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Abstract
This thesis describes several directions to replace the gradient in James Schor's gradi-
ent algorithm to solve the dual problem. The alternative directions are: the variance
and standard deviation of buffer levels, the deviation of the average buffer level from
half-full, the difference between probability of starvation and blocking, and the dif-
ference between the production rate upstream and downstream of a buffer. The
objective of the new algorithms is to achieve the final production rate of the dual
problem faster than the gradient. The decomposition method is used to evaluate the
production rates and average buffer levels. We find that the new algorithms work
better in lines with no bottlenecks. The variance and standard deviation algorithms
work very well in most cases. We also include an algorithm to generate realistic
line parameters. This algorithm generate realistic line parameters based on realistic
constraints set on them. This algorithm does not involve filtering and is fast and
reliable.
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Chapter 1

Introduction

1.1 General Problem Description

In this paper, we focus on buffer optimization of a production line. A production

line, or flow line, or transfer line is a manufacturing system where machines or work

centers are connected in series and separated by buffers. Materials flow from the

upstream portion of the line to the first machine, from the first machine to the first

buffer, from the first buffer to the second machine, and continue on to the downstream

portion of the line.

There are two types of buffer optimization problems. The first one, or the primal

problem, is to minimize the total buffer space in the production line while trying

to achieve a production rate target. This problem is usually encountered when the

available factory space is limited. The other problem, or the dual problem, is to max-

imize production rate subject to a specified total buffer space. The second problem

is encountered when floor space is not a problem and the major goal is to achieve as

high production rate as possible. In both problems, the size of each buffer becomes

the decision variable.

Schor uses a gradient method to solve the dual problem and solve the primal

problem using the dual solution [SchorOO]. Although the gradient approach proves to

be very efficient, it can be time-consuming. We propose using different approaches

that are based on variability of buffer levels to replace the gradient approach.
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1.2 Approach

In this paper, we focus on solving the dual problem. Therefore, the question we are

asking is: given the machines of a transfer line and a total buffer space to be allocated,

how should we allocate buffer space so that the production rate is maximized? We

begin our paper by describing some work in the area of buffer optimization (Chapter

1).

In Chapter 2, we define some parameters and notation used throughout the paper.

We also mention some qualitative properties assumed about transfer lines. Finally,

we describe the primal and the dual problem quantitatively and review the Schor's

gradient algorithm for solving the dual problem.

The purpose of the paper is to examine some alternative directions, other than the

gradient, to use in solving the dual problem. In Chapter 3, we mention an intuitive

justification and motivation for using the alternative directions. The new algorithms

are also derived in Chapter 3.

We review the performance of the new algorithms, in terms of accuracy, reliability,

and speed, in Chapter 4. In Chapter 5, we perform a sensitivity analysis of the new

algorithms if the machine parameters are varied by a small amount. Chapter 6

discusses the conclusion and future research.

We also include two appendices. Appendix A describes an algorithm to generate

realistic line parameters. This algorithm generates r,p, and At based on realistic

constraints set on them. It avoids any filtering and is, therefore, fast and reliable.

Appendix B describes the linear search method used in the new algorithms.

1.3 Literature Review

1.3.1 Qualitative Properties of the Line Performance

In order to develop algorithms relevant to transfer lines, we need to understand the

behavior of the lines. One aspect of the behavior is how the production rate of the line

is affected by changes in buffer sizes. Adan and Van Der Wal [Adan89] showed that
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the production rate increases as each buffer size is increased. However, the increase

in production rate becomes less significant as the buffer size increases. This is shown

by Meester and Shanthikumar [Meester90O], who proved that the production rate is

an increasing, concave function of the buffer sizes.

1.3.2 Characteristics of the Solutions

The purpose of this paper is to propose alternative directions that can be used to

replace the gradient in Schor's dual algorithm [Schor0]. One paper that motivates

two alternative directions used in this paper is the paper by Jacobs, Kuo, Lim and

Meerkov [Jacobs96]. Jacobs et al. did not suggest a method to design a manufacturing

system, but instead proposed a method of improving an existing system using data

that is available as the system runs. They used the concept of "improvability" (similar

to "non-optimality" but used in the context when optimality may be impossible due

to the lack of precise information on the factory floor) to determine how buffer space

should be allocated. Jacobs et al. showed that a transfer line is unimprovable with

respect to work force if, each buffer is, on the average, half-full and if the probability

that Machine Mi is blocked equals the probability that Machine Mi+1 is starved.

1.3.3 Some Solutions Approaches

One approach to buffer size optimization is done by means of perturbation analysis.

Ho, Eyler, and Chien [Ho79] were pioneers of this simulation-based technique. In this

paper, Ho et al. estimated the gradient of the production rate of a discrete-event

dynamic system (one with discrete parts, identical constant processing times, and

geometrically distributed repair and failure times) with respect to all buffer sizes,

using a single simulation run.

Another approach is by means of dynamic programming. Chow [Chow87] devel-

oped a dynamic programming approach to maximize production rates subject to a

total buffer space constraint.

A branch and bound approach has also been used to solve buffer allocation prob-
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lems. Park [Park93] proposed a two-phase heuristic method using a dimension re-

duction strategy and a beam search method. He developed a heuristic method to

minimize total buffer storage while satisfying a desired throughput rate.

Another approach to buffer allocation problem is by Spinellis and Papadopoulos

[SpinellisOO]. They compared two stochastic approaches for solving buffer allocation

problem in large reliable production lines. One approach is based on simulated an-

nealing. The other one is based on genetic algorithms. They concluded that both

methods can be used for optimizing long lines, with simulated annealing producing

more optimal production rate and the genetic algorithm leading in speed.

Finally, an approach closest to our algorithm is Gershwin and Schor's gradient

algorithm [SchorOO]. They used a gradient method to solve the problem of maximizing

production rate subject to a total buffer space constraint (the dual problem) and used

the solution of the dual problem to solve the primal problem.

1.3.4 Preliminary Work

The intuition behind using the alternative directions to substitute the gradient is

supported by the following preliminary numerical and simulation studies:

1. A study about the relationship between optimum buffer allocation and buffer

level variance in a finite buffer line

In this study [KinseyO2], several machine lines with different machine param-

eters and efficiencies are generated. The different machines are generated by

starting with some center values for r, p, and 1t. Later, a random number gener-

ator is used to produce some variations for r, p, and p1 around their center values.

In some of the lines, a bottleneck is introduced by imposing a particularly low

efficiency on a selected machine in the line. Finally, the correlation between the

optimal buffer allocation and standard deviation of buffer level is calculated.

The following graphs show the optimal buffer sizes and the standard deviation

of the buffer levels for three different lines.
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Figure 1-1 shows the result of the study for a twenty-identical-machine line with

a 60% efficiency level. The R2 value of the correlation between the optimal buffer

sizes and the standard deviation of the buffer levels is 0.99.

Figure 1-1: Test Result: 60% Efficiency with 0% Variations in r and p Values

Figure 1-2 shows the result for a twenty-machine line with a 96% efficiency level

and with 15% variations in r and p values. The R2 value is 0.75.

Figure 1-2: Test Result: 96% Efficiency with 15% Variations in r and p Values

Figure 1-3 shows the result for a twenty-machine line with a 91% efficiency level

and with 15% variations in r and p values. For this line, Machine Mll is the

bottleneck. The R2 value of the correlation is 0.98.

This study concludes that the standard deviation of the buffer levels are well-

correlated with the sizes of the buffers in optimized lines. In addition, bot-
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Figure 1-3: Test Result: 91% Efficiency with Bottleneck and with 15% Variations in
r and p Values

tlenecks in the machine line do not affect the correlation. This confirms the

hypothesis that the best place to put space is where variation is the greatest.

2. A study about the values of all directions at the optimal buffer allocations

calculated using the gradient method

In this study, the values of gradient i, variance i, standard deviation i of buffer

levels, W--iI, jpb(i)-Ps(i)I, jP(i)-Pd(i)j, I' l 1 and 12 1, luo\fF I,-~v/l, I' U\"/ ~a\YJi ' pb(i)-s(i)1 1Pu(i)-Pd(i)1

are calculated at the optimal buffer allocation, obtained by the gradient algo-

rithm.

Figure 1-4 shows an example of the normalized values of gradient i, variance

i, standard deviation i, ni -- I, Ipb(i) -- pS(i), IP(i) - Pd(i)I at the optimal

point.

Figure 1-5 shows an example of the normalized values of . 1 and

lUP1 at the optimal point.
IPU(i)-Pd(i)I

Table 1.1 shows the data used to generate the results shown in Figure 1-4 and

Figure 1-5.

Figure 1-4 and Figure 1-5 show that gradient i, variance i, standard deviation i

of buffer levels, I- - 1 and have the same shapes as the
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1.2

Figure 1-4: Values of Gradient i, Variance i, Standard Deviation i, 5i - I , pb(i) -

ps(i)j, and IP,(i)- Pd(i)l at the Optimal Buffer Allocation

Table 1.1: The Line Parameters for Figure 1-4 and Figure 1-5

shape of the optimal buffer allocation. Therefore, these directions can be used

to allocate buffer sizes.

Figure 1-4 shows that ni I 1, pb(i)-ps(i)t, and IP.(i)-Pd(i)l have shapes that

are inverse the shape of the optimal buffer allocation. Although their shapes

are inverse the shape of the optimal buffer allocation, Ii - I, I -pb(i)- Ps(i),

and IP,(i) - Pd(i)l can also be used to allocate buffer sizes. The reason for this

will be explained in Chapter 3.
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Chapter 2

Technical Problem Statement

2.1 Definitions and Properties

2.1.1 Parameters and Notation

In this research, we attempt to find the optimal buffer allocation of a production

line, such that the production rate P of the line is maximized. The production

line has k machines and k - 1 buffers. Ni is the size of Buffer Bi and ni is

the average buffer level of Buffer Bi. The production rate of the line P is a

function of the buffer sizes (N1,..., Nk1). Therefore, it is sometimes denoted

as P(N 1 , N2, N3, ..., Nk-1). Figure 2-1 shows a diagram of a transfer line with k

- 3, in which squares represent machines, circles represent buffers, and arrows

represent the work flow from the upstream portion of the line to the downstream

portion of the line.

