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ABSTRACT

This thesis will establish a conceptual approach to the design of constellations for
satellite-based mid-course missile defense. The ballistic missile intercept problem leads
to a new paradigm of coverage where interceptor "reachability" replaces line-of-sight
coverage. Interceptors in this concept are limited in their time of flight and AV
capabilities. Classical design approaches, based on ground coverage, are employed to
provide a priori constellations for ballistic missile defense from a postulated North
Korean attack. Both symmetric and asymmetric constellation types, designed for Earth
coverage, provide bounds on the number of satellites required. A detailed parametric
analysis is used to explore the constellation design space. Various constellation types are

optimized to maximize missile defense coverage. Both genetic algorithms and gradient-
based optimization techniques are employed. Satellite-based mid-course ballistic missile
defense from a regional threat is achievable with as few as 21 satellites. Additional
constellation intercept statistics, such as: the number of intercepts per missile, and

interceptor closing velocities, are compiled to provide a lethality index. The effective
capabilities of these constellations to defend CONUS, beyond the original regional threat,
are also explored. It will be demonstrated that the constellations constructed in this work
are capable of providing defense from an array of threatening states about the globe. This

research illustrates how known design methods and astrodynamics techniques can be

used to create new and viable methods of space-based missile defense.
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Chapter 1
Introduction

Concepts for space-based ballistic missile defense were first developed in the early

1980's through the Strategic Defense Initiative (SDI) also commonly known as "Star

Wars". Space based interceptor concepts ranged from the Brilliant Pebbles system to

high-power directed energy concepts. In the waning years of the Cold War, these

concepts lost funding and support. Following the Rumsfield commission report, stating

the increased risk of missile capable rogue nations there was again a renewed interest in

missile defenser8l. Currently National Missile Defense (NMD) is experiencing a large

infusion of interest and has developed potential technology gains in several key areas.

One area of great importance to this thesis is satellite constellation design for ballistic

missile defense. Past research has looked at the potential for satellite based boost-phase

missile defense constellations which have over 300 satellites 42 1. However, this research

focuses on the development of satellite constellations for the purpose of mid-course

missile defense from a specific threat against the continental United States. The simulated

threat of interest in this paper is from North Korea. Although just a conceptual study, the

results and methodology can be applied to any particular threat or region. A number of

the constellations presented are capable of missile defense from a wider range of threats

to the United States.

1.1 Motivation

Ballistic missile defense first made an appearance in the early 1960's through the

Safeguard program. This program became a reality through the use of nuclear tipped

interceptors based at a North Dakota site. However, this program's lifespan was brief. It

wasn't until the early 1980's that a new version of a missile defense program would come

to lifeE91. The Strategic Defense Initiative developed the framework of the modem

17



National Missile Defense program. In the waning years of the Cold War, missile defense

programs were pushed to an idle state 8 3. With the Rumsfeld commission report, the

National Missile Defense Agency is seeking a viable defensive force against the potential

threat of ballistic missiles4 31 . The Missile Defense Agency is currently pursuing the

development, testing, and deployment of land, sea, air, and space based assets to engage

any ballistic missile threat 81 .

The ballistic missile defense concept is broken down into three possible intercept

regions of the missile flight: the boost phase, the mid-course phase, and the terminal

phase. A typical missile flight trajectory is illustrated in the Figure 1.1. Suites of

accompanying land, sea, and space-based sensors have been developed to enhance the

defense and tracking capabilities during each phase of flight. While the missile defense

agency is exploring defensive programs against all possible missile threats, this project

focuses on defense against intercontinental ballistic missiles (ICBMs)[ 83.

Boost Pha

Midors Ph5

TerminalPhS

Figure 1.1: Phases of an ICBM Missile Flight411

Boost phase defense is the first intercept region of interest. During this phase, the

missile is the easiest to identify and is traveling relatively slowly. In the case of an

intercontinental ballistic missile, this phase lasts approximately 3-5 minutes[381 . Boost

phase is potentially the easiest portion of the trajectory to intercept. However, problems

arise in the need to have interceptor assets in close proximity at the time of launch. While

this may be possible in theater defense scenarios, it is less feasible in global strategic-

18



defense scenarios. Strategic boost phase defense would require a number of assets in

close vicinity to all possible threats.

After the ballistic missile has completed burning its propellant, it starts the longest

part of its flight, the mid-course portion. Mid-course can last 20 to 30 minutes and is in a

relative freefall towards its final destination138 3. During this portion of the flight, only a

limited number of radar assets can track the trajectory. The two planned mid-course

defensive interceptors are: the Space Based Laser (at the time of this thesis funding to

this project has been cancelled) and sea/land-based long-range missiles 381. These systems

require significant launch capability to place an asset at the appropriate heights and thus

are usually limited in availability.

The last 30 seconds of the missile flight is known as the terminal phase. In this

phase the ballistic missile is traveling at extreme speeds and its trajectory can be very

accurately determinedE38 3. A few of the well-known intercept assets for the terminal phase

are the Patriot missile system, the Arrow system, and the Theater High Altitude Area

Defense (THAAD) system for long-range defense. They attempt missile intercept in the

last half of the mid-course flight through the transition into the terminal phase. In order

for these systems to attempt a hit-to-kill interception, nearly head-on geometry with

extreme closing velocities must be overcome between the missile and the interceptor.

While several assets exist for space-based surveillance of ballistic missiles, there

is very little in development for space-based interceptors. Research done in a 2003 report

entitled "Boost Phase Intercept Systems for National Missile Defense," by the American

Physical Society concludes that spaced based interceptors for the purpose of boost phase

intercept are not a realizable solution 4 . Space based terminal phase missile defense also

does not lend itself towards realizable solutions. In these cases, a very large number of

satellites in very low orbits would be required. Space based mid-course defense has been

developed using the spaced based laser, but very little publicly available research has

been done on this topic. Space-based platforms for missile defense would seem to be

desirable due to the high altitudes and long flight times of ballistic missiles. Further
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details and information on the current ballistic missile defense program are publicly

accessible and easily obtained on the Internet and other sources[8,[9],[ 3 8J,[4 2 ].

1.1.1 Current Interception Resources and Capabilities

Current mid-course and terminal phase defenses have some proven capability. At

this time systems like the Arrow, THAAD, and Patriot have been battle proven for theater

defense 381 . Strategic defense assets are still in development. Weapons such as the

standard missile 3 (SM3) and other long range interceptors have the potential to serve as

a defense shield against strategic attacks[411. The limitation of these systems lay in the fact

that they are fixed ground-based assets with a set intercept range. Only a small number of

these systems can be deployed. Head-to-head intercept closing geometries create another

challenge to some defense schemes.

Nearly all of these intercept assets are based on liquid or chemical rocket

technology. Unless American made ICBMs are used for interceptors, this means that

most interceptors have roughly equal or less thrust capability than the missile they are

trying to intercept. The only advantage to these systems is their attack profile. Interceptor

technology for mid-course defense will require a certain amount of advanced trajectory

awareness. The Space Based Infrared System (SIBRS) and Defense Support Program

(DSP) are current American space assets capable of identifying a missile launch and

estimating its trajectory. Additional land-based and sea-based radar assets are available to

obtain updated and refined trajectory awareness.

1.2 Defense Scenario

This thesis abstracts the notion of constellation coverage to produce a feasible

near-term solution to space-based mid-course missile defense through the use of a

constellation of satellite based interceptors. An ICBM will fly through low Earth orbiting

altitudes during the mid-course portion of flight. Additionally, a missile's trajectory

would likely have been determined during the boost phase of flight, or shortly after, by

the assets previously mentioned. With trajectory awareness, a satellite based interceptor
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will be fired so as to place the interceptor at the target location and time at which the

ballistic missile threat will arrive. Satellite constellation design will be explored to

ensure complete missile defense. A constellation of satellites serving as interceptor

launch platforms could add enhanced capability to the currently envisioned ballistic

missile defense scenarios. While potential ballistic missile threats could come from any

part of the world, this research focuses on satellite constellations for missile defense from

a specific threat. This research could be extended to cover further threats or modified as

the threat nature changes. Results of this research have already shown defensive

capabilities greatly beyond the intended threat.

1.2.1 Threat Capability

The specific threat considered for this research is a simulated ICBM attack from

North Korea. Presently, the North Korean capability is largely unknown. Given the

unstable and aggressive political nature of the North Korean state, it was chosen as the

most likely threat requiring a ballistic missile defense for the United States. North Korea

has not yet demonstrated the true capability of its latest Taepodong ICBM. The current

belief is that it is capable of hitting Los Angeles (L.A.), some 9,500 km away.

The threatened region can be identified using the distance to L.A. as the

maximum range and Anchorage as a minimum range and sweeping out a region over an

azimuth from L.A. to Bismarck. This threat region encompasses every major population

center that a North Korean missile would be capable of hitting within the Continental

United States (CONUS). A missile corridor is created from a set of minimum-energy

trajectories that can hit the threatened region emanating from a specified point in North

Korea. For this work, the missile corridor is defined to be the exo-atmospheric portion of

the trajectory, 100 km above the surface of the Earth. The mid-course portion of flight

can last anywhere from 21 to 31 minutes, depending on the missile's target location. The

missile corridor and threatened region used for this analysis are depicted in Figure 1.2.

ICBM threats from additional launch sites or to other regions will have similar trajectory

corridors. Constellation designs discussed in this paper can be adapted to individual

corridors or multiple corridor regions as needed.
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Figure 1.2: Simulated Taepodong Missile Corridor and Threatened Region

1.2.2 Threat Defense Concept

This thesis focuses on the concepts behind constellation design of satellite-based

interceptors for mid-course ballistic missile defense. The notion of constellation coverage

is abstracted from classical constellation design to produce a feasible near-term solution

to space-based missile defense. Coverage, or reachability, is defined in this context as the

ability for interceptors, based on a satellite in the constellation, to reach a particular

location within a bounded amount of time. Coverage is often considered to be the visual

acquisition of a fixed region on the Earth. The "acquisition" time is therefore frequently

excluded from consideration of the satellite footprint. When the ability of the interceptor

to reach a specified location is limited by speed and time, this problem becomes a

complicated multi-dimensional dilemma.

Several designs for space-based missile interceptors have been conceived. These

include the use of upper stage boosters, lasers, and even clouds of debris. This research

will explore the use of a less dramatic, arguably more realistic, intercept vehicle.

Currently available solid rockets used for air-to-air missiles, or upper stage "payload

assist modules", are the foundation for the interceptor designs applied to this work. A

satellite bus could potentially carry several of these weapons. These interceptors typically

have a velocity change capability (AV) smaller than that of a larger upper stage rocket;
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however, the AV of such an interceptor can be scaled from a small rocket to a large one

as needed in further studies. The constellation design process considered in this work can

be adapted to any interceptor chosen.

A conservative and practical interceptor choice was based on the AIM-120

AMRAAM Air-to-Air missile. Its initial velocity capability was assumed for the

characteristics of the satellite-based interceptor*. This capability is approximated as a

fixed 1.3 Km/sec instantaneous AV. This same AV can also be achieved with a staged

pair of ATK Thiokol Star 12 upper-stage motors. The weight for a configuration like this

would be approximately 150 lbs with a 30 lb terminal interceptor'.. This study only

focused on getting an interceptor to the target; the homing portion of interceptor flight for

kinetic intercept was not considered. This portion of intercept has been demonstrated

many times for current ballistic missile defense concepts. Following chapters of this work

will further develop the intercept scheme needed for mid-course ICMB defense against a

specific threat.

1.3 Thesis Outline

This paper uses the North Korean missile threat in union with the defense concept

described above to produce methods for designing constellations of satellite-based

interceptors for missile defense. Chapter 2 and Chapter 3 of this work introduce the

fundamentals of astrodynamics and classical constellation design methods, respectively.

Each of these chapters is necessary to explain space-based missile defense. Chapter 2

starts from a basic and historical description of orbital motion, ground tracks, and

reference frames. A section of this chapter is also developed to the orbital element

description of an orbit. This is followed by a development of orbital perturbations with

* Air Force, "Fact Sheet, AIM-120 AMRAAM,"
http://www.af.mil/news/factsheets/AIM 120 AMRAAM.html

t ATK Thiokol Star 12 information gathered from the Encyclopedia Astronautica website:

http://www.astronautix.com. Calculations not discussed here were completed according to reference.[5 1.
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specific development around the J2 perturbation. This chapter concludes with an analysis

of orbital transfer using the hyperbolic locus of velocity vectors.

Classical methods of constellation design constitute the basis of Chapter 3. In this

chapter several coverage methods are used to create several types of constellations. A

constellation type defines a set of common orbital characteristics for an arrangement of

satellites about the Earth. Some of these orbital characteristics include common orbital

elements, combinatorial parameters (like the common number of satellites per plane), and

other design conditions. An example of a defined set of orbital characteristics is the

evenly placed arrangement of satellites into several planes of polar circular orbits. This

general set of common satellite arrangement characteristics describes the star pattern

constellation type. This chapter will look at constellation types ranging from symmetric

circular patterns to eccentric ad-hoc placement designs. There are many different ways to

arrange the satellites inside of this basic constellation type framework. Specific

arrangements are known as constellation configurations. A specific constellation

configuration defines a total number of satellites and number of orbital planes within a

specific constellation type. The coverage method uses the definition of coverage to place

satellites into a constellation type. For example, in the star pattern constellation type a

coverage method, based on a string of sensor footprints, is used to determine how many

satellites are needed in a plane, and how many planes are needed to achieve whole-Earth

coverage. Whole-Earth coverage in this example is the desired intent of the constellation

or the coverage definition.

Chapter 4 continues to develop the missile defense concept, and the potential

missile threat region, as well as defining the coverage manifold created from the release

of a satellite based interceptor. Coverage, or reachability, is defined in this context as the

ability for interceptors, based on a satellite in the constellation, to reach a particular

location at a fixed time. Coverage is often considered to be the visual acquisition of a set

region on the Earth, the satellite footprint, and therefore "acquisition" time is frequently

excluded from consideration. A multi-dimensional intercept problem is created when the

desire to reach a specified location is limited by speed and time. This chapter will identify
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the timing issues associated with that intercept problem. An algorithmic scheme for

interceptor coverage based on the hyperbolic locus of velocity vectors is developed.

Chapter 5 of this paper will briefly describe modifications to classical

constellation design approaches for missile defense applications. A new definition of

coverage for missile defense is created around a two-dimensional fence barrier scheme.

Several classical methods of constellation design are abstracted to design constellations

capable of compete missile defense at the fence barrier. This design scheme has the effect

of reducing the dimensionality of the intercept problem and providing a tractable method

for constellation design. This chapter highlights the manner in which classical

constellation design methods are abstracted for use with missile defense concepts. New

constellation types will be developed through intuition gained from classical constellation

design research. These methods will ultimately be applied to a simulated missile defense

scenario to determine coverage. Additional constellation design ideas, such as

constellation coverage gap filling, are also developed.

Chapter 6 provides a detailed analysis of the results of constellation design using

the fence coverage method. Each constellation type, abstracted from the classical

schemes, will be examined for its usefulness at missile defense. Abstractions of classical

methods only provide an a priori estimate to the specific constellation configuration.

Many additional configurations are explored around the a priori design estimates.

Optimization tools are used at this point to tweak constellation design parameters per

configuration to maximize missile defense coverage capability.

The notion of volumetric coverage is introduced in Chapter 7 in an effort to

improve coverage results for constellations with fewer satellites. Volumetric coverage

removes simplifications of fence coverage. It allows for additional intercept capability in

ballistic missile defense constellations. Volumetric coverage is applied to previously

generated fence coverage constellations. This coverage definition makes it possible to

explore additional constellation coverage capabilities. An expansion of the missile

threats against the whole CONUS is one such additional coverage capability explored in

the volumetric analysis.
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Chapter 8 presents the results of volumetric coverage. Constellation design is not

easily abstracted for the volumetric coverage definition. The effectiveness of

constellations, designed for fence coverage, is measured with respect to the new

volumetric coverage definition. Greatly improved coverage results suggest that smaller

constellations can provide 100% coverage. Full parametric coverage results for many

constellation configurations are developed. This chapter concludes with an exploration

into additional coverage capabilities of existing constellation including: multiple intercept

capabilities, additional AV capabilities, and additional treat deniability capabilities.

The conclusions and future work of Chapter 9 reiterate the many important

conclusions gained throughout this research. This chapter also discusses constellation

design, maintenance, and stability issues important in the deployment of satellite

constellations. Many avenues of future work are presented for readers interested in

expanding the missile defense concepts presented throughout this thesis.

Appendix 1 is given to aid readers with concepts of optimization and its

implementation. Some of the enabling concepts behind the optimization tools, used in

this research, are also discussed. In particular, the nonlinear programming package

SNOPT and a genetic algorithm optimization package will be examined.
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Chapter 2
Astrodynamic Fundamentals

This thesis work is designed around the conceptual use of satellite-based interceptors for

mid-course ballistic missile defense. The intercept scheme is developed around an orbital

transfer vehicle with a limited time of flight and impulse-velocity capability. This chapter

provides the enabling concepts needed to understand orbital motion, perturbations, and

orbital transfers. While a full and comprehensive understanding of astrodynamics would

take more than a chapter to describe, this chapter will provide an appropriate description

for readers unfamiliar with the area of study. The concepts described here allow for an

understanding of the orbital dynamics required to correctly transfer an intercept vehicle

from a satellite in one orbit to target in another orbit.

2.1 Orbital Motion

Astrodynamics is a term referring to the study of the motion of objects in space.

The motion of planets and stars has been a topic of interest for several thousand years.

The formal study of astrodynamics did not take shape until the 16th and 17th centuries

with the works of Copernicus, Brahe, Kepler, Galileo, and Newton 4 6 1. Kepler, using

Brahe's detailed observations of the motion of Mars, developed the first laws of

Astrodynamics. These lawst were revolutionary at the time for describing orbital motion.

Newton later developed a more detailed mathematical representation to fully describe

orbital motion. Newton's equations develop the first two-body mechanical representation

of orbital motion. Only the gravity of the identified bodies is considered in this

Keplers Laws4 :
1. Planets move in ellipses with the Sun at one focal point.
2. The line joining a planet to the Sun sweeps out equal areas in equal time.
3. The square of the orbital period of a planet is directly proportional to the cube of the average
distance to the Sun
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representation. Since Newton's work, several individuals have further developed the

mathematics of orbital motion. Such developments have led to an accurate understanding

of orbital motion allowing humans to walk on the Moon and send probes in the far

reaches of the Solar System.

In the beginning, Kepler identified that planets and other bodies follow set paths

around larger bodies in space. These paths or orbits can be thought of as grooves in

space in which one body travels while orbiting another. A key feature, implied by

Kepler's laws, is that all orbital paths can be simply described by conic sections. Figure

2.1 shows how conic sections are represented by a two-dimensional slice through a set of

right circular cones. All orbits described in this thesis are represented by either elliptical

or circular conic sections. Parameters known as orbital elements describe the

characteristics of the conic representation of an orbit as well as a satellite's position in

that orbit. The Keplerian orbital elements will be discussed in more detail later in this

chapter.

Figure 2.1: Conic Sections14 8
1
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2.1.1 Two-Body Motion

Along with many other mathematical advances, Newton was the first to develop a

mathematical representation of the influence of gravity on orbital motion. This

representation stems from Newton's Three Laws of Motion as well his Universal Law of

Gravitation. These laws were first published in Newton's famous Principia in 1687[61

Newton's first law explains that an object in motion will tend to stay in motion until acted

upon by another force. Newton's second law further develops the idea that a force is the

change in momentum per change in time. In the absence of a loss of mass, this law is

expressed in vector form by Equation (2.1). In Equation (2.1), the sum of the applied

forces (F) is equal to the mass (in) of the body to which it is applied times the resulting

acceleration (a) of that body, where F and 5 denote vectors. Further developing the

characteristics of motion, Newton's third law states that for every force acting on a body

there is an equal and opposite force that must exist. These laws describe the basis of

motion for any object including those in an orbit.

ZF=m-a- (2.1)

A satellite, which is any orbiting body, is always experiencing gravitational

attraction force. Newton's laws of motion alone are not enough to fully describe orbital-

motion in the presence of this force. Newton's Universal Law of Gravitation completes

the remaining mathematical description of orbital motion and is given by Equation (2.2).

This equation describes the gravitational force of attraction between the mass of a

satellite (msaremie), and the mass of the central body (meener) as a function of the distance

between them (r). Combining Equations (2.1) and (2.2), the equation for two-body

motion can be developed. By adding the gravitational forces of the satellite and central

body with respect to an inertial origin, the vector representation of the resulting

acceleration between the bodies is shown in Equation (2.3). Any perturbing accelerations

that may affect orbital motion are lumped together into the aper, term in this equation.

Additionally, the Universal Gravitational Constant (G) is combined with the sum of the

masses of the central body and the satellite to form the gravitational parameter (p) as
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shown. Equation (2.3) is given with reference to an inertial coordinate system. For two-

body motion a,,,=0. Section 2.2.1 will explore the effects of perturbed orbital motion

caused by non zero values of a1 ,. This equation is the mathematical representation of

Kepler's laws and can be used to describe the motion of planets, satellites, and nearly all

celestial bodies.

F =G- ,m""" (2.2)

T+$ = ae,, (2.3)
r

Where p = 398600.5 km3/S2 for this research 58

2.1.1.1 Coordinate Systems and Time

A coordinate frame serves as the fundamental basis for a mathematical

description of an orbit. A coordinate frame is often described as an orthogonal axes set

and a point of origin which serve as a reference frame for vectors and points in space.

Two of these coordinate frames are directly related to orbital motion. The inertial and

Earth fixed coordinate frames share a common point of origin at the center of the Earth.

The plane of the equator and the rotation axis of Earth define the orthogonal vector set for

both coordinate frames. The inertial coordinate frame is commonly known as the

Geocentric Equatorial System, (ECI or IJK)[4 8]. This coordinate frame can be seen in

Figure 2.2. The I axis of this frame points toward a defined stationary vernal equinox.

This coordinate frame is fixed in space while the Earth fixed frame rotates with the

motion of Earth, as its name implies. All of the orbital dynamics and calculations in this

thesis are completed in an inertial fame. While the Earth fixed frame, commonly known

as ECF, is not used for calculations, this frame has obvious benefits for understanding

missile defense over a specific region on the Earth.
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Figure 2.2: Geocentric-Equatorial Coordinate System, EC 1 48 1

In a simplistic sense, the prime meridian over Greenwich, UK serves as a

common alignment of both coordinate systems at zero Greenwich Sidereal Time, GST,

angle (OGST). As the Earth rotates, the angular difference between the inertial frame and

the Earth fixed frame changes. By measuring the passage of time, one can easily compute

the angular difference in coordinate frames. The angle to a specific ground location,

Local Sidereal Time angle (6LsT ), is found by simply adding the East longitude of the

ground location to the GST. This geometric relationship can be seen in Figure 2.3.

Local meridian

Star

Figure 2.3: Geometry of Time Conventions1 48 1
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2.1.2 Orbital Elements

A satellite "state" determines specifically where a satellite is and where it is

going. There are several different conventions for describing the "state" of a satellite. At

a minimum six parameters must be used to describe the trajectory of a satellite. The

specific position and velocity vectors, with reference to an inertial coordinate frame, are

one such example. These parameters make it hard to conceptualize where a satellite is

and what path it will follow. Another example of determining the location and path of a

satellite is the use of orbital elements. The classical Keplerian elements describe the conic

section of the satellite orbit and where in that orbit the satellite is located. These

parameters make it simpler to conceptualize a satellite's orbit; additionally they often

make it easier to propagate the satellite's state forward in time when few perturbations

are considered.

The six Keplerian orbital elements are: semi-major axis (a), eccentricity (e),

inclination (i), right ascension of the ascending node (Q), argument of perigee (co), and

true anomaly (v). Additionally the mean anomaly (M) and the orbital parameter (p), also

known as the semi-latus rectum, are alternate forms of elements that will be discussed

here. Mean anomaly can be substituted for true anomaly and is often used in its place for

calculations. Each of the orbital elements is described as follows:

* The semi-major axis (a) is a physical distance measure of the size of the orbit. In

an elliptical orbit, this parameter represents the physical distance from the center

of the ellipse to farthest point in the orbit. A representation of a is shown in

Figure 2.4. The line connecting the occupied focus (F), the location of the central

mass, and the vacant focus (F*) bisects an ellipse. The distance from the center of

Earth to the point in the orbit of closest approach is the radius of perigee (R.).

Additionally, the distance to the farthest point in an orbit from Earth is the radius

of apogee (Ra). These points are defined as perigee and apogee respectively. The

sum of R, and Ra is equal to twice the semi-major axis. The geometry of this

relationship can be seen in Figure 2.4.
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Figure 2.4: Geometry of an Elliptical OrbitJ46 1

* Eccentricity (e) describes the shape of an orbit. Eccentricity is roughly equivalent

to the angle at which a right circular cone would be cut to form a conic section.

An eccentricity of zero means that the orbit is circular. An eccentricity ranging

from zero to one represents an elliptical orbit; one and greater represent parabolic

and hyperbolic orbits, which will not be explored. An example of the manner in

which orbital shape is determined by eccentricity can be seen in Figure 2.5.

e = 1.4

Figure 2.5: Orbital Eccentricity1461

The elements a and e describe the shape of an orbit. Often another

element, known as the parameter (p), is used to define an orbit. The parameter
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was established as a mathematical simplification of a common term in orbital

dynamics. The relationship of p to a and e is expressed in Equation (2.4). The

distance from the occupied focus to the orbit, traveling in a straight line,

perpendicular to the semi-major axis, is the physical representation of the

parameter.

p =a(1-e 2 ) (2.4)

* Inclination (i) determines the "tilt" of an orbit. This angle is measured from the k

axis of the inertial coordinate frame to the momentum vector, h . The momentum

vector of an orbit is defined as the vector orthogonal to the plane formed by the

position and velocity vectors. This vector is perpendicular to the orbital plane.

Inclinations from 0 to 90 degrees refer to posi-grade orbits, meaning the satellite

travels in the same direction as the Earth rotates. Inclinations from 90 to 180

degrees represent retrograde orbits where a satellite would travel opposite

direction of the Earth's rotation. This and the following elements are illustrated in

Figure 2.6.

* Longitude/Right ascension of the ascending node (Q) is the parameter that

describes "swivel" of an orbit about the equator. This element is defined by the

angle between the principal axis of the inertial frame, , and the ascending node.

The ascending node is defined as the location where the satellite crosses from the

Southern Hemisphere into the Northern Hemisphere. A vector pointing to this

location is defined by the cross product between the k and h vectors.

* The argument of perigee (ai) describes the orientation of the orbit in the orbital

plane. This parameter is the angular distance from the ascending node to perigee

in the plane of the orbit. For circular orbits, with no defined perigee, this

parameter is undefined. For circular orbits the location of the satellite can be

depicted as an angle from the ascending node directly to the satellite in the orbital

plane.

* True anomaly (v) is used to identify the location of a satellite in its orbit. It is

defined as the angle from perigee to the position vector. Another element often
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used for the same purpose is Mean anomaly (M). Mean anomaly has no physical

interpretation. It is defined as the angle from perigee to the satellite location along

a hypothetical average angular motion orbit. Mean anomaly for any orbit is

defined by Equation (2.5), where the mean motion (n) is constant given the semi-

major axis of the orbit, and (t- r ) is the time since perigee passage.

M=n(t-r)

= it(2.5)

a

The orbital elements are a very convenient way to understand and describe an

orbit. Figure 2.6 below is a basic representation of an orbit. The elements: i, Q, CO, and

v can all be seen in this figure in their relative geometry. True anomaly, and also mean

anomaly, are the only elements of the six that change with time in the absence of

perturbations. For this reason, propagating the state of a satellite in time is a simple

problem of updating v by means of Kepler's equation given some time of flight.

Equation (2.6) is Kepler's equation in terms of the mean anomaly and thus time of flight.

E in this equation represents the Eccentric anomaly. This angle is a representation of the

satellite position on a circular orbit with the same semi-major axis. This mathematical

relationship can be found in Equation (2.7) and the geometric relationship is shown in

Figure 2.7. In this figure, the satellite is located at P, and the line from Q to P to R is

perpendicular to the line connecting the center of the ellipse (c) with the focus (F). As

can be seen throughout this section, orbital elements are an easy way to obtain a simple

geometric understanding of orbital motion.

M=E-esinE (2.6)

1 +e 1
tan-v= -- tan-E (2.7)

2 1-e 2
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Figure 2.6: Example Orbit Defined by Keplerian Elements14 61

Figure 2.7: Geometry of the Eccentric Anomaly 1'

2.2 General Orbit Perturbations

As described earlier, the path of a satellite is defined by its orbit. Assuming a

spherical Earth earlier allowed for the simple conic section description of an orbit in the

two-body analysis. However, the Earth is not a perfect sphere. Continents, oceans,

mountains and other features create varying gravitational forces within Earth that effect

satellite motion. Other celestial bodies have a third-body gravitational effect on a

satellite's motion. Perturbations to the gravitational field are often large enough to move
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the orbit of the satellite dramatically over time. Other perturbations like atmospheric drag

and solar radiation pressure can also perturb an orbit.

While perturbations cause irregularities to the motion of the satellite based on the

simple conic section description of an orbit, they can also be used to benefit satellite

mission planning. With an understanding of perturbations a satellite orbit can be created

taking advantage of these effects. One example of this type of orbit design is the repeat

ground track orbit. This type of orbit will be discussed in later in this chapter. The

satellites of interest to this paper reside in low Earth orbit (LEO), where the largest

perturbations come from atmospheric drag and the J2 oblateness. The strength of the drag

perturbation decreases dramatically with altitude. At roughly 1000 km altitude, which is

the approximated altitude of the satellites in this research, drag will have a negligible

effect on the satellite motion 7 .

2.2.1 Orbit Perturbation Theories

Three mathematical methods have been developed to describe and understand

perturbation effects on an orbit. These methods are: Special perturbation techniques,

General perturbation techniques, and Semi-analytic techniques[48]. Each method has its

own benefits and drawbacks for representing orbital motion in the presence of

perturbations.

Special perturbation techniques numerically integrate the orbital motion by

adding together all perturbation accelerations, a,L,,. Equation (2.3) must therefore be

numerically integrated. This method is usually computationally expensive and prone to

growing errors in numerical rounding over time. However, special perturbation

techniques are very accurate for predicting the motion of a satellite in the near term.

The General perturbation techniques develop analytic representations for the rate

of change in orbital elements. These rates are derived from the original perturbation

accelerations. Unlike special perturbation methods, general methods produce less

accurate prediction of satellite position very quickly. This method has the advantage that

individual perturbation effects can be added as needed once the underlying dynamic
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effects have been derived. This method is used throughout the remainder of the research

and will be explored in more detail in the following section.

Lastly, the semi-analytic method separates perturbation effects into categories

based on their effect on orbital motion. Secular and long periodic effects are propagated

numerically with large step sizes, i.e. 1-day. Short periodic effects are added analytically.

This method is very accurate and is moderately computationally expensive. Constellation

design in this research does not require this level of orbit propagation accuracy.

2.2.1.1 Potential Function

As mentioned in the previous section, general perturbation techniques will be

used to determine satellite motion in this thesis. One advantage to the general

perturbation theory is the ability to select which perturbations to include in orbit

propagation. Due to the concept development nature of this research only the largest

perturbation effect will be considered. The largest perturbation comes from the

gravitational irregularity of the oblate Earth. As the Earth spins, mass around the equator

is pulled outward creating an extra bulge near the equator, or oblateness. This extra mass

causes added torque on the satellite's orbit. This torque causes both the longitude of the

ascending node and the argument of perigee to drift depending on the inclination.

Because of this motion the epoch mean anomaly will also experience a drifting motion.

These effects are better understood through the mathematical derivation of irregular mass

distribution on an orbit.

