
Optimizing Safety Stock Placement in General
Network Supply Chains

by

Ekaterina Lesnaia

Submitted to the Sloan School of Management
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2004

© Massachusetts Institute of Technology 2004. All rights reserved.

Author
/ *.........

Sloan School of Management
August 13, 2004

Certified by- -. .
Stephen C. Graves

Abraham J. Siegel Professor of Management Science & Engineering
Systems

Thesis Supervisor

Accepted by.......... -- r-
James B. Orlin

Edward Pennell Brooks Professor
Co-director, MIT Operations Research Center

MASSACHUSETTS INSMtil
OF TECHNOLOGY

OCT 2 1 2004

LIBRARIES

,~~Rc~c~vc~si
i

- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I

Optimizing Safety Stock Placement in General Network

Supply Chains

by

Ekaterina Lesnaia

Submitted to the Sloan School of Management
on August 13, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract
The amount of safety stock to hold at each stage in a supply chain is an important
problem for a manufacturing company that faces uncertain demand and needs to
provide a high level of service to its customers. The amount of stock held should
be small to minimize holding and storage costs while retaining the ability to serve
customers on time and satisfy most, if not all, of the demand. This thesis analyzes this
problem by utilizing the framework of deterministic service time models and provides
an algorithm for safety stock placement in general-network supply chains. We first
show that the general problem is NP-hard. Next, we develop several conditions that
characterize an optimal solution of the general-network problem. We find that we can
identify all possible candidates for the optimal service times for a stage by constructing
paths from the stage to each other stage in the supply chain. We use this construct,
namely these paths, as the basis for a branch and bound algorithm for the general-
network problem. To generate the lower bounds, we create and solve a spanning-tree
relaxation of the general-network problem. We provide a polynomial algorithm to
solve these spanning tree problems. We perform a set of computational experiments
to assess the performance of the general-network algorithm and to determine how to
set various parameters for the algorithm. In addition to the general network case,
we consider two-layer network problems. We develop a specialized branch and bound
algorithm for these problems and show computationally that it is more efficient than
the general-network algorithm applied to the two-layer networks.

Thesis Supervisor: Stephen C. Graves
Title: Abraham J. Siegel Professor of Management Science & Engineering Systems

3

4

Acknowledgments

The four years at MIT have been the most amazing years of my life. I would like to

thank all the people who were with me and who will remain the most special in the

future.

First of all, I would like to thank my advisor Stephen Graves for his guidelines,

support and patience. I thank Cynthia Barnhart and Jeremie Gallien for being my

thesis committee members. Also, I am grateful for Cyndy's support in my first year

at MIT.

I am thankful for the financial support of the Singapore-MIT Alliance and for the

opportunity to travel to Singapore.

I am grateful to all the students of the Operations Research Center. This place is

unique and the students make the ORC unforgettable. I met new friends whose sup-

port helped me so much. I thank Ping, Anshul, Jose, Melvyn, David and everybody

I forgot to list here.

My friends outside of the ORC believed in me and I thank them for that. I thank

Dasha, Julian, Erin, Ty and Luca. My special thanks go to Iuliu, whose incredible

help and support made me finish the thesis. I thank Martin for being with me.

Finally, I would like to dedicate this thesis to my family. Their love will always

be with me.

5

6

Contents

1 Introduction

1.1 Assumptions and formulation

1.1.1 Assumptions

1.1.2 Formulation

1.2 Literature Review .

1.2.1 Safety stock modeling

1.2.2 Complexity of concave minimization

1.2.3 Methods.

1.2.4 Complexity and algorithms for the safety stock problem.

2 Problem Characteristics

2.1 Complexity of the problem . . .

2.1.1 General case .

2.1.2 Restricted case: si < T .

2.2 Optimality conditions .

2.2.1 Restricted case: si < T .

2.2.2 General case .

7

21

23

23

27

30

30

38

39

45

47

............... 47

.......47

.56

... 63

.... 64

.. 69

2.2.3 Critical paths .

3 Algorithms

3.1 Spanning tree algorithm

3.1.1 Optimality conditions ..

3.1.2 Polynomial time algorithm

3.2 Algorithm for general networks

3.2.1 Branching tree.

3.2.2 Lower Bounds

3.2.3 Upper Bounds

3.2.4 Algorithm

3.3 Two-layer networks

3.3.1 Optimality conditions ..

3.3.2 Algorithm

3.3.3 Lower Bounds

3.3.4 Upper Bounds

105

.......... 105

.......... 106

..110

.......... 121

........ 122

......... 126

......... 131

......... 132

.......... 136

... 137

......... 140

......... 142

......... 142

4 Computations

5 Conclusions

153

201

8

78

List of Figures

1-1 Base-stock mechanics

2-1 Graph G for the problem VC

2-2 Graph G' for the problem Pi

2-3 An example of the safety stock function. ..

2-4 Graph G'....................

2-5 An example of a network for which conditions

not hold for any optimal solution

2-6 A path between nodes 1 and 6

2-7 A path between nodes i and j with are (i, i1)

2-8 A path between nodes i and j with arc (il, i)

(2.6),

E A in

e A in

2-9 A path between nodes i and j with arcs (ik-l, ik) E A

in the path

2-10 A path between nodes i and j with arcs (ikl-1, ik) E A

in the path

2-11 A path with arcs (ikl,ik) E A and (ik+l,ik) E A..

9

(2.7) and (2.8

the path.

the path.

and (ik, ik+l)

and (ik, ik+l)

.

49

49

50

58

72

79

80

81

81

81

81

). .

;) do

.. .

.. .

E A

..

IE A

28

L

L

2-12 A path between nodes i and j with arcs (ik, ik-1) E A and (ik, ik+l)

in the path

2-13 A path between nodes i and ip = j with arcs (ip-l,ip- 2) A(ip_1, ip) E A in the path

2-14 A path between nodes i and ip = j with arcs (ip- 2, ipl) E A(ip_l, ip) E A in the path

2-15 A path between nodes i and ip = j with arc (ip, ip_l) E A in the E

EA

and

and

. .

path.

2-16 A path between nodes

(ik, ik-1) E A, (ik, ik+l)

2-17 A path between nodes

(ik, ik-1) E A, (ik, ik+l)

2-18 A path between nodes

(ik, ik-1) E A, (ik+lik)

2-19 A path between nodes

(ik ik+l) E A, (r,ir-1)

i and j with ik =r and arcs such that

E A, (ir-l, i) E A and (ir, i+1))E A.

i and j with ik =r and arcs such that

E A, (ir,i-_l) E A and (ir+l, i)E A.

i and j with ik = r and arcs such that

E A, (r,ir_-1) E A and (r,ir+) E A..

i and j with ik ir and arcs such that

E A and (ir, i,r+l) E A.

arcs

arcs

. . .

arcs

arcs

2-20 A path between nodes i and j with i = ik = io = ir and arcs (il, i) E A,

(ir, ir-1) E A and (ir, ir+l) E A, r < p, in the path .

2-21 A path between nodes i and j with ik = i and arcs (ik, ik+l) E A,

(ik, ik-1) E A, (ik,ik+l) E A and (ik, ik-1) E A, (ir-1, ir) E A and

(ir+l, ir) E A, r < p, in the path

2-22 A path between nodes i and j with ik = ir and arcs (ik, ik+l) E A,

(ik, ik-) E A, (ir-, ir) E A and (ir+l, ir) E A, r < p, in the path . .

10

97

97

99

99

100

100

101

82

82

82

82

2-23 An instance of the safety stock problem with an optimal solution cor-

responding to a path with self intersection.

3-1 A spanning tree network for Example 5.

3-2 Search tree

3-3 New labelling

3-4 Branching tree for the general problem.

3-5 The network for Example 7

3-6 Spanning trees and correspondent relaxed

ample 7....................

3-7 The objective function depends only on the outbound sei

Sl, S2, S3.

3-8 Branching tree for a two-layer problem with si < Ti, i E D.

3-9 Two-layer network.

3-10 A tree chosen by the lower bound algorithm

3-11 The second tree chosen by the lower bound algorithm . .

3-12 Subsets

4-1 Average time of solving a general network problem with 20 nc

arcs using polynomial bounds.

4-2 Average time of solving a general network problem with 20 nc

arcs using polynomial and pseudo-polynomial bounds

... 102

... 112

... 112

... 112

.... 123

... 129

problem solutions for Ex-

130

rvice times

... .. . 138

.... . 141

... . . . 143

... .. . 143

... .. . 144

... .. . 147

)des and 25

160

)des and 25

161

4-3 Average time in milliseconds for Experiment 3 to choose same, smart

or random trees for the lower bounds

11

164

4-4 Average number of branching points for Experiment 3 to choose same,

smart or random trees for the lower bounds. 165

4-5 Average number of generated trees for Experiment 3 to choose same,

smart or random trees for the lower bounds. 168

4-6 Average time in milliseconds for solving a problem with 20 nodes and

30 arcs as a function of the number of bounds per branching point, for

different numbers of initial bounds in Experiment 4. 169

4-7 Average time in milliseconds for solving a problem with 20 nodes and 30

arcs as a function of the number of initial bounds for different numbers

of bounds per branching point in Experiment 4. 170

4-8 Average time in milliseconds for solving a problem with 20 nodes and

20 and 23 arcs as a function of the number of initial bounds in Exper-

iment 5. 174

4-9 Average time in milliseconds for solving a problem with 20 nodes and

41 arcs as a function of the number of initial bounds in Experiment 5. 175

4-10 The best number of initial bounds as a function of the number of arcs

in Experiment 5. 176

4-11 Average time in milliseconds for solving a problem with 30 nodes and

40 arcs for different number of BBP as a function of GBBP in Exper-

iment 6 179

4-12 Average time in milliseconds for solving a problem with 20 nodes and

20 and 23 arcs as a function of the number of bounds per branching

point in Experiment 7. 181

12

4-13 Average time in milliseconds for solving a problem with 20 nodes and

41 arcs as a function of the number of bounds per branching point in

Experiment 7. 182

4-14 The best number of bounds per branching point as a function of the

number of arcs for 20 nodes in Experiment 7. 183

4-15 Average time in milliseconds for solving a problem with 30 nodes and

42 to 51 arcs as a function of the number of bounds per branching

point in Experiment 7. 184

4-16 Average time in milliseconds for solving a problem with 100 nodes and

100 to 123 arcs for 2%, 5%, 10% tolerance limits in Experiment 9. . 193

4-17 Average time in milliseconds for solving a two-layer problem with 10

components and 10 demand nodes using the two-layer and general

network algorithms in Experiment 11. 194

13

14

List of Tables

2.1 Intervals of the objective function value depending on SIN+1 61

2.2 Configurations of nodes and adjacent arcs in the path. 80

2.3 Service times for the path on Figure 2-6. 92

2.4 Parameters of the network from Example 4. 101

2.5 Solution of the problem from Example 4 102

3.1 Possible values of SIj depending on the constraints on the service times. 109

3.2 Possible values of Sj depending on the constraints on the service times. 109

3.3 Lead times and guaranteed service times for Example 6 118

3.4 Initial values of Sset[i] and SIset[il for Example 6. 118

3.5 Values of Sset[i] and SlIset[i] created by procedure ComputeSandSIUp

for Example 6. 119

3.6 Values of Sset[i] and SlIset[i] created by procedure ComputeSandSI-

Down for Example 6 119

3.7 Parameters of the problem in Example 7 129

3.8 An optimal solution for the network in Example 7. 129

3.9 Fixed solution for Example 8. 132

15

3.10 Parameters of the network shown on Figure 3-9 143

3.11 An optimal solution to the problem shown on Figure 3-10 144

3.12 The fixed solution for Figure 3-10 and Table 3.11 144

3.13 An optimal solution for the problem shown on Figure 3-11 145

4.1 Summary of the experiment settings. 158

4.2 Settings for Experiment 1 158

4.3 Average time per instance in milliseconds for Experiment 1. 160

4.4 Settings for Experiment 2 to choose random, cost or layer node order. 165

4.5 Average time in milliseconds and average number of branching points

for Experiment 2 to choose random, cost or layer order 165

4.6 Settings for Experiment 3 to choose same, smart or random tree for

lower bounds. 166

4.7 Average time per instance in milliseconds for Experiment 3 to choose

same, smart or random trees for the lower bounds 166

4.8 Average number of branching points for Experiment 3 to choose same,

smart or random trees for the lower bounds. 167

4.9 Average total number of computed lower bounds for Experiment 3 to

choose same, smart or random trees for the lower bounds 167

4.10 Settings for Experiment 4 171

4.11 Average time in milliseconds for Experiment 4 to solve a problem with

20 nodes and 30 arcs with 1 to 20 BBP and 10 to 200 initial bounds

(IB) 172

16

4.12 Settings for Experiment 5. 173

4.13 Average time in milliseconds for Experiment 5 to solve a problem with

20 nodes and 20 to 44 arcs with 10 to 2000 initial bounds. 173

4.14 Settings for Experiment 6 177

4.15 Average time in milliseconds for solving a problem with 30 nodes and

40 arcs for different number of BBP and GBBP in Experiment 6. . . 178

4.16 Settings for Experiment 7. 180

4.17 Average time in milliseconds for Experiment 7 to solve a problem with

20 nodes and 20 to 44 arcs with 1 GBBP and 1 to 19 BBP 180

4.18 Average time in milliseconds for Experiment 7 to solve a problem with

30 nodes and 30 to 51 arcs with 1 GBBP and 1 to 29 BBP 184

4.19 The number of instances with 30 nodes and 48 and 51 arcs that were

not solved to optimality in 10 minutes in Experiment 7 185

4.20 Best average time per instance in milliseconds for the two methods in

Experiment 8 186

4.21 The number of instances not solved in 10 minutes by IB and GBBP

methods in Experiment 8. 187

4.22 Time distribution of solving an instance with 50 nodes and 62 arcs by

the GBBP method in Experiment 8. 189

4.23 Settings for Experiment 9 190

4.24 Average time in milliseconds for solving a problem with 100 nodes and

100 to 123 arcs for 2%, 5%, 10% tolerance limits in Experiment 9. .. 191

17

4.25 Number of instances that the algorithm failed to solve in 10 minutes

for 2%, 5%, 10% tolerance limits in Experiment 9 192

4.26 Settings for Experiment 10. 195

4.27 Average time per instance in milliseconds for solving two-layer prob-

lems in Experiment 10 196

4.28 Number of instances not solved in 10 minutes by the two-layer algo-

rithm in Experiment 10. 197

4.29 Settings for Experiment 11. 197

4.30 Average time in milliseconds for solving a two-layer problem with 10

components and 10 demand nodes using the two-layer and general

network algorithms in Experiment 11 198

4.31 Average time in milliseconds for solving a two-layer problem with 40

components and 40 demand nodes using the two-layer and general

network algorithms in Experiment 11 198

4.32 Number of instances that general and two-layer algorithms failed to

solve in 10 minutes for problems with 40 components and 40 demand

nodes in Experiment 11. 199

18

List of Algorithms

1 Path augmentation procedure

2 Labelling algorithm

3 Spanning tree algorithm from Graves and Willems [2000]

4 Service time computation

5 Tree Algorithm.

6 Generate paths.

7 Branch and bound algorithm

..... .. 86
.. . .. 111

.... . 115

... . . 116

... . . 120

.... . 125

... . . 133

19

20

Chapter 1

Introduction

In this thesis we consider two major issues that have to be addressed in the supply

chain of a manufacturing firm. On one hand, inventory across the chain has to be

reduced to provide services as cheaply as possible with the least amount of assets.

On the other hand, customers expect a high level of service, which includes on-time

deliveries. Both issues depend on the amount of safety stocks the firm places in each

location of its supply chain.

The problem being solved in the thesis deals with the amount of safety stock to

hold at each stage of a supply chain. The amount must be such that a manufacturing

company is able to serve its customers on time and satisfy most, if not all, of the

demand. However, the amount of stock to hold must be small to minimize holding

and storage costs. By solving the problem, a manufacturing company can protect

itself against uncertain demand and provide a high level of service to its customers.

There are many ways of modeling safety stocks in supply chains. In the thesis,

we follow the framework given in Graves and Willems [20001. This approach falls

21

into the category of models that are distinguished by the assumption of guaranteed

deterministic service times. In the paper, Graves and Willems [2000] formulate the

safety stock problem for the general-network supply chain with a periodic review base-

stock policy and without production capacity. They provide a pseudo-polynomial

time algorithm for solving the problem for supply chains that can be modeled as a

spanning tree.

Given the framework of Graves and Willems [2000], the primary goal of the thesis

is to analyze the problem and to provide an algorithm for safety stock placement in

general-network supply chains. We first show that the general problem is NP-hard.

To do so, we reduce a known NP-hard problem, the vertex cover problem, to an

instance of the general network safety stock problem.

Next, we characterize the optimal solution of the general-network problem. We

find, that by constructing paths from a node (i.e., a stage in the supply chain) to

any other node in the network, we can identify all possible candidates for the optimal

service times for the nodes on the path. We show what kind of paths are valid for an

optimal solution and how to construct a solution from a path.

We use the paths to develop a branch and bound algorithm for the general-network

problem. By constructing all possible valid paths, we can consider all possible values

for the optimal service times. Therefore, in the branching tree we enumerate the

solutions according to the values that are generated by the combinations of valid

paths.

To construct the lower bounds, we relax the problem to obtain a spanning tree

and solve the problem restricted to the spanning tree by an algorithm similar to the

22

one presented in Graves and Willems [2000]. Moreover, we improve the algorithm

in Graves and Willems [2000] from pseudo-polynomial to be polynomial. The span-

ning tree algorithm developed in the thesis is O(N3), where N is the number of nodes

(stages) in the network (supply chain).

In addition to the general networks, we consider two-layer networks. We develop a

specialized branch and bounds algorithm for these problems and show computation-

ally that it runs faster than the general-network algorithm applied to the two-layer

networks.

The structure of the thesis is as follows. In this chapter, we formulate the problem

and discuss relevant literature. In Chapter 2, we show the complexity of the general

network problem and characterize its optimal solutions. In Chapter 3 we develop a

polynomial algorithm for supply chains that can be modeled as spanning trees. In

the same chapter we present the branch and bound algorithms for the general and

two-layer network problems. In Chapter 4, we show the results of computational

experiments. In Chapter 5 we discuss the results presented in the thesis and identify

opportunities for future research.

1.1 Assumptions and formulation

1.1.1 Assumptions

The following assumptions were used in the model introduced in Graves and Willems

[2000]. Here, we make the same set of assumptions for the model without production

23

capacity.

· Multi-stage network. We model a supply chain as a network. Nodes and arcs

of the network have natural interpretation in terms of the chain. Each node or

stage in the network can represented a processing function as well as a location

for a safety stock. We place an arc from node i to node j if the output product

of stage i is needed as input for production at stage j. If a node is connected

to several upstream nodes, then the node is an assembly requiring inputs from

each of the upstream nodes. The nodes are potential locations for holding a

safety-stock of the item processed at the node.

Due to the interpretation of the network we assume that the network does not

have directed cycles. This fact says that a component once processed in a node

can not return back to the node in an assembly with other components.

Let N be the number of nodes and A be the set of arcs in the graph representing

the chain.

* Production lead-times. We assume that each node j has a deterministic pro-

duction lead-time Tj, where lead-time is the total time of production, including

queueing, given that all necessary components are available.

Here we also introduce the maximum replenishment time for a node j:

Mj = Tj + max{Mii : (i,j) E A.

The maximum replenishment time is the length of the longest directed path

24

(with arc lengths Tj) in the network that terminates at node j, and represents

the longest possible time to replenish the inventory at node j.

* Base-stock replenishment policy. All stages operate under a periodic-

review base-stock policy with a common review period. We assume that there is

no delay in ordering, therefore, all the nodes see customer demand once it occurs

in the demand nodes. Based on the observed demand, each stage replenishes

its inventory up to the bases stock level.

* Demand process. We assume that external demand occurs only in the de-

mand nodes, which we define to be the nodes with zero out-degree. We denote

the set of demand nodes as ID. For each node j in D demand dj(t) comes from

a stationary process with average demand per period ,j.

Any other node i D has only internal demand from its successors. We can

calculate the demand in node i at time t by summing the orders placed by its

immediate successors:

di(t) = o di(t),
(ij)EA

where a scalar %ij is associated with each arc representing the number of units of

upstream component i required per downstream unit j. From this relationship,

we find the average demand rate for the node i to be

i = E Oijj
(i,j)EA

The most important assumption of the model is that demand is bounded. In

25

particular, for each node j there exists a function Dj(F) for F = 1,2,...,Mj,

such that

1. for any period t

Dj(F) > dj(t- F +) + dj(t - F + 2) +... + dj(t);

2. Dj(O) = O;

3. the function is concave and increasing for F = 1,..., Mj ;

4. Dj(F) - Fatj is increasing in F.

The assumption of bounded demand can have several interpretations. For ex-

ample, we can say that the bounded demand reflects the maximum demand that

a stage will see. However, in some contexts, the demand is truly stochastic and

can be hard to bound. In this case, we can say that the bound reflects the max-

imum demand that the company wants to satisfy from its safety stock. Under

this interpretation, if the demand exceeds the bound, the company will not have

enough safety stock to satisfy the demand and will have to take extraordinary

measures like overtime and expediting to handle the excess demand.

* Guaranteed outbound service times. We assume that node j provides 100%

service and promises a guaranteed service time Sj to its downstream nodes. This

means that demand dj(t) that arrives at time t must be filled at t + Sj. Note,

we assume that each non demand node j quotes the same service time to each

of its downstream nodes i: (j, i) E A.

26

Also, we impose bounds on the service times for the demand nodes, i.e., Sj <

sj, j E ID, where sj is a given input that represents the maximum service time

for the demand node j. The maximum service time is a parameter of the model

known to the end customer. For example, if node i wants to serve its customers

immediately, the firm has to set si = 0.

* Guaranteed inbound service times. Let SIj be the inbound service time

for the node j. We define inbound service time to be the time for the node j to

get all of its inputs from nodes i: (i,j) E A and to commence production. We

require that SIj > Si for all arcs (i, j) E A, since stage j cannot start production

until all inputs have been received. We can show that, if the objective is to

minimize the cost of the safety stock held in the chain, there exists and optimal

solution with:

SIj = max Si.
(i,j)EA

All the parameters described here are known except for the outbound and inbound

service times. These service times are decision variables for the optimization.

1.1.2 Formulation

Suppose Bj is the base stock level for a node j and Ij (t) is inventory in j at time t. At

time t, stage j observes demand dj(t) and starts replenishing the demand. It places

an order for the input materials to the upstream nodes and replenishes the demand

at the time t + SIj + Tj . However, the node guarantees to satisfy the demand at time

t + Sj. Therefore, if t + Sj < t + SIj + Tj, the stage has to always store inventory to

27

received

shipped

Figure 1-1: Base-stock mechanics.

cover the time interval of SIj + Tj - Sj. This interval is called the net replenishment

time and we will see that the inventory that covers the interval is the base-stock level.

We establish the relationship between the base stock level and the amount of the

inventory. Figure 1-1 shows the timeline of the events from time 0 to time t. By the

time t, all the demand that occurred prior to and including t - Sj has to be satisfied,

because node j guarantees 100% service within Sj period of times. At the same time,

the node has to wait SIj units of time to receive all the necessary materials to begin

production and Tj units of time for its own production. Therefore, at time t, the

node has replenished all of the demand that arrived before and including the time

t- sj - T.

If t - Sj < t - SIj - Tj, then node j has to store the inventory that would satisfy

the demand occurred between t - Sj and t - SIj - Tj. Instead, it would be cheaper

to delay replenishment such that the order arrives to the downstream nodes exactly

when it is needed. This way, node j would not need to store unnecessary inventory.

Therefore, it is always better in this case to set the outbound service time equal to

the inbound service time plus the production lead time: Sj = SIj + Tj.

Consequently, we only consider the case when t - Sj > t - SIj - Tj. In this case,

the node has to have the amount of inventory to cover the demand over the interval

28

(t- SIj-Tj, t- Sj]. Therefore, the demand in the interval has to be covered from the

inventory or by subtracting the demand from the base stock level. Then the finished

inventory at the stage j at the end of period t is

Ij(t) = B - dj(t - SIj - T, t - S),

where d (a, b) denotes demand at stage j over the time interval (a, b].

To provide 100% service level, we require Ij(t) > O. To satisfy this requirement,

we set the base stock Bj equal to the maximum demand over an interval of length

SIj + Tj - Sj, namely Bj = Dj(SI j + Tj - Sj). Hence, the expected inventory at the

stage j is

Dj(Sj + Tj - Sj) - (SIj + Tj - Sj)j,

which represents safety stock held at the stage j.

Now, we formulate the problem P of finding optimal guaranteed outbound service

times Sj, j = 1,...,N and inbound service times SIj, j = 1,..., N in order to

minimize total cost of safety stock in the chain.

P minimize EjN l hj{Dj(SIj + Tj - Sj) - (SIj + Tj - Sj)j}

SI + T-S > O j = 1...,N

Si<SIj, (i,j) A

Sj < sj, j D

Sj, SIj >0, integer j = ,..., N

29

where hj denotes the per-unit holding cost for inventory at stage j.

This is a problem of minimizing a concave function over a polyhedron. The

objective function is the total cost of holding safety stock in the supply chain which

consists of individual costs in each node. The first constraint insures that the net

replenishment time is nonnegative and the objective function is well defined. The

second constraint makes the inbound service time to be no greater than the outbound

service time of its immediate suppliers. This is because a node can not commence

production before all inputs are available. The next constraint reflects the requirement

that all the outbound service times Si of the demand nodes, which are set up by the

chain, are no greater than the guaranteed service times quoted to the end customers.

Finally, we require that all the service times are integers, so that the service times are

expressed in the integral multiples of the underlying planning period, which might be

a day or a week.

1.2 Literature Review

1.2.1 Safety stock modeling

The literature on safety stocks and inventory is very broad. Reviews of different mod-

eling approaches can be found in Graves [1988], Graves and Willems [2003b], Minner

[2000], Minner [2003]. Generally, we distinguish two types of inventory models: guar-

anteed service models and stochastic service models. The model in the thesis was

initially stated in Graves and Willems [2000] and falls into the category of the models

30

with guaranteed deterministic service times. Here, we discuss relevant papers in both

categories.

Deterministic service time models

Before reviewing the literature of the deterministic service models, we first provide

a general overview of the approach. We discuss the assumption in section 1.1.1. In

particular, the approach adopts the network representation of the supply chain and

assumes that each stage can quote a service time that it can always satisfy. In contrast,

stochastic service models assume that the service time between the stages will vary

depending on the availability of the materials at the stage. To make the service time

deterministic, the key assumption of the models is that the demand is bounded. This

assumption allows the stages to be able to guarantee a service time with a finite

amount of inventory. Consequently, in the guaranteed service setting, each stage has

to hold sufficient inventory to satisfy the service time commitment. Therefore, the

goal of models of this type is to determine the internal service times to minimize the

total cost of holding inventory in supply chains. The most relevant research papers

of this category are Simpson [1958], Graves and Willems [2000], Inderfurth [1991],

Inderfurth and Minner [1998], Minner [1997], Magnanti et al. [2004].

The papers adopt the framework of Kimball [1988], whose paper was originally

written in 1955. Kimball describes a one-stage inventory model that operates under

a base-stock policy and requires that customer demand be satisfied within a spe-

cific service time. Unlike the production lead-times that are known a priori (see

section 1.1.1), the service times are set according to the company's policy. In this

31

framework, the inventory is minimized to assume that the production system can

meet "normal" demand within the service time. The notion of "normal" demand can

not be set without risk which comes from the fact that customer demand is unknown.

Generally, the normal demand can be described as the demand that falls into certain

range most of the time. If an abnormal demand occurs, the author assumes that the

system deals with it in some other way such as expediting or overtime. However,

since the demand falls into the normal range most of the time, Kimball proposes to

set an upper bound of the demand for each time interval. Then, the value of the

bound over the replenishment time can serve as the base-stock level.

