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Abstract

This thesis presents the design, fabrication, and characterization of a batch microbioreactor
with integrated, automated sensors and aeration through a permeable polymer membrane as a
step towards establishing high-throughput bioprocessing platforms. In particular, the thesis
demonstrates the feasibility of culturing bacterial cells in microliter volumes and obtaining
reproducible results similar to those shown at larger scales. A microbioreactor designed to
provide sufficient oxygen to a growing culture is fabricated out of PDMS and glass. Models are
developed to understand oxygen transport and consumption as well as the kinetics of growth
within the microbioreactor. Sensors are integrated to measure the growth parameters optical
density (OD), dissolved oxygen (DO), and pH. Based on these measurements as well as cell
morphology and total and viable cell counts, reproducibility is established and comparisons to
bench-scale bioreactors are made. It is demonstrated that the behavior of bacteria at the two
scales is very similar. It is further demonstrated that off-line analysis of the medium can be
carried out by serial sacrifice of microbioreactors operating under identical conditions. The test
case of HPLC analysis of the fermentation medium to measure glucose consumption and organic
acid production is used. Additional sensing capabilities in the form of in situ measurements for
luminescence and fluorescence are demonstrated, and a potential glucose sensor is modeled to
explore feasibility.

Once reproducibility in fabrication, experimental protocol, and experimental results is
established, the microbioreactor is used for several applications. The ability to monitor
luminescence and fluorescence on-line enables the use of bacterial reporter strains to characterize
the bioreactor environment. The ability to reproducibly sacrifice microbioreactors mid-run is
exploited to demonstrate the feasibility of linking microbioreactors to genome-wide expression
studies using DNA microarrays. The potential of the microbioreactor for investigating different
growth conditions is confirmed by comparing bacterial growth, as evaluated by the measured
parameters, under conditions of different medium and oxygen concentration. It is shown that
statistical differences can be observed, and that these differences are similar to those observed at
a larger scale.

The demonstrated functionality of the microbioreactor could potentially have a large impact
in the numerous fields in which fermentations are used. In bioprocess development, the batch
microbioreactor could be used to select strains at all stages of metabolic engineering and to
explore and optimize growth conditions during scale-up. The microbioreactor could also be an
effective tool in screening applications ranging from toxicology studies that use bacterial reporter
strains, to studies that attempt to elucidate metabolic pathways, to intensification of genome-
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wide expression profiling using either direct links to DNA microarrays or screens of libraries
carrying transcription reporters.

Thesis Supervisor:
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Lammot du Pont Professor of Chemical Engineering and Professor of
Materials and Engineering
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Chapter 1. Introduction

1.1. Background and Motivation

1.1.1. Microbialfermentation

The term 'fermentation' as applied to microbial processes at one time referred to microbial

growth in the absence of oxygen. More recently it has been expanded to include any microbial

process during which cells are maintaining viability. The term 'bioreaction' can be applied

interchangeably. For the purpose of this work we will therefore define a microbial fermentation

or bioreaction as a process whereby bacteria are cultured in a suitable medium and utilize

substrate within the medium to grow and metabolize. Along the way they produce measurable

products that are either (1) useful in and of themselves, (2) indicative of a response to the cellular

environment (thus enabling the cell to act as a sensor), or (3) indicative of some aspect of cellular

function under investigation, thus providing clues to the inner workings of the cell.

1.1.1.1. Cells as producers of useful products

Microbial fermentations are important sources of biological products used in the

pharmaceutical, food, and chemical industries. ' 2 These products include primary and secondary

metabolites, enzymes, recombinant proteins,3' 4 vaccines, and the cells themselves (e.g. yeast). A

characteristic common to a majority of commercial fermentation processes has been an attempt

to increase the production of industrial products through improvement of microbial strains. 6 In

addition to the classical method of incremental improvement through sequential strain selection,

several methods of mutagenesis are now commonly used to introduce changes to the DNA

sequence. Mutation, which uses chemical or physical agents to alter the microbial DNA, is a
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random method that results in slow, incremental changes. Genetic recombination and genetic

engineering are both used to make more substantial changes to the bacterial genome in a single

generation, the first of these methods being random and the second targeted. These techniques

are frequently used in combination with each other to reach the desired goal. Currently,

improved strains are selected using an iterative cycle of three basic principles: mutation,

screening, and assay. Strain improvement relies on knowledge of microbial physiology as well as

pathway regulation and control. Strain improvement also requires familiarity with the

fermentation process for each bacterial strain, and the ability to optimize the fermentation

conditions.

1.1.1.2. Cells as sensors

Light emission from luminescent and fluorescent bacteria (and more recently, yeast) created

to act as reporters for various environmental conditions is finding application in several areas of

biology, including toxicity assays for environmental pollutants, chemical detection, and gene

expression profiling.7 2

For example, for nonspecific environmental reporting the lux13-' 6 or gfp17-20 cassette is fused

to a stress response promoter that responds to a number of environmental and chemical stresses.

For instance, the heat shock response is activated whenever environmental conditions cause

changes in protein structure, and the SOS regulatory circuit is activated in response to DNA

damage.

1.1.1.3. Cells as sources of biological information

Small-scale fermentations are used to identify and screen biocatalysts,21 design new

pathways,2 2 and identify a variety of unique biological organisms from various sources.
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Additionally, fermentation and cell culture can play a critical role in the elucidation of gene

function in other organisms. The most common method involves the cloning and expression of a

genome in a suitable host, such as E. coli or yeast, followed by fermentation in a bioreactor. The

fermentation allows the identification of conditions that regulate gene expression, as well as

production optimization of the protein that is then expressed. In particular, the recent completion

of the human genome sequence provides an especially labor-intensive challenge in this area.23

1.1.2. Methods of obtaining information

The type and amount of information required in each of the above-mentioned areas can

approximately be separated into two broad categories: screening and scale-up. In screening

processes, a limited amount of information about a large number of experimental conditions is

generally required. During scale-up, operating conditions are optimized and a large amount of

information about a small number of experimental conditions is required. In both cases, it is

desirable to obtain fast and accurate analytical information that can be used to evaluate rapidly

the interactions between biological systems and bioprocess operations.

1.1.2.1. Screening

Screening operations are typically carried out in shake flasks, test tubes, Petri dishes, or

microtiter plates. During the screening phase, only limited control of environmental parameters

is possible and endpoint data are generally obtained to gauge the performance of cells. Efforts

have been made to overcome this limitation. In microtiter plates, on-line measurements of

dissolved oxygen24 25 or pH26 during fermentation have been demonstrated. On-line

measurements of dissolved oxygen27 30 and pH31 in shake flasks during fermentation have also

been reported. However, these screening approaches have the fundamental limitation that the
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effort involved largely continues to scale with the number of individual cultures involved,

meaning that experiments with more cultures become more demanding both technically and

mechanically. This is exacerbated by the difficulty of integrating culture steps that precede and

follow the fermentation itself.

1.1.2.2. Scale-up

Scale-up refers to the process of increasing the volume in which a bioreaction takes place.

The objective is to increase the scale of the bioprocess without sacrificing the yield obtained at a

smaller scale. Often this proves difficult due to the engineering limitations that occur as the size

of the bioreactor increases. For example, mixing increasingly deviates from 'ideal', and

problems with adequate aeration and environment homogeneity become more pronounced. As a

result, during the process of scaling-up a particular bacterial strain to fermentation in industrial-

sized bioreactors (100-300,000 f), it is necessary to consider any environmental changes that the

new strain will encounter in the larger reactor.

The method of scale-up to larger-volume fermentations has historically been centered on an

attempt to maintain the same physical environment for the growing cells. Scale-up is typically

based on maintaining one or more of the following: equal shear stress through a constant

impeller tip speed, constant agitation power per unit volume of fermentation medium, constant

mixing time, or constant rate of oxygen mass transfer through the maintenance of a constant kLa

value.5

Efforts towards process scale-up are currently limited by the time, expense, and labor-

intensiveness of the required experiments. Thus, only a limited number of operating conditions

can be investigated, with the result that true optimization is frequently not possible because of

limited probing of the experimental space.
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1.2. Types of Bioreactors

Bioreactors can be classified into one of three general modes of operation: batch or fed-

batch, semi-continuous (also called semi-batch), and continuous. Batch culture is characterized

by the introduction of cells and medium at the beginning of the batch cycle and the removal of

product at the end. In fed-batch culture, nutrients are added either continuously or periodically

throughout the batch cycle. During semi-continuous operation, a bioreactor is inoculated with

cells that are then allowed to grow for a period of time, often until the culture is approaching

early stationary phase. A large fraction of the cell culture broth is then harvested and the

bioreactor is replenished with fresh medium, at which point the cycle is repeated. Continuous

culture is characterized by the continuous addition and removal of medium. In a chemostat, cells

are continuously removed and a steady-state is maintained inside the bioreactor, while in a

perfusion culture the cells are retained within the reactor while a cell-free sidestream is

removed.3 2

1.3. Microfabrication Technology

As seen from the discussion of screening and scale-up in previous sections, a need exists for

a bioprocessing platform that would allow high-throughput, parallel, automated processing of a

variety of bacterial strains under a variety of controlled conditions, with integrated sensors

yielding real-time data on process parameters. Microfabrication provides the tools needed to

reach this objective.

Microfabrication techniques that allow parallel processing were initially developed for the

electronics industry to enable the rapid manufacturing of large numbers of identical devices.

Over the last three decades these fabrication techniques have been applied to the fabrication of
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microelectromechanical systems (MEMS). With feature sizes on the order of microns, the first

demonstrations of MEMS were fabricated in silicon and used as sensors and actuators (e.g.

airbag accelerometers).3 3'3 4 The field has since grown to include a wide range of materials and

microfabrication methods and has been extended to chemistry and biology,3 53 6 where

microfabrication is used to fabricate microchemical reaction systems37 and chemical analysis

devices called micro-total-analysis-systems (TAS). 3 8

The suite of materials that is used in the fabrication of microdevices has grown to encompass

glass, plastics, and ceramics in addition to silicon. Techniques have been developed that provide

a way to transfer patterns into these unconventional materials, onto nonplanar surfaces, and into

three-dimensional structures.3 940 These techniques are collectively described as soft lithograpic

techniques and they use poly(dimethylsiloxane) (PDMS), a deformable and moldable elastomer,

as a stamp, mold, or substrate. A rapid-prototyping technique has also been developed that uses

high-resolution transparencies as masks for photolithography to significantly reduce the

fabrication time of new devices.4143

1.4. Microbioreactor Requirements

Bench-scale bioreactors are generally 0.5-5 f in volume. They are typically equipped with

temperature and pH controllers, as well as a dissolved oxygen sensor. Most other measurements

are made off-line, including the determination of optical density, cell number, dry weight, and

concentration of chemicals of interest (both substrates and products). Attempts are being made to

integrate on-line measurements of some of these attributes, particularly at the production scale

where contamination is frequently a concern (especially during continuous culture).44 46 The

oxygenation of laboratory bioreactors is generally accomplished by sparging, and agitation is
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achieved with the use of an impeller.

A microbioreactor appropriate for high-throughput applications will ideally retain the

functionality of larger bioreactors in a miniaturized form, while allowing the integration of

additional sensors and the automation of the fermentation process. The following criteria will

therefore need to be met: biocompatibility of the chosen material, adequate aeration, temperature

control, sensing of biomass, sensing of dissolved oxygen, and sensing of pH.4447 In addition, it is

desirable to have added sensing capabilities in the form of in situ glucose sensing, as well as the

sensing of small light intensities such as may be produced by luminescent or fluorescent bacterial

cultures. Finally, it is desirable that the medium can be removed from the microbioreactor for

off-line analysis during a fermentation run. This is necessary for linking the microbioreactor to

existing technology such as microarrays or instruments used for analysis.

1.4.1. Material biocompatibility

The primary requirement of any material used for bioprocess applications is that the material

be biocompatible. There are two main considerations for defining the biocompatibility of a

particular material: surface properties that affect cell adherence and cytotoxicity. PDMS has been

used extensively in medical implants and biomedical devices because of its low toxicity.4 8' 51 The

relatively short time that batch experiments with quickly-growing bacterial strains typically last

(<12 hours) allows the use of PDMS as a fabrication material. Longer experiments would

eventually require surface modifications to prevent the adhesion of cells.

1.4.2. Aeration

Aeration of the cell culture is required to provide oxygen to the cells and to remove produced

gases, primarily carbon dioxide. In current industrial cell culture, oxygen demand is generally
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met in one of three ways as illustrated in Figure 1-1.

The first method of aeration commonly used is surface aeration, in which mass transfer

occurs through the surface of the liquid only. In order to increase the mass transfer, a surface or

subsurface impeller can be added. This impeller can act either by increasing the surface area of

the medium in contact with the gas, or additionally by entraining bubbles. Uncontrolled

entrainment of bubbles into the culture can, however, be detrimental to cell health.
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The second aeration method in use is bubble aeration, in which oxygen is bubbled into the

medium through a sparger at the bottom of the bioreactor. The sparging can be combined with a

subsurface mechanical impeller. Alternatively, sparging can be used to create an airlift loop, in

which the gas bubbles themselves circulate the medium in addition to delivering oxygen.

Bioreactors with high aspect ratios are used for this purpose.

The third aeration method in use is membrane aeration, in which the oxygen demand of the

cell culture is met by the diffusion of oxygen through an oxygen-permeable membrane. This

process can occur either in situ, where the medium that the cells are in is oxygenated directly, or

ex situ, where the medium is continuously removed from the bioreactor, aerated, and returned.

Due to their high oxygen demand, microbial cell cultures generally employ one or both of the

first two aeration methods outlined above (surface and bubble aeration). Conversely, mammalian

cells, which have a much lower oxygen demand and greater frailty because of their lack of a cell

wall, are generally oxygenated through a membrane or through impeller-less surface aeration.

One of the unique advantages of microsystems is the reduced mixing times that result from

small diffusion lengths. Thus, although membrane aeration is not generally feasible for industrial

or lab-scale microbial cultures, this method of aeration can be employed within the

microbioreactor.

1.4.3. Temperature control

Prokaryotes are classified by the temperature range in which they grow. Mesophiles,

including Escherichia coli, can grow between 10-470C, and have as their optimal range

30-45 0C.53 The generation time of a cell culture, also referred to as the doubling time, is the time

needed for the population to double in number. Figure 1-2 shows the generation time of an

E. coli culture as a function of temperature, illustrating the importance of temperature control in
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generating meaningful, reproducible data from the microbioreactor.
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Figure 1-2. Effect of temperature on the generation time of E. coli.53

1.4.4. Sensing of optical density, dissolved oxygen, and pH

The three parameters that are most commonly monitored during fermentations are optical

density (OD), dissolved oxygen (DO), and pH.

Optical density, calculated using a transmittance measurement through the culture medium,

provides an estimation of biomass and is commonly measured at or close to 600 nm. The optical

transparency of PDMS allows this measurement to be made through the body of the

microbioreactor.

Oxygen concentration in bioreactors is conventionally monitored with the use of a Clark

electrode. This electrode, however, consumes oxygen as part of its operation. Conversely, optical

DO sensors are attractive for our application as they do not have this requirement. The majority

of optical and fiber-optic sensors are based on absorption and fluorescence methods. In practice,

optical oxygen sensing is most commonly based on the collisional quenching of a fluorophore

embedded in a support matrix.54-56
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Because protein configuration and activity are pH dependent, cellular transport processes,

reactions, and growth rates depend on pH (Figure 1-3). Bacterial growth rates generally reach a

maximum in the pH range of 6.5-7.5.57 Typically, negligible growth results from a change in 1.5

to 2.0 pH units above or below the optimal pH. As with dissolved oxygen sensing, optical

measurements using fluorescence can be used to measure pH.58,59
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Figure 1-3. Effect of pH and temperature on the generation time of E. coli.60

1.4.5. Sensing ofglucose

In bioprocessing, control of glucose levels in fermentation medium is crucial in both fed-

batch and continuous systems when glucose is used as the carbon source. Effective control

requires the ability to monitor glucose levels quickly and accurately. In addition, knowledge of

glucose consumption is needed to close the carbon balance as well as for metabolic studies and

medium optimization, making glucose monitoring crucial for batch systems as well.
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1.4.6. Sensing of luminescence andfluorescence

As discussed previously, light emission from luminescent and fluorescent bacteria and yeast

created to act as reporters for various environmental conditions is finding application in several

areas of biology, including toxicity assays for environmental pollutants, chemical detection, and

gene expression profiling.7 2 The ability to monitor light emission would greatly expand the

functionality of the microbioreactor.

1.4.7. Off-line analysis

Although efforts are continually being made to integrate into bioreactors as many on-line

measurement techniques as possible,4 4 46 it is sometimes necessary to remove samples during the

course of a fermentation for off-line analysis, for example using high performance liquid

chromatography (HPLC) or gas chromatography (GC). Medium must also be removable to

enable global gene expression analysis using DNA microarrays, a technique widely applied in

general biological research and in specific fields such as drug screening, environmental testing,

and clinical diagnosis.61' 62

1.5. Microbial Bioreactors

Strong interest exists in developing small-scale bioreactors.63 Kim and Lee64 developed a

silicon microfermentor chip that makes use of electrodes to measure cell density, dissolved

oxygen, pH, and glucose. However, cell growth was not reported. Kostov et al.6 5 described a

2 me microbioreactor that consists of a cuvette equipped with optical sensors for the continuous

measurement of optical density, dissolved oxygen, and pH, in which aeration is accomplished by

sparging the medium with air. Maharbiz et al.6667 developed a bioreactor built using microtiter

plate wells, integrated with an aeration system in which oxygen is generated beneath a silicone
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membrane using hydrolysis. Biomass was measured optically and pH was monitored using a

solid-state pH sensor chip. Oxygen input rates were also monitored. The volume of this

bioreactor is around 250 ~pe. Lamping et al.68 recently reported on a miniature bioreactor

machined from Plexiglas with a working volume of 6 me. Oxygenation in this bioreactor is

achieved by sparging, and mixing is achieved by means of an impeller. Measurements of cell

density, dissolved oxygen, and pH are performed optically.

1.6. Thesis Objective

The purpose of this thesis is to design, fabricate, and characterize a batch microbioreactor

with integrated sensors as a step toward establishing high-throughput screening bioprocessing

platforms. The microbioreactor should meet the requirements described previously

(biocompatibility of materials, oxygen delivery, temperature sensing and control, biomass

sensing, oxygen sensing, and pH sensing), and should demonstrate reproducibility. It is also

desirable to have a method of performing off-line analysis of the culture medium to maintain

flexibility in analytical techniques. Finally, it is necessary to understand the similarities and

differences in bacterial behavior at different size scales. E. coli will be used as the model

organism for this study.

1.7. Thesis Outline

The work in this thesis covers three major categories: (1) fabrication and control of the

microbioreactor, (2) analysis of performance, including uncertainty and scale comparisons, (3)

applications.

Chapter Two describes the design, fabrication, and characterization of a 5 e batch
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microbioreactor with integrated sensors for OD, DO, and pH. Reproducibility of the system is

investigated under several different conditions, and results at various size scales are compared.

Since one of the main concerns with a system of this size is the potential difficulty with

sampling, off-line HPLC analysis using the microbioreactor contents is presented. Modeling of

oxygen transport is also carried out to obtain insight into the growth and oxygenation of bacteria.

Chapters Three and Four present additional applications of the microbioreactor technology.

Chapter Three describes sensing capabilities that allow in situ measurements of bacterial

luminescence and fluorescence. These measurements enable the cells to act as environmental

sensors. Chapter Four describes the linking of microbioreactors to DNA microarrays. A

technique is described that allows microarray experiments to be run using only 500 ng of total

RNA. This increased sensitivity enables DNA microarrays to be used to analyze genome-wide

gene expression changes during microbioreactor fermentations.

Chapter Five presents a model of a potential glucose sensor. The feasibility of miniaturizing

and integrating this sensor is explored by investigating the characteristics of the sensor under

various operational assumptions.

Chapter Six summarizes the work presented in this thesis and lists recommendations for

future work.
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Chapter 2. A Membrane-Aerated Microbioreactor for High-

Throughput Bioprocessing

2.1. Introduction

The number and variety of products obtained through microbial fermentation today is large

and growing quickly. These products include, among others, primary metabolites, secondary

metabolites, enzymes, therapeutic proteins, vaccines, and gums.2 Each new product is the result

of a development process that begins at the screening stage.22 69 During this phase many potential

bacterial strains are screened to identify those that have the most favorable yield of the desired

product. Criteria at this stage may be a high yield on a specific substrate, or high production

under certain growth conditions. The screening phase may be combined with strain optimization

using techniques of metabolic engineering, in which case strain creation and screening are

carried out iteratively.5' 70 Experiments at the screening phase are typically carried out using a

combination of Petri dishes, microtiter plates, and shake flasks. Once a likely microbial

candidate has been identified, the strain is transferred to the development phase. At this stage the

physiology of the strain is characterized in more detail, and the growth conditions of the strain

are determined. These experiments are generally carried out in bioreactors with volumes of

0.5-10 . From here, development proceeds as the process is gradually scaled up in bioreactor

volume until production scale is reached (100-300,000 f).

Significant limitations in data generation currently exist at every stage of microbial and

process development. During the screening phase, only limited control of environmental

parameters is possible and endpoint data are generally obtained to gauge the performance of

cells. Efforts have been made to overcome this limitation. In microtiter plates, on-line
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measurements of dissolved oxygen2 42 5 and pH26 during fermentation have been demonstrated.

On-line measurements of dissolved oxygen27 30 and pH3 1 in shake flasks during fermentation

have also been reported. However, these screening approaches have the fundamental limitation

that the effort involved largely continues to scale with the number of individual cultures

involved, meaning that experiments with more cultures become more demanding both

technically and mechanically. This is exacerbated by the difficulty of integrating culture steps

that precede and follow the fermentation itself. During the process development phase that

follows, the prohibitive time, expense, and labor involved in running experiments limits the

number of strains and conditions that can be tested. At each stage, therefore, decisions are made

with incomplete and insufficient data sets. A need clearly exists for a bioprocessing platform that

would allow high-throughput, parallel, automated processing of a variety of bacterial strains

under a variety of controlled conditions, with integrated sensors yielding real-time data on

process parameters.

Efforts in this area have been made. Kim and Lee64 developed a silicon microfermentor chip

that makes use of electrodes to measure cell density, dissolved oxygen, pH, and glucose.

