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Abstract

In order to develop protein formulations that limit aggregation, researchers heuristi-
cally screen potential solution additives (excipients). Such screening is necessary be-
cause current understanding of mechanisms of aggregation and molecular-level effects
of additives on aggregation is limited. In this study, we developed a statistical-
mechanical method in order to model the thermodynamic effects of additives in
molecular-level detail. This method uses no adjustable parameters and was vali-
dated by quantitative comparison with experimental data on proteins in glycerol and
urea solutions. We then applied our molecular simulation technique to study the
mechanism by which arginine, a common refolding buffer additive, deters protein
aggregation. We find that arginine acts as a weak surfactant at the protein-solvent
interface, with its guanidino group tending to face the protein. We propose that
arginine is a member of a class of anti-aggregation additives, which we term “neutral
crowders,” characterized by their (1) negligible effect on the free energy of isolated
protein molecules and (2) large size relative to water. With a simplified statistical-
mechanical model, we have shown that such additives selectively increase the free
energy of protein-protein encounter complexes by being preferentially-excluded from
the gap between the protein molecules in such complexes. This “gap effect” will
therefore slow protein association reactions. We showed experimentally that, in ac-
cordance with the gap effect model predictions, arginine slows association of model
globular proteins (antibody+antigen) and of folding intermediates and aggregates of
carbonic anhydrase II. We predict that neutral crowders larger than arginine will be
superior anti-aggregation additives.
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Chapter 1

Introduction
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Therapeutic proteins, such as insulin, interferon, and EPO (erythropoietin), repre-
sent an important and rapidly growing class of pharmaceuticals, presently accounting
for $35B/yr in revenue worldwide. Proteins are useful as therapeutics because they
have a wide range of physiological functions and are extremely potent. Natural pro-
teins in the body, as well as man-made proteins, can often carry out their functions at
extremely low concentrations, such as 1072 M, 10712 M, or even lower. Unfortunately,

proteins are also only marginally stable, and are degraded and inactivated rapidly.

In industry, the inherent instability of proteins presents a serious problem, and
a disadvantage relative to small molecule therapeutics. To optimally serve patients,
it is desirable to store proteins at high purity and for long times, often for up to
two years after manufacture [22]. Thus, proteins must not only be removed from
their natural cellular environment, but they must also be stable against degradation
for unnaturally long periods of time. This is the challenge faced by researchers and

ractitioners in the area of “protein stabilization.”
p

Specific degradation routes that must be addressed include aggregation, deami-
dation, oxidation, and hydrolysis. Of these, the most prevalent is aggregation, the

focus of this thesis.

Empirically, it has been observed that by adding low molecular weight compo-
nents, such as salts, sugars, or polyols, to protein solutions, the propensity of the
protein to aggregate (as well as degrade by other routes) can often be significantly
affected. Unfortunately, because proteins are tremendously diverse in chemistry and
structure, additives that work well for a particular protein generally do not work
universally [87]. In addition, current understanding of the mechanisms by which
additives confer stability on proteins is limited. Thus, there is often no theoretical
guidance to aid selection of optimal additives.

This lack of understanding necessitates that protein stabilization be carried out
on a case-by-case basis using heuristic experimental screens. This limits the additive
search space and the possible formulation patent protection to those additive combi-
nations which are explicitly tested. In some cases, additives that confer a useful level

of stability cannot be identified.
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As protein therapeutics branch out into new routes of administration, such as in-
halers, implants, and stents, significant new stability challenges are presented. These
new routes of administration involve protein-damaging factors such as atomization,
elevated temperature, and high protein concentration, all of which can contribute in
an unfavorable way to aggregation and other routes of degradation. Thus, there is
an ever-increasing need to understand how to control these degradation processes to

ensure that the full potential of proteins as therapeutics can be realized.

1.1 Thesis Objective

The objective of this thesis is to develop fundamental understanding of the mecha-
nisms by which solution additives stabilize proteins against aggregation. This fun-
damental understanding will provide a basis for important future developments in

rational design and selection of protein stabilizers.

1.2 Organization of This Thesis

The remaining seven chapters in this thesis give a synopsis, in roughly chronological
order, of the approach taken and results obtained in pursuit of the above objective.
Chapter 2 (Literature Review) summarizes the state of the art in the current litera-
ture. Chapters 3-5 (Results) cover the technical achievements of this thesis in detail.
Finally, chapter 6 (Conclusions) concisely summarizes the major conclusions drawn
from these results, and chapter 7 (Future Work) discusses opportunities for future

work.

23
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Chapter 2

Literature Review
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2.1 The Connection between Protein Aggregation

and Folding

Aggregation is a ubiquitous protein stabilization problem because aggregation is re-
lated to the natural process of protein folding. These two phenomena are united by

a common driving force, the hydrophobic effect.

Protein folding is the process by which a nascent, unfolded polypeptide chain un-
dergoes conformational transitions to ultimately arrive in its native state. One of
the principal forces involved in this process is the hydrophobic force {26]. Hydropho-
bicity is a key driving force because in general, a significant fraction of the chemical
groups in proteins are hydrophobic and prefer not to be solvated by water. When
a protein is first synthesized, all of its functional groups, including the hydrophobic
ones, are exposed to the solvent. Gradually, the protein orients itself spatially so
these hydrophobic residues can be sequestered into a core away from the solvent.
Because this hydrophobic sequestration brings together hydrophobic groups that are
not proximal in the protein sequence, it imposes significant constraints on the pro-
tein’s conformational entropy. In general, the result is one structure with an optimal
balance of hydrophobic sequestration and conformational entropy. This state is called

the “native state” and generally is the only one with biological activity.

Unfortunately, the process of hydrophobic sequestration can occur in an inter-
molecular fashion as well as in an intramolecular fashion as described above (Figure 2-
1). When protein molecules sequester their hydrophobic residues in an intermolecular
fashion, an aggregate species results. Thus, protein folding and aggregation are linked

via the hydrophobic effect.

Aggregation may also proceed beyond the dimer species shown in Figure 2-1 to
higher order mers. When aggregates become sufficiently large, they can phase sepa-

rate and precipitate from solution.
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unfolded unfolded Folded,

protein protein native protein
u——1—nN b
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hydrophilic 1 , Futher polymerization
V2 A2 Phase separation
dimer
(early aggregate)

Figure 2-1: Protein folding and aggregation are driven by the hydrophobic effect. Pro-
teins can sequester their hydrophobic side chains in either an intramolecular fashion
(proper folding) or intermolecular fashion (aggregation).

2.2 Models of Protein Aggregation

2.2.1 Aggregation from the Native State

In a seminal 1954 paper, Lumry and Eyring [56] presented the first kinetic model of
protein aggregation from the native state. They proposed that the native protein (V)
undergoes an intramolecular transformation to an aggregation-competent intermedi-
ate (/) which associates to form the first aggregate (A;). This framework is captured

via the following two chemical reactions:

N =& I (2.1)

The most important contribution of this model is that it allows for the overall
aggregation process to exhibit first or second-order kinetics, both of which have been
observed experimentally [61, 46, 88, 43, 72]. Such aggregation studies are typically
performed by isolating native protein, then subjecting the protein to either a thermal

or denaturant stress to induce aggregation.

Either kinetic order can arise depending on which step in the reaction is rate-
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limiting. If the intramolecular isomerization step is slower, the overall process will
exhibit first-order kinetics. If the association step is slower, second-order kinetics will

be observed.

Recently, Roberts [71] extended the Lumry-Eyring framework to consider explic-
itly the reaction of species larger than the dimer and the possibility of solubility limits
being reached for these higher mers. This model was applied to predict the shelf life
of a pharmaceutical protein (granulocyte colony simulating factor, GCSF) from data

obtained in thermally-accelerated aggregation studies [72].

2.2.2 Aggregation during Folding

Kinetic studies have also been performed on aggregation during protein folding or
refolding. Such experiments are typically performed by denaturing a protein in a
high concentration of guanidinium chloride or urea, and then diluting or dialyzing
away the denaturant to allow the protein to refold. Since when the denaturant is
removed, the protein is already in an unfolded or partially-unfolded and aggregation-
competent state, aggregation may proceed directly from this initial state and there is
no requirement of an intermediate specie as in the Lumry-Eyring model. In refolding,

there is direct, kinetic competition between proper folding and aggregation:

U - N (2.3)

where U, N, and A, are the unfolded, native, and dimer states, respectively.

Since the refolding and aggregation reactions are of different order (the refolding
reaction generally being first-order and the association reaction being second-order),
this kinetic competition can be observed by measuring the yield of native protein
as a function of the initial protein concentration. This type of experiment has been
performed by Zettlmeissl et al. on lactate dehydrogenase [94] and by Hevehan et al.
on lysozyme [40].
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Figure 2-2: Generalized free energy-reaction coordinate diagram for protein aggrega-
tion.

2.2.3 Unified Reaction Coordinate-Free Energy Diagram

The models presented for aggregation from the native state and from the unfolded
state can been unified as shown in the reaction coordinate-free energy diagram in
Figure 2-2. The figure qualitatively shows the free energies of the native protein,
unfolded or partially-unfolded intermediate state, multiple aggregate states at dif-
ferent mer number (A;), and the transition states between these states. Note that
the relative free energy values are meant only to be illustrative at this point. As
drawn, the native protein is only metastable with respect to large aggregates. It is
separated from the large aggregate states via a free energy barrier that is maximal at

the transition state for dimer formation, A%.

Under such conditions, aggregation from the native state would exhibit second-
order kinetics and would eventually proceed to completion, that is, the formation
of very large aggregates, with no native protein remaining. The experimentally-
observable aggregation rate (or rate of loss of native protein) can be related to the

reaction coordinate-free energy diagram via transition state theory:
kgT
k= V%—e‘A“i/RT (2.5)
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where k is the rate constant, v is the transmission coefficient, kg is Boltzmann’s
constant, T is the absolute temperature, h is Planck’s constant, Apy is the activation
free energy, and R is the gas constant. In this case, the appropriate activation free
energy is the free energy difference between the transition state to form the dimer and
that of the native state, u A~ BN If aggregation from the native state exhibits first-
order kinetics, then it can be assumed that the intramolecular isomerization (N — I)
is rate limiting, and the appropriate activation free energy is pr — py [46, 88].

The same reaction coordinate-free energy diagram can be used to visualize the
refolding process. In this case, the initial state is the unfolded or partially-unfolded
intermediate, I. This species can either refold to form N, or aggregate to form A,
and subsequent larger mers. After this initial kinetic partitioning which forms native
protein and aggregates, the native protein will slowly aggregate. Ultimately, the

system will consist entirely of large aggregates, as above.

2.3 Theories of Additive Effects on Proteins

The presence of a solution additive potentially affects the free energy of all the states
along the folding-aggregation reaction coordinate. When such free energy effects have
different magnitudes at different points along the reaction coordinate, they give rise
to changes in experimentally observable quantities such as equilibrium constants and
reaction rates. Most importantly, the aggregation rate can change. To understand
how additives affect aggregation, we must understand how they affect the free energy
barrier of the rate-limiting step in the aggregation process.

For any protein state of interest along the reaction coordinate, the effect of an
additive on the free energy of a state can be expressed in terms of a transfer free

energy, via:

pp = ppo + AuP (2.6)

where pp is the free energy of the state in the mixed solvent, ppg is the free energy of

the state in the reference solvent, and u% is the transfer free energy from the reference
Hp
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solvent to the mixed solvent.

Because of the central role of transfer free energies in describing additive effects on
protein processes, a significant body of theoretical and experimental work has been
done over the past forty years in this area. These contributions are summarized in

the following sections.

2.3.1 Measurement via the Preferential Binding Coefficient

For any stable protein state, it is possible to measure the transfer free energy via the
preferential binding coefficient. These two quantities are related in the following way

[51]:

tr__ mx 3,LLP
Apl = /0 (8mx>mp dmx . @2.7)
_ /mx (Q"_’i) (am_x> dmix (2.8)
0 8mX mp Bmp x

where AuY; is the transfer free energy of the protein from pure water into the mixed
solvent system, m is molality, and subscripts X and P identify the additive and pro-
tein respectively. Two partial derivatives appear in equation 2.8. The first captures
the dependence of the additive chemical potential on additive molality and can be
evaluated by experiments on a binary mixture of additive and water (mp — 0). The

second partial derivative is the “preferential binding coefficient,” I'xp:

0
mp bx

The preferential binding coefficient is the thermodynamic definition of binding. It is
also a measure of the excess number of additive molecules in the domain of the pro-
tein per protein molecule (Figure 2-3). The connection between the thermodynamic

definition (equation 2.9) and the intuitive notion of binding (local excess number of
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Domain { (bulk)
Domain II (protein vicinity)

Figure 2-3: Physical interpretation of the preferential binding coefficient. Interactions
of solvent molecules with the protein at the protein-solvent interface generally induce
solvent concentration differences in the local (II) and bulk (I) domains. I'xp is the
thermodynamic measure of the number of additive molecules bound to the protein, or
in other words, the excess number of additive molecules in the vicinity of the protein
versus the number of additive molecules in an equivalent volume of bulk solution.

molecules) comes from statistical mechanics, where Schellman has shown that [47, 75]:

nI
Cxp= <n§(1 —nil (nTX)> (2.10)

w

In the above equation, n denotes the number of a specific type of molecule (subscript
X for the additive and subscript W for water) in a certain domain (superscript I for
a bulk volume outside of the vicinity of the protein and superscript /I for a volume
in the protein vicinity), and angle brackets denote an ensemble average. Note that
I'xp is independent of the choice of the boundary between the domains, as long as

the boundary is far enough from the protein.

If the additive concentration is higher in the vicinity of the protein than in the
bulk, 'y p is greater than zero, and up is lower in the presence of the additive than in

its absence. Denaturants such as urea and guanidinium chloride exhibit this type of
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binding behavior [84, 37, 50, 53]. The reverse is true for sugars and polyols, such as
trehalose, sucrose, and sorbitol [3, 32, 33, 4, 51, 91, 92, 93]. In one of these solutions,
there is generally a deficiency of the sugar or polyol and an excess of water in the
vicinity of the protein. For this “preferential hydration” case, I'xp is less than zero,
and pp is higher in the presence of the additive.

Preferential binding coefficients have been studied extensively by high-precision
densitometry over the past thirty years in the laboratory of Serge Timasheff [50]. Ear-
lier techniques based on sedimentation [39] and isopiestic composition measurements
[37] have also been employed. More recently, differential scanning calorimetry (DSC)
[66] and vapor pressure osmometry (VPO) [25] have been used to a similar end. Pref-
erential binding coefficients are rigorous thermodynamic quantities and are related to
virial coefficients, activity coefficients, and free energies via standard thermodynamic
relations for multi-component solutions [19].

Experimental studies by the above methods have led to some generalizations about

preferential binding coefficients:

1. T'xp may be positive or negative, indicating that interactions of the protein and

cosolvent are favorable or unfavorable, respectively.