Simpson [1958] extends Kimball's principles of inventory control to accommodate

a serial production system. As before, each stage of the system operates under a

base-stock policy. In addition, the author describes the demand propagation along the

system: " an order against the inventory for a finished item is immediately transmitted

all the way back along the line to all the manufacturing operations". Again, each stage

i of the system operates with a deterministic service time Si, or the time within which

the stage has to fill the order placed by the downstream stage. Inventory at stage i is

designed to handle the demand up to a certain level Fi(t) over the time t, where Fi(t)

is an upper bound on the demand at stage i over the time interval t. The base stock

level is equal to the level Fi(Li) over the net replenishment time Li = Ti + Si-l - Si,

where Ti is the production lead time of stage i. The resulting minimization of overall

inventory of the system appears to be minimization of a concave function over a

polyhedron, where the service times are the decision variables. Simpson proves that

the service time at node i has to be either 0 or equal to the replenishment time of

32

the node. This result corresponds to the "all-or-nothing" inventory stocking policy.

Graves [1988] observes that the serial system can be solved as a simple dynamic

program.

Inderfurth [1991] extends the Simpson model to the general divergent system

model. He adopts the same framework with the deterministic service times that are

quoted by the upstream nodes to the downstream. Inderfurth proves the same "all-

or-nothing" safety stock policy for such systems. The author then describes a simple

dynamic program of determining the safety stock.

General supply chain networks are considered in Inderfurth and Minner [1998].

The paper conveys two interesting points. First, it defines the net replenishment time

for a node in a general system. Second, the authors show that the replenishment

time of node i in a convergent system under two different service levels is a certain

combination of the service times and lead times of the upstream nodes. Definition of

the net replenishment time in node i is the following:

max (Sj) + Ti- Si,
j:(j,i)EA

where A is the arc set. The definition is essentially the same as the one given in Graves

[1988], where the author assumes that the service times of nodes j : (j, i) E A are

the same, because "there is no value from having shorter service times for a subset

of the input items". Then the safety stock has to cover the demand over the net

replenishment time.

In the paper of Graves and Willems [2000] the authors state the problem of finding

33

the safety stock in supply chains as it is formulated in the thesis. Mathematically, the

problem is a concave minimization over a polyhedron. Instead of one set of service

times, two sets are introduces: inbound and outbound service times. The outbound

service time Si is the same service time as in previous papers, i.e., the time within

which node i guarantees to fill the order of the downstream nodes. The outbound

service time of node i quoted to the downstream nodes j : (i, j) E A are assumed the

same. A discussion about maintaining different outbound service times can be found

in Graves and Willems [1998]. The inbound service times are defined as

SIi = max{(S - Ti, max jSj}}.
(j,i)EA

The definition simply states that the inbound service time of stage i can not be less

than the service times quoted to the stage by its direct suppliers. It also says that

the net replenishment time SIi + Ti - Si can not be negative. The authors do not

discuss necessary conditions of the optimal solution for the problem; instead, they

give a dynamic programming algorithm for a spanning tree network structure.

In the next four papers, the authors look at more general networks and propose

algorithms of solving the problem of placing safety stock. Humair and Willems [2003]

provide an algorithm for a network that consisting of clusters of commonality, where

a cluster of commonality is a two-layer general network. They assume that when each

cluster is replaced by a single node, the resulting network is a spanning tree. Lesnaia

[2003a] describes the structure of the solution for the two-layer networks with the

requirement that the nodes i that face demand quote the outbound service times to

34

the end customers such that Si < Ti. In this thesis, we provide an algorithm for the

networks without the restriction Si < Ti. Unlike in Humair and Willems [2003], the

algorithm we present here takes advantage of the structure of an optimal solution.

In addition, we report on the computational experiments for the problems on two-

layer graphs, while Humair and Willems [2003] have not presented any results from

a computational experiment.

Under the same requirement Si < Ti, Graves and Lesnaia [2004] characterize the

optimal solution in the general networks. The papers Lesnaia [2003a] and Graves and

Lesnaia [2004] propose branch and bound algorithms similar to the ones discussed in

sections 3.3 and 3.2.

Another paper, with a solution of the general problem is Magnanti et al. [2004].

In the paper, the authors approximate the objective function with piecewise linear

functions and solve the problem by a branch-and-bound algorithm using CPLEX. The

authors report computational tests for randomly generated networks with up to 100

stages but with limited number of arcs. The authors report average computational

time to solve a general network problem, however, the average is only taken for the

instances that they were able to solve to global optimality. It is not clear, how many

times the algorithm failed to find the optimal solution.

Papers by Lesnaia [2003b] and by Graves and Lesnaia [2004] are the building

blocks of the thesis. Here, we want to study the safety stock problem for the general

networks. In particular, we want to understand its complexity and propose a method

of solving the problem.

35

Stochastic service time models

The main difference of the stochastic service approach from the guaranteed service

approach is that the replenishment time at each stage of the supply chain network

is stochastic. The models address three types of uncertainty: demand(volume and

mix), process (yield, machine downtime, transportation reliability), and supply (part

quality, delivery reliability). Each stage has to take into consideration the possibility

that its upstream stages cause delays in the production in the stage. Theses delays

are stochastic. Nevertheless, each stage is required to have enough inventory to meet

a service level target requirement, which depends on the replenishment time.

The literature related to this approach is extensive. One of the first models of

this category is the model by Clark and Scarf [1960]. In the paper, a serial system

with no setup cost and periodic review is considered. The authors proved optimality

of an order-up-to policy at each node of the system. This paper is a basis for the

subsequent work in for the models of multistage inventory networks with centralized

control.

A decentralized control model is the METRIC model of Sherbrooke [1968]. The

model considers two echelons with one depot node that supplies n stocking locations

of the second echelon. The model assumes a single item, stationary Poisson demand

process, i.i.d. lead times and one-for-one replenishment policy. Sherbrooke develops

an analytical approximate solution for characterizing the performance of stocking

policies in the stages subject to a constraint on inventory investment. METRIC model

and its extensions are relevant in dealing with distribution networks, especially for

36

spare parts inventory systems.

A general network model is studied in Lee and Billington [1993]. The one stage

model assumes that the demand is normally distributed and a target service level or a

target base stock levels are specified. Moving to the multi-stage system, the demand

propagation is simply modeled as generation of the demand for the upstream stages

by the amount needed at their downstream stages. Then, the replenishment lead time

consists of the standard lead time for the transfer of materials from upstream stages,

the delay incurred in this transfer, and the actual production time. The stages that

face end-customer demand have target service levels. The other stages have either

service or base-stock levels and are decision variables. The authors develop a search

heuristic to assign the best combination of service levels at the stages of the network

to insure the end-customer service levels.

The model of Lee and Billington [1993] was extended in Ettl et al. [2000]. In this

model, the authors assume a one-for-one replenishment policy, normally distributed

demand and formulate a problem in terms of base-stock levels. The difference from

the previous model is in the description of the lead time. Ettl et al. [2000] distinguish

between a nominal lead time, which is a given data, and an actual lead time, which

is derived by taking into account stockout possibilities at the supply stores based

on the queueing analysis. They solve a nonlinear optimization, which minimizes the

total average dollar value of inventory in the network, subject to meeting the service

requirements of the end customers. The problem is solved by the conjugate gradient

method.

Subsequent papers in this area include Song and Yao [2002] with an analysis and

37

algorithms for the performance measures for the optimization problems that seek

trade-off between inventory and customer service in the assemble-to-order systems.

Liu et al. [2004] adopt the inventory-service optimization framework of Ettl et al.

[2000], but focus on the queueing delays that occur due to the production capacity.

In general, more systematic overview of the stochastic service models can be found

in Zipkin [2000] and Graves and Willems [2003b].

1.2.2 Complexity of concave minimization

Problem P as stated in section 1.1.1 is a minimization of a concave function over a

polyhedron. Here we discuss the complexity of such problems in general and later, in

section 1.2.4, will review the complexity results for the problem P itself.

The general concave minimization problem is known to be NP-hard. The proof

of this fact can be found in Sahni [1974] or in Vavasis [1990]. For example, in Vava-

sis [1990], the author shows that quadratic programming problems are NP-hard by

transforming an instance of SAT (Korte and Vygen [2002]) to an instance of quadratic

program:

min yi(1 -yi)

s.t. Ayb (1.1)

The problem is a special case of the concave minimization problem. Therefore, con-

cave minimization is NP-hard.

A special case of concave minimization problems is separable concave minimization

38

problems. The problems can be generally stated as

min ji=l fi (xi)

s.t. xEDn CCRn

where D is a compact convex set and C = {x E fn : ci < xi < il,}. This kind of

problems is of interest in the context of the safety stock problem, because the prob-

lem as we state in the thesis is separable concave with linear constraints. However,

problem 1.1 is separable concave and, therefore, problem 1.2 is NP-hard.

Attempts to solve the concave minimization problem through piecewise linear

concave approximation also lead to solving hard problems. Generally, minimizing

piecewise linear concave problem on a polyhedral set is NP-hard, because the general

complementarity problem, which is NP-complete (Chung [1989]), can be reduced to

such problem (Mangasarian [1978]).

1.2.3 Methods

Extensive reviews of most common methods developed for continuous concave mini-

mization problems are given in Benson [1994], Benson [1996], Horst [1984], Pardalos

and Rosen [1986], which we use as references for the section. There are two classes of

approaches to concave minimization: deterministic and stochastic. Here, we only con-

sider deterministic approaches. Most popular deterministic approaches are: enumera-

tion, cutting plane, successive approximation and branch and bound. This division of

the algorithms is only theoretical. In reality, most of the algorithms are combinations

39

of the approaches. In addition, several techniques were suggested for the problems

with specific objective functions, such as quadratic, separable, factorable, etc., or

when the feasible set has some specific geometry.

Enumerative methods rely on the fact that if a continuous concave function

is defined on a nonempty bounded polyhedron, then it attains minimum in one of

the vertices of the polyhedron. Because the polyhedron has only a finite number of

extreme points, we only need to check a finite number of possibilities. Enumerating all

the extreme points and then searching gives an exact global minimum of the function.

The first enumerative approach was described in the paper of Murty [1969], who

introduced the concept of extreme point ranking. The idea of the method is to

rank the extreme points of polyhedron according to some linear function l(x) that

underestimates the objective function z(x). The first ranked point xo is the minimum

of l(x) over the polyhedron. At each iteration of the algorithm, new point xk joins

the list of previously ranked points E k - l - {x0,... ,Xk-1 }, where l(xi) < l(xi+1). Xk

is a point that minimizes l(x) over the set of extreme points adjacent to E k - l. At

the same time, an upper bound UB is calculated. An upper bound is the minimum

of z(x) over the set Ek. The procedure terminates when l(xk) > UB.

Subsequent literature addressed two issues with the described algorithm. The first

issue is finding the next best extreme point. Discussion of this topic can be found

in Taha [1972], Taha [1973], McKeown [1975]. The second issue is about finding

a better underestimator. This question was addressed in Cabot [1974], Cabot and

Francis [1970], Taha [1973], McKeown [1975], Pardalos and Rosen [1987].

A survey with comparison of the methods and computational effectiveness is pub-

40

lished in McKeown [1978].

Cutting plane approach was first introduced in Tuy [1964]. The method solves

the problem of minimizing a concave function subject to linear constraints. The idea

is to detect a local minimum and generate a cone adjacent to the vertex. Then, the

algorithm cuts parts of the feasible region using Tuy cuts creating subcones. The

methods solves subproblems on the subcones. According to Zwart [1973], the algo-

rithm does not guarantee finiteness. However, subsequent methods based on Tuy's

idea employed other techniques like branching, estimation to guarantee the finite-

ness and to avoid cycling. Relevant literature is Zwart [1974] with a computationally

finite algorithm, Jacobsen [1981] with a general concave minimization Tuy-type algo-

rithm, Thoai and Tuy [1980] with branch and bound technique, Glover [1973] with

an approach to the cut search.

Further developments in the area relate to using y-cuts and facial-cuts. Cabot

[1974] suggested using 7-cuts instead of Tuy cuts when an extreme point is degener-

ate. Horst and Tuy [1993] introduced a finite algorithm based purely on y-cuts. A

generalized version of an algorithm based on y-cuts can be found in Benson [1999]. An

advantage of using Tuy cuts and y-cuts is that they are easy to construct. However,

they becomes shallower as the algorithm progresses. To avoid the issue, Majthay and

Whinston [1974] suggested to use facial cuts. The cuts depend only on the geome-

try of the feasible region and remove at least one face of the region which does not

need further exploration. Facial cuts are hard to construct, however, the algorithm

terminates with the a solution after a finite number of iterations.

Successive approximation methods usually construct a sequence of simpler

41

problems with improving solutions. The result of the algorithms is either an exact

global minimum or its approximation. Most commonly used approximation tech-

niques are outer and inner approximations of the feasible region and approximation

of the objective function.

Outer approximation via inequality cuts was proposed in Horst et al. [1987]

and Horst et al. [1989]. The main idea of the method is to construct a polyhedral

convex sets Dk that contain the feasible region D of the problem and which vertices

are easy to compute. The optimal solution of the problem over the polyhedral set

gives a lower bound on the optimal solution of the original problem. Then tighter

polyhedral sets are constructed D1 D D 2 D ... D D with solutions of the problem

over the sets forming a sequence converging to an optimal solution of the problem.

Inner approximation (or polyhedral annexation) approach uses a similar idea, but

the polyhedral sets approximate the feasible region from the inside: D1 C D2 C

... C D. The procedure was described in Mukhamediev [1982] and further developed

in Tuy [1990]. Tuy [1990] also discussed the advantages of the polyhedral annexation

versus outer approximation methods.

Finally, the third significant approximation approach is successive approximation

of the objective function. One of the first algorithms was developed by Falk and

Hoffman [1976]. The Falk-Hoffman algorithm uses an outer polyhedral approximation

D1 D D2 D ... D D with a convex envelope of the objective function taken over Dk

at step k. At each iteration, the method solves a linear program. The algorithm is

finite and, unlike the outer approximation algorithms, gives a feasible solution at each

iteration.

42

-

Branch and bound approach is based on dividing the constraint space and

inferring relevant information about the objective function on the partitions. At each

iteration of the method, previously constructed part of the feasible region is divided

into more pieces. For each piece we find information about the possibility of the

global minimum belonging to the piece. In branch and bound method (see Korte and

Vygen [2002]), which was first introduced by Land and Doig [1960], the information

is a lower and an upper bound on the objective function if defined on the piece. If the

lower bound is greater than an upper bound for another piece, the considered piece

can be disregarded in the further partitions.

This method depends on how well we can construct the partitioning procedure as

well as on the quality of the information. If the partitioning is finite, in the worst

case, the method finds an optimal solution in exponential time, because at least two

pieces are produced from every previously constructed piece. In this case the method

is no better than enumerating all possible solutions. To prevent the possibility, one

could stop the algorithm after some fixed amount of time or set up a tolerance > 0

(see Bertsekas [2000]) . However, it will not guarantee optimality of the best solution

found.

The branch and bound method has been most popular in approaching concave

minimization problems. The popularity is partially due to the fact that the method

is applicable not only for polyhedra, but for the general convex sets. The earliest

algorithms were proposed by Tuy [1964], Falk and Soland [1969] and Horst [1976].

Tuy's algorithm uses enumerative approach with cones to separate the feasible region.

Falk-Soland algorithm uses hyperrectangles as the partition elements, while Horst

43

algorithm uses simplices.

Falk and Soland [1969] proposed a branch and bound algorithm for separable

nonconvex programming problems (1.2) which we formulated in section 1.2.2. The

algorithm uses convex envelopes Oi of function fi on [ai, pi]. Then q = O,= qi is the

convex envelope of f(x) on C. The algorithm solves a sequence of linear or convex

subproblems, which are used in the branch and bound algorithm. Falk and Soland

[1969] proposed two partitioning rules that lead to convergence.

Extensions of the Falk-Soland algorithm include the algorithm of Soland [1974]

that specializes for the case when D is a polyhedron. Benson [1990] used outer

approximation to speed convergence of Falk-Soland method. Shectman and Sahinidis

[1998] proposed a finite algorithm for the separable concave programs. In the paper

by Horst [1976], the author developed an algorithm for a general nonconvex problem

min {f(x) :x E D C Rn},

where D is compact and f(x) is a continuous function. Instead of rectangular parti-

tions as in Falk and Soland [1969], general partitions in forms of simplices are used.

Also, the algorithm handles general functions and does not rely on the concept of

convex envelopes. It is shown in the paper that at least one accumulation point

generated by the algorithm solves the problem. Finally, Benson [1982] proposed a

general prototype algorithm, where the Falk-Soland and Horst algorithms are the

special cases of the algorithm. Benson presented a new convergence property for the

algorithms and shows that each accumulation point under the property is a global

44

minimum.

1.2.4 Complexity and algorithms for the safety stock prob-

lem

As we have already seen in part 1.2.2, general concave minimization problems are

NP-hard. However, because the safety stock problem is defined on a particular poly-

hedron, in some cases we can still develop a polynomial time algorithm. For ex-

ample, Graves [1988] observes that the Simpson's serial system case can be solved

by a dynamic program. In Inderfurth [1991], a dynamic programming algorithm for

a convergent system is described. Graves and Willems [2000] develop a dynamic

programming algorithm for the spanning tree networks which runs in O(NM 2) (see

also Graves and Willems [2003a]), where N is the number of nodes and M is the

maximum replenishment service time, which is bounded from above by El 1Ti.

There has been no complexity results for the problem P of safety stock minimiza-

tion, except for Shen [2003]. In the note, Shen [2003] proves that a similar problem

with the upper bounds on the outbound service times is NP-hard. In this thesis, we

prove that the general problem is also NP-hard. This development would justify the

choice of the algorithms used in Graves and Lesnaia [2004] and in Magnanti et al.

[2004].

45

46

Chapter 2

Problem Characteristics

2.1 Complexity of the problem

2.1.1 General case

We first determine the complexity of the problem P stated in section 1.1.2. We show

that the problem is NP-hard by reducing a known NP-hard problem to the safety

stock problem. This will justify the choice of the algorithms we develop in the thesis.

In particular, because no polynomial algorithm can be found at this moment, it is

reasonable to implement branch and bound algorithms.

The idea of the proof appeared first in the unpublished note by Shen [2003]. In

this note, the author reduces the Vertex Cover problem, which is known to be NP-

complete, to a modified safety stock problem. The modified problem is essentially

the same problem as problem P, except that each node has an additional constraint

on its outbound service time. The author assumes that the outbound service time for

47

each node is bounded from above. That means, for each node i, there exists a service

time si, such that the outbound service time is constrained as Si < si. Note, that

problem P also has similar service time constraints, but only for the demand nodes D,

while the outbound service times for the rest of the nodes are not constrained in this

way. However, we found a way of reducing an instance of the minimum-size Vertex

Cover problem, which is NP-hard, to an instance of problem P such that a solution

of problem P will imply a solution of the Vertex Cover instance.

We first describe the Vertex Cover problem. A vertex cover in graph G is a subset

V of vertices of G such that every edge of G is incident to at least one vertex in V

(see Korte and Vygen [2002]). Then the optimization Vertex Cover problem for a

graph is to find a vertex cover of minimum cardinality. This problem is NP-hard.

Now, we show how to reduce an instance VC of the Vertex Cover problem to an

instance Pi of problem P. Suppose, instance VC is characterized by an undirected

graph G with N nodes and M edges and we want to find a minimum vertex cover.

Then we perform the following steps:

1. Make a directed graph from G. We can arbitrarily assign directions to the

edges of G. The only condition that has to be satisfied while doing so is that

the directed graph has to have no directed cycles. One way of satisfying the

condition is by following a simple algorithm. We first create set U with all the

nodes and an empty set L. We then choose node i E U and assign direction

to each arc (i,j), j E U from node i to node j. After that we move node i to

the set L and remove all the edges (i, j). Then we pick another node from U

48

�

Figure 2-1: Graph G for the problem VC.

Figure 2-2: Graph G' for the problem Pi.

and repeat the procedure until the set U is empty. This simple algorithm will

produce a directed graph with M directed edges in polynomial time, since at

each step we set the direction of each edge such that the nodes in the set L are

predecessors of the nodes in the set U.

As in the supply chain network, we will call the nodes with zero outdegree as

demand nodes.

2. Create a new node. We create a new node N+ 1 such that every non demand

node j has an edge (j, N+ 1) directed from j to N+ 1. Let us denote the directed

graph with the new node as G'. Figure 2-1 shows an example of an undirected

graph G, while Figure 2-2 shows a way of transforming the graph into graph

G'.

49

SSi(¶)

1- I
I
I
I
I
II
I1 --
1 T

Figure 2-3: An example of the safety stock function.

3. Assign parameters. We define the safety stock function for each node of the

graph G'. For simplicity, we call the safety stock at each node i as

SSi(ri) = Di(ri) - i(i),

where r = SIi + Ti - Si.

Then we require that SSi(ri) is continuous, concave and satisfies

O, ri =

SSi(ri) = 1, ril (2.1)

/H 0<Ti<l

Without loss of generality, we can assume that the function is Vi on the interval

(0, 1), since i takes only integer values. The most important properties of the

function is that it is equal to 0 when Ti = 0 and is equal to 1 for all the other

integer ri > 1. Figure 2.1 shows an example of the safety stock function.

50

Next, we assign the per-unit cost of a safety stock:

i=1,...,Nhi={
h N+1, i=N+1

The lead times for the nodes are:

Ti= :
0 i=N+1

Finally, the service times promised to the end customers are 1, i.e., si = 1 for

all demand nodes i. As in the formulation of problem P, by demand nodes we

mean the nodes with zero outdegree.

The procedure described above polynomially transforms graph G to an instance

Pi of the safety stock placement problem P. Now, we show that an optimal solution

of problem Pi determines an optimal solution of the Vertex Cover problem VC for

graph G.

Lemma 1. Suppose we have instance Pi of the safety stock problem P. Then it is

optimal not to hold any stock in node N + 1.

Proof. We first show that the feasible region is not empty by constructing a solution

with the cost N. Such solution is

* SN+1 = 1, SIN+1 = 1;

S = O, SIi = 1 for i < N.

51

The solution is feasible. Indeed, nonnegativity of net replenishment time SIi + Ti - Si

is satisfied for every node. Every demand node i, including node N + 1, has Si < 1.

Also, for each arc (i,j), Si = 0 and SIj = 1, hence, Si < SIj is also true. Therefore,

the solution is feasible and the feasible region is not empty. We note also, that the

solution gives cost N, since each node i < N contributes cost 1 and node N + 1

contributes 0 to the overall cost.

Now, we prove the statement of the lemma. Indeed, we notice that the total value

of the safety stock cost in all the nodes other than N + 1 is at most N. This is due

to the fact that the maximum of the safety stock function SSi (r) is 1 and holding

cost hi = 1 for all i L N + 1. All the unknown variables in the optimal solution take

discrete values 0, 1, 2, Therefore, if a node i N + 1 holds non zero stock, then

the holding cost in the node is 1.

On the other hand, if node N + 1 holds any stock, then TN+1 = 1, 2, Thus, in

this case the value of the safety stock function SSN+1(N+1) = 1 and it contributes

N + 1 to the total holding cost, since hN+1 = N + 1.

From this we conclude that if node N + 1 holds stock, the total cost is at least

N + 1. If the node does not hold any stock, then the cost of holding inventory is at

most N. Therefore, we conclude that it is always better not to allow node N + 1 to

hold any stock. °

Lemma 2. Suppose we have instance Pi of the safety stock problem P. Then in an

optimal solution for each node i in the network G' we have Si < 1.

Proof. The statement of the lemma follows from lemma 1. We showed, that for node

52

N+1, TN+1 = SIN+1+TN+1-SN+1 = 0. Then, since TN+1 = 0 and SN+1 < SN+1 < 1,

we have SIN+1 < 1. From the constraints of the problem Pi, Sj < Sli for all the arcs

(i, j) in G'. Therefore, for every i connected to N + 1, Si < 1. Also, we know that

for every demand node j, Sj < 1, which we imposed by construction of problem Pi.

Therefore, we can conclude that for every node i, Si < 1. 0

Lemma 3. Suppose we have instance Pi of the safety stock problem P. Then, in an

optimal solution, for every arc (i,j), i, j $ N + 1 it is impossible to have values for

i and rj such that SSi(ri) = 0 and SSj(rj) = O.

Proof. In lemma 2, we showed that each optimal solution of problem Pi satisfies

Si 1. Suppose now there is an arc (i,j), i N + 1 such that SSi(ri) = 0 and

SSj(rj) = 0. That is, we suppose ri = SI + Ti - Si = 0 and rj = Slj + Tj - Sj = 0.

Then SI, = Sj- - = S3 - 1 < 1 - 1 = 0. Since SI, > O,we have SIl = 0. Because

Si SIy = 0, Si = 0. However, Si + T - Si = Si + I = O by assumption and

SIi > O. Therefore, we found a contradiction, which proves the lemma O

From the lemma, we conclude that for every arc (i, j) : i, j N+ 1, in an optimal

solution, at least one node i or j holds safety stock. Therefore, the nodes with positive

safety stock form a vertex cover V for the graph G. Moreover, by construction of the

cost function, each node that holds safety stock contributes cost 1 to the objective

function of the safety stock problem. Therefore, the objective function value is equal

to the cardinality of the vertex cover V. By solving the safety stock problem, we find

the minimum cost of safety stock which equals the cardinality of a vertex cover of

graph G.

53

To prove that we can find a minimum vertex cover by solving the safety stock

problem Pi, we only need to prove that the minimum of problem Pi does not depend

on the orientation of the graph. Step 1 assigns the orientation to graph G arbitrarily,

which determines the demand nodes and the relationship between the variables. If arc

(i, j) is directed from node i to node j, then the corresponding constraint is Si < SIj.

If, however, the orientation is reversed, the constraint is Sj < SIi. Therefore, the

problems are theoretically different and can give different solutions. Consequently, we

have to show that they indeed give the same solutions independent of the orientation.

For the purposes of the next lemma, we introduce the definition of vertex cover

assignment or v.c. assignment of the safety stock problem. A v.c. assignment is a

distribution of the safety stock in the nodes of a graph such that for every arc (i, j)

the assignment implies holding stock in i or in j or in both. We notice, that for the

problem Pi, a v.c. assignment of the safety stock creates a vertex cover of graph G.

This is because the cost of holding stock in a node is always one, which is equivalent

to putting the node into the vertex cover set. However, in the safety stock problem

setting, we refer to the v.c. assignment and in the VC problem setting - to the vertex

cover.

Lemma 4. Suppose we have a directed graph G and safety stock problem Pi on G' =

G U {N + 1} as described above. Then for every v.c. assignment of safety stock on

G, there exists a feasible solution of the safety stock problem Pi.

Proof. To prove the lemma we explicitly construct a solution. We consider any node

i of graph G. Depending on the v.c. assignment, the node holds or does not hold

54

safety stock in i.

* Zero stock in i: SIi = O, Si = 1.

* Nonzero stock in i: SIi = 1, Si = 0.

To specify a solution for all the nodes of problem Pi, we set SIN+1 = 1 and

SN+1 = 1.

The solution is feasible. First, we see that for every demand node i, Si < si = 1.

It is also obvious that SIi + Ti - Si > 0 is satisfied for this solution. In the zero stock

case, the solution gives SIi + Ti - Si = 0 + 1 - 1 = 0 and indeed implies zero stock.

In the nonzero stock case, it satisfies Sii + Ti - Si = 1 + 1 - 0 = 2 and implies stock

SS(2) = 1.

Next, we have to check that the constraint Si < SIj for any arc (i, j) is satisfied.

Indeed, SIN+1 imposes a constraint on all the outbound service times Si < 1, i ¢ I).

The proposed solution clearly satisfies the constraint.