However, cell growth was not reported. Kostov et al.65 described a 2 me microbioreactor that

consists of a cuvette equipped with optical sensors for the continuous measurement of optical

density, dissolved oxygen, and pH, in which aeration is accomplished by sparging the medium

with air. Maharbiz et al.66 67 developed a bioreactor using microtiter plate wells, integrated with

an aeration system in which oxygen is generated beneath a silicone membrane using hydrolysis.

Biomass is measured optically and pH is monitored using a solid-state pH sensor chip. Oxygen

input rates are also monitored. The volume of this bioreactor is around 250 tie. Lamping et al.68

reported on a miniature bioreactor machined from Plexiglas with a working volume of 6 me.
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Oxygenation in this bioreactor is achieved by sparging, and mixing is achieved by means of an

impeller. Measurements of cell density, dissolved oxygen, and pH are performed optically.

We have developed a membrane-aerated microbioreactor with a volume as low as 5 pe. The

size and design of the microbioreactor are compatible with microfabrication techniques, which

enable fast and inexpensive scale-out through multiplication of devices. A microfabricated

bioprocessing platform also allows integration of sensors as well as automation of liquid

handling and process control. In this work we describe the design and fabrication of the

microbioreactor. We compare results from microbioreactor fermentations with Escherichia coli

in which OD, DO, and pH are monitored continuously and compare these with results obtained

in 500 me bench-scale bioreactors. We present the results of off-line analysis of the medium to

determine organic acid production and substrate utilization. We also present data on two

different operating conditions within the microbioreactor to demonstrate the feasibility of

obtaining statistically significant growth data from our system. Finally, we use modeling to

understand the oxygen transfer characteristics of our microbioreactor, and demonstrate that we

can predict times for oxygen depletion and oxygen recovery based on growth characteristics of

our model organism.

2.2. Materials and Methods

2.2.1. Microbioreactor fabrication

The microbioreactor (Figure 2-1) was fabricated out of poly(dimethylsiloxane) (PDMS) and

glass. PDMS was used for the body of the fermentor, the bottom layer into which the sensors

were embedded, and the aeration membrane. This polymer was selected for its biocompatibility,

optical transparency in the visible range, and high permeability to gases (including oxygen and
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carbon dioxide).71 The base support of the bioreactor was made of glass, which provided the

necessary rigidity as well as optical access. The typical volume of the microbioreactor was

5-50 ue, depending on the diameter used. The surface area-to-volume ratio was kept constant to

ensure adequate oxygenation. The depth of the well was 300 pm, and the thickness of the

aeration membrane was 100 rlm. Of the experiments discussed below, those using complex

medium were carried out in a volume of 5 He, while those using defined medium were carried

out in a volume of 50 e to allow for off-line analysis of the medium.

(a) aeration
membrane

channels 

pH sensor

Figure 2-1. Microbioreactor built from three layers of PDMS on top of a layer of
glass. (a) Solid model drawn to scale; (b) photograph of microbioreactor at the
end of a fermentation run.

The three PDMS layers were obtained by spincoating PDMS (Sylgard 184 Silicone

Elastomer Kit, Dow Coming) onto silanized silicon wafers to the required thickness. The PDMS

was then cured for two hours at 700C, and the appropriate shapes were cut out of each layer. The

bottom layer was 280 pm thick and contained two round holes into which two sensor foils were

inserted, one for dissolved oxygen and one for pH as described in the following section. Each

sensor was 2 mm in diameter and 150-220 gpm in height. The sensors were held in place with

30



silicone vacuum grease. Recessing the foils in this way allowed the tops to be flush with the

bottom of the microbioreactor, which is especially critical for the dissolved oxygen foil as a

result of the oxygen gradient that develops in the medium during fermentations (see Results and

Discussion). The 300 gm middle layer, which made up the body of the microbioreactor,

consisted of a round opening of the desired diameter and channels for inoculation. The top layer

was the 100 gm polymer aeration membrane. These layers were attached to each other and to the

glass using an aquarium-grade silicone adhesive (ASI 502, American Sealants, Inc.) and allowed

to cure overnight. Figure 2- lb shows a filled microbioreactor at the end of a fermentation run.

2.2.2. Analytical methods

Optical sensing methods were selected to monitor biomass, dissolved oxygen, and pH. The

major advantage of optical sensors is that the bulk of the cost and complexity of the sensing

infrastructure can be kept outside of the microbioreactor, keeping the microbioreactor simple to

fabricate and inexpensive, and thus disposable.

Optical density, calculated from a transmission measurement at 600 nm, was used to monitor

biomass. Light from an orange LED (Epitex L600-10OV, 600nm) was passed through the

microbioreactor, collected by a collimating lens (F230SMA-A, Thorlabs), and sent to a

photodetector (PDA55, Thorlabs). The optical density was calculated using Equation 2-1.

OD = 33.331 0gloreference) (2-1)
signal

In this equation Isignal is the intensity of the signal and Ireference is the intensity of the first

measurement for a given experiment. Intensity readings were corrected for intensity fluctuations
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of the light source using a reference signal. The multiplication factor of 33.33 in Equation 2-1 is

a normalization for the pathlength of 300 ptm in the microbioreactor which enables direct

comparisons with results from conventional cuvettes with pathlengths of 1 cm. This adjustment

is only strictly valid if the absorption and light scattering by the cell culture are in the linear

region. Calibration data from the microbioreactor using known concentrations of E. coli show

that the measurements are within the linear region, i.e. before saturation is reached. It is

important to note that this measurement is very sensitive to both the path length and to any

curvature of the PDMS aeration membrane.

Fluorescence from oxygen- and pH-sensitive dyes was selected for the measurement of

dissolved oxygen5 4 -56 and pH,58'59 respectively, because of the high sensitivity and specificity of

this measurement.7 2 The fluorescence of these dyes could be monitored using either fluorescence

intensity or fluorescence lifetime measurements.7 3 There are several major advantages to using

lifetime measurements. They are insensitive to background light, fluctuations of the excitation

source and photodetector, changes in distance from the excitation source, bending of optical

fibers, changes in medium turbidity, leaching of the indicator, and displacement of the sensing

layer relative to the measurement setup.

Both dissolved oxygen and pH were monitored by phase-modulation lifetime fluorimetry

using commercially available sensor foils from PreSens Precision Sensing GmbH (Regensburg,

Germany). Dissolved oxygen was measured using a PSt3 sensor foil, while pH was measured

using an HP2A sensor foil.

Figure 2-2 shows the experimental setup. Bifurcated optical fibers (custom-made, Romack)

connected to LEDs and photodetectors led into the chamber from both the top and bottom. As

described above, a transmission measurement was used to calculate the optical density. The DO
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and pH sensors were excited with a square-wave modulated blue-green LED (NSPE590S,

Nichia, 505 nm) and a blue LED (NSPB500S, Nichia, 465 nm), respectively. Exciter bandpass

filters (XF1016 and XF 1014, Omega Optical) and emission longpass filters (XF 3016 and XF

3018, Omega Optical) separated the respective excitation and emission signals and minimized

cross-excitation. Data switches (8037, Electro Standards Laboratories) multiplexed the output

signal and the input signal of the function generator (33120A, Agilent Technologies) and the

lock-in amplifier (SR830, Stanford Research Systems), respectively. The lock-in amplifier

measured and output the phase shift, which is directly related to the fluorescence lifetime,

between the excitation and emission signals for the DO and pH measurement. All instruments

were PC-controlled under a LabVIEW software routine, which allowed for automated and

on-line measurement of the three parameters OD, DO, and pH. Readings of these parameters

were taken every 10 minutes.

To determine the dissolved oxygen, the measured phase shift of the oxygen signal was

related to the oxygen concentration using a modified Stern-Volmer equation.74' 7 5 An eleven-point

calibration between 0% and 100% oxygen was carried out to confirm the validity of the equation

and to calculate a Stern-Volmer constant. It was found that a better fit was obtained for low

oxygen concentrations when the calibration range included in the model fit was limited to 0-21%

oxygen. Therefore, data from experiments with air as the contacting gas were processed using

that range, while data from experiments using pure oxygen were processed using the full range

of calibration.

33



Microbioreactor
with sensors

f(_hamhMr I \
- - - -- 4 iotodetector

370C, RH 100%'

Bifurcated fibers

,- A / EmiE

Orange
LED

ssion
filter \

7
Excitation

filter
Blue
LED

Reference signal
I Lock-in AmDlifier Function Generator

Figure 2-2. Schematic of the experimental setup. The chamber is kept at 100%
humidity and 370 C. The microbioreactor is placed inside and the chamber is
sealed. Three optical fibers carry three different wavelengths of light to the
bottom of the microbioreactor for the three measurements: OD, DO, and pH.
Photodetectors collect the transmitted or emitted light and send it to a lock-in
amplifier where the signal is detected and analyzed.

The measured phase shift of the pH sensor fluorescence was related to the pH by fitting to

the sigmoidal Boltzmann curve.7 6 A six-point calibration was carried out between pH 4 and pH 9

using colorless buffers (VWR).
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2.2.3. Microbioreactor experimental setup

Experiments were carried out in an airtight, aluminum chamber (Figure 2-2). The chamber

provided a means for controlling the humidity and the composition of the gas above the

microbioreactor membrane. It also provided a large thermal mass for holding the temperature at

the desired set point. The interior of the chamber had an area of 11.5 cm by 6.5 cm, and a height

of 2.5 cm. This volume was large compared to the volume of the microbioreactor to ensure that

gaseous oxygen was in large excess compared to the oxygen consumed by the cells during a

fermentation. As a result, the chamber could be sealed for the duration of a run once it had been

flushed with the desired gas. Temperature was controlled with a water bath that flowed water at

the desired setpoint through the chamber base. Temperature was monitored using a

thermocouple.

In addition to controlling environmental parameters, the chamber provided optical isolation

and optical access for the desired measurements. Optical access was from the top and bottom of

the chamber, directly above and below the microbioreactor, respectively, as shown in Figure 2-2.

2.2.4. Biological methodology

2.2.4.1. Organism and medium

Escherichia coli FB21591 (thiC::Tn5 -pKD46, KanR) was used in all experiments and

purchased from the University of Wisconsin. Stock cultures were maintained at -800C in 20%

(vol/vol) glycerol. Prior to fermentation experiments, single colonies were prepared by streaking

out the frozen cell suspension onto LB plates containing 2% (wt/vol) agar and 100 gg/m of

kanamycin. The plates were incubated overnight at 370C to obtain single colonies, and

subsequently stored at 40C for up to a week or used immediately to inoculate precultures.
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Luria-Bertani medium had the following composition: 10 g/f tryptone (Difco Laboratories),

5 g/f yeast extract (Difco Laboratories), and 5 g/f NaCI. The solution was autoclaved for

40 minutes at 1200C and 150 kPa. The LB medium was supplemented with 10 g/2 glucose

(Mallinckrodt), 100mM MES buffer at pH 6.9 (2-(N-Morpholino)-ethanesulfonic acid))

(Sigma), and 100 ,ug/mf of kanamycin (Sigma). The glucose stock solution was autoclaved for

20 minutes at 1200C and 150 kPa, and the MES and kanamycin stock solutions were filtered

through 0.2 ~pm filters (Millipore).

The defined medium had the following composition: K2HPO4 [60 mM], NaH 2PO4 [35 mM],

(NH 4)2SO4 [15 mM], NH4Cl [70 mM], MgSO 4o7H20 [0.8 mM], Ca(NO3) 2 4H 20 [0.06 mM],

FeC13 [20 mM], MES [100 mM], glucose [10 g/e], thiamine [100 PM], kanamycin [100 Pig/me],

(NH4)6Mo70 24 4H20 [0.003 PM], H3BO3 [0.4 jPM], CuSO4°5H 2 0 [0.01 ,uM], MnC12o4H20 [0.08

PM], ZnSO4o7H2 0 [0.01 ,uM]. Glucose, MES, kanamycin, and thiamine were added to the

medium as stock solutions.

2.2.4.2. Precultures

For experiments using LB medium, 5 me of sterile medium were transferred into test tubes

and each was inoculated with a single colony of E. coli FB21591 from an LB-kanamycin agar

plate. These cultures were incubated on a roller at 60 rpm and 37°C. Samples were removed

periodically and measured for optical density (600 nm). When the optical density of the cultures

reached OD = 1 0.1, medium was removed from each test tube and transferred to a 500 mf

baffled shake flask containing 30 me of fresh medium to a starting optical density of 0.05. The

inoculated shake flasks were incubated on shakers (150 - 200 rpm) at 37C. Samples were

withdrawn periodically until the optical density within the flasks reached OD = 1. At this point

36



the culture was used to inoculate either the bench-scale bioreactors or a microbioreactor.

Precultures for experiments using defined medium were carried out as above, except that the

shake flasks into which the cultures from the test tubes were transferred contained defined

medium.

2.2.4.3. Bench-scale bioreactor

Batch cultures were grown in 500 me SixFors bioreactors (Infors, Switzerland) with a

starting medium volume of 450 me. Dissolved oxygen probes (405 DPAS-SC-K8S/200, Mettler

Toledo) were calibrated with nitrogen gas (0% DO) and air (100% DO) prior to each run. pH

probes (InPro 6100/220/S/N, Mettler Toledo) were calibrated with buffer at pH 7.0 and 4.0

(VWR).

The bioreactors were inoculated to a starting optical density of 0.05. The aeration rate of gas

was set to 1 VVM (volume of gas per volume of medium per minute) and the impeller speed was

set to 500 rpm. This combination of stirring and sparging was selected to match the estimated

kLa of the microbioreactor. The kLa was measured using the well-known method of "dynamic

gassing out".77 The temperature of the vessels was maintained at 370 C for all fermentations.

Dissolved oxygen and pH were not controlled, so as to simulate the batch microbioreactor. The

time courses of temperature, dissolved oxygen, and pH were recorded every 10 minutes

throughout all fermentations. Biomass was monitored by removing samples from the bioreactor

at defined time intervals and measuring the optical density at 600 nm on a spectrophotometer

(Spectronic 20 Genesys, Spectronic Instruments).

2.2.4.4. Microbioreactor

Inoculation of the medium for the microbioreactor was carried out outside of the bioreactor.
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Ten milliliters of fresh medium were transferred to a Falcon conical tube, and to this was added

the preculture medium from a shake flask for a starting optical density of 0.05. This inoculated

medium was then introduced into the microbioreactor by injecting the liquid via channels (Figure

2-1).

Sterility was maintained through the use of the antibiotic kanamycin in the medium. Other

methods of sterilizing, such as autoclaving and UV radiation, were not feasible due to the

incompatibility of either the DO sensor or the pH sensor with each of these methods. Gamma

radiation was tested as an alternative technique. Ethanol could also be used as a means of

sterilization. However, for the present studies we found that using a fast-growing, antibiotic-

resistant strain was sufficient for preventing contamination.

To ensure the flatness of the PDMS membrane, excess liquid was squeezed out of the

chamber by applying a uniformly distributed pressure from the top. A bulge in the membrane

would change the path length for the calculation of optical density, as well as change the distance

over which diffusion of oxygen occurred, thus changing the mass transfer characteristics of the

microbioreactor. After injection of the inoculated medium, the needle holes created in the

channels were sealed with epoxy (Figure 2-1). This was to prevent evaporation at these injection

sites. Although PDMS self-seals to a large extent, we have noticed that needle holes increase the

rate of evaporation and provide sites for the growth of air bubbles.

Once the microbioreactor was filled with medium it was placed inside the chamber and

secured to the base. Open reservoirs of water were placed inside the chamber to provide

humidity. Keeping the atmosphere within the chamber at high humidity minimizes evaporative

losses through the PDMS membrane. The chamber was then closed and continuous readings

were started. When fermentations were performed with pure oxygen in the chamber headspace,
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oxygen was passed through the chamber prior to the start of the readings.

The time between inoculation of fresh medium and placement of the filled microbioreactor in

the chamber was 20 minutes. During this time the medium was kept at room temperature to

minimize cell growth. The time between placement of the bioreactor in the chamber and the first

reading was 10 minutes. During this time the bioreactor and cells warmed up to 37°C.

2.2.4.5. Cell counts

Estimates of cell number from the microbioreactor and the bench-scale bioreactor were

obtained using two methods. Direct cell counts were carried out using a Petroff-Hausser counting

chamber and standard counting methodology. Viable cell counts were carried out using the

technique of plating serial dilutions.7 8

2.2.4.6. Medium analysis

A series of experiments in defined medium was carried out to provide samples for off-line

analysis of organic acids and glucose in both the bench-scale bioreactor and the microbioreactor.

During fermentations in the bench-scale bioreactors, samples of the medium were

periodically removed, filtered, and frozen for later analysis.

Samples from the microbioreactors were obtained by sacrificing their entire volume. In order

to obtain a sufficient volume of medium for analysis, the microbioreactors were fabricated to

contain a volume of 50 Be. This allowed for volume loss during filtering and transfers, and

provided sufficient filtered volume to meet the requirements of the HPLC protocol (5 !pe). The

medium samples were collected over several days. Each day three microbioreactors were

inoculated and allowed to run in parallel while process parameters were measured. All three

were then sacrificed at a common, predetermined time, and their contents were removed, filtered,
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and frozen. This process was repeated daily over the course of five days, such that

microbioreactor data was obtained at five time points.

An Agilent 1100 Series HPLC equipped with an organic acid analysis column (Aminex

HPX-87H Ion Exclusion Column, Bio Rad) was used for off-line medium analysis. Samples

were prepared by filtration through a 0.2 pm membrane (Pall Gelman Laboratory). Calibration

was carried out by running standards at two concentrations for each of the organic acids assayed,

and four different standards for glucose. A linear fit through the origin was obtained for all of the

concentration ranges used.

2.3. Results and Discussion

2.3.1. Modeling of oxygen transport and consumption

The design of the microbioreactor was based on preliminary modeling of the oxygen transfer

through the PDMS membrane and the medium using the simulation software FEMLAB

(parameters used are listed in Table 2-1, variables used are listed in Table 2-2). Monod growth7 9

of homogeneously-dispersed cells with oxygen as the limiting substrate was assumed. The

Monod constant was approximated by using the critical oxygen concentration for E. coli.57 Rv

was zero within the membrane.

ac D a2 C
at = D ax2 RV (2-2)at= Oxygen2

R = Oxygen UptakeRate = -x dt (2-3)
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dN
= Nu

dt

= max C
Ks +C

Table 2-1. List of parameters used in models.

Palrameter Definition

SPDMS tSolubility of 02 in PDMS

DPDMS tDiffusivity of 02 in PDMS

SH20 t:Solubility of 02 in water

DH20 tDiffusivity of 02 in water

K tPDMS-H 20 partition coefficient

Yo/x Yield of biomass on oxygen

No Initial number of cells

td Doubling time

9-max Maximum specific growth rate

Conversion

Ks *Monod constant

k Logistic model constant

P Logistic model constant

C* Percent oxygen at saturation

0.18 cm3 (STP)/cm3atm
3.4 x 10-5 cm2/s

7.36 mg/e

2.5 x 10-5 cm2/s

0.135

1 g02 consumed/gDcw (Dry
Cell Weight) produced
3.8 x 107 cells/me

30 min

0.0231 min-'

5.5 x 10-13 gDcw/E.coli cell

0.26 mg/e

0.025

2.5 x 10-'6 m 3/cell

100%

t At 35°C, in equilibrium with 0.21 atm of oxygen
t Values for pure water were used since only 10 g/f of glucose was present in the medium
* Critical oxygen concentration = 0.0082 mmol/f (- 3.6 % of air saturation)57

Table 2-2. List of variables used in models.

Description

Concentration of oxygen

Diffusivity of 02 in each phase

Volumetric accumulation term

Number of cells

Specific growth rate of cells
Oxygen transfer coefficient

(2-4)

(2-5)

Value Reference
71

71

80

80

Calculated
81

Experiment

Experiment

Experiment

Experiment

Calculated

Model fit

Model fit

Definition

Variable

C
D

Rv
N

kLa
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We determined that a depth of 300 pm allowed sufficient oxygenation to reach a final cell

number - 10 9 cells/me. It was found that the major resistance to mass transfer occurs in the

medium rather than the membrane, a result of the low solubility of oxygen in water. From the

model it is also evident that a concentration gradient exists within the medium as oxygen is

gradually depleted. Oxygen depletion occurs first at the bottom and moves gradually up the

microbioreactor. This is shown in the cross-sectional view of Figure 2-3, which shows oxygen

concentration as a function of depth at increasing time.

c1 \
LA -

1.6
0
E
"o 1.2c0
2 0.8C
0)
C
o 0.40

u.u I l 7

0 100 200 300 400
Distance (m)

Figure 2-3. Modeled oxygen gradient within the medium and the membrane of
the microbioreactor when Monod growth is assumed. Oxygen concentrations are
shown at t = 0, 0.5, 1, 1.5, and 2 hours.

Because of the presence of the oxygen gradient, the height of the dissolved oxygen sensor

foil is critical to the measurements obtained. If the sensor is raised above the height of the

microbioreactor bottom or is somehow at an angle, it will take longer to be reached by the zero-

dissolved-oxygen zone during depletion, and will register dissolved oxygen earlier during
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reoxygenation of the medium. Depending on its height, it may never show oxygen depletion.

Thus the oxygen sensor must be positioned such that its entire surface is exposed to the same

oxygen concentration. In this case the gradient is perpendicular to the bottom of the fermentor,

and the foil must therefore be positioned horizontally (i.e. along the bottom of the chamber),

rather than on the side where readings would be ambiguous. In terms of microbioreactor

fabrication, adequate positioning can be achieved by viewing the bioreactor from the side before

the aeration membrane is put into place. The sensor should appear planar with the PDMS

bottom, without any protruding edges. This step is especially critical.

Oxygen depletion occurs after approximately 3 hours at the bottom of the microbioreactor

(Figure 2-4). Experimental data show a similar trend. The model has also been used to

successfully predict dissolved oxygen curves for E. coli growing in defined medium. During

bacterial growth, the oxygen depletion phase typically corresponds to the period of biomass

increase as measured by optical density. After some time the cells enter stationary phase, at

which time metabolism shifts from growth to maintenance. Oxygen demand drops significantly,

allowing oxygen levels to recover.

