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Abstract
In the first part of the thesis we combine ideas from cutting plane and interior point
methods to solve variational inequality problems efficiently. In particular, we intro-
duce "smarter" cuts into two general methods for solving these problems. These cuts
utilize second order information on the problem through the use of a gap function. We
establish convergence results for both methods, as well as complexity results for one
of the methods. Finally, we compare the performance of an approach that combines
affine scaling and cutting plane methods with other methods for solving variational
inequalities.

The second part of the thesis considers a supply chain setting where several ca-
pacitated suppliers compete for orders from a single retailer in a multi-period envi-
ronment. At each period the retailer places orders to the suppliers in response to the
prices and capacities they announce. Our model allows the retailer to carry inventory.
Furthermore, suppliers can expand their capacity at an additional cost; the retailer
faces exogenous, price-dependent, stochastic demand. We analyze discrete as well as
continuous time versions of the model: (i) we illustrate the existence of equilibrium
policies; (ii) we characterize the structure of these policies; (iii) we consider coordina-
tion mechanisms; and (iv) we present some computational results. We also consider
a modified model that uses option contracts and finally present some extensions.

Thesis Supervisor: Georgia Perakis
Title: Sloan Career Development Associate Professor of Operations Research
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Chapter 1

Introduction

Variational inequality problems (VIPs) arise frequently in a variety of application

areas ranging from transportation and telecommunication to finance and economics.

Moreover, variational inequalities provide a unifying framework for studying a number

of important mathematical programming problems including equilibrium, minimax,

saddle point, complementarity and optimization problems. As a result, variational

inequalities have been the subject of extensive research over the past forty years. In

particular, a variational inequality problem seeks a point

x* K such that f(x*)'(x - x*) > 0, for all x E K, (1.1)

where K C Rn is the ground set and f : K - Rn is the problem function. That

is variational inequality problem seeks a point, at which function value forms acute

angle with every feasible direction from that point as shown in Figure 1-1 below.

VIP (f,K)

X*

Figure 1-1: Variational inequality problem
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Many problems arising in the decentralized setting, i.e., where many agents com-

pete can be cast as generalized Nash equilibrium problems (GNEPs). Examples

include competitive supply chain management. In particular, a GNEP seeks to find

an optimal policy Pi for a player i, so that each player's payoff function is maximized

at pi given that other players keep their policies at an equilibrium level, i.e.

Pi-- arg max 7r(si,p_i), (1.2)siEKi(p-i)

where r(si,p_i) is ith player's payoff function and Ki(p_i) is a feasible set of the ith

player's strategies; si denotes the i'the player strategy, and p_i denotes the equilibrium

strategies of all the players other than i.

As the overall welfare, that a system with competing, payoff maximizing agents

achieves, is often worse than the welfare of the system when it would act as if managed

by a single agent, the researchers face the questions:

* Can we induce individual agent to replicate the policies of a single decision-

maker?

* Can we suggest contract among agent in supply chain such that the decentral-

ized (Nash) equilibrium solution is the same as the one by a single optimizing

decision-maker?

The first part of this thesis studies the efficient solution of VIPs, while the second

part studies equilibrium problems as they arise in supply chain management.

In this thesis we study equilibrium problems as they arise in competitive supply

chain. We reformulate the problems as VIPs (or more precisely quasi-variational

inequality problems (QVIPs)). Therefore, general results and algorithms for VIPs

are applicable to these models. The second part of the work can be viewed as both

an application of VIPs in economics, in particular, in industrial organization, and as

a concrete model of competitive interactions in supply chain. Modelling competition

has recently emerged as a popular topic of research in management science (see [31,

[6], [7], [9], [31] for example.) VIPs in the context of supply chain also have been

14



studied by many researchers. A review of VIP models for perfect competition in

oligopolies in static setting can be found in [46]. The models in [46] assume that

the system clears the market, i.e., demand equals supply at each agent. In this

thesis we take a different approach, we assume that every agent is a profit maximizer,

while the system faces exogenous, price dependent demand. As a result, some of the

demand might not be satisfied. Pang [50], Pang and Fukushima [49] have recently

studied VIP models for oligopolies in a static setting. These papers also provide

further references to how VIP models can be used to model equilibrium problems.

Unlike these authors, instead of focusing on how the methods for solving VIPs can be

extended to solve for equilibria in competitive supply chain problems, we concentrate

on characterizing the equilibria in a dynamic (multi-period) oligopoly setting. We

also study both continuous and discrete dynamics. We employ ideas from dynamic

programming, game theory and differential game theory (see [4], [29] [24], and [20]

for more references).

Both of the parts of this thesis are united by the topic of variational inequalities.

The first part contributes to the development of algorithms for solving VIPs and the

second part contributes to studying a particular model of supply chain competition,

which can be analyzed using VIP theory and algorithms. Moreover, the second part

of the thesis contributes to the literature on developing contracts in a competitive

supply chain setting (in particular, we study equilibrium policies, coordination and

the dynamics of the competition). and the dynamics of the competition).

15
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Chapter 2

Variational Inequalities:

Complexity and Convergence

Results in Methods with Cuts

2.1 Introduction

Our goal in this chapter is to achieve better theoretical and computational efficiency

by introducing "smarter" cuts whose definition is based on the dual gap function

associated with a VIP. We introduce and study these cuts in the context of a cutting

plane method (the general geometric framework as in Magnanti and Perakis [39]) and

an interior point method (the affine scaling method as in Gonzaga and Carlos [28]).

Cutting plane methods have been used extensively in the literature for solving

optimization problems. As applied to variational inequality problems, these meth-

ods include among others the ellipsoid method by Liithi [37], the general geometric

framework by Magnanti and Perakis [39], analytic center methods (see, for example,

Goffin et. al. [26]), and barrier methods (see, for example, Nesterov and Nemirovskiy

[47], and Nesterov and Vial [48]). Cutting plane methods incorporate several types

of cuts: linear cuts (see, for example, Goffin et. al. [26]), quadratic cuts (see, for

example, Liithi and Biieler [38], Denault and Goffin [18]) and nonlinear cuts (see, for
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example, Nesterov and Nemirovskiy [48]). These methods converge to a solution when

the problem function satisfies some form of a monotonicity condition. Moreover, for

some of these methods, researchers have established complexity results (see, for exam-

ple, [39], [48]). In this thesis, we will consider an extension of the general geometric

framework [39] (GGF) that can also incorporates nonlinear cuts. The motivation

comes from the fact that this framework encapsulates several well-known methods

for solving optimization problems such as the ellipsoid method, the volumetric center

method, and the method of centers of gravity. Furthermore, an additional motivation

comes from the fact that complexity bounds have been established for this framework.

Although one can establish complexity bounds for cutting plane methods, these

methods are often computationally expensive in practice. This is due to the fact

that the complexity bounds established are often tight in practice but also due to the

fact that most cutting plane methods require the computation of a "nice" set and its

"center" at each iteration. As a result, we also consider alternate methods for solving

variational inequalities such as interior point methods. The motivation in consider-

ing this class of methods comes from the observation that the methods have been

successful in solving linear optimization problems in practice. For several methods

in this class, researchers have established complexity bounds. Consequently, these

methods might be attractive for solving other problem classes as well. In particular,

in this thesis we consider versions of the affine scaling method (AS). This method was

originally developed for solving linear optimization problems by Dikin in 1967 [19].

Subsequently, Ye [61], [62] and more recently Tseng [57] extended this method for

solving quadratic optimization problems, and Sun [54] and Gonzaga and Carlos [28],

for solving convex optimization problems. Our motivation in studying this method, as

it applies to variational inequalities, comes from its simplicity. Moreover, the version

of the method that we study in this thesis is motivated by the Frank-Wolfe method

[22], which is widely used by transportation practitioners.

We believe this chapter contributes to the existing body of literature by

- introducing cuts that take advantage of second order information in the VIP

function;

18



- presenting polynomially convergent methods;

- proposing more practical methods that are easy to perform computationally.

This chapter is organized as follows: in the remainder of this section we provide

some background and describe some useful concepts. In Section 2.2, we describe the

cuts that are constructed based on information from the dual gap function. In Section

2.3, we establish complexity results for the GGF with such cuts. In Section 2.4, we

focus on the solution of symmetric, monotone VIPs, using an affine scaling method.

We provide some convergence results and propose combining affine scaling with cuts.

This allows us to suggest schemes that are more tractable computationally. In Section

2.5, we summarize our conclusions.

2.1.1 Preliminaries

In this section we review some basic definitions. We first define the notion of a weak

variational inequality problem and relate it to a variational inequality problem.

Definition 1 Let f : K - R n be a given n-dimensional function and let K C Rn

be a given ground set. A point E K is a weak VIP solution if for all x K,

f(x)'(x- ) > 0. We will refer to the problem that seeks a weak VIP solution as a

weak variational inequality problem (WVIP).

Definition 2

1. A function f is quasimonotone on K if f(y)'(x - y) > 0 implies that f(x)'(x -
y) > 0, for all x, y C K.

2. A function f is pseudomonotone on K if f(y)'(x - y) > 0 implies that f(x)'(x -
y) > 0, for all x, y E K.

3. A function f is monotone if (f(x) - f(y))'(x - y) _ 0, for all x, y c K.

Assumption 1 K is a closed, bounded and convex set with a nonempty interior.

In particular, through Assumption 1 we assume that there exist positive constants L

and I such that the feasible region is contained in a ball of radius 2L and, in turn,

19



contains a ball of radius 2-1 (see [39] for a further discussion on how to explicitly

define these constants for a polyhedral feasible region).

Lemma 1 When the problem function f is continuous, a VIP is equivalent to a

WVIP if one of the following conditions holds:

(a) The underlying problem function f is quasimonotone and for some y E K,

f(x*)'( - x*) > O;

(b) The underlying problem function f is pseudomonotone.

The proof of this lemma as well as those of other unreferenced results are contained

in Perakis and Zaretsky [51]. In the rest of this chapter we make the following

assumptions.

Assumption 2 Problem function f is continuous on K.

2.2 Cuts based on gap functions

In this section we introduce cuts based on the dual gap function associated with

the VIP. We first notice that the VIP and WVIP solutions can be characterized

through appropriate gap functions.

Definition 3 We define function Cp(y) = maxzEK f(y)'(y - z) as the primal gap

function and function Cd(y) = maxzeK f(z)'(y - z) as the dual gap function.

As is well known, the VIP solution set X* consists of points argminEK C (),

i.e., X* = {x I Cp(x) = O}. Moreover, the gap function Cd is a closed convex function,

that is strictly positive outside the solution set. The solution set of a WVIP, coincides

with the set argminxEK Cd(X) = x I Cd(x) = 0O. Finally, we note that when the

conditions of Lemma are satisfied, then the VIP solution set coincides with the

WVIP solution set.

In Sections 3 and 4, we aim to utilize the connection between the dual gap and

VIP functions, to construct cuts and employ them in two schemes for solving VIPs.

We note that such cuts will exploit second order information, unlike for example

20
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linear cuts of the type Cut(x) = {y c K f(x)'(y - x) < O} that use only the slope

f(x) to define a cut through a point x C K (these linear cuts are often considered in

the literature, see [38] or [39]).

2.2.1 Linear cuts via an exact dual gap function

To motivate our results, we first consider the following type of cuts. Let

yz = arg max f(y)'(x - y), (2.1)
yEK

and Cut(y, x) = {z E K I f(y)'(z - x) < O} be the half space through point x with

slope f(y).

The following lemma asserts that cuts Cut(y, x) contain the WVIP solution set.

Lemma 2 {z E K I Cd(z) < Cd(x)} C Cut((y, x).

Proof. Let y, Yz be as defined in (2.1), then when Cd(Z) < Cd(x), the following

holds.

f(y.)'(z- x) = f(y.)'(z - y) + f(y.)'(y, - x) < f(y)'(z - Yz) + f(y.)'(y. - ),

(using (2.1))

< f(yx)'(X - Yx) + f(yz)'(y- - x), (using Cd(Z) < Cd(z))

= 0. 

Determining the slope of the cut Cut(y,, x) can be computationally expensive.

This is due to the nonlinearity and, perhaps, even the non-convexity of the subprob-

lem that generates point y. As a result, next we consider schemes that compute

approximations of the direction f(yx), yet generating sequences that converge to a

WVIP solution.

21



2.2.2 Linear cuts via approximations of a dual gap function

Motivation

To motivate the linear cuts we introduce in this section, we first consider an ap-

proximation of the gap function Cd. In particular, given a point y E K, the mean

value theorem applied to the function f(.)'(y - x) around point x E K implies

that f(y)'(y - x) = f(x)'(y - x) + (y - x)'Vf(z)'(y - x), for some z E [x;y].

As a result, we can rewrite subproblem (2.1) as yx = argmaxyK f(y)'(x - y) =

argmaxyeK (f(x)'(x - y) - (y - x)'Vf (z)(y - x)) for some z E [x; y]. Motivated by

this observation, we will consider cuts whose directions will be determined from this

approximation. To develop this observation more formally, we first need to impose

an additional assumption on the Jacobian matrix.

Definition 4 A function f R - Rn has the property of Jacobian similarity if

the Jacobian matrix is positive semi-definite and there exists some constant p 1

such that the Jacobian matrix satisfies d'Vf(y)d < pd'Vf(x)d, for all x, y E K, and

dE IWn.

Assumption 3 Problem function f satisfies the Jacobian similarity property.

Remarks.

1. In the context of convex optimization, there is an analogous property called Hessian

similarity (see [54]).

2. The Jacobian similarity property holds for monotone functions with a bounded Jacobian

matrix. This property is similar to the property of self-concordance as it applies to barrier

functions. In the context of nonlinear optimization, Nemirovskiy and Nesterov [47] have

shown that if the self-concordance property holds for a barrier function, then the Hessian

similarity property also holds locally.

3. When the problem function f is strictly monotone, one can choose the Jacobian similarity

constant p as the ratio of the eigenvalues of the symmetrized Jacobian matrix vf+vf, that

is SUPYEK Amax(Vft(y)+ Vf(y))
is, p - infK Amin(Vft(X)+Vf(X))

4. Finally, notice that when the problem function f is affine, then we can choose p = 1.
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We let H(x) = Vf(x)+Vf(x) denote the symmetrized Jacobian matrix of f and let2

IIWIl,(x) = w'H(x)w. Assumption 3 then implies that f(y)'(y - x) = f(x)'(y- x) +

(y - x)'Vf(z)'(y - ) < f(x)'(y - ) + p IX - Y11((x,,) where z [x; y]. Therefore,
f (y) (x - y) > f (x) )p I Y112

_ i ~·, ~·/- - ' -ll H(x).

First approximation

The previous discussion motivates us to consider cuts whose directions are deter-

mined by solving a quadratic approximation of subproblem (2.1). In particular, we

approximate the gap function Cd(x) with its quadratic approximation

Cd(x) = max (f(x)'(x - y)-P lx -Y 1II2( )
yEK H Y

Let the point yl be the maximizer of Cd (x). We state properties of this type of cuts

in the following two propositions.

Lemma 3 Suppose Assumptions 2 and 3 hold. The cuts Cut(yl, x) contain the

WVIP solution set, i.e. {z E K I Cd(z) < Cd (x)} C {z E K f(y)'(z - x) < 0).

Under Assumptions 1 - 3, the WVIP solution set X* coincides with the set of

minimizers of Cd (x).

Proof. Notice that inequality Cd(z) < Cd (x) holds if and only if for all y E K,

f(y)'(z - y) < f(x)'(x - y) - p IX - Y (2.2)

An application of the mean value theorem together with Assumption 3 (i.e., the

Jacobian similarity property) imply that there exists a point w, E [x; y1] such that

f(x)'(x y X) _ 11 ._ YII(w = (x -fy). (2.3)

Therefore, if z is such that Cd(z) < Cd(x), then

f(y) '(z - x) = f(y)'(z - yl) + f(yl)(y - x)

23



< f(x)'(x- y) - p - y I(Z) + f(yx)(y - x), (using (2.2))

< f (X)'(x- 1) - X - y (z) + f (y )'(y - x), (using Assum. 3)

f(y})'(x- y') + f(y)'(yx - x), (using (2.3))

= 0.

Thus we have proved the first statement of the lemma. We next show that the set

of WVIP solutions coincides with the set of minimizers of Cd. Let x* be a WVIP

solution. Observe that C2d(x) > 0. Since Cd (x*) = 0 < Cd (x), for all x E K, we have

shown that x* C {z e K f(yx)'(z - x) < 0}.

In what follows we show that Cd(x) > Cd (x). The definitions of points yx and

yax imply that Cd (x) f (yx)' (x - Yx) and Cd(C) = f(x)'(X - y}) - P I1x Y- l11( 2

respectively. Therefore,

Cd(x) > f (Y'(y) - Y ) = f (x)'( - yx) - X - IIH) (using (2.3))

> f (x)'(X - - YX H( ) = C().

Since Cd(x*) > 0= Cd (x*), the previous inequality implies that Cd(x*) = 0 and,

hence, we have shown that any WVIP solution minimizes the function Cd(x). Next

we show that every t C argminCK Cd(x) is also a WVIP solution. Suppose, the

opposite is true, that is, for every such t, there exists some y such that f(y)'(y -

t) < 0. The mean value theorem and the Jacobian similarity property imply that

f -) = f (y)'( - y) + Ily-II2H() > f(y)'(. - ) + Ily - IIl)2 for some

z C [x; y]. Consider = lp 2 E (0, 1]. Then for y = + a (y - ) E K, it follows

that

f )'( - Y,) - P l_ - Y IH( ) - - p2c _ 1) Y -YlH(~)) > 0.
p

However, we argued above that Cd(z) = 0, for all x G arg minEK Cd'(x). This leads

to a contradiction. 
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Remark. Under the Jacobian similarity property, the set of minimizers of gap function

CJ also coincides with the VIP solution set. This follows from the observation that for

any VIP solution x*, f(x*)'(x* - y) - pllx* - () < O. This, in turn, implies that

Cl(x*) - O. It follows that every minimizer of Cd is a VIP solution. In other words, under

the Jacobian similarity property, the WVIP solution set coincides with the VIP solution

set.

Second approximation

In the previous subsection we considered a quadratic approximation of the dual gap

function Cd. Although this approximation simplified the objective function in the

dual gap function computation, it did not concern itself with the structure of the

feasible region K. We next consider a polyhedral feasible region K of the form

{x I Ax=b, x>O}.

Assumption 4 Matrix A has a full row rank.

Assumption 5 All x E K are primal non-degenerate, i.e., if XN = 0 for N 

{1, ..., n}, then AB is of full rank where B = {1,..., n}\N.

In the following development, we consider an approximation of the gap function

Cd (similar to Cd) by also restricting the maximization problem over a Dikin ellipsoid

rather than maximizing over the entire feasible region K. We denote a Dikin ellipsoid

by D (x) = {y E K I IX- 1 (y - x)l < r}, where the matrix X = diag (x) and the

constant r C (0, 1). We then define

Cd(x) = max f(x)'(x - y) -p x - YIIH(x) I Ay = b, 1 (y - x)II < r

Notice that under Assumptions 4 and 5, the function Cd(x) is well defined for every

x in the polyhedron K (Assumption 4 is sufficient for Cd(x) to be well-defined in the

interior of K). Moreover, the computation of point y,' the maximizer in the definition

of Cd(x), when x lies in the interior of K, can be performed in polynomial time (see

[57], [62]). The key properties that hold for Cd(x), will also hold for Cd(x).
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Lemma 4 Suppose that Assumptions 1-5 hold.

