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Abstract

This thesis explores the nature of the ultrasound-stimulated vibro-acoustography
(USVA) imaging method introduced by Fatemi and Greenleaf in 1998.' The USVA
method relies upon the generation of a difference frequency signal from the interaction of
two pressure fields with a target. A thorough understanding of USVA will be necessary
to further advance this dual-frequency method. Prior studies demonstrate a correlation
between difference frequency signal response and tissue temperature, and difference
frequency signal response and tissue coagulation,2' 3 suggesting that USVA may be well
suited for monitoring focused ultrasound surgery. This thesis explores three possible
sources of the difference frequency signal: 1) the parametric effect, 2) linear reflection of
the local difference frequency field, and 3) nonlinear interaction of linearly scattered
waves. The research compares the relative significance of these three possible sources
using mathematical analysis, computer simulations, and experimental results.

The results set forth in this thesis suggest that the parametric effect may be the
most significant source of difference frequency signal, reaching pressures of 1-10 Pa and
significantly overshadowing the other two enumerated effects. The second effect, the
linear reflection of the local evanescent difference frequency field, is undetectable
experimentally. Finally, the third effect, the nonlinear interaction of linearly scattered
waves for a single bubble, contributes to the difference frequency signal only slightly,
albeit detectably, reaching levels of .1-1 Pa. These results have a number of implications
for future implementations of USVA. In order to utilize USVA as a successful imaging
tool, one must take measures to avoid the signal from the parametric effect, which can be
considered an imaging artifact. Additionally, it may be possible to use the nonlinear
interaction of scattered waves to form images that rely on the presence of small



scatterers; a technique that may be enhanced with the use of contrast agents containing
small scattering micro-bubbles in vivo.4
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1 Introduction

Focused Ultrasound Surgery (FUS) uses highly focused ultrasound radiation to cause

thermal changes in tissue treatment volumes with little thermal effect in the near field. In this way,

therapeutic ultrasound is proving to be an increasingly effective way to treat various cancers, as well

as non-malignant pathologies in humans using coagulation necrosis 5 and hyperthermia 6 . In

addition, studies have demonstrated that phased arrays may be effective as noninvasive surgical

tools7 11. However, the real-time monitoring of the location and extent of tissue damage remains

one of the greatest challenges in focused ultrasound treatment. Monitoring damaged tissue and

temperature elevations during noninvasive procedures has traditionally been performed using

Magnetic Resonance Imaging (MRI)2-9 . However, difficulties with MRI monitoring of ultrasound

therapy include the high cost and limited availability of MRI systems. Studies of other imaging

techniques including diagnostic ultrasound2 0 21 and CT imaging 22,23 demonstrate only marginal

degrees of success at monitoring FUS. An ideal monitoring system would utilize the same

transducer that applied the ultrasound therapy, thereby avoiding the large cost and limited

availability of an MRI system.

Ultrasound-stimulated vibro-acoustography (USVA) refers to an imaging method proposed

by M. Fatemi and J.F. Greenleaft 4' 2 5 for use as a diagnostic imaging modality. Fatemi and

Greenleaf theorize that intense ultrasound at two differing frequencies causes a local cyclical force,

resulting in a mechanical tissue response that generates difference frequency sound. According to

Fatemi and Greenleaf, "modulation of the energy density creates an oscillatory force, effectively

vibrating the object at the selected region. The resulting vibration of the object produces an

acoustic field that can be measured some distance away" 24. Although the wavelength of the

difference frequency sound generated may be many centimeters in length, Fatemi and Greenleaf's

results suggest that the intersection of the two primary fields allows the acoustic energy incident on

the imaging target to be localized to an area of much smaller dimension (millimeters). The

wavelength of the primary frequency determines the dimension of the focused incident fields.

Therefore, one unique feature of Fatemi and Greenleaf's dual-frequency method is the high spatial

resolution obtained by the highly focused primary fields. In addition, the low-frequency response

propagates with very little attenuation, resulting in the theoretical possibility of a high-resolution

imaging method with high signal-to-noise ratio.
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In prior studies, we tested the feasibility of the USVA system for monitoring thermal

surgery. The studies demonstrated the correlation between difference frequency signal response

and tissue temperature, and difference frequency signal response and tissue coagulation 22&29 .

However, these results are difficult to reproduce and characterize in a quantitatively meaningful

manner. In addition, as both we and Fatemi3 0 observe, the difference frequency sound generation

from the USVA system exhibits great sensitivity to the orientation of the target and the geometry of

the experimental set-up. This suggests that the mechanisms involved in the generation of the

difference frequency response may not be completely understood.

Understanding the physical mechanisms for the nonlinear production of difference frequency

sound is a crucial first step in refining this imaging method and designing a more robust and

clinically useful imaging system. This thesis explores three possible acoustic sources of the

difference frequency signal: 1) the parametric effect, 2) linear reflection of the local difference

frequency field, and 3) nonlinear interaction of linearly scattered waves. In addition, we present

empirical measurements of tissue displacement and oscillatory forces that are not adequately

explained by the three effects present in this thesis. Finally, we consider the generation of sound as

a result of this tissue motion and determine the minimum displacements needed in order to produce

a detectable signal.

1.1 Background

Fatemi and Greenleaf proposed the vibro-acoustography imaging technique as a method of

"radiation force" based imaging.31 Traditionally, the radiation force is defined as a static force

proportional to the time average intensity of the acoustic field which results from the nonlinear

action of a pressure wave with itself.3 Several researchers have explored various radiation force

techniques aimed at measuring material properties of biological tissues.33 37 The relatively new field

of radiation force imaging is of great interest because of known variances in tissue mechanical

properties associated with malignancy and other pathologies.3 8'39 Therefore, an imaging method

that can distinguish between tissue mechanical moduli would be invaluable for diagnosis of

malignancy where other imaging methods fail to distinguish healthy from pathological tissue. In

addition, due to normal variations in mechanical stiffness of different tissue types, imaging tissue

moduli may help differentiate between healthy tissues to provide a new means for general

physiological imaging.'

iThis field of radiation force imaging is closely related to another promising field of tissue elasticity
imaging called elastography.
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The USVA method has been used for localizing arterial plaques, imaging breast micro-

calcifications, and measuring properties of solid targets like metal bars and struts by Fatemi and

Greenleaf4 40 41 and others42' 45. We have demonstrated the use of this technique ex vivo to image

lesions of coagulative necrosis caused by tissue ablation during thermal therapy and to measure

temperature changes as tissue is heated by the application of focused ultrasound2 3'26& 29. Despite

these advances in the imaging technique there are still many difficulties with the dual-frequency

system including sensitivity of the difference frequency response to target geometry and orientation.

In order to better understand these findings, the origin of the difference frequency sound requires

further investigation.

The study of the generation of difference frequency sound involves nonlinear acoustics

because only through nonlinear mechanisms can waves at two frequencies combine to produce a

wave at a third frequency not originally present as an input to the system. There is a rich body of

literature filled with debate pertaining to the nonlinear generation of sum and difference frequency

fields in acoustics4" 2. The historic paper entitled "The Scattering of Sound by Sound" published in

the Journal of the Acoustical Society of America in 1956 by Ingard and Pridmore-Brown sparked a

controversy in the field of acoustics regarding the creation of scattered sound waves at the sum and

difference frequency from the interaction of incident waves at a non-zero angle of propagation6 3 .

The theory of this type of nonlinear sound generation was clarified by Westervelt in his papers on

the scattering of sound by sound64 and the parametric array65 which essentially explained that only if

two fields are propagating in the same direction will they interact to produce sum and difference

frequency waves which propagate. However, experimentalists reported measuring a sum frequency

signal originating from the interaction of incident primary beams at a non-zero angle of

propagation.6066 To this day there is some disagreement over these results as well as continued

interest in the scattering of sound by sound4649'57'5961,64 '6675. Much of this history is outlined by

Beyer7 6 and also TenCate66.

Theoretically, there are many mechanisms of nonlinear sound generation in acoustic

regimes involving sources at multiple frequencies which may lead to the production of sum and

difference frequencies. The controversy over experimental results in the literature arises in part from

the plethora of possible sources of nonlinear sound, which exist simultaneously and are difficult to

isolate experimentally. Several of the previously proposed sources of nonlinear sound in a dual-

frequency system include nonlinear scattering from the interaction of two collimated fields in the

medium 46, the nonlinear interaction of scattered waves from a target 52,77, parametric radiation in

the incident field 42,47,65, and pseudo-sound effects at the hydrophone detector47. However, the only

source of difference frequency considered by the authors of the vibro-acoustography imaging

method is the "time varying" radiation force of the dual-frequency field on a target.
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1.2 Scope of Thesis

This thesis explores three acoustical mechanisms which may contribute to the production of

difference frequencies in a dual-frequency imaging system: 1) the parametric effect, 2) linear

reflection of the local difference frequency field, and 3) nonlinear interaction of linearly scattered

waves. Through mathematical analysis, computer modeling and laboratory experimentation, we

explore and compare these three possible sources of difference frequency production with the aim

of attaining a more complete understanding of the source of difference frequency signal in the

vibro-acoustography imaging system.

The next (second) chapter of this thesis reviews the derivation of the nonlinear wave

equation from first principles following the method found in standard references3278.ii The

remainder of this thesis is organized into three main chapters, each of which addresses one of the

three possible sources of difference frequency sound. Each chapter contains a theoretical section, a

simulation section, and an experimental section. Chapter 3 sets forth an analytical description of the

parametric effect, one method of nonlinear production of a difference frequency field. This

analytical description models the reflection of a focused beam of one element from a tissue

phantom onto the other element of the system. Several experiments demonstrate the correlation

between the parametric effect and the orientation of the target. In chapter 4, we solve the second

order wave equation for the difference frequency field that exists locally on the surface of an object.

Then, we provide the solution for the scattering of this local difference frequency field for various

spherical and planar targets. Repeated experiments fail to detect a difference frequency sound from

this mechanism. In chapter 5, we calculate the nonlinear interaction of scattered waves from small

spherical scatterers by combining linear scattering theory with Dean's5 2 nonlinear spherical wave

interaction theory. Preliminary experiments illustrate the production of difference frequency sound

from small scatterers in a silicone gel phantom.

1.3 Description of Dual-Frequency System

The dual-frequency system used for the majority of the experiments and simulations in this

thesis are similar to the system proposed by Fatemi and Greenleaf, with several key modifications'.

These enhancements in the system design include (i) the use of two separate transducer elements

arranged at a large angle to one another, (ii) the use of very short pulsed waveforms (rather than

i Each subsequent chapter uses the results of this first mathematical foundation chapter together with
coherent wave theory to account for the local difference frequency, parametric, and nonlinear scattering
effects.
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CW), and (iii) the addition of a dual-directional coupler in order to measure reflected power from

one element onto the other element. The modified design still produces difference frequency

responses similar to the original system, but allows for the distinction between the various causes of

this response. This helps the experimentalist tease apart the physical mechanisms responsible for

the total difference frequency response.

The dual-frequency system consists of source generation equipment and difference frequency

signal measuring equipment. For source generation, we use either a custom designed dual-

frequency amplifier system (Advanced Surgical Systems, Tucson, AZ) or separate function

generators (Wavetek model 395, Fluke, Everett, WA and Hewlett-Packard HP33120A, Palo Alto,

CA) connected to power amplifiers (ENI 1200L and ENI 3100L, Rochester, NY). We couple the

source generation devices to custom fabricated ultrasound transducers via standard inductor-

capacitor (L-C) matching circuitry.

The most important deviation from Fatemi and Greenleaf's system is the design of the

transducers. Separating the elements reduces unwanted inter-element interaction and near-field

interaction of the two beams. Fatemi and Greenleaf's system design'i , utilized in preliminary

experiments leading to this thesis, consisted of a two-element transducer with elements arranged

confocally such that their foci intercept." This confocal transducer was fabricated in house by

etching the ground plane of each transducer separately in order to create two drivable elements from

a single PZT-4 crystal. This method of fabrication ensures perfect alignment of the elements with

one another. However, we noted that the mechanical coupling of the elements may lead to

interaction at the transducer itself which could propagate difference frequency waves towards the

focus rather than relying on local interaction at the focus.7 9 Previously, a group in France had

reported a related result in which they showed that even in the absence of mechanical coupling, the

nonlinear interaction of incident sound waves generated with a concentric ring transducer may

cause difference frequency sound generation short of the focal region.42

iii Until the most recent paper from Greenleaf's group'40 , they utilized the transducer design described in
this section.24 This more recent study compares a transducer design they call "x-focal" which resembles
the transducer design used in this thesis and our previous publications2& 28. 22

iv We used this design for many preliminary ex vivo tissue experiments conducted prior to this doctorate
thesis3, as well as for some of the tissue image results in Chapter 5.
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Figure 1-1: Diagram of the complete experimental set-up.

This mechanism by which the two fields may interact to produce difference frequency sound

if the elements are mechanically coupled or closely spaced will be explained more completely in

chapter 3 where the mathematical foundation is established for the generation of difference

frequency sound from a parametric array. The main design consideration was simply that the

beams from the two elements should be at a considerable angle to one another in order to avoid

their interaction before the focal region which would inject addition unwanted complexity to the

system and would underlie the design of difference frequency sound generation at the focus only.

In order to meet this design constraint, the final system design consisted of two completely separate

spherical cap elements positioned at a large angle to one another on an acrylic holder so that their

foci intersect but their beams are almost completely independent before the focal region (see Figure

1-1). Certainly, this system minimizes the collinear interaction of the two sources and therefore

prohibits the generation of difference frequency sound as described by Westervelt in his paper on

the parametric arrays .

For the separate element system, each element was fabricated in house from PZT4 with a

diameter of 4cm and focal length of 10cm operating at the third harmonic (1.624 MHz) or the fifth

harmonic (2.74 MHz) of the fundamental plus or minus the difference frequency (usually in the kHz

or Hz). The two separate elements were mounted on a custom fabricated adjustable acrylic arc so

that the experiments could be repeated at various angles of separation. In addition, one of the

targets used frequently in this thesis is a silicone gel tissue phantom which has been studied

extensively for its tissue-like mechanical properties by Ottensmeyer8l' 82.

The measuring equipment consisted of a low frequency hydrophone (International Transducer

Corporation 6050C, Santa Barbara, CA) with a sensitivity of-154 dB re 1V/WgPa connected to a

I
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digital filter (Stanford Research Systems, SR650, Palo Alto, CA) and registered to a digital

oscilloscope (Yokogawa DL7100, Japan). The measurement equipment was controlled by a GPIB

IEEE-488 connection to a personal computer and the data was transferred and stored on the hard

dive of the computer.

Peak Pressure

There are two important values used to characterize the system and provide a relative

magnitude with which to compare the pressure of difference frequency sound generated from the

three mechanisms described in this thesis. These values are the peak pressure of the incident

primary field and the system noise. The peak pressure of the source field provides a relative value

with which to scale the measured pressures at the difference frequency. Unlike linear acoustics

problems which scale with pressure, the response at the difference frequency is dependant upon the

product of the input pressures of the primary beams. This value is proportional to the electrical

driving power which is provided through this thesis for reference when describing the simulations

and experiments. In general, the driving powers used in experiments range from 1 to 30 W which

results in peak pressures ranging from 800 kPa to 7 MPa for the focused primary fields.

For simulations, the peak pressure of the incident field from the source transducers is

calculated by a consideration of the efficiency, E, of the transducer, the beam pattern at the focal

plane, f(x, y), and the relationship between total acoustical power, WA, and pressure squared, p 2 ,

given approximately by,

W E= A = W P(x)Z (0.1)
Area

where Z is the acoustical impedance which is equal to the product p c of the speed of sound (c)

and the density (p ) (for values used see Table 1-4). The integral is evaluated over the area of the

focal plane. The efficiency values and beam profiles for one of the dual-frequency systems used in

this thesis is provided in Appendix A.

The pressure of the primary field at each point in space as measured by the needle

hydrophone can be expressed as P(x,y) = Ppe -o where f(x,y) are the relative pressure

measurements collected by the hydrophone at each position (x, y) in the plane, f is the

maximum measured value over the region (x, y), and Pp is the peak pressure value for the field.
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Substituting this expression into equation (0.1) and solving for Pa gives the following expression

for the peak pressure of the incident source field,

Pdt =| . p (0.2)

Area

Therefore, we can calculate the peak acoustic pressure over the focused beam, Pk, given the input

electrical power ( WE ), the transducer efficiency (E ), the measured pressure distribution over the

focal plane (f(x, y) ), and the medium properties of density (p ) and speed of sound (c).

Noise Measurements

We measured the system noise to set a lower bound for the detectable difference frequency

sound in our experimental set-up. Any physical process which generates difference frequency

sound at amplitudes below the system noise may result in an undetectable signal. The definition of

the system noise used in this thesis is the standard deviation of the total background pressure

acquired when the experimental system is run without any source of difference frequency sound.

This measurement accounts for all signal sources that are not due to difference frequency generation

and includes noise contributed by the amplifiers and electronic circuitry as well as background

signals and interference in the environment of the experimental set-up.

The system noise was measured in a series of experiments with the digital filter set to two

different band-pass settings indicative of difference frequency ranges used in this thesis. These

experiments were conducted in order to demonstrate the magnitude of ambient noise in the

experimental environment as well as the effect of filtering to reduce low frequency noise. The

experiments to determine the amplitude of the noise consisted of acquiring 50 measurements from

the low frequency hydrophone used throughout this thesis (International Transducer Corporation

6080c, Santa Barbara, CA) while all electronic devices were on but no dual-frequency signal was

radiated from the transducer. The hydrophone signal was band-pass filtered (Stanford Research

Systems SR650, Palo Alto, CA) to eliminate frequencies outside of the range 100 Hz - 50 kHz in

one experiment and kHz - 50 kHz in the other. The signal was then registered to a digital

oscilloscope (Yokogawa DL7100, Japan) and recorded to a personal computer via a GPIB-IEEE488

communications line.

The system noise is given below in absolute values of Pa and dB re piPa (Table 1-1). For

the band-pass filter setting of 100 Hz - 50 kHz, a noise level of 94 dB (.05 Pa) was measured. For
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the band-pass filter setting of 1 kHz - 50 kHz, a noise level of 86 dB (.02 Pa) was measured. The

decrease in the noise level for the second experiment can be attributed to the elimination of low

frequency noise below 1 kHz arising from mechanical vibrations in the environment as well as

flicker noise, an electronic source of noise which is dominant for amplifiers in the hundreds of hertz

frequency range83. These noise levels recorded for our experimental set-up are similar to the noise

level found by Roy and Wu in experiments measuring the scattering of sound by sound with noise

levels recorded at 80 dB (.01 Pa)5 6.

Table 1-1: Noise measured in experimental environment.

Description of System Targets

In this thesis, several targets are used to interact with the acoustical fields to generate

difference frequency sound in experiments. The ultimate goal of the dual-frequency system is for

use as a tissue imaging modality. Therefore, tissues would be ideal targets for determining the

difference frequency generation of the system. To this end, several images are made using a target

of fresh ex vivo rabbit liver tissue. However, many fundamental principles can be demonstrated for

the interaction of the two frequencies using basic targets (referred to as tissue phantoms) with more

constant mechanical and acoustical parameters. Tissue phantoms are ideal for the laboratory setting

where tissue parameters may not be constant over the course of experiments and where more

precise control and repeatability of the target parameters is desirable. The targets used in this thesis

include a polyethylene (measuring 10.5 cm x 10.5 cm x 1.1 cm), which is used to model the

reflection due to a tissue interface, and a silicone gel tissue phantom (11 cm diameter circular slab,

2.8 cm thick), which is used to model the mechanical properties of tissue. The silicone gel phantom

has mechanical properties which closely resemble those of biological tissues and has been used

extensively by others to mimic the elastic properties of tissue84 86. The acoustical properties of the

polyethylene plate and the silicone gel are provided in Table 1-2.

Filter Band Pass System Noise Amplitude (Pa) System Noise Level (dB re pPa)

100 Hz - 50 kHz .05 94

1 kHz - 50 kHz .02 86
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Target Speed of Sound, m/s Density, Acoustical Absorption

kg/m3 (Np/m/MHz)

Polyethylene Plate 7 1950 900 5.53

Silicone Tissue Phantom v 1050 1100 3.45

(30:70, 40:60, 50:50 mix)

Mammalian Muscle8 " 1508-1630 1070-1270 2-11

Table 1-2: Acoustical properties of targets used.

The mechanical Young's modulus of tissue as measured by various methods of mechanical

indentation or compression together with the modulus for the silicone gel tissue phantom as

reported by Ottensmeyer86 are presented in Table 1-3.

Tissue/Material Young's Modulus, kPa

Bovine Liver9 .43-1.68

Human Fibroglandular Breast Tissue 1.8

Human Adipose Breast Tissue° 1.9

Rabbit Liver 1 5.6

Rabbit Kidney9l8.8
Silicone Gel 6 (50:50 mix) 2.39

Silicone Gel 6"" (40:60 mix) 7.63

Silicone Gel s6 (30:70 mix) 15.3

Table 1-3: Mechanical properties of tissues and silicone gel tissue phantom.

The system described above in section 1.3 contains the basic elements of the original USVA

dual-frequency system while including several enhancements designed to isolate the effects to be

studied in this thesis. Before the three nonlinear effects that will be explored can be discussed in

particular, the mathematical foundation for the generation of difference frequency pressure must be

v We measured the acoustical properties of the silicone gel using standard methods of time of flight for
determining the speed of sound as described in Karshner14L and using an electronic balance together with
volume displacement to determine the density. We measured the coefficient of absorption using the
standard technique based on the change in the measured radiation force as a function of sample thickness.
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established. This basis begins with the derivation of the second order wave equation in the next

chapter, after which the general method for solving the wave equation for the difference frequency

pressure is presented as well as a discussion of the significance of this equation. These results are

then used throughout the thesis in various implementations and models to calculate the generation

of difference frequency sound from the three effects considered.

Simulation Parameters

Throughout this thesis, computer simulations are performed to calculate the difference

frequency sound generation by the three mechanisms described in this thesis. These simulations are

all performed in the Matlab® programming environment on a personal computer with a 2GHz

Pentium processor and 1Gb of RAM. The common simulation parameters used throughout this

thesis are provided in Table 1-4.