To model this oxygen recovery observed in experiments, the logistic curve (Equation 2-6)

was fit to experimental growth data and substituted for N in Equation 2-3. This model was

developed by Verhulst82 to describe population growth and includes cell concentration-

dependent inhibition. As in the case of the Monod model, this simple model is both unstructured

(balanced growth approximation) and unsegregated ("average cell" approximation). It is useful

when the limiting nutrient is unknown, or when multiple factors affect cellular growth as is the

case here. To take these multiple factors into account would necessitate the removal of the

balanced-growth assumption listed above and a move towards structured models, which is not
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Figure 2-4. Oxygen concentration at the bottom of the microbioreactor as a
function of time during a fermentation with a doubling time of 30 minutes. Model
(-) uses Monod growth to predict oxygen depletion, experimental data () are for a
fermentation run with a resulting doubling time of 30 minutes.

the major focus of this paper. The logistic model is therefore used despite its limitations. The fit

to the curve is shown in Figure 2-5a.

(2-6)

Modeling of the oxygen concentration within the microbioreactor using this fit is shown in

Figure 2-5b. The difference between the predicted and measured curves in Figure 2-5 may be

attributed to the limitations of the model used, as discussed above.
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Figure 2-5. (a) Logistic curve (-) fit to experimental data () with k = 0.025,
1 = 2.5x10 - 16 m 3/cell. Experimental data are an average of three fermentations. (b)
Oxygen concentration at the bottom of the microbioreactor as a function of time
during a fermentation. Theoretical curve (-) uses a logistic model for cell growth,
experimental data () are an average of three fermentations.

2.3.2. Mass transfer coefficient

To allow the comparison of results obtained with the microbioreactor and the bench-scale

reactor, a kLa was measured in the microbioreactor and the operating conditions of the larger

bioreactor were set so that its kLa would be comparable. The calculation of the kLa in the
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microbioreactor was based on a kinetic experiment (at 370C) in which the medium was allowed

to come to equilibrium with nitrogen (0% DO) in the chamber headspace, at which time the

headspace was flushed with air (100% DO) and continuous readings of the dissolved oxygen at

the bottom of the microbioreactor were taken. Except for the absence of active stirring, this

technique is similar to that of the dynamic "gassing-out" method that is commonly used for

stirred bioreactors, during which the kLa is extracted as a first-order rate constant using

Equation 7. The technique has previously been used to find the kLa of a stagnant system.83

dC
-= kLa(C * -C) (2-7)
dt

The first-order approximation of Equation 2-7 is applicable if mass transfer is slow relative to

the response time of the sensor. If the time response of the sensor is potentially significant

relative to that of the entire system, a second order fit can be used as in Equation 2-8, where T is

the time constant of the sensor and z2 is the time constant of mass transfer.

,re "I - e ~2

C(t) = 100 e e (2-8)
Experimentally we found the time constant of our sensor to be -25 s. When response curves

Experimentally we found the time constant of our sensor to be - 5 s. When response curves

of our system were fit to Equation 2-8, we calculated an average kLa of- 60 h'. This is within

the range of values measured in shake flasks2 9 3084 and shaken microtiter plates.24' 8 5

We carried out a dynamic simulation of the experimental setup and procedure using
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FEMLAB. In the simulation we modeled the two-level microbioreactor inside the chamber,

through which air flowed at the measured flow rate starting at t = 0. The initial conditions

imposed were 0% oxygen concentration within the medium and in the membrane. The resulting

oxygen curve yielded kLa - 170 h' ( - 21 s). The flowrate of air through the chamber was high

enough that the boundary layer formed at the air-membrane interface was negligible.

The discrepancy between the measured and theoretical time constants for this system may be

a result of assumptions made about the permeability of the PDMS membrane. It can be shown

that any decrease in the solubility or diffusivity of oxygen in PDMS that is used in the model will

have a large impact on the calculated kLa, which is extracted from a fast process (time scale of

tens of seconds), while having little impact on the oxygen transfer during a fermentation, which

is a slow process (time scale of hours) during which the PDMS presents relatively little transport

resistance. This difference in the permeability could either be due to experimental conditions,

such as the age of the membrane or the presence of oil or dust on the surface, or simply a

difference between the PDMS used in experiments and that reported in literature (such as degree

of cross-linking).

It should also be noted that the method of fitting a curve to the oxygen concentration on the

bottom of the microbioreactor to estimate a kLa provides a lower bound for the measurement,

since this is where the lowest concentration of oxygen is found at every time point. The extracted

kLa will be larger if, for example, a space-average of the oxygen concentration is used. For the

case of the simulation, with which - 21 s (kLa - 170 h- ) was calculated using the bottom DO

level, taking a space-average of the DO and finding the time constant of the resulting response

curve yields - 14 s (kLa - 250 h-').
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2.3.3. Fermentations with air

Experiments in defined medium were carried out in both the microbioreactors and the bench-

scale bioreactors. MES buffer was added to provide some stabilization for the pH, since pH

control was not implemented. The objectives were to establish the reproducibility of the

microbioreactor relative to the bench-scale, and to demonstrate the feasibility of time-point

sacrificing of the microbioreactors in order to carry out off-line analysis of the bioreactor

medium throughout a fermentation. Three microbioreactors were sacrificed at each time point,

and the medium was analyzed for glucose consumption and mixed-acid fermentation products

using HPLC. In basic research or scale-up applications, this type of analysis would be necessary

if an in situ sensor was not available for an analyte of interest.

The three measured parameters within the microbioreactor and the bench-scale bioreactor

are shown in Figure 2-6. Each curve represents a separate run. A comparison of Figure 2-6a and

Figure 2-6b shows that the optical density in both bioreactor types displays a similar trend, and

results in a similar final OD of - 6. Figure 2-6c and Figure 2-6d show the dissolved oxygen as a

function of time in the microbioreactor and the bench-scale bioreactor, respectively. Again, it can

be seen that the trend in both bioreactors is similar - even though the Sixfors chambers are

mixed. This result is consistent with the similar values of oxygen mass transfer (kLa) for the two

systems. Oxygen levels deplete during the exponential growth of cultures and eventually recover

as the bacteria reach stationary phase. The variation in the microbioreactor runs appears slightly

larger than in the bench-scale bioreactor runs. As discussed earlier, this is most likely due to the

sensitivity of the oxygen measurements in the microbioreactor to the positioning of the dissolved

oxygen foil. Specifically, if any or all of the DO foil is raised above the floor of the

microbioreactor, the time to depletion and the time at depletion will change due to the oxygen
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Figure 2-6. Replicate fermentations with E. coli in defined medium in the
microbioreactor and a bench-scale bioreactor. (a) OD in microbioreactor (b) OD
in bench-scale bioreactor (c) DO in microbioreactor (d) DO in bench-scale
bioreactor (e) pH in microbioreactor (f) pH in bench-scale bioreactor.
Experiments in the microbioreactor were performed on successive days, and
microbioreactors were sacrificed each day at a predetermined time. The medium
was harvested for HPLC analysis. Each data series represents a single run.
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gradient that exists within the medium.

The trends for pH variations over time within both bioreactor types are again very similar. It

appears that this measurement exhibits less variation between runs in the microbioreactor than

the DO measurement. This is most likely due to the insensitivity of the pH measurement to the

positioning of the pH sensor, suggesting that a pH gradient does not exist within the

microbioreactor and the bioreactor can be considered well-mixed with respect to protons.

This hypothesis was confirmed experimentally by placing the pH sensor at the top of the

chamber during a fermentation run. The pH curve showed the same time profile as those from

fermentations in which the sensor was at the bottom. This result is consistent with the analysis of

the reaction and diffusion times within the microbioreactor. An estimate of the reaction time can

be obtained by converting the pH versus time curve to an [H 30 +] versus time curve. The steepest

slope on this curve can be used to find the largest d[H30+]/dt (-5x10O9 M/min). Normalizing this

slope with the concentration of H30+ at that time point (-5x10-7 M) gives a t,n - 100 min. Note,

this is not the time scale for the acid-base reaction, which is very rapid, but the time scale for the

pH change as a result of the growth. The diffusion time of the system with respect to protons can

be estimated as L2/D. Using DH+=9.311x10 '5 cm2/s (at 25°C)86 gives tdiff 0.2 min. Thus,

tn >> tdiff implying that a pH gradient would not be expected, and the pH sensor would not be

affected by its location in the microbioreactor - as observed experimentally.

When bacteria were viewed at the end of fermentation runs, the morphology of all cultures

looked normal, with no stress-induced elongation visible. Final direct cell counts in both

bioreactor types were carried out, and the concentration of cells in each was found to be on the

order of 109 cells/me. It is difficult to get an exact count using this method, since the depth of

field on the microscope is less than the 0.02 mm depth of the counting chamber, and the small
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size of the bacteria results in individual cells coming in and out of focus as the focus is adjusted.

However, the estimate is consistent with the numbers obtained from viable cell counts, which

yielded counts of 1-4 x 109 CFU/me in both sizes of bioreactor.

Figure 2-7 shows concentration curves for the analytes measured using HPLC. The glucose

uptake in the microbioreactor (Figure 2-7a) corresponds closely with that in the larger bioreactor.

Additionally, Figure 2-7b shows that concentrations of the E. coli mixed-acid fermentation

products acetate, formate, and lactate show similar trends in both bioreactor systems (succinate

was not found in either bioreactor type). Acetate in particular is produced in significant amounts

as the fermentation proceeds.
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Figure 2-7. (a) Glucose uptake during fermentations with E. coli in defined
medium in a bench-scale bioreactor (n=2) and a microbioreactor (n=3). Data are
averaged over n runs, error bars report standard error. (b) Organic acid production
during fermentations of E. coli in defined medium in a bench-scale bioreactor
(n=4) and a microbioreactor (n=3). Data are averaged over n runs, error bars
report standard error.
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2.3.4. Fermentations with pure oxygen

Additional experiments were carried out in LB medium, with air as well as 100% oxygen in

the headspace of the chamber (above the aeration membrane) to determine whether a difference

could be observed in bacterial growth characteristics. Supplying a partial pressure of 1 atm of

oxygen above the microbioreactor instead of the 0.21 atm found in air leads to an approximately

five-fold increase in the solubility of oxygen in the medium, as defined by Henry's law. This

approach is commonly used in large-scale fermentations to avoid oxygen limitations. An

extensive literature exists on the effects of total and partial oxygen pressure on microorganisms,

including E. coli.81'8 7'88 The general consensus appears to be that partial pressures of oxygen

higher than those found in air are toxic to microorganisms and inhibit their growth, but that this

effect is less pronounced in a robust organism such as E. coli. Growth inhibition has been noted

in E. coli in the presence of pure oxygen when minimal medium is used. It is thought that the

absence of CO2 contributes to this inhibition.89 Although it is known that CO2 can inhibit

microbial growth, some CO2 may be needed by a culture growing in minimal medium for the

biosynthesis of essential compounds. In a complex medium these compounds may already be

present. Alternatively, fermentation of substrates within the complex medium may provide

sufficient CO2 to meet the needs of the cells. In either case, the lack of CO2 is not inhibitory. As

a result, E. coli grown in complex medium under pure oxygen conditions does not seem to show

inhibited growth. The focus of the present microbioreactor study was the effect of increased

oxygen levels on E. coli growth.

53



8

o

e-

O.
0

6

4

2

0

100

a 80
00

0 60

a 40

o 20

0

7.0

6.5

I
6.0

5.5

0 2 4 6 8 10
Time (h)

0 2 4 6
Time (h)

8 10

0 2 4 6 8 10
Time (h)

o Oxygen Air

Figure 2-8. Comparison of (a) optical density, (b) dissolved oxygen, and (c) pH
with E. coli grown in LB medium in a microbioreactor with air (n=3) and oxygen
(n=3) in chamber headspace. Data are averaged over n runs, error bars report
standard error.
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In the presence of pure oxygen the initial maximum growth rate (Figure 2-8a) does not

appear to be different than the growth rate in the presence of air, but the bacteria are able to

maintain it for a longer period of time. This is supported by the calculated doubling time in each

case. With air in the headspace td = 28 min ± 3 min, and with oxygen in the headspace

td = 24 min 6 min. The overlapping error bars indicate that the difference in the mean is not

statistically significant (at one standard error). The maximum optical density (and thus cell

count) is somewhat higher when pure oxygen is used compared to air. As stationary phase

progresses, however, the optical density of cells under pure oxygen decreases until the curve

coincides with the air curve. This effect could possibly be attributed to higher rates of cell lysis

under pure oxygen conditions.

When pure oxygen is contacted with the aeration membrane (Figure 2-8b), the oxygen within

the medium shows a minimum but never depletes entirely. The lowest oxygen level that the

bacteria encounter is approximately 70%. This oxygen level is still three times higher than the

maximum oxygen level with air as the contacting gas. In the case of the pH time course within

the microbioreactor (Figure 2-8c) the error bars, representing standard error, do not show overlap

at any time point beyond the beginning of the fermentation. The curves show that the pH

experiences a sharper drop in the presence of oxygen than in the presence of air. This is

consistent with the higher growth observed in the OD curve in the presence of pure oxygen.

Since the major source of protons in the medium comes from the protons that are excluded as

ammonia (existing as NH4+ in the medium) crosses the cell membrane and is internalized as

NH3, 90 more growth would be expected to lead to a higher rate of proton generation, and

subsequently a lower pH. At the end of fermentation runs with oxygen, bacteria exhibit normal

morphology.
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2.4. Conclusion

We have demonstrated the operation of a microbioreactor with a volume as low as 5 e

containing integrated, automated sensors for the measurement of OD, DO, and pH. We have

shown that results from the microbioreactor are reproducible in both complex medium (LB) and

defined medium, and that we are able to understand the oxygen transfer characteristics of the

microbioreactor and effectively model growth and oxygen consumption of the bacteria during a

fermentation. We have also shown that it is possible to sequentially sacrifice microbioreactors

that are running in parallel to carry out off-line analysis using traditional techniques. Finally, we

have shown that results obtained from the microbioreactor correspond closely with results

obtained in bench-scale volumes. This suggests that our microbioreactor can effectively bridge

the gap between current high-throughput processes that yield little data, such as microtiter plates,

and scale-up to increasingly large fermentors that approach production scale. In effect,

microbioreactors have the potential to provide much of the data and functionality that a large

bioreactor system makes available while offering the advantages of high-throughput processes,

in terms of labor, time, and cost.

Future work on the microbioreactor bioprocessing platform will need to address integration

and streamlining of the fluid handling. In particular, the incubation and preculture stages are both

time- and labor-intensive. The ability to go from inoculation with cells from a plate to a

completed fermentation run on a single device would greatly reduce both the effort involved in

preparing for and running fermentations, as well as sources of error associated with current

transfers between stages. Future efforts should also involve the integration of additional sensors

into the microbioreactor. In particular, a sensor for the measurement of CO2 is desirable.91 The

ability to measure the level of CO 2 in the medium as well as in the off-gas would allow the
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closing of the carbon balance on the system. This would enable experiments such as isotopic

studies and flux analyses to be carried out on a large scale with minimal quantities of reagent.
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Chapter 3. In Situ Measurement of Bioluminescence and

Fluorescence in an Integrated Microbioreactor

3.1. Introduction

Light emission from luminescent and fluorescent bacteria (and more recently, yeast) created

to act as reporters for various environmental conditions is finding application in several areas of

biology, including toxicity assays for environmental pollutants, chemical detection, and gene

expression profiling. 2

The importance of bioluminescence as a marker for gene expression was first recognized by

Engebrecht,92 who used a DNA fragment from the marine bacteria Vibriofischeri to construct

recombinant Escherichia coli strains that produced light in response to transcriptional activation

of a specific gene. This practical application was established while the biochemistry of

luminescence was being elucidated.93 '95 The use of green fluorescent protein (GFP) as a gene

expression marker was first described by Chalfie,96 the properties of GFP having been described

by Shimomura 97 and later by Morin98 and Morise.9 9

There are three major areas in which luminescent and fluorescent reporters are being used.

The first is for nonspecific environmental reporting. For these applications, the lux13 -' 6 or gfp17-20

cassette is fused to a stress response promoter that responds to a number of environmental and

chemical stresses. For instance, the heat shock response is activated whenever environmental

conditions cause changes in protein structure, and the SOS regulatory circuit is activated in

response to DNA damage. A second area is that of monitoring for specific substances in the

environment. Examples include reporters for metals00° ° 10' and organic compounds.'0 2 '104 Finally,

libraries of strains have been developed in which lux and gfp fusions representing large portions
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of the bacterial genome can be used as an alternative to microarray technology'0 5 and for

clarifying metabolic pathways.106-'09 Similar examples of these applications exist with yeast as

the model organism.110-112

The choice between the use of luminescence and fluorescence is application-specific. The

advantages of the lux system are a faster response time 3 "' 13 and a lower limit of detection due to

the lack of interference that cellular autofluorescence causes when gfp is used. 13 The advantages

of gfp include the fact that gfp has not been found to be a self-regulator like lux, 1 14 and that the

response of autofluorescent gfp is independent of substrate concentrations in the medium as is

the case with lux.

For all of the applications discussed, it is clearly desirable to have the ability to carry out

multiple fermentations in parallel. Currently, high-throughput experiments with fluorescent and

luminescent bacteria are generally carried out on agar plates," 1 5 or in microtiter plates0 9 or shake

flasks. These approaches yield limited data since many growth parameters cannot be measured

on-line in such systems. Alternatively, when growth data is needed, bioreactors are used."16"' 7

However, this approach is both costly and time-consuming. Furthermore, because the

fluorescent/luminescent response is frequently used as an indicator for gene expression, the very

nature of the experimental design dictates that a large number of experiments are needed.

The ability to measure the fluorescent/luminescent response in integrated, multiplexed

microbioreactors would allow an experimenter to run multiple small-scale experiments in

parallel, thus greatly decreasing the resources needed per experiment, as well as increasing the

number of experiments that could be run. In addition, the use of a microbioreactor with

integrated sensors allows the collection of additional data that are not generally available when

shake flasks and microtiter plates are used, such as growth kinetics, dissolved oxygen over time,
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and pH over time. The microbioreactor system that we have previously described could

potentially provide the needed platform (Chapter Two of this thesis).'1 8

Our model system for measurements of luminescence is a collection of E. coli strains

provided by DuPont Company. These strains have been created using transcriptional fusions of

the luxCDABE operon to bioluminesce in response to specific environmental stresses. 4'1 0 5'1 19 We

have shown that we can induce and detect bioluminescence in microbioreactors by exposing the

bacteria to a known stress (e.g. lack of nutrient), and we have compared the results to those

obtained in bench-scale bioreactors under similar conditions. Experiments in which fluorescence

was measured were carried out with an E. coli strain that carried a constitutive promoter fused to

gfp. These experiments were also repeated at a larger scale, in shake flasks.

3.2. Materials and Methods

3.2.1. Microbioreactor

Fermentations were carried out in 50 Cte poly(dimethylsiloxane) microbioreactors in which

oxygenation occurred through a gas-permeable membrane (Figure 3-1). The depth of the

microbioreactor well was 300 tm, and the thickness of the aeration membrane was 100 tlm.

Sensors for dissolved oxygen and pH were embedded in the bottom of the well. During

experiments, the microbioreactor was housed in a chamber that controlled temperature and

maintained high humidity. Additional details on fabrication and sensor placement may be found

in Zanzotto et al. 18
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Figure 3-1. Schematic of the microbioreactor and experimental setup. Both the
DO sensor and the pH sensor are used during luminescence measurements. Only
the DO sensor is used during fluorescence measurements because of the overlap
between the excitation and emission spectra between green fluorescent protein
(GFP) and the pH sensor.

3.2.2. Analytical methods

3.2.2.1. Dissolved oxygen

Dissolved oxygen (DO) was measured using fluorescence lifetime.54-56 The DO sensor (PSt3,

PreSens, Germany), located at the bottom of the microbioreactor, was excited with a square-

wave modulated blue-green LED (NSPE590S, Nichia, 505 nm). An exciter bandpass filter

(XF1016, Omega Optical) and an emission longpass filter (XF3016, Omega Optical) separated

the excitation and emission signals and minimized cross-excitation. Data switches (8037, Electro

Standards Laboratories) multiplexed the output signal and the input signal of the function
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generator (33120A, Agilent Technologies) and the lock-in amplifier (SR830, Stanford Research

Systems), respectively. The lock-in amplifier measured and output the phase shift between the

excitation and emission signals for the DO measurement, which were correlated to a dissolved

oxygen concentration.

3.2.2.2. pH

During experiments in which luminescence was followed, pH was measured using

fluorescence lifetime.58' 59 The pH sensor (HP2A, PreSens, Germany), located at the bottom of

the microbioreactor, was excited with a square-wave modulated blue LED (NSPB500S, Nichia,

465 nm). An exciter bandpass filter (XF1014, Omega Optical) and an emission longpass filter

(XF3018, Omega Optical) separated the excitation and emission signals and minimized cross-

excitation. The signal was collected and analyzed using the same procedure as for the DO

measurement. pH measurements were not made during runs in which GFP fluorescence was

measured due to the overlap between the excitation and emission spectra of GFP and the pH

sensor. (GFP absorbs light at two wavelengths: 395 nm and 470 nm. We found a stronger

emission intensity when the excitation wavelength of 470 nm was used. The maximum intensity

of the resulting emission signal was at 510 nm).

3.2.2.3. Optical measurements using a photomultiplier tube

A photomultiplier tube (R928, Hamamatsu) located directly above the microbioreactor was

used to measure luminescence, fluorescence, and optical density. Initial experiments used a

hand-held multimeter (Fluke 189, Fluke) to take direct current measurements. In later

experiments, the current was passed to a low-noise current preamplifier (Model SR570, Stanford

Research Systems) that converted the signal to a voltage (at a sensitivity setting of 20 gA/V) that
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was then passed to an automated multimeter (Fluke 45, Fluke). Luminescence was measured

continuously and readings for optical density were taken every 10 minutes. Operational

characteristics of the PMT were determined to ensure correct numerical analysis. The PMT was

found to have an anode luminous sensitivity of 1419 A/lm and an anode dark current of 0.03 nA.

The signal-to-noise of the PMT with a dark chamber was approximately 30 (after sufficient

warm-up time for the PMT, approximately one hour), and the calculated minimum detectable

luminescence signal was approximately 100 photons/second (two standard deviations above the

mean background signal).

