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Abstract

Many graph optimization problems can be viewed as graph layout problems. A layout
of a graph is a geometric arrangement of the vertices subject to given constraints.
For example, the vertices of a graph can be arranged on a line or a circle, on a two-
or three-dimensional lattice, etc. The goal is usually to place all the vertices so as to
optimize some specified objective function.

We develop combinatorial methods as well as models based on linear and semidef-
inite programming for graph layout problems. We apply these techniques to some
well-known optimization problems. In particular, we give improved approximation
algorithms for the string folding problem on the two- and three-dimensional square
lattices. This combinatorial graph problem is motivated by the protein folding prob-
lem, which is central in computational biology. We then present a new semidefinite
programming formulation for the linear ordering problem (also known as the max-
imum acyclic subgraph problem) and show that it provides an improved bound on
the value of an optimal solution for random graphs. This is the first relaxation that
improves on the trivial "all edges" bound for random graphs.

Thesis Supervisor: Santosh S. Vempala
Title: Associate Professor of Applied Mathematics
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Chapter 1

Introduction

Graph layout problems involve arranging the vertices and edges of a given graph sub-
ject to specified constraints. For example, by definition a planar graph can be drawn
in a two-dimensional plane such that no edges cross. There are several algorithms for
finding such a layout of a planar graph; a linear-time algorithm was given by Booth
and Lueker [BL76]. Another well-studied graph layout problem is finding a layout of
a non-planar graph that minimizes the number of edge crossings.

Figure 1-1: Planar graph drawing is the problem of laying out a planar graph so that
no edges cross.

In this thesis, we focus on layouts of graphs defined as geometric arrangements of
the vertices on a line, lattice, circle, etc. The goal is usually to optimize a specified
objective function. Two examples of such vertex layout problems are the maximum
linear arrangement problem and the minimum bandwidth problem. In each problem,
the input is an undirected graph G = (V, E). Each vertex i E V is assigned a unique
label (i) from the set of integers {1,2,...,n}. The goal of the maximum linear
arrangement problem is to assign the labels to the vertices so as to maximize the sum
EijeE I(i) - e(j)l, i.e. maximize the sum of the lengths of the edges when arranged
on a line according to their labels. The goal of the minimum bandwidth problem is to
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assign the labels to the vertices so as to minimize the maximum value of Ie(i) - (j) I
over all edges (i, j) E E, i.e. minimize the length of the maximum length edge.

Figure 1-2: A 6-cycle with optimal vertex orderings for the maximum linear arrange-
ment and minimum bandwidth problems.

Many graph optimization problems can be described as finding a maximum/minimum
weight subset of edges (subgraph) with a particular property. Alternatively, many of
these graph optimization problems can be described as a vertex layout problems, in
which the placement of each vertex is chosen from a discrete set of possible positions.
The goal is to place or lay out the vertices so as to optimize some specified objective
function.

One of the most fundamental graph optimization problems is the maximum cut
(maxcut) problem. Suppose we are given an undirected, weighted graph G = (V, E).
Two possible statements of the maxcut problem are:

(i) Find the maximum weight bipartite subgraph.

(ii) Partition the vertices into two disjoint sets (S, S) so as to maximize the weight
of the edges crossing the cut.

Figure 1-3: Two ways of defining the maxcut problem.

These are equivalent optimization problems. Each suggests a different way of com-
municating a solution. For example, suppose we want to record a known solution for
the maxcut of a given graph. Two possible ways to do this are:
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(i) Give a vector x E {O, 1)IEl, where xei is a 1 if the edge ei crosses the cut and 0
otherwise.

(ii) Give a vector x E (0, 1lv, where xvi is a 1 if the vertex vi is in S and 0 if it is
in S.

Linear and semidefinite programming methods are frequently used to approximate
the optimal solution for a combinatorial optimization problem by defining a polytope
that closely approximates the convex hull of integer solutions. So the question is,
what set of integer solutions should we approximate? Which way should we view the
problem?

The problems and methods discussed in this thesis are motivated by viewing
graph optimization problems as graph layout problems. In some cases, the most
natural problem statement is in terms of graph layout. In other cases, this alternative
viewpoint provides new insights into the problem.

1.1 Problems and Results

In this thesis, we will focus primarily on two combinatorial graph layout problems.
The first problem is known as the string folding problem. The second is known as
the linear ordering problem. The goal of each problem is to arrange the vertices of
an input graph subject to specified constraints so as to maximize a given objective
function. In this section, we will precisely define these problems and provide back-
ground and motivation. Additionally, we outline our new results. In Section 1.2, we
explain the layout of this thesis.

1.1.1 String Folding

The first problem we address is an optimization problem called the string folding
problem. The input graph can be viewed as a string; it is an undirected graph in
which each vertex except for two end vertices has degree exactly two. Each end vertex
has degree exactly 1. Each vertex in this input graph is labeled as either a 'O' or a
'1'. Additionally, we are given a lattice. For example, suppose we are given a two-
dimensional square lattice in which one lattice point is arbitrarily assigned to be the
origin with coordinates (0,0) and the rest of the lattice points are labeled accordingly.
We say a vertex from the input graph is placed on a lattice point (x, y) if that vertex
is assigned to lattice point (x, y). A folding of such an input graph corresponds
to placing the vertices of the graph on lattice points subject to the following three
constraints:

(i) Each lattice point can have at most one vertex placed on it.

(ii) Each vertex must be placed on some lattice point.
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(iii) Adjacent vertices in the string must be placed on adjacent lattice points.

For example, suppose vertex i and i + 1 are adjacent in the input graph. On a 2D
square lattice, if vertex i is placed on lattice point (x, y), then vertex i + 1 must be
placed on one of four possible lattice points: (x ± 1, y) or (x, y ± 1). Thus, in a valid
folding of a string, the string is laid out on the lattice so that it does not cross itself.
Such a folding is commonly referred to as a self-avoiding walk. When the problem is
defined for a particular lattice, part of the problem definition is to define which pairs
of lattice points are "adjacent". For example, on the 2D square lattice, we will say
each lattice point has four neighbors, but it is possible to define the problem such
that lattice points diagonally across from each other, i.e. (x, y) and (x + 1, y + 1), are
neighbors.

Figure 1-4: A so-called self-avoiding walk-a string forms a pattern that does not
cross itself.

The goal of the string folding problem is to find a valid folding of a given input
graph/string that maximizes the number of pairs of vertices both labeled 1 that
occupy adjacent lattice points. Such pairs of vertices, i.e. pairs of vertices both
labeled 1 that occupy adjacent lattice points, are called contacts. By the definition
of a valid folding, two vertices labeled 1 that are adjacent in the input graph must
occupy adjacent lattice points in any valid folding. Such pairs are not considered to
be contacts.

For example, suppose the input graph corresponds to the string 101010101101010101.
Then the folding shown in Figure 1-5 results in eight pairs of vertices labeled 1 that
occupy adjacent lattice points. This folding yields the maximum possible number of
contacts for this string over all foldings on the 2D square lattice. The vertices labeled
1 are denoted by black dots and the vertices labeled 0 are denoted by white or unfilled
dots.
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S = 1 01 0 1 0 10 1 0 0 1 0 1 0 1 0 1

Figure 1-5: An optimal folding for the string S = 101010101001010101.
contacts are marked by thick (red) dashed lines.

The eight

Motivation

The string folding problem is motivated by the protein folding problem, which is a
central problem in computational biology. A protein is a sequence of amino acid
residues ranging in length from hundreds to thousands of residues. Shorter amino
acid chains are called peptides. There are about 20 types of amino acids. The three-
dimensional shape of a protein or peptide determines its function.

........- * e , e ~ ........

Figure 1-6: A protein is composed of a one-dimensional amino acid sequence and
folds to a three-dimensional shape that determines its function.

In 1985, Ken Dill [Dil85, Dil90] introduced a simplified model of protein folding
called the Hydrophobic-Hydrophilic (HP) model. This model abstracts the dominant
force in protein folding: the hydrophobic interaction. The hydrophobicity of an amino
acid is its propensity to avoid water. It is known that proteins contain tightly clustered
cores of hydrophobic amino acids that avoid being close to the surface, which comes
into contact with water. In the HP model, each amino acid is classified as an H
(hydrophobic) or a P (hydrophilic or polar).
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P P P p p

........ · ........

Figure 1-7: Each amino acid is classified as either an H or a P depending on its degree
of hydrophobicity.

