markov chain for the steady state distribution 7ri. Then Equation

(3.1) and (3.2) gives us the steady state expected rewards per transition v' and v .

5. The throughput of the system is A = (Theorem 1).

3.5 Other Systems

3.5.1 System with Tahoe Algorithm

The Tahoe algorithm differs from the Reno algorithm only in that it does not use the

random loss signal. All the arguments in Section 3.3 for systems with Reno algorithm are

also applicable for systems with Tahoe algorithm except the parts related to random loss

signals, and the model for systems with Tahoe algorithm can be obtained from the model

in Section 3.3 with corresponding modifications.

Specifically, the system with the Tahoe algorithm can also be modelled as a finite state

Markov chain, with the window size upon a timeout signal as the state. Unlike the chain

for the system with the Reno algorithm, the chain for the system with the Tahoe algorithm

has only the states with S = TO. The states with S = RL no longer exist, and transitions

from and to these states no longer have meanings. In addition, similar to those with Reno

algorithm, the transition probabilities also have simple window-based product forms, and

the reward functions have simple window-based sum forms as well. They can be directly

obtained from their definitions in a similar way as that for the system with the Reno

algorithm and expressed as follows:
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0 if WegLP = i L (3.25)
Z) (H~ij 1 QW)FW fwn= Q N ifWe c Li

0 ifWe Li

N -1 EWiN- - 3.26)
I$ w En k=±3w k ifW LiWiN..

( 0 
if We L

Zi 0 Ni~ ±T j V Li(3.27)
T1t +TO if WfE Li

where the quantities in the above equations are defined the same as those with Reno algo-

rithm.

Moreover, with the Tahoe algorithm, quantities related to random loss signals (those

with superscription RL), pWRL pPRL and T,'W , no longer have meanings. The re-

lationship between probabilities corresponding to equations in (3.8) can be modified by

deleting these quantities, as follows:

Qi = QP W7(3.28a)

P Q - Q with QP = 1, (3.28b)

P = PT 0,(3.28c)
w

P = Pk. (3.28d)
k=1

Furthermore, with the Tahoe algorithm, the quantities needed from the LL queuing

models to solve the transition probabilities and reward functions are reduced from four

quantities to two quantities: QP,F and TW. The ARQ queuing models derived in Section

3.4 are applicable for systems with Tahoe algorithm as well, and Equation (3.11) and (3.13),

(3.19) and (3.17), which correspond to the GBN protocol and the SRP protocol, respectively,

are still valid here. These two quantities, QPF and T, can be obtained from these four

equations for system with the GBN protocol and the SRP protocol, respectively.

The above discussions show that, the system throughput with the Tahoe algorithm can

be obtained in a similar way as that with the Reno algorithm, as follows: the ARQ queuing

model provides quantities Q'F and TY from Equation (3.11) and (3.13), (3.19) and (3.17),
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for system with the GBN protocol and the SRP protocol, respectively. Equation (3.28)

then gives all quantities needed for the transition probability PT and the reward functionZ3

Vj and Vit. Equation (3.25), (3.26) and (3.27), together with Equation (3.1), (3.2) and

Theorem 1, finally give the system throughput.

3.5.2 System with Multiple Transmission ARQ Protocol

When the link error probability is high, multiple transmission ARQ protocol had been

proposed to improve the throughput of the link [29]. Initially the purpose of this protocol

was to reduce the probability of receiver buffer overflow and thus increase the throughput

of the link. Here in our system, multiple transmission attempts can reduce the effective

ARQLL error probability of each packet, thus reduce the number of ARQLL retransmissions

and TL false timeouts. As a results, an improved throughput is expected when the link loss

probability is high. The protocol considered works as follows:

Each packet is transmitted t times by the ARQLL sender. After receiving all the t

transmissions, if at least one of these transmissions is successful, the ARQLL receiver sends

an ACK back to the sender. Otherwise the receiver sends back a NAK. The retransmission

mechanism in case of NAKs works in the same way as that in the standard ARQ protocol.

Before going into the analysis of systems with the multiple transmission ARQ protocol,

we first investigate the the effects of this protocol on the analysis framework defined in

previous sections. For convenience, we call the set of t transmissions of one packet t-

transmission.

From the multiple transmission ARQ protocol, we can see that one packet incurs a link

loss if and only if all its t transmissions incur losses. Packet link loss probability thus reduces

from pi to (pi)t.

Moreover, define the round trip delay of t-transmission to be the time between the first

transmission of t-transmission and the time the sender receives an ACK/NAK corresponding

to this t-transmissions. Then from the protocol we can see that the round trip delay of t-

transmission is d + t - 1. Recall that our system is a slotted system, with one slot defined

to be the transmission time of one packet. Accordingly, for systems with the multiple

transmission ARQ protocol, define t-slot to be the transmission time of t-transmission.

Then one t-slot is t times of the original time slot. Correspondingly, the round trip delay of

t-transmission measured in t-slot becomes (d + t - 1)/t. For simplicity, assume this number
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is an integer.

With the new framework defined above, the analysis of the system with the multiple

transmission ARQ protocol follows the same approach as in the previous sections. All

previous formula are applicable for the system with the multiple transmission ARQ protocol

with the following modifications. First, the packet link loss probability in the formula

becomes (pl)t instead of pl. Second, the round trip delay becomes (d + t - 1)/t instead of d.

Third, the quantities related to time, TO and td, should be measured in t-slot instead of the

original slot. That is, use TO/t and td/t instead of TO and td in all the formula. Finally,

since the resulting reward function vt is also measured in t-slot, the resulting throughput is

the number of packets per t-slot. By converting it back to the number of packets per slot,

the system throughput hence is At instead of A.

3.6 Numerical Results and Discussions

Based on the model derived in the previous sections, here we present, for different protocol

and packet loss parameters, the numerical solutions for the throughput of the system. These

results tell us whether implementing ARQLL ARQ will improve the system performance,

and give us some insights into the system performance as a function of the protocol and

loss parameters.

In numerically solving the system, we use data that is typical in hybrid space-terrestrial

networks and satellite links. As we mentioned before, this type of networks is a good

example of heterogenous networks with high link loss probability and bandwidth-delay

product. Usually for a satellite link, the round trip time of one transmission is around isec;

the bit error rate BER is between 104 and 10-5; packet size L is about 2000 bits; and

transmission rate is around 105 - 106 bits/sec. Converting these into the parameters in our

system, we obtain that the link error probability pl is between 0.02 and 0.2 and the round

trip delay d is about 50 - 500 time slots.

In our model, the error prone bottleneck satellite link can either employ no ARQ or one of

the two ARQ protocols (GBN and SRP), and the TL can either employ the Tahoe algorithm

or the Reno algorithm. Therefore, we investigate the following six systems: SRP/Reno,

SRP/Tahoe, GBN/Reno, GBN/Tahoe, noARQ/Reno and noARQ/Tahoe. Specifically, the

SRP/Reno system refers to the system whose ARQLL employs the SRP and TL employs
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the Reno protocol. Other systems are similarly defined. Note that when the random loss

probability p = 0 and ARQLL employs an ARQ protocol to recover link losses, there is no

random loss signal generated. Consequently, the Tahoe and Reno algorithm are essentially

the same. That is, in this case, the SRP/Reno system is equivalent to the SRP/Tahoe

system, and the GBN/Reno system is equivalent to the GBN/Tahoe system.

3.6.1 Effects of Transport Layer Timeout Value

Figure 3-4 plots the throughput versus TO for different systems and parameters. In par-

ticular, Figure 3-4 (a) plots the throughput versus TO for all the six systems considered,

with pl = 0.01, p = 0 and d = 100. That is, there are no random losses and all losses can

be recovered by the ARQLL ARQ. Recall that with p = 0, the SRP/Tahoe and SRP/Reno

systems are the same, and so are the GBN/Tahoe and GBN/Reno systems. The figure

shows that for systems with ARQLL ARQ (upper two curves in Figure 3-4 (a)), either

GBN or SRP, the throughput increases monotonically with TO. This is because higher TO

allows more time for the ARQLL ARQ to recover link losses and reduces the false timeout

probability. Whereas for systems without ARQ (lower two curves in Figure 3-4 (a)), the

throughput decreases monotonically with TO. This is because in this case, the only way

for the system to detect the losses is via timeout signals. Higher TO makes the system take

longer time to detect losses and recover them, which results in lower throughput. Notice

that in most cases except when TO is very low (TO < 2d), the systems with ARQLL ARQ

have higher throughput than the systems without ARQLL ARQ by a factor of two to eight.

1 -+- SRP/Tahoe, SRP/Reno 0.12 - SRP/Reno
0.9 -- U- GBN//Tahoe, GBN/Reno 0.11 - -- SRP/Taheo

-- noARQ/Reno
0.8 - --- noARQ/Taheo 0.1 -
0.7 -

5 0.6 -0.09

0.5 - 0.08 -

0.4 0.07

200 300 400 500 600 700 800 200 400 600 800

(a)TO with p0=0.01, p=0 (b) TO with p=0.01, p=0.01

Figure 3-4: Throughput vs TL Timeout Value TO

Figure 3-4 (b) plots the throughput against TO for the SRP/Reno and SRP/Tahoe
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systems, with pl = 0.01, p = 0.01 and d = 100. The curves for the GBN/Reno and

GBN/Tahoe systems are similar and have the same shape. For clarity, they are not shown

here. The figure shows that when both losses exist, the throughput of the SRP/Tahoe

system first increases with TO, then decreases, while the throughput of the SRP/Reno

system first increases with TO, then saturates. The increase part of both systems is because

of the lower false timeout probability with increasing TO. After TO reaches a certain point,

further increasing TO will not reduce the probability of false timeouts significantly, and the

increase of the throughput for this reason should not be significant.

In addition, after TO is already large, for the SRP/Tahoe system, the time for the

system to detect and recover random losses becomes longer. Consequently, the reduction of

the throughput due to this longer time dominates, and the throughput goes down. Together

with the increasing part explained above, for the SRP/Tahoe system, the curve is concave,

and there exists an optimal value of TO that gives the best system performance. The

optimal value depends on the link and loss parameters. On the contrary, when the TO is

already large, for the SRP/Reno system, the losses will more likely be detected by random

loss signals rather than by timeout signals. In this sense, higher TO should not affect the

detection of losses, thus the throughput, significantly. Together with the increasing part

when TO is not large and the insignificant effect on the false timeout probability when

TO is large explained above, the throughput of the SRP/Reno system first increases, then

saturates.

3.6.2 Effects of Loss Probabilities and Round Trip Delay

Figure 3-5 (a) plots the throughput against the link loss probability pi for p = 0, d = 100 and

TO = 500. The figure shows that the throughput of the systems decreases when pl increases,

regardless which TL and ARQLL protocol are used. This result is consistent with our

intuition on the effects of pl on the system performance. The reason behind it is that larger

loss probability means more retransmissions, longer delays and more window reductions by

the TL window flow control. In addition, the figure also shows significant improvement

of the system performance by implementing ARQLL ARQ: an order of magnitude at the

maximum.

Our numerical results for the throughput versus the round trip time d (which are not

shown here) give us similar plots as those in Figure 3-5 (a). That is, the throughput of
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the system decreases as d increases and significant improvement of the system performance

can be achieved by implementing ARQLL ARQ. This result is also consistent with the

system operation, since longer round trip time for one transmission means that longer time

is needed for both the TL sender and the ARQ ARQLL sender to receive the loss signals

and start retransmissions, which leads to a lower throughput.

For the SRP/Reno, GBN/Reno and noARQ/Reno systems, Figure 3-5 (b) shows the

throughput with respect to the random loss probability p when pl = 0.1, d = 100, TO = 500

and td = 50. This figure also shows improvement of the system performance by implement-

ing ARQ. The advantage of ARQ becomes small when p is large. In this case random

losses come to dominate, which results in less efficiency of the ARQLL ARQ in increasing

the throughput. Our results for the SRP/Tahoe, GBN/Tahoe and noARQ/Tahoe systems

yield similar observations. For brevity, these plots are not shown here.
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Figure 3-5: Throughput vs Error Probability

3.6.3 Effects of Other Parameters

Figure 3-6 (a) shows the throughput as a function of t, the number of transmission attempts

per packet at ARQLL, when pi = 0.2, p = 0.01, d = 100, TO = 500. It shows that for

each system, the throughput first increases then decreases. Actually there are two opposite

effects by increasing t. On the one hand, compared with standard ARQ protocol where

t = 1, transmitting each packet t times with t > 1 greatly reduces the effective link loss

probability seen by the ARQLL by a power of t, which results in significant reduction of

the number of retransmissions at the ARQLL. Because of the large delay of the error-prone

link, this reduction of the retransmission times not only save a significant amount of time
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for one packet, but also leads to significant decrease of the variability of the packet round

trip times, and thus the number of the TL false timeouts and the TL window reductions.

In this sense, higher t may lead to a higher throughput. On the other hand, transmitting

each packet t times also means that the effective link capacity is reduced by a factor of

t, therefore greatly reduces the throughput. As a result, the overall system performance

against t depends on the tradeoff between these two effects. Figure 3-6 (a) shows that when

t is relatively small, the benefit of increasing t dominates, while when t is relatively big,

the drawback dominates. The curve is thus concave, and there exist an optimal value of t

which gives the best throughput. Again, the optimal value depends on the link and protocol

parameters. Notice that the figure shows a significant increase in throughput by using the

optimum t (for example, a factor of 4 for the GBN/Reno system).
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Figure 3-6: Throughput vs ARQLL Transmission Times and Packet Size

Figure 3-6 (b) plots the throughput as a function of the packet size L for the SRP/Reno

and GBN/Reno systems, when the random loss probability p = 0.01, the round trip delay

of the link is 1sec, BER= 10-5 and the transmission rate is 10 5 bits/sec. Here in order

to illustrate the effects, we deliberately extend the range of packet lengths and make the

length go beyond the practical values. The figure shows that the throughput first goes up

then goes down with increasing L. The increase in throughput is because of the decrease in

ARQLL round trip delay d (as measured in time slots) due to increasing L, and the decrease

in throughput is due to the increase in packet error probability pl (again, because of the

larger packet size). There exists an optimal value of L that gives the best performance.

The optimal value depends on the link parameters and the protocols employed, and can

significantly improve the throughput as well (a factor of 6 to 9 with the parameters dis-
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cussed). Our numerical results for the other four systems, the SRP/Tahoe and GBN/Tahoe

systems and the noARQ/Reno and noARQ/Reno systems, give the same trends as those in

Figure 3-6 (b). For brevity, they are not shown here.

3.6.4 Is ARQ Beneficial?

Now let us assess whether the ARQLL ARQ is beneficial or not. First consider the systems

with the Tahoe protocol. In these systems, implementing the ARQLL ARQ can recover some

of the link losses (which will otherwise lead to TL timeouts) and thus decrease the number

of window reductions by the TL. Therefore the ARQLL should improve the throughput and

be beneficial. This is evidenced by Figure 3-4 to Figure 3-6, where the SRP/Tahoe and

GBN/Tahoe systems have better performance than the noARQ/Tahoe system .

Whereas when the TL employs the Reno protocol, the ARQLL has two opposite effects

on the system performance. On one hand, the ARQLL can recover some of the link losses,

and thus decrease the number of window reductions, which would lead the system back

to the congestion avoidance phase if no ARQ were employed. As a result, the throughput

should increase. On the other hand, the ARQLL introduces false timeouts. These false

timeouts lead the system back to the slow start phase instead of the congestion avoidance

phase if no ARQ were employed. Consequently, the throughput should decrease. Figure 3-4

to Figure 3-6 show that, in all cases except when the TL timeout value TO is very small

(TO < 2d, see Figure 3-4 (a)), the benefit of employing ARQ overcomes the drawback and

the SRP/Reno and GBN/Reno systems give better performance than the noARQ/Reno

system.

Since in most cases except when TO is very low, employing ARQ yields significant

improvement of the system throughput (for example, a factor of two to eight from Figure 3-

4 (a) and an order of magnitude at the maximum in Figure 3-5 (a)), we thus suggest the

implementation of ARQ over the satellite link.