3.2.2.3.1. Luminescence

Light was collected above the microbioreactor using a plano-convex lens (LA1131-A,

Omega) and passed to the PMT. Luminescence was measured as the total signal minus the

background, in the absence of all other light. Measurements of luminescence light intensity are

presented in arbitrary units. For figures in which luminescence appears with other measurements,

it was scaled to fit on an existing axis. For the analysis of reproducibility, the luminescence

signals were adjusted to match their maximum signal amplitudes. This was done to compensate

for the positioning of each microbioreactor within the chamber. Because the microbioreactors are

not necessarily centered beneath the collecting lens, the absolute magnitude of the luminescence

signal varies somewhat between experiments. The relative signal intensity over time is the

critical factor.

3.2.2.3.2. Fluorescence

Excitation light from a blue LED (NSPB500S, Nichia, 465 nm) was passed through a

collimating lens, a bandpass filter (XB78, Omega), and a collecting lens before being split using
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a bifurcated cable. Half of the light was sent to a photodetector to monitor the excitation

intensity, and the other half was passed inside the chamber, directly beneath the microbioreactor.

The emitted light (maximum intensity at 510 nm) was collected using a plano-convex lens

(LA1131-A, Omega) and passed through a longpass filter (XF3092, Omega) before it was

collected by the PMT. Measurements of fluorescence intensity were scaled for the purpose of

graphing, and are presented in arbitrary units.

3.2.2.3.3. Optical density

Optical density, calculated from a transmission measurement at 600 nm, was used to monitor

biomass. Light from an orange LED (Epitex L600-10OV, 600nm) was passed through the

microbioreactor, collected by a plano-convex lens (LA1131-A, Omega), and sent to the PMT.

During experiments with luminescent bacteria, the optical density was calculated from the total

measured signal minus the magnitude of the signal due to luminescence and background. During

experiments with fluorescent bacteria, the measured signal was not corrected for alternate

sources of light. The optical density was calculated using Equation 3-1.

OD = 33.331Oglo( rfer e) (3-1)
signal

In this equation Iignal is the intensity of the signal and Ireference is the intensity of the first

measurement for a given experiment. The multiplication factor of 33.33 in Equation 3-1 is a

normalization for the pathlength of 300 gpm in the microbioreactor which enables direct

comparisons with results from conventional cuvettes with pathlengths of 1 cm. Calibration data

from the microbioreactor using known concentrations of E. coli show that the measurements are
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within the linear region.

3.2.3. Biological methodology

3.2.3.1. Organisms and medium

Experiments involving bioluminescence were carried out using Escherichia coli strains

DPD2276 and DPD2417 obtained from DuPont Company. Plasmids pDEW257 and pDEW657

are members of a collection of plasmids containing random Escherichia coli genomic fragments

fused to a Photorhabdus luminescens luxCDABE reporter that has been described previously.10 5

Plasmid pDEW257 contains the gyrA promoter region, E. coli nucleotides 2336048 to

2337993,2° joined to the luxCDABE reporter in the appropriate orientation. Plasmid pDEW657

contains the nirB promoter region, E. coli nucleotides 3490135 to 3491711.120 DPD2276 and

DPD2417 are the transformants of E. coli strain DPD1675119 containing plasmid pDEW257 and

pDEW657, respectively. Initial characterization of DPD2276 revealed that it produced very

bright, essentially constitutive bioluminescence. By contrast, the bioluminescence of strain

DPD2417 was dramatically increased under oxygen limiting conditions, due to the regulation of

nirB expression by the anaerobic regulatory protein Fnr.121 Both of these E. coli strains contain

an ampicillin resistance marker on the plasmid.

Experiments involving fluorescence were carried out using an Escherichia coli strain that

constitutively expresses green fluorescent protein. We used strain JM83

{Fara A(lac-proAB) rpsL (Strr) [80dlacA(lacZ)M15]},' 22 transformed with plasmid pCF56.

This plasmid was constructed by cloning gfp under the control of the constitutive promoter

CP25,'23 into plasmid pKAN,124 which carries kanamycin and ampicillin resistance cassettes.

Stock cultures were maintained at -800 C in 20% (vol/vol) glycerol. Prior to fermentation
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experiments, single colonies were prepared by streaking out the frozen cell suspension onto LB

plates containing 2% (wt/vol) agar and either 100 tg/me of ampicillin (DPD2276 and DPD2417)

or 100 itg/me of ampicillin and 100 pig/me of kanamycin (JM83). The plates were then incubated

overnight at 370C to obtain single colonies, and subsequently stored at 40C for up to a week or

used immediately to inoculate precultures.

For all fermentations we used Luria-Bertani medium, which contained: 10 g/f tryptone

(Difco Laboratories), 5 g/e yeast extract (Difco Laboratories), and 5 g/e NaCl. The solution was

autoclaved for 40 minutes at 1200C and 150 kPa.

3.2.3.2. Precultures

For all experiments, 5 me of sterile LB medium were transferred into test tubes. The

appropriate antibiotics were added and each tube was inoculated with a single colony of E. coli.

These cultures were incubated on a roller at 60 rpm and 37C. Once the cultures reached an OD

of 1, medium was removed from each test tube and transferred to a 500 me baffled shake flask

containing 35 me of fresh medium to a starting optical density of 0.05. The inoculated shake

flasks were incubated on shakers (150 - 200 rpm) at 37C and grown to OD = 1. The medium

was then used to inoculate bench-scale bioreactors, shake flasks, or microbioreactors to a starting

OD of 0.05.

3.2.3.3. Bench-scale bioreactor

Batch cultures were grown in 500 me SixFors bioreactors (Infors, Switzerland) with a

starting medium volume of 450 me. Dissolved oxygen probes (405 DPAS-SC-K8S/200, Mettler

Toledo) were calibrated with nitrogen gas (0% DO) and air (100% DO) prior to each run. pH

probes (InPro 6100/220/S/N, Mettler Toledo) were calibrated with buffer at pH 7.0 and 4.0
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(VWR).

The aeration rate of gas was set to 1 VVM (volume of gas per volume of medium per minute)

and the impeller speed was set to 500 rpm. The temperature of the vessels was maintained at

37°C for all fermentations. Dissolved oxygen and pH were not controlled, so as to simulate the

batch microbioreactor. The time courses of temperature, dissolved oxygen, and pH were

recorded every 10 minutes throughout all fermentations. Biomass was monitored by removing

samples from the bioreactor at defined time intervals and measuring the optical density at

600 nm on a spectrophotometer (Spectronic 20 Genesys, Spectronic Instruments). Luminescence

was measured with an off-line luminometer (Optocomp I, MGM Instruments).

3.2.4. Shake flasks

Shake flasks with a volume of 500 me, containing 35 me of fresh medium, were inoculated

to a starting optical density of 0.05. Between readings they were housed in an incubator at 370 C

and 150 rpm. Samples were removed periodically to measure OD and fluorescence. Fluorescence

intensity measurements were taken using a fluorimeter (Fluorescence Spectrophotometer,

F-4500, Hitachi Instruments). An excitation wavelength of 470 nm was used with a slit width of

5 nm. Emission was measured at a wavelength of 510 nm with a slit width of 5 nm. The detector

voltage was 700 V.

3.2.5. Microbioreactor

Inoculation of the medium for the microbioreactor was carried out outside of the bioreactor.

Ten milliliters of fresh medium were transferred to a Falcon conical tube, and to this was added

the preculture medium from a shake flask for a starting optical density of 0.05. This inoculated

medium was then introduced into the microbioreactor by injecting the liquid via channels (Figure

67



3-1). The headspace of the chamber was filled with air for all experiments except for the

fermentation of DPD2417 in which oxygen depletion was avoided by using pure oxygen.

3.3. Results and Discussion

The bioluminescence of E. coli DPD2276 is shown in Figure 3-2. E. coli DPD2276 contains

a plasmid-borne gyrA-luxCDABE gene fusion resulting in strong, essentially constitutive

bioluminescence. The total measured luminescence would therefore be expected to increase in

proportion to biomass, as the figure demonstrates. Results indicate that luminescence is

associated with cell growth and drops off as the culture reaches stationary phase. This is in

agreement with previous studies which demonstrated that peak induction and the response time

to peak bioluminescence are closely correlated with the growth rate, and that both maximum

induction and the most rapid response time occur during mid-exponential phase.' 4
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Figure 3-2. Total luminescence (lux), optical density (OD), dissolved oxygen
(%DO), and pH in a microbioreactor for an E. coli strain constitutive for the
expression of the lux operon.
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Figure 3-3. Specific bioluminescence (lux/OD), optical density (OD), and
dissolved oxygen (%DO) for an anaerobiosis-sensitive strain of E. coli in (a) a
microbioreactor and (b) a bench-scale bioreactor.

Fermentation of E. coliDPD2417 under oxygen limitation is shown in Figure 3-3.

E. coliDPD2417 carries an anaerobically-regulated nirB-luxCDABE gene fusion that is

expressed as the oxygen level in the medium drops. In a microbioreactor the strain experiences a

sharp peak in specific luminescence (luminescence in arbitrary units/OD) when the dissolved

oxygen in the medium depletes (Figure 3-3a). A similar response can be seen in a 500 me bench-
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scale bioreactor (Figure 3-3b). By contrast, when pure oxygen is supplied to the microbioreactor,

no luminescence response is seen (Figure 3-4).
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Figure 3-4. Specific bioluminescence (lux/OD), optical density (OD), and
dissolved oxygen (%DO) for an anaerobiosis-sensitive strain of E. coli in a
microbioreactor when oxygen is used as the contacting gas.

Replicates of the oxygen-level induction in the microbioreactor were performed to examine

the reproducibility of the bioluminescence response and measurement (Figure 3-5). When the

raw luminescence (a.u.) is plotted as a function of the oxygen level inside the microbioreactor

(Figure 3-5a), a strong initial bioluminescence peak is seen as the oxygen level depletes. A

secondary peak occurs as the oxygen level begins to recover. This is consistent with the growth

association of the luminescence response. As stated previously, expression of the lux operon, as

well as the different rates of synthesis and degradation of the five lux proteins, is closely

correlated with the growth rate of the cell. In addition, oxygen is necessary for the luciferase-
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Figure 3-5. Luminescence measurements of an anaerobiosis-sensitive strain of
E. coli during independent experiments in (a) a microbioreactor and (b) a
bench-scale bioreactor. All curves were scaled to have the same luminescence
intensity range. Curves on each plot are offset for clarity.

catalyzed reaction to occur. Therefore, it is expected that the bioluminescent signal would

increase temporarily as oxygen levels in the microbioreactor begin to recover.
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By contrast, in the Sixfors only the initial peak is seen to be reproducible (Figure 3-5b). One

possible reason for this is the difficulty of obtaining accurate measurements of luminescence due

to the Inner Filter Effect (IFE). The IFE occurs because while cells emit light (emission) they

also absorb and scatter this emitted light (extinction), thereby diminishing the measured quantity.

The IFE becomes more significant at higher cell densities and must be accounted for if the true

level of bioluminescence is to be known. For example, it has been found that in a luminescing

bacterial culture at an optical density of 40, the light is attenuated three- to four- fold.12 5 The IFE

also affects fluorescence readings made in turbid media. Researchers have presented data that

suggest that extremely large errors appear at OD values close to 1.0.126 Other researchers have

shown that significant deviations have been found with OD values as low as 0.2.127 When the

IFE of bacterial bioluminescence has been studied, it was found that OD values above 0.3-0.6

caused a decrease in the measured luminescence. 12 5 In measurements of bioluminescence, the

IFE can be compensated for in one of two ways. In direct, on-line measurements, an algorithm

can be used to correct for the light attenuation.1 25 '1 26 The drawback is that a model must first be

fit to existing data and validated, thus necessitating previous knowledge of bacterial behavior.

Alternatively, samples can be removed, diluted to a sufficiently low cell concentration, and

measured off-line in a luminometer. The difficulty with this approach, apart from the obvious

increase in labor that this entails, is that the bioluminescence reaction is extremely sensitive. In

particular, dilution of the culture fails to accurately represent the bioluminescence of the original

solution. It is hypothesized that this may be caused by a decrease in the concentration of the

bioluminescence reaction substrates, most probably the long-chain aldehyde. Therefore, there is

no simple, accurate method with which to account for the IFE in a large bioreactor at high cell

density.
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On the other hand, the wide aspect ratio of the microbioreactor results in a much shorter

pathlength that is "seen" by the measuring instrument. The result is that absolute optical densities

(before a pathlength correction factor is applied) in the microbioreactor are typically below 0.5.

Therefore the IFE is diminished, and accurate measurements of bioluminescence can be made

allowing real-time gene expression measurements. In this way, one of the most promising

features of gene expression reporters can be realized.

Detection of E. coli JM83 fluorescence is shown in Figure 3-6. It can be seen that in both

microbioreactors and shake flasks, specific fluorescence (fluorescence/optical density) increases

throughout the bacterial growth cycle. As with the measurement of bioluminescence, it is

possible that in the microbioreactors the effects of high cell density on light attenuation are

avoided as a result of the low levels of absolute optical density as calculated from transmittance

measurements.

3.4. Conclusions

Real-time monitoring of bioluminescence and fluorescence of bioprocesses is an important

tool as gene expression markers become widely used in toxicity assays, chemical detection, and

gene expression profiling. In particular, the ability to link bioluminescence and fluorescence

measurements to multiple, parallel studies of bacterial growth would provide great flexibility in

applying these methods, particularly in the area of gene expression analysis where a large

number of experiments must be run. We have demonstrated the measurement of both

bioluminescence and fluorescence in a microbioreactor. We have used an E. coli strain sensitive

to anaerobiosis to indicate the presence of oxygen depletion, and compared the response to a

growth situation where oxygen limitation does not occur to demonstrate the feasibility of using

reporter strains as environmental markers. We have also examined the reproducibility of the
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Figure 3-6. Optical density (OD), dissolved oxygen (%DO), and fluorescence for
a strain of E. coli that expresses green fluorescent protein (GFP) constitutively in
(a) a microbioreactor and (b) a shake flask.

luminescence response and compared it to the reproducibility achieved with off-line

measurements from a bench-scale system. Our results suggest that the design and configuration

of the microbioreactor allow a direct, on-line reading unhampered by the inner filter effect, and
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thus more reliable and reproducible than measurements obtained with the necessity of off-line

handling. One area in which this ability could have a great impact is that of genome-wide

expression profiling. Currently, samples must be removed at set time points, and the data

analyzed separately for each on a separate DNA microarray. The ability to monitor the

expression of a gene in real-time (and, with parallel scale-out, potentially all of the genes for a

given cell), would obviate the need for discrete analysis at different times and provide a true

dynamic picture of cellular gene expression, where the kinetics of gene expression can be

untangled and elucidated.

75



Chapter 4. Gene Expression Analysis of Escherichia coli Grown

in Miniaturized Bioreactor Platforms

4.1. Introduction

Global gene expression analysis using DNA microarrays is a technique widely applied in

general biological research and in specific fields such as drug screening, environmental testing,

and clinical diagnosis. 6' 62 The ability to combine global gene expression analysis and high-

throughput screening of microbial growth parameters would allow the simultaneous rapid

characterization of microbial strains at the physiological and molecular levels. The increasing

availability of complete genomic sequences of microorganisms offers the unprecedented

opportunity for detailed investigations of the functioning of these organisms. Genomic

expression assays provide the ability to look at a single aspect of physiology, as well as to see the

interaction of genes and operons with every other aspect of physiology.

To reach the goal of a rapid and informative high-throughput screening technology there

remain two significant obstacles: first, as the techniques for DNA microarrays continue to be

developed, an ongoing need persists for methods of performing microarrays on very small

samples of bacterial cultures; second, of the many metabolic and genetic experiments that can

now be designed and performed in bacteria, only a small fraction can be tested using standard

culture systems. The number of culture conditions that can be tested using tubes, flasks and

bench-scale bioreactors (with volumes between 0.5 and 10 liters) is limited due to the time

required to obtain sufficient data, the effort required to obtain reproducible data, and the high

costs of operation. In microbiological research there clearly exists a need for a biochemical

platform with integrated sensors yielding real-time data on process parameters that would allow

76



high-throughput, parallel, and automated processing of a variety of microbial cultures under a

variety of controlled conditions. Multidisciplinary efforts that link engineering and biology are

generating novel miniaturized bioreactor platform devices that could allow the production of

multiple disposable bioreactor units for high-throughput data analysis.6 5' 6 76 8' 11 8" 28"29 The 50 Hte

bioreactor platform that was recently described by Zanzotto et al.' 8 (Chapter Two of this thesis)

is a step toward a system that can be economically scalable and can generate real-time data for

optical density (OD), dissolved oxygen (DO), and pH, offering the advantages of high-

throughput processes in terms of labor, time, reproducibility, and cost.

Zanzotto et al.1"8 demonstrated that E. coli cultures grown in this microbioreactor platform

exhibit reproducible growth characteristics in complex and minimal media; this included time

curves of OD, DO, and pH as well as cell number and morphology, substrate uptake, and organic

acid production. In these respects, growth of E. coli mimicked that seen in conventional culture

conditions (e.g. shake flasks). We also demonstrated that serial harvest of microbioreactors was a

feasible way to obtain samples for off-line analysis. The microbioreactor used to grow the

cultures is fabricated using current bioMEMS and microfluidic technologies and is made out of

poly(dimethylsiloxane) (PDMS) and glass and equipped with on-line measurements for OD, DO

and pH. Aeration of cultures occurs through a gas-permeable PDMS membrane.

In the present study, we sought to determine whether cells grown in the microbioreactor

format could be used in global gene expression studies using DNA microarrays as a step toward

integrating high-throughput bacterial culture with high-throughput transcription profiling. To

perform DNA microarray analysis for gene expression profiling we used Resonance Light

Scattering (RLS) labeling technology. While microarray analysis is now well established, the

technology continues to evolve, particularly toward more sensitive methods and the use of
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amplification techniques.'30" 3' Current protocols for prokaryotic DNA microarrays require 5 to

10 jig of total RNA as starting material; Bao et al.'32 reported high-sensitivity detection of DNA

hybridization on microarrays of human genes using RLS technology which uses colloidal metal

particles (between 40 and 120 nm in diameter) that efficiently scatter light for cDNA labeling.

As detailed by Yguerabide and Yguerabide,'33 the light-emitting power of single RLS particle

labels is an order of magnitude greater than fluorescent labels such as Cy3 and Cy5. More

recently Francois et al.'34 have shown that it is possible to detect and identify bacterial pathogens

with the RLS system from small culture volumes, starting with only 10 to 500 ng of total RNA.

We performed global gene expression analysis with 500 ng of total RNA from Escherichia coli

cultures grown in LB medium and in defined minimal medium in a 50 Pe bioreactor, using the

Genicon RLS system (Invitrogen, Carlsbad, CA) for cDNA labeling. The data compared

favorably to similar microarray studies that have been conducted with bacterial cultures grown at

larger scales. These growth conditions were chosen because two earlier studies compared gene

expression analysis in E. coli grown in 50 me volumes of the same media'3 5 136 and their findings

could be used to validate our experiments.

4.2. Materials and Methods

4.2.1. Organism and growth conditions

All experiments were conducted using Escherichia coli FB21591 (thiC::Tn5 -pKD46, KanR)

obtained from the University of Wisconsin (www.genome.wisc.edu). Cultures were grown in

Luria-Bertani medium (LB) or defined minimal medium (DM), both supplemented with 10 g/2

glucose.

The composition of LB is: 10 g/Q tryptone (Difco Laboratories, BD, Sparks, MD), 5 g/Q yeast
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extract (Difco), and 5 g/e NaCI. After sterilization, the medium was supplemented with final

concentrations of 10 g/e glucose (Mallinckrodt, Phillipsburg, NJ), 100 mM MES (pH 6.9) buffer

(Sigma, St. Louis, MO), and 100 itg/me kanamycin (Sigma). The 40% (w/v) glucose stock was

autoclaved for 20 minutes at 1200F, 150 kPa; MES (2 M) and kanamycin (100 mg/me) stocks

were filter-sterilized.

The composition of the DM is: K2HPO4 [60 mM], NaH 2PO4 [35 mM], (NH4)2S0 4 [15 mM],

NH4Cl [70 mM], MgSO 4o7H2 0 [0.8 mM], Ca(N0 3) 2o4H20 [0.06 mM], FeC13 [20 mM],

(NH4)6 Mo70 24 .4H2 0 [0.003 jM], H3B0 3 [0.4 jiM], CuS045H 20 [0.01 jtM], MnC12.4H20 [0.08

,uM], ZnSO 4-7H 2 0 [0.01 }M], glucose [10 g/f], thiamine [100 M], MES (pH 6.9) [100 mM],

kanamycin [100 ig/me]. Glucose, MES, and kanamycin were added to the medium as stock

solutions (see above). Thiamine was also added as stock solution (100 mM), previously

filter-sterilized.

For inoculum preparation the strain was first adapted to LB or DM as follows: for LB

experiments, tubes with 5 me of medium were inoculated with single colonies from overnight

LB-kanamycin agar plates and incubated at 370C on a roller drum at 60 rpm. When these

cultures reached an optical density of 1 ± 0.1, the medium was used to inoculate 30 me of fresh

LB in 500 me baffled shake flasks to an optical density of 0.05. The flasks were then incubated

at 37°C on a horizontal rotary shaker at 150 - 200 rpm until the optical density reached 1. At this

point the culture was transferred to fresh LB to an OD600 of about 0.05, and used to inoculate

microbioreactors.

Precultures for inoculum preparation for DM experiments were carried out as described for

LB, except that shake flasks and the inoculum contained defined minimal medium.
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4.2.2. Microbioreactorfermentations

A microbioreactor fabricated from PDMS and glass' 18 was used for all fermentations (Figure

4-1). A separate microbioreactor was fabricated for each experiment. PDMS formed the bottom

layer (in which the sensors were embedded), the body of the fermentor, and the aeration

membrane. The base support of the bioreactor was made of glass, which provided the necessary

rigidity as well as optical access. The volume of the microbioreactor was 50 Pte. The bottom

layer of the microbioreactor contained two sensor foils (PreSens, Regensburg, Germany), one for

dissolved oxygen and one for pH as described previously.l 8 Experiments were carried out in an

airtight, aluminum chamber (Figure 4-1). The chamber allowed control of humidity and gas

composition above the microbioreactor membrane; it also provided a large thermal mass which

stabilized the temperature at the desired set point of 370 C. Temperature was controlled by

circulating water at 370C through the chamber base.

Optical density was used to monitor biomass. It was calculated from a transmission

measurement at 600 nm. Light from an orange LED (L600-10OV, 600nm, Epitex, Kyoto, Japan)

was passed through the microbioreactor, collected by a collimating lens (F230SMA-A, Thorlabs,

Newton, NJ), and sent to a photodetector (PDA55, Thorlabs). The optical density was calculated

using Equation 4-1.