1. The cuts contain the WVIP solution set:

{z E K Cd(z) < Cd (x)} C {z E K f(y)'(z -x) < O}.

2. Cd relates to the exact dual function as follows: C (x) > O; Cd(x) > Cd(x).

3. C characterizes the solution set: C (x*) = 0;

x* is a WVIP solution if and only if Cd (x*) = 0.

2.3 Dual function cuts in the generalized geomet-

ric framework

So far we have shown how to construct linear cuts that incorporate second order

information about the VIP function and showed that these cuts always contain the

VIP solution set. In this section, we introduce these cuts into the GGF ([39]) and

provide complexity and convergence results for the GGF with these new types of cuts.

2.3.1 Preliminaries and key properties

Generalized geometric framework

General geometric framework (GGF) in [39] is a cutting plane method that incorpo-

rates several known cutting plane method studied in continuous optimization, such

as, for example, ellipsoid method. A key notion in the GGF is that of a "nice" set.

These "nice" sets are constructed at each iteration so that they have the following

properties: (a) an approximation of a "nice" set and its center can be computed effi-

ciently, (b) a "nice" sets contains the VIP (or WVIP) solution set, (c) the volume

of the "nice" sets strictly decreases at each iteration. At each iteration, the GGF first

computes a cut through the center of the "nice" set, and subsequently constructs a

new "nice" set of smaller volume that contains the remainder of the feasible region

as well as the VIP (or WVIP) solutions. We refer the reader to [39] for more details

on the GGF and next summarize the basic features of the framework.
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At iteration k, the GGF (see also Figure 2-1) maintains the following: 1) a "nice"

sets pk that are a compact convex subsets of R n with nonempty interior and belong

to the same class of sets; 2) a set Kk = pk nK that contains the solution set

(dim(Pk) = dim(Kk)), and, finally, 3) the iterate xk E int (pk), which is the center

of pk. Each iteration introduces a cut Cutk and a new set pk+l = CutkfnPk. Initially

set P0 is chosen so that it contains the entire feasible region K and its volume is no

greater than 2 n(2L+1). Furthermore, we assume that we can construct "nice" sets

pk so that their volumes strictly decrease, that is, Vol(Pk+l) < b(n)Vol(Pk), for

some constant 0 < b(n) < 1. As a result, the volume Vol(Kk) is non-increasing and

converges to zero.

k)'(x-xh) < O

Figure 2-1: Generalized geometric framework

In [391 linear cuts with slopes f(xk) are considered. In this chapter, we introduce

alternate choices for the slopes of linear cuts as discussed in Section 2. The extension

of the GGF allows us to incorporate nonlinear cuts (see [51], Appendix B).

Approximate solutions

We begin the convergence analysis by describing the notion of an approximate solution

in the context of a variational inequality as well as a weak variational inequality

problem. The definitions we introduce use the gap function concepts described in

Section 2.2.
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Definition 5 For any > 0, a point x E K is an s-approximate VIP solution if

Cp(x') < , where Cp is the primal gap function.

Definition 6 For any E > 0, a point x II E K is an c-approximate WVIP solution if

Cd (x I ) < c, where Cd is the dual gap function.

We introduce the following assumption:

Assumption 6 f is a bounded function. That is, for some M > 0, Ilf (x)II < M, for

any x E K.

Remark. Notice that we can also state scale-invariant versions of Definitions 5 and 6. For

example, a point xz E K is an -approximate VIP solution, if for any E > 0, Cp(xI) <

2E2-1 M. The constant M is defined in Assumption 6, and I is defined in Subsection 2.1.1.

We can adjust the proofs in this section to also be applicable to the scale-invariant definition

(see [39] for a more detailed discussion of these definitions).

At this point, it is natural to ask when Definitions 5 and 6 become equivalent.

First, we notice that in Section 1 we introduced assumptions under which the varia-

tional inequality and weak variational inequality problems have the same solutions.

However, these results do not directly translate into the equivalence of the respec-

tive approximate solutions. As a result, we next examine the relationship between

approximate VIP and WVIP solutions.

Assumption 7 For some A > O, d'Vf(x)d < Ad'd, for all x E K, d E Rn .

The next two propositions establish a connection between approximate VIP and

WVIP solutions.

Proposition 1 If the VIP problem function f is monotone, then an e-approximate

VIP solution x I is also an c-approximate WVIP solution.

Proof. This result follows from the definitions of approximate solutions and mono-

tone functions. ·
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Proposition 2 Suppose that Assumptions 1 and 7 hold and L is the constant defined

in Subsection 2.1.1. Then an -approximate WVIP solution is also a 22L+2AE-

approximate VIP solution.

Proof. Suppose XI' is an E -approximate WVIP solution, that is for all z E K,

f(z)'(X I I - z) < E. Then an application of the mean value theorem implies that for

some y E [x; z], f(x")'(z-x") = f(z)'(z-xI)- lIZ - xII() > -e-> A lz - I1 2

(*). For a E (0, 1], we now define point z = x HI + a (x - x) , for any x E K. Then

the convexity of set K implies that point z lies in the set K. Therefore, f(xi)'(z 0 -

XI") = af(x"I)'(x - xI), and so, f(xI)'(x - xI) = -f(xI)'(z - XI). Applyinga
(*) for a choice of z = z, shows that f(x")'(x - x") > 1(- - A 2 ix - xI 2) >

1
--- - Aa22 L. This inequality is true for any choice of x E K.a

1
Setting (a) = -e + Aa22L, we conclude that xHI is an £(a)-approximate VIP

solution. In particular, the choice of a = +Vfx2 minimizes (a). For this choice of

a, g = 22L+2AE. Therefore, the point xI is a 22L+Ae-approximate VIP solution.

Notice that as - -4 0 and a - 0, f(x"Z)'(x - xI ) > 0, for all x E K. 
a

2.3.2 Convergence and complexity bounds

In this subsection we establish complexity bounds for the GGF with the cuts we

introduced in Section 2. However, we first state a convergence result, that follows

directly from the description of the GGF, the properties of dual gap function and

Lemmas 1- 4.

Theorem 1 Suppose that a WVIP satisfies Assumptions I and 2. Let {xk} C K be

a sequence induced by the GGF with cuts Cut(yk, xk), where yk is defined for xk as in

(2.1). Every limit point of {xk} is a WVIP solution. Moreover, if instead we con-

sider cuts Cut(yl' k, xk) under an additional Assumption 3 or cuts Cut(y2 ,k, xk) under

additional Assumptions 3-5, with ylk and y2,k being maximizers in the definitions of

Cd(xk) and Cd (x), respectfully, then the GGF converges to a VIP solution as well.

To proceed in establishing complexity results, we need the following assumption.
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Assumption 8 21 > log n + 1; L1 = L + 31 + log(M).

We introduce a contraction map T: K -* K with T(x) = x*+2- Ll++ llgn (x - *),

where x* is some solution of the VIP. This is a one-to-one map between the sets

K and T (K). Therefore, we can retrieve a point x from its image y = T(x), as

X = X* + 2 L1-l-logn (y- X*).

Proposition 3 Let k = O (-ign) Assumptions 1, 6, 8 imply that there is a

point y E T (K) n pkc, where pkC is the complement of Pk.

Proof. Observe that the volume of set pk is at most 2 -nL 1 in k = O (-nLj)k log b(n)

iterations. Moreover, Assumption 1 implies that there is a point z E K such that

the ball S(z, 2-1) of radius 2-1, centered at the point z , is contained in the feasible

region K and S = S(z, 2-1) $ K. Therefore T(S) C T(K) and

(2-Ll+logn)n
Vol(T(K)) > Vol(T(S)) = Vol(S(T(z), 2-L+l°ogn)) > > Vol(Pk).

Since Vol(T(K)) >Vol(Pk), it follows that T(K) n pkc $ 0. U

Theorem 2 Suppose Assumptions 1, 2, 6 - 8 are satisfied, then the GGF computes

an e-approximate WVIP solution x in k = 0 (log b(n) iterations.

Proof. As in the preceding proposition we first note that since the volume of set pk

is at most 2
- n L in k = 0 (- l(n)) iterations, the GGF reaches a feasible solution

in at most k steps. Furthermore, notice that Proposition 3 implies that there exists

a point y that lies in T (K) n pkC. Consequently,

Cd () < Cd (y), (since y E T (K) n Pkc)

= f(yy)'(y - Yy), (using the definition of Cd(y))

= f(yy)(y - x*) + f(yy)/(x* - yy)

< f(yy)'(y - x*), (since x* is a WVIP solution)

2-L1+l+lognf(yy)(Z _- X*), (setting z = T-l(y))

< 2
- L l+l gn M 2 L+1, (using Assumption 6)
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< e, (using Assumption 8).1E

The previous theorem developed a complexity result for the weak variational in-

equality problem. We are now ready to prove a complexity result for the variational

inequality problem.

Theorem 3 Let L2 = L+ 31+21g((Mx) 2L). Consider a VIP satisfying Assump-

tions 1 - 8. In 0 (- log b(n)) iterations, the GGF computes an e-approximate VIP

solution.

Proof. Theorem 2 implies that in O ( nLn) ) iterations the GGF computes a point\ log b(n),

x, at which dual gap function Cd(x) < 2. Proposition 3 implies the result. ·

Since the exact dual gap function is often difficult to compute, the following results

is useful for determining the stopping criterium.

Proposition 4 In k = O (-lo1(n) iterations, is reached for which Cd(x) < 

(or Cd2(c) < ). Moreover, under Assumption 3, if C(x) < (or Cd2(x) < and

Assumptions 3 - 5 hold), then Cd (x) < p2e.

Proof. Since for any x E K, Cd(x) < Cd(x), for i = 1, 2 (see Lemmas 3 and 4), it

follows that in k iterations, Cd(x) < e is satisfied.

Next we prove the second part of the proposition. Suppose, to the contrary, that

for some x, Cd(x) < e, while Cd (x) > p2e. Then for some , f(y)'(xk - y) > p2e.

Consider a point y, = (1 - a) x + aq, for some a E [0, 1]. We define the function

g(Y,) -f(x)'(x - y.) - p [Ix -Y-IH(x) - Then for some z E [x; ],

g(Y.) = af(x)'(x -)c 2p - YiH(x11 = a ()(X ) (( )- )+ I 1 - a2P 1IX -YIIH()

(2 + - H(Z)) - 2 l-Yi IH(a) = rp2+ ( IIY- XIH(Z) - a -YIH(x)

> ap2 E - a (1 - ap2) ix -y112H( 

Letting a = , we observe that g(y0) > e. Hence, Cd (x) = maxK g(y) > E. ThisplfellllW l.( ~=pllx ore% + LX~YEK y~ ( Ep
contradicts the assumption that Cd(x) < E. Similarly we can show that Cd2(x) < E

implies that Cd(x) < p2e. Notice that if the property of Jacobian similarity holds
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for some constant p, then it also holds for all > p. Therefore, if we assume that

Cd(x) > p2E, then g(ya) > , for every a < (where Ya is defined above). Since for

a sufficiently small a, point Ya lies inside the Dikin ellipsoid D(x), it also holds that

Cd(x) > , (i.e., Cd(x) > p2e implies that Cd(x) > e). 

Example: (see [39]). All the methods that are special cases of the GGF can also be

modified to incorporate the cuts we introduced in this chapter. Below we list some

of these methods together with the respective descriptions of the volume reduction

constants as well as the complexity bounds.

Method of centers of gravity: b (n) = e, O (nL 2).

Ellipsoid Method: b (n) = 20(), O (n2L 2 ).

Method of inscribed ellipsoids: b (n) = 0.843, O (nL 2).

Volumetric Center Method: b (n) = const, 0 (nL 2 ).

2.4 Dual function based cuts: an application to

the affine scaling method

In the previous section, we showed convergence and polynomial complexity for the

GGF with cuts that are based on dual gap function. However, the task of finding

a "nice" set pk and its center xk, at each iteration k, might be computationally

difficult. Moreover, the complexity bounds for the methods in this framework tend to

be tight in practice. For this reasons, in the remainder of this chapter, we will consider

methods that are simpler to perform and, perhaps, as a result computationally more

efficient. The version of affine scaling that we consider uses linear subproblem to find

a direction towards next iterate (The convergence of this method in the context of

convex optimization was first studied by Gonzaga and Carlos [28]). Other versions

of affine scaling method for solving nonlinear optimization problems in the literature

consider quadratic objectives in the direction finding subproblem (see [54], [61], [62]).

In the remainder of this section we assume that the feasible region is a polyhedron

and that Assumptions 1 and 4 hold. We will also assume the following:

32



Assumption 9 The Jacobian matrix of the problem function f is symmetric and

positive semi-definite.

2.4.1 Affine scaling method and convergence results

We first describe the method and then establish convergence. Because of Assumption

9, we can represent the problem as an optimization problem with the function f as

the gradient of a convex objective function F (i.e., f = VF).

The affine scaling algorithm (as in [28]) finds

dk = argmin {f (xk) d Ad = O, II(Xk)-ldl < r}

and for some 0 E (0, 1) finds the step size ak = min - iI ), a, where zk 

[xk, xk + adk], E [, amax) and amax is the maximum feasible step length. Notice

that dk = d(xk) as in the following formula:

d(x) = -r lXXf (x) (2.4)

where P is projection matrix onto Null(AX).

Theorem 4 ([28]) Suppose that Assumption 1, 2, 7- 9 are satisfied. Then any limit

point of the sequence {xk} generated by the AS method is a VIP solution.

Under the condition of strict complementarity, we can extend Theorem 4 to show

that in fact the entire sequence converges to a solution when strict complementarity

holds. First, we define strict complementarity.

Definition 7 A limit point (, s) satisfies the property of strict complementarity, if

Xisg = 0 and xi + si > O, Vi.

Assumption 10 Every limit point of the sequence {xk, s(x )} satisfies the strict com-

plementarity property.

We are now ready to establish the following result.
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Theorem 5 Under Assumptions 1, 2, 4, 5, 9, 10 the AS method converges to an

optimal solution.

Proof. For some limit point , we let N = i I Si 0}, B = {i i = 0, S*

{x I Xs(x) = O, Ax = b, x > 0}, and C = x xi [0, ) Vi E N}.

First, notice that Assumption 5 and the continuity of matrix AX 2A' imply that

s(x) is a continuous variable. Hence for a small enough > 0, when x E C and

j E N, it holds that sj > jSjl > 0.

We next show that Assumption 10 implies that the set of limit points is discrete.

Since the sequence {(xk, sk)} is bounded, it has some limit point, say (, s). Notice

that every limit point i of the sequence {xk} induced by the AS method belongs to

the set S*. This set also contains all x E K satisfying the strict complementarity

property. We will show that for some > 0 there exists a neighborhood Ca such that

Ca n S* = . Suppose, to the contrary, that V6 > 0, 3x E S* n Ca such that x° =: x.

Then, since the point is a vector of finite dimensions, for some j E N, there exists

a sequence {x"} with xn E S*c C xn x , a d 0 , xj >0 , - l <.

Notice that the strict complementarity property implies that s. = 0 whereas sj 0.

By continuity, however, sn - j, which is a contradiction. Therefore, for any limit

point of the sequence ({k}, there exists a neighborhood whose intersection with the

set of all limit points is a singleton.

At this point, we notice that conditions analogous to those in [621 are satisfied

and the convergence of the sequence {xk} can be shown by contradiction. For the

sake of brevity we omit this proof and refer the reader to [62] or [51] for more details.

Once convergence of the sequence is established, Theorem 4 ensures that it converges

to a solution. ·

2.4.2 Convergence of the AS method for asymmetric VIPs

In this subsection we examine the convergence of the AS method when applied to an

affine asymmetric VIP with problem function f(x) = Mx + c, defined by a positive

semi-definite matrix M. We note that the proofs for a symmetric matrix M ([28]) use
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the existence of potential a F(x) = x'Mx + c'x to show that f (xk)'dk converges to 0.

This subsequently implies that at the limit point, the KKT conditions are satisfied.

Moreover, convexity implies that every limit point is a solution.

We observe that the direction d found in (2.4) is a decent direction for function

F(x) = x'Mx + c'x (where VF(x) = M+M'X + c). Then

VF(x)'d = -r ( XIIPxf(x)ll + 1 (M'x + c)'XPX(Mx + c) < (2.5)
2 2 IlPXf(x)I l

Hence d is a direction of descent when (Mx+c)'XPX(Mx+c)+(M'x+c)'XPX(Mx+

c) > 0. In particular, suppose that the following assumption holds.

Assumption 11 Matrix M is positive semi-definite and for all x E K the following

condition holds:

x'MXPXMx > 0. (2.6)

We modify the step size to be k min( d I which ensures that thed'Md

sequence {F(xk)} is non-increasing. Since it is also bounded, it has a unique limit

point, which we denote by F. First, just like in the proofs in [28], the continuity of F

implies that VF(xk)'dk 0; therefore, under Assumption (11), f(Xk)'dk - 0. When

this last condition holds, Lenlmas 3 and 4 of [51] (or see similar results in [28]) imply

that for any limit point i, corresponding dual variables s are nonnegative and that

the complementarity condition holds (isi = 0).

Finally, under Assumption 10, the sequence {(k} converges, and the rest of the

results necessary to show convergence, follow as in the symmetric case. We summarize

this discussion in the following theorem.

Theorem 6 Suppose that for f = Mx + c Assumption 11 holds. Then every limit

point of the AS method is a VIP solution. Moreover, if Assumption 10 is satisfied,

the method converges.

Remark. For a nonlinear asylnmetric VIP, we can use a potential based on the dual
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gap function to measure closeness to the solution set. For example, we can use P(x) =

f(x*)'(x - x*), where x* is a VIP solution. Notice that P(x) > O. Then we can show

that the AS method converges, if for every VIP solution x* and Vx E int(K), the following

condition holds: f (x*)'XPXf(x) > f (x)'XPXf (x).

A convergence rate under the Jacobian similarity property

In this subsection we establish a rate of convergence for the AS method. We assume

that the problem function f satisfies the Jacobian similarity property (Assumption

3). An essential element underlying our approach here is the modification of the

line search procedure in the AS method. In particular, we set the next iterate as

xk+l = xk + akdk, where the direction dk is chosen as in Subsection 2.4.1 and the

"optimal" step size ak is determined through a line search. That is, if for all a C [0, 1],

we define xk(a) = xk +apdk, where the constant p is the Jacobian similarity constant.

Then we choose

ac E [0, 1] satisfying (f(xk(ak))'dk) · (a - ak) > 0, Va E [0, 1].

Notice that step size ack equals the one in Subsection 2.4.1, scaled by , where p is

the Jacobian similarity constant.

In this subsection, we assume that the step sizes ak are bounded away from zero.

In particular,

Assumption 12 For some a > O, ak > a, for all k.

Remark. Indeed some of the examples that we consider in Subsection 2.4.3, induce step

sizes that satisfy this condition.

Proposition 5 Consider the sequence of step sizes {ak} as described above. For

some F the following relation holds F (xk+l) - P < (1- ) (F (k) - P).