3.7 Conclusions

In this chapter we provide an exact model for heterogenous data networks with AIMD

transport protocols and link layer ARQ protocols. Both GBN and SRP are considered, and

the delay of ARQ ACKs is also taken into account. Numerical solutions for the throughput
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as a function of different protocol and packet loss parameters are presented. Our analysis

shows that for most situations of interest, it is better for the error-prone link to implement

ARQ.

We were also able to obtain some insights on the system performance as a function

of various protocol parameters, such as the transport layer time-out value; the link layer

packet size and the number of transmission attempts per packet at the link layer. We show

that by proper setting of these parameters, system throughput can be improved by nearly

an order of magnitude.

There are two natural extensions to the work presented in this chapter. One is to

analyze TCP performance when there exist multiple connections. The other is to include

non-persistent users, that is, users that have limited packets to sent.
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Chapter 4

Interactions between TCP and

Random Access Scheme

In this chapter we will investigate the interaction between TCP and ALOHA by analyzing

a hybrid terrestrial-satellite network with TCP at the transport layer and ALOHA at the

MAC layer. The system performance will be derived analytically, and the impacts of pro-

tocols and parameters will be studied in detail. Simulations will also be presented which

confirms the analysis.

4.1 Introduction

Often in satellite networks, a group of ground terminals share the same channel to one

satellite for transmissions. Compared to other multiple access protocols, such as Frequency

Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA), random

access protocols, such as ALOHA, have the advantages of simple implementation and good

performance over bursty and sporadic traffic ([12]). Moreover, with random access protocols,

it is easy to add and remove users. Hence, random access protocols are widely employed in

satellite and wireless networks. In addition, currently TCP is the dominate transport layer

protocol that provides reliable end-to-end transmissions and is widely implemented in data

networks. It is thus of interest to study the system performance with TCP at the transport

layer and ALOHA at the MAC layer.

Since ALOHA was first proposed in 1970s, there have been many papers analyzing its

performance. In [12] and the papers therein, the authors give comprehensive and rigorous
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analysis on several aspects of ALOHA systems, such as the throughput, collision probability

and idle probability, and stability issues. These analysis considers ALOHA protocols only

and disregards the effects of other layers. For idealized slotted ALOHA, one of the main

assumptions these analysis make is that packets arrive at senders according to independent

Poisson processes. Two of the main results on its performance are that, the maximum

system throughput is 1/e, and this throughput can be reached by adjusting the transmission

probability to make the system attempt rate be one. At other attempt rate, the system has

either too many idle slots or too many collisions, and the throughput is below 1/e.

In practical networks, MAC layers receives packets from their corresponding higher

layers. When a system employs TCP at its transport layer, the packets arrival process at

the MAC layer is no longer a Poisson process but under the control of TCP window flow

control scheme. Moreover, the maximum number of packets available at the MAC layer is

limited by the current TCP window size.

In addition, from the perspective of TCP, there have been many papers studying the

TCP performance in hybrid terrestrial-satellite networks [4, 50, 49, 45, 7, 27, 3, 10, 26, 40,

41]. Most of these work focuses on the properties of high bandwidth-delay product and

high link loss property. The paper [43] and [36] also analyze the performance of a normal

TCP session with random packet loss probability. This chapter also considers the TCP

performance in hybrid terrestrial-satellite networks, but focuses on its interaction with the

MAC layer random access scheme.

In particular, under random access protocols, packets enter the shared channel ran-

domly, and collisions occur at the MAC layer with some probability. These MAC layer

collisions directly affect TCP window evolution at the transport layer and hence the TCP

performance. In addition, ideal ALOHA protocol resolves collisions by MAC layer retrans-

missions of collided packets. When the system employs TCP at the transport layer, there

is one more option, that is, resolving collisions by TCP retransmissions.

In this chapter we study these interactions between TCP and ALOHA by examining

the system performance with TCP at the transport layer and ALOHA at the MAC layer.

Specifically, the system investigated is a hybrid terrestrial-satellite network with a large

number of identical persistent source-destination pairs. Each pair employs TCP at its

transport layer and each source employs the slotted ALOHA random access scheme at its

MAC layer.
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An analytical model for the system considered is developed, and two simple equations are

derived from which the system performance can be solved directly. The maximum possible

system throughput is shown to be 1/e, and a sufficient and necessary condition to achieve

this throughput is given. Moreover, the optimal MAC layer transmission probability at

which the system achieves its highest throughput is also derived. The impacts of different

protocols and parameters on the system performance, such as MAC layer transmission

probability, TCP timeout backoff and MAC layer retransmissions, are studied in detail.

The rest of the chapter is organized as follows: in the next section we give a detail

description on the systems and protocols examined. Then in Section 4.3 and 4.4, we analyze

the system with and without TCP timeout backoff, respectively, and derive formulas for

the system performance and conditions for achieving the maximum throughput, as well as

the optimal MAC layer transmission probability. In Section 4.5 we discuss the impact of

TCP timeout backoff on the system considered, and evaluates MAC layer retransmissions.

Finally, in Section 4.6 we conclude the chapter.

4.2 System Description

The system we consider consists of N identical source-destination pairs (SD pairs), where

N is large, as shown in Figure 4-1. All N sources share a common channel to the satellite.

Each source has unlimited number of packets to be sent to its corresponding destination.

Each SD pair employs TCP at its transport layer for congestion control purpose, where a

selective repeat retransmission scheme is employed and only those packets that are lost will

be retransmitted. At the destinations packets are delivered from lower layers to TCP in

order. All sources employ an ALOHA multi-access scheme at their MAC layer for multi-

access purpose. The two protocols considered, TCP and ALOHA, will be described in detail

later.

For all SD pairs, all packets at the MAC layer have the same length and each packet

requires one time unit, called a slot, for transmission. The round trip time between each SD

pair, defined to be the duration between the time a packet is sent out by the MAC layer and

the time the source receives its acknowledgement, is a random variable with mean D slots.

Here the randomness represents the queuing delays and other random delays experienced

by the packets. To focus on the impact of random access, we assume that there are no other
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packet losses in the network except losses due to MAC layer collisions.

SN DI

Figure 4-1: System with TCP over MAC Random Access

The transport layer window evolution follows the rules of a simplified TCP Reno window

evolution. Specifically, the simplified TCP Reno keeps two parameters: current window size

W and window threshold W. Its window flow control algorithm works as follows:

* The initial window size is 1.

" Upon an acknowledgment:

- If W < W, then W<- W+1;

- If W > Wt, then W <- W + 1/[WJ.

" Upon a timeout signal, Wt <- W/2 and W +- 1.

Upon three duplicate ACKs, Wt <- W/2 and W <- Wt.

The phase with W < Wt is called slow start phase, and the phase with W > Wt is called

congestion avoidance phase. Notice that since what we are interested in are TCP's retrans-

missions and congestion control, here we deliberately disregard other TCP issues, such as

connection establish and termination, and time granularity.

The ALOHA multi-access scheme considered works as follows:
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" At each source, when one or more packets are available in the MAC layer buffer, its

MAC layer transmits the first packet with probability p.

" If two or more sources transmit packets in a given slot, a collision occurs and all

packets transmitted are assumed lost.

" If only one source transmits a packet in a given slot, the packet will be successfully

received.

Note that this scheme does not allow MAC layer retransmissions of collided packets.

TCP retransmission hence is the only way to recover collided packets. The system with

MAC layer retransmissions will be discussed later in Section 4.5. Also note that according

to the scheme, each source MAC layer can be viewed as a queuing system, with all arrivals

coming from its corresponding transport layer and geometrically distributed service time

with mean 1/p.

Our objective is to analyze the system described above, that is, with TCP at the trans-

port layer and ALOHA at the MAC layer. For convenience, we call the system the TCP

system. However, due to its complex window update algorithm, it is usually complicated to

analyze TCP. Nevertheless, our system employs ALOHA at the MAC layer, and collisions

occur with high probability. Hence, the TCP window size is expected to be small with high

probability. We therefore propose a system whose window update algorithm consists of

only the congestion avoidance phase, and call the system the CA (Congestion Avoidance)

system. Specifically, the window of the CA system is updated according to the following

rules:

" Initially the window size W = 1.

" Upon an acknowledgement, the window size is updated to be W +- W + L.

" Upon a timeout, the window size is reset to be W <- 1.

By comparing this WFC scheme with the TCP WFC scheme, we see that this WFC scheme

is similar to that in the congestion avoidance phase of TCP but without fast retrans-

mit/recovery. All the analysis henceforth is based on this CA system, and we therefore call

the CA system the system when there is no ambiguity. As we will see later, due to the high
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collision probability, the window size of the TCP system is small. Therefore, with high prob-

ability, not enough duplicate ACKs will be generated to trigger fast retransmit/recovery

mechanism [21]. Moreover, the small window size of the TCP system also leads to a small

window threshold, which further results in negligible slow start phase. The CA system is

thus expected to be a good approximation of the TCP system, which is evidenced by the

comparison of simulation results of these two systems presented in Section 4.3.3.

Note that from its window update algorithm, after each timeout, the window of the CA

system has exactly the same evolution. This property allows us to model the system as a

renewal process, thus greatly simplifies the analysis of the system.

We further assume that the TCP timeout value, denoted by RTO, is large enough that

the probability of timeout due to queuing delay at the MAC layer can be ignored. Recall

that there are no losses other than collision losses. Hence, TCP timeouts can only be

triggered by MAC layer collisions.

In addition, to investigate the impacts of TCP timeout backoff, we also consider a TCP

variation that does not employ timeout backoff. Not only the analysis of this system is the

basis of the analysis of the TCP system, but also we will see later that TCP timeout backoff

actually hurt the system performance.

For convenience, we borrow the concept of round from [44] at the transport layer, with

extension that includes the timeout signal: a round starts with transmission of W packets,

where W is the current window size of the congestion window. Once all packets falling

within the congestion window have been sent, no other packets are sent until the first ACK

for one of these W packets or a timeout signal is received . This ACK reception or timeout

marks the end of the current round and the beginning of the next round.

Further define a timeout interval to be an interval between two successive timeouts, and

index the packets sent and the rounds within one timeout interval in order, that is, packet

k is the kth packet and round k is the kth round. The ACK for packet k is called ACK

k. Table 4.1 illustrates the window evolution and rounds within one timeout interval for

the CA system. For example, as shown in column 1 to column 3 of Table 4.1, each time

when the window size is increased by 1, there are two packets released. Otherwise, there

is one packet released. After the window size reaches 3, there are three ACKs received,

namely ACK 3,4 and 5, which lead to a window increase to 4. Accordingly, four packets are

released, namely packet 5, 6, 7 and 8. In addition, as shown in the 4th and 5th columns,
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Table 4.1: Window Evolution and Rounds
ACK window packet round first packet number of packets

size released in round in round
1 1 1 1 1

1 2 2,3 2 2 2
2 2 4 3 4 3
3 3 5,6
4 3 7 4 7 4
5 3 8
6 4 9,10
7 4 11 5 11 5
8 4 12

round 4 begins with ACK 4, which is the first ACK of packets in round 3, and the first

packet in round 4 is packet 7. ACK 7 thus becomes the first ACK of packets in round 4 and

marks the end of round 4 and beginning of round 5. By counting the number of packets in

round 4, we obtain 4, which is shown in the last column.

4.3 Systems without TCP Timeout Backoff

This section analyzes CA systems without TCP timeout backoff. We will first consider

the entire system including all SD pairs, and then examine one SD pair in isolation. The

combined analysis yields formulas that together can be used to solve for the system perfor-

mance.

4.3.1 System Level Analysis

For every sender/receiver pair, define the throughput as the number of packets correctly

received by the receiver per unit time, and the send rate as the number of packets sent by

the sender per unit time. That is, the send rate includes both packets that are included

in throughput and the packets that are lost due to collisions. By assuming equivalence

between time average and ensemble average, the throughput is also the probability that in

a slot, a packet is correctly received by the receiver. Similarly, the send rate is also the

probability that in a slot, a packet is sent by the sender.

In our system, we have two layers, the transport layer and the MAC layer; hence we

have definitions of throughput and send rate at both layers. However, the MAC layers

receive packets only from their corresponding transport layers. Therefore, the send rate at
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both layers are the same. Moreover, collision losses at the MAC layers are the only losses

in the system. So the throughput at both layers are the same as well. Henceforth, we

use the term throughput and send rate to refer to the throughput and send rate at both

layers. In addition, the throughput and send rate can refer to those of a single SD pairs

and those of all N SD pairs. We call those for a single SD pair individual throughput and

send rate, and denote them by Ad and Bd, respectively. We call those for all N SD pairs

system throughput and send rate, and denote them by A, and B8, respectively.

From the above definitions and discussions of throughput and send rate, we conclude

that in our system, the system throughput A, is the probability that there is exactly one

MAC layer sending a packet in a slot. For one particular SD pair, the individual send rate

Bd is the probability that the MAC layer of this SD pair sends a packet in a slot. Since we

have a large number of SD pairs (N is large), we further assume that for a particular SD

pair, its state is independent of the state of other SD pairs. We hence have the following

relationship between the system throughput, idle probability, collision probability and the

individual send rate:

A, = NBd(1 - Bd)N- 1  NBde-NBd (4.a)

P = (1 - Bd)N eNBd (4.1b)

Pc= 1 - A, - Pi. (4.1c)

where PI and PC are the idle probability and collision probability, respectively, and the

approximations hold when Bd is small and N is large.

Due to the independence assumption, the above analysis is similar to that of a standard

ALOHA system [12]. Specifically, the equations in (4.1) show that, as in an ALOHA system,

the number of packets correctly received in a slot can be approximated by a Poisson random

variable, with the attempt rate NBd as its mean. The maximum possible throughput can

be achieved at NBd = 1, with the corresponding throughput, idle probability and collision

probability being 1/e, 1/e and 1 - 2/e, respectively. However, unlike a standard ALOHA

system, in our system NBd 1 is not always achievable due to the impacts of the transport

layer window flow control, which will be discussed in detail later, while in a standard

ALOHA system, an attempt rate of one can always be achieved with proper parameter
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settings.

Furthermore, under the independence assumption, the effects of other SD pairs on one

particular SD pair are aggregated into one parameter Q, defined to be the probability that

all other N - 1 MAC layers transmit no packets in a slot. Since all SD pairs are identical,

we have:

Q = (1 - Bd)N- 1  e(N- 1)Bd -eNBd. (4.2)

Note that although the values of PI and Q are approximately the same (Equation (4.1b)

and (4.2)), they have different physical meaning. P, is for all N SD pairs, while Q excludes

the SD pair considered and is for the other N - 1 SD pairs only.

Moreover, the independence assumption also gives A, = NAd and B, = NBd.

4.3.2 Session Level Analysis

As mentioned before, the effects of the other N - 1 SD pairs on one particular SD pair

are aggregated into one parameter Q, the idle probability of all other N - 1 SD pairs.

This particular SD pair can thus be modelled as a transport layer session with collision

probability of each packet being 1 - Q. However, unlike the TCP sessions with random

packet losses analyzed in literatures [43, 36], in our system all TCP packets must pass

the MAC layer queuing system, which makes the analysis of the TCP system much more

complicated. Therefore, instead of analyzing the TCP system directly, we analyze the CA

system proposed. Specifically, in this section, we use the property of the CA system to

model one particular SD pair as a renewal process, and obtain an upper bound and a lower

bound for its send rate, Bd, in terms of Q.
For one particular SD pair, after a timeout, consider packet transmissions before the

first collision occurs. All packets sent before the first collided packet won't encounter a

timeout, since they encounter no losses and the large timeout value assumption ensures

that their ACKs will be received before the TCP retransmission timer expires. Whereas

the first collided packet will eventually encounter a timeout, since there is no mechanism

other than the transport layer retransmission to recover this collision loss. Therefore, the

first collision is the one that leads to the next timeout.

Moreover, since packet transmissions between a timeout and the first collision afterwards
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were successful, the transport layer sender will receive some ACKs after the collision and

release some new packets. The large timeout value assumption ensures that the MAC layer

will finish the transmissions of these later released packets before the next timeout. Thus

upon each timeout signal, there is no packet in the MAC buffer. In addition, according

to the WFC scheme, the window evolves exactly the same after each timeout signal. The

timeout signal sequence therefore forms a renewal process, with a renewal cycle being a

timeout interval between two successive timeouts. Let M be the number of packets sent

during a cycle and T be the cycle length. Then by the renewal theory,

Bd =E[M] (4.3)
E [T ]

To solve for Bd, first consider E[T]. Instead of deriving its exact expression, which

requires complicate queuing analysis, we derive an upper bound and a lower bound. Let

R be the number of successful rounds during a cycle and RTO be the timeout value that

ends the cycle. Then T is at least the sum of the duration of these R rounds plus RTO.