Parameter Description Value

c Speed of sound in water medium' 1500 m/s

Cslicoe Speed of sound in silicone gel tissue phantom' 1050 m/s

Cp~oejnrcltn Speed of sound in polyethylene plates7 1950 m/s

P0 Density of water medium" 998 kg/m3

Pilkcone Density of silicone gel tissue phantom' 1100 kg/m3

PpoyeaylIce Density of polyethylene plate 7 900 kg/m3

7ar Ratio of specific heats for air76 1.4

Parameter of nonlinearity (for water at 1 atm, 30 0C)7 6 5.2

yer =1 + Relates equations for ideal gases to cases of water medium)76 6.2

(1- r) Constant of nonlinearity = 1 + (-)r for an ideal gas" 1.4

Table 1-4: General parameters for simulations used throughout the thesis.

Additional parameters like the power and geometry used, which is specific to the simulation,

are detailed in the simulation section of each chapter.

"i We calculated this value using definitions from Beyer7 6 as well as Morse and Ingard32 .
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2 Mathematical Foundation

The acoustical wave equation governs the interaction of sound waves with one another and the

medium in which they propagate. This equation arises from combining two general equations of

fluid motion, namely the equation of continuity and the equation of motion, together with the

equation of state, which relates the density to the pressure. In the usual derivation of the linear

wave equation, the fundamental equations are linearized before they are combined, thereby

eliminating higher order terms. However, the generation of difference frequency sound relies upon

the interaction of waves in a nonlinear manner. Therefore, higher order terms must be retained in

order to adequately describe this effect using the wave equation.

In this chapter, we briefly review a standard derivation3 2' 7 8 of the free-space, second-order,

nonlinear wave equation in order to explain the origin of the second-order source term on the right

hand side which is not present in the linear wave equation. First, we expand the equation of state,

the equation of continuity, and Euler's equation to include second-order terms. Then, we combine

these fundamental equations to give the second-order wave equation which includes 'source terms'

on the right hand side not present in the linear wave equation.

2.1 First and second-order wave equations

The first-order wave equation is derived by combining the linearized form of three

fundamental equations: the equation of continuity, the equation of motion, and the equation of

state. In order to derive the second-order wave equation, these three fundamental equations are

expanded to second order and then combined. The fundamental equations are expanded to second

order by inserting field variables expanded to second order into the general form of these

equations32'78. By way of example, suppose Vr is a field variable, like density or velocity. This

variable can be written as sum of increasing order terms such that, V = V0 + l + V2 +... , where 0 is

the unperturbed value; ~v1 is the first order term; V2 is the second order term, etc. This expansion to

higher orders is most easily understood by considering the Taylor expansion of Vr(x) about x = 0

which takes the form:
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aV(O) 1 2(V).(O 2 . 1 a1() xn

a(x)()+ax x+2 a 2 +-- n! axn

where the Oa order term is lV(0) ; the 1 order term is ) x; etc. In the three sections that follow,

the field variables are preserved to second order such that all second order terms are considered

when the three fundamental equations are combined to give the second-order wave equation in free-

space.

2.1.1 Equation of State

The equation of state describes the relationship between the density p and pressure P,

where p = p(P) . Generally, the density can be written as the sum of increasing order terms,

P = Po + P1 +P2 +... (0.3)

In particular, the Taylor series expansion of p(P) about P0 is given by,

P(P)= PIlo +a'fi o '(P- )2-Prl (PP)2+

By equating equations (0.3) and (0.5), and keeping terms up to the first order only, we obtain the

following expression,

Po +p = P[4 +P- (P-P 0 ) (0.6)

The pressure, P , can also be expressed as terms of increasing order such that P = P0 + P + P2 +... If
we substitute terms up to the first order for P into equation (0.6), it becomes,

Po + =Po+-P a ((P + PI)-O) (0.7)

which easily reduces to

ap
P =Po+ 'Pi

=1 =P +l~p -P| (0.8)
= o +T2Co2
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The same procedure outlined above can be expanded to include terms up to second-order in

equations (0.4) and (0.5) as well as for expressing the pressure P. Combining these second-order

terms together, we obtain

+ + = ap '((o ++P2)-P0)+ 2 aP ((Po + + )-o)2 (0.9)2aP2~lp, (
By substituting in the expression for p, and only retaining terms up to second order'i, equation

(0.9) reduces to,

ap . a2p 2 1 r (
P 2= P 2 + PP22 + P (0.10)aJPpD 2 PO C0 poC0

where r poc4 ] is a constant of the medium.

2.1.2 Equation of Continuity

The equation of continuity is a conservation equation, which states that the mass flux into a

fixed control volume, minus the mass flux out of a fixed control volume, is equal to the change in

time of the total mass within the fixed volume. This statement can be expressed in terms of density

p by dividing through by the volume to give the following general equation of continuity,

at

By first expanding the field variables to 0" order such that p = p0 and V = V0, and imposing the

constraint that the resting velocity of the fluid particles is zero ( Vo = O), it becomes clear that

aP = 0 . Next, we expand the variables to first-order (p = P + P, V = V +V) and insert the result

into equation (0.11). After eliminating higher order terms such as the product pV, (which is

second-order), and using the 0 order result above, the first-order continuity equation reduces to,

vii We note that multiplying two terms together results in a product with order equal to the sum of the orders
of each term. For example, a first-order term multiplied by a second-order term results in a product of
third-order (i.e. P P2 = 03, where Pi and P2 are terms of first and second order respectively and On

indicates a term of order n ).
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ap, +pOV.V =0. (0.12)

Finally, we repeat these steps for the equation of continuity using variables expanded to second-

order. Again, we eliminate terms greater than second-order and substitute in the result of the first-

order equation (0.12) to simplify the second-order equation of continuity to the form,

DP, +V PoV, = -V pAV, (0.13)
at

2.1.3 Equation of Motion

Newton's second law of motion (F = ma ) can be applied to fluid particles to give the

equation of motion for fluid. Newton's law as applied to fluids states that the net force on the fluid

contained within an infinitesimal control volume moving with the fluid particlesvi is equal to the

mass times the Lagrangian derivative"' of the velocity of the fluid within the control volume. This

equation can be written in terms of pressure in a fluid environment by normalizing by the volume

and taking the limit as the volume goes to zero. The result is the equation of fluid motion, which in

general variables can be written in tensor form as32,

ap+ V(T + B + Du) = 0 (0.14)
at

where Ty is the momentum flux tensor (also known as the advection term) given by

puxu, pux u pu uz

T;, = pu,u. pu,u, pu,,u,

puu, puuy puy u)

D. is the viscous stress tensor and B, = P. 8, is the normal stress tensor. These tensor terms arise

from the total derivative which, for a vector quantity pV, is given by

DpV a= pV+(vxpV)x pV+V V2.
Dt at 2

"i This is known as a Lagrangian reference frame.
X The Lagrangian derivative is also referred to as the Stokes Derivative or the Total Derivative in the
literature.
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The pressure term is made into a tensor by multiplication with 8, since only terms like P, have

physical significance for describing pressure (the cross terms of the pressure tensor are a result of

viscous forces and are included as part of the viscosity tensor D ). The viscosity tensor is

eliminated by assuming an inviscid medium.

Using the same procedure as above for the other two fundamental equations, we expand the

equation of motion (0.14) to its 0", 1 t, and 2 nd order. Using the fact that V0 = 0, the 0h order

equation is found by observation and reveals that P0 is constant in space. To find the first-order

equation, we use the results of the 0" order equation and note that the components of the stress

tensor, u, , are all of 2 dorder. Therefore, after eliminating high order terms, the remaining terms

give for the l't order equation of motion,

PO WaaI +Vp =0 (0.15)

Finally, using the variables expanded to 2nd order with the general equation (0.14) and the 0morder

and 1st order equations, we can express the 2"d order equation of motion as,

av_t (0.16)POa + VP2 = -V.T2-ap'V; (0.16)
at at

where P2 and T2 refer to the second order terms of the tensors P .8 and Tj, respectively.

2.1.4 The Wave Equations

To summarize, first the three fundamental equations were expanded to first order:

Pl = Po +i - t equation of state
Co

ap, +pOV V =0 equation of continuity (0.17)

pO a0 I +VP =0 equation of motion

Then, in order to eliminate the velocity term, we combine these fundamental equations by equating

the time derivative of the equation of continuity with the divergence of the equation of motion78.

Next, we replace the variable Pl using the equation of state. The result is the linear wave equation:
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co at
(0.18)

We can follow the same procedure with the second order fundamental equations derived above and

presented together here:

1 r 
P = -2 + p2

C0 poCo

aP2 + pV.V 2 =-V. pV

aV2+V a(py,)P V.P2 =-V-Tt
at at

equation of state

equation of continuity

equation of motion

These fundamental equations are of the same form as the first order equations with the addition of

terms on the right hand side called 'source terms'. If we combine these second-order equations with

the same algorithm used for the first-order wave equation above, we arrive at the second order wave

equation,

(0.20)V2 1- a2 =_V.T.vp r a2 2
C2 a5t pol at2

Following a change of variables found in Morse and Ingard, we can eliminate the stress tensor T

from this equation, giving the final result for P2,

v2:b 1 a2P; (1-r) a2 ( 2
c at2 po4 a,

(0.21)

where P2' is the second order pressure minus local evanescent pressure terms, 1- F is a constant

provided in Table 1-4, p and c are the density and speed of sound respectively also provided in

Table 1-4.

2.2 Interpretation of Wave Equation

We rely upon the second-order wave equation in our study of the generation of difference

frequency sound from two primary frequency sources. This nonlinear wave equation can be

interpreted as describing the generation of second order pressure in free space (left hand side of

(0.19)
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equation) due to first order pressure sources (right hand side of equation). For a single frequency

input, this equation explains the phenomenon of second-harmonic wave generation whereby the

input of a waveform given by P. = AeJ(-r- ') will result in sources at both oa and 2a due to the

squared Pl source term on the right hand side.

Instead, if we set the pressure P equal to the sum of two harmonic waves at different

frequencies such that 1P = AeJ("-"rt) + BeJ(k*"t) , then the pj2 source term results in harmonics as

well as sum and difference frequency sources at oa ±+ ab due to cross terms of the input to the

second order wave equation, (-f) a2 (,' ). This origin of the sum and difference frequency inputs is

most easily understood by expressing the primary pressure as an expansion of the two individual

input pressures,

P = Re(P, +Pb) =2[(P + P ) + (Pb + P)] (0.22)

where indicated the complex conjugate. The second-order pressure terms that are inputs to the

wave equation are,

1 1 1 ,
P2 4 (PP. +2PP +P. P 4)+ ((Pb+2PbPb+P (PP +P2P Pb*Pbp)

= [Re(P )] + [Re(P )] + Re(Pb) + Re(PPb*) (0.23)

= Re(P) + Re(Pb2 )+ Re(P.Pb) + Re(PaP ) +(PP. I + 2

These six terms of the final line of this expansion can be understood respectively as the second

harmonic of P, the second harmonic of P, the pressure at the sum frequency Wa + Cob, pressure at

the difference frequency .a -- ob, and the DC components which come from the pressure squared

term [Re(P)]2 and are commonly referred to as the "radiation pressure". These inputs to the second

order wave equation all contribute to the total nonlinear pressure field in space P2 . This thesis is

concerned only with the generation of sound at the difference frequency. Therefore, the term

Re(PPb') is the focus of the analysis in this thesis because it describes a pressure that oscillates at

the difference frequency.

This generation of sum and difference frequencies was described in 1925 by Lamb92, who

derived the solution for the nonlinear displacement at the sum and difference frequency resulting
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from the combination of two harmonic displacements arising from collinearly propagating plane

waves. Later, Thuras experimentally verified Lamb's theoretical work for sound traveling in air at

two frequencies6 2 .

The generation of sum and difference frequency waves from collimated, non-collinear

plane waves is more complicated than the earlier findings for collinear plane waves. This added

complexity spurred a series of papers referring to "The Scattering of Sound by Sound". In his 1957

paper by the same title, Westervelt provided a theoretical proof that two plane waves traveling in

free-space cannot produce propagating sum and difference frequency waves unless the primary

plane waves are collinear (meaning the angle between their directions of propagation equals 0)47.

According to Westervelt, for the case of non-collinear waves, the sum and difference frequency

waves only exist locally in the interaction region of the two primary waves47. Ingard/Pridmore

Brown had previously demonstrated what some considered a conflicting theoretical derivation

together with experiments that appeared to support their derivation. Ultimately, alternative

explanations were suggested for the results obtained by Ingard. Several papers, including one by

Bellin and Beyer58 and one by Jones and Beyer7 5 supported Westervelt's conclusions. For the

limiting case of collinear propagation, Westervelt described the parametric array, whereby low

frequency (difference frequency) could be highly focused and directional. In addition, Westervelt

arrived at a second-order wave equation (Equations (7) and (8) in his 1963 parametric array paper)65

which is equivalent to the second-order wave equation given above (0.21) given the definition of

the constant (1- r) from Morse and Ingard32. However, Westervelt arrived at the solution using a

different approach than outlined in this thesis. In his analysis, Westervelt derived the second-order

wave equation by expanding Lighthill's exact equation of fluid motionx and discarding source terms

on the right hand side which do not significantly contribute to the scattered field at the difference

frequency.

The background set forth above serves to provide historical context for this thesis and

illustrates that topics related to the scattering of sound by sound addressed in papers of the 1950's

and 1960's are pertinent to this study of the generation of difference frequency in the USVA

system. In fact, Westervelt briefly described the Parametric Effect, one of the three mechanisms we

study in this thesis as a source of difference frequency sound, in a short paper addressing

experimental considerations for the scattering of sound by sound in 1990.93

In the following chapters, we describe three nonlinear effects that rely upon the free-space

nonlinear wave equation derived above to generate difference frequency sound. Each effect is a

variation on the theme of producing difference frequency sound due to nonlinear source terms

x Westervelt notes that the governing wave equation used as the starting point for the derivation in his 1957
paper47 (equation 1) was also derived by Eckart in 1948.
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present in a homogeneous medium. We calculate the generation of difference frequency sound

using the free-space nonlinear wave equation (0.21) together with various linear scattering effects.

The parametric effect we develop for this thesis is closely related that described by Westervelt. The

other two effects involving the linear reflection of the local difference frequency field and the

nonlinear interaction of linearly scattered waves were considered previously by Makris et al. for the

case of plane waves.94 In addition to the three effects studied here, there exist other nonlinear

effects, which can be described using a nonlinear wave equation derived for an inhomogeneous

medium with imposed boundary conditions. These additional sources of difference frequency

sound, which have been proposed by Makris et al., are beyond the scope of this thesis.94

2.3 General Solution to Second Order Wave Equation

The standard method for solving the wave equation (0.21) for the total second-order pressure

P2 involves taking the Fourier transform in time to transform the wave equation into the Helmholtz

equation. For this nonlinear wave equation of section 2.1.4, the Helmholtz equation takes the form,

(V2 +k2)P, -r kP6Pb=S (0.24)
poco

where P is the second-order pressure at either the sum or difference frequency, Pa is the pressure

at one of the primary frequencies, and Pb is the pressure at the other primary frequency." The

general solution to the Helmholtz equation is found by multiplying the source term Q by the free-

space Green's function, m (the particular solution to the Helmholtz equation for a point source

in free-space) and integrating over the volume of sources as follows7 8 95,

P(r)=| kP.~ V (0.25)
Voe. PoCo 4lr-rl

In cases where the primary waves can be expressed as analytic functions, they may be

inserted for Pa and Pb directly, and the integral can often be solved or an approximate solution
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found. Thuras62 solved for the sum and difference frequency pressure resulting from the interaction

of two collinear plane waves using the nonlinear derivation of displacement at the sum and

difference frequency provided by Lamb92. Dean reiterated this result.52 Using Dean's notation5 2,

the solution for the sum and difference frequency pressure field resulting from the interaction of two

collinear plane waves P, = Ae J(kt"- ') and Pb = Bei(kbx-¥b>t) is,

P,(x)= Re - k:ABx. ei(k±x- ' t')

2 jpo~o ±(0.26)

= 2p0 kABx sin(kx - wot)

where x is the propagation distance from an infinite planar source at x = 0, k = 4 is the wave

number for either the sum or difference frequency ( co = , + ObI and (_ = Io - ob) are the angular

frequencies for the sum and difference frequency waves respectively), and p,Co are the density and

speed of sound of the medium respectively. This solution shows that for collinear plane waves, the

amplitude of the sum or difference frequency pressure increases with the propagation distance, x,

of the two primary waves and is proportional to the wave number, k .

Further, Dean found solutions for the second-order wave equation using canonical

cylindrical waves and spherical waves. Given spherical waves Pa and Pb radiating from the same

source point at frequencies a. and 0a, the sum and difference frequency field given by Dean52 is,

P, (r) = Re 1 - r k PP [ - e- i*(') 1
jpkCO r a (0.27)

r 2jr

where O(r) = 2kr e-dr
a r

for a small radiating sphere of diameter a .52 The spherical wave solution is particularly useful

because it will be helpful for determining the nonlinear interaction of scattered waves from small

targets like bubbles in chapter 5. In chapter 5, the form of the scattered primary wave from a small

spherical bubble and pressure release surface for which ka 1 is approximated by an omni-

directional outward spreading spherical wave. Therefore, when considering the interaction of

scattered primary waves from small objects, the spherical wave solution to the second-order

nonlinear wave equation can be used with the solution for the linear spherical scattering problem to

xi In the case of the difference frequency solution, the complex conjugate of Pb is used.
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find the resulting sum and difference frequency pressures as a function of radial distance r. For the

more general problem where the pressure field cannot be described analytically, the second order

field can be solved numerically given the pressure values of the two primary fields at all points in

space and equation (0.25).
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3 The Parametric Effect

This chapter focuses on a specific type of difference frequency sound generation originally

described by Westervelt as the "parametric effect".93 The parametric effect causes the nonlinear

production of difference frequency sound through the reflection of a field at one frequency from a

transducer radiating at a different frequency. The reflected field travels collinearly with the radiated

field and produces difference frequency sound. Fatemi and Greenleaf may allude to this effect in

their article describing the use of the USVA imaging system for tissue mammography when they

report that, "the field intensity and resulting image can become excessively sensitive to the

transducer-to-object distance" 30. In this chapter, we propose a mechanism based on the theory of

the parametric array described by Westervelt in 196365, that can account for this enormous

sensitivity to the target orientation as observed by Fateni and Greenleaf.

The theory of the parametric array emerged from an active period of investigation on the

nonlinear interaction of two sound beams which began with the work of Lighthill on the theory of

sound produced aerodynamically.96 97 Lighthill's equations were applied to two beams interacting

at right angles by Ingard and Pridmore-Brown in a paper entitled "The Scattering of Sound by

Sound", published in the Journal of the Acoustical Society of America in 1956.63 This paper

sparked disagreement in the field of acoustics regarding the creation of scattered sound waves at the

sum and difference frequency from the interaction of incident waves at non-zero angles of

propagation. In response to Ingard's experimental results demonstrating scattered sum frequency

sound, Westervelt began his analysis with Lighthill's equations of fluid motion and derived a theory

of scattered sum and difference frequency waves from the intersection of collimated beams in his

papers on the scattering of sound by sound6474 '98. At the suggestion of Lighthill, Westervelt also

considered the case for two perfectly collinear fields in a paper called the "Parametric Acoustic

Array"65. Westervelt's papers proposed that only plane waves propagating in the same direction

will interact to produce sum and difference frequency waves which propagate. However, authors

including Berktay and Al Temimi published theoretical and experimental papers with results

demonstrating the production of a sum frequency field despite a non-zero angle between incident

primary waves99'01 . In his derivation, Berktay assumes that the two primary beams are fully

collimated, but in experiments, the fact that the beams are not perfectly collimated allows for

partially collinearity of the pressure fields. In part, due to conflicting theoretical and experimental
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results, the scattering of sound by sound remained a popular topic for years after the original paper

by Ingard and PridmoreBrown. 46' 49 57 59-6164' 66 75

Westervelt revisited the topic of the scattering of sound by sound in a short paper in 1990 in

which he suggested that the direct interaction of the field of one element with another in a dual

frequency system may produce sum frequencies via a parametric interaction of their fields.102 In his

simple experiment, he pointed one element directly at the other and noted that the sum frequency

was produced, suggesting that the field of one element was reflected from the surface of the second

element and thereby traveled collinearly with the primary field of the second element, similar to a

parametric array driven at both primary frequencies.

In a similar vein, we hypothesize in this thesis that the dual-frequency imaging system

creates difference frequency sound due to the field of one element reflecting from the surface of the

target and projecting back onto the other element, thereby creating a parametric effect like the one

observed by Westervelt. This effect would happen simultaneously on both elements and would be

proportional to the amplitude of reflected sound from the target. In addition, the amplitude of the

difference frequency field would be very sensitive to the geometry of the target, particularly the

position and orientation of the target surface.

In this chapter, we first review the parametric array and relate the parametric array to the

parametric effect, which we hypothesize for the dual-frequency imaging system. In the parametric

array section, we review the volume integral solution to the second order wave equation and also

develop an approximate solution for the propagating field at the difference frequency, providing a

useful method for rapidly simulating the field over large volumes of interaction. This approximate

solution is compared with the volume integral solution to the wave equation and experimental

measurements of the difference frequency field from a parametric radiator. In the parametric effect

section of this chapter, we first present a theoretical model to account for the multiple reflections

needed to generate the parametric effect. Then, we demonstrate the relatively large difference

frequency pressure (Pa levels) produced by the parametric effect based on results from the

simulation as well as experiments. We find that the difference frequency field is at a pressure well

above the amplitude of the system noise and many orders of magnitude (107 times) above the

difference frequency response due to the incident difference frequency field scattered from a target

as discussed in chapter 4.
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3.1 The Parametric Array

Westervelt described the difference frequency pressure field produced by the collinear

interaction of two collimated plane waves traveling in the same direction in a 1963 paper entitled

"Parametric Acoustic Array". His work was closely related to previous work by Lamb92 and

Thuras62 that described the production of difference frequency sound through the interaction of

collinear plane waves. In his derivation, Westervelt includes the condition of collimated beams to

restrict the interaction of the two fields to a limited region called the interaction region. The

interaction region is defined as the volume in space over which both collimated beams achieve a

non-zero pressure. In his paper, Westervelt derives the equation for the scattered difference

frequency wave by starting with Lighthill's exact equation for fluid motion, P - CO2V2p = 3 T

(where TIj = pu,uj +pi - Cpij + D is the complete stress tensor and D0 represents the viscous

stresses), and successively eliminating terms on the right hand side that do not significantly

contribute to the second order field outside of the interaction region of the two collimated beams.