Proof. We define an auxiliary point yk = xk + pakdk and use a Taylor expansion to
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obtain

F(Xk) = F(yk) + f (yk)(Xk -_ k) + 1(xk _ yk)Vf(zk)(xk yk), (where zk E [xk; yk])

> F(y k) (using the definition of yk and the monotonicity of problem function f.)

Moreover, the convexity of the objective function F and the previous inequality

imply that

F(xk+l) = F ((1- -) k + yk) < (1-) F(k) + F(Yk) F(xk).

Therefore, the sequence {F(xk)}, with step sizes as defined above, is monotonically

non-increasing. Since this sequence is also bounded, it has a limit point F. Let

S = K n {x I F (x) < F}, where K is the feasible region. Notice that S y! 0, since

every cluster point of the sequence {xk} belongs to this set. Using similar arguments

as in [54], we can show that for sufficiently large k, mines II(Xk)- 1 (z - xk) < V/n.

In the following, we use this result to devise a feasible point in the direction finding

subproblem. In particular, suppose that point zk E S satisfies [l(Xk) - l (zk - xk) I <

V/j, then point = xk + a (zk _ xk), with 0 < a < 1, is feasible for the affine scaling

direction finding subproblem. Therefore,

f(xk)'d k f(Xk ) ' (Z k _ k) , for all 0 < a < 1. (2.7)

An application of the mean value theorem implies that

f(yk) (k _ xk) = okpf(xk),dk + (kp)2dk'Vf()dk ' for some E [xk; k]

Therefore, the definition of point yk inlplies that

akpdk'Vf ( )dk < -f(k)'dk. (2.8)
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Combining these results we obtain

F(Xk+1) = F (ok) + akf (x)Idk + _(ak)2dk'Vf()dk, ( for some i e [xI; xk+l])

F (xi) + ekf (Xk)'dk + Pak2d k'Vf ()d 

(using the property of Jacobian similarity)

< F (k) + k f ()'d k - lakf(xk)'dk, (using (2.8))

< F (xk) + -n 1 f(Xk)' (zk - xk ) (using (2.7))

< F (Xk) +an 1 (F (Zk) _F (Xk))

(using the convexity of the objective function F)

ak X) 1a 1 
< 1- 2 ) F ( k)+2 F

Hence, F (xk+l)F (1 a 1) (F() ).

This result allows us to obtain a rate of convergence for the AS method in this

chapter. Next we illustrate that the sequence that this method induces is indeed

convergent to an optimal solution.

Theorem 7 Under Assumptions 3, 4, 9 and 12, the sequence {( kX generated by the

AS method converges to an optimal solution.

Proof. First, we observe that analogously to [54] (see also Appendix A), Assumptions

3 and 12 imply that there exists some constant c > 0, such that F(xk) - F(X k + l ) >

cdk' d . Therefore,

]Ixk - xsI < xE Ix- x-l]I = 0 E ( F (xi) - F (xi -1)1/2)
Assumption+l s+tion 5 imply that F (

Assumption 12 and Proposition 5 imply that F (X k+1)_ < (1- a ) (F ( -)
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Hence,

F (Xk+l) -- F (k) <

k s <1x _ 1<O

F(X kl)- <
i-

2 /n

k-s(

i=2

aoa

2 )(F()-F)(F (x·"') -F , and as a result,

F(x) - F (X - 1/2)

2 °/ )

Since the sequence F ( s) converges to F, it follows that as k, s -+ oo, Ix k - XSII -*

0. We conclude that {xk} is a Cauchy sequence and, therefore, it is a convergent

sequence.

Moreover, since the function s(x) is continuous in x, sequence sk} is also con-

vergent. Since ak > a, F(k)- F > -af (xk)'d k + o(Hldk l2). Then as shown in [51],

IlXkskI l_ -O 0. It follows that the limit of sequence {xk} satisfies the necessary con-

ditions of optimality.

U

The convexity of the objective function F implies the result.

Remark. Notice that in case of affine asymmetric VIPs, if a k and F are defined as in
Subsection 2.4.2, then all the results of this subsection still apply, moreover, to establish
the rate of convergence in case of affine VIPs Assumption 12 is not necessary. Indeed, let(-d'( M+M'C+C=<

= min dTMd c 1) and let ak = /2. Notice that VF(xk + odk)'dk < 0 Va E [0, a]

and, therefore, it holds that dk'Mdk _ ( 2+a) . Moreover, let F be minimizer of
function F. Under Assumption 11, at every limit point of the AS method the function value
would be F and F - F(Xk) > kVF(xk)'dk. From these observations and assumptions, it
follows that

F(xk+l) = F(xk) + Ok

< F(zxk) + ok

2

2

)' dk

)'dk

+ Cak2dk'Mdk

ak2

ak) (M+M'= F(xk) + ak(l - ) x

i.e., F(xk+l) - F < (F(k)- F).

+a (F - F(xk))+ dk< F(xk) + 2 k

Moreover, for a general nonlinear VIP, the rate of convergence results would asymp-
totically hold when iterates are close to a solution. When close to a solution x*, we can use
potential F(x) = f(x*)'(x-x*) + (x-x* )'H(x*) (x-x*) to establish a local rate of conver-
gence as in Proposition 5. Let be a solution of one-dimensional VIP: f(x + ad)'d < 0
on [0, 1]. When xk is close to the solution the following hold:
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x k + (* - xk) E D(xk), Va E [0, 1];

* VF(xk)'d = f(xk)'d + o(jlx - x*112);

* dk'H*dk < Vf(k)'dk Va E [o0,];

· F - F(xk) > f(xk)'(x*-X) > n- f(xk)'dk, Va E [0,1].
Based on these observations, we estimate

2F(xk +l ) _ F(xk) + ckVF(xk)'dk + dk'H*dk

< F(xk) + xkVF(x)'dk -- Vf(xk)'dk

< F(Xk ) + k2p- 1 f(Xk)dk + (lX - x*112)
2p

< F(xk) + ak2P- 1 a f(Xk),(x*- k) + o(-x -11 2)

2p fn)

< F(xk) + a ( - F(xk)) + o(x - x*112), (letting - 2- 1)
2p

i.e., F(xk+l) - F < (1- )(F(xk) - F) + o(1lx - x*112).

Finally observe that convergence arguments of Theorem 7 extend to asymmetric VIPs.

2.4.3 The AS method with cuts and computational results

Our goal in this section is to examine computationally the performance of cuts we

introduced in this chapter. For this reason, we consider the affine scaling method

as well as several variations that incorporate the cut ideas from Section 2. To test

the methods in this chapter, we chose several randomly generated instances of affine

variational inequality problems. In most of the examples the matrix M is symmetric.

However, we also tested asymmetric examples chosen so that both M and M2 are

positive-definite. This last condition is similar to the condition necessary for conver-

gence of generalized descent framework for asymmetric VIPs as described in [40]. In

particular, we considered variational inequality problems of the following format,

Find x* E K such that f(x*)'(x - x*) > 0, Vx E K,

with (1) a problem function f(x) = Mx - c defined by a positive semi-definite n x n

matrix M and either (i) M is symmetric or (ii) M2 is positive definite, and a vector
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c E R n , and (2) a polyhedron K = {x E Rn I Ax b defined by an m x n matrix

A and a vector b E m. We generated the elements of matrix M I x R randomly

so that M is diagonally dominated and M and M2 are positive definite. The feasible

region was generated in the form {x I x > 0, a'x < 1 } where a E R n + was some random

positive vector. The initial strictly feasible point was generated as x°0 = .5a- 1 where

a- 1 = (a 1, .. , al1). Asymmetric examples where generated similarly. In addition,

we used several small-dimensional examples in which the cycling behavior of Frank-

Wolfe algorithm could be easily observed. We implemented all the methods using

MATLAB version 6.1, on a personal computer with a Dual Xeon 1.5GHz processor

and 1GB RAM of memory. Finally, we computed the CPU time using MATLAB's

build-in function. As a stopping criterion, we used as tolerance level E = 10- 4 .

Symmetric VIPs

We first study the performance of AS method for symmetric VIPs. In Table 2.1,

we compare the performance of the affine scaling method introduced in this chapter

with the performance of the Frank-Wolfe method ([22]). We observe that in all the

examples we studied, the affine scaling method in this chapter fixes the zigzagging

behavior of the Frank-Wolfe method. Moreover, in most of the examples, the affine

scaling method computes a solution in less CPU time. However, in one of the exam-

ples, the Frank-Wolfe method computed the solution faster (in terms of CPU time)

than the affine scaling method. In this example, the Frank-Wolfe method did not

zigzag. The solution of the variational inequality problem lied at a corner point of

the polyhedral feasible region, and the Frank-Wolfe method computed the solution

in one step (that is, by solving a single linear optimization subproblem). It is worth

noting that a possible reason for the faster convergence of the Frank-Wolfe method in

this example, is that as it solved a single linear optimization subproblem using MAT-

LAB's built-in optimization solver, it relied on the speed of this implementation. On

the other hand, in the same example, the affine scaling method applied a sequence

of much simpler steps. We believe that a better implementation of the affine scaling

method will yield a comparable performance even in this example. In conclusion,
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we observed that in most of the examples we generated, the affine scaling method

outperformed the Frank-Wolfe method.

FW Frank-Wolfe Algorithm

LAS long step Affine Scaling Algorithm

Table 2.1: LAS method vs. FW method

Moreover, in Table 2.2, we compare the performance of the long step affine scal-

ing method we introduced in this chapter (LAS) with that of two other affine scaling

methods: i) QLAS, a quadratic approximation long step affine scaling method (see

[621), ii) DLAS, a long step affine scaling method that considers a quadratic ap-

proximation of the objective further using a diagonal approximation of the Jacobian

matrix. We chose the long step versions of these methods since we noticed that within

the family of affine scaling methods the long step versions perform the best compu-

tationally. The two quadratic approximation methods (QLAS and DLAS) perform

similarly computationally. Furthermore, in most of the examples we generated, the

affine scaling method introduced in this chapter outperformed both of these methods

in CPU time. We attribute this partly to the simplicity of each iteration. Neverthe-

less, in two examples the affine scaling method (LAS) performed worse. Even in these

two examples, we drastically improved the performance of the method (LAS) when

we incorporated cuts (see Table 2.3). This new method significantly outperformed

the two quadratic approximation methods. In what follows, we will discuss this in

further detail.

To further improve the computational results in this chapter, we incorporate the

cut ideas we discussed in Section 2 into the affine scaling method. The motivation
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FW LAS
m iterations time iterations time

8 7 2 0.0628 10 0.028
10 6 >3000 106.6596 11 0.0315
31 30 18 0.8967 137 1.1397
51 30 >3000 >171 46 0.7505
43 40 2 0.0691 21 0.3962
101 100 >3000 171.244 221 22.0946
171 100 >300 >300 803 252.9649
111 110 269 139.112 801 99.2196



LAS long step Affine Scaling Algorithm

QLAS LAS with a quadratic approximation of the objective in the subproblem

DLAS LAS with a diagonalized approximation of the objective in the subproblem

Table 2.2: LAS method vs. QLAS and DLAS methods

in this comes from the observation that methods utilizing cuts often provide better

complexity results in theory as well as in practice.

The AS Method with Cuts
1. Start with a strictly feasible point x0, feasible region K° = K, tolerance e > 0, and

constant r E (0, 1).

2. At iteration k:

(a) Find k E K such that F(yk) < F(xk).

(b) dk = argmin { f (yk)'d I Ad = 0, II(Yk)-ldII < r}.

(c) Choose step size ak s. t. (a - ak)f(yk + akdk)'dk > 0, for all a E (0, akax),

where aax > 1.

(d) k+1 - yk + akdk

(e) Update Kk+l = Kk n Cut(yk, xk).

3. Stop when If(xk)'dkI < E.

In what follows, we compare the long step affine scaling method (LAS) with

several special cases of the AS method with cuts we just described. These special

cases include the following:

(1) Simple cuts.

Set point yk = xk and introduce cut Cut(xk,xk) = {x I f (k)' (x - xk) < O} (LASC).

(2) Cuts based on the dual gap function.

Suppose that Assumption 3 holds. We introduce cut Cut(yk,xk) = {x f (yk)' ( - xk) < O} with
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LAS QLAS DLAS
m n iterations time iterations time iterations time

8 7 10 0.028 10 0.0685 9 0.0667
11 10 9 0.0468 10 0.0859 10 0.0904
31 30 137 1.1397 12 1.3045 11 1.2324
51 30 46 0.7505 15 1.4003 12 1.2455
43 40 21 0.3962 16 3.2849 16 3.4243
166 60 153 41.5669 100 92.3103 100 95.1253
154 77 100 22.3608 95 189.2372 100 201.0876
101 100 221 22.0946 20 87.9 24 101.2705
171 100 803 252.9649 17 79.537 49 234.6041
111 110 801 99.2196 20 97.3761 15 69.733



(a) yk = argmaxyeK,y>xk {f(Xk)'(k - p ' - Y1H(Xi) IAy=b, 11 (Xk)L(y _ Xk)j < r}

(LASGs).

(b) yk = argmaxyEK {f(xk)'( k -- y) - p IIxk - YIH(Xk) Ay = b, I (Xk)-l(y - xk)j < r}

(LASGD).

LAS LASC LASGs LASGD
iterations time iterations time iterations time iterations time

8 7 10 0.028 10 0.0325 6 0.0586 8 0.052
11 10 9 0.0468 9 0.0302 6 0.066 7 0.0678
31 30 137 1.1397 24 0.2985 8 0.9622 17 1.9883
51 30 46 0.7505 24 0.5143 9 0.7311 13 1.2917
43 40 21 0.3962 21 0.6716 10 0.8234 18 2.2375
166 60 153 41.5669 161 33.2601 12 4.1987 181 61.9024
154 77 100 22.3608 104 25.89 13 4.6085 133 104.8659
101 100 221 22.0946 25 2.9223 12 13.4612 89 392.7285
171 100 803 252.9649 40 15.8761 10 13.4899 50 241.7931
111 110 801 99.2196 33 4.659 13 12.9911 26 108.0049

LAS long step Affine Scaling Algorithm

LASC LAS with cuts Cut(x,x)
LASGs LAS with cuts Cut(y,x), where y is found within { z I Az >=a Ax, with O<a<=l}

LASGD LAS with cuts Cut(y,x), where y is found within Dikin ellipsoid

Table 2.3: AS method vs. AS methods with cuts

Table 2.3 summarizes the computations that compare the various versions of the

affine scaling method of this chapter. We notice that the two best versions in terms

of CPU time are the method that uses simple cuts (LASC) as well as the method that

uses cuts determined via a gap function where the direction of the cut is found within

a restricted feasible region (LASGs). Moreover, Table 2.3 demonstrates that these

two versions compute a solution in a comparable or even less number of iterations

than the quadratic approximation affine scaling methods. Nevertheless, in terms of

CPU time, both methods with cuts are faster. Among the versions of the method

with cuts determined via a gap function, the method where the direction of the cut is

found within a restricted feasible region (LASGs) has consistently the least number of

iterations. In conclusion, both LASC and LASGs outperform considerably the affine

scaling method without cuts, both in terms of number of iterations and in terms of

CPU time.
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Asymmetric VIPs

We also generated several examples of asymmetric affine VIPs. Table 2.4 compares

the long step AS method (LAS) with the same methods as we considered for symmet-

ric problems in the previous subsection. When constructing examples, we generated

matrix M so that M and M2 are positive definite, which is a rough approximation

of the conditions in Assumption 11. We also checked whether condition (2.6) is sat-

isfied at each iterate, iA11 in the table indicates the number of iterates at which this

condition was satisfied for the LAS.

LAS LASC LASGs FW QLAS
m n i t iAn i t i t i t i t

101 100 >3000 276 84 20 2.1 1417 3000 263 23 133
171 100 1024 280 1024 29 7.6 11 13 >212 >300 17 79.1
123 41 89 8.5 89 112 8.4 12 1.6 2 0.79 67 12.4
63 41 942 27 942 61 1.7 31 2.7 >926 >300 29 9.5

i iterations
t CPU time

iA,, number of iterations at which Assumption 11 holds

Table 2.4: Asymmetric VIPs

We observe that in the most examples one of the methods with linear cuts (LAS

or LASGs) outperformed the other methods in both CPU time and the number of

iterations. We also observe that when condition (2.6) is satisfied at all the iterates,

the AS method without cuts is converging, while when this condition is not satisfied,

the method seems to cycle. This emphasizes the sufficiency of Assumption 11 for the

convergence of the AS in asymmetric problems. Finally, methods with cuts are likely

to substantially improve the convergence properties of the AS method, as was also

displayed in the case of symmetric problems.

Summary of computational results

Below we summarize our learnings from the computational experiments we performed.

1. All the versions of the affine scaling method we introduced in this chapter fix

the zigzagging behavior of the Frank-Wolfe method.
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2. The AS method converges in case of both symmetric and asymmetric affine

monotone VIP; for asymmetric VIPs it converges when Assumption 11 holds.

3. The cuts often speed up the AS method.

4. In two examples the Frank-Wolfe method performed better than the affine

scaling method. These were an examples where the Frank-Wolfe method did

not zigzag, but rather the Frank-Wolfe method found the solution in one step

through the solution of a linear optimization subproblem. We attribute this

to the quality of the MATLAB's built-in linear optimization solver. We be-

lieve that a better implementation of the affine scaling method will also yield

comparable results in terms of CPU time, even in this example.

5. In theory, the affine scaling method will perform in the worst case similarly to

the Frank-Wolfe method. Nevertheless, in most cases in practice, we believe

that the affine scaling will perform better.

6. After comparing all the versions of the affine scaling method we considered in

this chapter, we conclude that the LASC and LASGs methods perform better

in terms of CPU time. Moreover, in terms of number of iterations, the LASC

method performs a similar number of iterations while the LASGs method per-

forms fewer iterations than the quadratic approximation affine scaling methods.

7. The LASC and LASGs versions of the affine scaling method outperform the

affine scaling method (LAS) without cuts both in terms of number of iterations

and in terms of CPU time.

8. In particular, the LASGs method performs fewer iterations than all the other

versions of the affine scaling method we considered in this chapter. Furthermore,

it has the best or second best CPU time.

9. As the dimension of the problem grows, the LASC and LASGs versions of the

affine scaling method are likely to outperform the Frank-Wolfe method, the
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quadratic approximation affine scaling methods we considered, and finally, the

affine scaling method without cuts.

We would like to note that the theoretical convergence properties of the general

affine scaling method with cuts are similar to those of the affine scaling method

without cuts. For the sake of brevity we do not include this discussion in the chapter.

2.5 Conclusions

In this chapter, we have introduced "smarter" linear cuts whose directions are based

on the dual gap function associated with variational inequality problems. We estab-

lished complexity results for the GGF with these cuts. To investigate the computa-

tional effect of these cuts, we applied them to a version of the AS method for VIPs.

This version of the AS, at each step a direction was computed by solving a subproblem

with a linear objective within a Dikin ellipsoid. Under some additional assumptions

imposed upon the step sizes (and, in case of asymmetric VIPs, on the region), we

established the rate of convergence of this method for monotone variational inequality

problems with no cuts present. In our computational experiments (for both symmet-

ric and asymmetric VIP examples, with the latter satisfying additional assumption),

we observed that even the affine scaling method without cuts outperformed (in terms

of CPU time) the Frank-Wolfe algorithm as well as variations of the affine scaling

method that use a quadratic approximation of the objective in the direction finding

subproblem. Furthermore, the affine scaling method with cuts considerably reduced

the number of iterations as well as the CPU time for larger dimensional examples as

compared to other methods. For the asymmetric VIP examples, we observed that

the method converges when the condition (2.6) holds at each iterate. Although more

extensive computational testing is needed, preliminary testing seems to indicate that

these methods might perform well in practice.