Each round takes at least the service time of its first packet, denoted by Fk for round

k, plus the two way propagation delay this packet experiences, denoted by Dk, for the

sender to receive its ACK. We therefore have a lower bound for T, denoted by TL, to be

T TL T L k(Fk +Dk)+ RTO.

Similarly, an upper bound for T, denoted by TU, can be obtained when ignoring the

overlap between the service time of each packet and Dk of each round k. Mathematically,

let Xk be the service time of packet k. Then T < TU - E 1 Xk±+EU 1 Dk+RTO. Along

with the lower bound TL, we have

R M R

+ k T TL U = Xk +( Dk + RTO.
k=1 k=1 k=1

Here and henceforth, for convenience and clarity, the expectation of RTO is denoted by

RTO as well. Note that TCP updates RTO based on the measurements of round trip times

seen by its packets, which takes into account both their average and standard deviation

[52].

By our multi-access scheme, the service time for each packet is geometrically distributed

with mean 1/p and independent of each other and R and M as well. Thus by taking

expectations of the above inequality,
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1 EM
(- + D)E[R] + RTO= E[TL] < E[T] < E[TU] = + DE[R] + RTO. (4.4)
p p

Now consider E[M]. Define Z to be the index of the packet that incurs the first collision.

Then the first Z - 1 packets were successfully transmitted and have been or will be ACKed,

while packet Z and packets sent thereafter won't be ACKed. According to the WFC

scheme, new packets can be released only upon reception of ACKs. Therefore, M equals to

1, counting for the first packet, plus the number of packets triggered by the Z - 1 ACKs.

In addition, in the WFC scheme, each ACK triggers the release of one packet, except those

ACKs that increase the window size by 1 (i.e., the last ACK in a round) where two packets

are released (See Table 4.1 for illustration). Let I be the number of such ACKs out of the

Z - 1 ACKs, then M = 1 + (Z - 1) + I Z + I. Moreover, the window size is increased

by 1 per round. Therefore I = R, and

E[M] = E[Z] + E[R]. (4.5)

We now have bounds for E[T] as in Inequality (4.4) and E[M] as in Equation (4.5)

in terms of E[Z] and E[R]. Recall that Q is the probability that no other senders send

their packets in one slot and this event is independent of the state of the particular SD pair

under consideration. Therefore, each packet of the particular SD pair incurs a collision with

probability of 1 - Q and independent of each other. Z is thus geometrically distributed with

Pr(Z = z) = Qz- 1(1 - Q) and E[Z] = 1/(1 - Q). By exploring the relationship between R

and Z, it can be shown that E[R] = Z2_ I Qk(k+1)/2. For brevity, here we omit the details.

We hence have:

E[M] = g 9+ S Qk(k+1)/2

(1 + D) E Qk(k+1)/2 + RTO < E[T] < 1 + (1 + D) Qk(k+1)/2 + RTO. (4.7)
k=1p(1-Q) p k=1

By plugging them into Equation (4.3), we obtain the following bounds for the send rate

Bd in terms of Q:
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1 + Z1 Qk(k+1)/2 L-Q k= =fL < Bd
p(1-Q) + (I + D) EG I Qk(k+1)/2 + RTO

I-T + ED1 Qk(k+1)/2
< fu = - k (4.8)

( + D) E' 1 Qk(k+1)/2 + RTO(

Notice that for large enough timeout value RTO, both bounds increase monotonically

with Q. Mathematically, this can be shown by taking the derivative of the bounds with

respect to Q. Physically, from our derivation, the lower bound fL corresponds to the send

rate of the following system: after sending the first packet of each round, the MAC layer

holds the transmission of other packets until it receives the ACK of the first packet. This

is how we obtain the upper bound TU for the duration T between two successive timeouts.

Clearly, the send rate of this system increases with the idle probability of the other N -1 SD

pairs Q. Similarly, the upper bound f corresponds to the send rate of the following system:

after sending the first packet of each round, the MAC layer finishes the transmission of all

other outstanding packets before it receives the ACK of the first packet, that is, within time

Dk for round k. This is how we obtain the lower bound TL for the duration T between two

successive timeouts. Again, the send rate of this system increases with the idle probability

of the other N - 1 SD pairs Q.
To fully under the system behavior, the expectation of the collision window W2, defined

to the window size when the collided packet Z is released (i.e., when the collision occurs),

can also be shown to be:

00
EQk(k+1) -

E[Wz] - 1+ ZQ 2 (4.9)
k=2

The details are omitted for brevity. Note that according to the WFC scheme, the difference

between the collision window size and the window size upon a timeout indication is no more

than one (see Table 4.1).

4.3.3 System Performance

Section 4.3.1 analyzes N SD pairs together and gives one relationship between the individual

send rate Bd and the idle probability of N - 1 SD pairs Q, in Equation (4.2). Section 4.3.2

gives an upper bound and a lower bound of Bd in terms of Q in Inequality (4.8). Based on
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these results, this section first gives bounds for Bd and Q in terms of system and protocol pa-

rameters, and then discusses the system performance. A sufficient and necessary condition

for the system to achieve the maximum possible throughput 1/e is also given, as well as the

optimal MAC layer transmission probability at which the throughput is maximized. The

analysis is confirmed by both numerical results for the CA system and simulation results

for the TCP system under various system and protocol parameters.

Before proceeding, we first introduce the settings for the system and protocol parameters

in the numerical computations and simulations. For the systems, we consider the following

data that is typical for a satellite link: the two-way propagation delay between each SD pair

is around 1sec; packet size L is about 10000 bits; and transmission rate is between 100k -

1M bps. Converting these into the parameters in our system, we obtain that the two-way

propagation delay is about 10 - 100 time slots. We therefore set the round trip time of

packets D to be in the range of 10-100 slots.

Simulations presented are performed on the ns2 simulator [1]. Since this section consid-

ers systems without timeout backoff and Karn's Algorithm, during the simulation, we block

TCP timeout backoff. Moreover, to verify the relationship derived between system perfor-

mance and other system parameters, the value of RTO used in the numerical computations

is the average timeout value from the simulations.

For both the CA system and the TCP system, Figure 4-2 plots the simulated system

throughput as a function of MAC layer transmission probability, with D = 50 and N=10.

From the figure we can see that the throughput of both systems are very close to each

other. The collision window size, which is not shown here, is below 3. Simulations for other

sets of parameters show similar results, that is, the performance of the CA system and the

TCP system is very close, and the collision window size is small (below 8). This justifies

our conjecture that the TCP system has small window size with high probability and the

CA system is a good approximation of the TCP system. All simulations presented later are

hence for the TCP system unless specified otherwise.

System Performance and Condition for Maximum Throughput

Based on the Equation (4.2) and Inequality (4.8), this subsection shows how to obtain the

system performance given the system and protocol parameters.

Figure 4-3 plots the relationship between Bd and Q as given in Equation (4.2), called
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Figure 4-2: Comparison between CA System and TCP System - without Backoff

(N = 10 and D = 50)
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Figure 4-3: Bounds for Bd and Q

curve g. Figure 4-3 also plots the bounds of Bd, fL and fu, as given in Inequality (4.8).

For clarity, the distances between the curves are exaggerated. The actual Bd and Q should

be on curve g, as well as be inside the area between curve fL and f U. Therefore, Bd and Q

are on the section of curve g between curve fL and f U. The intersections of curve g with

curve fL and fU thus give a lower bound and an upper bound for Bd as well as a lower

bound and an upper bound for Q. Denote them by BL and B, QL and QU, respectively.

Therefore, BL and B are solutions of the following two equations, respectively:
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10 1 10
Bd [P(I - -NBd ) + ( + D) e-NBdk(k+1)/2 + RTO] 1 _--NBd -NBk(k+1)2

- +k-i k=1

(4.10a)

D) 0e-NBdk(k+1)/2 +B -eN + E -NBdk(k+1)/2. (4.1b)
k=1 k=1

Figure 4-4 plots the system performance, the system throughput, idle probability and

collision probability, as a function of Bd, given in Equation (4.1). The figure shows that

the bounds for Bd actually give us the range of the system performance. For example in

this figure, both bounds for Bd, BL and BU, lie within the same monotonic region of the

throughput, i.e., within [0, 1/N]. Hence their corresponding throughput, AL and A in Fig-

ure 4-4, are also lower and upper bounds for the actual throughput A. Moreover, since Pc

and PI are monotonic with Bd, the collision probability and idle probability corresponding

to BL and BU are also bounds for PC and PI. As in Figure 4-4, PL < Pc < Pg and

Pf < P1 < Pg. We thus conclude that the two bounds given in Equations (4.10), together

with Equation (4.1), fully characterize the system performance. Note that in Figure 4-4,

the range with monotonic increase throughput corresponds to systems with too many idle

slots to achieve throughput of 1/e, and the range with monotonic decrease throughput

corresponds to systems with too many collisions.

1

Pc = I - NBde-NBd _eNBd

s Il, =Ne-NBd

I -NBd

NBL NBUI NBd

Figure 4-4: System Performance with Bd

Our numerical results further show that in almost all cases, these two bounds are very

close to each other. Table 4.2 gives some numerical results for different system and protocol
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Table 4.2: Differences between B and Bd
D N p Bd Bd Bd-B
20 20 0.8 0.0528 0.0509 0.0019
30 10 0.9 0.0539 0.0524 0.0015
50 40 0.7 0.0254 0.0249 0.0005

parameters N, D and p. The difference between BL and Bj is shown in the last column.

Henceforth we approximate the actual Bd by Bf and use Bd and BU interchangeably. In

conclusion, the system performance is well approximated by Equations (4.1) and (4.10b),

where Equation (4.1) expresses the system performance, and Equation (4.10b) gives the

individual send rate Bd needed. Note that since fU is monotonic with Q, the solution of

Equation (4.10b) for Bd is unique (see Figure 4-3).

Next consider a sufficient and necessary condition on which the maximum possible

throughput 1/e can be achieved. Recall that this throughput can be achieved if and only if

NBd = 1. By plugging NBd = 1 into Equation (4.10b) and noting that its solution for Bd

is unique, we obtain the following sufficient and necessary condition:

0.42
2.ON - 0.42D - RTO - = 0. (4.11)

p

Notice that due to the limit range of the actual parameters, the above condition cannot be

always satisfied by adjusting one parameter with others fixed. For example for very large

D, the solution of the above condition for p can be negative, while the actual transmission

probability p has to be nonnegative. In this case, the throughput of 1/e cannot be achieved

by adjusting p only.

Although Condition (4.11) gives sufficient and necessary condition for the system through-

put to achieve 1/e, in practice, TCP updates RTO based on its packet round trip time

measurements, and hence we do not know the exact relationship between RTO and p, D,

N. Therefore, even when the system and protocol parameters fall into the range to satisfy

Condition (4.11), from Condition (4.11) only, we cannot obtain the parameter sets that

achieves throughput of 1/e. Nevertheless, we can use the way TCP updates its RTO to

approximate the relationship between RTO and p, D, N. Specifically, in TCP, RTO is set

to be the average round trip time seen by the transport layer packets, denoted by RTT,

plus four times its standard deviation. Because of the large propagation delay of satellite
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links, when p is not close to zero, we can ignore the queuing delays the packets experience

at the MAC layer and approximate RTT by the sum of packet service time at the MAC

layer and the round trip time. Recall that the packet service time at the MAC layer is

geometrically distributed with mean 1/p and variance (1 - p)/p 2 . Therefore, we obtain

RTO ~ D+4 . The parameter sets to achieve throughput of 1/e can then be found

by plugging this expression back into Condition (4.11).

Overall, given the system and protocol parameters, the system performance can be

solved from Equation (4.1) and (4.10b). Condition (4.11) is a sufficient and necessary

condition for the system throughput to achieve its maximum possible value 1/e. Due to the

limited range of system and protocol parameters, this condition cannot be always satisfied

by adjusting one parameter with others fixed. That is, the throughput of l/e is not always

achievable.

The following subsections analyze how the system performance changes with different

system and protocol parameters.

Impact of Transmission Probability on System Performance

First consider the impact of the transmission probability p on the system performance. By

the definition of f U (Inequality (4.8)) and noting that RTO is a decreasing function of p, f U

increases with increasing p. Thus as p increases, curve f U in Figure 4-3 moves up. On the

other hand, curve g is not a function of p and remains the same. Therefore, the intersection

of curve g and f U moves leftwards. Consequently, BU, that is Bd, increases monotonically

with p.

Recall that Condition (4.11) is a sufficient and necessary condition for Bd to achieve

1/N. Also note that p c [0, 1] and when p = 0, Bd = 0. Therefore, when p increases from

0 to 1, if the solution of Condition (4.11) for p, denoted by pmax, lies within [0, 1], then

Bd increases from 0 to a value that is larger than 1/N. Consequently, the throughput first

increases, then decreases, with maximum 1/e (see Figure 4-4). Otherwise, if Pmax ( (0, 11,

Bd increases from 0 to some value below 1/N. Consequently, the throughput increases

monotonically with p, and the maximum throughput is achieved at p = 1.

Similarly, since P and PC is monotonic with Bd, P decreases monotonically with p,

and PC increases monotonically with p.

The above discussion actually gives us the transmission probability at which the through-
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put achieves its highest value, denoted by port, as follows:

Popt Pmax when Pmax E [0, 1] (4.12)
1 otherwise

Moreover, if popt = Pmax E [0, 1], then the system throughput achieves its maximum possible

value 1/e. Otherwise, popt = 1, and the system performance, with throughput below 1/e,

can be solved from Equation (4.1) and Equation (4.10b).

Physically, from the perspective of the MAC layer, when p is very small, the send rate

Bd is very small (lies in [0,1/N], see Figure 4-4). Most times the system is idle and few

packets incur collisions. That is, the idle probability PI is high and the collision probability

PC is low. Increasing p increases Bd and PC but decreases P1 . Although this leads to more

collisions, the number of idle slots also decreases, and the overall system throughput A,

increases. If with increasing p, the send rate Bd remains below 1/N after p reaches 1, the

throughput increases monotonically with p (the case popt = 1). Otherwise, the send rate Bd

goes beyond 1/N after p reaches Pmax < 1, the system begins to incur too many collisions,

and the throughput begins to drop. That is, in this case, the throughput first increases

then decreases, with maximum l/e achieved at Pmax.

From the perspective of the transport layer, when p is higher, on one hand, the resulting

more MAC layer collisions increase the TCP packet loss probability, which should lead to

smaller system throughput. On the other hand, higher p reduces packet service time at the

MAC layer, and the round trip time seen by the TCP packets is thus shorter. The system

throughput should hence be higher. The overall system throughput is thus a tradeoff

between the TCP packet loss probability and round trip time.

Figure 4-5 shows both numerical and simulation results for the throughput A, as a

function of p when D = 10 and N = 20 as well as when D = 50 and N = 20. The

numerical results are obtained by solving Equation (4.1) and (4.10b). The first case (D =

10) corresponds to the case popt < 1, and as expected, the throughput first increases with

p then decreases. The second case (D = 50) corresponds to the case popt = 1, and the

throughput increases monotonically with p.

In addition, both the numerical results and simulation results for the above cases indicate

that the expected collision window decreases monotonically with p, with value below 2 for

p > 0.1. Moreover, Figure 4-5 also shows that the numerical results based on Equation (4.1)
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Figure 4-5: System Throughput as a Function of Transmission probability - without Backoff

(D= 10 and N =20, D =50 and N =20)

and (4.10b) match well with the simulation results for the TCP system, which confirms our

use of the CA system to model the behavior of TCP over ALOHA as well as our analysis.

Note that since Bd increases monotonically with p, the increase range in Figure 4-5

corresponds to systems with too many idle slots to achieve throughput of 1/e, and the

decrease range corresponds to systems with too many collisions (see Figure 4-4).