Figure 2-1: Transfer Line

When any machine upstream of Buffer Bi breaks down, that machine can not

produce any parts. Eventually there are no parts coming into Buffer Bi so Buffer
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Bi will be empty. Since Buffer Bi is empty, there are no parts to be processed

by machines downstream of Buffer Bi. This phenomenon is called starvation.

Likewise, when any machine downstream of Buffer Bi breaks down, it stops

producing parts. Eventually Buffer Bi will be full because it can not transfer

parts to the machine downstream of it. This causes the machine upstream of

Buffer Bi to stop transferring parts to Buffer Bi because Buffer Bi can not hold

the parts. This phenomenon is called blockage.

2.1.2 Qualitative Properties

We assume the following properties:

* Continuity

A small change in Ni results in a small change in P.

* Monotonicity

The production rate P increases monotonically as Ni increases, provided

all other quantities are held constant.

* Concavity

The production rate P is a concave function of (N1, ..., Nk-1).

2.2 Model Type and Problem Types

2.2.1 Model Type

There are three types of manufacturing systems models:

* Discrete Material, Discrete Time

* Discrete Material, Continuous Time

* Continuous Material Flow
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The details of each model can be found in [Gershwin94]. In this paper, we use

the continuous material flow model.

In the continuous flow model, material is treated as though it is a continuous

fluid. Machines have deterministic processing time but they do not need to

have equal processing times. The failure and repair times of machines are

exponentially distributed. There are three machine parameters in this model.

The first one is the failure rate pi. The quantity piJ is the probability that

Machine Mi fails during an interval of length while it is operating and the

upstream buffer is not empty and downstream is not full. The second parameter

is the repair rate ri. The quantity rid is the probability that the Machine Mi

gets fixed while it is under repair during an interval of length 6. Finally, the last

parameter is the operation rate pi. The quantity li is the processing speed of

Machine Mi when it is operating, not starved or blocked, and not slowed down

by an adjacent machine. The quantity i6 is the amount of material processed

by Mi during an interval of length . As in the discrete material models, the

size of Buffer Bi is Ni. All ui, Pi, ri, and Ni are finite, nonnegative real numbers.

The isolated efficiency of Machine Mi, denoted by ei, is the efficiency of Machine

Mi independent of the rest of the line. The isolated efficiency ei is defined

mathematically as

ri
ei =

ri + Pi

In the continuous flow model, pi is the processing rate of Machine Mi when it is

operating, not starved or blocked, and not slowed down by an adjacent machine.

Since Machine Mi's actual production rate is influenced by its efficiency, the

isolated production rate pi of Machine Mi is defined as

Pi = iei
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2.2.2 Decomposition Algorithm

When there are more than two machines in a transfer line and all Ni are nei-

ther infinite or zero, the production rate of the line and the average inventory

levels of buffers can not be calculated analytically. This is where the decom-

position algorithm plays an important role to approximate the production rate

and the average inventory levels, which otherwise can not be calculated. More

specifically, ADDX algorithm [Burman95] is used to evaluate P and i when

the system is modeled using the continuous flow model. The ADDX algorithm

uses analytical methods and decomposition method [Gershwin87] to determine

approximate solutions.

The following is a brief description of the decomposition algorithm. Decom-

position algorithm approximates the behavior of a k-machine line with k - 1

hypothetical two-machine lines, as illustrated in Figure 2-2 for k = 4. L(i)

represents the hypothetical two-machine line i. The parameters of L(i) are es-

timated such that the flow of materials into Buffer Bi in L(i) approximates the

flow of materials into Buffer Bi in the original line L.

Machine MU(i) and Machine Md(i) represents the machine upstream and ma-

chine downstream of Buffer Bi in the artificial two-machine line model. The

quantity r (i), i = 1, ..., k- 1, represents the repair rate of MU(i). The quantity

rd(i) represents the repair rate of Md(i). p(i) represents the failure rate of

Machine M,(i) and pd(i) represents the failure rate of Machine Md(i). Finally,

ju(i) represents the processing rate of Machine MU(i) and pd(i) be the process-

ing rate of Machine Md(i). The decomposition method works by calculating

r.(i), rd(i), pu(i), pd(i), iuz(i), and d(i).

The starvation and blockage phenomena in the decomposition are defined as

the starvation of Machine Md(i) and the blockage of Machine MU(i). More

specifically, ps(i) is defined as the probability of starving of Machine Md(i) and

pb(i) is defined as the probability of blocking of Machine MU(i).

P,(i), i = 1, ..., k - 1, is defined as the production rate of the line upstream of

30
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Mu(1) B, Md(1)

L(1)

Pr(1) Pd(1)

muU(1) mud(1)

Mu(2) B2 Md(2 )

L(2)

ru(2) N2 rd(2 )

pu(2) Pd(2)

muu(2) mud(2 )

Mu(3) B3 Md(3 )

L(3)

r(3) N3 rd(3)

pu3) p( 3)

muu(3) mud(3)

Figure 2-2: Decomposition of Line
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Buffer Bi and Pd(i), i = 1, ..., k - 1, is defined as the production rate of the line

downstream of Buffer Bi.

2.2.3 Problem Types

* Primal Problem

In the primal problem, we minimize the total buffer space NTOTAL such

that the optimal production rate P is equal to or higher than a specified

value P*. The primal problem is described mathematically as

Minimize NTOTAL = ek-1 N

subject to

P(N,..., Nk-) > P*;

P* specified

Ni > O,i = 1,...,k-1

The input to the primal problem are the machine parameters and the

specified P*. The outputs, or the decision variables, are (N1, ..., Nk-1) and

NTOTAL

The primal problem is difficult because the constraint P(N1, ..., Nk-1) >

P* is non-linear.

* Dual Problem

In the dual problem, we are given a fixed NTOTAL and we seek the buffer

sizes (N1, ..., Nk-1) such that the production rate P(N 1, ..., Nk-_) is maxi-

mized. That is,

Maximize P(N 1, ..., Nk-1)
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subject to

k-1
NTOTAL = Z Ni;

i=1

NTOTAL specified

Ni > O,i= 1,...,k-1

The input to this problem are the machine parameters and NTOTAL. The

outputs are the optimal P(N1 , ..., Nk-1) and (N1, ..., Nk-1). The dual prob-

lem is an easier problem than the primal because the constraint NTOTAL =

Eik=l Ni is a plane.

The solutions to both problems can be found in [SchorOO]. Schor uses the dual

solution to solve the primal problem. In this paper, we will develop alternative

algorithms to solve the dual problem.

2.3 Review of Schor's Dual Algorithm

In [SchorOO], Schor invents an efficient algorithm, which is based on a gradient

method, to solve the dual problem. Figure 2-3 shows the block diagram of

Schor's algorithm.

The algorithm starts with specifying an initial condition for buffer space. One

initial condition that can be used is equal buffer allocation, i.e. every buffer

is allocated NTOTAL space. After selecting the initial condition, a direction tok-1

move in the constraint space, which is the set of all points that satisfy NTOTAL =

Zk=1 Ni, is determined. A linear search is conducted in that direction until a

point which has the maximum production rate is encountered. This new point

becomes the next guess. A new search direction is determined for this new

guess. The algorithm continues until a terminating criterion is satisfied.
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Specify initial guess N = (N,t...,Nk).

4

4

4

NO

1

YES

N is the solution.
Terminate the algorithm.

Figure 2-3: Block Diagram of Schor's Algorithm
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To determine the search direction, the gradient g is calculated as follows:

P(N1, ..., Ni + AN, ..., Nk_l) - P(N1, ..., Ni, ..., Nk_l)gi= 6N

In order to satisfy the constraint NTOTAL = Ek 11 Ni, the gradient needs to be

projected onto the constraint space. The projected gradient on the constraint

space is called the search direction H. Let us define

1 k-1
g= k-1 E gi

i=1

Hii =i -9

The next step of the algorithm involves a linear search in the direction of I.

Let N be the current guess and NneW be the next guess. N ew can be defined

mathematically as NneW = N+a HJ, where N represents the current point on the

constraint space and a J represents how far we move on the constraint space

until we reach NneW. The linear search requires finding a scalar a such that

N"w has the highest production rate of all points along the line formed by H.
The details of the linear search can be found in Appendix B.

Figure 2-4 shows the illustrations of N, the search direction vector 17, and the

constraint space for k = 4.

The beginning point of the arrow is the current guess N. The arrow itself is

vector I, which is the projected gradient g onto the constraint space N1 + N2 +

N3 = NT °TAL

The details of Schor's gradient algorithm can be found in [SchorOO].
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Figure 2-4: Constraint Space

36



Chapter 3

Variability and Optimality

3.1 Intuitive Justification

The purpose of this research is to find alternative directions that are easier to

calculate than the gradient.

Buffers are used to diminish the propagation of disturbances from one part of a

production system to the other. This is done by transforming the disturbances

into variations of the amount of material in the buffers. If the buffer level

does not change very much (e.g., when the upstream part of the system is

much faster than the downstream part so the buffer is nearly always full), the

buffer is not able to absorb the disturbance. Therefore, if buffer space is to be

reallocated, buffers with little variation should get little space, and buffers with

more variation should get more. As a consequence, an indication of relative

variability can be used to decide buffer space.