47



48

_ __ _�_I



Chapter 3

Multi-period Models with

Capacities in Competitive Supply

Chain

3.1 Introduction and position within literature

This chapter studies the oligopolistic competition of capacitated sellers in a multi-

period supply chain environment. We consider n sellers (suppliers) competing for the

orders from a single buyer (retailer). At each period the buyer can place an order

at the prices announced by the sellers. We assume that all the agents are profit

maximizers, the buyer can carry inventory and faces dynamic demand.

Instances of dynamic oligopolistic competition among capacitated sellers can be

found in many industries. For example, electrical utilities are serviced by finite num-

bers of power generators with limited capacities, from whom the utilities buy on a

periodic basis. Similarly, in other natural resource industries, several sellers with

limited capacities form oligopolies and compete for the orders from buyers. Gener-

ally, commodity or near-commodity exchanges with a finite number of sellers and

large-volume buyers can supply examples of the kind of oligopolies that can fit our

model. With the proliferation of internet-based marketplaces, this type of exchanges
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became an increasingly powerful presence in B2B transactions. Many B2B market-

places are buyer-oriented and, in addition to lowering costs, leadtimes and allowing

greater transparency in the supply chain, add value to buyers through (i) aggregat-

ing demand and thus creating artificially large-volume buyers (FOB.com) and (ii)

introducing a broader supplier base. The competition among suppliers is usually rep-

resented through catalog auctions (catalogs list several suppliers allowing a buyer to

comparison shop, e.g., ChemConnect, Sciquest) or through reverse auctions (suppliers

offer bids for a particular order, e.g., Freemarkets).

Many transactions that are facilitated by e-marketplaces are of a one-time nature,

whereas companies still negotiate for long term contracts. Nevertheless, multi-period

demand can be satisfied through contracts made dynamically in a competitive en-

vironment, where both demand and suppliers' characteristics can change over time.

We believe that one of the main contributions of this work lies in considering the

dynamic aspect of oligopolistic supply chain competition.

Recently many researchers in the Operations Management (OM) field have been

studying supply chain competition. Some examined equilibrium and the algo-

rithms to compute it in a many-supplier/many-retailer models (see, for example,

Nagurney, Dong and Zhang [45]) or in a one-supplier/many-retailer case (see, for ex-

ample, Bernstein and Federgruen [3]). However, the majority of the models focus on

competition between a single buyer and a single seller. This is sometimes easily

extendable to the cases of multiple buyers or sellers. Cachon [9] studies a periodic

review model of an inventory game between a seller and a buyer, where the demand

is an exogenous stochastic process, both the buyer and the seller can carry inventory

and experience lead times. [9] finds the equilibrium of the underlying game and stud-

ies how to coordinate this chain. The paper also surveys models of competitive supply

chain. Similar models are also presented in Cachon and Fisher [8] and Caldentey and

Wein [12]. Various coordination contracts in a one-buyer/one-seller case can also be

found in Cachon and Lariviere [7] and in Lariviere [35]. Coordination using option

contracts was first introduced in Barnes-Shuster, Bassok and Anupindi [1] in the case

when a buyer has an option of purchasing the product at a market price. [1] showed
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that an equilibrium options contract will coordinate the chain; moreover, many of

the commonly studied coordination contracts are special cases of options contracts.

Option contracts in a model with a single capacitated seller and a single buyer

were also studied by Wu, Kleindorfer, Sun and Zhang [60] and Spinler [53]. The

first paper studied equilibrium prices, while the second paper extended the model to

include state dependent options. Even though most models in the literature present

either periodic review or static setting, dynamic competition has also been studied

in continuous time setting (see Dockner et al. [20] and J0rgensen and Kort [33]).

So far we reviewed general trends in modelling one supplier/one buyer supply chain

competition. Oligopolistic competition has been studied by economists starting

with Cournot and Bertrand and there exists a substantial body of literature related

to this subject. We refer the interested reader to Fudenberg and Tirole [23], [24] and

Tirole [55] for more information and further references. In the context of OM, the

competition of several suppliers for the orders from a single buyer was studied

in Jin and Wu [31], which examined catalog auctions under perfect and asymmetric

information. Cachon and Harker [10] studied competition between two firms (sellers)

in scale economies. Specific dynamic pricing mechanisms among multiple sellers and a

single buyer have also been studied in the literature: Gallien and Wein [25] considered

a Freemarkets-like reverse auction; Chen, Jamakiraman, Roundy, and Zhang [14]

considered generalized Vickrey auctions and accounted for transshipment costs; Beil

and Wein [2] studied parameter estimation in a generalized multi-attribute auction;

and Ertogral and Wu [21] propose a bargaining game that coordinates multi-seller

supply chain. We also would like to mention here a survey by Cachon and Netessine

[11] that provides a useful background on game theory in the context of supply chain

competition.

The problem of a capacitated oligopoly has been examined extensively in

the economics literature, beginning with Edgeworth [15] who studied models of price

competition (see also Levitan and Shubik [36]). It was noted already by Edgeworth

that when capacities are incorporated in an oligopolistic price competition model,

finding equilibrium policies seizes to be as straightforward as in the case of pure
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price competition (Bertrand competition). [36] showed existence of a mixed strategy

equilibrium. There are several versions of such existence results in the literature

depending on the allocation rule. It was furthermore shown, that in several situations

the existence of pure strategy equilibria can be justified: (1) if the game is modelled

as a multi-period game with a stream of customers with a single unit demand, (2) if

other parameters are present in the model (for example, a market price), or (3) if a

certain relationship between the demand and the capacities holds. We note that the

mixed strategy equilibrium for a static Edgeworth competition is derived in Kreps

and Scheinkman [34]. In this thesis, we are interested in pure strategy equilibria, as

these strategies are more intuitive and can be explained and implemented in practice.

The collusion and trigger-price strategies in the repeated games context have also

been studied by economists for oligopolies with capacitated suppliers (see [23], [24]

for further references) and are beyond the scope of this work.

In the OM literature, the competition of capacitated sellers was studied

by Wu, Kleindorfer, and Zhang [60] in a static environment. The authors consider a

problem with a single buyer, n sellers. The buyer enters into option contracts with

the sellers and each contract fixes a price and a capacity. Then the buyer observes the

market price and demand and decides to exercise some of the contracts or to make

purchases at a market price. The paper shows that option contracts coordinate this

supply chain. A similar model is also studied in Martinez-de-Alb6niz and Simchi-

Levi [42], who focus on the properties of the equilibria of this model. Our study of

oligopoly differs from the above mentioned work [42] and [60] in the following way.

* Our main model does not incorporate a "market" supplier. Therefore, we need

to study contracts other than options to coordinate the chain.

* We consider dynamic competition in discrete and continuous time.

* We consider a profit-maximizing retailer (unlike [42] that considers a cost-

minimizing retailer or [60] that considers a utility-maximizing retailer).

* We consider expandable capacities.
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* Unlike [42], in this work, the capacity of suppliers is fixed and bounded from

above.

The properties of the retailer's profit function in a discrete multi-period setting

are also studied in Martinez-de-Albeniz and Simchi-Levi [41], where the retailer is a

cost-minimizing buyer of capacity options from several suppliers. Even though some

of the properties of the retailer's problem in this thesis are similar to those in [41], our

focus is on the study of the equilibrium properties as opposed to an in-depth study

of the retailer's problem. Moreover, this work also considers a continuous time model

of competition.

Our model is also related to the inventory theory literature, as we consider

a two-echelon supply chain, with the retailer constituting the second echelon and n

suppliers forming the first echelon. The strategy of each of the players is determined

through a general dynamic program, that is similar, for example, to the one considered

in Chan, Simchi-Levi, and Swann [13] (when time is discretized) and in Bertsimas and

Paschalidis [5] (when time is continuous). There are two major differences with these

papers. First, as a result of competition among suppliers, the prices they announce

will depend on the total amount ordered by the retailer, i.e., these prices do not

remain constant in time and are piecewise linear in the total amount ordered by the

retailer. Moreover, further differences in the equilibrium structure are imposed by

the restrictions on the suppliers' capacities.

We believe that our contributions can be summarized as follows:

1. We study dynamic competition with multiple capacitated suppliers com-

peting for an order from a single retailer (a) in continuous and (b) in discrete

time setting. We characterize equilibrium policies for these settings.

2. We study contracts to coordinate this dynamic supply chain.

3. We study option contracts in a multi-period, multi-supplier setting.

4. We consider some extensions of the model including more general supplier cost

structures, expandable capacities, and stochastic demand at the retailer.
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The remainder of this chapter is organized as follows. Section 3.2 describes the

decentralized and centralized models as well as the properties of equilibrium policies

in the continuous time case. Section 3.3 describes the model and equilibrium policies

in discrete time case. Section 3.4 considers coordination mechanism and compares

decentralized and centralized solutions. Section 3.5 describes a modified model that

incorporates options. Section 3.6 provides numerical examples, and Section 3.7 sum-

marizes some extensions. We conclude in Section 3.8 outlining contributions and

further research possibilities.

3.2 Continuous time model

3.2.1 Introduction

In this section we introduce and analyze general models of dynamic competition in

a continuous time setting. In particular, we focus on a supply chain setting. We

model the competition among n suppliers for an order from a single retailer over

the time interval [0,T] (see also Figure 3-1). We assume that competition is for a

single homogeneous product'. The retailer can carry inventory I and faces continuous

consumers' demand rate D. There are consumers' prices p(D) that correspond to this

demand rate and, therefore, are exogeneous to the system. Each supplier i produces

a unit of product at a cost si and has a cap on the rate of input that equals Ki. We

assume that suppliers' costs si and capacities Ki are constant over time. Supplier

i charges the retailer a price wi per unit of product. As a result the retailer orders

at the rate qi from this supplier. Without loss of generality, we can assume that

the suppliers are indexed in increasing order of their costs. In the model we omit

lead times as well as a possible production capacity at the retailer. Nevertheless, the

results can be extended to include these features. Table 3.1 below summarizes the

description of parameters and variables of the system at time t.

1As we mentioned earlier the product could be a commodity or near-commodity, i.e. a homo-
geneous or a highly substitutable one. Electricity, raw materials, chemicals, as well as milk, flour,
coffee, paper, staples, etc., can be be considered as such products.
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We note here that similar notation will be used later in the discrete time model.

WVVe will use superscript t to denote time in the discrete time case. Moreover, wherever

it is unambiguous, we will omit the time parameter.

(S1, . ,sn) = s(t) = s E Rn +

(w, . . ,w,) = w(t) E n+
(K1,.., Kn) = K(t) = K
Kk = ik_ Kk
(ql, -, qn) = q(t) E Rn+

q(t) = Eil qi(t)
I(t)
S(t)
D(t)

ED(t) = E(D(t))
h(t) = h
b(t) = b
p(D)
R(y, x) = p(x) min(y, x)

r(y) = R(y, ED)
7rr(q, S, tlw, I)

7ri (wi lW-i)
DPt(Ilw)
7r(qlI)
I+(t)
I- (t)
wi(t)

vector of suppliers' costs, constant over time
vector of suppliers' prices
vector of upper bounds on replenishment rates
total capacity of first k suppliers
vector of rates at which the product is ordered
from the individual suppliers
rate at which the product is ordered by the retailer
retailer's inventory at the beginning of period t
retailer's base stock level for period t + 1
consumers' demand, a random variable with cdf F,
pdf f
expected consumers' demand
retailer's holding cost, constant over time
retailer's costs of a lost sale, constant over time
retailer's price, a function of consumers' demand D
retailer' s revenue, a function of consumers'
demand x and supply y at the retailer
retailer's revenue for a given expected demand
retailer's profit given initial inventory I
and suppliers' prices w at time t
supplier i's profit
retailer's profit-to-go starting at time t, inventory I
centralized chain's profit given initial inventory I
= max(I(t),0)
= max(-I(t), 0)
= (W1, ..., Wi-1, Wi+l, ...Wn)

Table 3.1: Notation

The continuous time setting is interesting to study since it allows us to gain an

insight into the structure of equilibrium policies and can approximate some applica-

tions where there is high throughput and demand and competition among suppliers

is dynamic. For example, the continuous time setting can be used to model compe-

tition of electric utilities/generators. In Section 3.3 we will also consider a discrete

time setting. A discrete time model allows us to model more realistic settings (i.e.,

impose more realistic assumptions, allow parameters to change more slowly when the

time intervals in the discretization are larger) as well as to get more efficient schemes

for computation.
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Decentralized vs. centralized models

The primary model we study will assume that each of the agents tries to maximize

his/her individual profit. That is, each agent's strategy is locally controlled. Such

systems are referred to as decentralized or under decentralized control, and at equilib-

rium, each agent's strategy is locally optimal.

On the other hand, systems under centralized control achieve globally optimal

strategies, and thus achieve social optimum. In a centralized or integrated system, all

the agents operate as an integrated system, i.e., as a single agent interacting with the

exterior markets. In our model, the centralized agent has n supply sources with costs

for each s = (sl,..., s,) and faces market with demand D, price p(D). A centralized

system maximizes the overall profit as well as the total quantity delivered to the

consumers.

It is often desirable to give incentives in order to make the decentralized system

as efficient as the centralized one, while allowing the agents to have local control. To

facilitate this aim, various types of contracts can be suggested. Later, by introducing

appropriate contracts, we will show that the agents' equilibrium strategies in a com-

petitive environment can become equivalent to the strategies in a centralized setting.

We will also discuss how the centralized and decentralized solutions compare in our

models.

In this thesis, the model we study can be described as a two-echelon system: the

suppliers constitute the first echelon while both the retailer and the suppliers comprise

the second echelon. We next discuss in more detail the loss of efficiency in two-echelon

systems.

Generally, notice that there could be several sources of inefficiency in a two-echelon

system. These include random shocks or inputs (stochastic consumers' demand in

our model), incomplete information (not present in our model since we assume public

information), and limited resources (the presence of capacity in our model). However,

the major source of inefficiency lies within the sequential structure of the system

itself. In a decentralized system where the agents are able to influence the system's

56



output, an effect of double marginalization is often present, i.e., the price of the

output is higher than the price of the inputs because of two successive mark-ups

(marginalizations). On the other hand, in perfectly competitive systems, there is no

marginalization at all, as all agents' prices equal their costs. Finally, in monopolies,

there is only one mark-up. As a result, competitive systems, i.e., systems under

decentralized control, are characterized by greater losses in efficiency when compared

to systems under centralized control or to monopolies.

In our model we consider a decentralized system. When the retailer can influ-

ence the consumers' price, double marginalization manifests itself through both the

suppliers' and the retailer's prices being higher than their respective costs. The to-

tal mark-up in the decentralized system is higher than the mark-up in a centralized

system. When the prices at the retailer are fixed, a similar effect takes place, as the

total amount of the product retailer offers to consumers is smaller than he/she would

have offered in a centralized system. That is, the total profit and the total output of

a decentralized two-echelon system is not larger than those of a centralized system.

In what follows we present the problem each of the agents faces over the whole

time horizon [0, T] in the decentralized environment. We then present the formulation

of the centralized problem. We assume that the time horizon is small enough so that

discount rates and changes in suppliers parameters' can be omitted.

3.2.2 Decentralized model

The sequence of events

We assume that at each time instance t, the following events occur (see also the illus-

tration in Figure 3-2). First suppliers announce their prices w(t) = (w(t),..., w(t));

then the retailer responds with rates of order q(t) = (q(t),... ,q,(t)) and decides

which base stock level S(t) to maintain. Finally, the consumers' demand rate D(t)

at the retailer is realized and the profits and losses are assessed by all the agents.

The interaction among agents, i.e., the suppliers and retailer, can be modelled as a

non-cooperative game. We will describe this game in three ways. First, one can view

57



it as a recurring oligopolistic competition, in which at each time instance, the retailer

announces his strategy after all suppliers announced theirs (simultaneously). This

game has two stages, and in such interpretation, the suppliers are called Stackelberg

leaders and the retailer, a Stackelberg follower2 . A second way to view the game is

as a competition among only the suppliers. The demand each supplier faces is deter-

mined through the retailer's strategy and the consumers' demand. Finally, the third

way one can interpret the game is as follows: suppliers announce their prices in the

order of decreasing costs and then the retailer follows with an order.

The retailer's problem

We consider the retailer's problem, with suppliers' prices w(t) as an input. At time

instance t, the retailer must decide on the base stock level for the next period S(t)

and the rates at which the product is ordered from the suppliers, q(t), 0 < qi (t) < Ki.

We assume that the demand rate is distributed with cdf F(t), D(t) - F(t), and f(t)

is the corresponding pdf. The price at the consumers' level depends on the demand

and is given by function p(D). We assume that p(D) is non-increasing in D. The

retailer maintains an inventory I(t). The retailer's revenue is R(I + q - S, D) =

p(D) min (D, (I + q - S)+). We will denote the instantaneous profit as

7rr(q, S, tw, I) = R(I+q-S, D)-w'q-hS-h(I+q-D-S)+-b(I+q-D-S) - . (3.1)

The retailer's problem over time interval [0, T] can be described by the following

continuous time dynamic program (DP):

max ED wr(q, S, tlw,I)dt. (3.2)
q,S

In this DP,

(i) the state variable is inventory I(t) and the state transition equation is (t) =

2 A Stackelberg equilibrium is such that the retailer does not have an incentive to deviate at stage
2 of the problem given that the suppliers play their equilibrium policies, and suppliers do not have
incentives to deviate at the first stage of problem.
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q(t)- D(t) with initial inventory I(0) = Io;

(ii) the control variables are the rates q at which the product is ordered from the

suppliers and the base stock level S, while the control space restriction are

0 < qi(t) < Ki, 0 < S(t) < I(t);

(iii) the randomness comes from the demand, D(t) F(t).

Since our primary goal in this research is to gain an insight into the structure of

equilibrium policies, in order to make the computations easier, in the remainder of this

thesis we will analyze this DP model through a deterministic fluid approximation. In

particular, we will approximate demand rate D(t) through its expected value E(D(t)),

which we will denote as ED(t) for brevity. Then the retailer will solve the following

problem

max j 7rTr(q,S, tw,I)dt. (3.3)
q,S JO

s. t. I = q- ED, 0 < q < K, I S(t) > O, I(0) = Io. (3.4)

Alternatively, in order to obtain a closed form solution to the model, we could

consider the case of a demand process following a Brownian motion. In this set-up,

an appropriate equilibrium can be defined and when the retailer's profit function is

quadratic, a closed-form solution can be found (more information on this type of

models can be found in [20]).

We assume that when deciding on the orders from equally priced suppliers, the re-

tailer uses a proportional allocation rule, that is, he/she distributes the order between

equally-priced suppliers so that the same proportion of their capacities is utilized.

Assumption 13 The retailer uses a proportional allocation rule.

This is not a very restrictive assumption, as the model can be analyzed similarly

under other allocation rules.