2. I'xp is proportional to cosolvent molality at low concentration of cosolvent

(often as high as mx ~ 1 m and higher) [25, 35, 68].
3. I'xp is roughly proportional to the protein-solvent interfacial area [51].

The second generalization above, together with the fact that many binary mixtures
of cosolvent and water (mp — 0) are nearly ideal at low concentration of cosolvent,

leads to a useful simplification of equation 2.8:

tr_ mx (ORT Inmx (E{_p)
Aup = / ( Bix nx my dmx (2.11)
_ Ixp\ [mx
— _RT (mx ) /0 dmx (2.12)
= —RT xp (2.13)

33



Equation 2.13 provides a simple and convenient link between preferential binding
coefficients and free energies. This relation leads to the useful rule that when I'xp is
proportional to myx, for each cosolvent molecule that preferentially interacts with the
protein, the protein’s free energy is reduced by approximately 0.6 kcal/mol at 25°C.
The simplicity of this relation is a natural result of the close relationship between
I'xp and a second virial coefficient.

When approximation 2 above also applies, the relationship between preferential

binding and transfer free energies can be expanded to

Aﬂ'g =-RT Yxpapmx (214)

where yxp is the preferential binding coefficient per surface area of the protein per
concentration of additive and ap is the protein-solvent interfacial area. This formal-
ism is the most convenient method for evaluating the transfer free energy effects of
additives such as denaturants, polyols, and sugars, for which all of the above approx-

imations are valid.

2.3.2 Relation to Mechanistic Models

To be able to predict preferential binding coefficients and understand their origins,
the above thermodynamic framework and general observations must be augmented
by a mechanistic model. Several such models have been presented in the literature,
including models based on the binding polynomial or statistical mechanical partition
function, solvent-cosolvent exchange at defined sites, cosolvent partitioning between
the local and bulk domains, group contribution methods for estimating transfer free

energies. Some specific models are discussed below.

Binding Polynomial

The most general model of how an additive affects the free energy of a state comes

from considering an equilibrium of all possible protein-cosolvent complexes, from
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which it can be shown that [90]:

A = ~RTIn(1+)_ > Kydyck) (2.15)
i]

where Kj; is the association equilibrium constant for a reaction of a protein molecule,

¢ molecules of water, and j molecules of cosolvent into a complex; ey is the concentra-

tion of water; and cx is the concentration of the additive. This formalism is related

to the so-called “binding polynomial” due to Wyman. While this model is completely

general, its utility is limited because it is not possible to determine experimentally

the many K;; parameters present in equation 2.15.

Weak Binding at Multiple Equivalent Sites

If the additive binds at a large number of equivalent sites, the binding polynomial

representation (equation 2.15) reduces to:
Auf = —nRT (K) cx (2.16)

where n is the number of sites and (K) is the average association equilibrium constant
at a site. The single parameter (K) can then be determined from an experimental
measurement of the transfer free energy or I'xyp. When equation 2.13 holds, the

relation between (K) and ['xp is simply:
(K) =FXP/7’L mx (217)

Values of (K) for the same additive with different proteins in the linear binding regime
are roughly equal [76]. (K) cannot, however, be determined without knowledge of
I'xp or other free energy data on the particular cosolvent system of interest. In fact,

one can say that (K) is defined by I'xp.
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Single Site Binding

If the additive binds only at a single site, the binding polynomial representation

(equation 2.15) reduces to:
Ap% = —RTIn(1+ Kcx) (2.18)

where K is the association equilibrium constant for the additive and the protein.

This formalism is the most convenient method for evaluating the transfer free
energy effects of strong binding additives such as surfactants, antibodies, and folding

chaperones.

2.3.3 Other Mechanistic Models
Local-bulk Domain Model

Another model that recasts preferential binding coefficient data in terms of a single
model parameter is the local-bulk domain model developed by Courtenay et al [25].
The parameter in this model is the partition coefficient Kp, relating the number of
water molecules and cosolvent molecules in the local and bulk domains via:

K, M
P= 77T /T
n /Ny

(2.19)

Similar to the Schellman site exchange model, the convention used in this model is
that the local domain consists of a monolayer of water and enough cosolvent to obtain
the experimentally observed I'xp. Note that because the absolute occupancy of water
and cosolvent in the local domain cannot be easily determined by experiment, the
local-bulk domain model effectively defines nif. Like (K), values of Kp can be used
to predict I'xp at other cosolvent concentrations or for other proteins in the same
cosolvent, but predictions cannot be made in the absence of I'xp or free energy data

on the same cosolvent system.
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Group Contribution Methods

Lastly, transfer free energy group contribution models, pioneered by Bolen’s group
[55], take a different approach. These models conceptually divide whole proteins into
groups [84] such as the amino acid side chains and the protein backbone and model
the transfer free energy of the whole protein as a sum of the transfer free energy of
the groups it comprises, via:

Aup = oAgy (2.20)

where Ag!" is the transfer free energy of the model group and o; is the solvent ac-
cessible area of the group in the whole protein, normalized to the solvent accessible
area of the model compound. The overall Ap¥; can then be predicted for any system
of known structure. In the context of the previously described models, the transfer
free energy model can be thought of as a linearized binding model where each sur-
face group or amino acid in the protein represents a different type of independent
binding site, and the binding constants for those sites are determined by experiments
on model compounds, such as free amino acids or cyclic di-amino acid compounds.
Predictions made by transfer free energy models have met with mixed success. A
linear group contribution model (equation 2.20) may be too simple to capture all of

the important contributions to Au% [14].

Ionic (Debye-Huckel) Binding

If the additive is ionic and the charge of the protein mers is nonzero, an additive can
also affect aggregation rates via a Debye-Huckel ionic screening effect. The transfer

free energy of a charged molecule into a solvent with an ionic additive is then [59):

[
Apg = —;q2 (2.21)



where ¢ is the permittivity of the solvent medium, ¢ is the charge of the molecule,

and & is the inverse Debye length:

4 9
= £Ci 2.22

where the sum is over all ionic species in the medium, g; is the charge on a species,
and ¢; it its concentration.

At infinite separation, two protein molecules act independently and have a total
transfer free energy:

2K
Apg = __e_qz (2.23)

Once in an encounter complex or associated state, the transfer free energy of the state
is:

" 4K
App = —=(20)* = ——¢’ (2.24)

Thus, increasing ionic strength favors aggregate formation by a factor of 2kg?/e.

2.4 Experimental Observations of Different Addi-
tive Effects

In a few specific cases, experimentally observed effects of additives on aggregation
processes have been related to a mechanism. These observations and conclusions are

summarized below.

2.4.1 Single Site Binding

In studies of refolding of carbonic anhydrase, interferon-vy, tissue plasminogen acti-
vator, and deoxyribonuclease, Cleland et al. found that polyethylene glycol (PEG)
favored refolding over aggregation (Figure 2-4) [20, 21]. They showed that the mech-
anism behind this change was that PEG bound selectively to a folding intermediate,

rendering it unable to associate. Thus, binding decreases the free energy of the
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Figure 2-4: In refolding of carbonic anhydrase, interferon gamma, and DNase from
the unfolded state (U), Cleland [20] showed that polyethylene glycol (PEG) binds
selectively to the unfolded protein and folding intermediates. This slows aggregation
and increases the yield of native protein. The free energy in the absence of additive
is shown as a solid line and, in the presence of PEG, as a dotted line.

unfolded protein and refolding transition state, increases the activation energy for
aggregation, slows the rate of aggregation, and increases the final yield of active

protein.

In vivo it is known that folding chaperones such as the GroEL/GroES system
sequester unfolded proteins in their core, allow the nascent proteins to fold in isolation,
and then release them into the cytoplasm [38]. This can be modeled as a selective
binding of the unfolded state and folding intermediates by the chaperone system
which increases the free energy barrier to aggregation. Thus, the chaperone system

is analogous to the PEG case above in a mechanistic sense.

Similarly, Dumoulin et al [29] found that a cameloid antibody (cAb) bound na-
tive D67H lysozyme and prevented it from forming amyloid fibrils. The mechanism
by which the cAb acted was by specific binding of the native protein but not the
transition state to form the aggregation transition state. The binding free energy of
the cAb to lysozyme thus constituted an increase in the activation free energy for
association, analogously to the way PEG deterred aggregation of CA from its molten

state (Figure 2-5).
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Figure 2-5: Dumoulin et al. [29] found that an antibody selectively bound native
D67H lysozyme with high affinity and prevented it from aggregating into amyloid
fibrils. The free energy in the absence of additive is shown as a solid line and, in the
presence of the antibody, as a dotted line.

2.4.2 Nonspecific Preferential Binding

Sucrose and other molecules that are preferentially-excluded from the protein-solvent
interface have been shown to stabilize native protein molecules against unfolding
[61, 4, 3]. Analogously, in studies of interferon-y aggregation from the native state,
Kendrick et al. [46] found that aggregation in 0.9M guanidinium chloride (GuHC})
exhibited first-order kinetics, and that sucrose deterred aggregation linearly with
concentration (Figure 2-6). They modeled this observation using the Lumry-Eyring
framework with the first-order conformational change being rate limiting for the pro-
tein aggregation process, and a preferential binding model for the additive effect on
this process. Webb et al. [88] made a similar observation and used the same mech-

anism to explain experimental data at 0.46M GuHCI for the same model system.
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Figure 2-6: In studies of interferon-gamma aggregation from the native state,
Kendrick et al. [46] showed that sucrose increases the activation free energy for
formation of aggregates (A;) from the native state (V). The free energy in the ab-
sence of additive is shown as a solid line and, in the presence of sucrose, as a dotted

line.
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Chapter 3

Computation of Preferential
Binding Coefficients with no

Adjustable Parameters
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While the mechanistic models discussed in sections 2.3.2 and 2.3.3 have helped in
the understanding of the phenomenon of preferential binding, they generally incorpo-
rate strong assumptions, and they necessitate the use of experimental data on highly
analogous systems in order to determine model parameters and make predictions.
Thus, their uses as predictive tools and as tools to gain insight into specific systems
are limited.

In this chapter, we develop a predictive, molecular-level approach for the study
of preferential binding based on all-atom, statistical mechanical models that use no
adjustable parameters. To date, statistical mechanical models of preferential binding
have only been developed for interactions of ions with charged cylinders [2, 60] and
for interactions of two-dimensional, “hard circles” with a linear interface [85], both
far too simple to be generally applied to protein-additive systems. Other explicit
mixed solvent simulations of proteins and amino acids have been performed [95, 12,
86, 1, 18], but these studies did not compute thermodynamic quantities related to
preferential binding. In our approach, we define the number of “bound” molecules in
a thermodynamically consistent way and do not a priori incorporate any information
about “binding sites.” The use of our approach for the computation of preferential
binding coefficients was validated in two systems by comparison with experimental
data from the literature. Additionally, the molecular-level detail of the approach

provides new insights into the following issues:

1. The changes in solvent and additive concentration as a function of distance from

the protein surface.
2. A precise definition of the “local domain” (Figure 2-3).

3. The differences in preferential binding or apparent binding equilibrium constant

at different locations on the protein-solvent interface.

The success of this method in modeling preferential binding indicates that it captures
the important underlying physics of protein-additive-water systems and that the diffi-
culty in quantitative prediction to date can be surmounted by explicitly incorporating

the complex protein-solvent and solvent-solvent interactions.
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3.1 Computational Approach

Our strategy is to use molecular dynamics to generate an equilibrium ensemble of
protein, water, and additive. From this ensemble, the average concentration of addi-
tive as a function of position relative to the protein can be determined. This enables

the preferential binding coefficient to be computed directly from a single trajectory.

To accomplish this, we utilize explicit atomic interaction potentials (force fields),
such as Lennard-Jones, Coulombic, spring, and torsion interactions, with pre-fit coef-
ficients [15, 36]. Thermodynamic properties (such as preferential binding coefficients)
are computed by averaging in the time domain via molecular dynamics (MD). A snap-

shot from a dynamic simulation of RNase T1 in a urea solution is shown in Figure 3-1.

Molecular dynamics uses Newton’s second law of motion, that acceleration is the
quotient of force and mass, to compute the positions of each atom in the system as a
function of time. To do this, an energy model, sometimes called a “force field,” that

can be used to compute the net force on any atom in any configuration is employed.

During the MD run, the positions of each atom are recorded at fixed intervals in
time. These “snapshots” form an ensemble of configurations which can then be used

to compute thermodynamic properties, such as I'xp.

Importantly, this method of computing I'xp does not introduce any adjustable
parameters to model preferential binding or any other aspect of a system containing
a protein and two solvent components. All of parameters required by the MD method
for energy computations are determined independently of this particular modeling
objective, and in fact have been shown to be generally applicable to biological systems
[45]. Thus, the method developed here could be used to estimate I'xp and Apf in
systems where no experimental data is available. It therefore facilitates the study of
preferential binding when direct experimental study is difficult, such as at transition
state configurations or at marginally stable states of proteins. Furthermore, it yields

detailed, local, molecular-level insight into the system studied.

Another benefit of this approach is that when equation 2.13 holds (such as for urea
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Figure 3-1: A simulation cell containing RNase T1 (ribbon) solvated by water (thin

lines) and urea (spheres). Figure generated with VMD [42].

46




and glycerol), the protein transfer free energy (Ap'%) can be calculated from a single
I'xp simulation. Traditional free energy calculation methods such as thermodynamic
integration [9, 48] require 15-20 trajectories, which is computationally difficult for

protein systems of this size.

3.1.1 Preferential Binding Coeflicients of Constituent Groups

Because proteins have a range of different functional groups in different orientations on
their surfaces, the concentrations of solvent and additives near different patches on the
protein’s surface may be different. For example, the vicinity of a hydrophobic patch
on the protein may have a lower concentration of water and a higher concentration of
additive than in the vicinity of a hydrophilic patch. Preferential binding experiments
capture only the average effect arising from all of the interactions over the entire
protein-solvent interface; however, molecular simulations allow more detailed analyses

of the local contributions to preferential binding coefficients.

A protein can be thought of as a set of non-overlapping constituent groups [84],
each of which has its own preferential binding coefficient defined by the composition
of the solvent in its immediate vicinity. Similar to group contribution methods for
computing transfer free energies (see Introduction), one possible group definition is
that each type of amino acid side chain (up to 20) and the amino acid backbone are
distinct groups. To compute a preferential binding coefficient for a constituent group,
the solvent molecules in the local domain are assigned only to the nearest group (%),

and the “group preferential binding coefficients” (I"xp;) can be defined as:
nl
PXP,i = <n£(1-, - n{’lI/i (_I&>> (31)
b L nW

where n¥/; and n{}; are the number of additive and water molecules in the local

domain that are nearest to group ¢. If each solvent molecule in the local domain is

assigned to a group, the overall preferential binding coefficient is simply the sum of
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all of the group preferential binding coefficients:

FXP = ZFXPJ (32)

The group preferential binding coefficients decompose the effect of each small subset
of the protein on the overall preferential binding coefficient. This is analogous to
the group contribution models for transfer free energy except that the parameters
are extracted from a simulation of an entire protein instead of experiments on model

compounds.