OD = 33.33 log( reference) (4-1)
signal
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Figure 4-1. Schematic of the microfermentor and experimental set-up. After
inoculation, the microbioreactor is placed inside the chamber. The chamber is
kept at 100% humidity and 370C. Three optical fibers carry three different
wavelengths of light to the bottom of the microbioreactor for the three
measurements: OD, DO, and pH. Photodetectors collect the transmitted or emitted
light and send it to a lock-in amplifier where the signal is detected and analyzed.

In this equation Iig,,nal is the intensity of the signal and Ireference is the intensity of the first

measurement for a given experiment. The multiplication factor of 33.33 in Equation 4-1 is used

to normalize the data for the pathlength in the microbioreactor of 300 }pm, which enables direct

comparisons with results from conventional cuvettes with pathlengths of 1 cm. This adjustment

is only strictly valid if the absorption and light scattering by the cell culture are in the linear
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region. A calibration of optical density measurements in the microbioreactor was performed

using serial dilutions of an E. coli culture grown to OD- 7. Optical density measurements of

diluted cultures were made in a 300 pm-deep microbioreactor using a Spectronic 20 Genesys

spectrophotometer (Spectronic Instruments Inc., Rochster, NY). The calibration data (Figure 4-2)

produced a linear fit with a slope close to one.

I

- 4
2

.r0E 320
1

0

0 1 2 3 4 5 6 7

OD in spectrometer

Figure 4-2. Calibration curve for optical density measurements in a
microbioreactor. A dilution series of E. coli cells was used to compare direct
measurements in a spectrophotometer with pathlength-adjusted measurements in
the microbioreactor. Optical density was measured at 600 nm in both systems.
Optical density in the microbioreactor was scaled to a pathlength of 1 cm from
300 lpm.

Inoculation of the microbioreactor via the channels was carried out outside of the chamber

using a needle and syringe. Following inoculation, the microbioreactor was secured to the base

of the chamber. Open reservoirs of water were placed inside the chamber to provide humidity.

Maintaining high humidity minimized evaporative losses through the PDMS membrane. The

chamber was then closed and real-time data collection initiated. Sterility was maintained through
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the addition of the antibiotic kanamycin to the growth medium. Additional details of the

microbioreactor and its set-up are described by Zanzotto et al.118 Triplicate fermentations of

E. coli grown in LB and DM in 50 tfd microbioreactors with on-line measurements of OD600,

DO, and pH are shown in Figure 4-3.
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Figure 4-3. Fermentations (n=3) of E. coli grown in 50 [p microbioreactors in
LB (left panels) and DM (right panels). The fermentations were performed on
different days.
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4.2.3. Total RNA isolation

Total RNA was isolated from three independent 50 pe fermentations in LB and DM. To

isolate total RNA from these small volumes of culture we developed the following procedure:

cells were harvested during exponential growth phase when they reached an OD600 of about 1.0,

typically at a population density of 2-4 x 109 cells/me culture fluid. Thus the number of cells

recovered from 50 pie was 1-2 x 108 cells. To harvest cell cultures, the incubation chamber was

opened and the culture withdrawn from the microbioreactor in its entirety with a 200 peL pipette.

The culture was then transferred immediately to 1.5 me Eppendorf tubes containing two volumes

of RNAprotect Bacteria (Qiagen, Valencia, CA) for RNA stabilization. After 5 minutes of

incubation at room temperature, the cells were precipitated by centrifugation, resuspended in

200 Cte of TE (10 mM tris-HCl, 1 mM EDTA, pH 8.0) containing 15 mg/me of lysozyme and

incubated for 20 minutes at room temperature on a Nutator (Becton Dickinson, Parsippany, NJ)

for gentle mixing. The cells were then transferred to 2 me tubes (Sarstedt, Newton, NC)

containing 50 mg of acid-washed 0.1 mm zirconia/silica beads (Biospec Products Inc.

Bartesville, OK) and lysed in a FastPrep FP120 (Qbiogene, Carlsbad, CA) for 90 seconds at

maximum speed. We found that we consistently obtained higher yields and better RNA quality if

we performed a combination of enzymatic and mechanical cell disruption. Total RNA isolation

was performed using an RNeasy kit (Qiagen) by loading the lysed sample, without the beads,

directly onto RNeasy columns and then following the manufacturer's protocol. The

concentration and quality of the purified RNA was assessed by the determination of the

OD 260/280 ratio and analysis on an Agilent 2100 Bioanalyzer (Palo Alto, CA). RNA samples

were stored at -800 C. The average yield of total RNA from 50 gpe of E .coli culture grown in LB

or DM to an OD6 00 of about 1 was approximately 3 jig and 1 pg, respectively.
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4.2.4. Microarray hybridizations and analysis

DNA microarrays were printed at the MIT BioMicro Center (Cambridge, MA) with a

BioRobotics MicroGrid Two printer (Genomic Solutions, Ann Arbor, MI) on Coming GAPS

slides (Acton, MA) with a 50mers oligo set (MWG-Biotech Inc, High Point, NC) composed of

4,288 gene specific oligonucleotide probes representing the complete E. coli (K12) genome.

Microarray hybridizations were performed with the GeniconRLS two color array detection

system (Invitrogen), based on RLS technology. From each fermentation, 500 ng of total RNA

were used to generate cDNA labeled with Biotin-16-dUTP (Enzo Life Sciences, Inc.,

Framingdale, NY) for LB samples, and Fluorescin-12-dUTP (Roche Diagnostics, Indianapolis,

IN) for DM samples. Direct labeling was performed with the LabelStar Kit (Qiagen) using a

modified protocol as follows.

For each of the biotin-labeled reactions the labeling mix contained the following

components: 5 PC 10x Buffer, 5 ,Pe dNTP-Mix H, 1 p.e biotin-labeled dUTP, 1 pe random DNA

hexamers (Roche Diagnostics), 0.5 pe RNase inhibitor, 2.5 pe LabelStar Reverse Transcriptase,

15 pe RNase-free water, and 20 p.e denatured RNA template. The fluorescein-labeled mixes

were prepared as described for the biotin-labeled mixes except that 2 Ope of fluorescein-labeled

dUTP and 14 Pe of RNase-free water were used. dNTP mixes contained 0.5 mM each of dATP,

dCTP, dGTP and 0.04 mM dTTP. RNA templates were denatured before cDNA labeling by

adding 2 e of denaturation solution to 18 Pe of RNA sample, followed by incubation for

5 minutes at 65C in a water bath with subsequent cooling on ice.

Labeling mixes were incubated for 2 hours at 370 C in a thermocycler with a hot lid.

One microliter of dTTP (20 mM) was then added to each labeling mix, and incubation at 37°C

was continued for another hour. Reactions were then stopped with the addition of 2 pe of stop
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solution LS (Invitrogen). Purification of labeled cDNA was performed immediately using the

LabelStar Kit (Qiagen). Purification of labeled cDNA was performed as directed in the protocol

with the difference that each of the six samples was purified independently and that in the final

step of the purification, each column was eluted twice with 50 fte of EB (Qiagen). Each 100 uef

labeled cDNA sample was then diluted with 400 pe of RNase-free water. Next, one labeled

cDNA sample generated from an LB culture and one labeled cDNA sample generated from a

DM culture were pooled and concentrated to 12 gte with a Microcon Y-30 0.5 me column

(Millipore, Bedford, MA) as directed by the manufacturer.

Before array hybridizations were performed, microarray slides were baked in an oven at 800C

for 2 hours. After cooling, the slides were cross-linked with UV light in a Stratalinker 2400

(Stratagene, La Jolla, CA) at 300 mJ. Prehybridization was performed as directed by the

manufacturer's protocol by incubating microarray slides for 30 minutes at 420 C in a

polypropylene slide mailer filled with 25 me of pre-hybridization solution, washed twice in

deionized water at room temperature and dried with a stream of filtered nitrogen gas.

We performed 3 co-hybridizations, each comparing an LB versus a DM fermentation on a

single array (Figure 4-4). For array hybridization, the 25 le hybridization mix contained 12.5 gpe

of hybridization solution pre-heated to 420 C, 0.5 fte of hybridization blocker (salmon sperm

DNA, 10 mg/mf), and 12 te of labeled target cDNA (biotin and fluorescein-labeled cDNA). We

used a smaller volume than the one recommended in the protocol since we used lifter slips (Erie

Scientific, Portsmouth, NH) of smaller dimensions (24x24 mm). Hybridization mixes were

incubated at 950C for 5 minutes. Before hybridization, the lifterslips were first washed with

deionized water, then with 70% ethanol, and finally dried with a stream of filtered nitrogen gas.

The lifterslips were then placed over the arrays and the hot (95C) hybridization mix was added
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Figure 4-4. E. coli microarrays (left) hybridized with cDNA obtained from
500 ng of total RNA from cultures grown in 50 gei microbioreactors in DM
(green) and LB (red). Normalized mean spot intensities (n=3) of the two growth
conditions were plotted against each other (right) and the log2 ratios of DM
(green) over LB (red) intensities were binned to identify genes upregulated more
than two-fold.

to one of the free edges of the lifterslip to entirely cover the array area by capillary action. The

slides were placed in ArrayIt hybridization cassettes (TeleChem International, Sunnyvale, CA)

together with 250 te of water for humidity control, and placed overnight in a 420C incubator.

Post-hybridization washes were performed as directed. Microarray slides were then blocked in

25 me of blocking solution (Invitrogen) for 2 minutes at room temperature. The slides were then

placed on a wet paper towel and put inside a plastic container, which functioned as a hydration

chamber. Each array was covered with 45 gf of the RLS Particle Mix, which was composed of

15 ge AntiBiotin RLS Particle Au (gold), 15 gp AntiFluorescein RLS Particle Ag (silver), and

15 ge RLS Particle Diluent. Lifterslips were washed and dried as described above and carefully

lowered over the array area. Microarray slides were then incubated in the Hydration Chamber for

1 hour. The RLS particle wash was performed as directed with wash solutions using a squirt
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bottle and a slide mailer. Following final washes in a glass tank with deionized water, the slides

were dried with a stream of filtered nitrogen gas and archived in 25 mf of archiving solution

(Invitrogen) and dried for about 2 hours in a laminar flow hood.

To determine spot intensities, microarray slides were scanned in a GSD-501 RLS Detection

and Imaging Instrument (Invitrogen) and image data were analyzed using MolecularWare

software (Cambridge, MA).

For each array, the intensity ratio of each ORF-specific spot was obtained using the

intensity-dependent non-linear normalization LOWESS3 7 '3 8 on the ratios of the two channels.

The two growth conditions were compared by determining the log2 ratios of the mean light

intensies across the three arrays. Intensity ratios were calculated using defined medium as

numerator and LB as denominator. Differential gene expression was considered significant if the

log2 ratio of DM intensity over LB intensity for each ORF was greater than 1 or lower than -1.

The complete set of data was deposited and can be viewed on the NCBI Gene Expression

Omnibus web site (http://www.ncbi.nlm.nih.gov/geo/, accession number GSE1981).

For gene annotation, E. coli sequences were compared to proteins in the cluster of

orthologous group (COG) database'3 9 using the BLASTP sequence similarity search program.'40

Assignment to a particular COG group was made by transferring the COG function of the top

alignment to the E. coli protein. This allowed high-throughput annotation of gene function.

4.3. Results

To investigate gene-expression level cellular behavior in the miniaturized 50 teQ bioreactors

of Zanzotto et al., 1 8 we carried out fermentation studies in two media, one a defined minimal

medium (DM), the other a rich medium (LB) (Figure 4-3). It is known that E. coli grows faster in
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rich than in minimal media141 and in our studies our strain grew with average generation times of

about 28 and 48 minutes in LB and DM, respectively. Cells for RNA isolation were harvested

when the cultures reached an OD600 of about 1. At this OD, the average pH of both media was

about 6.6 and the dissolved oxygen concentration of the fermentation medium was on average

60-80 % in DM and 40-60 % in LB (Figure 4-3), defining 100% as the oxygen concentration of

saturated medium in equilibrium with air.

For assessment of gene expression profiles in E. coli cultures grown in the two growth

conditions, we identified upregulated genes by taking the log2 ratio of the mean spot intensities

of DM over LB (Figure 4-4). Table 4-1 summarizes the number of upregulated genes annotated

in functional groups and classes in the two growth conditions. The total number of upregulated

genes in the two media was 507, of which 232 were specifically upregulated in DM and 275 in

LB (Table 4-1). Results indicate that when E. coli was grown in DM, a larger number of

"Metabolism" genes were upregulated, while when the culture was grown in LB, more "Cellular

processes" and "Information storage and processing" genes were upregulated.

These results were expected since E. coli growing on glucose as sole carbon and energy

source must generate de novo building blocks (i.e. amino acids, vitamins, nucleosides, etc.) for

macromolecular synthesis. In LB, E. coli grows more rapidly since the building blocks for

macromolecular synthesis are provided by yeast extract and tryptone, and more regulatory genes

are expected to be upregulated. 142 A complete list of the upregulated genes is given in Table 4-2.
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Table 4-1. Numbers of upregulated genes in E. coli growing in defined minimal medium (DM)
and LBa.

Medium
Function group Function class DM LB

Metabolism Amino acid transport and metabolism 48 10
Carbohydrate transport and metabolism 19 20
Coenzyme metabolism 2 4
Energy production and conversion 25 6
Lipid metabolism -- 4
Nucleic acid transport and metabolism 2 5

Cellular processes Cell division and chromosome partitioning -- 1
Cell envelope biogenesis, outer membrane 7 7
Cell motility and secretion 1 16
Defense mechanisms -- 3
Inorganic ion transport and metabolism 13 13
Posttranslational modification, protein turnover 5 3
Signal transduction mechanisms 5 5

Information storage DNA replication, recombination, and repair 8 10
and processing

Transcription 11 22
Translation, ribosomal structure and biogenesis 2 3

Poorly characterized Function unknown 84 143

TOTAL 232 275
aFunctional annotation was performed by comparing E. coli sequences to proteins of the cluster
of orthologous group (COG) database using the BLASTP sequence similarity search program.
Assignment to a particular COG group and class was made by transferring the COG function of
the top alignment to each E. coli protein. Genes were considered upregulated when the log2 ratio
of the mean spot intensities was greater than 1 or lower than -1.
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Table 4-2. Differential gene expression profile of the functional group "Metabolism" in E. coli
growing in defined minimal minimum (DM) and LB.

Gene ID Gene Product Log2 (DM/LB) Gene ID Gene Product Log2 (DM/LB)

Amino acid transport and metabolism
proX transport system for glycine and proline
leuB 3-isopropylmalate dehydrogenase
thrB homoserine kinase
pro V transport system for glycine, betaine and proline
oppA oligopeptide transport; periplasmic binding protein
dppA dipeptide transport protein
leuC 3-isopropylmalate isomerase (dehydratase)
metE tetrahydropteroyltriglutamate methyltransferase
gltD glutamate synthase, small subunit
asd aspartate-semialdehyde dehydrogenase
ddpA putative hemin-binding lipoprotein
thrC threonine synthase
gltB glutamate synthase, large subunit
hisC histidinol-phosphate aminotransferase
livJ high-affinity amino acid transport system
gadB glutamate decarboxylase isozymes
proW transport system for glycine and proline
trpC_I N-(5-phosphoribosyl)anthranilate isomerase
cysM cysteine synthase B, O-acetylserine sulfhydrolase B
cysD ATP:sulfurylase, subunit 2
trpC_I N-(5-phosphoribosyl)anthranilate isomerase
ygjl putative oxidoreductase
aroL shikimate kinase II
hisF imidazole glycerol phosphate synthase subunit
hisl_l phosphoribosyl-amp cyclohydrolase
leuD isopropylmalate isomerase subunit
gatD galactitol-l -phosphate dehydrogenase
ddpF ATP-binding component of a transport system
ilvN acetolactate synthase I, valine sensitive
cysH 3'-phosphoadenosine 5'-phosphosulfate reductase
thrA aspartokinase I, homoserine dehydrogenase I

ATP-binding component of amino acid transport
system
D-3-phosphoglycerate dehydrogenase
chorismate synthase
dihydroxyacid dehydratase
tryptophan synthase, beta protein
arabinoheptulosonate-7-phosphate synthase
arabinoheptulosonate-7-phosphate synthase
sulfate permease A protein

2 putative oxidoreductase, Fe-S subunit
periplasmic glutamine-binding protein; permease

Amino acid metabolism contd.
5.8
4.2
3.6
3.5
3.4
3.3
3.1
3.1
2.9
2.9
2.4
2.3
2.3
2.3
2.2
2.2
2.1
1.8
1.7
1.6
1.5
1.4
1.4
1.4
1.4
1.4
1.4
1.4
1.3
1.3
1.3

1.2
1.2
1.2
1.1
1.1
1.1
1.1
1.1
1.1
1.1

speE
yfcK_2
phnC
ilvB
leuA
poxB
ygfK
xasA
tnaA
gltK
ydgR
yhaP
potH
yhfX
tdcB
ptrB
sdaB

spermidine synthase
putative peptidase
ATP-binding component of phosphonate transport
acetolactate synthase I,valine-sensitive
2-isopropylmalate synthase
pyruvate oxidase
putative oxidoreductase, Fe-S subunit
acid sensitivity protein, putative transporter
tryptophanase
glutamate/aspartate transport system permease
putative transport protein
putative L-serine dehydratase
putrescine transport protein; permease
Predicted amino acid racemase
threonine dehydratase, catabolic
protease II
L-serine dehydratase (deaminase), L-SD2

Coenzyme metabolism
folE GTP cyclohydrolase I
bioD dethiobiotin synthetase
abgT putative pump protein (transport)
ubiA 4-hydroxybenzoate-octaprenyltransferase
ubiX 3-octaprenyl-4-hydroxybenzoate carboxy-lyase
moaA molybdopterin biosynthesis, protein A

Nucleic acid transport and metabolism (F)
cmk cytidylate kinase
purF amidophosphoribosyltransferase
guaA GMP synthetase (glutamine-hydrolyzing)
dgt deoxyguanosine triphosphate triphosphohydrolase

purH phosphoribosylcarboxamideformyltransferase
guaB IMP dehydrogenase
pyrl aspartate carbamoyltransferase, regulatory subunit

Lipid metabolism
atoE short chain fatty acid transporter
ynjF putative cytochrome oxidase
idnO 5-keto-D-gluconate 5-reductase
entA 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase

1.0
1.0
1.0
1.0
1.0
1.0
1.0
-2.3
-2.0
-1.8
-1.7
-1.6
-1.4
-1.2
-1.2
-1.2
-1.0

1.5
1.4
-1.8
-1.5
-1.5
-1.1

2.1
1.2
-2.0
-1.5

-1.1
-1.1
-1.1

-2.6
-2.4
-1.2
-1.2

livG
serA
aroC
ilvD
trpB
aroG
aroF
cysA
aegA_
glnH
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Table 2 (continued). Differential gene expression profile of the functional group "Metabolism"
in E. coli growing in defined minimal minimum (DM) and LB.