Remark. The proportional allocation rule can have the following interpretation. When

several suppliers have the same price w: we could treat them as one supplier with a pooled
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capacity and then divide the order allocated for that artificial supplier among the pooled

suppliers in proportion to their capacity.

Moreover, we assume that all the agents have the same information about tech-

nologies, forecasts and strategies of each of the system's agents; for example, each

supplier knows the exact costs and capacities of the other suppliers.

Assumption 14 All information is public.

Incorporating asymmetric information would enrich the model, however would also

change the focus of the research and add a level of difficulty that is beyond the scope

of this thesis. Moreover, in mature markets, such as the ones our model represents,

we can assume that there is no entry/exit possibilities or technological changes and

that the information has dissipated among the agents, i.e. all information is public.

We do not incorporate lead times in our model. This suggests that it does not

make sense for the retailer to maintain any positive base stock level, since doing so

would only increase inventory costs. Therefore, in the remainder of this discussion,

we will omit S(t) from the model.

Assumption 15 There are no lead times between the suppliers and retailer.

This is again a simplifying assumption, and the model can generally be extended

to include lead times.

We conclude the description of the retailer's problem by the following reformu-

lation, that will be useful in the consequent analysis. The retailer's problem can be

interpreted as the competition of n + 1 suppliers, where the first n suppliers are the

actual suppliers as before and the (n + 1)st supplier is an artificial supplier with ca-

pacity Kn+ = ED(t) and no costs, Sn+l = 0. Thus the order from the last supplier

represents 'lost demand' (or backorder if such were permitted by the model). Then

at each time instance, the holding costs are h(I + q - ED), the costs of lost sales

are bqn+l, and, assuming that wn+l = 0, the instantaneous profit function can be
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rewritten as

7rr(q, tjw, I) = R(ED, ED - qn+l) - (w + he)q - bqn+l- hI + hED, (3.5)

and constraints are i = q - ED, I > 0, q E [0, K], and q + I > ED. The last con-

straint guarantees that (n + 1)st supplier correctly represents unsatisfied demand and

that inventory stays non-negative. We will also use the following notation: r(x, t) =

R(ED, ED - x, t). Hence, 7r(qlw, I) = r(q,,+) - (w + he)q - bq,+l - hi + hED.

A supplier's problem

We next illustrate supplier i's problem. Supplier i has to choose a price level wi(t) to

maximize his/her profit, given the presence of competing suppliers:

max7ri(wilw_i) = (wi - si)qi(wi, w_i)dt (3.6)
Wi Jt=o

subject to qiwi < qiwj, (3.7)

wi > 0, (3.8)

where 0 < qi < Ki is determined from the retailer's problem and depends on the

state variable I as well as prices w. Constraint (3.7) in the formulation accounts for

the competition among the suppliers, i.e., if there is an order from supplier i, with

qi > 0, then, at equilibrium, his/her price is not greater than that of the competing

suppliers: wi < wj, Vj. Notice that the randomness, that comes into the system

with the consumers' demand, is implicitly present in a supplier's problem in function

qi(wi, w_i). We assume that, at equilibrium, suppliers that do not obtain an order

from the retailer price at their costs. This behavioral assumption ensures that the

inactive suppliers (i.e., the suppliers without orders in an equilibrium solution) have

a greater chance to obtain an order if there is a fluctuation in the active suppliers'

offers. Notice that if the equilibrium prices are the result of a descending auction

being held at each time instance t (i.e., suppliers lower their bids until an equilibrium
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is reached), then equilibrium prices of active suppliers would be bounded by the costs

of inactive suppliers.

Assumption 16 Suppliers with no orders announce prices equal to their costs.

Alternatively, supplier i's problem can be modelled with a linear objective de-

pending not just on other suppliers' prices w-i but also on the retailer's policies q

(see Appendix C). However, in this case, the feasible set is not convex.

The suppliers' problems are complicated due to the presence of competition as

well as capacities. Because of these constraints, the model does not necessarily have

a pure strategy equilibrium (see Example 1 below).

3.2.3 Centralized problem

The centralized problem finds a solution that would maximize total profit of the

integrated system, i.e., it is defined as follows:

max 7rC(q(t)Io)= ED (r(qn+l)-s'q-h(I + q-D)-bqn+) dt, (3.9)

where inventory I > 0, I(O) = Io is the state variable that follows the transition

equation I = q- D and q is the control variable (with n + 1st supplier denoting "lost

sales"). The randomness comes from the demand D. We will refer to the centralized

solution as qC and the corresponding system's profit as 7rc(qclIo). Because this system

is under the centralized control, the overall profit extracted from the system is greater

than in the decentralized setting. Therefore, potentially, all competing agents can

benefit from cooperation or from competition that utilizes some type of contracts.

Notice that the fluid approximation of the problem is as follows:

max r(q(t)Io) / (r(qn+l) -s'q - h(I + q - ED) -bqn+) dt, (3.10)

with constraints: I > 0, I(O) = Io, I = q- ED, and q E [0, K].
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3.2.4 Bilevel programming formulation

The problem over the entire time horizon can be described via a bilevel program as

follows:

max 7rr (q, tlw , I)dt
qf0

subject to wi = arg max ri (wi, tIq)dt,
wi

I=q-ED,
I(O) = 1o,

w> 0, O< q <K,

where 7ri(wi,tq) = (wi(t) - si)qi(t). That is, the retailer orders quantities that

maximize his profit subject to the fact that suppliers announce prices that maximize

their profits. For more on bilevel programming and related literature see [17].

3.2.5 Continuous time model: analysis

In this section we will establish the existence and analyze structure of the continuous

time optimal policies. We first define the notion of equilibrium we use in our model.

The model can be viewed as a differential game, where the strategy of a supplier i

(player i) is path wi(t), and the strategy of the retailer (player 0) is path q(t).

Equilibrium in a continuous case

Consider a single period n-player game. Let us denote the strategies of the players

by u, such that ui E Ui is ith player strategy and Ui is the player's feasible strategy

space.

Definition 8 In an n-player the strategies u* form a Nash equilibrium (NE) if for

each player i, u is the best response to the strategies u* i of the other players.

Notice that when the definition of the space Ui depends on the value of the u_i,

an equilibrium in the definition is sometimes referred to as a generalized NE (GNE,
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see [50]).

In a dynamic setting, consider a truncated dynamic game that starts at time t.

Such a subgame depends on the history up to time t, Ht, which is represented in our

model by the inventory at time t. Suppose that u* is a NE in the original game and

u(Ht) is its restriction on to the subgame starting at time t.

Definition 9 A NE strategy profile is subgame perfect, if for every Ht, the restriction

of the profile on the subgame starting at time t with history Ht is a NE of the truncated

game as well.

Notice that subgame-perfectness ensures that game's equilibria are "rational" by

eliminating incredible threats. Markov perfect equilibria are a further sharpening of

the equilibria concept.

Definition 10 A Markov-perfect NE (MPNE) is a subgame perfect NE in which

each strategy profile depends on the state variables at time t only.

(For more discussion of these types of equilibria see [20] and [24].)

In our model since all the history of the game so far is encapsulated within one

variable: I(t), every subgame perfect equilibrium is also a MPNE.

These definitions apply to both continuous and discrete games; however, theoret-

ical results on continuous and, generally, on non-finite games are harder to obtain.

In the next section, we examine in more detail the solutions of each problem that

we introduced so far in a continuous time setting. But before proceeding, we make

the following note on the equilibrium policies. Suppose that the suppliers announce

their equilibrium prices w* and that the retailer's equilibrium orders are q*. We can

equivalently characterize the equilibrium by a pair of vectors (w*, q*) or a pair of

scalars (w*, q*), where w* is the price announced by the active suppliers (when the

policy is pure, such price is well defined) and q* is the total amount that the retailer

orders from all the suppliers. Notice that w* = w*, for i such that q* > K i - l and

w = si otherwise. Henceforth, the references to w* and w*, q* and q* will be used

interchangeably.
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The retailer's problem

We consider a solution on a small interval [I, T + 6) and assume that w* is continuous

on this interval. In order to solve the retailer's problem, we take a similar approach

to Bertsimas and Paschalidis [5]: we use (a) Pontryagin's maximum principle, (b)

a small interval approximation, and (c) continuity assumptions. Nevertheless, the

context and application we consider are different.

Lemma 5 Suppose that w* is an equilibrium policy for the suppliers. Suppose that on

[r, r +6) this policy is continuous, then there exists a measurable retailer's equilibrium

policy q*(w*).

Proof. This result follows from the existence result by Filippov-Cesari (see [29]),

since both the state and control variables in our problem are bounded. ·

We next take on the retailer's problem (3.1) using Pontryagin's Maximum Prin-

ciple.

We construct the Hamiltonian for the retailer's problem by releasing the state

transition equation:

H(I(t), q(t), A(t)) = rr(qjw(t), I(t), ED(t)) + A(t)(q(t) - ED(t)).

Next we construct the Lagrangian for the problem by releasing the capacity, non-

negativity and supply constraints:

L(I, q, A, vl , v2 , ) = H(I, q, A) + vlq + v2(K - q) + v(q + I - ED) + ((q - ED),

where the last term corresponds to the state transition equation.
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The necessary conditions for a trajectory I* to be optimal (see [52]) are:

LI =-A+v, L=I,

vl'q = 0, 2'(K -q) = 0, vl, v2 > 0, O < q < K,

v > O, q +I > ED, v(q + I - ED) = 0,

q* is a maximizer of H(I*, q, A) s.t. 0 < q < K, q*(t) + I*(t) > ED(t),

A(r + 6) = 0, (transversality condition)

(I = o, I > o, > , C< o,

In this setting,

a -= (wi + h), i = 1, ,n; (3.12)
o9qi

= - (h + b) + r'(qi), i = n + 1; (3.13)oqi

= - h. (3.14)
0I

The following lemma summarizes the properties of the retailer's instantaneous profit

function.

Lemma 6 The retailer's instantaneous profit is a strictly decreasing linear function

in the state variable I and control variables qi, i = 1, · , n. Moreover, as long as the

marginal revenue associated with a lost sale is smaller than b + h, the profit is also

strictly decreasing in qn+l. The profit is concave in qn+l when the revenue is concave

in this variable.

Proof. This follows from the expressions for the first derivatives as shown in (3.12)-

(3.14). ·

When I(t) > 0 then ((t) = 0. Therefore, since ((t) > 0, (t) < 0 and C is

continuous, ((t) = 0 when I(t) = 0. That is, C(t) = 0.
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Therefore, the Maximum Principle conditions (3.11) imply that

_ )JL = _ :Xr + V = -h + v,

O aH(I*,q,X) -+ V, - v2 + v a + A + v- - v + V

-wi-h+ A + vl-_v2 +v, for i = 1,- ,n,

r'(qi) - h-b+A+ v-v2+v, fori= n+1,

v>0, vqi = 0, (q - ,qi = 0, 0 < q < Ki,

v > O, (q + I- ED) = O, q + I > ED.

(3.15)

Since we assumed that the equilibrium policy is pure, as is shown in Theorem 8

below, for all active [real] suppliers it must hold that qi = Ki. Therefore, the structure

of the retailer's solution implies that, if multiplier A(t), that corresponds to some pure

equilibrium, is known, the retailer can compute the quantities to be ordered using a

greedy rule as follows:

A greedy allocation rule for the retailer

Step 1 Sort suppliers in order of increasing prices wi(t). Let q*(t) = 0.

Step 2 Starting from the lowest priced supplier, i = 1:

(a) If (i) I* + Ki < ED and wi < b - r'(ED - Ki - I*) or if (ii) I* + Ki > ED,

wi < b - r'(ED), then award supplier i with qi*(t) = Ki and let q*(t) = K i.

Repeat Step 2 for the next supplier.

(b) Else, award supplier j > i with qj*(t) = 0. The artificial supplier gets q+l =

(ED - I*-q*)+ .

Stop.

Hence, we can see that the total amount ordered from real suppliers

n

qi (t) = max K li<b-R(min(ED,I+Ki))
1

and q+, = (ED - I* - q*)+. Moreover, v = (-R'(ED, q*) + h + b - A)lI,+q-<ED
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When I* + q* < ED, A = -h(t - r - a), while when I* + q* > ED, the following

differential equation holds for A: A + A - b + r'(ED - q*) = 0. Notice, that q*, as

described above, essentially is some function of A(t) and w*(t). We can rewrite the

equation for A as A + A -b + r(w*, A) = 0, and A(t) = l(w*(t)) would be a solution of

this equation if such exists, where l() is some functional of w*(t).

Next notice that i = Kilbr(EDKiI)>wi - ED. In this expression i depends on

t and ED(t); if these parameters were constant, we would obtain that I is a linear

function of t.

We conclude this analysis with the following results characterizing the solution of

the retailer's problem:

Proposition 6 Let A(t) be an optimal multiplier associated with the state transi-

tion equation; w*, an equilibrium suppliers' policy and I*, an inventory at instant

t. The optimal order quantities for the retailer's problem should satisfy the following

conditions:

Ki, if w* + A + h- r'(ED - min(I* + Ki, ED)) > (3.16)0,
q* = ' -(3.16)

O if w* + A + h -r'(ED- min(I* + Ki, ED)) < O.

Remark. If the total amount ordered by the retailer is limited by some K > 0, q < K,

then the controls of the modified model qot, i.e., the quantities ordered, become qnstr =

min{qi , (- Ej:wj<wi Ki) }, where the quantities quncstr are found in (3.16).

Proposition 7 Suppose that on interval [, T + 6), there exists an integrable equilib-

rium policy w*(t) (i.e., a price for the active suppliers). Then the adjacent multiplier

A(t) can be expressed as a functional of w*(t) on interval [, T + 3). Moreover, I(t)

and q(t) are functionals of w*(t) and an initial inventory at time r, for Vt C [T, T +5).

Proof. This follows from the discussion above. ·

The continuous time case we studied above provides us with an initial approxi-

mation of the system's behavior in the context of a mature market with frequently

recurring oligopolistic competition. In the next subsection we conclude the descrip-
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tion of the continuous time case presenting the suppliers' strategies and discussing

the conditions for the existence of a pure equilibrium in more detail.

A supplier's problem

When a pure strategy equilibrium is considered, at any time instance, supplier i's

strategy is bounded from above by some wf*(t), where wi*(t) depends on the strategies

of the other suppliers. For active suppliers, this bound equals to the equilibrium

policy w*(t) that we considered in the retailer's problem. For inactive suppliers,

Assumption 16 implies that wi*(t) = si. Hence, wi*(t) = max(w*(t),si). Moreover,

the upper bound in the active suppliers' problems is the same as the borderline price

w* that separates prices of active and inactive suppliers as in (3.16). Thus, as we

observed in the previous subsection, at an equilibrium we can express the upper bound

in the active the supplier's problem w* as a functional of multiplier A in the retailer's

problem.

Observe that each supplier's problem is time-separable as long as the value of the

inventory from the retailer's problem is known. Therefore, at any instant t, supplier

i's problem can be formulated as

max{(wi - si)qi(w, w-i) I wi 0, } (3.17)
wi

where qi(w) is determined through solving the retailer's problem. This is a non-

concave, non-continuous optimization problem over a closed convex set. It is non-

continuous since qi(w) is not a continuous function of w. Moreover, the func-

tion 7ri(wilw_i) is not concave or continuous, or even upper-semicontinuous (i.e.,

as wi --n wi, it does not necessarily hold that limsup 7ri(w[wi) = 7ri(wi, wi))

In consequence, the standard equilibrium results for continuous games ([24]) do not

apply. Furthermore, the theory of discontinuous games (Dasgupta and Maskin [16],

[24]) does not apply either. Therefore, a pure strategy equilibrium can exist in our

model under additional assumptions. In the next subsection, we study some of these

assumptions guaranteeing the existence of a pure strategy equilibrium.
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3.2.6 Equilibrium in pure strategies

Introductory example

We first introduce an example (Example 1) of static competition between two sup-

pliers in order to illustrate some of the issues, such as the existence of pure strategy

equilibrium as well as the computation of the equilibrium policies, on the case of static

(single period) competition among two suppliers and a single retailer. Thereafter, we

will present a multi-period version of the model we considered in Example 1. We will

also present conditions for existence of a pure strategy equilibrium in both discrete

and continuous time settings.

Example 1 The retailer will determine his/her total order q and p(q) = a - bq based

on maximizing his/her profit function rr(q) = p(q)q - w'q, where q = ql + q2, qi E

[0, Ki] is an order from supplier i and wi is a price announced by supplier i.

Suppose that the strategy of supplier two is w2, then the best response policy from

supplier one computed by solving the profit-maximization problem: max, 7r1 (w) =

(wl - s)ql(w), is the following:

S1 ql(w) = 0 if s > w2,

W a+s ql() = a-wl if a+8 < W2,= .2 Y 2b -2
W12 w = min(a- 2bK2, a+s - bK2), ql(w) = a-w - -K 2, if w > w 2,

W2 - E, q1(w) = K 1, otherwise,

where E is a very small positive number, such that supplier one is able to undermine

supplier two's policy, and wm is supplier one's monopoly price. We will generally

omit when we characterize the equilibrium.

The profit for supplier i can be calculated from the best response strategy expres-

sion we described above, that is max ri(w) = (wi-si)qi(w) subject to qi(w) [0, Ki].
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The existence of a pure strategy equilibrium w* implies that a'(w) < O, whereawi -

0arl (w)
awl

0,

a+s -2wi

K1,
K1 ,

and a2(W) is defined in a similar way.
aw2

Let us assume that a > si and sl 

equilibrium exists in two cases:

if w2 < 1,

if a+1 < W2,

if a+l - bK2 > w2 > 81,

otherwise,

s2. Under these assumptions, a pure strategy

(1) when one of the suppliers can enforce a monopoly: i.e., qi = min(qm, Ki), q-i =

0 or

(2) when both suppliers are fully engaged in the market, i.e., qi = Ki.

The first condition would hold if for some i: a+'i < si. The second condition would

hold when a - 2bK2 > max(a+-i - bK_i, si).

Continuous case

Before characterizing equilibrium policies for the continuous competition, we note

that if supplier i is active in an equilibrium solution (i.e., qi > 0), then so is every

supplier j with marginal cost sj < si. Let us denote the retailer's objective starting

at time t as fnt(qt, It) = 7r(qtwt, It) + DPt+l(w, I t + qt - EDt).

Theorem 8 Suppose Assumptions 13 - 16 hold. The following conditions are neces-

sary for a pure strategy (w*, q*) to be an MPNE. Moreover, condition (1) is sufficient

as well.

(1) For all active suppliers: aI(wI, -*) < 0 and wi < min(sk+l,p(ED)) where k isawi -

the number of active suppliers (we assume that Sn+l = oo),

(2) If the number of active suppliers k > 1 then q* = Kk.
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Proof. Necessity. From the definition of an MPNE and since suppliers problem is

time separable (in the presence of retailer's strategy (q*t), if follows that w*' should

be a maximizer of supplier i's profit function, 7ri(wiIw*t_i, q*t). Hence any pure equi-

librium strategy would satisfy (1).

We will show by contradiction that condition (2) must hold. Suppose that at

equilibrium there are more than two active suppliers and that one of them, supplier

i, gets an order q(t) E (O, Ki). Then, since w*(t) > si (otherwise the order from

supplier would be q*(t) = 0) and since there is at least one other supplier from whom

the retailer orders, it follows that by lowering his/her price a little, supplier i can

receive an order qi(t) > q and, thereby, increase his/her overall profit - this is a

contradiction.