The following are some indications of relative variability that we consider for

using in place of the gradient:

(a) Variance and standard deviation of buffer levels

Variance and standard deviation are direct measures of variability.

(b) Deviation of the average buffer level from half-full, or N- i2
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The intuition behind using In - i, i = 1, ..., k - 1, as a substitute for

component i of the gradient is based on the work of Meerkov and his

colleagues [Jacobs96]. In his paper, Meerkov studies the improvability of

production line systems. Although his definition of "improvable" appears

to be similar to "non-optimal," his goal is not to develop an optimal system.

Instead, he seeks to improve the existing production line using the data

that is available as the line operates.

Meerkov suggests that a production line is unimprovable with respect to

work force if two conditions are satisfied:

i. Each buffer is, on average, half-full.

This condition motivates the use of - Ni as a substitute for com-

ponent i of the gradient vector.

ii. Ib(i) - Ps(i)[, i = 1,..., k - 1, should be as small as possible.

This condition motivates the use of Ipb(i) - ps(i)l, which is the next

alternative method discussed.

The first condition is each buffer is, on the average, half full. If one buffer

(let us call it Buffer B) is far from half-full (i.e., it is always nearly full

or empty), the system can be improved by reallocating buffer space. If

Buffer Bi is nearly always full or empty, or 1f- is large, the buffer

level in Buffer Bi does not vary much. Therefore, the capacity of buffer Bi

should be reduced. In brief, i_- I or _1 is an indication of relative

variability and can be used to replace gradient i.

Unfortunately, many manufacturing systems designers believe that the ca-

pacity of buffer that is always full must be increased so that the buffer

store more items. However, the variability of buffer that is always full is

low and buffer with low variability should get little space. Therefore, good

practice is to focus on half-full buffers and then whenever possible, reduce

the capacity of usually full buffers and usually empty to increase those of

half-full buffers.
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(c) Difference between the fraction of time a buffer is empty and the fraction

of time it is full, or Pb(i) - Ps(i) 

The intuition behind using IPb(i) - ps(i), i = 1, ..., k - 1, as a substitute

for gradient i is also based on the work of Meerkov and his colleagues

[Jacobs96]. Meerkov suggests that the second condition that must be sat-

isfied in order to achieve a well-designed system is that lPb(i) -ps(i)l should

be as small as possible.

If IPb(i) - p.(i)l is large, Buffer Bi is almost always blocked or starved.

Therefore, there is little variation in the buffer level. Consequently, the

capacity of Buffer Bi should be reduced.

Like ni-- NiI and , Pb(i) -P(i)I or is also an indication

of relative variability and can be used to replace gradient i.

(d) Difference between the production rate of the part of the line upstream

and the part of the line downstream of a buffer, or P,(i) - Pd(i)l

jP,(i) - Pd(i)l, i = 1, ..., k - 1, indicates the difference between the pro-

duction rates of the upstream portion (treated as a complete system) of

Buffer Bi and the downstream portion (also treated as a complete system)

of Buffer Bi - if Buffer Bi were removed and the upstream line and the

downstream line were allowed to run separately from each other.

If IP,(i) - Pd(i)l is large, then the production rate of the upstream portion

of the line is much different from the production rate of the downstream

portion of the line. Therefore, Buffer Bi will be almost always empty of

full, the variability of Buffer Bi is small, and the capacity of Buffer Bi

should be reduced.

Finally, IP(i) - Pd(i)l or i (i) (i) = 1, ... , k - 1, is also an indication

of relative variability and can be used to replace gradient i.

Figure 1-4 and Figure 1-5 in Chapter 1 show that gradient i, variance i, standard

deviation i of buffer levels, 1 1 and 1 have the same

shapes as the shape of the optimal buffer allocation. Furthermore, Figure 1-4
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shows that Ii - -'i, Ipb(i) - ps(i)l, and IP,(i) - Pd(i)l have shapes that are

inverse the shape of the optimal buffer allocation. Although their shapes are

inverse the shape of the optimal buffer allocation, I - i 1, Ipb(i) - ps(i) , and

IP,(i) - Pd(i)l can also be used to allocate buffer sizes. The reason for this

can now be explained since we have established the necessary notation. The

reason is because the scalar a obtained from the I N- I , Pb-- s, and I P - Pd

directions are in the opposite direction of the scalar a obtained from the 1

IP1Pal' and 1 directions. Therefore, the direction of the movement, or a rI
JPb-Pa' IPu-Pdl

in the formula N eW = N + a rl will be in the direction towards Nne" .

3.2 Motivations of the New Directions

In this research, we strive to develop more efficient ways to allocate buffer

space in a transfer line. The gradient technique has proved to be very efficient.

However, the evaluation of the gradient is time-consuming. Moreover, the eval-

uation of the gradient gets slower as the production line gets longer. This long

evaluation time limits the size of a system that can be optimized.

In this section, the number of computation steps for both the gradient and the

alternative algorithms are compared.

For both the gradient and the alternative algorithms, the major computation

per optimization step for each new guess consists of:

* One direction computation

The direction computation is the computation calculated at the current

point N to determine the direction to the next point Nnew on the constraint

space. For the gradient method, the direction is the gradient. For the other

methods, the directions are the variance, standard deviation, and I- 1

or -- , Pb- Ps or INP-1I, and IP,, - Pdl or Ip -dl

* A few one-dimensional search computations
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N3

N2

N1

Figure 3-1: The Gradient and the Projected Gradient Vectors

The one-dimensional search computations are the computations to deter-

mine NneW, the point with the highest production rate of all points along

the line formed by rl (the projected gradient onto the constraint space).

Figure 3-1 shows N, the gradient vector g, the projected gradient rI, and the

constraint space for k = 4.

Next, we show that alternative directions calculate approximate gradient direc-

tion with much less computation per optimization step.

Table 3.1 shows the number of computations needed to calculate the direction

for each algorithm. There are two types of direction computations. The first

one is the number of k-machine line computations, which is the number of times

the decomposition algorithm is performed on the k-machine line. The other one

is the number of shorter line computations, which is the number of times the

decomposition algorithm is performed on part of the k-machine line.

Figure 3-2 shows how the k-machine line computations and the shorter-machine

line computations fit into the major computation calculated at each optimiza-

tion step.
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Table 3.1: Direction Computation Comparisons for the Different Methods

Computation per
optimization step

K-machine line
computations

Shorter-machine
line

computations

Figure 3-2: Types of Computations Calculated at Each Optimization Step

Next we explain how we obtain the number of direction computations shown in

Table 3.1.

(a) Gradient direction

For the gradient algorithm, the number of computations to calculate the

direction is k k-machine line computations.

The gradient is a k - 1-vector. Component i, i = 1, ..., k - 1, indicates the

change in production rate of the line if the capacity of Buffer Bi is increased

by a small amount. In the gradient algorithm, we calculate k-1 production

rates associated with the capacity increase of the k -1 buffers. In addition,

we also need to calculate the production rate associated with the original

(unmodified) capacity of buffers. Therefore, the total computations needed
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to calculate the gradient is k computations.

As the production line gets longer, k gets bigger and the number of com-

putations to calculate the gradient vector gets larger as well.

(b) Variance, standard deviation of buffer Bi's inventory levels, i- , 1 lN,

IPb Ps , iPb-P Directions

In these other algorithms, only one k-machine line computation is re-

quired. With only one decomposition algorithm called, the quantities

fn, Ni,pb(i), s(i), i = 1, ..., k - 1, are calculated simultaneously.

(c) IP, - PdI, PU PdI directions

To calculate IPu(i)- Pd(i) , we hypothetically remove Buffer Bi. There will

be two shorter lines resulting from the removal of Buffer Bi: the shorter line

upstream of Buffer Bi and the shorter line downstream of Bi. To calculate

IP,(i) - Pd(i)l for Buffer Bi, we run the decomposition algorithm twice:

first on the upstream portion of the line and the other on the downstream

portion. Since there are k - 1 buffers and there are two decomposition

algorithms run for each buffer, the number of computations to calculate

P(i) - Pd(i)I or 1 - Vi, i = 1,..., k- 1, is 2(k- 1) shorter line
IPu(i)-Pd (i)

computations.

3.3 Derivation of the New Algorithms

The variance and standard deviation of buffer levels, as well as [n- ¥, Pb -pI,

and I[P - Pdl are indications of buffer level variability and can be used to decide

buffer sizes. In Schor's gradient algorithm, the gradient is used to decide how

to change buffer sizes. In the new algorithms, the other directions are used to

replace the gradient.

Figure 3-3 shows the block diagram of the new algorithms.

Let vector g' represent any of the alternative directions. In the new algorithms,

g' is used to replace the original gradient vector g. The vector g' is also projected
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Figure 3-3: Block Diagram of the New Algorithms
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onto the constraint space. The projected vector is called fI'. The rest of the

algorithm is the same as the original Schor's gradient algorithm.
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Chapter 4

Performance of the New

Algorithms

The performance of the new algorithms will be evaluated in terms of:

1. Accuracy

Accuracy measures how close the final production rates of the new algorithms

to the final production rate of the gradient.

2. Reliability

Reliability measures how often the final production rates of the new algorithms

converge to the final production rate of the gradient algorithm.

3. Speed

Speed measures how fast the new algorithms converge.

4.1 Accuracy

We access the accuracy of the new algorithms by studying the effects of the followings:

1. Identical versus non-identical machines

2. The location, existence, and severity of bottlenecks
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Let final P be the production rate when each algorithm terminates. Two-machine

line counter is defined as the number of times we evaluate the hypothetical two-

machine line in the decomposition algorithm. The two-machine line counter is counted

at each optimization step. Final two-machine line counter is the two-machine line

counter when each algorithm terminates. The final two-machine line counter is used

to measure the speed of each algorithm.