Impact of Round Trip Time on System Performance

Analogous to the above analysis for p, it can be shown that Bd decreases monotonically

with D. For brevity, we omit the details. Moreover, if the range of D considered includes

the solution of Condition (4.11) for D, denoted by Dmax, then the maximum possible

throughput 1/e is achieved at Dmax. In this case both larger D and smaller D lead to a

throughout below 1/e. Otherwise, if Dmax is outside of the range considered, the throughput

is always below 1/e.

Physically, from the MAC layer perspective, a low throughput can be either due to

too many idle slots or too many collisions. For systems with Dmax falling into the range

considered, the maximum system throughput is 1/e and is achieved at D = Dmax. Starting

from Dmax, increasing D leads to too many idle slots and reducing D leads to too many

collisions. Consequently, both result in monotonic decreasing of the throughput with D.

Whereas for systems with Dmax being outside the range considered, if Dmax is above the

range considered, then the system always operates in a region with too many collisions.
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Increasing D thus reduces collisions and hence the system throughput increases with D.

Otherwise, if Dmax, is belowe the range considered, then the system always operates in a

region with too many idle slots. Increasing D further increases the number of idle slots and

hence the system throughput decreases with D.

From the perspective of the transport layer, on one hand, larger D reduces collisions

and packet loss probability, and the system throughput should be higher. On the other

hand, larger D also means longer round trip time seen by the TCP packets, and the system

throughput should be lower. The overall system throughput is hence a tradeoff between

TCP packet loss probability and round trip time.

- 0.4 N=20,p=p,
75 1/e N=20,p=0.7

2 0.3
|-

E

U0 0.2 - N10,p p,
U) N 10,p 0.7

0.1 '
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Round Trip Time

Figure 4-6: System Throughput as a Function of Round Trip Time - without Backoff
(N = 20 and p = 0.7 or popt, N = 10 and p = 0.7 or popt)

Figure 4-6 shows the simulation results for the throughput A, as a function of D E

[10, 100] when N = 20 and p = 0.7 as well as when N = 10 and p = 0.7. In the first case

(N = 20), the throughput 1/e is achieved around Dmax ~ 25. Whereas in the second case

(N = 10), Dmax is below the range considered. Even when D = 10, there are still too many

idle slots and the throughput is still below 1/e. Note that since Bd decreases monotonically

with D, the increase range in Figure 4-5 corresponds to systems with too many collisions to

achieve throughput of 1/e, and the decrease range corresponds to systems with too many

idle slots (see Figure 4-4).

To illustrate the impact of adjusting protocol parameters on the system performance,

for each D in each case in Figure 4-6, popt are also calculated from Condition (4.11) and

Equation (4.12). Note that as mentioned before, when calculating pmax from Condition
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(4.11), we use RTO ~ + D + 4 V to approximate the TCP timeout value. Thep p
simulated throughput with ppt is plotted in Figure 4-6 as well. The figure shows that for

large D, the system throughput is always below 1/e, and popt = 1. Whereas when D is

relatively small, the highest possible throughput 1/e can always be achieved by setting the

transmission probability p = popt = pma,.. That is, we can always lower the transmission

probability p to counterbalance the collisions resulting from small D. Notice that using popt

obtained by using RTO ~~ 1 + D + 4 can indeed give us throughput close to 1/e.

- 0.4 N =20, p = 0.7,numerical

N = 20,p = 0.7,simulation

" 0.3
|-

E
n 0.2

N =10, p = 0.7, numerical

N = 10, p = 0. 7,simulation

0.1
10 30 50 70 90

Round Trip Time

Figure 4-7: Comparison between Numerical and Simulation Results - Throughput vs Round
Trip Time - without Backoff

(N = 20 and p = 0.7, N = 10 and p = 0.7)

Numerical results with the same sets of parameters are calculated from Equation (4.1)

and (4.10b) and plotted in Figure 4-7. For comparison purpose, the simulation results

plotted in Figure 4-6 are replotted here as well. Again, the figure shows good match

between the numerical results and the simulation results.

Moreover, the numerical and simulation results for all cases also show that the expected

collision window is a nondecreasing function of D and is always below 3. Actually even

when D is further increased to 5000, the expected collision window is still below 8, which

justifies our use of the CA system to model the behavior of TCP over ALOHA.

Impact of Number of Users on System Performance

The analysis for the impact of the number of users N on the system performance is also

analogous to that for the transmission probability p. Specifically, when N increases, curve
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f U remains the same while curve g moves downwards. Consequently, the intersection of the

two curves moves leftwards, and QL decreases. Recall that NBd increases as Q decreases

(Equation (4.2)). Therefore, NBd increases monotonically with N.

In addition, it can be easily verified that, for any p E [0, 1], D > 1 and RTO 2 1 + D

(the actual RTO should be at least the average round trip time of TCP packets, which is

at least 1+ D), the solution of Condition (4.11) for N, denoted by Nmnax, is always greater

than 1. Therefore, as N ranges from 1 to infinity, NBd increases from some value below 1 to

infinity. Consequently, the system throughput first increases then decreases, with maximum

close to 1/e achieved at the integer closest to Nmax-

Physically, from the perspective of the MAC layer, larger N makes the packets in the

system more "dense", which means less idle slots and more collisions. When N is close to

Nmax, the idle slots and collisions reach a balance and the throughput is close to its highest

value 1/e. Further decreasing N or increasing N results in either too many idle slots, or

too many collisions, both of which lower the throughput.

From the perspective of the transport layer, although the more collisions due to larger

N increase TCP packet loss probability and reduce the individual throughput of each SD

pair, the overall system throughput is N times the individual throughput. As a result, the

system throughput still increases with N when N is small. However, when N is already

large, the system throughput drops with N.

0.4 - - - - - - - - - -
D = 30, p =pp,,, simulation
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Figure 4-8: System Throughput as a Function of the Number of SD Pairs - without Backoff
(D = 30 and p = 0.7, D = 30 and p = popt)

Figure 4-8 shows the simulation results for the throughput A, as a function of N E
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[10, 40] when D = 30 and p = 0.7 as well as when D = 30 and p = popt. Again, as

mentioned before, popt is calculated from Condition (4.11) and Equation (4.12) by setting

RTO ~ + D + 4 . The throughput of the curve with p = 0.7 has maximum value of

1/e, and first increases then decreases, which confirms the above analysis. The curve with

p = port further shows that for large enough N, the maximum possible throughput 1/e can

be achieved by adjusting the transmission probability according to Condition (4.11). That

is, in order to achieve higher throughput, we can always lower the transmission probability

p to counterbalance the collisions resulting from large N. Note that since NBd increases

monotonically with N, the increase range in Figure 4-8 corresponds to systems with too

many idle slots to achieve throughput of 1/e, and the decrease range corresponds to systems

with too many collisions.

Numerical results with D = 30 and p = 0.7 are also computed and plotted in Figure 4-8.

Again, they match well with the simulation results. In addition, both numerical results and

simulations give the expected collision window size in all cases being below 2, which justifies

our conjecture of small TCP window size and the approximation of the TCP system by the

CA system.

In summary, the numerical curves obtained from the equations match well with the

simulation results for the TCP system, and the equations can be used to describe the

performance of the TCP system. In particular, given the system and protocol parameters,

p, D and N, Equation (4.1) and (4.10b) give us the system performance. Condition (4.11)

is a sufficient and necessary condition on the parameters for the system to achieve its

maximum possible throughput l/e. The optimal transmission probability at which the

throughput can achieve its highest value is given in Equation (4.12). For systems with

very small D and/or very large N, the throughput 1/e can always be achieved by setting

p to its optimal value. For fixed p, a system with very large D and/or very small N has

a smaller throughput than a system with relatively smaller D and/or larger N due to too

many idle slots. On the contrary, a system with very large N has a smaller throughput than

a system with relatively smaller N due to too many collisions. Furthermore, due to the

MAC layer collisions caused by random access, in all cases in our numerical computations

and simulations, the expected collision window is below 8, which justifies our use of the CA

system to model the behavior of TCP over ALOHA.
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4.4 Systems with TCP Timeout Backoff

In real TCP protocols, TCP RTO has exponential backoff and Karn's algorithm is applied

as well. Specifically, TCP timeout backoff specifies that, after a timeout and before an

acknowledgement is received for a packet that was not retransmitted, RTO is doubled each

time a timeout occurs until it is 64 times of its original value or it reaches its upper limit. In

addition, Karn's algorithm says that TCP round trip time estimates and RTO should not be

updated upon an ACK for a packet that was retransmitted. Figure 4-9 illustrates timeout

backoff and Karn's algorithm, where the white boxes indicate successful transmissions and

the gray boxes indicate unsuccessful transmissions. Note that due to Karn's algorithm,

although there are successful transmissions (the third transmission of packet 2 in Figure

4-9), RTO may still be backed off.

timeout timeout timeout

2] 2 3 3

+-RTO ) ( 2RT( 4RTO

Figure 4-9: Illustration of TCP Timout Backoff and Karn's Algorithm

The analysis approach for systems with TCP timeout backoff is similar to that for

systems without TCP Timeout Backoff and Karn's Algorithm. Specifically, the system

level analysis is exactly the same. Consequently, Equation (4.1) and (4.2) still hold for

systems with timeout backoff and Karn's algorithm, and the maximum possible throughput

is 1/e as well. The difference between the analysis of the two types of systems lies in the

session level analysis. As will be shown later, this difference leads to significantly different

system performance.

This section first presents the session level analysis for systems with timeout backoff and

Karn's algorithm, then discusses the system performance.

4.4.1 Session Level Analysis

Similar to the system without RTO backoff in previous section, the effects of the other

N - 1 SD pairs on one particular SD pair are aggregated into one parameter Q, the idle

probability of all other N - 1 SD pairs. This particular SD pair can thus be modelled as a

transport layer session with loss probability of each packet being 1 - Q. Again, since in our
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system all TCP packets must pass the MAC layer queuing system, the TCP session here is

much more complicated than the TCP sessions analyzed in literatures [43, 36]. We hence

analyze the CA system instead of the TCP system, and use the property of the CA system

to model one particular SD pair as a renewal process.

Specifically, for a timeout interval between two successive timeouts, define the effective

RTO of the interval to be the RTO that results in the termination of this interval. In addi-

tion, for a timeout interval, if its effective RTO is not backed off from the effective RTO of

its previous timeout interval, then the timeout interval is called non-backoff interval. Oth-

erwise, it is called backoff interval. Recall that due to our large TCP timeout assumption,

upon the start of each non-backoff interval, the system state is the same. That is, there are

no packets at the MAC layer. Moreover, the window size and RTO has the exactly the same

evolution afterwards. Therefore, statistically, the session has the same behavior after the

start of each non-backoff interval. The session can thus be modelled as a renewal process,

with renewal points being the start of each non-backoff interval. One renewal cycle hence

consists of one non-backoff interval and a sequence of backoff intervals originated from the

non-backoff interval. Note that if the non-backoff interval is not backed off, then the cycle

has only one interval, that is the non-backoff interval. Figure 4-10 illustrates one renewal

cycle, with (a) corresponding to the case without backoff intervals, and (b) corresponding

to the case with two backoff intervals.

timeout timeout

(a)
+-RTOM

+Non-backoff interval-+

Renewal point Renewal point

timeout timeout timeout timeout

(b)
+--RTO- ) -2RTO, backoff inten/d-* 4R TO, backoff interval)

+-Non-backoff interval-+

Renewal point Renewal point

Figure 4-10: One Renewal Cycle for TCP Session with RTO Backoff

(a) no backoff case; (b) two backoff case

Note that different from systems without TCP timeout backoff, the renewal point of

current system is the start of each non-backoff interval instead of each timeout interval. The
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reason is that here due to RTO backoff, effective RTOs of backoff intervals have different

statistics from those of non-backoff intervals. The session hence behaves differently within

these two types of intervals.

Within one renewal cycle, let Nb denote the number of timeout intervals, Mk denote the

number of packets sent in the kth interval, and Tk denote the length of the kth interval,

with k = 1, .. , Nb. Then by renewal theory,

Bd= E[EM1 Mk] (4.13)
E[ENTy

In the following, we first consider the condition of TCP backoff and the distribution of Nb,

then derive E[E N1 Mk] and E[EZ , Tk].

Consider an arbitrary timeout interval. Let L denote the number of packets that need to

be retransmitted, and Z denote the index of the first packet that incurs a collision. Recall

that we assume TCP retransmits only packets that incur collisions. Hence from the rules

of TCP timeout backoff and the Karn's algorithm, the effective RTO of this interval is

backed off from the effective RTO of the previous interval if and only if at least one of the

retransmissions of the L packets or the transmission of the first new packet incurs collision,

that is, L + 1 > Z. Recall that each packet incurs a collision with probability 1 - Q, and

the distribution of Z is Pr(Z = z) = Qz- 1 (1 - Q). Therefore, the probability that this

interval is a backoff interval, called backoff probability and denoted by Pb, is as follows:

L+1

Pb = E QZ-1(j _ Q) I _ QL+1. (4.14)
Z=1

The above equation shows that the backoff probability is a function of L, which is

further a function of packet transmission patterns of previous timeout intervals. Clearly,

due to different collision patterns of timeout intervals, L is not necessarily the same for all

intervals. In addition, since each interval starts with a timeout, we have L > 1. Note that

in [44], the backoff probability is approximated as 1 - Q, which is different from that in

Equation (4.14). The reason is that the authors there assumed that L = 1 and did not take

into account the fact that the loss of the first new packet will also result in RTO backoff.

For simplicity, we approximate L for all intervals to be the same. The backoff probability

is hence the same for all intervals. From the definition of renewal cycle, the number of

timeout intervals within one renewal cycle Nb is thus geometrically distributed with the
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following distribution and expectation:

Pr(Nb = n) Pb" 1 (1 - Pb) with n > 1,
1 (4.15)

E[Nb]= .
1 - Pb

Next consider E[E Mk]. Let M, Mnb and Mb denote the number of packets sent

during an arbitrary timeout interval, a non-backoff interval and a backoff interval, respec-

tively. Then E[M] = E[Mnb](1 - Pb) + E[Mb]Pb. Recall that in a renewal cycle, the first

interval is a non-backoff interval and the rest are backoff intervals. Hence E[MI] = E[Mnb].

Also note that we approximate L to be the same for all intervals. The packet transmission

patterns are thus statistically the same for all backoff intervals. Hence, for k =2, .. , Nb, the

expectations of all Mk's are the same and equal to E[Mb]. We therefore have

Nb Nb

EZ[ Mk] = E[MI] + EZ[ Mk]
k=1 k=2

= E[Mnb] + E[Nb - 1]E[Mb]

1
= E[Mab] + ( - 1)E[Mb]1 - Pb-1)[Vb

(1 - Pb)E[Mnb] - PbE[Mb]
1 - Pb

E[M] 
(4.16)

1 -Pb

Moreover, for an arbitrary interval, for both sessions with and without TCP timeout

backoff, the window evolution and packet transmission patterns are statistically the same.

Hence E[M] in Equation (4.6) derived for sessions without TCP timeout backoff is also

applicable to sessions with TCP timeout backoff. By plugging it into the above equation,

we obtain

Nb 1 _ o 1 Qk(k+1)/2

E[Z Mk] = ~-1 (4.17)
k=1 A

To obtain E[Ejk1 Tk], we need one more quantity: E[E RTOk], where RTOk is

defined to be the effective RTO of the kth interval within one renewal cycle. Further denote
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RTO to be the TCP average timeout value excluding all backoffs. Then E[RTO1] = RTO.

From the rules of TCP exponential backoff and Karn's algorithm, for different k, RTOk is

as follows:

2 k-iRTO for k < 7
RTOk = { (4.18)

64RTO for k > 7

Note that here for simplicity, we allow RTOk to go beyond its maximum value. After

combining the above equation with Equation (4.15) and some manipulations, we obtain

E[EV± RTOk] as follows:

Nb 00 n

E[ [ RTOk ] = (Z RTO)Pb (l - Pb)
k=1 n=1 k=1

7 n 7 n

= RTO(Z(Z 2 k-1)Pb"1(1 - Pb) + ( 2 k-1 + E 64)Pb"- 1 (1 - Pb))
n=1 k=1 k=1 k=8

- RTO1+ Pb + 2P2 + 4Pb + 8PP +16P% + 32P6

1 -Pb

= RTOf (Pb)/(1 - Pb)

= RTOf (1 - QL+1)/( - pb). (4.19)

where f (x) is a function defined to be f (x) = 1 + w + 2X 2 + 4X3 + 8X4 + 16X5 + 32X6 , and

the last equality comes from Equation (4.14).