This approach reduces Lighthill's complete equation of motion to a wave equation for the scattered

second order pressure field P,,

V 2
P - ap =-p 0 a (0.28)

c0 5t ht

where "q is the simple source strength density resulting from the primary waves p,s 65 which

Westervelt defines as,

q =po [I 2 PC02 dp2P at 2 (0.29)
P0COOL 2 0 dp2 at

This equation is equivalent to the second order wave equation provided (0.21) in chapter 2.

Likewise, we can solve equation (0.28) using the method outlined in section 2.3, which involves

converting the wave equation into a Helmholtz equation and integrating the source distribution

multiplied by the Green's function over the entire volume of interaction of the two fields.
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3.1.1 Application to Parametric Effect

The parametric effect follows the same principles of sum and difference frequency sound

production as the parametric array. The only distinguishing feature of the Westervelt's parametric

effect is that the collinear interaction does not arise from one source driven at two frequencies but

rather from two frequencies emanating from a single source by means of the reflection of one beam

from the surface of the second transducer. The illustration in Figure 3-1 diagrams the parametric

array and the parametric effect to illustrate their relation to one another.

Fl1

Parametric Array
F2 /

Westervelt's Original
Parametric Effect

F2

Figure 3-1: Diagram illustrating parametric array vs. parametric effect.

3.1.2 Simulating the Second Order Field

The direct method for solving the nonlinear wave equation in order to calculate the

difference frequency field involves multiplying the source term by the Green's Function and

integrating over the entire volume of source terms. This solution method is not computationally

burdensome for a transducer geometry that creates a limited interaction region ii of the two fields

because in this case, the resulting volume of source terms is small. We use this solution method in

xii Here we use the term "interaction region" to indicate the volume in space over which the two pressure
fields both achieve appreciable amplitudes (as opposed to our previous definition of the interaction region
for perfectly collimated beams stating that the interaction region is the volume in space over which both
beams achieve non-zero amplitudes).
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chapter 4 to simulate the second order pressures incident on a planar target from two transducers

orientated at an angle to each other (see Figure 3-2).

/

(

A1
X-dir /

-7 /

Figure 3-2: Diagram of the limited volume of interaction for two angled transducers operating at different
frequencies.

However, this same solution method can become extremely intensive for the parametric

array because the volume of the interaction region in this case is much larger (see Figure 3-3).

When discretizing the space for a numerical implementation of the integral for the parametric array,

the domain of the integral can become large considering the small wavelengths involved in the

problem ( - 10-4 m ) and the relatively large volume over which the primary fields will interact

(x,y,z - 10- ' m ). For reasonable phasing of the primary field, a step size of A/6 or A/8 is needed to

discretize the space. This creates an integral domain containing roughly 109 points in order to find

the scattered field at one point in space. If the calculation of the field over a plane in space is

required, this integral space will increase by several additional orders of magnitude. In addition, the

Green's function given by $; becomes infinitely large as r -r 1 goes to zero. This occurs as the

point at which the scattered field is calculated approaches the source points. In typical radiation

problems, the source array is often an isolated surface or even a volume of elements which is

considered 'outside of the medium' with the calculation points at a distance away from these

sources and 'within the medium'. However, in the unique setting of the parametric array, the

sources exist everywhere in space where both primary fields exist. Therefore, in numerical
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calculations of the volume integral, the scattered field will often be calculated at points very close

to, if not at the sources.

3000 X

600 X

Figure 3-3: Diagram of the extensive volume of interaction for a parametric array operating at two
frequencies. The parametric array used for the simulations below and experiments in section 3.1.3 is
illustrated here. This transducer has an outer diameter of 4 cm, a radius of curvature of 10 cm, and operates
at a center frequency of 2.74 MHz. The four points represent the locations simulated using the volume
integral method and plotted in Figure 3-4.

For these reasons of computational intensity and singularities of the integral, other authors

in the literature have used basic geometries and simplifying approximations to calculate the

scattered field. Many employ the KZK equation 03' 1 4 (which is a paraxial approximation to the

second order wave equation and therefore only should be used for cases involving slowly spreading

beams) as well as other quasilinear or parabolic approximations53 '05 10 6. One method to offset the

singularity at the source points is to add an attenuation term e- l, which Westervelt does in his

parametric array paper 65.

Despite these complications, the difference frequency field resulting from a focused

parametric array (4 cm diameter, 10 cm radius of curvature) driven at 2.705 and 2.755 MHz was

simulated using the Green's Function volume integral method described above for a range of values

along the axis of propagation at distances typical for experiments with the dual-frequency system

(see Figure 3-3). For this simulation, the fields of the primary waves are discretized to spacing

and solved for a volume extending from the source at z = -.095 meters to the furthest receiver point

at z = .4 meters and over a range of -.025 < x, y < .025 meters. The interaction of these primary

fields creates the source terms for the nonlinear field. Their product together with the constants for
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the source strength S are multiplied by the Green's Function and integrated over the volume of

interaction. The result of the simulation of difference frequency sound generation is plotted for a

limited number of on-axis points in Figure 3-4. For this simulation, we modeled a focused

transducer with the dimensions of 4cm diameter and 10 cm radius of curvature which was driven at

a center frequency of 2.74Mhz ± 25kHz to yield a difference frequency of 50 kHz. The transducer

was driven at 1.6 W electrical power which corresponds to a peak acoustic pressure of

approximately .85 MPa at the focus of each primary field. The result of the simulation plotted in

Figure 3-4 is the solution for the difference frequency field, which includes the local evanescent

field as well as the propagating field.

0.24 0.26 0.28 0.3 0.32 0.34

Axial Distance from Focus (m)

0.36 0.38 0.4

Figure 3-4: Simulated difference frequency level obtained using the volume integral solution for a
parametric array. The simulation is evaluated at several points on-axis using the Green's function integral
method to calculate the propagating difference frequency field of a parametric array operating at 1.6 W
electrical power (.85 MPa peak acoustic pressure) per frequency and a difference frequency of 50 kHz.

Approximation to the Difference Frequency Field

In this section, we formulate an approximation to the propagating field of the second order

wave equation in order to overcome the singularities and the computational intensity of solving the

full volume integral. This approach is related to the work of Woodsum and Westervelt who

devised a "General Theory for the Scattering of Sound by Sound" which relies on the spatial

Fourier Decomposition of the primary field into plane wave components and the application of an
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inverse operator to solve the wave equation (0.24) for the sum or difference frequency pressure

Pi .49,107 The inverse operator they use includes terms derived from the inverse of the d'Alembertian

operator (where the d'Alembertian is defined as 2 = "- c2V2) as well as boundary

conditions49 07'108. At about the same time that Woodsum and Westervelt published their solution,

the French researchers Hennion and Alais proposed a similar method for solving for the second

order pressure using a Fourier decomposition of the primary field.'9"' By operating on the Fourier

transform of the primary fields and integrating over the solid angles of the plane wave propagation

directions, Woodsum and Westervelt's method reduces the complexity of the solution, compared to

using the previously discussed standard approach which relies on a three-dimensional volume

integral. Their method relies upon the interaction of all plane waves to produce both evanescent

and propagating pressures at the difference frequency. In an effort to simplify their approach

further, we formulate an approximation to the propagating part of the second order field in this

section.

The propagating difference frequency field can be estimated by considering only the

interaction of collinearly propagating plane waves. Lamb's solution for the nonlinear interaction of

plane waves is utilized for pairs of co-directional plane waves. The collinear plane wave solution to

the second-order wave equation is written in this thesis using Dean's notation in equation (0.26).

The Woodsum and Westervelt method, which is three dimensional in the wave-vector

k = (k,ky,k,) , can be reduced to a two-dimensional integral for the approximation of highly

directional sound beams by noting the wave-vector constraint for propagating waves,

kI = = /kx2 + k 2 +k 2 where the magnitude of the wave-vector, k, is known for the pressure

fields of the primaries at a given frequency. First, the two primary fields P and Pb are expressed

as a "local plane-wave spectrum" as described by Korpell l2 and Ludwig and Wongl13, by taking the

two-dimensional Fourier Integral over the plane (x, y) in space at a depth z indicating the

beginning of the interaction region,

Pa(k,,kay;zo) = Pa (x,y,O)e & ( YY)dxdy
(0.30)

Pb(kbxkb;zO)= I | Pb(x,y,zO)e-jkx+kb*x Y)dxdy
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where ka = (k, k,,k.) is the wave-vector for the pressure field at frequency Woa (likewise for kb ),

and for the case of a parametric array, the (x,y,z) axis is oriented with z pointing in the direction

normal to the center point on the transducer surface and (x, y) spanning a plane in space parallel to

the transducer surface as illustrated in Figure 3-5.

Y-dir

Figure 3-5: Diagram of a focused transducer with the orientation of the (x, y, z) axes indicated.

Next, the solution for the difference frequency pressure generated by the collinear

propagation of plane waves given in equation (0.26) is applied to planar components Pa (ka) and

Pb(kb) which are propagating in the same direction such that =5T . We write the result in terms

of solid angles Qa', b corresponding to the plane wave propagation directions I., I. The result is

the difference frequency pressure density over solid angles Qa, 1 b that is generated by each pair of

collinear plane wave components and given by the approximation,

P (r, Qab) = Re 2jpc kP(k a)P (kb) D ei(k-"-'rt)8 (a - b )
ZjpCo2

(0.31)

where P indicates pressure density over the solid angles Qa, b , r is a point on the new z-plane,

D is the distance of propagation for the plane wave in the direction a = Qb from the source at z,

P' represents the complex conjugate of the pressure P, k = = I- is the difference frequency
¢ 
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wave-number, and 8 (i, - rib ) is the Dirac delta function, used here in a somewhat heuristic

manner to indicate that we consider only plane wave components traveling in the same direction

such that Ra = Qb . The geometry for one such pair of collinear plane wave components is depicted

in Figure 3-6.

Zo z

Figure 3-6: Diagram of the approximate solution method for the parametric array. This diagram illustrates
one pair of collinearly propagating plane waves traveling at an angle Q, relative to the z-axis.

An approximate expression for the total difference frequency pressure P_ (r) at position

r = (x,y,z) is found by integrating over all propagation directions a , b and is given by,

P_(r)= '- I Re 2-r kP(ka)P* (kb) D. ej(lk"-k"lbIrt)S ( - )kkbdfdflb
(2,) kb k. JPCo2

(0.32)

where we limit the propagation angles over which the integrand is evaluated to satisfy the

approximation of highly directional beams. The integrand may be restricted by simply filtering the

plane wave components in the spatial frequency domain so that values of P (ka) and Pb(kb) are

eliminated for large values of k, and k (which represent plane waves with large angles of

propagation a ,rib relative to the z-axis). Another method for limiting the integral is to include an

ad hoc attenuation term e-
D in order to attenuate plane wave components propagating for large

distances D (where D = z_ ) at large angles fi (where k < 1 ), which would violate the

approximation of highly directional beams. Following a heuristic approach, we found that a value
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of a = a + a = 3.7/m for the attenuation coefficient provided the best match between the position

of the peak difference frequency pressure generated by a parametric array in simulations and

experiments.

This approximation for the difference frequency pressure considers only the interaction of

collinear propagating plane waves and ignores the interaction of non-collinear plane waves included

in Woodsum and Westervelt's complete solution. However, as the experimental verification below

demonstrates, for the geometries considered in this thesis, the approximate solution is consistent

with the experimental results. As compared to the full volume integral, this approximate expression

greatly reduces the computational time for the problem (by a factor of at least 1000) and also

eliminates the problem of singularities at the source points.

The propagating difference frequency field was simulated using equation (0.32) in the

Matlab® programming environment. The simulation of a 4 cm diameter, 10 cm radius of curvature

transducer operating at 2.705 and 2.755 MHz with an electrical power of 1.5 W per element

(corresponding to a peak acoustic pressure of .85 MPa at the focus of each primary field) was

calculated at receiver points along the axis of propagation from 0 < z < .4 meters (where the focus of

the primary beams is located at z = 0). The result is compared to experiments below in Figure 3-7.

The results of the approximate solution are at nearly the same magnitudes as the volume integral

solution (- 10Pa ) and actually fit the data a bit better than the integral solution because the finite

volume considered for the integral method neglected portions of the primary beams which have

spread outside of -.025 < x, y < .025 meters. This necessary limitation on the domain of the integral

due to the computational intensity of the problem creates artificial boundary conditions for the

sources, reducing the accuracy of this calculation. In contrast, the solution algorithm provided here

has no such boundary conditions. The approximate solution method neglects evanescent

contributions to the difference frequency field, but we assume that these are relatively small far

from the focal region of the primary beams.

3.1.3 Experiment

We conducted experiments to produce a focused acoustical field at the difference frequency

created by a geometrically focused transducer driven simultaneously at two primary frequencies

(driven as a parametric array). These experiments were consistent with the difference frequency

field levels we calculated using the approximate method of simulation described in equation (0.32)

because they demonstrated reasonable agreement between the simulated and experimentally

measured beam patterns. These experiments also established a relative order of magnitude for the
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difference frequency signal generated from the transducer geometries we use in this thesis. The

maximum difference frequency signal generated by a parametric array imposes an upper limit on

the magnitude of the expected difference frequency pressure when considering the related

parametric effect.

A single geometrically focused transducer fabricated in-house from PZT-4 was driven by

an arbitrary waveform generator (Wavetek model 395, Fluke, Everett, WA) using the suppressed

carrier AM modulation mode (SCM) which creates an output at the sum of the two sideband

frequencies only. The carrier is suppressed and not part of the output signal. For these

experiments, the carrier was set to 2.74 MHz with a modulation frequency of 25 kHz, thereby

creating an output at both 2.715 and 2.765 MHz from the single element (difference frequency = 50

kHz). The waveform generator signal was amplified (ENI 2100L, Rochester, NY) to 1.6 W

electrical power (corresponding to a peak acoustic pressure of .85 MPa at the focus of each primary

field) and the output was sent to the transducer which was matched to 50 ' and 0 phase via

standard L-C matching circuitry. The signal was measured with a low frequency hydrophone

(International Transducer Corporation ITC6050c, Santa Barbara, CA), notch filtered around the

difference frequency from 48.5 - 51.5 kHz, registered to a digital oscilloscope (Yokogawa DL7100,

Japan), and recorded to a personal computer via a IEEE-488 GPIB connection.

The results of the experiment, along with the results of the simulation using the

approximate solution developed above, are plotted in Figure 3-7. The simulation (line) is plotted

along with the measured data (*) to demonstrate their correlation both with regard to the shape and

magnitude of the difference frequency field. The results indicate a difference frequency that rises

until approximately 25 cm from the focus of the primaries and then begins to decrease in amplitude.

The measured field correlates with the simulated field using the approximate method outlined

above, although the peak of the measured field at 25 cm is more pronounced and the maximum

amplitude of the difference frequency on-axis is slightly greater. We note that although we only

simulate a few values at the difference frequency using the volume integral solution method as

displayed in Figure 3-4, these pressure values are also of the same order of magnitude (4-9 Pa) as

the experimental measurements.
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Figure 3-7: Axial scan experiment and simulation using approximate solution method of the difference
frequency field generated by a focused parametric array.

Finally, we recorded the difference frequency response over a plane of measurement points

as indicated in Figure 3-8. In this experiment, the data is acquired as the low frequency hydrophone

is scanned through the field of the difference frequency in both the axial and radial directions.iii In

this experiment, the measurement points spanned the area: 1 lcm < axial range < 52.5cm and

-6cm < radial range < 6cm with a step size of 5mm / step in either dimension. The driving

frequency generator (Wavetek model 395, Fluke, Everett, WA) modulated the carrier frequency of

2.7 MHz by 50 kHz using the suppressed carrier modulation mode (SCM). The signal was

recorded using a low frequency hydrophone (International Transducer Corporation ITC-6080C,

Santa Barbara, CA) and registered to an oscilloscope (Yokogawa DL7100, Japan), which acquired

the average over 8 sequential measurements. Then, this average signal was filtered with a digital

filter (Stanford Research Systems SR650, Sunnyvale, CA), which was set to notch filter from 48.5 -

51.5 kHz. The final processed signal was recorded to a personal computer via a EEE-488 GPIB

connection.

Although attempts were made to use a PVDF needle hydrophone (Precision Acoustics, Dorchester, UK)
to measure the difference frequency field, the measurements proved unreliable because the needle
hydrophone device is neither calibrated nor designed to measure frequencies at 50 kHz and below.
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Figure 3-8: Diagram of the experiment for measuring the field of a parametric array. In this experiment,
the hydrophone was scanned through a plane of measurement points to record the difference frequency
field produced by a parametric array. The small circles indicate the points at which measurements were
acquired with the low frequency hydrophone.

The experimental results are displayed in Figure 3-9. The plotted data represents the

amplitude of the measured difference frequency signal in the units of Pa as a function of axial and

radial position in the measured field. The results demonstrate that the measured difference

frequency field has an axial distribution that gradually reaches a maximum at approximately 25 cm

from the transducer surface. This axial distribution was illustrated previously in Figure 3-7. In the

radial direction, the results demonstrate a broad difference frequency pressure distribution

measuring approximately 6 cm across at the -3 dB drop-off.
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Figure 3-9: Experimental measurement of the difference frequency field from a focused parametric array.
The field was measured with a low frequency hydrophone scanned in the axial direction from .1 m (focal
plane) to .5 m and in the radial direction from -.06 m to .06 m.

3.2 The Parametric Effect

The parametric effect is a result of sound from one transducer scattering from another

transducer driven at a slightly different frequency. This produces two collinear fields at slightly

different frequencies that generate nonlinear sum and difference frequency fields in a manner

similar to a parametric array. In this section, a dual frequency imaging system with separate

elements is used to study the difference frequency sound generation due to the parametric effect. A

theoretical model is presented together with results from simulations and experiments that illustrate

the relatively large difference frequency signal produced by the parametric effect as compared to

the undetectable difference frequency production due to local difference frequency pressures

presented in chapter 4.

There is a rich body of literature pertaining to the generation of sum and difference frequency

fields in acoustics46 ,48, 4 9,5 860 61, 666 8,75,107,114-117. The plethora of possible sources of nonlinear sound

generation makes it difficult to determine the exact source of sum and difference frequency sound.

The nonlinear effects which might produce difference frequency sound, as proposed by several

groups, include the collinear interaction of the incident field42, pseudo-sound effects at the

hydrophone itself47, nonlinear scattering effects52, and dual-frequency radiation force effects40.
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Despite advances in the imaging technique with the USVA method achieved by others and in our

laboratory2' 42 530'40 '1 1 22, we found experiments with the dual-frequency system difficult to repeat.

In addition, our results often demonstrated a response signal that was sensitive to the geometry and

orientation of the target. In response to these observations, we consider the hypothesis that perhaps

a previously unconsidered source of difference frequency generation in the USVA system, the

parametric effect of the reflected field, may contribute to the difference frequency field for the

USVA method.

This chapter examines the conditions under which the parametric effect of the reflected field

may contribute significantly to the nonlinear difference frequency field both through simulation and

experimental verification of the simulations. The theoretical section provides a model for the

multiple reflections needed to create the parametric effect. We then simulate that model to predict

the resulting levels of the difference frequency field generated by the parametric effect. The

experiments in this section are designed to limit some of the aberrant sources of nonlinear sound

generation in order to concentrate only on the parametric effect. While the system used is similar to

the dual-frequency imaging system proposed by Fatemi and Greenleaf, there are important

differences including the use of two separate transducer elements arranged at a large angle to one

another, the use of short pulsed waveforms rather than CW, and the addition of a dual-directional

coupler in order to measure reflected power from one element onto the other element. These

differences are designed to isolate the parametric effect for this study.

3.2.1 Theory of Parametric Effect

The parametric effect as described by Westervelt93 is simply the creation of a parametric

array by means of the reflection of a field at one frequency from a transducer generating a field at

another frequency. After this reflection, the two fields act collinearly to produce difference

frequency sound according to the second-order wave equation in a manner similar to the parametric

array described above. For the case of the dual-frequency imaging system, the proposed parametric

effect is complicated by the introduction of a target at the focus of the two transducers (Figure

3-10). This target provides a surface for reflecting the incident field back to the transducers and

allows for a parametric effect despite the fact that the elements are directed away from one another

initially. The diagram of this effect, as well as the theoretical description of the effect found in this

section, account for only the action of one element on the other. However, it is important to note

that the parametric effect occurs simultaneously on both elements such that each will generate a

difference frequency field.
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Westervelt's Original
Parametric Effect

Parametric Effect in
dual-frequency
imaging system

F1

F2

F1

Figure 3-10: Diagram illustrating the parametric array, Westervelt's original parametric effect, and the
parametric effect in the dual-frequency imaging system.

In this section, we formulate a mathematical description of the interaction of the two beams

in a manner that will produce a difference frequency field due to the parametric effect. Our method

makes reasonable approximations in calculating the total reflected field of one element from an

interface and back onto the other element. First, we model the planar reflection of the incident

primary field from the interface of a stratified medium to calculate the reflected field from the target

of finite thickness. Then, we calculate the field after a second reflection from the spherical surface

of the second transducer. For this second reflection we use a method involving the spherical

harmonic decomposition of the incident field. Finally, we use the result of this reflected field in the

parametric array simulation described in equation (0.32) in order to calculate the generation of the

difference frequency field.
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Planar Reflection

Figure 3-11 illustrates the interaction of the acoustic fields from two transducers with the

interface of a planar target.
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Figure 3-11: Diagram of the model of reflection from a horizontally stratified planar interface.

The total incident field from a focused transducer can be decomposed into the "local plane-wave

spectrum" as described by Korpelll 2 and Ludwig1 3 so that we may analyze the planar reflection of

each component individually. Taking the 2D-spatial Fourier Transform over all points in space

where there is a nonzero incident pressure P,, we can solve for each incident plane wave

component i, (kx,ky) of the total incident field at the interface with the planar boundary,

i (k,kiy;Z = 0) = P(x,y,O)e-j(k"x+kY)dxdy
.. o.-o o

(0.33)

where the wave vector amplitude k = k = k +k +k = and i(kx,ky; = 0) is an incident

plane wave at z = 0 traveling in the direction of the unit vector ]t.