The perturbing acceleration of non-uniform mass distribution over the Earth is

found in Equation (2.8) . The potential function, R, is a sum of all of the zonal

harmonics of mass distribution. The position vector of the satellite in ECI is denoted by

r . PA represents a Legendre polynomial of the kth order. The co-latitude angle # is the

angle between a unit vector pointing along the k axis of the coordinate system (ik) and a

unit vector pointing along the position vector to the satellite (i,). The JA coefficient in the

potential function represents a scaling factor, based on empirical data, of the kth order

zonal harmonic. The magnitude of the J2 perturbation is roughly three orders of
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magnitude greater than any of the other zonal geo-potential coefficients[481 . For this

reason the perturbation effects from J2 have the greatest effect on the orbit and

subsequently are often the only perturbation explored for initial mission planning

purposes.

d d (R 1r
a,,, =-R = p r* P, [cos(#)] (2.8)

dF- dF- r 4=r2

Where Earth's radius, R.) 63 78.137 km, and J? = 0.00108263

2.2.2 Variation of Parameters

General perturbation techniques rely on an understanding of how perturbations

affect the orbital elements. To understand the effects of the potential function, Equation

(2.8), on orbital motion, it is necessary to determine the rate of change in R with respect

to the orbital elements. This process is known as variation of parameters. The purpose of

this technique is to describe the complex perturbations affecting an orbit as simpler rates

of change to the orbital elements. This method was originally developed by Euler and

then later improved upon by Lagrange and Gauss 4 81 .

2.2.2.1 Lagrange Planetary Equations

Lagrange's contribution to the variation of parameters is a set of equations

carrying his name: The Lagrange Planetary Equations. These equations result from a

derivation of the potential function with respect to each of the orbital elements. This

derivation can be easily followed in the noted references]'E48]. Shown in Equation (2.9),

the Lagrange Planetary Equations provide the rate of change in each orbital element with

respect to time as functions of the rate of change in the potential function with respect to

the other orbital elements . Many of these orbital element rates will change over an

orbit. Also included in this list of element rates is the rate of the epoch mean anomaly,

MO. The relationship of the epoch mean anomaly to the standard mean anomaly is given

in Equation (2.10).
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Where, b = aV 1-e 2

Mo = M -n(t - r) (2.10)

2.2.3 J2 Perturbation Effects

To gain a useful understanding of the perturbation effects on orbits, one additional

derivation is needed. Since the 12 perturbation will have the largest effect on the orbits of

this research, the effects of that zonal geo-potential perturbation must be examined. To

get an approximate understanding of the average rate of change, the potential function

must be averaged. The averaged potential function (R,) for the 12 perturbation is shown

in Equation (2.11 )15 . Applying Equation (2.11) to the Lagrange Planetary Equations,

Equation (2.9) establishes the pertinent rates of change in orbital elements for the J2 zonal

perturbation. Only three of the rates have any numerical value: db, n, M . The perigee

drift rate, d, is given by Equation (2.12)148]. This drift rate will cause the location of

perigee, thus the orientation of an orbit to Earth, to precess within the orbital plane. A

critical inclination of 63.42 degrees will cause this rate to decrease to zero. The drift rate

in the longitude of the ascending node, n, is developed in Equation (2.1 3)48. This rate

will cause the node location of the orbit to rotate about the Earth. This has the effect of

swiveling the orbital plane around the rotation axis of the Earth. Lastly, the drift rate in
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the epoch mean anomaly, M, is given in Equation (2.14)[48]§. This effect causes an

additional rate of change to the mean motion. Each of these perturbation rates are shown

in differential form. The effects of these rates on the epoch orbital elements over time can

be approximated using a first order Taylor series. These rates are fundamentally only

dependent on the orbital elements a, e, and i, remembering that n and p also depend only

on these elements. All orbital dynamics included in this research include these

perturbation effects except for the interceptor flight dynamics.

R) = (2 - 3sin2 (i)) (2.11)

4(l1-e 2)2

d o= 3 J2R n(4 -5sin 2(i)] (2.12)

d- -- 3 J( n cos(i) (2.13)
dt 2 p

dt -J R n4 -e[3sin2(i)-2] (2.14)
dt 4 p

2.2.4 Ground Tracks

An important aspect of an orbit with great significance to constellation design is

the concept of an orbital ground track. Orbital elements allow one to visualize an orbit

from a space perspective. However, it will also be of great importance to understand what

an orbit looks like over the surface of Earth. A ground track is the path on the Earth a

satellite will travel in its orbit. If a line from the satellite were extended in the nadir

direction, pointing to the center of the Earth, this line would trace the ground track.

* This equation in the reference has a sign error.
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Since the Earth is approximately spherical, a Mercator projection of the entire

surface is one method for representing a two-dimensional map of the satellite ground

track about the Earth, as shown in Figure 2.8. Ground traces have a distinctive sinusoidal

pattern as the satellite moves from west to east. The orbit in the sample figure is a low

altitude circular, inclined orbit which circles the Earth 27 times in two days. The

ascending node of the orbit can be identified as the point where the ground track crosses

the equator from south to north. The orbit in the figure starts on an ascending node noted

by a circle on the figure. Additionally, the inclination of the orbit is identified as the

highest latitude reached at the apex of a cycle. The Keplerian period of an orbit is the

time it takes for a satellite to complete one full revolution. The Keplerian orbital period

can be easily visualized in the figure as portion of the orbit that makes one complete pass

from ascending node to ascending node. This orbital period (P) can be calculated by

using Equation (2.15) below.

Figure 2.8: Satellite Ground Track of a 27/2-Repeat Ground Track Orbit

P= 2;r - ;= (2.15)
pn

2.2.4.1 Repeat Ground Track Orbits

A special type of ground track of interest to this research is a repeat ground track.

Since the Earth is rotating underneath the orbit, the ground track's ending point will not

usually connect with the starting point. Perturbations will also cause deviations in the
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ground track over time. A repeat ground track, however, forms a continuous trace about

the Earth. This has the effect of the satellite observing the same ground points day after

day. Repeat ground tracks, taking perturbations into account, are highly dependent on the

right combinations of the semi-major axis, eccentricity, and inclination. In order to repeat

the same path, the orbital period needs to be commensurable with the rotation time of the

Earth, i.e. one Earth revolution. This rate combination is identified as a ratio of the

number of orbits completed by a satellite to the number of Earth revolutions to complete

those orbits. Figure 2.8 from above is an example of a 27/2 repeat ground track. A

satellite in this orbit will make 27 orbits every two Earth revolutions and end up over the

exact same starting location. The start and ending points to this orbit exactly match

inside the circle drawn around the first ascending node.

The key feature to designing a repeat ground track orbit is ensuring that the nodal

period (P), the time it takes a satellite to go from one node back to that same node, be

some rational fraction of the Earth's rotation rate 4 83. The nodal period, shown in

Equation (2.16)48], is very similar to the Keplerian orbital period of Equation (2.15). In

order to make sure the ascending nodes always line up, it is necessary to include perigee

drift rate ( a)) and the epoch mean anomaly rate (M0 ). These rates are determined by the

effect of the J 2 perturbation experienced by an orbit. The period of the Earth's rotation

with respect to the ascending node of the orbit is known as the nodal period of Greenwich

(JP,). This period is directly related to the Earth's rotation rate (ae ) and the nodal drift

rate of the orbit (ni2) due to the J2 perturbation and is expressed in Equation (2.17)48].

These rates must be equal, based on the ratio of satellite orbits over the desired number of

Earth revolutions. To determine a repeat ground track one must iterate on the semi-major

axis given inclination and eccentricity; these elements are imbedded in the development

of the perturbation drift equations.

P = 2 .(2.16)
n + M" + 0)
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P 2r (2.17)

Where oe for this research is 6.30038809866574 radians/day11 "

2.3 Orbital Transfer

The flight of an interceptor is based on a two-body orbital transfer problem. In

general, there is an infinite combination of possible transfer orbits and flight times that

will take a vehicle from one point in space to another. Determining the orbit capable of

transferring a satellite from one point to another in a fixed transfer time is known as the

Lambert problem. The methods and concepts described in this section focus on a method

of orbital transfer identified as the orbital boundary value problem using the hyperbolic

locus of velocity vectors. The algorithmic solutions developed here are used to define the

intercept capability of a satellite-based intercept vehicle after firing.

2.3.1 Fixed Impulse AV

In order to intercept a missile threat, it is necessary for an interceptor to transfer

from the initial satellite orbit to the future location of that missile. The interceptor must

arrive at the same time as the missile in order to make interception possible. To do this,

an interceptor must change its orbit to a transfer orbit capable of interception. To change

orbit, the interceptor must provide a change in its velocity state from that of the initial

satellite state. The change in velocity is denoted as a AV.

As stated the preceding chapter, the interceptor will only be capable of a single

bum from its chemical rocket motor. Chemical rockets are only capable of providing a

fixed AV. The burn duration of the interceptor is very short. In the case of both the upper

stage motors and the AIM-120 AMRAAM interceptor examples, bum durations last

roughly eight seconds . When compared to the flight times in a transfer orbit ranging

anywhere from roughly 5 to 25 minutes, this burn can be approximated as instantaneous.
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Thus the interceptor is assumed to have an impulsive AV. Such an assumption allows for

a simplification to the problem of orbital transfer.

2.3.2 Lambert Problem Geometry

The Lambert problem is best understood as selecting the best available transfer

orbit from one point in space to another. This problem was originally developed from the

desire to determine an orbit given only two position measurements and time of flight.

There are an infinite number of possible orbits that cross through any two points in space.

To identify a particular transfer orbit of interest will require some additional knowledge

about the transfer problem.

Determining where a satellite will be after some time on a transfer orbit usually

requires a solution to Kepler's problem. An alternative method of determining the state

of a satellite at any point in an orbit is through the use of thef and g functions [51. Given

the initial position (ii) and velocity (v- ) vectors at one point in an orbit, the final

position (r,) and velocity (vi,) vectors can be found using the matrix in Equation (2.18)

. In this equation, the f and g functions form a state transition matrix for the position

and velocity of a satellite developed around the orbital elements of the transfer orbit.

These equations also require the angular separation between the initial and final position

vectors (0). Thef and g functions shown as part of Equation (2.18) are for elliptical and

circular orbits, the corresponding functions for other orbit types can be found in the noted

reference**. Note that these equations apply to a particular transfer orbit given its p.

These functions are also limited to orbital transfers with 0 not equal to 180 degrees
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[- =F G][Tv. F G,__V

Where,

r
F=1 (1- cos())

P

F, = a(1 - cos())- p sin(0)] (2.18)
rap

G = sin(O)

G, =1- Lo (1-cos(O))
P

The geometry for an orbital transfer from one point (P,,) to another point (Pf,

described with the equation above, is given in Figure 2.9. In this figure, the vector

connecting the initial and final position vectors is known as the cord vector (C). The

magnitude of this vector is given by Equation (2.19). The angle 0 is also apparent in the

figure.

Figure 2.9: Orbital Transfer Geometry15 1
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C=T -- (2.19)

A non-orthogonal reference frame can be defined by the unit vectors of the C and

i-, vectors (A unit vector points in the same direction as the vector in its subscript but it

has a magnitude of one.) The i and i unit vectors as a basis will be used to find

solutions to the Lambert transfer problem. Given any particular transfer orbit, the velocity

vectors can be directly resolved onto this non-orthogonal basis. This resolution for the

initial and final velocities is shown in Figure 2.10. The angle between the initial or final

position vectors and the cord is defined by $, or #, respectively. The magnitude of the

velocity component along the initial position vector, VP, is given by Equation (2.20). The

magnitude of the velocity component along the cord, vC, is given by Equation (2.21).

Note that each magnitude is known once the initial transfer geometry and orbit are given.

In this manner, a simple relationship arises between the initial and the final velocity

vectors and the magnitude of their components along the skewed axes. This relationship

is given by Equation (2.22), were i indicates the unit vector of the vector defined in the

subscript. The relationship between these equations is only possible by the velocity

resolutions on the non-orthogonal basis formed by i and T .
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Figure 2.10: Skewed Axis Resolution of Transfer Orbit Velocities15
1

VP- -cos(6) (2.20)
p sin(6)

vC= c jUi (2.21)
r ,sin(O)

(2.22)

2.3.3 Terminal Locus of Velocity Vectors

The orbital transfer geometry described in the section above provides an insight

into an interesting phenomenon of orbital transfer. When the Lambert problem is

displayed in this manner, the infinite set of orbits capable of transferring from P to P1

can be encapsulated in a one-dimensional locus of allowable initial velocities, V-0. This

locus of possible velocity vectors forms one-half of a hyperbola, with the non-orthogonal

reference axes as its asymptotes. This hyperbolic locus of velocity vectors can be seen in
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Figure 2.11. The equation of the hyperbolic locus is based on the magnitudes of the

resolved vector components. This equation for the hyperbola is given in Equation (2.23).

Note that: , in this equation, is a constant given only the transfer geometry, and is

independent of a particular transfer orbit.

C

Figure 2.11: Hyperbolic Locus of Initial Velocity Vectors15 1

=v C sec 2(1)

rr 2
(2.23)

The entire range of transfer orbit possibilities, from some initial velocity, is

depicted in Figure 2.11. The dashed region of the hyperbola represents the velocity

vectors of a hyperbolic transfer orbit. The subscript p represents the velocity vectors

capable of a parabolic transfer orbit. All other velocity vectors correspond to elliptical or

circular orbits. The velocity vectors with a wavy bar represent the conjugate velocity

vectors needed to travel from P1 to P0 . These vectors do not contribute to the intended

transfer scheme. The subscript m represents the minimum energy transfer orbit velocity.

2.3.4 Orbital Transfer Using the Locus of Velocity Vectors

The satellite based interceptor problem employs the hyperbolic locus of transfer

velocities to determine if an intercept is possible. A satellite will be traveling in an orbit
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that does not necessarily take it to the desired target point. In this case, the initial velocity

does not lie on the hyperbolic locus needed to reach the desired target point. For this

reason, a AV is needed to allow the tip of the interceptor velocity vector to lie on the

hyperbolic locus. For an interceptor with a fixed AV, there is an entire sphere of launch

angles available to allow the interceptor velocity to lie on the hyperbolic locus.

2.3.4. 1 Minimum Energy Transfer

The minimum energy transfer orbit velocity described in the previous section is

the foundation of the transfer problem. Several interesting relationships arise from the

minimum energy orbit and the desired transfer orbit. At the minimum energy velocity: v,

= 5 . The parameter of this transfer orbit (p,,) is defined only by the transfer geometry,

and is given in Equation (2.24)[5]. The semi-major axis for the minimum energy transfer

orbit is given in Equation (2.25).51. This equation is also given as a function of the semi-

perimeter of a triangle, s. The ratio of any transfer orbit parameter to the minimum
[5]

energy parameter is equivalent to the ratio of that orbit's velocity vector components .

The relationship of the semi-major axis of any transfer orbit can be found as a function of

the ratio of that transfer orbit's parameter to the minimum energy orbit parameter. This

relationship is given in Equation (2.26) . Once a particular orbit's a and p have been

calculated, many of the orbital characteristics for describing an orbit, described earlier,

are easily developed.

p,= rr (1-cos(O)) (2.24)
C

1 1
a,, =-s =-(r +r,+C) (2.25)

2 4

a= r ++_ p 2 rr cos( ) (2.26)
C ) 2 p p.) C
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2.3.5 Time of Flight

The time of flight necessary for an interceptor to travel between two points must

be computed. There are an infinite number of orbits between any two points each with a

particular time of flight. For this reason, the transfer time of a vehicle is also an integral

part of the Lambert problem. Once an available transfer orbit has been chosen from the

hyperbolic locus, it is necessary to determine the time of flight equal to the desired

intercept time. Johann Lambert was one of the first individuals to study the relationship

for the time of flight (TOF) as a function of the semi-major axis of the transfer orbit, the

distance to the starting and end points, and the cord length between them. Lagrange's

analytic solution form of Lambert's theorem is given in Equation (2.27). The equations

for the angles a, and p3 are given in Equations (2.28) and (2.29) respectively. From

these angles, the transfer time is expressed in terms of semi-major axis and the transfer

geometry as Lambert theorized.

TOF = [(a. - sin a,)-( - sin p )] (2.27)

a. = 2sin-K s (2.28)

p8=2sin-' F C (2.29)

The introduction to orbital dynamics presented in this chapter is sufficient to

understand missile defense via space-based interceptors. Orbital perturbations, transfer

velocities, and time of flight techniques have been developed around a basic

understanding of orbital motion. The intercept timing necessary to place an interceptor

and target missile in the same place at the same time is a complex issue, which will be

revisited in Chapter 4. Additional sources of understanding in astrodynamics topics can

be found in the noted references of this chapter.
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Chapter 3
Classical Approaches to Constellation Design

Since the first satellites were put into orbit, engineers and scientists have been pondering

ways in which a group of satellites can be used to accomplish some common purpose. A

group of satellites working in unison towards a common purpose is called a satellite

constellation. If the satellites in the constellation travel in close proximity to one another

to accomplish a purpose, the constellation is known as a formation. Classical

constellation design, applied to ballistic missile defense, and not formation design, is the

focus of this research. The common purpose of the satellites in a constellation is often the

line of site acquisition of a region on Earth. Satellite coverage requires some unknown

integer number of satellites, each of which requires six orbital parameters to establish

location and motion within the constellation. Thus to establish a constellation 6*T

variables must be known, where T is the total number of satellites in a constellation. This

problem is complicated by imposing constraints on the motion of all satellites such that

the minimum required coverage of the constellation always is maintained. In this context,

constellation design is a nonlinear mixed integer problem.

Some of the first serious work in constellation design was done to study the

feasibility of arrays of satellites for communication purposes. Both Louis Vargo and

David LUiders developed the some of the first documented approaches for constellation

design[0 ],1 4 ]. Another of the key pioneers of satellite constellation design was J.G.

Walker. Walker laid down another, more geometrical, approach towards constellation

design in the early 1970's. Several more pioneers in constellation design helped to

further develop these concepts creating approaches of their own, which now serve as the

modem basis for constellation designtt. Much of the early work in constellation design

" Several alternated design methods can be found in the following references: [1 l],[39],[47],[50][55].
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focused on Earth coverage from nadir pointing sensors. Often the design goal, or metric,

for the coverage of a constellation is to establish the minimum number of satellites

necessary for continuous coverage. With fewer than the minimum number of satellites,

coverage becomes discontinuous. In this case, the coverage definition evolves to the

maximum (or average) revisit time. Many of the more recent constellation design studies

have explored this new coverage scheme

Coverage, in a classical context, is usually defined as the region on the Earth's

surface that is in direct line of site to a satellite. The geometric arrangement of satellite

coverage footprints forms the coverage geometry. Nearly all classical design methods

focus on a coverage geometry involving nadir pointing surface coverage with sensors that

have the ability to instantly see their coverage area. This assumption, which is accurate

for electromagnetic sensing or imaging, allows for the common coverage geometry

shown in Figure 3.1. All of the parameters for this type of coverage geometry can be

obtained analytically from planar and spherical geometry calculations. The basic analytic

relationship for this coverage geometry is shown in Equation (3.1). This equation is

derived directly from the geometry of Figure 3.1 using the Law of Sines, where c is the

elevation angle, re is the radius of the Earth, h is the orbital altitude, and 0 is the Earth

central angle of the coverage footprint. The analytic representation allows coverage to be

completely determined with respect to the arrangement of the satellites. Multi-fold

coverage is obtained when multiple satellites can achieve coverage of the same point on

Earth[5 3]. Ensuring good coverage geometry over time for a particular set of target

locations creates a coverage definition. Classical constellation designs are typically

constrained to the following coverage definitions: whole-Earth, latitude-bounded, and

area-specific location coverage. Coverage performance can also be numerically computed

using a set of grid points arranged around the surface of Eartht29]. This method is often

substituted for pure analytic coverage determination. In these cases, the grid of points and

the time step for analysis must be carefully defined. However, determination of coverage

at any point often uses the relationship given in this figure.
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Figure 3.1: Earth Central Angle Coverage Geometry

Cos(O+C) = Cos(e)Cos(/+r)=(3.1)1 +h /ri,

Many arrangements of satellites have been named constellations by classical

designers. All of these constellations share a coverage geometry and meet some coverage

definition. This research attempts to classify classical constellation arrangements into a

specific structure. Starting with sensor coverage geometry and desired targeting goals, a

coverage definition is created. Satellites can be placed in numerous arrangements which

meet the desired coverage geometry. When satellites are arranged with common orbital

characteristics such as elements, combinatorial parameters (like the common number of

satellites per plane), and other design conditions (like a common ground track), that

arrangement becomes a constellation type. A constellation type defines the basic structure

and layout of a satellite arrangement. There are numerous sub-variations within a

constellation type each resulting in a unique constellation configuration. Sub-variations

arise from free design parameters like the choice in inclination, or the total number of

planes and satellites to use. Constellation designers use specific methods for arranging
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the free design parameters to meet the desired coverage definition. These methods for

arranging satellites, within a constellation type's framework, are known as coverage

methods. Multiple coverage methods are capable of designing configurations within any

set constellation type's framework.

The coverage method forces a satellite constellation to meet a coverage definition,

i.e. whole-Earth coverage. Satellite placement polygons, sub-satellite separation

distances, streets of coverage, Earth central angle, enclosing polygon, overlapping

polygon areas, coverage timeline optimization, and ad-hoc genetic algorithm design

approaches are the most common coverage methods with respect to constellation design.

Each method can be used for designing a constellation that achieves the desired coverage

definition, whether it is partial, regional, or whole-Earth coverage. Each approach has

varying degrees of success and each has its own limitations. This chapter will discuss

each coverage method, and the type of coverage definition for which each method is

used.

3.1 Earth Coverage with Circular Orbit Constellations

(Star and Delta Patterns)

Whole-Earth coverage is the first coverage definition that was explored for

constellation design. The first constellation design methods of Vargo, Liders, Gobetz,

Walker, Beste, Ballard, and others, focused on using common inclination and altitude

circular orbits about a spherical Earth to achieve coverage

These methods are distinguished by the great deal of symmetry in the placement of

satellites within the constellation. Symmetrical patterns of satellites are easier to work

with because they limit the number of unknown parameters in a design to a handful of

common parameters. J2 perturbation effects on the orbital cohesion of symmetric

constellations can be ignored by assuming the whole pattern will drift in unison. Also

analysis of the coverage over time becomes an easier problem as well. All satellites

follow the same pattern and thus only a short time span of an orbit needs to be analyzed

to ensure that coverage is maintained indefinitely. This time span is an important
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simulation parameter and will be explored per constellation type. Once complete

coverage is established according to some definition, the symmetry of the pattern ensures

that the coverage will remain constant as the Earth rotates underneath.

In common altitude and inclination circular orbits, little more than a good

understanding of spherical geometry is needed to develop a working constellation.

Polygon enclosure, sub-satellite separation distance, streets of coverage, and Earth central

angle formulations were the first approaches to constellation design based on

symmetrical patterns of satellites. While each formulation is slightly different, they all

focus on establishing Earth coverage using only commonly inclined circular orbits

without regard for relative motion of the Earth underneath. Satellites are placed

symmetrically in such a way that coverage will always be maintained. While these

assumptions and simplifications restrict the design space, the coverage of the resulting

constellations can be quite good. Each of these design approaches will be discussed in

further detail below with respect to the whole-Earth definition of coverage. In whole-

Earth coverage all points on the surface of the Earth must have direct satellite coverage

based on the coverage geometry illustrated in Figure 3.1.

3.1.1 Polygon Formulation

One of the first approaches to designing a constellation of satellites was to

establish a polygon(s) enclosing Earth at some inclination. The Easton and Berescia's

paper illustrates the use of four satellites spaced into a regular tetrahedron about the

EarthL' 5
1. An alternative use of a four-satellite polygon enclosing the Earth can be seen in

Figure 3.21. While the polygon used in this figure ensures coverage with eccentric

orbits, the Easton and Berescia's regular polygon will have coverage gaps due to the

motion of the satellites in circular orbits. It is intuitive, that one satellite will be able to

view, at most, less than half of Earth even from extreme altitudes. This can be imagined

by allowing a sphere to be placed inside of a cone. The cone will touch the sphere

tangentially forming a circle that encloses less than half of the sphere. For this reason,

two satellites equally spaced in one plane will create at most one-fold coverage over all

parts of the Earth except for a small region at each pole. Another set of satellites is
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needed to provide sufficient coverage of this region at all times. The idea is to use the

geometry of equally spaced satellites, forming a polygon in one plane, in conjunction

with another plane to ensure that all parts of the Earth are continuously visible by at least

one satellite.

p 1 , 3 P2 3 4~-

44

Figure 3.2: Polyhedral Enclosure Constellation with Eccentric Orbits [3

The idea of enclosing the Earth with satellites at the vertexes of a regular shape

[21

was first referenced in a paper by Frank Gobetz on satellite networks for coverage .

Gobetz further explores the use of satellite patterns in planes mimicking polyhedrons

about the Earth like tetrahedrons, cubes and so forth. Polyhedron constellations of this

fashion have problems maintaining coverage as the satellites move in their orbits. While

this is not a practical constellation design using circular orbits, it has been shown that this

approach can be successfully applied to highly elliptical orbits[12 ]. The process of using

elliptic orbits to form polyhedrons about the Earth will be discussed in greater detail later

in this chapter.
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3.1.2 "Streets of Coverage" Formulation

If low altitude orbits are required, the complexities of the polygons needed to

cover the Earth increases dramatically. For this reason, another method for determining

coverage from a series of satellites in an orbital plane was developed. The coverage of a

satellite is greatly dependent on its orbital altitude as recognized by Equation (3.1). This

realization led a coverage method called "streets of coverage" or SOC4 4 . The SOC

method uses the same cone and sphere analogy as before. The coverage footprint from

the cone will enclose a circle upon the sphere. By lining up several satellites in an orbital

plane, a dense set of overlapping coverage circles are created. This series of coverage

circles can be seen in Figure 3.3[44]. The continuous coverage "street" width (2C), for this

orbital plane, is two times the distance from the orbital plane trace to the minimum

overlapping coverage footprint as shown in Figure 3.3. The value of C is directly related

to the coverage footprint radius, 0, and the number of satellites in a plane, S. This

relationship is given in the figure itself. As this figure illustrates, one street of coverage

will provide continuous coverage under the orbit trace, but is insufficient to provide

complete Earth coverage. Using multiple streets of coverage from satellites in several

planes, continuous whole-Earth coverage can be achieved.

N POLE

cos :OL o CCos (r/s)

Figure 3.3: Street of Coverage for One Orbital Plane 44
]
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Once a given number of satellites are assigned to a plane, the dimensions of street

of coverage can be identified. A constellation designer now needs to establish what the

orbit trace of this street, and streets created by additional orbital planes, will look like

over a complete orbit. Arranging the streets of coverage, thus the orbital planes, to

produce the desired coverage results is somewhat of an art form. Initially both Vargo and

LUders used this approach with commonly inclined orbital planes3 4]'t 50]. The process for

inclined orbital planes requires that the inclination be sufficient to provide coverage to

the polar region. The number of planes required for complete coverage is then dependent

on the coverage width at the equator, where the streets are the farthest apart. Given a

desired altitude and inclination, a minimum number of satellites required for whole-Earth

coverage can be readily obtained by geometry. The following sections explore some of

the ways in which streets of coverage method can be used to create specific constellation

types.

3.1.2.1 Polar Streets of Coverage Constellations

Two basic constellation types arise from the streets of coverage design method.

The first type was introduced by Liders and then more fully developed by D.C. Beste

and L. Rider several years later 45
]. This type of constellation requires that all orbits have

a common inclination of 90 degrees. All of these polar orbits will provide continuous

coverage over the poles with the coverage gaps arising at lower altitudes as the streets are

spread farther apart. The number of planes in a constellation is directly related to the

latitude, from the pole, in which continuous coverage is desired. This idea can be seen in

Figure 3.4. More orbital planes are required in order to decrease the latitude of the

continuous coverage region. Thus more planes make the separation angle between planes

at the equator, or some specified latitude (X), smaller. For whole-Earth coverage, the

street of coverage from each orbital plane needs to be evenly spaced about one half of the

equator so that each coverage street is touching its neighbor. This type of constellation

was given the name of a star pattern by Walker in his research and will be known as such

in this paper.
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Figure 3.4: Polar Streets of Coverage Geometry71

Star patterns can also be created efficiently, as noted by Beste, by taking into

account the relative motion of the satellites in adjacent planes[73. The excess coverage

area outside width of one street of coverage can be exploited by imposing the rule that all

satellites in one hemisphere travel in a common direction. Relaxing a symmetric

longitude of the ascending node placement, a large common coverage area can be created

with these excess coverage areas from adjacent streets. Satellites need only be phased

appropriately, from one orbital plane to another, to exploit this additional coverage

capability between adjacent streets of coverage. Satellites in the two orbital planes at the

extremes of the hemisphere will travel in opposite directions to each other. The coverage

from these streets will not be able to take advantage of the excess coverage gain and must

be placed so that their common streets widths touch. Placement of a constellation in this

case becomes a matter of how best to arrange the longitude of the ascending nodes over

one side of the Earth. Latitudes close to the equator will create the largest separation in

orbital planes. Ensuring complete coverage at a specified latitude will guarantee coverage

for all higher latitudes up to the pole. This is the idea expressed in Figure 3.4 from above.

The equation for the number of planes (P) required for coverage to some latitude (k)
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given the coverage radius (T) and the street of coverage width (A) is shown below in

Equation (3.2).

(P-1) T +(P+1)A = zr cos(A) (3.2)

In a star pattern, all of the satellites move from one pole of the Earth to the other

in sets of polar orbits. By following the above equation for establishing coverage, a

complete constellation can easily be created. Satellites must then be placed in orbits to

ensure that the coverage variables, P and A, are properly established. The constellation

design variables needed to define such a constellation are the common orbital altitude, the

number of planes, and the total number of satellites. Three design variables is a dramatic

reduction in the number of unknowns needed to create a working constellation. However,

the limitations of the star pattern structure can be quite great. Star patterns often require

significantly more satellites than other constellation types for whole-Earth coverage. This

is due in part to the common crossing point which all satellites must spend time covering.

The next constellation type explored by the use of the streets of coverage method

eliminates the single crossing point for multiple crossover points from inclined orbits.

3.1.2.2 Inclined Streets of Coverage Constellations

Another fundamental constellation type that is developed from the streets of

coverage approach is the delta pattern constellation. Much like a star pattern, this

constellation type requires that all the orbital planes share a common inclination and be

equally spaced about the equator. The orbit traces from each of the orbits, on a Mercator

projection, look similar to a series of sine waves phased some common distance apart.

While initially developed from the work of Vargo and LUders, the most in-depth analysis

of this approach was done by L. Rider [5
],[

4 4
]. Rider used the streets of coverage method,

and the idea of orbit traces approximating sine waves, to mesh a constellation together.

Extending out from each orbit trace, the maximum street of coverage half-width is (C).

Overlaying the streets from each orbit trace, one can identify portions of the Earth

without coverage. The relationship between six orbital traces, and their corresponding

coverage streets, denoted as dotted lines on either side of the solid orbit trace, is
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illustrated in Figure 3.5. The streets of coverage are only shown on the top fourth of this

graph. Circled numbers on the Equator denote each orbital plane.
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Figure 3.5: Streets of Coverage Meshes for Inclined Orbit Traces"1

In order to calculate the number of planes necessary for complete coverage, one

need only look at the orbit trace meshes. Meshes, as seen in the figure above, are the

areas associated with the region inside the intersection of orbit traces. A mesh number

(m) also designates each area. Using this framework, Rider developed a set of equations

to relate the latitudes of the streets of coverage crossing points in terms of a few design

parameters. The design parameters are the inclination (i), C, and the number of planes

necessary (P) at a particular mesh (m). The more planes in a constellation the more

meshes that are created. The upper and lower latitude points where the streets of coverage

cross, are the highest and lowest latitudes of dual coverage area surrounding the crossing

orbits. The upper latitude of coverage from the crossing point of two streets of coverage

is defined by the parameter 0/. In a similar manner, the lowest point of coverage from the

crossing point of two streets of coverage is given by $b. The relationships for these

latitudes with respect to the constellation design parameters are expressed in Equations

(3.3) and (3.4) respectively. Ensuring that 01 = $h for a given mesh, one can calculate the

P and C parameters needed to ensure at least one fold of coverage within the mesh.
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sin(C) = sin(#5)cos(i) -cos(#b)sin(i)cos([m + 1];T / P)

sin(C) = cos(#41 ) sin(i) cos([m -1]T / P) - sin(#,7 ) cos(i) (3.4)

This method of establishing mesh coverage can be applied to create a

constellation for partial Earth coverage. It is possible, as shown through the equations

above, to establish upper latitude bounds of continuous or even multi-fold coverage. The

upper bound of coverage is defined by 0, at the zero mesh, as seen in Figure 3.5 above.

Partial Earth coverage can require fewer satellites, lower orbital altitudes, or fewer orbital

planes. Extrapolating from the equations listed above, it is even possible to establish a

latitude zone of continuous coverage. This is done by specifying a range of lower and

upper latitudes to cover and ensuring each mesh within that zone has continuous

coverage.