E[E'i Tk] can then be derived in a similar way as that for E[E 1 Mk]. Specifically, let

T, Tab and Tb denote the duration of an arbitrary timeout interval, a non-backoff interval and

a backoff interval, respectively. Let RTO, RTOnb and RTOb denote their effective RTO, and

t, tnb and tb denote the durations of these interval excluding the corresponding RTOs. Then

T = t+RTO, Tnb = tnb+RTOnb, Tb = tb+RTOb, and E [t] = E [tnb](1-Pb)+E[tb]Pb. Since

the packet transmission patterns are statistically the same for all backoff intervals except

that they may have different effective RTOs, we have E[ti] = E[tnbl and for k = 2,.., Nb,

the expectation of tk equals to E[tb]. Hence E[Eb Tk] = E[ZE'j tk] + E[EZ 1 RTOk] =

El+RTOf(1QL+1)(1 - pb) = Eft1+RTOf 1-QL+1) where the second equality is derived

by exactly the same approach as the derivation in Equation (4.17). Therefore, from the

bounds of E[T] in Equation (4.7), which is derived for sessions without TCP timeout backoff
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but is also applicable for E[t] here, we can directly obtain the following bounds for the session

considered:

( + D) Ek=1 Qk(k+1)/2 + RTOf (1 - QL+1) Nb
P < E[ Tk]

I A k=1

p(1-Q) + (I + D) EZi-1 Qk(k+1)/2 + RTOf (1 - QL+1)
Pb (4.20)

We now have E[Ebk=1 Mk] in Equation (4.17) and bounds for E[EZN Tk] in Inequality

(4.20). By plugging them into Equation (4.13), we obtain the following bounds for Bd in

terms of Q:

1 + 1:00-1 Qk(k+1)/2

p(1-Q) + (I + D) E0 1 Qk(k+1)/2 + RTOf(1 QL+1) --

T- + Egi Qk(k+1)/2

< k1(4.21)
( + D) E0 1 Qk(k+1)/2 + RTOf(1 - QL+1)(

Note that the only difference between the above two bounds is that the denominator of

the lower bound has one extra term .

4.4.2 System Performance

Based on the system level analysis and session level analysis, this subsection first gives

formula for computing the system performance as well as a sufficient and necessary condition

for the system throughput to achieve its maximum value l/e, then discusses the impacts of

different system and protocol parameters on the system performance.

System Performance and Condition for Maximum Throughput

For the current system considered, the analysis of system performance, is analogous to that

for systems without TCP timeout backoff, as given in Section 4.3.3. Specifically, the system

level analysis gives one relationship between Bd and Q, that is Q ~ e-NBd. The session

level analysis gives lower and upper bounds for Bd in terms of Q, as in Inequality (4.21).

Combining them together gives lower and upper bounds for Bd in terms of system and

protocol parameters, which further gives the range of system performance, that is, system
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throughput, idle probability and collision probability (see Section 4.3.3). In particular, by

plugging Q = e-NBd into the right hand side of Inequality (4.21), the upper bound for Bd

in terms of system and protocol parameters is the solution of the following equation:

S DO e-NBk(k+1)/2 - R f _ -(L+1)NBd)] - NB 0 -NBk(k+1)|2

P k=1 eNd k=1
(4.22)

For different combinations of system and protocol parameters, our numerical compu-

tations show that the lower and upper bounds of Bd obtained from Q ~ e-NBd and In-

equality (4.21) are very close to each other. We hence use the upper bound, which is the

solution of Equation (4.22), to approximate Bd. The system performance can then be di-

rectly computed by Equation (4.1) and (4.22). In particular, the system throughput is

A, ~ NBe-NBAd.

A sufficient and necessary condition for the system throughput to achieve its maximum

value 1/e can also be derived from Equation (4.22). Specifically, the system throughput can

achieve 1/e if and only if the attempt rate NBd = 1 (see Equation (4.1)). After plugging

NBd 1 into Equation (4.22) and noting that the solution of Equation (4.22) for Bd is

unique, the sufficient and necessary condition is hence as follows:

2.ON - 0.42D - 31.52RTO - = 0. (4.23)
p

Here when computing f(1 - e-(L+1)NBd), we use L 1. The reason is that, due to the long

duration of the TCP backoff periods, we expect that the system send rate is not high and

the packet loss probability is not high either. Hence the number of packets needed to be

retransmitted within one interval is low, and one should thus be a reasonable value of L.

This is evidenced by the simulation results presented later.

Unfortunately, due to the large coefficient of RTO, this condition can be satisfied only

for very large N. Specifically, according to TCP RTO computation, RTO > 1/p + D.

The transmission probability at the MAC layer is p c [0, 1]. Therefore, to satisfy Condition

(4.22), the number of SD pairs N needs to satisfy N > 15.97(1/p+D). Clearly this cannot be

satisfied by most systems, especially systems with large bandwidth-delay product (large D,

which is typical in satellite systems, and small transmission probability p). The maximum
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throughput 1/e is hence not reachable for most systems, as evidenced by our numerical and

simulation results given later.

In summary, given the system and protocol parameters, the system performance can be

solved from Equation (4.1) and (4.22). Condition (4.23) is a sufficient and necessary condi-

tion for the system throughput to achieve its maximum possible value 1/e. Unfortunately,

this condition cannot be satisfied by most systems except for those with very large number

of users.

For general systems where N is not very large, the following subsections discusses how

the system performance changes with different system and protocol parameters.

Impact of System and Protocol Parameters on System Performance

Similar to the curves in Figure 4-3, we can plot curve g and bounds of Bd in terms of Q as

in Inequality (4.21). Then by similar analysis as that in Section 4.3.3, we can see that NBd

increases with p and N and decreases with D. To avoid duplications, we omit the details

here.

In addition, as discussed previously, NBd = 1 cannot be achieved by general systems

except for those with very large N. Recall that NBd increases with N. Hence general

systems operate at a range with NBd < 1, that is, the monotonic increasing region of

throughput in Figure 4-4. Therefore, the fact that NBd increases with p and N means that

the system throughput also increases with p and N, while decreasing NBd with D means

that the system throughput decreases with D. The optimal transmission probability where

maximum system throughput is achieved is thus one.

Physically, MAC layer collisions lead to high TCP packet loss probability, which fur-

ther results in TCP timeout backoffs. Few packets are transmitted during backoff intervals.

The system hence has too many idle slots, and the throughput is thus low. Accordingly,

increasing MAC layer transmission probability and the number of users reduces the num-

ber of idle slots. Since the system operation range is limited to be within the monotonic

increasing region, this reduction of the number of idle slots will not be accompanied by too

many collisions. Hence the system throughput increases with p and N. On the contrary,

increasing the round trip time deteriorates the system throughput by further increases the

number of idle slots. Consequently, the system throughput decreases with D.

From the perspective of the transport layer, on one hand, higher p and lower D means
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Figure 4-11: System Throughput as a Function of Transmission Probability - with Backoff

(N = 10 and D = 50)

more MAC layer collisions and larger TCP packet loss probability, which should lead to

a lower system throughput. On the other hand, higher p and lower D also means smaller

round trip time seen by the TCP packets, which should lead to a higher system throughput.

The overall system throughput is thus a tradeoff between the TCP packet loss probability

and round trip time.
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Figure 4-12: System Throughput as a Function of Round Trip Time - with Backoff

(N = 10 and p = 0.9)

Figure 4-11, 4-12 and 4-13 plot both numerical and simulated system throughput as a

function of p, D and N, respectively, where Figure 4-11 has N = 10 and D = 50, Figure

4-12 has p = 0.9 and N = 10, and Figure 4-13 has p = 0.9 and D = 100. The numerical
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throughput is computed from Equation (4.22) and (4.1). The curves confirm the above

discussions, that is, the system throughput increases with p and N and decreases with D.

In addition, the figures show that the system throughput is much lower than 1/e. This is

consistent with previous discussions, that is, Condition (4.23) is not satisfied by the systems

examined.
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Figure 4-13: System Throughput as a Function of the Number of SD Pairs - with Backoff
(D = 100 and p = 0. 9 )

Furthermore, the figures also indicate good match between numerical and simulation

results, which confirms the accuracy of Equation (4.1) and (4.22). All simulations and

numerical results also yield collision window size below 6. To further validate the approxi-

mation of the TCP system by the CA system, Figure 4-14 plots the system throughput as

a function of transmission probability with N = 10 and D = 50. It can be seen that the

system throughput of the two systems are indeed very close to each other.

For completeness, the optimal transmission probability is derived from Condition (4.23).

Specifically,

Popt Pmax when Pmax E [0, 1] (4.24)
1 otherwise

where Pmax is the solution of Condition (4.23). Moreover, if popt = Pmax E [0, 1], then the

system throughput achieves 1/e. Otherwise, popt = 1, and the system performance, with

throughput below 1/e, can be solved from Equation (4.1) and Equation (4.22). Note that

as discussed previously, for most systems, the solution of Condition (4.23) Pmax V [0, 1], and
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Figure 4-14: Comparison between CA System and TCP system - with Backoff
(N =10 and D =50)

throughput of 1/e is not achievable. ppt is thus one for these systems.

4.5 Impacts of TCP Timeout Backoff and MAC Layer Re-

transmissions

For systems without MAC layer retransmissions, the previous two sections analyze systems

with and without TCP timeout backoff, respectively. We can see that their performance is

significantly different. This section discusses in detail the impacts of TCP timeout backoff

on system performance, as well as the impacts of MAC layer retransmissions.

4.5.1 Impacts of TCP Timeout Backoff

For systems with and without TCP timeout backoff, the previous two sections give two

equations for solving the system performance, Equation (4.1), (4.10b) and Equation (4.1),

(4.22), respectively. For clarity, we rewrite them here:

for systems without TCP timeout backoff:

1 00 1 00

Bd[( 1 + D) e-NBdk(k+1)/ 2 + RTO] 1 + NB± -NBdk(k+1)/2, (4.25a)
k=1 k=1

A, ~ NBde-NBd, (4.25b)
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for systems with TCP timeout backoff:

+ D) eNBk(k+1)/2 + R f -(L+1)NBd)] - NB -NBk(k+1)2

k=1 k=1

(4.26a)

A, ~ NBde-NBd (4.26b)

For convenience, we denote the solutions of Equation (4.25a) and (4.26a) by Byb and Bb,

respectively.

By comparing Equation (4.25a) and (4.26a), we see that their only difference lies in the

different coefficient of RTO, where for systems without backoff the coefficient is one and

for systems with backoff it is f(1 - e-(L+1)NBd). Recall that the function f(x) is defined to

be f (x) = 1+ x + 2x2 + 4x3 +8X4 + 16x 5 + 32x6 and f (x) > 1 for all positive x. Moreover,

Bgb and Bb are intersections of corresponding curves in Figure 4-3. Hence the curve fU

corresponding to systems with backoff is lower than that corresponding to systems without

backoff. Consequently, Bb < B2b. That is, the system with TCP timeout backoff has a

lower individual send rate than the system without TCP timeout backoff.

Furthermore, the discussions in Section 4.4.2 shows that general systems without very

large N that employs timeout backoff operates within a range with NBd < 1. Hence

from Equation (4.25) and (4.26), systems with backoff has a lower system throughput than

systems without backoff. For these two types of systems with N = 10 and D = 50, Figure

4-15 plots system throughput as a function of MAC layer transmission probability. As

expected, the figure clearly shows a lower throughput of systems with backoff.

Physically, for systems with TCP backoff, the long duration of TCP backoff periods

leads to significantly low send rate and too many idle slots. The system hence operates in

a range with NBd < 1, and the throughput is far below 1/e (see Figure 4-4). Whereas for

systems without backoff, the send rate is higher, which results in higher throughput.

Another difference between systems with and without backoff is the condition for systems

to achieve the maximum possible throughput 1/e, Condition (4.11) and (4.23), respectively.

For clarity, we rewrite them here:

for systems without TCP timeout backoff:

109



0.4
-+-with backoff
0- without backoff

.c0.3
0)

-0.2

Ea>
0.1

C')

0 '

0.1 0.3 0.5 0.7 0.9

MAC Layer Transmission Probability

Figure 4-15: System Throughput as a Function of Transmission Probability - Comparison
of Systems with and without Backoff

(N = 10 and D = 50)

0.42
2.0N - 0.42D - RTO - = 0. (4.27)

for systems with TCP timeout backoff:

0.42
2.0N - 0.42D - 31.52RTO - = 0. (4.28)

p

We can see that the coefficient of RTO for systems with backoff is much higher than that

for systems without backoff. This large coefficient leads to the result that the condition can

be satisfied only for systems with very large N. Consequently, system throughput cannot

be achieved for general systems without very large number of users. Whereas for systems

without backoff, the condition can be satisfied by more systems. Consequently, in some

cases (small D and large N), the throughput of 1/e can be achieved by adjusting the MAC

layer transmission probability p.

Moreover, the two different conditions also lead to the fact that for general systems,

the throughput of systems with backoff is monotonic with system and protocol parameters

p, D and N, as evidenced by Figure 4-11, 4-12 and 4-13, while the throughput of systems

without backoff may be concave, as shown in Figure 4-5, 4-6 and 4-8. The summits of the

concave curves correspond to the parameter sets that satisfy Condition (4.27).

Physically, for systems with TCP backoff, due to the long duration of the backoff periods,

even when the MAC layer transmission probability p is one, there are still too many idle
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slots. Recall that the send rate increases monotonically with p. Hence the attempt rate

NBd cannot reach one for all p E [0, 1], and Condition (4.28) cannot be satisfied.

The above discussions show that TCP timeout backoff leads to significant different

system performance. Mathematically, the difference is due to the large coefficient of RTO

in Equation (4.26a) and Condition (4.28). Physically, the difference is due to the long

duration of the TCP backoff periods. The overall system throughput is hence much lower

than that of systems without backoff.

4.5.2 Impacts of MAC Layer Retransmissions

The ALOHA scheme with retransmissions follows both of the two rules described in Section

4.2 plus the following additional rule:

* Upon a collision, the sources involved will receive feedback from the satellite after

an average of D/2 slots. The collided packet then rejoins the queue after all packets

waiting for retransmissions and before any new packets. Each packet can be trans-

mitted up to r times. If none of the r transmissions are successful, the packet will be

discarded.

Here we assume that the distance between each source and the satellite is approximately

the same as that between the satellite and each destination, which is reasonable for satellite

links. Hence the round trip time between each source and the satellite is a random variable

with mean D/2 slots.

According to the above scheme, each source MAC layer can be viewed as a queuing

system with feedback. The queue has all arrivals coming from its corresponding transport

layer and geometrically distributed service time with mean i/p. Also note that if r = 1,

the scheme does not allow MAC layer retransmissions of collided packets. The queue then

becomes a standard queue without feedback. Moreover, in this case, TCP retransmission is

the only way to recover collided packets, and the system is reduced to the system analyzed

previously.

Similar to systems without MAC layer retransmissions discussed previously, for systems

with MAC layer retransmissions, we have definitions of send rate and throughput at both

the transport layer and the MAC layer. In addition, since MAC collision losses are the

only losses in the system, the throughput at both layers are the same. However, due
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to the MAC layer retransmissions, the send rates at both layers are no longer the same.

Nevertheless, if we denote the individual send rate at the MAC layer by Bd, then from the

independence assumption between users, Equation (4.1) still holds. Hence, the number of

packets correctly received in a slot can still be approximated by a Poisson random variable,

and the maximum possible throughput is 1/e as well. Moreover, either too many idle slots

or too many collisions result in a lower throughput.

However, due to the complicated MAC layer queue system with feedback, the session

level analysis is much more complicated. We hence use simulations instead of analysis to

examine the system performance.
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Figure 4-16: System Throughput vs Transmission Probability for Different r - without
Backoff

(N = 10 and D = 10)

First consider systems without TCP backoff. For values of r = 1, 3 and 5, Figure 4-16,

4-17 and 4-18 plot simulated throughput as a function of transmission probability p, round

trip time D, and number of users N, respectively. The parameters used in the three figures

are D = 10 and N = 10, p = 0.7 and N = 10, p = 0.7 and D = 30, respectively. The figures

show that MAC layer retransmissions (corresponding to curves with r = 3 and r = 5)

improve the system throughput when p is small, N is small, and/or D is large. Recall

that these scenarios corresponds to systems with low NBd and too many idle slots, that is,

systems with light load. Hence MAC retransmissions are preferred for systems with light

load.