Gene ID Gene Product Log2 (DM/LB) Gene ID Gene Product Log2 (DM/LB)

Carbohydrate transport and metabolism
gatA galactitol-specific ofphosphotransferase system
gatZ putative tagatose 6-phosphate kinase 1
gatY tagatose-bisphosphate aldolase I
ZgapC glyceraldehyde 3-phosphate dehydrogenase C
yicM putative transport protein
gapC glyceraldehyde-3-phosphate dehydrogenase
gatY tagatose-bisphosphate aldolase I
otsA trehalose-6-phosphate synthase
rbsB D-ribose periplasmic binding protein
pykF pyruvate kinase I (formerly F), fructose stimulated
gatC PTS system galactitol-specific enzyme IIC
glgX part of glycogen operon, a glycosyl hydrolase
glgC glucose-l-phosphate adenylyltransferase
uxaC uronate isomerase
ptxA putative PTS system enzyme II A component
alsC putative transport system permease protein
malK transport system for maltose
ycjR putative transient receptor potential locus
talA transaldolase A
agaD PTS system, N-acetylglucosamine enzyme lID
xapB xanthosine permease
shiA putative transport protein, shikimate
uidB glucuronide permease
frvX fry operon protein
agaW PTS system N-acetylgalactosameine-specific IIC
mglC methyl-galactoside transport and galactose taxis
ptsG PTS system, glucose-specific IIBC component
rhaT rhamnose transport
ybhC putative pectinesterase
agaC PTS system N-acetylgalactosamine-specific IIC
yfeV_2 putative PTS enzyme II
fucl L-fucose isomerase
ebgA evolved beta-D-galactosidase, gene
gntP gluconate transport system permease 3
xylE xylose-proton symport
galP galactose-proton symport of transport system

4.2
3.5
3.0
2.6
2.5
2.4
1.9
1.8
1.7
1.5
1.4
1.4
1.3
1.3
1.3
1.3
1.1
1.1
1.0

-2.6
-2.2
-2.0
-1.7
-1.7
-1.7
-1.6
-1.5
-1.4
-1.3
-1.3
-1.3
-1.3
-1.2
-1.2
-1.2
-1.1

Carbohydrate metabolism contd.
malG part of maltose permease, inner membrane
gmhA phosphoheptose isomerase
lacY galactoside permease (M protein)

Energy production and conversion
aceB malate synthase A
aceA isocitrate lyase
yodB putative cytochrome
sucC succinyl-CoA synthetase, beta subunit
narJ nitrate reductase 1, delta subunit
narG nitrate reductase 1, alpha subunit
sdhA_1 succinate dehydrogenase, flavoprotein subunit
nuoB NADH dehydrogenase I chain B
pntA pyridine nucleotide transhydrogenase, alpha subunit
nuoE NADH dehydrogenase I chain E
SdhA_2 succinate dehydrogenase, flavoprotein subunit
fdx [2FE-2S] ferredoxin, electron carrer protein
nuoG NADH dehydrogenase I chain G
ybiC putative dehydrogenase
hyfi hydrogenase 4 Fe-S subunit
glcB malate synthase G
fdhD affects formate dehydrogenase-N
nuol NADH dehydrogenase I chain I
gltA citrate synthase
sucD succinyl-CoA synthetase, alpha subunit
hyfF hydrogenase 4 membrane subunit
prpC putative citrate synthase; propionate metabolism
nuoH NADH dehydrogenase I chain H
sdhD succinate dehydrogenase, hydrophobic subunit
ydgN putative membrane protein
ybiW putative formate acetyltransferase
ydeP putative oxidoreductase, major subunit
lldP L-lactate permease
cydA cytochrome d terminal oxidase, polypeptide subunit I
araB L-ribulokinase
hvfD hydrogenase 4 membrane subunit

-1.1
-1.0
-1.0

4.8
3.5
2.6
2.4
2.3
2.0
1.7
1.6
1.5
1.5
1.3
1.3
1.3
1.3
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.1
1.1
1.0
-1.6
-1.4
-1.3
-1.1
-1.1
-1.0
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Table 4-3. Differential gene expression profile of the functional group "Cellular
E. coli growing in defined minimal minimum (DM) and LB.

processes" in

Gene ID Gene Product Log2 (DM/LB) Gene ID Gene Product Log2 (DM/LB)

Cell envelope biogenesis, outer membrane
yedS putative outer membrane protein
dniR transcriptional regulator for nitrite reductase
spr putative lipoprotein
murG UDP-N-acetylglucosamine
nlpD lipoprotein
b1980 ADP-heptose:LPS heptosyltransferase
yaiP polysaccharide metabolism
rhsC protein in rhs element
mreD rod shape-determining protein
rhsE rhsE protein in rhs element
rfbC dTDP-6-deoxy-D-glucose-3,5 epimerase
kdsB CTP:CMP-3-D-manno-octulosonate transferase

Cell motility and secretion
flhA flagellar biosynthesis
fliC flagellar biosynthesis; flagellin
tar methyl-accepting chemotaxis protein II
motB enables flagellar motor rotation
yqiH P pilus assembly protein, chaperone PapD
ycbT homolog of Salmonella FimH protein
fliA flagellar biosynthesis
cheA sensory transducer kinase
ppdD prelipin peptidase dependent protein
flgE flagellar biosynthesis, hook protein
cheZ chemotactic response; CheY protein phophatase
fliN flagellar biosynthesis, component of motor switch
yehD P pilus assembly protein, pilin FimA
fliS flagellar biosynthesis; repressor of(RflA activity)
flgA flagellar biosynthesis; periplasmic P ring
flgC flagellar biosynthesis,basal-body rod
flgK flagellar biosynthesis, hook-filament
cheY chemotaxis regulator

Signal transduction mechanisms
glnL histidine protein kinase sensor for GInG regulator
ybcZ putative 2-component sensor protein
ypdA putative sensor protein
phoQ sensor protein PhoQ
ygeV putative transcriptional regulator
yjiY putative carbon starvation protein
ybdQ universal stress protein UspA
yeil, cAMP-binding proteins - catabolite gene activator
fimZ fimbrial Z protein; probable signal transducer
barA sensor-regulator, activates OmpR by phophorylation

2.5
2.4
1.6
1.2
1.1
1.1

Cell division and chromosome partitioning
sulA suppressor of Ion; inhibits cell division

Defense mechanisms
bacA bacitracin resistance
mcrC component of McrBC restriction system
dinF DNA-damage-inducible protein F

-2.1
-1.7 Inorganic ion transport and metabolism
-1.7 cysJ sulfite reductase (NADPH)
-1.6 oppB oligopeptide transport permease protein
-1.3 dps global regulator, starvation conditions
-1.1 oppC homolog of Salmonella transport permease

cutCm copper homeostasis protein
yejE putative transport system permease protein

2.0 cysC adenosine 5'-phosphosulfate kinase
-2.5 cysP thiosulfate binding protein
-2.2 phnM phosphonate metabolism
-2.1 cys Wm sulfate transport system permease W protein
-1.6 yoaE_2 putative transport protein
-1.5 nikB transport of nickel, membrane protein
-1.4
-1.4
-1.4
-1.3
-1.2
-1.2
-1.2
-1.2
-1.1
-1.1
-1.1
-1.0

1.6
1.4
1.2
1.2
1.2

-2.1
-1.6
-1.3
-1.1
-1.0

focB
nikC
kdpB
yliD
nirCm
tolQ
dppB
yliC
emrE
ccmD
yieL
fecB
znuA
ybhl

probable formate transporter (formate channel 2)
transport of nickel, membrane protein
ATPase of high-affinity potassium transport system
putative transport system permease protein
nitrite reductase activity
inner membrane protein, membrane-spanning
dipeptide transport system permease protein I
putative transport system permease protein
methylviologen resistance
heme exporter protein C
putative xylanase
citrate-dependent iron transport
putative adhesin
putative membrane pump protein

Posttranslational modification, protein turnover
slpA FKBX-type peptidyl-prolyl cis-trans isomerase
nrdH glutaredoxin-like protein; hydrogen donor
hsU heat shock protein hslJ
grxB glutaredoxin 2
ybeW putative dnaK protein
sirA regulator of disulfide bond formation
groL GroEL, chaperone Hsp60, heat shock protein
yqjG putative transferase

-1.0

-1.9
-1.1
-1.0

1.6
1.6
1.5
1.4
1.4
1.4
1.3
1.3
1.2
1.2
1.1

-2.0
-1.8
-1.8
-1.7
-1.7
-1.5
-1.5
-1.5
-1.3
-1.3
-1.2
-1.1
-1.1
1.1
1.1

1.5
1.5
1.4
1.1
1.0

-1.3
-1.2
-1.0
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Table 4-4. Differential gene expression profile of the functional group "Information storage and
processing" in E. coli growing in defined minimal minimum (DM) and LB.

Gene ID Gene Product Log2 (DM/LB) Gene ID Gene Product Log2 (DM/LB)

Transcription
cspG homolog of Salmonella cold shock protein 3.5
feaR regulatory protein for 2-phenylethylamine catabolism 2.4
bl 770 putative DEOR-type transcriptional regulator 2.1
rpoS RNA polymerase, sigma S (sigma38) factor 1.7
yrbL orf, hypothetical protein 1.6
cspH cold shock-like protein; cold shock protein 1.6
dsdC D-serine dehydratase transcriptional activator 1.5
nusA transcription pausing; L factor 1.5
rnc RNase III, ds RNA 1.4
narP nitrate/nitrite response regulator (sensor NarQ) 1.3
torR response transcriptional regulator for torA 1.2
yge V putative transcriptional regulator 1.2
uhpA positive activator of uhpT transcription 1.1
psiF induced by phosphate starvation 1.1
ygeP orf, hypothetical protein 1.1
ygiR orf, hypothetical protein 1.0
yklcA putative 2-component transcriptional regulator 1.0
hcaR transcriptional activator of hca cluster -2.6
ygiU transcription regulator containing HTH domain -2.1
ydeO putative ARAC-type regulatory protein -1.8
yghW transcription regulator containing HTH domain -1.8
ypdB putative 2-component transcriptional regulator -1.7
cadC transcriptional activator of cad operon -1.7
yqel putative sensory transducer -1.6
ygiZ transcription regulator containing HTH domain -1.6
ydiP putative ARAC-type regulatory protein -1.6
iclR repressor of aceBA operon -1.6
ybaD predicted transcriptional regulator -1.5
yjcT putative NAGC-like transcriptional regulator -1.5
fliA flagellar biosynthesis -1.4
b2635 predicted transmembrane transcriptional regulator -1.4
hcaR-r transcriptional activator of hca cluster -1.4
perR putative transcriptional regulator LYSR-type -1.3
yhcO barstar, RNAse (barnase) inhibitor -1.3
nhaR transcriptional activator of nhaA -1.3
gntR regulator of gluconate (gnt) operon -1.2
yiaG predicted transcriptional regulator -1.2
ykgD putative ARAC-type regulatory protein -1.2
ycjW putative LACI-type transcriptional regulator -1.2
pssR regulator of pssA -1.2
fimZ fimbrial Z protein; probable signal transducer -1.1
paaX phenylacetic acid-responsive transcriptional repressor -1.1

Transcription contd.
ygjJ transcription regulator containing HTH domain
yegW putative transcriptional regulator
lexA regulator for SOS(lexA) regulon
rhaR positive regulator for rhaRS operon
nusG component in transcription antitermination

DNA replication, recombination, and repair
yi9lb IS911 hypothetical protein (IS91 IB)
trsS_l IS5 transposases
ycaJ putative polynucleotide enzyme
dinJ damage-inducible protein J
recR recombination and repair
rnhB RNAse HII, degrades RNA of DNA-RNA hybrids
dnaX DNA polymerase III, tau and gamma subunits
dnaQ DNA polymerase Il1, epsilon subunit
bO105 transposase and inactivated derivatives
fimB regulator for fimA
b2596 transposase and inactivated derivatives
b1788 transposase
lit phage T4 late gene expression
ynjG orf, hypothetical protein
intA prophage CP4-57 integrase
sbmC SbmC protein
nfi endonuclease V (deoxyinosine 3'endoduclease)
b0309 transposase and inactivated derivatives
b1903 transposase
b2191 transposase and inactivated derivatives
alkB DNA repair system specific for alkylated DNA
hupB-r DNA-binding protein HU-beta, NS 1 (HU- 1)
recG DNA helicase, resolution of Holliday junctions
recN protein used in recombination and DNA repair
b0165 transposase and inactivated derivatives
recA DNA strand exchange and renaturation
ycfH Mg-dependent DNase
seqA negative modulator of initiation of replication

Translation, ribosomal structure and biogenesis
tsf protein chain elongation factor EF-Ts
rsuA 16S pseudouridylate 516 synthase
smpA small membrane protein A
lysU lysine tRNA synthetase; heat shock protein
rMlS 50S ribosomal subunit protein L 19

-1.1
-1.1
-1.0
-1.0
-1.0

1.9
1.4
1.3
1.2
1.2
1.1
1.1
1.1
-2.5
-2.2
-2.0
-1.9
-1.8
-1.7
-1.6
-1.6
-1.5
-1.4
-1.4
-1.4
-1.2
-1.2
-1.2
-1.1
-1.1
-1.1
-1.0
-1.0

1.4
1.1
-1.6
-1.5
-1.1
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The total number of upregulated genes in the functional group "Metabolism", in E. coli

growing in DM versus LB, was 96 and 49 respectively, and the major differences between the

two growth conditions were in the two functional classes "Amino acid transport and

metabolism" and "Energy production and conversion". Specifically, in DM, 48 "Amino acid

transport and metabolism" genes were upregulated, including genes involved in the synthesis of

all of the 20 amino acids found in proteins (Table 4-2). Three genes for proline biosynthesis

(pro VWX) were strongly upregulated, with proX showing the most significant increase in this

functional class. Other genes that were highly upregulated in DM are leuB (responsible, along

with leuACD, for leucine biosynthesis), the three genes of the thrABC operon for threonine

biosynthesis, four genes (aroCFGL) for the synthesis of chorismate (a central intermediate in

aromatic amino acid biosynthesis), and seven genes (cysACDHJMP) for the synthesis and

metabolism of cysteine.

In LB medium only 10 genes in the functional class "Amino acid transport and metabolism"

were upregulated, with no genes involved in amino aid biosynthesis and four genes involved in

amino acid degradation: sdaB and yhaP (glycine), tnaA (tryptophan) and tdcB (threonine) (Table

4-2).

In the functional classes "Carbohydrate transport and metabolism" and "Energy production

and conversion" a higher number of genes were upregulated in DM than in LB (Table 4-2). In

E. coli growing in DM these genes are involved in acetate utilization and the glyoxylate shunt

(aceA, aceB and gltA), in the tricarboxylic acid cycle, e.g. citrate synthetase (sdhAD) and

succinyl-CoA synthetase (sucCD), and the NADH dehydrogenase genes (nuoBEGHI) involved

in oxidative phosphorylation and ubiquinone biosynthesis. Additional genes upregulated in

E. coli growing in DM are involved in galacitol and tagatose transport and metabolism
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(gatACDYZ) and in glycolysis, such as glyceraldehyde 3-phosphate dehydrogenase (gapC 1 and

2) and pyruvate kinase (pykF).

During growth in LB, the most upregulated genes from the two functional classes

"Carbohydrate transport and metabolism" and "Energy production and conversion" were those

involved in the expression of the PTS protein N-acetyl glucosamine (agaCDW) and another

protein of the PTS system that is glucose specific (ptsG) .

E. coli growing in LB had a higher number of upregulated genes in the functional group

"Cellular processes" than cells growing in DM (Table 4-1). The major differences in this

functional group were in the functional class "Cell motility and secretion" where E. coli growing

in LB exhibited 17 upregulated genes (Table 4-3), with eight of these involved in the flagellum

assembly (fliACNS and flgACEK) and five involved in chemotaxis (cheAYZ, tar, and motB),

indicating that the strain growing in rich medium at an OD of 1 is actively motile.

As expected, E. coli in LB showed higher expression of genes from the group "Information

storage and processing" than when grown in DM (Table 4-1). E. coli divides more rapidly in LB

than in DM (Figure 4-3) and it is known that fast growing cultures synthesize proteins at a higher

rate than slow-growing populations.' 42 '"44 Of the 35 "Information" genes upregulated in LB

medium, the majority (22 genes) belong to the "Transcription" class (Table 4-1). More strongly

expressed were hcaR (Table 4-4), a transcriptional regulator of the LysR family that controls the

hca cluster for propionate catabolism,'4 5 and iclR, a repressor of the aceBA operon that mediates

acetate utilization. Accordingly, the aceBA genes were strongly upregulated in E. coli grown in

DM (Table 4-2).

In DM, rpoS, which encodes the RNA polymerase sigma subunit regulating many cellular

responses to environmental stress,'4 6 '147 was strongly expressed (Table 4-4), which is in
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agreement with the reports of Tao et al.'3 5 and Wei et al.'36 This suggests that RpoS regulation

may be important not only during the transition between the exponential and stationary phases,

but also in early and late logarithmic phase. Other genes that exhibited upregulation in DM were

narP, a nitrate/nitrite response regulator that belongs to the LuxR/UhpA family of the two-

component regulatory system controlling the expression of several genes involved in anaerobic

fermentation and respiration, 14 8 and uhpA of the two-component regulatory system UhpB/UhpA,

involved in the uptake of hexose phosphates.'4 9

4.4. Discussion

Rapid screening for microorganisms exhibiting specific patterns of gene expression and

protein production is critical for progress in microbiology, biotechnology, and the

pharmaceutical industry. We used a novel microbioreactor platform that is scalable and has the

advantage of providing real-time data on bacterial growth parameters for OD6 00, DO, and pH.

E. coli cultures grown in this microbioreactor exhibited growth patterns that are comparable to

bench-scale 500 me bioreactors."8 Microbioreactors have the potential to provide much of the

data and functionality that a large bioreactor system does while offering the advantages of scale

for high-throughput processes. Microbioreactors could become especially valuable since recent

advances in molecular biology have made it possible to create large numbers of evolved

biocatalysts, new pathway designs, and a variety of unique biological organisms from diverse

sources. It is likely that microbioreactors with integrated sensors and actuators will be the driving

force behind research in high-throughput screening for general biological research.

Our aim was to determine whether the microbioreactor platform we had previously described

can be used, not only to grow potentially large numbers of microbial strains to study their

physiology, but to link this real-time information to global gene-expression analysis. To this end,
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we performed microarray analysis on 500 ng of total RNA from Escherichia coli cultures grown

in LB medium and in minimal medium in an instrumented 50 e bioreactor, using the RLS

system for cDNA labeling. Two previous studies13 5'1 36 have performed microarray analysis on

E. coli strain MG1655 grown in rich and minimal media. In both of those cases bacterial cultures

were grown in 50 me batch cultures in 250 me Erlenmeyer flasks. For microarray analysis the

two studies used different methods: Tao et al.'35 used 1 ~tg of total RNA with 32P-dCTP to label

cDNA and nylon DNA arrays; Wei et al.'36 used 6 g of total RNA with Cy3 and Cy5

fluorophores to label cDNA, and printed microarrays with PCR amplified ORFs.

These studies reached similar general conclusions, indicating that in E. coli grown in

minimal medium metabolism genes such as those for amino acid biosynthesis and energy

production and conversion are upregulated, while in cultures grown in LB, genes involved in

translation and ribosome structure and biogenesis are upregulated. These results confirm general

predictions that bacteria grown in minimal media must generate the monomers needed to build

macromolecules de novo, while in rich media that support more rapid growth they must assemble

an increased number of de novo ribosomes and translation factors.

In our miniaturized system we found that E. coli grown in minimal medium, with glucose as

sole carbon and energy sources, upregulated a large number of amino acid biosynthesis and

energy production and conversion genes. Paralleling the two large-scale studies described above,

threonine, phenylalanine, leucine, serine, tryptophan, isoleucine/valine and histidine biosynthesis

genes were over-expressed. Other similarities included the overexpression of aceAB, involved in

acetate metabolism, and of rpoS, a global gene expression regulator. Several additional genes

that were upregulated in minimal medium in our microbioreactors were also upregulated in

minimal medium in at least one of the two studies mentioned.
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Conversely, we found some differences with reported results135,136 in the gene expression

profiles of E. coli cultures grown in LB. One was the clear upregulation of genes for chemotaxis

and motility in our system. This result was, however, expected since E. coli is motile in LB but

not in minimal medium due to catabolite repression by glucose (sole carbon source) in the

medium.' 50 Also, in our study we did not observe large differences in the gene expression of the

translational apparatus and ribosomal structure and biogenesis between cells grown in LB versus

DM. This dissimilarity with the studies mentioned may be attributable to differences in growth

and analytical conditions such as media composition, phase of physiological growth at which

cells were harvested, type of microarray platform used, etc. They could also be due to the cDNA

labeling system that we used. At the time of our studies the RLS system had proven to be

sufficiently sensitive to obtain gene expression profiles of human genes132 and we were among

the first to apply it to bacterial cultures. In a more recent study, the RLS system was used to

efficiently detect bacterial cultures down to 105 cells.'34 We found some variability between our

replicates and were also not able to confirm all our results in dye-swap experiments (data not

shown). We believe this may be due to the fact that we were using much more complex arrays

than Francois et al.'34 who tested a limited number of ORFs and used a single RLS label (gold).

The RLS system may require optimization to perform global gene expression analysis.

Nevertheless, it has proven useful in our proof of concept study of cDNA arrays from

small-volume bacterial cultures.

In summary, we have shown that microbioreactors can be used to reproducibly grow

bacterial cultures, we have developed protocols to isolate high-quality total RNA from small

volumes of cultures grown in microbioreactors, and we have performed differential gene

expression analysis in E. coli grown in two different conditions in microbioreactors equipped
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with real-time monitoring of growth parameters. E. coli generally exhibited gene expression

profiles that were predicted for growth under the conditions tested, in essential agreement with

data from thousand-fold larger culture volumes.

The ability to obtain reliable data from 50 pe cultures demonstrates that, in the future, rapid

screening of metabolic and genomic data will be possible with the use of scalable

microbioreactor platforms and improved technology that increases the sensitivity of microarrays.
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Chapter 5. Modeling of a Glucose Sensor Based on Glucose

Oxidase

5.1. Introduction

We model a potential glucose sensor for in situ use in the microbioreactor to determine the

feasibility of developing and testing such a sensor in the laboratory. Significant interest in

glucose monitoring exists in the fields of bioprocessing and medicine.'5 1 '53 In bioprocessing,

control of glucose levels in fermentation medium is crucial in both fed-batch and continuous

systems when glucose is used as the carbon source. Effective control requires the ability to

monitor glucose levels quickly and accurately. In addition, knowledge of glucose consumption is

needed to close the carbon balance as well as for metabolic studies and medium optimization,

making glucose monitoring crucial for batch systems as well. In the field of medicine, interest in

glucose monitoring is spurred by the high incidence of diabetes in the population. Diabetes

affects the body's ability to metabolize glucose by interfering with the synthesis (Type I

diabetes) or action (Type II diabetes) of insulin, the hormone required by cells to take up glucose

from the blood. Individuals with diabetes must closely monitor their blood glucose levels

throughout the day to keep them within an acceptable range.

A number of different techniques for monitoring glucose have been presented in the

literature. Among these are polarimetry, 154 '155 optical absorption (particularly in the

near-IR),1 56' 157 Raman scattering, 58,159 fluorescence techniques using fluorescence resonance

energy transfer (FRET) that employ competition assays between glucose and labeled glucose

analogs,'6 0 161 glucose-specific fluorescent probes, reversible reactions using glucose-binding

functional groups, 62 '163 and techniques that employ the enzyme glucose oxidase (GOD) as a
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catalyst in a redox reaction involving glucose. The majority of glucose sensors currently on the

market for both medical and bioprocessing applications employ this last method.

The glucose oxidase enzyme catalyzes the conversion of 3-D-glucose and oxygen to

D-gluconic acid and hydrogen peroxide (Figure 5-1). This reaction has been used to monitor

glucose indirectly by measuring either oxygen depletion or hydrogen peroxide production. Both

optical16 4 '16 7 and electrochemical68 1 7 0 methods of detection have been demonstrated.

Figure 5-1. Glucose oxidation reaction catalyzed by the enzyme glucose oxidase
(GOD).

A sensor based on the glucose oxidase reaction was selected for the current study because of

its simplicity, ease in miniaturization, and integration potential. Optical monitoring of oxygen

was attractive since we have previously demonstrated the ability to monitor oxygen in situ using

fluorescence lifetime measurements.

Although glucose concentrations used in industrial fermentations can be as high as 100 g/e, a

typical glucose concentration used in the microbioreactor has been 10 g/e. A glucose sensor for

the microbioreactor should therefore be able to measure concentrations in the range 0-10 g/f.

Required response times for the glucose sensor vary depending on the application. In the case
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where glucose levels are controlled, the response time of the sensor should be less than 1 minute,

particularly if low glucose levels are to be maintained. If glucose is being monitored but not

controlled, the sensor response time can be somewhat higher, and the needed performance will

depend on the rate of glucose uptake. In general, faster-growing cultures which use glucose more

quickly would need a faster response time. A response time of five minutes or less should be

sufficient for most applications.