For some purposes, it may be desirable to have multi-fold coverage over a region.

Both the star and delta pattern constellations have specific regions that are better suited

for multi-fold coverage, due to manner in which streets of coverage overlap. Star

patterns, as mentioned earlier will have multi-fold coverage at the pole and decreasing

capability with decreasing latitudes. When increased coverage over polar-regions is

desirable, star patterns are the preferable option. On the other hand, inclined orbits tend to

have better multi-fold coverage capability over the mid-latitude and equatorial-

regions[31]-[44. These features are exploited to create constellations that cover a bounded

latitude range. Additionally, each constellation type can be constructed to achieve multi-

fold whole-Earth coverage, at a cost of many additional satellites.

3.1.3 Walker's Sub-Satellite Separation Formulation

Not long after the streets of coverage approach was first applied to constellation

design, J.G. Walker developed and published a series of reports on constellation design

that approached the geometry of coverage in an innovative way[561. Applying the same

analogy used in the previous formulation, a sphere inside of a cone will have a distinctive

circular footprint of coverage on a sphere. The sub-satellite point of this footprint depicts
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the center of the coverage region. Many satellites, in common altitude circular orbits, will

create many of these circular foot prints all over the sphere. Walker's coverage method

uses the geometry of the sub-satellite points and associated circular coverage footprints to

find the maximum sub-satellite distance that is allowable for complete coverage of a

spherical Earth. An example of this geometry can be seen in Figure 3.6. In this figure, an

S denotes the sub-satellite points and the coverage footprint extends an angle T from the

satellite. A.H. Ballard was another pioneer who explored Walker's method of satellite

separation geometries to build satellite constellations2 . Figure 3.6 illustrates how a

separation distance can be found for any three satellites whose convex hull of sub-

satellite points does not include another sub-satellite point. The maximum separation

distance from all three satellites Rwax is calculated with use of spherical geometry for a

spherical triangle. By positioning satellites so Rmax is less than or equal to T for all sets of

satellites over the Earth, whole-Earth coverage can be established.

Figure 3.6: Spherical Geometry for Sub-Satellite Separation Distance

In the same manner as the streets of coverage method, two constellation types

were explored through this coverage method. The first constellation type results from

common polar orbits symmetrically spaced about the equator. As noted earlier, Walker
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designates this type of constellation a star pattern. The other constellation type is called

the delta pattern. This type of constellation is sometimes called a Walker, or Walker delta

pattern in recognition of J.G. Walker's research.

3.1.3.1 Walker Delta Pattern Parameters (T, P, & F)

With either the star or delta pattern, once coverage has been calculated, the

coverage must be maintained throughout pattern changes due to satellite motion. To

ensure that the delta pattern coverage would repeat itself, Walker imposed a set of basic

rules for the design of a delta pattern constellation. These rules specify that the

constellation be composed of some number of planes (P) separated equally about the

Earth's equator. A common number of satellites must be equally spaced within each

orbital plane. The total number of satellites is designated by (T) and must be divisible by

P. All satellites are in commonly inclined circular orbits at the same altitude. The

satellites from one plane to the next plane are relatively phased from one another by an

angle multiplication factor (F), where F takes an integer value from one to P-1. F is a

multiplication factor for the pattern unit angle given by PU=360/T degrees. If a satellite is

at its ascending note, the next most easterly satellite will be F*PU degrees in its orbit past

its own ascending node. With these rules and a given inclination and orbital altitude, a

constellation of this fashion can be completely created from only three parameters: T, P,

and FI5 21,'57 3. With this method the number of variables needed to completely define a

constellation is five. To define the location of every satellite in a random constellation

configuration would require 6*T variables, as stated earlier. While this method introduces

a lot of symmetry to a constellation while removing some design freedom, it does so at a

significant drop in the variability of the design space. This makes delta patterns very

attractive from a coverage analysis standpoint. The symmetric nature means that delta

patterns are repetitive on a definable time scale.

As a final aid to determining coverage for a delta pattern constellation, it is

helpful to look at the sub-satellite points and orbital traces on a pseudo Earth. The pseudo

Earth to be used is a reference sphere, of the same dimensions as Earth, which spins with

a period equal to the orbital period of the satellites. In this fashion, each of the orbital
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traces draw out figure 8's on the sphere. Sub-satellite separation distances are calculated

relatively easily for one full orbit without the complicated hassle of determining coverage

of crossing orbit traces. The relationship of the satellites within figure 8 patterns will

quickly identify where and when the pattern will be strained to maintain coverage. A

typical delta pattern (5,1,1), created as an example in Walker's 1971 paper, is shown in

Figure 3.7. The location of each satellite, A through E, is denoted by an arrow depicting

its motion two positions, 1/20th of a period apart. The orbit traces shown in this figure, are

shown from a downward looking perspective over the North Pole. The figure depicts both

the portions of the traces that can be seen directly (shown as a solid line) and the portions

hidden behind the Earth (shown as a dotted line.) The longitude of the ascending node for

each orbital plane is also identified. It should be noted now for later use, that the orbital

traces of a delta pattern will create spherical polygon around the poles. These polygons

will have the same number of edges as orbital planes. A pentagon can be seen in top

down view of the orbital traces of the five plane delta pattern shown in Figure 3.7.The

associated orbital traces of the same constellation on the pseudo sphere can be seen in

Figure 3.8. This figure is a Mercator projection of the orbit traces on the pseudo Earth.

Figure 3.7: Five Satellite Walker-Delta Pattern Constellation
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Figure 3.8: Five Satellite Walker-Delta Patterns on Pseudo Sphere 561

Both delta and star patterns can provide multi-fold Earth coverage1 4
]. Multi-fold

coverage algorithms that require less effort than finding the maximum sub-satellite

separation distance for any group of satellites have been developed,24 12
1

3', 26
1. These

algorithms can also be applied to constellations with eccentric orbits. The goal is to

measure the area of union from all the coverage footprints. If this union includes the

entire surface of the Earth, then whole-Earth coverage is established. The inclusion-

exclusion principle of set theory can then be used to quickly determine the intersection

areas and thus the levels of coverage at any point on the surface.

3.2 Earth Coverage with Eccentric Orbit Constellations

The methods of coverage determination discussed to this point have traded

freedom in constellation design for a reduction in the variables needed for constellation

design. By eliminating or constraining individual parameters like eccentricity, some

potential for successful coverage constellations with fewer numbers of satellites is lost.

As discussed earlier, one goal in constellation design is to reduce the required number of

satellites to perform a specific coverage definition. Thus, the gain in coverage due to

eccentric orbits may be worth the added design complexity. Recognizing this potential

advantage, the evolution of constellation design has grown towards using eccentric orbits.

Initially the polygon enclosure method, using circular orbit, the minimum number of
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satellites needed for whole-Earth coverage was determined to be six . Using Walker's

innovative methods for coverage and constellation design, it was determined that whole-

Earth coverage could be obtained with five satellites . Several years later, J. Draim

applied the method of polygon enclosure to construct a four-satellite constellation for

whole-Earth coverage 13 j. This constellation was unique in the fact that it used a set of

highly elliptic orbits to maintain coverage with the motion of the satellites. The layout of

this constellation is illustrated in the polygon enclosure constellation of Figure 3.2. These

examples show the potential benefit of eccentric orbits for the design of constellations.

3.2.1 Polygon Approach

Vargo first presented the idea of a tetrahedron of satellites enclosing the Earth.

However, it wasn't until Draim's use of elliptic orbits that a viable constellation was

developed 12
J. The idea behind this approach is simple, and not much different from the

approach developed earlier. The goal is to place satellites in orbits such that the plane

connecting any three satellites does not capture the surface of the Earth. Each polyhedron

requires some set number of satellites to compose the vertices connecting each face. This

polyhedron is not constrained to be regular, i.e. when all the edges connecting the

vertices are of equal length. This allows the polyhedron flexibility to move as needed

with satellite motion and still enclose the Earth. Draim showed that high altitude satellites

in eccentric orbits could rotate about the Earth and maintain the polyhedron enclosure of

the Eartht14 ]. Additional folds of coverage can also be achieved in this manner at the

price of even higher altitude and more eccentric orbits. One such constellation, a 10-

satellite pentagonal polyhedron developed by Draim for continuous four-fold whole-

Earth coverage, can be seen in Figure 3.9.
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Figure 3.9: 10-Satellite Pentagonal Polyhedron for Continuous Quadruple Coverage

3.2.2 Other Uses for Eccentric Orbits Constellations

While eccentric orbit constellations may be a bit hard to fully implement, there

are other coverage benefits that could be worth the trouble. Eccentric orbits can be used

for a number of applications other than whole-Earth coverage. The analogy of the cone

and the sphere changes slightly when discussing elliptical orbits. With eccentricity the

coverage footprint of a single satellite changes throughout the orbit. The footprint size

will be a function of the orbital altitude, as shown in the relationship for the Earth central

angle illustrated in Figure 3.1. Satellites placed symmetrically by mean anomaly in an

eccentric orbital plane will tend to congregate at the apogee of the orbit and become

sparse near perigee. This effect allows for focused coverage in the vicinity of apogee with

larger coverage footprints, and smaller coverage footprints with sparse coverage near

perigee. Both of these effects have been exploited to develop constellations for area

specific coverage, i.e. molniya, tundra, and cobra orbits[4 0],461 ,[3 ]. Eccentric orbits have the

ability to focus on specific areas. In fact, such area specific constellations often require

only one orbital plane. However, circular orbit constellations for area specific coverage

require more satellites (since they don't loiter at apogee.) This makes eccentric orbits

very desirable for certain applications.
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3.3 Area Specific Earth Coverage with Circular Orbit

Constellations

Recent work has considered the development of eccentric and asymmetric

constellations for area specific coverage. As noted in the previous section, eccentric

orbits are better suited for this problem. Working with eccentric orbits adds a level of

complexity to constellation design. For this reason many constellation designers prefer to

work with circular orbits and relax other constraints like the symmetrical placement of

satellites. One such relaxation allows for variable orbital inclinations. Constellations are

developed by organizing the coverage timelines of each potential orbit inclination. J.

Hanson, M Evans, and R. Turner first proposed this idea in a paper on maximum revisit

time of a specific area . Some of the previous constellation types, such as delta and star

patterns, can be adapted to provide localized coverage of a latitude bounded region.

Unfortunately, no other analytical constellation design approach for specific area

coverage has been created for circular orbits. The only other approach to area specific

coverage constellations relies on the use of genetic algorithms. This method is generally

leads to an ad-hoc constellation arrangement.

3.3.1 Coverage Timeline Optimization Approach

One way to limit the number of variables in constellation design, and thus its

complexity, is to transform the problem into one that is better understood. The times of

favorable coverage geometry for a particular orbit can be expressed as a coverage

timeline. Using several pre-computed timelines, particular orbits can be selected to meet

the coverage definition requirements. Thus, the design method becomes an optimization

problem for best arranging coverage timelines rather than a strict satellite placement

problem as discussed in previous methods.

The coverage timeline of a specific orbit is the amount of time a satellite in that

orbit can view a specific region in one repeat cycle. One benefit to this method is that

coverage timelines only need to be computed once and results can be reused for the

placement of multiple satellites. The two key orbital parameters when computing
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coverage timelines are the initial right ascension of the ascending node and the

inclination. To limit the design space only repeat ground track circular orbits are

explored. The only variable remaining to be specified per satellite in the constellation is

the initial mean anomaly. This variable is chosen as a function of where in the repeat

cycle a particular satellite timeline is started. This notion of a common repeat cycle,

relating to the repeat ground track cycle, is important to show that a constellation will

have commensurable coverage for all time. Constellations developed in this fashion fall

into the timeline optimized constellation type. An example of the timelines generated for

a one-day repeat ground track over a series of inclinations is shown below in Figure 3.10.

This figure was generated as part of the work done by D. Ma in the analytic creation of

area specific constellations 371. Given an inclination, the coverage timeline is the vertical

slice of the graph at that inclination. It is apparent from the discrete nature of each

timeline in the graph, that multiple satellites will be needed to fill in the gaps from any

other satellite's timeline. Hanson and DiDomenico also noted from this type of analysis

that some satellites will have better "lobes", lengths of time for continuous coverage

(view periods), at certain inclinations . Inclinations close to the site of interest will

provide fewer but longer view periods of a site, higher inclinations will provide more

frequent observations but with less duration, and finally inclinations with coverage

footprints lower than the site will never provide coverage of that site. The later set of

inclinations can be discarded from the design analysis. As stated earlier, the trick is now

to determine which timelines to use and how best to arrange the set.
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Figure 3.10: Coverage Timelines per Inclination37 ]

Constellation design from this point becomes a fixed schedule optimization

problem. This type of problem however is still not easy; in fact it is NP-hard meaning

that a solution cannot usually be found in polynomial time. While this method may be

exceedingly difficult to solve outright, there are methods that can be implemented to find

locally optimal solutions. One such method, which is also explained in greater detail for

the reader in Appendix 1, is the greedy algorithm. A greedy algorithm seeks to improve

an objective function by taking the next best step. While implementing this approach will

not necessarily find the optimal answer, it will find a reasonably good solution. Hanson,

and later Ma, developed their own types of greedy algorithms for determining how best

to arrange the satellite timelines. Another optimization method that can be used for this

purpose is a genetic algorithm (GA.) The genetic algorithm process is discussed in

greater detail in Appendix 1. The complicated nature of this problem approaches the limit

of analytical constellation design. To develop constellations that allow additional design

freedom, evolutionary optimization algorithms (such as GA) must be employed.
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3.3.2 Maximum Revisit Time

If continuous coverage cannot be provided over a specific region, within the

orbital constraints placed on a satellite, a useful cost function is the maximum revisit

time. The maximum revisit time is the amount of time a specific area or site spends not

covered by a satellite. This metric can then be weighed against the cost of additional

satellites. Additionally, one can specify the metric to minimize the average revisit time

over a site to get a more evenly distributed coverage profile. If the mission can handle

gaps in coverage, any constellation types developed above can be modified for either of

these new coverage definitions. Initially, constellations are designed using the methods

described earlier for bounded regional coverage and then some satellites are removed.

With fewer satellites the issue is how best to reorganize the constellation so that the

revisit time is minimized. As mentioned earlier, the task of reorganizing a constellation is

often left to the hands of a genetic algorithm or some other optimization scheme. Several

authors have done considerable work in this area. The most notable work with genetic

algorithms for constellation design was done by T. Lang 30 3.

3.4 Genetic Algorithm Optimized Constellations

Recently, constellation design has gained an interesting asset for optimally

arranging satellites in the form of the genetic algorithm. Genetic algorithms use a

randomized search procedure to place satellites in an effort to achieve an optimal

objective function. In general, genetic algorithms allow designers to randomly search,

within specified bounds, for the best method of arranging satellites in the constellation,

with respect to a cost function. Because this is a random search algorithm the resulting

placement of satellites in a constellation will usually appear to be ad-hoc. As shown

earlier, the placement of satellite timelines is an extremely difficult optimization problem.

General constellation design, without simplifying constraints, is even more difficult

problem. Genetic algorithms only require information on the objective function, i.e.

coverage, and do not need any gradient information. These algorithms handle integer

problems as easily as non-integer problems. For these reasons, genetic algorithms are

very useful in solving the nonlinear mixed-integer problem of constellation design.
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While genetic algorithms can provide solutions to problems, their use benefits

from the application of engineering insight. Genetic algorithms are notoriously slow at

converging to an optimal answer. Intelligent creation and bounding of variables inside a

genetic algorithm helps to improve the speed and reliability of results. The results

themselves depend on the nature of the constellation design problem. Many recent

constellation designs have focused on the use and results of genetic algorithms for

satellite placement 6]-17-. One method of speeding up the convergence of a genetic

algorithm process is to explore smaller problems with limited numbers of variables 19 ]. If

whole-Earth coverage is desired, asymmetric genetic algorithm constellations are often as

good or better than symmetric constellations[59
]. For area specific problems, asymmetric

genetic algorithm constellations often provide better coverage results than symmetric

constellations 3 2
]. Genetic algorithm results allow for the exploration and design of

satellite constellations that may not be analytically graspable. While genetic algorithms

can provide very interesting and asymmetric results when creating constellations they do

not provide nearly as much insight into the inner workings of good satellite placement for

constellation design.

This chapter has presented the key approaches developed in classical constellation

design. Constellation design is founded around an understanding of a coverage geometry

and definition, i.e. nadir-pointing satellite coverage footprints. In the past, this definition

has been nearly common for all constellations. This research will venture away from the

classical approach to coverage. The coverage methods used to place satellites in a

constellation type will also be applied to create missile defense constellations.

Constellation types ranging from the rigidly symmetric star and delta patterns to eccentric

ad-hoc asymmetrical designs will be examined to determine relative effectiveness of each

type. While classical constellation designs have created many approaches for nadir-

pointing Earth coverage, very few designs have considered alternative coverage

definitions like ballistic missile defense.
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Chapter 4
Interceptor Coverage Development

Constellation design for satellite-based missile defense breaks away from classical design

methods due to a new and complex definition of coverage. As previously mentioned, the

space-based missile intercept problem is multi-dimensional. The first section of this

chapter examines ICBM trajectories and the threatened region discussed in the defense

scenario of Chapter 1. The intercept timing issues and the capability of space-based

interceptors are developed into a mathematical definition of interceptor coverage from

tools formed in Chapter 2. This definition, when combined with coverage methods

abstracted from Chapter 3, becomes the basis for space-based missile defense.

4.1 Intercept Tractability Constraints

For the purpose of intercepting a ballistic missile in mid-course flight there are

some realistic missile-tracking assumptions that must be made. The first of these is that

the trajectory of any ICBM can be identified at launch or soon after by ICBM tracking

assets. There are several assets, as mentioned in Chapter 1, currently capable of meeting

this assumption. To account for the transmission and uplink of an ICBM trajectory to the

appropriate satellite-based interceptors, two-minutes are allowed to pass after the missile

is exo-atmospheric (100 km altitude.) It is assumed that the missile may be intercepted at

any point thereafter until reentry. For this work, an interceptor is postulated to have a

fixed impulsive AV. This leads to a constrained multi-dimensional intercept problem. The

interceptor ignition timing will be developed in the following sections. The goal is to

develop the means to put an interceptor in the right place, at the right time, to allow

intercept of a single ICBM, launched at any time. To defend against multiple missile

launches, each satellite may require additional interceptors. It is assumed that the

interceptor will have the homing capabilities to complete the terminal moments of
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intercept. Any small missile trajectory errors are assumed to be compensated for by the

interceptor during this homing phase. However, the homing phase of the intercept will

not be explored as part of this thesis.

4.2 Ballistic Missile Flight Determination

The specific threat of interest to this research is the postulated capability of the

North Korean Taepodong ICBM. It was noted in Chapter 1, that at a maximum range,

this ICBM was capable of hitting Los Angeles, roughly 9,500 km away. A line

connecting Anchorage, AK to L.A., CA was swept out over an azimuth to Bismarck, ND.

This area represents the threatened region from a North Korea missile launch. The

minimum range considered is roughly 5,800 km. The area enclosed by sweeping the line

over an angle of roughly 15.5 degrees represents the major population centers within the

reach of a postulated Taepodong attack. The threatened region is represented in Figure

1.2. While this missile can hit important U.S. targets outside of this region, such as

Hawaii, the potential for an attack on these isolated areas is slim.

4.2.1 Minimum Energy Trajectories

Trajectories of the Taepodong ICBM capable of hitting the threat region must

now be established. For this study, a single launch point was defined from Pyongyang,

North Korea. Additional trajectories from other launch location inside of North Korea

will not vary substantially from the Pyongyang launch site. Minimum energy ICBM

trajectories were generated to obtain a reasonably accurate assessment of the ballistic

missile flight profiles. Determining the potential flight path of a missile is a complex

Lambert problem involving the launch location and the target location.

The initial maximum flight-path angle (7r.ax), and initial minimum flight-path

angle ( 7m) for an ICBM, can be determined from Equations (4.1) and (4.2)6o]. The

initial minimum-energy flight-path angle (y) lies between these values. A common

approximation for the initial minimum-energy flight-path angle is the average of the two

extremes60 . In these equations, 0 represents the Earth Central Angle of the desired
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ICBM range (measured inertially). In the case of this study, this range was varied from

5,800 to 9,600 km. Only the portions of flight that are exo-atmospheric, i.e. an altitude of

100 km or greater, were used in determining the mid-course portion of flight. The initial

and final positions of the mid-course are represented by: r,, and r1 , respectively. The burn-

out velocity magnitude (V) needed to travel a desired range along the minimum energy

flight path angle is given by Equation (4.3)[60] All possible minimum energy trajectories

capable of reaching the threatened region can be calculated using this velocity calculation

for all desired ranges and azimuths. The trajectories were then propagated in inertial

space and translated into ECF coordinates to account for the rotation of the Earth during

flight .

ymax = tan sin(O)+ (1- cos() (1- cos(6)) (4.1)

7m = tan- sin(O) - rr(1 cos (0)) (1- cos(0)) (4.2)

V= p(1 - cos(0)) (4.3)
cos)[()r cosy / r, -cos(+ y)]

The entire three-dimensional volume encompassed by all of these trajectories,

from exo-atmospheric point to their re-entry point, is defined as the missile corridor. The

three-dimensional side view representation of this corridor can be seen in Figure 4.1. A

two-dimensional Mercator projection of this corridor can be seen in Figure 4.2. This

figure also portrays the full range capability of a postulated Taepodong ICBM, identified

as the lighter shaded portion of the Earth. The missile corridors created for this specific

threat are fixed in the ECF frame. This means that the entire corridor will rotate with the

motion of the Earth during a simulated analysis. All trajectories emanate from the

common North Korean launch location. Another view of the missile corridor is shown in

Figure 1.2. Trajectories emanating from other North Korean sites, or targeted at other

locations in the United States, will slightly deviate from this corridor. The estimates on
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range and azimuth were slightly enlarged to create a conservative missile corridor

approximation, by accounting for some of these possible trajectories. Ensuring that any

potential missile is intercepted before that missile traverses through the corridor is the

goal of mid-course missile defense.

Missile Corridor

Figure 4.1: Side View of Missile Corridor

Missile Corridor

Figure 4.2: Mercator Projection of Missile Corridor
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4.3 Interceptor Timing Problem

Coverage in the context of this work requires that a satellite-based interceptor can

reach a target location at the appropriate time. The intercept timing issue is one of the

most important aspects in determining coverage. An analogy of this problem can be

drawn to a football pass from the quarterback to the receiver. The quarterback is the

satellite bus, the ball is the interceptor, and the ICBM is the receiver. In order to complete

a pass, or missile interception, the quarterback must ensure that his throw arrives at some

point and at the same time as the receiver arrives at the intercept point. The quarterback

must lead his target and time everything so that the receiver can complete the pass as

planned. This analogy gives an idea of the timing issues involved, however the dynamics

of orbital motion are far more complex than a receivers play route.

In the case of the space-based intercept problem, the time a missile trajectory has

been identified and relayed to the appropriate satellites signifies the ICBM identification

time (TID). In this research, it is assumed that TID is two minutes after the exo-

atmospheric point. After this point the satellite has the option of loitering in its orbit or

firing its interceptor. The interceptor ignition time, Tignite is the time the interceptor is

fired from the satellite. The time from TIDto Tignite is the satellite-loiter time (SLT). After

some time of flight, based on orbital dynamics, the interceptor captures the ICBM in its

trajectory at a nominal intercept time (Tintercept). A simple illustration of this timing

geometry is shown in Figure 4.3. The trajectories of a satellite, the ICBM threat and the

interceptor are displayed to achieve a sense of the timing. As identified in the figure, the

capture time is the sum of the SLT and interceptor time of flight (IntTOF.). Capture time is

also the missile flight time along the ICBM trajectory, after TID, where the intercept will

take place. The ignition time and the intercept time are free parameters for timing an

intercept. As this diagram suggests there are a wide range of possible intercept timing

combinations. These combinations are bounded by the physical limitations imposed by

orbital motion and the final reentry time constraint. Interceptor capability is the focus of

the following sections.
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Figure 4.3: ICBM Intercept Timeline

One important timing issue associated with the intercept problem is the relative

speed of all the actors. Note that the interceptor, satellite, and missile all have different

characteristic velocities. The trajectory of each vehicle is determined by orbital motion. It

should not be inferred from the diagram above that this is a 1-dimensional timing

problem. In this case, the satellite, the interceptor, and the missile are all moving at

different speeds and in different directions. These differences cause a distribution of

terminal intercept geometries and relative closing speeds. Typically satellites in this

research travel in circular orbits with a speed around 7 km/sec. An interceptor, as defined

earlier, has a maximum AV of only 1.3 km/sec from the satellite. The average ICBM

velocity magnitude will change dramatically over an orbit its trajectory from 4.8 to 6.9

km/sec. This large velocity separation is exploited when computing intercept solutions. In

a 21-satellite constellation example taken from this thesis, a histogram of the number of

intercepts for various closing speeds is shown in Figure 4.4. Most interceptors arrive with

closing velocities between 3 to 9.5 km/sec. This fact illustrates that the relative approach

speed of a satellite bus, as viewed from an ICBM, is large. Large closing speeds are
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necessary for kinetic intercepts. A histogram of the number of intercepts for various

terminal intercept angles is shown in Figure 4.5. This histogram illustrates that a

majority of the interceptors approach the ICBM from rear to the side, i.e. 5 to 85 degrees

from directly behind the ICBM. This is due in great part to the 63 degree inclination of

the 21-satellite constellation. These terminal characteristics are not included in the design

process, but are presented to provide an understanding of the relative speeds and

approach angles at intercept.

% Coverage = 100
29,015 Total Intercepts

11

0

0
0 1 2 3 4 5 6 7 8 9 10 11 12

Relative Interceptor Closing Speed (km/sec)
13 14

Figure 4.4: Histogram of Intercepts per Interceptor Closing Velocity
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Figure 4.5: Histogram of Intercepts per Terminal Approach Angle

4.3.1 Coverage Development

Coverage in the context of this thesis is the ability of a satellite-based asset to

intercept an ICBM within the threat corridor. This metric is a true-false condition for

each interceptor at a particular instant in time. The interceptor either will or will-not be

capable of intercepting a particular target location at the allotted capture time, from an

initial orbital state. The capability of the interceptor is also limited by its AV. The ICBM

threat corridor, where all intercepts take place, is a three dimensional volume. For these

reasons, classical definitions of constellation coverage are not directly applicable for

missile defense.

4.3.1.1 Multi-Dimensional Reachability Envelope

The interceptor reachability envelope is the region where an interceptor, fired at

some time, could strike an ICBM given a set capture time. To gain an understanding of
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the inertial interceptor capability, it is helpful to examine it from the geometric point of

view. Firing an interceptor in every possible direction at a particular instant will create a

sphere of reachability. This intercept region will seem to grow like a wave front

emanating from the satellite over time. A simple illustration of this effect can be seen in

Figure 4.6. The size of this manifold is largely related to the available capture time,

which translates into allowable interceptor flight time. Figure 4.7 is a simple

demonstration of the multi-dimensional timing issues involved within the intercept

problem. A target can be intercepted, at a specific capture time, from a series of different

combinations of flight times and satellite loiter times. Note that if a satellite loiters too

long there is the possibility of entirely missing the ICBM. The work in this thesis will

primarily focus on the first opportunity of intercept. Figure 4.8 indicates the influence of

two-body dynamics on the reachability manifold, which begins to look like a cornucopia

stretched about the Earth. This figure displays the spherical wave-front of inertial

interceptor positions (in kilometers) at time intervals to the desired capture time. All of

these positions represent an envelope of interceptor reachability (12-minute capture time

in this case.) To be intercepted, a missile must be inside of the reachability envelope of an

interceptor. This condition is not a guarantee of capture, but it is a requirement for

intercept. The cut-off near the end of the manifold represents those trajectories that pierce

the atmosphere. Intuitively, the satellite bus "pushes" its interceptor reachability manifold

forward as it orbits the Earth.

6 minl
4 min

2min

Figure 4.6: Interceptor Reachability with Increasing Time of Flight
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Figure 4.7: Interceptor Ignition Timing
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Figure 4.8: 12-Minute Interceptor Reachability Envelope

The reachability envelopes of an interceptor at 6, 12, 21, and 31 minutes are

displayed in Figure 4.9. These graphics were generated by plotting the actual orbital path

of many interceptors over time in Matlab*. The reachability envelopes represented in this

figure are from a specific launch location and shown in an inertially fixed view. The

geometric representation of interceptor reachability is helpful for understanding coverage,

but alone, is insufficient for a complete intercept solution.
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Figure 4.9: 6, 12, 21, and 31-Minute Interceptor Reachability Envelopes

4.4 Algorithmic Coverage Development

The geometric representation of interceptor reachability is effective for

understanding satellite coverage for the purpose of missile defense. The mechanics of

orbital transfer serve as a mathematically sound approach for intercept coverage analysis.

Given a desired capture time, and inertial target location, an ignition time solution to the

AV fixed Lambert problem must be computed. Figure 4.10 represents the flow diagram
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of the interceptor coverage determination function. This figure embodies the algorithm

described in this section. Functional inputs include: the satellite position and velocity, the

desired ICBM target/intercept locations, and the available capture times. This function

uses three nested loops to determine if a satellite in the constellation, with an available

capture time, is capable of intercepting an ICMB target location. This function iterates to

determine the timing sequenced needed to intercept a target location as the missile

arrives. The function outputs the percent coverage over a given simulation time.

n ICoverage Determination Function

CB Target L cations Outer Loop: Each ICBM Target Location
Available Capture Times Mid Loop: Each Available Capture Time

Inner Loop: Each Satellite in Constellation

S-- - a teration: Bisection Method

E Propagate Satellites bv SLT Next Iteration
5 initlly: SLT & Lower Limit SLT (Lower Lirrut + Upper Limit) 12

Break Current LooD:
R, a Intercept Not Possible

interceptor AV Intersects Locus?
FIfnNo& L iTO +LT

If Yes SLLese oe G0ea Yes Th

Interceptor Time of Flight {TOF) Else ste Tsme
Determination I r t

Less than or equal to capture tme? SLT = Capture Time- TOF

If Yes & &SLT = p B-

Figure 4.10: Algorithm for Coverage Determination Function

4.4.1 Intersecting the Hyperbolic Locus

The hyperbolic locus of transfer velocities is useful in finding a solution to the

fixed AV and fixed time of flight intercept problem. As developed in Chapter 2, the

hyperbolic locus of velocity vectors represents the complete set of velocities that will

transfer an object from one point to another in some orbit. This hyperbolic locus exists in

only two dimensions defined by the unit vector of the cord (T ) and the unit vector of the
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initial position ( ). Therefore, the hyperbolic locus lies in the plane connecting the

initial firing point with the desired target point. In most cases, a satellite bus will not be

traveling in this plane. If the interceptor is allowed to fire in any direction, this creates a

sphere of possible velocity changes emanating from the initial satellite bus velocity. The

radius of this sphere is the magnitude of the fixed AV. If the sphere of possible velocity

vectors intersects the hyperbolic locus then the interceptor can hit the chosen target with

the interceptor velocity, V1. This intercept concept is depicted in Figure 4.11 in the plane

of the hyperbolic locus.

Hyperbolic Locus

P- Pi. of Velocity Vectors

In-Plane Slice of the Sphere of

Possible Interceptor Velocities

AV

0 0

r

Figure 4.11: Orbital Transfer using the Hyperbolic Locus of Velocity Vectors

The roots of Equation (4.4), below, are used to determine if the sphere of possible

intercept velocities will allow the final velocity to lie along the hyperbolic locus. In this

equation, 0, #, Vo, and are given in the transfer orbit development of Chapter 2, many

of these variables are also identified in the figure above. The variables: a and p

represent the components of the velocity vector resolved in the non-orthogonal reference

frame. These parameters were represented in Chapter 2 by v, and vC respectively. The

a parameter denotes the velocity component along the initial position vector, and p
parameter represents the component along the cord vector. The change in notation is

necessary to simplify the identification process for multiple vector component
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resolutions. The subscripts to these variables refer to either the initial or final velocity

vectors. The roots of this fourth order equation, given in Equation (4.4), will always have

two imaginary parts. The two remaining roots may be real, repeated, or imaginary. If the

roots are real, the largest 8, will result in shortest interceptor time of flight. This is due

to the fact that velocities with larger p, will result in orbits approaching hyperbolic

transfers, which have the shortest times of flight between two points. The semi-major

axis of the interceptor's transfer orbit is obtained from Equation (2.26). The time of flight

for transfer is then given by Equation (2.27). If the interceptor time of flight is equal to

the capture time then an intercept solution is found. If the flight time is less than the

capture time, the procedure must be iterated to compute the exact ignition time and SLT.