In practice, TCP needs around RTO slots to detect collisions and react accordingly,

while the MAC layer needs around D/2 slots, which is much shorter than RTO. Hence
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Figure 4-17: System Throughput vs Round Trip Time for Different r - without Backoff
(N = 10 and p = 0.7)

the MAC layer reacts to collisions much faster than TCP. Consequently, compared to TCP

retransmissions, MAC layer retransmissions inject more traffic into the shared channel, and

hence lead to higher send rate. Moreover, this higher send rate results in more collisions,

which further trigger MAC layer retransmissions and leads to even higher send rate. As a

result, systems with MAC layer retransmissions have much higher send rate than systems

without MAC layer retransmissions. Therefore, from Equation (4.1), MAC layer retrans-

missions are preferred for systems with light load. In contrast, when the system is heavily

loaded, retransmissions at the transport layer (TCP) result in higher throughput.

From the perspective of the MAC layer, the above behavior is because the MAC layer

retransmissions increase collisions and reduce idle slots, hence performs well for systems

with light load but performs poorly for systems with heavy load. From the perspective of

the transport layer, on one hand, MAC layer retransmissions recover some collided packets

and thus reduce TCP packet loss probability, which should lead to an increase the system

throughput. On the other hand, MAC layer retransmissions also increase the round trip

time seen by the TCP packets, which should lead to a decrease of the system throughput.

As a result, the system performance is a tradeoff between the TCP packet loss probability

and round trip time.

Next consider systems with TCP backoff. With the same sets of parameters as the

corresponding figure among Figure 4-16 to 4-18, for values of r = 1, 3 and 5, Figure

4-19, 4-20 and 4-21 plot simulated throughput as a function of transmission probability
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Figure 4-18: System Throughput vs Number of Users for Different r - without Backoff

(D = 30 and p = 0.7)

p, round trip time D, and number of users N, respectively. All the three figures show

a throughput improvement by MAC layer retransmissions. This is consistent with our

previous discussions, that is, due to the long duration of the TCP backoff periods, systems

with TCP backoff always operate in regions with many idle slots and light load, and MAC

layer retransmissions are preferred for such systems.

4.6 Conclusions

In this chapter we study the interaction between TCP and ALOHA by examining the

system performance with TCP at the transport layer and ALOHA at the MAC layer. Two

simple equations are derived from which the system performance can be solved directly, and

the optimal MAC layer transmission probability at which the system achieves its highest

throughput is given. The maximum possible system throughput is shown to be 1/e, and

a sufficient and necessary condition to achieve this throughput is derived, which cannot

always be satisfied.

In addition, for systems with TCP timeout backoff, due to the long duration of backoff

periods, the system always operates at a range with too many idle slots, and hence has a

throughput below 1/e. Whereas for systems without TCP timeout backoff, adjusting the

MAC layer transmission probability can change the system load. In particular, when the

system operates with too many collisions, such as systems with small round trip time and

large number of users, the throughput of 1/e can always be achieved by lowering the MAC
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Figure 4-19: System Throughput vs Transmission Probability for Different r - with Backoff

(N = 10 and D = 10)

layer transmission probability. However, in systems with large propagation delay and small

number of users, the throughput of 1/e is not always achievable, because even when the

transmission probability is set to its maximum value of 1, the system remains under-loaded.

Moreover, since MAC layer retransmissions react faster to collisions and hence inject more

traffic into the channel, MAC layer retransmissions are preferred for systems with light

load. In contrast, when the system is heavily loaded, retransmissions at the transport layer

(TCP) result in higher throughput.

Overall, from the MAC layer perspective, the system performance is a result of the

balance between idle slots and collisions, while from the perspective of the transport layer,

the system performance is a tradeoff between TCP packet loss probability and round trip

time.
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Chapter 5

Packet Scheduling with Window

Service Constraints

5.1 Introduction

Traditionally, the performance of scheduling policies is measured by the mean response

time, defined to be the difference between the departure and arrival times of a job. Among

all policies, for a work-conserving queue, the Shortest-Remaining-Processing-Time (SRPT)

scheduling policy is optimal with respect to minimizing the mean response time [46, 48].

The author in [47] further gives the distribution of the response time for M/G/1 queue under

the SRPT policy. Recently a number of papers [9, 56, 42] address the fairness property of

the SRPT policy using slowdown (also called stretch), which is defined to be the ratio of

the response time and the processing time of a job, as the measure. They show that the

SRPT policy not only minimizes the mean response time, but also is good in fairness.

All these previous works assume that upon the arrival of a job, any part of the job

is available for service. In practice, jobs are often broken into smaller units before being

served, and there may exist a limit on the number of units that can be served within a time

interval. For example, in data networks, files are broken into messages and then packets

before being released from the transport layer. If the transport layer employs TCP, then

the number of packets that can be released to the lower layer is limited by the current

window size of TCP, denoted by W. That is, at most W packets can be released within

one round trip time. Another example is the transmission of frames at the data link layer,
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where the number of frames that can be transmitted within one round trip time is limited

by the window size of the data link layer protocol.

This chapter considers the optimal scheduling policy that minimizes the mean response

time when there exists a limit on the number of units to be served within a fixed time

interval. For convenience, we call the limit window size and the units packets. For simplicity,

we consider the scheduling of packets from two jobs. The effects of window constraints are

presented in detail, and an optimal policy is developed. Based on this optimal policy, a

suboptimal policy which gives further insights on schedule is also derived. In both policies,

both the job lengths and the window sizes are essential. Moreover, instead of changing

priority of jobs at different times, in most cases the optimal policy gives full priority to one

job.

The chapter is organized as follows: in the next section we provide the problem formu-

lation and discuss the effects of window constraints. In Section 5.3 we describe the optimal

policy and the suboptimal policy. In Section 5.4 we conclude the chapter.

5.2 Problem Description and Effects of Window Constraints

In this section we first describe the system considered, then explore the window constraints.

5.2.1 Problem Description

Consider a system with two jobs to be served by one server, as shown in Figure 5-1. The two

jobs are broken into packets before being served. They have L1 and L2 packets, respectively.

All packets have the same length. The server performs packets-based service. That is, a

new packet cannot preempt the packet being served, but after the service is complete, the

server can process packets from either job. The processing time of one packet is defined to

be one time slot. In this way the system becomes a slotted system, and henceforth all time

is measured in time slots.

For convenience, starting from time 0, we index the time slots in order. That is, the kth

slot is called slot k. Similarly, we index the packets from job i, i = 1, 2, in order, too. That

is, the pth packet served from job i is called packet p of job i.

The service is under window constraints. By under window constraints, we mean that

within a fixed time interval r slots, the server can serve at most W 1 packets from job 1 and

118



L1 packets, window W1

Job 1

L2 packets, window W2

Job 2 fI1iI1l 1i 1 --- Server

Figure 5-1: System with Two Jobs and One Server

W 2 packets from job 2 , where Wi, i = 1, 2, is called the window size of job i. The interval T

corresponds to the round trip time in data networks, and the window size W corresponds

to the maximum number of outstanding packets allowed in data networks.

For an arbitrary scheduling policy 7r, let ti(7r), i = 1, 2, be the time slot that job i is

finished and define cost c(r) = ti(7r) + t 2 (7r). We want to find a scheduling policy that

minimizes c(7r), that is, minimizes the average response time of the two jobs. For brevity,

later on when there is no ambiguity, we omit 7r and write c, ti and t 2 directly.

5.2.2 Equivalent Constraints

From the above problem description we can see that if there were no window constraints, the

problem would be the traditional scheduling problem that minimizes the average response

time, and the SRPT policy is the optimal solution. The essence of the window constraints

is to limit the availability of packets for service.

One equivalent constraint to the window constraints is on the availability of an arbitrary

packet for service at a time slot, and we call it packet constraint. Specifically, let ui(p) denote

the time slot that packet p from job i is served. At time 0, there are W 1 packets from job 1

(packet 1 to W 1 ) and W 2 packets from job 2 (packet 1 to W 2) that are available for service.

For any other packet p ;> W + 1 from job i, i = 1, 2, the packet constraint says that at an

arbitrary slot z, packet p is available for service if and only if

ui(p - W,) < z - T. (5.1)

This packet constraint is helpful in drawing the service pattern under a scheduling policy

with the window constraints.

Another equivalent constraint is on the difference between the slots when packet p and
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packet p - W receive service, and we call it service constraint. This constraint is useful in

deriving the optimal policy. Specifically, the service constraint requires

ui(p) -ui(p-Wi) 2 r for allp Wi +1. (5.2)

That is, for packets that are Wi packets apart, the slots when they receive service must

be at least T apart. The equality holds if and only if packet p is served at the time slot

when it becomes available. Notice that since each packet takes one time slot for processing,

ui(p) - ui(p - Wi) > W holds for all possible policies. Also notice that by definition,

ti = u (Li).

5.2.3 Service Pattern under Window Constraints - One Job Case

In this subsection we illustrate how the window constraints affect the service pattern when

there is only one job, say job i, waiting for service. Consider the work-conserving policy.

By work-conserving, we mean that no work is created or destroyed in the system, therefore

the server cannot be idle if there are packets available for service. If there were no window

constraints, then the server would continue serving packets until the job is finished. When

there exists window constraint, by repeatedly using the packet constraint (Equation (5.1)),

it is straightforward to obtain the service pattern under the work-conserving policy, as

shown in Figure 5-2 (a) and (b) for case Wi > T and case Wi < r, respectively. The gray

blocks in the figure represent that the server is processing packets, and the letter inside each

block represents which job the packets in service are from. The formula above the blocks

are the number of packets in the packet-blocks or the lengths of the idle-blocks in slots, and

the formula below are the block lengths in slots. Later figures showing service patterns can

be explained similarly.

Figure 5-2 (a) shows that when Wi2  r, the service pattern is the same as that without

window constraints. That is, the server continues serving packets until the job is finished.

Actually, since the server can serve at most r packets during any r interval, which cannot

be greater than the window size Wi in this case, the window constraints are always satisfied

and hence take no effects in practice. Another interpretation is that in this case, ui(p) -

ui(p - Wi) > Wi > -r for all p > Wi + 1. That is, the service constraints (5.2) are

automatically. Therefore, when Wi > T, there are always packets available for service,
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(a) W, >r

L,

T,= Lo

---- Li = M Uwi--

(b) W, <>r i71 i -
r

7 =(M -1)r+ W

Figure 5-2: Service Pattern for One Job under Work-Conserving Policy and Window Con-
straints

and the service pattern is the same as that without window constraints. Whereas when

Wi < r, the service constraint is not satisfied automatically, and not all time slots have

packets available for service. The service pattern thus consists of alternative packet-blocks

and idle-blocks. Figure 5-2 (b) shows that their sizes are Wi and T - Wi, respectively.

Moreover, for convenience, define function fi(l) to be the shortest time needed to finish

1 packets from job i when there is no packets from other jobs. When Wi > r, it is obvious

that fi(l) = 1. When Wi < r, further define m and n to be the integers that satisfy

1 = mW + n and n E [1, Wi]. fi(l) can then be obtained by considering the slots when

packet 1 - kWi receives service for k = 0, .. , m. Specifically, by the service constraint (5.2),

ui(l) - ui(n) = Z _i'[ui(l - kWi) - ui(l - (k + 1)W)] > mr. Recall that packet 1 to Wi

are available for service at time 0. Therefore ui (n) > n and consequently, ui (1) > mr + n.

Moreover, it is easy to verify that ui(l) = m-r + n can be achieved by the work-conserving

policy. We thus have that the shortest time fi (1) = m-r + n for Wi < r. Overall,

1 Wi > r
fi() = { 1>(5.3)

mT+fn Wi<T

Figure 5-3 plots function fi(l) for different window size Wi.

Further define T to be the shortest time needed to finish job i when there is no other jobs,

and call it shortest processing time of job i subject to window constraint. For simplicity,

assume Li = MiWi for some integer Mi when Wi < r. Then by definitions of T and fi(l)

and Equation (5.3),
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Figure 5-3: Time Needed for Serving 1 Packets from Job i

Li when W 2 >(r
Ti = fi(Li) = { i we i>- (5.4)

(Mi - 1)-r + W when Wi < r

This is consistent with the Ti's shown in Figure 5-2. Note that for a job with length Li

and a server with window constraints Wi and r, T is a constant and independent of the

scheduling policy employed.

In summary, different window sizes lead to different packet service patterns. Specifically,

when Wi > -r, the window constraints are satisfied automatically and take no effects, and

the server continues serving the job until it is finished. The service pattern is thus the same

as that without window constraints and is one packet block. Whereas when Wi < r, the

service pattern consists of alternative packet blocks and idle blocks, with length Wi and

T - Wi, respectively. Moreover, Equation (5.3) gives the shortest time needed to serve 1

packets from job i, and Equation (5.4) gives the shortest time needed to serve job i. Note

that T is a property of job i and is independent of the scheduling policy implemented.

5.2.4 Optimality of the SRPT Policy under Window Constraints

For traditional scheduling problems that minimizes the average response time, there are no

window service constraints, and the SRPT policy is optimal. However, with window service

constraints, the SRPT policy may no longer be optimal, as shown by the following example.

Consider the case when the fixed time interval r 4, the job lengths of the two jobs

are Li = 4 and L 2 = 5, respectively, and the window sizes are W1 = 2 and W 2 = 1,

respectively. Since Li < L 2 , the SRPT policy gives priority job 1. By repeatedly using the
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packet constraint (Equation (5.1)), Figure 5-4 (a) plots the service pattern under the SRPT

policy. From the figure we can see that the cost of the SRPT policy is 25. Figure 5-4 (b)

plots the service pattern under the policy that gives priority to job 2. Clearly, the cost of

this policy is 24, which is less than the cost of the SRPT policy. Therefore, in this case, the

SRPT policy is not optimal.

(a) Priority to Job 1: c=25 1 1 1 1

(SRPT Policy) 4 4

t1 = 6 4

t2 =19

(b) Priority to Job 2: c=24 1 1 1 1 2 2 2

'r4
t =7

t2 =17

Figure 5-4: Illustration of SRPT Policy

Since window constraints introduce idle slots in service patterns, one conjecture is that

policy with less idle slots has lower cost. This conjecture is not true either, as shown by the

following example. Consider the case when the fixed time interval r = 3, the job lengths

of the two jobs are Li = 3 and L 2 = 6, respectively, and the window sizes are W1 = 3

and W2 = 2, respectively. Figure 5-5 (a) and (b) plot the service patterns under policies

that give priority to job 1 and job 2, respectively. Clearly, although the policy that gives

priority to job 2 has no idle slots, its cost 17 is larger than the cost 14 of the policy that

gives priority to job 1, which has two idle slots. Obviously in this case, policy that has less

idle slots does not have lower cost.

It is hence of interest to understand with window constraints, which parameters are

essential to the optimal policy, the job lengths, the window sizes, the number of idle slots,

or a combination of them. Later after we obtain the optimal policy, we will see that both

the job lengths and the window sizes are essential to the optimal policy.
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(a) Priority to Job 1: c=14 1 q12 2 212 2E

t= 3 8

12 =11

2 2 ~~f 2 22 2-
(b) Priority to Job 2: c=17 12 12 1

12 =8

ti =9

Figure 5-5: Illustration of Policy with Less Idle Slots

5.2.5 Service Pattern under Window Constraints - Two Job Case

Next consider how the window constraints affect the service pattern when there are two jobs.

Start from the simple case when the server employs the work conserving policy that gives

full priority to job 1. By giving full priority to job 1, we mean that whenever packets from

job 1 are available for service, the server serves packets from job 1. Under this scheduling

policy, the service pattern for job 1 is unaffected and thus the same as that when there is

only job 1 waiting for service (c.f. Figure 5-2).

We classify different cases by whether W1 > r, W1 + W 2 > r and/or L1 + L2 > T 1. The

reasons will be explained later. The service patterns under different cases can be obtained

straightforwardly by using the packet constraint, and the results are as shown in Figure 5-6

to Figure 5-9.