Given a plane wave pi(kx,ky) incident on a planar boundary and a reflection coefficient

R(k,ky), the reflected plane wave is expressed as 97, = Rqig. Likewise, by taking the inverse

rt

\\ 00
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Fourier Transform over all wave-vectors (kx ,ky), we can find the total reflected field Pr(r) at

position r = (x,y,z = 0) resulting from the reflection of all incident plane waves from a horizontally

stratified surface,

o1 Co
Pr(r)= 2 J R (kx, ky ) i(kx,ky;z = O)e rdkxdky (0.34)

(2r) 2

where R (kx,ky) is the K-space reflection coefficient from a horizontally stratified medium123 ,

Ro ++Roe2 jk1hcos 
R(kxkY)=l I+ RR°e 2 jkhcos° (0.35)

kl = A, and Rol is the real-space reflection coefficient given by,

mo cos o - n- sin o

mOcos6o + n -sin 2 0

(0.36)

(where mO = A and no = )

Similarly, Rol is the real-space reflection coefficient given by,

m, Cos6 - nl2- sin 2

ml os091 + n,2 - sin2 01

(0.37)

(where m = Po and n = )

Spherical Reflection

Equation (0.34) describes the total reflected field from a horizontally stratified surface.

Now, we are interested in describing the second reflection of the field from a spherical cap (Figure

3-12). First, we express each planar wave component of P,(r) (corresponding to each value of kx
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and ky ) in terms of its spherical harmonics using a Bessel function plane wave expansion described

by Stratton. 124

y

Figure 3-12: Diagram of the spherical coordinate system used for the spherical decomposition of plane
waves.

The plane wave at an arbitrary position in space r propagating with the wave-vector k is

written e"', given wave-vector k = (k,,ky,k,) = (ksinacosi,ksinasin i,kcosa) and an arbitrary

observation point r = Irl(sin0cos q,sin sinq, cos ) . Note also that k r = kiricos y. Further, the

plane wave can be expressed as an infinite sum of spherical harmonics,

e ' rk = eiklrlcsY

= i"(2n + l)j, (kIrI)P (cos y) (0.38)
n=O

= in(2n + l)ji (k rl)P 

where P, is the nth-order Legendre Polynomial, and j, is the nth-order spherical Bessel function

(which should not be confused with the imaginary number i = i ).124

After describing the reflected wave from the horizontal planar boundary in terms of spherical

harmonic waves incident on the spherical cap, we can assume the form for the reflected wave from

the spherical cap. Given an incoming wave P, of the form,
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JP= j (kir[) (0.39)

where A, = i"(2n + 1)P, (v), we assume that the outward reflected spherical wave PR from the

spherical cap is also spherical and of the form, 3 '25

PR = R1Ah2)(kR,) (0.40)

where R, is the n order reflection coefficient for the spherical cap. Further, we assume that the

transmitted wave through the spherical cap P has the form,

PT ATi A(0, p))n (kRP) (0.41)

where T, is the n order transmission coefficient for the spherical cap.

Then it is a relatively easy matter to impose the conditions of continuity of pressure (0.42) and

velocity (0.43),

P +PR = PT (0.42)

ia ia
r(pi +PR) = I a (PT) (0.43)

p, ar p, ar

at the water/second transducer interface Irl = a in order to solve for the coefficient of interest, R,

(where a is the radius of curvature of the transducer, Pw = 998kg/m3,p, = 10,000kg/m3 are the

densities of the water and transducer material respectively). Note that we chose arbitrarily large

value for the density of the transducer simply to ensure a large impedance mismatch and therefore

nearly perfect reflection of the incident field from this surface.

Substitution of expressions for P, PR, and PT (equations (0.39) - (0.41) ) into these

constraints yields the system of two equations with two unknowns R, and T,,

j, (ka) + Rh2) (ka) = T jn (ka)

(0.44)

n (ka) + RAi2 (ka) = T,1 (ka)
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This system of equations can be written in matrix form as

j (ka)l _-h.((ka) j.(ka) R1
j.(ka)J L-(h2 )(ka) j (ka)JLT J

Solving by Crammer's Rule results in the system,

EP- Ppw £ (ka) -jn(ka) 1

L LJ - h(2)i(k (ka) _h(2)(ka)j [(ka) (0.46)LT.n J -0 h ) (ka) (ka) + /k) (ka). (ka) L j. (ka)J

and solving for RP explicitly gives the result for the reflection coefficient,

(P- -l) (ka)j (ka)
Rn = _ hn2)(ka)) (ka)+ h(2)(ka)j.(ka) (047)

Now, combining the expression for the incident pressure, P, and the reflected pressure

from the second transducer, P, we get the total pressure, P,, 

PIR (r) = P +PR

A= A(, ,p)P. (R)[j. (R,) + Rnh.') (kRt)] (0.48)

= i"(2n + l)P, (_-R,)[j (kR,) + Rhn2)(kR,)]
n--0

This pressure field is the sum of incident waves scattered from a horizontally stratified

medium as well as these scattered waves after reflecting from the second transducer. In practice,

and for the simulations performed in the next section, only the reflected field from the transducer

cap, PR, is considered in calculations of the parametric effect since these waves are traveling

collinearly with the other primary field and thereby contribute significantly to the difference

frequency field. The term PmR represents the pressure due to a single directional plane wave after
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multiple reflections. The expression for the total pressure over all plane wave directions can be

written by taking the inverse Fourier transform of PR over all k-space. The result for the total

reflected field, Pot, is given by,

P(r) = (2J)2 | R(k ,, k)i i (2n + 1)Pn( )[ (kIrl)+Rnh2 (kirl)] dkxdk (0.49)
(2;r. .. n=O-.

The entire field in space at both primary frequencies can be determined by adding this total

reflected field, P,, (r), at the frequency PA to the field radiating from the second transducer at a

slightly different frequency, w, . The summed field from both elements can be used in the source

term of the second-order wave equation (0.24) to solve for the resulting difference frequency

generation due to the parametric effect using either the volume integral or approximate solution

methods outlined previously is section 3.1.2.

3.2.2 Simulation of Parametric Effect

The simulation was performed in the Matlab® programming environment running on a

personal computer with a 2 GHz Pentium processor and 1 GB of RAM. Table 1-4 details the

parameters for the speed of sound and density for the silicone gel used in the simulation. In the

simulation, the total pressure from one transducer is first reflected from the silicone gel and then

from the 2n"d transducer. The resulting field after both reflections is then used in the approximate

solution to the nonlinear wave equation (0.32) to calculate the difference frequency pressure at the

focus of the second element. The value for the amplitude of the difference frequency pressure is

calculated as a function of rotation angle of the silicone gel tissue phantom (Figure 3-13). In

addition to calculating the difference frequency pressure at the focus, we calculate the total incident

power on the second transducer from the first transducer in order to quantify the energy incident on

the second element. We call this quantity the "Reflected Power" because it corresponds to power

reflected from the interface of the silicone gel. In addition, in experimental measurements, this

quantity is proportional to the "Reflected Power" measured by a dual-directional coupler placed

between the driving amplifier and the transducer.
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Figure 3-13: Diagram of the geometry of the simulation and experiment used for rotational scans of a
silicone gel tissue phantom.

The simulation and experimental results for the reflected power are plotted in the left pane

of Figure 3-14. This plot demonstrates a reasonable correlation between the simulation and

experiment. The reflected power is normalized because the dual-directional coupler set-up is not

calibrated and therefore the experimental value is not an absolute power measurement. The

simulation and experimental result are similar in the shape of the angular distribution of the values.

They both demonstrate a peak reflected power at 90 degrees rotation. This rotation corresponds to

the silicone gel surface oriented parallel to the plane of the transducers (see Figure 3-13). The

simulation and experimental results for the difference frequency are plotted in the right pane of

Figure 3-14. We plot the absolute pressure measured with the low frequency hydrophone

(International Transducer Corporation ITC-6080C, Santa Barbara, CA) to illustrate the correlation

of the simulation and experimental levels at the difference frequency. The simulation agrees

reasonably well with the levels measured experimentally and demonstrates a similar angular

dependence. However, the simulation does not capture the sharp variations in amplitude as a

function of angle, which we observe in the experiment. Relatively large standard deviations

accompany these fluctuations, which may simply represent the sensitivity of the system to slight

motions of the interface. Additionally, the difference frequency field may interact with the silicone

" G %
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gel, the hydrophone, or the tank to produce the sharp variations. These interactions are not modeled

in the simulation.

Reflected Power
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Figure 3-14: Simulation vs. experimental results for the parametric effect. The reflected power signal (at
the primary frequency of one element as received at the other element) (left) and the generated difference
frequency sound (right) are plotted as a function of the angle of rotation of the silicone gel tissue phantom.

For both the reflected power and the difference frequency plots of Figure 3-14, we note that

the angle of rotation over which an appreciable signal is simulated or experimentally measured

spans approximately 23 degrees. This value corresponds to the aperture of the elements given a

diameter of 4 cm diameter and radius of curvature of 10 cm (see Figure 3-15). The 23-degree range

of angles over which a difference frequency signal is produced makes sense intuitively because at

angles larger than 102 degrees or smaller than 79 degrees, the field from one element will no longer

be incident upon the second element (see Figure 3-13).
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Figure 3-15: Diagram detailing the geometry of a single element of the dual-frequency system.

3.2.3 Experiments

We demonstrate the generation of difference frequency sound in a series of experiments of

increasing complexity designed to approximate tissue imaging with a dual frequency system. In the

first set of basic experiments similar to those performed by Westervelt'0 2, we compare the

difference frequency signal from a single element driven as a parametric array to the difference

frequency signal from two elements driven at their primary frequencies and positioned such that

their fields exactly reflect from each other. This experiment, diagramed in Figure 3-16, compares

the field generated by the parametric array vs. the field generated by the parametric effect. In the

next set of experiments, we demonstrate the dependence of the difference frequency sound

generation on the geometry of a planar target by focusing the two elements on a rigid polyethylene

plate that is translated and rotated in space. Next, we illustrate the parametric effect resulting from a

soft interface by replacing the polyethylene plate with a tissue phantom made from silicone gel.

Finally, we form an image in ex vivo rabbit liver at a difference frequency sound level and geometry

consistent with the parametric effect.

Materials and Methods

We conducted all experiments in a tank of degassed, de-ionized water lined with acoustic

absorbing rubber. In addition, the tank was encased on the bottom and four sides by a 2" thick

acoustical foam rubber for absorbing environmental noises. We fabricated the air-backed,

spherically focused transducers in-house from PZT4 to the specification of 10 cm radius of

curvature and 4 cm diameter. We mounted the elements at an angle to one another (60 degrees) so

that their foci intersected at 10cm from either element (see Figure 3-13). This set-up varies slightly

from the USVA system described previously in the literature.24 In this set-up, the two elements are

separated physically at a considerable angle from one another to eliminate the effects of collinear

sound waves incident on the target which may combine nonlinear to produce difference frequency

i

F
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fields as described by Calle42. The elements were electrically matched with separate

inductor/capacitor circuitry to both their 3rd (1.624 MHz) and 5h harmonic (2.73 MHz) and driven

by either a custom built 2-channel amplifier (Advanced Surgical Systems, UDS04PF-CSA,

Arizona) or by ENI RF amplifiers (ENI2100L and ENIA150, Rochester, NY) with the signal

generated by HP function generators (Hewlett-Packard HP33120A, Palo Alto, CA). The target was

positioned in the experimental tank with a Velmex 3-axis motor controlled positioning system

(Velmex Unislide NF90, Bloomfield, NY) and a manual rotational axis (Velmex, Bloomfield, NY).

The low frequency signal was detected in the tank with a low frequency hydrophone (International

Transducer Corporation ITC-6080C, Santa Barbara, CA), filtered with a dual channel filter

(Stanford Research Systems SR650, Sunnyvale, CA), and digitized by a digital oscilloscope

(Yokogawa DL7100, Japan).

In addition to the difference frequency signal measured by the hydrophone, we measured

the forward and reflected power from one element via a dual directional coupler placed between the

amplifier output and the matching circuitry of the transducer. This signal was unfiltered and

digitized by the same Yokogawa oscilloscope as used for the low frequency hydrophone signal.

The dual directional coupler signal, when analyzed in the Fourier domain, reveals the effect of one

element (which is at a different primary frequency) on the other through the reflection of power

from the target. The entire set-up was coordinated with the Instrument control Toolbox in Matlab®

(ver. 6) using RS232 and GPIB computer control to move the positioner, specify the output timing

and power levels to each element, and acquire the signals from the oscilloscope.

Parametric Array vs. Parametric Effect

This experiment shows the equivalent interaction of two fields when driving one element at

two frequencies as a parametric array or driving them both at their primaries and pointing them at

one another to create the parametric effect. Two elements are positioned facing each other in a tank

of degassed water and aligned to share a common focus at the midpoint between them. First, both

elements are driven at their primary frequencies (2.74 MHz), plus or minus a range of difference

frequencies from 1-65 kHz. Then one element is turned off and the other is driven as a parametric

array (at two frequencies simultaneously) using the carrier suppressed AM mode on the function

generator. Each element was driven continuous wave (CW) at a time-averaged power of 5 W

electrical as measured by an inline power meter (Agilent Technologies E4419B, Palo Alto, CA).

The power level corresponded to a peak acoustic pressure of 1.5 MPa at the focus of the primary

field. The signal was received by the low frequency hydrophone positioned off to the side of the

two transducers, filtered from 5-65 kHz with OdB gain, registered to the digital oscilloscope and
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then recorded by personal computer via a GPIB-IEEE488 communications connection. The set-up

is illustrated in Figure 3-16.

20 cm

fg Fl F2 A - m

15cm

6cm

Figure 3-16: Diagram of the set-up for an experiment designed to compare the parametric array with the
parametric effect.

The results of this experiment for the difference frequency of 50 kHz are plotted in Figure

3-17. This result demonstrates that the difference frequency pressures recorded at the hydrophone

for the parametric array (top plot of Figure 3-17) and the parametric effect (bottom plot of Figure

3-17) achieve similar amplitudes. We observe that for both cases, the response signal at the

difference frequency is approximately 4 Pa in amplitude and well differentiated from the

background noise. This observation supports the hypothesis that the mechanism of generating the

difference frequency is similar in the two cases. Technically, the parametric array experiment may

be described as a parametric array with a reflector, because the field from the parametric array may

reflect from the other transducer, which is not powered but positioned 20 cm away. To determine

the significance of the presence of the second element, we repeated the parametric array experiment

after removing the second element from the tank. The result was similar to those plotted in Figure

3-17 but the amplitude of the difference frequency signal was slightly lower reaching approximately

2 Pa of peak pressure. However, for the comparison of the parametric array with the parametric

effect, we include the parametric array results with the second element in the tank to control for the

A

Ir
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interaction of difference frequency waves with the second element, which may occur in either

scenario.

Parametric Array

Parametric Effect

0 5 10 15 20 25 30 35 40 45 50

Time (ms)

Figure 3-17: Experimental result comparing the parametric array and parametric effect. The plot shows
the difference frequency signal (50kHz) as a function of time produced by a single element driven as a
parametric array (top) and by two elements facing one anther to produce a parametric effect (bottom).

In addition to the results at a difference frequency of 50 kHz, the response was recorded at

several other difference frequencies to demonstrate the comparable magnitudes of the response for

the two methods of driving the elements. The responses, plotted as a function of difference

frequency in Figure 3-18, demonstrate a similar frequency dependence for both driving methods.

The frequency dependence illustrates a general increase in amplitude with increasing difference

frequency as well as sudden smaller drops in amplitude at particular difference frequencies. The

important result of this experiment is that a difference frequency signal at comparable levels is

recorded for the parametric array and the parametric effect, suggesting that the mechanism of

difference frequency signal generation is related for these two driving methods. The results also

serve to set a relative order of magnitude for the generation of difference frequency sound via the

parametric effect on the order of 1-10 Pa for driving powers of 5-10 W electrical per element (1.5 -

2 MPa peak pressure at the focus of each primary field). With few exceptions, this relatively

limited range of driving powers is used throughout the thesis.

G,

0
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Figure 3-18: Experimental result comparing the parametric array and parametric effect as a function of
frequency. The plot shows the difference frequency signal produced by a single element driven as a
parametric array and by two elements interacting to produce a parametric effect for a range of difference
frequencies.

Rotational Scans and Axial Scans of an Polyethylene Plate and a Silicone Gel

In the dual-frequency system, the parametric effect is achieved through the reflection from

a planar boundary as described in section 3.2.1. This reflection suggests that the difference

frequency response may be sensitive to the angle of rotation of the planar boundary. Independently,

we observed in experiments that the amplitude of the difference frequency response was sensitive to

the orientation of the target with respect to the transducers. In order to quantify this relationship, we

conducted several experiments with a polyethylene plate (measuring 10.5 cm x 10.5 cm x 1.1 cm)

and with a silicone gel tissue phantom (11 cm diameter circular slab, 2.8 cm thick) to demonstrate

the angular dependence of the difference frequency response. For the rotational scans, the focus of

the acoustic pressure field was positioned at the front surface of the target and the target was rotated

by 1 degree steps starting from 70 and ending at 110 degrees, where 90 degrees is perfectly parallel

to the plane of the transducers (see Figure 3-19). At each angular position, the two transducers

I I I I I I

-*- Parametric Effect 
-e- Parametric Array I

__j-

I I I I I
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pulsed at a power of 10 W (corresponding to a peak pressure of 2 MPa for each primary field)

electrical per element and at a difference frequency of 30 kHz with a period of 75 msec and a duty

cycle of 20%. The acoustic response was recorded by the low frequency hydrophone and the signal

was captured and digitized by the oscilloscope. The measurements were repeated for a total of ten

pulses at each angular position. In addition to measuring the low frequency field in the tank, we

recorded the forward and reflected power signals from one of the transducer elements using the

dual-directional coupler.

90 Degrees

art/ \ A°" O
s- N

Plane of
Transducers

10cm

5cm

10cm

Figure 3-19: Diagram of the set-up used for rotational scan experiments with the silicone gel tissue
phantom and the polyethylene plate.

The results of the rotational scans are very similar for the polyethylene plate (Figure 3-20)

and the silicone gel tissue phantom (Figure 3-21). Results from both scans demonstrate a

significant difference frequency response (3.5-5.5 Pa) from the target near an angle of 90 degrees.

The response decreases symmetrically when the target is rotated in either direction away from 90

degrees. At angles greater than 100 degrees or less than 75 degrees, the response drops to the

established noise amplitude for these experiments of .lPa. The amplitude of the difference

frequency sound at 30 kHz is nearly the same amplitude as demonstrated in the first set of

experiments involving the direct parametric interaction of the two fields (Figure 3-17).
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In addition to measuring the difference frequency signal directly, we recorded the

amplitude of the reflected power from one element and analyzed the frequency component of the

reflected power signal corresponding to the output frequency of the other element. The magnitude

of this frequency component of the reflected power measurement directly corresponds with the

degree to which the field from one transducer is incident upon (and reflecting from) the other

transducer. The amplitude of this reflected power signal varies with the angle of rotation of the

target, in a manner similar to the difference frequency signal such that the generation of difference

frequency corresponds with the reflected power of one element interacting with the other. This

correlation between the reflected power signal and the difference frequency pressure is

demonstrated in experiments (Figure 3-20 and Figure 3-21) and the simulation of the parametric

effect (Figure 3-14), supporting the hypothesis that the parametric effect is responsible for the

generation difference frequency sound.
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Figure 3-20: Experimental results for the rotational scan of a polyethylene plate with the focus of the dual
frequency system positioned at the front interface. On the left, we plot the reflected power signal (at the
primary frequency of one element as received at the other element) and the difference frequency signal
normalized to their max values to demonstrate their correlation with each other and with the angle of
rotation. On the right, we plot the difference frequency signal in the units of Pa to demonstrate the
magnitude of the response as a function of the angle of rotation.
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We repeated the rotational scans, replacing the polyethylene plate with the silicone gel

tissue phantom (Figure 3-21). The results demonstrate a difference frequency response that

depends on the target rotation angle in a manner similar to the experiment with the polyethylene

plate. Further, these experimental results correlate with the simulation results as presented in Figure

3-14. In the silicone gel tissue phantom experiment, the difference frequency levels are slightly

greater than those produced with the polyethylene plate target. This result is not obvious since the

silicone gel is much softer than the plate and one might imagine that the impedance match between

the gel and water would be much closer than that of the plate and water. However, given the

polyethylene plate properties of c = 1950 m/s, p = 900 kg/m3 and the silicone tissue phantom

properties of c = 1050 m/s, p = 1000 kg/m3 and using equation (0.36), the reflection coefficient for a

plane wave at a normal angle of incidence O, = 0 is IRI = .08 for the plate and IRI = .17 for the

silicone gel. Therefore, the silicone gel has a greater coefficient of reflection, which explains the

slightly greater response from the gel than the plate as evident in careful inspection of Figure 3-20

as compared to Figure 3-21.
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Figure 3-21: Experimental results for the rotational scan of a silicone gel tissue phantom with the focus of
the dual frequency system positioned at the front interface. On the left, we plot the reflected power signal
(at the primary frequency of one element as received at the other element) and the difference frequency
signal normalized to their max values to demonstrate their correlation with each other and with the angle of
rotation. On the right, we plot the difference frequency signal in the units of Pa to demonstrate the
magnitude of the response as a function of the angle of rotation.

In experiments similar to the rotational scans, the silicone gel was scanned for 160 steps in

the axial direction with a step size of .25 mm (Figure 3-22). In these axial scan experiments, we

used a period of 880 msec with a duty cycle of 2%. The difference frequency was 30 kHz in both

experiments with the primary frequency centered around 2.74 MHz for the first experiment (Figure

3-23) and 1.624 MHz for the second experiment (Figure 3-24). Each element was driven with 29

W electric power in the first experiment and 5 W electrical power in the second experiment,

corresponding to a peak acoustic pressure at the focus for the primary fields of 3.5 MPa and 1.5

MPa respectively. Three measurements were recorded from both the low frequency hydrophone

and the dual-directional coupler per location.

K
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Figure 3-22: Diagram of the experimental set-up for axial scan experiments.