The problem is further simplified by restricting the foldings to a two-dimensional
(2D) or three-dimensional (3D) square lattice rather than three-dimensional space.
The goal of the protein folding problem in the HP model is to find a folding of an
input string of H's and P's that maximizes the number of pairs of adjacent H's, i.e.
H-H contacts. This is exactly the combinatorial problem that we called the string
folding problem.

Figure 1-8: Two-dimensional and three-dimensional HP models.

Background

The HP lattice model is a significant simplification of the protein folding problem
but nevertheless computationally difficult. In 1995, Hart and Istrail presented ap-
proximation algorithms for the string folding problem on the two-dimensional and
three-dimensional square lattices [HI96]. If an optimization problem is shown to be
NP-hard, then a typical approach is to give an approximation algorithm since it is
commonly believed that the existence of efficient algorithms for NP-hard optimiza-
tion problems is unlikely. A p-approximation algorithm is a polynomial-time algo-
rithm that produces a solution of value at least p times the optimal value. Hart and
Istrail presented the string folding problem to the theoretical computer science com-
munity and gave approximation algorithms for the problem on the two-dimensional
and three-dimensional square lattice before either version was known to be NP-hard.
Their linear-time algorithms guaranteed foldings in which the number of contacts was
1 and 3 of the optimal number of contacts for the 2D and 3D problems, respectively.

14
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It was a major open problem to show that the string folding problem on the 2D
or 3D square lattices is NP-hard or give an efficient exact algorithm for it. In 1998,
the 2D string folding problem was shown to be NP-hard by Crescenzi, Goldman, Pa-
padimitriou, Piccolboni and Yannakakis [CGP+98] and the 3D string folding problem
was shown to be NP-hard by Berger and Leighton [BL98]. In 1999, Mauri, Piccolboni,
and Pavesi presented another factor -approximation algorithm for the 2D problem
based on dynamic programming [MPP99]. They claimed that their algorithm per-
formed better than that of Hart and Istrail in practice. Additionally, Agarwala et
al. gave approximation algorithms for the string folding problem on the 2D and 3D
triangular lattice with approximation guarantees of slightly better than [ABD+97].
It is not known if the string folding problem on the 2D or 3D triangular lattice is
NP-hard.

-.. .... ....

... . . . .. ..

Figure 1-9: A valid folding on the 2D triangular lattice.

Each of the approximation algorithms referred to above for the string folding
problem on the 2D or 3D square lattice use a simple combinatorial upper bound on the
optimal number of contacts. Hart and Istrail [HI96] and Mauri et al. [MPP99] showed
that their algorithm always achieves at least as many contacts as demonstrated by
this combinatorial upper bound.

.... ·---6-·- --....

...p. -- ---- p- .. ..

.... *-- . .. . -

Figure 1-10: The square lattice is a bipartite graph.

Consider an input graph/string to the string folding problem. If we fix an arbitrary
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endpoint to be the first vertex on the string, then each vertex has an odd index or
an even index. The square lattice is a bipartite graph, i.e. the lattice points can be
divided into two sets, each containing no edges. In a valid folding, each odd vertex
is assigned to a lattice point from one of these sets and each even vertex is assigned
to a lattice point in the other set. Thus, l's with even indices (even-l's) in the string
can only have contacts with l's in odd indices (odd-l's) in the string. Moreover, each
lattice point has four neighboring lattice points and each vertex-except for the two
vertices with degree 1--can have at most two contacts in a valid folding since two of
its neighboring lattice points will be occupied by adjacent vertices on the string and
therefore cannot form contacts. Let S denote the given input string. Then O[S] is
the number of 's in S that have odd indices and E[S] is the number of 's in S that
have even indices. Let M2 [S] be the maximum number of contacts for any folding
over all possible foldings of the string S on the 2D square lattice. An upper bound
on the maximum number of contacts is:

M2[S] < 2 min{O[S], £[S]} + 2. (1.1)

Hart and Istrail prove that their approximation algorithm for the 2D string fold-
ing problem achieves at least min{O[S], E£[S]}/2 contacts, resulting in a factor -
approximation algorithm. As in the 2D case, the 3D square lattice is also bipartite.
Each lattice point has six neighbors. If a vertex (that is not an endpoint) is placed
on a particular lattice point, then two out of six neighboring lattice points will be
occupied by neighboring vertices from the string. Thus, each 1 in the input string
can have at most four contacts. Let M3[S] be the maximum number of contacts for
any folding over all possible foldings of the string S on the 3D square lattice. The
upper bound for the 3D string folding problem is therefore:

M 3[S] < 4 min{O[S], £[S]} + 2. (1.2)

Agarwala et al. argue that the triangular lattice is a more realistic model of
protein folding because it does not have this "parity problem", i.e. vertices in odd
positions need not exclusively form contacts with vertices in even positions. However,
the square lattice model seems potentially simpler since once a vertex is placed on the
lattice, there are fewer possible positions for each neighboring vertex and has been
very well studied.

New Results

Improving the approximation guarantees of 1 and given by Hart and Istrail for the
2D and 3D string folding problems, respectively, have been open problems for many
years. In this thesis, we give a new combinatorial factor -approximation algorithm
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for the 2D string folding problem [NewO2]. Our algorithm runs in linear time and

outputs a folding that yields as many contacts as the combinatorial upper bound
given in Equation (1.1).

We also examine the combinatorial upper bound for the 2D string folding problem
specified in Equation (1.1). We show that this bound cannot be used to obtain an
approximation guarantee of more than [NewO2]. We show this by demonstrating
a family of strings such that for any string S in the family, an optimal folding of S
achieves at most (1 + o(1)) min{O[S], E[S]} contacts.

Additionally, we examine a simple linear programming formulation for the 2D
string folding problem and analyze the bound it provides on the value of an optimal
solution [CHN03]. We show that the upper bound it provides is no more than three
times the value of an optimal solution, although we are not aware of a string for
which the linear programming bound is actually this much larger than the value of
an optimal folding. The best gap we can construct is 2: we give an example in which
the bound provided by this linear program can be twice as large as optimal.

Next, we consider the 3D string folding problem. We give another --approximation
algorithm for the 3D folding problem based on new geometric ideas [NR04]. The 3-

approximation algorithm of Hart and Istrail [HI96] produces a folding with OPT -
e( /0-[S]) contacts. Our algorithm produces a folding with OPT - c contacts,
where c is a small positive integer. Thus, our algorithm improves on the absolute
approximation guarantee of Hart and Istrail.

We show that modifying this new algorithm leads to an improved approximation
guarantee of + e for the 3D string folding problem, where is a small positive
constant [NR04]. These modifications yield two new approximation algorithms for
the 3D folding problem. Both of these algorithms exploit properties of the string
rather than (additional) new geometric ideas: Both have approximation guarantees
expressed in terms of the number of transitions in the input string S from sequences
of l's in odd positions to sequences of l's in even positions. We refer to the number of
such transitions in a string S as 6(S). Our algorithms have approximation guarantees
of (.439 - E(6(S)/ISI)) and (.375 + E(6(S)/]SI)).

Both of the factor 8-approximation algorithms referred to previously divide the
input string S into two substrings, one substring containing at least half of the 's
with even indices and one substring containing at least half of the 1's with odd indices.
They produce a folding in which all of the even-l's from one of the substrings has at
least three contacts and all of the odd l's from the other substring has at least three
contacts, resulting in a 8-approximation algorithm.

In our improved algorithm, the resulting folding guarantees that there are contacts
using both odd-i's and even-i's from each of the two substrings. However, in order
to use odd-l's and even-l's from the same substring, it would be convenient if they
form a predictable pattern. Thus, one of the main tools we use is a new theorem on
binary strings. We call a binary string in {a, b}* block-monotone if every maximal
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sequence of consecutive a's is immediately followed by a block of at least as many
consecutive b's. Suppose a given binary string has the property that every suffix
of the string has at least as many b's as a's. What is the longest block-monotone
subsequence in the string? We obtain a non-trivial lower bound on the length of a
block-monotone subsequence and we show a connection between this problem and
the 3D string folding problem.