Now, consider node i E G. Because the solution is a v.c. assignment, if node i

has zero stock, all the nodes connected to i have to have nonzero stock. That means,

if j E G is downstream of i, SIj = 1 and constraint 1 = Si SIj = 1 is satisfied. If

node j is upstream of i, Sj = 0 and the constraint 0 = Sj SIi = O0 is satisfied again.

If node i E G has nonzero stock, then the solution again does not violate the

constraint. Indeed, as we showed before, Sj 1 for any node in graph G, therefore,

Sli = 1 does not violate constraints Sli Sj for all arcs (j, i) . Because SIj > 0,

Si = 0 does not violate constraints Si < SIj for all arcs (i, j).

Therefore, we conclude that the solution is feasible and this proves the lemma.

55

Lemma 4 shows, that every v.c. assignment is feasible. Since every v.c. assignment

of the safety stock problem Pi is equivalent to a vertex cover on graph G, we conclude

that for every vertex cover of graph G we can always find a feasible solution of problem

Pi.

Corollary 1. Suppose we want to find a minimum vertex cover on an undirected

graph G. Then, transforming the problem into problem Pi and solving the problem

optimally, we can find a minimum vertex cover independent of the orientation assigned

during the transformation.

Proof. By lemma 3, an optimal solution of problem Pi is a v.c. assignment on G

with cost K. Suppose, there exists a transformation of VC problem into problem Pi'

with different orientation and with strictly smaller cost K' < K. But the solution of

problem Pi' is a v.c. assignment on G as well. Therefore, by lemma 4 there exists a

solution of problem Pi with the same cost K', which contradicts optimality of K.

We conclude that for any orientation of graph G, problem Pi gives an optimal

solution to the VC problem. a

Corollary 1 shows that by solving the safety stock problem optimally, we solve

the Vertex Cover problem for the graph G. We can conclude now that problem P is

NP-hard.

2.1.2 Restricted case: si < Ti

It is common that the service times promised to the end customers are less than the

lead times in the demand nodes. For example, the service times are often set to 0,

56

and thus requiring immediate delivery. Nevertheless, problem P is stated without

any constraints on the parameters of the problem. Here, we are also interested in

whether the same problem with

si < Ti, i E D (2.2)

is NP-hard. The proof of the section 2.1.1 can not be applied here, since node N + 1

is a demand node with the lead time TN+1 = 0 and guaranteed service time SN+1 = 1.

Therefore, we need to prove the case separately. To answer the question we construct

a similar reduction of an instance of a Vertex Cover problem to an instance of the

problem P with constraints (2.2).

Here we describe the construction. Suppose an instance VC of the Vertex Cover

problem is represented by an undirected graph G with N nodes. We reduce VC to

an instance Pi of the safety stock problem that satisfies (2.2) as follows.

1. Make a directed graph. The same procedure as in section 2.1.1 applies.

2. Create two new nodes. The first node is a node similar to the one created

previously. We number the node N + 1 and require that every non demand node

i in the graph be connected to the node N + 1. The second new node, N + 2, is

only connected to the node N+ 1 such that the direction of the arc(N+2, N+ 1)

is from node N + 2 to node N + 1. Figure 2-4 shows a way of transforming the

graph from Figure 2-1 into the graph G'.

3. Assign parameters. We first specify the safety stock functions. For all the

57

Figure 2-4: Graph G'.

nodes, including N + 2 and other than N + 1, the function is as described by

equation (2.1). This time, the function for the node N + 1 is

SSN+(r) = (N + 1)r.

The function is linear in the net replenishment time and grows with the speed

N+1.

Per-unit cost of holding safety stock is

hi 2N+2,

2N + 2,

i = ,...,N,N+ 1

i=N+2

We assign lead-times Ti to be 1 for every node in the new graph. We assign

guaranteed service times sj to be 1 for all the demand nodes.

The described procedure creates instance Pi of the safety stock problem which

satisfies requirement (2.2). Now we show that an optimal solution of problem Pi

implies an optimal solution of problem VC.

58

Lemma 5. Suppose we have instance Pi of the safety stock problem P with additional

requirement si < Ti for the demand nodes i E D. Then it is optimal to have the net

replenishment time TN+1 equal to for node N+ 1 and to hold no stock in node N+2.

Proof. The feasible region of problem Pi is not empty. To show that, we construct a

solution with the cost 2N + 1. Such solution is

* Si = O, SIi = 1 for i < N;

* SN+1 = 1, SIN+1 = 1;

* SN+2 = 1, SIN=2 = 0-

The solution is feasible. For every node of the network, SIi + Ti - Si > O. For all the

demand nodes i, including N + 1, Si < 1. We also see, that for each arc (i,j) except

(N + 2, N + 1), Si = 0 and SIj = 1, hence, Si < SIj constraint is satisfied for these

arcs. For the arc (N + 2, N + 1), SN+2 = SIN+1 = 1 and, therefore, the constraint is

satisfied for all the arcs in the network. Thus, the solution is feasible.

The cost of the solution is 2N + 1. The solution implies, that the argument of the

safety stock function 7i = 1 for i = 1,... , N + 1 and TN+2 = 0. Therefore,

· SSi(Ti) 1, i 1,..., N;

* SSN+1(TN+) N + 1;

* SSN+2(TN+2) = 0

Then, each node i < N contributes cost 1 and node N + 1 contributes N + 1 to the

overall cost, while node N + 2 contributes 0 cost. Hence, the solution indeed gives

the cost 2N + 1.

59

Now, we argue that it is not optimal to hold stock in node N + 2. Suppose we

allow positive stock in the node. Then, due to the shape of the safety stock function

and per unit holding cost, the node contributes 2N + 2 to the overall cost. Even if

all the other nodes in the network have no safety stock, the total cost of this solution

is 2N + 2. This cost is the minimum possible cost if node N + 2 holds any stock.

The other possibility is that the node does not hold any stock. Since TN+2 = 1,

SN+2 has to be at least 1. This implies SIN+1 > 1. Because TN+1 = 1 and SN+1 < 1,

the argument of the safety stock function in node N+ 1 has to be at least 1. Therefore,

SSN+1(TN+1) > N + 1. Again, we observe that independent of the safety stock in

N + 1, nodes 1, . . ., N contribute the cost no greater than N. Therefore, cost of the

stock in node N + 1 has to be the least possible, or SSN+1(TN+1) = N + 1. We see

that if node N + 2 does not hold any stock, the overall optimal cost is no greater than

2N + 1.

Comparing the two cases, we conclude that it is always optimal not to have stock

in node N + 2. In this case, we also see that it is optimal to set TN+1 equal to one for

node N + 1.

Table 2.1 shows the intervals for the values of the objective function of problem

Pi depending on the values for SIN+1. We see again, that it is always better to have

SIN+1 = 1, which allows node N + 2 to have zero stock and forces node N + 1 to

have a safety stock cost equal to N + 1 units of cost.

We have already seen the following result in the proof of lemma 5. In the next

60

SIN+1 Cost interval
0 [2N + 2, 3N + 2]
1 [N + 1, 2N + 1]
2 [2N + 2, 3N + 2]

2 < k < N [k(N + 1), k(N + 1) + N

Table 2.1: Intervals of the objective function value depending on SIN+1.

lemma we state the result formally.

Lemma 6. Suppose we have instance Pi of the safety stock problem P with additional

requirement si < Ti for the demand nodes i E ID. Then in an optimal solution, each

node i in the network G' satisfies Si < 1.

Proof. From table 2.1 in the proof of lemma 5, we see that SIN+1 = 1 in an optimal

solution. Node N + 1 constrains the outbound service times of all nondemand nodes

from above. Since by construction of the problem Si < si = 1 for all the demand

nodes i, we conclude that in an optimal solution, Si < 1 for all the nodes in the

network. []

Now, we are ready to show the result similar to the one in lemma 3.

Lemma 7. Suppose we have instance Pi of the safety stock problem P with additional

requirement si < Ti for the demand nodes i E D. Then, in an optimal solution, for

every arc (i, j), i, j < N it is impossible to have values of the safety stock functions

to be SSi(r) = 0 and SSj(r) = 0 at the same time.

Proof. We have shown that in an optimal solution, all outbound service times are

constrained from above by 1. Applying the same argument as in the proof of lemma 3,

61

we can conclude that for every arc (i, j) : i, j = 0,..., N at least one of the nodes

has to store inventory in an optimal solution. D

Now, we can relate problem Pi and the initial vertex cover problem VC. From

lemma 5, we see that the optimal cost of of problem Pi is the sum of

* the safety stock cost of N + 1 at node N + 1;

* cost K < N, where K is the number of nodes 1, ... , N that hold stock in the

optimal solution.

Therefore, an optimal solution is K + N + 1. Because the structure of the optimal

solution in the nodes 1, ... , N has the same properties as a vertex cover or is a v.c.

assignment, by solving problem Pi and subtracting N + 1 from the solution we can

find a solution of problem VC. We only need to show that the solution is an optimal

solution of the VC problem. As in the unrestricted case, we need to show that the

solution does not depend on the orientation of the graph G.

Lemma 8. Suppose we have a directed graph G and safety stock problem Pi with

condition (2.2) on G' = G U {N + 1} U {N + 2} as described above. Then for every

v.c. assignment of safety stock on G, there exists a feasible solution of the safety

stock problem Pi with cost N + 1 + K. The vertex cover that corresponds to the v.c.

assignment has cardinality K.

Proof. As in the proof of lemma 4, we construct a solution. If node i E G then we

consider two cases:

* Zero stock in i: SIi = O, Si = 1.

62

* Nonzero stock in i: SIi = 1, Si = 0.

We also assign SIN+1 = 1, SN+1 = 1, SIN+2 = 0 and SN+2 = 1.

By similar arguments as in the proof of lemma 4, we can check that the solution

is feasible. O

As a corollary from the lemma, we conclude that by solving problem Pi with

constraint 2.2 optimally we obtain an optimal solution of the VC problem. Indeed,

independent of the orientation of graph G, an optimal solution of problem Pi is a v.c.

assignment on G. For every v.c. assignment, there exists a solution of problem Pi

independent of the orientation of graph G. The cost of any v.c. assignment is equal

to the cardinality of the corresponding vertex cover. Therefore, for any orientation

of graph G, an optimal solution of Pi gives an optimal solution of the VC problem.

Now we can conclude that problem P with requirement (2.2) is NP-hard.

2.2 Optimality conditions

In this section we discuss optimal solutions and methods of finding them. We start

with the optimal solutions for the problem with si < Ti, i E ID. For this case we

identify a necessary condition for an optimal solution. We show that in an optimal

solution, Si = si for each demand node i.

For the general case, we characterize the set of optimal solutions. Even though the

problem in the general case can have multiple optimal solutions, we find a condition,

such that the problem has at least one optimal solution that satisfies this condition.

63

Then, for all the solutions that satisfy this condition, we show how to construct paths

in the network that identify these solutions. We will use the paths in Chapter 3

when we develop an algorithm for solving a general network safety stock problem. In

particular, we will look at all the paths in the network and their associated solutions.

Because the paths identify the solutions that satisfy the condition and there is at least

one optimal solution that satisfies this condition, by enumerating all combinations of

the paths, we can find an optimal solution.

To simplify notations, we call the layer of the nodes with zero indegree as compo-

nents and use notation C for the set of such nodes .

2.2.1 Restricted case: si < Ti

As in section 2.1.2, we consider a restricted case when si < Ti for i E D. As we will

see in this section this case is simpler than the general one. For this case we introduce

optimality conditions, which, unlike in the general case, can hold simultaneously. We

start with the condition on the outbound service times for the demand nodes.

Lemma 9. Let j be a demand node with sj < Tj. In an optimal solution,

sj = sj. (2.3)

Proof. First, we notice that the constraint polyhedron of problem P is not empty.

The solution for which all the service times are 0 is feasible. There is a trivial bound of

O on the objective function, hence, the problem does not have an unbounded optimal

solution. Therefore, there exists an optimal solution of the problem.

64

-

The cost function decreases when the outbound service times increase. Moreover,

the only constraints on the outbound service times of a demand node j are SIj +

Tj - Sj > 0 and 0 < Sj < sj. The first constraint is satisfied, since SIj > 0

and Sj < sj < Tj. Therefore, in an optimal solution the outbound service time of

the demand node equals to its maximum value, namely the guaranteed service time:

Sj = j.

The next two lemmas provide characterizations of the inbound service times.

Lemma 10. There always exists an optimal solution of the problem, such that all the

inbound service times of the components are 0:

SIj = O,j E C. (2.4)

Proof. Suppose we have an optimal solution with cost z and service times Si and

SI > 0 for some component node i. We construct a new solution:

* SIi = SIi - min{SIi, Si };

* S = S - min{SI, S}.

All the other service times remain the same.

First, we note that the new solution with S and SIi, if feasible, has the same

objective function value. Let us show that the solution is indeed feasible.

If SIi < Si, the new solution has SI = 0, hence, Sli' > 0 and is feasible. To check

feasibility we need to check all the constraints relevant to node i. SI' + Ti - Si' =

65

O + Ti - (Si - SI,) > 0 because the initial solution is feasible. Also, Si < Si < SIj

for all (i, j) E A. Thus, we have constructed an optimal solution with SIi = 0.

If SIi > Si, then Si = 0 and SI' > O. However, we can decrease SI' to SIj" = 0 and

not violate any constraints, since the only constraint is SI" + T- -= Ti > 0. But the

optimal cost of this solution is strictly less than z, because the safety stock function

decreases when the inbound service time decreases. Thus, we have a contradiction of

the original supposition that the initial solution is optimal.

Lemma 11. There always exists an optimal solution of the problem P with si <

Ti, i E D, such that the inbound service time of each non component is equal to the

maximal service time of its upstream nodes:

SIj = max{Si : (i,j) E A},j V C. (2.5)

Proof. Suppose we know an optimal solution:

(S1,. . .,SN, SI1, . ,SIN).

We first consider the non demand nodes. We assume that the statement of the

problem is not true for this solution. That is, there exists node j such that

SIj > max{Si : (i,j) E A} for j C.

66

Then, we define

j = SIj - max(Si, (i,j) E A}.

By the assumption, j > 0.

We define a new solution

SI = Sj - j,

S = S3 - min{dj, S}.

Suppose 6j < Sj. Then the new solution is feasible and

=3 = SI3 3 3 3-S = - 3i + Tj - Sj + = j.

This implies that the new solution has the same cost as the optimal solution. There-

fore, we have found an optimal solution that satisfies the lemma.

Now, suppose bj > Sj. Then the new solution is feasible. We can easily see it

since in this solution Sj = 0, which does not violate any constraint. We also find

that SIj > 0 and SIj > S for all (i,j) E A by construction of 6j. Constraint

SI + Tj - S = SIj + T > 0 is satisfied as well. Therefore the solution is feasible.

The cost of the solution is strictly less than the cost of the original solution.

Indeed,

= SIj +j-sj= - Sj-(-Sj) < j.

Since the inventory at stage j decreases as -rj decreases, the cost of the new solution

is strictly less than the cost of the original solution. Thus, we have a contradiction

as the original solution cannot be optimal.

67

Therefore, 6j is always no greater than Sj, which proves the lemma for the non

demand nodes.

Consider now demand node i. We have shown in lemma 9 that Si = si in an

optimal solution. Therefore, we can not use the same argument for this node as

for the non demand nodes, since we can not decrease Si. However, since condition

SIi + Ti - si > 0 for all SIi > 0 and the safety stock function increases when SIi

increases, we conclude that SIi must be the smallest possible. Therefore, SIi =

max(Sj: (j, i) E A} in an optimal solution.

By lemmas 10 and 11, there might be multiple optimal solutions, at least one of

which has the properties described in the lemmas. Moreover, from the proof of the

lemma, we see that for every optimal solution that does not satisfy the property, there

exists a solution that does. At the same time, lemma 9 states that all the optimal

solutions satisfy (2.3).

From the proofs of the lemmas, we notice that all three conditions can hold to-

gether if the guaranteed outbound service times in the demand nodes do not exceed

the lead times in the nodes: si < Ti. Indeed, the result of lemma 9 holds for any

inbound service time SIi, i E D as discussed in the proof of the lemma. In the proof of

lemma 11, we show that equation 2.5 holds for any Si of a demand node i. Therefore,

there always exists an optimal solution which satisfies all three equations (2.3), (2.4)

and (2.5). As we will see in section 2.2.2, such result does not hold for the general

case.

68

- -

2.2.2 General case

For the general case, we prove a set of conditions that characterize some optimal

solutions. The conditions are similar to the conditions stated in section 2.2.1. We

start with the outbound service times for the demand nodes.

Lemma 12. Let i be a demand node. Then there exists an optimal solution, such

that

Si= si, i E D. (2.6)

Proof. Since the safety stock function in each node i decreases when its outbound

service time Si increases, in an optimal solution, Si has to be as big as allowed by the

problem's constraints. The constraints on a demand node i are

* Si•<Shi+T;

* Si <si.

Therefore, in any optimal solution,

Si = min{si, SI + Ti}, i E D.

Suppose we have an optimal solution of the problem with cost z and service times

Si and SIi in the demand node i, and suppose that Si = SIi + Ti < si. We will show

that we can construct an optimal solution Si' with Si = si.

Solution Si = SIi + Ti < si is feasible and gives cost 0 for the safety stock function

in node i. Moreover, increasing SIi to SI' = si - Ti and setting Si' = si, with the

69

service times for the rest of the nodes being the same as before, gives a new solution

with the same cost z and with cost 0 in demand node i. This increase in SIi does

not violate any constraints on SI', as we can check that:

· SI > ;

· SI' > Sj for all arcs (i, j) E A.

Therefore, the new solution is an optimal solution with S' = si.

We notice here, that while lemmas 9 and 12 state the same results (2.3) and (2.6),

the statements of the two lemmas are different. The first one claims that all opti-

mal solutions have property Si = si in the demand nodes. On the other hand, the

second lemma only states that there exists a solution with this property. Intuitively,

the difference in the statements can be explained as follows. If the guaranteed out-

bound service time of a demand node i is no greater than its lead time, si < Ti, the

replenishment time of the node is at least as big as the guaranteed service time si.

Therefore, to reduce the amount of inventory in the node, the node has to postpone

the delivery to the end customer till the last moment. On the other hand, if the

guaranteed outbound service time in node i is greater than its lead time, we do not

necessarily need to push the delivery to the last moment. Since the replenishment

time is smaller than the guaranteed service time si, we can have both a shorter out-

bound service time than the delivery guarantee, and zero inventory and zero cost at

the demand node.

70

The next lemma provides the result similar to the results in lemmas 10 and 11.

Because we used lemma 9 in the proof of lemma 11, we have to prove the result of

the lemma again for the general case. Again, the statement of lemma 9 holds for any

optimal solution, while similar result in the general case does not.

Lemma 13. There exists an optimal solution of the problem P, such that the in-

bound service time of each non component is equal to the maximal service time of its

upstream nodes:

SIj = max(Si : (i,j) E A),j 0 C; (2.7)

and the inbound service times of each component is 0:

SIj = 0,j E C. (2.8)

Proof. For the non demand nodes, the proof of the lemma is the same as in the

proofs of lemmas 10 and 11. We only need to show equation 2.7 for the demand

nodes. However, because in the general case, the outbound service time of a demand

node can be less than its guaranteed service time si, we can use the same proof for

the demand nodes as for the non demand nodes. Indeed, in the proof of lemma 11

we decrease both SIj and Sj for nodes j that do not satisfy equation 2.7. Because we

start with an optimal solution, the solution is feasible, i.e. Sj < sj. The new solution

Sj= Sj- j is also feasible, where j is defined in lemma 11. Therefore, equation 2.7

holds for the demand nodes as well.

71

2 T2 =l
s 2= 10

Figure 2-5: An example of a network for which conditions (2.6), (2.7) and (2.8) do
not hold for any optimal solution.

Unlike in the restricted case from section 2.2.1, conditions (2.6), (2.7) and (2.8)

might not all be true for any optimal solution of the problem. To show this fact,

we consider a simple example where only two out of the three conditions can hold

together.

Example 1. Let us consider a graph presented on Figure 2-5. The graph has two

nodes and one arc from node 1 to node 2. The lead time of each node is 1: Ti =

1, i = 1,2. Node 2 is a demand node with the guaranteed outbound service time 10:

S2 = 10.

Suppose SI1 = 0 and S2 = 10. Then, in order for the optimal solution to be

feasible, SI 2 + T2 > S2 = 10. Hence, SI2 > 9. On the other hand, for the solution to

be feasible in node 1, SI1 + T1 - S1 > 0, or S1 < 1. Therefore, there are no solutions

with S1 = SI2 . This example shows that if conditions (2.6) and (2.8)are imposed,

condition (2. 7) might not necessarily hold.

If SI1 = 0 and S1 = SI2 , then S1 < 1 implies SI2 < 1. Therefore,

S2 < SI2 + T2 < 2 < s2 = 10.

72

�

From this example, we see that if conditions (2.7) and (2.8) hold together, condi-

tion (2.6) might not be feasible.

If S 2 = 10, then SI2 > 9. If SI2 = S1, this implies S1 > 9. To have a feasible

solution,

SI1 > S1 -T 1 > 9- 1 = 8.

Therefore, condition (2.8) need not hold if conditions (2.6) and (2.7) are imposed.

Example 1 shows that all three conditions might not hold together. However,

there always is an optimal solution with two of the three conditions true. Indeed, in

the proofs of the lemmas, to modify any optimal solution to satisfy conditions (2.8)

and (2.7), we might need to decrease SIi and Si by i, which does not affect other

nodes. On the other hand, to satisfy (2.6) we might need to increase SIi and Si

for the demand node i, which still keeps the solution feasible, but might violate

conditions (2.7) or (2.8).

In what follows we look for the optimal solutions that satisfy conditions SIi =

0, i E C and Si = si, i E D. Now, we proceed to describe the optimal solutions of

this kind.

We observe two simple facts that follow from lemmas 12, 13 and conditions of

problem P.

Observation 1. Problem P can be formulated in terms of outbound service times

Si only. For each solution (Si, · · · , SN), the corresponding solution (SI, ... , SIN) can

73

be reconstructed using lemma 13:

SIi = 0, for all components i E C;
(2.9)

SIi = max{Si - Ti, Sj : (j, i) E A} for all non components i V C.

Observation 2. Problem P can be formulated in terms of inbound service times

SIi only. For each solution (SI, ... , SIN), the corresponding solution (S 1,...,SN)

can be reconstructed using lemmas 13 and 12:

Si = min{si, Sii + Ti} for all the demand nodes i E D;
(2.10)

Si = min{SIi + Ti, SIj : (i, j) E A} for all the non demand nodes i V D.

The two observations help us characterize possible optimal solutions in terms of

the input data. The next lemma states necessary conditions for the optimal solution

for the problem. The objective of the lemma is to provide a more detailed description

of the extreme points of the polyhedron described by the constraints of the problem P.

We will use lemma 14 to characterize the optimal solutions in the algorithm for the

general networks in chapter 3.

We use Observation 2 in the next development of the necessary conditions. We

only consider the optimal inbound service times Sl for each node i in the network.

Note, that we search for the solutions with SIi = 0 for the components i E C. The

next lemma determines all of the candidate values for SIi in an optimal solution.

Lemma 14. Suppose we have an instance of problem P and its optimal solution.

Then there always exists an optimal solution for which the inbound service time of

74

node i is one of these values:

* If i E C, then

SIi = o;

* If i E ID, then

SI = max{O, si - Ti; or

SI = min{SIj + Tj, SIm} for some j: (j, i) e A and all m i: (j, m) E

A;

* IfiafD and i C, then

SIi = O; or

SIi = Sk - Ti for some k: (i, k) E A; or

SI, = min{SIj + Tj, SIm} for some j: (j, i) E A and all m i: (j, m) E

A.

Proof. We have already proven, that for any optimal solution we can construct an-

other optimal solution with SIi = 0 for the component nodes. In what follows, we

consider the non component nodes.

Suppose we have an optimal solution of problem P. We consider the inbound

service time SIi of node i. There are only three conditions imposed by the constraints

of the problem that are relevant for SIi:

SIi > Sj, (j, i) E A;

75

(2.11)

Si > Si - T (2.12)

SIj > 0 (2.13)

When these constraints are satisfied, the safety stock function in node i increases

if SIi increases. Therefore, in an optimal solution SIi has to be the smallest possible

value implied by the constraints:

SI = max{O, S- Ti, Sj: (j, i) E A.

We consider the three cases for the minimum possible SIi:

1. S = 0;

2. Si = Si-T;

3. S = Sj if (j, i) E A.

We start with the case SIi = 0. This occurs when Si - Ti < 0 and Sj = 0 for all

(j, i) E A. Therefore, SIi = 0 is a possibility for an optimal solution.

Suppose

max{O, Si - Ti, sj; (j, i) E A} = Si - Ti.

Then SIi = Si - Ti. In this case, node i does not have any inventory. We can increase

both Si and SIi by the same amount till Si reaches its biggest possible value and not

affect the overall cost. If i is a demand node, the biggest possible value of Si is si.

Therefore, letting Si = si implies Sli = si - Ti in this case. Since by increasing Si to

si does not change the overall cost, the new solution is still optimal.

76

If i is not a demand node, the biggest possible value of Si is SIk = min{SIr, (i, r) E

A}. Then, increasing both Si and SIi by the same amount till Si = SIk preserves

the overall optimal cost and gives a possible solution for the inbound service time of

node i: SI = SIk - Ti for some (i, k) E A.

Suppose now,

max{O, Si - Ti, S; (j, i) e A} = Sj, (j, i) E A.

Because SIi = S, we can express the sum of the safety stock functions in nodes i and

j to be a function of only one variable SIj given that we fix the rest of the variables.

That is, consider the sum function

SSi(SIj + T - Si) + jsJ(SIj + Tj - Sj)

with the constraint SI = Sj. Since this function is concave in SI:, it achieves its

minimum value on the boundary of the feasible set

max{O, Si - T} < SI < min{S1j + Tj, SI,; (j, i), (j, m) E A},

where the right hand side of the condition arises from the constraint on S. Therefore,

the inbound service time SIi can take the value of min{SIj + Tj, SIm; (j, i), (j, m)

A}.

After considering all possible optimal values of SI, we conclude that we can always

modify the solution such that SIi takes one of the values specified by the lemma.

77

In the next section, we extend the properties developed in lemma 14. This lemma

shows how to equate the inbound service times of two nodes that are either connected

by an arc or both connected to an upstream node. In the next section, we establish

relationships between the service times of the nodes that form a path in the network.

Lemma 14 is a building block in creating such paths.

2.2.3 Critical paths

Lemma 14 is a building block for the next development of the optimality conditions.

In this section we demonstrate that all solutions that satisfy the properties listed in

lemma 14 correspond to solutions that can be constructed using paths in the network.

We will use this property in Chapter 3 when we search for the optimal solutions. We

will look at all the possible paths, and thus at all the solutions that satisfy properties

in lemma 14. Since there is an optimal solution that also satisfies the properties, we

can find a solution of the safety stock problem.

For the purpose of the next lemmas we introduce some new notation. Let us

consider two nodes i and j in the network and an undirected path between them:

Pij = (i = io, il,...,ip = j).

Even though there can be several paths between the two nodes, we only consider one

path for now.

For each path Pij, we define the numerical value Rj, which is computed by the

following procedure. Consider node c. We say that we "go upstream" if the next

78

Figure 2-6: A path between nodes 1 and 6.

considered node is q : (q, c) E A. We also say, that we "go downstream" if the next

considered node is q: (c, q) E A. Then we compute Rij:

1. Start in node i with Rij = 0,

2. Go along the path till node j is reached doing one of the following:

(a) Going upstream, add the lead time of the destination;

(b) Going downstream, subtract the lead time of the origin.

Let us consider an example of Rj computation.

Example 2. Consider a general network and a path between nodes and 6 shown

on Figure 2-6. We can compute R16:

R 16 = T2 + T3 - T3 - T4 + T6 = T 2 - T 4 + T6

From the definition, an important property of Rj for the path Pij is that for any

node k E Pij

Rij = Rik + Rkj-

79

\' ' I

I }

We need the definition of Rij for each path in the formulation of the next lemma.