We compare the performance of all algorithms by comparing their final production

rates and their final two-machine-line counters.

4.1.1 Identical versus Non-Identical Lines

Identical Machines

To study the impact of the identical-machine line on the performance of the new al-

gorithms, we randomly generated 15 lines using the procedure described in Appendix

A. The length of the line generated ranges from 8 machines to 36 machines. Figure

4-1 shows the average, the maximum, and the minimum of the proportion of the final

production rates of the other algorithms to the final production rate of the gradient

algorithm. Figure 4-2 shows the average, the maximum, and the minimum of the

proportion of the final two-machine-line counters of the other algorithms to the final

two-machine-line counter of the gradient algorithm.

I I

XA- ~_

Figure 4-1 i P of t O : of Final P of the Gradient

Figure 4-1: Final P of the Other Directions as Proportions of Final P of the Gradient
in the Identical Machine Case
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Figure 4-2: Final Two-Machine Line Counter of the Other Directions as Proportions
of Final Two-Machine Line Counter of the Gradient in the Identical Machine Case

Figure 4-1 and Figure 4-2 show that the variance and the standard deviation

work very well as substitutes for the gradient. This is because the final P of the

variance and standard deviation algorithms are as high as the final P of the gradient

algorithm and the convergence times of the two algorithms are, on average, half that

of the gradient algorithm. We do not recommend using 1 and I to
ra- -' IPb (i) -P, (i) 

replace gi (component i of the gradient) because their convergence times might be

as long as four times the convergence times of the gradient algorithm. The other

directions (1P-PI' ¥, - Pb- p8 1, and IP,, - Pda) do not outperform the gradient

because their final production rates are slightly lower than the final production rate

of the gradient. Although their average convergence times are lower than that of the

gradient, occasionally their convergence times might be longer than the convergence

time of the gradient.

Figure 4-3 shows that the P and the two-machine-line counter at each optimization

step for one of the line generated. The parameters of the line are described in Table

4.1. The variance and standard deviation algorithms reach the final P of the gradient

algorithm in only a few steps. On the other hand, the gradient algorithm takes

longer to achieve and exceed the final P of the variance and the standard deviation

algorithms.
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Table 4.1: The Line Parameters of which Results are Shown in Figure 4-3
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0 1000000 2000000 3000000 4000000 5000000 6000000

Two Machine Line Counter

Figure 4-3: Production Rate versus Two-Machine Line Counter for an Identical Ma-
chine Case

Non-Identical Machines

We also study the impact of non-identical machine lines on the performance of the

new algorithms. Nineteen lines that consist of non-identical machines are generated

according to the procedure described in Appendix A. The line length generated ranges

from 7 to 40 machine line and might contain up to three bottlenecks. The selection

and severity of the bottlenecks are randomly generated according to the procedure in

Appendix A.

Figure 4-4 shows the average, the maximum, and the minimum of the proportion

of the final P of the other algorithms to the final P of the gradient algorithm. Figure

4-5 shows the average, the maximum, and the minimum of the proportion of the

final two-machine-line counter of the other algorithms to the final two-machine-line

counter of the gradient algorithm.
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Number of Machines 30 identical machines
Total Buffer Space to be Allocated 745

Repair Rate r 7.096
Failure Rate p 0.874

Processing Rate p/ 141.531
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Figure 4-4: Final P of the Other Directions as Proportions of Final P of the Gradient
in the Non-Identical Machine Case

Figure 4-4 and Figure 4-5 show that the variance and the standard deviation

algorithms also do well in the non-identical machine case, although not as well as in

the identical machine case. This is shown by the fact that the average final P of the

two algorithms are 0.984 of the average final P of the gradient algorithm (compared

with an average of .999 in the identical-machine case) and the average convergence

times are less than half the convergence time of the gradient algorithm. We do not

recommend using l 1 P()(i) Ni-i l, and P(i) - Pd(i)l to replace gi because theirIP~(W)-Pd(i)I 2 - -
final two-machine line counters are almost as high or higher than the final two-machine

line counters of the gradient. In addition, their final two-machine line counters vary

greatly. For example, the final two-machine line counter of the IP1 direction can

be as small as 0.05 the final two-machine line counter of the gradient, but can be as

big as 40 times that of the gradient.

4.1.2 The Location, Existence, and Severity of Bottlenecks

Existence of Bottleneck in Short and Long Lines

In this section, we investigate the performance of the new algorithms in the following

cases:

* Short lines with bottlenecks
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Figure 4-5: Final Two-Machine Line Counter of the Other Directions as Proportions
of Final Two-Machine Line Counter of the Gradient in the Non-Identical Machine
Case

* Short lines with no bottlenecks

* Long lines with bottlenecks

* Long lines with no bottlenecks

Short lines are defined as lines with less than 30 machines and long lines as lines

with more than 30 machines. Lines with bottlenecks can contain up to three bot-

tlenecks, with Pbottleneck between 0.5 and 0.8 of the minimum p of the other non-

bottlenecks.

To minimize the effects of outside factors (factors other than short lines versus long

lines and lines with bottlenecks versus lines without bottlenecks) that influence the

performance of the new algorithms, the short lines with bottleneck are created from

the short lines with no bottleneck by converting a randomly chosen non-bottleneck

into a bottleneck. This is done by imposing a low isolated machine production rate

p on the bottleneck. Similarly, long lines with bottleneck are created from long lines

without bottleneck by converting a previously non-bottleneck by imposing a low p on

it. We created 10 short lines with bottlenecks and 10 short lines without bottlenecks.

The results for short lines with bottleneck are shown in Figure 4-6 and Figure 4-7.

The results for short lines without bottleneck are shown in Figure 4-8 and Figure 4-9.
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Figure 4-6: Final P of the Other Directions as Proportions of Final P of the Gradient
Algorithm in Short Lines with Bottlenecks

Figure 4-7: Final Two-Machine Line Counter of the Other Directions as Proportions
of Final Two-Machine Line Counter of the Gradient Algorithm in Short Lines with
Bottlenecks

Figure 4-6, Figure 4-7, Figure 4-8, and Figure 4-9 show that the new algorithms

perform better in lines with no bottlenecks than in lines with bottlenecks. This is

because in lines with no bottlenecks the final P of the new algorithms are in the

neighborhood of the final P of the gradient algorithm and the final two-machine line

counter of the new algorithms are smaller than that of the gradient algorithm. The

results that the new algorithms perform better in non-bottleneck cases are even more

apparent in longer lines as shown in Figure 4-10, Figure 4-11, Figure 4-12, and Figure

4-13. Figure 4-12 shows that the final P of the new algorithms are very close or
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Figure 4-8: Final P of the Other Directions as Proportions of Final P of the Gradient
Algorithm in Short Lines with No Bottlenecks

higher than the final P of the gradient algorithm. Figure 4-13 demonstrates that, on

average, the new algorithms converge much faster than the gradient algorithm.

Location and Severity of Bottlenecks

We also study the effects of locations of a bottleneck and severity of a bottleneck on the

performance of the new algorithms. We first create lines with no bottlenecks. From

these lines with no bottlenecks, we create lines with a bottleneck on the upstream,

lines with a bottleneck on the middle stream, and another lines with a bottleneck

on the downstream. The parameters of the non-bottleneck machines in lines with

bottleneck are the same as the parameters of the non-bottleneck machines in the

original lines with no bottleneck. The bottleneck is created by imposing a low p on a

randomly chosen machine. To minimize the effects of outside factors, the parameters

of the bottleneck located upstream, middle stream, and downstream of the lines are

the same. At first, these bottlenecks are made less severe, with p of the bottleneck is

between 0.8 and 0.95 of the minimum p of the other machines. Later, the bottlenecks

are made more severe, with p of each bottleneck is < 0.8 of the minimum p of the

other machines. As before, we first study the effects on identical machine lines and

later on the non-identical machine lines. In the identical machine case, all machines,

except the bottleneck, are identical. In the non-identical machine case, all machine
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Figure 4-9: Final Two-Machine Line Counter of the Other Directions as Proportions
of Final Two-Machine Line Counter of the Gradient Algorithm in Short Lines with
No Bottlenecks

Figure 4-10: Final P of the Other Directions as Proportions of Final P of
Algorithm in Long Lines with Bottlenecks

the Gradient

are different with the bottleneck having the lowest p of all.

In both the identical and non-identical machine cases, the location of bottlenecks

does not strongly affect the final P of the new algorithms, as shown in Figure 4-14,

Figure 4-15, and Figure 4-16 for the identical machine case. These figures show that

the proportion of the final P of all the algorithms to the final P of the gradient

algorithm are similar, regardless of the location of the bottleneck. The speeds of

the new algorithms, except the variance and the standard deviation algorithms, are

slightly affected by the location of the bottleneck, as shown in Figure 4-17, Figure
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Figure 4-11: Final Two-Machine Line Counter of the Other Directions as Proportions
of Final Two-Machine Line Counter of the Gradient Algorithm in Long Lines with
Bottlenecks
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Figure 4-12: Final P of the Other Directions as
Algorithm in Long Lines with No Bottlenecks

Proportions of Final P of the Gradient

4-18, and Figure 4-19. For example, Figure 4-17 shows that it takes at most 9 times

the speed of the gradient algorithm for the 1 algorithm to converge when the
IPb-PsI

bottleneck is located upstream in the identical machine line. However, Figure 4-18

demonstrates that it takes at most only 2.5 times the speed of the gradient algorithm

for the 1P algorithm to converge when the bottleneck is located in the middle of

the line. Unfortunately, we could not explain how the speed of the new algorithms

vary with the locations of the bottleneck. As mentioned earlier, the speed of the

variance and standard deviation algorithms is not affected by the location of the
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Figure 4-13: Final Two-Machine Line Counter of the Other Directions as Proportions
of Final Two-Machine Line Counter of the Gradient Algorithm in Long Lines with
No Bottlenecks

bottleneck.