5.2. Description of Glucose Oxidase Sensor

The structure of sensors that utilize glucose oxidase to measure glucose levels generally

consist of at least two layers. The first layer is the material in which the glucose oxidase is

immobilized. Various materials can be used for this purpose including sol-gel,16 7'1 7 1

polyacrylamide hydrogel,16 8 and polyvinyl alcohol hydrogel.'70 The second layer separates the

immobilized enzyme from the glucose-containing medium and serves two major purposes. The

first is to protect the GOD (Figure 5-2) from the constituents of the medium that could inactivate

the enzyme or foul the surface of the hydrogel. The second is to control the rates of diffusion of

oxygen and glucose to the glucose oxidase. The presence of excess oxygen relative to glucose is

necessary for the operation of a glucose sensor based on glucose oxidase, otherwise the rate and

extent of reaction will not be indicative of the glucose level. It is therefore critical that this layer

be selective for oxygen. In addition, the properties of this layer (water content, diffusivity and

solubility of species) control the overall performance of the sensor as measured by the time

constant, analytical range, and sensitivity, through control not only of the ratio of oxygen to

glucose that reaches the enzyme but also the rate of transport of these species.

A multi-layer glucose sensor was proposed for the current study (Figure 5-2). The base of the

sensor was the optical oxygen sensor described in Chapter Two. Above this, polyvinyl alcohol
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(PVA) hydrogel was selected for the immobilization layer. Finally, a polyurethane (PU) layer

acted as an oxygen-selective membrane. Polyurethane was selected because of its

biocompatibility and the ability to tune its properties through synthesis. The height of the

medium above the sensor is the same as the height of the microbioreactor well (300 PIm as

described in Chapter Two).

Medium Glucose
e ·@ 02

Polymer 1 - Polyurethane · 2 0

Polymer 2 - Poly(vinyl alcohol) j GOD 2 

Oxygen sensor (optical)

Figure 5-2. Schematic of a glucose sensor based on glucose oxidase. Glucose and
oxygen from the medium diffuse through the PU layer and enter the PVA layer,
where glucose oxidase is immobilized. In this layer the two undergo a reaction
catalyzed by the GOD enzyme. The resulting depletion in the local oxygen
concentration is monitored by the optical oxygen sensor. The axis used for
simulations is indicated by x.

A one-dimensional model of the sensor was developed. Diffusion of each species (oxygen

and glucose) in each layer is governed by Equation 5-1. The reaction of oxygen and glucose

within the PVA layer is governed by Michaelis-Menten kinetics'72 (Equation 5-2).

ac D a2c (5-1)
at ax2 (5-1)

v C
R V VmaxC (5-2)

K, + C
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Initially, it is assumed that oxygen is fully saturating all of the layers, while the concentration

of glucose in the two polymers is zero. The initial concentration of glucose in the medium is

defined for each simulation. Interfacial boundary conditions used for each species are equated

flux with a difference in solubility defined by a partition coefficient. No reaction occurs in either

the medium or the polyurethane layer. The reaction in the polyvinyl alcohol layer occurs with a

one-to-one stoichiometric ratio, that is, moles of glucose and oxygen are depleted at an equal rate

as indicated in the reaction equation. All simulations were carried out using FEMLAB simulation

software.

Values for the properties of the medium (approximated as water due to the relatively low

glucose concentrations under consideration), the two polymer layers, and the glucose oxidase

enzyme were obtained from the literature (Table 5-1). In cases where multiple references are

listed, the value used in simulations is within the range reported by the literature. The solubility

of glucose in the two polymer layers was approximated as being proportional to their water

content, as described in the literature.7 3 - 17 6 As a result, glucose partition coefficients are

dependent on the percentage water pickup of the polyurethane layer, which is different for each

polymer formulation considered.' 73 174 The water content of the polyvinyl alcohol layer is taken

to be 90% for all simulations.' 75 ' 76 Likewise, the solubility of oxygen in PVA is proportional to

the water content.'77'178 The glucose oxidase Michaelis-Menten constant, K,, depends on several

factors including temperature, pH, whether the enzyme is free or immobilized, and whether the

reaction is operating under glucose- or oxygen-limited conditions.'70 As a result, the apparent Km

will change throughout the course of an experiment as the conditions in the medium and the

concentrations of the reactants change. A mid-range value for Km was therefore selected, and the

approximation was made that this value would remain constant throughout the simulation.'79
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Table 5-1. List of parameters used to model a GOD sensor operating in a microbioreactor.

Parameter Definition Value Reference
D0 2water Diffusivity of 02 in water 2.5 x 105 cm/s 80

D02-u Diffusivity of 02 in PU Variable 173,174

DO2-pvA Diffusivity of 02 in PVA 7 x 106 cm2/s 178,180,181

S 0 2 water Solubility of 02 in water 7.36 mg/e 80

S02-PU Solubility of 02 in PU 0.45 cm3 (STP)/cm3"atm 182

S02-PvA Solubility of 02 in PVA Proportional to water 177,178

content (90%)
K0 2-water/PU Partition coefficient of 02 between 0.0541 Calculated

water and PU
KO2-PU/PVA Partition coefficient of 02 between 20.53 Calculated

PU and PVA
Dglucose-water Diffusivity of glucose in water 6.8 x 10-6 m/s 175,183

DglucosePU Diffusivity of glucose in PU Variable 173,174

Dglucose-PVA Diffusivity of glucose in PVA 2 x 106 cm2 s 175-177,180,184

Sglu water Solubility of glucose in water 165 g glucose/100 g 86

water
Sgilu-P Solubility of glucose in PU Proportional to water 173,174

content
Sgtlu-PA Solubility of glucose in PVA Proportional to water 175

content
Kglu-water/PU Partition coefficient of glucose Variable - based on PU 173,174

between water and PU water content
Kglu-PvA/water Partition coefficient of glucose 0.9 175,176

between PVA and water
Vmax Maximum reaction rate 8.8 molm 3"s 170

Km Michaelis-Menten constant 50 mM 179

tlvater Thickness of medium layer 300 ,um Assigned
tPU Thickness of PU layer 50 ,um Assigned

tPVA Thickness of PVA layer 100 ilm Assigned

In addition to the properties of the PU layer, three parameters in the model were adjustable:

the thickness of the two polymer layers and the concentration of enzyme immobilized in the

PVA hydrogel, which determined the maximum rate of reaction. A reasonable value was used

for the thickness of each polymer layer, given typical values found in the literature and the

dimensions of the microbioreactor as described in Chapter Two. The value of Vmax, the maximum

catalytic rate of the glucose oxidase enzyme, is a product of the specific activity of the enzyme

and the concentration used. It was calculated from the specific activity of a container of
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laboratory-grade enzyme and concentrations of enzyme typically cited in the literature.'70 A

sensitivity analysis of these assigned values in which their effect on the sensor performance is

examined will be described later in this chapter.

5.3. Model of Large, Well-Stirred System

5.3.1. Generation of calibration curves

The first case that was examined is the case of the large, well-stirred system. In this system it

is assumed that no gradient exists within the medium layer for the concentration of either glucose

or oxygen. Furthermore, it is assumed that the medium layer is fully saturated with oxygen

throughout the time course of the simulation, and that the concentration of glucose in the

medium likewise remains constant at its initial value. This would be the case in a system where

the volume of medium is very large compared to the size of the sensor, so that the amount of

glucose that is depleted as the enzyme-catalyzed reaction proceeds does not significantly deplete

the total amount of glucose within the system.

The objective was to model the transient behavior of the system and determine if a

steady-state occurred in which the oxygen concentration at the surface of the oxygen sensor was

constant for a given glucose concentration. A theoretical calibration curve for the sensor could

then be constructed by running simulations at several different glucose concentrations.

Two patents were selected that described the synthesis, molecular structure, and properties of

various polyurethane-based polymers created for the purpose of acting as a selection layer in

glucose sensors (Table 5-2).173174 These polymers differ in the diffusivity of both glucose and

oxygen through them, as well as the ratio of the two diffusivities. The ability to control these

parameters is critical in the development of glucose sensors adaptable to different environments.
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These particular polymers were developed to be highly permeable to oxygen and relatively

impermeable to glucose in response to the oxygen-deficient environment in which they would be

operating (i.e. the epidermis). Because the glucose level in a typical bioreactor (1-100 g/2) is one

or two orders of magnitude higher than that found in blood (- 1 g/e), a very low rate of glucose

diffusion to the enzyme is also required for our application, making these polymers highly

attractive.

The so-called "Polymer 2" from the MiniMed patent' 74 was selected for the initial

simulations. As expected, concentration gradients of glucose (Figure 5-3) and oxygen (Figure

5-4) across the two polymer layers can be seen. Curves of oxygen concentration at the oxygen

sensor surface were obtained by running simulations with different medium glucose

concentrations (Figure 5-5). The simulated steady-state oxygen concentrations were used to draw

a theoretical calibration curve for this polymer (Figure 5-6).
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Figure 5-3. Glucose profile in sensor layers using MiniMed Polymer 2.
Simulation is for 15 minutes at 1 minute intervals with a glucose concentration of
10 g/.

108

I

I I



Table 5-2. Formulations of patent polymers to be used as a selection layer in a glucose sensor
based on the oxidation of glucose in the presence of glucose oxidase.

(a) MiniMed patent 17 4

Polymer Diisocyanate Hydrophilic Diol Aliphatic Diol Siloxane

1 1-6 Hexamethylene PEG 600 20% DEG 60% Aminopropyl 20%

2 Isophorone PEG 600 20% DEG 50% Aminopropyl 30%
3 1-6 Hexamethylene PEG 600 50% None Aminopropyl 50%
4 1-6 Hexamethylene PEG 600 40% None Aminopropyl 60%
5 1-6 Hexamethylene PEG 600 60% None Aminopropyl 40%

PEG - polyethylene glycol
DEG - diethylene glycol

(b) Eli Lilly patent173

Polymer Diisocyanate Glycol (M) PEO (Molecular Type
weight)

1 HMDI (0.048) Ethylene (0.040) 600 (0.008) Bulk

2 HMDI (0.048) Diethylene (0.040) 600 (0.008) Dimethylformamide

3 HMDI (0.048) Diethylene (0.040) 1500 (0.008) Bulk

4 HMDI (0.054) Diethylene (0.048) 1000 (0.006) Bulk
5 HMDI (0.052) Diethylene (0.048) 600 (0.004) Bulk

6 HMDI (0.052) Diethylene (0.048) 1000 (0.004) Bulk
7 HMDI (0.045) Diethylene (0.042) 1500 (0.003) Bulk

8 HMDI (0.048) Diethylene (0.042) 600 (0.006) Bulk

HMDI - hexamethylene- 1,6-diisocyanate
PEO - polyethylene oxide
DMF - dimethylformamide
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Figure 5-4. Oxygen profile in sensor layers using MiniMed Polymer 2.
Simulation is for 15 minutes at 1 minute intervals with a glucose concentration of
10 gle.
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Figure 5-5. Simulations of steady-state oxygen concentration at the sensor
surface using MiniMed Polymer 2. The time required to reach 90% of the final
signal is defined as the time constant .
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Figure 5-6. Predicted calibration curve of steady-state oxygen concentration at
the oxygen sensor as a function of glucose concentration in the medium using
MiniMed Polymer 2 as a selection polymer.

5.3.2. Comparison ofpatentpolymers

A calibration curve was drawn for every patent polymer using the same procedure as for

Polymer 2 (Figure 5-7 and Figure 5-8). A time constant () for each sensor was calculated as the

time required to reach 90% of the steady-state signal (Table 5-3). For these calculations, it is

assumed that the response of the oxygen sensor is immediate, that is, the time constant of the real

sensor would also need to take into account the time delay in the oxygen sensor output. The

analytical range of each polymer was taken as the glucose concentration at which the oxygen

concentration at the oxygen sensor surface reached zero. The sensitivity was calculated from the

slope of each calibration curve and is expressed as % oxygen change per g/e of glucose.
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Figure 5-7. Simulated calibration curves for all MiniMed polymers.
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Figure 5-8. Simulated calibration curves for all Eli Lilly polymers.
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Table 5-3. Measured and calculated properties of patent polymers to be used as a selection layer
in a glucose sensor based on the oxidation of glucose in the presence of glucose oxidase.

(a) MiniMed patent17 4

Polymer Water Do2 DGlucose Do2/DGlucose X Sensitivity Range
Pickup % x 106 cm2/s x 10-9 cm2/s (min) (%/[g/L]) (g/L)

1 28.5 1.21 18.5 65 7 1.7 56

2 31.3 0.57 55.7 10 3 8 12

3 44 1.50 105 14 1.5 14 7

4 57 1.22 13.5 90 9.5 3 39

5 71 1.45 155 9 1 34 3

Based on simulations

(b) Eli Lilly patent173

Polymer Water Do2 DGlucose DO2/DGlucose X Sensitivity Range
Pickup % x 10 '6 cm 2/s x 109 cm 2/s (min) (%/[g/L]) (g/L)

1 22.0 5.50 174 32 1 10 10

2 24.5 8.83 2.33 3790 57 0.02 5360

3 56.0 6.93 76.0 91 2 10 10

4 21.8 4.59 18.1 254 7 1 100

5 9.4 3.87 - - - -
6 15.0 5.72 38.5 149 3.5 1.5 69

7 13.4 4.83 47.8 101 3 1.6 61

8 20.0 16 11 145 11 0.5 200

= Impermeable
Based on simulations

It is apparent that changing the properties of the polyurethane layer can have a significant

impact on the properties of the glucose sensor (Table 5-3). For example, the diffusivity of

glucose through the PU layer impacts the time constant of the sensor, high diffusivities resulting

in low time constants and vice versa (Figure 5-9). However, while a fast response is desirable, a

high rate of glucose diffusion to the enzyme limits the range over which the sensor can be used

because the large number of glucose molecules entering the PVA result in a high reaction rate,

which in turn uses up the available oxygen. The trade-off is that the steep slope of the calibration
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curve gives higher sensitivity. Ideally, the useable range of the sensor should be optimized to

extend over the necessary range for the conditions under which it will be operating while still

providing a reasonable response time. In this way maximum sensitivity and a low time constant

will be achieved. These criteria were used to select a polymer for further study.
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Figure 5-9. Time constants of all
glucose through the PU layer.

o Minimed polymers

A Eli Lilly polymers
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of glucose (cm2/s x 10- 9)

sensors as a function of the

Medium in the microbioreactor typically contains 10 g/e of glucose. This range was therefore

used as a minimum requirement for the selection of a suitable polymer for further studies, with

the intention of extending it later to 20 g/e to increase application flexibility and provide a

reserve. Five polymers cover this range while providing a time response of five minutes or less

(the maximum response time allowable for glucose sensing without control). These are

Polymer 2 from MiniMed and Polymers 1, 3, 6, and 7 from Eli Lilly. Polymers 6 and 7 were

eliminated because of their large range, which results in very low sensitivity. The three
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remaining polymers lie in a cluster in Figure 5-9. Polymer 2 from MiniMed was finally selected

because its range extends slightly beyond 10 g/le, and could probably be extended beyond that in

later optimization simulations.

5.4. Modeling of Small, Unstirred System with Oxygen Saturation

To further examine the potential performance of the glucose sensor, the assumption of a

large, well-stirred medium was lifted with respect to glucose. In these simulations, the volume of

medium in contact with the sensor was modeled to correspond to the typical volume in the

microbioreactor. In addition, a glucose gradient was allowed to form as glucose diffused through,

and was consumed within, the polymer layers. This assumption was approximate since a one-

dimensional model was used. In reality, the entire bottom of the microbioreactor chamber would

not be covered by the glucose sensor, so that the current simulation represents a worst-case

scenario. However, the sensor would have to be relatively large in order to generate sufficient

signal, so the assumption is valid. For these simulations, oxygen was still assumed to be

saturating the medium without depletion.

It can be seen that when the large, well-stirred assumption is lifted, the concentration of

glucose in the medium decreases significantly over time (Figure 5-10). That is, the measurement

is altering the variable to be measured. Furthermore, this prevents the oxygen concentration at

the oxygen sensor surface from reaching a steady-state, and oxygen actually begins to recover as

glucose in the medium is depleted (Figure 5-11 and Figure 5-12).
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Figure 5-10. Glucose profile in the sensor layers using MiniMed Polymer 2 as a
selection polymer when no stirring of the medium occurs. Oxygen is still
considered to be fully saturating the medium. Simulation is for 15 minutes at 2
minute intervals with a glucose concentration of 10 g/e.
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Figure 5-11. Oxygen profile in the sensor layers using MiniMed Polymer 2 as a
selection polymer when no stirring of the medium occurs. Oxygen is still
considered to be fully saturating the medium. Simulation is for 15 minutes at 1
minute intervals with a glucose concentration of 10 g/e.
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Figure 5-12. Oxygen profile at the oxygen sensor surface using MiniMed
Polymer 2 as a selection polymer when no stirring of the medium occurs. Oxygen
is still considered to be fully saturating the medium.

5.5. Modeling of Small, Unstirred System without Oxygen Saturation

To further investigate the performance of the glucose sensor under operating conditions, the

condition of oxygen saturation of the medium was removed. For this simulation, oxygen was

assumed to be diffusing into the medium from the contacting gas above. The initial condition

used was a fully-saturated medium, and the boundary condition at the top of the medium layer

equated the oxygen concentration with the solubility of oxygen in water. This simplification

ignored the PDMS membrane through which oxygen must diffuse in experiments. However,

because it was previously shown that the low solubility of oxygen in water is the primary

limitation to oxygenation, the assumption is valid.

When the concentration of oxygen at the surface of the oxygen sensor is plotted over time

(Figure 5-13), it is apparent that oxygen is depleted within a few minutes at this location. This is

limiting for two reasons. First, oxygen must always be in excess within the PVA so that glucose
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is the limiting reagent. Second, a sufficient oxygen level in the medium is vital for cell growth.

The oxygen demand of the sensor is clearly too high since sufficient oxygen would not remain

available. Finally, two variables to be measured - cell growth and glucose concentration - are

confounded due to their interdependence on the oxygen level of the medium. Thus, neither

process is occurring independently of the other.
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Figure 5-13. Simulated time course of oxygen concentration at the oxygen sensor
surface when oxygen is no longer assumed to be saturating the medium. MiniMed
Polymer 2 is used as the selection polymer, and the medium is modeled as
unstirred.

5.6. Sensitivity Analysis and Optimization of Selected Polymer

In this section of the work, a sensitivity analysis of MiniMed Polymer 2 was carried out to

understand the effect of the controllable parameters Vm,,, PU thickness, and PVA thickness on

the properties of the resulting sensor. Each parameter was varied + 50%, and a simulation using

the original large, well-stirred assumption was carried out (Figure 5-14).
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Figure 5-14. Sensitivity to changes in controllable parameters for MiniMed
Polymer 2 with large, well-stirred assumption. (a) thickness of the polyurethane
(PU) layer, (b) thickness of the polyvinyl alcohol (PVA) layer, (c) vmax,,.

As a second step, an attempt was made to optimize Polymer 2 to cover a wider range of

glucose concentrations. The goal was to increase the analytical range to approximately 20 g/e of

glucose in the medium, a more realistic glucose level in bench-scale fermentation. The identified

trends in sensitivity that increased the analytical range of the sensor were a thicker PU layer, a

thinner PVA layer, and a higher Vma,. A full factorial experimental design (Table 5-4) was used

to model the combined effects of changes in these variables (Figure 5-15).
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Table 5-4. MiniMed polymer 2 optimization conditions.

Combination Thickness of PU Thickness of PVA vmax

(AIm) (Am) (cm2/s)
Original 50 100 8.8

1 50 50 13.2
2 75 50 8.8
3 75 100 13.2
4 75 50 13.2

100
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.2 40

, 20
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Figure 5-15. Optimization of MiniMed Polymer 2 with large, well-stirred
assumption.

It can be seen that changing the controllable parameters allows us to predictably manipulate

the properties of the resulting sensor. In particular, by adjusting Vm,, and the thickness of the two

polymer layers it is possible to extend the analytical range of the sensor to approximately 17 g/e.

Additional adjustments could easily be made to further extend the range.
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5.7. Conclusion

We investigated a potential glucose sensor for use in the microbioreactor. The multilayer

glucose sensor was based on the enzyme glucose oxidase, and operated on the principle that

oxygen depletion as measured by an optical oxygen sensor could be correlated to the glucose

concentration in the medium. We carried out simulations of diffusion and reaction in the system

using three sets of assumptions to determine feasibility. First, we assumed that the medium was

large and well-stirred, and that oxygen was continuously saturating the medium. Under these

conditions it was possible to draw theoretical calibration curves for potential sensor

formulations. Second, we removed the 'large' assumption and allowed the glucose in the

medium to be consumed as it underwent reaction within the sensor. Under this assumption the

glucose concentration in the medium was seen to decrease and calibration curves could not be

drawn because the oxygen concentration never achieved a steady-state. Finally, we removed the

assumption of oxygen saturation within the medium. Simulations showed that under these

conditions all oxygen within the medium was quickly depleted.

The simulations carried out to model the proposed sensor demonstrate that this method is

unsuitable for our application. Specifically, the volume of the microbioreactor is small enough

that the glucose consumption experienced during sensor operation causes a significant drop in

the glucose level in the medium. This deprives cells of glucose substrate, changes the variable to

measured, and prevents a measurement from being made due to the lack of a steady-state

achievable at the PVA/oxygen sensor interface. In addition, the oxygen depletion that occurs in

the medium deprives cells of oxygen substrate as well as preventing a measurement from being

made, since oxygen must remain in excess for the sensor reading to be meaningful.

To effectively monitor glucose within the microbioreactor, alternative methods will need to
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be explored. In particular, methods that do not consume either glucose or oxygen must be

considered. Other optical methods, such as Raman spectroscopy, may be more appropriate. In

particular, the colorimetric method of Asher'6 3 appears promising. This method employs

colloidal crystal arrays (CCA) embedded within hydrogels. The hydrogels contain functional

groups that bind glucose reversibly, and swell and shrink in response to their glucose content.

This change in size causes a shift in the lattice constant of the CCA, which in turn causes a shift

in the Bragg diffraction. The method is appealing for its appropriateness to the size of our

microbioreactor and to the relative simplicity of the sensing setup required to make

measurements.
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Chapter 6. Conclusions and Recommendations for Future Work

6.1. Conclusions

This thesis has demonstrated the feasibility of culturing bacterial cells in microliter volumes

and of obtaining reproducible results similar to those shown at larger scales. A microbioreactor

designed to provide sufficient oxygen to a growing culture was fabricated out of PDMS and

glass. Models were developed to understand oxygen transport and consumption, as well as the

kinetics of growth, within the microbioreactor. Sensors were integrated to measure the important

growth parameters optical density (OD), dissolved oxygen (DO), and pH. Based on these

measurements, reproducibility was established and comparisons to bench-scale bioreactors were

made. It was demonstrated that the behavior of bacteria at the two scales was very similar. It was

further demonstrated that off-line analysis could be carried out by serial sacrifice of

microbioreactors operating under identical conditions. Additional sensing capabilities in the form

of in situ measurements for luminescence and fluorescence were demonstrated, and a potential

glucose sensor was modeled to explore feasibility.