We notice here that there might be multiple paths between any two nodes. However,

to simplify the presentation, we will not distinguish between the different paths from

i to j in this section.

We next consider the nodes and service times along the path. To make the process

more clear we first specify all the possible ways we can order two or three nodes in

the path. In this discussion, the start node is always node i or io as the initial node

of the path. The end node is node j or we also call it ip as the pth node in the

path. Any intermediate node in the path is called ik as the kth node in the path.

Table 2.2 specifies all possible combinations of the nodes and arcs which we will call

configurations and number them as shown in the table. The table also refers to the

figures that correspond to the configurations.

Number Node Adjacent arcs in path Figure
1 = io (i,i) E A 2-7
2 i=io (i 1,i) E A 2-8
3 ik (ik-l,ik) E A, (ik,ik+l) E A 2-9
4 ik (ik, ik-l) E A, (ik+l, ik) E A 2- 10
5 ik (ik-l,ik) E A, (ik+l,ik) E A 2-11
6 ik (ik, ik-1) E A, (ik, ik+l) E A 2- 12
7 j ip (ip-lip) E A 2 - 13, 2 - 14
8 j=ip (ip,ip-) E 2-15

Table 2.2: Configurations of nodes and adjacent arcs in the path.

Figure 2-7: A path between nodes i and j with arc (i, il) E A in the path.

80

Figure 2-8: A path between nodes i and j with arc (il, i) E A in the path.

--0

0 -----
Figure 2-9: A path
in the path.

between nodes i and j with arcs (ik-1, ik) E A and (ik, ik+l) E A

0-

-(D
Figure 2-10: A path between nodes i and j with arcs (ik-l, ik) E A and (ik, ik+l) E A
in the path.

0 J0

Figure 2-11: A path with arcs (ik-1, ik) E A and (ik+l, ik) E A.

81

0 (j

Figure 2-12: A path between nodes i and j with arcs (ik, ik-1) E A and (ik, ik+l) E A

in the path.

0

Figure 2-13: A path between nodes i and ip = j with arcs (ip_l,ip- 2) E A and

(ip-_, ip) E A in the path.

0-----
Figure 2-14:

(ip- 1,ip) E A
A path between nodes i and ip = j with arcs (ip- 2 , ip-) E A and

in the path.

Figure 2-15: A path between nodes i and ip -- j with arc (ip, ip-) in the path

Figure 2-15: A path between nodes i and ip = j with arc (ip, i'p 1) E A in the path.

82

Lemma 15. Suppose we have an instance of problem P and its optimal solution

satisfying the properties stated in lemma 14. Then for each node i, we can construct

a path Pij, such that

SI, = SIj + R,_

and such that

· i=j andPij ={i}, or

· (i,j) E A and Pij = {i,j}, or

· (j, i) E A and Pij = {i, j}, or

· (i1,i) E A and (il,j) E A for some node i and Pij = {i, i, j}.

Proof. Suppose we have an optimal solution that satisfies the properties listed in

lemma 14 for each node i of the network.

We start with the possibility that SIi = 0 for a non demand node i. This solution

corresponds to the path of zero length Pii with correspondent Rii = 0.

If i is a demand node, then a possibility for such a node is SIi = max{O, si - Ti},

that corresponds to the zero length path Pii with correspondent Rii = 0.

Suppose now, that SIi = SIk - Ti for some (i, k) E A. Then j = k as shown

on Figure 2-7. Therefore, SIi = Rij + SIj, since Rj = -Ti, and we have shown the

lemma in case of a path with one arc and two nodes with the starting node upstream

of the other node: Pij = {i,j}, (i,j) E A.

Now consider the case when SIi = SIk + Tk, (k, i) E A. Then we can assign j = k

as in Figure 2-8 for il = j and equate SIi = SIj + Tj = Rij + SIj, since Rij = Tj. In

83

this case the path is Pij = {i,j} with (j, i) E A.

Suppose SIi = SIm for some node m such that there exists node il: (il, i) E A

and (il, m) E A. Then, we assume j = m (Figure 2-12 with ik = il). In this case by

lemma 14, Sl = Si = SIj, but Slil can not be equated with the service times of

nodes i, il, j. However, we notice that in this case Rj = Til - Ti = O and we see that

Shi = SIj + Rj and the lemma holds true. The path in this case is Pij = {i, i,j).

Corollary 2. Suppose an arc (i,j) E A is on a path defined in lemma 15. Then

Si = SIj for the solution defined by the path.

Proof. The corollary is follows from the proofs of lemmas 14 and 15.

The goal of the path development is to have an efficient way to find the candidate

values of service times for solving the safety stock problem. Lemma 15 lists three

possibilities for relating SIi to SIj. However, more than one possible path can cor-

respond to the same inbound service time. For example, SIi = SIi with the path Pii

is always a possibility. However, such path is not useful in determining an optimal

solution, and, therefore, we will not consider such paths.

Another example is that SIi = 0 corresponding to the path Pii. Consider now

a path Pij = {i,il,j} such that (il,i) E A and (il,j) E A. For this path, SI =

SIj + Rj = SIj by definition of Rij. If SIj = 0, then SI = 0. Therefore, path

Pij = {i, il,j} gives the same value to SI as the path Pi = {i}, namely SI = 0.

Thus, path Pij does not provide any new information about the candidate values for

the inbound service time.

84

In what follows, we will build longer and longer paths. We stop a path at node k

if SIk = 0 for a non demand node k or SIk = max{0, Sk - Tk} for a demand node k.

Otherwise, we always try to search for a longer path as we now describe.

We can extend the result of lemma 15 to allow longer paths. In the lemma we

have shown that for some j specified in the lemma, SIi = Rj + SIj. We can apply

the lemma to the inbound service time of node j. In particular, by lemma 15, we can

construct a path with zero, one or two arcs from node j and increase the number of

nodes in the path from node i. Let us also rename the nodes such that the last node

in the current path from node i is called j and the nodes of the path called il, i2,

We can repeat the augmentation of the path every time the path is not stopped,

where we stop the path if the last SIj = 0 for non demand nodes or SIj = max{0, sj -

Tj} if j E D. Every time we augment the path, we call the last node j and all the

nodes in the path starting from i as i = io, i1, ...,ip = j. We state the procedure

formally in Algorithm 1. We have not shown that the procedure is finite; we will

establish this result later in this section. We also note that the procedure stated in

Algorithm 1 identifies a path given an optimal solution that satisfies lemma 14.

So far, we have established that we can create a path that provides a value for

the inbound service time SI. Since we do not know a priori what path corresponds

to the optimal solution, we have to try all possible paths from node i to check all

possible values. As we have already discussed, we stop the path if Slj = 0 or SIj =

max{0, sj - Tj3 if j is a demand node. In what follows, we say that we stop the path

if SIj takes some particular value, independent of the path, for example 0. In fact,

we can always stop the path at any node, since such a path creates a possible value

85

Algorithm 1 Path augmentation procedure
P[] - array of the nodes in the path
AugmentPath(i)
procedure AugmentPath(k)

1: if k E D and SIk = max{0, Sk - Tk} the
2: STOP
3: end if
4: if k 4 ID and SIk = 0 then
5: STOP
6: end if
7: if Sk = SIr, (k,r) E A then
8: SIi - SIi - Tk
9: P -PU{r}

10: AugmentPath(r)
11: end if
12: if SIk = S,, (r, k) E A then
13: Sih Shi + Tr
14: P-PU{r}
15: if Sr = SIm, (r, m) E A, m 5 k then
16: SIi - SIi - Tr
17: P PU{m}
18: r m
19: end if
20: AugmentPath(r)

21: end if
end procedure

86

n

�

for the service time. We will see, that SIj can be set according to some other path.

In this case we can follow that other path, or we can just say that the path is stopped

because SIj is set to some particular value. However, now we can not conclude what

is the longest path we need to consider to go through all the possible paths from

node i . For example, the path can conceivably circle. To eliminate this kind of path

behavior, we need to establish several characteristics of the paths.

We start with the lemma, that shows how to equate the inbound service times

along the path. The lemma follows from the construction of the path and definition

of Rij.

Lemma 16. Suppose we have an instance of problem P and its optimal solution

satisfying the properties stated in lemma 14. Suppose path Pij corresponds to SIi and

is created by Algorithm 1. Then for every node i, 0 r < p along the path that is

not connected to its neighbors as in configuration 6 of Table 2.2

SIr = Rirj + SIj (2.14)

Proof. We have proved the statement of the lemma in case of the paths defined in

lemma 15. By the construction of the longer paths, we apply lemma 15 to the last

node of the current path. Suppose, the last node is ik and for each node ir, 0 < r < k

in the path, SIir = Rik + Sik. We apply lemma 15 to node ik. If SIik = 0 or

Sil = max{O, sik - Ti) for ik E ID by lemma 14, then ik is the last node in the path:

k = p. Then by assumption, equation (2.14) holds. We note that in this case, all

the inbound service times along the path that do not connect to the neighbors as in

87

configuration 6, have to be non negative. If it is not the case, ik = j can not happen.

Otherwise, there are two possibilities for the node ik+l:

1. ik+l is downstream of node ik;

2. ik+l is upstream of node ik..

Suppose ik+l is downstream of ik. By induction, SIi, = SIik + Ri,ik. Also,

SIik = Sik -Tik and Sik = SIik+l by corollary 2. Therefore, for any node i,, 0 < r < k

in the path

Slir = Rrik - Tik + Slik+l = Rrik+ + Slik+l

and we have shown that the lemma holds in this case.

If ik+l is upstream of ik, then again we can only equate SIik+l with other inbound

service times in the path as specified in the conditions of the lemma if SIk+ ~ + Tik+ 1 <

SIm for all (ik+l, m) E A. Then Slik = Sik+l = SIik+l + Tik+l from corollary 2 and by

definition of Riik+l, 0 < r < k the lemma holds:

Slir = Ririk + Tik+l + Sik+l = Rlirk+l + Slik+l.

As we have discussed before, if there exists node m, such that Sik+l + Tik+l >

SI, (ik+l, m) A. Then we can assign ik+2 = m (Figure 2-12). If this happens,

node ik+l has neighbors as in configuration 6. Therefore, we can not equate SIik+x

with Sik, but SIik = Sik = SIik+2. Since Rikik+2 = Tik - Tik = 0,

Slir = Ririk + SIik = Ririk+2 + Slik+2-

88

This proves the lemma if p = k + 2.

O

The lemma shows that if Sli is set according to some path in an optimal solution,

all the inbound service times of the nodes along the path, other than nodes such as

ik presented on Figure 2-12, have to be set according to the last inbound service time

as well.

We next state corollaries of the lemma. We show how to describe all the service

times of the nodes in the path.

Corollary 3. Suppose Si is set according to the path Pij, then for any two nodes in

the path ik and i, k < r, that do not connect to their neighbors as in configuration 6:

Sik = RIkir + Slir.

Proof. By lemma 16

Slik = Rkj + SIj,

Sli, = Rir, + SIj.

By definition of Rik, and Rirj

Rikor + Ri,j = Ri.j

Therefore, SIik = Rikir + RIj + SIj = Rikir + Shir

[
89

Corollary 3 shows that if we have found the path that corresponds to an optimal

SIi, then every inbound service time along the path can be equated with any other

inbound service time in the path, except when the nodes connect to their neighbors

as in configuration 6.

We next express the outbound service times along the path. This corollary is

similar to corollary 2 but stated for longer paths.

Corollary 4. Suppose in an optimal solution, node i has inbound service time SIi

that corresponds to some path P,j = (i = io, i,... ,ip = j). Then if an arc (r, k) is

in the path, Sr = SIk.

Proof. The corollary follows from the construction of the path in Algorithm 1 and

corollary 2.

Corollary 5. Suppose we have an instance of problem P and its optimal solution

satisfying the properties stated in lemma 14. Then for each node i there exists a path

Pij such that for every node ik, 0 k < p along the path that is not connected to its

neighbors as in configurations 2 and 5 of Table 2.2

Sr = Rkj + SIj, (r, k) E A and (r, k) is in the path .

Proof. From lemma 16, SIk = Rkj + SIj for some path Pij. From corollary 4, for any

arc (r, k) in the path, Sr = SIk. Therefore, the equation stated in the corollary holds

if node r has at least one arc (r, k) E A in the path.

90

�

Suppose all the arcs connected to node k in the path are upstream of node k as

shown on Figure 2-11. Suppose the path goes through nodes k - 1, k, k + 1. Then

since (k - 1, k) E A and (k + 1, k) E A, Sk-1 = SIk = Sk+1 by corollary 4. Therefore,

since SIk > Sk + Tk, i.e., it is not equated to the other service times in the path, Sk

can not be expressed from the path. Hence, if node k is connected to its neighbors

as in configurations 5, the corollary does not hold.

Similarly, if node k is the first node in the path, i.e., k = i, and (ii, i) E A is in

the path, as on Figure 2-8, i has neighbors as in configuration 2. Then, SIi = Si by

lemma 4, but Si can not be equated with any service time in the path.

From lemma 16 and corollary 5 we can conclude that along the path, we set at

least one of the service times of any node in the path according to the inbound service

time of the last node in the path. If the first arc in the path is oriented in the direction

of the path (Figure 2-7), then both SIi and Si are known since SI = SIj + Rij and

SIi + T - Si = 0 as shown in the proof of lemma 14. If the first arc is oriented against

the direction of the path, then only SIi is known from the path. Indeed, we can only

equate SIi = Si, but there is no node downstream of node i to set Si.

If the path passes node ik as shown on Figure 2-9, then SIik + Tik - Si = by

lemma 16. Because ik does not connect to its neighbors as in configuration 6, we

know that Sik = Rikj + SIj. Therefore, we can set both service times in the node

according to the inbound service time of the last node.

Suppose the path passes node ik as shown on Figure 2-10. Then, Sik+ = SIik,

91

node S of node SI of node
1 unknown T2 - T4 + T6
2 T2 -T 4+T6 -T 4 +T6
3 -T 4 + T6 unknown
4 T6 -T 4 + T6

5 unknown T 6

6 T6 0

Table 2.3: Service times for the path on Figure 2-6.

SIi + Tk - Sik = 0 and we conclude that both SIik and Sik can be set according to

the inbound service time of the last node of the path.

Suppose the path passes node ik as shown on Figure 2-12. Then only Sik can be

set according to the last inbound service time as shown in corollary 5.

Suppose the path passes node ik as shown on Figure 2-11. Then only SIik can be

set according to the last inbound service times as shown in lemma 16.

Let us consider an example of a path in a network and associated values of service

times.

Example 3. In this example, we again consider a general network shown on Figure 2-

6. Suppose no service time is known and we want to explore all the possibilities for the

inbound service time SI1 of node 1. Then we can choose a path which starts in node

1 and ends in node 6 to consider one of the possibilities (see Figure 2-6). The values

of service times are presented in table 2.3. We observe, that path 1,..., 6 determines

what the service times are, but they may not be feasible.

The discussion above has shown that there exists a solution, such that we can

associate a path with every inbound service time. Unfortunately, the number of

paths in the graph is exponentially large and we do not know a priori which path

92

corresponds to a particular inbound service time. Therefore, if we try to solve the

problem, we need to try all the possible paths from each node of the network. In

what follows we discuss all the possible paths and how we can set service times along

the paths.

In the remainder of the section our goal is to show that it is enough to consider

paths that are no longer than 2N nodes. To do that, we discuss the service times of

a node that is included in a path. We show, that a path can not set a service time

that has been set before. Here, we consider two possibilities of the ways the service

time can be set in the first place. First, the service time is set by some other path.

Second, the service time is set by the same path. Both possibilities lead us to the

conclusion, that if the path tries to set already set service time, the has to stop.

We first analyze the possibility, that the node in path Pij already has some service

times set by some other path. Let us consider node ik in path Pij. Then, we analyze

four possibilities:

1. SIik and Sik are set before;

2. Sik is set before, Sik is not set;

3. Sik is set before, SIik is not set;

4. no service time is set in node ik-

We consider each possibility separately.

Slik and Sik are set before.

We first look at the service times of node ik. By lemma 16 and corollary 5, there

93

always exists a solution, such that at least one of the service times of the nodes in

the path can be set according to the last inbound service time. Therefore, we assume

that SIik is set according to some path Pilj and Sik is set according to some path

Pi2j2. The two paths can be the same path, but for greater generality we assume that

the two paths might be different.

Suppose a path that starts in node i contains node ik. We have already discussed,

that the path Pij sets at least one of the service times of each node in the path.

Therefore, the path will try to set SIik = Rikj + SIj if ik does not connect to its

neighbors as in configuration 6. Then if Rkjl + SIjl i Rikj + SIj, such setting is

not valid. To avoid conflicts between the paths, we can assume that the parts of the

paths (ik,... , j) and (ik, ... , j) are the same. Since SIik is set according to the path

Pljl, we can just stop the path Pij in node ik. Therefore all the service times along

the path Piik are set: SIi, = SIik + Ririk, 0 r < k. In other words, we do not need

to continue the path, but treat node ik as the last node of the path.

Suppose ik connects to its neighbors as in configuration 6, then path Pij can only

set Sik according to SIj:

Sik = Sik+l = Rik+l + SIj

However, if this value conflicts with the previously set value, then path Pij is not

valid. Therefore, we have to stop the path in node ik-_ in the sense that SIikl = Sik

and all the inbound service times Slir = Ririk_- + Slik_1 if the path can set SIi,.

In conclusion for this case, if SIik and Sik are set, then any other path that goes

94

through node ik can be stopped in ik or ik-1. If (ik-l, ik) E A is in the path, then ik

is the last node of the path. If (ik, ik-1) E A, then ik-1 is the last node in the path.

SIik is set, but Sik is not set.

Suppose Sik is set by a path Pijl. We notice here, that this case is only possible

if ik has neighbors as in configuration 5 in path Pij or ik = il and (il, i) E A as proved

in corollary 5.

We first consider the case when both ik-1 and ik+l are upstream of node ik. Then ik

does not have neighbors as in configuration 6. Therefore, SIik = Rikj + SIj according

to the path Pij. If (ik, . . , j) is not a sub path in (ik,..., jl) the value of the inbound

service time set by path Pij in node ik might be in conflict with the one set by path

Pi/lj. Therefore, we can assume that path Pij stops in ik = j. In this case we set

SIir = Ririk + Slik, < r < k if r does not have neighbors as in configuration 6.

If both ik-1 and ik+l are downstream of ik, then ik has neighbors as in configuration

6. Then Pij will only try to set Sik = Slik_ Since Sik is not set by Piljl, path Pij

can do so, as long as Sli + Tik - Sik > 0.

Sik is set, but SIik is not set.

We assume that Sik is set by a path Pi2 j 2. We also notice, that this case only

happens when ik has neighbors as in configuration 6 as shown in lemma 16.

First, we assume that ik+l is downstream of ik. Then, ik does not have neighbors

as in configuration 5. Therefore, path Pij will try to set Sik. However, Pi2 j 2 has

already set Sik- If ik-l is upstream of node ik, we can treat node ik as the last node

in the path: Slik = max{O0, Sik - Tk}. Alternatively, we can say that ik1_ is the last

node in the path: SIkl1 = 0-

95

Suppose ik-1l is downstream of node ik, then ik does not have neighbors as in

configuration 5. Therefore, path Pij will try to set Sik,. Hence, the path is stopped in

ik-1 and Slikl-- = Sik

If both ik-1 and ik+l are upstream of node ik, then path Pij will only try to set

Silk = SIj + Rikj. Since SIik is not set by Pi2j2, path Pij can set Sik as long as

Slik + Tik - Sik > O.

Neither Sik nor Sik is set.

If path Pij goes through the node ik, then the path can set Siik or Sik or both

as described in lemmas 16 and 5. Since no other path has set the the service times

before, Pij can set them.

This concludes the discussion of a path intersecting some other path. Now we

consider the cases when the path intersects itself.

We first prove that there is no need to consider path that starts and ends in the

same node. Indeed, consider a path Pii. Then SIi = Rii + SIi. Therefore, Rii = 0

and this path does not provide any new possibility for SIi. Therefore, we will not

consider the paths that start and end in the same node.

Now, suppose path Pij includes node ik such that it sets SIik. These situations

are presented on Figures 2-9, 2-10 and 2-11. Suppose the path intersects itself in

the node: Pij = (i,..., ik, ... , ir, i, j k = ir, and the path also tries to set SIir

as shown on the same figures but for ir. Then, by corollary 3, Si = Slik + Riki.

However, generally, Rki is not equal to zero. Therefore, such intersection is not

valid. But if Rikir = 0, the cycle does not create any new value of SIi, hence, we do

not consider the intersection.

96

0--

Figure 2-16: A path between nodes i and j with ik = ir and arcs such that arcs
(ik, ik-1) E A, (ik ik+l) E A, (ir- ir) A and (i,, i+l) E A.

0-----

I-----
Figure 2-17: A path between nodes i and j with ik ir and arcs such that arcs
(ik, ik-1) E A, (iki k+l) A, (e,) A and (ir+l,ir) E A.

97

/
I

Let us consider all the remaining intersection possibilities. We start with the

possibility that the path sets only Sik and then both SIir and Sir. Such possibilities

are presented on Figures 2-16 and 2-17.

If (i,r-, i,) E A and (i,, i,r+) E A as on Figure 2-16, then SIik_l = Sik = SIik+l

and Sir = SIir+l. Also, SIir = SIik+ + Ri+lir and SIir + Ti - Sir = . Therefore,

SIik+l + Rlk+lir + Tir - Sir = Rik+lr + r = 0.

Hence, Ri,+li, = -Tir. However,

SIik_l = SIi,+l and

Slik-1 = Sir+l + Rkir+l = Sir+1 + Rik+ir - Tir = Sir+l - 2Tir

Then, Ti, = 0. Therefore, such path is not valid.

In the case of Figure 2-17, Sik = SIik+ = SIir_,. Since Sik+l = S/ir-l + Rik+lir-l

and Rik+lir-l generally is not zero, such intersection is not valid. Suppose Rik+lir = 0.

We notice, that SIir + Ti - Sir = 0. Also,

Shk- = Sr + R-i,1ir = Sir + Tik - Tik + Tir = Shr + Tir,

Therefore, if we just let the path go from node ik-1 to ik and then directly to i,+l,

SIi would still be the same.

Now, let us consider the case when the path first sets both Sik and SIik and then

98

0-----
(-----

Figure 2-18: A path between nodes i and j with ik = ir and arcs such that arcs
(ik, ik-1) E A, (ik+l, ik) E A, (ir, i,-1) E A and (ir, i,+l) E A.

(D

Figure 2-19: A path between nodes i and j with ik = ir and arcs such that arcs
(ik, ik+l) E A, (ir, ir-1) E A and (i,, i+l) E A.

only Sir. The cases are shown on Figures 2-18 and 2-19.

On Figure 2-18, SIi+ i = ik = SIik_. On the other hand, SIikl = SIir+l +

Riklir+l. Generally, Riklir+ is not equal to zero and such intersection is not valid.

If we have Rik_lir+l = 0, we conclude, that the cycle does not add any new possibility

to SIi and the path can just go from ik-1 to ik and then directly to i+l.

In the case of Figure 2-19,

Si = Si+ = Sir-1 = She+1.

99

I

II

I

Figure 2-20: A path between nodes i and j with i = ik = io = i and arcs (il, i) E A,
(i,, i_l) E A and (i,, i+l) E A, r < p, in the path .

Figure 2-21: A path between nodes i and j with ik = ir and arcs (ik,ik+l) E A,
(ik, ik-l) E A, (ik, ik+l) E A and (ik, ik-1) E A, (ir-l, i) E A and (ir+l, i) E A,
r < p, in the path.

Since SIik+l = SIir-l + Rik+lir-1, generally, the path is not valid as Rt0k+lir-l 0. If

Rik+irl = 0, the cycle does not bring any new value of SIi and the path can go from

ik directly to i,+l.

Up till now, all the cycles resulted from the path self intersection appeared to be

not useful in creating new possible values of the inbound service time SIi. There

are only two self intersections left to analyze. These self intersections are useful in

creating new values.

These situations are depicted on Figures 2-20, 2-21 and 2-22. Figure 2-20 shows

that if initially, path Pij passed node ik such that (ik+l, ik) E A and, if k > 0,

(ik-l, ik) E A as shown on Figure 2-11, then Sik is not set by the path. Then the path

100

�

G)-

III

0 -

Figure 2-22: A path between nodes i and j with ik = ir and arcs (ik, ik+l) E A,
(ik, ik-1) E A, (ir-l, ir) E A and (ir+1, i) E A, r < p, in the path .

Node 1 2 3 4 5 6

Ti 7 9 4 9 10 3
si 3 15

hi 4 8 8 8 6 10

Table 2.4: Parameters of the network from Example 4.

may return to the node such that ir = ik and arcs (ir, i+l) E A and (ir, ir-_) E A

and set Sik leaving SIik unaffected. If the path is started in the node ik = io, then

the path sets SIi = S1, but does not set S. Therefore, the path can return to node

i as show on the figure and set So = Sir.

Similarly, if the path first traverses node ik such that arcs (ik, ik+l) E A and

(ik, ik-1) E A as shown on Figure 2-22, it sets only Sik and not SIik. Then the path

can return to node ik = i such that (ir_i,r) E A and, if r < p, (i+l, ir) E A, then

it can set the node's Slik without affecting the node's Sik.

To illustrate such possibilities, we give an example of a network with a path with

self intersection creating an optimal solution.

Example 4. Consider an instance of the safety stock problem with the network shown

on Figure 2-23. The parameters of the problem are presented in Table 2.4. An optimal

101

(--

I

I
I

Figure 2-23: An instance of the safety stock problem with an optimal solution corre-
sponding to a path with self intersection.

Node 1 2 3 4 5 6

SI0 101 5 5 2
Si 5 1 5 3 15 5

Table 2.5: Solution of the problem from Example 4.

solution of the problem corresponds to the paths:

P15 = (1,2, 3, 4, 1, 5),

P6 5 = (65).

The paths give an optimal solution presented in Table 2.5.

The first path assigns the inbound service time of node 1. Therefore,

SI1 =9-9- 4+7-7+5 = 1.

We note that SI5 = s5 - T5 = 5. By lemma 16, the path also assigns the inbound

service times of nodes 3 and 4. That is, it sets SI3 = -4 + 7 - 7 + 5 = 1 and

SI4 = 7 - 7 + 5 = 5.

102

The second path only assigns the inbound service time of node 6. Because the

outbound service time of node 5 is assigned by the path P15, the second path attempting

to go to node 5, finds that SI 5 has already been assigned, and sets SI16 = SI5 - T6 = 2.

After discussing all possible cases of path intersection, we make the following

conclusions:

1. If a path visits node ik such that the service times were not previously set by

any other path, then Pij can set the service times.

2. If a path visits node ik and Sik is set by some other path, but Sik is not, then

the path can continue after node ik as long as the path does not attempt to set

Sik. That is, (ikl, ik) E A and (ik+l, ik) E A as in Figure 2-11. Otherwise, we

treat ik-1 as the last node of path Pj: ik-1 = j

3. If a path visits node ik and Slik is set by some other path, but Sik is not, then

the path can continue after node ik as long as the path does not attempt to set

Slik. That is, (ik,ik-1l) E A and (ik, ik+l) E A as on Figure 2-12. Otherwise,

we treat node ik as the last node in the path: ik = j.

4. If a path visits node ik and both service times of node ik are set by another

path, we treat node ik as the last node of the path: ik = j.

The cases of path intersection suggest, that if we want to explore all the possibil-

ities for the inbound service time SI of node i, then we do not need to construct all

the paths from node i to other nodes in the network. It is enough to only construct

the paths that set only those service times that have not been previously assigned.

103

Once the path tries to assign already known service times, we can stop the path.

Again, technically, we can continue along the path that assigned the service time in

the first place, but such action would not uncover any new possibility for SIt. In fact

it might even result in a cycle and an infinite path.