Sufficiency. Suppose that (1) and (2) hold, but at some time t, the first k suppliers

do not constitute an equilibrium at w* as described in the statement of the theorem.

Then it must be that supplier k + 1 can enter the market with some positive profit.

Then 3w > w*t such that w > k+l and qk+l > 0 at some different equilibrium policy.

That would imply, however, that each supplier i < k can be improve his/her profit

by increasing w*t. This contradicts condition (1). 

Moreover, recall that under Assumption 16, every inactive supplier i sets the price

as w = si at equilibrium.

Example 2 We will illustrate here that the condition (1) can be satisfied by the

suppliers. Suppose that p(x) = a-bx is the price that a consumer pays per unit where

x < D is the amount of product that is available at the retailer. Then the retailer's

revenue function at time t is quadratic as in r(qt+,) = (a-b(EDt-q,,+))(EDt-qt+1).

Then the profit of an active supplier i is as in in Figure 3-3. Notice that this is a

quasiconcave function, and that the set of supergradients at point w = w*t consists

of only those sloping down. Thus condition (1) is satisfied.

At this point we reformulate the problem of finding equilibrium can policies as a

continuous time DVIP with problem function F(w, q) = (- -(qlI) _q).a'q,
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Ki(w*-Si)

-Ki+) + (si+l-i)

0

Figure 3-3: Profit function of an active supplier

Proposition 8 Suppose z* = (w*, q*) is a pure strategy MPNE, then it satisfies

T

F(z*)'( - z*)dt > where zq E [, K], Zw E W(zq), I(O) = Io, i = q- ED.

(3.18)

Proof. It follows immediately from (3.16). 

3.3 Discrete time model

3.3.1 Formulation

In this subsection, we present a discrete time model. The construction is similar to

that in the continuous time model in the previous section and we omit it for the

sake of brevity. The reason for presenting a discrete time model is that it allows us to

consider efficient solution methods but also to get insight through studying additional

properties.

In particular, in the deterministic fluid model approximation, the state transition

equation becomes It+l = It + qt - EDt, with initial condition I 1 = Io. The retailer's

profit per period t becomes rt(qtlwt, It, ED') = r(q,+l) - (wt + he)qt - bq+-

hIt + hEDt, where r(q +l) is the revenue function given demand EDt at time t. The

retailer's objective is
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max { { 7rt (qt lwt It, EDt) It+l = It + qt - EDt, 1 = Io (3.19)O<qKi,
It+qt>EDt

Notice that given initial inventory I t at time t and the suppliers' prices w, the

retailer's optimal profit-to-go, DP(w, It), satisfies the following recursion:

DPt (w, It) = max {7r(It qt, EDt) + Dt+l(w, It + qt - EDt)}.
O<qt<Ki,

It+qt>EDt

Supplier i's problem is also defined similarly to the continuous time case:

max { (w -si)qi | wt < max(min w- (qt ), si) (3.20)
ma_>o 20 t=l

In what follows, we denote the retailer's problem starting at time t, with initial

inventory I t as DPt(w t, It), where w t is the vector of prices starting at period t. We

use the same notion for the value of the retailer's problem when it is unambiguous. We

will also use the notion of an MPNE to characterize equilibria in this retailer-suppliers

game.

3.3.2 DVIP reformulation

We next formulate the multi-period problem as a dynamic variational inequality prob-

lem (DVIP). We define a mapping F: [0, K] x W x R+ , 2n+1:

F(q, w, I) = ( d7rr(q I)q h

Let Wi(q) = {w I w > si, (wi - wj)qi(w) < 0,Vj}. Notice that function q(w) and,

hence, the structure of the feasible set can be derived from the optimality conditions

for the retailer. Notice that the problem function -F has the same monotonicity

properties as R', i.e., F is monotone as long as R is concave. Even when the DVIP

75



function is monotone, since the feasible space is not a convex set, the theory for

monotone VIPs does not apply readily to our problem. However, the following

equivalence result holds.

Proposition 9 xt * = (qt*, wt * It*) is a pure strategy MPNE if and only if it satisfies

the following DVIP:
T

E FI(xt*)t(xt - xt*) > 0O
1

where qt [0, K], wt E Wt(qt), It+l = It + qt ED t , It+l 0, I1 = Io.

Proof. DVIP = MPNE.

As is well known from dynamic programming theory, the fact that (q*, w*, I*) is a

solution of the above DVIP implies that q*, w* are solutions of each period's profit-

to-go problems for the retailer or for a supplier. Let wt = wt*, Vt, qt = qt*" Vt <

k, I t = I t *, Vt < k, the above DVIP becomes

T

7rrq(qt*wt*, It*)'(qt - qt*) + 7rrt i(qt* t* I t*)(It - It*) < 0,
t=k

where 7rrq is the first derivative of the retailers profit function with respect to q and

7rri, with respect to I. This inequality implies that there does not exist a direction of

ascent for the retailer's problem DPk(wk*, Ik*) at point qt*, It*, t > k, i.e., this point

is an optimal solution for the problem DPk(wk*, Ik*). Similarly, one can show that

for each supplier i, wt*, t = 1,..., T is an optimal response policy. Hence (q*, w*, I*)

is a subgame perfect equilibrium of the underlying dynamic game.

MPNE DVIP

This follows directly from the definition of MPNE. Since (q*, w*) is a set of the best

response strategies, for the retailer's problem it must hold that - dr(q*,w j*) (qq*) +

h(I - I*) > 0, for every feasible q and I. Similarly it must hold that q*'(w - w*) > 0

for every w G W(q*). Otherwise, better policies would exist and one of the agents

could modify his strategy so as to achieve a greater profit. ·
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From the DVIP formulation, several characteristics of the equilibrium policies

can be deduced immediately. We summarize them in the following proposition.

Proposition 10 Suppose (w*, q*) is a pure MPNE. Then

(1) If q*t > 0 then w* = min(w* it,p(EDt)) = w*t,(2) If w i > q -t

(2) If W*t > w*t then w*t = Si, qi*t = 0,

(3) W* t E [Sk, Sk+l] when q*t E [Kk-l, Kk),

(4) qt = min(q*t - K 1, K)1w*t<p(EDt).

Proof.

(1) From the formulation of supplier i's problem, it follows that for every active

supplier i, w < min(w*i,p(ED)). Suppose, this inequality is strict. Then some

feasible w > w* would guarantee supplier i a strictly greater profit.

(2) Using the result in item (1), we can see that w > wt implies that supplier i is

inactive, and hence by Assumption 16, w *t = si.

(3) This follows from items (1) and (2) and the fact that the suppliers compete.

(4) This follows from items (1) and (3). ·

It is possible to reformulate the problem as a DVIP with a convex feasible set,

however in that case the problem function would not be monotone. (Appendix C).

3.3.3 The retailer's problem properties

We next present the discrete time approximation and analysis of the solution. It is

similar to the one in Subsection 3.2.5:

The Hamiltonian: H(qt, It, At) = rt (qt, It) + At(qt - EDt).

The adjoint equation: At = At+l + Hit, AT = 0.

The optimal control: q*t = argmaxo<qi<K H(q, I *t, At+ l).

From the adjoint equation, since HI = -h, we derive that At = -h(T - t).
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Therefore,

q = arg max r(qn+l) - bq+l - (h(T - t + 1)e + w)'q,q>ED-I,
qe[O,K]

recall that qn+l is the quantity of unfilled customer's orders. The solution to this

problem is

qi | 0, if p(ED) + b < wi or Ej<wi Kj > ED - I, (3.21)

Ki Ki ' otherwise (using Assumption 13).=Ej =wi j

Notice that the quantities ordered depend on only on customers' demand and the

initial inventory at time t.

3.3.4 Properties of the profit-to-go function

Proposition 11 The retailer's optimal control policy q(I) exists for every vector of

suppliers' prices.

Proof. The optimization problem that finds the profit-to-go function DPt(w, It) is

a problem over a non-empty, convex, closed space (the set {qt 0 < q < K}). Thus,

an optimal solution always exists, i.e., the profit-to-go function is well defined. 

Even though a solution to the retailer's problem exists, the maximized function

iit(qt, It) is not necessarily convex. The following proposition proves some properties

pertaining to the retailer's problem. We will omit time and suppliers' prices from the

notation and will denote DPt(w, It) as DP(I) and DPt+l as DP+, where t < T.

Proposition 12 (a) DP(I) is an increasing piecewise linear function of I, (b) q(I)

is non-increasing, (c) the slope of DP(I) is non-increasing, (d) DP(I) is continuous

on the left, and (e) ADP(I) = DP(I + 1) - DP(I) is non-decreasing in I on the

domain without the discontinuity points.

Proof. First observe that for the suppliers' equilibrium prices wi(q) > wi(q - 0),

where q is the total amount ordered by the retailer during a particular period and
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0 > 0. For inactive supplier, this relation holds with equality sign (K' > q). For the

other (active) suppliers, the equilibrium price increases, as the total amount that the

retailer orders increases. Therefore, the inequality above will also hold.

We prove the proposition using backward induction, namely we suppose that for

DP+ the statement of the proposition holds (notice that proposition holds for a

one-period game).

(a) First, observe that DP(I) is piecewise linear since it is a sum of piecewise linear

functions. Suppose that is an optimal solution of DP(I + 1), while q* an optimal

solution of DP(I). Then

DP(I) = r(q+l) - bq*+l - (h + w(q*))q* + DP+(I + q* - ED)

= r(q*+l) - bq*+l - (h + w(q* - 1))(q* - 1)

+ DP+ ((I + 1) + (q*- 1)- ED) + (w(q* - 1)(q* - 1)- w(q*)q*) - h

< DP(I + 1) + (w(q* - 1)(q* - 1) - w(q*)q*) < DP(I + 1).

(b) Similarly to the derivations in the previous item, we can obtain that

DP(I + 1) = r(0n+1 ) - bn+l - (h + w(O + 1))(I + (1 + ) - ED)

+ DP + ((I + (1 + ) - ED) + ) - w()' + w( + )( + 1)

< DP(I) - w(4)'0 + w(q + 1)(0 + 1).

In summary, we obtained the following bounds:

DP(I)+w(q*)q*-w(q*-l)(q*-l) < DP(I+l1) < DP(I)+w(+l )(+l )-w()(q).

Let us denote by w(x)(x) a marginal change in the value of w(x)x as x goes

from x to x + 1. Then, we have shown that Aw(q)(4) > Aw(q* - 1)(q* - 1). Since

w(x)x is increasing in x with an increasing slope and continuous on the left, it follows
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that > q*- 1.

(c) We will next show that the slope of DP(I) is non-increasing. Let p = p(ED), and

denote by slope* the slope of the retailer's profit function r (qlw, I)+DP+(I+q-ED)

at point q*; by slope, at point q; by slope+(x), the slope of the retailer's profit function

DP+(x). Then

1. q = q*-1, hence I+q*- > ED and slope* = -h+slope+, slope = -h+slope+.

Therefore, slope - slope* < 0 by hypothesis.

2. q = q*, slope - slope* < 0 by hypothesis.

3. > q* + 1. Notice that q Z q* + 1. Suppose, q > q* + 2. Then if I + q* > ED,

slope = -h + slope+(I + q - ED) > -h + slope+(I + q* - ED) by hypothesis.
When I+q* < ED but I+ > ED, we obtain slope = -h+slope+(I+4-ED) >

p + slope+(I + q* - ED). Finally, when I + < ED, we also obtain that

slope = p + slope+(I + q - ED) > p + slope+(I + q* - ED) from the initial

hypothesis.

(d) DP(I) is continuous on the left, i.e., lim,_ 0 DP(I - a) = DP(I).

Suppose I + q > ED. Then for a small enough a > 0, it follows that DP(I -

a) - DP(I) > ah + DP+(I + q - ED - a) - DP+(I + q - ED) - 0 as a - 0. This
follows from the induction hypothesis.

We also need to consider the case when I + q < ED. As before, for a small enough

a > 0, we obtain DP(I - a) - DP(I) > -pa + DP+(I + q - ED - a) - DP+(I +
q - ED) - 0 as a - 0. This follows from the induction hypothesis.

(e) Finally, we will prove that ADP(I) = DP(I + 1) - DP(I) is non-decreasing in I

on the domain without discontinuity points. This follows from the items we proved

above: the left continuity and DP(I) being a non-decreasing function in I with a

non-increasing slope. 

Corollary 1 When a pure strategy equilibrium exists, it is unique.

Proof. Suppose that t is the first time at which the equilibrium policies differ. If

total quantities qt, qt, s.t. qt > qt, are both optimal solutions to the retailer's problem
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corresponding to the same equilibrium vector of prices t = wt, then from Proposition

12 it follows that DP(It + t - ED t) > DP(It + qt - EDt). This contradicts the

optimality of these policies. Suppose, on the other hand, that equilibrium price

wtt wt. Then for the inactive suppliers, q = = 0, implies that Cvi = wi. If

qit qi = 0, then it follows that i > wi, and by Assumption 16, wi = si. These two

statements cannot hold simultaneously; hence, the sets of active and inactive suppliers

are the same at time t. Since the prices set by the inactive suppliers, the demand and

the initial inventory completely determine the equilibrium prices of active suppliers,

these prices must be equal as well. Hence the equilibrium policy is unique. 

Finally we observe that a solution to problems (3.19) and (3.20) indeed constitutes

an MPNE.

Proposition 13 An equilibrium policy is an MPNE.

Proof. Suppose to the contrary that an equilibrium policy (i.e., a pair (w, q) that

solves both (3.19) and (3.20)) is not a MPNE. Let us also denote by I the state vari-

ables corresponding to these policies. Then, if the subgame perfection property does

not hold, for some period k, for some agent (a supplier or the retailer), the restriction

of his/her strategy on the periods [k + 1: T] is not optimal in the subgame start-

ing at period k. But then this agent's overall strategy could be improved, if he/she

uses an optimal strategy during the first k - 1 periods and then uses a strategy that

outperforms his/her equilibrium strategy on the last T - k periods. The Markovian

property must hold for every strategy, since at any period the strategies of the agents

depend only on the current inventory level at the retailer. 

Notice also that establishing of the existence of a pure strategy MPNE is similar

to Theorem 8 (i.e., the continuous time case):

Theorem 9 During each period t, the following condition is sufficient for a vector

(w*, q*) to constitute a pure strategy MPNE in the system:

(1) a*) < 0 and w* < min(sk+l,p(D)) for every active supplier i,
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Together with the following condition this condition is also necessary for the existence

of a pure strategy equilibrium:

(2) When the number k of active suppliers is greater than one, qt(w*) = Kk.

3.4 Coordination

As we have already mentioned, it is easy to see that the centralized solution to our

problem results in a higher overall profit in the system as well as a larger output.

This observation motivates us to devise contracts that induce a behavior in the sup-

pliers and the retailer that would increase the overall system's profit (which will be

larger than in the decentralized setting). Furthermore, contracts can allow the agents

to remain competitive. In this section we will first discuss the differences between

the centralized and decentralized solutions and then we will suggest contracts that

coordinate the system, i.e., the contracts that extract the centralized solution and

associated profit from the system while maintaining competition. We will use super-

script c in the notation related to the centralized solution and superscript d, to the

decentralized solution. Notice that the total profit in the system at time t is com-

pletely determined by the vector of quantities ordered, qt, and could be expressed as

7rC(qt).

Example 3 Consider a two-supplier competition, as in Example 1, and suppose that

condition a - 2bK2 > max(a+s - bK_i, si) holds. This condition is necessary for the

existence of a pure strategy equilibrium. Then the centralized and the decentralized

solutions coincide (qi = Ki), i.e., the decentralized solution captures the system's

optimal profit. On the other hand, if one of the suppliers, say supplier 1, is able to

maintain a monopoly then in the centralized setting qC = q = a-1 whereas in the

decentralized case qd = qld = K 1, wl = 2, as long as -1 < K1 and s < s2 < a+

Thus, the difference in profits would be ir(qc)-(qd) -= a .(a_+ -S1 )-K1 (s2-S1) >

0. This last inequality follows from the centralized problem formulation and is strict

when p(q)q is strictly concave (b > 0) and a - sl : 2bK1.
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Some properties in a single period case

Define K_ - K - for some E > 0. The lemma below describes some of the compar-

ative properties of the centralized and decentralized solutions.

Lemma 7 Suppose qC e [K k-, Kk], then (a) qd < qC, (b) qd > Kk- 2 , (c) qd E

[Kkl_, Kk), (d) Wd k+l, (e) rC(qc) > 7 rr(qdwd) + Zi=1 r1i(wd wdi)

Proof.

(a) qd < qC < Kk. These inequalities hold since Frr(q w, I) is increasing and s < w.

(b) qd > tik-2. Suppose the opposite holds. Then si+ - R'(Ki-1 ) < 0, Si+2-

R'(K) > 0, for some i < k - 2, whereas Vi < k, si - R'(q) < O, with qC C

[Kk-l, Kk]. Since R'(q) is decreasing, -R'(K i ) < -R'(qc), Vi < k- 1. This

implies that i+2- R'(K i) < si+2 - R'(qc). Notice that the right hand side

expression is strictly negative Vi < k - 2. Hence si+2 - R'(K i) < 0, Vi < k - 2.

This gives us a contradiction.

(c) Suppose qd < Kk-l. From the previous item, it follows that Sk - R'(qd) = 0 or

Sk < R'(Kk-l) < Sk+l. The former is impossible, since Sk - R'(qc) < 0 and R is

a concave function. If the latter holds, then the optimal solution is qd = Kk-1.

On the other hand, notice that wd > Sk unless qd = Kk-1, hence qC > qd

(d) Wd = Sk+l if qd C [Kk -l , Kk) and wd = Sk, if qd = Kk-1, where Kk is a quantity

slightly smaller than Kk.

(e) Consider 6 = 1 (Tc(qc) 7 d(qd)). Since q > qd, and R is strictly increasing,

> 0. 

Coordinating mechanisms

We first point out that several types of contracts commonly considered in the liter-

ature will not work as coordinating mechanisms in our model. Among them are the

following:
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(1) Tolls set by the suppliers in such a way that they are proportional to the quantities

ordered by the retailer. These contracts cannot work since a problem with tolls can

be transformed into a problem without tolls, which would have the same double

marginalization effects as those in the original model.

(2) Two-part tariffs set by the suppliers or the retailer in such a way that neither the

retailer nor any of the suppliers is worse off than in the decentralized case.

For example, in case (2), consider a one-period game. Suppose that (Li, wi) are

(fixed charge, per unit price) tariffs offered by the suppliers, and suppose that they

constitute an equilibrium. Then i=l Li = rC(qc); otherwise, some supplier could

have increased his/her profit through increasing his/her fixed charge. Moreover, prices

and costs of active suppliers must be equal, i.e., si = wi = wj = sj if qi > 0 and qj > 0.

Notice that otherwise, if wi > si, then the total profit from the system would be lower

than from a centralized system. And if wi > wj, then supplier j would benefit from

increasing his/her price. In the single period case, it can be shown that the necessary

conditions for two-part tariffs to be coordinating are (i) =1 Li = rC(qC), (ii) for all

active suppliers in the centralized solution, wi = si = const, (iii) for all the active

suppliers in the centralized solution, R(qc) - R(qC - q) - Li - siq = const > O. This

last condition comes into play when eliminating the possibility of an increased fixed

charge by any active supplier while condition (i) holds.