L rL2

W2 ! r

W2 <r

T T2ITT

.-- L2 = M2W2

L

2 2 2

T T2

Figure 5-6: Service Pattern for Two Jobs under Work-Conserving Policy with Full Priority
to Job 1, Wi > r

Specifically, Figure 5-6 plots the case when W1 > T. As mentioned before, in this case
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there are always packets from job 1 available for service and the server continues serving

job 1 until it is finished. Afterwards the server begins to serve job 2 in the absence of job

1. Therefore the service pattern can be divided into two parts: the first part is the service

pattern for job 1 in the absence of job 2 (takes T1 slots), and the second part is the service

pattern for job 2 in the absence of job 1 (takes T 2 slots).

W L +L -T,

Sf2 (L,+ L, - T,)

L, +L2 -T,

2 W2
r-W W r-W2 d2

W2 < i 2 1 2 2 2 ]
T f2(L,+L 2 - T,)

Figure 5-7: Service Pattern for Two Jobs under Work-Conserving Policy with Full Priority
to Job 1, W1 < r, W1 + W2 > T and Li + L 2 > T

Figure 5-7 shows the service pattern when W1 < r, W1 + W 2 > r and Li + L 2 > T1 .

The inequality W 1 < T means that packets from job 1 are not always available for service,

and there are gaps between packet-blocks of job 1. Moreover, during any time interval with

length T, the server can serve at most T packets, while according to the window constraints,

there can be as many as W1 + W2 > T packets available for service before either job is

finished. Therefore, at any time slot before either job is finished, there exists at least one

packet, from either job 1 or job 2, available for service. Consequently, a work-conserving

policy has no idle slot before either job is finished, and hence packets from job 2 fill up the

gaps between the packet-blocks of job 1, as shown in Figure 5-7.

Furthermore, since each packet takes one time slot, T1 - L1 packets are needed to fill

up all the gaps between packet-blocks of job 1. Therefore, inequality Li + L 2 > T1 means

that there are enough packets from job 2 to fill all the gaps between packet-blocks of job 1,

and at the time job 1 is finished (slot T1 ), there are LI + L 2 - T packets left from job 2.

The service pattern in Figure 5-7 can thus be summarized as follows: the pattern for job 1

is the same as that in Figure 5-2 (without job 2). Before job 1 is finished, packets from job

2 fill up all the gaps between packet-blocks of job 1, and there are no idle slots. After job

1 is finished, the service pattern follows the pattern of job 2 for its remaining packets.
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For convenience, for this case, define Q2 and d2 to be the integers that satisfy

L1 + L2 -T1 = Q2W2 + d2, (5.5)

and d 2 E [1, W2]. The physical meaning of Q2 and d2 are shown in Figure 5-7. By symmetry,

when W2 < r, W 1 + W2 > r and Li + L 2 > T 2 , define Qi and di to be the integers that

satisfy di E [1, W1] and

Li + L 2 - T2 = Q 1W1 + di. (5.6)

These parameters will be used later when we describe the optimal policy.

L 2 =N 2( r-W)+r2

r2

Figure 5-8: Service Pattern for Two Jobs under Work-Conserving Policy with Full Priority

to Job 1, W1 < r, W1 + W2 > r and Li + L 2 < T

Figure 5-8 plots the service pattern when W 1 < r, W 1 + W2 > r but Li + L 2 < T1 .

Similar to the previous case, packets from job 2 fill up the gaps between packet-blocks of

job 1. Differently, in this case Li + L2 < T1. This means that there are no enough packets

from job 2 to fill up all the gaps (T1 - L1 packets needed to fill up all the gaps), and job 2

is finished before job 1. For convenience, define N 2 and r2 to be the integers that satisfy

L2= N 2 (r - Wi) + r2, (5.7)

and r2 E [1, r - W1]. Their physical meanings are shown in Figure 5-8. By symmetry, when

W2 < r, W1 + W 2 > r but Li + L 2 < T2 , define N1 and r1 to be the integers that satisfy

ri E [1, r - W 2] and

Li, Ni& - W2) + ri. (5.8)

These parameters will be used later when we describe the optimal policy.

Finally, Figure 5-9 plots the service pattern when W1 + W 2 < r. In this case, during
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T2

Figure 5-9: Service Pattern for Two Jobs under Work-Conserving Policy with Full Priority
to Job 1, W1 + W2 < T

each -r time slots, there are at most W1 + W 2 packets served and the rest r - (W 1 + W 2 )

slots are idle.

The above analysis shows that under the work-conserving scheduling policy that gives

full priority to job 1, the inequality W1 > r determines whether the server continues serving

job 1 until it is finished, or there are gaps between packet-blocks of job 1. The inequality

W1 + W2 > r determines whether there are idle slots before either job is finished. Moreover,

when W1 < T and W1 + W2 > T, the inequality Li + L 2 > T1 determines whether job 1 is

finished first. The service pattern for other policies under different window sizes and job

lengths can be obtained in a similar way.

The above analysis and figures also show that due to the window constraints, the service

pattern for jobs are quite different from traditional problems without window constraints.

In the next section we will show that the optimal policy is quite different as well.

5.3 Optimal Policy and Suboptimal Policy

In this section we derive the optimal policy for the problem described and the more in-

sightful suboptimal policy. The difference between the costs of the optimal policy and this

suboptimal policy will be given as well. When deriving the optimal policy, we classify the

problem into two cases:

Case 1: W 1 + W 2 < -r;

Case 2: W 1 + W 2 > -.

In the case when Wi < r and Mi = 1 (Li = Wi), the window constraints take no effects.

Since we are concerning only the window constraints, henceforth when Wi < r, we only
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consider the cases with Mi > 2 .

5.3.1 Optimal Policy When W 1 + W 2 < T

Theorem 5.1. If W1 + W 2 < T, the policy ,r* that gives full priority to the job with smaller

window size is optimal.

Proof. Since Wi > 0 for i = 1, 2, the inequality W1 + W 2 5 T means that Wi < T for both

i = 1 and 2. From the service constraint (5.2), we have ui(kW) - ui((k - 1)Wi) 2 r for

k E [2, Mi], where as defined before, Mi is the integer that satisfies Li = MiWi. Equality

holds if and only if packet kWi is served at the time slot when it becomes available. By

summing this inequality over k, we obtain

Mi
(Mi - 1)'r Z[ui(kWi) - ui((k - 1)Wi)]

k=2

= ui(MWT) - ui(Wi)

= ti - ui(Wi),

where the last equality comes from the definitions of ti and ui. We therefore have

c = ti + t 2 > (Mi - 1)r + (M 2 - 1)T + ui(W 1 ) + u2 (W 2). (5.9)

Recall that packet 1 to W1 from job 1 and packet 1 to W 2 from job 2 are available

for service from time 0. Hence the problem of minimizing ui(W1) + u 2 (W 2), called the

suboptimal problem, is the traditional optimization problem with no window constraints

and the SRPT policy that gives priority to the job with shorter Wi is optimal. Without

loss of generality, assume W 1 5 W2 . Then by applying the result of the SRPT policy, the

resulting optimal sum of the suboptimal problem is 2W 1 + W2, which is a lower bound for

ui(WI) + u 2 (W 2). After plugging it into the inequality (5.9), we obtain

c > (Mi - 1)T + (M 2 - 1)r + 2W 1 + W 2

= Ti + T2 + W1,
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where the equality follows from Equation (5.4). The above inequality gives us a lower bound

for c for any policy that satisfies the window constraints.

Now consider the policy that gives full priority to the job with the shorter window size,

which is job 1 under our assumption. From Figure 5-9 we can easily obtain that under this

scheduling policy, c = t1 +t 2 = T 1 +T 2 +W 1, which achieves the lower bound of c. Therefore,

the policy that gives full priority to the job with the shorter window size is optimal.

From the proof we see that the lower bound Ti + T 2 + W 1 can be achieved if and only if

the equality in (5.9) is achieved and ui(W1) + u 2 (W 2 ) achieves its lower bound. It can be

easily verified that our optimal policy meets both of the two requirements.

5.3.2 Optimal Policy When W1 + W 2 > r

In this subsection we consider the second case, when W 1 + W 2 > -r. We first give five lemmas

that characterize the optimal policy, then based on these lemmas, we develop the optimal

policy.

Lemma 5.1. If W 1 + W 2 > -r, there exists an optimal policy that has no idle slots before

either job is finished.

Proof. Suppose policy 7r is an optimal policy and has at least one idle slot before either job

is finished. We now construct another policy 7r' that has no idle slots before either job is

finished and whose cost is at most c(7r), as follows. Since W 1 + W 2 > r, at each of those idle

slots under policy 7r, there is at least one packet from job 1 or job 2 available for service.

Serve one of these available packets at these idle slots. Repeat the process until either job

1 or job 2 is finished. Clearly, from the construction process, policy 7r' has no idle slots

before either job is finished. Moreover, t1(7r') 5 t 1 (7r) and t 2 (7r') t 2 (7r), which results in

c(7r') = ti(7r') + t 2 (7r') < ti(7r) + t 2 (ir) = c(7r). Recall that policy 7r is an optimal policy.

Hence, policy 7r' is also an optimal policy, but with no idle slots before either job is finished.

l

Define policy set Hi {policy 7rl job i is finished first and there is no idle slot before

job i is finished}, i = 1, 2, and optimal policy set H*= {policy that is optimal and has no

idle slots before either job is finished}. The above lemma shows that fl* is not empty and

H* C 1 1 U 112.
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Lemma 5.2. If W 1 +W 2 > r, then L 1 + L 2 > min{T1, T 2}. Furthermore, if Li + L 2 < T 1 ,

then HI = 0 and U* C 1 2; if Li + L 2 5 T2 , then H2 - 0 and 11* C Hi.

Proof. First show that Li + L 2 > min{T1, T 2 }. If at least one of W1 and W 2 is greater

than or equal to T, say Wi > r, for i = 1 and/or 2, then Ti = Li (Equation (5.4)). Thus

L 1 + L 2 > Ti > min{T1, T2}. If W1 < r and W2 < r, we show L1 + L 2 > min{TI, T2} by

contradiction, as follows.

Suppose Li + L 2  Ti and Li + L 2 < T 2 . If M 1 - 1 < M 2 , the first inequality

L 1 + L 2 < T1 gives us M 2 W 2 = L 2  T1 - Li = (MI - 1)(r - W 1 ) < M 2 (r - W 1 ), which

results in W1 + W2 K r. Contradiction.

Similarly, if Mi - 1 > M 2 , the second inequality Li + L 2 5 T 2 gives us M 1 W 1 = Li <

T2 - L 2 = (M 2 - 1)(r - W 2 ) < Mi(r - W 2), which results in W1 + W 2 < r. Contradiction.

Therefore when W1 + W2 > r, the two inequalities L1 + L 2 < Ti and L1 + L 2 < T 2

cannot hold together. Hence, Li + L 2 > min{T1, T 2}.

Next consider the rest of the lemma. Since T 1 is the shortest processing time of job 1

subject to window constraint, for any policy 7r, the time when job 1 is finished ti > T 1. If

Li + L 2  T1, then all policies that finish job 1 first have at least one idle slot among the

first T1 slots, thus among the first ti slots, that is, before job 1 is finished. Therefore by

the definition of 1 and Lemma 5.1, H 1 = 0 and f* C H 2.

Similarly, when Li + L 2  T 2 , H2 = 0 and rr* C I. E

The next three lemmas characterize policies in H 2 which leads to optimal policies. By

symmetry, similar results can be obtained for H1 . Here we consider set H 2 instead of I in

order to use Figure 5-2 to 5-9 as illustration.

For an arbitrary policy 7r2 E H 2, let v1(7r2) denote the number of packets from job 1

that were served before job 2 is finished. For clarity, later on when there is no ambiguity,

we omit r2 and use vi directly.

Lemma 5.3. When Wi + W 2 > r and L 1 + L 2 > T 2 , for any policy ,r2 E 2 , we have

vI(,r2) E [vi ,v], where

0 when W 2 > r
-= (5.10)

T2 - L2 when W2 < rF
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L 1 -1 when L1 + L 22 > T1
v1 i (5.11)

(N 2 + 1)WI when L 1 + L 2 < T1

Proof. First consider the lower bounds. A trivial lower bound is 0. For the case when

W 2 < r, the tighter lower bound given in the lemma can be shown by contradiction as

follows. Suppose vi < T2 - L 2. Then the total number of packets served before job 2 is

finished is vi + L 2 < T 2 < t 2 , where the last inequality come from the definition of T2.

Therefore, there are idle slots before job 2 is finished, which contradicts to the definition of

U 2 .

Next consider the upper bound. A trivial upper bound is Li - 1, otherwise job 1 would

be finished first. For the case when L 1 +L 2 < T1 , we show v1 < (N 2-+1)W1 by contradiction.

Suppose vi > (N 2 + 1)W1 and let slot s denote the slot where the first vi packets from job

1 are finished. On the one hand, since for every -r slots, the server can serve at most W1

packets from job 1, before slot s there are at least (N 2 + 1)(T - W1 ) slots where the server is

not serving packets from job 1. On the other hand, by the definition v1 , before slot s there

are at most L 2 - 1 packets from job 2 that were served. However, Equation (5.7) shows

that L 2 - 1 = N 2 (T - W 1) + r2 - 1 - (N 2 + 1)(r - W 1 ) - 1. Therefore, before slot s, thus

before t 2, there are at least one idle slot, which contradicts to the definition of H 2 - El

Intuitively, vf corresponds to v1 under the policy that gives full priority to job 2, and

vf corresponds to vi under the policy that gives full priority to job 1. Then Equation (5.10)

and (5.11) can be easily obtained from Figure 5-2 to 5-8.

Lemma 5.4. When W 1 + W 2 > T and L1 + L 2 > T2 , for any policy in U 2 with v1 = v C

[v',vUf], the finish time t1 and t 2 and the cost c are lower bounded by

t(v) = L 2 + v, (5.12)

t1 (v) = t -(v) + fi(Li - v) + b, (5.13)

cL (v) = 2L2 + 2v + fi(L1 - v) + b, (5.14)

respectively, where b = T - W1 - r 2 if L1 + L 2 < T 1 and v = vu = (N2 + 1)W 1 , and b = 0

otherwise. Moreover, there exists at least one policy in U2 that achieves these bounds.
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Proof. Here we only prove the lower bounds. One policy that achieves both bounds can be

constructed. Since the construction is complicated and provides no insights, plus skipping

it does not affect the following part of the chapter, for brevity, we omit the details.

The lower bound t(v) comes directly from the definition of v 1 . For tL(v), by the

definition of vi, there are Li - v packets from job 1 left upon the slot job 2 is finished, which

need at least fi(LI-v) slots to be served. Therefore, ti > t 2+fi(Li-v) > tL(v)+fi(Li-v).

A tighter lower bound can be found when Li + L2 < T and v = ou = (N 2 + 1)W1, as

follows. Since v = (N 2 +1)W 1 , we have L 1 - v = M 1W 1 - (N 2 +1)WI = (Mi - N 2 - 1)W 1.

Hence from Equation (5.3), fi(L1 - v) = (Mi - N 2 - 2)T + WI. Therefore,

t2(v) + fi(Li - v) + (r - W1 - r2)

=(L2 + v) + (Mi - N2 - 2)r + W1 + (T - W1 - r2)

=L2 + (N2 + 1)W1 + (Mi - N2 - 2)r + W 1 + (T - W1 - r2)

=(Mi - 1)r + W1 + L2 - (N2 (T - WI) + r 2 )

=T1 .

where the last equality comes from Equation (5.4) and (5.7). By the definition of T1, we

have ti > T1. Consequently, ti t(v) + fi(Li - v) + (r - W1 - r2).

Combining the above results leads to the lower bound tL(v) given in the lemma.

The lower bound cL(v) for the cost follows from c = t1 I+ t 2 1 f(v)+tL(v) = cL(v). E

Figure 5-8 illustrates the lower bound t(v) in the lemma when W 1 < T and T 2 <

L1 + L 2 < Ti.