Now, we formulate a lemma, which is important for the algorithm that computes

all the possible values of SIi.

Lemma 17. Suppose inbound service time is set by the path Pij, then the path has

at most 2N nodes, where N is the number of nodes in the network.

Proof. By lemma 16 there always exists a path that determines inbound service time

SIi of any node i in the network. We have shown that if a path passes through node

ik, then it sets at least one of the service times. We have also shown, that if one of

the service times is set by some other path, then Pij is only allowed to set the other

service time. Moreover, if Pij tries to set the other service time in node ik, then Pij

can be stopped in ik = j or in ik-1 = j. Since the network has 2N service times, the

length of any path is not more than 2N.

This lemma concludes the discussion of the critical paths. We will use the prop-

erties of the paths in the chapter 3 when we develop an algorithm in solving general

network problems. The paths also appear to be useful for a polynomial time algorithm

for the spanning tree networks that is described in Graves and Willems [2000].

104

Chapter 3

Algorithms

This chapter presents three algorithms for the safety stock problem. The algorithm in

Section 3.1 is a polynomial time algorithm for the problems restricted to the spanning

tree structure of networks. In section 3.2, we present a branch and bound algorithm

for the problems on general networks. In section 3.3, we consider a special case of the

general network problem - the problems on two-layer networks. We develop a special

branch and bound algorithm for the special case.

3.1 Spanning tree algorithm

In this section, we show how to improve the algorithm for the spanning tree networks

from Graves and Willems [2000]. The algorithm described in the paper solves the

safety stock problem in pseudo-polynomial time. Namely, the running time of the

algorithm is O(NM 2), where M denotes the maximum service time and is bounded

by EN l Tj. Here, we show how to solve the problem in O(N 3).

105

3.1.1 Optimality conditions

We state optimality conditions from section 2.2.2 for the safety stock problem for a

supply chain modelled as a spanning tree network. The main result of this section is

that to find an optimal solution of the tree problem, we just need to consider at most

O(N) possible values for the service time at any node i of the network.

Let us show that we only need to consider N possible values for SIi to find an

optimal solution for SIi. From the general case, we know that there exists an optimal

solution such that SIi can be determined by a path Pij from node i to some other

node j in the network. Each path from i to j generates a possible value for SI i:

s R { max{O,sj - Tj, j ED

0, otherwise.

Since the network is a tree, there exists exactly one path between any two nodes.

Therefore, there are only N possible values that can be generated using the paths.

Moreover, not all the paths would give us feasible inbound service times, since Rj

can be negative. Hence, to find an optimal solution, we just need to search through

at most N values for the inbound service times for each node in the network.

Before we describe the spanning tree algorithm, we need to discuss how we gen-

erate the possible values for the inbound service times, when there are additional

constraints on the network, such as exogenous bounds on the service times. After

we establish the effect of the conditions, we will then present the algorithm for the

spanning tree problem.

106

We will use the spanning tree networks to create lower bounds on the optimal

solution for the general network problem. In addition, we will compute lower bounds

for the optimal solution for the general network problem given that some service

times, inbound or outbound, are already known. For the bounds to be the most

effective, we need to specify what values of the inbound service times we need to

consider in each case.

Suppose we have a general network problem and we have fixed some of the inbound

and outbound service times. A known inbound service time for SIj creates constraints

for the upstream outbound service times: Si < SIj for all nodes i such that (i, j) E A,

when SIj is known. Similarly, a known outbound service time Si creates constraints

for its downstream inbound service times: SIj > Si for all nodes j such that (i, j) E A

and Si is known.

Now, suppose we remove some arcs from a general network, which is equivalent

to removing the corresponding constraint Si < SIj for a removed arc (i, j) E A. If we

try to solve the relaxed problem now, we can find a lower bound on the optimal cost

of the general problem. Because some arcs are removed, the solution of the relaxed

problem needs not satisfy the constraints imposed by the removed arcs. Therefore,

the bounds can be tightened by imposing the constraints after removing the arcs.

For that we have to reconsider candidate values for the optimal service times that we

calculate using paths.

We only need to reconsider the values of the last node in a path. We notice, that

if we construct a path between nodes i and j to find a possible optimal value for SIi,

as shown in lemma 16, it is always true that SIi = Rij + SIj. We stop the path in

107

node j, because SIj can be equal to some value independent of the path, i.e. 0 or

sj - Tj if j E D. Now, as we have additional constraints on the SIj, we might have

more possibilities for the independent values. Here, we notice, if SIj is known, then

the known value is the only possibility for SIj. Also notice, that the end node only

has to respect constraints imposed by the service times of the node, since we assume

that the constraints of the type Si < SIj, (i, j) E A are satisfied if we stop the path.

Suppose we have a bound on SIj, which we denote SIj. Then similar to the proof

of lemma 14, we list all the constraints on SIj:

SIj > Sk, (k, j) E A; (3.1)

SIj > S - Tj (3.2)

SIj > Sl, (3.3)

SIj > 0 (3.4)

Again, since the safety stock function in node j increases when SIj increases, in an

optimal solution, we can set SIj to the smallest possible value. Therefore, SI, is a

possible value for the end node in the path.

Suppose now Sj is known or Sj has an upper bound Sj. Then, intuitively, node j

can be treated as a demand node. In this sense, we assume here that for a demand

node j, Sj = sj. Therefore, if Sj is known, then a possibility for SIj is max{Sj, Sj -

Tj}, where SIj here might be interpreted as 0 if no bound on SIj is imposed.

108

______ _______ Sj is known [Sj is known I neither is known
SIj is known SI3 SI J SIj
SIj is known maxSIj, Sj - Tj} {(Ijmax(S - Tj, SI7)} SI

neither is known max{O, Sj - Tj} {0, max(Sj - Tj, O)} 0

Table 3.1: Possible values of SIj depending on the constraints on the service times.

|I 1 Sj is known Sj is known neither is known
SIj is known Sj min{Sj, SIj + Tj} SIj + Tj
SI7 is known Sj {Sj, min(SIb + Tj,Sj)} SI + Tj

neither is known Sj Sj Tj

Table 3.2: Possible values of Sj depending on the constraints on the service times.

Consider the case when Sj is known. Then,

Sj < SIk, (j, k) A; (3.5)

Sj < S13 + T (3.6)

sj < Sj (3.7)

sj > 0 (3.8)

Since the safety stock function in node j decreases when Sj increases, in an optimal

solution, we can set Sj to be as big as possible. Then, Sj is a possibility for S. In

this case, SI = Sj- Tj is a possibility for the optimal inbound service time. We

notice here, that if both Sj and SIj are known, then two values for SIj have to be

considered: SIj and j - Tj > SIj. The first value corresponds to the possibility

that Sj Sj and the second value is for the case when j = j .

Tables 3.1 and 3.2 summarize the discussion of the candidate values for the in-

109

bound service times. The first row of the tables shows whether or not we know Sj or

Sj. The first column shows whether or not we know SIj or SIj.

If we consider a path from i to j, the end node can have at most two values.

Indeed, from Table 3.1 we see that no matter what we know about the last node in

the path, there are at most two candidate values for SIj. Therefore, there is at most

two candidate values for the start node SIi that can be created by the path.

Now, we return to the discussion of the spanning tree algorithm. There is only

one path between any two nodes in the network. Even if we have some constraints

on the service times of the network, each path produces at most two possible value

for an optimal inbound or outbound service time. From this we conclude, that there

are at most 2N values to consider for each inbound or outbound service time for each

node in the tree.

The number of possible values of the service times can be reduced also due to the

property that Si < Mi and SIi < Mi - Ti for every node i in the network. Therefore,

the number of values that we have to consider to find an optimal solution for each

service time for any node i is min{2N, Mi}.

3.1.2 Polynomial time algorithm

For greater generality, we quote the algorithm from Graves and Willems [2000]. Then

we will show that the algorithm can be modified to run in polynomial time using the

optimality conditions for the tree networks discussed in section 3.1.1.

We first renumber the nodes of the tree, using the following procedure:

110

1. Start with all nodes in the unlabeled set, U.

2. Set k :=1.

3. Find a node i E U such that node i is adjacent to at most one other node in U.

That is, the degree of node i is 0 or 1 in the subgraph with node set U and arc

set AT defined on U.

4. Remove node i from set U and insert into the labelled set L; label node i with

index k.

5. Stop if U is empty; otherwise set k := k + 1 and repeat steps 3-4.

The complexity of this labelling algorithm, as quoted from Graves and Willems

[2000], is O(N 2). However, the same labelling can be implemented in O(N). The

implementation is shown in Algorithm 2 and is essentially a depth first search.

Algorithm 2 Labelling algorithm
var currentNode 1- 1 - index in the new order
ComputeNewOrder(1,0)

Procedure ComputeNewOrder(k, p)
1: for all nodes j 74 p connected to k do
2: ComputeNewOrder(j, k)
3: end for
4: newOrder[currentNode] - k
5: currentNode 4- currentNode + 1

end procedure

We can visualize the algorithm as follows. Suppose we pick a node, for example,

node 1. We hang the tree by node 1. Then starting from node 1, we do the depth

first search on the hanged tree. We will use this visualization of the tree later in the

section and call the hanged tree as a search tree.

111

Figure 3-1: A spanning tree network for Example 5.

Figure 3-2: Search tree. Figure 3-3: New labelling.

Let us consider an example of labelling and of a search tree.

Example 5. Consider a network presented on Figure 3-1. The search tree is shown

on Figure 3-2 and a new labelling is shown on Figure 3-3.

The vector newOrder from Algorithm 2 is

newOrder = [2, 5, 3, 4, 1].

We will use the notation p(k) for the node of the network connected to node k such

that p(k) > k. Note that for each node k < N there exists only one p(k) according

to the described procedure. For example, in Figure 3-3, p(l) = 5, p(2) = 4, p(3) = 4,

p(4) = 5 and node 5 has no p(5).

112

To introduce the functions of the algorithm, we take the approach provided

in Graves and Willems [2000]. We first state the key relationships in the algorithm

and will then explain each of the terms.

ck(S, SI) = hk{Dk(SI + Tk - S) - (SI + Tk - S)tk)

+ E fi(Si(S))+
(i,k)EAT,i<k

>E ggj(SIj*(s)),
(k,j)EAT,j<k

where

fk(S) = min{ck(S, SI)}Si

for max(0, S- Tk) < SI < Mk - Tk and SI integer;

Si*(SI) = argmin{fi(S) :0 < S < min(SI, Mi), S integer};

gk(SI) = min{ck(S, SI))

for 0 < S < SI + Tk and S integer;

SI* (S) = argmin{gi(SI) : S < SI < Mi - Ti, SI integer}.

If node k is a demand node, S < sk.

To understand the meaning of the introduced functions, we define the following

subsets of nodes. For each node k we define Nk to be a subset of {1, ... , k} such that

there exists an undirected path in the subgraph induced by Nk from each node in Nk

113

to k:

Nk={k}+ U N,+ U Nj.
i<k,(i,k)EAT j<k,(k,j)EAT

We can see that the function ck(S, SI) is the holding cost of the safety stock for the

subnetwork with node set Nk as a function of inbound and outbound service times at

node k. The first term is the holding cost at node k. The second and the third terms

correspond to the nodes that are upstream and downstream of k in Nk respectively.

fi() is the minimum holding cost of the subnetwork Ni as a function of SI if i supplies

node k. gj() is the minimum holding cost of subnetwork Nj as a function of S if j

is downstream of k. For node kA, the algorithm evaluates fk(S) for S = 0,..., Mk

if p(k) is downstream of k. It evaluates gk(SI) for SI = 0, ... , Mk - Tk if p(k) is

upstream of k.

For completeness, we cite the algorithm from Graves and Willems [20001. We

modify the algorithm only to accommodate the bounds on the service times that

will be useful when we use the tree solutions to obtain lower bounds on the general

problem. We define bounds Si and SIi as follows:

oo, if all SIj, (i,j) E A are unknown;

min SIj, (i,j) E A if SIj is known.

SIi = 0 by default. Then, the algorithm states as follows as in Algorithm 3.

The algorithm, as stated, runs in O(NM 3). We show here, how to make the

algorithm run in O(N3). The main improvement in the algorithm comes from the fact

that there are at most min{2N, Mi} values that have to be considered for each inbound

114

Algorithm 3 Spanning tree algorithm from Graves and Willems [2000]
for k =:1 to N -1 do

if p(k) is downstream of k then
evaluate fk(S) for S = 0,.. . ., min{Mk, Sk}

else if p(k) is upstream of k then
evaluate gk(SI) for SI = max{0, SIk} ,..., Mk - Tk

end if
end for
evaluate gN(SI) for SI = max{0, SIN},..., MN - TN
Minimize gN(SI) for SI = max{0, SIN}, ... ,MN - TN to obtain the optimal ob-
jective function value

service time SIi and each outbound service time Si as discussed in section 3.1.1.

However, the first task is to efficiently compute the candidate values. This can be

done using two procedures in Algorithm 4.

The procedures in Algorithm 4 are initialized with the same k and empty p (p = 0).

We first call ComputeSandSIUp(k, p) and then ComputeSandSIDown(k, p) as shown

in Algorithm 5. In the main part of Algorithm 5, k = 1, however, we can initialize

the procedures with any node k in the network.

Now, we explain the meaning of the procedures. The main goal here is to compute

all of the candidate values of SIi and Si by using the paths from node i to all possible

nodes in the tree. We store the candidate inbound service time values of node k in

SIset[k] and the candidate outbound service time of node k in Sset[k]. By lemma 16,

we generate a candidate value from SIi = SIj + Rij for every node i in the network

where SIj takes values from Table 3.1. We notice, that because Rij = Rik+Rkj for any

node k in the path, while computing value SIi using path Pij, we can simultaneously

compute the value for SIk using path Pkj.

Procedure ComputeSandSIUp(k, p) is a depth first search starting from any node

115

Algorithm 4 Service time computation
procedure ComputeSandSIUp(k, p)

1: for all nodes j z p connected to k do
2: ComputeSandSIUp(j, k)
3: end for
4: SIset[k] - { values as defined in Table 3.1}
5: Sset[k] - { values as defined in Table 3.2}
6: for all upstream nodes j =~ p, (j, k) E A do
7: Slset[k] - Slset[k] U Sset[j]
8: Sset[k] - Sset[k] U{SI + Tk: SI E Slsetlk]}
9: end for
o10: for all downstream nodes j $ p, (k,j) E A do

11: Sset[k] +- Sset[k] U SIset[j]
12: Slset[k] - Slset[k] U{S- Tk: S E Sset[k]}
13: end for

end procedure

procedure ComputeSandSIDown(k, p)
14: for all upstream nodes j f/ p do
15: Sset[j] Sset[j] U SI[k]
16: Slset[j] -- Slset[j] U{S- Tj : S E Sset[j]}
17: ComputeSandSIDown(j, k)
18: end for
19: for all downstream nodes j # p do
20: Slset[j] set[j] U Sset[k]
21: Sset[j] - Sset[j] U{SI + Tj : SI E SIset[j]}
22: ComputeSandSIDown(j, k)
23: end for

116

k, for example from node k = 1. We create a search tree that starts from the chosen

node and constructed as shown in ComputeSandSIUp(1, 0). For each pair of nodes

k and p, (k, p) E A or (p, k) E A, we call node p as the parent of node k in the search

tree, if ComputeSandSIUp(k, p) considers node p before node k. In this case, we also

call node k as a child of node p in the search tree.

The procedure works as follows. We treat each node as a possible last node in

a path. Therefore, we first add the values from Tables 3.1 and 3.2 to SlIset[k] and

Sset[k] respectively for each k in the network. Then we create values for longer paths

by passing all possible values of a child to its parent in the search tree. By doing so,

we respect the properties of the path. In particular, if node j is upstream of its parent

k in the search tree, (j, k) E A, then by the properties of the paths SIk = Sj is a

possible value that we have to add to the set SlIset[k]. Also, Sk = SIk + Tk = Sj + Tk

is a value that we have to put into the set Sset[k].

Similarly, if node j is downstream of its parent k in the search tree, (k, j) E A,

then Sk = SIj is a possible value that we have to add to the set Sset[k]. Also,

SIk = SIj - Tk is a possible value that we have to put into the set SIset[k] by

construction of some path.

After passing all the possible values from the children to the parents in the search

tree, we need to pass all the possible values from the parents to the children to account

for all possible paths. Procedure ComputeSandSIDown(k, p) does that in a similar

way as procedure ComputeSandSIUp(k, p).

We notice here, that the sets Sset[k] and SlIset[k] can be reduced by using the

constraints SIk and Sk as well as any values for known SIk and Sk. In the lines

117

[nodes 1 1 2 1 4 5

Table 3.3: Lead times and guaranteed service times for Example 6

nodes 1 2 3 4 5

T Sset {3} {7 {3i 1 {2l 1 .81

SIset 1i an s3} f 1x m0 1 l 3}I l e

Table 3.4: Initial values of Sset[ij and SIset[ij for Example 6.

7, 8, 15, 16, 20, 21 of Algorithm 4, we will only add those values that satisfy the

constraints. In particular, we add Sk or SIk only if Sk < Sk, SIk > SIk. Also, we do

not need to add new values to set Sset[k] if Sk has been assigned before. Similarly,

we do not add new values to SIset[k] if SIk has been assigned before.

The complexity of Algorithm 4 is O(N 2). Since the network is a spanning tree,

each node has exactly one parent in the search tree. Therefore, both procedures touch

each parent once. For each parent, they touch each child once as well. Therefore, the

complexity of this algorithm is O(N2).

We give an example of the sets computation.

Example 6. Consider the graph shown on Figure 3-3. We assume that S1 and SI2

are known and that S1 = 3 and SI2 = 3. Therefore, SI- = 3. The lead times and the

guaranteed service times of the demand nodes are shown in Table 3.3.

Suppose we call both procedures with k = 5. First, in Table 3.4, we report the

initial sets Sset[i] and Slset[i] as created by lines 4 and 5 of Algorithm 4.

Second, in Table 3.5, we report sets Sset[i] and SIset[i] as created by the procedure

ComputeSandSIUp of Algorithm 4, respecting the bounds explained previously. At the

118

nodes I 1 2 3 4 5 l

Sset 1 {3} {7} {3} {2,9,1} l {8,0,7}
SIset {O} 13} {1} (0,7} (3}

Table 3.5: Values of Sset[i] and SIset[i] created by procedure ComputeSandSIUp for
Example 6.

nodes 11 1 2 3 4 5

Sset {3}1 {7,0,8} l {3} l {2,9,1,10} i {8,0,7} I
SIset {O} {3} {1,2,9,10) {0,7, 8) {3}

Table 3.6: Values of Sset[i] and SlIset[i] created by procedure ComputeSandSIDown
for Example 6.

end of this procedure, the chosen root of the search tree, node 5, has the full sets of

its candidate values.

Finally, Table 3.6 shows complete sets Sset[i] and SIset[i] as created by the proce-

dure ComputeSandSIDown of Algorithm 4, respecting the bounds explained previously.

After computing all possible values for the service times for all the nodes, we can

solve the spanning tree problem in O(N3). The improved algorithm is in Algorithm 5.

The complexity of the spanning tree algorithm is O(N3). For each node k in the

spanning tree the algorithm computes the values ck(S, SI) for all possible values of S

and SI. Since the number of candidate inbound and outbound service times in node

k is at most 2N, there are O(N2) values of ck(S, SI). Computation of each value

ck(S, SI) takes 0(1) given that we pre-compute cSk(S) and cSIk(SI). cSk(S) is the

total minimum cost for all the nodes i < k, (k, i) E A and SIi > S. cSIk(SI) is the

total minimum cost for all the nodes i < k, (i, k) E A and Si < SI.

Procedure precompute() computes the values of cSk(S) and cSIk(SI) for all k.

The total time of computing the values for all k is O(N3). There are N nodes for

119

Algorithm 5 Tree Algorithm

function ComputeTreeMinCost(tree, SI, S, SI, S)
1: ComputeSandSIUp(1, 0)

2: ComputeSandSIDown(1, 0)

3: ComputeNewOrder(1,0)
4: return ComputeMinCost(

end function

function ComputeMinCost()
5: for k = 1 to N- 1 do
6: precompute(k)

7: if p(k) is upstream of k then
8: gk[S] - min ck(S, SI), for all SI E SIset[k]

SESset[k]
9: end if

10: if p(k) is downstream of k then
11: fk[S] - min Ck(S, SI), for all S E Sset[k]

SIESIset[k]
12: end if
13: end for
14: gN[SI] -- min CN(S, SI), for all SI E Slset[N]

SESset[N]
15: return TreeMinCost - min gN [SI]

SIESIset[N]
end function

procedure precompute(k)
16: for all SI E Slset[k] do
17: cSIk[SI] - min fi[S]

i:(i,k)EA,i<k S<SI
18: end for
19: for all S E Sset[k] do
20: cSk[S] E- in gi [SI]

i:(k,i)EA,i<k S>SI
21: end for
end procedure

function Ck(S, SI)
22: return cSk[S] + cSIk[SI] + SSk(S, SI)
end function

120

which we pre-compute cSk(S) and cSIk(SI). For each k, there are nk nodes i < k.

Since the graph is a tree, Z nk = N. For each node i < k, we have at most 2N

service times to select the minimum cost of the subnetwork Ni. Therefore, the total

time is
N

Enk * 2N * 2N = N* 2N * 2N = O(N3).
k=l

So far we have presented the basic algorithm for solving the safety stock problem

on a spanning tree network. Now, we note that we might have less than 2N possible

service times to consider at each node. First, we need not consider candidate times

from paths with negative Rij. We also do not consider the values SIi > Mi - Ti and

Si > Mi. Therefore, the number of possible values of the inbound service time in

node i is min{2N, Mi - Ti}. The number of possible values of the outbound service

times of node i is min{2N, Mi). Therefore, the complexity of the algorithm is in

fact O(N min{2N, M} 2), where M is the maximum service time and is bounded by

AN T

3.2 Algorithm for general networks

In this section we develop a branch and bound algorithm for general network supply

chains. The algorithm searches for the solutions that satisfy properties described

in lemma 14. In the next section, we construct the branching tree and suggest the

bounds.

121

3.2.1 Branching tree

To construct a branching tree, we use the properties of an optimal solution, described

in section 2.2.2. We want to find an optimal solution, that has Si = si for each

demand node i and SIj = 0 for each component j. The solution will also satisfy

the properties listed in lemma 14. By Observation 2 from that section, the objective

function can be expressed as a function of the inbound service times only. From

section 2.2.3, we know that an optimal inbound service time for node i can be found

from a finite set of candidate values that can be generated from the paths from node

i to all other nodes in the network. Indeed, we showed that each path has at most

2N nodes, therefore, there is a finite number of paths between the nodes to consider.

Using definition of the paths, we construct a branching tree for the problem. First,

we impose an order of the nodes in the graph. For now, we assume any order, but we

return to the question of how to order the nodes later in this chapter.

Suppose we initiate the branching tree with node 1 in the network. We construct

all the valid paths as described in section 2.2.3. From the paths Plj we generate the

sets of candidate inbound service times SI1. Notice, that there might be multiple

paths between nodes 1 and j. Each path gives a different branching point. These are

the first level branching points of the branching tree.

At the ith level of the branching tree, for every branching point of level i - 1,

we will branch on candidate values for SIi. We create one branch for each candidate

value for SIi. We compute the candidate values for SIi from considering all of the

122

· ·- B·a O t t·e e p r o a

Figure 3-4: Branching tree for the general problem.

valid paths from node i to every other node j in the network:

512 = R3 + { max{O, sj - Tj}, j E (39)

0, otherwise.

These values are the branching points of level i.

Schematically, the branching tree is shown on Figure 3-4. We use notation SI

Pij to indicate that the value SIj is computed using path Pij by formula (3.9).

Although the number of paths from any node to any other node is large, here we

indicate how to eliminate some paths and, therefore, some branches of the branching

tree. First, according to the discussion in section 2.2.3, a path can be stopped if it

tries to assign an already assigned service time. Therefore, the arcs that have been

included in previously set paths can not enter the current path.

The next reduction in the number of paths comes from lemma 16. Suppose we

have constructed a path Pij. According to the lemma, for any node k in the path,

that is not upstream of its neighbors in the path, SIk = Rkj + SIj. Thus, the path

determines the value for SIk, k > i. Therefore, there is only one branch at level k

that is in the same branch as ShIi - Pi.

123

Moreover, by the problem formulation, SIk > 0. Since Rkj can be negative, we

have to check all SIk along the path Pi. If at least one SIk < O, path Pij is not valid.

Consequently, we can eliminate the branch SIi ' Pij. Also, we can check that all the

SIk on the path are such that SIk < Mk - Tk.

For example, it is never valid to finish the path with an arc (k, j) if j is not a

demand node. Indeed, if the situation as shown on Figure 2-14 with ip_l = k, then

the path tries to assign SIk. But then SIk = Rkj + 0 = -Tk. If the situation is as

shown on Figure 2-13, then SIk is not assigned, but SIj = SIi,_ 2. Therefore, the

path Piip_2 gives the same value of SIi. Therefore, there is no need to consider such

a path Pij. We have shown, that we do not need to consider paths with the last arc

going in the direction of the path.

Similarly, we can assign Sk according to the path. By corollary 5, unless k is not

downstream of both of its neighbors in the path, Sk can be computed according to

the path. In particular, Sk = SIm,, where (k, m) E A and is in the path. Therefore,

we can check, that 0 < Sk < Mk. If for at least one node in the path, the condition

is not satisfied, the path is not valid. Therefore, branch SIi - Pij does not exists.

We can do even more constraint checking to eliminate some paths. Suppose path

Pij tries to assign SIk, k E Pij. Then the path is not valid if for some (r, k) E A, Sr

has been assigned earlier in the branching tree, and SIk < Sr,. That is, path Pij can

not violate previously assigned values of service times. Similarly, we check, that if

the path assigns Sk, then for (k, r) E A, if SIr has been assigned by some other path,

we must have Sk < SIr.

Finally, since we are looking for an optimal solution with SIi = 0, i E C and

124

Sj = sj, j E D, we can eliminate all the paths that violate these conditions.

Algorithm 6 Generate paths
P[] - array of the nodes in the generated path
GeneratePath(i, 1, true)
procedure GeneratePath(k, ind, continue)
1: P[ind] - k
2: process path P[1,..., ind]
3: if continue = true then
4: if Sk is not set then
5: mark Sk to be set
6: for all r, (k, r) E A and SIr is not marked to be set do
7: mark SIr to be set
8: if SIr is not set then
9: GeneratePath(r, ind + 1, true)

10: else

11: GeneratePath(r, ind + 1, false)
12: end if
13: unmark SIr to be set
14: end for
15: unmark Sk to be set
16: end if
17: if SIk is not set then
18: mark SIk to be set
19: for all r, (r, k) E A and Sr is not set and Sr is not marked to be set do
20: mark Sr to be set
21: GeneratePath(r, ind + 1, true)
22: unmark Sr to be set
23: end for
24: unmark SIk to be set
25: end if
26: end if
end procedure

We call the paths, that are constructed according to the rules in section 2.2.3, as

valid paths. We check all the service times, that are computed according to the valid

paths, as described above. We call the qualified service times as valid service times.

Formally, an algorithm for generating valid paths is stated in Algorithm 6. The

procedure, called GeneratePath(i,l,true), will generate all the valid paths that start

125

in node i. For each path, line 2 will be executed. The procedure "process path" in line

2 can, for example, collect the paths into a set of paths, or compute the value of SIi

corresponding to the current path together with the values of the service times along

the path. We note here that the paths can be generated as they are needed by the

branch and bound algorithm avoiding storing them. In lines 4, 8, 17 and 19 we check

whether Sk and SIk have been previously set in the branching tree or equivalently by

another path. In lines 5, 7, 18 and 20 we mark the service times of the nodes that we

will set according to the considered path as "to be set". In lines 13, 15, 22 and 24 we

unmark the service times of the path after the path has been considered.