Notice that these types of contracts are considered in the literature on coordination

in the single-supplier/single-retailer case.

Tolls offered by the retailer in a single period case

Suppose the retailer announces tolls ti that each supplier i needs to pay to the retailer.

Then the suppliers announce prices wi per unit of product. Based on these prices, the

retailer determines the amount qi to order from supplier i, and he/she pays (wi - ti)qi

to that supplier, where ti is the toll.

Suppose that the retailer sets tolls ti = wd--Sk, Vi, where Sk is the highest cost of a

supplier who is active in the centralized solution and wd is the competitive price that

the suppliers would have achieved if they knew that the retailer orders the centralized
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quantity qC.

For example, when qd, qC [Kk-l, Kk], the retailer charges extra Sk+1 - Sk per

unit of the ordered quantity, and orders the total of qC, from all the suppliers. When

qd E [Kk-2, Kk-l), there is no need to impose tolls. The retailer will benefit from

ordering qC instead of qd; incidentally in this case we can show that qd = Kk-l - 6,

where 6 is a very small positive number.

3.4.1 Coordination in the finite time horizon case

Assume that {Dt} is a deterministic process.

Proposition 14 There exist tolls t set by the retailer that coordinate the chain over

the entire time horizon.

Proof. We will prove this using backward induction. Suppose that during period t, in

the centralized solution, k is the index of an active supplier with the highest marginal

cost and wd(q c ,t) = Wd is equal to what the value of a decentralized equilibrium price

would be if amount qC,t were ordered in the decentralized system. Our hypothesis is

that the following tolls can be used to coordinate the chain

tt = Wd - Sk - g9,t+l(ICt + qC - Dt) + gt+l(Ic t + qC - Dt), (3.22)

where g(x, t) = DP'(x, t) denotes the derivative of the optimal profit-to-go starting

at time t (index c corresponds to the centralized case while r to the retailer in the

decentralized case).

First, the one-period case (time T) was shown to work in the previous subsection.

Suppose that the hypothesis holds at time t + 1 and consider time t. Let I denote

the inventory at time t in the centralized solution. The retailer optimizes the following

objective:

R(q) - b(I + q - D)- - h(I + q - D)+ - (w - t)'q + DPr(I + q - D, t + 1),
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while the central manager optimizes

R(q) - b(I + q- D)- - h(I + q - D)+ - s'q + DPC(I + q - D, t + 1).

When the optimal amount that the retailer orders in the problem with tolls equals

that in the centralized problem, then tolls on active suppliers, set as ti = R'(qC) -

h + wi + gr(I + qC - D, t + 1), coordinate the chain, when I + qc > D holds. Notice

ti = R'(q) - b + wi + gr(I + q - D, t + 1), when I + q < D.

From the centralized solution, R'(q) - h + Sk + gc(I + qC - D, t + 1) = 0, hence,

ti = -sk +wi-g(I+q - D, t+ 1) + g,(I+q - D, t+ 1), where wi = wd(qc) since the

suppliers will price competitively. Hence tolls set as in (3.22) are going to coordinate

the subgame starting at period t with the inventory equal to the inventory in the

centralized solution at time t. ·

3.5 Computations

In our computations we used examples of multi-period competition among several

suppliers and a single retailer. We considered the VIP reformulation of the model for

the retailer and the suppliers' problem. We used a serial version of the Decomposition

algorithm for solving VIPs, (Gauss-Seidel method, see [46]), given that our feasible

set can be partitioned into two sets: (w, ) E [s, oo) x R n+ and q E [0, K]. Below we

present this algorithm. We use the notation x = (w, ().

A decomposition algorithm to find the the decentralized solution

Step 0 Start with x° = (w °, C(, p0 ), some tolerance > 0. Set k = 1.

Step 1 Compute the solution qk = q to the DVIP:

Fq(q, xk-l)(qt- q) > 0 Vq' E [0, K].

Step 2 Compute the solution xk = x to the DVIP

F.(qk, x)(x -_x) > 0, Vx' [s, oo) x R2+.

Step 3 If Ilqk - qk-1ll < , then stop. Else set k - k + 1, and go to Step 1.
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The DVIP function is monotone when p(D) is linear with decreasing slope. How-

ever, the feasible set is non-convex. Therefore, the convergence results from the lit-

erature for the Gauss-Seidel algorithm do not apply. Nevertheless, in the problem

instances we considered, one of the major conditions for convergence, namely, mono-

tonicity, is satisfied. Therefore, we believe that the algorithm is likely to converge.

We used MATLAB's linear programming solver to find a solution of the centralized

version of the problem. We also considered a myopic solution of the problem, in which

we solved problems ignoring intertemporal dependencies, i.e., just solving a one-period

competition problem starting from time t = 1 and updating the next period's initial

inventory.

In our computational examples, we investigated the following:

1. The decentralized vs. centralized solution and the difference in profits as a

function of the number of competing suppliers and of variability in demand.

2. The decentralized solution vs. the myopic solution.

3. The profits as functions of the inventory.

4. The influence of variability in demand on prices, depending on the number of

competitors.

5. The influence of capacity sizes: a large supplier vs. a small supplier (in terms

of capacity).

6. The algorithm's convergence to a Nash equilibrium policy.

The difference between the decentralized solution and the centralized solution is

small and is likely to decrease as the number of competitors increases. The variability

in prices is likely to be amplified by the competition. This is due to the non-continuity

of prices as functions of the quantities ordered. In Figure 3-4, we illustrate equilibrium

prices corresponding to the demands drawn from a normal distribution with the same

mean and different variations. More, precisely, the demand processes were simulated
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n = 7. T = 50. Demand - N(13. n2

Figure 3-4: Changes in suppliers' prices w*(t) in time

using Dt - N(13, c2), where standard deviations are chosen to be a2 = 2 and U2 = 16.

We also compare centralized, decentralized and myopic solutions in a computa-

tional example, see Figure 3-5. The myopic solution solves the decentralized problem

at each (single) period instead of solving it over the whole horizon. Thus during each

period, starting with period 1, we know the values of the initial inventory and the

consumers' demand. Based on these quantities, we compute equilibrium policies for

that period. We then update the inventory variable and resolve the problem for the

next period. We observe that the myopic solution is considerably worse than the

decentralized solution in terms of the profit. The centralized solution is, as expected,

the best, however the difference between the centralized and decentralized solution is

not very large, it is about 6% in this particular example.

As Proposition 12 predicts, the retailer's profit is a piece-wise linear increasing

function of the initial inventory, see Figure 3-1 when the initial inventory is smaller

than the demand.

Another important parameter of the system is the ratio of the holding/backorder

costs to the ordering costs. If holding/backorder costs are high then it makes no

sense to carry inventory and , therefore, the problem becomes static. Finally in the
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Figure 3-5: Total decentralized systems profit as function of a suppliers capacity

presence of a large supplier, fewer suppliers will participate and the equilibrium prices

will be lower. In the next Figure 3-6 one can see that the profit is piecewise linear

in terms of capacity of a supplier, the slopes decrease at points corresponding to the

capacities in the system where marginal costs increase (K 1 = K1, K2 , K3 etc.).

Figure 3-6: Total decentralized systems profit as function of a suppliers capacity

The numerical examples, we considered, illustrate some of the properties we study

in this chapter. They also provide a further understanding of how strong the differ-

ences are among the various strategies of managing competition among several sup-
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pliers for the orders from a single buyer are in a dynamic setting. We can summarize

our observations as follows:

* As expected, the centralized solution outperforms the decentralized one, and

both substantially outperform the myopic solution in terms of the overall sys-

tem's profit.

* Increasing the active supplier's capacity will lead to a piecewise linear increase

in the decentralized system's profits.

* The difference between the decentralized and the centralized solution is likely

to be non-increasing in the suppliers' capacities.

* The variability in the consumers' demand is amplified by the variability of the

suppliers' capacities.

* The more the holding costs increase relatively to the suppliers' costs, the closer

the decentralized solution is to the myopic solution.

3.6 A modified model with options

In this section we consider a decentralized setting with options on the suppliers ca-

pacities in the discrete time setting. There is a vast amount of literature on options,

both in a financial context ([30]) as well as in other applications ([44]). The model

in this section is the most related to the option models in [60] and [41], [42]. These

models also involve a many-suppliers/one-retailer competitive setting. Nevertheless,

there are some key differences with this work. [60] and [42] consider only a static set-

ting. [41] concentrates on the retailer's problem (studying the costs involved rather

than the properties of the equilibrium policies).

Suppose that in addition to n suppliers with fixed capacities, there is one supplier

with unlimited capacity, whose price, pt, fluctuates according to a cdf Fz for each

period t. Consider a modified model of competition among suppliers. Suppose that

at time 0 the suppliers offer options (ot, vt) on their capacity, where otis a reservation
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price per unit of capacity at time t and vt is an exercise price per unit of capacity

at time t, and t = 1, , T. Suppose that that the retailer reserves Q units of capacity

from supplier i at time 0, and, at time t, once he/she observes the outside supplier's

price, he/she exercises q E [0, Qf] units, then the retailer's total payment to suppliers

at time t is: ot'Qt + vt'qt + pxt, where < qt Qt, 0 < Qt < K, x > 0.

We also introduce an artificial supplier representing unsatisfied customers' demand

with 0 < q+ 1 Qt±1 = Dt, o+ , = 0, and v+ = 0. We also assume that the

demand process {Dt} is exogenous and deterministic. Before studying this problem

in a multi-period setting, we present properties of the model in a one-period case.

3.6.1 The one-period problem

The sequence of events in the one-period problem is illustrated in Figure 3-7.

Capacitated
suppliers
announce
options

,

Retailer
reserves

capacities

I I~~~~~~~~~~~~~

Price of
uncapacitated

supplier is
learned

Profits/
Losses

assessed

. _

Figure 3-7: Sequence of events in one-period options model

We first consider the retailer's allocation problem. The retailer solves this problem

after reserving capacities Q and learning the price px of the outside supplier as well as

the consumers' demand D. At this point he/she needs to decide how much product

to purchase from each supplier (including the outside supplier), i.e. he solves the

following problem:

max {r(qn+)- (h + b)qn+l - (v + he)q - (p, + h)x - h + hD - o'Q. (3.23)<q<Q, xo
q+x>D-I

The solution to this problem is similar to that presented in (3.21) and can be
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expressed as follows:

i { min(Qj, (D - I -E ,,, ,Qj)+) Qi if vi < min(p,,p(D) + b);

0, otherwise;

x = (D - I - Z Qj)+, when p(D) + b > pi; (3.24)
Vj <Px

qn+l = (D- - E Qj)+, when p(D) + b < p.
vj <p(D)+b

We note at this point that when p(D) + b > p, the consumers' demand will be

fully satisfied and

D-I= +q, ifp(D) +b >p; (3.25)D- I = (3.25)
q, otherwise.

Next we consider the retailer's reservation problem. At the time of reservation,

the retailer knows the suppliers' offers (o, v, K), but has not yet learn the price of

the outside supplier. Thus, his/her reservation policy Q is an insurance against this

outside price becoming too high. It is the solution of the following problem:

max Epx{r(q+l) - (h + b)qn+ - (v + he)q - (px + h)x}, (3.26)

where q, x are solutions of (3.23).

Using (3.25), this problem can be rewritten as

max -Ep~{(v - pe)'q- r(qn+l) + bqn+l}, (3.27)
O<Q<K

In order to solve this problem, we consider the following cases below.

(a) Suppose that relations I < D and px < p(D) + b hold a.e.. Then q,+l = 0 and

x + q = D - I a.e. Therefore, if all vi's are distinct, then qi = 1vi<pxQilj:vj< < Qj<D-I
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and for an active supplier i, it holds that

E.(vi - Px)qi = QiE.(vi - p Ivi < p).

Let

Ui = E(vi- pzlvi < p) = -E.(p.- vi)+,

then the entire objective becomes (o + u)Q + hi + (Epx - p(D))D and, hence,

Q* = arg min (o + u)'Q,
O<Q<K

i.e., Qi = Ki, if oi + ui < 0 and Qi = 0, otherwise.

(b) When p, > p(D) +b and I < D, then the retailer orders only from the capacitated

suppliers. Moreover, q = D - I and the retailer would seek to maximize -(o + ii)'Q,

where ui = -(p(D) + b - vi)+ . Hence, Qi = Ki, if oi + i < 0, and Qi = 0, otherwise.

(c) Finally, when I > D, Q = 0.

Because of the competition from other suppliers, supplier i will try to set his/her

price vi to the lowest level at which he/she remains competitive. Thus, the suppliers

with smaller marginal costs have more bargaining power. In order to find an equi-

librium solution, the retailer will place orders to the suppliers in the increasing order

of their marginal costs and then will decide which capacities to reserve based on the

cases (a)-(c) we presented above.

We finally consider the suppliers' problem. Supplier i solves the following problem:

max oiQi(o, v) + E, {qi(o, v, p,)(v - si)}, (3.28)
o,v>O

where qi('), Qi() are determined from the retailer's problem.

To find solution to (3.28), observe that from the retailer's problem, supplier i can

deduce that he/she needs to set parameters (oi, vi) so that oi + ui = const. For an

active supplier i, it holds that Qi = Ki and o _ _o(v) = -F(vi < Px). Moreover,ivi - vi --
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E, (qi(o, v, p)(v - si)) = Ki(vi - si)F.(px > vi). Hence,

i 07ri(, v) ) -F(p. > vi) + F.(p. > vi) + (vi - Si)fz(vi).
Ki vi

Therefore, from the KKT conditions for (3.28), we obtain vi = si and oi = E,(p -

si)+ . (Recall that all indices are increasing in the order of the suppliers' marginal

costs.) Also observe that the solution, i.e, the capacities reserved by the retailer, as

well as the reservation prices oi and exercise prices vi announced by the suppliers, can

be viewed as a contract. This contract is equivalent to a two-part tariff with a fixed

payment Li = KiE.(p. - si)+ and a price wi = si.

The case when index ii is utilized will result in the same formulas for (oi, vi).

The following two results characterize the equilibrium in the single-period case.

Proposition 15 Let u* = E(px - vi*)+ and suppose that a pure equilibrium strategy

exists. The equilibrium strategy for the retailer is to reserve Q* = Ki when oi* +u* i < 

and reserve nothing otherwise, and for the suppliers to announce o* = E.(pxe - s)+

and v* = s.

As a consequence, at an equilibrium, oi+ui = 0 for the active suppliers. Moreover,

at the beginning of the period, the expected profits-per-period for the agents are as

follows:

ri(o*,v*) =KilD-I(Ki-1,Ki]Ex(Px - si), (3.29)

7rr(Q*) =Dp(D) - (D - I)Epx, (3.30)
n

rod(Io) =p(D) - (D - I)Epx + ~ KilDI(K-,Kq]Ex(P - si),) (3.31)
i=l

where ird is the total system's profit.

Notice that the equilibrium and the profits can be characterized using u instead

of (o, v). Let us use notation 7ri(u) = 7ri(o, v). Then the conditions for existence of

pure equilibria can be stated as follows.
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Theorem 10 Let u* (or ui*) be as defined in this section. The following conditions

are sufficient for a vector (o*, v*, Q*) to be a pure strategy Nash equilibrium solution

in the system:

(1) (u* < , for the suppliers with Q. > 0,

(2) u* = si, for the suppliers with Q. = 0.

The previous conditions are necessary and sufficient for the existence of a pure strategy

equilibrium if in addition one of the following conditions hold:

(3a) Q*(o*,v*) = K k for some k, where Q* is the total capacity reserved at the

equilibrium,

(3b) px < p(D) + b a.e.

Moreover, the option contracts above coordinate the chain.

Proof. The proof of the necessity and sufficiency is similar to that for Theorem 8.

Notice that the centralized version of the model in this section has the objective

as in (3.23) with Q = K. In the centralized case, the second stage problem's solution

(after prices of the outside supplier are observed) is qi = Kilpx>silD-IC(Ki-l,Ki] · It is

obvious that the expected value of the solution is the same as in the case when option

contracts are used in the system and the expected total profit from the system is:

-co =E, (p(D)(D - qn+l) - h(I + q + x - D) - bq+l - s'q - xX) (3.32)

=LDp(D) - 2hD - hi - ExpxD + Ex(px - i)KilD-IE(Ki-1,Ki] (3.33)

=7doo. (3.34)

When I < D, the first equality holds and the second equality follows from the

decentralized version of the problem. When I > D in both the centralized and the

decentralized problems no additional orders will be placed. 
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3.6.2 Multi-period problem

In this subsection we will consider properties of the agents' policies in a multi-period

case. A pure strategy MPNE exists when conditions similar to those in Theorem 10

apply for each period.

Theorem 11 Let it = -Exlp<p(Dt)+b(Px-V )+ - (1- Fx(b+p(Dt))(b+p(Dt) -vt) +

and suppose that a pure strategy MPNE exists. The equilibrium strategy for the retailer

is to reserve Q = Ki when o + ut < 0 and reserve nothing otherwise, and for the

suppliers to announce o* = Ex(pxe - s)+ and vt = s.

This equilibrium strategy coordinates the supply chain.

Proof. We will prove by backward induction. As was shown in Lemma 15, this

theorem holds for the single period case. Therefore, it holds for period T.

Consider period k, I < k < T. Let us denote by DPko(I) the value of the retailer's

profit restricted to the last T - k + 1 periods. This function is piecewise linear (see

Proposition 12). According to the Proposition 12, the retailer's profit-to-go function

DPko(I) can be expressed as DPrko(I) = yo(I) +-y (I)I, where coefficient -y(I) is

non-negative and non-increasing.

During period k, the retailer's objective at the allocation stage is

DPk(I) = max ((p(D) - b)q+l - (v + he - -yi(I+)e)q - (px + h - y(I+))x
x>0,

q+xzD-I

+p(D)D - (h - -y(I+))(D - I) + y - o'Q), (3.35)

where I+ = q+x+I-D. This is a linear program and, if all the variables' coefficients

are nonnegative, then the solution is analogous to that in (3.24). Moreover, notice

that either x = 0 or q+l = 0, depending on the sign of expression Px - b - p(D), and

only the relative values of vi, px and p(D) + b.

Now suppose that I t < Dt , then the reservation problem during period k could

be written similar to the one in (3.26):
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max yo(I) + (p(D) + h - y(I+))D - (h - 7,(I+))l - o'Q

- Ep<b+p(D){(v - pxe)'q + (D - I)(h + Px - fI(I+)}

- Ep>b+p(D){(V - (b + p(D))e)'q- (D - I)(h + b + p(D) - yi(I+))}, (3.36)

where (q, x, y) are as defined in (3.24) (for the kth period's values).

Hence, the retailer will distribute the orders among n suppliers using index fi =

oi + Elpx<b+p(D)(Px - vi)+ + (1 - Fx(b+ p(D))(b+ p(D) - vi)+. Consequently,

Ooi
= Fx (b + p (D)) - F(vi)

&vi

and as in the previous subsection it follows that at time k: vi = si. Moreover, since

at equilibrium oi + fi = 0, it follows that oi = -Elp<b+p(D)(Px - si)+ - (1 - Fx(b +

p(D))(b + p(D) - si)+ .