Over the policy set 12, for a fixed vi = v, Lemma 5.4 gives the lowest cost. Lemma

5.3 further provides upper and lower bounds on v1 . We can thus optimize the lowest cost

in Lemma 5.4 over all possible vi and obtain the optimal cost over H2. Specifically, for an

arbitrary policy 7r2 in H2 , we have c(72) 2 cL(vi(7 2 )) mino [VLU) CL(v). Let c denote

the minimum and v* denote the v that achieves the minimum. The next lemma develops

this idea and gives v* over 112.

Lemma 5.5. When W 1 + W 2 > T and Li + L 2 > T 2 , the lowest cost over U2, denoted by

ci, is achieved at the following v*:
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1. when W 1 > -r: v* = vj,

2. when 7/2 < W 1 < r and W 2 > T: v* = v = 0;

3. when 7/2 < W1 < T and W 2 < T:

(a) if Q1 = 0: v* = vL = L 1 - d1 ;

(b) ifQ1l$0andd1 r-W1:v*=vL=T 2 -L 2 ;

(c) if Q1#$ 0 and d1 < r -W1: v* = v, + d1 = (M1 - Q1)W1;

4. when W1 < -r/2 and L1 + L 2 > T1 :

(a) ifW 2 <TandQ 1 =0:v v =L 1 -- d1;

(b) if W 2  T or Q1 = 0: v*= (M1 -1)W1;

5. when W1 < T/2 and L1 + L2 < T1 :

(a) if r2 > W: vt*vi = (N2 +1)W1;

(b) if r2 < Wi: vi= v1U W1 = N 2W1.

Proof. First consider part 1) when W1 r. In this case fi(1) = 1 and L, + L 2 > T1. Hence

from Lemma 5.4 we have: cL(v) = 2L 2 + 2v + Li - v = Li + 2L 2 + v. Therefore, c4(v)

increases monotonically with v and consequently, v* = v . Part 1) thus holds.

W,-W,

Slope 1

di W,

0 T2 -L2 Lv
(M- Q,)W,

LV1  whenW,<

Figure 5-10: cL(v) against v when T/2 < W 1 < T

(when W 2 > r, o = 0 and when W 2 < T, v = T 2 - L2 )
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Next consider part 2) and 3) when T/2 < W1 < T. From Lemma 5.4, Figure 5-10 plots

C2(v) against v for this case. This figure directly gives v* under different cases in part 2)

and 3) of the lemma. Here for brevity, we omit the details.

cf(v

r (when L + L T,)

w

(M] -)W

0
\ (N 2 +J)WI L 1 v

VI VI

Figure 5-11: C2(v) against v when W 1 < r/2
(when L 1 + L 2 > T 1, v = Li - 1 and when L1 + L 2 < TI, v (N 2 + 1)W 1 )

Now consider part 4) and 5) when W1 < T/2. From Lemma 5.4, Figure 5-11 plots cL(v)

against v for this case. The figure shows that when Li + L 2 > T1 , if W2 < T and Q1 = 0,

then v lies in the last segment of the curve. Since along the last segment, C(v) increases

monotonically with v, we have in this case vt = of = LI - di. This is part 4a). Whereas

when L1 +L 2 > T1 but W2 > T or QI # 0, the figure shows that c (v) achieves its minimum

at v* = (M1 - 1)W 1 . This is part 4b).

Furthermore, when W1 < r/2 and L1 + L 2 < T1 , Lemma 5.3 shows that v - vf > Wi.

Figure 5-11 then gives v* as in part 5) of the lemma. Again for brevity, we omit the

details.

When Wi + W 2 > T and T 2 < Li + L 2 5 T 1, Lemma 5.2 says that H* C 112. That is,

optimal policies over H2 are optimal policies over the entire policy space as well. Therefore,

from Lemma 5.5, a policy 7r C H2 with vi(7r) = v* is optimal over the entire policy space.

We hence have the following theorems that give the optimal policy under different cases.

Theorem 5.2. When W 1 + W 2 > T and T 2 < L1 + L 2 < T1, the following policy is optimal:

1. when W1 < T/2: if r 2 > WI, give full priority to job 1; otherwise, serve r2 packets

from job 2 first, then give full priority to job 1.
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2. when W 1 > T/2: if W 1 , W 2 < T and d1 < T - W1, serve d1 packets from job 1 first,

then give full priority to job 2; otherwise, give full priority to job 2.

It is straightforward to verify that the policy given in the theorem has vi = v* defined

in Lemma 5.5. Hence it is optimal. Figure 5-12 illustrates the policy for the four cases in

the theorem.

Wr - W,

(a) W, 'r / 2, r2 W,

(b) W, t / 2, r2 <W,

(c)r/2 < W, <,c, W2 <c, d, <,r - W,

(d) otherwise

r2 !1 -r2

i 2

Priority to job 1
r2

2 2 2

Priority to job 1

d, 2 1 2 11
I

Priority to job 2

W2 v-W 2  --W

2 2 d

Pii to jo 2

Priority to job 2

Figure 5-12: Illustration of Optimal Policy when W1 + W 2 > -r and T 2 < Li + L 2  Ti

By symmetry, the next theorem follows, which gives optimal policy when W 1 + W 2 > r

and T 1 < L1 + L 2 < T 2 .

Theorem 5.3. When W 1 +W 2 > r and T 1 < L1 + L 2 < T 2 , the following policy is optimal:

1. when W 2 5 r/2: if r1 > W 2 , give full priority to job 2; otherwise, serve r1 packets

from job 1 first, then give full priority to job 2.

2. when W 2 > T/2: if W1 , W2 < r and d2 < T - W 2 , serve d2 packets from job 2 first,

then give full priority to job 1; otherwise, give full priority to job 1.
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Theorem 5.2 and 5.3 provide optimal policies under case T 2 < Li + L 2 < T1 and

Ti < L 1 + L 2 < T2. We now consider the optimal policy for the last case, the case with

L1 + L 2 > max{T 1, T2 }.

Priority to job i

Figure 5-13: Illustration of Policy ira,i

For i, j = 1 or 2, i = j and an integer a < Wi, let 7ra,i denote the policy that serves a

packets from job j first, then gives full priority to job i. Figure 5-13 illustrates this policy.

In addition, when W 1 < r/2, W1 + W 2 > -r and Li + L 2 > T1 , let *2 denote the following

policy: if W2 > r, then first gives priority to job 1 until W1 packets from job 1 left, then gives

priority to job 2; if W2 < r, then first serves n packets from job 1, next serves m blocks of W 2

packets from job 2 and m blocks of W1 packets from job 1 alternatively, then gives priority

to job 2. Here m and n are integers that satisfy L 1 + L 2 - T2 - W1 = m(W1 + W 2 - r) + n

and n E [0, W1 + W2 - r]. This policy is illustrated in Figure 5-14. It can be seen that

policy fr2 corresponds to case 4b) in Lemma 5.5 with vl(fr2) = v1. Policy i is similarly

defined.

r- W

W2 >-

Priority to job 1 Priority to job 2

W, 1*- W, W,

W2 <1

mblocks of job l and 2 Priority to job 2

Figure 5-14: Illustration of Policy fr2

(when W1 < r/2, W1 + W2 > r and Li + L 2 > T1)

Next lemma gives the costs of the above policies.
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Table 5.1: Optimal Policies over U1i or 12 when W1 + W2 > r and Li + L 2 > max{T1, T 2}
W 2

W1 > r [T/2,Tr] T/2
>T 7T0 2 ,7r0 1  70,2,7o,1 7o,2,71

[r/2, r] 7Ko,2,7o,1 7o,2,7rdi,2,7ro,1,7rTd2,1 7ro,2,7rd1,2,7ro,1,7r1

5 T/2 Ir 2 ,ro, 1  W,2,7r2,7tO,1,7rd 2 ,1 N/A

Lemma 5.6. When W 1 + W 2 > T, for i, j = 1 or 2 and i # j, the cost of policy 7io,j is

c(7ro, ) = { 2Tj + f3 (Li + L 2 - Ti) when L 1 + L 2 > Ti (5.15)
T + (Nj + 1)T - (r - Wi - r j) when L1 + L 2 < Ti

When W1, W 2 < T and L 1 + L 2 > Ti, the cost of policy ,rd,i is

fj(LI+ L 2 -T - dj) when Qj 1 (516)

-Wi when Qj = 0

Moreover, when W < r and L 1 + L 2  Ti, the cost function of policy Itrj,i is c(7rr,i)

T + Nj-r + 2rj. When Wj < T and L1 + L 2 > max{T1, T 2}, the cost function of policy ri is

c(7rj) = 2(LI + L 2 ) - Wj.

These cost functions can be directly verified from Figure 5-2 to Figure 5-8.

Lemma 5.5 shows that when L 1 +L 2 > max{T1, T2 }, over policy set 112, v1(7ro,2), v1(7rdi,2)

or V1(fr2) equals to v* for different cases. Therefore, policy ro,2, 7rd 1 ,2 or r2 is optimal for

the corresponding cases over H2. By symmetry, policy iro,1, 7rd 2 ,1 or iri is optimal for the

corresponding cases over H1. Table 5.1 lists the optimal policies over 1 or 112 for different

cases. For example, when W 1 , W 2 2 T, 7o,2 is optimal over 12 and 7ro, 1 is optimal over U1.

We therefore have policy 7ro,2 and 7ro,1 in the cell for W 1 > T and W 2  r.

Furthermore, since 1* C H1 U 12, one of the optimal policies over 1 and H2 is also

optimal over the entire policy space. Although we can further classify different cases and

derive their corresponding optimal policies, the number of categories is significant, and the

description of optimal policies is tedious and provides little insights. We therefore do not

further classify the cases, but rather give the following theorem:

Theorem 5.4. When W 1 + W 2 > T and L1 + L 2 > max{T1,T 2}, for different cases in

Table 5.1, the policy that has the lowest cost among policies in the corresponding cell is

optimal.
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Note that the cost of policies listed are given in Lemma 5.6.

Theorem 5.2 to 5.4 provide optimal policies under different cases. They show that the

optimal policy is a function of job lengths, window sizes as well as the time interval T.

Furthermore, in most cases, the optimal policy does not change the priority of jobs but

rather gives full priority to one job.

Corollary 5.1. If W 1 , W 2 > r, the policy that gives priority to the shorter job is optimal.

Proof. When W, > r for some i, we have Ti = Li, which leads to Li + L 2 > T. There-

fore, when W 1 , W 2 > T, LI + L 2 > max{T1, T 2}. The case thus falls into the first

cell in Table 5.1, which lists policy 7ro,2 and or,1 . From Lemma 5.6, their costs are:

c(7ro,2) = 2T 2 + fiLi + L 2 - T 2 = 2L 2 + (Li + L 2 - L 2 ) = L1 + 2L 2 , where the second

equality comes from the fact fi(l) = 1 and T 2 = L 2. Similarly, c(7ro,1) = 2L 1 + L 2 . Hence,

if Li L 2, then policy r0 ,1 is optimal, and if L 2 < L 1 , then policy 7ro,2 is optimal. The

corollary thus holds. E

As discussed before, when W1, W2 ;> r, the window constraints take no effect on the

service of both jobs. The problem thus becomes the traditional problem that minimizes

average response time. The optimal SRPT policy also gives priority to the shorter file in

our case. This is consistent with the above corollary.

Although the policies described in Theorem 5.2 to 5.4 are optimal, they are complex

and it is not clear which parameter is essential. We hence give a suboptimal policy in the

following corollary, which gives more insights.

Corollary 5.2. When W1 + W 2 > r, the following policy is suboptimal: if Wi < T/2 for

i = 1 or 2, give full priority to job i; if Wi > T/2 for both i = 1 and 2, give priority to the

shorter job. The difference between the optimal cost and the cost of this suboptimal policy

is less than max{WI, W 2 }.

This corollary can be proven by comparing the cost of the suboptimal policy described

with the cost of the optimal policy described in Theorem 5.2 to 5.4, where the cost functions

are given in Lemma 5.6. The comparison is tedious with no more information. We hence

omit the details.

Notice that when W1 + W 2 > T, the inequality Wi r/2 for i = 1 or 2 means that job i

has smaller window size. We can thus combine Theorem 5.1 and Corollary 5.2 and obtain

the following suboptimal policy for all cases:
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Theorem 5.5. The following policy is suboptimal for minimizing average response time of

two jobs subject to window constraints: if both window sizes are greater than one half of the

time interval, give full priority to the shorter job. Otherwise, give full priority to the job

with the smaller window size. The difference between the optimal cost and the cost of this

suboptimal policy is less than the maximum of the two window sizes.

Now it's clear that when Wi > r/2 for both i = 1 and 2, the job lengths determine the

optimal policy. Otherwise, the window sizes are essential.

5.4 Conclusions

This chapter considers the scheduling problem that minimizes the average response time of

two jobs subject to window constraints. The effects of the window constraints are presented,

and the optimal policy is derived. The results show that in most cases, instead of chang-

ing priority of jobs at different times, the optimal policy gives full priority to one job. In

addition, in traditional optimization problems without window constraints, the remaining

processing times are the only parameters that affects the optimal policy (SRPT policy).

Whereas the suboptimal policy derived here shows that under window constraints, not only

the job lengths (which correspond to the remaining processing times in traditional opti-

mization problems) determine the optimal scheduling policy, but the relative magnitudes

of the window sizes are essential as well.

One natural extension of the current work is to consider optimal scheduling problem with

more than two jobs, and problems with random arrivals and departures. Another work of

interest is to consider time-varying window sizes. From the application perspective, these

extension work is expected to be helpful to understand the interaction between multiple

TCP sessions and lower layer scheduling policy.
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Chapter 6

Conclusions

By observing that cross-layer protocol interactions in heterogenous data networks may

significantly degrade the system performance, in this thesis we investigate the interaction

between TCP at the transport layer and ARQ at the data link layer, as well as the interaction

between TCP and ALOHA at the MAC layer. We also study the scheduling problem

with window service constraints, such as the link layer scheduling subject to TCP window

constraints.

First we provide an analytical framework to study the interaction between transport

layer TCP and data link layer ARQ. The system considered is a network that has high

bandwidth-delay product and high link loss probability. The end nodes implement TCP at

their transport layer and the error prone bottleneck link implements ARQ protocols. We

model the system as a Markov chain with reward functions, and develop queuing models for

both GBN and SRP, where the feedback delay is taken into account. The system throughput

is then expressed in terms of system and protocol parameters. The analysis shows that in

most cases implementing ARQ can achieve significant improvement in system throughput.

In addition, the impacts of various protocol parameters on the system performance are also

examined, such as the transport layer time-out value, the link layer packet size and the

number of transmission attempts per packet at the link layer. We show that by proper

setting of these parameters, system throughput can be improved by nearly an order of

magnitude.

We then investigate the interaction between TCP and ALOHA by studying the system

performance with TCP at the transport layer and ALOHA at the MAC layer. Two simple
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equations are derived from which the system performance, such as the system throughput,

can be obtained directly, and the optimal MAC layer transmission probability at which

the system achieves its highest throughput is given. The analysis shows that the system

performance is a result of the balance between idle slots and collisions. The maximum

possible system throughput is 1/e, and a sufficient and necessary condition to achieve this

throughput is derived, which cannot always be satisfied.

In addition, for systems with TCP timeout backoff, due to the long duration of backoff

periods, the system always operates at a range with too many idle slots, and hence has a

throughput far below 1/e. Whereas for systems without TCP timeout backoff, adjusting the

MAC layer transmission probability can change the system load. In particular, when the

system operates with too many collisions, such as systems with small propagation delay and

large number of users, the throughput of 1/e can always be achieved by lowering the MAC

layer transmission probability. However, in systems with large propagation delay and small

number of users, the throughput of 1/e is not always achievable, because even when the

transmission probability is set to its maximum value of 1, the system remains under-loaded.

Moreover, since MAC layer retransmissions react faster to collisions and hence inject more

traffic into the channel, MAC layer retransmissions are preferred for systems with light

load. In contrast, when the system is heavily loaded, retransmissions at the transport layer

(TCP) result in higher throughput.

Finally we consider the optimal scheduling problem with window service constraints.

The objective is to minimize the average response time. In particular, we investigate in

detail the effects of window constraints on packet service pattern, and develop an optimal

and a more insightful suboptimal scheduling policy. The results show that both the job

lengths and the window sizes are essential to the optimal policy. In addition, instead of

changing priority of jobs at different times, in most cases the optimal policy gives full

priority to one job.
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