We now proceed to describe the bounds for the algorithm.

3.2.2 Lower Bounds

To construct a lower bound on the optimal solution, we relax some constraints of

the problem P. In particular, we remove a number of constraints of the form Si <

SIj, (i, j) E A, which is the same as removing corresponding arcs (i, j) from the arc

set A. Our goal here is to remove enough arcs from the graph so that the resulting

graph becomes a spanning tree. We solve the spanning tree problem by applying the

algorithm described in section 3.1.

Since we develop a branch and bound algorithm, we wish to find lower bounds

at each branch of the branching tree. For each branch, we know some service times

in the network. We can construct a spanning tree and then solve the spanning tree

problem for which some of the service times are set as discussed in section 3.1. To

126

make the lower bound as large as possible, we create an upper bound on the outbound

service time of node i:

Si = min{Mi, SIj : (i, j) E A, SIj is set}.

Similarly, a lower bound on the inbound service time of node i is

SIi = max{0, Sj : (j, i) E A, Sj is set}.

The main question in the lower bound construction is which spanning tree to use,

or equivalently, which arcs to drop from the network. One solution is to take any

tree independent of what we know about the parameters of the problem, such as lead

times, holding cost and so on. The tree can also be independent of the branching

process, i.e., it does not benefit from the fact that we might know some service times.

We call this a randomly-generated spanning tree.

Another possible spanning tree is what we call a smart tree. At any branching

point, a smart tree takes into account the service times assigned earlier in the branch-

ing tree. The tree is constructed by choosing specific arcs from the general network

that create spanning tree. When we choose the arcs for the smart tree, we first take

arcs (i, j) E A that have both Si and SIj unassigned. Only when we do not have this

kind of arcs, we include arcs (i, j) E A with assigned Si or SIj.

The main idea behind constructing a smart tree is that if arc (i, j) E A has both

Si and SIj assigned, the constraint Si < SIj is not violated. Therefore, if we remove

127

this arc, the spanning tree solution does not violate the constraint on the arc. Such

a tree has a better chance to give a higher lower bound than a solution of a random

tree.

We will test the tree construction ideas in Chapter 4.

Another question about the lower bounds is how many lower bounds (i.e., distinct

spanning trees) to consider for each branch as well as for the initial node of the

branch and bound tree. It is clear, that the more spanning trees we construct each

time we want to bound a solution, the more chance we have to get a tight lower

bound. However, constructing spanning trees and solving the problem on the trees

takes time. Therefore, we have to find an optimal balance between spending time on

computing better lower bounds and spending more time on branching. We address

this question in Chapter 4.

Good initial bounds can be achieved by computing more tree solutions in the

beginning. However, the number of the initial bounds has to be optimized as well.

We find that for sparse graphs, there is a high chance that a tree solution gives an

optimal solution of the general problem. Unfortunately, there are graphs for which

no tree produces an optimal solution for the general problem. Let us consider an

example of such network.

Example 7. Consider the graph shown on Figure 3-5 with parameters in Table 3.7.

The safety stock function in node i is

SSi(ri) = aiV7 + iTi,

128

Figure 3-5: The network for Example 7.

node 1 [2 3 4 5 6
T 2 9 12 19 14 19

s 15 11 1

16.13 20.38 8.98 6.48 19.77 20.05
1117.14 18.01 18.47 10.04 16.16 5.96

h . 39.04 47.7 20.74 61.87 91.13 84.73

Table 3.7: Parameters of the problem in Example 7.

where Ti = SI + Ti - Si.

An optimal solution is shown in Table 3.8. The optimal cost is 10354.72.

The network is a cycle with six arcs. Therefore, we construct a spanning trees by

removing one arc from the network. We can construct six different trees and solve

six different relaxed problems. The trees with the solutions are shown on Figure 3-6.

We see that no lower bound is equal to the optimal solution.

The example shows that computing many initial lower bounds need not solve the

general network problem.

Computing initial lower bounds and branching can be considered as two competing

methods for solving the safety stock problem. On one hand, we have the branching

Inode 1 l2 3 4 5 6

S 1219112115[11 I
SI 0 0 0 12 9 12

Table 3.8: An optimal solution for the network in Example 7.

129

Optimal cost 10212.68 Optimal cost 10094.49
S: 2 9 12 15 11 1 S: 2 9 0 15 11 1
SI: 0 0 0 12 9 9 SI: 0 0 0 2 9 0

Optimal cost 8545.98 Optimal cost 10120.39
S: 2 9 12 15 11 1 S: 2 0 0 15 11 1
SI: 0 0 0 12 9 12 SI: 0 0 0 2 0 0

Optimal cost 10297.13 Optimal cost 9391.60
S: 2 9 0 15 11 1 S: 2 9 12 15 11 1
SI: 0 0 0 09 9 9 SI: 0 0 0 2 9 12

Figure 3-6: Spanning trees and correspondent
ple 7.

relaxed problem solutions for Exam-

130

tree, which can be quite big for some problems. On the other, the lower bound from

the tree relaxation can find the optimal solution by chance, but there is no guarantee

that there is a tree that gives the optimal solution to the general problem as shown

in Example 7.

As we show in Chapter 4, on average, a good method to solve the general problem

is to combine the two methods. We can compute more and more bounds on the opti-

mal solution as we branch. For example, every time we compute the lower bound for

a branch using the bounds on the service times, we can also compute an unrestricted

version of the spanning tree problem to find the lower bound on the optimal solution.

3.2.3 Upper Bounds

Any feasible solution of the problem provides an upper bound to the optimal solution.

For example, the lower bound solution we obtained in the previous section can be

changed so that it becomes feasible as follows. The lower bound is characterized by

the set of outbound service times for all of the nodes. The set of inbound service

times of the nodes that correspond to the spanning tree solution is feasible for the

spanning tree we choose. However, it might be infeasible if we consider the set of

all arcs A. In order to make the solution feasible, we can, for example, increase the

inbound service time for each node until it satisfies all of the constraints implied by

the outbound service times, when we consider all arcs in A . The solution we get is

an upper bound on the optimal solution and we will call it a fixed solution.

More precisely, if (S1, . .., SN, SI1,..., SIN) is a solution obtained from a spanning

131

node 1 2 3 4 5 6

S 12 9 12 15 11 I

SI 0 0 0 12 9 12

Table 3.9: Fixed solution for Example 8.

tree relaxation, then we generate a feasible solution to the general network problem

as follows:

SIX = max{Sj - Tj, Si : (i,j) E A}.

Another way of defining a fixed solution is to let

S = min{(Si + Ti, SIj : (i, j) E A}.

We use one of the methods of fixing the solution in the implementation of the

algorithm in Chapter 4.

Example 8. Consider the problem from Example 7. The first spanning tree relaxation

on Figure 3-6 was constructed by removing arc (3, 6) from the network. The solution

to the relaxation is infeasible in the context of the general problem, because S3 = 12,

SI 6 = 9 and constraint S3 < SI6 does not hold. To fix the solution we increase SI6 to

be 12. Then the new solution is feasible and provides an upper bound on the optimal

solution. The new solution is shown in Table 3.9. The cost of the new solution is

10354.72.

3.2.4 Algorithm

We conclude the development of an algorithm for general supply chain networks by

132

Algorithm 7 Branch and bound algorithm
function computeGenMinCost
1: tree -- createTree
2: lowerBound - computeTreeMinCost(tree, 0, 0, 0, 0)
3: upperBound -- fixTree(tree)
4: if lowerBound = upperBound then
5: return lowerBound
6: end if
7: branch(1)
8: return upperBound

end function

procedure branch(k)
9: for all valid paths Pkj do

10: compute Si and SIi for all i E Pkj

11: if all Si and SIi valid then
12: set all Si and SI
13: bound()
14: unset all Si and SI
15: end if

16: end for

end procedure

procedure bound()
17: if all nodes have SI set then
18: branchCost - compute graph cost
19: if branchCost < upperBound then
20: upperBound e- branchCost
21: end if
22: else

23: tree -- createTree
24: branchLowerBound - computeTreeMinCost(tree, SI, S, SI, S)
25: branchUpperBound d fixTree(tree)

26: if branchUpperBoun d < upperBound then
27: upperBound +- branchUpperBoun d
28: end if
29: if branchLowerBound < upperBound then
30: k - next node without SI set
31: branch(k)

32: end if
33: end if
end procedure

133

formally stating the algorithm in Algorithm 7. This is a branch and bound algorithm

with the branching tree as described in section 3.2.1.

Here we comment on the notation used in Algorithm 7. In lines 1 to 6 of the

algorithm, we compute the initial bounds on the optimal solution. We first create

a spanning tree using procedure createTree (line 1). We have discussed ways to

create the tree in section 3.2.2. Then we compute the optimal cost of the problem

restricted to the tree network using Algorithm 5. Since at this point we do not

have any service times or bounds set, we pass 0 as the service times and bounds to

computeTreeMinCost. As discussed in section 3.2.3, we fix the tree solution using

procedure fixTree(tree) to obtain a feasible solution and an upper bound. Then, if

the initial upper bound is strictly greater than the lower bound, we proceed to the

branching starting from node 1.

Procedure branch(k) computes branches for node k using paths. In line 9, we

require path Pkj to be a valid path, where by valid we mean the conditions on the

path described in section 2.2.3. The paths can be generated by Algorithm 6. Then,

in line 10, we set Si and SIi along the path as specified in lemma 16 and corollary 5.

In line 11, by valid Si and SIi we mean all the service times set by the path that

satisfy constraints:

0 < Si < min{Mi, Si};

SI < SI < Mi - T.

After we bound the branch, we unset SIi and Si along the path in line 14.

We comment on procedure bound(). Lines 18 to 21 correspond to the case when

134

all the nodes in the network have the inbound service times assigned. Then we just

need to compute the cost of the branch in line 18. We compare the cost of the branch

branchCost and the current best solution upperBound in lines 19 to 21.

If some inbound service times of the network are not assigned, we execute lines

23 to 32. We create a spanning tree as we discussed in section 3.2.2 and solve the

spanning tree problem using Algorithm 5. In line 24, we pass assigned inbound

and outbound service times and bounds to procedure computeTreeMinCost of Algo-

rithm 5. After computing the lower bound for the branch, we fix the solution from the

spanning tree in line 25. Then we choose the best solution out of the upper bound of

the branch and the current best solution. In line 29, if the lower bound of the branch

is less than the current best solution, we go to the next node with the inbound service

time unassigned. Because some of the inbound service times of nodes i > k are set by

the path, we first need to find the next node that does not have its inbound service

time set. Then we branch using the inbound service times of this node (line 31).

The algorithm terminates with the optimal solution for the general network safety

stock problem. The solution does not depend on which order we process the nodes in

the network. However, in practice, it has been noticed that by using some orders of

the nodes, on average, we can compute the optimal cost faster than using others. In

Chapter 4 we show the performance of three ways of ordering the nodes. One order is

random, i.e., we assign numbers 1,..., N to the nodes at random. The second order

is the order of decreasing hi * ai. This order tries to process the most expensive nodes

first.

Finally, the third order is the layer order. We define the layer order as follows.

135

We first define the layers in the network. Node i belongs to layer Lk if the longest

path from node i to any demand node Pij = (i,..., j) has k + 1 nodes. By definition,

demand nodes belong to layer L1. Then, the layer order of the nodes in the network

assigns numbers 1, 2,..., 11 to the nodes of layer L 1, 11 + 1,..., 12 - to the nodes from

layer L 2, k- + 1... , k - to the nodes from layer Lk. That is, the nodes from layer

Lk have greater numbers than the nodes from layer Li, i < k.

As we will show in the Chapter 4, the layer order gives the best average compu-

tation time among the three order methods described.

3.3 Two-layer networks

In this section, we consider a special case of supply chain networks that have only

two subsets of nodes. The first layer is the set of components, and the second is the

set of demand nodes. Arcs are only possible between the layers with each arc going

from a component to a demand node. Let the number of components be m and the

number of demand nodes be 1.

We can give an interpretation for this kind of networks. The components are

inputs to the assemblies represented by demand nodes. An arc between a component

and an assembly means that the component is needed in the assembly.

Such networks were considered in Humair and Willems [2003] and called clusters

of commonality. Humair and Willems [2003] study a general network that consists

of several clusters of commonality, which are linked together into a spanning tree.

That is, when each cluster of commonality is assumed as a single, aggregated node,

136

the resulting network is a spanning tree. The biggest challenge, however, is to find a

solution for a general two-layer network. Therefore, here, we only concentrate on one

cluster.

One approach for solving the two-layer network problems is to apply the general

algorithm developed in section 3.2. As in the general algorithm, we can branch on

the inbound service times of the nodes in the network. Those values for node i are

computed according to the paths that start in node i and end in the other nodes of

the network. This method, however, does not take advantage of the structure of the

network.

Using the general method in the two-layer case unnecessarily creates too many

branches in the branching tree. Indeed, the number of paths that can be generated

from one node to another can be big and grows as the number of arcs increases. On

the other hand, we will show that for two-layer networks the inbound service time

of a demand node j is such that SIj < max{Ti, i E C} and for each component i,

SIi = 0. Therefore, we should be able to eliminate unnecessary values and paths.

3.3.1 Optimality conditions

For the algorithm to be the most efficient, we need to characterize the set of optimal

solutions. From the general case we know (see observation 1 from section 2.2.2) that

there always exists an optimal solution such that

* Sj=s, j D;

* Sli = O, i E C;

137

S4 = S4

SI4 =maxf S, S S4 -T)

S5 = S5

SI 4 = max{ S1, S3, s5 - }

S1 = ? S2= ? S3= ?

Sll=O S12=0 S13=0

Figure 3-7: The objective function depends only on the outbound service times
S1 , S2 , S3 .

* SIj = max{sj - Tj; S, for i: (i, j) E A}.

Therefore, we can consider the objective function as a function of outbound service

times {Si, i E C}. This observation is illustrated in Figure 3-7, where 4 and s5 are

known maximum service times for nodes 4 and 5. To specify the values of Si for each

node i, we prove the following lemma.

Lemma 18. If j is a component in a two-layer network, there are four possibilities

for the optimal service time Sj:

1. Sj = 0;

2. Sj = Tj;

3. Sj = Tk for Tk< Tj;

4. Sj = si - Ti for i E D and O < si - Ti < Tj.

Moreover, if S = Tk,Tk < Tj, then Sk = Tk.

138

Proof. Given that we set SIj = 0, the only constraints on the outbound service time

of a component j are:

Sj < Tj; (3.10)

Sj < SI, for (j, i) A (3.11)

Sj > 0. (3.12)

By the problem formulation, the safety stock function in node j decreases as Sj

increases. Therefore, Sj has to be maximum possible allowed by the constraints of

the problem, i.e.,

Sj = min{Tj, SIi : (j,i) E A}.

From the general case we know that there exists an optimal solution such that

SI, i E ID is determined by some path in the network. Since the network has only

two layers of nodes, any path alternates between the nodes from one layer and the

other.

Consider a path Pik that starts in node i, i E 1D. If node k e C, then SIk = 0,

and by the definition of Rik

Sh = Rik + SIk = T - T + Ti - Ti3 + .+ Tp_2 - Ti,_2 + Tk = Tk,

where i, i, i2 ,..., ip_l, k are the nodes in the path. Therefore, if Tk < Tj, Tk is a

possible value for Sj. We also notice that Sli,_, = Sk = Tk by lemma 15. Therefore,

Sj = Tk only if Sk = Tk.

139

Suppose k E D. Then since we stopped the path in the demand node, SIk =

max(0, Sk - Tk} and

SI = Rik + SIk = Ti, - T + Ti - Ti +. + Tip_ - Tip_, + SIk = max(0, Sk - Tk).

Therefore, if Sk - Tk > 0 and Sk - Tk < Tj, Sk - Tk is a possible value for Sj. This

concludes the proof of the lemma.

Lemma 18 shows how to simplify the calculation of the possible values using

paths. Because of the structure of the network, the possible values can be determined

without computing the paths.

3.3.2 Algorithm

In this section, we describe a branch and bound algorithm for the two-layer problem.

The algorithm uses lower and upper bounds developed in the later sections of this

chapter.

To specify the branching tree, we use the properties of an optimal solution. We

know that the objective function can be presented as a function of outbound service

times for the components only. By lemma 18, the outbound service times can take

only a finite number of values in an optimal solution. Therefore, the most natural

branching step is to try all possible values of Sj. However, we can simplify the

branching tree using lemma 18. In particular, we know that Sj = Tk < Tj only if

Sk = Tk. Therefore, we can eliminate the branch with Sj = Tk < Tj if Sk # Tk.

140

· *

0 · · 0 0 0 0 0 0

Figure 3-8: Branching tree for a two-layer problem with si < Ti, i E 1D.

Taking advantage of lemma 18, we can present the branching tree as follows. First,

we order the components in the order of increasing lead-times:

T1 . . , Tm.

At the first level of branching we let S1 = 0, S1 = T1 or S1 = Sr - Tr for all r E D

such that T1 > s, - Tr > 0. At the ith level of branching, we let Si = {0, T1, ... , Ti,

making sure that Si = Tk < Ti only if Sk = Tk earlier in the branching tree, and we

let Si = s, - Tr for all r E 1O such that 0 < sr - Tr < Ti. Figure 3-8 shows an example

of a branching tree with Sk < Tk for all k E I1D. We can search the tree using depth

first search or breadth first search.

The number of branches grows exponentially with the number of the components.

Even if each outbound service time Si, i E C, took only 2 possible values 0 and Ti,

at each level of branching there would be twice as many branches as in the previous

level. Therefore, the number of branches is at least 2m, where m is the number

141

of components. In the worst case, the algorithm is no better than the complete

enumeration of all possible solutions. Nevertheless, the algorithm terminates with an

optimal solution (Korte and Vygen [2002]) and benefits from the effective bounds

we use.

3.3.3 Lower Bounds

Two-layer network algorithm uses the same lower bounds as the general network

algorithm. For each branch, we construct a spanning tree in the network and apply

the tree algorithm from section 3.1. The creation of the spanning trees was discussed

in section 3.2.2 and we omit it here.

3.3.4 Upper Bounds

To obtain an upper bound on the optimal solution of the problem , we can fix the

tree solution, as described in section 3.2.3

The gap between the fixed solution and the optimal cost can be very large. The

size of the gap can depend on the number of removed constraints that are violated

by the spanning tree solution.

Example 9. To illustrate the statement of the last paragraph, consider the network

shown on Figure 3-9 with parameters specified in Table 4.26. In this and all other

examples we use

D(F) = koaV + Fl

as the upper bound functions of the demand. In this example, k = 1.

142

Figure 3-9: Two-layer network.

Inode s 11 2 3 4 5 6 7 8 9 I

T 3 5 6 7 10 4 11 3 5
s 4 3 8 2 4
h 4 4 2 1 12 2015 5 17

1120 25 16 30 30 17 25 16 21
a 1115 21 2 20 4 16 23 5 20

Table 3.10: Parameters of the network shown on Figure 3-9

Suppose the lower bound algorithm selects the tree presented on Figure 3-10. To

construct the tree the following arcs have been removed:

(2, 7), (2, 9), (4, 6), (4, 9).

Table 3.11 shows an optimal solution to the relaxed problem. The correspondent

optimal cost is 1569.3. The solution is infeasible in the original problem, since all the

constraints on the removed arcs are violated.

Figure 3-10: A tree chosen by the lower bound algorithm

143

nodes 1 2 13 4 5 6 7 8

S 507 4 3 8 2 4
SI 7 0000

Table 3.11: An

Table 3.12:

optimal solution to the problem shown on Figure 3-10

I nodes 1 2 3 4 5 1 6 7 8 9

S 0 507413824
SI 100071715107

The fixed solution for Figure 3-10

We fix the solution by adjusting the inbound service times for the demand nodes

(Table 3.12). The new solution is feasible with the cost 3154.4. The optimal cost for

the problem is 1754.6, which is 60% of the cost of the fixed solution.

Suppose, however, the lower bound algorithm selects the tree shown on Figure 3-11.

The removed arcs are

(2, 7), (3, 9), (4, 6), (4, 9).

The cost of the new relaxation is 1754.6 (Table 3.13). Furthermore, the solution

to the relaxed problem satisfies the removed constraints. Therefore, the cost of the

relaxation equals the cost of the fixed solution, the optimal solution.

This example shows that depending on the tree, the relaxation can some times

Figure 3-11: The second tree chosen by the lower bound algorithm

144

and Table 3.11

[nodes 1111 21314156171819

S 11010101014131812141
SI 000 0 0 0 0 00

Table 3.13: An optimal solution for the problem shown on Figure 3-11

yield very poor lower and upper bounds on the optimal solution, while other times,

the relaxation gives the optimal solution.

Here, we provide two simple algorithms for tightening the upper bound given

by a feasible solution to problem P. First algorithm searches for the best solution

among the solutions that satisfy a given ordering of the outbound service times for

components. The second algorithm searches for the best solution among the solutions

that satisfy a given ordering of the inbound service times for the demand nodes. We

first describe the former algorithm.

Suppose we are given a priori an order for the outbound service times for the

components:

S1 < S2 < ... < Sm.

For example, we might take the order from the fixed solution. Note that we may

renumber the components. We call the problem an ordered problem. In this problem

we look for the best solution of the problem P among the solutions that satisfy this

given order of the outbound service times for the components.

As before, we use the following notation:

SSi(Si, Sri) = hi(Di(Si + Ti - Si) - pi (SI, + Ti - i));

145

We use notation Sset[i] for the set of candidate values for Si for a component i

and

Sset[i] = {O; Tj < T, j E C;O < r - Tr < Ti, r E D.

Then we can solve the problem optimally by the following dynamic program.

Outbound service time upper bound algorithm

I. Define subsets of demand nodes:

1. Let L = {1,...,l1};

2. For i := m to 1

P = j: (i,j) E A,j E L;

L= L\Ri.

II. Find the optimal solution of the ordered problem:

1. For k :=1 to m

2. If k= 1,

fi (S) = SS1(Si,O) + EiER, SS,(si,max{S, si - T}),

Si E Sset[i];

3. If k #A1,

fk(Sk) = SSk(Sk, O)+ZiERk SSi(si, max{Sk, si-T})+mins{fk-1 (S),S E

Sset[k- 1],S < Sk},

Sk E Sset[k]

146

Figure 3-12: Subsets

2. Minimize f(Sm), Sm E Sset[m] to obtain the optimal objective function

value.

The first procedure defines subsets of the demand nodes Ri. For each node j in

subset Ri (i, j) E A, node i determines SIj.

The solution obtained is optimal by the principle of optimality for dynamic pro-

gramming.

As in the case of the spanning tree algorithm, functions fi() have a meaning in

terms of the cost of safety stock. For each component i and outbound service time

S, we say fi(S) is the minimum cost of safety stock of a a subset of nodes:

{i, Ri, i- 1, R, 1, Rl}.

The algorithm gives an optimal solution to the problem P if we have the right

ordering of the outbound service times for the components. It is not clear how best to

set the order and further research can be done in this direction. Nevertheless, for the

147

purpose of establishing an upper bound any order of the service times can be used.

Example 10. In this example, we continue working with the problem started in Ex-

ample 9. We solved the problem presented by the network on Figure 3-10 and obtained

the optimal solution (Table 3.11). To apply the upper bound algorithm, we renumber

the components in the order of increasing outbound service times. Now, node 1 has

number 2, node 2 has number 3, node 3 has number 1, and node 4 remains 4.

Using Part I of the algorithm, we divide the set of demand nodes into 4 sub-

sets (Figure 3-12):

R1 = 0,

R2= {8},

R3= {7},

R4= 5,6,9}.

Executing Part II of the algorithm, we find the optimal solution given this order

of the outbound service times of the components. The solution is the same as that of

presented in Table 3.13. Since the solution is the same for the upper and the lower

bound obtained from the tree on Figure 3-11, it is an optimal solution to the original

problem.

An observation about this example is that all the outbound service times are equal

in the optimal solution. Therefore, no matter what order of outbound service times

we use as an input to the upper bound algorithm the outcome is always an optimal

solution.

The second upper bound algorithm is similar to the outbound service time algo-

148

rithm, but assumes an order on the inbound service times of the demand nodes:

SI1 > ... > SI

where 1, . .., I are demand nodes.

We use notation Slset[i] for the set of possible inbound service times of demand

node i and

SIset[i] = {max{O, si - Ti}; Tj > si - Ti, j E C; Sr - Tr > max{O, si - Ti}, r E ID}.

Then the algorithm is as follows:

Inbound service time upper bound algorithm

I. Define subsets of components:

1. Let L = {1,...,1};

2. For i := 1 to 1

Ri = {j: (j,i) E A,j E L};

L=L\Ri.

II. Find the optimal solution of the ordered problem:

1. For k := 1 to

2. If k = 1,

9 (SI1) = SS1(S, SI1) + EiERl SSi(min{SI11,T,),

SI1 E Slset[l];

149

3. If k 1,

gk(Sk) = SSk(Sk, SIk)+ZieRk SSi(min(SIk, Ti), O)+minsI{gk- (SI), SI E

SIset[k - 1], SI > SIk},

SIk E SIset[k]

2. Minimize gl(SI), SI1 E SIset[l} to obtain the optimal objective function

value.

The solution obtained is optimal by the principle of optimality for dynamic program-

ming.

We can alternate between the inbound service time and outbound service time

algorithms to achieve a better upper bound. Suppose we first order the outbound

service times of the components. Then we apply the outbound service time algorithm

with this order to get a solution zl. The solution gives an order to the inbound service

times of the demand nodes. We can apply the inbound service time algorithm for this

order with the cost z2. Then we apply the outbound service time algorithm again.

We continue, by alternating the two algorithms.

We notice, that zl > z2 > Indeed, suppose the inbound service time algorithm

computed cost zi and then the outbound service time algorithm computed cost zi+l.

Since both solutions have the same order of outbound service times, zi > zi+l.

Alternating the algorithms as described is a finite procedure. Since all zi z,

where z is the optimal cost of the problem, and the number of possible service times

is finite, the procedure is finite. Therefore, the procedure terminates with the order

of inbound and outbound service times that can not be improved by either upper

150

bound algorithm.

151

152

Chapter 4

Computations

In this chapter we present computational results of implementing the algorithms from

Chapter 3. Our goals here are to demonstrate the performance of the algorithms. By

doing a series of experiments we show how to choose the parameters of the algorithm

to obtain the best performance.

The algorithms have been implemented in SUN Java 1.4 and the instances of

the problem were solved on Pentium IV 2.8 GHz with RAM 512 MB desktop run-

ning Windows XP. We measured the CPU time in milliseconds spent on solving the

instances. The time of generating instances is not included in the the results.

Now, we describe the generation of the safety stock problem instances on a network

with N nodes and M arcs.

* We first present the network as a node-node adjacency matrix A = [aij]. Ele-

ment aij of the matrix is 0 if the network does not have arc (i, j). If aij = 1,

then the network has arc (i,j) E A. We let aij = 1 with probability 2 To

153

create an acyclic network, we only allow arcs (i, j) such that i < j. If the re-

sulting network is disconnected, we connect the disconnected pieces by placing

an arc from a node with smaller number to a node with a bigger number such

that the arc connects two disconnected parts of the network. We only take the

networks that have exactly M arcs.

* We generate lead time Ti as a random variable uniformly distributed between 0

and 100, unless specified otherwise. A guaranteed service time si for a demand

node i is a random variable uniformly distributed between 0 and and 2Ti.

* As demand bound function for node i, we use

Di(r) = kai/-i + i-r.

pi and ri are defined in section 1.1.2. k is a parameter. We assume here k = 1.

* We use the following safety stock function in node i:

SSi(r) = Di(7) - iT = koiV.

* The cost of the safety stock in node i is

khiaiv = kHiv7.

We generate Hi as a random variable uniformly distributed between 0 and

100. We justify this generation of the cost function as follows. In a supply

154

chain, per unit holding cost hi increases from components to demand nodes. At

the same time, the standard deviation of demand vi typically increases from

demand nodes to components. Therefore, it is reasonable to let Hi = hiri to be

uniformly distributed in some interval.