1.1.2 Linear Ordering

The second problem we address is a well-studied graph optimization problem called
the linear ordering problem. Given a complete weighted directed graph, G = (V, A),
the goal of the linear ordering problem is to find an ordering of the vertices that
maximizes the weight of the forward edges. A vertex ordering is defined as a mapping
of each vertex i E V to a unique label e(i), where e(i) is an integer. An edge (i, j) E A
is a forward edge with respect to an ordering if e(i) < £(j). For the linear ordering
problem, we can assume without loss of generality that the labels are integers chosen
from the range {1,2,...,n}, where n = IVI. The linear ordering problem is also
known as the maximum acyclic subgraph problem, which is defined as follows: Given
a weighted, directed graph, find the subgraph of maximum weight that contains no
directed cycles. The forward edges in any linear ordering comprise an acyclic subgraph
and a topological sort of an acyclic subgraph yields a linear ordering of the vertices in
which all edges in the acyclic subgraph are forward edges. Thus, these two problems
are equivalent.

Figure 1-11: A maximum acyclic subgraph of a directed graph corresponds to a linear
ordering of its vertices.

Although the problem is NP-hard [Kar72], it is easy to estimate the optimum
to within a factor of 1: In any ordering of the vertices, either the set of forward
edges or the set of backward edges accounts for at least half of the total edge weight.
It is not known whether the maximum can be estimated to a better factor using a
polynomial-time algorithm. The outstanding open problem with respect to the linear
ordering problem is finding a p-approximation algorithm for the problem where p is
a constant greater than . Approximating the problem to within better than 65 is
NP-hard [NVO1].
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Motivation

The linear ordering problem is a fundamental graph optimization problem that has ap-
plications in the fields of scheduling, economics, archaeology and psychology. For ex-
ample, in archaeology, it can be applied to the archaeological seriation problem [GKK74,
Tho95]. Archaeologists want to determine a relative time line for the artifacts they
unearth. Sometimes they cannot ascertain an exact date for an artifact, but they
can determine that a certain artifact came before another artifact. They can draw
a graph with a directed edge from i to j if they guess that artifact i came before
artifact j. Then they can find an ordering of the artifacts that is compatible with the
most guesses in order to determine the most likely time line.

In economics, the linear ordering problem is known as the triangulation problem
for input-output matrices. Economists use an input-output matrix to describe an
economy. These matrices have the following graphical representation: In a given
economy, an economic sector i has an edge with weight wij to sector j if a wij fraction
of its output is used by sector j. An ordering of the economic sectors that maximizes
the weight of the forward edges determines the direction of production in the economy
[CW58, K069].

In addition to its specific applications, the linear ordering problem is also inter-
esting because it belongs to the family of vertex ordering problems. Vertex ordering
problems comprise a fundamental class of combinatorial optimization problems that,
on the whole, is not well understood. For the past thirty years, combinatorial meth-
ods and linear programming techniques have failed to yield improved approximation
guarantees for many well-studied vertex ordering problems such as the linear ordering
problem and the famous traveling salesman problem. Semidefinite programming has
proved to be a powerful tool for solving a variety of cut problems, as first exhibited for
the maxcut problem [GW95]. Cut problems are problems in which the objective is to
partition the vertices into disjoint sets so as to optimize some stated objective func-
tion. Since then, semidefinite programming has been successfully applied to many
other problems that can be categorized as cut problems such as coloring k-colorable
graphs [KMS98], maximum-3-cut [GW04], maximum k-cut [FJ97], maximum bisec-
tion and maximum uncut [HZO1], and correlation clustering [CGW03], to name a few.
In contrast, there is no such comparably general approach for approximating vertex
ordering problems.

Background

The goal of most approaches to an NP-hard maximization problem is to find a good
upper bound on the value of an optimal solution. For an input graph G = (V, A), a
straightforward upper bound on the size of an optimal solution for the linear ordering
problem is the total edge weight. In any ordering, the set of forward edges or the set
of backward edges contains half the total edge weight. Thus, the "all edges" bound
can be no more than twice as large as optimal. The major open problem is to find a
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bound that is strictly less than twice the value of an optimal solution.

Suppose G = (V, A) is a complete directed graph in which every edge has weight
1, n = IVI, and AI = n(n - 1). Since the graph contains (2) 2-cycles, the maximum
acyclic subgraph of G contains exactly half the edges in A (in a 2-cycle, exactly one
edge if forward and one edge is backward in any vertex ordering). For an unweighted
input graph G = (V, A) that contains no 2-cycles, Berger and Shor gave an algo-
rithm that always produces an acyclic subgraph of size (1 + Q( 1 )) A(, where dmax
denotes that maximum degree of G [BS97]. When G does contain 2-cycles, their
algorithm produces an acyclic subgraph ( + f( )) times the number of arcs in
an optimal solution. Their algorithm has running time O(IAIIVI). Rubinstein and
Hassin gave algorithms with the same guarantee but with running time O(IAI + d3a),
which is better than O(IAllVI) in certain cases [HR94]. These bounds are tight in
terms of AI since since the existence of a class of graphs without 2-cycles for which
the maximum acyclic subgraph has size at most ( + O( ))IAl follows from a re-
sult of Spencer [Spe87] and de la Vega [dlV83]. Thus, an approximation guarantee of

is the best constant factor that can be achieved using the "all edges" upper bound.

A typical approach for finding improved upper bound for an NP-hard maximiza-
tion problem is to compute an optimal solution for a linear programming relaxation of
a corresponding integer program. An integer program for an NP-hard maximization
problem is a set of constraints whose integer solutions correspond to solutions for
the optimization problem. For example, solutions for the following integer program
correspond to acyclic subgraphs:

max E wijxij
ijEA

xij < CI - 1 V cycles C E A
ijEC

Xij E {OI.

In a solution to the above integer program, at least one edge (i, j) in any cycle C
has value xij = 0. Thus, if we consider the subset of edges that have value xij = 1,
they form an acyclic subgraph. In general, it is NP-hard to solve an integer program.
However, if the constraints are linear in the variables and we relax the requirement
that xij are integers and allow fractional solutions, then we can efficiently solve the
respective linear programming relaxation via the ellipsoid algorithm [YN76, GLS81].

Recently it was shown that several widely-studied polyhedral relaxations for the
linear ordering problem each have an integrality gap of 2, showing that it is unlikely
these relaxations can be used to approximate the problem to within a factor greater
than 1 [NVO1, NewOO]. The graphs used to demonstrate these integrality gaps are

random graphs with uniform edge probability of approximately 2v where n is the
number of vertices. For sufficiently large n, such a random graph has a maximum

20



acyclic subgraph close to half the edges with high probability. However, each of
the polyhedral relaxations studied provide an upper bound for these graphs that is
asymptotically close to all the edges, which is off from the optimal by a factor of 2.
Thus, in the worst case, the upper bound provided by these polyhedral relaxations is
no better than the "all edges" bound. The main question with respect to the linear
ordering problem is to find an efficiently computable upper bound that is better than
the "all edges" bound for all graphs that have maximum acyclic subgraph close to
half the edges. In particular, is there such an efficiently computable bound that that
beats the "all edges" bound for random graphs with uniform edge probability, i.e.
the graphs used to demonstrate the poor performance of the linear programming
relaxations?

Semidefinite programming has proved to be a very useful tool for computing im-
proved upper bounds on a variety of cut problems such as the maxcut problem. A
semidefinite program is the problem of optimizing a linear function of a symmetric
matrix subject to linear equality constraints and the constraint that the matrix is pos-
itive semidefinite. (Inequality constraints can be modeled with equality constraints
by using additional variables.) For any > 0, semidefinite programs can be solved
with an additive error of e in polynomial time (e is part of the input, so the running
time dependence on is polynomial in log l) using the ellipsoid algorithm [GLS88].
Semidefinite programming relaxations of quadratic integer programs have been used
in efficient algorithms for optimization problems. (A more thorough discussion of
semidefinite programming and its applications to optimization problems is given in

Chapter 3.)

Semidefinite programming techniques have also been applied to some vertex order-
ing problems such as the betweenness problem [CS98] as well as the bandwidth prob-
lem [BKRVOO]. The input to the betweenness problem is a set of elements {x, ... xn}
and a set of constraints with the following form: xj should go between xj and Xk. The
goal is to find an ordering of the elements so as to maximize the number of satisfied
constraints. Note that a constraint of the stated form is satisfied if the relative order
of elements xi, xj, xk in the ordering is xi < x < Xk or Xk < j < xi. Chor and
Sudan showed how to round a semidefinite programming relaxation to find an order-
ing satisfying half of the constraints provided the original constraint set is satisfiable.
The minimum bandwidth problem was defined in the beginning of this introduction.
Blum, Konjevod, Ravi and Vempala gave an O(~ logn)-approximation algorithm
for an n-node graph with bandwidth b. They gave the first approximation algorithm
with an approximation guarantee better than the trivially achievable factor of n and
introduced new tools such as spreading metrics that have proven useful in applications
to other problems.