The experimental results of axial scans of the silicone tissue phantom support the

conclusion that the parametric effect is responsible for the difference frequency sound generated in

experiments with the transducers focused on a common target. For the axial scan experiments

plotted in Figure 3-23 and Figure 3-24, there is relatively little recorded signal at the difference

frequency except at the front and back interfaces of the gel, which are visible as the right-hand and

left-hand peaks of the response respectively. The results of the first axial scan experiment plotted in

Figure 3-23 show the response amplitude at the difference frequency from an axial scan in which a

relatively large amplitude (29 W electrical, 3.5 MPa peak acoustic pressure at the focus of each

primary field) pulse was sonicated from each element for a duration of 17 msec. This scan

demonstrates prominent signals for both the difference frequency and the reflected power at the

front and back interfaces of the gel, establishing a qualitative correlation between the generation of

difference frequency signal and the reflection of one field onto the transducer forming the other

field. The center of the gel and the water in front of and behind the gel produce almost zero signal

at the difference frequency and likewise show almost no reflected power signal. We note that this

correlation between the difference frequency signal and the reflected power signal is observed in the

rotational scan experiments as well (Figure 3-20 and Figure 3-21).
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Figure 3-23: Experimental results for an axial scan through a silicone gel tissue phantom demonstrating
the difference frequency sound generation and reflected power (at the primary frequency of one element
as received at the other element) when the focus of the two beams is incident on the back and front
interfaces of the target.

The second axial scan experiment (Figure 3-24) demonstrates the level of difference

frequency signal encountered at the interfaces of the phantom when 5 W electrical driving power is

used, corresponding to a peak acoustic pressure at the focus for the primary beam of 1.5 MPa.

Here, the peak difference frequency response is 2.5 Pa which is the same order of magnitude for

levels observed for the parametric effect in the experiments presented in Figure 3-17 as well as

more complex rotational experiments presented below in Figure 3-21. The second axial scan also

reveals that at the gel center, the recorded difference frequency signal is at the amplitude of the

system noise in contrast to the larger signal observed at the target interfaces. This data supports the

hypothesis that one reflected primary field is interacting with the field of the other primary signal

and thereby creating a difference frequency field via the parametric effect because it illustrates that

difference frequency responses are only generated when the primary beams are focused at the

planar interface of a target which is positioned at the specular angle to the two transducers.
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Figure 3-24: Experimental results for the second axial scan through a silicone gel tissue phantom
demonstrating the generation of difference frequency sound on the order of 2.5 Pa when the focus of the
primary beams is incident on the front and back interfaces of the target. The elements were each driven
at 5 W electrical power (1.5 MPa peak acoustic pressure of each primary field).

Imaging Surface of ex vivo Rabbit Liver

We performed a scan of the irregular surface of an ex vivo rabbit liver to demonstrate the

parametric effect when using a dual-frequency system for imaging at a tissue interface. For this

experiment, a portion of a rabbit liver was identified in which there was a 4mm diameter dimple in

the normally smooth tissue surface. The liver was degassed prior to the scan to remove any bubbles

that may have formed in the tissue post mortem. The liver sample was held in a plastic bag filled

with saline to prevent further decomposition and positioned so that the focus of the dual-frequency

system was at the tissue surface. The tissue was then scanned in a raster pattern of 14 mm x 14 mm

(step size = .5 mm) along the plane of the tissue surface. At each position, 4 pulses at 15 W

electrical power (corresponding to 5 MPa peak pressure at the focus of each primary field) were

radiated from a concentric ring dual-frequency system operating at 1.7 MHz with an outer diameter

of 10 cm, a focal distance of 8 cm, and a difference frequency of 7 kHz. The signal was received

with a hydrophone (Benthos AQ-1 8, North Falmouth, MA) located approximately 20 cm away

from the tissue surface, notch filtered around the difference frequency (Stanford Research Systems

SR650, Sunnyvale, CA), registered to a digital oscilloscope (Tektronix TD210, Beaverton, OR),

,,
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and recorded by a personal computer via a IEEE-488 GPIB interface. An image was acquired by

scanning the focus of the dual-frequency system over the surface of a fresh sample of rabbit liver as

illustrated in Figure 3-25.

Figure 3-25: Diagram of the experimental set-up used for scans of ex vivo rabbit liver. The diagram
indicates the grid of points through which the focus of the dual-frequency system was raster scanned in
order to create an image based on the amplitude of the response from each location in the rabbit liver.

The result, displayed in Figure 3-26, demonstrates the sensitivity of this system to surface

deviations of the tissue interface. The top of Figure 3-26 is a plot of the difference frequency

amplitude as a function of scan position. The bottom of Figure 3-26 is a photograph of the irregular

tissue surface. We recorded an increase in the difference frequency response when the focus of the

dual-frequency system was incident on the crease and the indent,. The levels of the difference

frequency signal for this experiment were in the range of 6-8 Pa. The experiment represents very

preliminary data from an ex vivo tissue sample. Nonetheless, the correlation of the difference

frequency signal with the tissue surface deviations indicated by the arrows support the conclusion

that the geometry of the sample is an important factor contributing to the difference frequency

response. While this experiment lacked sufficient controls to prove that the parametric effect was

the source of the difference frequency signal, the sensitivity of the signal to the axial position of the

interface which we observed while positioning the sample in the focus suggests that the parametric

effect may have contributed to the response in a manner similar to the axial scans previously
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discussed. This type of ex vivo tissue experiment (as well as eventual in vivo experiments) deserves

attention in future work with a dual-frequency system.
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Figure 3-26: Experimental image of the surface of a rabbit liver. This image is created from the amplitude of the
difference frequency signal plotted as a function of x-y position along the surface of the scanned ex vivo rabbit liver
(top). The indent and crease, observed in the photograph of the tissue (bottom), are evident in the image of the
difference frequency response (top).

3.3 Conclusions

In this chapter, we explored the generation of difference frequency sound by a mechanism

called the parametric effect. First we described the theory of the parametric array and illustrated the

relationship between the parametric array and Westervelt's original parametric effect. Then we

modeled the parametric effect as it applies to the dual-frequency system used in this thesis by taking

into account the multiple reflections of the primary field first from a silicone gel tissue phantom and

then from the spherical cap of the second transducer to produce the parametric effect. The results of

a simulation of the parametric effect, modeled using the target properties of the silicone gel tissue

phantom, are displayed as a function of target rotation angle in Figure 3-14 together with the

corresponding experimental results. The simulation and experimental results correlated reasonably

well, illustrating the creation of difference frequency sound pressure at levels in the 1-10 Pa range

u~t ... 1
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and supporting the hypothesis that the parametric effect was the primary source of difference

frequency sound in the experiments performed in this chapter.

In the experimental section, we first demonstrated that the parametric array and parametric

effect produce nearly identical sound levels at the difference frequency in a simple experiment

plotted in Figure 3-17. Then, we conducted experiments involving the rotation and translation of

the target in order to demonstrate the geometrical sensitivity of the measured difference frequency

sound. Fatemi and Greenleaf' 26 commented on the sensitivity of the difference frequency signal to

the target geometry in a recent paper, but this effect has neither been previously studied in a

systematic manner nor related to the parametric effect. In the systematic experiments in this

chapter, the target was rotated and translated over a range of geometries. The rotational scan

results, plotted in Figure 3-20 and Figure 3-21, demonstrated that the difference frequency signal

was produced only over a limited range of target rotation angles. The maximum difference

frequency signal was generated when the target was parallel to the plane of the transducers (see

Figure 3-13). The axial scan results, plotted in Figure 3-23 and Figure 3-24, demonstrated the

existence of the reflected power signal as well as the difference frequency signal only when the

front or back interface of the target was in the focus of the primary fields. The results suggest that

the reflection of the primary fields is critical for the generation of a difference frequency signal.

Starting from basic experiments and building to more complicated and realistic imaging scenarios,

the results in this chapter demonstrated the generation of a difference frequency signal from the

parametric effect as evidenced by the sound levels and the geometry of the target at which a

difference frequency signal was measured. In particular, in the simulations and experiments,

difference frequency sound is created only when the field from one element is reflected back to the

second element. In experiments, this conclusion is supported by the measured difference frequency

signal and the reflected power signal from one element, which contained a strong frequency

component at the primary frequency of the other element. The reflected power signal was sensitive

to the orientation of the target in a manner similar to the difference frequency signal. These

experimental results suggest that the source of difference frequency sound generation can be

attributed to the parametric effect described in this chapter because the parametric effect relies upon

the reflection of the field of one transducer from the second transducer. In our experiments,

difference frequency sound was detected only when reflected power from one element was recorded

at the surface of the other element.

This conclusion is significant because it indicates that previously hypothesized sources of

difference frequency sound may be less important than this form of difference frequency sound

generation. Experiments revealed that this mode of difference frequency sound generation may

produce relatively large signals (1-10 Pa) relative to the other two mechanisms considered in this
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thesis. Unfortunately, the parametric effect relies largely on the reflectivity of the target. Therefore,

the benefits of imaging with this signal as opposed to imaging with traditional echo ultrasound

system are not apparent. Nonetheless, it is important to identify this signal as a prominent source of

difference frequency sound, at the very least, to further our understanding of the possible artifactual

signals present in a dual-frequency imaging system such as the USVA system and the ways in

which this type of difference frequency sound generation can be avoided.
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4 Local Interaction of Two Pressure Fields

In this chapter, we examine the response of various targets to the local incident difference

frequency field calculated using the free-space nonlinear wave equation. In practice, even with

separate transducers, intersecting primary fields will contain collinear elements, which may produce

a difference frequency field incident on a target. This incident field may scatter from the target and

result in a difference frequency signal that can be detected outside of the interaction region of the

two primary beams. In a previous study, non-collinear plane waves were considered and the

nonlinear evanescent field at the difference frequency was shown to cause negligible scattering

from several targets.94 In this chapter, we examine the scattering of an incident difference

frequency field due to focused transducers through simulations and experiments with various

targets.

We begin by presenting the solution of the second-order wave equation for the difference

frequency field using the Green's function integral method. We calculate the solution over the

finite interaction region of two primary beams radiating from focused elements which are

positioned at an angle of 35 degrees to each other (see Figure 4-3). We then present equations

describing the linear scattering of the incident difference frequency field from several targets

including a silicone gel tissue phantom, a pressure release sphere, and a small gas bubble."v

In simulations, we calculate the difference frequency field scattered from the interface of the

target at a plane 10cm from the tissue phantom target and as a function of distance from the small

bubble target. The results of the simulations reveal a difference frequency field with a maximum

amplitude of 20 !pPa for the case of the silicone tissue phantom. This pressure amplitude is not

measurable given the system noise levels detailed in Table 1-1.

In the experimental section, we first check the linear simulation of the primary pressure field

by comparing the simulated field to experimental measurements of the total linear field. Checking

the simulation of the total linear field is an important step because we rely on the accuracy of the

simulated linear field in solving the second-order wave equation. Then, we perform several

experiments in an effort to measure a difference frequency field in the tank resulting from the

scattering of the incident difference frequency field from the interface of a polyethylene plate and a

XiV These same scattering equations for various targets are used in chapter 5 to analyze the scattering at the
primary frequencies.
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silicone gel tissue phantom. The experiments support the conclusion drawn from the simulations,

demonstrating an immeasurable difference frequency signal from the scattering of incident

difference frequency sound from various targets.

4.1 Theory

Total Difference Frequency Pressure at Focal Plane

To solve for the total difference frequency pressure at the focal plane of the primary beams,

we calculate the difference frequency field using the volume integral solution for the second-order

wave equation given by equation (0.25). The solution relies upon knowledge of the primary

pressure fields P and Pb. The primary pressure fields are determined by Green's theorem'27, in

which the free-space Green's function is multiplied by the source amplitude for a baffled simple

source128, and the product is integrated over the surface of the radiating transducer,

j(Oo bt-kab-(r-r'))

Pb (r) Poke 4 -l dS' (50)

where r and r' are the locations of the receiver and source points respectively, U0 is the

amplitude of the in-phase velocity of the source points at the transducer surface S', and

k,b = (k,ky,kz) is the wave vector.

Scatter Functions of Targets

We consider the scattering of the incident difference frequency field from a pressure release

sphere, an air-bubble, and an infinite horizontally stratified medium. In this section, we present the

general form of the scattering problem and specific scatter functions for the targets we simulate.

For the targets we consider, the scatter functions detailed below describe the scattered field for an

incident plane wave. Therefore, the total difference frequency pressure at the interface with the

target, P., must first be transformed into the "local plane wave spectrum" by means of the two-

dimensional spatial Fourier Transform following the method described by Korpell12 and using the

Fourier transform pair,
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P(kx,ky;Zo)= I P(x,y,zo)e-j(kxxyY)dxdy

(0.51)

P(x,y,zo) = ( f)l f P(kx,ky;zo)eJ(kXi+y) dk dky

The scattered field for the case of a pressure release sphere and a small air bubble follow

the form given by the approximation78 127,

P(r) P(k) S(ki) eij( ) (0.52)
kr

where k = k, I = k =- is the wave number corresponding to the incident wave vector k i , Pi is the

incident plane wave, P (r) is the scattered wave at distance r from the origin located at the target

center, and S(ki) is the scatter function for the target considered, which is independent of the

incident and outgoing wave vector directions because we only consider the case of omni-directional

scattering from a pressure release sphere and an air bubble satisfying ka < 1 (the object is very

small compared to the difference frequency wavelength). In general, for small solid scatterers, the

scatter function will not be spherically spreading. The approximation of equation (0.52) is valid for

the far field where Irl > , given the target dimension L and wavelength A.

For the infinite horizontally stratified medium, the outgoing scattered wave is not omni-

directional. In this case, we use a k-space reflection coefficient23 to calculate the reflection of plane

wave components of the total field, obtained by a Fourier decomposition of the local difference

frequency field into the "local plane wave spetrum" 2.

Pressure Release Sphere (vacuum bubble)

Pressure release spheres are considered because they represent bubbles that might occur in

tissue during thermal therapy with focused ultrasound due to voids created by cavitation or the

boiling of tissue. Pressure release spheres that satisfy the condition ka 1 can be approximated by

an omni-directional scatter function given by78,

S=ka (0.53)

From this simple scatter function, we observe that the strength of the scattered field is proportional

to the diameter, a, of the pressure release sphere.
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Air Filled Bubble

Air-bubbles present a sudden change in compressibility from the water to air medium and

may exhibit resonance in the frequency ranges of interest depending on their size. Practically

speaking, bubbles are significant in medical imaging of thermal therapy because they may be

produced during high-intensity therapeutic ultrasound treatment due to cavitation events2 9. 30 In

addition, gas bubbles can be added to the body in the form of contrast agents containing micro-

bubbles. This technique is increasingly utilized to enhance echogenicity in ultrasound imaging.'30

The term air-bubble in this thesis refers specifically to gas-bubbles containing a gas with a ratio of

specific heats, y = 1.4. This applies to bubbles containing either Nitrogen, Oxygen, or common air.

However, the scatter function below can be used for any gas-containing bubble if the appropriate

constant y is used. Brekhovskikh'3 gives the scatter function for an air bubble satisfying ka << 1,

kaS k(0.54)
(f,/f )2 -1-ika

where the bubble resonance fr is,

f,= Y P)2 (0.55)2a

( = 1.4 is the ratio of specific heats for air, p = 1000 kg/m 3 is the water density, P = 100 kPa is the

ambient pressure, and a is the bubble radius in meters).

Note that the scatter function increases dramatically as the frequency of the incident field

approaches the bubble resonance reaching a maximum magnitude of 1 at resonance. Bubble

resonance may contribute to enhanced difference frequency sound generation. In particular, bubble

resonance becomes significant when considering the interaction of waves scattered at the primary

frequencies for which the resonant bubble size is on the order of a micron and the peak pressure

levels of the primary field are in the MPa range at the focus. As we will see in chapter 5, this may

lead to scattered waves of appreciable magnitude at the primary frequencies even from a single

resonant bubble.

The infinite horizontally stratified medium
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We consider the reflection problem for plane waves incident on an infinite horizontally

stratified medium because this is closely related to the geometry of difference frequency waves

incident on organ and tissue interfaces in vivo. Organ and tissue interfaces can be approximated as

infinite planar surfaces given L , where L is the dimension of the planar interface of the tissue

and A; is the wavelength of the incident pressure wave. In experiments in this thesis, a rigid plate of

polyethylene or a slab made from a silicone gel is used to model this interface. We use the K-space

reflection coefficient, R (kx, ky ) for a horizontally stratified medium'2 3 given by,

Rol '+Roe 2 JklhccosG
1R (k k RoR + R 10e 'hcs (0.56)

where k, =- and R1, is the real-space reflection coefficient for a horizontally stratified medium
Cl

_~oCo, Oo-4d~-i.2Oo(whret0 and k, 78given by RR = ', (wherem= andn = 4 ) .78 The reflection coefficient is

valid for plane waves at any angle of incidence and can be used together with the planar

decomposition of the incident difference frequency field (0.51) to give the reflected difference

frequency field as,

P (xyz) = ()2 R(kXkY )P(kxky;zo)ejk (-z)ej(kxx+kYY dkdk.y (0.57)

where the difference frequency wave vector is indicated by k_ = (kx,ky,k_,), the scattered field is

P,(x, y,z) at location (x, y, z), and the position of the interface of the target is z0.

4.2 Simulations

In the simulation section, we first calculate the total linear pressure field from two elements

of various geometries. The accuracy of the solution to the second-order wave equation calculated

later in this section relies upon our ability to first accurately solve for the total linear field. Next, we

simulate the combined linear field of two separate elements in the vicinity of the focal plane to

check the validity of applying the volumetric integral solution to the second-order wave equation

over a limited region in which the two primary fields interact. Then, we solve for the local incident
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difference frequency field at the focal plane. Finally, we calculate the scattered field from a small

air bubble, a small pressure-release sphere, a polyethylene plate, and a silicone tissue phantom plate

to find the resulting difference frequency field in space.

4.2.1.1 Linear Field Simulations

Concentric Ring Transducer

For the case of the concentric ring transducer, the fields from an inner element (7.3 cm

diameter, 8 cm radius of curvature, 1.624 MHz) and an outer element (10 cm diameter, 8 cm radius

of curvature, 1.624 MHz) with equal surface areas are calculated separately using the Green's

theorem method described in equation (50). We include the time dependence term ej" t' because

the sum of the two fields varies in time at the difference frequency. The resulting primary fields are

added together to give the total primary pressure field PT,

eP (r, t) (qJPoUok i ej(bt-kb(r-r') )
PT(rt ) = jP ||ok - dS" + MOC°b ~ -dS (58)

S 4 r - rI SI 4lr -r - S

(where p0 = 998kg / m is the density of the water, c = 1500m / s is the speed of sound in the water,

k, b= v is the magnitude of the wave-vector for the field at frequency 0
a,b, r is the position of the

measurement point in the units of meters, and r' is the position of the source point on the surface of

the transducer S' in the units of meters). The simulation returns the total complex pressure

generated by the inner and outer transducer elements at points in the focal plane of the two elements

(Figure 4-1).
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Figure 4-1: Diagram of the simulation of the total linear pressure field produced by concentric elements
operating at different frequencies.

Only the difference frequency component of P7 (containing the cross term Pb ) is used in

the solution of the nonlinear wave equation (0.25) to simulate the incident difference frequency

field at the focal plane. The other cross-terms, given in (0.23), do not result in the generation of a

difference frequency field, as described in section 2.2. However, in order to compare the simulated

total linear field to experiments, the entire term P, is simulated here because in experiments, the

needle hydrophone measures the total primary frequency field Pt. Figure 4-2 displays the

magnitude of the simulated total linear pressure field PT generated from driving the outer and inner

elements at f = 1.675MHz and f2 = 1.725MHz respectively and 10 W electrical power per element,

corresponding to 2 MPa peak pressure at the focus of each primary field. The field oscillates at the

difference frequency Af = 50kHz between the two instances in time displayed. The most notable

feature of this pressure field is the pattern of phase reversals due to the interaction of the two

primary fields. The geometry of the inner and outer elements results in an interference pattern that

has the form of rings of in-phase pressure alternating with rings of 180 degree out-of-phase

pressure. Further, these phased rings of pressure evolve in time so that when the two fields are

exactly in phase at the focal plane, they add constructively to make a peaked focus as seen in the top

plot of Figure 4-2. When the two fields are exactly out of phase in time they cancel at the focus and

make a broad ringed pattern as observed in the bottom plot of Figure 4-2.
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Figure 4-2: Simulated total linear pressure field from a concentric element transducer with F-num = .8.
The inner and outer elements are driven at 1.675 MHz and 1.725 MHz respectively and 10 W electrical
power each. The result is displayed at 0 relative phase (row 1) and 180 relative phase (row2) of the two
fields.

The total field at the primaries from the two elements driven at different frequencies and with an F-

numberxv of .8 is compared to experiments in Figure 4-18. The simulation agrees reasonably well

with the experimental measurements. Simulation and experiment show a similar phase-reversal

pattern.

Separate Element System

For the case of two separate elements intersecting at an angle to produce a summed field in

the focal plane, a slightly more complicated simulation is needed. First, we calculate the linear

pressure field from each element (4 cm diameter, 10cm radius of curvature, 2.705 MHz and 2.755

MHz) using the method described above by equation (50). Then, we transform the complex

xv The F-number is defined as the ratio of the focal distance to the diameter of the spherically focused
element. It is proportional to 3db diameter of the focused pressure field created by the geometric curvature
of a spherical element. 12 7
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pressure fields into the "local plane wave spectrum" using the forward transform of the Fourier

transform pair 112 ,

P(kxky;zo) =I f P(x,y,zo)e-ij(kx+kyy)dxdy

P(x, y,z) ( )2 I P(k,,ky;z)e i(kx+kyY)dkxdky
(59)

Once in wave-vector space, the field from each element can be projected or rotated to the desired

orientation using the methods outlined by Clement32. In this case, the fields are first projected to

the focal plane at 10 cm. Then, one field is rotated by a/2 in the positive 0-direction while the other

field is rotated by a/2 in the negative 0-direction by multiplication of the basis vector

(kx, ky, k z )with an Euler rotation matrix A (dROT, ROT, ROT ) to give a new rotated basis

(k', ky ,k'z) . The resulting fields are transformed back into real space by means of the inverse

spatial, two-dimensional Fourier Transform from equation (59) and summed together. The

simulations were calculated for two separate elements driven at different frequencies and

intersecting at an angle a ranging from 0 degree to 180 degrees (Figure 4-5).