The iteration process will be discussed in the following sections. This analysis of the

hyperbolic locus intersection represents the physical intercept availability in the coverage

determination function shown above in Figure 4.10.

p - (2p+2a, cos#0)+p62 (V+2cos$-AV2 )
,8 6.12A, f(4.4)

-p, (2aog + 2p8) cos $)+2 = 0

4.4.2 Time of Flight Limitations

Interception must occur at a target location, exactly when the ICBM reaches that

location. There may be multiple satellites capable of hitting a target location. However,

some of the interceptors may require significant flight times. The time of flight of the

interceptor must therefore be limited to within the available capture time. These

calculations rely on a specific inertial location of the target. This location must be chosen

once the ICBM has been identified. The amount of capture time to intercept an identified

missile is variable up to a maximum value. The maximum capture time is equal to the

remaining flight time of the ICBM until reentry. For this thesis, all of the timing analysis

was completed on a discrete one-minute timeline. However, solutions to the intercept

timing problem were iterated to a tolerance of less than ten-thousandths of a second to

ensure nearly exact timing. The interceptor time of flight can be found from the analysis
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in Chapter 2. The time of flight evaluation is the next step in the coverage determination

function given in Figure 4.10.

4.4.3 Satellite Loiter Time Iteration

The hyperbolic locus allows for a transfer to a specific target location, which is

identified as the point an ICBM will occupy at Tintercept. Although this point and intercept

time is fixed, the interceptor time of flight needed to get there is not. If the interceptor

reaches the target earlier than Tintercept, the satellite must loiter for some length of time

before firing to make up the difference. The satellite will loiter in its own orbit while it is

waiting to fire. During this loiter time, the satellite may float in or out of the preferred

intercept environment that was previously intended. In this case, intercept availability and

flight time must still be within the constraints for a feasible solution. If the interceptor

continues to approach the target location more quickly than the missile, then more loiter

time is required. However, if the intercept geometry becomes un-feasible or the time of

flight too long, the given loiter time must be reduced. This problem lends itself nicely to a

bisection approach to determining the correct satellite loiter timelt. The algorithm's

solution finds the SLT needed to allow an interceptor to arrive at the same time as the

ICBM. In this manner, an iterative solution to interceptor coverage is developed. The

functional flow of this algorithm is represented in the coverage determination function of

Figure 4.10.

Throughout many intercept simulations, the algorithm for satellite loiter time

often converged very rapidly to a solution. The histogram for the number of algorithm

iterations per number of intercept attempts is displayed in Figure 4.12. This figure

demonstrates the quick nature of convergence for most intercept attempts. The difference

between the interceptor flight time and the allowable capture time was used as an initial

guess at the needed satellite loiter time. The bisection algorithm was allowed a maximum

of 20 iterations. The average loiter times needed for each intercept attempt can be seen in

the histogram of Figure 4.13. This figure shows that satellites often require very little

a An understanding of a simple bisection approach is found in the appendix
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loiter time. But, there are cases where satellites loiter for a long some time and are still

able to intercept the ICBM. Note that in these scenarios the available capture time was

allowed to increase up to the entire ICBM flight time. Both of these figures examined the

same number of example intercept attempts, some 36,450 intercepts over six hours.
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Figure 4.12: Histogram of Intercepts per Required Convergence Iterations
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Figure 4.13: Histogram of Intercepts per Required Satellite Loiter Time
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A continuity argument can be made for the intercept geometry during this timing

problem iteration. To illustrate this geometry, it is helpful to think of a reference frame

fixed to the moving satellite. A simple two-dimensional illustration is of the intercept

problem from this perspective is provided in Figure 4.14. In this satellite-fixed frame,

interceptor flight paths appear to emanate like a wave fronts from the satellite. These

wave fronts represent the interceptor capability for a specified time of flight. An ICBM's

path would follow some unknown continuous path through the intercept region. If an

interceptor can reach a desired target point on the ICBM path before the interceptor

would reach that same point, the satellite must loiter away some of its available capture

time. The effect of loitering would be manifested as a change in the flight path of the

ICBM. However, as the desired target point moves it will eventually cross an interceptor

capability envelope corresponding to the remaining capture time available. Thus an

interceptor could then be launched to intercept an ICBM at the precise time and location.

One could make the argument that if an interceptor can initially reach the target location

in less than or equal to the allotted amount of capture time, then by continuity, it is

capable of intercepting the ICBM. No iteration of the exact SLT would be necessary.

Implementing this course of action produced the exact same interceptor coverage results.

However, this is a complicated continuity argument to justify because of the high level of

dimensionality in the intercept timing problem. In any respect, the iterative method of

intercept analysis provides a computationally efficient and precise method for

determining the coverage capability of a satellite-based interceptor.

93



Intercept Capaility
E nvelopes foi a Given
Time of Flight

Possible litercept
Trajectoiy

intecegA Location
Intewded Cature

N ICBM Trajectory

Motion of Taiget
Location During
S atellite Loiter
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Chapter 5
Fence Coverage Constellation Design

Pursuit of an adequate ballistic missile defense coverage definition led to a complex

multi-dimensional intercept problem. The focus of this chapter is to develop satellite

constellation design methods using this new coverage definition. Discussion of the

coverage definition demonstrated the large range of possible intercept timing

combinations. This chapter simplifies the intercept timing problem in an effort do

develop constellation design methods similar to those used in classical approaches. The

stated goal of this research is to develop constellations to defend the United States from a

specific threat. The missile corridor encompasses the available region for intercepting

ICBMs. To simplify coverage from within this corridor, the concept of a fence barrier is

created. This barrier will serve as a defense shield by ensuring that all ICBMs will be

intercepted, as discussed in Chapter 4, at the barrier location. The two-dimensional slice

of the threat corridor creates a tractable approach to constellation design based on

abstracted classical coverage methods. Many of the classical constellation design

approaches, discussed throughout Chapter 3, are abstracted for missile defense purposes

within this chapter. New constellation types and design methods are also created from the

fence barrier approach to ballistic missile defense.

5.1 Missile Corridor Barrier

As described in detail within Chapter 4, all potential missile trajectories capable

of threatening the CONUS are encapsulated in the missile corridor. To provide coverage,

i.e. missile defense, a satellite-based interceptor may hit an ICBM at any point in its

corridor. Dimensionality of this problem is reduced by creating an artificial barrier, or

vertical slice, through the missile corridor. Specifying a desired target location in this

manner fixes the capture time for each trajectory and eliminates the variability of Tintercept.
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To ensure complete missile defense, satellite-based interceptors must be capable of

hitting every point on the two-dimensional surface of the fence at all times. This

capability ensures that no missile could sneak past the defense fence. Designing a satellite

constellation with this capability is the focus of this chapter. The reduction, in the

allowable intercept region within the missile corridor, means giving up opportunities to

intercept at other locations in the corridor. The benefits of adding back this degree of

freedom will be discussed in future chapters with reference to the volumetric coverage

definition.

5.1.1 Timing and Location

The fence location was chosen to be roughly half way through the missile

corridor. This location corresponds to a twelve-minute capture time for the arrival of the

fist ICBM in the corridor, and a twelve-minute ICBM flight time from TID. Other ICBM

trajectories will have time of flights to the fence barrier that are greater than or equal to

twelve minutes. Each of these flight times relates to a unique capture time per trajectory.

The orientation of the fence, at a mid-point location within the corridor, is vertical to the

Earth's surface. It is fixed over one location on Earth in the ECF coordinate frame,

implying that it rotates with the motion of the Earth. The location of this barrier is

represented as the solid dark line in Figure 1.2 and Figure 4.1. The location of the fence

was chosen for several reasons. 'This region of the missile corridor has the smallest cross-

sectional area and is near the highest average ICBM altitude. Smaller cross-sectional

areas exist at earlier points in the corridor, but these points allows less capture time.

There is a design trade off on where best to position the fence for best coverage with the

fewest number of satellites. This thesis is focused more on the development of a

particular design methodology rather than a complete analysis of this design trade space.

The fence location was chosen at the furthest point an ICBM could traverse the

corridor in twelve minutes. The convex hull of all of the trajectories at this location

serves as the actual size of the coverage area. This cross-sectional area, also known as

the fence, can be seen in Figure 5.1. Each point on this area represents a unique arrival

time for a particular trajectory. A general feel for the size of the fence can be obtained
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from the dimensions given on the figure. The fence is roughly rectangular being

approximately 700 km tall by 1300 km wide. The figure demonstrates the relative

position of the fence over the surface of Earth. As the figure also demonstrates, the fence

defines the two-dimensional coverage area for missile defense from ICBMs traveling

through the corridor. Unlike classical coverage areas, this area is vertical, and at an

altitude of 1092 km above the surface of the Earth. The fence is located between 65.34

and 55.38 degrees North latitude and at 177.66 degrees East longitude. This places the

fence at orbital altitudes and roughly over the Bering Strait.

Figure 5.1: Cross-Sectional View of Vertical Fence Barrier

Guaranteed ICBM interception at this two-dimensional wall ensures 100%

ballistic missile defense of CONUS from the specific (North Korean) threat. Note that

every point on the fence area must be covered at every instant in time to ensure no

missiles get through. This scheme allows the coverage problem to become more tractable

for constellation design. It is conceptually easier to apply classical constellation design

methods to the missile defense problem using this fence defense scheme. However, fence

coverage does not take into account other missile interception opportunities.
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5.1.2 Coverage Considerations

In the mathematical algorithm for the interceptor timing, a bisection method is

used to compute the actual satellite loiter time and interceptor time of flight needed to hit

the ICBM. This algorithm does not change with fence coverage. However, the outer loop

for exploring all possible capture times per trajectory can be removed. The complexity of

the intercept problem has been reduced to coverage of a specified set of target locations

on the fence. These locations relate to a set capture time for each trajectory. Through

iteration the necessary combinations of satellite loiter time and interceptor time of flight

are found to ensure capture at the fence location.

5.1.2.1 Coverage Implementation

Geometrically, fence coverage can be obtained using coverage footprints similar

to those of classical coverage geometries. The interceptor reachability envelope is pushed

about the Earth in the direction of motion of the satellite. The intersection of the

reachability envelope with the two-dimensional fence represents the interceptor coverage

footprint. As the satellite moves in time, its coverage footprint on the fence will grow and

shrink. One interesting aspect of coverage on the two-dimensional fence is the convex

nature of the problem. At any instant when the reachability envelope intercepts the fence

area a convex coverage footprint is created on the fence. Additionally, each of these

convex footprints lie at the roughly the same location in the mid-point of the fence (note

that this feature was built into the design of the constellation and will be discussed

below.) To ensure complete coverage, every point on the fence must be covered at all

times. Populating the fence area with numerous discrete points slows computation time

for coverage analysis. A simplifying approximation can be made based on the geometric

notion of convex sets. If only the exterior outline of the fence, since it is also a convex

set, is populated with points the interior can be ignored. Due to convexity, coverage gaps

in the interior of the fence, if they exist, will be apparent on the edge of the fence. On

average these footprints are much larger than the fence region, and the center of the

footprints is always at the mid-altitudes of the fence. This geometric understanding of

satellite coverage is helpful, but geometric insight alone does not solve the problem. A
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complete mathematical analysis is necessary to establish the precise intercept timing

combination to ensure accurate coverage.

Populating the fence boundary provides a very good approximation of coverage.

To test this, the coverage from several constellations was computed over both: a set of

points along the exterior of the fence, and a denser set of points scattered over the entire

fence area. Several constellation types were tested through the same scenario at one-

minute time increments. In the test with only the exterior points, 16 points were used

spread about the fence perimeter. In the denser testing analysis, 1000 points were placed

randomly throughout the fence area. Several constellations were considered, all with very

nearly 100% coverage using the exterior points. Of the constellations tested, only four

instances in all of the constellations tested showed any discrepancies with coverage

outages predicted from the exterior point's analysis. These four discrepancies each lasted

one minute or less. All were outages that could have been predicted with a denser set of

exterior points. An example is shown in Figure 5.2 below. In this figure, the random test

points that are not covered appear as dots in the fence area. The estimated coverage loss

in this example delta pattern constellation, at this instant, was 22%. The area not covered

by the reachability footprint has been outlined on this figure by tracing the exterior of the

not covered points. This area is a gap in coverage and was detected by the exterior point

analysis. It is apparent from the figure, that the coverage gaps are the areas where the

convex reachability footprints do not completely cover the fence area. Testing results

demonstrate that exterior point analysis is an appropriate approximation.
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Coverage Gaps

Figure 5.2: Coverage Gaps from Inadequate Reachability Footprint Overlapping

100% coverage of all the points on the fence at each instant in a simulation

defines complete missile defense using the fence definition of coverage. During a

simulation the satellites in a constellation configuration are propagated at some discrete

time interval, usually one-minute for these research purposes. At each minute the

intercept capability of each satellite is determined against each point of the fence. The

number of points intercepted divided by the total number of exterior points represents the

percent coverage at that instant. This percentage is stored at each time step and the

simulation is progressed forward. The coverage process is repeated throughout the

duration of the simulation. This whole coverage analysis and simulation process defines

the complicated non-linear "function" that is constellation coverage. The general

algorithmic process for fence coverage simulations, using the constellation designs

developed here, will be further described in the following results chapter.

5.2 Adaptation of Classical Constellation Designs

A specific coverage location is identified with the use of the fence barrier

approach to missile defense. Unlike classical constellation designs, this target area is a

vertical strip suspended above a fixed geographic location. It is possible to abstract

several methods of constellation design to support this coverage concept. This section
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outlines several coverage methods classically used to create various constellation types.

These coverage methods will be used to create a priori estimates of constellation

configurations capable of 100% missile defense at the fence. Individual configurations, of

each constellation type, are created from modified parameters of the a priori constellation

designs. The methods described here are based on abstracted methods of classical two-

dimensional Earth-surface coverage. A priori constellation configurations, designed in

this analysis, must be modified and tweaked to obtain better actual fence coverage results

from the coverage estimates of the abstracted methods. The following portions of this

chapter will describe the design results of each method of constellation design.

This section explores the use of abstracted classical methods of constellation

design as well as the development of new derivations to constellation designs. Most of

the constellation types described here are similar to the classical constellation types with

the same name. Constellations developed around the fence coverage definition will be

slightly different from their classical counterparts.

Many of the first classical constellations were developed using circular orbits in

highly symmetrical patterns. Later constellation designs allow for asymmetrical

constellation placement and the use of eccentric orbits. The constellation development in

this work will follow a similar path. Highly symmetric circular orbit constellations are

developed first. These constellations are followed by other methods of constellations

design focused around area specific coverage. Later, the use of genetic algorithms to

construct ad-hoc constellations with very little symmetry will be explored. The use of

constellations with eccentric orbits will be discussed briefly.

5.2.1 Pseudo Spherical Earth Approach

Some of the first successful classical constellation designs were developed

through the use of symmetric patterns of circular orbits. As discussed in Chapter 3, these

constellations were developed around circular orbit footprints on the surface of the Earth.

Unlike the classical coverage definition, interceptor reachability does not leave a

discernable footprint on the surface of Earth. The interceptor coverage capability is a
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time-varying manifold. In order to develop constellations similar to classical designs, a

pseudo spherical Earth is created. The reachability manifold from each satellite is

mapped to this pseudo Earth creating a satellite footprint similar to that of classical

coverage footprints. Using these pseudo footprints, constellations similar to classical

constructions can be readily developed.

The shape of a reachability envelope from a satellite is similar to a cornucopia as

described throughout Chapter 4. Using the notion of a fence barrier twelve minutes down

range in the missile corridor, the twelve minute capture envelopes from each satellite will

all share a common size and shape. The reader is directed to Figure 4.8 for a geometric

view of a twelve minute reachability envelope. The pointing direction of the envelope is

based on the altitude of the satellite and the direction of its motion. If all the satellites in

constellation are at a common orbital altitude in circular orbits, all of the reachability

envelopes will be identical and point in the direction of motion for each satellite. This

feature can be exploited to develop coverage footprints on a pseudo spherical Earth at the

orbital altitude. The term pseudo spherical Earth refers to an imaginary sphere with a

radius identical to the orbital radius of each satellite. Therefore each satellite travels on

this sphere over its entire orbit. In this manner, a two-dimensional "coverage footprint"

can be traced on the sphere around each of the reachability envelopes. The effective

coverage on the pseudo sphere, doted with coverage footprints, is now similar to the

classical representation of coverage on the Earth's surface. For this reason the sphere at

the common orbital altitude is known as the pseudo spherical Earth. The coverage

footprints from each satellite and the satellite traces on this sphere are used to define an

abstracted SOC method.

Coverage footprints on the pseudo spherical Earth represent only a two-

dimensional portion of the reachability envelope. The interceptor capability above or

below this sphere is not taken into account with the coverage footprint. Using the idea of

a coverage footprint, an a priori constellation can be generated. Unfortunately, the desired

coverage area of the fence is perpendicular to this pseudo sphere. For this reason, a priori

constellation designs will need to be modified to ensure compete fence coverage outside

of the pseudo sphere approximation. Additionally, several constellation configurations
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will be developed and explored around the a priori constellation design. These

configurations will have different numbers of orbital planes and total numbers of

satellites but follow the rules for construction based on the desired constellation type. In

this manner, an entire design space will be explored around each constellation type to

provide a collection of configurations capable of complete missile defense.

5.2.1.1 Modified Streets of Coverage

The streets of coverage design approach allowed classical constellation designers

to develop constellations based on strings of coverage footprints in an orbital trace.

Classically, designers used a string of satellites in an orbital plane with connecting

coverage footprints to create a common coverage area around the Earth. This idea can be

seen in Figure 3.3. Using coverage footprints on the pseudo sphere, this method can also

be applied to constellation design under the new coverage definition. In a similar fashion

to the classical street of coverage approach, a coverage swath is laid about the pseudo-

sphere with a half-width distance, C, extending on either side from the orbit trace. This

represents the continuous coverage region per orbital plane. Several of these streets from

additional orbital planes can by overlaid on the Earth until the desired coverage results

and a constellation are developed.

The intersection of the interceptor reachability envelopes with this pseudo sphere

is a two-dimensional surface. This surface, or "coverage footprint", looks very much like

an ice cream cone (as apposed to the classical circular coverage footprint.) The

approximate dimension for the Earth central angle along the length of the cone is 40.34

degrees, with a width at the widest point of 13.14 degrees (for a twelve minute

reachability envelope.) Placing several satellite coverage footprints in one orbital plane,

an abstracted street of coverage can be created. This abstracted street of coverage,

depicted in Figure 5.3, allows for an a priori constellation design using some of the same

methods as classical designs.
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Figure 5.3: Pseudo Streets of Coverage Approach

5.2.1.2 Star Pattern Approach

The star pattern is a simple constellation to construct and a good starting point for

the abstracted streets of coverage approach to constellation design. Star pattern

constellations only need a set number of parameters to completely describe the

arrangement of satellites. The number of parameters is independent of the total number of

satellites actually in the pattern. A benefit to the star pattern constellation type is that it

will provide 100% coverage from either pole to a specific latitude. Generally fewer

numbers of satellites are needed in star patterns to provide coverage above a specified

latitude. Since the fence coverage area is in the upper northern latitudes, this research

only seeks coverage over these latitudes.

The star pattern is created by arranging a fixed number of planes, each having an

identical number of satellites, semi-symmetrically about the equator. This results in all

the orbital planes having a common intersection point at either pole. An example of a star

pattern was depicted in Figure 3.4. To develop a constellation with the new coverage

definition, circular coverage footprints are replaced with the ice-cream cone shaped

footprints on a pseudo sphere. The A parameter serves as the common street of coverage
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half-width, depicted as C in Figure 5.3. T is the maximum half with of a cone, roughly

6.57 degrees for a twelve minute envelope. The number of planes (P) necessary to extend

coverage from the pole to some specified latitude (X) can be found from Equation (3.2)E7].

In this abstraction, the A and T parameters of the new reachability footprint are simply

applied to the same classical equation. The desired latitude of coverage in this case only

needs to extend down far enough to cover the fence latitude. The lower latitude of the

fence, as mentioned previously, is 55.38 degrees. With these parameters and Equation

(3.2), an a priori constellation configuration was generated using thirteen planes with

eleven satellites per plane, or 143 total satellites, for complete fence coverage on the

pseudo sphere.

The a priori constellation from Equation (3.2) assumes that all the satellites in one

hemisphere are traveling in the same direction, i.e. north to south. In this way, there are

only two orbital planes that will see satellites traveling in opposite directions. Adjacent

orbits traveling in the same direction can be partially phased with one another. Walker's

inter-plane phasing parameter, F, is not used in the classical streets of coverage approach.

However, it is useful with the new coverage paradigm. Adjusting the parameter F allows

the coverage lobes for each street to mesh like gears, filling coverage gaps in three

dimensions. The F parameter affects the amount of A available in the design of star

patterns for a given number of planes. While not originally used in the streets of coverage

formulations, this parameter will be used in both the star and delta pattern constellation

designs to find the best phasing for better coverage results.

A constellation configuration for a star pattern is given by a set number of planes

and satellites per plane. The a priori constellation configuration developed is based on the

two-dimensional pseudo sphere coverage abstraction. The parameters F and A are both

adjustable measures for ensuring that orbital planes are close enough together to provide

coverage to the desired latitude. Both of these parameters directly affect the spacing of

the orbital planes about the Equator. The parameters: F, A, and common orbital altitude

(h) must be adjusted to provide the optimal coverage results for each configuration.

Additional configurations with varying numbers of planes and satellites per plane must be

explored around this estimate to find constellations actually capable of 100% fence

105



coverage. Note that optimizing about the design parameters F, and A, and not

constraining the integrality of the results, will cause constellations to slightly lose some

of their original symmetry.

By running simulations for a little over twelve hours in simulation time, the Earth

will rotate underneath half of the constellation. This will allow the fence coverage area to

see all parts of the constellation, and not allow the optimization to drive to constellation

away from continuous coverage configurations. Because of the nature of the coverage

function, the nonlinear optimization package SNOPT was used to tweak the allowable

constellation parameters to maximize the percent coverage during the simulation. SNOPT

allows a user to input partial derivatives to a nonlinear function when they are

available 2 0
1 . However, the coverage function is not a simple function for which partial

derivatives can be easily obtained. For this reason, the finite-differencing capability of

SNOPT is employed to compute partial derivatives of the simulation coverage function.

The potential for the optimizer to fall into a local minimum was always apparent. For this

reason, the optimization was run for several test cases with differing initial starting

conditions. It was made apparent by this analysis that the a priori estimates were often

the best starting points for continued optimization. In general, optimization of this sort

proved quite effective in enhancing the coverage of a priori constellation designs. A more

detailed discussion of optimization and the SNOPT package used is found in Appendix 1.

5.2.1.3 Delta Pattem Approach

Star patterns are a variant of the delta pattern with specified polar inclinations for

all satellites in the constellation. For this reason, the delta pattern designs appear very

similar to those of the star pattern designs with the flexibility of common inclinations

other than 90 degrees. The use of the abstracted streets of coverage method is again an

integral part of delta pattern design. In keeping with classical delta pattern design,

constellations in this work will be identified by Walker's three parameters: the total

number of satellites (T), the number of orbital planes (P), and the inter-plane satellites

phasing parameter (F). With Walker's three parameters, one can quickly establish the

placement of each satellite in a delta pattern. Orbital planes in this constellation type now
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have many crossing points. This makes delta patterns better suited for lower to mid-

latitude coverage. This research develops the delta pattern by adapting the streets of

[44]coverage meshes approach shown in Chapter 3 and used by Rider

The reader is reminded that a mesh is an area enclosed by the orbital traces. The

notion of meshes is illustrated in Figure 3.5 and discussed in greater detail in Chapter 3.

Meshes are numbered by m, where m = 0 indicates a polar region. Larger values of m

indicate the number of different orbital traces that cross above the mesh. There may be

many of these meshes in a constellation.

While this constellation design method is capable of defining the constellation

configuration needed to cover any mesh, only the meshes in the region of the fence must

be considered. In this way, fewer total satellites will be required for fence coverage

versus whole-Earth coverage. Since the fence resides in a high latitude band, at a specific

longitude, the coverage can be tailored for that region. Constellations developed in this

manner will provide similar effective coverage at any longitude over an entire latitude

zone. Equation (3.3) and (3.4), previously used in Rider's determination of constellation

coverage, will be selectively used to provide coverage in only the meshes of interest. In

this way, an a priori constellation can be developed around complete coverage of the

fence using the new coverage footprints.

It was apparent to Rider and others, that satellites with inclinations near the

latitude of the desired coverage area will have the greatest opportunity for sustained

coverage periods2
1],[

4 4
]. Equations (5.1) and (5.2) describe the lower and upper bound on

the streets of coverage crossing points[4 4
]. Equation (5.1) is the lower latitude bound ($,)

of the m = 0 crossing point as illustrated in Figure 3.5. Equation (5.2) is the upper latitude

bound ($h) for the m = 2 crossing point. An ideal inclination (i) to achieve complete

mesh coverage can be found by combining Equations (5.1) and (5.2). The ideal

inclination is given in Equation (5.3). The unknown parameter in this equation is the

number of planes in the constellation (P). However, this parameter is specified for each

constellation configuration. The C parameter serves as the common street of coverage

half-width, as depicted in Figure 5.3. This parameter for coverage swath half-width can

107



then be directly solved for from either Equation (5.1) or (5.2). In this manner, complete

coverage can be achieved as long as m = 1 is always completely filled by the surrounding

streets of coverage. Equation (5.4) is used to ensure that the m = 1 is completely covered

given an ideal i and C with some number of planes, P.

sin(C) = sin($,) cos(i) - cos($1,) sin(i) cos(z / P) (5.1)

sin(C) = cos($) sin(i) cos(z / P) - sin($h) cos(i) (5.2)

tan(i)= sno)+ i(P (5.3)
(cos() + cos($,)) cos(x / P)

sin(C) = sin2 (T /P) sin(i) cos(i) (54)

cos2 (i) + cos 4(Z / P) sin 2 (i)

Constellation configurations capable of 100% coverage, by meeting these

abstracted coverage requirements, can now be established. The P and T parameters

define the initial constellation configuration. In an effort to explore various constellation

configurations, the number of planes were varied from 2-200. At a minimum, eight

planes are necessary to provide complete coverage over the latitude zone with an ideal

inclination of 62.27 degrees. As the number of planes increases, the ideal inclination

tends toward the central latitude, between the upper and lower bounds of the fence, at

60.36 degrees. During these calculations the required C, to ensure complete m=1

coverage, varied from 4.68 degrees to 4.98 degrees. Each of these values is well within

'P, the maximum half-width of the interceptor reachability coverage footprint of 6.57

degrees. This implies that an a priori delta constellation can be developed using the mesh

coverage abstraction. Such an a priori constellation configuration will be the stepping off

point for further optimization.

Optimization is necessary to tweak the constellations to provide three-

dimensional coverage from the two-dimensional coverage estimation. Similar to the star

pattern, mesh coverage with streets of coverage approach does not account for inter-plane
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satellite phasing between orbital planes. However, the parameter F will be included here

in an effort to enhance coverage by meshing the footprint lobes. Using the inter-plane

satellite phasing parameter (F), the inclination (i), and the altitude (h) as optimization

parameters, any delta pattern configuration can be optimized to maximize interceptor

coverage. The total number of satellites in a constellation configuration was limited to

around 200 satellites for this exploration. Only constellations that provided at least 90%

coverage are reported in this work. In the initial delta pattern analysis, between 6 and 27

orbital planes were considered, with each plane containing an equal number of satellites.

Using these bounds a great many configurations were explored around the a priori

configuration estimate.

Because F is allowed to be a non-integer, the constellation periodicity is not

readily apparent. The first and last satellites in the constellation are not phased in the

same way as the remaining satellites. In order to ensure continuous constellation

coverage it is necessary to understand the repeat periodicity of the delta pattern. Both

Figure 3.7 and Figure 5.4 below, show how delta patterns develop a polygon shaped

mesh (m = 0) over the North Pole" . This polygon has the same number of curved sides as

planes in the constellation. The pattern will repeat itself once two vertices, or peaks, have

passed over the same point on Earth. The coverage area will see the same coverage just

mirrored once it passes the trough of a side. The troughs of these patterns occur at the

mid-point to each side of the polygon. Figure 5.5 depicts the simulation time needed for

a ground point to view the constellation from peak to peak and from peak to trough. This

figure was created by comparing the 12 perturbation rate of the ascending node with the

rotation rate of the target site over Earth. While this does not encompass the full repeat

cycle due to the broken symmetry, the fundamental nature is captured. Approximately

twice this repeat pattern period is used in the analysis to optimize coverage simulations.

§§ Interceptor reachability envelopes with twelve-minute capture times are shown in this figure extending

from each satellite. This graphic has the effect of showing the street of coverage of each orbital plane.
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Figure 5.4: Five Plane Delta Pattern, m = 0 Polygon View
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Figure 5.5: Walker Delta Pattern Repeat Observation Times

5.2.2 Single Satellite-per-Plane Approach

A noticeable trend emerged throughout this analysis and exploration around the a

priori constellation configuration of the delta pattern. The actual results of the analysis of

the delta pattern will be discussed in the following chapter; however the trend of the
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solutions will be mentioned here. In delta pattern configurations with an equal number of

total satellites, configurations with more planes often had noticeably better coverage.

This is very similar to the results Walker and others noticed for area specific coverage in

their constellation coverage analysis ' . Some of the best coverage results, with the

fewest number of satellites, often come from constellations with a single satellite-per-

plane. This configuration layout has the effect of braking down some of the inner

symmetry apparent in delta patterns and the street of coverage method. The same three

parameter scheme is used to construct these constellations with the number of planes

equal to the total number of satellites, P = T.

While single satellite-per-plane constellations are simply a sub-set of the delta

pattern, in this research they are studied apart from the delta pattern. This distinction is

due in part to the fact that there is not a good understanding of how to create an a priori

constellation. There is no longer a discernable street of coverage with one satellite per

orbital plane. The constellation relies heavily on a good inter-plane satellite phasing to

place satellite from several planes in the area of interest. Results generally show that

constellations which place several interceptor reachability envelopes on the fence area at

any one time provide better coverage results. For this exploration, the same design

parameters: (i), (F), and (h) were allowed to vary. Equation (5.3) can be used, in the same

fashion as in the delta pattern analysis, to obtain an approximation for the ideal

inclination. As will be discussed in the results section, the value of F for each

configuration was obtained through several gradient based optimization attempts using

the SNOPT toolbox. Picking the appropriate starting F for optimization required several

attempts to avoid sub-optimal local minima. Through this detailed search procedure, one

satellite-per-plane constellations also appear to provide the best missile defense coverage

results with the fewest total numbers of satellites.

5.2.3 Timeline Optimization Approach

One of the most beneficial aspects of single satellite-per-plane constellation is its

ability to slightly break the symmetries apparent in the delta and star patterns. The ability

to break from a symmetrical design allows a constellation designer more freedom in the
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type of orbit used. One more recent constellation design method deals with the use of

coverage timelines from repeat ground track orbits[23', 37]. This allows for a much greater

freedom of design; however more variables are required to describe the complete

arrangement of satellites in a constellation. Simple three-variable representations for

constellations will not suffice. Additionally another, more accurate, abstraction of

constellation design must be applied beyond the streets of coverage method.

Repeat ground tracks are very desirable for area specific coverage because the

ground track is guaranteed to follow the same path over on the ground day-after-day***

This method has the distinct feature that constellations can be constructed without any

apparent symmetry other than the desire repeat cycle. The first step in this type of

classical constellation design required that the coverage capability of different orbits be

pre-analyzed. In classical timeline optimized constellation design, a satellite was allowed

to orbit for its repeat cycle, commonly some number of orbits per Earth revolution. The

time and duration of any observations of a particular ground site were recorded for a

specific orbit inclination. In this manner, each orbit inclination has a specific timeline for

ground site observations. The classical method of timeline optimized design takes these

timelines and builds a constellation to obtain the desired coverage results. The classical

approach to this method is described in greater detail in Chapter 3. However no work, as

known by this author, was done to develop a constellation for continuous coverage based

on this method. The drawback to using repeat ground track orbits is that they must have a

specified semi-major axis if the eccentricity is fixed. To simplify the variability of this

design the eccentricity will be set to zero. This simplification will be removed later.