So far we showed that if the induction hypothesis holds for the last T - k periods

and the level of initial inventory of time k, Ik, induces a pure strategy MPNE in

the game truncated at time k, the suppliers and retailer's equilibrium strategies are

as described in the theorem's statement. Now it is easy to see that these strategies

would also coordinate the chain. Indeed,

DPC't(It) = Ex (p(D)(D - qn) - h(I t+) - bq+l - s'q - px + DP'ct+l(It+))

= wr(I, D) + DpC,t+l(It+)

= 7do(I, D) + DPct+l(It+) (using induction hypothesis)

= DPt(It)

This concludes the proof. N
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Remarks.

1. Notice that with a different sequence of events, the full coordination of the chain with
options would be impossible. Namely, suppose that retailer can reserve capacities not
only at the time 0, but also at any other period. Then, since there is a tow-state
problem during each period , the closed-loop options solution will always be better
than a centralized open-loop solution.

2. Another possibility is to consider a modified model in which we allow the suppliers
to continue to compete at stage 2 of each period. Then at the allocation stage,
the retailer orders additional amounts from supplier i at price wi if wi < p, and
D - I - (j:vi<wi Qj - EJ : Wj < Wi) > O. In this model options might coordinate
the chain.

3.7 Extensions: expandable capacities and nonlin-

ear costs

In this section we discuss some extensions of the model we discussed so far.

3.7.1 Expandable capacities

Consider a model in which during period t each supplier starts with an initial capacity
tt and has an option of expanding his/her capacity up to K t

1 at a cost (t. The

total cost of producing qi units of product is s(q) = siq + ((q - Kit)+, where

0 q K t . Suppose also that each supplier i announces to the retailer a price

schedule wit(q) = wtq + v(q - Kt)+, where < q < Ki 1. In this setup, we can show

that the equilibrium solution is equivalent to that of a problem with fixed capacities,

that is defined as follows: the model consists of a set of 2n suppliers, with costs sti,

s.t. Si = i, si+n = i + (it and capacities Ki = Ki,, Ki+n = Ki,- Ki,o, for < i < n.

Let us denote the suppliers' prices and quantities in this new model as wis and qis.

In order to see that the problems are equivalent, we first observe that the retailer's

problem can be formulated as

T

max ( r(D tKi t + qt + t) _ wtqt _ v t yt ht+ bIt -)
t yt- 0 t=

[qt< K, yt_ K - K, i t+' = (I t + qt + y t - D t )+ 7 II = I 0} . (3.37)
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Therefore, the retailer's problem is equivalent to a problem with 2n suppliers whose

prices and capacities are w, Ko and v, K 1 - K 0. Supplier i's problem can also be

formulated as follows:

T

max E((wi- si)qi(wt, vt) +(v -t i-)y(wt, t)). (3.38)
i, i - t=l

Here qt is the amount that is ordered from the first K t
0 units of capacity and yt

is the amount that is ordered from the last K t, - K t, units, left in supplier i's

capacity. During each period this problem is separable in terms of variables vi and

wi. Therefore, each supplier with a variable capacity can be modelled as two suppliers

with fixed capacities Ki,o and Ki,1 - Ki,o and costs si and si + .

So far we have assumed that extra capacity is available at each period. Neverthe-

less, using it does not affect the initial level of capacity that is available in the next

period. This is due to the fact that when the next period capacity is set as

K,0 = K-] + yi, (3.39)

supplier i's problem remains separable. On the other hand, with this capacity

equations, the retailer's problem has an additional constraint on capacities, namely,

qt < Kt-l + yt-l. Since this type of constraint is linear, the properties of the solution

to the retailer's problem remain the same. Therefore, the model with expandable ca-

pacities (i.e.: where (3.39) holds) can still be reformulated as a 2n-supplier/1-retailer

decentralized supply chain competition problem.

Finally, suppose that there is some additional constant charge Of that supplier i

incurs whenever he makes the decision to expand capacity, i.e., supplier i's cost is
s(q) = siq + it(q - K t o) + 1q>Kto0i, where 0 < q < K t

1. In this case, supplier i can
iO! , - -- i,'

again be split into two suppliers: one that seeks to maximize (w - si)qi(w, v) and

another supplier, maximizing (v- (-si)y(w, v) -Ot. Solving these two maximization

problems will allow supplier i to set his/her equilibrium price v high enough so the

capacity expansion is profitable.
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3.7.2 Piecewise linear and nonlinear costs

The following proposition summarizes and generalizes the discussion in this section.

Theorem 12 The model in which suppliers have bounded piecewise linear increasing

costs is equivalent to a model with fixed capacities.

The case of piecewise linear increasing costs can be generalized to the case where

costs are piecewise convex increasing functions such that their slopes are increasing

in the intervals where the functions are continuous. When these types of costs are

used and the retailer's revenue is a convex function. Then function q(w(.)) is well

defined (through the retailer's problem) and, therefore, the suppliers' problems are

well defined and an equilibrium exists (nevertheless, we need additional conditions

for the existence of a pure strategy equilibrium).

Finally, we note that the convex costs assumption might not hold. For example,

given that there are economies of scale, the costs should generally decrease as the

quantities rise. However, when a supplier needs to install new capacities/technologies,

the costs might be convex at least for a short period of time, and our analysis would

provide a framework for studying such situations.

3.8 Conclusions

In this chapter we introduced and studied models of competition between several

suppliers and a retailer in a supply chain. The suppliers have capacities and face con-

stant costs. We first study the problem of dynamic competition using a continuous

time framework. We then established properties of the equilibria and the profit func-

tions in the discrete time case. To achieve a more efficient yet competitive solution,

we introduced contracts to the system. We also analyzed an alternative model with

options that improves the system's coordination and yet incorporates competition.

In addition, we studied several extensions to include more general cost structures for

the suppliers. Finally we studied the behavior of the system using a matlab simula-

tion. We observed that the properties of the system that we established theoretically,
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indeed hold in the simulation. Moreover, computational examples we considered sup-

ported our thesis about the importance of the dynamic aspect of the chain, as the

solutions that take into account the system's dynamics significantly outperform the

static (myopic) solution. Moreover, the numerical examples reaffirmed that a fur-

ther improvement can be achieved when the difference between the centralized and

decentralized system's solutions is captured using contracts.

This research also gives rise to several open questions.

* Can we quantify the loss of efficiency in the chain due to competition?

* How can we extend our model to incorporate incomplete information?

* How can we consider a more general supply chain with several retailers but also

multiple echelons?
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Appendix A

A result for Theorem 7

Proposition 16 Suppose Assumptions 3 and 12 hold. Then F(xk) - > Ž cldkl2 for

some c > 0.

Proof. Paper [541 has shown that when the problem function f has the property

of Jacobian similarity, then for some positive integer nl n, there is an orthogonal

matrix M, such that for any x E K, it holds that M'HM = (Q , where

H = Vf(x) and matrix Qx is an nl x nl bounded, positive definite matrix. Therefore,

if we let Hk = Vf (xk), then

(Qk O)

O 0

M'HkM =

We can express dk = M

(0)).From
zk

(yk

\zkJ
or dk = Sk + wk. where s k = M

the proof of Proposition 5 it follows that

F(xk) _ F(xk+l) > (ak)2 PdkVf()d k,
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(yk'

0O

and wk =



therefore

2F(xk) _ F(xk+l) > 2) ykQOyk

When a k > a,

IS IIl = Ilykll < - (F(x k ) -_ F(xk+1))1/2 .a

Next we show that IIwkII < a (F(x k) - F(xk+1))1/2, for some constant 2. Sup-

pose this is not true. Then, since {wk} is a bounded sequence, there exists a subse-

quence S and a subset J of {1, ..., n} so that

IIlk 11 S k-*0,kES IIWkll k- oo,kEs IIWk II

Then from the properties we established above for Ilskll, it follows that

{Hs kII -+ 0, Vj E J.

Consider the following system of linear equations

A(sk + w) = 0

f(x°)'w = f(xO)'wk

Wj = jk Vj E JC

(M'w)j = O Vj = 1, ..., nl.

Next we will show that there exists a solution of the above system bounded by

IF(xk) - F(xk+l)11/2. To achieve this it suffices to show that in the system above the

norm of the left-hand-side is bounded by O(IF(xk) - F(k+l)ll/ 2 ), and the matrix on

the right-hand-side is bounded. Paper [54] showed that for any system Ax < b that

has a feasible solution, there exists some solution whose norm is bounded by Alibll,

where A is a constant dependent only on matrix A. Notice that

F(xk) - F(xk+l) = akf(xk))dk + oak2/2dk'Vf(zk)d

-= ekf(xO)'(wk + Sk) + k ) + k(xk - xO)'Vf(zk)dk + ak2 /2dk'Vf(zk)dk.
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From this relation it follows that

-f(xO)'wk - f(XO) Sk+ -1 (F(xk)- F(xk+l))

+(xk - X ()'M (Z )0 ( + a kyk'Zkyk

where IIZ0kI1, IIZkII, IIk - x°011 are bounded on K, and < k < 1. Therefore, since

there exists a solution of this system, namely wk, there exists a solution fiVk that is of

order 0 (IF(xk) - F(xk+1)l). Therefore {IIfk11/1IwkI}s - 0. Let tk = wk - wk.

We now can estimate limk-oo ( ) :

k - t IIll
k--.oo di k--oo iesfor i E J: lim ( / i = lim iiEJ =0,| IIk i'J II il iIJ\ ll

for i jJC

(A.1)

di - tk
k = 1.

The following system holds as well:

(M'tk)j = O, j = 1, ..., n

At k = 

f(xk)ltk = f(xO)Itk + (Xk -x)'M (k

Hktk = M (Q M'tk = 0.
O

o) M'tk = 0
0)

Observe that for large k E S, dk - tk is an optimal solution of AS direction

finding problem lying in the interior of D(xk). Notice that f(xk)(dk- tk) = f(xk)'dk,

A(dk - tk) = 0 and from (A.1)

IIXk(d·,,k_ , tk)II = (i) )2 < dk Xk E X~~~
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This is a contradiction, since if there were an interior solution of direction finding

problem, then the current iterate would be an optimal solution. M
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Appendix B

An extension of the generalized

geometric framework

B.1 Definition of the framework

In this appendix we present an extension of the generalized geometric framework

(GGF) originally proposed in [39]. Before presenting an extended version of GGF,

we will state some definitions.

Definition 11 ([391) "Nice" sets {pk}) are subsets of Rn satisfying the following

conditions:

1. the sets pk are compact convex subsets of IRn with nonempty interior;

2. the sets pk belong to the same class of sets (ellipsoids, polytopes, simplices,

convex sets);

3. these sets satisfy the condition pk+l D pk n Hfk for a half space Hk defined by

a hyperplane Hk;

4. we choose the set P0 so that it contains the set K and has a volume no more

than 2 n(2L+ l)

Definition 12 ([39]) A sequence of point {xk} c R' is a sequence of centers of the

"nice" sets {pk}o if00
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1. xk E interiorPk;

2. k Pk-l n H= Pk-i n {x E Rn I ck-'l(x-x k - l > 0} for a given vector ckl;

3. vol(P k ) < b(n)vol(Pk - l ) for a function b(n), 0 < b(n) < 1, of the number n of

the problem variables.

Definition 13 For some g IRn -- R, hypersurface S is defined as follows: S = {x E

Rnlg(x) = 0}. We will say that a set § lies above the surface S if S = {x E Rnlg(x) >

0} and that a hypersurface S(x) supports a set K if K C S.

We will present a framework that uses hypersurfaces as cuts, whereas linear cuts

were used in [39].

An Extension of the General Geometric Framework (EGGF)

1. Start with an interior point x° - center of a "nice" set P0 D K ° = K.

2. Feasibility cuts. At iteration k, given pk, Kk, and xk (center of Pk):
(i) Compute a surface S (xk) that supports K. We will denote by S (xk) the

set lying above this surface.
(ii) Update pk+l, so that p k+l D S(xk) n Pk, Kk+l = Kk.

3. Optimality cuts. At iteration k, given pk, Kk, and xk (center of Pk):
(i) Compute a surface S ( k) that cuts Kk through xk. Moreover, the surface

is such that the set S (xk) lying
above this surface, contains all the VIP (or WVIP) solutions.

(ii) Update Kk+l = Kk n S(xk), pk+1 D S(k) n pk.

4. k -- k + 1. Repeat steps 2 and 3 until a desirable precision is reached.

In Magnanti and Perakis [39], the surface S(xk) is a hyperpane H(xk) determined

through a linear cut with slope f(xk). In Section 2.2 of this thesis, we consider

alternate choices for the slopes of linear cuts.

The extension of the GGF allows us to incorporate nonlinear cuts. For exam-

ple, an obvious but perhaps not very practical choice of a cut, could be to introduce

at each step k, a nonlinear cut S(xk) = {x l f(x)'(x - xk) < 0}. In some special

cases of the EGGF (such as the ellipsoid method [37], [39]), it is important that the

sets Kk employed in the algorithm, preserve some properties (for example, convex-

ity and/or connectivity). In these cases notice that if at each step of the EGGF
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we use a cut determined through a surface Sg = x I g(x) = O}, where g is a qua-

siconvex function on K, then the new set K n Sg, where Sg = x I g(x) < 0},

remains convex. This leads us to conclude that quasiconvex cuts preserve the con-

vexity or the connectivity of the feasible region. In particular, when the problem

function f is strongly monotone we can consider quadratic cuts in the EGGF. An

example includes a cut where the set lying below the quadratic surface is determined

by S (xk) = {x I f (xk)' (x- xk) + allx- xkl 2 < O}. Liithi and Biieler [38] have

considered quadratic cuts of this type.

B.2 The convergence of the EGGF

The analysis of the framework relies on the observation that we can measure the

"closeness" of a point x E K to a VIP (or a WVIP) solution using some function G.

Examples of such functions include the primal or the dual gap function we described in

Section 2.2. For a variational inequality problem with a symmetric Jacobian matrix

Vf, an alternate choice could be the corresponding objective function F (that is,

when VF = f). In what follows, we examine how the properties of the level sets of

such a function G imply the convergence of the EGGF. In particular, the following

assumptions summarize the key properties.

Assumption 17 Let X* be the VIP (or, depending on the context, the WVIP)

solution set. There exists a function G: K -* R+ such that x* C arg minXEK G (x) if

and only if x* E X*.

We also assume that the set S(x) lying below the cutting surface at point x, con-

tains the level set L = {z I G(z) < a}, for some a > O, i.e., for some a > 0,

S(x) D L,.

Examples of sets S(x), include the half space S(x) = H(x) = {z a(x)'z < b(x)}

or the set

S(x) = {z I a(x)'z + z'Q(x)z < b(x)}, where Q(x) is a positive semi-definite nmatrix.

Notice that in both examples, set S(x) is a convex set.
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Assumption 18 Given a point y E K, and a small enough > O, such that

minxex* lix - yll < e, it follows that G(y) < c(e), where lime,,o c() = 0.

Notice that the previous assumption seems to imply that function G is locally

continuous close to the solution set.

In what follows, we establish the convergence of the EGGF when the variational

inequality problem satisfies Assumptions

refA1,17, 18.

Theorem 13 Consider the sequence {xk} induced by the EGGF. At each iteration

we introduce a cut through a set S(xk). Under Assumptions 1,17,18, every limit point

of the sequence {xk} is a VIP solution.

Proof. We first examine the properties of the sequences {xk} and {Kk}. Assump-

tions 1,17,18 imply that at the kth iteration, the framework adds a cut S k = S(xk),

such that for some ak, (z E K G(z) < ak C Sk. We note that Assumption 17

implies that the solution set X* C {z E K I G(z) < ak ) C Sk. Since we cut through

xk, it follows that pk Z Sk. Moreover, the description of the algorithm implies that

Vol(Kk) - 0, x* E Kk and Vol(Kk) > 0, for all k. Let K denote the set limk,,O Kk

and KC, its complement. Every limit point of the sequence {xk belongs to the set

K.

Assumption 17 implies that X*CK. Therefore we only need to show that every

point x E K is a VIP solution. Since Vol(Kk) - 0 and Vol(Kk) > 0, there exists

a point in Kc n K that is arbitrarily close to some VIP solution x*. According to

Assumption 18, for small enough e > 0, we can choose this point to be yE E Kc such

that y e - x*ll < E and G(ye) < c(e), where x* E X*. Since y E KC, it follows

that G () < G (yE) < c(E). By letting go to zero, we conclude that G () = 0.

Consequently, Assumption 17 implies that x is a VIP solution. This further implies

that every point in the limiting set K is a VIP solution. Therefore, we conclude that

K is the solution set of the VIP. ·

Theorem 14 Suppose that a WVIP satisfies Assumptions 1, 6. Let {k} C K be a

116



sequence, such that xk C Kk, where Kk = K k - l n Cut(yk, xk) and K° = K. Every

limit point of {xk} is a WVIP solution.

Proof. The dual gap function Cd(x) is the function we will employ in order to

measure the closeness of point x E K to the solution set of the WVIP. We will show

that for this function, Assumptions 17 and 18 hold. Then the result follows from

Theorem 13.

In this theorem, we denote by X* the WVIP solution set. Since set X* coincides

with set {z I Cd (z) = 0), in order to prove that Assumption 17 is valid for
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Appendix C

Another VIP reformulation

We present this reformulation in a static case. We start by presenting Karush-Kuhn-

Tucker (KKT) conditions for the retailer's problem: maxq[o,K] 7rr(w, q).

wi - R'(q) + pi - i = 0

pi(qi - Ki) = O

viqi = 0

Hi, vi > O, qi E [0, Ki]

From these conditions it follows that there exists w = R'(q) such that wi > w

implies qi = 0 and wi < w implies qi = Ki. Using Assumption 16, we obtain that

supplier i's problem can be expressed as

maxqi(wi - Si) I qi(wi - R(q)) = 0, wi > 0),
Wi

a problem in which feasible set depends on retailer's strategy q. The KKT of all

supplier problems can be written together as the following system.

-qi + (iqi - = 0

(iqi(wi - R'(q)) = 0, qi(wi - R'(q)) = 0

i(Wi - Si) = O, i > O, Wi > 0
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Concatenating KKTs for all suppliers and the retailer we obtain:

wi - R'(q)+ ui - vi = 0

pi(qi - K) = 0

viqi = 0

/i, vi > qi [, Ki]

-qi + (iq -i = O, (iqi(wi - R'(q)) = O, qi(wi - R'(q)) = 0

i(Wi - si) = 0, Wi > Si, (i > 0

We next suggest the following VIP function: F' = -Q(e- () , and the

Q(w - R'(q)e)))
feasible set K I = [0, K] x [s, oc) x Rn + .

We claim that for z = (q, w, (), z being solution of VIP FI(z*)'(z - z*) > 0, z E

K I is equivalent to (q, w) being an equilibrium.

Indeed, notice that, qi(wi - R'(q)) = 0 is a linear constraint with respect to

wi. Moreover, retailer's and suppliers objective's are convex with respect to their

i'espective variables (q and wi). Hence given some constraint qualification holds, the

VIP is equivalent to GNEP. ([50])

Assumption 19 R(q) is a concave function.

Theorem 15 Given that an equilibrium in pure strategies exists and Assumption 19

holds, a solution of the VIP above constitutes suppliers-retailer game equilibrium.
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