* We set the limit of 10 minutes on the running time of the algorithm for one

problem instance. If necessary, we report the number of instances that exceed

the time limit.

We have designed a series of experiments to find the best settings of the algorithm.

Through Chapter 3, we discussed several parameters of the algorithms that have to

be explored computationally. We summarize the parameters here.

1. Node order. In section 3.2, we discussed three types of node order which is

used by the branching tree. The types are random, cost and layer. We repeat

here, that the random order processes the nodes at random. The cost order

numbers the nodes in the order of decreasing Hi = i * hi. The layer order

processes the nodes in layers starting from the layer of the demand nodes.

2. Tree type. In section 3.2.2 we discussed that we compute lower bounds at each

branch by a spanning-tree relaxation of the general-network problem. There are

many way of creating a spanning tree for the network. We generate the trees

in three ways.

* Same trees. Suppose, at each branch we want to generate k lower bounds

to obtain a better lower bound of the branch. The first way of generating

155

the spanning trees is to generate k random spanning trees and use these k

trees at each branching point. We call this the same tree method.

* Smart trees. The second method is to generate k smart trees as discussed

in section 3.2.2. We repeat here that we crate a smart tree by first inserting

arcs (i, j) E A with unassigned Si and SIj into the tree. Only then, if

necessary, we add the the arcs with Si or SIj assigned. We call this the

smart tree method. We note that because at each branching point different

service times are assigned, the trees may be different.

* Random trees. The third method is to generate k random trees and we

call this the random tree method. We generate k different spanning trees

at each point.

3. Number of initial bounds. The number of initial bounds is the number

of lower bounds and the number of corresponding upper bounds that are cal-

culated by fixing the lower bound solution. The bounds were discussed in sec-

tions 3.2.2 and 3.2.3. We compute the initial bounds before the algorithm starts

the branching process. These bounds are the bounds of the optimal solution of

the general problem.

4. Number of bounds per branching point (BBP). BBP is the number of

lower and corresponding upper bounds that are computed at each branching

point. Each bound at a branching point is computed using its own tree, as

described above (2).

156

5. Number of global bounds per branching point (GBBP). At each branch-

ing point we can compute additional bounds for the optimal solution to the gen-

eral problem. We note here, that these bounds are the same as initial bounds,

but computed after the branching process is started. The difference is that if the

algorithm has to compute k initial bounds, it will compute all of the k bounds

before starting the branching process. On the other hand, the algorithm can

have less than k branches to terminate with an optimal solution. Therefore, in

this case it computes less than k global bounds.

6. Tolerance limit. If the tolerance limit is 0, then the algorithm terminates

with an optimal solution. For tolerance limit x% > 0, the algorithm terminates

with a solution such that the difference between the best upper bound and the

best lower bound is x% of the best upper bound. We achieve this tolerance

limit by bounding each branch allowing x% gap between the best lower and the

best upper bound for the branch. Since an optimal solution belongs to one of

the branches, the optimal solution is within x% of the best upper bound.

For each experiment, we generate a number of random instances and specify the

setting of the experiment. We summarize the settings in a table similar to Table 4.1.

Table 4.1, shows the parameters discussed above.

Experiment 1. Spanning tree computations

In section 3.1, we showed how to improve the performance of the algorithm

from Graves and Willems [2000] for safety stock problem for a supply chain modeled

as a spanning tree. The algorithm described in the paper, is a pseudo-polynomial

157

nodes N
arcs M
node order cost, layer, random
tree type same, smart, random
initial bounds
bounds per branching point
global bounds per branching point
tolerance limit
number of instances

Table 4.1: Summary of the experiment settings.

nodes 20
arcs 25
node order random
tree type random
initial bounds 1
bounds per branching point 1
global bounds per branching point 0
error 0
number of instances 100

Table 4.2: Settings for Experiment 1.

158

time algorithm. The new algorithm is polynomial.

Here, we show the importance of having a polynomial time algorithm for the tree

networks. We use the spanning tree networks to obtain the lower bounds for the

general problem (section 3.2.2). Since the general branch and bound algorithm uses

the tree algorithm repeatedly, it is important to be able to solve the problem for a

spanning tree fast.

We demonstrate the difference between the polynomial and pseudo-polynomial

time algorithms with the following example. We solve a general network problem

by branch and bound algorithm from section 3.2, first using the pseudo-polynomial

algorithm and then using the polynomial algorithm. We generate random networks

with 20 nodes and 25 arcs. To see the difference, we let the lead time at each node

be a random variable uniformly distributed in the interval [0, Tmax]. We vary Tnax

from 10 to 360. For each value of Tmax, we generate 100 instances of the safety stock

problem and solve them first by the branch and bound algorithm with polynomially

computed bounds. Then we solve the same instances by the same algorithm, but

with pseudo-polynomially computed bounds.

Table 4.2 shows the parameters of the experiments.

Table 4.3 presents the results of the computations. The first column is Tmax.

The second and the third columns have the average times of solving the general

network problem (Table 4.2) with the lower bounds computed using polynomial and

pseudo-polynomial algorithms respectively.

Figure 4-1 shows the average time of solving a general network safety stock prob-

lem with the bounds computed by the polynomial time spanning tree algorithm. The

159

Max lead time [Polynomial Pseudo-polynomial

10 88 100
60 82 670
110 83 1938
160 83 3734
210 65 6483
260 81 9475
310 81 13309
360 62 17917

Table 4.3: Average time per instance in milliseconds for Experiment 1.

I-- Polynomial |

10 60 110 160 210 260 310 360

Maximum lead time

Figure 4-1: Average time of solving a general network problem with 20 nodes and 25 arcs
using polynomial bounds.

160

140

120

100

08,

ECO
._cC
8)
E
I-

80

60

40

20

0o

I \ LL _

--- Pseudo-polynomial --- Polynomial

20000

18000

16000

14000

6000c:0 12000a) 8000OO
E

6000

2000

0 -
10 60 110 160 210 260 310 360

Maximum lead time

Figure 4-2: Average time of solving a general network problem with 20 nodes and 25 arcs
using polynomial and pseudo-polynomial bounds.

average time is presented as a function of Tmax. Figure 4-2 shows the average time

of solving a general network safety stock problem with the bounds computed by the

pseudo-polynomial time spanning tree algorithm. For a comparison, the results of

the general algorithm with polynomial bounds are depicted on the same figure.

From the computational experiments, we see that the average time of running

the general algorithm with the polynomial bounds stays approximately the same for

different Tmax. At the same time, the average time of running general time algorithm

with the pseudo-polynomial bounds increases when Tmax increases.

Experiment 2. Node order

In this experiment we test different orders of nodes to use in the branch and

bound algorithm. We discussed three ways to order the nodes in section 3.2 - a

161

random order, a cost order and a layer order. Here, we test each ordering to find the

best way.

We set up the experiments as follows. We randomly generate 1000 graphs with 30

nodes and 38 arcs. Then we apply the branch and bound algorithm for the general

networks with the three types of node order. We choose the settings for the algorithm

as shown in Table 4.14.

As we see in Table 4.5, the average time as well as the average number of branching

points is smallest if we use the layer order. Therefore, in the remaining experiments,

we use the layer order, as we conjecture that it is the best order among the three

ordering schemes.

Experiment 3. Type of tree for the lower bounds

In this experiment, we examine what type of tree is the best to use for creating

lower bounds. In section 3.2.2 we described two possible types of tree - smart tree

and random tree. Here, we use both for the lower bound computation and compare

the average time of solving the general safety stock problem.

The settings of the experiment are specified in Table 4.6. We generate 500 random

networks with 20 nodes and 30 arcs. Each of the 500 safety stock problems on the

networks is first solved with the lower and upper bounds generated by the random

trees, and then with bounds generated by the smart trees.

To identify a better method between the two, we vary the number of lower bounds

computed per branching point (BBP). We start with 1 bound, and consequently, with

one tree per branching point. We repeat the experiment with k = 2,... ,19, where

162

we create up to k trees per branching point, and compute up to k lower bounds for

the branch. If any of the lower bounds equals or exceeds the current best solution of

the problem, the branch is not explored further.

In addition to the two methods of generating the spanning trees, we use another

method. We call the tree generation in this method as same tree generation. By the

same tree we mean, that for each instance of the problem, we first generate k random

spanning trees, where k is the maximum number of lower bounds per branching

point. The only parameters that are different at each branching point are the set

service times and the bounds on the service times.

It is interesting to compare the first two methods to this method, because in this

method the algorithm spends time generating the k spanning trees only once in the

beginning. At the same time, the other two methods must spend time to generate

new trees at each branching point.

The results of the computations are presented in Table 4.7 and Figure 4-3. The

average time is presented as a function of bounds per branching point (BBP). We

see, that the random tree method performs the best in terms of average running time

compared to the other two methods.

Table 4.8 and Figure 4-4 show the average number of branching points generated

by the algorithm when the algorithm used the three methods of tree creation. We

observe that all three methods require fewer branching points as BBP increase. This

seems reasonable, since k BBP generate no worse bounds than I < k BBP.

From Table 4.9 and Figure 4-5 we can explain the difference in the average time

between the three methods. We see, that the average total number of computed

163

I--Same trees -- Smart trees -- Random trees

8000

7000

C

/4 000

00

2000 C 4000a,

O! - * & - *0
1 3 5 7 9 11 13 15 17 19

Number of bounds per branching point

Figure 4-3: Average time in milliseconds for Experiment 3 to choose same, smart or
random trees for the lower bounds.

bounds increases for the same tree method. The random tree method computes the

least number of lower bounds among the three.

Intuitively, the result is expected. The same trees do not give lower bounds that

differ much from branching point to branching point. Similarly, the way the smart

trees are generated, does not give too much variability either. Indeed, to create a

smart tree, the method first takes arcs (i, j) E A such that SIj and Si are not set.

Only then, it considers the arcs with some of the service times set. On the other

hand, the random tree method creates many different trees and has a better chance

of generating better bounds.

Experiment 4. Initial bounds vs. bounds per branching point

In this experiment, we solve the problem for different combinations of number of

164

nodes 30
arcs 38
node order cost, layer, random
tree type random
initial bounds 10
bounds per branching point 10
global bounds per branching point 0
tolerance limit 0
number of instances 1000

Table 4.4: Settings for Experiment 2 to choose random, cost or layer node order.

Cost I Layer I Random
Time . 2387 927 3108
Branching points 14264 6793 13873

Table 4.5: Average time in milliseconds and average number of branching points for
Experiment 2 to choose random, cost or layer order.

--- Same trees -- Smart trees -- Random trees

70000

60000

' 50000

Q.

'F 40000
0
C

c.0

'o 30000

E
_ 20000

10000

0
1 3 5 7 9 11 13 15 17 19

Bounds per branching point

Figure 4-4: Average number of branching points for Experiment 3 to choose same,
smart or random trees for the lower bounds.

165

nodes 20
arcs 30

node order layer
tree type same, smart, random
initial bounds 1
bounds per branching point 1-19
global bounds per branching point 0
tolerance limit 0
number of instances 500

Table 4.6: Settings for Experiment 3
bounds.

to choose same, smart or random tree for lower

BBP Same trees Smart trees Random trees

1 1438 585 577
3 2212 699 306
5 3025 716 253
7 3660 617 209
9 4300 611 223
11 5124 531 203
13 5947 508 203
15 6812 477 206
17 7668 475 209
19 8476 491 210

Table 4.7: Average time per instance in milliseconds for
smart or random trees for the lower bounds.

Experiment 3 to choose same,

initial bounds and bounds per branching point. We solve 100 instances of the general

problem with 20 nodes and 30 arcs. We vary the number of initial bounds between

10 and 200. For each value of initial bounds, we vary the number of bounds per

branching point between 1 and 20. The average running time of the algorithm is

summarized in Table 4.11.

In Figure 4-6, we plot the average time as a function of bounds per branching point

for different numbers of initial bounds. We notice, that the best value of bounds per

branching point does not depend on the number of initial bounds. Any number of

166

BBP Same trees Smart trees Random trees
1 65707 16696 18006
3 65707 16333 6396
5 65707 14103 4340
7 58612 10469 3501
9 55231 8749 3063
11 51840 6816 2792
13 50154 5746 2585
15 48777 4993 2435
17 47833 4570 2315
19 46703 4427 2197

Table 4.8: Average number of branching points
smart or random trees for the lower bounds.

for Experiment 3 to choose same,

BBP Same trees Smart trees Random trees

1 65708 16697 18007
3 100089 19511 8274
5 134470 19403 6373
7 147238 16148 5477
9 163784 15029 5085
11 176218 12589 4863
13 192615 11424 4696
15 208547 10457 4587
17 225494 10140 4511
19 240199 10308 4406

Table 4.9: Average total number of computed lower bounds for Experiment 3 to
choose same, smart or random trees for the lower bounds.

167

I- Same trees - - Smart trees -- Random trees

JwUUW

.' 250000

0

3 200000

a)

E 150000
8o

a)
.0 100000
E
:3
C

- 50000

0
1 3 5 7 9 11 13 15 17 19

Bounds per branching point

Figure 4-5: Average number of generated trees for Experiment 3 to choose same,
smart or random trees for the lower bounds.

bounds per branching point between 10 and 20 on average gives the best running

time.

In Figure 4-7, we plot the average time as a function of initial bounds for different

numbers of bounds per branching point. We notice, that the best value of initial

bounds does not depend on the number of bounds per branching point. Any number

of initial bounds between 30 and 200 on average gives the best running time.

As a conclusion, we conjecture that the two parameters are independent. In

the subsequent experiments, we will treat them as independent and optimize them

separately.

Experiment 5. Initial bounds

In this experiment we show that best results for the number of initial bounds

168

I- 10 20 30 50 -f 70 --- 100 -+-200 1

,,, . - -_ . _

500

450

400

350

300

250

200

150

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of bounds per branching point

16 17 18 19 20

Figure 4-6: Average time in milliseconds for solving a problem with 20 nodes and 30
arcs as a function of the number of bounds per branching point, for different numbers
of initial bounds in Experiment 4.

169

co

C
000
.)
E
C
a)
E
I-

100

50

0

-4--1 --- 3 5 ..-.-7 -- *9 -- 11 -- 13 -15 -- 17 19

500

450

400

350
C)

0 300
o

= 250
E

E 200
E

150

100 - __ __ _

50 _ __

0
10 20 30 50 70 100 200

Number of initial bounds

Figure 4-7: Average time in milliseconds for solving a problem with 20 nodes and 30
arcs as a function of the number of initial bounds for different numbers of bounds per
branching point in Experiment 4.

170

nodes 20
arcs 30
node order layer
tree type random
initial bounds 10 to 200
bounds per branching point 1 to 20
global bounds per branching point 0
tolerance limit 0
number of instances 100

Table 4.10: Settings for Experiment 4.

varies with the size of the graph. In section 3.2.2 we saw that the lower bounds as

constructed in the algorithm can give an optimal solution or a good approximation

of the optimal solution. The more initial lower bounds we compute, the more chance

we have to get a better bound. However, computing more initial bounds often is not

necessary and the algorithm can terminate faster by branching.

In this experiment, we consider 100 instances of the general problem with 20 nodes

and with number of arcs being 20, 23, 26,... ,44. The settings of the experiment are

in Table 4.12. For each instance of the problem, we vary the number of initial bounds

from 10 to 2000. We measure the average time of solving the problems.

The results of the computations are presented in Table 4.13. Figure 4-8 shows the

average time of solving a problem with 20 nodes and 20 and 23 arcs as a function of

the number of initial bounds. We observe, that setting the number of initial bounds

to 50, gives the best time on average. If the number of initial bounds is more or less

than 50, the average time to solve these problems increases.

In Figure 4-9, we see that the optimal number of initial bounds increases when the

number of arcs increases. For the graphs with 20 nodes and 41 arcs, the number is

171

BBP 10 1 20 30 50 1 70 11001 200

1 433 316 307 316 293 310 271
2 291 220 213 219 204 223 189
3 243 173 169 187 164 172 162
4 232 156 153 168 151 149 146
5 211 145 141 156 139 139 139
6 199 144 135 151 133 134 135
7 193 136 133 148 131 133 130
8 188 132 130 148 132 128 132
9 179 130 129 146 124 127 129
10 187 131 128 146 125 130 127
11 180 131 126 145 124 124 128
12 188 131 128 145 123 128 129
13 178 127 124 142 126 128 128
14 181 129 126 124 137 122 128
15 180 131 127 126 146 128 130
16 182 132 126 124 147 128 130
17 174 132 129 125 147 127 133
18 177 133 131 129 151 130 134
19 179 131 128 126 147 128 135
20 182 135 131 131 150 130 135

Table 4.11: Average time in milliseconds for Experiment 4 to solve a problem with
20 nodes and 30 arcs with 1 to 20 BBP and 10 to 200 initial bounds (IB).

172

nodes 20
arcs 20 to 44
node order layer
tree type random
initial bounds 10 to 2000
bounds per branching point 15
global bounds per branching point 0
tolerance limit 0
number of instances 100

Table 4.12: Settings for Experiment 5.

Initial bounds

10
20
50
100
200
500
1000
2000

20 23 26 29 32 J 35 38 [41 J 44

4 16 42 195 214 2951 1657 3375 9810
3 15 39 191 198 3023 1583 3185 9281
3 15 37 186 176 2885 1464 3031 6791
3 15 38 189 170 2817 1244 2797 6340
3 17 42 189 163 2826 1201 2610 6135
5 24 53 186 168 1483 1085 2471 6048
7 36 75 221 202 1557 1102 2411 5594
12 58 121 272 276 1509 1142 2425 5524

Table 4.13: Average time in milliseconds for Experiment
20 nodes and 20 to 44 arcs with 10 to 2000 initial bounds.

5 to solve a problem with

1000. Intuitively, this result follows from the fact that as the number of arcs increases,

the number of spanning trees increases. Therefore, to create good bounds we have to

try more spanning trees. Figure 4-10 shows the best number of initial as a function of

the number of arcs. The figure also includes an exponential regression line, showing

the exponential trend.

We conclude, that to achieve the best running time of the algorithm, we need to

find the best number of initial bounds as well as the number of bounds per branching

point. Notice, we used 15 for the number of bounds per branching point, however,

another number might give better average time. For a given number of bounds per

173

Number of arcs

.

[-20 -23
70

50 __ ______ _

E
' 30

E_
-

20

10 20 50 100 200 500 1000 2000

Number of initial bounds

Figure 4-8: Average time in milliseconds for solving a problem with 20 nodes and 20
and 23 arcs as a function of the number of initial bounds in Experiment 5.

branching point, one can use the trend line to estimate the best number of initial

bounds. For example, for 20 nodes, for our implementation of the algorithm, the

trend line in Figure 4-10 is

initial bounds = 0.25e 2 * numb er of arcs

Experiment 6. Number of global bounds per branching point (GBBP).

In Experiment 5, we concluded that we have to find the best number of initial

boundsboundsounds per branching point. Here, instead of finding the best number of

initial bounds, we compute a number of global bounds at each branching point.

The goal of this experiment is to establish the number of global bounds per branch-

174

4000

3500

3000

c 2500

= 2000

E 1500

1000

500

10 20 50 100 200 500 1000 2000

Number of initial bounds

Figure 4-9: Average time in milliseconds for solving a problem with 20 nodes and 41
arcs as a function of the number of initial bounds in Experiment 5.

ing point to compute. Here, we assume that we compute at least one global bound

at each branching point in addition to the branch-specific bounds that are computed

in the branching point. We also want to show that the number of GBBP does not

depend on the number of bounds per branching point (BBP). To do that, we vary

both BBP and GBBP.

The settings of the experiments are presented in Table 6. We generate 100 random

instances of the general problem with 30 nodes and 40 arcs. We solve each problem

by applying the branch and bound algorithm with k bounds per branching point and

I global bounds per branching point. We vary k from 1 to 29 with step 2. We vary 1

from 1 to max{10, k} with step 1.

The results of the experiments are shown in Table 4.15 and Figure 4-11. In the

175

I -- Initial bounds - Trend line

200

'D

=3
0 150
r-

.D 100

E

50

20 25 30 35 40 45

Number of arcs

Figure 4-10: The best number of initial bounds as a function of the number of arcs
in Experiment 5.

176

nodes 30
arcs 40
node order layer
tree type random
initial bounds 1
bounds per branching point 1 to 29
global bounds per branching point 1 to max{10, BBP}
tolerance limit 0
number of instances 100

Table 4.14: Settings for Experiment 6.

table and the figure, we only show the results for a selected number of BBP. However,

the results that are not stated here support the same conclusions. In particular, we see

that the number of global bounds per branching point should be at most 1. For any

number of bounds per branching point, the average time increases as the number of

global bounds per branching point increases. From this result we conjecture, that at

least for the sparse graphs, the number of global bounds computed at each branching

point is at most 1 independent of the number of bounds computed to bound each

branch.

We note, that the number of GBBP can be 0 or between 0 and 1. The result of

Experiment 6 just states that if we compute global bounds in each branching point,

then we do not need to compute more than 1 global bound per branch. We note, that

the experiments with GBBP=0 are in Experiment 5.

Experiment 7. Bounds per branching point for 1 GBBP

In this experiment we compute one global bound per branching point. For different

number of nodes and arcs we vary the number of bounds per branching point.

Table 4.17 shows the average time of solving a problem with 20 nodes and 20 to

177

- - -- - - - : -Co m3 CD SD sc Co 4s cn C ~
Q11 Q 11111 Q1 Q1 Q QQQ QQQ

W W W W W W W -W W W W

tdl tdl bt WI td~ t~ t~ t 0 C1 01 W p w

O Ls Cn CD tDW

_ _ _ _ _ _ Co oo W

o m C o D W

- -- - - - - -~~~~~~C= c-i CNDW to N) Oo

C O O OQlC O W_ _ - - - 4 *~cnoC o Co C31 W-A CD

n C 01) C

CF O Se 00 C

o 4 00 c) 4- --C1

F- Cm cn W Ooo oP Co P o W00 41) N 0 C :)C.

Q0 00 Cc) W-1) o 0~-,ND D c CF00 ol --4 C) j

o _0 a) VI _ CD __ _oo _ _ CO ~l00 4100) 0 --'co CPI
CP t) C)C" t-

w a) CP t) N) .0 00 0

oo 0) C NDC) tD C 4. t 1 w 0 , cq CD C4~
C) ~- C 00Cil) 0 tQ-I C --4 cn C~ 0 W

178

WCD

.

CD

CD
cn

0C D.oCD

CD

CrD

oC~

t~

-- �-

L- B1 BBP --- 3 BBP 5 BBP -7 BBP --- 11 BBP -- 29 BBP

8000

7000

cu 6000
-o
C
00
() 5000

E
c 4000
a)
E
- 3000

2000

1000

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Global bounds per branching point

Figure 4-11: Average time in milliseconds for solving a problem with 30 nodes and
40 arcs for different number of BBP as a function of GBBP in Experiment 6.

44 arcs. Figure 4-12 presents the average time for 20 and 23 arcs as a function of

bounds per branching point. We notice, that there is a value of BBP which gives the

best average running time - 1 BBP for 20 arcs and 5 BBP for 23 arcs. The value

increases as the number of arcs increases. For example, Figure 4-13 shows the average

time for 41 arcs. The best value of BBP is 17.

If we plot the best BBP value as a function of the number of arcs (Figure 4-14),

we observe that there is a linear relationship. Therefore, we suggest that an effective

way to choose the best value of BBP is to use the value given by the regression line

for the given number of nodes and arcs. For example, in our implementation, for 20

179

nodes 10 to 50
arcs between 10 and 65
node order layer
tree type random
initial bounds 1
bounds per branching point between 1 and 30
global bounds per branching point 1
tolerance limit 0
number of instances 100

Table 4.16: Settings for Experiment 7.

20 1 23 26 29 32 35 1 38 1 41 f 44

3 28 114 362 551 4511 8392 7042 15041
3 16 61 241 280 2657 3429 4000 8848
3 14 48 218 234 1956 1971 3544 7904
3 14 42 225 212 1736 1585 3138 7128
4 15 43 213 204 1635 1464 3038 6805
5 16 42 207 204 1893 1360 2901 6524
6 16 42 201 201 1838 1331 2866 6283

7 19 45 211 200 1771 1325 2872 6285
8 21 47 183 205 1617 1303 2755 6333

9 22 50 182 205 1598 1304 2757 6211

Table 4.17: Average time in milliseconds for Experiment 7
20 nodes and 20 to 44 arcs with 1 GBBP and 1 to 19 BBP.

to solve a problem with

nodes the best value of BBP is estimated by

BBP = 1.2 * arcs - 23.

We present the average time of solving the problem with 30 nodes and 30 to 51

arcs as a function of BBP in Table 4.18 and Figure 4-15. We observe a drop in the

average time from 1 to 10 BBP, while the higher values in the graphs do not change

the time significantly, creating a flat area. For very sparse graphs, with 30 to 33 arcs

180

Arcs
BBP

1

3
5
7
9
11

13
15
17
19

---- .

-20 -- 23

coVC00

a)E

1 3 5 7 9 11 13 15 17 19

Number of bounds per branching point

Figure 4-12: Average time in milliseconds for solving a problem with 20 nodes and
20 and 23 arcs as a function of the number of bounds per branching point in Experi-
ment 7.

181

-4-41

8000

7000 A_ _______

6000

o)

0c 50000
8D
._
' 4000
E
C

E 3000

2000

1000

1 3 5 7 9 11 13 15 17 19

Number of bounds per branching point

Figure 4-13: Average time in milliseconds for solving a problem with 20 nodes and
41 arcs as a function of the number of bounds per branching point in Experiment 7.

there is no significant change in time with BBP.

In Table 4.19 we report the number of instances of the problem with 30 nodes for

which the algorithm failed to calculate an optimal solution within 10 minutes. For

all other settings, 100% of of networks were solved under 10 minutes. We see that

the number of instances depends on the number of arcs and BBP. We observed such

instances only for the graphs with 48 and 51 arcs. Also, we note that there were no

failed instances for 29 BBP.

We have observed the same pattern for the entire range of graph sizes that we

have tested. For the problem on the graphs that we were able to solve in less than

10 minutes, 15 BBP is a good practical value. For the very sparse graphs, the best

time is within milliseconds of the time with 15 BBP. For the other graphs, 15 BBP

182

[--BP _Trend ine

20 -

C 14

T 12E.

0-C

z4

20 22 24 26 28 30 32 34 36

Number of arcs

Figure 4-14: The best number of bounds per branching point as a function of the
number of arcs for 20 nodes in Experiment 7.

results in near optimal times.

15 BBP can also be used as a practical value in the case when GBBP=0 and

various numbers of initial bounds.

Experiment 8. Computing initial bounds vs. computing global bounds at

every branching point

The settings of this experiment are the same as in Experiment 5 and 7 (see Ta-

bles 4.12 and 7).

In this experiment, we compare the best running times of two methods. The first

method, evaluated in Experiment 5, computes all the global bounds initially. We

call the method as the IB method. The second method, evaluated in Experiment 7,

183

Arcs
BBP 30 33 36 39 42 45 48 51

1 24 169 1135 3764 7336 16377 37635 73615

3 12 79 551 1628 3521 7041 26707 45360

5 14 79 462 1426 2779 5767 21105 37525

7 14 81 427 1356 2210 5031 17482 31419

9 17 83 412 1306 2030 4666 15886 29524

11 21 88 419 1292 1879 4371 15330 29397

13 22 89 419 1394 1815 4298 14943 26975

15 24 100 402 1441 1717 4150 14042 26028

17 23 94 417 1461 1725 3887 13564 25744
19 25 104 409 1296 1679 4057 13366 24770

21 29 101 407 1266 1694 3872 13259 23723
23 29 112 444 1350 1774 3775 12627 24167

25 31 117 433 1296 1733 3929 12741 23792

27 37 129 428 1332 1696 3932 12619 23372
29 . 38 127 433 1359 1792 3825 12945 33643

Table 4.18: Average time in milliseconds for Experiment 7 to solve a problem with
30 nodes and 30 to 51 arcs with 1 GBBP and 1 to 29 BBP.