To abstract the timeline optimized constellation design method for fence coverage

a circular repeat ground track was found that nearly matched the desired mid-fence

altitude. The repeat ground track of 27 orbits for every two Earth revolutions was chosen

because it has the shortest repeat time, two Earth revolutions, with an altitude within 74

km of the desired fence altitude. The ground track of a 27/2 repeat cycle orbit can be seen

*** The usefulness and method of construction for a repeat ground track orbit is described in more detail in
Chapter 2.
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in Figure 2.8. As this figure illustrates a repeat ground track of a particular inclination

will traverse much of the Earth in 27 orbits. After the coverage analysis of each orbit,

constellation design becomes a matter arranging the ground tracks to provide continuous

fence coverage.

5.2.3.1 Timeline Analysis

Timelines for repeat ground tracks are easily produced; however, using the

coverage method to optimize the timelines and create a constellation a harder task.

Timeline analysis per orbit was performed by initializing a satellite at a longitude of the

ascending node (Q ) from 0 to 45 degrees, at half degree increments, and at an inclination

(i) from 50 to 130 degrees at half degree increments. Varying inclinations leads to slight

changes in the semi-major axis to ensure the same repeat cycle. Inclinations outside of

this range provide no coverage of the fence area. A satellite was propagated forward two

full days to acquire a complete repeat ground track timeline from each orbit initialization.

Creating timelines for coverage of each point on the exterior of the fence, the

approximate coverage over the whole fence can be determined. The time of day and

duration of fence coverage for each inclination, at zero degrees longitude of the

ascending node, is shown Figure 5.6. Timelines, represented in this figure, are vertical

strips starting near the inclination designation and continuing upward over the two-day

interval. The horizontal bars, common across sets of timelines, are indicative of the

orbital period of each orbit. Some of the coverage spikes, indicated by the slightly darker

shaded dots, reach 100% coverage. This figure is very similar to that created for classical

designs seen in Figure 3.10; however Figure 5.6 covers a larger range of inclinations for a

longer time period. The coverage in most timelines does not reach 100% during every

observation. This lack of coverage capability is further illustrated in the accompanying 3-

dimensional graph of Figure 5.7. This figure represents the same data as in Figure 5.6,

however the vertical axis represents the percent fence coverage during each observation.

No information is given in either of these figures about where on the fence the partial

coverage is located.
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Several facts of coverage can be gained from the timeline analysis for

implementation in constellation design. The 100% coverage durations along each

timeline ranged from a single minute, at lower inclinations, to seven minutes at

inclinations around 90 degrees. If only the 100% coverage time segments were used in a

greedy algorithm approach at adding together timelines, nearly 200+ satellites are needed

to create a constellation for continuous 100% coverage over two days"'. If partial

coverage durations are factored into the total coverage time per inclination, higher

inclinations approached 17 total minutes of partial coverage at a maximum. This

maximum was reached at an inclination of 89 degrees. If the total partial coverage time

is factored in, 169+ satellites would now be required from greedy algorithm

approximation. This shows that there is greater potential for fewer satellites in a

constellation if partial coverage is used in the design.

Preliminary analysis indicates that there is a trade space between coverage

duration and inclination. As shown in Figure 5.6, lower inclinations have many more

coverage opportunities. These opportunities are shorter in duration than those near polar

orbits having fewer total opportunities. This analysis done in this research extends farther

than classical examples by allowing for retrograde orbits and additional longitudes of the

ascending node. The longitude of the ascending node range is roughly equivalent to the

angle between three consecutive ascending node crossings over the equator. With this

range all possible coverage variations can be thoroughly explored. Classical methods of

this type did not look at the effect of varying the initial longitude of the ascending node.

The net affect of this extra analysis is negligible for single point observations. For the

new definition of coverage over the fence area, many different longitude placements will

allow orbits to see different parts of the fence at different times. Constellations can be

pieced together from partial coverage results. As satellite timelines are chosen, a satellite

can be placed at any point in its timeline. This ability allows constellation designs using

either common or multiple inclinations. The next step in the design process involves

intelligently selecting which orbit timeline to use, and where in that timeline to start a

particular satellite.

m The methods and purposes of a greedy algorithm approach to optimization can be found in Appendix 1.
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5.2.3.2 Constellation Development

Creating a working constellation from the coverage timeline analysis is the next

step in the timeline optimized constellation design process. Fence coverage is more

complex than the visual coverage used in classical timeline analysis. For this reason,

simple classical sorting algorithms are insufficient to create a constellation based on

partial fence coverage timelines. In this research, a genetic algorithm package is used to

place timelines of a particular inclination, longitude of the ascending node, and at

precisely the right starting time. The package used in this research was developed in the

Automatic Control and Systems Engineering Department of Sheffield University, UKTI-.

Details of the functionality and uses of genetic algorithm optimization can be found in

Appendix 1.

A drawback to the use of a genetic algorithm for this purpose is the run time

needed for simulations of an entire a population of constellation arrangements.

Constellations in this analysis need only be observed for their repeat cycle, i.e. two-days.

The total percent coverage of the fence area by a constellation was used as the fitness

level to evaluate particular individuals. To improve the speed of a simulation a discrete

binary analysis of each fence point was used on a one-minute interval. A binary value of

one indicates no interceptor coverage of that fence point at that time. Each of the 16 fence

pointes were initialized with an array of ones for each of the 2880 minutes of a two-day

simulation. Full fence coverage at some time is obtained when the sum of the values for

all 16 binary values add to zero. 100% simulation coverage means that there are no ones

within the 46080 binary values. An analogy of this binary process can be imagined with a

bowling lane filled with 16 pins across and 2880 pins deep. The goal for complete

coverage is to simply knock over all the pins. The bowling ball represents a satellite's

intercept capability as it moves in and out of range over the course of two-days. Using the

genetic algorithm, a collection timelines can be arranged and overlaid to ensure complete

coverage over the whole two-day simulation. The genetic algorithm optimization for

timeline placement is not constrained to the same symmetric satellite arrangement of

The source code for this genetic algorithm package is freely distributed on the internet .
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previous design methods. In this manner, an asymmetric constellation of repeat ground

track orbits can be constructed for fence coverage missile defense.

5.2.4 Repeat Delta Pattern Approach

Results, given in the following chapter, illustrate that timeline optimized

constellations generally have worse coverage capabilities than single satellite-per-plane

constellations of the same number of satellites. One of the most beneficial aspects of the

one satellite-per-plane constellations is their ability to break apparent symmetries of delta

pattern constellations. An important lesson learned from the results of the previous

constellation designs is that some symmetry can be beneficial to the coverage. Symmetry

in timeline optimized constellations is difficult to create with a random arrangement of

satellites. It is also more difficult to launch a large number of satellites into precisely

timed and completely different orbits, than it is to send the same number of satellites into

commonly inclined symmetric orbits. Both symmetric and timeline optimized methods

have their own unique benefits within constellation design. Thus a new constellation

design method can be created by combining these strengths.

Applying the symmetry of a delta pattern and the repeat ground track orbit of the

timeline optimized method, the repeat delta pattern constellation can be created. This

design uses only one common ground track and symmetrically places a given number of

satellites along the ground track. While the constellation is not a true delta pattern,

Walker also attempted to develop delta patterns with the repeat ground track feature .

However, Walker's work was based solely on the two-body motion and spherical

trigonometry. When these designs were tested by the author, the constellations did not

maintain a repeat ground track under 12 perturbations. In this work, each satellite

comprising the repeat delta pattern constellation will have its own orbital plane. All of the

orbital planes will share the common characteristics of: inclination, semi-major axis, and

eccentricity. The phasing angle of each satellite, and thus the true anomaly, is precisely

described to ensure that it will follow a common ground track. Once again the 27/2 repeat

ground track was chosen for the repeat cycle for the constellation. A circular orbit with

this repeat pattern will have a semi-major axis very close to the mid-altitude of the fence.
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Describing the constellation in this manner defines a strict symmetry along a

common repeat ground track. Placing satellites back to back to provide a continuous

street of coverage would require approximately 412 satellites. However, taking a lesson

from the single satellite-per-plane results, evenly distributing satellites along the same

ground track can achieve the same coverage results for the higher latitudes where many

of the orbit traces cross. The goal is similar to filling in the first mesh with coverage from

different orbital traces. Unfortunately the phasing parameter is no longer a free variable

to manipulate due to the repeat nature of the ground track. The benefit to this pattern is

that a portion of the constellation, with good coverage from crossing orbital traces, can be

fixed over the fence location.

5.2.4.1 Constellation Development

The following section describes the mathematical method of developing a repeat

delta pattern constellation. Equation (5.5) must be used to place longitudes of the

ascending nodes from each consecutive satellite into the same ground track taking into

account orbital perturbations. Much like a delta pattern, many orbital elements of each

satellite are common throughout the constellation. Only the true anomaly (v) and the

longitude of the ascending node (Q, ) are different from satellite to satellite. The

subscript n, in Equation (5.5), refers to the sequential satellite number, i.e. n = 1 ... T. The

true anomaly separation angle between satellites is specified as 9720 degrees divided by

the total number of satellites in the constellation. This separation angle places the

satellites evenly over a 27/2 ground track. The node rate (n) is determined from the J2

dynamics as described in Chapter 2. Note that co, is the rotation rate of the Earth.

17 0 2rc * 27 *(n - 1)(5)
v*T

Each satellite in the constellation follows the same ground track but resides in its

own unique orbital plane. A benefit to this constellation type is the ease of its design and

construction. Only two design variables remain for optimization once the total number of

satellites and the repeat cycle are established: the common inclination (i), and the starting
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longitude of the ascending node (0, ) (Note that the semi-major axis is dependent on the

inclination to maintain the repeat ground track.) The nonlinear optimization package

SNOPT was used to optimize these design parameters. Simulations of this constellation

type must be run over the full two-day time period to see all parts of the constellation.

The simulation configuration and design results follow in the next chapter. This design

scheme was founded on the idea that it would use the best of several methods in

designing constellations for area specific coverage. A fixed ground track together with a

bit of symmetry is created in an effort to provide fence coverage with fewer numbers of

total satellites needed.

5.3 Constellations for Coverage Gap Filling

Throughout the design, construction, and testing phases of the above mentioned

constellation designs, a method was created for enhancing the coverage results of

constellations not quite capable of 100% coverage. The constellation gap filling idea

involves intelligently placing additional, non-symmetric, satellites into an existing

constellation to fill any existing coverage gaps. The goal of this method is to use a few

additional satellites to bring a constellation configuration up to 100% coverage.

To properly fill the coverage in a constellation, it is necessary to determine the

repeat pattern of coverage outages. In the case of the repeat delta and timeline

optimization constellations, these patterns repeat with a two-day cycle. Outages patterns

within the star and delta patterns varied with the configuration of the constellation.

Through inspection, it was observed that their coverage outages also appeared on a one-

to two-day repeat cycle. Since this is not a constellation design method, test cases of less

than 100% coverage are used to investigate the method of constellation gap filling.

5.3.1 Satellite Placement for Coverage Filling

The process of filling the coverage gaps in a constellation has three parts. The

first part is simply determining the patterns of coverage outages over the course of a

constellation's repeat cycle. To accomplish this, a matrix of binary points was created
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representing each exterior fence point at each minute. This approach is identical to the

coverage timeline determination process used for the timeline optimization method. The

next step of this process involves identifying the coverage timelines for every available

orbit. This process was also completed earlier for the 27/2 repeat ground track orbits, see

section 5.2.3.1 . The third part of this design involves taking the coverage timelines from

available orbits and matching them to the coverage outages of the original constellation.

Again, this process is similar to the genetic algorithm timeline sorting process used for

constructing timeline optimized constellations.

Going back to the analogy of the bowling lane filled with pins, where pins

represent points of the fence without interceptor coverage. The original constellation is

capable of knocking down several of these pins leaving only isolated pins placed

sporadically throughout the lane. Each orbit has its own specific path through the lane,

and may or may not be capable of knocking over some of the remaining pins. At this

point, a genetic algorithm is used to pick which orbit timeline to use to best knock down

as many pins as possible. One interesting note on this process is that genetic algorithm is

capable of filling coverage gaps with the timelines from several obits at once, or

gradually filling coverage with single orbit timelines. In this analysis both approaches

were explored. The genetic algorithm optimization was first used in a greedy algorithm

fashion. The optimization algorithm was allowed to randomly select the timeline to best

remove as many coverage gaps as possible. As the algorithm reaches convergence, there

may still be some coverage outages from the original constellation plus the new satellite.

In this fashion, orbits are added one at a time until complete 100% fence coverage is

achieved. The use of a genetic algorithm in a greedy manner allowed for a faster

determination of an approximate number of satellites needed for constellation gap filling.

Additional genetic algorithm runs, optimizing several orbit timelines at once, may help to

decrease this total number of additional satellites needed. While not a complete

constellation design method, this procedure completes coverage in otherwise deficient

constellations. The resulting constellations achieve complete fence coverage but lack

coherent design structure due to the random orbit placement.
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5.4 Eccentric Orbit Modifications

Constellation design methods, abstracted from classical methods, are only a

starting point for additional constellation design approaches using the new coverage

definition. Star, delta, one satellite-per-plane, timeline optimized, and repeat delta pattern

constellation types are identical to or abstracted from classical methods. However, these

constellations are still limited to only using simple circular orbits. Circular orbits are

good for ensuring constant coverage footprints in the classical coverage method. The next

step in the constellation design process is determining what missile defense coverage

improvements can be made by adding eccentricity to existing constellations.

Eccentricity has the potential to open up the constellation design space. Only a

very few classical methods incorporate eccentricity into constellation design . Orbits in

a constellation type shared many common orbital elements. One orbital element that is

common to all of the above mentioned constellations is zero eccentricity. Circular orbits

are simple to work with because mean anomaly is the same as true anomaly, and iteration

using Kepler's equation is not required for orbit propagation. However, there are also

some enticing benefits in the use of eccentric orbits. Eccentric orbits allow satellites,

evenly spaced in mean anomaly in a common orbit, to congregate around apogee were

the relative velocities are slower. The size and shape of reachability envelopes vary, since

the satellite speed is slower at apogee. Varying the eccentricity of an orbit allows for a

selection of the drift rates in perigee and ascending node locations, even while

maintaining the same inclination.

As a side focus, this research explores the use of eccentric orbit modifications to

developed constellations. Adding eccentricity allows several design parameters to be

variable within a constellation. In addition to semi-major axis, inclination, and starting

longitude of the ascending node; the constellation design process can now allow for a

variable argument of perigee and eccentricity. To maintain the symmetry of a

constellation, both eccentricity and argument of perigee must be common to all satellites

in the constellation. The reason for this constraint in individual satellite freedom comes

from the desire to keep constellation cohesion. Constellation cohesion refers to the
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symmetric placement of satellites in a particular phasing at particular longitudes of the

ascending node. Previously developed symmetric constellations generally experience J2

perturbations equally among all satellites in the constellation. Common geo-potential

perturbations cause shifts in all of the orbits of a constellation equally . Allowing all the

design variables to be common will have the same cohesion effect on eccentric orbit

constellations.

The procedure for designing constellation with eccentric orbit modifications

involves adding the new design inputs to the optimization, used to develop the previous

circular-orbit constellations. Several initial values of eccentricity were explored for each

constellation type. With this new design freedom, constellations from previous circular

orbit designs are adapted to take advantage of any possible eccentric orbit benefits. The

design results of eccentric orbit modifications can be found in the following chapter.

5.4.1 Constellation Design Extensions

Eccentric orbit modifications are a jumping off point into satellite arrangements

within a constellation. Constellations developed in this chapter are built for missile

intercept and focused around fence coverage. Abstractions of several classical coverage

methods were used to develop many classical constellation types and design

modifications. Optimization schemes discussed in this chapter are used to further tweak

and modify constellation parameters to obtain the greatest coverage results per

configuration. Large numbers of configurations from each constellation type are

developed to present a picture of that constellation type's coverage capability. The reader

should note that there may be better ways of constellation design for fence coverage that

were not conceived of in this research. Coverage results of the constellations developed

here, as well as the gap filling and eccentric orbit modification results are given in the

following chapter. Many additional approaches to classical constellation design are given

in the reference section of this paper. The reader is encouraged to further explore these

possibilities.

This assumption is not accurate when dealing with higher order, and third-body perturbations. Such

affects on constellation cohesion will be discussed in the concluding chapter of this work.
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As a side note to the development of this chapter, additional constellation design

schemes also showed promise for creating constellations capable of fence coverage.

Some of the more intriguing ideas for constellation design, not explored in this research,

involve mixed integer programming, ergotic analysis, and all variable designs with

genetic algorithms. The very nature of building a constellation for fence coverage has

discrete characteristics. A mixed integer program might be capable of capturing the

mechanics of orbital motion and interceptor coverage to develop a working constellation.

The objective function should maximize coverage over the scenario. The orbital motion

of satellites and interceptor flight are dynamic constraints. The total number of satellites

in a constellation could either serve as another constraint or possibly an additional

objective function. In this case, 100% coverage would be a constraint. Near random

placement of satellites by an integer program or even a genetic algorithm may provide a

foundation for an ergotic analysis of constellation coverage. This analysis explores the

time-invariant coverage capability from the semi-random passes of satellites 3 .

Recent design work has employed genetic algorithms to obtain optimal

constellations. A fully variable genetic algorithm design was examined for this research.

In this algorithm all orbital elements from each satellite were allowed to vary. Each

orbital element was varied within specified bounds. Constellations in this scheme had

6*T total variables. This many variables resulted in slow computations of coverage. If a

repeat ground track orbital constraint was not specified, there is no way of determining

the length of the repeat cycle and thus the length of the coverage simulations. Techniques

used in classical approaches to genetic algorithm were applied as illustrated1 6],[17'[ 19J,[33].

For convenience a 27/2 repeat ground track was specified to remove one variable per

satellite and fix the simulation time.
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Chapter 6
Fence Coverage Design Results

The purpose of this chapter is to present the design and simulation results of constellation

design for ballistic missile intercept using the fence barrier definition of coverage. The

process of space-based constellation design begins with the understating of missile

defense, astrodynamics, constellation design, and interceptor coverage. These concepts

can be strung together into a defense system using the constellation design abstractions

developed in the previous chapter. This chapter will determine the effectiveness of the

design methods for maximizing missile defense coverage at the fence boundary. The

methods and processes involved in this work are the framework for space-based missile

intercept constellations.

The work of this thesis is intended to be a realistic approximation of the general

design process and not an in-depth analysis into every aspect of ballistic missile intercept.

More accurate analysis and design methods can be developed from this work. With that

being said, the results presented here maybe subject to small errors due to discrete time

step approximations and incomplete orbital perturbation models of orbital motion. The

results presented here pertain only to those constellation designs developed in the

previous chapters. It is possible that alternative constellation types or configurations,

beyond the extensive study involved here, could provide better coverage results. The

results presented here provide an extensive examination of satellite based missile defense

using the fence definition of coverage.

6.1 General Simulation Design Process

This section describes the general design, optimization, and simulation processes

used for generating coverage results. The code compiled for this research was developed
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using Matlab". The upper level algorithmic flow of the constellation design process has

three parts: 1) a priori constellation development, 2) constellation type initialization, and

3) configuration optimizations. The functional algorithms used to establish coverage, and

to optimize configurations will also be discussed in this section.

6.1.1 Constellation Design Process

Due to the complex nature of the constellation coverage function, constellation

design is not complete with an a priori estimate. Additional levels of refinement are

required to ensure the best possible coverage for a given constellation type and

configuration. The a priori constellation estimate is based on the abstracted methods

described in the previous chapter. Constellation type initialization is the next step in the

constellation design process. In this step, the common semi-major axis design parameter

is optimized, holding all other parameters to their a priori values. This optimized semi-

major axis remains fixed for the remainder of the design process. Due to scaling,

interceptor coverage is very sensitive to this value. Solving for the optimal semi-major

axis together with other design parameters led to poor performance. Incorrect variations

in the semi-major axis that are too big or too small often resulted in a locally flat region

of zero percent coverage. In retrospect, it was observed that this optimum constellation

semi-major axis varied only slightly from the a priori estimate. Post-optimization of this

parameter also resulted in little to no change. However, not all constellations require an

initial optimization of the semi-major axis. Constellations with repeat ground tracks

employed a defined semi-major axis. Eccentric orbit modifications to constellations

allowed this parameter to vary during the optimization of the other design parameters

because the effects were not as dramatic.

Having derived an optimum semi-major axis, constellation configuration

optimization continues by adjusting parameters such as: inclination, inter-plane satellite

phasing, and/or initial longitude of the ascending node to maximize coverage. Either a

non-linear programming package or a genetic algorithm was used to optimize these

parameters. In the case of the non-linear programming package, partial derivatives of the

simulation coverage were approximated by the software using finite numerical
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differencing. The optimization processes of these two programs are developed in greater

detail in Appendix 1. The starting points for parameter optimization were based on the a

priori estimate. Initial values from other points, in the allowable design range, were also

used to restart this design process. The reason for the additional design runs is to ensure

that the maximum global constellation coverage is obtained and not a local coverage

maxima. Once the design parameters are established a final simulation run was created to

develop the coverage results for that optimized constellation.

6.1.2 Simulation Process

The percent coverage that a constellation is capable of achieving is a complex

function. This function is based on a discrete number of satellites attempting continuous

fence coverage over some period of time. The length of the simulations are based on the

constellation type, and established to show coverage over a complete repeat cycle. The

top level algorithmic process for the coverage computation is given in Figure 6.1. A

generic constellation design will be used to demonstrate the algorithm behind the

simulation process. The simulation inputs and outputs are noted by the blocks without

backgrounds. MatlabR functions are given by blocks with lightly shaded backgrounds.

The inputs consist of: the configuration parameters, the allowable design parameters

(using the process described in the previous section), and the fixed simulation inputs. The

simulation input values are fixed for the series of optimizations under a constellation

type. These can be adapted for constellation design about a different objective or with

different capabilities. The state building function for a particular type is based on the

design methods of Chapter 5. The constellation is propagated in its orbit based on the

orbital dynamics of Chapter 2. Finally, the coverage at some particular time is determined

by the interceptor coverage determination function. The functional coverage

determination algorithm can be found in Figure 4.10. Looping through the entire

simulation time at a given step-size, fence coverage for the whole simulation is

established. The results of this process were plotted as needed.

127



Fixed Simulation Inputs
Run time, Time step, Max Allowable
Capture Time, Interceptor LV, Fence

Position, Start time

Configuration Inputs External Constellation Type External Design Parameter Inputs
Number of Planes and - - -- FOntin --- Semi-major Axis, Inclination, Inter-

Total Number of Satellites State Building FunctIon plane Phasing parameter

Ro, V,

Analytic Orbit Propagation
Including J2Perturbations

Interceptor Coverage Determination
Function

Time step loop
Fence

Output External
Percent Coverage yo

R1 Satellite

Plotting Functions Exact ignition time iteration

Figure 6.1: Algorithmic Flow Diagram of the Coverage Determination Simulation

The coverage determination simulation is the basic element of constellation

design. As discussed earlier, the constellation design process requires the use of an

optimization tool package to tweak the simulation design parameter inputs. A set of

Matlab functions were created to interface with either the SNOPT non-linear

programming package or the Genetic algorithm package. Both of the optimization

packages could be directly interfaced with the coverage simulation described above. The

goal of either package was to maximize constellation coverage for each configuration. A

generic functional block diagram of the SNOPT non-linear programming optimization

process is given in Figure 6.2. Again the input and output from this algorithm are given

by blocks with un-shaded backgrounds. In this process, a user defined SNOPT setup

function was used as an interface with the package. This function takes in the

constellation type and the individual configuration parameters to be explored, and passes

the data to SNOPT. This function also defines the available design parameters and their

allowable ranges. SNOPT properties, such as convergence and finite differencing
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tolerances, are also assigned in this command function. The SNOPT package itself takes

the configuration and the design parameters and passes them to the coverage

determination simulation function. The resulting percent coverage output is fed back to

SNOPT to tweak the design parameters for maximum coverage. A priori constellations

with 100% coverage are not modified from the a priori design parameters. This process

was sometimes prone to designing constellations with less than optimal coverage results.

This was often due to the initial conditions and the parameter step-size selected by the

software. Note that coverage is a zero-one condition, where small changes in design

parameters may not have any effect on coverage estimates. While this process did not

always provide the best optimal coverage parameters, it did provide a very good

approximation with better constellation coverage results. Several runs starting from

different initial conditions helped to enhance the results and design parameter selection.

After the optimization process, SNOPT passes back the optimal design parameters and

coverage results to the user defined setup function.

Constellation type and User defined Program Output
configuration Input - - SNOPT setup ---- Optimized Design Parameters,

Numbers of Planes and Satellites function & Percent Coverage

<- Initial Conditions

Optimal Solution -

SNOP Pakele -Design Parameters & Configuration 4 Coverage Determination

<Percent Coverage Smlto

SNOP Functions] User Created Matlab Functions

Robust Nonlinear Program Optimizer
(set to compute partial derivatives)

Figure 6.2: Typical SNOPT Constellation Design Optimization Functional Flow

The genetic algorithm optimization package was also used to obtain optimal

constellation design results. Using a genetic algorithm varied significantly from the

SNOPT design process. An example of the top-level genetic algorithm functional flow is

given in Figure 6.3. The genetic algorithm requires a large set of initial inputs. However,

the only specification on a constellation configuration comes in the form of the total
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number of satellites to be used. Other constellation design parameters are randomly

chosen, within a stipulated range, for each member in a population. The number of

constellations in a population and the number of generations were also initialization

parameters to the algorithm. In this figure, the lower blocks are those used by the genetic

algorithm package. The genetic algorithm checks the fitness of each member of the

population, each constellation, by calling a constellation fitness function. This function is

similar to the coverage determination function except, that it uses precompiled coverage

timelines, from multiple runs of the coverage determination function. This segment

contains many data sets like those shown in Figure 5.6 and Figure 5.7. The genetic

algorithm specifies which individual satellite timelines to use and how to place them

together. The purpose of this function is to piece together the timelines calculate the

percent coverage. The best constellation coverage results and design parameters are

passed back to the genetic algorithm and to the output. The genetic algorithm then ranks

all of the constellations in a population to determine the fittest members. Much like the

natural evolutionary process, the fittest members are mated and reproduce constellation

offspring for the next generation population. In this manner, the best constellation

configuration is produced from randomization without a need for partial derivatives. The

genetic algorithm process is further detailed in Appendix 1.

User Created Matlab* Functions

Constellation Fitness Function
L Orbit Analysis Data Set Intersect Coverage Timelines

Covera e Determination -Coverage Timelines (for all satellites in an individual
Coveragje Determination constellation)

Simulation
Multiple Orbit Runs

Program Output
- - - - - - - - -> oFittest Individual Constellation,

& Percent Coverage Timeline

Initial Randomized Parameter
Selection Population Fitness Genetic Process

For all the Individuals in the _ _ _tenatlLn Crossover
Population Evaluate and Rank Each Mutate

(Start time, Inclination, & Q for Constellation in the Population Repopulate
Each Constellation)

Genetic Algorithm Package Flow

Figure 6.3: Typical Genetic Algorithm Constellation Design Functional Flow

130



6.2 Simplified Non-Rotating Earth Design

The first attempt at any sort of constellation design for fence coverage used a non-

rotating Earth approximation. This approximation is not realistic but, it allowed for a

general understanding of satellite placement for missile defense. The fixed-Earth scenario

provides as a lower bound on the total number of satellites for 100% fence coverage. In

this scenario, only one orbital plane was used. The initial design parameters were the

common semi-major axis, inclination, and longitude of the ascending node. Mid-fence

altitude (plus the radius of the Earth) was selected as the a priori semi-major axis value.

Two a priori estimates were created for the inclination. The first was an inclination of 60

degrees placing the highest ground track latitude of the plane in the middle of the fence.

The second estimate for an inclination was 90 degrees, a polar orbit. The initial longitude

of the ascending node was placed to ensure the orbit trace went through the fence area.

Using the design process described in the last section, SNOPT was used to tweak these

parameters to achieve the best coverage for a non-rotating Earth constellation. SNOPT

was also used in another fashion for this analysis. 100% coverage was set as an

optimization constraint and the total number of satellites, symmetrically placed in an

orbital plane, was the minimization objective. This is the only time this optimization

scheme could be applied due to the complex configurations of constellations for actual

rotating Earth coverage.

Results of this analysis found that eleven satellites in one plane was the minimum

total number of satellites needed for 100% fence coverage. This small number of

satellites is based on the use of twelve-minute capture times over a fixed-Earth. A visual

depiction of the relative placement of each satellite in the plane and their reachability

envelopes was created from a set of Matlab* plotting functions developed by the author.

This depiction can be seen in Figure 6.4. The fence area cannot be seen in this figure

because it is entirely contained within the reachability envelope of a satellite. The general

fence location is in the upper right side of the figure, over the Bering Strait. The optimal

semi-major axis was found to be 7470.3535 km at an inclination of 88.96 degrees. The

longitude of the ascending node was initially set to zero degrees and was not modified.
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Figure 6.4: Simple Non-Rotating Earth Constellation

The non-rotating Earth constellation, while not realistic, suggests an altitude for

good circular orbit coverage. Throughout this investigation, the common semi-major axis

for circular orbit constellations did not vary much from this initial approximation. This

semi-major axis value allows the reachability envelopes to encapsulate the fence area for

the longest view period. These results indicate the potential of using polar orbits for

actual constellation design. These results were also a successful test of the optimization

scheme. Earth rotation makes ballistic missile defense a much more challenging problem,

and is included in the remainder of this thesis.

6.3 Star Pattern Constellations

The first constellation design scheme to be investigated focuses around the

abstraction of Walker's star pattern. In this constellation type, all orbits are circular and

share a common polar inclination. Satellites are placed evenly among all the planes of the

constellation, and the planes are spaced symmetrically about the equator. Only the inter-

plane phasing parameter, F, and the A parameter are adjusted given a specific

configuration, i.e. total number of planes and total number of satellites. The a priori

estimate for a constellation, developed from the abstraction in Chapter 5, called for

thirteen planes with eleven satellites per plane, or 143 total satellites. The F parameter
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was initially estimated to be 0.2274. The A parameter was initially estimated to be 2.2923

degrees. The semi-major axis was set to the optimal non-rotating Earth value. This a

priori constellation will serve as the basis for further star pattern exploration.

6.3.1 Simulation Design

Using the coverage function described earlier, coverage results of the a priori

constellation over the twelve-hour simulation resulted in 93.53% fence coverage. This

value is very low as was expected from the initial abstraction. Recalling that parameter

optimization is a two-step process, SNOPT is employed first to adjust the initial semi-

major axis for the constellation. In this case, the value did not change from the fixed

Earth results, 7470.3535 km. The next step in the constellation design process calls for

the a priori estimate to be optimized around the design parameters, F and A, to maximize

coverage. The result of optimization of the design parameters reveals that the optimal

fence coverage from the a priori configuration is 98.3703%. This is an improvement of

4.837%. The final values of the F and A parameters were 0.5610 and 1.4027 degrees

respectively. The SNOPT design optimization process proved to be effective at

reorganizing the constellation to maximize the coverage.

6.3.2 Constellation Design Space Results

The previous a priori star pattern constellation configuration did not reach 100%

coverage after optimizing its design parameters. Configurations around this design were

tested to determine the configuration with the fewest number of total satellites capable of

100% coverage. The a priori optimization illustrated the need for more satellites per plane

or more total planes. The non-rotating Earth scenario illustrated that at least eleven

satellites per plane are need to ensure a complete street of coverage. The number of

planes and satellite per plane were limited to a range from 11 to 19. These limits allowed

the total number of satellites to vary from 121 to 361 satellites. This configuration design

space was parametrically tested and optimized using the scheme devised earlier. The

constellation coverage results are shown in Figure 6.5. Eleven planes did not establish

100% coverage even with 19 satellites per plane. Thirteen planes with fourteen satellites
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per plane, or 182 total satellites, proved to be the smallest configuration capable of

complete coverage. The optimal values of the F and A parameters for this configuration

were 0.4614 and 0.0284 degrees respectively. The coverage result of this constellation is

identified as the best configuration in Figure 6.5. In general, configurations on the border

of the 100% coverage plateau will provide complete coverage with the fewest number of

total satellites. The optimal constellation is relatively close in configuration to the a priori

estimation. This is because they both used thirteen orbital planes; to ensure complete

coverage far more than the estimated numbers of satellites per plane were needed.