Once reproducibility in fabrication, experimental protocol, and experimental results were

established, the microbioreactor was used for several applications. The ability to monitor

luminescence and fluorescence on-line enabled the use of bacterial reporter strains to

characterize the bioreactor environment. The ability to reproducibly sacrifice microbioreactors

mid-run was exploited to demonstrate the feasibility of linking microbioreactors to genome-wide

expression studies using DNA microarrays. The potential of the microbioreactor for investigating

different growth conditions was confirmed by comparing bacterial growth, as evaluated by the

measured parameters, under conditions of different medium and oxygen concentration. It was
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shown that statistical differences could be observed, and that these differences are similar to

those observed at a larger scale.

Chapter Two demonstrated the operation of a batch microbioreactor with a volume as low as

5 ge containing integrated, automated sensors for the measurement of OD, DO, and pH. The

microbioreactor was fabricated out of PDMS, with glass serving as the base and a PDMS

membrane allowing culture aeration. The high surface area-to-volume ratio, and the high

permeability of PDMS to oxygen, allowed the culture to be well-aerated despite the lack of

active mixing. We showed that results from the microbioreactor are reproducible in both

complex medium (LB) and defined medium. We also demonstrated that we are able to

understand the oxygen transfer characteristics of the microbioreactor, and that by assuming

Monod growth of the bacteria with oxygen as the limiting nutrient, we can effectively model

growth and predict oxygen consumption during a fermentation. We also showed that it is

possible to sequentially sacrifice microbioreactors that are running in parallel to carry out

off-line analysis using traditional techniques. This was demonstrated by using HPLC to measure

glucose consumption and organic acid production during a bacterial fermentation. Finally, we

showed that results obtained from the microbioreactor correspond closely with results obtained

in bench-scale volumes under similar conditions, as determined by the measured growth

parameters as well as total and viable cell counts and observed cell morphology.

Chapter Three presented methods for in situ measurements of bioluminescence and

fluorescence from bacterial cultures grown in 50 gtf instrumented microbioreactors. Results from

the microbioreactors were compared to results obtained from conventional 500 mf batch

bioreactors and/or shake flasks. Experiments were conducted with reporter strains of E. coli in

which the luxCDABE or gfp operon was fused to a promoter that was either expressed
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constitutively or that responded to oxygen limitation. We used an anaerobiosis-sensitive E. coli

strain to indicate the condition of oxygen depletion, and compared the response to a growth

situation in which oxygen limitation does not occur to demonstrate the feasibility of using

reporter strains as environmental markers. We also examined the reproducibility of the

luminescence response and compared it to the reproducibility achieved with off-line

measurements from a bench-scale system. We found that the unique geometry of the

microbioreactor may provide an advantage over larger systems for light measurement. Due to the

short path length through the bioreactor body, light extinction effects by the cells may be

minimized, enabling direct measurements.

Chapter Four presented a comparison of global gene expression analysis using 500 ng of total

RNA from E. coli cultures grown in rich or defined minimal medium in 50 pte bioreactors. Total

RNA was isolated from microbioreactor-grown cells during the early exponential growth phase

from three independent fermentations in rich medium and three independent fermentations in

defined medium. cDNA labeling for microarray hybridizations was performed with the Genicon

RLS dual-color array detection system. Printed microarray chips contained probes for 4,288 open

reading frames (ORFs) representing the entire E. coli chromosome. From these experiments we

found that 232 genes were expressed at significantly higher levels when cells were grown on

defined glucose medium, including genes involved in amino acid biosynthesis, central

metabolism and regulatory functions. Two hundred seventy-five genes were expressed at a

significantly higher level when cells were grown in rich medium, including genes involved in the

translational apparatus and the motility apparatus. In general, changes in gene expression

observed under these conditions were similar to those observed in thousand-fold larger cultures.

Chapter Five describes simulations for a proposed glucose sensor that could be used for
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in situ measurements of glucose concentration. The sensor is based on the reaction of glucose

and oxygen in the presence of the enzyme catalyst glucose oxidase. Optical transduction based

on the decrease in oxygen concentration at the surface of an oxygen sensor was proposed as the

method of measurement. A multi-layer design was used, in which both glucose and oxygen had

to diffuse through a polyurethane (PU) layer to reach the reaction layer where glucose oxidase

was immobilized in polyvinyl alcohol (PVA). The PU served as a selection membrane while at

the same time protecting the immobilized enzyme. Reaction within the PVA layer followed

Michaelis-Menten kinetics. Several different polyurethanes with different physical and transport

characteristics were used to determine feasibility and for performance optimization of the sensor

under typical operating conditions in the microbioreactor. We found that the proposed glucose

sensor was unsuitable for our application. Specifically, the amount of glucose and oxygen

consumed in the reaction is too large compared to the amount available in the small volume of

the microbioreactor.

6.2. Outlook and Recommendations for Future Work

During the initial stages of this work, one of the major tasks was to decide how the

microbioreactor would fit into the current screening and bioprocess development flow. At that

time it was unclear where the greatest impact could be made, and for what applications the

microbioreactor was most appropriate. Two categories were defined: screening and scale-up.

Screening required many parallel, reproducible experiments, while scale-up additionally required

the duplication of large-scale bioreactor conditions at the miniaturized scale, such that the

microbioreactor could be used to predict cellular behavior in significantly larger volumes.

With the completion of this thesis, we can begin to answer some of these questions. The

results we have presented demonstrate that in its current incarnation, the microbioreactor is a
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feasible screening tool for many applications such as environmental sensing and genome-wide

expression profiling. Sufficient reproducibility and 'normal' behavior have been demonstrated to

support this conclusion. On the other hand, the applicability of the microbioreactor to scale-up

has not yet been explored. It is promising that the microbioreactor effectively mimics the growth

in the Sixfors bioreactors as reflected by the measured growth parameters (OD, DO, and pH).

However, the Sixfors are known to have weak stirring with resulting poor oxygen transfer

characteristics. It is therefore unclear whether the similarities that we have documented can be

extended to larger bioreactors, or those having very different mixing or oxygen-transfer

characteristics. An obvious difference is the lack of mixing in the microbioreactor, which

eliminates the effects of shear stress on the cells. To explore these issues, it will be necessary to

develop microbioreactors that can more closely mimic large-scale bioreactors, such as with the

inclusion of active mixing.1 85 In current industrial scale-up efforts transfer functions are

established since exact duplication at significantly different size scales is not possible. Similar

relationships will need to be developed to enable the microbioreactor to be used as a tool in

process scale-up.

Potential limitations that exist a priori for the application of the microbioreactor to process

scale-up, even with the inclusion of active mixing, are the absence of bubbles, the achievability

of high cell densities, and the extent of mixing. First, bubbles have been shown to have an effect

on cellular growth in large-scale bioreactors, particularly through the cell damage they cause

when bubbles burst at the liquid surface, generating very high strain rates. Since aeration through

bubbling is impractical at a small scale, the emulation of this characteristic is unlikely. Second, it

is not clear that the very high cell densities frequently encountered in industrial bioprocesses can

be attained in microbioreactors, even when oxygen transfer is increased through active mixing.
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Third, a major factor in bioprocessing is the dead zones that exist in a bioreactor as a result of

imperfect mixing. These zones are characterized by low concentrations of nutrients, especially

oxygen. As the bacteria move through the bioreactor as a result of stirring, they are constantly

moving through areas differing in substrate concentration. This has been shown to have a

deleterious effect on growth and production. By comparison, it may be difficult to simulate these

pockets of widely-differing concentrations in a microbioreactor. One way to overcome this third

limitation could be to take advantage of the precise control over the microbioreactor environment

that is possible through an understanding of growth and transport. Different bioreactor zones

could be established and studied in individual microbioreactors, and a compartmentalized

approach taken to building a model of a full-size bioreactor. This approach would have an

advantage over current scale-up methods, which are also limited by the difficulty of exact

replication of conditions within single bioreactors of different shapes and sizes.

Another area in which future work can focus is true fluidic multiplexing of multiple

microbioreactors. This is a necessary step if economies of scale-out in the form of reduced labor

and time are to be fully realized. Fluidic integration is especially critical for continuous culture

applications, such as a microchemostat.'86 One strategy that has been explored is a system that

allows multiple (four or eight) microbioreactors to operate simultaneously with on-line

parameter measurements by allowing the measurement arm, which holds the optical fibers, to

move from bioreactor to bioreactor between readings.185 Such a system makes it possible to

perform a greater number of experiments, but currently has the limitation that effort and

complexity continue to scale with the number of devices. An alternative strategy under

investigation is the use of PDMS to form multiple bioreactor chambers and to perform peristaltic

mixing.'87 Although the fluidics still exist primarily as external tubing interconnects, the
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fabrication of a disposable cassette with the potential for additional integration is a step toward a

multiplexed platform.

A large impact with increased fluidic integration could also be made by streamlining the

incubation and preculture stages, both of which are time and labor-intensive. The ability to go

from inoculation with cells from a plate to a completed fermentation run on a single device

would greatly reduce both the effort involved in preparing and running fermentations, as well as

the sources of error associated with current transfers between stages.

One feature of the microbioreactor that we modeled but never used to our benefit is the

ability to obtain and maintain a gradient. In the present study it was the oxygen gradient that we

considered, but with proper design considerations and different concentrations of the desired

species on either side of the microbioreactor, other controlled gradients could be established.

These gradients could be used to explore cell behavior such as chemotaxis,18 8' 189 or simply to

culture cells that require gradients to survive, such as the magnetosomes.'9 0 Magnetotactic

bacteria have the ability to orient and migrate along geomagnetic field lines as a result of

intracellular magnetic structures. They are found in highest abundance at oxic/anoxic transition

zones in freshwater and marine habitats, and they have been especially difficult to isolate and

cultivate in the laboratory because of their dependence on chemical and redox gradients, which

have been difficult to mimic. The microbioreactor of the present work could potentially be a

valuable tool for the study of organisms such as these.

Lastly, our results from the luminescence and fluorescence studies suggest that the design

and configuration of the microbioreactor may allow direct, on-line reading of emitted light

unhampered by the inner filter effect, which may thus be more reliable and reproducible than

error-prone measurements obtained off-line. One area in which this ability could have a great
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impact is that of genome-wide expression profiling. Currently, samples must be removed at set

time points, and the data for each analyzed using a separate DNA microarray. The ability to

monitor the expression of a gene (and, with parallel scale-out, potentially all of the genes for a

given cell) in real-time, would obviate the need for discrete analysis at different times and

provide a true dynamic picture of cellular gene expression.
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APPENDIX A. Sensor Calibrations

The calibration procedures and calibration curves for the sensors used in the microbioreactor

are presented in this appendix.

A.1. Calibration of optical density measurements

E. coli was grown in a shake flask to an optical density approaching seven, and serial

dilutions of the medium were carried out. Optical density measurements at 600 nm were made in

a microbioreactor with a depth of 300 gtm as well as a spectrophotometer (Spectronic 20

Genesys, Spectronic Instruments Inc.). Equation A-1 was used to calculate optical density from

raw transmission data from the microbioreactor. In this equation Iignal is the intensity of the

signal and Ireference is the intensity of the signal when pure water is inside the microbioreactor.

The multiplication factor of 33.33 is a normalization for the pathlength of 300 pLm in the

microbioreactor which enables direct comparisons with results from conventional cuvettes with

pathlengths of 1 cm.

The calibration data is shown below. A linear curve fit results in an R 2 = 0.9941 and a slope

close to one.

OD = 33.331ogo( rifr ) (A-1)
signal
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Figure A-1. Calibration curve for optical density measurements.
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A.2. Calibration of dissolved oxygen sensor

Mass flow controllers for oxygen and nitrogen were used to create gas mixtures with

different concentrations of oxygen, which were described as a percentage of pure oxygen. A

chamber was used to flow each gas composition past the submerged sensor. Optical fibers below

the sensor coupled excitation light at 505 nm to the sensor and carried the emission signal to the

lock-in amplifier, where a phase shift was detected. In each case the sensor was given sufficient

time to reach a steady signal. An eleven-point calibration between 0% and 100% oxygen was

carried out.

The calibration data were fit to a modified Stern-Volmer equation (Equation A-2). It was

found that for low oxygen concentrations, a better fit was obtained when the calibration range

included in the model fit was limited to 0-21% oxygen and the experimental value for 0% was

used (1-parameter fit for Ksv) (Figure A-2). Therefore, data from experiments with air as the

contacting gas were processed using that range, and a 0% calibration was carried out for each

sensor foil at the time of the experiment. Data from experiments using pure oxygen were

processed using the full range of calibration (2-parameter fit for Ksv and o) (Figure A-3).

tan 0

tan {0
[02] = (A-2)

( tan 0. 1 1)

where: Ksv is the modified Stern-Volmer constant

0 is the phase shift

o is the phase shift at 0% dissolved oxygen
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Figure A-2. Calibration of oxygen concentration range encountered when air is
used as the contacting gas (0-21%). Data are fit to a 1-parameter model for each
experiment.
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Figure A-3. Calibration of the full range of oxygen concentration (0-100%). Data
are fit to a 2-parameter model.
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A.3. Calibration of pH sensor

A six-point calibration was carried out between pH 4 and pH 9 using colorless buffers

(VWR). Excitation light at 465 nm was coupled to the sensor using an optical fiber, and the

emission signal was sent to the lock-in amplifier. The measured phase shift of the pH sensor

fluorescence was correlated to the pH by fitting to the 4-parameter sigmoidal Boltzmann curve

(Equation A-3).

Phase = min - max + max
pH-pHO 

l+e dpH

n
2

u

-20 -

-C

(9C',C',
Cu
0oe-
fl.

-40 -

-60 -

-80 -

-100 

4

(A-3)

6 8 10 12

pH

Figure A-4. Calibration of pH sensor.
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APPENDIX B. Characterization of Photomultiplier Tube

This appendix presents the characterization protocols and results for the photomultiplier tube

(R928, Hamamatsu) that was used in luminescence and fluorescence experiments. For all

characterization procedures the current signal from the PMT was sent to a low-noise current

preamplifier (Model SR570, Stanford Research Systems) operating at a sensitivity of 20 pV/A

that converted the signal to a voltage that was passed to a multimeter (Fluke 45, Fluke). Data

from the multimeter were logged every second using a data logger routine in LabVIEW.

Protocol 1: The signal from the multimeter was recorded with the PMT off to determine the

magnitude of the instrument offset.

Protocol 2: The orange LED (Epitex L600-10 OV, 600nm) used for optical density

measurements was turned on for 60 minutes to ensure that it had warmed-up sufficiently and

generated a steady signal. The voltage to the LED was 350 mV. The cold PMT (off overnight)

was then turned on suddenly, and the signal was recorded for one hour (Figure B-1).

Protocol 3: With the orange LED constantly on, the PMT was turned off for 10 minutes, then

turned back on. The signal was recorded for one hour (Figure B-2).

Protocol 4: The LED was turned off for 10 minutes, after which time it was turned back on.

The PMT remained on during this time, and the signal was recorded for one hour (Figure B-3).

Protocol 5: With the PMT continuously on, step changes in the LED voltage were made. The
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PMT signal at each voltage was recorded for 15 minutes. The voltages used were 350 mV -

340 mV -330 mV - 340 mV - 350 mV - 360 mV (Figure B-4).
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Figure B-:2. PMT response when the warm PMT is turned off for 10 minutes,
then turned back on while the 600 nm LED shines continuously.
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Figure B-3. PMT response when the 600 nm LED is turned off for 10 minutes,
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Figure B-4. PMT response to step changes in the LED voltage.
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PMT characteristics when the current preamplifier is set to a sensitivity of 20 pA/V:

PMT voltage: 900 V

Anode luminous sensitivity (from Matsudaira lab): 1419 A/lm

Mean of instrument offset: 1.37 pV

Standard deviation (SD) of instrument offset: 0.12 pV

Mean of offset + dark current (dark chamber): 2.92 pV

Standard deviation of offset + dark current: 0.09 PtV

Signal-to-noise of offset + dark current: 30

Anode dark current: 1.55 piV (0.03 nA)

Conversion: 1 lumen = 4 x 1015 photons/s at 555 nm

Lower detection limit of PMT (2 SDs above mean background): 100 photons/s
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APPENDIX C. Protocol for Microbioreactor Fabrication

C.1. Obtaining PDMS layers

Treat wafers with silane to prevent PDMS from sticking in subsequent steps. To do so, place

a few drops of silane reagent (tridecafluoro-1,1,2,2-tetrahydro octyl trichlorosilane) into a vial.

Put the wafer in a petri dish and place it into a vacuum chamber together with the silane reagent

in the open vial. Let the silane evaporate under vacuum for at least 2 hours. It is better to err on

the side of more time rather than less. The setup can safely be left overnight, and several wafers

can be treated simultaneously. After silanization is completed, remove the wafers and dispose of

the vial as chemically contaminated glass.

Weigh out PDMS prepolymer and initiator (10:1) and mix in a cup. Degas the mixture under

vacuum until no bubbles are visible. For consistent results during the subsequent spinning step,

degassing should be carried out for a standardized period of time since the polymer immediately

begins to cure and the rheological properties begin to change. A time of 30 minutes is suggested

as ideal for all bubbles to be eliminated. Spin the PDMS to obtain PDMS layers of 100 ,tm (for

the membrane) and 300 tpm (for the body and base). Spinning protocol for the spinner in the KFJ

laboratory:

Volume: 5 me
Acceleration: Maximum (dial turned all the way to the right)
Spinning time: 20 seconds
Rpm: 100 ptm membrane - 1240

300 tlm membrane - 430

The above conditions are valid if spinning is carried out within 30 minutes of the PDMS

being taken out of the degassing chamber, since the PDMS continues to thicken. After spinning,
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cure the PDMS in an oven at 70C for 2 hours.

C.2. Microbioreactor assembly

Use a razor blade to cut the PDMS into pieces of the desired size. Use the machined punches

to cut round circles into the PDMS. Holes for the DO and pH sensors should be 1.1 mm in

diameter. Also cut any desired channels into the PDMS body layer. Punch DO and pH sensors

out of the sensor foil sheets. Sensors should be 0.9 mm in diameter.

To assemble the microbioreactor, begin by gluing the base PDMS layer to a glass cover slip

using silicone adhesive (ASI 502, American Sealants, Inc.). Use tweezers to handle the PDMS.

Use a wooden stick with a rolling motion to press the PDMS down. Since the coverslips are

fragile, a microscope slide can be used underneath as a support during the assembly process.

Once the base is glued down, the body can be added next. Use the same adhesive and again roll

the PDMS layer to ensure that it is flat and in contact with the layer beneath. Next, place a small

amount of vacuum grease into the opening for the two sensors (use the tip of a 30 gauge needle).

Then, use tweezers to insert the two sensors (with the sensing side up) into the holes, using the

end of the wooden stick to gently press the sensors down until they are even with the bottom

layer. Finally, glue the membrane over the structure, using the wooden stick in an outward

rolling motion to flatten and tighten the aeration membrane. Place the finished microbioreactor

into a covered Petri dish containing water (the microbioreactor should not be in direct contact

with the water). Use paraffin paper to close the Petri dish and leave overnight at room

temperature to cure.
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Appendix D. Protocols for Microbioreactor Experiments

D.1. Inoculation of bacteria

To inoculate the microbioreactor, use a 1 me syringe to withdraw medium from the Falcon

tube containing the inoculated culture. Attach a 23 gauge needle to the syringe. Before

introducing the medium into the chamber, use a needle to pierce holes into the channels of the

microbioreactor, and also place a needle into the channel opposite of the one that the medium

will be injected through. This is to give air within the bioreactor a way to move out, and prevents

bubbles from forming. To inject the medium, pierce the selected channel and slowly depress the

plunger. Once the chamber is full and medium begins to flow out of the channels, remove the

needles and use a roughened glass slide to press excess liquid from the chamber. This ensures a

constant depth between experiments. Finally, use 5-minute epoxy to cover the needle holes.

D.2. Experiments in the sensing chamber without lux/gfp measurements

Once the microbioreactor is inoculated (and after 20 minutes have passed since the transfer

into fresh medium was carried out), place the bioreactor into the chamber and secure it to the

base with laboratory tape. Fill Falcon tube caps with water and place them in the chamber. Close

the chamber and secure the screws. Use the next 10 minutes to check the LabVIEW routine and

determine the appropriate sensitivity for each measurement. After 10 minutes, begin the first

recorded reading. This is time zero for experiments. (This is the 20min/10min protocol,

developed to improve reproducibility).
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D.3. Experiments in the sensing chamber with lux/gfp measurements

D. 3. 1 Measurement of luminescence

For measurements of luminescence and fluorescence, all LEDs should be packaged such that no

stray light enters the chamber via the connected optical fibers.

To properly warm the PMT, ensure that it has been on for several hours before an experiment is

begun. To avoid damage, the PMT should be turned off while the microbioreactor is set up

within the sensing chamber. Once the chamber is sealed, the PMT should be turned on

immediately and left on for 20 minutes before a reading is taken. The orange LED should be left

on during this time to prime the PMT. To keep the pre-experimental phase at 30 minutes, the

protocol can be adapted to be 10min/20min. This leaves 20 min for the PMT to achieve a steady

output signal.

Once an experiment has begun, luminescence can be monitored continuously using the data

logger for the Fluke 45 multimeter. Dissolved oxygen and pH can be monitored every 10

minutes using the function generator and lock-in amplifier, as before. Care must be taken to

select an LED voltage that will not damage the PMT. To monitor optical density, the orange

LED is controlled by the function-generator, but read by the PMT (multimeter). The file obtained

from the multimeter readings will thus contain luminescence readings interspersed with optical

density data.
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D.3.2 Measurement offluorescence

The monitoring of pH is not possible with the Presens sensors because of the overlap between

the excitation and emission spectra of GFP and the sensor. Therefore, do not place a pH sensor

into the microbioreactor if fluorescence is to be measured. The measurement of dissolved oxygen

proceeds as before. Optical density is also measured as described previously. Fluorescence is

measured by exciting the GFP in the bacteria using the blue LED previously used to measure pH,

with the emission measured by the PMT. Fluorescence can be measured continuously or at

discrete time intervals. Optical density and dissolved oxygen are measured every 10 minutes.
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