I I [ a I

Figure 4-14: Final P of the Other Directions as Proportions of Final P of the Gradient
Algorithm in Identical Machine Lines with One Mild Bottleneck Located Upstream

Furthermore, Figure 4-14 and Figure 4-20 show that the new algorithms work

better in the non or mild bottleneck cases than in severe bottleneck cases in the

identical machine cases.
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Figure 4-15: Final P of the Other Directions as Proportions of Final P of the Gradient
Algorithm in Identical Machine Lines with One Mild Bottleneck Located in the Middle
of the Line

I S Aea I

Figure 4-16: Final P of the Other Directions as Proportions of Final P of the Gradient
Algorithm in Identical Machine Lines with One Mild Bottleneck Located Downstream

4.2 Reliability

To test the reliability of the new algorithms, we start each algorithm with three

different initial buffer allocations and investigate if the new algorithms will converge

to the final, or the neighborhood of the final, P of the gradient algorithm.

The three initial buffer allocation methods are as follows:

1. Equal Buffer Allocation

Equal buffer allocation means that Ni is initially allocated as

NTOTAL
Ni= ;i = ,...,k- 1k-1
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Figure 4-17: Final Two-Machine Line Counter of the Other Directions as Proportions
of Final Two-Machine Line Counter of the Gradient Algorithm in Identical Machine
Lines with One Mild Bottleneck Located Upstream

2. Buffer Allocation Proportional to 1Pi+Pi+l

The intuition behind this type of buffer allocation is as follows: if two adjacent

machines Mi and Mi+l have large isolated production rates Pi and pi+l, parts

in Buffer Bi tend to get processed immediately by Machine Mi+l. Therefore,

Buffer Bi should get little space. On the other hand, if Machines Mi and Mi+l

are slow (or their Ps are small), Machine Mi+i most likely has not finished

processing parts when Machine Mi finishes. Therefore, Buffer Bi should get

more space to store parts that will get processed eventually by Machine Mi+l.

This method of initial buffer allocation requires that Ni is allocated as

1
Ni = C;i =1,...,k-1

Pi + Pi+l

where C is a normalizing factor, which is mathematically defined below.

NTOTAL

.C Rnk-1 1
i=l-- pi+pi+i

3. Random Buffer Allocation
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Figure 4-18: Final Two-Machine Line Counter of the Other Directions as Proportions
of Final Two-Machine Line Counter of the Gradient Algorithm in Identical Machine
Lines with One Mild Bottleneck Located in the Middle of the Line

Here we randomly allocate the initial buffer size subject to Ekl 1 Ni = NTOTAL.

Let C be a normalizing factor such that:

NTOTAL
C = = k- NTOTALU(O, 1)

and U(0,1) = a uniformly distributed random number from 0 to 1.

The initial Ni is allocated as

Ni = NT°TALU(o, 1)C; i = 1,..., - 1

We now examine the performance of the new algorithms using the three different

initial buffer allocations. We first describe their performance in the identical machine

case and later in the non-identical machine case.

4.2.1 Identical Machine Lines

We create 10 different lines and use the three different methods to initialize the

buffer size. Figure 4-21, Figure 4-22, and Figure 4-23 show the performance of the

new algorithms, in terms of their final production rates as proportions of the final
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Figure 4-19: Final Two-Machine Line Counter of the Other Directions as Proportions
of Final Two-Machine Line Counter of the Gradient Algorithm in Identical Machine
Lines with One Mild Bottleneck Located Downstream
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Figure 4-20: Final P of the Other Directions as Proportions of Final P of the Gradient
Algorithm in Identical Machine Lines with One Severe Bottleneck Located Upstream

production rate of the gradient, using the three initial buffer allocation methods.

All three figures show the average, the maximum and the minimum performance

measure of the 10 lines. The average final production rates of the new algorithms

are at least 95% the final production rate of the gradient, showing that the new

algorithms converge close to the optimal point of the gradient algorithm. Therefore,

the new algorithms are reliable.
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Figure 4-21: Final P of the Other Directions as Proportions of Final P of the Gradient
in the Identical Machine Case, with Equal Initial Buffer Allocation

4.2.2 Non-Identical Machine Lines

We also create 10 lines and initialize the buffer size using the three different buffer

allocation methods. Figure 4-24, Figure 4-25, and Figure 4-26 show the results for

the non-identical machine case. Using the three initial buffer allocation methods, the

average final production rate of the new algorithms are also at least 95% the final

production rate of the gradient. Therefore, the new algorithms are also reliable in

the non-identical machine case.

4.3 Speed

To evaluate the speed of the new algorithms, we compare the final two-machine-line

counters of all algorithms as the line's length increases. The two-machine-line coun-

ters, which is how often the two-machine evaluation in the decomposition algorithm

is called, is used to measure the speed of all algorithms. We first describe the results

for the identical machine case, and later describe the results for the non-identical

machine case.
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Figure 4-22: Final P of the Other Directions as Proportions of Final P of the Gradient
in the Identical Machine Case, with Initial Buffer Allocation Proportional to 1

Pi+Pi+i

4.3.1 Identical Machine Lines

For the identical machine case, 5 different lines are generated. All figures in this

section demonstrate the average results of the 5 lines.

Figure 4-27 shows the final two-machine line counters of the new algorithms as

the line's length increases. It confirms that variance and standard deviation work

very well to replace the gradient in the identical machine case. When lines are short,

the final two-machine line counters of the variance and standard deviation methods

are less than that of the gradient. When lines are long, their final two-machine line

counters are similar to that of the gradient; in addition, their final production rates

are slightly higher than the final production rate of the gradient method. The fact

that the P of the variance and standard deviation methods are higher than the P

of the gradient in long lines is shown in Figure 4-28. Figure 4-28 demonstrates the

production rate versus the two-machine line counter for an identical machine case, of

which data is shown in Table 4.2.

4.3.2 Non-Identical Machine Lines

For the non-identical machine case, 5 different lines are generated, with a different

machine added to the end of the line as k increases. All figures in this section demon-
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Figure 4-23: Final P of the Other Directions as Proportions of Final P of the Gradient
in the Identical Machine Case, with Random Initial Buffer Allocation

Table 4.2: The Line Parameters of which Results are Shown in Figure 4-28

strate the average results of the 5 lines.

Figure 4-29 shows the speed of the new algorithms as line's length increases in the

case of non-identical machine cases. It shows that, on average, the convergence time

of the gradient algorithm is longer than the convergence times of the other algorithms.
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Figure 4-24: Final P of the Other Directions as Proportions of Final P of the Gradient
in the Non-Identical Machine Case, with Equal Initial Buffer Allocation

Figure 4-25: Final P of the Other Directions as Proportions of Final P of the Gradient
in the Non-Identical Machine Case, with Initial Buffer Allocation Proportional to

1
Pi+Pi+i
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Figure 4-26: Final P of the Other Directions as Proportions of Final P of the Gradient
in the Non-Identical Machine Case, with Random Initial Buffer Allocation

Figure 4-27: Final Two-Machine Line Counter as Line's Length Increases in the
Identical Machine Case
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Figure 4-28: Production Rate versus Two-Machine Line
Machine Case with k = 42
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Figure 4-29: Final Two-Machine Line Counter as Line's Length Increases in the Non-
Identical Machine Case
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Chapter 5

Sensitivity Analysis

In this chapter, we test how sensitive the new algorithms are to small changes in

machine parameters. As before, we first describe the results for identical machine

lines and later for non-identical machine lines.

5.1 Identical Machine Lines

We first ran the new algorithms on an original line, of which data is described in

Table 5.1.

Table 5.1: The Original Line's Parameters Used in Sensitivity Analysis of Identical
Machine Lines

Afterwards, we create eight lines, of which parameters are within 10% of the

parameters of the original line. Initially, each of the eight lines has 3 machines. Later,

we add one machine at a time to each line and perform the new algorithms on the

longer line. We add a machine to each line until each line has 42 machines. We take

the average of the two-machine-line counters at each k of the eight lines. Assuming
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Number of Machines From 3 to 42 identical machines
Total Buffer Space to be Allocated 100(k- 1)

Repair Rate r 0.015
Failure Rate p 0.01

Processing Rate 1/ 1



that the two-machine-line counters at each k assumes a Normal distribution, we also

compute the lower bound and upper bound of the two-machine-line counters at each

k. The lower bound is computed using the formula 1, - 2. The upper bound is

computed using p + 2c. Here t, denotes the mean of the two-machine-line counters at

each k. denotes the standard deviation of the two-machine-line counters at each k.

The average, lower bound, upper bound, and the original two-machine-line counter at

each k for each algorithm are shown in Figure 5-1 until Figure 5-9. These figures show

that all the algorithms, except the variance and the standard deviation algorithms,

are sensitive to up-to 10% changes in machine parameters. For changes less than 10%

of the original machine's parameters, all algorithms are expected to be less sensitive

to the changes.