Percent Coverage

15 3
Number of Planes 14

11

Figure 6.5: Design Results for the Star Pattern Constellation Type

The star pattern constellation type is not efficient for area specific coverage.

However, it is capable of defense over the entire polar region down to the lowest fence

latitude. Thus any missile launched over the polar region has a high probability of being

intercepted. An accurately scaled representation of the optimal constellation can be seen

in Figure 6.6. Reachability envelopes from each satellite in the constellation appear to
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blanket Earth with coverage. This figure shows that the constellation is also capable of

providing significant partial coverage to many other parts of the world. A drawback to

the implementation of such a constellation is the sheer number of satellites required. It

should be noted that if less than complete coverage is acceptable, 99% coverage requires

154 satellites. Other constellation types will be given to lower the total number of

satellites required for missile defense.

Figure 6.6: Optimal Star Pattern Constellation

6.4 Walker Delta Pattern Constellations

The Walker delta pattern constellation is commonly developed for Earth

coverage. This constellation, simply an extension of the star pattern, was applied to

missile defense coverage. Walker used the P, T, and F parameters to define a delta

pattern configuration. Only P and T will be used here to define a configuration since F is

one of the design parameters. F can not be initially determined from the mesh coverage

abstraction. An a priori constellation was constructed from the coverage abstraction

method described in Chapter 5. The a priori constellation configuration called for eight

orbital planes with 16 satellites per plane, or. 128 total satellites. The semi-major axis was

initially set to the optimal fix-Earth result. The initial inclination was chosen to be 62.27

degrees from Equation (5.3) for the ideal inclination with an eight plane constellation.
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The F parameter was set to one initially. Constellation design, optimization, and coverage

determination of the delta pattern was very similar to the analysis used for star patterns.

6.4.1 Simulation Design

As expected, the two-dimensional coverage abstraction did not produce an a priori

constellation capable of 100% coverage. The a priori configuration, T=128 and P=8, delta

pattern provided 99.0677% fence coverage. This was improved by optimization to

99.9309%, a difference of only 0.8632 percent. These results were from a six hour

simulation. After applying SNOPT for optimization the initial semi-major axis for the

constellation type was determined to be 7470.3535 km. Again, this value did not change

from the fixed Earth results for the decimal results given here. The optimized value of the

F was 2.86. This value served to best mesh reachability envelopes for better fence

coverage results. The optimized inclination was found to be 62.67 degrees. This value

was only 0.4 degrees greater than that predicted for the idea eight-plane inclination, A

parametric analysis of the surrounding configurations is again required to obtain an

understanding of the delta pattern capability, and to find a configuration capable of 100%

coverage.

6.4.2 Constellation Design Space Results

Optimizing the design parameters of inter-plane satellite phasing (F), and the

inclination (i), many delta pattern configurations were developed. The goal of this

exploration was to discover feasible (i.e. 100% interceptor coverage) constellations.

Only constellations that provided at least 90% coverage are reported in this thesis.

Between 6 and 27 orbital planes were considered. The number of satellites per plane was

restricted within a range from 4 to 22 satellites. The optimized coverage results for the

delta-pattern design space are given in Figure 6.7. A six hour simulation time span was

used as a standard for all the constellations of this type. This was determined earlier to be

roughly twice the required observation time for peak to peak repeatability of the smallest

configuration. Both the P=7, T=126 and P=21, T=126 configurations were found to

provide complete coverage with the fewest total number of satellites. These constellations
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are designated on Figure 6.7. The optimal inclination and F of the P=7 configuration

were 62.64 degrees and 2.484 respectively. The inclination and F of the P=21

configuration were 64.23 degrees and 3.208 respectively. These results show that there

are multiple constellations achieving 100% coverage. These results also show that there

is a large 100% coverage design region to allow exploration of other constellation design

elements. The choice of which constellation to employ can be based on other

considerations such as: launch costs or sparing. Additional constellation design elements

will be discussed in the concluding chapter of this thesis. Regions with either 100%

capability or less than 85% capability are also identified on the figure. As a note, 99%

coverage can be obtained with a constellation of only 98 satellites.
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Figure 6.7: Design Results for the Delta Pattern Constellation Type

Inclinations for all cases tended to increase as the total number of planes

increased. The values of F varied from 2.27 to 4.21 in the optimum results. This
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constellation type relies on complete zonal coverage between the fence latitude bounds.

This appears as a ring of 100% coverage at the fence latitudes over the Northern and

Southern hemispheres. This band of latitude is highlighted on the P=7 configuration in

Figure 6.8. The view point of this figure, as well as many of the other constellation

representations in this thesis, is shown looking down at the approximate location of the

fence over the Bering Strait. It is apparent from this figure that complete coverage can be

obtained with fewer total satellites using proper meshing of reachability envelopes. In

general, delta pattern constellation types appear to provide better coverage, for a given

number of satellites, than other constellation types.

Latitude Zone of Coverage

Figure 6.8: Optimal Delta Pattern Constellation with Zonal Coverage

In testing the 100% coverage results well beyond the time span used for

optimization, it was observed that there could be coverage drops. This occurs only for

"extreme" configurations, i.e., the boundary of 100% coverage plateau shown in Figure

6.7. The interior region of the 100% covered constellations does not appear to exhibit this

"flaw". Certain measures and constellation modifications will be developed in the

following sections to help fix such coverage drops.

6.5 Single Satellite-per-Plane Constellations

During the analysis and exploration with the delta pattern constellation

configurations, a notable trend emerged. For the same number of satellites, constellations
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with more planes often had noticeably better coverage. This is similar to the results

Walker and others noticed for area specific coverage in classical applications . This

trend is visible in Figure 6.7. Using a single satellite-per-plane configuration has the

effect of breaking down some inner symmetry apparent in delta patterns. As mentioned

in Chapter 5, the single satellite-per-plane constellation type is a specific case of the delta

pattern constellation type. The restriction to one satellite per plane has the effect of

limiting the configuration design space. No a priori design parameters were established

other than to use the ideal inclination for the total number of planes in a configuration.

The fixed-Earth scenario was used an approximate starting semi-major axis. Analysis of

this single satellite-per-plane constellation type proceeded over a large range of

configurations to identify any trends in coverage results.

6.5.1 Constellation Design Space Results

To explore the single satellite-per-plane design space, only an exploration of the

total number of planes is required. The semi-major axis for the constellation type was

optimized with SNOPT from the non-rotating Earth value. No change in semi-major axis

was found to produce more favorable coverage results. For this exploration the same

design parameters of i and F were allowed to vary. An F of about 4 was found to be the

best starting value for optimization. However, the final value varied wildly with each

configuration after optimization. Several initializing values of F were attempts for each

configuration to avoid small local coverage maximums to reach the global maximum.

The design space was limited to constellations with greater than 90% coverage.

The optimization results for this constellation type, with one satellite per plane,

can be found in Figure 6.9. As seen in this figure, the percent coverage per constellation

varied dramatically with the number of satellites. However, the general trend showed

improved coverage with an increased number of planes and thus total number of

satellites. A trend line has been overlaid on the data in the figure. It is apparent from the

results that the last several percentage point improvements come at a significant cost in

the required number of satellites. The smallest configuration capable of 100% fence

coverage employed 116 satellites. The optimal inclination and F of this configuration
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were 63.41 degrees and 6.485 respectively. A graphical representation of the

constellation can be seen in Figure 6.10. Note that 91% coverage could be achieved with

only 69 satellites. The graphical representation of this smaller constellation can be seen in

Figure 6.11.
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Figure 6.9: Design Results for the Single Satellite-per-Plane Constellation Type

Figure 6.10: Best 116-Satellite Constellation Figure 6.11: 91%, 69-Satellite Constellation
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The one satellite-per-plane constellation proved to be the most efficient

constellation type for fence coverage. This constellation type obtains 100% coverage with

fewer satellites than any other constellation type analyzed. With 116 satellites, a 66

satellite improvement is exhibited over the best star pattern configuration. Because this

constellation type is really a sub-set of the delta pattern, these constellations also provide

latitude bounded coverage capabilities. This zonal coverage characteristic is apparent in

both figures. The one satellite-per-plane constellation design abandons the streets of

coverage design abstraction; however it allows for much improved coverage capabilities.

6.6 Timeline Optimized Constellations

Another more recent constellation design method that can be applied to the new

coverage definition deals with the use of coverage timelines [23],[37]. As discussed in

Chapter 5, these designs monitor the coverage at a particular location as a satellite is

allowed to orbit over a repeat ground track. In Chapter 5, a data set was built with the

coverage time and duration of the fence. This analysis included orbits from several

inclinations with several different starting ascending node longitudes. A repeat pattern

with a ratio of 27 orbit to every 2 Earth revolutions, 27/2, was used because it placed the

semi-major axis approximately 74 km away from the optimal size found in other

constellation design results. The results for fence coverage over all inclinations at one

longitude of the ascending node can be seen in Figure 5.6 and Figure 5.7. In the classical

approach, a sorting algorithm was used to piece satellites into a constellation based on the

maximum revisit time over a particular location. This method is similar to a greedy

algorithm approach. However no classical work was found that developed constellations

for continuous coverage.

6.6.1 Simulation Design

Constellation design using coverage timelines requires a different method of

optimization. Because all of the coverage data has been pre-calculated, a sorting

algorithm is needed to appropriately layer the timelines from each satellite in a

constellation and determine total coverage. A genetic algorithm package was used for this
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purpose. This algorithmic design process was discussed in the first section of this chapter

and can be seen in Figure 6.3. In this analysis, a population of constellations is generated.

Each constellation is comprised of a fixed number of satellites. Each satellite in the

constellation has three parameters to describe which precompiled timeline to use. The

inclination (i), the initial longitude of the ascending node (Q ), and the starting point on

the timeline comprise the individual design parameters per satellite. Inclination varied

from 50-130 degrees at half-degree increments. Q varied from 0-45 degrees at half-

degree increments. The starting point time varied from 0-2 days at one-minute

increments. These parameters are generated randomly, within their constraints, by the

genetic algorithm. The constellation individual is comprised of the design parameters of

each satellite stacked and converted into a binary string.

The number of individuals per population was tested between 100 and 200

constellations. The maximum generation of the algorithm was limited from 5,000 to

100,000 depending on the test. Fitness of each individual constellation was tested with a

defined timeline function. This function generated a timeline of available fence

observation times. Individual timelines were compiled on a master coverage timeline.

Once coverage from all the satellites had been computed, the function would determine

the percentage of the fence not covered for the entire scenario. This value determined the

fitness of the individual. Once fitness of all constellations has been determined, the best

coverage constellation results were saved and the genetic algorithm produced the next

generation of constellations.

In another approach, a greedy algorithm was used in conjunction with the genetic

algorithm. In these cases, the same general process as defined above was used to generate

a small constellation. After the best constellation was produced from coverage

convergence, single satellite coverage timelines were added, one-by-one, until 100% total

coverage was achieve. This method served as a good estimation for the total number of

satellites to use in a complete genetic algorithm approach.
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6.6.2 Constellation Design Results

This complex timeline sorting approach was computationally intensive and slow

to obtain results. Because of the random nature of a genetic algorithm, no initial a priori

is required. The first approach to this problem simply started with a set number of

satellites and let the algorithm optimize the whole constellation for the best coverage.

This method was computationally demanding. The greedy algorithm approach to

constellation design proved to be more efficient. Because satellite timelines only needed

to be optimized over the remaining coverage gaps from the previous constellations,

satellites were individually added until a complete constellation was developed. This

method was significantly faster than optimizing all the satellites in a constellation at the

same time. With either approach, the resulting constellations are highly asymmetric.

Often each satellite has its own orbital plane apart from any other satellite in the

constellation.

Using the basic genetic algorithm approach, several sets of design runs were

accomplished with different numbers of satellites. The convergence of a 100 satellite

constellation can be seen in Figure 6.12, as a function of the best fitness level per

generation. These results show that all the fence area is left without coverage for roughly

1000 minutes. This number is the sum of the amount of time each fence point goes

without coverage. This gives the constellation a total of 99.66% fence coverage over the

two-day scenario. However, it should also be noted that after 100,000 generations this

approach was only able to improve the fence coverage to 900 minutes of coverage

outages. A graphical depiction of the 100 satellite constellation can be seen in Figure

6.13. This figure illustrates the magnitude of random satellite placement from timeline

optimization. No apparent order or understanding can be gained from the arrangement of

satellites in this constellation to improve future designs.
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Figure 6.12: Fitness Results for Timeline Optimization of 100-Satellites

Figure 6.13: Timeline Optimized Constellation with 100-Satellites

Results of the combined greedy genetic algorithm approach, starting with 90

satellites, are show in Figure 6.14. This figure shows how the percent coverage changes

with the addition of each satellite past 90. It can be seen in this figure that 173 satellites

are needed to achieve full coverage. These results mimic the coverage trend of the one
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satellite-per-plane constellation type, because far more satellites are required to obtain the

last percent of coverage. These coverage results initially are not as good as those for a

100 satellite constellation. The 100 satellites in this approach are only capable of roughly

93% coverage. When this greedy algorithm approach was applied to the 100 satellite

constellation, it was found that 65 additional satellites were needed for 100% coverage.

This constellation proved to provide the best 100% coverage with the fewest numbers of

total satellites using the greedy timeline optimization approach. Several normal genetic

algorithm runs were completed using values near 165 satellites. None of these design

optimization runs produced 100% coverage results within 100,000 runs. The combination

of design approaches provided better coverage constellations.
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Figure 6.14: Percent Coverage Development Using a Greedy Genetic Algorithm

The results of this section were developed with several runs of the genetic

algorithm processes described above. Each time the genetic algorithm's results could

vary dramatically depending on how fit the initial constellations were. Given enough time

and generation runs, perhaps the algorithm would produce constellations with coverage

results closer to those obtained by symmetric constellations. While these constellations

are deliberately off-set from the optimal semi-major axis to ensure repeat ground tracks,
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optimal constellation results were not significantly different from the symmetrical

constellation design results. While the constellation results from the timeline optimization

were not as fruitful as symmetric constellations, several important lessons were learned.

One of the most important is that coverage from multiple satellites at the same time is

crucial to finding constellations with fewer satellites. Overlapping coverage helps groups

of satellites obtain more coverage than the combination of all of them individually. The

next important lesson is that some symmetry can be beneficial to the constellation design.

This is because the constellation results are more tangible and designs can improve upon

a standard starting position rather than a random one. An additional note when

considering constellations of this type for real world purposes: It is much harder to launch

165 satellites into precisely timed and completely unique orbits than it is to send the same

number of satellites into a commonly inclined symmetric constellation.

6.7 Repeat Delta Pattern Constellations

Utilizing the results established from both the symmetric and timeline optimized

constellation design methods, a new constellation type was developed. The repeat delta

pattern uses the same repeat ground track pattern with a little bit of symmetry added. The

design is very similar to the one satellite-per-plane constellation type with the exception

that the phasing parameter is defined to ensure satellites are evenly place over the same

ground track. The reader is directed to section 5.2.4 where the design concept is

developed in greater detail. Much like the one satellite-per-plane and timeline

optimization constellations, no a priori estimate could be established.

This design scheme was founded on the idea that it would use the best of several

methods in designing constellations for area specific coverage. Each satellite in the

constellation follows the same ground track but resides in its own unique orbital plane.

Only two variables remained for optimization once the orbital altitude was established for

the 27/2 repeat ground track: the inclination and the initial longitude of the ascending

node. Inclination was allowed to be optimized given a set number of satellites. Inclination

was initially set to 60.5 degrees. This value is slightly less than the mid-fence inclination.

Both one satellite-per-plane and delta pattern constellations resulted in inclinations close
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to this value. The initial longitude of the ascending node was set to 4 degrees in an

attempt to place a ground track crossing over the fence location. Simulations using

SNOPT were optimized over the full two-day period. Between 54 and 154 satellites were

explored in the configuration design space. The large design expanse was due to the

unpredictable nature of the design results.

6.7.1 Constellation Design Space Results

Results for this constellation type were less effective. This constellation type

contains too much symmetry. The inner symmetries created havoc within the coverage of

individual configurations. Figure 6.15 depicts the coverage results for constellations

ranging from 54 to 154 satellites. The first 100% coverage constellation contained 136

satellites. This configuration is identified on the figure and also shown graphical in

Figure 6.16. The optimized inclination and initial longitude of the ascending node for this

configuration are: 64.84 degrees and 30.47 degrees respectively. As the figure

demonstrates, coverage with this type of constellation comes and goes in waves. In

general, there is a noticeable increase in coverage with large jumps in the number of

satellites as shown by a basic trend line.
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Figure 6.15: Design Results for the Repeat Delta Constellation Type
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This method is not as good as some methods for obtaining coverage with the

fewest number of satellites, and it also has some troubling side effects. Introducing more

satellites does not always improve the coverage of the constellation. For the most part,

the only conclusion that can be drawn is that the inner symmetries in the constellation

cause massive fluctuations in coverage. Some of the most dramatic effects are shown in

Figure 6.16, Figure 6.17, Figure 6.18, and Figure 6.19 which depict four constellations.

In these figures, the inner symmetries of the constellation are readily apparent. The

reachability envelopes emanating from each satellite help to accent how each

constellation will evolve. Inner symmetries cause the odd distorted shape of the

constellation reachability manifold patchwork. Each of these figures is a graphical

representation of the constellation at one instant. The patterns shown here will evolve in

their own way about the Earth. Every 30 or so satellites added allows a pattern to that

seen in Figure 6.16 to be developed. These patterns are very symmetrical about the

whole-Earth and tend to produce the flat coverage regions in Figure 6.15. The coverage

from each satellite constellation is seen to vary wildly, from 38% to 100%, without an

apparent relationship to the number of satellites in the constellation.

Figure 6.16: 136-Satellites; 100% Coverage Figure 6.17: 79-Satellites; 37.77% Coverage
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Figure 6.18: 117-Satellites; 99.96% Coverage Figure 6.19: 131-Satellites; 57.04% Coverage

6.8 Constellations for Coverage Gap Filling

The results of this chapter have shown that there are a great many configurations

of each constellation type that cannot reach 100% coverage, even after optimization. The

following sections will outline two methods for modifying sub-optimal configurations to

improve their coverage results.

The first method is a result of the timeline optimization design scheme. Coverage

gap filling seeks to plug coverage gaps of optimized configurations with additional

satellites. This approach uses the greedy genetic algorithm as described in Chapter 5. The

goal is to improve coverage of symmetric constellations by infusing asymmetry to the

design. Asymmetry is generated through the use of pseudo-random satellite placement.

There are a vast number of constellations that could potentially benefit from this design

method. However, constellation gap filling is not an independent design method and thus

will only be explored to the extent of determining the method's usefulness.

6.8.1 Test Cases of Sub-Optimal Constellations

Four test cases were developed from the previous constellation designs. Two

repeat delta pattern constellations are used as test cases in conjunction with a delta pattern

and one satellite-per-plane constellation. Each of these constellations will have satellites

added until the configuration provides complete coverage. Each constellation type and
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configuration has its own repeat periodicity. Due to time restrictions, a timeline database

of available satellite orbits for each repeat pattern of each test constellation was not

created. For this reason only the 27/2 repeat ground track orbit analysis results were used

to plug coverage gaps in each test case. This is not an accurate assumption for the

repeatability of some constellations. Only constellations with a two-day repeat pattern,

i.e. repeat delta patterns, will have coverage effectively filled for time beyond the two-

day simulation analysis. The author recognizes this limitation, but presents the results to

demonstrate the usefulness of the method.

The four test cases produced for this analysis come from configurations with

greater than 90% coverage. The first test case is a P-7, T=105 delta pattern with 99.503%

coverage over two-days. This configuration's coverage drops can be observed in the

graph of percent coverage over two-days shown Figure 6.20. The second test case is a

repeat delta pattern constellation with significant coverage loss at many points in the

scenario. This is a T=91 configuration with 96.244% coverage over two-days. The

coverage results of this configuration are shown in Figure 6.21. The third test case is

another repeat delta pattern constellation with only minor coverage loss during the

scenario. This is a T=1 17 configuration with 99.924% coverage over two-days. The

coverage results of this configuration are shown in Figure 6.22. The fourth and final test

case is a P=110 one satellite-per-plane constellation configuration with 96.869%

coverage over two-days. This configuration's coverage results over the two-days can be

seen in Figure 6.23. This configuration has two significant coverage drop regions. As

seen in the figure, the drops occur at roughly one day intervals.
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Figure 6.20: Test Case 1 - Delta Pattern Coverage over Two-Days
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Figure 6.21: Test Case 2 - T=91 Repeat Delta Pattern Coverage over Two-Days
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Figure 6.22: Test Case 3 - T=117 Repeat Delta Pattern Coverage over Two-Days
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Figure 6.23: Test Case 4 - Single Satellite-per-Plane Coverage over Two-Days
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6.8.2 Gap Filling Constellation Results

A greedy genetic algorithm approach was used to fill in the coverage timelines for

each test case. Ten satellites were initially added to the constellation in a standard genetic

algorithm approach. Ten satellites were insufficient to provide complete gap coverage in

any of the test cases. From these results one satellite at a time was added in a greedy

fashion. For each genetic algorithm run a population of 200 individual satellites was

optimized over 1000 generations. This did not produce the single best satellite to fill

coverage gaps; however the resulting "best" satellite was implemented from the

generation after the large fitness level drop off. The general trend of fitness level per

generation can be seen in Figure 6.12. After the large drop-off in fitness level usually

little additional coverage capability is gained. The large initial population also allowed a

broader sampling of the solution space. Genetic algorithm usage in this manner generates

good gap filling satellites quickly within a reasonable number of generations.

Interesting results were obtained by applying this approach to the test cases

described above. The delta pattern, of test case number one, required 29 additional

satellites to provide complete coverage gap filling for the two-day scenario. The

constellation's percent coverage improvement as satellites are added can be seen in

Figure 6.24. The graphical results of this test case are given to show how coverage of a

test constellation increases as satellites are added. Adding 29 satellites to this

constellation raises the total satellites needed for complete coverage to 134.

Unfortunately, this is not an improvement over the best symmetric delta pattern results.

The second test case required 84 additional satellites. This brings the total number of

satellites from 91 to 175. It was seen above that a repeat delta pattern with 136 satellites

could provide 100% coverage. For large coverage gaps, as experienced by this repeat

delta pattern, constellation gap filling does not appear to be beneficial. In the third test

case, a repeat delta pattern with very few coverage gaps, 17 additional satellites were

needed to provide complete coverage. The total number of satellites in this constellation

is now 134. In this case, the gap filling was successful at reducing the total number of

required satellites. The final test case was a one satellite-per-plane constellation. This

constellation required 41 additional satellites to fill coverage gaps. The total number of
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satellites in this constellation is now 151. This is far from an improvement on the best

single satellite-per-plane constellation which required 116 satellites. This procedure is

always capable of creating a constellation with complete coverage from an existing

constellation with partial coverage. However, as demonstrated the constellation gap

filling procedure does not always provide the fewest total number of satellites. This

procedure is one possible method for seeking improved coverage capability from existing

constellations.
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Figure 6.24: Constellation Coverage with the Addition of Gap Filling Satellites

6.9 Eccentric Orbit Modifications

Eccentricity has the potential to open up the constellation design space further or

even improve on existing constellation designs. Only few classical methods have

incorporated eccentricity into the constellation design process 1 1 . Eccentric orbit

constellations often require fewer satellites. Eccentricity adds at least three more

variables per satellite into each design: a, e, and co. This thesis has left eccentricity set to

zero, up to this point. To incorporate eccentricity into the design methods created thus
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far, careful consideration is needed in order to maintain symmetry. The effects and the

processes of adding eccentricity to an existing constellation were discussed in Chapter 5.

The same SNOPT design scheme that was discussed in the first section of this

chapter will be used for design parameter optimization of eccentric orbit constellations.

The input design parameters will now include the common argument of perigee,

eccentricity, and semi-major axis. The semi-major axis will now be optimized per

configuration rather than per constellation type. This is due to the fact that small changes

in eccentricity can drastically change the semi-major axis. A check was added to ensure

that the orbits did not have perigees less than 700 km above the Earth. This restriction

will ensure that orbits will not experience extensive drag perturbations or impact the

Earth.

The previously optimized parameters for each configuration in each constellation

type were used as the initializing values for optimization. A starting argument of perigee

value of 280 degrees was found to produce the best constellation design results. This

value places the apogee of the orbits in the northern hemisphere. The initial eccentricity

value was set to several different levels over a number of runs to ensure the best coverage

results. Initializing eccentricities values of 0.005, 0.01, 0.015, 0.02, and 0.04 were used

for this analysis. Certain constellation types seemed to favor specific starting values of

eccentricity over others. The star pattern and the timeline optimization constellation types

were not considered because of their generally poor performance when compared with

the same number of satellites in other constellation types. The goal of this modification is

to add a little eccentricity and arrange the satellites to improve fence coverage results.

6.9.1 Application to Delta Pattems

Introducing a non-integer inter-plane phasing parameter, F, as well as

eccentricity, the delta pattern can lose a large part of its original symmetry. Using the

method described above, SNOPT was allowed to re-optimize a configuration from its

prior optimized design results. Several optimization runs, using different starting

eccentricities, allowed the best coverage results to be pulled from all the different
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initializations and compared with the original coverage results. In some configurations no

improvement in coverage was observed, while other configurations showed significant

improvements. Figure 6.25 depicts the amount of eccentricity that was used if an

improvement was obtained. These results represent the same design space given in the

results of Figure 6.7. A large portion of this space shows no improvement as noted on the

figure. Constellations that were originally capable of 100% coverage were not explored

in this analysis. Constellations with fewer numbers of satellites per plane were improved

more by varying eccentricity.
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Figure 6.25: Eccentricity Added During the Modification of Delta Configurations

Figure 6.26 depicts the percent coverage improvement gained by each

configuration. The greatest gains in percent coverage, and the largest eccentricity used,

were in constellations with fewer satellites per plane. This figure covers the same design

space as the earlier figures but is tilted to better show the gains in percent coverage.

These results show that the majority of the constellations could not be improved with the

addition of eccentricity. Only 0.01 to 0.02 percent coverage improvements were typically
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achieved. The ability to add a small amount of eccentricity did allow several

constellations on the verge of 100% coverage to obtain this goal. The new "best" delta

pattern configuration, with the lowest total number of satellites and 100% coverage, is

P- 11, T=121. This is a five satellite improvement from the standard delta pattern

approach. The eccentricity added to this constellation was 0.005. The new argument of

perigee, o, value was found to be unchanged from the initial optimization guess of 280

degrees. The semi-major axis remained unchanged while the new inclination and F were

63.57 degrees and 2.416 respectively. The small amount of eccentricity added to delta

patterns gave no noticeable change in the reachability envelopes. However, adding the

small amount of eccentricity had the effect of allowing for marginal gains in coverage at

relatively little design cost. The optimal inclinations in this analysis varied from 62 to 69

degrees. Arguments of perigee ranged between 270 and 281 degrees. Figure 6.27 shows

the new delta pattern design space after the eccentric orbit modification and optimization.

The new "best" configuration is depicted on the figure. This figure can be compared with

the results in Figure 6.7. Comparing the new modification results with the old results

illustrates that there is now a steeper rise in coverage to the 100% plateau.
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Figure 6.26: Percent Coverage Change for Delta Pattern Configurations
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Figure 6.27: Design Space for the Eccentric Delta Pattern Constellation Type

6.9.2 Application to Single Satellite-per-Plane Patterns

Much like delta pattern constellations, only slight improvements were observed in

single satellite-per-plane constellations by adding eccentricity. In eccentric orbit

modifications for delta patterns, the greatest gains in percent coverage, and the largest

eccentricity used, were in constellations with fewer satellites per plane. However, this

trend did not continue to the single satellite-per-plane configurations. Similar to delta

patterns, this constellation type was optimized over several runs with different initial

eccentricities. However, far fewer configurations were improved by adding eccentricity.

The optimal eccentricity for each configuration is shown in Figure 6.28. These results

show that the value of eccentricity is very dependent on the total number of satellites. The

only apparent trend was similar to that observed in delta patterns. Constellations near the

cusp of 100% coverage were pushed to the plateau.
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Figure 6.28: Eccentricity Added to Single Satellite-per-Plane Configurations

Large eccentricity use does not imply large improvement in percent coverage.

The gains in percent coverage for each configuration are shown in Figure 6.29. The

average gain in percent coverage was between 0.2 and 0.3 percent. Resulting inclinations

varied by only a degree from the 63 degree mark. Arguments of perigee ranged between

270 and 281 degrees. A comparison of coverage results for the design space before and

after the eccentric orbit modifications are shown in Figure 6.30. Eccentricity has the

effect of smoothing out the coverage results curve. The most noticeable gains in coverage

were in configurations that were initially close to 100%. For this constellation type,

several additional constellations are now capable of 100% coverage. However, the

smallest configuration capable of complete coverage remains the 116 satellite

configuration. No eccentricity was added to this constellation. For this reason the semi-

major axis, inclination, and F remained unchanged.
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Figure 6.30: Design Space for the Eccentric One Satellite-per-Plane Constellations

6.9.3 Application to Repeat Delta Patterns

The final application of the eccentric orbit modifications was the repeat delta

pattern. Previous constellation types did not benefit greatly from eccentricity. The repeat
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delta pattern results were the most erratic, and thus have the greatest potential for

improvement in coverage. The procedure used to add eccentricity to this constellation

type was slightly different from the other constellation types. The semi-major axis was

once again fixed to ensure a repeat ground track. The initial longitude of the ascending

node, Q0 , was allowed to vary. Additionally the eccentricity, inclination, and argument

of perigee were also design parameters for optimization. The eccentricity obtained per

configuration can be found in Figure 6.31. As seen in the figure, there was no apparent

structure to how much eccentricity was added per configuration.
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Figure 6.31: Eccentricity Added to Repeat Delta Configurations

The changes in percent coverage are given in Figure 6.32. The 93 satellite

configuration experienced nearly a 14 percent improvement using an eccentricity of

0.0196. This was the largest improvement of all the eccentric orbit modifications. Of all

the constellation types, this pattern gained the most from allowing eccentricity. This

figure shows that nearly every configuration experienced some improvement in percent

coverage. These results only partially smoothed the coverage curve of this constellation

type. A coverage comparison of the modified constellations to the former constellations

is shown in Figure 6.33. This figure shows the same basic structure; however the
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coverage improvements by allowing eccentricity are nearly uniform for all

configurations. For some configurations, improvements are substantial. The optimal

inclinations in this analysis also varied wildly from configuration-to-configuration

ranging from 61.5 to 70.0 degrees. The optimum argument of perigee stayed within a few

degrees of the initial value of 280 degrees. The initial longitude of the ascending node

also varied wildly ranging anywhere from 0 to 89 degrees. A new "best" configuration

was established with 117 satellites. This configuration used an optimized inclination of

64.20 degrees with an eccentricity of 0.0236. The initial longitude of the ascending node,

f,, was found to be 38.76 degrees with an argument of perigee, o, of 279.87 degrees.

This configuration is identified on the figure below. This number is significantly lower

than the 136 satellites formerly required. This number of satellites is approaching the

number of satellites for the smallest single satellite-per-plane configuration.
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M I ' I

12

10:::i

54 74 94 134114 154

Number Of Satelites

Figure 6.32: Percent Coverage Change for Repeat Delta Patterns
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Figure 6.33: Design Space for the Eccentric Repeat Delta Constellation Type

6.10 Summary of Fence Coverage Results

This concludes the exploration of constellation design methods using the new

definition of fence coverage. The constellation design methods described throughout this

section comprise only a small minority of the possible ways that classical methods can be

adapted for missile defense. These results also represent an upper bound on the numbers

of satellites needed for 100% fence coverage. The classical coverage definition is line-of-

sight visibility, based on observing a ground site with a nadir pointing sensor. The new

coverage paradigm takes into account the capture time needed to intercept a target. For

this reason classical constellations were "tweaked" to obtain the best coverage under the

new definition. New methods of constellation design were created by modifying and

abstracting earlier design approaches. Constellation design results presented in this

chapter survey the capability of constellations for fence barrier missile defense. Table

6-1 below is a summary of the smallest configurations achieved per constellation type.

This table also lists the configuration parameters and key design advantages.
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Table 6-1: Minimum Satellite Configuration Summery

Constellation Type Total Number Configuration Key Design Advantages
of Satellites Parameters KeyDesignAdvantages

The semi-major axis of this result
i=88.960  proved to be near optimal for many

Non-Rotating Earth 11 a=7470.3535 km additional circular orbit
constellations.