Even though both these problems are vertex ordering problems, the semidefinite
programming formulations used for these two problems cannot immediately be ex-
tended to obtain a formulation for the linear ordering problem. This is because it
is not clear how to use these techniques to model objective functions for directed
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graphs in which the contribution of edge (i, j) and edge (j, i) to the objective func-
tion may differ. In other words, in a solution to the linear ordering problem, an edge
(i, j) could be a forward edge and contribute to the objective function, while edge
(j, i) is a backward edge and does not contribute to the objective function. Thus, to
use semidefinite programming, we need to find a formulation in which f(i, j) is the
contribution of edge (i, j) to the forward value and f(i, j) is not equal to f(j, i).

New Results

In this thesis, we present a new semidefinite programming relaxation for the linear
ordering problem. A vertex ordering for a graph with n vertices can be fully described
by a series of n - 1 cuts. We use this simple observation to relate cuts and order-
ings. This observation also leads to a semidefinite program for the linear ordering
problem that is related to the semidefinite program used in the Goemans-Williamson
algorithm to approximate the maxcut problem [GW95]. Besides the linear order-
ing problem, this semidefinite program can be used to obtain formulations for many
other vertex ordering problems, since the feasible region over which we are optimizing
is a relaxation of a quadratic integer program whose solutions correspond to vertex
orderings problems.

We would like to show that this new semidefinite programming relaxation provides
an upper bound that is better than the "all edges" bound for all graphs that have a
maximum acyclic subgraph close to half the total edge weight. This problem remains
open. However, we can show that our relaxation provides an upper bound strictly
better than the "all edges" bound for the class of random graphs with uniform edge
probability, which with high probability have a maximum acyclic subgraph close to
half the edges. This is the first relaxation known to provide a good bound on this
large class of graphs. Graphs from this class were used to demonstrate that several
widely-studied polyhedral relaxations provide poor upper bounds, i.e. bounds twice
as large as an optimal solution, in the worst case [NVO1].

Specifically, we show that for sufficiently large n, if we choose a random directed
graph on n vertices with uniform edge probability p = d (i.e. every edge in the
complete directed graph on n vertices is chosen with probability p), where d = w(1),
our semidefinite relaxation will have an integrality gap of no more than 1.64 with
high probability. The main idea is that our semidefinite relaxation provides a "good"
bound on the value of an optimal linear ordering for a graph if it has no small
roughly balanced bisection. With high probability, a random graph with uniform
edge probability contains no such small balanced bisection. These results also appear
in [NewO4].
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1.2 Layout of This Thesis

The results in this thesis are based on combinatorial as well as linear and semidefinite
programming methods. The chapters in this thesis fall into two categories: methods
and applications. Chapters 2 and 3 focus on methods and Chapters 4, 5, and 6 focus
on results obtained by applying these methods.

In Chapter 2, we discuss some combinatorial theorems about binary strings that
are used in our algorithms for the string folding problem. These combinatorial theo-
rems can be stated independently of the string folding problems and may have other
applications. Therefore, they have been placed in their own chapter. In Chapter
3, we discuss linear and semidefinite programming and how these methods can be
applied to graph layout problems. These ideas are applied to both linear programs
for string folding (Section 4.4) and to semidefinite programs for the linear ordering
problem (Chapter 6).

In Chapter 4, we present algorithms for 2D string folding. First, we present Hart
and Istrail's factor -approximation algorithm for the 2D string folding problem and
then we present their factor -approximation algorithm for the 3D string folding
problem, since it uses the 2D algorithm as a subroutine [HI96]. Next, we present
our improved factor -approximation algorithm. Our algorithm uses a theorem from
Chapter 2-the chapter containing combinatorial methods. We then discuss the qual-
ity of the combinatorial upper bound used in the analyses of both our algorithm and
that of Hart and Istrail. We present a family of strings such that the number of con-
tacts in an optimal folding of any string from this family is only half of the number
of contacts represented in this upper bound. We also use methods from Chapter 3
to obtain and analyze a linear programming relaxation for the string folding prob-
lem. The algorithm and the analysis of the combinatorial upper bound have been
previously published [NewO2]. The linear programming results appear as a technical
report [CHN03].

In Chapter 5, we discuss the 3D string folding problem. We present a new 3-
approximation algorithm and the modifications we can make to this algorithm so as
to obtain a slightly improved approximation guarantee. Our algorithms use theorems
from Chapter 2. Understanding the proofs of these theorems is not required to un-
derstand the applications of the theorems to our algorithms. These results have been
previously published [NR04].

Finally, in Chapter 6, we use methods from Chapter 3 to formulate a new semidefi-
nite program for the linear ordering problem. We prove that our relaxation provides a
good bound on the optimal value of a linear ordering for random graphs with uniform
edge probability. These results have also been previously published [New04].
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Chapter 2

Methods I: Combinatorial

In this chapter, we present some combinatorial methods that are used in our algo-
rithms for string layout. In the string folding problem, odd-l's (l's with odd indices)
in the string can only have contacts with even-l's (l's with even indices) and vice
versa. Therefore, proving properties about the patterns and occurrences of odd-l's
and even-l's can be useful when trying to find folding rules that guarantee many
contacts, which is the goal of the string folding problem. In this chapter, we will
use strings in {a, b}* to represent our binary strings, rather than strings in {0, 1}*.
We use the latter representation of binary strings to represent input to the string
folding problem in Chapters 4 and 5. The theorems in this chapter will be used in
the string folding algorithms in Chapters 4 and 5 by mapping subsequences of odd-l's
and even-l's to strings of a's and b's, applying the lemmas we prove in this chapter
to the strings of a's and b's, and subsequently obtaining lemmas about patterns of
odd-l's and even-l's in the input strings to the folding problem. Thus, throughout
this chapter, we note that we could prove theorems about strings in {0, i}*. However,
since we would not be mapping O's and 's in these strings directly to O's and 's in
the input strings to the string folding problem, we use strings in {(a., b* to avoid
confusion.

We define a loop to be a binary string in a, b* whose endpoints are joined to-
gether. Our first theorem shows that given any loop in {(a, b* containing an equal
number of 's and b's, we can find a point, i.e. element, in the loop such that if we
begin at that point and move in the clockwise direction, we encounter at least as many
a's as b's and if we begin at that point and move in the counter-clockwise direction,
we encounter at least as many b's as ('s. This theorem is a simple combinatorial
exercise to prove, but proves to be very useful.

Our second theorem addresses a new combinatorial problem on binary strings. We
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call a binary string in { a, b}* block-monotone if every maximal sequence of consecutive
b's is immediately followed by a sequence of at least as many consecutive a's. Suppose
we are given a binary string with the following property: every suffix of the string (i.e.
every sequence of consecutive elements that ends with the last element of the string)
contains at least as many a's as b's. What is the longest block-monotone subsequence
of the string? The subsequence of all the a's is a block-monotone subsequence with
length at least half the length of the string. Can we do better? In Section 2.2,
we show that there always is a block-monotone subsequence containing at least a
(2 - v') - .5857 fraction of the string's elements. In contrast, we are aware of
strings for which every suffix contains at least as many a's as b's and for which the
largest block-monotone subsequence has length equal to a .7115 fraction of the string.

2.1 A Combinatorial Lemma for Strings

Suppose we are given a binary string S E {a, b}* with an equal number of a's and
b's. We join the endpoints of the string S together to form a loop L. We want to
determine if there exists an element si E L such that if we move clockwise away from
this element, we always encounter at least as many a's as b's, and if we move counter-
clockwise away from si we always encounter at least as many b's as a's. Lemma 2
gives an affirmative answer to this question.

Definition 1. Let na(S) and nb(S) denote the number of a's and b 's, respectively, in
a string S E {a, b}*.

Lemma 2. Let L E {a,b}* be a loop that contains an equal number of a's and
b's. There is an element si E L such that if we go around L in one direction (i.e.
clockwise or counter-clockwise) starting at si to any element sj E L, then the substring
sisi+l ... sj that we have traversed contains at least as many a's as b's and for any
element sk E L the substring si-lsi-2... Sk has at least as many b's as a 's.