Figure 4-3: Diagram of the simulation of the total linear pressure field generated by elements separated by
an angle alpha.
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The simulated amplitude of the total linear pressure field from the two elements driven at

different frequencies and with an angle of separation of 25 degrees and 50 degrees is plotted in

Figure 4-4 and Figure 4-5 respectively. In both simulations, the field oscillates at the difference

frequency between the two instances of time displayed. Similar to the concentric element case, the

difference frequency field has a pattern of phase reversals due to the interaction of the two primary

fields. However, the pattern for the system with separate elements is different than for the

concentric element case. Here, the result at any given instant in time is a field with stripes of in-

phase pressure alternating with stripes of 180 degree out-of-phase pressure. We note that as the

angle of separation of the elements increases, the stripes of phase reversed pressures become

narrower until a limit of spacing on the order of the wavelength of the primary frequencies is

obtained.
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Figure 4-4: Simulated total pressure field generated by two elements separated by an angle of 25 degrees.
The simulation result is plotted at 0 relative phase (row 1) and 180 relative phase (row2) of the two primary
fields.
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Figure 4-5: Simulated total pressure field generated by two elements separated by an angle of 50 degrees.
The simulation result is plotted at 0 relative phase (row 1) and 180 relative phase (row2) of the two primary
fields.

The simulations of the total linear field are compared to experiments for the elements

angled at 25 and 50 degrees to each other in Figure 4-19 and Figure 4-20 respectively. As seen in

these figures, the simulations correlate relatively well with the experimentally measured fields and

demonstrate similar striped phase reversal pattern.

Interaction Region

In order to solve for the local incident difference frequency pressure at the focal plane, we

must integrate P,P over the region in space where the two primary fields interact to generate a

difference frequency field according to the volumetric solution method of equation (0.25). We

define the interaction region as the volume in space where the product of the two fields, PPb,

achieves an amplitude of at least 1/ 10 0
h of the peak value for this quantity and we make the

approximation that outside of this region, there is no significant interaction between the two fields.

. . .
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Using this definition, we can limit the integral of equation (0.25) to a finite interaction volume.

Limiting the domain for the integral to the finite interaction region greatly reduces the computation

time for this integral. The product P,Pb for two elements (4 cm diameter, 10 cm radius of

curvature) separated by an angle of 35 degrees is simulated in Figure 4-6 along with the profile of

the primary fields ( P, and P ) from each element. The primary fields are plotted in each of the first

two columns and the combined pressure term P, P' is plotted in the third column. The axial

distancexvi on the plot starts at the focal plane (z = 0) and extends towards the plane of the

transducers by a distance of 10 mm. The object with which the resulting difference frequency field

will interact is located at radial distance vii = 0, axial distance = 0. The figure illustrates that despite

the relatively long focal dimension of the primary beams (approximately 15 mm in length for the -

3db value), the interaction region is finite and extends for only 2-3 millimeters in front of the focal

plane. The limited interaction region of the two pressure fields is due to the geometry of the

separate element system, which creates primary fields that intersect at an appreciable angle, thereby

limiting the extent of the interaction region.
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Figure 4-6: Normalized plots of the simulated incident primary fields Pa and Pb, and their product PaPb*.
PaPb* is the combined source term of the second order wave equation. The axial distance starts at the focal
plane (z = 0) and is simulated towards the plane of the transducers. The object with which the field
interacts is centered at the focus (radial distance = 0, axial distance = 0).

XVi Axial distance refers to the distance along the axis of propagation and is measured in these simulations
from the focal plane at a distance of 0 mm towards the transducer face.
vi Radial distance refers to the distance from the geometric center of the transducer outward in the radial

direction.
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4.2.1.2 Nonlinear Difference Frequency Field

Finally, we simulate the total difference frequency pressure at the focal plane using the

above experimentally verified results for the primary fields and the volume integral solution to the

second order wave equation as provided in equation (0.25) of the theory section. The volume

integral solution method is applied without computational difficulty because the interaction region

is limited to only a few millimeters in depth as demonstrated by the results of the incident primary

fields in Figure 4-6 and illustrated in the diagram of Figure 4-7.

Figure 4-7: Diagram of the interaction region of two pressure fields generated by separate elements
intersecting at a common focal point.

We calculate the incident difference frequency pressure at the focal plane of the primary

beams by plugging the combined pressure term, PPb, (plotted in Figure 4-6) into the volume

integral solution of the second-order wave equation (0.25). Figure 4-8 shows the result for the

instantaneous value of the difference frequency pressure field at the focal plane for one point in

time. The field is calculated using two 4 cm diameter, 10 cm radius of curvature elements oriented

at 35 degrees between centers and each driven with 10 W electrical power (corresponding to 2 MPa

peak pressure at the focus of each primary field) at a frequency of 2.73MHz ± 25kHz to provide a

difference frequency of 50kHz .
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Figure 4-8: Simulated instantaneous value of the total difference frequency pressure at the focal plane
from the intersection of two primary pressure fields of a separate element system with a 35 degree angle of
separation. The difference frequency field was calculated using the Green's Function integral solution for
the second order wave equation.

We note that the difference frequency field demonstrates a phase-reversal pattern, which

oscillates at the difference frequency, similar to the total primary field. For soft targets, the local

pressure pattern will cause motion of the target interface. For all objects (hard or soft), the

difference frequency waves will scatter out from the object and may be detected by the low

frequency hydrophone in the tank. The amplitude of the scattered field depends on the mechanical

properties of the target which can be related to the acoustical properties by c = , where

fp = 3(-E2V) is the Bulk Modulus of the material for a given Young's Modulus, E, and Poisson's

Ratio, v. See Appendix C for a more detailed explanation of the relationship between the

acoustical and mechanical properties of the target. The difference frequency pressure field

displayed in Figure 4-8 will scatter from an object located at the focal plane. In the next section, we

simulate the scattered difference frequency field resulting from several different targets.

Scattered Local Difference Frequency Field

Before calculating the amplitude of the scattered difference frequency field, we note that

the scattering function, S, or reflection coefficient R(k, ky), is much less than one for targets we

use. Therefore, we would expect the scattered field to be small. The result of scattering from a

single micro-bubble, for example, is very small due to its small size, which allows only part of the

... . . ..
1~5\
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incident energy to scatter outward. In addition, we note from equation (0.52) that in the far field,

the sound pressure at the difference frequency falls off at a rate 1r as the receiver is moved a

distance r from the center of scattering from the small gas bubble or pressure release sphere. This

rate of decay is due to spherical divergence and will tend to reduce our ability to detect the

difference frequency sound further.

The simulations described in this section use the difference frequency field calculated

above Figure 4-8 for separate focused sources driven at 10 W electrical power (corresponding to 2

MPa peak pressure of the primary field) with a difference frequency of 50 kHz and the parameters

detailed in Table 1-4. First, we simulate the response of a single, small (ka 1 ) pressure release

sphere and air-filled bubble (Figure 4-9).

Figure 4-9: Diagram of the model for scattering of the local difference frequency field from a small
spherical target.

Because we suspect that the scattered field will be much smaller than the peak of the

incident field (which is .6 Pa according to Figure 4-8), we perform simulations in an effort to

calculate the maximum possible scattered difference frequency pressure. To maximize the scattered

field, two scenarios are simulated. The first case we consider is the simulation of the largest

spherical target that still satisfies the condition of omni-directional scattering (ka : 1 ). For this

simulation, a bubble of 400 pum is modeled. This is two orders of magnitude larger than bubbles

modeled in chapter 5 where the maximum diameter considered must scale with the primary

frequency wavelengths. The second scenario we simulate is the interaction of the local difference

frequency field with a bubble that is exactly the resonant size for the 50 kHz difference frequency

pressure acting upon it. It is well known that resonance greatly increases the scattering efficiency of
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a bubble"'. In Figure 4-10, we plot the simulation results for the scattered incident difference

frequency field as a function of distance from the interaction region for the two optimal scattering

scenarios.
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Figure 4-10: Simulated difference frequency pressure after the scattering of a local difference frequency
field from a small object. The result is plotted as a function of distance from the interaction region. The
simulation for a 400 grn spherical scatterer is plotted on top. The simulation for a resonant spherical
scatterer (65.2 pm) is plotted on bottom.

The simulations results reveal a small difference frequency signal reaching a maximum of

6.5 Pa for the case of the resonant bubble at 10 cm from the interaction region. This pressure level

is well below the noise floor of .1 Pa for the experimental system. For the case of the 400 pm

,,
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spherical target, the response of the air-filled bubble and the pressure release sphere are nearly the

same amplitude. For the case of scattering from a resonant bubble or a pressure release sphere of

the same diameter, the difference frequency amplitude scattered from the pressure release sphere is

on the order of le 7 Pa , which is several orders of magnitude below the response from the resonant

air-bubble (6.5 pPa).

Next, we simulate the planar reflection of the incident difference frequency field (Figure

4-11). Two cases are considered for the planar target. First, we simulate the reflection of the

incident difference frequency field from a planar target of the silicone gel tissue phantom material

(p = 1000kg m3,c = 1050m s). The result of the reflected difference frequency field is used to

benchmark the values from experiments with the silicone gel. Then, we simulate the difference

frequency due to the reflection from a perfectly reflecting plate ( R = 1), in an effort to establish an

upper bound on the magnitude of the difference frequency field scattered from the interaction zone.

Yl!

10c

Figure 4-11: Diagram of the simulated reflection of an incident difference frequency field from a planar
target.

We use the same solution for the incident field at the difference frequency as used for the

scattering from spheres. The planar interface of the silicone gel or perfect reflector is located at the

focal plane of the two sources. The resulting difference frequency field is numerically solved at a

plane 10 cm from the interaction region. This distance represents the closest measurement position

used in experiments. We did not simulate the result over planes farther than 10 cm from the source,

because we want to calculate a maximum value of the reflected field and would expect even smaller
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difference frequency levels farther away. The simulation results, plotted in Figure 4-12, show the

difference frequency field after reflection from the silicone gel tissue phantom. The reflected

difference frequency field reaches a maximum of approximately 20 pPa for this simulation. This

maximum pressure value is well below the noise floor of .1 Pa for the experimental system.
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Figure 4-12: Simulated difference frequency field at a plane 10 cm from the silicone gel target. This field
results from the scattering of a local difference frequency pressure field from a silicone gel tissue phantom.

The simulation result for the reflection of the incident difference frequency field from the

perfect planar reflector is plotted in Figure 4-13. This result demonstrates a reflected difference

frequency pressure that is more sharply focused as compared to the reflected field from the soft

silicone gel tissue phantom. The improvement in focusing is most likely due to the lack of multiple

reflections, which occur within the horizontally stratified silicone gel model. Instead, for the

perfectly reflecting plate, all of the incident energy is reflected from the front interface of the planar

target producing a modest focusing effect. Despite this focusing effect, the peak pressure at the

difference frequency is only slightly larger for the perfect reflector (approximately 30 pPa) as

compared to the silicone gel target (approximately 20 pPa). However, in both cases, the difference

. ·
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frequency peak is many orders of magnitude below the amplitude of the system noise (.05 Pa) and

would not be detectable experimentally.
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Figure 4-13: Simulated difference frequency field at a plane 10 cm from the perfectly reflecting planar
target. This field results from the scattering of a local difference frequency pressure field from a perfectly
reflecting plate.

Local Displacement at the Difference Frequency

In addition to scattering from the target, the incident difference frequency field may cause

displacements at the target interface. The magnitude of the displacement depends on the relative

mechanical modulus of the target. We use the equations of continuity of pressure and conservation

of momentum,

Pi +PR = PT

(0.60)

p, ar pt ar

i ~.

)( - d%51.c;L' --
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with the mechanical/acoustical properties of the target in order to calculate the displacement of the

interface.. If we substitute the expressions for the incident pressure, Pi = P_, the reflected pressure,

P = R P, and the transmitted pressure, P, = T P, (where P is the local pressure at the difference

frequency due to the interaction of the primary fields) into (0.60), we can solve for the reflection

and transmission coefficients,

R P21P -CC2
P2 IP +C 1 /C2

(0.61)

2p21pA

P21P + CiC2

where p,cl are the density and speed of sound for the medium and p ,cl are the density and speed

of sound for the object. The reflection and transmission coefficients given by (0.61) are used to

determine the net pressure on the interface, which is given by P = (1 + R)P . Then, we can apply

Newton's Second Law to calculate the magnitude of the local velocity of the interface,

-VP = p 

jklP = jpoV (0.62)

IVI= = (1+ R)P
pc pc

where P = P0e
J - r is the local pressure at position r on the interface and V = Voe-i -' is the local

velocity at the interface. Finally, we can solve for the local displacement, D_(t), using the

expression for the velocity by means of the relation,

dD(t) V

(0.63)
[D(t) = jP = j(+R)

jm_ pcw_ pcL

The amplitude of the resulting local displacement is proportional to the difference

frequency pressure by the constant of proportionality, as , so that at greater difference frequencies

the amplitude of the displacement decreases.
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In practice, the local displacement of an object in an ultrasound field is a result of linear

interaction of the incident difference frequency waves with the object and nonlinear interaction

between acoustic waves and the boundary. We will consider the first effect here. The latter effect

is a current topic of investigation. The analysis of all modes of nonlinear interaction between waves

and boundaries is beyond the scope of this thesis. However, we made empirical measurements in

experiments using pulse echo ultrasound techniques with a standard cross-correlation algorithm,

to detect the local displacement of a silicone gel phantom when high intensity AM modulated

ultrasound is applied. Colleagues in our laboratory recorded the results presented in Figure 4-14.

To displace the silicone gel, we used an AM modulated signal at 3.75 MHz from a function

generator (HP 33120A, Palo Alto, CA) driving two transducers positioned at 45 degrees to each

other (4 cm diameter, 10 cm radius of curvature) fabricated in house from PZT4 and operating at 19

W electrical each, corresponding to a peak pressure of 3 MPa at the focus of each the primary field.

For the pulse-echo detection system, we used a 1.2 MHz composite transducer triggered by a

send/receive pulser (Panametrics, Waltham, MA) at a pulse repetition rate of 2.5kHz. The

minimum detectable displacement for this system is 8 pm based on the acquisition sample rate of

the echo ultrasound measurement system. We plot the experimentally measured displacement of

the silicone gel interface as a function of frequency of modulation in Figure 4-14 (experimental

values indicated by *). We also plot the simulated displacement (solid line in Figure 4-14) using

equation (0.63) and normalizing the peak to the experimental data. The plots demonstrate a

relationship for the experimentally measured displacement.
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Figure 4-14: Experimentally measured displacement of a silicone gel interface as a function of difference
frequency. The result is plotted together with a simulation of the displacement using equation (0.63),
which is normalized to the experimental results. The simulation illustrates frequency dependence of
experimental data.

Greenleaf's group reports similar displacements, as large as 50nm, of stainless steel spheres

embedded in a gel and positioned at the focus of a dual-frequency system 19. In addition to pulse-

echo ultrasound, they use a laser vibrometry detection method to measure the displacement.

Although these disturbances seem relatively large on an acoustics scale, we show below that they

are insufficient to produce a measurable signal at the difference frequency.

In equations (0.62) and (0.63), we estimate the displacement at the interface caused by

scattering from a planar target. Alternatively, we can consider the radiation from a moving target

and calculate the displacement of the target interface necessary to produce a measurable field at a

given frequency. From the scattering point of view, this approach is equivalent to calculating the

reflection from an infinitely soft interface (a pressure release surface)Xv. We use the simple model

of a baffled planar disc radiator of dimensions equal to the focal dimensions of the primary field to

estimate the displacement necessary to produce a difference frequency signal just above the

amplitude of the system noise. This model uses the equation for on-axis pressure due to the

harmonic motion of a baffled disc radiator78'128,

XViii We note that a rigid target also generates a scattered field even though the interface does not move.



97

P(r) = - pcU ka (0.64)

where p0 = 998kg / m3 is the ambient density of the medium, c = 1500m / s is the speed of sound of

the medium, a = .5mm is the radius of the disc, k = is the magnitude of the wave vector, and r is

the distance from the radiator in meters. Equation (0.64) is valid in the far field for >> 1 and

0 >ka.

We use (0.64) to calculate the displacement as a function of difference frequency necessary

to produce a sound pressure P(r) = .1 Pa at rl = 10 cm from the moving disc. The pressure of .1 Pa

is the minimum pressure amplitude detectable, because it is just above the amplitude of the noise for

the system. The result, plotted in Figure 4-15 for the same range of frequencies at which the

displacement was measured in Figure 4-14, demonstrates that a displacement on the order of 500

}pm is required to produce a difference frequency sound at 150 Hz which can be detected. In the

high power, low frequency experiment of Figure 4-14, the motion is approximately 50 times too

small to generate (or be the result of) a detectable sound field.
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Figure 4-15: Simulated displacement as a function of frequency of a mm diameter disc radiator. The
plot illustrates the displacement needed in order to generate a measurable difference frequency sound level
of .1 Pa at 10 cm from the source.
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The results of the simulations in this chapter for the incident difference frequency field

scattered from small spherical targets and planar reflectors (Figure 4-10 through Figure 4-13) reveal

scattered pressure levels in the pPa range and lower. Given the noise amplitude for the

experimental set-up, provided in Table 1-1 (noise amplitude = .1 Pa), and the sensitivity of the

measuring equipment, signals this small would not be detectable in experiments designed to isolate

this mode of difference frequency sound generation. For the case of spherical scatterers, the field

can be observed to decay like as the distance r from the scatterer increases due to the divergence

the pressure field as it spreads. For the planar reflectors considered, the reflected difference

frequency signal is larger than the scattered field from the spherical targets, but it still does not

reach a measurable level.

4.3 Experiments

We experimentally measured the difference frequency sound due to the reflection of two

primary fields from the surface of an object and the subsequent scattering of this difference

frequency field. Multiple measurements were made of the response from the center and surface of

silicone gel tissue phantoms and compared to the response from the interaction of the primary fields

without a target in the field. We conducted the experiments at the highest possible powers while

still avoiding cavitation and also with very short pulse bursts to prevent the interaction of reflected

waves with the transducers (a topic called the parametric effect as discussed in chapter 3). The

experimental results confirm the conclusions from simulations in section 4.2 that no difference

frequency signal is detectable.

Direct Local Force Measurements

Before measuring the difference frequency sound generated by the reflection from the

target, we performed a preliminary experiment to study the local force on objects. For this

experiment, we placed a pin at the focus of the concentric element system driven at several very low

difference frequencies and recorded the force on the pin (Figure 4-16). In similar experiments,

McNamara and Beyer reported measuring the "time varying" radiation pressure from a single

element modulated sinusoidally (a parametric array) using a condenser microphone for the

receiver.34 However, we are not aware of any previous direct measurements of the time varying

force from two separate elements interacting on a target.
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Figure 4-16: Diagram of the experimental set-up used for the direct measurement of an oscillating force
created by a dual-frequency pressure field incident on the mm diameter head of a steel pin.

A 14 element concentric ring transducer was used in which rings 2 through 8 were driven

together at (1.54 + A) MHz while rings 9 through 14 were driven together at 1.54 MHz (ring 1 was

not powered). This transducer was used because it has minimal mechanical coupling between the

elements as compared to the two-element concentric ring transducer described earlier. Eliminating

the coupling ensures that the elements do not drive one another, creating a parametric array which

might result in an incident difference frequency that could cause the cyclical forces. For the

experiments measuring the oscillatory force at the difference frequency, the transducer was

positioned under the water surface and pointed upwards at a small steel target (1 mm diameter

pinhead) secured to a computer controlled electronic balance (Metler Toledo PR2003, Columbus,

OH). The continuous wave (CW) driving signals were obtained from two function generators (HP

3120A, Palo Alto, CA) each driving an amplifier providing 50 dB gain (ENI 1200L and ENI

3100L, Rochester, NY). The output power was 20 W electrical per element, corresponding to a

peak pressure of 5.7 MPa at the focus of each primary field. In order to direct the acoustic waves

away from the water surface and thereby to eliminate standing waves, a cone-shaped reflector

surrounded by an angled pad of absorbing rubber were positioned around the mm target so that the

1mm target could swing freely while surrounded by the absorption apparatus. We recorded force

measurements as a function of time with the two elements driven at slightly different frequencies.
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The experiment was conducted at very small difference frequencies due to the slow response time

of the scale and was repeated for several values of the difference frequency, Af.

This results of this initial experiment, plotted in Figure 4-17, demonstrate the oscillating

force measured by the electronic scale as a function of time at a difference frequency of Af= .067

Hz, .17 Hz, .23 Hz, and .31 Hz respectively. Note that the amplitude of the force increases slightly

with decreasing difference frequency. This may be attributed to the very low natural frequency of

the scale and associated electronics, which do not update quickly enough to follow even these

slowly changing forces. There are several competing theoretical explanations of this relatively

large oscillating force and a thorough investigation of these mechanisms is beyond the scope of this

thesis. However, the results of the experiment are included to report this nonlinear effect on the

target we measured empirically. Regardless of the mechanism responsible for this measured force,

the simple simulation above of a disc radiator the size of the pinhead illustrates that forces of this

magnitude (or the corresponding displacements in the medium cause by forces of this magnitude)

are insufficient to account for a measurable difference frequency field in the tank.
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Figure 4-17: Experimentally measured force vs. time result from sonicating a lmm target at a difference
frequency of .067 Hz (top), .17 Hz ( 2nd row), .23 Hz (3 rd row), and .31 Hz (bottom).

Experiments to Validate Simulated Interaction of Primary Fields

Before performing experiments to measure the difference frequency response of the

silicone gel targets, we measured the field resulting from the interaction of the two primary beams

in order to check the simulations of these primary fields. This is an important first step because the
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reliability of the above simulations which predict an immeasurable difference frequency sound for

all cases of local interaction with a target are contingent upon the accuracy of the simulated primary

fields. For these experiments, a .075mm PVDF needle hydrophone (Precision Acoustics,

Dorchester, UK) was scanned through the focal plane of the field created by the concentric element

transducer. The measured signal was registered to a digital oscilloscope (Yokogawa DL7100,

Japan) and recorded to a personal computer via a GPIB IEEE-488 connection. The hydrophone

was positioned by means three-dimensional positioning system (Velmex Unislide NF90,

Bloomfield, NY), which was controlled by the same computer via an RS-232 connection to the

serial port. The experiment was repeated for the separate-element system with the transducers

positioned at both 25 degrees and 50 degrees between centers.