Gradient Algorithm
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Figure 5-1: Sensitivity Results of the Gradient Algorithm on Identical Machine Lines

5.2 Non-Identical Machine Lines

We start with an original non-identical-machine line, of which parameters are de-

scribed in Table 5.2. From this original line, we create eight lines, of which parameters

are within 10% of the original line's parameters. Initially, each line has only three

machines. We gradually add one machine at a time until the line's length becomes 23

machines. For each line, the total buffer space is 100(k - 1). We run all algorithms on
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Figure 5-2: Sensitivity Results of the Variance Algorithm on Identical Machine Lines

the modified and the original lines. Figure 5-10, Figure 5-11, and Figure 5-12 show

the average, the lower bound, the upper bound, and the original two-machine-line

counters for the gradient, the variance, and the 1 algorithm. These figures show

that as the lines get longer, all algorithms become more sensitive to the changes in

parameters. The results for the standard deviation, I - 1, Pb -Ps, IPu-PdI, pP,
2' N' -- P I 'tf n

and IP- are similar and therefore not shown.I p d a e si
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Standard Deviation Algorithm
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Figure 5-5: Sensitivity Results of the i Algorithm on Identical Machine LinesIPb(i)-Ps()I
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Iprup-prdownl

Figure 5-9: Sensitivity Results of the IP (i) - Pd(i)l Algorithm on Identical Machine
Lines

Table 5.2: The Original Line's Parameters Used in Sensitivity Analysis of Non-
Identical Machine Line

Machine No Repair Rate r Failure Rate p Processing Rate p
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Figure 5-10:
Lines

Sensitivity Results of the Gradient Algorithm on Non-Identical Machine
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Sensitivity Results of the Variance Algorithm on Non-Identical Machine
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

6.1.1 Accuracy

In the identical-machine lines, the variance and standard deviation work very well as

substitutes for the gradient. This is because their final P are as high as the final P

of the gradient algorithm and the convergence times of the two algorithms are, on

average, half that of the gradient algorithm. We do not recommend using - 1 and

Ipb(i)-p (i)l to replace gi because their convergence times might be as long as four times

the convergence times of the gradient. The other direction vectors (Pd', I 2 -_

IPb - Ps , and P. - Pdj) do not outperform the gradient.

The variance and the standard deviation algorithms also do well in the non-

identical machine case, although not as well as in the identical machine case. We

do not recommend using P (i) -()l - Ni, and IP,,(i) - Pd(i)l to replace gradient

i in the non-identical machine case because their final two-machine line counters are

almost as high or higher than the final two-machine line counters of the gradient. In

addition, their final two-machine-line counters vary greatly.

We also conclude that the new algorithms perform better in lines with no bottle-

necks than in lines with bottlenecks. The results that the new algorithms perform

better in the non-bottleneck cases are even more apparent in longer lines.
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In both identical and non-identical machine cases, the location of bottlenecks

does not strongly affect the final P of the new algorithms. The speeds of the new

algorithms, except the variance and the standard deviation algorithms, are slightly

affected by the location of the bottleneck. Unfortunately, we could not explain how

the speed of the new algorithms vary with the locations of the bottleneck.

6.1.2 Reliability

The new algorithms are reliable. When the buffer allocation is initialized using the

three different buffer initialization methods (described in Chapter 4), the final P

are close to one another. The new algorithms are also reliable in the non-identical

machine case.

6.1.3 Speed

In short identical-machine lines, the new algorithms converge faster than the gradient.

As lines get longer, most of the new algorithms (except the variance and the standard

deviation) take longer to converge than the gradient. When the identical-machine

lines are long, the final two-machine line counters of the variance and the standard

deviation are similar to that of the gradient and their final P are slightly higher

than the final P of the gradient method. In non-identical machine lines, the gradient

algorithm takes longer to converge even at the case of long lines.

6.1.4 Sensitivity Analysis

We also test how sensitive the new algorithms are to small changes in machine param-

eters. We find that the new algorithms are sensitive to up to 10% changes of machine

parameters. We believe that the new algorithms will be less sensitive to changes less

than 10% of the parameters of the original line.
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6.2 Future Research

The new directions, especially the variance and the standard deviation, have shown

to be good substitutes for the gradient. Although their final P might not be as

high as the final P of the gradient, most of them converge faster than the gradient.

Therefore, one possible future research is to run together the new algorithms until a

specified time period, observe the buffer allocation at that time, and finally use the

gradient algorithm from that time on. By doing so, we expect to converge to the

highest possible final P with less time than if we use the algorithms individually.

Figure 1-4 and Figure 1-5 show that the alternative directions have the same shape

or inverse the shape of the optimal buffer allocation at the optimal point. Therefore,

another possible future research is to use the alternative directions to replace the

buffer allocation, instead of to replace to gradient. This means that at every buffer

allocation, the alternative directions are calculated and Buffer Bi is allocated in pro-

portion to the component i of the alternative direction. This process continues until

the terminating criterion is satisfied. We expect that using the alternative direc-

tions to directly replace the buffer size might lead to a better result than using the

alternative directions to replace the gradient.

Finally, another possible research involves using linear regression. First, we need

to gather enough data from previous experiments. The data consists of gradient i,

the variance i, the standard deviation i, 1 ()-() 2 7

Ipb(i) - Ps(i), and IP.(i) - Pd(i)l at the optimal buffer allocation. Later, we regress

gradient i on all possible directions: the variance i, the standard deviation i, 1,

lpbi)- Iu~i)-~i Ti- 1, Pb(i)-ps(i)j, and P(i)-Pd(i). From this regression,
IPb(i)--ps(i)l' P(i)-Pd(i)l' ' 2'

we get the regression coefficients. This possible research requires using the linear

combination of all the possible directions as the direction to replace the gradient.
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Appendix A

Generating Realistic Line

Parameters

A.1 Motivation

In order for the algorithms' results to be meaningful, the input data fed into the

algorithms should be as realistic as possible. In this appendix, we define an efficient

algorithm to generate large numbers of data sets consisting of realistic machine pa-

rameters and realistic total buffer space to be allocated in a transfer line. An efficient

algorithm is needed because we expect computers to spend more time performing the

actual buffer optimization, rather than to spend more time generating the input data

fed to the optimization algorithm.

A.2 Realistic Constraints on Parameters

The algorithm is generated such that the line parameters (ri, pi, Ii, pi, and NTOTAL)

follow a set of constraints. These constraints must be satisfied to create lines with no

bottlenecks. Lines with bottlenecks are created using an algorithm that is a modifica-

tion of the algorithm used to create lines with no bottlenecks. The implementations

of both algorithms can be found in Section A.3.

The following are the set of constraints:
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1. Similarity of r, p, p, and p

These four sets of constraints are used to ensure that the repair rate r, the

failure rate p, the processing speed A, and the isolated production rate p of all

machines are not very different from one another. These similarity constraints

are important because if one machine is very different from the other machines,

either in terms of r, p, pu, or p, that different machine will disturb the flow of the

production line. For example, if A3 is 1 part/unit time and ,8 of the other ma-

chines are 100 parts/unit time, the throughput of the flow line will depend solely

on Machine M3 . Therefore, the capability of the other machines to produce 100

parts/unit time is wasted.

The similarity constraints are as follows:

Lri < Ur
ri

Lp Pi Up
Pi

L_< pi < U~
pj

L < Pi < Up
Pi

Vi, j;i,j = 1,...,k

Here, Lr, L, L,, Lp, Ur, Up, U, and Up are constants. Lr, Lp, L, and Lp

represent the lower bounds on the constraints. On the other hand, Ur, Up, U1,

and Up represent the upper bounds. Readers can use any bound values they

deem applicable to their problem.

2. Isolated Efficiency

The isolated efficiency constraints are used to ensure than the isolated efficien-

cies of all machines are realistic.

The isolated efficiency constraint is:
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L, < i Ue

Vi; i = 1, ..., k

Similarly, Le is the lower bound and Le is the upper bound.

3. Relationship between and r

Usually, it takes much more time to repair a machine than to produce a part

on that machine. Therefore, it is desirable that the machine's processing speed

pt is much greater than the repair rate r. To ensure that tz is much greater than

r, we impose the following constraint:

pi > Mri

Vi;i = 1, ...,k

Here, M is a constant. Readers can choose any value of M applicable to their

problem.

4. Total Buffer Space to be Allocated NTOTAL

This constraint is needed because during the down times of Machine Mi, the

number of parts that fill Buffer Bil and empty Buffer Bi are limited. This

constraint specifies a realistic range of the number of repair events it takes to

empty of fill an average buffer.

Let us observe the units of the following parameters:

* Ni has units of number of parts

·* j has units of number of parts produced per unit time

r has units of number of repair events per unit time
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Let us first analyze the fraction Ni, which has units of (number of parts/buffer) (unit

time/number of parts) = unit time/buffer. If we require that Machine Mi and

Machine Mj to be next to each other, we can interpret -N as the time it takes

to fill or empty a buffer; Vi - jl I 1.

Multiplying -i and rj, we get Nr, which can be interpreted as the expected

number of repair events required to empty or fill a buffer.

In reality, the number of repair events to empty or to fill a buffer is also limited.

We propose that a realistic expected number of repair events required to empty

or fill a buffer is between and 5. As before, readers can modify this range

with the one they believe more applicable to their problem.

Recall that _ can be interpreted as the expected number of repair events

required to empty or fill a buffer. If we let N* = i=- A, we can interpret

1 = N TOTAL as an approximate measure of the number of repair events
Ei=l i

to empty or fill an average buffer.

The total buffer spaces constraint is the constraint that specifies a realistic range

of the number of repair events it takes to empty or fill an average buffer. That

is,

NTOTAL
LN < - < UNN*

Here. LN and UN are constants, with LN represents the lower bound of the

constraint and UN represents the upper bound.

A.3 Implementation

A.3.1 Difficulties with Filtering

We need a simple and fast algorithm to generate ri, pi, and Hi such that all four set of

constraints are satisfied. We first consider an algorithm that generates ri, pi, and pi of
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each machine independently. This is done by generating ri from a uniform distribution

between its lower bound and upper bound. Pi is generated such that the isolated

efficiency constraint is satisfied. i is generated such that pi > 5ri. After ri, pi, and

pi get generated, rj, pj, and pj, Vj = i + 1, i + 2, ..., k, are generated independently

of ri,pi, and pi, using the same procedure we generate ri,pi, and pi . The process

gets repeated until all ri,pi, and pi, Vi = 1, ..., k, get generated. Afterwards, we test

if the similarity constraints get satisfied for all pair of i and j, Vi, j = 1, ..., k. If these

constraints do not get satisfied, we repeat generating ri, pi, and pi until the similarity

constraints are satisfied. As expected, this filtering algorithm takes very long time.