P= 13.
F=0.4614 Provides complete coverage of the

Star Pattern 182 A=0.0284 polar region down to the fence
A=0.284' latitude.

a=7470.3535 km
P=7

F=2.484
i=62.640  Common inclination makes for

Delta Pattern 126 or convenient launch and placement

P=e21 of satellites. Capable of coverage

F=3.208 over an entire latitude zone.

i=64.230

a=7470.3535 km
F=6.485

One Satellite-per- 116 i=63.41 Fewest total number of satellites
Plane a=7470.3535 km required for 100% coverage.

i OAllows for asymmetric satellite
Timeline Optimized 165 Repeat Ratio=27/2 placement.

o =30.470 Combines aspects of the symmetric
4 * delta pattern design with the

Repeat Delta Pattern 136 i=64.84 0  dlaptenesgnwtth
R aePt1 ti=64.84" asymmetric timeline optimized
Repeat Ratio=27/2 design.

P= 11
e=0.0050 Coverage improvements from

Eccentric Delta 121 w =2800 eccentric orbits. Pushed several
Pattern F=2.416 near 100% coverage constellations

i=63.570  to that result.
a=7470.3535 km

Eccentric One Same as No coverage improvement from
Satellite-per-Plane 116 Unmodfied modifications.

Results
e= 0.0236
c =279.870 Large coverage improvements.

Eccentric Repeat 117 i=64.200  The number of satellites required
Delta Pattern =38.760 approached those of the best

Repeat Ratio=27/2 configuration.
Design modification which adds

asymmetry to symmetric patterns
Constellation Gap Configuration Best Results using a genetic algorithm. The goal

Filling Dependent Test Case # 3 is to patch coverage gaps in

I__ I Iexisting constellations
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Results presented here show that the smallest constellation capable of 100% fence

coverage was a 116 satellite single satellite-per-plane configuration. This is a large

number of satellites for realistic near term launch capability. However, this constellation

also provides complete coverage over a latitude zone around the Earth. Several methods

were devised to modify constellations to obtain better coverage results with only minor

success. In order to make satellite based missile defense a more viable alternative, it is

necessary to loosen the fence constraint, and open the possibility for interceptions at other

points in a missile's trajectory.
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Chapter 7
Volumetric Coverage Expansion

The objective of satellite based mid-course defense is to intercept any possible missile

launched through a threat corridor. The spatial volume of the threat corridor represents

an entire region of potential missile intercept locations. Previously, this goal was

accomplished by creating an imaginary barrier, or "fence". This vertical slice through the

missile corridor needed to have 100% coverage continuously to ensure that no missile

could get through. The fence concept was a convenient simplification of the intercept

problem to guarantee missile capture. It fixed the point of intercept and removed a degree

of freedom from the timing problem. This allowed for a geometric picture of the capture

area, but it did not allow for the possibility of intercepts at other locations in the corridor.

Adding back this degree of freedom to the problem allows for a new definition of

coverage. This coverage definition is an expansion of the fence concept and as such it

includes the fence approach as a special, and restrictive, case.

This chapter will expand the coverage definition to include capture anywhere in

the ICBM corridor. The missile trajectories defining the corridor will be used to define a

discrete set of intercept locations. These trajectories are individually broken up into

locations segmented by a common time step. This breakdown can be done at finer levels

producing more intercept points, but at the expense of more computation requirements

per simulation. The breakdown used here is conservative and sufficient to understand

constellation intercept capability. Volumetric coverage (The ability to capture a missile

anywhere in the corridor) enhances the capabilities of an interceptor. This benefit comes

with a drawback; the simple abstractions from classical constellation design no longer

apply.
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7.1 Missile Corridor Volume

The potential ICBM mid-course flight paths capable of hitting the CONUS from

North Korea constitute a volume of threat trajectories. The full missile corridor of

trajectories can be seen in Figure 4.1. The corridor represents ICBM positions over a

range of flight times in ECF coordinates. These points represent missile locations two

minutes after the exo-atmospheric burnout point to the point of atmospheric re-entry for

every trajectory capable of hitting the threatened region. In the previous fence coverage

definition, capture time was limited to intercepting an ICBM at a specific location. An

interceptor should be allowed to intercept an ICBM at any point in its trajectory, if it can.

The starting and terminating ends to the volume are specific to this research. These

bounds can be shortened or lengthened as needed. In particular, it is possible to reduce

the terminating ends away from the CONUS. To develop an adequate defense for the

entire volume, it is important to develop computational bookkeeping to track missile

threats and intercepts throughout the corridor. The following sections of this chapter will

describe the process developed for volumetric coverage determination.

7.1.1 Tubule Creation

In order to understand the full volumetric coverage capability of an interceptor, it

is convenient to think of the coverage for only one ICBM trajectory at a time. A single

trajectory is the flight path of a particular missile from the entry to the exit of the missile

corridor, the mid-course portion of flight. The missile must be intercepted at some future

location in this trajectory. An analogy of this concept is duck hunting. In this case, the

duck is a particular incoming ICBM; the flight path of the duck is the missile trajectory.

A particular satellite is the hunter waiting to shoot down the duck. The hunter is moving

along his own trajectory and is only capable of hitting his target intermittently. In order to

shoot down a duck, the hunter must lead his target. This is exactly the intercept timing

problem developed in Chapter 4.

A continuous flow of missiles is postulated through each trajectory. If a

constellation is capable of defending against a stream of incoming ICBMs along a
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trajectory, then it can defend against any particular missile launched at any time. The

ability to intercept any and all missiles in the flow, before any completely travel though

the threat corridor, ensures complete missile defense of that trajectory. This single

trajectory example must be expanded to a dense set of trajectories constituting the missile

corridor. Realistically, a continuous wave of missiles in one trajectory cannot be

simulated for constellation design purposes. Breaking the missile trajectory into a discrete

series of points solves this problem in a conservative fashion. A discritized trajectory is

known as a tubule. For this research, each tubule is broken up into a discrete one-minute

grid along the trajectory. Continuing with an analogy, the single tubule situation is

similar to an old carnival duck hunting game. In this game, it is only possible to hit a

duck while it is visible in a window as it moves across the stage. A simplistic

representation of this analogy is shown in Figure 7.1.

Figure 7.1: Duck Hunting Analogy for Missile Defense along a Trajectory

7.1.2 Coverage Development

The method of determining coverage at a particular point and time is exactly the

same as the analytic algorithm described earlier. The reader is directed to Figure 4.3 and

Figure 4.10 for a simple understanding of the ICBM intercept timing problem and

coverage determination algorithm. The new degree of freedom to this problem means

that the capture time of a given interceptor directly depends on which point in the tubule

the interceptor is aiming for. A particular ICBM is vulnerable from its identification time,

TID, until the terminal portion of flight, ranging 20 to 31 minutes after TID. Thus the

maximum time of flight for the interceptor ranges from zero to the terminal ICBM time,
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depending on the desired intercept location in the ICBM tubule. A ten by ten grid of

missile tubules (100 total tubules) is used to define the threat volume. The set of these

tubules is shown in Figure 7.2. Each tubule is shown as one line emanating from North

Korea and terminating in the threat area. This figure can be compared to the similar

missile threat corridor in Figure 1.2.

Figure 7.2: Tubule Representation of Missile Corridor

100% volumetric coverage means that no missile, from any tubule, can make to a

terminal point. Volumetric coverage simulations are very similar to those used for fence

coverage. A continuous wave of missiles starts at the beginning of each tubule at the start

of a scenario. After each minute of simulation time, both the satellites in a constellation

configuration and the missiles are advanced one minute in their respective trajectories.

New missiles are started in the first location of each tubule creating a continuous flow.

Also during each minute of simulation, coverage from each satellite is calculated against

all the occupied missile locations. If a missile can be intercepted, it is removed from or

flagged in its current location. In this fashion, if no un-flagged missile advances to the

terminal state, 100% missile defense is attained. Missiles advancing to this state are

tallied versus the total number of potential missiles to determine the percent coverage. In

general, volumetric coverage results are computed for the first opportunity of intercept.

Other interesting statistics can be accumulated during the simulations such as the location
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of capture and, if possible, the number of times an ICBM can be captured. These statistics

will be used to help determine the usefulness of a constellation type and configuration.

7.1.3 Constellation Development Method

At several points in this chapter it has been stated there is not a definitive method

for constellation design using volumetric coverage. This is not an entirely true statement.

It is true that the complex nature of the constellation's coverage "function" does not lend

itself to a simple analytic method of constellation design. However, the fence coverage

area is a sub-set of the full volumetric region. This means that volumetric coverage

results will be at least as good as fence coverage results for missile defense. Some of the

optimization schemes, used in previous designs to tweak parameters to maximize fence

coverage, can also be used to tweak fence constellations to maximize volumetric

coverage. Inclination, semi-major axis, inter-plane phasing parameter, and other design

parameters per constellation configuration can be easily re-optimized from fence results.

General constellation design trends can also be extended into the new definition of

coverage. The method of creating a latitude zone of coverage can be directly applied to

the full missile corridor. This new coverage definition will be applied to production of

100% coverage constellations with the fewest numbers of satellites. As of yet, this

research has not developed a specific design method for volumetric coverage from the

definition alone.

7.2 Additional Threat Deniability

Constellations to this point have been designed for protection against the missile

corridor created from a hypothetical North Korean launch. ICMB trajectories were

limited to those that could intercept the CONUS within the postulated North Korean

range capability. However, a missile defense constellation would be more valuable if it

were capable of defending the whole CONUS against future North Korean capability and

other missile capable states. To examine the defense capability of constellations designed

previously against these possibilities, additional missile tubules were created. A list of

both possible threat launch locations and target locations was used to create a multitude
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of tubules. The target locations were established with cities along the boundary of the

CONUS and several cities in the interior. Table 7-1 lists the cities used for CONUS

boundaries targets and those used for internal targets with their latitude and longitude.

This set is an approximation of whole CONUS coverage. The layout of these cities on the

globe used in the simulations can be seen in Figure 7.3. If a constellation can protect

each of these cities then, by a convexity argument, it is capable of complete coverage

over the whole continental United States.

Table 7-1: Target Cities on the CONUS Boundary and Interior

Boundary Cities:
Bellingham, WA
Coer d'Alene, ID
Harve, MT
Minot, ND
Duluth, MN
Alpena, MI
Detroit, MI
Buffalo, NY
Newport, VT
Fort Kent, ME
Calis, ME
Boston, MA
New York City, NY
Atlantic City, NJ
Norfolk, VA
Wilmington, SC
Savannah, GA
Jacksonville, FL
Miami, FL
Pensacola, FL
New Orleans, LA
Houston, TX
Brownsville, TX
El Paso, TX
Yuma, AZ
Los Angeles, CA
San Francisco, CA
Eureka, CA
Astoria, OR
Interior Cities:

North Latitude (Deg)
48.75972
47.67778
48.55000
48.23250
46.78333
45.06167
42.33139
42.88639
44.93639
47.25861
45.18889
42.35833
40.71417
39.36417
36.84667
34.22556
32.08333
30.33194
25.77389
30.42111
29.95444
29.76306
25.90139
31.75861
32.72528
34.05222
37.77500
40.80222
46.18806

East Longitude (Deg)
-122.48694
-116.77944
-109.68333
-101.29583
-92.10639
-83.43278
-83.04583
-78.87861
-72.20556
-68.59000
-67.27917
-71.06028
-74.00639
-74.42333
-76.28556
-77.94500
-81.10000
-81.65583
-80.19389
-87.21694
-90.07500
-95.36306
-97.49722

-106.48639
-114.62361
-118.24278
-122.41833
-124.16250
-123.83000
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Las Vegas, NV
Salt Lake City, UT
Denver, CO
Kansas City, MO
St Louis, MO
Chicago, IL
Cincinnati, OH
Atlanta, GA
Washington, DC

36.17500
40.76083
39.73917
39.09972
38.62722
41.85000
39.16194
33.74889
38.89500

-115.13639
-111.89028
-104.98417
-94.57833
-90.19778
-87.65000
-84.45694
-84.38806
-77.03667

Figure 7.3: Geographic Location of Target Cities

The first extension in to the analysis of increased capability will come from an

analysis of the potential capability of North Korea to strike any of the target cities listed

in Table 7-1. This analysis will allow for assertions to be made on the coverage capacity

of the optimized volumetric constellations. The tubules, emanating solely from North

Korea, capable of hitting any of the target cities are shown in Figure 7.4. These tubules

represent a future threat capability from North Korea.
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Figure 7.4: North Korean ICBM Tubules for CONUS Coverage Analysis

A list of possible threatening states with future ICBM ranges capable of hitting

the CONUS was also created. The list is comprised of known launch locations from some

ICBM capable states combined with a wide range of cities spread across each country. In

this way, protection from all available launch sites in a country constitutes protection

from that country. The missile trajectories created here represent a future capability for

most states and are not representative of each country's actual launch capability. The list

of countries and the cities used for launch sites can be found in Table 7-2 along with their

latitudes and longitudes. The geographic layout of these launch locations is depicted in

Figure 7.5. Missile tubules from each launch site to each target site can be created using

the mathematics described in Chapter 4. A total of 38 target locations combined with 24

launch sites creates for a total of 912 individual missile corridors. A graphical

representation of the new set of threat tubules can be seen in Figure 7.6. The first of these

pictures depicts the tubules from a perspective over the launch sites on the Eurasian

continent. The second graphic is a representation of the tubules near impact over the

CONUS. The tubules shown in these figures only depict the mid-course portion of flight

that will be used for analysis. Constellations will not be specifically created for global

defense against these threats. Instead, a selection of constellations, designed to protect

only against the North Korean threat, will be analyzed to determine their effectiveness
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against the list of global threats. This analysis will express the capability of volumetric

constellations for global defense.

Table 7-2: Launch Countries and Cites

Country
China
Kashi
Altay
Yumen
Hailar
Qiqian
Tongjiang
Beijing
Fuzhou
India
Dehra Dun
Patna
Iran
Tabriz
Mashhad
Libya
Tubruq
Zuwarah
Pakistan
Quetta
Russia
Bologoye
Tatishchevo
Dombarovskiy
Kopeysk
Aleysk
Bratsk
Yakutsk
Magadan
North Korea
P'yongyang

North Latitude (Deg)

39.45472
47.86667
39.80000
49.20000
52.21667
47.64639
39.92889
28.01667

30.31667
26.50000

38.08000
36.29583

32.08361
32.93444

30.20000

57.87833
51.66833
50.75416
55.11167
52.49444
56.13250
62.03389
59.56667

39.01944

East Longitude (Deg)

75.97972
88.11667
97.90000
119.70000
120.80000
132.50167
116.38833
116.33333

78.03333
85.11667

46.29194
59.61194

23.97639
12.07917

67.00000

34.07806
45.59250
59.54000
61.64694
82.77750

101.61417
129.73306
150.80000

125.75472
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Figure 7.5: Geographic Location Launch Cities

Figure 7.6: Global Defense Tubules
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Chapter 8
Volumetric Coverage Results

This chapter presents coverage results stemming from the application of the new

volumetric coverage definition. It will illustrate how the previous definition of fence

coverage was too restrictive in its design requirements. A transition from design results of

fence coverage to volumetric coverage is given by applying previously designed

constellations to the new coverage metric. The results of these simulations illustrate that

all fence coverage constellations can achieve 100% volumetric coverage. This will lead

to the development of smaller constellations of satellites designed only about volumetric

coverage. The constellation design and development process is more complex under the

new coverage definition. For this reason, the great diversity of constellation design

methods and their coverage results will not be explored here. Instead, this chapter will

focus on the application of the delta pattern using volumetric coverage. Delta patterns,

including single satellite-per-plane constellations, produced the smallest configurations

capable of complete coverage. These results will also be expanded to look at additional

constellation coverage issues such as the ability for multiple intercepts of a single ICBM.

Additional design-space results are expanded to include: increased interceptor AV, total

CONUS coverage, and the extent of a constellation's deniability. It will be demonstrated

that realistic constellation sizes can now be obtained using volumetric coverage for

ballistic missile defense. It will also be shown that these constellations are capable of

exceeding their design goals.

8.1 General Design Algorithm for Simulations

The design process for volumetric coverage was very similar to that of the fence

coverage process. As mentioned in Chapter 7, additional bookkeeping is required to keep

track of the number and location of every intercept for a continuous wave of ICBM
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threats. The simulation algorithm for the volumetric coverage determination, pictured in

Figure 8.1, is similar to the simulation algorithm for fence coverage determination shown

in Figure 6.1. The initial simulation inputs into this coverage algorithm are slightly

modified from those required for fence coverage. In addition to the standard time

regulation inputs, the maximum interceptor AV and the tubule descriptions are necessary.

The tubule description contains the Earth fixed positions of an ICBM discretized over

time. The interceptor coverage determination function must explore every potential

ICBM tubule at every location in that tubule populated by an active ICBM. Missiles

intercepted at some location are flagged and removed from the list of active incoming

threats. In this way, the first opportunity of capture is considered for the active threats.

This process can be altered to record additional intercepts of previously intercepted

ICBMs if desired. Two additional functions are required before the simulation can step

forward. First, the coverage statistics, containing the number and location of every

intercept, must be gathered. A second function updates the list of active missiles and

propagates their locations by a time step. Satellites and missiles are propagated forward

in their own trajectories minute by minute as the simulation progresses.

Fixed Simulation inputs
Run time, Time step, Interceptor 8V.

Tubule Descriptions, Start time

Configuration Inputs External Constellation Type External Design Parameter Inputs
Number of Planes and - State Building Funon- -- Semi-major Axis, Inclination, Inter-

Total Number of Satellites plane Phasing parameter

R., Vo

Analytic Orbit Propagation Time steD loop

includkng J2 Perturbations

IR, V

interceptor Coverage Determination
Function

Target
Point

C vio
Loop throudl

all tubule pints
Outpu 4 t

Percent Coverage E xac ignition time iteraton

IExternal coegyraga.3%tisg Ibre.8 URdatt
Plotting Functions - Examine Intercept Locations per Tubule Upde MNtssgePositions

Figure 8.1: Flow Diagram of the Volumetric Coverage Determination Simulation
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Volumetric coverage results are calculated for both existing constellations and for

constellation design optimization (using SNOT.) The functional flow of the SNOPT

design process is exactly the same as that given in Figure 6.2. Using this process, smaller

configurations of existing constellation types can be developed using volumetric

coverage. The algorithmic processes described here were implemented through functions

in Matlab".

8.2 Coverage Transition

Constellations optimized in Chapter 6, can be measured against the volumetric

coverage metric. The optimized constellations from every constellation type and

configuration, excluding eccentricity modifications and gap filling results, were tested

using the volumetric coverage simulation. It was discovered that every constellation

configuration achieved 100% volumetric missile defense coverage! One constellation of

particular interest was the 69 one satellite-per-plane constellation that achieved only

91.85% fence coverage. This constellation now achieves 100% volumetric coverage.

These results indicate that constraining interception to occur only on the fence is a severe

limitation.

8.2.1 Histogram Understanding of Intercept Region

For Each tubule, an intercept can occur at any location. To gain intuition on

volumetric coverage results, heuristics were created that measure the number of missiles

intercepted at each point in the corridor. These results are best illustrated in a histogram

of the number of intercepts per tubule location. Histograms show the first opportunity of

intercept. Intercepts in the region of 21 to 31 minutes represent missiles approaching the

terminating point of the tubules. Histograms with large numbers of intercepts in this

region often indicate constellations with incomplete coverage. Using histograms helps to

illustrate the lethality and robustness of a configuration. Constellations with intercepts

closer to the beginning points of the tubules are more capable, since they may have more

opportunities for additional intercepts. Several coverage histograms are given throughout

this chapter.
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8.2.2 Results from Fence Coverage Constellations

Due to all previously designed constellations resulting in 100% volumetric

coverage, the coverage capability of the smallest configuration, explored under the fence

coverage, is given as a test case. An interception histogram for the 69-satellite

configuration of the single satellite-per-plane type is given in Figure 8.2. This simulation

was completed over six hours for a total of 36,450 possible intercepts. The total

simulation percent coverage, 100%, is denoted on the figure. A representation of the

approximate fence location is depicted on the figure. As this curve shows, a great

number of the missiles are intercepted well before the fence coverage barrier time, and all

of them well before the terminal point. Additionally, it is known that this constellation

can also provide 91.85% coverage at the fence barrier. This result shows that there are

opportunities for multiple intercepts throughout the corridor.
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Figure 8.2 Histogram of Intercepts for a 69-Satellite Constellation
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8.2.3 Coverage Simulation Animations

The design simulation in this scenario lends itself to the creation of coverage

animations. Animations cannot be shown in this medium but will be described for the

reader. They serve to visually depict coverage throughout the whole volume. As a

simulation starts, missiles are initialized in each tubule. As time evolves, the location of

the missiles and satellites will advance in their respective trajectories. Graphics of an

example animation are given at 5, 10, and 14 minutes in Figure 8.3. Only the region of

the Earth that contains the missile corridor is displayed in this animation. Each satellite is

represented as a dot on the figure. The tubules in the missile corridor are represented by

black lines emanating from North Korea. The light colored area in the missile tubules

represents the continuous wave of active ICBMs. Both the satellites and missiles are

shown advancing in their trajectories over the simulation time. Each of these figures was

shot in an ECF frame moving with the Earth and centered over the missile corridor.

Satellites begin to intercept missiles at the first available opportunity. Figure 8.4

represents the simulation at 15, 16, and 17 minutes. These snapshots from the animation

show the missiles in the corridor being intercepted and thus removed from the tubules as

the simulation progresses. Each satellite was capable of intercepting a significant number

of ICBMs during its pass. Figure 8.5 is a final snapshot of the same constellation at the

18th minute. This figure shows the wave of active ICBMs knocked back to roughly the

same point as the 5-minute snapshot. The simulation continues as waves of active

missiles progress forward in their tubules and are knocked back again. In the animation

of this example, the forward progression of the active missiles appears to throb within the

corridor.
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Figure 8.3: 5, 10, and 14-Minute Frames of Simulation Animation
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Figure 8.4: 15, 16, and 17-Minute Frames of Simulation Animation
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Figure 8.5: 18th-Minute Frame of Simulation Animation

8.2.4 Design Space Results

Due to exceptional volumetric coverage performance, an additional parametric

exploration of the delta pattern configurations was completed. Smaller constellation

configurations are optimized to maximize the new coverage definition. No a priori

constellation design estimates were developed for this new coverage definition. For

optimization of smaller configurations, the inclination, inter-plane phasing parameter, and

semi-major axis were initially set to the average optimized fence coverage results. The

following parameters were used to start each optimization: a semi-major axis of the

optimized fixed Earth result (7470.3535 km), an inclination of 62.25 degrees (69-satellite

configuration inclination), and an F of 2.4 (average delta pattern result). Once again the

semi-major axis was optimized first for the constellation type. The remaining two

parameters were optimized per configuration. The configurations in this scenario

included the number of planes, P, and the total number of satellites, T. The total number

of planes for this analysis was allowed to vary from 1 to 27 planes. The total number of

satellites per plane was explored over a range from 1 to 25 satellites. In this manner, the

volumetric constellation design space will encompass both delta pattern and single

satellite-per-plane designs. Results of this section will include more delta pattern results

than all of the previous fence coverage analysis.
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Applying the volumetric coverage optimization scheme, the best constellation

type was again the one satellite-per-plane constellation. With the new coverage

definition, only a 21-satellite configuration is needed for 100% coverage. This

configuration required an inclination of 62.26 degrees and an F parameter value of 2.335.

This is a large decrease in the total number of satellites required for threat specific missile

defense from the 116 required for fence coverage. Characteristics of the terminal

interceptor closing velocities and approach angles for this constellation can be found in

Figure 4.4 and Figure 4.5. Smaller configurations created here share the constellation

symmetry of larger constellation and are capable of providing nearly zonal coverage over

the latitude bounds of the missile corridor.

While this constellation is capable of 100% coverage with the fewest total number

of satellites, it may not be the most desirable due to the fact that some ICBMs nearly

reach their target. Any malfunction or misfiring could lead to an impact. This can be seen

in the histogram, Figure 8.6, which shows a distribution of intercepts near the terminating

tubule locations. The potential for failing to intercept a target increases greatly due to real

world effects at the terminal point. These effects are the large capture and flight times

used for terminal point intercepts, compounded with the buildup of propagation errors

from estimated trajectories of the missile. For this reason, configurations with more

satellites may be more desirable. Comparing this figure with the 69-satellite

configuration, it can be seen that more satellites provide additional intercept

opportunities. A design trade, of which 100% configuration to use, would explore the

cost of more satellites versus the additional lethality that they would provide. It is left to

the constellation designer and/or user to decide which is more important.
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Figure 8.6: Histogram of Intercepts for a 21-Satellite Constellation

Volumetric coverage results for the entire delta pattern design space represent an

array of possible design configurations. The percent coverage results from a full

parametric exploration of the delta configurations are given in Figure 8.7. These results

show that many configurations meet the 100% coverage requirement. The choice of a

specific constellation that provides 100% coverage can be weighed against other design

factors. The smallest configuration is identified on the figure along with several other

100% configurations. Note that the entire design space of the previous analysis, given in

Figure 6.7, is contained in the 100% coverage region of this figure.
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8.2.5 Multiple Intercept Opportunities

As mentioned with the 69-satellite configuration, there may be many

opportunities for a missile to be intercepted during its flight. Either the same satellite

platform or additional satellites may be capable of intercepting an ICBM over several

time periods. When the ICBM's location is allowed to progress through a simulation after

being intercepted, data on additional interception times may be gathered by the same

bookkeeping functions. The ability of a constellation configuration to intercept an ICBM

multiple times is defined as its lethality. In ballistic missile defense, increased defense

comes with more lethal constellations.

The constellations constructed above can be explored in this manner to determine

their lethality. The smallest effective configuration, with 21-satellites, was analyzed as a

demonstration of the lethality. The histogram of intercepts is modified to show the
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number of intercepts per location in the tubule along with the number of times a

particular missile has been intercepted. Another histogram can be created from this data

stating the total number of intercepts for each fold of coverage. With this data one can

determine if 100% coverage can be maintained by only looking at the second, third, and

so on opportunities for intercept. Using the optimum 21-satellite configuration, a lethality

analysis shows that some ICBMs can be intercepted 24 times. This means that those

ICBMs have 24-fold coverage. A bar graph of the total percent coverage per number of

possible intercepts of an ICBM is shown in Figure 8.8. The bar representing 1-fold

coverage signifies all ICBM are intercepted for 100% coverage. This figure shows that

the 21-satellite constellation is capable of intercepting 90% of the ICBM's 6 times.

Additionally, 50% of the ICBM's can be intercepted 11 times. The ability to intercept

missiles additional times drops significantly after this point. Figure 8.9 represents the

same results seen in Figure 8.6 with lines signifying the distribution of the intercept

locations for each fold of ICBM coverage. The data from 1 to 17-fold coverage is given

in the figure to show the trend in the intercept distributions. The number representing the

fold of coverage is identified near the peak of each individual histogram line. The peaks

of these curves tend to move back towards the terminating locations. The peaks also

appear to grow and then decrease as the available room for intercepting multiple times

decreases. These results also show that the lethality capability inherent in volumetric

coverage could not be exploited using only the fence coverage definition.
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8.2.6 Alternative Constellation Development

No constellations in this chapter were designed solely from abstracted classical

methods as was possible with the fence coverage. The constellations developed here are

the result of volumetric coverage optimization around an estimation of the a priori design.

Fence coverage results were used to establish this a priori estimate. A question may arise

at this point pertaining to how good was the initial approximation of fence coverage for

designing optimal volumetric coverage constellations. To understand the differences

between the coverage from configurations developed around different optimizing goals,

the 21 -satellite configuration was also optimized for fence coverage. Optimizing 21

satellites for fence coverage, it was found that the constellation was capable of 32.21%

fence coverage. This 21-satellite constellation only provided 99.79% volumetric

coverage. The histogram of volumetric coverage results for this constellation is given in

Figure 8.10. This figure is very similar to the intercept histogram given in Figure 8.6.

However, the figure now shows more intercepts occurring near the terminal points of the

tubules. This result shows that fence coverage optimization is insufficient to create

optimum volumetric coverage constellations. The volumetric simulation is necessary to

tweak the design parameters properly for the best coverage results. However, the fence

coverage results did provide good constellation design estimates that could be optimized

for volumetric coverage.
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Figure 8.10: Fence Coverage Optimized, 21-Satellite, Intercept Histogram

8.3 Variability of Design Space

This section will attempt to open up the design space to possible changes in the

fixed interceptor AV and in the singular nature of the threat. The algorithms and

functions described throughout this work are capable of handling such changes. From a

system design standpoint, it is desirable to determine the effects in constellation design

for different available AV intensities. Constellations capable of 100% defense from

additional threats beyond North Korean are more desirable. Constellations with the

excess deniability are especially important when attempting missile defense from global

threats for CONUS protection. There are many other possibilities for refining the

constellation design trade-space. The design possibilities and results explored here serve

as two such metrics for trade-space refinement.
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8.3.1 Interceptor Capability

The interceptor's AV value was determined from the abilities of existing

interceptors. This value was assumed to be a conservative 1.3 km/sec. It was for a fixed

impulsive bum corresponding to a chemical rocket firing. Realistically, any type of

rocket AV or directed energy technology could be used as the interceptor. Interceptors

capable of continuous thrust and directed energy concepts require a slight modification to

the coverage determination mathematics.

This section will explore the use of an increased AV. The AV will be more than

doubled to 2.8 km/sec for this analysis. When this is applied and volumetric coverage

determined, it can be seen that missile intercept becomes an easier task. This increase

more than doubles the size of the interceptor reachability envelope. The intercept

histogram of the 69-satellite configuration is given in Figure 8.11. This figure shows that

all of the first opportunity intercepts now take place well before the previous fence barrier

location (about 12 minutes.) When increased AV is applied to the 21-satellite

configuration, the results look very much like the original volumetric results for the 69-

satellite constellation. The 21-satellite configuration results are shown in Figure 8.12.

The full design space of delta pattern configurations was not explored with this increased

capability. Doing so may produce a smaller configuration capable of 100% missile

defense. The figures given here can be compared with their respective intercept

histograms given in Figure 8.2 and Figure 8.6 earlier. Decreasing the AV has the reverse

effects.
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8.3.2 Additional Threat Deniability

Constellations up to this point were designed for defense against a simulated

missile launch from North Korea. The notion of expanding the list of threatening

countries and available targets was discussed in detail in Chapter 7. A larger threat

corridor (set of ICBM tubules) was created and can be identified in Figure 7.6. Several,

previously optimized, constellation configurations were tested against this new threat

corridor. No additional optimization was performed on the design parameters of these

constellations. A missile defense constellation would be much more valuable if it were

capable of defending the whole CONUS against multiple threats.

The scope of the defense capability of volumetric coverage constellations first

focused on an enhanced North Korean range capability. This capability is illustrated in

the graphic of Figure 7.4. This figure illustrates the threat corridor of ICBMs if North

Korea had the ability to hit any point in the CONUS. A simulation was developed

substituting the previous missile tubules for those used in a launch from North Korea to

all of the target cities in Table 7-1. These tubules are not a dense set but they will give a

good estimation of the true defense capability.

The 21-satellite configuration, described earlier as the smallest configuration

capable of complete coverage, was tested in this simulation. The resulting coverage

heuristics of the six-hour simulation are given in Figure 8.13. As illustrated in the figure,

tubules against the CONUS have flight times slightly greater than those previously

examined, ranging from 21-39 minutes in length. It was found that the 21-satllite

configuration is still capable of 100% missile defense for the whole CONUS. This is an

interesting result given that the constellation was not designed for such an expanded

threat corridor. The histogram of intercept locations illustrates that a majority of the

intercepts occur in two regions of the tubules, one region near the beginning and one near

the terminal point in the tubules. This is not a favorable result despite the continued 100%

coverage. This is because most of the intercepts in the later region take place near the

terminal points of the tubules leaving no room for error. It was observed in simulation

animations that ICBMs, in tubules in or near the original threat region, were intercepted
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more frequently near the corridor beginning. Missiles in tubules outside of the original

corridor, i.e. those over the polar region, were more difficult to intercept. Note that this

constellation type was designed to provide zonal latitude coverage bounded by the

latitudes of the original corridor. The delta patterns designed earlier cannot intercept

ICBMs when those missiles are over pole.
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Figure 8.13: Intercept Histogram of 21-Satellite Configuration for CONUS Defense

The additional launch threats from across the globe is a natural extension of this

analysis. The threat corridors can be seen in the illustrations of Figure 7.6. The first

analysis will once again explore the capability of the 21-satellite configuration designed

to defend against only a North Korean ICMB launch. Results of a six hour simulation

show that the constellation is only capable of 98.1624% coverage from the global threats.