The result of the simulation of the combined linear pressure field due to ultrasound

radiation from an inner and outer transducer is a time-dependant pressure field given by the sum of

the fields from the two separate elements. The pressure field varies in time due to the summation of

the two fields according to the relation given in equation (58) above. Column A of Figure 4-18

shows the amplitude of the simulated combined pressure field in the focal plane at 0 degrees and

180 degrees relative phase. The field varies in time from the normal Gaussian-shaped focus of a

spherical-cap transducer to a pattern of concentric rings of pressure. In the center point of the focal

plane, the fields from the two elements cancel when the two fields are at 180 relative phase.

In column B of Figure 4-18, the amplitude of the experimentally measured pressure field

from a concentric element transducer with the same geometry as the one simulated is displayed at

the same 2 time points. The geometries of the simulated and experimentally measured fields agree

relatively well. For this transducer, the distance between concentric rings of peak pressure in the

simulation is 1 mm (1.15*X), which is nearly the same as the measured distance between concentric

rings of peak pressure in the experimental data.
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Figure 4-18: Simulation and experiment of the combined pressure field generated by a concentric element
transducer with l:;-num = .8. The figure shows the result of the simulation (column A) and experiment
(column B) at 0 relative phase (row 1) and 180 relative phase (row2) of the two primary fields.

The combined pressure field from two separate elements varies in time in a similar manner

as the concentric ring transducer. In this case, the pressure field in the focal plane forms a pattern of

vertical stripes of alternating peak and zero pressure. This grading lobe pattern from two focused

elements is demonstrated in the results for the simulation of Pr (Figure 4-2). This plot represents

the amplitude of the total pressure field in the focal plane at time points corresponding to 0 degrees

and 180 degrees relative phase of the two elements. The elements are positioned at an angle of 50

degrees between the two element centers.

In Figure 4-19, the amplitude of the experimentally measured linear summed pressure field

from a separate element system with the same geometry as the one simulated in Figure 4-4 is

displayed at the samne two time points. This field represents the source term driving the second

order wave equation. There is good agreement between the geometry of the simulated and

experimentally measured fields. For this transducer and separation angle of 25 degrees, the distance

between vertical lines of peak pressure in the simulation and experiment is .67 mm (1.1 8*X).
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Figure 4-19: Simulation and experiment of the combined pressure field generated by separate elements
angled at 25 degrees. The figure shows the result of the simulation (column A) and experiment (column B)
at 0 relative phase (row 1) and 180 relative phase (row2) of the two primary fields.

The same type of simulation and experiment are repeated for the two elements positioned at

50 degrees between centers in Figure 4-20. Again, the correlation between simulated and

experimentally measured linear summed fields is reasonable, both indicating the characteristic

striping pattern of the pressure field due to the interference of the two primary fields. The

interference pattern for an angle of 50 degrees contains a greater number of stripes of in-phase

pressure with a finer spacing between them.
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Figure 4-20: Simulation and experiment of the combined pressure field generated by separate elements
angled at 50 degrees. The figure shows the result of the simulation (column A) and experiment (column B)
at 0 relative phase (row 1) and 180 relative phase (row2) of the two primary fields.

Figure 4-21 is a photograph taken of the displacement due to the two separate elements

intersecting at the air-water interface. This photograph is presented to visualize the vertical lines of

pressure. Of course, due to water surface tension, the displacement does not return to zero between

the pressure peaks at the lines of zero pressure. The result for the air-water interface is a smoother

version of the ridges of in-phase pressure presented in the above simulations and direct pressure

measurements.
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Figure 4-21: Photograph of the displacement at the water surface caused by the combined acoustic fields
from two separate elements.

Gel center s. Outside Gel experiments at 3rd harmonic and 5th harmonic

In order to compare the signal from the center of the gel to that of no target at all in a

rigorous manner, we conducted a series of experiments in which 100 measurements were acquired

with the intersecting foci positioned at the gel center and 100 measurements were acquired with the

intersecting foci positioned the same distance in front of the gel surface as it had been behind the gel

surface (see Figure 4-22). We position the focus equidistance behind and in front of the front

surface of the gel for the respective experiments in order to control for the scattering of waves from

the gel surface. The geometry of the pressure field produced by a focused transducer is similar just

before and just after the focal plane. Therefore, some slight interference effects of the pressure field

with the gel interface could be controlled by positioning the focus equidistance in front of and

behind the gel interface.
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Foci intersect in water in front of target (Control)

Silicone
Gel

Foci intersect in center of target

Figure 4-22: Diagram of the experimental set-up used for detecting the generation of a difference
frequency response from the center of a silicone gel tissue phantom.

We took steps to try to maximize any possible signal originating from the gel center caused

by a local difference frequency pressure effect. We conducted the experiment at the third harmonic

(1.624 MHz) of the transducer with a pulse period of 880 msec, duty cycle of 10%, and power of 16

W electrical per element, corresponding to a peak pressure of 2.7 MPa for each primary field. This

power represented the greatest amplitude possible before thermal effects occurred in the target

silicone gel. The measurements were made for a difference frequency of 100, 300, 500, 700, and

900 Hz. The dual channel filter was set to allow the frequencies from 80 Hz - 20 kHz to pass

through.

We repeated the experiment at the 5 harmonic of the transducers (2.74 MHz) in order to

obtain a tighter focus, greater absorption coefficient, and a reduced threshold for cavitation. At this

frequency, the period remained the same, but the duty cycle was decreased to 2% (five times

smaller than previously) so that the power could be increased to 29 Watts electrical per element

(corresponding to a peak pressure of 3.5 MPa for each primary field) without thermal exposure

effects in the gel. The dual channel filter was more tightly tuned in this series of experiments at the

5t harmonic to allow frequencies between 85 Hz and 2 kHz to pass through. Similar to the 3 rd
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harmonic experiments, the measurements at the 5 h harmonic were repeated for difference

frequencies of 100, 300, 500, 700, and 900 Hz. For the experiments at the 5t harmonic, the forward

and reflected power signals were detected by the dual-directional coupler. We monitored this signal

to ensure that there was no transducer-to-transducer interaction present.

In the first experiment, the response from the gel center was compared to control (the water

in front of the gel) at various difference frequencies. The results, plotted in Figure 4-23, show

nearly identical amplitudes of the response from the gel center and control. In particular, the

response is very small and is below the noise floor for the system. If the local difference frequency

pressure were the cause of this small difference frequency response, we would expect the response

from the gel center to be much greater than that from no target at all (control). However, we see in

this experiment, that the gel and control measurements are nearly the same amplitude and in

particular are within one standard deviation of the measured system noise amplitude as indicated in

Table 1-1.
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Figure 4-23: Experimentally measured difference frequency generated from the gel center vs. control for
scans at the 3 harmonic. The plot shows the mean and standard deviation of the measurement at each
frequency.

The experiment testing for difference frequency response was repeated at even higher

power levels by using the 5 harmonic of the primaries, which allows for a greater cavitation

threshold. The results of the 5 harmonic experiment, plotted in Figure 4-24, and the results of the

3rd harmonic case lead to the same conclusion: the signal is the same as the control. Even with

conditions optimized for difference frequency sound generation including the use of 29 W per
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element electrical power for the primary beams (corresponding to a peak pressure of 3.5 MPa for

each primary field), the recorded signal is still with-in the standard deviation of the noise as

measured for this system in Table 1-1.

Ca
0.

CT

. _U-

1.2

a-

L

0.

0.

0.

0.

C

0.

0.'

0.

0.

Difference Frequency (Hz)

Figure 4-24: Experimentally measured difference frequency generated from the gel center vs. control for
scans at the 5 th harmonic. The plot shows the mean and standard deviation of the measurement at each
frequency.

Interface of Polyethylene Plate and Silicone Gel Phantom

We conducted experiments to determine if local pressure at the difference frequency could

reflect from a silicone gel or a polyethylene plate to produce detectable signals at the difference

frequency. The experiments were simulated in the first part of this chapter (see Figure 4-12 and

Figure 4-13). In these experiments, the interface of a planar target was oriented to eliminate any

interaction of the reflected beam with the transducers themselves to avoid their collinear interaction

as discussed in chapter 3. We used separate transducers operating at 2.74 MHz and positioned at an

angle of 60 degrees to each other. The two transducers pulsed at a power of 10 W electrical per

element (corresponding to a peak pressure of 2 MPa for each primary field) and at a difference

frequency of 30 kHz with a period of 75 msec and a duty cycle of 20%. The acoustic response was

recorded by the low frequency hydrophone (International Transducer Corporation ITC-6050C,

Santa Barbara, CA) and the signal was captured and digitized by the oscilloscope (Yokogawa

U,

DO
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DL7100, Japan). The measurements were repeated for a total of ten pulses at each position as the

planar target was rotated through several angles ranging from 101 degrees to 110 degrees (Figure

4-25).

90 Degrees

-)4

Plane of
Transducers

10cm

5cm

10cm

Figure 4-25: Diagram of experimental set-up used to measure the reflected difference frequency field
from the interface of a planar target.

The result of the reflection of the incident field from the interface of the polyethylene plate

is plotted in Figure 4-26. The result shows that the recorded difference frequency signal is well

below the noise floor for the system at all angles of the interface. The background noise is lower in

this case since the filtering of signals below lkHz allows for more sensitive measurements to be

made and eliminates many common laboratory noises. Despite this decreased system noise

amplitude, the signal from the polyethylene plate is still undetectable for this experiment.
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Figure 4-26: Experimentally measured difference frequency from a water-polyethylene interface. The
plot shows the mean and standard deviation of the measurement at each frequency.

Finally, we plot the results from measurements of the difference frequency pressure due to

the interaction of the two primary beams from separate elements on the interface of the silicone gel

in Figure 4-27. Again, the pressure amplitude is at the noise amplitude and cannot be distinguished

from system noise.
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Figure 4-27: Experimentally measured difference frequency from a water-silicone gel interface. The plot
shows the mean and standard deviation of the measurement at each frequency.

4.4 Conclusions

Simulations and experiments in this chapter suggest that the generation of difference

frequency sound due to the scattering of a local difference frequency field from various targets is

not readily detectable given the sensitivity of experimental equipment used in this thesis. We

performed simulations to estimate the sound generation at the difference frequency using the second

order wave equation together with linear scattering theory. The calculated levels of difference

frequency sound ranged from 1 x 104Pa for the case of the single pressure release sphere to

30 x 10'6Pa for the silicone gel tissue phantom. Experimental results demonstrate that although

small displacements on the order of 501 m were detected at the interface of the silicone gel tissue

phantom, these displacements did not lead to a measurable difference frequency field at 10 cm from

the target.

The main reason for the undetectable radiated difference frequency field is the localization

of the nonlinear sound generation to the small region before the interface of the target. In contrast

to the parametric effect described previously in chapter 3, for the local interaction effect described

here, the primary fields do not propagate collinearly. Therefore the difference frequency sound

does not continue to grow with propagation distance. Instead, the difference frequency sound

generated in the limited interaction region of the two primary beams leaves the interaction region
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and promptly decays at an exponential rate as it diverges in space. This effect can be understood in

terms of the second order wave equation in that the source terms on the right hand side of this

equation exist only over a very limited volume in space because the interaction region of the two

beams at the focus is on the size scale of the primary wavelengths. This creates a collection of

sources radiating at the difference frequency and contained within a volume much smaller than the

difference frequency wavelength. This can be seen as a compact source for the difference

frequency field. As a result, the pressure will fall at as the observer moves away from the source.

Further, as the simulations and experiments of the linear summed fields demonstrate, there are

many phase reversals of the primary field and the difference frequency field over the small

interaction region. The phase reversals over a region much smaller than a single difference

frequency wavelength may cause cancellation of pressure at the interaction region, resulting in even

less propagating sound.

The experiments and simulations performed in this chapter do not rule out the possibility of

generating difference frequency from the local interaction of difference frequency pressures with an

object. In contrast, nonlinear boundary interactions not simulated in this thesis may cause

measurable difference frequency radiation94. However, the experiments confirm that for transducer

geometries, target materials, and power levels used in this thesis, no difference frequency sound was

detected from the interaction of the incident difference frequency pressure field with the target.
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5 Nonlinear Interaction of Linearly Scattered
Waves

Makris et al. analytically studied the effect of difference frequency sound generation from

linearly scattered primary waves for non-collinear plane waves incident on a target as a potential

mechanism for the generation of difference frequency sound in USVA.94 This study prompted our

exploration of the nonlinear interaction of primary waves, which are first linearly scattered from

small gas bubbles or pressure release spheres located at the focus of the primary fields. In this

chapter, we follow a similar analytical approach at the difference frequency but consider incident

focused ultrasound beams rather than plane waves.

This thesis explores the nonlinear production of difference frequency sound in a dual-

frequency imaging system for monitoring thermal surgery. Although cavitation has recently been

explored as a method to enhance heating for thermal surgery13 5'1 36, for this thesis we typically used

power levels below the cavitation threshold in order to avoid the difficulties in controlling the

temperature during cavitation events. However, in a few instances, cavitation did occur while

creating lesions during our imaging experiments, as indicated by broadband noise received by the

hydrophone. During experiments in which cavitation occurred, we observed a large difference

frequency response from the tissue of up to 30 Pa. Small air bubbles, which may arise during

cavitation, are potential scatterers of the incident beams and may explain the observation of large

difference frequency sound generation in the presence of cavitation if considered in the context of

the nonlinear interaction of linearly scattered waves.

In this chapter, we first present experimental images created using the difference frequency

signal after cavitation has occurred while making a thermal lesion in ex vivo rabbit liver. Then, we

review the theory of difference frequency sound generation due to the nonlinear interaction of

linearly scattered waves. Finally, we calculate the difference frequency field for the case of a single

X Other researchers including Jones, Bellin and Beyer'3 7
58,142 as well as Roy56 published theoretical and

experimental results for the generation of a signal at the sum frequency due to the nonlinear interaction of
linearly scattered waves. In general, signals generated at the difference frequency are more difficult to
measure in experiments. This is due to the increased system noise at these relatively low frequencies (kHz
range), as well as the fact that the nonlinear signal is smaller at the difference frequency since it is
proportional to the wave number k = 4, which is smaller for the difference frequency than the sum
frequency.
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pressure release sphere and an air-filled bubble. The experimental results demonstrate rather large

difference frequency responses (as high as 30 Pa) from the tissue when imaging a thermal lesion

after cavitation has occurred. The simulation results rely on a model for scattering from a single

bubble and demonstrate a small but measurable signal at the difference frequency (as high as .2 Pa).

In simulations, we demonstrate that the efficiency of the difference frequency response is especially

large if the diameter of the spherical target is the resonant size corresponding to the primary field.

5.1 Initial Experiments

In this section, we present our initial ex vivo tissue experiments. These experiments reveal a

measurable difference frequency response from imaging ex vivo rabbit liver in the presence of

cavitation.

5.1.1 Imaging Thermal Lesions in Ex Vivo Rabbit Liver

An image of a 10mm by 10mm area of fresh, ex vivo rabbit liver was created by recording

the response at the difference frequency while scanning the focus of a concentric-element, dual-

frequency system across a plane of the tissue sample at a depth of approximately 5 cm in the tissue.

The transducers operated at 1.624MHz ± 5kHz and were driven at a power of 10 W electrical per

element to create a peak pressure at the focus of approximately 2 MPa for each primary field. The

focal plane was scanned in a raster pattern, which was created by mechanically stepping the focus

of the two transducers through a 10mm x 10mm grid with a step size of .5mm (Figure 5-1). The

positioning system (Velmex Unislide NF90, Bloomfield, NY) was operated by computer control via

a IEEE-488 GPIB interface and the response signal was recorded with a low frequency hydrophone

(International Transducer Corporation ITC-6080C, Santa Barbara, CA) located approximately 10

cm away from the focus. The response signal was then registered to an oscilloscope (Tektronix

TD210, Beaverton, OR) and recorded by a personal computer via a IEEE-488 GPIB computer

interface.
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Figure 5-1: Diagram of the experimental set-up used for the raster scan of ex vivo rabbit liver.

In this experiment, we imaged the liver with the dual-frequency system, created a lesion of

thermal ablation, allowed the sample time to cool, and finally re-scanned the liver with the imaging

system. The results of the pre-sonication and post-sonication scans are plotted in Figure 5-2. The

image created from scanning the tissue before the lesion of coagulative necrosis was formed (top,

right-hand plot of Figure 5-2) demonstrates a homogenous difference frequency response at

relatively small pressure amplitude. After this preliminary scan, we created a lesion by sonicating

at the center of the scanned area with 40 W electrical power (generating approximately 8 MPa of

peak pressure at the focus) for 20 seconds. During the formation of the lesion, we detected a

broadband frequency response as measured by the hydrophone in the tank. This broadband signal

indicates that cavitation was most likely occurring during the formation of the lesion29. Finally,

after forming the lesion, we re-scanned the tissue in the same manner as before. The result of the

scan created after the lesion had been formed (lower right-hand plot of Figure 5-2) reveals a much

larger difference frequency response (up to 9 Pa) as compared to the pre-lesion image (top, right-

hand plot of Figure 5-2). The larger difference frequency response of the second scan is received

while scanning a region of the liver that corresponds reasonably well to the geometry of the thermal

lesion that was created. Figure 5-2 displays photographs of the healthy liver (top) and necrosed

liver (bottom) that were taken after the liver was dissected to expose the focal plane of the dual-

frequency system.
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Figure 5-2: Experimentally measured difference frequency generated during an x-y scan of fresh ex vivo
rabbit liver before (top) and after (bottom) the tissue was necrosed with high-powered focused ultrasound.

These experimental results reveal a measurable difference frequency signal that

corresponds to the area of the thermal lesion, as observed visually in the photographs of the lesion.

The response at the difference frequency reached a peak level of 9 Pa, which is readily detectable

given the amplitude of the system noise and the sensitivity of the measuring equipment. We

hypothesize that this difference frequency signal is due to the presence of the gas bubbles from

cavitation, and that the mechanism of generating the response signal is related to the nonlinear

interaction of linearly scattered waves from these gas bubbles as described in the theory section

below. More thorough experimental investigation is required to confirm our hypothesis.

Next, we present a second example of imaging with the dual-frequency system after

causing cavitation while creating a thermal lesion. In this example, we scanned an area of 30mm by

30mm in fresh rabbit liver after forming a pattern of necrosis using high power sonication (40 W

electrical, 8 MPa peak pressure) to the tissue. This liver sample was taken from a different animal

than the liver used in the above example. In this case, we created two large bands of necrosis and

E

._

.I

b 

9 Pa

8 Pa

7 Pa

6 Pa

5 Pa

4 PaI

I



117

two point lesions in the liver by moving the transducer slowly while sonicating at high power, in

order to necrose the tissue. Again, we observed broadband signals indicative of cavitation on the

oscilloscope during the formation of the lesions. The step size of the area scan was .5 mm in each

direction. In this case, we recorded multiple measurements at each position of the imaging system

focus in order to use the average over multiple response signals to refine the image.

Figure 5-3 displays the result of the scan after the formation of the pattern of lesions. The

right-hand image is formed by plotting the amplitude of the difference frequency signal averaged

over 4 consecutive measurements for each location in the liver sample. The peak difference

frequency pressure measured is approximately 30 Pa. The left-hand image is a photograph of the

pattern of tissue necrosis from the liver after the liver has been dissected to expose the focal plane of

the dual-frequency system. The geometry of the pattern of responses at the difference frequency

correlates reasonably well with the actual pattern of tissue necrosis as indicated by the photograph.
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Figure 5-3: Experimentally measured difference frequency generated during a scan of thermal lesions
created in fresh ex vivo rabbit liver. A photograph of the necrosis pattern is displayed (left) next to the
image formed by plotting the difference frequency response as a function of position (right).

5.2 Theory

The second-order nonlinear wave equation'discussed in chapter 2 has been solved by

several researchers for canonical sources in a variety of coordinate systems. In particular, the

solutions for planar, cylindrical, and spherical waves have been derived in the literature.5 2' 62' 4 We

employ the spherical wave solution to the second-order nonlinear wave equation in this chapter to
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estimate the difference frequency field produced by linearly scattered waves from a pressure release

sphere and a small air-bubble. Dean addressed the topic of spherical sources of nonlinear wave

interaction in his 1962 paper.5 Given spherical waves P and Pb radiating at frequencies wa and

C(b from the same source point, the difference frequency field P (r) at radial distance r from the

source point is given by Dean5 2,

p (r) = Re l r k PPb eJ(r'-') [ nr _ e j*(r) ]
e,2it-_r a (0.65)

where (r) = 2krj e dr
r

for a small radiating sphere of diameter a, with difference frequency wave number k= - , and

ambient density and speed of sound p and c respectively.5 2

In this chapter, the target is not considered a source, rather it acts to scatter the primary fields,

which then interact with one another nonlinearly. For air bubbles and pressure release spheres that

are small (ka ~: 1 ) relative to the scattered wavelength (in this case, the wavelength of the high

frequency primary field), the approximation of spherical spreading is valid even relatively close to

the target. This fact was demonstrated by Jones in experiments involving scattering from 35 pm air

bubbles137. Therefore, we consider the spherical pressure wave resulting from the linear scattering

of each focused beam. Then, we employ equation (0.65) to solve for the difference frequency field

generated by the interaction of the resulting spherically spreading waves at the two primary

frequencies.