I---42-TRUE -- 45-TRUE - 48- TRUE -- 51 -TRUE

(a

a,

c
E

E

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Number of bounds per branching point

Figure 4-15: Average time in milliseconds for solving a problem with 30 nodes and 42
to 51 arcs as a function of the number of bounds per branching point in Experiment 7.

184

BBP
1

3
5
7
9
11

13
15
17
19
21

23
25
27
29

Arcs
48 [51

2 3
0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

O 07-- -
1

.W

. -O -
1-

Table 4.19: The number of instances with 30 nodes and 48 and 51 arcs that were not
solved to optimality in 10 minutes in Experiment 7.

computes one global bound per branching point. We call the method as the GBBP

method. We do the comparison while keeping the other relevant parameter, the num-

ber of bounds per branching point, at the practical value determined in Experiment 7,

namely 15.

Table 4.20 shows that the IB method has the best average for the majority of

the tested problems. Table 4.21 contains the number of instances that the methods

failed to solve in 10 minutes. We notice, that there are no more than 2% of such

instances among the tested problems and both methods give similar numbers. The

algorithms still can solve the instances. For example, additional computations show

that the instance reported in Table 4.21 with 50 nodes and 59 arcs can be solved in

30 minutes by the GBBP method.

185

[Nodes [[Arcs GBBP best time IB best time Best Method
20 20 7 3 IB
20 23 19 15 IB
20 26 45 37 IB
20 29 211 186 IB
20 32 200 163 IB
20 35 1771 1483 IB
20 38 1325 1085 IB
20 41 2872 2411 IB
20 44 6285 5524 IB
25 25 19 10 IB
25 28 36 23 IB
25 31 80 69 IB
25 34 225 182 IB
25 37 384 298 IB
25 40 2823 2307 IB
25 43 2806 2592 IB
25 46 7579 6588 IB
25 49 19502 17491 IB

30 30 13 3 IB
30 33 53 33 IB
30 36 214 185 IB
30 39 766 566 IB
30 42 913 744 IB
30 45 2208 1890 IB
30 48 7469 6103 IB
30 51 13845 12265 IB
35 35 22 4 IB
35 38 227 181 IB
35 41 491 442 IB
35 44 2648 2916 GBBP
35 47 2282 1926 IB
35 50 7325 6950 IB
35 . 53 17990 23051 GBBP
40 40 37 20 IB
40 43 87 55 IB
40 46 1484 1083 IB
40 49 1853 1548 IB
40 52 4905 4399 IB
40 55 17545 18112 GBBP
40 58 21737 20867 IB
50 50 128 39 IB
50 53 502 152 IB
50 56 1119 1142 GBBP
50 59 2061 1750 IB
50 11 62 26623 18945 IB

Table 4.20: Best average time per instance in milliseconds for the two methods in
Experiment 8.

186

[Nodes [Arcs GBBP IB

30 51 0 1

35 53 1 1

40 52 0 1
40 58 2 2
50 59 1 1

50 62 1 1

Table 4.21: The number of instances not solved in 10 minutes by IB and GBBP
methods in Experiment 8.

Obtaining the best running time for the IB method requires optimizing the num-

ber of initial bounds in addition to optimizing the number of bounds per branching

point. At the same time, obtaining the best running time for the GBBP method,

only requires optimizing the number of bounds per branching point as shown in Ex-

periment 6. To optimize BBP, we find that choosing 15 works well for the problems

considered here. But optimizing the number of initial bounds for the IB method is a

more difficult task. In addition, the best average times of the GBBP method are close

to the times obtained by the IB method. As a conclusion, the GBBP is a practical

method with 1 global bound per branching point and 15 branch-specific bounds per

branching point.

Comparing the average times of solving the safety stock problem using the al-

gorithm described in the thesis to the times shown in Magnanti et al. [2004], we

observe the following. For the instances that we solved, the times are comparable

to those shown in Magnanti et al. [2004]. Moreover, even though the experiments

were performed on computers with different speed (Pentium III 750 MHz in the case

of Magnanti et al. [2004]), we expect the instances with small number of nodes to be

187

solved faster by the algorithm presented here. On the other hand the instances with

more than 50 nodes are solved faster by the algorithm from Magnanti et al. [2004].

However, Magnanti et al. [2004] do not report experiments with the same range of

arcs and nodes that are reported here. In addition, the authors only report compu-

tational times for problems that could be solved to optimality and do not report the

number of instances that are or are not solved.

Finally, we show an example of the time distribution for the GBBP method. We

consider 100 networks with 50 nodes and 62 arcs. According to Table 4.20, the

algorithm solves a problem of this size in 27 seconds on average for the instances

solved under 10 minutes. For this set, 99 out of 100 instances were solved in n under

10 minutes. In Table 4.22 we see the time distribution of solving the problems. We

notice, that 87% of the instances were solved under 25 seconds. Also, the median time

is under 4 seconds. This shows that the algorithm is faster than the reported average

times most of the time. However, the outliers drive the average up. For example, the

instance reported in Table 4.21 with 50 nodes and 62 arcs that the GBBP method

failed to solve in 10 minutes was solved in 58 minutes.

Experiment 9. Tolerance limit

In this experiment, we show the performance of the algorithm for different toler-

ance limits. The settings of the experiment are summarized in Table 4.23. We solve

the general problem with 100 nodes and 100 to 125 arcs. We generate 100 instances

of each type and then solve them for 2%, 5% and 10% tolerance limits. The results

are presented in Table 4.24 and in Figure 4-16. The number of instances that the

188

Time Frequency
1000 13%
2000 24%
3000 11%
4000 11%
5000 7%
6000 6%
7000 1%
8000 2%
9000 1%
10000 2%
11000 1%
12000 0%
13000 0%
14000 1%

15000 0%
16000 1%

17000 2%
18000 0%
19000 0%
20000 2%
21000 0%
22000 1%

23000 1%
24000 0%
25000 0%

> 25000 13%

Table 4.22: Time distribution of solving
the GBBP method in Experiment 8.

an instance with 50 nodes and 62 arcs by

189

nodes 100
arcs 100 to 123
node order layer
tree type random
initial bounds 10
bounds per branching point 15
global bounds per branching point 1
tolerance limit 2%, 5%, 10%
number of instances 100

Table 4.23: Settings for Experiment 9.

algorithm failed to solve in 10 minutes are shown in Table 4.25.

From this experiment, we conclude, that the algorithm can obtain an estimate

of the optimal solution fairly quickly. For the considered graphs, the 10% tolerance

limit can be achieved in under 20 seconds on average.

Experiment 10. Two-layer network algorithm

In this experiment we test the performance of the two-layer network algorithm.

The experiment settings are in Table 4.26. We solve two-layer network problems with

20 to 80 nodes and vary the number of arcs. We generate 100 instances of each type

of network.

We use the following additional settings of the algorithm. In section 3.3.4, we

described two algorithms for the upper bounds. Also, we stated a procedure that al-

ternates between the two algorithms to obtain better bounds. In the implementation,

we use the alternating procedure to obtain initial upper bounds. For each branch of

the branching tree we only use the outbound service time algorithm.

The results of the computations are shown in Table 4.27. The number of instances

that the algorithm failed to solve in 10 minutes are shown for each type of network

190

____l Tolerance limit
Arcs 2% I 5% 10%

100 38 15 6
101 640 15 6
102 100 33 6
103 312 46 7
104 6658 76 15
105 591 71 17
106 2456 91 31
107 8057 97 45
108 5242 145 56
109 9870 363 58
110 9910 404 68
111 8670 413 78
112 14126 1417 137
113 31201 2256 113
114 50518 3773 141
115 45889 7888 166
116 91217 10839 269
117 107103 21611 480
118 129853 41312 1017
119 155209 46601 2615
120 78813 3085
121 118035 5527
122 148091 10780
123 _ 164596 22728

Table 4.24: Average time in milliseconds for solving a problem with 100 nodes and
100 to 123 arcs for 2%, 5%, 10% tolerance limits in Experiment 9.

in Table 4.28. We see, that the average time of solving an instance of the two-layer

problem in the tested range is under 1 minute on average if the problem is solved in

under 10 minutes.

Experiment 11. Two-layer algorithm vs. general algorithm

In this experiment, we compare the performance of the general and two-layer

network algorithms applied to the two-layer network problems. The settings of the

experiment are in Table 4.29. We construct 100 instances of the two-layer network

191

Tolerance limit
2% 5% 10%

1 0 0

0 0 0

1 O 0

1 0 0

0 0 0

O O 00 0 0
0 0 0

3 0 0

2 0 0
1 0 0

4 1 0
7 1 0

6 1 0

9 0

5 2 0
17 2 0
21 1 0

25 2 0
4 0
9 0

20 0
23 0

Table 4.25: Number of instances that the algorithm
2%, 5%, 10% tolerance limits in Experiment 9.

failed to solve in 10 minutes for

problem with 10 components and 10 demand nodes. The number of arcs is varied

between 10 and 39. We solve each instance using the two-layer algorithm. Then, we

solve the same instances using the general network algorithm. The average times of

solving instances of the problem are in Table 4.30 and Figure 4-17. We observe that

the two-layer algorithm performs better than the general algorithm on the two-layer

network problems with small number of nodes.

As the number of nodes in sparse networks increases, we find that the difference

192

Arcs

100
101

102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123

160000 -

140000

C. 120000

co

C 80000

E
F 60000-

40000

20000

0
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

Number of arcs

Figure 4-16: Average time in milliseconds for solving a problem with 100 nodes and
100 to 123 arcs for 2%, 5%, 10% tolerance limits in Experiment 9.

between the two algorithms becomes insignificant. We consider the networks with 40

components and 40 demand node with 80 to 90 arcs. The average time of solving

the problem (for problems solved in under 10 minutes) is comparable for the two

algorithms as shown in Table 4.31. In addition, the number of instances that can not

be solved in 10 minutes by the two algorithms is comparable as well which is shown

in Table 4.32.

As we see in the trend for the graphs with 10 components and 10 demands nodes,

as the number of arcs increases, the general algorithm becomes slower. Therefore,

the two-layer algorithm is preferable for the networks with larger number of arcs.

We conclude, that it is better to use the two-layer algorithm for the graphs with

up to 80 nodes. For the sparse graphs with more nodes, we recommend using the

193

I - _b

I

J/

'4
Z

A

|- General -- Two-layer |

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Number of arcs

Figure 4-17: Average time in milliseconds for solving a two-layer problem with 10
components and 10 demand nodes using the two-layer and general network algorithms
in Experiment 11.

194

6000

5000

"O0
0 4000

E
c

3000

E

2000

1000

0

components 10 to 40
demand nodes 10 to 40
arcs 10 to 91
tree type random
initial bounds 10
bounds per branching point 15
global bounds per branching point 1
tolerance limit 0
number of instances 100

Table 4.26: Settings for Experiment 10.

general algorithm.

195

Nodes
20 30 40 50 60_ 70 80

2 13 8 6 3710 13 48
2 20 17 37 141 236 19
3 12 21 373 237 4556 3150
5 16 179 67 4553 3500 5079
8 22 2200 521 1695 11504 2720
8 33 3516 7950 11277 4359 2405
11 50 2761 3662 14093 7553 4622
19 74 1350 5946 10302 21838 11408
24 150 1302 2817 22654 16366 23105
18 170 1179 4014 23307 21582 36428
27 440 2586 12091 25121 34407
33 187 1356 10788 30342 63297
27 196 9618 27190
29 391 6914 26291
34 599 6345
62 406 11246
43 812
46 1342
53
57

Table 4.27: Average
in Experiment 10.

time per instance in milliseconds for solving two-layer problems

196

Arcs-Nodes

0
1

2

3

4
5

6

7
8

9

10
11

12

13
14
15
16

17
18
19

~~~~~~~~~~~~~~~~~~~~~~



Nodes
Arcs-Nodes 40 50 60 70 80

1 0 1 0 1 0

2 0 0 0 1 0
3 0 0 2 2 0
4 0 0 3 2 0
5 0 2 0 10 0
6 0 3 4 6 1
7 0 1 2 13 2

8 0 3 6 8 1
9 0 3 6 13 1
10 0 4 11 7
11 0 3 13 2
12 0 7
13 0 8
14 3

Table 4.28: Number of instances not solved
in Experiment 10.

in 10 minutes by the two-layer algorithm

components 10
demand nodes 10
arcs 10 to 39
node order layer
tree type random
initial bounds 1
bounds per branching point 15
global bounds per branching point 1
tolerance limit 0
number of instances 100

Table 4.29: Settings for Experiment 11.

197



Arcs General Two-layer

20 7 3
21 8 5

22 12 6

23 18 7
24 20 12
25 27 11
26 37 13
27 53 21
28 72 27
29 127 21
30 199 32
31 292 37
32 359 29
33 557 35
34 887 38
35 1385 67
36 2029 46
37 3080 47
38 4479 58
39 6168 59

Table 4.30: Average time in milliseconds for solving a two-layer problem with 10
components and 10 demand nodes using the two-layer and general network algorithms
in Experiment 11.

Arcs General Two-layer

80 55 48
81 21 19
82 3290 3150
83 5540 5079
84 2936 2720
85 2505 2405
86 4778 4622
87 12099 11408
88 24534 23105
89 38028 36428
90 35951 34407

Table 4.31: Average time in milliseconds for solving a two-layer problem with 40
components and 40 demand nodes using the two-layer and general network algorithms
in Experiment 11.

198

---



Arcs 1[ General Two-layer
80 0 0
81 0 0
82 0 0
83 0 0
84 0 0
85 0 1
86 1 2

87 2 1
88 1 1

89 1 7

90 7 2

Table 4.32: Number of instances that
in 10 minutes for problems with 40
ment 11.

general and two-layer algorithms failed to solve
components and 40 demand nodes in Experi-

199



200



Chapter 5

Conclusions

In this thesis, we consider the problem of determining the placement of safety stock in

general network supply chains. We assumed the framework of guaranteed determin-

istic service times and proposed an algorithm for solving the problem. In particular,

we modeled the supply chain as a network with nodes of the network representing

processing functions of a manufacturing company as well as the locations of the safety

stock. Each stage of the supply chain operates under a periodic-review base-stock

policy. Stages of the supply chain quote service times to the adjacent downstream

stages and to the end customers. The most important assumption of the model is

that the customer demand is bounded. Then, each stage guarantees to provide 100%

of the customer demand up to the assumed bound.

We show that the general network safety stock problem is NP-hard and provide a

branch and bound algorithm for solving the problem. We analyze the set of optimal

solutions and find, that by constructing all the paths from one node to any other

node in the network, we can enumerate all possible candidates for the optimal service

201



times for the node. We use the paths to construct a branching tree for the algorithm.

We obtain lower bounds for the branches of the branching tree by solving a spanning

tree relaxation of the problem. We develop a polynomial time algorithm to solve the

spanning tree safety stock problem. The spanning tree algorithm is O(N3 ), where

N is the number of nodes in the network. We also develop a specialized branch and

bound algorithm for the two-layer network problems.

We have performed a set of computational experiments to explore the compu-

tational performance of the developed algorithms. The general network algorithm

solves safety stock problems on sparse networks with up to 50 nodes in under 30

seconds on average on a Pentium IV 2.8 HGz workstation running Windows XP. The

two-layer network algorithm solves the problems with the sparse graphs with up to

80 nodes in under 1 minute on average.

We have examined how to set the parameters of the algorithms to achieve the best

computational performance. We suggest that the algorithm branches on the service

times of the nodes starting from demand nodes and finishing with components. We

observed that the best way to generate spanning trees is to generate them randomly.

For the tested sparse graphs, we find that computing 15 lower and upper bounds per

branch gives good results on average. We suggest using the polynomial time spanning

tree algorithm to compute a number of global bounds for the optimal solution. We

suggest computing global bounds every time the algorithm analyzes a branch of the

branching tree.

Additional research can be done in this area. Here we list potential extensions for

future research.

202



*Two-layer networks. We proposed a branch and bound algorithm for the

two-layer networks. However, the complexity of the two-layer network problem

remains unknown. It would be useful to know whether or not the problem is

NP-hard. In addition, one could explore how to use the two-layer networks

in solving problems with more general networks. Indeed, the algorithm de-

scribed by Humair and Willems [2003] entails solving two-layer networks, and

the method developed in this thesis might be incorporated into their algorithm.

Alternatively, one might solve a general network problem by decomposing it

into a series of two-layer network problems that are solved in some iterative

scheme.

* Bounds. One could explore possible ways to obtain better lower bounds. For

instance, one idea is to create lower bounds by using Lagrange relaxation. The

spanning tree relaxation can be viewed as a Lagrange relaxation with Lagrange

multipliers set to zero for the removed arcs. By adjusting these Lagrange mul-

tipliers, the lower bounds can be tightened. The relaxed problem with non-zero

Lagrange multipliers can be solved by applying an algorithm similar to the

spanning tree algorithm. However, to solve each relaxation in polynomial time,

the candidate values for the service times would have to be adjusted.

For the upper bounds, it might be possible to find a condition under which the

problem is solved in polynomial time. For example, we have found that in the

two-layer network case, we could solve a problem with imposed order for the

outbound service times of the components in polynomial time. For the general

203



networks, we obtain the upper bounds used here by fixing the spanning tree

solution. It may be possible to find better upper bounds from the (polynomial)

solution to a restricted version the problem.

* Production capacity. Perhaps the most interesting direction for the future

research is to analyze the problem with production capacity constraints. In

our work to date, we assume that the production capacity is infinite, that is,

each stage of the network can process as much demand as necessary at a time.

However, in reality the production capacity is often limited.

One would presumably start with a good model for a single stage system, which

permits a capacity constraint. However, even with a good model for the one-

stage network, there are several problems in extending the model to more com-

plicated network structures. In particular, the biggest question is, how to model

the demand propagation. One possibility is to let each node see the end cus-

tomer demand and to set the safety stock accordingly. This will result in the

delays in the production and additional inventory held at the nodes. Another

possibility is to only allow the component nodes, the nodes with zero indegree,

to see the end customer demand and to propagate the demand downstream.

This will also result in some inefficiency due to the complications of modeling

the timing of the arrival of the inventory to the assembly nodes.

* Stochastic lead-times. We assume in this thesis that the lead-times at all the

stages are deterministic. However, in practice the lead-times are often stochas-

tic. Therefore, it would be useful to incorporate the uncertain lead-times into

204



the model.

* Non-stationary demand. A more practical model can be developed by as-

suming non-stationary end customer demand. We assume the the demand is

stationary, however, in practice the expected demand is likely to vary from

period to period due to, for example, seasonal and promotional changes.

205



206



Bibliography

H.P. Benson. On the convergence of two branch-and-bound algorithms for nonconvex

programming problems. Journal of Optimization Theory and Applicaitons, 36:129-

134, 1982.

H.P. Benson. Separable concave minimization via partial outer approximation and

branch and bound. Operations Research Letters, 9:389-394, 1990.

H.P. Benson. Concave minimization: Theory, applications and algorithms. In P.M.

Pardalos and R. Horst, editors, Handbook of Global Optimization, volume 2 of

Nonconvex Optimization and Its Applications, chapter 3, pages 43-148. Kluwer

Academic Publishers, 1994.

H.P. Benson. Deterministic algorithms for constrained concave minimization: a uni-

fied critical survey. Naval Research Logistics, 43:765-795, 1996.

H.P. Benson. Generalized y-valid cut procedure for concave minimization. Journal

of Optimization Theory and Applications, 102(2):289-298, August 1999.

D.P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena

Scientific, second edition, 2000.

207



A.V. Cabot. Variations on a cutting plane method for solving concave minimization

problem with linear constraints. Naval Research Logistics Quarterly, 21:265-274,

1974.

A.V. Cabot and R.L. Francis. Solving certain nonconvex quadratic minimization

problems by ranking extreme points. Operations Research, 18:82-86, 1970.

S.-J. Chung. NP-completeness of the linear complementarity problem. Journal of

Optimization Theory and Applications, 60:393-399, 1989.

A.J. Clark and H. Scarf. Optimal policies for a multi-echelon inventory problem.

Operations Research, 6(4):475-490, July 1960.

M. Ettl, G.E. Feigin, G.Y. Lin, and D.D. Yao. A supply network model with base-

stock control and service requirements. Operations Research, 48(2):216-232, Mar.

- Apr. 2000.

J.E. Falk and K.R. Hoffman. A successive underestimation method for concave min-

imization problems. Mathematics of Operations Research, 1:251-259, 1976.

J.E. Falk and R.M. Soland. An algorithm for separable nonconvex programming

problems. Management Science, 15:550-569, 1969.

F. Glover. Convexity cuts and cut search. Operations Research, 21:123-134, 1973.

S. Graves and E. Lesnaia. Optimizing safety stock placement in general net-

work supply chains. SMA Symposium, page 7 pp. SMA, January 2004. URL

https://dspace.mit.edu/handle/1721.1/3915.

208



S. C. Graves and S. Willems. Optimizing strategic safety stock placement in sup-

ply chains. Manufacturing & Service Operations Management, 1(2):68-83, Winter

2000.

S.C. Graves. Safety stocks in manufacturing systems. Journal of Manufacturing and

Operations Management, 1(1):67-101, 1988.

S.C. Graves and S. Willems. Optimizing strategic safety stock placement in supply

chains. URL web.mit . edu/sgraves/www/papers. long version, 1998.

S.C. Graves and S. Willems. Erratum: Optimizing strategic safety stock placement

in supply chains. Manufacturing & Service Operations Management, 5(2):176-177,

Spring 2003a.

S.C. Graves and S. Willems. Supply chain design: safety stock placement and supply

chain configuration. In A.G. de Kok and S.C. Graves, editors, Handbooks in OR &

MS, volume 11, pages 95-132. Elsevier, 2003b.

R. Horst. An algorithm for nonconvex programming problems. Mathematical Pro-

gramming, 10:312-321, 1976.

R. Horst. On the global minimization of concave funcations - introduction and survey.

OR Spektrum, 6:195-205, 1984.

R. Horst, N.V. Thoai, and H. Tuy. Outer approximation by polyhedral convex sets.

Operations Research Spektrum, 9:153-159, 1987.

209



R. Horst, N.V. Thoai, and H. Tuy. On an outer approximation concept in global

optimization. Optimization, 20:255-264, 1989.

R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer

Verlag, Berlin, second revised edition, 1993.

S. Humair and S. Willems. Optimal inventory placement in networks with clusters of

commonality. Working paper, January 2003.

K. Inderfurth. Safety stock optimization in multi-stage production systems. Interna-

tional Journal of Production Economics, 24:103-113, 1991.

K. Inderfurth and S. Minner. Safety stocks in multi-stage inventory systems under

different service measures. European Journal of Operations Research, 106:57-73,

1998.

S.E. Jacobsen. Convergence of a Tuy-type algorithm for concave minimization subject

to linear constraints. Applied Mathematics and Optimization, 7:1-9, 1981.

G.E. Kimball. General principles of inventory control. Journal of Manufacturing and

Operations Management, 1:119-130, 1988.

B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, vol-

ume 21 of Algorithms and Combinatorics. Springer Verlag, 2 edition, 2002.

A.H. Land and A.G. Doig. An automatic method of solving discrete programming

problems. Econometrica, 28:497-520, 1960.

210



H.L. Lee and C. Billington. Material management in decentralized supply chains.

Operations Research, 41(5):835-847, Sep. - Oct. 1993.

E. Lesnaia. Optimizing safety stock placement in two-layer supply chains. SMA

Symposium, page 5 pp. SMA, January 2003a.

E. Lesnaia. Research oriented paper: Optimizing safety stock placement in two-layer

supply chains. Technical report, MIT Operations Research Center, 2003b.

L. Liu, X. Liu, and D.D. Yao. Analysis and optimization of a multistage inventory-

queue system. Management Science, 50(3):365-380, March 2004.

T.L. Magnanti, Z.-J. M. Shen, J. Shu, D. Simchi-Levi, and C.-P. Teo. Inventory

placement in acyclic supply chain networks. 2004.

A. Majthay and A. Whinston. Quasi-concave minimization subject to linear con-

straints. Discrete Mathematics, 9:35-59, 1974.

O.L. Mangasarian. Characterization of linear complementarity problems as linear

programs. Mathematical Programming Study, 7:74-87, 1978.

P. McKeown. A vertex ranking procedure for solving the linear fixed-charge problem.

Operations Research, 23:1182-1191, 1975.

P.G. McKeown. Extreme point ranking algorithms: A computational survey. In

W.W. White, editor, Computers and Mathematical Programming, National Bureau

of Standards Special Publication. U.S. Government Printing Office, 1978.

211



S. Minner. Dynamic programming algorithms for multi-stage safety stock optimiza-

tion. OR Spektrum, 19:261-271, 1997.

S. Minner. Strategic Safety Stocks in Supply Chains, volume 490 of Lecture Notes in

Economics and Mathematical Systems. Springer, 2000.

S. Minner. Multiple-supplier inventory models in supply chain management: a review.

International Journal of Production Economics, 81-82:265-279, 2003.

B.M. Mukhamediev. Approximate methods of solving concave programming prob-

lems. Zhurnal Vychislitelnoj Matematiki i Matematicheskoj Fiziki, 22:727-732,

1982. Translated: USSR Computational Mathematics and Mathematical Physics,

22(3):238-245.

K. Murty. Solving the fixed charge problems by ranking the extreme points. Opera-

tions Research, 16:268-279, 1969.

P.M. Pardalos and J.B. Rosen. Methosd for global concave minimization: A biblio-

graphic survey. SIAM Review, 28:367-379, 1986.

P.M. Pardalos and J.B. Rosen. Constrained Global Optimization: Algorithms and

Applications. Springer Verlag, 1987.

S. Sahni. Computationally related problems. SIAM Journal on Computing, 3:262-

279, 1974.

J.P. Shectman and N.V. Sahinidis. A finite algorithm for global minimization of

separable concave programs. Journal of Global Optimization, 12(1):1-35, Jan 1998.

212



Z.-J. Shen. Note on the safety stock placement. Unpublished, 2003.

C. Sherbrooke. METRIC: a multi-echelon technique for recoverable item control.

Operations Research, 16:122-141, 1968.

K.F. Simpson. In-process inventories. Operations Research, 6:863-873, 1958.

R.M. Soland. Optimal facility location with concave costs. Operations Research, 22:

373-382, 1974.

J.-S. Song and D.D. Yao. Performance analysis and optimization of assemble-to-order

systems with random lead times. Operations Research, 50(5):889-903, September-

October 2002.

H.A. Taha. On the solution of zero-one linear programs by ranking the extreme

points. Technical report, University of Arkansas, Fayetteville, Arkansas, 1972.

H.A. Taha. Concave minimization over a convex polyhedron. Naval Research Logistics

Quarterly, 20:533-548, 1973.

N.V. Thoai and H. Tuy. Convergent algorithms for minimizing a concave function.

Mathematics of Operations Research, 5:556-566, 1980.

H. Tuy. Concave programming under linear constraints. Doklady Akademii Nauk

SSSR, 159:32-35, 1964. Translated: Soviet Mathematics Doklady, 5. pp. 1437-

1440.

H. Tuy. On polyhedral annexation method for concave minimization. In L.J. Leif-

man, editor, Functional Analysis, Optimization and Mathematical Economics: a

213



collection of papers dedicated to the memory of L. V. Kantorovich, pages 248-260.

Oxford Press, New York, 1990.

S. Vavasis. Quadratic programming is in NP. Information Processing Letters, 36:

73-77, 1990.

P. Zipkin. Foundations of Inventory Management. McGraw-Hill, New York, 2000.

P.B. Zwart. Nonlinear programming: counterexamples to two global optimization

algorithms. Operations Research, 21:1260-1266, 1973.

P.B. Zwart. Global maximization of a convex function with linear inequality con-

straints. Operations Research, 22:602-609, 1974.

214