Proof. Given a loop L E {a, b}*, let S = s ... Sn be a binary string in {a, b}* that
results when the loop L is cut between elements s and sn to form a string, i.e. joining
the endpoints of the string S should result in the loop L. Let f(j) = na(ss2 ... sj) -

nb(sls2... sj). In other words, f(j) is the number of a's minus the number of b's
present in the substring ss2 ... sj. Then let j* be a value of j that minimizes f(j).
For example, in Figure 2-1, the function f(j) is shown for the string ababbaaabb
and j* = 5 for this string. Note that sj* must be a b. (If sj* were an a, then
f(j* - 1) < f(j*).) Furthermore, sj*+1 must be an a.

Now consider the string S' = s . . . s' such that s I= sj*+i and s2 = Sj*+2, etc.
The function f(j) for this new string S' is always positive for all j ranging from
1 to n. Thus, n,,(ss... s) > nb(ss$. .. si) for any s in the string S'. If we
consider the reverse string s.... s', then it is always the case that nb(S S1 . . st) >

n,,(s' s'1 . .. s) for any point s'. Thus, the theorem is true when si = s. O
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2.2 Block-Monotone Subsequences

Consider a binary string in {a, b}*. We define a block to be a maximal sequence of
consecutive a's or a maximal sequence of consecutive b's in the binary string. For
example, the string bbbbaaabb has two blocks of b's (of length four and two) and one
block of a's (of length three). We say a binary string in {a, b}* is block-monotone
if, as we go from one endpoint to the other-without loss of generality, from left to
right-each block of consecutive b's is followed by a block of a's of at least the same
length. Some examples of block-monotone strings are:

bbbbbaaaaa,

bababa,

aaabbbbaaaabbbaaaa.

Some examples of non block-monotone strings are:

aaaabbbb,

a.aabbbbaa,

ba bbab.

Given a binary string S in {a, b}*, we address the problem of finding a long block-
monotone subsequence. If the string S contains only b's, then S does not contain any
block-monotone subsequences. Thus, we enforce a stronger condition on the string S:
We call a string suffix-monotone if every suffix contains at least as many a's as b's. In
other words, as we go from right to left, the number of a's always leads the number
of b's. For example, the string ababa is suffix-monotone as is the string baabbabbaaa.

Definition 3. A binary string S = sl ... sn, S E {a, b}* is suffix-monotone if for
every suffix Sk = k+l ... n, 0 < k < n, we have na(Sk) > nb(Sk).
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Figure 2-2: A graphical representation of the string S = bbbbaabbaaaaaa. We use an
"up" edge to denote a 'b' and a "clown" edge to denote an 'a.

Figure 2-3: Graphical representations
string S = bbbbaabbaaaa.aa.

of some block-monotone subsequences of the

Any string S E {a, b}* contains a block-monotone subsequence of length at least
n,(S) since the subsequence of Ca's is trivially block-monotone. If the string S is
suffix-monotone, then n,.(S) > nb(S), so S contains a block-monotone subsequence
with length at least half the length of S. Now we consider the following problem:
Suppose S is a suffix-monotone string in {a, b}*. Does every such string S contain a
block-monotone subsequence of length more than half the length of S?

For example, suppose we have the string (see also Figure 2-2):

S = bbbbaabbaaaac7aa.

The string S has length 14 and the longest block-monotone subsequence of S has
length 12. Some block-monotone subsequences of S are (see also Figure 2-3):

- - bbaabbltaaaaaa,

bbbbaa - -aaaaa.,
bbbb -- -bbaaacaaaa.

The problem of finding the longest block-monotone subsequence of a binary string
is not NP-hard. The optimal block-monotone subsequence can be found using dy-
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namic programming. But we emphasize that although our applications require that
we actually find block-monotone subsequences, finding optimal length block-monotone
subsequences is not a hard problem. Our main goal in this section is to prove a lower
bound on the length of the longest block-monotone subsequence. It seems difficult
to analyze the optimal dynamic programming algorithm to show that the longest
block-monotone subsequence is a large fraction of the string.

There are strings for which the longest block monotone subsequence is slightly less
than .75 times the length of the string. For example, consider the string (bbba)3 (bba)6 (a)l2.
The longest block-monotone subsequence is (b)15(a)1 6, which is only a .74 fraction of
the string. The best upper bound we are aware of is a string for which the longest
block-monotone subsequence is a .7115 fraction of the string:

bbbbbbbbbbbbbbbbbbaaabaaabbbabaabbaaabbbab abaaaabaaaaa.

Thus, our goal is to show that the longest block-monotone subsequence of a given
binary string is long. By "long", we mean a constant fraction greater than .5 and less
than .7115.

2.2.1 Algorithm

In this section, we give an algorithm for finding a block-monotone subsequence of
a given suffix-monotone string. This algorithm does not necessarily generate the
longest block-monotone subsequence and is therefore not optimal, but we show that
the subsequence it does output is long. In particular, if the input string is suffix-
monotone and has an equal number of a's and b's, then the algorithm outputs a
block-monotone subsequence of length at least a (2 - v') - .5857 fraction of the
input string.

The idea behind our algorithm is to move down the string-from one endpoint to
the other-and if we encounter a block of a's, we keep this block and move on. If we
encounter a block of b's, we match a subsequence of b's containing that block with
a subsequence of a's that follows. Thus, we only keep a subsequence of b's when we
can match it with a following subsequence of a's of at least the same length.

We will illustrate the idea of the algorithm with the following example, in which
we show how to find a block-monotone subsequence of length 2 the length of the
input string S and give a proof sketch. Suppose we have a suffix-monotone string
S E {(a, b}*. If the first block of the string is: (i) a block of a's, then we add this block
of a's to the solution and let S' be the string S with this block of a's removed. If the
first block of the string is: (ii) a block of b's, let Sk be the shortest string starting
at the current left endpoint such that the ratio of a's to b's is at least 1 to 2. Now
we find the prefix of Sk (call it Se) such that the total number of b's in Se does not
exceed the total number of a's in Sk \ {Se} and the total number of b's in Se plus a's
in Sk \ {Se} is maximized. We keep all the b's in Se and all the a's in Sk \ {Se} for the
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solution and let S' be the string S \ {Sk}. After both steps (i) and (ii), we recurse on
the string S'.

Note that the ratio of b's to a's in any proper prefix of Sk is at least 2 : 1. In any
proper suffix of Sk, the ratio of a's to b's is at least 1: 2. Thus, if the length of Se
is Iskl, then there are least ()(IsIl) b's from Se in the resulting subsequence and at33 3
least ()(21sl) a's from Sk \ {Se} in the resulting subsequence, which totals -of the
elements in Sk. Since the ratio of the a's to b's in Sk is 1:2, if no(S) = nb(S), roughly
three-fourths of the elements in S belong to some string Sk considered in step (ii)
and roughly one-fourth of the elements in S are added to the solution set in step (i).
Thus the solution contains at least (4 )(3) + = of the elements in the original
string. This is the main idea behind our algorithm, but we have glossed over some
details. For example, since the length of ISki is integral, the ratio of the elements
considered in step (ii) may be more than 1:2. Thus, more than three-fourths of the
string is considered in step (ii) and less than one-fourth of the string considered in
step (i). However, in the analysis of the algorithm, we will show that this idea does
lead to an algorithm that outputs a solution with length more than half that of the
original string.

The algorithm has the best guarantee on the length of the block-monotone subse-
quence that it outputs when Sk is the shortest string in which the ratio of b's to a's
is at least : 1 - 1 . This leads to a block-monotone subsequence of length at least

2 - XV the length of the input string.

slope 1-2a

I k

Figure 2-4: These three figures give a pictorial representation of the BLOCK-
MONOTONE ALGORITHM. An up edge corresponds to an b and a down edge cor-
responds to a a. In the first figure, k denotes the point chosen in Step 2 (i) and e
denotes the point chosen in Step 2 (iii). In the second figure, the crossed-out edges
represent the elements that are removed from the string. The third figure shows the
string after removing the crossed-out elements, i.e. the elements that correspond to
the block-monotone subsequence.

We will now precisely describe our algorithm and present its analysis to prove our
main theorem.

Notation. a := 1 - 0.2929.

Definition 4. A binary string S = sl... s,, S E (a, b}* is a-suffix-monotone if for
every suffix k = k+l ... Sn, O < k < n, we have n,,(Sk) > e .(n- k).
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BLOCK-MONOTONE ALGORITHM

Figure 2-5: The BLOCK-MONOTONE ALGORITHM.