3.1.2 Minimum Simulation Time

Sufficient sampling of position-space configurations in time is required for the accurate
calculation of I'xp via equation 2.9. Assuming that the average protein solution
structure is close to that of the initial (crystal) structure and that water molecules
sample position space rapidly because of their high density, the most important time
scale to be captured is that of the additives sampling position space. One way to
estimate this time is that it must be much larger than the average time between

additive-additive contacts.

An estimate of the time between contacts can be obtained as:

2
1 Vw3
tcantact =~ 12D ( nj:v) (33)

where D is the additive diffusivity, V., is the solvent volume, and nx is the number of
additive molecules. For the simulations performed here, the solvent is mostly water,

so equation 3.3 can be further simplified to yield:

1 1 3
t ~ 3.4
contact 12D ( NAmeX) ( )

where N4 is Avogadro’s number and pw is the density of water in kg/m®. For a

1m additive in water system with an additive diffusivity of 2x10~° m?2/s (a lower
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bound on the diffusivities of the additives studied here), teoniacs i about 30ps. Thus,
nanosecond trajectories will be required for good sampling of additive position space.
Importantly, this time increases as the additive concentration decreases, implying
that there is a minimum concentration that can be studied with any given amount of

computational resources.

3.2 Methodology

3.2.1 Molecular Simulations

Molecular dynamics was used to sample the phase space of proteins solvated by water
and an additive. Version 28 of the CHARMM [15] molecular dynamics package was
used for all simulations. The CHARMM force-field was used for the protein, and
the TIP3P model [44] was used for water. A force-field was constructed for glycerol
using the standard CHARMM geometries and partial charges for the atoms in a -
CHOH- unit [15, 36]. Urea was assumed to be planar with bond lengths equal to
the CHARMM standards and partial charges recomputed as done previously [28] but
using the CHARMM van der Waals mixing rules in the objective function.

The structures of RNase A (PDB code: 1fs3) and RNase T1 (PDB code: lygw)
were obtained from the Protein Data Bank [13]. In total, three simulations were
performed: RNase A in 1m glycerol (pH 3), RNase T1 in 1m glycerol (pH 7), and
RNase T1 in 1m urea (pH 7). Details of each simulation are shown in Table 3.1. Each
protein was solvated in a trucated octahedral box extending a minimum of 9A from
the protein. The pH of each simulation was fixed by setting the protonation states of
each ionizable side chain to the dominant form expected for each amino acid at the
pH of interest. Arginine, cysteine, lysine, and tyrosine were protonated in all of the
simulations. Aspartate, glutamate, and histidine were assumed to have pKa values of
3.4, 4.1, and 6.6 [31, 30], respectively, and were therefore protonated in the simulation
at pH 3 and deprotonated at pH 7. Initial placement of water and additive molecules

were random. Protein counterions were placed using SOLVATE 1.0. The system was
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Additive Protein T (°C) pH nx nw <I>(A)
Urea  RNase T1 25 7 90 4274 57.48

Glycerol RNase T1 25 7 87 4582  59.24

Glycerol RNase A 25 3 90 5480 62.86

Table 3.1: Details of four molecular dynamics (MD) simulations performed. ny is the
number of additive molecules; ny is the number of water molecules; and <I> is the
average dimension of the primary unit cell (which varies during the run at constant
pressure).

first energy minimized at OK, next heated to 298.15K, and then equilibrated for 1ns
in the NTP ensemble at one atmosphere. For the computation of the properties of
interest, two nanoseconds of dynamics were then run, during which statistics were

computed from snapshots of the trajectory every picosecond.

3.2.2 Calculation of Preferential Binding Coefficients

The trajectories were then used to define the local and bulk regions and compute I'xp
in the following manner. For the purpose of computing I'x p and other thermodynamic
and structural parameters, each water and additive molecule was treated as a point at
its center of mass. The distance of each of these points to the protein’s van der Waals
surface was computed, and then pw(r) and px(r), defined as the number densities of
these points at a distance r from the protein, were computed. In all cases, the p(r)
functions exhibited peaks and valleys characteristic of solvation shells in the range
0 < r < 6A. At distances in the range of 6-8A and higher, such variations are no
longer seen, and the local number density is defined as bulk number density, p{oo).
Such a region far from the protein containing a spatially uniform concentration of
water and additive must be present in the simulation cell in order to define the local
and bulk regions and calculate I'xp.

The position of the boundary between the local and bulk domains, a distance of r,
away from the surface of the protein, was then determined by choosing the minimum
distance at which no significant difference between p(r,) and p(co) was apparent for
either water or additive. All solvent molecules whose centers of mass fell inside a

distance of r, from the protein’s van der Waals surface were defined as belonging to
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the local domain (II), and all other solvent molecules were defined as belonging to the
bulk domain (I). With these definitions of the domains, the instantaneous preferential

binding coefficient, I'xp(t), was computed as

il
Txp(t) =n¥ —nk (;L‘[Z‘) (3.5)

for each time point in each trajectory. The preferential binding coefficient, I'x p, was

then computed for each trajectory as the time average of these instantaneous values:

1 t A /
Txp =7 /0 Txp(t)dt (3.6)

The radial distribution functions gx(r) and gw(r) are defined as:

9i(r) = ci(r)/ci{co) (3.7)

where i represents water (W) or an additive (X) species and ¢ is concentration. These

functions provide another route to compute I'xp:

Txp = <n§{>—<(%fi) né&> (38)

— exo0) [ax av - (2N ay(o0) [awav (29
— ex(00) [(ox —gw) dV (3.10)

where each integral is over the local domain or the entire system (since gx — gw =0

in the bulk domain).

The boundary between domains I and II must be placed far enough from the pro-
tein to ensure that it is in the bulk, yet at the smallest such distance so that statistical
fluctuations in the number of molecules in the domains can be minimized. We can use
the values of gx(r) and gw(r) to determine the optimal boundary. Defining I}, as

the apparent preferential binding coefficient resulting from defining the local domain
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as those molecules whose centers of mass lie inside a distance r, from the protein:

av

5ep(r2) = ex(00) [ (ox —gw) T ar (3.11)

The error in I"xp, Er, introduced by selecting a particular value of r, is then

Er = F}P(T*) - FXP (312)

= —ex(oo) [ (ox — aw) 5 dr (.13

When r, is selected properly, the surface defined by r = r, is entirely in the bulk
solution, gx(r.) = gw(r.) = 1, and Epr = 0. Thus, selecting r* as the minimum
distance for which all r > r* satisfy gx(r) = gw(r) = 1 (within the error of the

simulation) is optimal.

3.2.3 Calculation of Constituent Group Preferential Binding

Coeflicients

For each simulation, up to 21 constituent group preferential binding coefficients were
calculated. The 21 groups were each type of amino acid side chain present in the
protein (up to 20) and the protein backbone. The “protein backbone” was defined as
the -NH-CH-COO- unit, as well as the two extra protons at the N-terminus and extra
oxygen atom at the C-terminus of the protein. The glycine side chain was defined
as the proton bound to the alpha carbon that would be replaced by a substituent to
form a different L-amino acid.

For the simulation of RNase T1 in glycerol solution, the constituent group prefer-
ential binding coeflicients for the 15 individual serine residues in the protein were also
calculated. For this calculation, solvent and additive molecules that were nearest to
an atom in the protein that was not part of a serine side chain were not considered.

Water and additive molecules were associated with a specific constituent group
by computing the distance from the center of mass of each solvent molecule to the

van der Waals surface of every atom in the protein, selecting the protein atom that
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was nearest to the solvent molecule, and then determining to what constituent group

this nearest protein atom belonged.

3.2.4 Estimation of Statistical Error

The statistical error arising from computing averaged properties from a finite trajec-

tory was estimated in the following fashion:

1. The dynamic trajectory of interest was divided into n pieces.

2. The mean of the property of interest was computed in each piece. These means

were designated Z; where ¢ = 1..n.

3. The standard deviation of the Z; values was computed.

4. This standard deviation was divided by +/n and the quotient was designated
Om, an estimate of the error in the mean determined by time averaging the full

trajectory.

The number of pieces n into which the trajectory is divided must be small enough
to ensure that the means of each piece (the Z;) are statistically independent. An
autocorrelation analysis (not shown) of several trajectories of I'xp(t) data and the

underlying molecular counts (n] and n}

T} indicates that a window of about 0.2ns is
sufficiently large for this to be true. Therefore, for a 2ns dynamics trajectory, a value

of n =2/0.2 = 10 was used.

For long trajectories, the statistical error o, is roughly proportional to the inverse
square root of the trajectory length. This property can be used to estimate the
trajectory length required to achieve a given level of statistical accuracy after a small

trajectory has been generated and analyzed.
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3.3 Results and Discussion

3.3.1 Radial Distribution Functions of Water and Additives

The radial distribution functions of water, urea, and glycerol were computed for all
three simulations as described in Methodology and are shown in Figure 3-2.

At very short distances, r < 0.6A for water and r < 1.0A for glycerol and urea,
regions of total solvent and additive exclusion due to very strong van der Waals
repulsion can be seen. The size of these “totally excluded” regions is much smaller
than one would expect based on the apparent van der Waals radii of the solvent and
additive molecules alone (for example, r ~ 1.5A for water and 2.2A for urea [77]),
indicating that electrostatic attractive forces play an important role in solvation even
at these distances. After the regions of total exclusion, strong first coordination shells
of these three molecules can be clearly seen. The peaks of the first coordination shells
become more distant from the protein as the size of the molecules they correspond
to increases. Significantly smaller second coordination shell peaks are also visible for
urea solvating RNase T'1 and glycerol solvating RNase A. At distances greater than
6-7A from the protein, solvation shells cannot be discerned, and the number densities
of water, urea, and glycerol reach their bulk values.

In the simulations of RNase T1 in glycerol and urea solutions, the radial distri-
bution functions for glycerol and urea are quite different. The maximum value of
9x(r) for urea is over 4.5, while that for glycerol is about 2.5. The difference in
these maximum values, while significant, is not sufficient to say that the number of
urea molecules coordinated to the protein (n¥) is higher than the number of glyc-
erol molecules coordinated; this can only be done by integrating each gx(r) function
appropriately via equation 3.10.

The radial distribution functions for both water and glycerol are similar in the
simulations of RNase A and RNase T1 in glycerol solution, despite the fact that the
proteins and the pHs of the solutions are different. Given that the proteins are of
similar size, this observation is consistent with the fact that the values of I'xp for the

two solutions are close.
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Figure 3-2: Radial distribution functions of water, urea, and glycerol are shown
for simulations of RNase T1 in glycerol and urea solutions (left) and RNase A in a
glycerol solution (right). In the left-hand figure, the difference between the two gy (r)
functions is not visible at this scale.
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Figure 3-3: Apparent preferential binding coefficient as a function of the cutoff dis-
tance between the local and bulk domains for simulations of RNase T1 in glycerol
and urea solution.

3.3.2 Preferential Binding Coefficients

The radial distribution functions in Figure 3-2 suggest that r, in the range of 6-8A is
an appropriate choice of boundary between the local and bulk domains. The error in
I'xp introduced by a particular choice of the boundary distance, r,, can be estimated
by plotting the apparent preferential binding coefficient (I'% ) versus r, (Figure 3-
3). T%p depends very strongly on r, in the first solvation shell (r = 0 — 4A) and
weakly on r, in the second solvation shell (r = 4 — 6A). In the range r = 6 — 8A, the
dependence of '} p on , is small (£0.5), and is less than the statistical error in I'xp
(shown in Table 3.2, explained below). Therefore, a cutoff distance of 64, or about
two solvation shells, is sufficiently large to minimize systematic error in I'yp caused
by the choice of .. If only a single solvation shell were considered (r, ~ 3.5 — 4A),
a systematic error in I'xp of approximately 0.5 - 1 molecules would be introduced as

a result of neglect of the second solvation shell.

The preferential binding coeflicient, I'xp, was computed via equation 2.9 using

96




Simulation | Experiment
System Mpulk I'xp I'xp
Urea / RNase T1 | 1.10m | 5.2 + 1.0 | 6.4 [53]
Glycerol / RNase T1 | 1.07m | -1.6 = 0.8
Glycerol / RNase A | 0.91m | -0.9 + 1.0 | -1.7 £ 0.8 [32]

Table 3.2: Preferential binding coefficients computed from MD simulations and com-
pared with available experimental data at similar additive concentrations. A wide
range of behavior (positive and negative preferential binding coefficients) can be mod-
eled without the use of adjustable parameters. The confidence intervals on 'y p(MD)
are an estimate of the statistical error resulting from the use of a finite trajectory. For
easier comparison, the experimental values of I'xp reported above were interpolated
to myu from data sets spanning the molality of interest.

7« = 6A as the boundary between the local and bulk domains. A confidence interval
for this ensemble average was computed as described in Methodology. The binding
coefficients and their statistical uncertainties are shown in Table 3.2. Experimental
values from the literature were available for two out of three of these protein-additive
systems, and our computed values of I'xp agree quite favorably with these. The fact
that this occurs for both positive and negative values of I"'xp without the use of any
adjustable parameters is very encouraging. For an additive that obeys equation 2.13,
the confidence intervals of £1.0 in I'xp represents a confidence limit in the transfer
free energy of about 0.6 kcal/mol, which is a typical value for free energies calcu-
lated via this type of molecular simulation. Achievement of this level of accuracy
despite the fact that structural fluctuations in the native state ensemble of proteins
have been observed on much longer time scales [27] than the time scale of the simula-
tions performed here suggests that solvent dynamics are more important than protein
structural dynamics in determining I'xp.

I'xp(t) probability density functions for the simulations of RNase T1 in urea and
glycerol solution are shown in Figure 3-4. The range of instantaneous values of the
preferential binding coefficient, I'xp(t), is quite large relative to the absolute values
of I'xp. I'xp(t) values in excess of I'xp + 15 are observed. The breadths of these
distributions are related to the size of the interface between the local and bulk domains
and indicate the importance of sampling a large number of solvent configurations to

obtain the macroscopic, averaged I'xp (equation 3.6).
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Figure 3-4: I'xp(t) probability density function. A wide range of values of I'xp(t) are
sampled as water and additive molecules diffuse between the local and bulk domains.

3.3.3 The Relation between Solvent Accessible Area and the

Number of Molecules in the Local Domain

The solvent accessible areas of whole proteins (SAA) and constituent groups (SAA;) in
crystal structures have been used extensively in analyzing proteins. SAA and SAA;
are essentially simple ways of measuring water coordination numbers. In models
developed to date, SAA or SAA; has been used to estimate n{j or njj; by assuming
that the local domain is a monolayer of water and each water molecule occupies
approximately 10A2 of the solvent accessible area. Since we have introduced a new
notion of the local domain, it is worthwhile to see what relationships exist between
SAA; and the coordination numbers n{f; and n¥/; that utilize this definition.