First, we consider the linear scattering problem separately for each focused field incident on

the target (see Figure 5-4). The incident field from each focused transducer, P.,(x, y, z) and

Pb (x, y,z), is decomposed into the local plane wave spectrum using the two-dimensional Fourier

transform evaluated at the plane intersecting the center of the target z0,

Pi(k.,ka;zo) = | Pi (,y,zO )e a(ka+.yy dxdy

(0.66)

Pb,(kbx,kby; z) = I Pb (x, y Zo )e-i(kb+kY)dxdy

Next, we scatter each plane wave component individually from the center of the small scatterer out

to the radius of the scatterer at r = a by substituting the expression for the incident plane wave
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components given by equation (0.66) into the approximation for plane wave scattering from an

omni-directional scatterer given by equation (0.52). The result of this substitution is the expression,

Pa(r) - P (k,; zo). S ) etj(kr)
kar (0.67)

Pb, (r) P,(kb,;zO) S(k,) eJ(kbr)
kbr

where S(k ) is the appropriate scatter function for the object considered given an incident wave

number ki= k = k corresponding to frequency coa (likewise for frequency ob). We use a scatter

function, S(k.,) , which is independent of the incident and outgoing wave vector directions for the

two omni-directional cases we consider in this chapter. To obtain the total spherical pressure wave,

P(r = a) and Pb(r = a), scattered to the surface of the target ( r = a ) from each focused transducer,

we take the inverse Fourier transform over all wave numbers for each focused beam,

Pa(r = a) (2- ) Pi(kai; Zo) S(k ai) ei(ka)e(kaxx+kayY)dkadk(2 f f )~
kaa

(0.68)

Pb(r = a) =-'-( | | Pbi (k;z 0 (k * ) ei(kba)ei(kbxx+kyY)dk d
(2)

2 kba bxbY

Finally, we substitute the solution for the spherical waves originating at r = a and at

frequencies c and cob given by equation (0.68) into Dean's solution for the generation of

difference frequency pressure from spherical waves (0.65). The final expression for the difference

frequency field generated from the nonlinear interaction of scattered waves from two focused

transducers sonicating a small spherical target is given by,

P-(r)= Rel'22 k-Pa(r=a)Pb(r=a) eJ(-t) a -

(0.69)r e2jk_r
where (r)= 2kr dr
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given the difference frequency wavenumber k = - 1, the expressions for P(r = a) and P(r = a)

in (0.68), and the particular scatter functions provided below for the two targets we consider.

Radial Distance, r

Figure 5-4: Diagram of scattering problem for two focused acoustic fields incident on a small spherical
scatterer.

5.2.1 The Small Pressure Release and Gas Bubble Scatterer

We consider the small pressure release and gas bubble scatterers because they lead to omni-

directional scattered waves such that incident planar waves propagating at any angle will scatter in

the form of spherically spreading waves (Figure 5-5). Therefore, these targets lead to relatively

straightforward mathematical expressions for use in the model. Jones considered the sum frequency

field generated using the more complicated scattering function of a rigid spherical scatterer, which

is not omni-directional.'37 Makris et al. considered arbitrary scatterers but for non-collinear plane

waves rather than focused beams.94 For the pressure release sphere and gas bubble insonified by

focused beams considered in this chapter, the scattered wave can be assumed to be spherically

symmetric, provided ka 1 and the receiver is in the far field of the target.

The scatter function for an air-filled bubble (0.70) and a pressure release sphere (0.71) are

provided in section 4.1 and repeated here,

ka
(3rPlp) 1-ika
(2x.f)

(0.70)
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S = ka (0.71)

where y= 1.4 is the ratio of specific heats for air, p = 1000 kg/m 3 is the water density, P0 = 100 kPa

is the ambient pressure, f is the frequency of the primary field, k = .A is the wave number, and a

is the bubble radius in meters. In this chapter, we note that the omni-directional scatter functions

used do not depend on the incident wave vector k or the outward wave vector k .

Collinear Scattered Field

Figure 5-5: Diagram of the collinear interaction of two spherically scattered fields.

5.3 Numerical Implementation of Theory

The simulation was written in the Matlab® programming environment to estimate the

difference frequency pressure at a distance r from the center of the scatterer using equations (0.68)

and (0.69) together with the scatter functions of (0.70) and (0.71). We model each transducer as

having a diameter of 4 cm and a focal distance of 10 cm, operating at 2.74MHz + 25kHz and driven

at 10 W electrical power. This power resulted in a peak pressure at the focus of 2.1 MPa for each

primary field. The resulting difference frequency field radiating from the object is calculated as a

function of radial distance from the scatterer (see Figure 5-4). We computed the difference

frequency pressure after scattering from spherical targets of varying diameter to determine the

relationship between object size and the generation of difference frequency sound.

The results of the simulation for a 20 pm spherical scatterer are plotted in Figure 5-6.
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Figure 5-6: Simulation of the difference frequency field generated by the interference of linearly scattered
primary frequency fields. In this simulation, the primary fields have been scattered from a pressure release
spherical scatterer and an air-filled gas bubble with a radius of 20 pm. The primary fields incident on the
scatterers are driven at a frequency of 2.74MHz ± 25kHz and at 10W electrical power to obtain a peak
pressure at the focus of 2.1 MPa for each primary field.

The result of the simulation demonstrates several important features of the nonlinear

interaction of scattered waves. First, the result indicates a decay of the difference frequency field

that falls off as I- as the distance r from the scatterer to the receiver increases. This decay rate is

smaller than the decay rate of the primary scattered field. The reduced decay rate contributes to

the appreciable propagation of the difference frequency field even as the primary field diverges.

The simulation also reveals the relative importance of the two types of scatterers for producing a

difference frequency field. For the parameters simulated, the difference frequency produced after

scattering from the pressure release bubble is only slightly greater than that produced after

scattering from the air-bubble.

The primary difference between the linear scattering of the primary waves which we

calculate in this chapter and the linear scattering of the incident difference frequency field addressed

in chapter 4 is that here, the primary field scatters at the primary wave-number ka.b rather than the

difference frequency wave-number k, which is much smaller. The larger wave number used here

for scattering of the primaries and the larger incident pressure achieved by the primary fields, results

in much larger amplitudes for the calculated difference frequency levels in this case compared with

the results of simulations as plotted in Figure 4-10.
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Bubble resonance in the case of the air-filled bubble is an additional important

consideration. The resonant frequency of the bubble is given by'3 ,

f, =3yP p Hz2na
(0.72)

where y is the ratio of specific heats the gas (in this case y = 1.4 for air), p = 1000 kg/m 3 is the

water density, P0 = 100 kPa is the ambient pressure, and a is the bubble radius in meters. The

resonance relationship for an air bubble in water is shown in Figure 5-7.
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Figure 5-7: Calculated resonance curve for an air-filled bubble plotted as a function of bubble radius.

This resonance curve demonstrates that for the range of primary frequencies used in this

thesis (1-3 MHz), the resonant bubble radius is less than 3 nm in size. In particular, at a primary

frequency of 2.7 MHz, the resonant bubble radius is approximately 1.2 pm. It is well-known that at

resonance, the ratio of the scattering cross-section to the geometric cross-section reaches a peak,

indicating the greatly increased efficiency of scattering for a resonant bubble compared to a bubble

off-resonance. 131 Figure 5-8 shows the resulting generation of difference frequency sound for a

single resonant air bubble.
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Figure 5-8: Simulation of the difference frequency generated by the nonlinear interaction of waves which
are first linearly scattered from a single resonant gas bubble.

The difference frequency sound level is at .2 Pa for a single resonant gas bubble. This

difference frequency sound generation is approximately 4 times greater than for the 20 pm target,

despite the fact that the bubble is almost 17 times smaller in this case. The increased difference

frequency response in spite of the great reduction in the size of the scatterer can be attributed to the

enormous gain from bubble resonance. A more involved study, which is beyond the scope of this

thesis, is required to analyze clouds of bubble scatterers.

5.4 Conclusions

In this chapter, we presented images made of rabbit liver after the formation of lesions with

high-powered ultrasound (40 W electrical, 8 MPa peak pressure). The results suggest that bubble

scattering, particularly due to cavitation events, may lead to signals on the order of 5-30 Pa at the

difference frequency. For the theoretical section of this chapter, we employed an approach

following the difference frequency work Makris et al., which is similar to that of Jones, Bellin and

Beyer in their studies of the generation of sum frequency sound fields58 94'137. Our theoretical

model of the nonlinear interaction of linearly scattered waves from a single bubble or pressure

release sphere illustrated that a measurable difference frequency signal may be generated even from

a single bubble. In particular, as illustrated in Figure 5-8, the nonlinear generation of the difference

l
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frequency sound was greatest for bubbles of resonant size (1.2 S!m in this case) due to the increased

efficiency of linear scattering at the resonant size.

Because the two experiments presented in this chapter were conducted in fresh tissue, several

factors must be considered to fully understand the nature of the difference frequency response.

These include the nonlinear parameter of the tissue and the gas bubble content of the sample.

Further, it is possible that the bubble response is due to the reflection of the incident difference

frequency field from a bubble as examined in chapter 4 or due to a large reflected signal from the

bubble creating a parametric effect as described in chapter 3. However, for the case of reflection of

the incident difference frequency field from a bubble, we would expect the difference frequency

signal generated to be much smaller than the nonlinear interaction of scattered waves considered

here as illustrated by the results plotted in Figure 4-10. The theoretical and experimental results for

the linear scattering effect considered in this chapter suggest that a single bubble or bubble clouds

may create a measurable signal for imaging tissue necrosis where cavitation has occurred.

This effect may lead to a potential imaging application of the nonlinear interference of

linearly scattered waves with advantages over traditional echo ultrasound imaging technology.

While traditional echo ultrasound systems can also detect small scatterers at a resolution

approaching the primary frequency wavelength, these systems suffer from attenuation of the

scattered signal as it returns to the receiver. This signal attenuation is due to the relatively high

acoustical attenuation of the primary field wave as well as a divergence of the scattered field from

each scatterer present. In addition, the scattered primary waves in traditional echo ultrasound

systems will suffer from multiple scattering from other scatterers in the tissue as the return signal

travels out to the receiver. All of these effects on the high frequency scattered signal will tend to

reduce the signal to noise ratio in traditional echo ultrasound systems.

In contrast, the difference frequency response produced from the interaction of the scattered

primary frequencies will not suffer from the large acoustical attenuation like the primary waveforms

and will not decay at , instead decaying at iOL. In addition, the difference frequency signal will

suffer less from multiple scattering off of small scatterers encountered in the return path than the

primary signal because the difference frequency wavelength is often much larger than the typical

scatterers in tissue. For these reasons, a difference frequency imaging system utilizing the

scattering of primary fields to produce a difference frequency response may produce images with

the resolution of traditional ultrasound echo systems. Such a system may also achieve better signal

to noise ratios. The use of contrast agents containing micro-bubbles for imaging with a dual-

frequency system has been explored by Belohlavek4 and is most likely a fruitful area for future

investigation.
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6 Conclusion

This thesis addresses three mechanisms for the generation of difference frequency sound

from a dual frequency imaging system, in an effort to further explain and understand the physics

underlying the imaging results previously reported in the literature using similar systems.

Previously reported experimental work shows correlations between difference frequency signal

generation with a dual-frequency imaging system and biological tissue parameters, including

temperature, necrosis, and pathology (in the case of calcifications)2 4 26 28 29'22' 1 38. However, to date,

the literature has not undertaken a comparison of the relative significance of 1) the parametric

effect, 2) linear reflection of the local difference frequency field, and 3) nonlinear interaction of

linearly scattered waves. This thesis explores these three mechanisms and compares the relative

magnitude of these effects to one another.

6.1 Summary of Theoretical and Experimental Findings

In Figure 6-1, we plot in broad fashion the relative orders of magnitude of the difference

frequency sound generated by the mechanisms studied in this thesis. The diagram illustrates the

range of responses for the three effects relative to the amplitude of the system noise. Although the

powers varied from experiment to experiment, the overall difference in magnitude of each effect is

greater than can explained by these relatively small variations in powers.
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Effect associated with Cavitation

Parametric Effect

Nonlinear Interaction of Scattered Waves
Noise Floor

Local Interaction with Target

Figure 6-1: Diagram summarizing the results of the thesis in broad fashion. The diagram shows the
pressure amplitude of difference frequency sound generated by the various effects considered, illustrating
the relative magnitude of each.

Chapter 3 explored the parametric effect for generating difference frequency sound. In

chapter 3, we first explained the parametric array and formulated an approximate solution for the

propagating difference frequency field. This approximate solution correlated reasonably well with

the Green's Function volume integral solution to the wave equation, as well as with experimental

measurements of the difference frequency field. In chapter 3, we then described a model to simulate

the parametric generation of difference frequency sound in the dual-frequency system. Levels

predicted by the model correlated reasonably well with experimental measurements. The results of

this chapter suggested that the parametric effect is most likely the source of difference frequency

sound generation where there are planar boundaries with large dimensions compared to the focal

diameter of the primary field, and where the planar boundaries are positioned specularly to the two

ultrasound sources.

Chapter 4 addressed the local interaction of two pressure fields on a target. The results of

experiments in chapter 4 demonstrated an appreciable displacement and force at the difference

frequency when the interface of a target was positioned in the focus of the primary fields. However,

the simulation of the incident difference frequency waves, using the volume integral/Green's

Function method for solving the second order wave equation in free space, predicted immeasurable

scattered waves. Careful experiments confirmed that difference frequency sound is undetected

above the system noise if this effect is isolated from the other two effects.

Chapter 5 examined the nonlinear interaction of scattered waves from small targets. In

chapter 5, we first reported the results of two ex vivo tissue experiments in which cavitation was
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observed, to suggest the importance of air-bubbles produced during cavitation in generating

difference frequency sound. We then formulated a mathematical expression for the difference

frequency field produced from the nonlinear interaction of acoustic waves originating from focused

beams which have been linearly scattered from a single pressure release sphere or air-bubble.

Finally, we simulated the levels for the difference frequency sound generated by a single scatterer.

The simulation results indicated that the nonlinear interaction of linearly scattered waves may

produce a small but measurable signal from even one small scatterer, especially if the scatterer is of

the resonant diameter.

6.2 Application of Findings

The results of simulations and experiments illustrate the relative importance of the three

considered mechanisms for the generation of difference frequency sound. The thesis compared the

previously described parametric effect to the nonlinear interaction of scattered waves and the

scattering of an incident difference frequency field for the first time in the context of the dual-

frequency imaging system 52 58 77102 . We conclude that the former two effects appear to be more

significant sources of difference frequency sound generation than the scattering of incident

difference frequency waves from a target.

This suggests the possibility of new modes of imaging with a dual frequency system that rely

upon the nonlinear interaction of scattered waves and the large response from sites of cavitation.

The resulting imaging modalities may include standard ultrasound echo imaging with increased

signal-to-noise ratio resulting from the nonlinear interaction of scattered waves, tissue perfusion

imaging by means of injectable contrast agents containing micro-bubbles, or monitoring thermal

surgery by first creating a localized nucleus of cavitation and then using the magnitude of the

response from the bubbles generated to correlate with the degree cavitation and subsequent thermal

ablation at the site. Even molecular trafficking by means of tagged contrast agents may be possible

with the nonlinear interaction of scattered waves. As an alternate to difference frequency imaging,

the effect of local displacement, as measured by means of a pulsed echo ultrasound device or a laser

vibrometry device, may be useful for imaging the mechanical response of tissues in a method

similar to that employed in the growing field of elastography imaging.

The dual-frequency imaging system may have promising applications for imaging

modalities in the medical and/or biological fields. As with most research, the questions raised as a

result of this work greatly outnumber the questions answered. In order to utilize USVA as a

successful imaging tool, one must take measures to avoid the signal from the parametric effect,

which can be considered an imaging artifact. Additionally, it may be possible to use nonlinear
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scattering to form images that rely on the presence of small scatterers; a technique that may be

enhanced with the use of in vivo contrast agents containing small scattering micro-bubbles.
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Appendix A

Co-axial Transducer

Figure A-1: Diagram of the inner/outer elements of a concentric element array.

Efficiencies

Inner Ring Element

Electric Input Average Electric Average Acoustic Standard Error of
(VPP) Power (W) Power (W) Measurement Efficiency (%)

0.03 2.49E-01 1.96E-01 2.63E-03 78.84
0.05 6.88E-01 5.51 E-01 3.46E-03 80.07

0.07 1.34E+00 1.07E+00 2.88E-03 79.97
0.09 2.18E+00 1.74E+00 2.36E-03 79.94

0.11 3.25E+00 2.61 E+00 1.03E-02 80.17

0.13 4.56E+00 3.66E+00 1.21 E-02 80.25
0.15 6.06E+00 4.84E+00 1.33E-02 79.95
0.17 7.80E+00 6.25E+00 1.45E-02 80.13
0.19 9.74E+00 7.80E+00 1.99E-02 80.03

0.21 1.19E+01 9.55E+00 3.95E-02 80.12

0.23 1.43E+01 1.14E+01 2.31 E-02 79.93

0.25 1.69E+01 1.35E+01 7.82E-03 80.04
0.27 1.97E+01 1.58E+01 8.27E-03 80.03
0.29 2.28E+01 1.82E+01 2.99E-02 79.68

Table A-O-I: Efficiencies at various powers for inner element of co-axial array.



131

Outer Ring Element

Electric Input Average Electric Average Acoustic Standard Error of
(VPP) Power (W) Power (W) Measurement Efficiency (%)

0.03 2.41 E-01 1.58E-01 8.78E-03 65.7

0.05 6.63E-01 4.21 E-01 3.25E-03 63.41

0.07 1.30E+00 8.28E-01 1.24E-03 63.91

0.09 2.13E+00 1.37E+00 4.19E-03 64.15
0.11 3.18E+00 2.06E+00 1.86E-03 64.63
0.13 4.44E+00 2.86E+00 8.80E-03 64.46
0.15 5.90E+00 3.77E+00 3.13E-02 63.92
0.17 7.59E+00 4.90E+00 2.11 E-02 64.56
0.19 9.50E+00 6.16E+00 1.26E-02 64.79
0.21 1.16E+01 7.48E+00 1.46E-02 64.34

0.23 1.39E+01 8.97E+00 3.98E-02 64.49

0.25 1.65E+01 1.06E+01 7.31 E-03 64.48

0.27 1.92E+01 1.24E+01 1.93E-02 64.61

0.29 2.22E+01 1.43E+01 1.72E-02 64.42

Table A-0-2: Efficiencies at various powers for outer element of co-axial array.
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Pressure Fields
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Figure A-2: Simulation of the normalized pressure fields of the inner element (left column) and outer
element (right column) of a concentric element array. The figure shows the simulation results plotted in the
XZ, XY, and YZ planes through the focus.
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Appendix B

Spatial Nyquist Limit

Similar to the frequency Nyquist limit, in spatial transforms, there is a maximum spatial

frequency that can be resolved given a certain sample rate in the spatial domain. This Nyquist limit

is determined by /2 the spatial sample rate. So, suppose we have a spatial sample rate d = x

pts/meter. Then, the limit for the maximum spatial frequency which can be resolved, ki,,/2n is d/2:

d - #pts
distance

klim d _ #pts
2;r 2 2. distance

k im: #pts- Ir
distance

Note: we must divide k by 21 since the Nyquist limit applies to frequency and k is the equivalent of

"angular frequency" (to in the time domain).

In our simulations, we want to allow K to span the range of all possible propagating directions

given the wavelength X of the incident wave. Therefore K = _ . In this case, there must be

enough points in space such that i,, = K. If k < K, then there will be aliasing in space when the

inverse transform is performed. In order to prevent aliasing, we may increase the number of points

artificially by zero padding the spatial field with O's outside of the region analyzed. This is

equivalent to simply adding more points in the discretization of the vector K since the number of

points in the K vector is assumed to be the same as the number in the spatial domain. So, in order to

force k1, to equal K, we require that:

K= #pts. r
distance
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from which we can determine either the number of points to specify in the K-vector for a given

distance spanned in space or the maximum distance in space that can be spanned without aliasing

given a set number of points for the K-vector.



135

Appendix C

Relationship Between Mechanical and Acoustical Parameters

The acoustical parameters of sound speed and density can be related to the mechanical

properties of bulk modulus and Young's modulus as illustrated in the exercise that follows. This

exercise was reviewed in the notes of the MIT acoustics course number 13.851.78

For an isotropic material, the bulk modulus f (also known as the modulus of compression)

is a measure of the resistance to a change in volume when the material is subjected to a hydrostatic

load. In this way, it can be understood as a three-dimensional Hooke's Law relationship whereby

the stiffness of the material is characterized by the bulk modulus and the compressibility of the

material is defined as K = . Specifically, the bulk modulus is defined as the ratio of the pressure

change required to cause a given volume strain,

dP = -- d (0.73)

where V is the volume of the material and P is the pressure on the material.

If we consider a material constrained in its cross-sectional area A then the volume

V = A I where I is the length of the container. Further, if the material is compressed along the

dimension of , then the volume strain - can be expressed as Vl. In addition, the differential

dP can be expressed to first order as P - P0 P . The result of these two expressions can be

applied to equation (0.73) to give the result,

P -]JVI (0.74)

Now, the substitution for the first order pressure term in equation (0.74) can be made using the

equation of state P = pc 2 (where pA is the first order density of the material and c is the speed of

sound in the material). The result is,
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pC 2 =-pV I

Taking the derivative in time of both sides gives,

c2 = -/BV a = -V .V (0.75)

Finally, using the conservation of mass equation a = -pOV V in equation (0.75) (where p is

the resting density of the material and V is the velocity of compression in the I direction), the

equation becomes,

, = c2p

The final result relates the bulk modulus of the material to the speed of sound and density at rest.

This relationship can be written as,

= f (0.76)

The result illustrates the interconnection between mechanical and acoustical properties of

materials, which can be expected since acoustical waves are simply mechanical compressions of the

medium in which they travel. For fluids, the bulk modulus completely describes the material stress-

strain relationship. However, elastic solids are more complex because the axial strain (e ) and

lateral strain (e, ) are coupled by the Poisson's ratio v = --. This implies that the axial stress-

strain relationship may not be the same as the three-dimensional stress-strain relationship

characterized by the bulk modulus. The axial stress/strain relationship is characterized by the

Young's Modulus, E, where the Young's Modulus is related to the Bulk Modulus through the

Poisson's ratio by'39,

-fi =E (0.77)
3(1-2v)

This fundamental difference between fluids and elastic solids raises an important exception

to the general rule that the mechanical properties are equivalently expressed by the acoustical
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properties of a material. In the case where the Poison's ratio v is difference for two different

materials, they may have very different Young's modulus, E, but still have the same bulk modulus,

, . Therefore, these two materials may have the same volumetric response to an imposed pressure

and hence the same acoustical properties p and c as defined in equation(O.76). The identical

acoustical properties but difference in mechanical properties of the Young's modulus is possible if

the Poisson's ratio is such that the two materials have the same bulk modulus. This occurs for

example with the silicone gels used in this thesis whereby the cross-linkage of proteins can be

altered by the mix ratio of the gel parts A and B. In this example, the young's modulus is changed

dramatically although the measured density and speed of sound remains the same as measured in

preliminary experiments in preparation for this thesis (Table 1-2).
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