This definition is less restrictive than the definition of suffix-monotone (Definition
3). For example, a suffix-monotone string is a-suffix-monotone. We can now state
our main theorem.

Theorem 5. Suppose S is an a-suffix-monotone string of length n. Then there is a
block-monotone subsequence of S with length at least n-nb(S)(2x/2-2). Furthermore,
such a subsequence can be found in linear time.

If nb(S) < 1n and S is suffix-monotone, then Theorem 5 states that we can find
a block-monotone subsequence of length at least (2 - vA) > .5857 the length of S.
This is accomplished by the BLOCK-MONOTONE ALGORITHM, which is based on the
ideas described previously.

2.2.2 Analysis

In this section, we prove that, on an a-suffix-monotone input string S, the BLOCK-
MONOTONE ALGORITHM outputs a subsequence of length at least n-nb(S)(2v/2-2).

First, we argue correctness, i.e. that the BLOCK-MONOTONE ALGORITHM out-
puts a subsequence that is block-monotone. In Step 2 (i), there always is an index
k with the required property because the definition of a-suffix-monotone implies it
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Input: An a-suffix-monotone string S = sl ... sn.

Output: A block-monotone subsequence of S.

Let Si = sl ... Si = si+l...s for i: 1 < i <n.

1. If si = a:

(i) Find the largest index k such that Sk is a block of a's and output Sk.

2. If si = b:

(i) Find the smallest index k such that:

na(Sk) > ak.

(ii) Let S = Se+l...Sk for : 1 < e < k.

(iii) Find such that:

nb(St) < n(Se),

nb(Se) + na(S') is maximized.

(iv) Remove all the a's from St and output Se.

(v) Remove all the b's from Se and output S,.

3. Repeat algorithm on string Sk.



is true for k = n. Similarly, if = 1, then nb(SI) = 1 < n(S~). Thus there is
always an f that meets the requirement in Step 2 (iii). Finally, the algorithm outputs
a block-monotone subsequence because whenever it outputs a subsequence of b's (in
Step 2 (iv)), it also outputs at least as many a's (in Step 2 (v)). This shows that the
algorithm is correct.

In this algorithm, we modify the input string by removing a's and b's. However,
in order to analyze the algorithm, we will first consider a continuous version of the
problem in which we can remove a fraction of each a or b. In the continuous version
of the problem, we consider each element as a unit-length interval. For example, if
si = a, then si is a unit-length segment labeled 'a' and if si = b, then si is a unit-
length segment labeled 'b'. Thus, we will view the string S as a string of unit-length
a- and b-segments. Suppose sl = b and Sk is a prefix of the input string S such that

n,,(Sk) > ak and n0 (Sj) < aj for all j: 1 < j < k as in Step 2 (i) of the algorithm.

Let t denote the (fractional) index in the string at which na(St) = at. Note that
there always exists a point t at which n,(St) = at because the string S is suffix-
monotone, which implies that at least an a fraction of S is a's. The value of t may
be a non-integral real number between k - 1 and k and the string St may end with a
fractional part of an a.

We define S as the substring starting at position y up to position t. Let y be
the (fractional) point in the string St such that nb(Sy) = na(Sy). If we could keep
fractional portions of the string, we could keep all the (fractions of) b-intervals in Sy
and all the (fractions of) a-intervals in Sy. At least a (1 - a) fraction of the elements
in Sy are b's, and at least an a-fraction of the elements in Sl are a's. So for the
fractional problem, the best place to cut the string is at the point e = t where:

3(1 - a) = (1 - )a ' P = a

Thus, we keep a 2a(1 - a) fraction of each substring considered in Step 2. Next, we
are going to compute the total length of the output of our algorithm. Let T1 represent
the set of substrings (i.e. blocks of a's) that are output unmodified during the first
step of the algorithm and let T1 represent their total length. Let T2 represent the
set of substrings which are modified during the second step of the algorithm and let
IT2 1 represent their total length. Let m be the length of the output of the algorithm.
Then we have the following equations:

n = T1 + T2 1
nb(S) = (1 -a) IT21

m = ITI + 2a(1- a)T 2 j

Solving these three equations, we find that the total fraction of the string that remains
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is:

m (2a+ ) nb(S) + n.

This expression is maximized for a = 1 - 1//2, which is why we assigned a this
value. Substituting, we get:

m = n - (2/2 - 2)nb(S). (2.1)

Thus, in the case where we can remove fractions of the a's and b's, the algorithm
results in a string whose length is indicated in Equation (2.1).

In the integral case, we will show that the algorithm results in a string whose
length is at least as large as the fraction in Equation (2.1). By definition, in the
algorithm, k equals tl. If the point y in St is in an a interval, then is equals LyJ,
since the point is chosen to as to maximize the quantity nb(S) + n,a.(S). In the
algorithm, we keep the whole a-interval that contains t and the whole a interval that
contains e. In other words, in addition to keeping the b's in Sy and the a's in Sy, we
are also keeping the fraction of the a-interval that lies in Sy. Note that everything
that is added to the solution set in the continuous version is also added to the solution
in the algorithm; in addition, the algorithm may add more to the solution set.

If the point y in St is in a b-interval, then note that the (fractional) number of
b's in Sy is equal to the (fractional) number of a's in Sy. In the algorithm, the whole
a interval in which t lies is included in Sk and therefore in the solution set. Thus,
it must be the case that = F[y. In the continuous version of the algorithm, the
whole a-interval in which t lies is also included in the solution set and only part of
the b-interval in which y lies is included. Thus, in the discrete case, we add at least
as much to the solution set as we do in the continuous case.

This concludes the proof of Theorem 5. We now prove another simple lemma that
shows we can output block-monotone subsequences with a specified number of a's and
a specified number of b's. We will find this lemma useful in our folding algorithms
for the 3D string folding problem, because we give an application in which we need
to know the number of each type of elements in a block-monotone subsequence in
advance.

Lemma 6. We can modify the block-monotone subsequence S' output by the BLOCK-
MONOTONE ALGORITHM so that:

n(') = (1 - v) nb(S) and nb(S) = [n-( - ) nb(S1S

Proof. Following the notation of the proof of Theorem 5, in the fractional case, we
keep:
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a(1 -a) IT21 = anb(S) b's,

and:

1 - + a2

IT + a( - a)T 21 = n - nb(S) /S.1 - a

Since these are lower bounds on what we keep in the integral case, the subsequence
output by the algorithm has at least (1 - )nb(S) a's and n - ( - 1)nb(S) b's.
To keep exactly the number of symbols claimed in this Lemma, it suffices to delete
the excess number of a's and b's. To do this, first delete the excess b's anywhere in
the output string, the result will clearly still be block-monotone. Then we delete the
excess a's. Note that at this point, the number of a's exceeds the number of b's, so
there will always be a block of a's strictly greater than the preceding block of b's and
we can delete a.'s from this block. E]

2.3 Open Problems

Theorem 5 states that a-suffix-monotone strings contain block-monotone subsequences
of at least 2 - ~ .5857 their length. As previously, mentioned we are aware of
a-suffix-monotone strings for which the longest block-monotone subsequence is only
a .7115 fraction of the string. The string below is an example of a suffix-monotone
string that demonstrates this upper bound:

bbbbbbbbbbbbb babab babaa.baaabbbabaabaaabaaabaaaaa.

The longest block-monotone subsequence of this string is al8bl9 , which is 71.15%
of the length of the original string.

An obvious open question is to close the gap between .5857 and .7115 by improving
the upper and/or lower bounds. Additionally, if the string is suffix-monotone--a
stronger condition than a-suffix-monotone-then perhaps we can find block-monotone
subsequences of length much more than a .5857 fraction of the string. We conjecture
that suffix-monotone strings contain block-monotone subsequences at least their
length.

34

_-



Chapter 3

Methods II: Linear and
Semidefinite Programming

In this chapter, we discuss linear and semidefinite programming approaches that can
be applied to graph layout problems. Linear and semidefinite programs for combina-
torial problems are obtained by relaxing integer programs. An integer program for
a combinatorial problem is a set of constraints whose integral solutions correspond
to solutions for the optimization problem. In general, it is NP-hard to solve an in-
teger program, but the constraints that the variables are integral can be relaxed to
form linear or semidefinite programming relaxations, which can be used to efficiently
compute bounds on the values of optimal solutions.