A scatter plot of the solvent accessible area of a set of constituent groups (amino
acid side chains and the protein backbone) versus the number of water molecules in the
local domain for three different simulations is shown in Figure 3-5. Solvent accessible
area was calculated analytically in CHARMM (based on Richmond’s method [69])

using a 1.4A probe. There is a strong, linear correlation of these variables with slope
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Figure 3-5: Correlation of solvent accessible area and the number of water molecules
in the local domain of constituent groups. Each point represents a constituent group
of either a type of amino acid side chain or the protein backbone in one of the three
simulations shown in Table 3.2. The solvent accessible area of a constituent group
and the number of water molecules in the local domain of the solvent near the group
(nfy;) are highly correlated.

4.2 A2 /molecule and correlation coefficient 0.96. Similarly strong correlations are
seen for SAA; with nf{ ; in individual simulations. A summary of proportionality
constants and correlation coeflicients for these relationships is shown in Table 3.3. If
the time average SAA; from each dynamics simulation is used instead of the crystal
structure SAA; values, the correlation coefficients increase slightly. Because the time
average solvent accessible areas are higher than those in the crystal structure, the

proportionality constants shown in Table 3.3 also increase.

3.3.4 Constituent Group Preferential Binding Coeflicients

The constituent group preferential binding coefficients were calculated for each simu-

lation as described in Methodology and are shown in Figures 3-6 - 3-9 as the number
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Species (2) Protein Avg Protein SAA/ni? | r?
(A% /molecule)

Water RNase A/T1 4.2 0.96
0.91m Glycerol RNase A 290 0.96
1.07m Glycerol | RNase T1 230 0.93

1.10m Urea RNase T1 170 0.98

Table 3.3: Relationships between solvent accessible area in each protein crystal struc-
ture and number of solvent molecules in the local domain for different protein-additive
systems. 72 symbolizes the correlation coefficient.

of water and additive molecules coordinated to each constituent group. In each figure,
a line at the bulk solution composition is also plotted, enabling a quick determination
of the composition of the solvent in the vicinity of a constituent group compared to
the bulk solvent. The statistical uncertainties in the values of n{j; and n¥; (and
consequently I'xp;) are high. Because of these uncertainties, we will not report spe-
cific values of the group preferential binding coefficients, but rather classify them into
broad categories based on their statistical likelihood of being either positive, negative,
or zero/indeterminate.

The average number of water and glycerol molecules coordinated to each of the
15 serine residues in RNase T1 are shown in Figure 3-6. A wide range of binding
behavior can be seen among the serine residues, all of which have a good degree
of solvent exposure. Ser 17, 35, and 72 fall above the bulk concentration line and
have positive preferential binding coefficients, Ser 63 falls below the line and has
a negative preferential binding coefficient, and the preferential binding coefficients
of the remaining 11 serine residues are not statistically different from zero. The
wide range of local concentrations in the vicinities of these serine residues indicates
that developing a group contribution method to estimate I'xp or AuZ based on
primary sequence information and solvent accessibility (n%l) alone may be difficult.
In addition to the type of amino acids present at the protein-solvent interface, other
effects such as specific combinations of residues and secondary or tertiary structure
must be important in determining water and additive binding behavior. These factors
probably contribute to the range of local concentrations seen in Figure 3-6. For

example, Ser3b and Ser72 are proximal to each other and several Gly and Tyr side
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Figure 3-6: Binding behavior of glycerol and water with the 15 serine residues in
RNase T1 is shown as a plot of the number of glycerol molecules in the local domain
of each serine residue versus the number of water molecules in the same volume. The
labels are the one-letter code for each amino acid side chain, and “B” is the protein
backbone. The line represents the bulk glycerol composition. Ser 17, 35, and 72 have
positive preferential binding coefficients, Ser 63 has a negative preferential binding
coefficient, and the remaining 11 serine residues have essentially zero values for their
preferential binding coefficients.
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chains (Gly34, 70, 71, and Tyr68), which tend to have positive preferential binding
coefficients in glycerol (Figure 3-8). This may be the reason that the group preferential

binding coefficients for these residues are higher than those of the other serine residues.

The preferential binding behavior of urea and glycerol with each type of amino
acid in RNase T1 and the protein backbone are shown in Figures 3-7 and 3-8. In
urea solution, the protein backbone and Ser as well as the hydrophobic amino acid
side chains of Cys, Gly, Leu, Phe, Pro, Tyr, and Val all preferentially bind urea,
while the hydrophilic Asp preferentially binds water. In glycerol solution, only Tyr
and Gly preferentially bind glycerol, and Asp and Glu preferentially bind water.
Qualitatively, the binding behavior of the amino acid side chains of RNase T1 follow
a hydrophobic series, with the hydrophobic side chains tending to bind more additive

and the hydrophilic ones tending to bind more water.

The binding behavior of glycerol and water with the amino acid side chains and
backbone in RNase A, shown in Figure 3-9, is significantly different than the binding
behavior of these solvent components with the same constituent groups in RNase
T1. (Note that the protonation states of Asp, Glu, and His are different in the two
simulations.) The amino acid backbone, which occupies a large fraction of the protein-
solvent interface as indicated by its high value of n%’i, has a binding coefficient near
zero in RNase T1 and a significant negative binding coefficient in RNase A. More
strikingly, Tyr in RNase T1 preferentially binds glycerol whereas Tyr in RNase A
preferentially binds water. This is likely because the six Tyr residues in RNase A
are at or near the solvent interface (a more hydrophilic region) whereas the nine
in RNase T1 are mostly buried (a more hydrophobic region). This difference in
solvent exposure is evident from the crystal structures of the proteins but also can be
discerned by comparing the water coordination numbers for Tyr in the two proteins:
nyy; for Tyr in RNase A is higher than in RNase T1, even though there are 50% more
Tyr residues in RNase T1.

Based on the above observations, some generalizations about the effects that these
additives have on protein folding equilibria can be postulated, the validity of which

must be confirmed via future studies. In urea solution, most of the constituent groups
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Figure 3-7: Local binding behavior of urea and water with the amino acid backbone
and side chains in RNase T1. The labels are the one-letter code for each amino
acid side chain, and “B” is the protein backbone. The line denotes the bulk urea
concentration. In addition to the protein backbone and Ser, the hydrophobic amino
acids Cys, Gly, Leu, Phe, Pro, Tyr, and Val all preferentially bind urea, while the

hydrophilic Asp preferentially binds water.
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Figure 3-8: Group preferential binding coefficients for glycerol with the amino acid
backbone and side chains in RNase T1. The labels are the one-letter code for each
amino acid side chain, and “B” is the protein backbone. The line denotes the bulk
glycerol concentration. Tyr and Gly preferentially bind glycerol; Asp and Glu pref-
erentially bind water; and the binding coefficients of the other groups are not statis-

tically different from zero.
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Figure 3-9: Local binding behavior of glycerol with the amino acid backbone and side
chains in RNase A. The labels are the one-letter code for each amino acid side chain,
and “B” is the protein backbone. The line denotes the bulk glycerol concentration. All
of the constituent groups in RNase A either preferentially bind water or are neutral.
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in RNase T1 either preferentially bind urea or are indifferent to urea and water. Asp,
which is found on the surface of RNase T1, is the only constituent group that is sig-
nificantly below the bulk concentration line in Figure 3-7 and therefore preferentially
binds water over urea. Since the amino acids that compose the core of RNase T'1 and
are exposed upon unfolding preferentially bind urea, this pattern suggests that the
preferential binding coefficient or urea with unfolded RNase T1 is higher than that
with native RNase T1. This is thermodynamically consistent with urea’s well-known
ability as a denaturant. Inversely, in glycerol solution, almost all of the constituent
groups in RNase A and T1 are neutral or preferentially bind water. This is consistent
with the fact that glycerol binds less to the unfolded protein than the native state,
and therefore is a protein stabilizer. Both of these generalizations are consistent with

earlier work on model compounds [14].

3.4 Conclusions

A quantitative method based on molecular dynamics simulations using all atom po-
tential models has been developed and validated for calculating preferential binding
coefficients. Our method is not a derivative of thermodynamic integration or ther-
modynamic perturbation methods and requires only a single trajectory to compute
the transfer free energy of a protein into a weak-binding additive system. Our re-
sults match experimental data well for glycerol and urea solutions, covering a range
of positive and negative binding behavior. This work also augments experimentally-
observable, macroscopic thermodynamics with the mechanistic insight provided by
a molecular-level, statistical mechanical model. Variations in the radial distribution
functions with distance for each additive are evident up to about 64, or two solvation
shells of water, away from the protein. Glycerol is not totally excluded from close
contact with the protein, but glycerol is less likely than urea to be found in such
a position. The radial distribution functions of water and additives are sufficient
to calculate preferential binding coefficients by integrating over a suitable solvent

volume.
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The binding behavior of the amino acid side chains in RNase T1 qualitatively fol-
low a hydrophilic series, with more hydrophilic amino acids in the protein tending to
have a higher concentration of water in their vicinity. The constituent group binding
behavior differs between the groups in RNase A those in RNase T1. Development of a
group contribution method at the amino acid level for estimating binding coefficients
or transfer free energies of whole proteins is complicated by the wide range of coor-
dination behaviors observed for single types of amino acids in different environments

on the protein surface.
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Chapter 4

The Gap Effect
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Figure 4-1: If a protein molecule (P) or complex contains narrow channels too small
for a large additive (black) to enter, the cosolvent exerts an osmotic stress effect
that favors the collapse of these channels and the release of the water (grey) they
contain. In the case of the above protein-protein association reaction coordinate,
the “gap effect” caused by the large additive selectively increases the free energy of
encounter complexes that contain such narrow gaps. The gap effect therefore slows
isomerization between the associated and dissociated protein states.

In order to affect the kinetics of protein association reactions selectively without
affecting protein folding and solution phase structure, there must be a unique feature
of the association transition state that can be exploited by a binding interaction
with an additive. The emerging picture of protein association/dissociation transition
states indicates that each protein in the encounter complex is still mostly solvated
but near the orientation in the final complex [79, 78]. Because the complex is still
mostly solvated but the two protein molecules are in close proximity to one another,
there is the potential for a “gap effect” to arise in a mixed solvent if the additive is
significantly larger than the primary solvent (Figure 4-1). This gap effect is analogous
to osmotic stress [67]. In such a situation, the large additive will be excluded from
solvating the gap between the protein molecules for steric reasons. This, in turn,

results in an increase in the free energy of the protein-protein encounter complex.

In order for an additive to reduce the rate of aggregation without affecting the

folding rate and equilibrium, in addition to creating a “gap effect,” it is necessary
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Figure 4-2: The hypothesized effect of a neutral crowder on the free energy of protein
states along the refolding/aggregation reaction coordinate is shown. The free energy
in the absence of additive is shown as a solid line and, in the presence of a neutral
crowder, as a dotted line. The neutral crowder is preferentially-excluded from the
gap between the protein molecules in the association transition state (A%), increasing
the free energy of this state.

for the additive not to interact with isolated protein molecules differently than water
does. We call additives that exhibit both of these properties “neutral crowders.”
We hypothesize that a neutral crowder would affect a refolding/aggregation reaction

coordinate as shown in Figure 4-2.

With this gap effect hypothesis in mind, the specific objectives of this chapter are

to:

1. Develop and justify the use of a simple model for protein-protein association
reactions in the presence of additives. This model should take into account
protein-additive binding interactions over the entire association reaction coor-

dinate.

2. Use this model to test the gap effect hypothesis and evaluate the potential

magnitude of any observed gap effect.
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3. Evaluate the potential of neutral crowders as anti-aggregation additives.

4.1 Theoretical Approach

In order to test our gap effect hypothesis, we compute the effects of various solution
additives on the association and dissociation rate constants for a suitable protein-
protein model system. If the only effect of an additive is to alter the free energy

barrier to the transition state, the change in a rate constant can be expressed as:
k/ko = e~ 8K /KT (4.1)

where k is the rate constant in the presence of the additive, kq is the rate constant in
the absence of the additive, AAu! is the change in the activation free energy induced
by the additive, k, is Boltzmann’s constant, and T is the absolute temperature.
Thus, in order to compute the relative rate constants, we must compute the shift in
activation free energy for association and dissociation induced by the additives. Our

approach to this is to:

1. Define two simple, limiting models of a protein-protein association reaction, (i)
the association of two parallel planes, and (ii) the association of two spheres.
We also propose with our models suitable reaction coordinates and compute the

free energy as a function of reaction coordinate in each case.

2. Compute the perturbations to each free energy diagram induced by an additive.
These perturbations are obtained by using data determined from explicit all-
atom molecular dynamics simulations and incorporating them into our simple

models.

The details of each of these steps are described in the following sections.
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4.1.1 Two Model Association Reactions

As two limiting models of proteins undergoing an association and dissociation reac-

tion, we choose:

1. The reaction of two spheres, each 20A in radius. This is roughly the size of a

25kD protein.

2. The reaction of two parallel, planar plates, each with 4007A2 of area on a
face. This area was selected to make the change in protein solvent-accessible
area of reaction the same for the cases of the two spheres and two planes (the
reaction coordinates are explained below). The thermodynamics properties of
these plates are obtained by calculating the property per unit of surface area
of a pair of infinite plates and then multiplying by the area above. Thus, edge

effects are ignored.

These two geometries can be considered as extreme cases by which associating proteins
approach one another. Because of the symmetry of these simple model proteins, the
reaction coordinates, =, can be simply defined as the shortest distance between the
planes and the distance between the centers of the spheres. We are then free to
choose any representative free energy of the complex as a function of this reaction
coordinate, upo(z). For convenience, we set the reference states as the monomers
(x — +00), define the dimer states to be 8 kcal/mol more stable than monomer
states, and place a modest 2 kcal/mol free energy barrier for association between the
two states. Arbitrarily, we select z = 20A as the dimer state for the spheres, and
z = 1.5A as the dimer state for the planes. The resulting reaction coordinates can

be modeled as:

2—a)\2
Planes: ppg= (%)6 _ 8.51e~ (=19 } 9 02¢~ (%) (4.2)
2202 102
Spheres : pupo = (1) — 821" (*7%)" 4 2.12¢~(5%) (4.3)

which employ Gaussians for the energy minimum at the dimer state and for the energy

maximum at the transition state and an inverse sixth power function for repulsion
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Figure 4-3: The definition of each reaction coordinate and the free energy diagrams
(equations 4.2 and 4.3) are shown for the two model protein systems used in this work.
For the spheres, the association/dissociation reaction coordinate, z, is the distance
between the sphere centers. For the planes, it is the shortest distance between the
planes (which are always parallel). z is zero when the two proteins overlap each other
completely.

at distances closer than the dimer state. The reaction coordinate and free energy

diagram for each model are shown in Figure 4-3.