Figure 8.14 depicts the intercept histogram for this simulation. The figure clearly

illustrates that there are again two primary regions for intercepting ICBMs: before and

after they traverse the polar region. Star patterns or higher-inclination delta patterns may

provide better coverage against this global threat, and could be the subject of future work.
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Trajectories from Libya, India, and Pakistan to the Western United States were the

primary contributors of missiles escaping intercept. It is more difficult for the

constellation to intercept these retrograde orbits. Missiles in these trajectories are in

retrograde to polar orbits at slightly higher than normal altitudes, due to the relative

positions of the launch and target locations.
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Figure 8.14: Intercept Histogram of 21-Satellites for Global CONUS Defense

This simulation was also run with both the 69-satellite fence coverage optimized

constellation, and the 21-satellite volumetric coverage optimized constellation with an

increased, 2.8 km/sec, interceptor AV. Since the threat trajectories are not based on

current, but rather the future missile technological capability of each launching nation.

Simulation results from each constellation are shown in the intercept histograms below.

Figure 8.15 illustrates the intercept capability of the 69-satellite constellation. This

constellation was able to obtain 100% defense of the CONUS from a global array of

launch threats (with only a 1.3 km/sec interceptor AV!) The figure shows two large and

distinct regions where more intercepts occur due to the delta pattern design of this
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constellation. Figure 8.16 illustrates the results of the 21-satellite constellation with an

increased interceptor AV. This constellation is capable of 99.87% coverage. In this

figure, the relative sizes of the two distinct coverage regions are flipped from those of

Figure 8.14. Increased AV allows for more intercepts earlier in the tubules. The only

misses were missiles launched from Libya. These results show that existing constellation

designs for a singular threat region have extended threat deniability capabilities beyond

their original designs. With simple modifications and/or the addition of a small number

of satellites, space-based mid-course missile defense from a global threat environment

can be a realistic possibility.
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8.4 Summary of Volumetric Coverage Results

Volumetric coverage applied to the optimized results of Chapter 6 showed that all

of the previous constellation designs were capable of 100% missile intercept. While the

fence coverage definition was not the best approach for constellation design, it was a

tractable design method that allowed for a priori estimates of volumetric constellation

design methods. Volumetric design optimization reduced the number of satellites needed

for defense against the Taepodong threat from 116 to 21. A 21-satellite delta pattern is

much more cost effective to launch than a 116-satellite configuration. The multiple

intercept capability of the 21-satelite case illustrates the potential for additional intercepts

if a first-opportunity intercept failed. Other volumetric heuristics were provided, such as

the location statistics of each intercept. Table 8-1 illustrates a summary of the volumetric

coverage analysis.
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Table 8-1: Minimum Satellite Configuration Summery

Constellation Total Number Important Key Design Advantages
Analysis of Satellites Parameters

This 100% configuration has the
smallest total number of satellites of

P=21 any developed in this research.
Regular Delta 21 F=2.25 Volumetric coverage serves to

a=7470.3535 k enhance the capability of
constellations of satellite-base
interceptors

27 Fold Nearly 100% capability for multiple
Multiple Intercept 21 Coverage for folds of coverage. Greater safety

Capability some ICBMs through redundant intercept
solutions
Increasing interceptor AV has the

Increased effect of shifting the location of

Interceptor AV 21 & 69 2.8 km/sec intercepts to the tubule beginnings.
Greatly improves constellation
capabilities.
21-Satellite constellation can defend
the CONUS from North Korea.

Increase Threat North Korea Vs. However, it is only 98% effective at

Deniability 21 CONUS protection from global threats.
Degnl & Increasing the number of satellites
Region Global Threats or the AV allows for increased

Vs. CONUS CONUS protection from global

threats.

The extensive delta pattern design space results, given in Figure 8.7,

illustrate the range of available configurations capable of 100% defense. Allowing for

more satellites in a constellation gives a designer greater freedom in choosing which

configuration to use, among all those that are 100% effective. Constellations with fewer

planes could potentially be launched entirely on a few launch vehicles. Additional

intercept capabilities of a constellation can be explored within the 100% coverage region

to help refine this design space. Inspection of a constellation's threat deniability allows a

designer to choose a configuration that provides more defense power with the same

number of satellites.
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Chapter 9
Conclusions and Future Work

The objective of this thesis is to present several approaches to the development of

constellations for mid-course ballistic missile intercept. Satellite-based missile defense

could potentially add a capable defensive layer to existing and future missile defense

programs. Satellite-based ICBM intercept requires a new formulation of satellite

coverage based on a fixed-impulse AV and time limited intercept capability. Interceptor

coverage is determined through an iterative mathematical process that computes the exact

ignition time necessary for missile intercept. This new coverage paradigm is adopted in

the development of constellations to ensure mid-course missile defense from a postulated

North Korean threat.

The satellite constellation design concepts developed here are adapted from

classical design methods. Several constellation design techniques are applied to the

missile intercept problem, ranging from an abstracted streets-of-coverage method for

creating symmetric circular-orbit constellations, to constellations designed from the

optimized placement of coverage timelines. Several methods, that modify existing

constellation types to improve their ability to provide mid-course defense, are also

developed.

Applying new coverage definitions, classical constellation design methods, and

optimization tools, standard constellation types are optimized to maximize missile

defense coverage. Results of the design and optimization process show that there are

many constellation types and individual configurations capable of achieving complete

missile defense from North Korea. The constellation type with the fewest total number of

satellites, found to accomplish 100% coverage, was a single satellite-per-plane pattern

with 21 satellites. Additional coverage capabilities of the constellation design space are
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explored to understand the full protection and deniability of pre-designed constellations.

This chapter will highlight the important conclusions reached throughout this research.

Additionally, constellation design issues and applications of this research are discussed.

The chapter concludes with the author's recommendations on future work applications.

9.1 Conclusion Summary

Current missile defense programs have some boost phase, mid-course phase, and

terminal phase capabilities. Nearly all of these capabilities are ground-based. Ground and

space-based sensors systems are currently on-line and capable of detecting enemy missile

launches. One additional measure of protection could potentially be space-based

interceptors. A constellation of satellite-based interceptors could provide an additional

layer of defensive capability. Space-based mid-course missile defense has been shown,

through this research, to be achievable with a small number of space-based interceptors.

This thesis explored the development of a constellation for the defense against a

postulated North Korean missile launch. This is one example of a rogue nation with

potential ICBM capabilities seeking nuclear weapons. A launch from such a nation could

be difficult if not impossible to defend against with current defensive systems. The

constellations designed here will be applied to the protection of the United States from

this threat. The constellation design approach can be adapted to other threats as needed.

Constellations designed to protect against the North Korean threat are also capable of

protecting the CONUS from additional global threats.

9.1.1 Interceptor Coverage Development

The postulated capability of the North Korean Taepodong ICBM directly

threatens a large portion of the western United States. This research explored the

protection from any launch capable of hitting the Western Hemisphere over a range from

Anchorage, AK to Los Angeles, CA. The threaten region extends over an azimuth from

Los Angeles to Bismarck, ND. The collection of missile trajectories capable of hitting

this threatened area is considered the missile corridor. Complete missile defense is only
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achieved by not allowing any missiles to travel completely through the missile corridor.

The trajectories in this corridor are based on the minimum energy flight path.

Considering non-minimum energy trajectories, like those used for lobbing or suppressing

a flight path, could extend this corridor roughly 200 km vertically. However, this is not a

concern because interceptor reachability envelopes usually extend a couple thousand

kilometers above the corridor.

Satellite based interception of a ballistic missile requires placing an interceptor at

the same physical location and at the same time as the incoming missile. Terminal stage

conditions, such as closing speed and terminal approach angle, were not considered in the

constellation design process, but statistics of these results were collected. For the 21-

satellite volumetric constellation, the relative closing speeds are usually between 3 to 9.5

km/sec. Orbital analysis of the interceptor's firing time, direction, and transfer orbit are

calculated through an iterative use of the hyperbolic locus of velocity vectors connecting

any two points in an orbit. The transfer orbit is formed about a two-body mathematical

relationship. The interceptor reachability manifold is defined as the swath of space that a

fixed impulse interceptor can reach within a bounded flight time. This manifold describes

all potential intercept locations.

9.1.2 Fence Coverage Constellation Design

Using interceptor reachability to intercept a missile at a fence in the threat

corridor provides a constrained coverage definition. The fence barrier is a vertical slice

through the missile corridor at a specific location over the Earth. Fence coverage

simplifies the intercept problem by specifying the intercept location. Coverage of the

fence at all times ensures 100% missile defense. The fence location was intuitively

chosen and may not be the optimal placement for such a barrier.

Many methods of classical constellation design were adapted for missile defense.

Additionally, new schemes were developed to fill in coverage gaps, and add eccentricity

to symmetric constellations. The design goal of this thesis is to create constellations with

the fewest total number of satellites capable of 100% missile defense.
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9.1.3 Fence Coverage Design Results

A priori constellation designs are obtained from an abstraction of classical

methods which do not provide optimal fence coverage. Constellation design parameters

were optimized to obtain maximum missile defense capability, using either a gradient-

based nonlinear programming package (SNOPT) or a genetic algorithm package. The

nonlinear programming package was computationally faster, but could result in locally

optimal results (instead of globally optimal results.) The genetic algorithm allowed for

more freedom in the design process and more likelihood of achieving a globally optimal

answer. However, the genetic algorithm process was slow and cumbersome.

The smallest constellation found to provide 100% fence coverage was a 116-

satellite configuration from the single satellite-per-plane constellation type. A great

many configurations were explored within each constellation type. It was found that the

circular-orbit symmetric constellations tended to provide better coverage results with

fewer numbers of satellites per plane. However, asymmetric constellation types, or those

with too much symmetry, tended to have diminished coverage results.

Additional modifications to constellations developed for fence coverage included

the use of eccentric orbits and constellation gap filling. Constellation gap filling is

motivated by the need to correct outages in symmetric constellation coverage with

asymmetric orbit placement. This is done in an effort to reduce the total number of

satellites, but was found to have only limited benefits in the few test cases considered. An

additional modification was applied through the use of slightly eccentric orbits. A small

bit of eccentricity was added to existing constellations in an effort to further maximize

coverage. Several constellations benefited from the addition of small amounts of

eccentricity. Coverage from symmetric constellations benefited the most from eccentric

orbits. However, these modifications were not successful in achieving large

improvements in coverage.
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9.1.4 Volumetric Coverage Constellation Design

Limiting the intercept of any missile to a single location on the fence barrier is a

significant constraint. While tractable for classical design adaptations, the fence coverage

definition is too restrictive. Allowing an intercept to take place at any location in the

corridor adds back a degree of intercept freedom at a cost of increased computation time.

Volumetric coverage is an expansion of fence coverage. It allows for missile intercept at

any point in the mid-course flight. Volumetric coverage is more complex, and as such an

a priori constellation cannot easily be abstracted from classical design concepts.

Constellation types that fared the best with fence coverage were measured and optimized

using the more robust volumetric coverage.

Constellations producing 100% coverage can also be judged on a number of other

intercept metrics, such as the lethality of the constellation, the protective capability, and

the global threat deniability. Volumetric coverage provides a means for such additional

intercept analyses.

9.1.5 Volumetric Coverage Results

All previously optimized fence coverage constellations, applied to the volumetric

definition, produce 100% volumetric coverage. Additional constellations were created to

determine the smallest configuration capable of 100% volumetric coverage. The smallest

configuration, of the single satellite-per-plane constellation type, contained 21 total

satellites. A large number of additional configurations were also capable of obtaining

100% missile defense coverage from the North Korean threat. It was found that the 21-

satellite constellation also provided nearly four-fold 100% coverage. Increasing the

interceptor velocity allowed for interceptions at earlier points in the corridor. The 21-

satellite constellation was also capable of 100% defense for the whole United States from

any future North Korean missile capability.
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9.2 Constellation Design and Maintenance Costs

Constellations with the fewest total number of satellites might not be the best

choice for every constellation application. The parametric expanse of configurations

presented here, allows a designer to look at other criteria, when choosing which 100%

configuration to use. Some real-world design criteria for constellation designs are

described below.

9.2.1 Launch Costs

Launch costs are some of the most applicable real-world design factors for

selecting a constellation. Constellations with hundreds of satellites are unreasonable to

launch and setup, unless the satellites are very small. Constellations with more satellites

per orbital plane, and fewer planes, are less expensive to launch. Each set of satellites in a

unique orbital plane require either their own separate launch vehicle, or fuel to establish

themselves in their orbital plane. If multiple satellites can be launched on a vehicle, then

less fuel would be required to properly space several satellites with the same orbital

inclination. It is much easier to change orbital planes and spacing within those planes if

all the planes have the same inclination. An entire symmetric constellation with the same

inclination could potentially be launched using very few individual launch vehicles. Ad-

hoc and asymmetric constellations are more difficult and costly to launch for these same

reasons.

9.2.2 Maintenance Costs Due to Perturbations

Any constellation of satellites will require some amount of fuel to ensure proper

placement within the constellation and maintenance of the configuration. All of the

constellations discussed in this work are in relatively low Earth orbit at altitudes of

roughly 1000 km. Satellites in lower orbits experience significant drag effects and thus

have shorter usable lifespan, without orbit adjusting maneuvers. For the orbits considered

here, drag is not a major issue for constellation maintenance. Higher orbits would require

additional launch capability and thus higher launch costs. At higher altitudes,
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perturbations like solar radiation pressure and third-body gravitation will have a larger

relative impact on the orbit. The orbital effects of the zonal J2 geo-potential perturbation

have the largest impact on the orbit by several orders of magnitude over all other

perturbations for this altitude[58 ]. For this reason, only the J2 perturbation was used in this

research. In symmetric commonly inclined constellations, all of the orbits feel the same

zonal perturbations. In such constellations no fuel is required to make-up for J2

perturbations. However, third-body perturbations will pull even symmetric constellations

apart by affecting each orbit individually. The largest maintenance costs will be imparted

by negating the effects of such perturbing forces in orbit. Designers, wishing to create

missile defense constellations, must consider such issues when choosing their

constellation.

9.3 Future Work Recommendations

Constellations developed for missile intercept purposes were designed with only

one coverage goal: defense against a Taepodong missile attack from North Korea.

Additional design constraints and objectives can be explored. The methods employed to

solve the constellation design for the space-based mid-course intercept problem can be

applied to other applications where sensor payloads have time, range, and/or velocity

constraints.

9.3.1 Additional Constellation Design Factors

There are many additional areas in which the constellations can be evaluated

when developing a design. Issues such as the number of planes and their placement affect

the launch costs as previously mentioned. However, these issues also affect the ground

operations involved with the constellations. Constellations with erratic plane placement

and large numbers of planes are usually harder to monitor and maintain. If very few

satellites are required per orbital plane, sparing additional satellites, in the event of an on-

orbit failure, becomes a more difficult task. One aspect of future work could incorporate

launch and operation issues of a constellation into the design criteria.
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The development and optimization of constellations for global deniability and

complete protection of the United States represents an area of future work. This problem

has been considered briefly in this thesis, by measuring the effectiveness of a regionally

designed constellation against a more global threat. From these initial results, it is

apparent that effective global defense could be established with higher inclination

constellations and more analysis. The design techniques, and software tools, documented

in this thesis are readily applicable to this larger problem.

Another area of future work is the bounds of the missile threat corridor. The

starting and terminating points of the allowable intercept region per trajectory are

variable. These values were constrained to a common point in the fence coverage

analysis. However, the terminating point can be constrained not to allow missile over-

flight of the CONUS or other allied countries. Constellation design could then be

focused on maximizing coverage in these smaller corridor volumes.

Interceptors in this analysis were based on the capability of a chemical rocket.

Throttlable and highly maneuverable interceptors could lead to quicker and more

accurate intercept geometries. The terminal stage of the intercept was not a constraint in

this work. Future work should include defensive strategies and additional requirements

on the terminal stages of intercept. Head-to-head closing geometries and relative closing

speeds are examples of such terminal state restrictions. As a research note, the terminal

conditions for a head-to-head closing geometry were explored by inverting the 21-

satellite configuration (from volumetric analysis) into a retrograde orbit with an

inclination of 117.7371 degrees. Figure 9.1 and Figure 9.2 illustrate histograms of the

number of intercepts to the relative terminal interceptor closing-speed and the terminal

approach angles (zero degrees represents a tail chase) respectively. The terminal intercept

conditions for the nominal 21-satellite constellation were explored earlier in the

development of the intercept problem. This constellation nearly achieved 100% coverage

from the standard North Korean threat without any optimization of its design parameters.

Varying the inclination of the constellation will greatly impact the terminal intercept

conditions. If higher closing speeds and head-to-head geometries are desired, then a mix
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of retrograde and prograde constellations, i.e. a 42-satellite constellation, would allow a

range of terminal velocities and approach angles to select from for each intercept.

Nearly 100% Coverage
inclination= 117.7371 deg
Non-Optimized Results

9 10 11 12
Relative Closing Speed (km/sec)

LA

13 14 15

Figure 9.1: Histogram of Retrograde 21-Satellite Relative Closing Speeds

Nearly 100% Coverage
inclination = 117 7371 deg
Non-Optimized Resuts

80
Tem-inal Approach An*e (Deg)

I toI

Figure 9.2: Histogram of Retrograde 21-Satellite Approach Angles
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When determining the intercept histogram for volumetric coverage, an interesting

statistic is the number of intercepts per remaining ICBM time to target. This slightly

different view of the data would give a more accurate picture of how close to the

threatened area ICBMs get before interception.

Another design metric is the lethality index of a constellation. This index is

essentially the number of times an ICBM can be intercepted by space-based assets. By

adding a lethality index to the constellation design, future configurations could be

optimized for greater than 100% coverage.

Currently, there is not an analytic method available for determining when a

constellation will precisely repeat some initial state. An exact determination of this repeat

cycle would allow for a more complete analysis of existing constellations, and possibly

the creation of other constellation types.

Constellation types involving highly eccentric orbits and/or highly asymmetric

arrangements were not considered in this work, but have been shown to produce

interesting coverage results in other applications. Constellation design methods, types,

and configurations discussed in this research are merely a small selection of a much

greater design space.

9.3.2 Additional Application of Design Methods

The work presented throughout this thesis has been a conceptual exercise of

space-based missile intercept and constellation design. The constellation designs and

coverage definitions developed here can be applied to additional satellite-based

applications i0l. One such application is the use of satellites for space-based anti-satellite

engagement or protection. The principles and methods could be easily adapted to engage

or protect existing satellite assets.

In other applications, the use of interceptors with conventional rockets could be

replaced with directed energy concepts. In particular, any application that lends itself to a

range and/or power limited reachability envelope can be explored with these methods, i.e.
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satellites with laser, radar, or telecommunication payloads. Constellations for electronic

jamming or eavesdropping could use the same localized coverage techniques for

constellation design. Constellations with enhanced coverage over one region and limited

range capability, like those discussed for missile intercept, could be applied to high

powered communication or imaging constellation purposes. As these examples illustrate

there are a great number of satellite-based applications where sensor or payload

capability is limited by range, velocity, and/or time. The research conducted here could

have a potential benefit to the design of constellations for such applications.
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Appendix 1

Optimization Applications

This appendix is an aid to readers unfamiliar with optimization and/or the optimization

software used throughout this research. The first section will explain basic concepts of

optimization. The following sections will discuss the software optimization packages and

their implementation within in this thesis. The focus of this work is the design of

constellations for the purpose of space-based ballistic missile intercept. Optimization was

used as a means by which to tweak constellation design parameters, of a specific

configuration, to obtain maximum coverage. Therefore this thesis used optimization only

as a tool for enhancing results. Some additional optimization concepts were developed to

enhance the computation time of simulations. The methods and implementation of such

concepts are discussed below.

Al. 1 Optimization Basics

Optimization is the process in which a set of variables, belonging to an objective

function, are chosen to provide a maximum or minimum value of that function. The

objective function can be any mathematical expression of a desired goal. In this research,

the objective function is the percent coverage a satellite constellation can obtain over

some time period. Maximizing this function involves picking the best combination of

constellation design parameters. In basic calculus, optimization of a function, fix),

involves determining the value of x that will make the derivative of the function, f(x),

equal to zero. If x has the highest objective value in a surrounding region, it is a local

maximum. Likewise, if x has the lowest value in a region it is a local minimum. The

second derivative of the objective function at x is another method for determining

maxima and minima. If the local maximum or minimum value is the highest or lowest

for all other values of x in the function, then that x is the global maximum or minimum.
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The coverage objective function in this thesis is a non-linear multi-variable

function. Optimization using derivative information from multiple variables involves an

analysis of the final value to ensure a saddle point has not been reached. Saddle points

are points where the partial derivatives of the function have zero value, but objective

function value is not the local maxima or minima.

Constraints are used to limit the scope of certain variables or linear functions of

those variables. One analytic approach to dealing with multi-variable constrained

optimization problems is the use of Lagrange Multipliers, X. Using this process, a tailored

n-variable objective function, J(x1,x 2 ,..., x,,i,.. .,m), is created by adding m constraint

functions, g(x],x2,. ..x,) and their corresponding Lagrange Multipliers6 ],[
4 9

]. The

functional setup is illustrated in Equation (0.1). Lagrange multipliers represent the

negative rate of change of an objective function with respect to the constraint functions.

This expression is illustrated in vector form in Equation (0.2). Optimization of the

tailored objective function with Lagrange multipliers is identical to classical calculus

optimization. The optimum value of tailored objective function is reached when the

(x1,x 2 .  x, 1X1,.. .,,) values generate a zero functional derivative. This method is

graphically represented in Figure 0.1. In the figure, dotted circles represent lines of

increasing equipotential-value of the two-variable objective function. A constraint

function is also denoted on the figure. If one wishes to find the maximum unconstrained

value, the optimum point would be the point (A, C). The constraint, g(xi,X2), is an

inequality constraint, meaning that the answer must line on one side of the constraint line.

The optimum tailored objective function value occurs when the gradient, of the original

objective function, aligns with the gradient of the constraint. Both of these functional

gradients are denoted on the graph as f(x,x2)and g(x,,x 2). When the functional

gradients coincide, these values can be scaled by X and subtracted from each other to

obtain a zero value for the tailored objective function derivative[49]. The optimum

constrained optimization point on this figure is the point (B, D).

J(x, x2,-- X n. , IA ..-. IA )= f(XI, IX2I .. ,I Xn) (0.1)

+ 4 g, (xJ, x2,-.., IXn) + g92(XI, Ix,...,x") + ... + 4.g.,(Xi, IX2,--- Xn)
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(0.2)

Figure 0.1: Example of a Multi-Variable Constrained Optimization Problem

Unfortunately, the objective function and constraint functions of this thesis are

non-linear. In a nonlinear problem, minimums and maximums can be found through the

same analytic processes, but there is no simple guarantee on the nature of the global

solution. For this reason, several numerical iteration techniques and tools have been

developed to search for global optima. The following sections are devoted to describing

the development and implementation of some of these methods. There are additional

optimization methods beyond those discussed or used in this work. One is encouraged to

use the optimization technique of their choice in future analysis.
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A1.1.1 Bisection Algorithm

One numerical search technique developed for optimization purposes is the

bisection technique. This technique is not designed to find minima or maxima values, but

is used to find zero crossings of a function. In this process, a function is evaluated at

some x. If the resulting value is greater than zero this point becomes the maximum range

limit (MAX). Likewise if the value is less than zero this point becomes the minimum

range limit (MIN). The function is evaluated at a large step size in x on either side of this

point to establish the other bound. Once both a MIN and a MAX have been identified, the

interval between these points is calculated. If this interval is less than some tolerance the

algorithm stops, and the zero point is approximated at the center of the interval. If the

interval is above the tolerance, the mid-point is established and its objective value

calculated. If the x value is less than the MAX, and the x value is greater than zero, the x

value becomes the new MAX. Likewise, if the x value is less than zero, but greater than

the MIN, the x value becomes the new MIN. If the point is exactly zero, the algorithm

breaks and the zero crossing value of x has been found, otherwise the algorithm returns to

the point where the interval between MIN and MAX is established. This algorithm is

very efficient at honing in on the zero crossing. However, this algorithm is not sensitive

enough to catch multiple zero crossings in an interval. For this reason, the initial starting

interval must be established with only one known zero crossing. The modification of this

approach to finding the exact ignition time in the coverage determination algorithm can

be seen in Figure 4.10 of this work.

A1.1.2 Greedy Algorithm

Greedy algorithms are a means of simple optimization based on choosing the

value which provides the best objective function gain towards an optimal value. Greedy

algorithms look only at the next possible values and choose the one that will provide the

largest objective function gain that next step. No information on the globally optimal

solution path is considered for this analysis. Greedy algorithms will not always provide

the best optimal solution. When used in this thesis, the algorithm was applied to selecting

the best of available orbits for coverage purposes. No consideration was given to the
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total coverage combination from several sets of satellites. In this way, there is the

potential for sub-optimal results. An example of a greedy algorithm approach can be

seen in Figure 0.2. The dots in this figure represent the available orbits to add to a

constellation. The values on the lines represent a hypothetical coverage gain from each

orbit. The greedy algorithm would choose to add Satellite B first and then choose satellite

E for a total constellation coverage of 80% (path A-B-E.) The greedy algorithm did not

choose the most optimal path, A-D-E, to maximize coverage. While the greedy algorithm

is not the most accurate optimization scheme, it is a relatively efficient way to get an

approximate solution.

70% 10%

50 % 20%

>7550%

Greedy Plan = A - B - E; Total Percent Coverage = 80%
Optimal Plan = A - D - E; Total Percent Coverage = 100%

Figure 0.2: Example reedy Algorithm Optimization Strategy

A1.2 SNOPT Toolbox

The SNOPT toolbox is a Fortran based nonlinear programming package. SNOPT

is designed to handle both linear problems and nonlinear problems containing thousands

of variables and constraints. A Sequential Quadratic Programming (SQP) is used to

optimize an objective function to a specified minimum or maximum condition. The

217



results of the SNOPT analysis provide a local optimum. However, the program takes

steps to ensure an answer is as globally optimal as possible. This program was designed

to work with smooth continuous objective and constraint functions. The software analysis

is able to handle small amounts of discontinuities. If no information on the functional

gradients is given, SNOPT is capable of approximating gradients with finite

differencing 20 1. The package itself is a very robust software tool for optimizing any

nonlinear problem.

A1.2.1 Enabling Concepts

SQP is the mathematical workhorse behind the SNOPT toolbox. SNOPT will take

a stated nonlinear problem and determine a feasible solution through a major and minor

step process. The major step involves finding points that satisfy the first order optimality

conditions from the objective Jacobian matrix[6 ]. This process involves introducing slack

variables, like Lagrange Multipliers, into the constraints to create a general-form

nonlinear programming problem. Quadratic sub-problems are used at each search point to

search all variable directions. These quadratic sub-problems constitute the minor

iterations of the search process. This process solves for values that decrease the reduced

gradients in each direction below a set tolerance. Partial differencing is completed by

taking finite steps in the direction of each variable. The objective function is evaluated,

and this linear derivative approximation, is used in place of unknown Hessian values. A

line search of an augmented Lagrangian merit function, based on the gradient values, is

used to determine estimated solution values for the nonlinear program variables 20 ]. This

quasi-Newtonian process is continued until no additional gain can be achieved in the

objective function value.

A1.2.2 Program Implementation

SNOPT is designed for large-scale nonlinear programming type problems. A

Matlab* driver program was used to interface user created functions with the SNOPT

Fortran code. The basic functional layout for the SNOPT implementation into this

research is found in Figure 6.2 and Figure 8.1. A user defined function was created to
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initialize the SNOPT toolbox. Gradient and objective value tolerances, function

description, constraints, and variable limits were established in this function. The

SNOPT Fortran code calls a user defined Matlab* sub-function. This function

determines the coverage given: constellation design parameters, a configuration, and the

desired coverage definition. The constellation design process is a nonlinear mix-integer

program. For design parameter optimization, linear approximations to partial derivatives

were computed by SNOPT. In this manner, the integer nature of the constellation

coverage function was smoothed out. This is not the most efficient implementation;

however the design process worked quite well for its intended purpose.

A1.3 Genetic Algorithm Toolbox

The Genetic Algorithm toolbox used for this research is a complete Matlab* set of

functions using the stochastic global search methods of a standard genetic algorithm18.

In this section the toolbox will only be referred to in the sense of the general genetic

algorithm (GA) concepts. The GA is one of a few stochastic search algorithms designed

for nonlinear problems. The GA is also uniquely designed to handle both integer and

continuous functions and variables. It is designed around the evolutionary aspect of living

genetic processes. Since the process uses a pseudo random search technique, there is no

guarantee of optimality in the final solution. At the same time, this process allows the GA

to avoid pitfalls of locally optimal points. One drawback that was found in this research,

and also noted by other constellation designers, is the extensive computation and time

requirements of the algorithm 6'' 71 '1 9]

A1.3.1 Enabling Concepts

The genetic algorithm process mimics the natural evolutionary process. A

population of potential solutions competes in a "survival of the fittest" test to determine

the most optimal member. The cyclic exploration process of the genetic algorithm is

better understood through Figure 0.3. Individuals are coded into the algorithm usually as

binary strings. These strings are called chromosomes, and each chromosome is composed

of a set of individual decision variables. In biological terms, these variables are known as
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genotypes. A set portion of the chromosome, or the phenotype, is devoted to expressing a

value of the genotype. Decoding an individual chromosome results in a set list of

variables each with an assigned value. When these variables are applied to the objective

function a fitness value is obtained. The fitness value determines how good an individual

chromosome is compared to the entire population[is],L 22]

User Defined Objective Function

Fitness
Evaluation

Population Elite Members Mating and
Creation / Crossover

M utation

Figure 0.3: Genetic Algorithm Functional Flow Diagram

Comparing the fitness values for each member of the population, a list of the most

fit individuals is created. Through a weighted-random selection process two members of

the population are chosen to mate. The most fit members have a higher probability of

mating each time. During mating the binary strings of the parent chromosomes are each

split at a random crossover point, without regard for the phenotype designations, and

flipped. Multiple crossover points may exist for each mating. In this manner, two

children are created from the partial binary strings of each parent. The mating process for

a two-point crossover is shown in Figure 0.4. These children continue on to the next

phase of the genetic process. In this phase, a small mutation is added by randomly

flipping one bit in the child's binary string. Mutation occurs with a very low probability

within each child. The mutation process is shown in the example of Figure 0.5. From this

point a new population is created from the children of each mating pair. In an elitists

scheme, the most fit chromosomes continue to the next fitness determination unchanged.
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Once the entire population is filled with the same number of chromosomes in which it

started, the fitness determination process starts again. The genetic cycle continues in this

fashion until a generation limit is reached. The probability of finding the global optimal

solution increases with each generation.

Parents Offspring

I11111io i o0oo11 i 100001011010110

I-=- - #L

*0d 11 I00o
C rossover __________000000 __

111111100000011)
4..-Random Crossover Points

Figure 0.4: Example of Two-Point Crossover

(111111100000011) Mutation [111101100000011)

Random Mutation Point

Figure 0.5: Example of Mutation Process

A1.3.2 Program Implementation

The Genetic Algorithm toolbox developed used for this research was developed

entirely with Matlab* functions["]. This made for simple implementation with existing

user defined functions. The functional layout for the genetic algorithm package usage is

shown in Figure 6.3. The genetic algorithm package allowed the user several different

variable parameters corresponding to the elitism, mutation, and crossover rates as well as

additional functions for the fitness selection, mutation, and cross over schemes. Only the

basics of the process were developed here. Additional information on the particulars to

this package can be found in the noted referenceE18 3. The genetic algorithm was

successfully implemented into this research. The individual members of the populations

corresponded to a specific constellation. The design variables for each satellite in the

constellation defined the genotype. A common 20 bit phenotype representation was used
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to represent each variable. The design process of this thesis was not focused around

perfecting the tool to the application of constellation design. As with all of the

optimization schemes described in this appendix, the goal was to use developed

optimization packages to maximize the coverage of missile intercept constellations.
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