For many graph optimization problems, integer programs that correspond to find-
ing a maximum/minimum weight subgraph with a particular property have been
studied. Linear programming relaxations of these integer programs approximate the
convex hull of integer solutions in {O, 1}IEl. Many well-studied linear programming
relaxations for the maxcut problem are of this type [Bar83, BGM85, BM86, PT95].
(The maxcut problem was defined in Chapter 1.) For example, one of these relax-
ations, introduced by Barahona, Gr6tschel and Mahjoub, is based on the integer
program below, which requires that an integral solution contain no odd cycles, i.e. it
is bipartite [BGM85].
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max E WeXe (3.1)
eeE

x e < C jC- 1 V odd cycles C C E
eEC

Xe E {0,1} VeEE.

As we will see in this chapter, there are other integer programs for the maxcut
problem, some of which lead to stronger bounds on the value of an optimal solution.
For example, there are formulations in which variables are used to indicate which
vertices should be placed on which side of a cut rather than which edges should be
included in a subgraph. Our goal is to find new integer programs for graph layout
problems that lead to efficiently solvable relaxations.

3.1 Linear Programming

A linear program is the problem of optimizing a linear function subject to linear
inequality constraints. The vector c has length n, the matrix A has m rows-one for
each constraint-each with n entries, and the vector b has length m. The goal is to
find a solution for the vector x = {xl, x 2 ,..., xn} that satisfies the following:

max cTx

ATx < b.

A linear program with a polynomial number of constraints can be solved in polyno-
mial time using the Ellipsoid algorithm, developed by Yudin and Nemirovskii [YN76]
and proved to have efficient running time by Khachiyan [Kha79], or using interior
point methods [Kar84]. More generally, a linear program with a polynomial-time
separation oracle can be solved in polynomial time even if it has an exponential num-
ber of constraints [GLS81, GLS88]. A new, simple algorithm for this more general
problem due to Bertsimas and Vempala uses random walks [BV04].

Given a solution to a linear program, a polynomial-time separation oracle is an
efficient algorithm that determines if the solution is feasible, i.e. does not violate
any constraints, or is infeasible. If the solution is infeasible, the separation oracle
also specifies a violated constraint. For example, consider the linear programming
relaxation of the aforementioned integer program for the maxcut problem:
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max wezXe (3.2)
eEE

Z xe ICI--1 V odd cycles C C E
eEC

0 < e 1 V eE E.

Even though there could potentially be an exponential number of odd cycles and
thus an exponential number of constraints, there is a well-known efficient separation
oracle. In other words, given a solution to the above linear program, e}), there is
a polynomial-time algorithm to determine if the total value of the edge variables for
any odd-cycle C is at most ICI-1. Finding such an algorithm is a common homework
problem!

Linear programming relaxations are often used to compute upper bounds on the
values of optimal solutions for maximization problems (or lower bounds on the values
of optimal solutions for minimization problems). Suppose we have a combinatorial
problem (e.g. the maxcut problem or the maximum acyclic subgraph problem) and a
corresponding integer program for that problem. We can obtain a linear programming
relaxation of this integer program by relaxing the requirement that the variables are
integral. For example, from the aforementioned integer program for the maxcut
problem, Equation (3.1), we obtain a linear programming relaxation by replacing the
integrality constraint xe E {0, 1 with the constraint 0 < Xe < 1, Equation (3.2).

We can solve this linear programming relaxation efficiently using one of the effi-
cient algorithms for linear programs referred to above. For a maximization problem,
the optimal value of the linear programming relaxation is an upper bound on the
optimal value of the integer program. Thus, a general approach to finding an upper
bound for a maximization problem is to (i) find an integer program that describes
the problem, (ii) relax the integrality constraints to obtain a linear programming re-
laxation for the problem, (iii) solve the linear program to efficiently compute a bound
on an optimal integral solution.

3.1.1 Assignment Constraints

A graph layout problem can be cast as an assignment problem. In an assignment
problem, the goal is to assign each vertex a position, a set or a label so as to optimize
a particular objective function. For example, in the maxcut problem the goal is to
assign each vertex of a given graph to S or S so as to maximize the weight of the
edges with endpoints in both sets. In the linear ordering problem, the goal is to assign
each vertex to a unique set labeled 1, 2,... , n} so as to maximize the weight of the
directed edges (i, j) such that vertex i has a smaller label than vertex j.

Linear programs for assignment problems can be formulated with-what are often
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referred to as-assignment constraints. Suppose we are given a graph G = (V, E)
and a set of positions P, and we want to assign each vertex to a position. We can
formulate a linear program in which we have a variable zip for each vertex i E V and
each position p E P. If the vertex i is assigned to position p, then variable xip = 1,
otherwise xip = 0. If each variable in the set {Xip} is a positive integer, then constraint
(3.3) enforces the requirement that each vertex is assigned to some position.

xiP,=1 ViEV. (3.3)
PEP

If we want to enforce the condition that each position has at most one vertex assigned
to it, as is the case in a vertex ordering problem, we can use the following constraint:

Exi =1 VpEP. (3.4)
iEV

We can use these constraints to formulate another integer program for the maxcut
problem, which is different the one given earlier (3.1). Our goal is to place each vertex
in one of two sets. For each vertex i E V, we have two variables, xil and xi2. If i
is placed in S, then in an integral solution, we require that il = 1 and xi2 = 0.
Alternatively, if i is placed in S, then we require that xil = 0 and xi2 = 1. For each
edge, ij E E, we have two variables fij and bij. We will require that the variable
fij = 1 if i is in S and j is in S and the variable bij = 1 if i is in S and j is in S. We
can enforce these requirements with the following integer program:

max E wij(fij + bij) (3.5)
ijE

Xil + Xi2 = 1 Vi E V

fij < min{xil,xj2} Vij EE
bij < min{xjl, Xi2 Vij E E

Xil, i2 E (0, 1} Vi E V

fij, bij E {0,1} Vij E E.

The constraint,

fij < min{x, j 2} Vij E E,

can be enforced with the following two linear constraints:
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fij < il Viij E,
fij < xj2 Vij E E.

If we replace the integrality restriction with the relaxed constraint 0 < il, xi2 <

1, 0 < fij, bij < 1, we obtain another linear programming relaxation for the maxcut
problem. How good is the bound provided by this linear program? This linear
program actually does not provide a very good bound. This is because we can let
Xil = Xi2 = 1 for every i E V. Then every edge contributes 1 to the objective
value. Thus, it simply says that the optimal value of any maxcut is IEI, which is
a trivial bound. Furthermore, with high probability, a random graphs with uniform
edge probability has a maxcut arbitrarily close to half the edges [Pol92]. So this linear
program can have an optimal value of twice the optimal integral value.

3.1.2 Graph Layout

Assignment constraints can be used to design linear programs for graph layout prob-
lems. For example, we can generalize the integer program in the previous section,
(3.5), to obtain an integer program for the linear ordering problem. Given a di-
rected graph G = (V, A), our goal is to assign each vertex in the graph a label from
{1, 2, ... , n} so as to maximize the weight of the directed edges (i, j) such that i has
a smaller label than j. For each vertex i and each label h, we have a variable Xih = 1
if vertex i is labeled h.

max Zwij (yh e)
ijEA h<e

n

E Xih = 1 Vi EV
h=l
n

xih = 1 VhE{1,2,...,n}
i=l

iht < min{xih, xje} Vij E E, Vi, h 1, 2,..., n}

Xih E (0,1} ViEV, VhE{1,2,...,n}
yi E {0,1} Vij EE, Vh, e{1,2,...,n}.

We can obtain a linear programming relaxation by relaxing the constraint that the
variables {xih }, {yhet} are integral and instead require them to have values between 0
and 1. If we let each variable ih = 1 then each edge contributes () 1 = n-1 to

n 2 n 2

the objective function. Therefore, this linear program provides a very bad bound on
the optimal value of a linear ordering.
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However, these basic ideas of using assignment constraints can still be useful
in graph layout problems. We can use this general framework to formulate linear
programs for problems involving laying out graphs on square lattices, for example.
In Section 4.4, we show how to use these ideas to formulate an integer program and
a corresponding linear programming relaxation for the string folding problem. We
will have a variable xi, for each vertex i and each lattice point v. For every edge in
the lattice, i.e. pair of adjacent lattice points, we have a variable h(,w) that indicates
whether there is 0 or 1 contact across edge (v, w) in the lattice. In other words,

we will specify constraints to enforce that for each edge in the lattice, (v, w), the
variable h(,,) is 1 if and only if there are vertices from the input graph each labeled
1 and occupying lattice point v and w. Additionally, the semidefinite programs for
the linear ordering problem that we discuss in the next section and in Chapter 6 are
based on assignment constraints.