4.1.2 Calculating the Effect of an Additive

We compute the free energy along the reaction coordinate in the presence of a solution

additive by combining the free energy in the absence of additive (equations 4.2 and
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4.3) with an appropriate transfer free energy:

pp = ppo + App (4.4)

where ppg is the free energy of a given protein state in the absence of additive, pp is
the free energy of the same state when the additive is present, and Au? is the transfer

free energy. The transfer free energy can be computed via the following equation:

mx {3
0 omx T.Pmp

where mx is the molality of the additive and mp is the molality of the protein. The

integrand above can be split into a derivative involving properties of only the additive

and water, and one that describes binding:

Aﬂt£=—/

0

e (%) FXP de (46)
amx T,Pmp

where I'xp, the preferential binding coefficient of additive to the protein in water, is

defined as:

0
mP T1P1I-‘X

Following our earlier work in all-atom molecular dynamics simulations of preferential

binding [10}, we introduce the relation:

Txp = ox [ (ox = gw) &V (48)

where cx is the bulk concentration of additive, gx and gy are the additive and water
radial distribution functions with respect to the protein, respectively, and the integral
is over the solvent volume around the protein. Note that gx and gy typically differ
only in the first two solvation shells. For the association/dissociation reactions being
modeled here, the protein state is a pair of protein molecules, and dV is a function

of z.
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The above relation can be substituted into equation 4.6 to yield:

tr __ mx ap‘X ( _ )
A/J,p = /0 Cx (—_6mx)T,P’mP /(gx gw) dV) dmx (49)

We now invoke three assumptions that allow significant simplification of the above

equation. These are:

1. The additive free energy (11x) is thermodynamically ideal, or (Opx/0mx)r,pmp =
RT /my, where R is the gas constant. Since the ternary system in question here
is dominated by the water and additive, this assumption effectively means that
water-additive interactions are ideal. For many solution additives of interest,
such as NaCl, glycerol, sucrose, and urea, the experimental activities of water-
additive mixtures are within 10% of ideality at molalities up to 1 mol/kg [74, 63].
For other real systems where experimental thermodynamic activity data on the
binary system of water and additive are available, these can be used to more
accurately evaluate the partial derivative in question. The assumption used
here does not limit the complexity of the additive-protein and water-protein
interactions, which ultimately will lead to changes in the transfer free energy

via the I'xp term.

2. The concentrations of protein and additive are sufficiently low such that molar

and molal concentration are equivalent (cx ~ my).

3. The radial distribution functions of water and the additive are independent
of the concentration of additive. This is expected to be true at low additive
concentrations (mx < 1 m) for additives that interact weakly with the protein

[25, 35, 68].
Applying these approximations to equation 4.9 yields:

Aut = —RTex / (95 — gw) dV (4.10)

To enable computation of the transfer free energies, we now require a model for
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the radial distribution functions of the additive and water around the proteins. In
prior studies of all-atom molecular dynamics of proteins in mixed solvents [10], we
noted that the radial distribution function of water as a function of distance from
the protein, gw(r), did not vary whether the protein was RNase A or RNase T1,
two proteins with significantly different amino acid sequences. Thus, in this work,
we use the water radial distribution function found previously, and assume it to be

independent of the protein model and reaction coordinates employed here.

In the case of the additive, we wish to introduce a simple, physically-based model
for the additive-protein radial distribution function, gx. To do this, we relate gx to

the potential of mean force between the additive and protein, (Uxp):
gx = e <Uxp>/kT (4.11)

We then choose the form of the potential of mean force as a standard intermolecu-
lar potential function. To select a suitable function, we fit the parameters of stan-
dard, physically-based intermolecular potentials, such as Lennard-Jones, Kihara, and
exponential-6 (Exp-6) to the radial distribution functions of water, urea, and glyc-
erol obtained from all-atom molecular dynamics simulations [10]. In each case, the
intermolecular potential parameters were fit by nonlinear minimization (Marquardt
method) of the squared residuals while constraining (Lagrange method) the radial dis-
tribution to give the same preferential binding coefficient (I'xp, via equation 4.8) as
the actual additive radial distribution function. Preferential binding coefficients were
preserved in the fitting procedure because of their tight relationship (via equation 4.6)

to the transfer free energy, the property we ultimately wish to model.

After obtaining the best fits with each potential function, it was observed that the
Lennard-Jones potential did not adequately fit the data, and the Kihara potential did
not fit the data well at physically meaningful parameter values. Therefore, the three-

parameter Exp-6 potential was selected as a model of the additive-protein potential
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Molecule | € (kcal/mol) 7 (A)

Water 0.662 0.925 3.65
Urea 0.917 1.59 3.17
Glycerol 0.497 2.11 4.25

Table 4.1: Exponential-6 potential parameters for averaged interaction energies of
water, urea, and glycerol with RNase A and T1. The parameters were obtained by
constrained fitting to radial distribution functions obtained from all-atom molecular
dynamics data.

of mean force:

€

(UXP> = 1—6/’)’

( ettt = rird - (22)') @12

r

In the above equation, r is the distance between the solvent molecule and protein,
and 7, €, and v are the Exp-6 parameters, described below. Results of the fitting
process are shown in Figure 4-4 and Table 4.1. Note that the first peak in the radial
distribution functions occurs at a value of r smaller than what might be expected.
This is because in our case, r is defined as the distance from the center of mass of the
solvent or additive to the van der Vaals shell of the protein, not to the nucleus of the
atoms at the protein surface. This also leads to a value of r,, that may be smaller

than expected.

It is undoubtedly possible to obtain a tighter three-parameter fit to the radial
distribution functions shown in Figure 4-4 by using a broader set of basis functions
to model (Uxp). However, we wished to constrain ourselves to standard potential
functions whose parameters had some physical meaning. Fits are also shown for
water because water-protein radial distribution function data was available; however,
the full radial distribution function for water was used for all of the calculations in

this work.

The Exp-6 potential combines an exponential repulsive term with an inverse sixth-
power attractive term and has a single minimum at U(r = r,,) = —e. The last Exp-6
parameter, <y, is related to the breadth of the minimum near r = r,,, and reflects the

rigidity and shape of the additive.
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Figure 4-4: Fits of the protein-water and protein-additive radial distribution func-
tions from molecular dynamics simulations for various additives with the protein
RNase T1 using the exponential-6 intermolecular potential. Note that r = 0 is at the
surface of the protein. The observed data are shown as crosses, the fits as lines. The
corresponding parameters are shown in Table 4.1.
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In extending the Exp-6 representation to neutral crowders and other additives for
which no radial distribution functions are available, r,, is used as a measure of additive
size; vy is held constant at 3.7, the mean of the observed values for water, glycerol,
and urea; and ¢ is set to yield a desired preferential binding coefficient between the
additive and dissociated protein state. For a neutral crowder, I'xp is set to 0 at
z — oo (the dissociated state) by the constraint that such an additive should not

affect the free energy of isolated protein molecules.

4.1.3 Relation to Virial Coefficients

Given the approximations used in this work, the transfer free energy can be related to
the additive-protein and water-protein second virial coefficients. This follows directly

from the McMillan-Mayer formula for the second virial coefficient [58]:

Bip = —% (e~<Usr>/kT _ 1) dV (4.13)

where B;p is the second virial coefficient and (Ujp) is the potential of mean force
between a solvent component ¢ (additive or water) and the protein. In terms of the

radial distribution functions, this is:
1
Bip=—3 [(s—1) av (4.14)

The preceding equation can then be substituted into the integrand of equation 4.10

for the water and additive to yield:

Auf = —RTcx /((QX —1)—(gw — 1)) dV (4.15)
= ZRTCx(BXP e BWP) (416)

Thus, the additive-protein and water-protein second virial coefficients are related
to the radial distribution functions (equation 4.14) and to the transfer free energy

(equation 4.16).
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4.2 Results

4.2.1 The Gap Effect Can Contribute Significantly to Asso-

ciation and Dissociation Rate Constants

The transfer free energies for placing the model proteins into 1M solutions of neutral
crowders were computed over the entire association/dissociation reaction coordinates
(via equations 4.10, 4.11, and 4.12) and are presented in Figure 4-5. r,, was chosen
to have values of 2, 4, 6, or 8 A in order to give a range of crowder sizes. In each case,
€ was set according to the neutrality condition (C'xp = 0 for the dissociated state,
T — 00).

It is readily apparent that at constant I'xp, the gap effect on the transfer free
energy increases proportionately with increasing additive size, r,,. For the additive
sizes illustrated, the effect on transfer free energy ranges from 0 to almost 6 kcal/mol.
At the same additive size and change in surface area of reaction, the planes exhibit
about double the gap effect of the spheres. This is because the lack of curvature of
the planes necessitates that their gap effect is concentrated over a narrower region of

the reaction coordinate.

These transfer free energy effects can be superimposed onto a free energy diagram
by simple addition (equation 4.4). The final free energy diagrams are shown in Fig-
ure 4-6. In the case of the spherical model, the transition state in the original free
energy surface (4po(z)) is near the maxima in the transfer free energies, so the trans-
fer free energy effects make significant changes to the activation free energy of the
association and dissociation reactions in an additive solution at all values of r,,,. For
the planar model, the location of the maximum in the transfer free energy depends
on r,,. Consequently, the transfer free energy maximum for the planar model does
not always build on the existing free energy barrier in upo(z). In fact at higher rp,
the transition state for association and dissociation results completely from the gap

effect. The original transition state is “drowned out.”

Using equation 4.1 to estimate the resulting changes in reaction rate, the relative
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Figure 4-5: Transfer free energies for pairs of protein molecules transferred into 1M
additive solution as a function of position along the association reaction coordinate,
x, are shown. The sizes of the additives are varied while keeping the second virial
coefficients constant. The curves are labeled with the additive sizes (rr, in A) to which
they correspond. The left-hand figure is for the association of two spherical proteins
20A in radius, and the right-hand figure is for the association of two pseudo-infinite
planar proteins with an area of 400mA? on each face.
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Figure 4-6: The protein free energies along the reaction coordinate for associa-
tion/dissociation in the presence of neutral crowders at 1M concentration are shown.
This combines upg (equations 4.2 and 4.3) with the transfer free energies shown in
Figure 4-5. The curves are labeled with the additive sizes (7, in A) to which they

correspond.
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reaction rates (k/ko) can be determined as a function of additive size (r,,) at constant
I'xp, as shown in Figures 4-7 and 4-8. Increasing I'xp can also be seen to decelerate
association and accelerate dissociation. This is a well-known result consistent with the
fact that denaturants are used to slow protein association reactions. The magnitude
of this change depends on whether the free surface area of the transition state is more
similar to that of the monomer or to that of the dimer. If the transition state is
similar to the dimer, as in the case of the planar proteins, there is a strong effect on
k, and almost no effect on k4. For the spherical protein geometry, the transition state
is closer to the monomer, and the effect of I'xp is larger on k4 than on &,.

We also see that increasing additive size at constant ['xp decreases both the
association and dissociation rates, consistent with the gap effect hypothesis. About
a two order-of-magnitude drop in the association rate constant can be seen over the
range of additive sizes shown (2 - 8A). In the case of two associating planes, this effect
does not appear at moderate additive sizes (2.5 < ry, < 5.5A) because, although the
maximum in transfer free energy keeps increasing, it moves away from the original

transition state on the reaction coordinate.

4.2.2 Designing Additives for the Control of Aggregation

It may be possible to exploit the gap effect in designing solvent additives for the
prevention of protein aggregation. Prevalent additives that work via a pure free
surface effect, such as guanidinium and urea, have apparent radii (r,,,) of about 2-3 A.
These have the disadvantage, however, that they can also enhance the unfolding or
partial unfolding of proteins because of their positive preferential binding coefficients.
The results of the preceding section suggest that if the size of these additives could
be increased to about 8A while maintaining their preferential binding coefficient with
isolated protein molecules, the gap effect can potentially contribute another one to
two order-of-magnitude depression in the association rate.

As the size of an additive is increased, its preferential binding coefficient will
tend to decrease as the third power of radius. This is because increasing additive size

increases the excluded volume of additive and protein, which decreases the preferential
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Figure 4-7: The change in association and dissociation rates for 20A spherical proteins
caused by a 1M additive is shown as a function of the additive size (x-axis) and
additive-protein preferential binding coefficient, ['xp (labels).
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Figure 4-8: The change in association and dissociation rates for planar proteins (with
400w A? area on a face) caused by a 1M additive is shown as a function of the additive
size (x-axis) and additive-protein preferential binding coefficient, I'xp (labels). For
the dissociation rate, the I'x p dependence is negligible.
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binding coefficient. In order to compensate for this excluded volume difference and
return I'xp to its original value, an additional additive-protein attraction must be
introduced into the molecule.

If it is not possible to increase the additive-protein attraction in some way as size
is increased, the additive will have a large, negative preferential binding coefficient,
and a gap effect will not appear. A gap effect arises for neutral crowders because there
is a region of solvent that is inaccessible to the additive around encounter complexes
but not around isolated protein molecules. In the case of an “excluded crowder” with
a large, negative preferential binding coefficient, the volume of exclusion is actually
larger in the dissociated state than in the encounter complex or associated state.
Thus, in stark contrast to neutral crowders, excluded crowders like sugars, polyols,

and large, hydrophilic polymers favor association [54, 49, 62].

4.3 Conclusions

In this work, a simple framework for modeling protein association and dissociation
reactions in the presence of solution additives was developed and analyzed. Our
model extends prior work in binding theory by considering various geometric models
of the protein surface, the protein-protein association/dissociation transition states,
and solvent radial distribution functions obtained from all-atom molecular dynamics
simulations [10].

Our analysis of the model supports the hypothesis that a “gap effect,” analogous
to osmotic stress, will occur in association reactions when large solution additives
with sufficient protein affinity are present. This gap effect affects the free energy of
protein-protein encounter complexes, such as the association transition state, and has
only a small effect on the end states. Thus, we have demonstrated how it is possible
for an additive to exert a purely kinetic effect on protein association/dissociation.
We call additives which have these properties “neutral crowders”: they are neutral in
that they do not significantly shift the free energy of isolated protein molecules, but

they decrease the rate of protein association and dissociation by being excluded from
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the inter-protein gap in protein-protein encounter complexes for steric reasons.

For an optimal effect, the maximum in the transfer free energy induced by the
gap effect must be near the original association free energy barrier. When this is not
the case, the gap effect will be strongest when the original barrier is small (less than
1-2 kcal/mol) or nonexistent, such as in diffusion-controlled reactions.

As the size of a neutral crowder is increased, the gap effect becomes propor-
tionately larger, but maintaining neutrality is difficult as size increases. At a con-
stant protein-additive interaction energy, increasing additive size would decrease the
protein-additive preferential binding coefficient as the third power of additive size
due to an excluded volume effect. Thus, to make a large neutral crowder, additive-
protein interactions must become significantly more attractive as size is increased. If
this cannot be achieved, the gap effect will diminish and ultimately disappear.