Moreover, the longer the line, the longer it takes to find the set of machine parameters

that satisfy all the constraints. Although some modifications of the filtering algorithm

are possible to speed up the data generation process, we believe any forms of filtering

algorithms are not very efficient in generating line parameters, especially in generating

long lines.

We propose a different algorithm that avoids using any filtering approach.

Table A. 1 compares the performance of the filtering algorithm with the algorithm

we propose.

Table A.1: Comparisons between the Performance of the Filtering Algorithm and the
Performance of the New Algorithm in Generating a Line with k Number of Machines

We will first describe an algorithm to generate line with non-bottleneck machines

and later describe an algorithm to generate lines with bottleneck machines.

A.3.2 Generating Lines with non-Bottleneck Machines

The description of the algorithm is as follows:
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2 <1 second < 1 second
3 <1 second <1 second
4 > 10 minutes < 1 second
5 > 30 minutes < 1 second

100 > 60 minutes < 1 second



1. The number of machines k is randomly generated from a uniform distribution.

2. Generating parameters of Machine M1

(a) The repair rate r1 is first generated from a uniform distribution between 0

and the maximum repair rate specified.

(b) Pi needs to be generated such that the isolated efficiency constraint is

satisfied. That is,

Le < r Ue (A.1)
rl + pl

Rearranging (A.1) results in:

1-U p 1 - Le
rl < Pl < rl
Ue L- Le

pi can now be generated from a uniform distribution from 1--eu rl to 1-Le rl.

(c) 1, needs to be generated such that the relationship between ,i and r con-

straint is satisfied. That is,

IL, > Mrl

i,l can now be generated from a uniform distribution from Mr to the

maximum [z1 specified.

3. Generating the parameters of Machine M2.

Since the parameters of Machine M1 are already generated in step 2, we can

use the parameters of Machine M1 to generate the parameters of Machine M2.

(a) Generating r2

Machine M2 needs to be generated such that the repair rate r2 satisfies the

similarity of r constraint. That is,
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Lr < Ur (A.2)ri

Rearranging (A.2) yields:

Lrrl < r2 < Urrl

r 2 can now be generated from a uniform distribution [Lrrl, Urrl].

(b) Generating P2

At this point, the parameters r, pl, 1L, and r2 are already generated from

the previous steps. To generate P2, we need to satisfy all the constraints

that involve P2. The first constraint is the similarity of p constraint, which

is:

Lp < P2 < Up (A.3)
Pi

The second one is the isolated efficiency constraint, which is:

L < r2 < U (A.4)
r2 + P2

Rearranging (A.3) yields:

Lppl < P2 < Uppl

Rearranging (A.4) yields:

-Ue Le

Since P2 needs to satisfy (A.3) and (A.4), there are two lower bounds and

two upper bounds resulting from the two sets of inequalities.

The two lower bounds are: Lppl and 1-U r2; while the two upper bounds
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are Uppl and 1-Lr2L" r2.

P2 can now be generated from a uniform distributed between the two tight-

est bounds, i.e from the highest lower bound to the lowest upper bound.

That is, P2 is generated from a uniform distribution [max(Lppl, 1-U r2), min(Uppl, 1 -L r2 )]

(c) Generating 2

Machine M2 needs to be generated such that the processing rate /12 satisfies all

the constraints that involve 2.

The first constraint is the similarity of constraint, which is:

LA < _ 2_< Up
/t'

(A.5)

The second constraint is the similarity of p constraint, which is:

Lp < P2 < Up
P1

Finally, the last constraint is the relationship between and r constraint.

/12 > Mr 2

Rearranging (A.5) yields:

L 1 < 2 Ul

Rearranging (A.6) yields:

Lppl < P2 Uppl,

Since p = r+p, (A.6) can also be written as:

LpPl < /2r2 < Upp
r2- +P2
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r2 + P2 r2 + P2
Lppl r < 12 < Upp1 

r2 r2

Since /u2 has to satisfy (A.5),(A.6), and (A.7), there are three lower bounds and

two upper bounds for 2.

The three lower bounds are: LAl1l, Lppl r2+2 , and Mr 2 ; whereas the two upper

bounds are: U and Uppl r2 +
P2

/12 can now be generated from a uniform distribution between the two tightest

bounds, i.e from the highest lower bound to the lowest upper bound. That is,

12 is generated from a uniform distribution

[max(L,g, Lppl r2+P2, Mr 2), min(Ui, Uppl r2+P2 )]1

4. Generating the parameters of Machine M3 , M 4, M5 , ..., Mk

The parameters of Machines M3, M4, M5, ..., Mk are generated in the same way

as the parameters of Machine M2 are generated. We first identify the set of

constraints that ri, Pi, and i need to satisfy. These set of constraints are written

with respect to the r, p, and /1 of each of the earlier machines. Each of the

constraint will contribute a lower bound and/or an upper bound. We next

find the tightest lower and the tightest upper bound of all the constraints and

generate r, p, or , from a uniform distribution from the tightest lower bound

to the tightest upper bound. The greater the k is (or the farthest away the

machine is located downstream), the larger the number of machines located

upstream of Machine Mk and therefore, the larger the number of constraints

that need to be written for rk, Pk, and Pk

5. Generating the total amount of buffer space to be allocated, NTOTAL.

Recall that NTOTAL needs to satisfy:

NTOTAL
LN N* UN (A.8)

where N* = k ;ii = ,...,- 1.
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Rearranging (A.8) yields:

LNN* < NTOTAL < LNN*

NTOTAL can now be generated from a uniform distribution [LNN*, UNN*].

A.3.3 Generating Lines with Bottleneck Machines

The description of the algorithm to generate lines with bottleneck machines is as

follows:

1. Generate all machine parameters and the total buffer space to be allocated,

using the algorithm used to generate non-bottleneck machines.

2. Randomly choose the number, location, and severity of the bottlenecks. The

severity of the bottleneck is measured by a severity factor 7, 0 < y < 1. A high

y indicates a less severe bottleneck. Likewise, a low -y indicates a more severe

bottleneck.

3. Generate the parameters of the bottleneck machines such that:

* The isolated production rate of the bottleneck machine is less than y multi-

plied by the minimum isolated production rate of the other non-bottleneck

machines. That is,

Pbottleneck < y min Pnon-bottleneckmachines (A.9)

Or,

* The isolated production rate of the bottleneck machine is between two

severity factors, y1 and Y2, multiplied by the minimum isolated production

rate of the non-bottleneck machines. That is,

Y1 min Pnon-bottleneckmachines < Pbottleneck < Y2 min Pnon-bottleneckmachines

(A.10)
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Since p = pr-, we can reduce the value of either , r, or p of the machine

randomly chosen as the bottleneck so that the modified machine becomes a

bottleneck. We call the previously non-bottleneck machine randomly chosen to

become a bottleneck as the original machine.

There are three types of bottleneck machines:

(a) -bottleneck

If Mu of the original machine is reduced, the bottleneck machine becomes a

u-bottleneck.

(b) r-bottleneck

If r of the original machine is reduced, the bottleneck machine becomes an

r-bottleneck.

(c) p-bottleneck

Finally, if p of the original machine is reduced, the bottleneck machine

becomes a p-bottleneck.

For simplicity, in this research we only modify the p of the original machines,

creating only M-bottlenecks.

Rearranging (A.10) yields:

rbottleneck + Pbottleneck
Y1 min Pnon-bottleneckmachines < I

rbottleneck

and

rbottleneck + Pbottleneck
r & + kY2 min Pnon-bottleneckmachines

rbottleneck

Finally, the bottleneck can now be generated from a uniform distribution

between the lower bound and the upper bound of above inequality.
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A.4 Example

To see how the algorithm performs, a transfer line with 40 unreliable machines is

generated. The NTOTAL generated was 2402. Figure A-1 shows the upper bounds,

the lower bounds, and the values of r generated for all machines. Figure A-2 shows

the upper bounds, the lower bounds, and the values of p generated. Finally, Figure

A-3 shows the upper bounds, the lower bounds, and the values of for all machines.

In Figure A-3, 27 falls outside its lower and upper bounds because Machine M2 7 is

the bottleneck.

Figure A-1: Upper Bounds, Lower Bounds, and the Values of r Generated

From Figure A-1, Figure A-2, and Figure A-3, we observe that the upper and

lower bounds do not converge to one point. We do not want the bounds to converge

because if they do, the downstream machines become increasingly similar to one

another-which do not represent a realistic transfer line.

A.5 Conclusion

This algorithm can be used to generate realistic machine parameters. It avoids any

filtering and is fast and reliable.
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Appendix B

Linear Search to Find the Next

Point on the Constraint Space

Schor's gradient algorithm starts from an initial guess N. After selecting the initial

guess, a direction to move in the constraint space NTOTAL = Ek-1 Ni is determined.

A linear search is conducted along that direction until a point that has the maximum

production rate is encountered. This new point, Nne', becomes the next guess. A

new search direction is calculated from this new guess.

Figure B-1 shows the illustrations of N, N " "', the search direction vector HI, and

the constraint space for k = 4.

Mathematically, N"'C is defined as N + a r. The linear search requires finding

a scalar a in the direction of vector rI such that the production rate of N"' is the

highest production rate of all points along Fl on the constraint space.