Today, the best known additives for suppressing aggregation are small denaturants
such as urea and guanidinium chloride. Qur gap effect model predicts that if a
significantly larger additive, perhaps 4-5 times the size of these small additives, can
be developed, and it were a “neutral crowder,” it would depress association rates
by a factor of 100-1000 times more than guanidinium or urea at the same molar

concentration.
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Chapter 5

Arginine is a Neutral Crowder
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A prevalent anti-aggregation additive whose mechanism of function is unknown
is the amino acid arginine. Arginine has very little effect on the folding equilibrium
[6, 83, 82] yet it facilitates refolding of several proteins from the unfolded state [73,
8, 7, 70, 16]. While a mechanism which can explain fully how arginine functions has
not been proposed [52], these results suggest that arginine selectively increases the
barrier for protein-protein association while having little effect on protein folding.

These experimental observations are not consistent with any of the mechanisms
reviewed earlier (section 2.4). They are, however, consistent with the proposed be-
havior of a neutral crowder (Figure 4-2).

If arginine is a neutral crowder, it should slow protein association reactions in
general. There may be interactions between arginine and specific proteins which give
rise to other kinetic effects, but on average, association rates should be lower in the
presence of arginine than in its absence.

The purpose of the present investigation is to test the hypothesis that arginine
is a neutral crowder via experiments designed to elucidate its effects on protein as-
sociation reactions. Two types of protein association reactions have been selected
for study: association of antibodies with their antigens (globular protein association)
and association of folding intermediates (aggregation during refolding). By compar-
ing the kinetic effects of arginine in these tests to other additives with known effects,
we expect to be able to draw conclusions about arginine’s performance in each of

these cases.

5.1 Methodology

5.1.1 Proteins and Reagents

Human insulin (I8530), bovine carbonic anhydrase IT (CA) (C2522), hen egg white
lysozyme (L7651), and bovine serum albumin (B4287) were obtained from Sigma
(St. Louis, MO). Monoclonal anti-insulin (10-I130 clone M322214) was obtained from
Fitzgerald Industries (Concord, MA). Sheep myoglobin, monoclonal anti-myoglobin,
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and consumable reagents for BIAcore experiments (NHS, EDC, ethanolamine, glycine,
and HBS-EP buffer) were obtained from Biacore (Switzerland). Guanidinium chlo-
ride, arginine hydrochloride, sodium chloride, and lysine hydrochloride were attained
from Sigma in the highest available grade.

Concentration of carbonic anhydrase in solution was determined by absorbance

at 280nm using an extinction coefficient of 1.83 mL/mg/cm [65].

5.1.2 Globular Protein Association Kinetics

Protein association and dissociation rate constants, k, and k;, were measured for
globular proteins via surface plasmon resonance on a BIAcore 3000 instrument. Each
pair of proteins consisted of an antigen and a monoclonal antibody to that antigen.
The antibody was immobilized on a BIAcore CM5 sensor chip via amine coupling.
The amount of immobilized antibody was selected to give a detector response in the
range of 50-100 RU when antigen was present. A reference surface was created by
activating and deactivating the surface without coupling an antibody to it.

Different concentrations of antigen in the nanomolar range (1-1000 nM) were pre-
pared by dilution and injected serially into the antibody-containing and reference
flow cells. Lower concentrations of insulin (1-100nM) were used to ensure that mul-
timerization of insulin did not affect the results [64]. For the myoglobin experiments,
5 pl of 50 mM glycine, pH 2.0, was used to regenerate the surface between injections
of antigen. For the insulin experiments, the dissociation rate was sufficiently fast in
buffer that a regeneration buffer was not required. Kinetic constants were extracted
by simultaneous fitting of k, and k4 to each set of sensorgrams using a 1:1 kinetic

model in the BIAevaluation 3.0 software package.

5.1.3 Refolding of Carbonic Anhydrase

Refolding of carbonic anhydrase was accomplished by dilution from high concen-
trations of the denaturant guanidinium chloride (GuHCI) as done previously [21,

89]. High concentrations of carbonic anhydrase (>10 mg/ml) were denatured in
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6M GuHCI and equilibrated overnight. Refolding was initiated by dilution to 0.5M
GuHCI1 with 50 mM Tris-HCI buffer, pH 7.5. This final GuHCI concentration was
selected because it yields a mixture of active, refolded protein and aggregates. The
distribution of this mixture was analyzed via esterase activity, size exclusion HPLC,

and dynamic light scattering as described below.

5.1.4 Carbonic Anhydrase Esterase Activity

Esterase activity of carbonic anhydrase was assessed using para-nitrophenylacetate
(pNPA) as the substrate as described previously [65]. Briefly, 10 ul samples of car-
bonic anhydrase solution were added to 500 ul of Tris-HCI, pH 7.5 and 50 ul of 50 mM
pNPA in acetonitrile. Kinetics of hydrolysis of pNPA was observed by the increase in
absorbance at 400nm due to the appearance of the para-nitrophenolate ion (pNP™).
In all cases, the observed hydrolysis rate in absorbance units per second (AU/s) under
these conditions was constant (pseudo-zero order). Hydrolysis rates were corrected
for the hydrolysis of pNPA by the buffer for each type of buffer used. Hydrolysis
rates were converted to concentration of active protein via a standard curve con-
structed from dilutions of known concentrations of native protein. The active protein

concentration data was reproducible to within 5-8% in replicated experiments.

5.1.5 Size Exclusion HPLC

Size exclusion HPLC (SE-HPLC) experiments were performed on a Beckman System
Gold HPLC instrument equipped with a Tosohaas G3000SWXL size exclusion column
and a UV detector. 30 ul samples were introduced to the column by a constant
flow of 1 ml/min mobile phase. Each sample ran for 15 minutes, with carbonic
anhydrase eluting between 6 and 10 minutes, depending on its molecular weight and
buffer. Protein was observed at the exit of the column via absorbance at 280nm. For
samples that did not contain large submicron or micron-sized aggregates (which do not
pass through the column), the total chromatogram areas at 280nm were consistent

to within 2-3% during the entire refolding process, indicating that the extinction
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coefficients of different sized aggregates did not vary significantly on a mass basis. A
mixture of lysozyme, carbonic anhydrase, and bovine serum albumin (monomer and
dimer) was used as a standard to calibrate molecular weight to retention time. Using
this calibration curve and the breakthrough time of the column, the largest multimer
that could pass through the column was a 15-mer. When significant mass was missing
from a chromatogram, large multimers were quantitated by difference. The presence
of large multimers was confirmed via turbidity or dynamic light scattering for each
buffer. The instrument was cleaned with 30 ul injections of 4M GuHCI, a denaturing
concentration found to dissociate and elute precipitates and large soluble carbonic

anhydrase multimers.

5.1.6 Dynamic Light Scattering

Dynamic light scattering (DLS) experiments were performed with a SpectraPhysics
stabilite 2017 laser (514nm) at a measurement angle of 90°. Brookhaven BI-200SM
light scattering software was used for data acquisition and analysis. The autocorre-
lation function was fit with an exponential fitting software program to extract the
distribution of diffusion coefficients, and the Stokes-Einstein equation was used to
convert the diffusion coefficients to a distribution of hydrodynamic diameters. Most

samples were filtered with a 0.45 um syringe filter to remove dust.

5.1.7 Molecular Simulation

Molecular dynamics simulation of RNase A (PDB code: 1fs3) solvated by water and
arginine were performed according to a protocol developed previously for simulation

of proteins in mixed solvents (chapter 3).

5.2 Effect on Globular Protein Association

Surface plasmon resonance experiments were conducted to measure the effect of added

ArgHCI on the kinetics of globular protein association and dissociation versus an
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Figure 5-1: Biacore 3000 surface plasmon resonance data for insulin binding to im-
mobilized anti-insulin. Raw binding data (solid curves) are shown with a three-
parameter, least squares fit to all the data (dashed curves). The detector response is
proportional to the mass of antigen bound to the antibody immobilized in the flow
cell.

equimolar salt control (NaCl). Two model antibody-antigen protein pairs were tested
as model systems: insulin and a monoclonal antibody to insulin, and myoglobin and
a monoclonal antibody to myoglobin. A typical experimental data set for a binding
interaction at one buffer condition is shown in Figure 5-1. The data set shown in the
figure is a composition of 8 different concentration runs plus a replicate, for a total
of 16 runs. At t=140 sec, the flow cell with immobilized anti-insulin was exposed
to a constant concentration of insulin in the range of 2 to 188nM for 3 minutes.
During this 3 minutes, the antibody and antigen were free to associate and dissociate.
The net reaction is the binding of free antigen in solution, resulting in an increase
in detector response proportional to the mass of antigen bound. At t=320 sec, the
insulin concentration is returned to zero, and the bound antigen then dissociates from
the surface. All 16 runs were simultaneously fit to a binding model by minimizing

the squared residuals to yield the association and dissociation rate constants, k, and

kq.
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Antigen | Buffer additive | k, (M7 's™!) kg (s7})  Ka(uM) ko/kwo  ka/kao
Insulin 0.5M NaCl 44x10* 14x1072  0.32
Insulin 0.5M ArgHCI | 12x10* 22x1072 1.8 0.27 1.6
Insulin 0.5M GuHCl 40x10* 94x 1072 2.4 0.91 6.7
Myoglobin | 0.5M NaCl 1.8x10* 41x10~% 023
Myoglobin | 0.5M ArgHCI | 83x10® 7.1x10~% 0.86 0.46 1.7

Figure 5-2: Effect of arginine on association and dissociation rate constants for two
model proteins, insulin and myoglobin, with monoclonal antibodies to each. The
base buffer was BIAcore HBS-EP (10mM HEPES, 0.15M NaCl, 3mM EDTA, 0.005%
polysorbate 20, pH 7.4) buffer. k,o and k4 are the association and dissociation rate
constants in added 0.5M NaCl for each protein. Ky = k;4/k,. The estimated error in
the absolute values of k, and k4 is about 15%.

This process was repeated to yield association, dissociation, and equilibrium con-
stant data for the model systems in various buffers as shown in Figure 5-2.

Relative to the 0.5M NaCl control, 0.5M GuHCl significantly increases the dissoci-
ation rate of insulin and anti-insulin and has an insignificant effect on the association
rate. This effect of GuHCI on dissociation rate is consistent with its well-known be-
havior as a strong denaturant. Small denaturants such as guanidinium chloride and
urea bind uniformly to protein surfaces and thermodynamically favor protein states
which have the largest solvent-accessible area, such as denatured states (in folding
equilibria) and dissociated states (in association equilibria). Since GuHC! does not
significantly affect the rate of association of insulin and anti-insulin, it is likely that the
association transition state does not have a significantly different solvent-accessible
area than the dissociated state.

In stark contrast to GuHCI, ArgHCl has a much smaller effect on the dissociation
rate, and induces a large decrease in the association rate. This difference in “kinetic
signatures” suggests that ArgHCl and GuHCl act via distinct mechanisms. Consid-
ering only free surface binding effects like that of the denaturant GuHCI, it is not
possible to account for both the change in association and dissociation rates seen in
the ArgHCI case. The kinetic signature of ArgHCl is, however, consistent with that of
a neutral crowder, a large additive that has little effect on the free energy of isolated
protein molecules [11].

Using gap effect theory (chapter 4), it is possible to estimate the association rate
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depression (k,/kqo) that can be caused by a model neutral crowder the size of argi-
nine. Since the structure of the antibody-antigen complexes are not known, and we
only require an approximate value for the association rate change, a simplified reac-
tion coordinate model can be utilized. Approximating the antigens and the binding
domain of each antibody as having a characteristic dimension of 20A, the model re-
action coordinates shown in Figure 4-3 can be utilized. Taking 7,, = 4A as the size of
arginine, Figure 4-5 gives a range of 0.8 - 2.8 kcal/mol/M for the maximum increase
in the free energy barrier to association. For 0.5M arginine solution, this is 0.4 -
1.4 kcal/mol, or a rate effect of ky/ks,0 = e~ AAMT/RT _ 5] to 0.10, which covers
the range of association rate effects observed for insulin and myoglobin with their

monoclonal antibodies.

5.3 Effect on Refolding of Carbonic Anhydrase

Carbonic anhydrase was refolded in 0.5M GuHCI plus 0.5M of three different chloride
salts to assess the effect of the cations on the refolding process. The cations tested
were sodium (a control), arginine, and guanidine, all at a constant pH of 7.5. The
yield of native protein was assessed via the recovery of carbonic anhydrase’s esterase
activity. The molecular weight distribution of aggregates formed during the refolding

processes was assessed via size exclusion HPLC.

5.3.1 Yield of Native Protein

Esterase activity assays were performed as a function of initial unfolded protein con-
centration and buffer composition (Figure 5-3) to determine how each cation affected
refolding yield. The yield of active protein as a function of buffer additive increases
in the following order: NaCl << ArgHCl < GuHCl.

The relation between the refolding yield and initial protein concentration suggests
a simple model for predicting yield. The data are consistent with an aggregation

model in which there is a “decision point” species, X, which can either refold to the
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Figure 5-3: Effect of refolding buffer composition on carbonic anhydrase refolding
yield. The points are experimental esterase activity data, and the lines are the best
fit to a one-parameter, first versus second order kinetic model (equation 5.5).

native form or aggregate irreversibly and remain inactive:
Active Monomer €& X %3 Inactive Aggregate (6.1)

where k; is the rate constant for activation and k, is the rate constant for inactivation.
In the simplest case, X is the unfolded or partially-unfolded monomer, which either
folds to the native form or associates irreversibly. In that case, [X]o = [U]o. More
generally, if a large fraction of the monomer is in a state with mer number m before
the critical inactivation decision, then [X]o = [U]o/m. The yield of active protein is

then:

Yield

m [U]O/m 'f'l
— —d|X
[Ulo ./o 71 + To [X]
m  (Wh/m  d[X]
—_— — 5.2
[U]() /0 14+ 7‘2/7‘1 ( )

where [U]p is the initial concentration of the unfolded protein, r; is the rate of acti-
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vation, 7o is the rate of inactivation, and concentrations and rates are expressed on
a mass basis. Since the activation process is likely to be either an intramolecular
rearrangement (folding) or a dissociation event (from a multimeric form), it should
exhibit first-order kinetics and follow a rate law r; = k1[X]. If the primary inactiva-
tion process is association, it will exhibit higher-order kinetics, as ro = ko[ X", where
n is the order of the inactivation reaction. Substituting the assumed rate laws into

the above equation produces:

m /[U}o/m dlX] (5.3)

Yield = ——
1e [U]o 14+ kz[X]""l/k‘l

Without knowledge of n, the solution to the above integral can only be expressed
as an infinite series. If the inactivation process is simple association, n=2. If it is
a combination of many parallel association reactions, or the crossing of a high free-
energy barrier at a high mer number as in nucleation-dependent polymerization, n
will be greater than 2. Such higher-order inactivation kinetics (n = 3) have been
observed for refolding of other proteins such as lysozyme [40]. In an earlier study
of carbonic anhydrase refolding via dynamic light scattering, Cleland and Wang [23]
proposed a 2.6-power relationship between initial protein concentration and monomer
depletion rate at short times (30-60 sec). Thus, we expect a value of n between 2 and
3 to be applicable in this case.

Model cases for n = 2 and n = 3 were fit to the data and revealed that n = 2 gave
a much better fit for all three buffer conditions. The activity data with added 0.5M
GuHCI and 0.5M ArgHCI are suggestive of slightly higher inactivation order than the
added 0.5M NaCl case, but because of the uncertainty (+£5%) in the esterase activity
data, it is not possible to determine n to better than about £0.5 by direct fitting.

For n = 2, the model reduces to:

., mk k2[Ulo
Yield = "allTo In (1 + — (5.4)

Since the constants k;, k2, and m appear only as a quotient, they can be condensed to

?

a single “refolding selectivity parameter,” o = mk,/ks, having units of concentration
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Additive | o (mg/ml) a/ag

0.5M NaCl 0.28 1
0.5M ArgHCl 1.4 5.0
0.5M GuHCl 2.3 8.2

Figure 5-4: Refolding selectivity parameters (a) and parameters relative to 0.5M
NaCl (a/ o) are shown for refolding of carbonic anhydrase with three different buffer
additives. The base buffer composition was 0.5M GuHCI.

to the n — 1 power and resulting in a working equation:

Yield = ﬁ; In (1 + L%) (5.5)

Each of the data sets in Figure 5-3 were fit to the above model equation, yielding the
values of o shown in Figure 5-4. The functional forms of the model at these values
of o are shown in Figure 5-3.

The parameter a is a direct measure of the performance of a refolding additive.
It is equal to the concentration of unfolded protein at which the refolding yield will
be In(2), or about 70%.

The relative refolding selectivity values (a/ap) for ArgHCl and GuHCl are quali-
tatively consistent equilibrium shifts effects seen in globular protein association (sec-
tion 5.2). This implies that formation of irreversible aggregates is at least partially

equilibrium-controlled.

5.3.2 Multimer Distribution

Size exclusion HPLC experiments were performed to analyze the distribution of mul-
timers formed during refolding. CA was refolded with three different additives, 0.5M
NaCl, 0.5M GuHCI, and 0.5M ArgHCI, relative to a base refolding buffer of 0.5M
GuHCI, as done above in the esterase activity assays. The 0.5M NaCl refolding
experiment was performed at 4-fold lower concentration (5 uM) because visible ag-
gregates were formed within seconds at concentrations comparable to the other two
experiments (20 uM). Other than this protein concentration difference, these experi-

ments allow direct comparison of how an additional 0.5M of the three different cations
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(a) Additive: 0.5M NaCl, [U]o = 5 uM
Time (mln) M A2 A3_5 A6_15 Large

2 5 0 0 0 44%
20 56 0 0 0 44%
38 58 0 0 0 42%

(b) Additive: 0.5M ArgHCI, [U], = 20 uM
Time (min) | M A; A3_5 Ag_15 Large

2 22 30 25 21 2%
20 54 7 14 26 -1%
38 62 4 11 24 -1%

1500 80 0 0 19 1%

(c) Additive: 0.5M GuHC], [U]p, = 20 uM
Time (min) | M A; As.5 As_15 Large

2 42 39 8 0 11%
20 82 3 6 0 9%
38 8 1 5 0 9%

1500 8 0 2 0 9%

Figure 5-5: HPLC analysis of multimers formed during refolding of carbonic anhy-
drase in different buffers, expressed as a percentage of the total carbonic anhydrase.
The time reported is the time between injection onto the HPLC column and dilution
of the denatured carbonic anhydrase into the refolding buffer. The base refolding
buffer contained 0.5M GuHCl. M indicates monomer, and A;_; indicates multimers
of mer number i through j. The amount of “Large” multimers which do not pass
through the column is inferred from the difference between the amount of protein
injected onto the column and the total chromatogram area. The reproducibility of
any peak area determination from experiment to experiment is +1%.

affect refolding.

After initiating refolding by diluting denatured CA with an appropriate buffer,
three samples were run in sequence. A final sample was run after one day at each
condition. The molecular weight distributions observed as a function of time are

shown in Figure 5-5.

In all three cases, rapid association of the unfolded or partially unfolded protein
occurs at a time scale shorter than that which can be probed via HPLC. At time zero,
all of the protein is unfolded and monomeric, but by the time the first protein peaks
elute from the HPLC (about 12 minutes after dilution and refolding commence), mul-

timer assembly has occurred to a significant extent and the major reactions observed
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are dissociation of small multimers. This is consistent with observations in previous

studies [20].

In 0.5M NaCl, the refolded carbonic anhydrase is partitioned entirely between
monomers and large aggregates, with no significant isomerization between these states
observed on a time scale of minutes. With added 0.5M ArgHCl or GuHCI, the yield
of monomeric protein at 1500 min (about 1 day) is significantly increased. Also, small
multimeric intermediates are observed at short times (minutes to hours). These inter-
mediates predominately dissociate into monomeric protein, consistent with previous
studies [20].

In all three refolding buffers, significant amounts of large aggregates form which
do not dissociate into monomeric protein within one day. With longer refolding times,
the average aggregate molecular weight and hydrodynamic radii continue to increase
(data not shown), with only very slow loss of the monomer. This implies that the

native protein and large aggregate states are separated by a large free energy barrier.

5.3.3 Models of Additive Effects on Aggregation during Re-

folding

Changing the refolding buffer additive from 0.5M NaCl to 0.5M GuHCI or 0.5M
ArgHCI had significant effects on the refolding yield and on the observed multimer
distribution. In this section, we propose simple kinetic models that are consistent

with the experimental data and the effects of the three solution additives.

0.5M NaCl

With added 0.5M NaCl as in the other two buffer conditions, the yield of active
protein can be predicted from a model where a first order reaction is in competition
with a reaction of order 2-2.5. Since no multimeric intermediates are observed on a

time scale of minutes (HPLC), the simplest kinetic model consistent with this data
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Figure 5-6: Proposed kinetic model for carbonic anhydrase refolding in 0.5M GuHCI
+ 0.5M NaCl. The unfolded protein rapidly collapses to the molten state (M) from
which it can either refold (via k; to the intermediate state I and then N) or irreversibly
aggregate (via k).

and previous studies [81, 80, 20] is the following;

U™ MB51-nN (5.6)
M+M B aggregates (5.7)

where U is the unfolded protein; M is the association-competent, molten intermediate;
I is an folding intermediate close to the native state; and N is the native, active
protein. This kinetic model is shown in terms of a free energy-reaction coordinate
diagram in Figure 5-6. This model will be considered the base case, and changing
the additive from 0.5M NaCl to 0.5M GuHCI or 0.5M ArgHCI will be analyzed as

perturbations to this base case in the following sections.

0.5M GuHCI1

With 0.5M GuHCI added in the refolding buffer, the refolding yield is higher, and
small aggregates which dissociate to monomer are visible on the time scale of minutes

to an hour. Mechanistically, guanidinium chloride acts by binding to and reducing
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Figure 5-7: Proposed kinetic model for carbonic anhydrase refolding with 0.5M
GuHCI added to the refolding buffer. The base case model for 0.5M NaCl added
is shown as a solid line, and the new free energy landscape for 0.5M GuHC] added as
a dotted line. GuHCI shifts the landscape toward the smaller mers by increasing the
dissociation rates. The net effect is an increase in the yield of active protein.

the free energy of protein states in proportion to their solvent accessible area [5, 34].
The postulated effect of added GuHCl on the free energy-reaction coordinate diagram
for carbonic anhydrase refolding is shown in Figure 5-7. Since there is a loss of solvent
accessible area upon association, guanidinium chloride shifts the free energy landscape
toward the dissociated species. Also, because a significant amount of dimer which
ultimately refolds is observed at short times via HPLC, there must be a major barrier
to further association after the dimerization reaction. The NaCl experiments do not
reveal this barrier because no small aggregates are observed. These observations can
be reconciled by assuming that guanidinium chloride decreases the free energy of the
monomeric species relative to the dimer such that a new maximum in free energy for
association occurs after the dimer species, as shown in Figure 5-7. After formation
of a species larger than the dimer, association becomes more rapid and only a small
amount of intermediate multimers are observed between the dimer and very large

aggregates.
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0.5M ArgHCIl

Similar to added 0.5M GuHC], the presence of an additional 0.5M ArgHCI increases
the yield of active carbonic anhydrase relative to 0.56M NaCl, and small aggregates

which dissociate to monomer are visible on the time scale of minutes to an hour.

The additives differ significantly in their performance at higher mer number, how-
ever. In added 0.5M NaCl or 0.5M GuHCl, only a small amount of mass between the
dimer and very large multimers (A;6+) is observed. This indicates there is a “down-
hill polymerization” regime between these states where association is very rapid, the
beginning of which is shown in Figures 5-6 and 5-7. In added 0.5M ArgHCI, this
downhill polymerization is significantly attenuated, and the largest multimers are
smaller than a 15-mer. This occurs despite the fact that the refolding yield is lower
in 0.5M ArgHCI than in 0.5M GuHCI.

This difference indicate that, like in the globular protein association studies (sec-
tion 5.2), the kinetic signatures of ArgHCl and GuHCI are quite different. In the
downhill polymerization regime, association is rapid, and dissociation is negligible.
Thus, additives which deter aggregation by increasing multimer dissociation rate will
not significantly affect the downhill polymerization regime. Since guanidinium pri-
marily acts by increasing k;, guanidinium cannot attenuate this downhill polymeriza-~
tion, and mass which escapes from the free energy well at low mer number proceeds
rapidly to very large mers. In the case of arginine, however, this phase of aggregation
is significantly attenuated. This indicates that arginine slows association of the inter-
mediate multimers. The kinetic signature of arginine in refolding thus also includes

a significant k, decrease, as observed in the globular protein association studies.

A postulated free energy-reaction coordinate diagram for refolding in the presence

of 0.5M ArgHCl is shown in Figure 5-8.
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Figure 5-8: Proposed kinetic model for carbonic anhydrase refolding with 0.5M
ArgHCI added to the refolding buffer. The base case model for 0.5M NaCl added
is shown as a solid line, and the new free energy landscape for 0.5M ArgHCl added
as a dotted line. ArgHCI shifts the landscape toward the smaller mers by decreasing
association rates and slightly increasing dissociation rates. The net effect is smaller
than that of GuHC] but still results in an increase in the yield of active protein.

5.3.4 Effect of Different Kinetic Signatures on Surrogate As-

says

We have seen that arginine affects association reactions primarily by decreasing asso-
ciation rate, and guanidinium affects association reactions primarily by accelerating
dissociation rate. This difference in kinetic signatures may have important conse-

quences when using simple surrogate assays to detect protein aggregation in solution.

As seen in the differences in yield and aggregate molecular weight distribution be-
tween the refolding buffer additives ArgHCl and GuHCI (sections 5.3.1 and 5.3.2), a
decrease in the average aggregate molecular weight may not be indicative of increased
refolding yield. Simple aggregation assays such as turbidity and dynamic light scat-
tering, which roughly measure the amount of large particles in solution, will also not
correlate with yield when comparing additives that affect association with those that

affect dissociation.
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5.4 Molecular-level Interactions of Arginine with

a Model Protein

Arginine is composed of an amino acid backbone, a guanidino group, and a trimethy-
lene linker, chemical moieties which have very different affinities for proteins. The
closest analog of the amino acid backbone is the amino acid glycine. Glycine stabi-
lizes proteins against unfolding, increases the free energy of proteins in proportion to
their solvent accessible area, and is preferentially-excluded from their vicinity. The
guanidino group, a strong denaturant, has exactly the opposite behavior. Thus, we
suspected that if the trimethylene linker is neutral, arginine will be preferentially-
orientated at the protein interface, with its guanidino group tending to face the pro-
tein.

To test this hypothesis and probe the interactions of arginine with proteins in
more detail, a detailed molecular simulation of the model protein RNase A (PDB
code: 1fs3) in 1M arginine solution was conducted. RNase A was selected as a model
protein because its small size (14kD) made the simulation more economical in terms

of computational time.

5.4.1 Orientation of Arginine

The orientation of an arginine molecule relative to the protein was defined as il-
lustrated in Figure 5-9. Two vectors drawn from the center of mass of an arginine
molecule, one normal to the protein, the other through the arginine guanidino carbon,
define an orientation angle §. When § < 90°, the guanidino group is facing toward the
protein. When 8 > 90°, the guanidino group is facing away from the protein. Because
the side chain of arginine remains fairly extended in solution, the alpha carbon is on
the opposite side of the molecule. Thus, § < 90° means that the alpha carbon and
amino acid backbone are facing bulk solution, and 6 > 90° means that they face the

protein.

As observed in molecular dynamics simulations of additive effects on protein free
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Figure 5-9: The definition of the orientation angle of arginine () relative to a protein
is shown. The vertex of the angle @ is at the center of mass of the arginine molecule.
One vector is normal to the protein’s van der Waals surface. The other goes through
the zeta (guanidino) carbon.
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energy (chapter 3), it is expected that arginine molecules that are a sufficient distance
from the protein will not show any orientation preference relative to the protein. It is
important to classify arginine molecules as either “local” or “bulk,” and then analyze
the preferential orientation of only the local arginine molecules in order to maximize

the statistical significance of this calculation.

To determine the minimum distance between an arginine molecule and protein at
which the orientation of an arginine is not influenced by the protein, the ensemble av-
erage of arginine orientation as a function of distance from the protein was computed.
Statistical differences observed during the simulation can be expressed succinctly in
terms of an orientation free energy which captures the free energy difference between
the state with the guanidino carbon pointing away from the protein (6 = 90 — 180°)
and facing the protein (6 = 0 — 90°). The ratio of the populations of each state can

be used to define an orientation free energy:

90
df
AGg = ~RT'In Lf”——> 5.8
’ (e o

where AGy is the orientation free energy, and fy is the normalized orientation prob-
ability density. The orientation free energy (AGy) for an arginine as a function of
distance from the protein is shown in Figure 5-10. At short distances (r < 24), argi-
nine has significant preferences to either orient its guanidino group toward the protein
or away from the protein. We take these arginine molecules as the “first solvation
shell” and assume they are the only ones significantly influenced by the protein. Fur-
ther from the protein (r > 2A), there is no significant statistical preference for either
orientation. These arginine molecules are classified as “bulk.” The fact that there is
no orientation preference in the bulk solution is a control on the simulation method,

particularly the possibility of edge effects.

The distribution of orientation angles observed during the molecular dynamics
simulation for the “first shell” and “bulk” arginine molecules are shown together with
the theoretical random probability distribution in Figure 5-11. The probability den-

sities (fp) shown are normalized so that their integrals over the range of orientations
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Figure 5-10: The orientation free energy of arginine (AGy) as a function of distance
from the protein (r) is shown. The orientation free energy is the free energy of
flipping an arginine molecule from a state where its guanidino group faces away from
the protein to a state where its guanidino group faces the protein.

is equal to 1.

The random probability density can be derived by considering the probability
density of a randomly oriented vector relative to any fixed vector. For convenience,
we can select the x-axis as the fixed vector, and uniformly sample all orientations of

a vector whose tail is at the origin relative to this fixed vector. The (non-normalized)

probability density is then:

fo = d% ( /0 ’ /0 ” sin(0)d¢d0) (5.9)

where ¢ is the angle in the y-z plane, and € is the angle relative to the x-axis. The
result is simply fs = sin(#), which with an appropriate normalization factor for the

unit of degrees becomes fy = 7/360sin(6).