B.1 Binary Search

Before we describe our algorithm, we first describe the well-known Binary Search

Algorithm [BinaryO4], which is used to search a number from a sorted array. The

Binary Search function takes four parameters: the search term, the array of the sorted

data, and the high and low values of data to check. The low value and high value

are added so that we can collapse the search area during each level of recursion. The
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search term is then compared to the value in the middle of the range. If it matches

or if the high and low are equal, then the Binary Search terminates. Otherwise, we

compare the search term to the middle value of the range and if the middle is too

high, we return the results of searching the lower half of the array. If the middle is

too low, then we search the top half.

B.2 New Search Algorithm

Our algorithm is a slight modification of the Binary Search. Like the Binary Search,

the new algorithm also identifies a region and later collapses the region until the search

term is found. The search term is the scalar a*, of which N + a* rI has the highest P

of all. Unlike the Binary Search, which sorts an array of data, our algorithm needs

to be able to compare the production rates associated with the scalar a. In order to

help compare the P values and to find the highest P of all, we introduce a minmid

value and a midmax value, in addition to the low value (or min), the high value (or

max), and the middle value (or mid) of the region. The minmid value is the middle

value between min and mid. The midmax value is the middle value between mid

and max.

The followings are the steps of the algorithm:

1. Calculate how far we can go before we violate the constraint NTOTAL = Ni.

Let ai, be a scalar such that N + a*i, II = N in, the point on the edge of the

constraint space, in the direction opposite of I.

Similarly, let aa be a scalar such that N + aaI H = Nmax, the point on the

edge of the constraint space, in the same direction as r. The algorithm begins

by first calculating am* and a*ax.

Figure B-1 shows the location of Nmin and Nmax.

Due to the concavity property of the dual problem, the production rates of all

points along the line parallel to by n follow a concave function. ain and a*ax
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are the two points at the opposite ends of the horizontal axis of the production

rate function.

Figure B-2 shows ami and amax, as the opposite ends of the line formed by 1.

Here, the horizontal axis is the same as the dotted line formed by vector in

Figure B-1.

--. N2

N""' = N + a-,,i 11

Figure B-1: Nmin,N ma and I on the Constraint Space for k = 4

"o

Zz
Z
Zzz

ar in*

Vector rn

amax*

Figure B-2: amin, aax,
[l for k = 4

and the Production Rate Function along the Line Parallel to

Let ai be the current minimum value of the horizontal axis of the production

rate function, and amax be the current maximum value of the horizontal axis of
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the production rate function.

Let

tempamin be a variable that holds the temporary value of amin,

tempamax be a variable that holds the temporary value of amax,

tempamid be a variable that holds the middle value of tempamin and tempamax,

tempaminmid be a variable that holds the middle value of tempamin and tempamid,

tempamidmax be a variable that holds the middle value of tempamid and tempamax.

Initially, the region to consider is the whole line parallel to fl. Therefore, the

algorithm starts by setting

tempamin = amin = amin

tempamax = amax = amax

2. Calculate the value of the midpoint of the region considered

For convenience, if we are going through the algorithm for the first time, we let

tempamid = 0. Let

Pamin be the production rate of tempamin,

Paminmid be the production rate of temPaminmid,

Pamid be the production rate of tempamid,

Pamidmax be the production rate of tempamidmax,

Pamax be the production rate of tempamax, and

Pmax be the optimal point of the P function.

Figure B-3 shows the locations of tempamin, tempaminmid, tempamid, temPamidmax, tempamax,

and the scalar a with has the highest production rate, Pmax-.

After the first iteration of the algorithm, we can set tempamid to be the middle

value of tempamin and tempamax. That is,
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Figure B--3: Locations of tempamin, tempaminmid, tempamid, tempamidmax, tempamax

tempamin
tempamid =

+ tempamax
2

3. Calculate tempaminmid and temPamidmax

temPaminmid and temPamidmax are calculated as follows:

tempaminmid =

tempamidmax =

tempamin + temPamid
2

tempamid + tempamax
2

4. Calculate the production rate of tempamin , tempaminmid, tempamid, tempamidmax,

and tmpamax

Figure B-4 shows the locations of Pamin, Paminmid, Pamid,Pamidmax, and Pamax.

5. Analyze and compare Pamin, Paminmid, Pamid, Pamidmax, and Pamax

In this step, we compare Pamin, Paminmid, Pamid, Pamidmax, and Pamax so that we
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can start collapsing the region.

The steps to comparing Pamin, Paminmid, Pamid, Pamidmax, and Pamax are as

follows:

(a) If the P Function is Monotonically Increasing

It is,

Pamin < Pamid < Pamaz

Figure B-5 shows a monotonically increasing P function, with all the values

of Pamin, Paminmid, Pamid,Pamidmax, and Pamax-.

In the case of a monotonically increasing P function, we only need to search

the region between tempamid and tempamax because this is the region that

includes the scalar a with the optimal production rate Pmax. Therefore,

the new amin, amax, and amid are calculated as follows:
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Figure B-5: A Monotonically Increasing Production Rate Function

amin

amax

amid

= tempamid

= tempamax

tempamid + temPamax
2

Let Pavg be the production rate of the midpoint of the collapsed region.

amid is now the middle point of amid and amax. Therefore, PaVg is the

production rate of tempamidmax. That is,

Pavg = Pamidmax

Figure B-6 shows the new collapsed region, with the locations of the new

amin, amid, and amax.

(b) If the P Function is Monotonically Decreasing

It is,
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Figure B-6: The New amin, amid, and amax for the Monotonically Increasing Function

Pamin > Pamid > Pamax

Figure B-7 shows a monotonically decreasing P function, with all the values

of Pamin, Paminmid, Pamid,Pamidmax, and Pamax.

t

amin
amin

temp

Figure B-7: A Monotonically Decreasing Production Rate Function

In the case of a monotonically decreasing P function, we only need to

search the region between tempamin and tempamid because this is where

104

i ' I

--------

/

I

I

--l Dul.
le Imew %.-lltlp;reu eglon



the scalar a, associated with the optimal P, will be located. Therefore,

the new amin, amax, amid, and Pavg are calculated as follows:

amin = tempamin

amax

amid

= tempamid
tempamin + tempamid

2

Pavg = Paminmid

Figure B-8 shows the new collapsed region, with the locations of the new

amin, amid, and amax.

zL

The iNew Collapsed
_egion

New amin New amid New amax

Figure B-8: The New amin, amid, and amax for the Monotonically Decreasing Function

(c) If the P Function is Strictly Concave

That is,

Pamin < Pamid

and
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Pamax < Pamid

An example of a strictly concave function is shown in Figure B-9.

P a

F

z
z

ap

amin=

temPan
temPaminmd temPamdmx

Figure B-9: A Strictly Concave Production Rate Function

A strictly concave P function can assume three shapes:

i. The Function between tempaminmid and tempamidmax (Inner Function)

is also Strictly Concave

It is,

(Paminmid < Pamid)

and

(Pamid > Pamidmax)

If this is the case, again modify amin, amax, and amid so that the new

region will contain the optimal production rate value.
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amin

amax

amid

PaUg

- tempaminmid

- tempamidmax

- tempamid

- Pamid

Figure B-9 follows in this category. That is (Paminmid < Pamid) and

(Pamid > Pamidmax).

Figure B-10 shows the new collapsed region.

z
z
z

New a,, Now ad New a,,

Figure B-10: The New Collapsed Region for the Strictly Concave Inner Production
Rate Function: New Collapsed Region

ii. The Function between tempaminmid and tempamidmax (Inner Function)

is Monotonically Decreasing

That is,

Paminmid > Pamid > Pamidmax

In this case, the region that contains Pmax will be the region between

tempamin and tempamid. Therefore, the new amin, amax, and amid are
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set such that:

amin = tempamin

amax = temPamid

tempamin + tempamid
amid = 2

Pavg = Paminmid

iii. The Function between tempaminmid and tempamidmax (Inner Function)

is Monotonically Increasing

It is,

Paminmid < Pamid < Pamidmax

In this case, the region that contains Pmax will be the region between

tempamid and tempamax. Therefore, the new amin, amax, and amid are

set such that:

amin

amax

amid

Pavg

= tempamid

= tempamax

tempamid + tempamax
2

= Pamidmax

At this step, the new amin and amax have been found.

6. Checking the termination criterion

To determine whether we need to terminate the algorithm, we check whether

amin is close to amax-. If they are close to each other, stop the algorithm. If not,

repeat the algorithm until amin and amax are close to each other.

Now we will demonstrate how to reach the Pmax for function in Figure B-9. Figure
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B-9 is a strictly concave function. Its inner function is also a strictly concave function.

Therefore, we collapse the region by letting amin = tempaminmid, amax = tempamidmax,

and amid = tempamid.

The new collapsed region is shown in Figure B-11.

P

2
2

a

tempaminmid temPamidmax

Figure B-11: New Collapsed Region

Afterwards, we divide the new region in four areas, separated by tepamin, tempamidmid,

tempamid, tempamidmax, and tempamax. The P function on the new region is also a

strictly concave function. We again collapse this new region according to the rules

developed for strictly concave functions.

Figure B-12 shows the new collapsed region.

We continue analyzing the P function of the new region and collapsing the region

until the termination criterion, which is when amin is close to amax, is satisfied.

Figure B-13 shows another new collapsed region.

At this point, the termination criteria very likely gets satisfied. Therefore, the

algorithm terminates. The scalar a, which is equal to the last tempamid, has been

found.
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Figure B-12: Another New Collapsed Region

Figure B-14 shows the block diagram of the algorithm to find the scalar a.
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temPaminmid

Figure B-13: The Final Collapsed Region
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NO

Figure B-14: Block Diagram of the Linear Search for Scalar a Algorithm
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Analyze and compare

P amin' P aminmid ' P amid' P amidmax' aP max.

New a min and a max are found.
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