The arginine molecules in the bulk solution do not show any significant deviations

from this random distribution, as expected. In contrast, arginine molecules in the
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Figure 5-11: The probability density of arginine orientation (@) relative to RNase
A in solution is shown. Arginine molecules are divided into two classes, first shell
and bulk, depending on whether any of their atoms lie within 2A of the protein’s
van der Waals surface. The random probability density is shown for comparison.
The deviations from the random distribution in the first shell imply that arginine is
preferentially-oriented at the protein’s surface.
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first solvation shell, have a slight preference for 8 ~ 40 — 70°, and slightly avoid the
orientations 8 ~ 70 — 120°.

Using the probability density in Figure 5-11, the orientation free energy of an
arginine molecule in the first shell is —0.19 & 0.04 kcal/mol. This means that there
is a slight preference for arginine to be oriented so its guanidino group faces the
protein, as hypothesized. The error (£0.04 kcal/mol) is an estimate of the statistical
error introduced by using a finite length trajectory to perform this calculation. This
estimate was obtained by dividing the trajectory into four pieces of equal length,

computing AGy in each piece, and taking the standard deviation of these.

5.5 Conclusions

Arginine slows protein association in two types of model systems when used as a
solution additive. Added 0.5M ArgHC] slowed association in two globular protein
systems, insulin and myoglobin with their corresponding monoclonal antibodies, by
a factor of 2.2 to 3.7 versus a 0.5M NaCl control. In contrast, denaturants like
guanidinium affect association reactions primarily by accelerating the dissociation
rate.

0.5M ArgHCI also promoted the refolding of carbonic anhydrase by a factor of 5
versus 0.5M NaCl. When both arginine and guanidine are used as refolding buffer
additives, an additional 0.5M GuHCI is superior to 0.5M ArgHCIl, promoting re-
folding by a factor of 1.8. Despite this difference, the formation of large submicron
aggregates is significantly suppressed by added 0.5M ArgHCI relative to added 0.5M
GuHCI. Thus, arginine attenuates aggregation of large mers more effectively than
guanidinium, even though small aggregates form more rapidly in arginine.

The observation that ArgHCl attenuates large aggregate formation better than
GuHCI is consistent with arginine acting primarily by slowing protein-protein asso-
ciation, and GuHCI acting primarily by accelerating multimer dissociation. GuHCl
increases refolding yield more than ArgHCl because the magnitude of its effect on the

association equilibrium constant is larger than the ArgHCI effect.
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In molecular simulations of a model protein (RNase A) in arginine solution, argi-
nine was observed to interact most favorably with the protein through its guanidino
group. When in the first solvation shell around a protein, arginine preferentially ori-
ents itself with its guanidino group tending to face the protein. The free energy of
this configuration is 0.19 kcal/mol lower than an orientation in which the guanidino
group faces away from the protein.

Taken together, these results suggest that the mechanism by which arginine pre-
vents aggregation is that a loose, preferentially-oriented shell of arginine molecules
surround each protein and slow protein-protein association via a gap effect. The
order-of-magnitude of arginine’s effects on globular protein association and on pro-
tein aggregation during refolding are consistent with that predicted by gap effect

theory for a neutral crowder of 4A radius.
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Chapter 6

Conclusions

113



6.1 Calculation of Thermodynamic Properties of

Proteins in Mixed Solvents

A quantitative method for calculating preferential binding coefficients without ad-
justable parameters has been developed and validated. The preferential binding co-
efficient is linked directly to the fundamental thermodynamic property of interest
for stabilization studies, the transfer free energy. Our calculation method is not a
derivative of thermodynamic integration or thermodynamic perturbation methods
and requires only a single trajectory to compute the transfer free energy of a pro-
tein into a weak-binding cosolvent system. Our results match experimental data well
for glycerol and urea solutions, covering a range of positive and negative binding
behavior.

This represents, to our knowledge, the first time such quantities have been cal-
culated without adjustable parameters for proteins in mixed solvents. In addition
to allowing rapid, direct computation of thermodynamic properties, the detail in
the simulation employed here provides insights into the molecular-level origins of the
observed free energy effects.

This work also led to the theoretical formulation of a simple integral equation
theory that relates the preferential binding coefficient to the additive-protein and

solvent-protein radial distribution functions.

6.2 The Gap Effect

Through the integral equation theory for solvent effects and the molecular-level in-
sights gained in the simulation studies above, a simple framework for modeling pro-
tein association and dissociation reactions in the presence of solution additives was
developed and analyzed. This model extends prior work in binding theory by con-
sidering various geometric models of the protein surface, the protein-protein associa-
tion/dissociation transition states, and solvent radial distribution functions obtained

from all-atom molecular dynamics simulations.
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The model supports the hypothesis that a “gap effect,” analogous to osmotic
stress, will occur in association reactions when large solution additives with sufficient
protein affinity are present. This gap effect may significantly perturb the free energy
of protein-protein encounter complexes, such as the association transition state, and
have only a small effect on the end states. Thus, we have demonstrated how it is possi-

ble for an additive to exert a purely kinetic effect on protein association/dissociation.

6.3 Neutral Crowders: A Class of Additives that
Deter Aggregation

We call additives which slow association reactions via the gap effect without affecting
the free energy of isolated protein molecules, “neutral crowders.” Neutral crowders
represent a potentially important class of anti-aggregation additive because they can
affect protein-protein association reactions with only a small effect on protein fold-
ing. Thus they can significantly improve the selectivity toward proper folding versus
aggregation in a refolding process. They can also deter aggregation from the native
state when such aggregation exhibits second or higher-order kinetics. These molecules
may be useful in other applications that involve association. Such applications are

discussed briefly in Section 7.2 (Future Work).

6.4 Arginine is Preferentially-oriented

Arginine is a combination of two chemical moieties, the amino acid backbone and
guanidinium, which have very different affinities for proteins. It was hypothesized
that when combined into a single molecule, these differing affinities would give rise
to a molecule that is preferentially-oriented when solvating proteins.

This assertion was validated by detailed molecular simulation. When in the first
solvation shell around a protein, arginine preferentially orients itself with its guani-
dino group tending to face the protein. The free energy of this configuration is

0.19 kcal/mol lower than an orientation in which the guanidino group faces away
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from the protein.

6.5 Arginine is a Neutral Crowder

Based on the theory of neutral crowders and available experimental data, it was
postulated that arginine’s propensity to prevent aggregation when used as a solution
additive (0.2 - 0.5M) is due to the fact that it is a neutral crowder. Three experimental
tests of this hypothesis designed to probe different aspects of neutral crowder behavior
were performed.

Arginine was shown to slow protein association in two types of model systems when
used as a solution additive. 0.5M arginine slowed association in two globular protein
systems, insulin and myoglobin with their corresponding monoclonal antibodies, by a
factor of 2.2 to 3.7. 0.5M arginine also promoted the refolding of carbonic anhydrase
by a factor of 5.

When both arginine and guanidine are used as refolding buffer additives in refold-
ing of carbonic anhydrase, 0.5M guanidine is superior to 0.5M arginine, promoting
refolding by a factor of 8.3. Despite this difference, the average aggregate molecular
weight is decreased in 0.5M arginine relative to 0.5M guanidinium. Because arginine
affects association reactions primarily by decreasing the association rate, it can atten-
uate a downhill polymerization, such as that which is responsible for large aggregate
formation during refolding. Guanidinium chloride, which acts primarily by increasing

the dissociation rate, does not affect such processes.
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Chapter 7

Future Work
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The work of this thesis suggests several new areas for future research. These are

summarized briefly in the following sections.

7.1 Design of Large Neutral Crowders

Our gap effect model predicts that if a neutral crowder significantly larger than argi-
nine, perhaps 8A in radius or larger, can be developed, it would depress association
rates by orders of magnitude more than arginine. Such an additive could revolutionize
protein stabilization. Because the mechanism of its action is general and its potency
could be so large, a large neutral crowder could be used broadly.

As the size of a neutral crowder is increased, the gap effect becomes propor-
tionately larger, but maintaining neutrality is difficult as size increases. At a con-
stant protein-additive interaction energy, increasing additive size would decrease the
protein-additive preferential binding coefficient as the third power of additive size
due to an excluded volume effect. Thus, to make a large neutral crowder, additive-
protein interactions must become significantly more attractive as size is increased. If
this cannot be achieved, the gap effect will diminish and ultimately disappear.

One strategy to make additive-protein interactions more favorable is to put mul-
tiple protein binding groups such as guanidinium on the additive’s surface. If these
binding groups orient themselves such that they can simultaneously bind to the same
protein molecule, an avidity effect leading to improved binding affinity will be cre-
ated. This avidity strategy is used in nature to significantly increase the affinity of

otherwise low affinity interactions [57].

7.2 Control of Other Association Processes, such
as Crystallization and Adsorption

There may be other applications involving protein association or assembly where
molecules akin to neutral crowders (or molecules with opposite properties, such that

they accelerate association) can be further studied and utilized. T'wo such applications
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are protein crystallization and protein adsorption.

Protein crystallization, much like stabilization of proteins against aggregation, in-
volves protein association and solution additives, the selection of which is an empirical
art. The gap effect hypothesis and the assertion that arginine is a neutral crowder
suggest that additives such as arginine may be useful additives. Because of their abil-
ity to slow protein association reactions, they may allow only the most stable crystal
form to grow, or affect the selectivity between nucleation and growth. Because of
the central role of crystallization in protein structure studies (via x-ray crystallogra-
phy) and separations (via selective crystallization), improvements in current heuristic
approaches via increased mechanistic understanding are likely to be significant.

Similarly, protein adsorption on surfaces is an association reaction-driven process.
Adsorption can be favorable, in the case of a separation such as chromatography,
or unfavorable, as in the case of handling low concentrations of protein where losses
to the surface are not desirable. A greater understanding of how solvent conditions
affect these processes will be beneficial. One possible outcome might be the use of an
additive such as a large neutral crowder when using proteins in microfluidic devices
to minimize losses to the device’s internal surfaces.

In either case, a more fundamental understanding of how solution conditions affect
these processes will be beneficial. Further, they will provide experimental tests of the

gap effect hypothesis in new areas.

7.3 Molecular Mechanism of the Hofmeister series

The Hofmeiseter lyotropic series is one of the earliest empirical observations of how
ions affect protein stability, dating back to the late 1800s [41]. Despite continued
study over the past 120 years, no one has been able to explain the Hofmeister series
on the basis of fundamental, physical-chemical properties [17].

With the free energy simulation technique developed in this work, it should be pos-
sible to reproduce the thermodynamic effects of Hofmeister series ions on a model pro-

tein. Then, the molecular-level detail afforded by this all-atom, statistical-mechanical
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model can be probed further to ascertain the molecular-level mechanism behind the

thermodynamic effects seen.

7.4 Testing Gap Effect Theory with Model Com-

pound Studies

We have introduced a new theory about how additives affect protein association reac-
tions, called “gap effect” theory (chapter 4), that relates an additive’s size and protein
affinity to its effects on association and dissociation rates. This theory was tested ex-
perimentally via studies on guanidine and arginine (chapter 5) and computationally
using a simple statistical-mechanical model (chapter 4).

Further experimental validation of gap effect theory could be performed by analyz-
ing the association and dissociation rate effects of a homologous series of additives,
using Biacore (as in chapter 5) or another suitable kinetic test. The additives se-
lected must have only weak, nonspecific interactions with proteins. Also, some of the
additives should be neutral or nearly-neutral crowders, so that a gap effect will be
observable. Lastly, it would be ideal if only the additive’s size (r.,, see section 4.1.2)

or its interaction energy with proteins (e or I'xp) varied within the series.

One homologous series which meets these requirements is the series of arginine
analogs with different length methylene units between the amino acid alpha carbon
and the guanidino group. Compounds are available with at least 1, 2, 3 (arginine),

and 4 methylene groups.

Another possible strategy is to perform more detailed tests of gap effect theory
using molecular dynamics simulation. This would augment the mean-field statistical-
mechanical models used in chapter 4. Molecular dynamics simulations of proteins
along an association reaction coordinate in different additives could be performed to
compute the transfer free energy as done in chapter 3. The additives tested in this
fashion could be those that are tested experimentally (as above), or model additives

designed to probe specific aspects of gap effect theory in more detail, such as size
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(rm) and affinity (I'xp) effects.

7.5 Osmotic Stress Effects of Large Additives on

Protein Folding Equilibria

Large additives increase the free energy of protein species that contain narrow gaps
into which the large additive cannot fit but water can. Such free energy effects
of pure steric origin, called “osmotic stress,” have been shown to be important in
conformational transitions of proteins [67, 24].

When an additive induces other free energy effects on an equilibrium, such as
by binding to the states in equilibrium to different extents in regions other than
the narrow gaps, osmotic stress effects can be difficult to decouple from these other
effects. One ubiquitous protein equilibrium where both types of effects are likely to
be present is the folding equilibrium between native state, unfolded state, and other
intermediately folded states such as the molten globule state. Typical additives used
in osmotic stress studies are large sugars and polyols such as sorbitol and sucrose.
These classes of additives are also typically preferentially-excluded from the vicinity
of proteins for steric reasons, and have negative preferential binding coefficients with
proteins. Because the solvent accessible area of the species on the folding pathway are
often quite disparate, the magnitude of this effect is not the same at all points along
the pathway. Because a negative preferential binding is unfavorable, such additives
shift the folding equilibrium toward the most compact (native) state.

Partially-unfolded states, such as the molten state, are likely to have a large
number of small intramolecular gaps into which water can easily fit but a large additive
such as sucrose will not. This perspective suggests that these additives may also shift
the folding equilibrium toward the native state via an osmotic stress effect in addition
to the “free surface effect” described above.

This hypothesis can be explored via molecular simulation as done in this work.

It is likely that a useful conclusion can be reached with a simplified model, such as
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a worm-like chain model, for the protein, and a simple solvent-protein interaction
potential such as the Lennard-Jones or Exponential-6 potential. To separate the free
surface and osmotic stress effects, ideal neutral crowder additives of varying sizes
can be used. This should allow the unfavorable free energy of osmotic stress to be
determined as a function of additive size and protein radius of gyration, or other

appropriate order parameter for the folding-unfolding reaction coordinate.

7.6 Rational Additive Selection

The ability to predict thermodynamic and kinetic properties of proteins in mixed
solvents without adjustable parameters opens the door to truly rational additive se-
lection. A simulation protocol similar to the one developed in this work can be used
to pre-screen additive candidates for a desired thermodynamic or kinetic effect, thus
diminishing the number of combinations that need to be tested experimentally.
Further reduction of the computational complexity of the free energy calculation
would be of significant benefit in this effort. In particular, a method that can achieve
more rapid sampling of additive position space may significantly increase the size of

a protein for which this approach is computationally practical.
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