3.2 Semidefinite Programming

A semidefinite program is the problem of optimizing a linear function of a symmetric
matrix subject to linear equality constraints and the constraint that the matrix is
positive semidefinite. (We indicate that a matrix Y is positive semidefinite by: Y -

0.) Inequality constraints can also be included in a semidefinite program, because
they can be modeled with equality constraints using additional variables. For any
e > 0, semidefinite programs can be solved with an additive error of e in polynomial
time ( is part of the input, so the running time dependence on e is polynomial in
log 1) using the ellipsoid algorithm [GLS88]. Other methods can also be used to solve
semidefinite programs efficiently such as interior point methods [Ali95]. Although
not provably efficient, the simplex method can also be used to solve semidefinite
programs [Pat96].

3.2.1 Cut Problems

Semidefinite programming yields another way to develop efficiently computable re-
laxations for combinatorial optimization problems. A useful feature of semidefinite
programming is the structure of the semidefinite solution matrix. An n x n posi-
tive semidefinite matrix Y can be decomposed into Y = XXT where X is an n x n
matrix. This decomposition lies at the heart of the Goemans-Williamson .87856-
approximation algorithm for the maxcut problem [GW95].

Consider the following integer quadratic program for the maxcut problem. For a
given a graph G = (V, E), each vertex i E V has a corresponding vector vi that is
required to be in {1, -1}; the assignment vi = 1 means that vertex i is on one side of
the cut and the assignment vi = -1 means that vertex i is on the other side of the
cut. Each edge contributes value (1 - vi · vj) to the objective function: if vi = vj,
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then this contribution is 0; if vi -~ vj, then this contribution is wij.

max ZE wij(1-vivj) (3.6)
i<j

vi E {-1,1} ViEV.

Goemans and Williamson showed that the semidefinite relaxation of this integer
program can be used in an approximation algorithm for the maxcut problem [GW95].
They used the following semidefinite relaxation of the above integer program (3.6):

max 2 wij(1 - Yi) (3.7)
i<j

Yii = 1

Y > O.

In the Goemans-Williamson algorithm for the maxcut problem, the matrix Y is
decomposed into Y = XXT. Each of the n rows of the matrix X is a unit vector.
These vectors, {x1, x2,..., xn}, have the property that xi xj = Yij. Each vertex i
corresponds to a unit vector xi in this decomposition. Thus, the relaxation (3.7) is
equivalent to the relaxation (3.8):

max Z wij(1-xi xj) (3.8)
i<j

Xi · i = 1

Xi E R n Vi E V.

To obtain a feasible solution for the maxcut problem, a vector r E Rln is chosen
at random. A vertex i is assigned to one side of the cut if vi r < 0 and to the other
side if vi r > 0. In expectation, the total edge weight crossing the cut is at least
.87856 of the objective value of the semidefinite relaxation, which is at least .87856
of the value of an optimal maxcut. This relaxation is the only known relaxation that
provably provides a bound of less than "all edges" for all graphs with a maxcut close
to half the total edge weight.

Closely related to the maxcut problem is the maximum directed cut (dicut) prob-
lem. Given a directed weighted graph G = (V, A), the dicut problem is to find a bipar-
tition of the vertices-call these disjoint sets S1 and S2-that maximizes the weight
of the edges directed from S1 to S2, i.e. the weight of the directed edges (i, j) such
that vertex i is in set S1 and vertex j is in set S2. Goemans and Williamson [GW95]
and Feige and Goemans [FG95] study semidefinite relaxations of integer programs
for this problem. One such integer program is based on assignment constraints. In
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Figure 3-1: A maximum dicut for the graph on the left is shown on the right.

I

I
I

- )

Figure 3-2: The dicut problem is to divide the vertices of a directed graph into sets
S1 and S2 so as to maximize the weight of edges directed from S1 to S2.

the following integer program, each vertex i has two corresponding vectors, ti and fi.
The vector vo is an arbitrary unit vector; without loss of generality, we can assume
vo = 1, 0,..., 0). In an integral solution, if vertex i is assigned to S1, then ti is
assigned value vo and fi is assigned 0; if vertex i is assigned to S2, then ti = 0 and
fi = vo. Thus, the following constraints enforce the requirements that in an integral
solution, exactly one of ti and fi is set to vo for each vertex i. For a directed edge
(i, j), if i is in S1 and j is in S2, then ti = fj =vo, so the contribution of that edge
to the objective value is wij.

max wij(ti fj)
ijEA

ti. fi = 0 Vi E V

vo ti + o · fi = 1 Vi E V

vo ·vo = 1

ti,fi c {0, o} Vi V.

The integrality constraint in the above integer program can be relaxed to form
the following semidefinite relaxation for the dicut problem. Instead of being assigned
to 0 or vo, each ti and fi will be assigned a vector in Rn . This is equivalent to
the constraint that the matrix of ti, fi values is positive semidefinite. Note that the
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following constraints imply that fi = vo - ti. Thus, the dimension of the solution
matrix is n + 1.

max wij(ti fj) (3.9)
ijEA

ti *fi = 0 Vi E V

o · ti + o · fi = 1 Vi E V

vo ' vo = 1

ti, fi E Rn +1 Vi E V.

Goemans and Williamson also gave a new approximation algorithm for the dicut
problem that is very similar to their algorithm for the maxcut problem [GW95]. It is
based on rounding a semidefinite relaxation of the following integer program. In this
integer program, a vector vi = vo if vertex i belongs to set S1 and vi = -vo if vertex i
belongs to set S2. Thus, if edge (i, j) is directed from S1 to S2, then the contribution
to the objective value is wij and if vertex i is not in S1 or if vertex j is not in S2, then
the contribution to the objective value is 0.

max 4 w 3ij(l+ Vovi -VoVj - i - j) (3.10)
ijEA

Vi Vi = 1 Vi E VU{O}

vi E {vo,-vo} Vi E VU{0}.

We obtain an efficiently solvable relaxation by relaxing the constraint that vi is either
vo or -vo and requiring only that vi is a unit vector in lZn+1.

max Zwij(1+v- V - Vo - V - Vi V) (3.11)
ijEA

Vi Vi = 1 Vi E VU{0}

vi E Rn +1 Vi E VU{0}.

After solving the above semidefinite relaxation to obtain a set of solution vectors,
{vi}, a random vector r E zn+l is chosen. If r vo < 0, then each vertex i such that
vi. r < 0 is placed in S1 and the rest of the vertices are placed in S2. If r vo > 0, then
each vertex i such that vi r > 0 is placed in S1 and the rest of the vertices are placed
in S2. Goemans and Williamson showed that this algorithm has an approximation
guarantee of at least .79607 [GW95].

The relaxations (3.9) and (3.11) are equivalent. Consider a solution to the above
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relaxation (3.9). Let vi = ti- fi. Then the vectors {vi) satisfy the constraint in
(3.11) that they are unit vectors. Similarly, consider a solution {vi} for the relaxation
(3.11). Let ti = voV and fi = o-Vi. Then ti. fi = 0 and vo (ti + fi) = 1, satisfying
the constraints in the relaxation (3.9). The objective function in the relaxation (3.9)
can be rewritten as:

ti ' f=i 2 ( + i ) ( o j ) ( + vi vo -- j . Vo - i Vj ).

Feige and Goemans note that constraints can be added to strengthen the relax-
ation (3.9). In particular, we can require that: ti f > ,ti tj > O,fi fj > 0.
Transforming these constraints to the form in the relaxation (3.11), we obtain the
following constraints for all i, j E V:

voVi+vov+vj Vi Vj -1

-vo Vi-vo Vj-Vi Vj -1
-Vo Vi + o +v j-Vij > -1.

Additionally, Feige and Goemans note that we can obtain an even stronger relaxation
by allowing any vector Vk to take the role of v0o in the above constraints:

vi'vj+vi k+vj'v k >_ -1 (3.12)

-Vi Vj--Vi Vk + Vj Vk >_ -1

-Vi Vj + Vi k-Vj Vk > -1
Vi Vj+Vi k-Vj Vk > -1.

These constraints are valid because they hold for any set of variables {vi, j,, k} E

{1, -1}. Note that these constraints can also be used to strengthen the maxcut
relaxation (3.6). Although these constraints strengthen the relaxations (3.11) and
(3.6), it is an open problem how to use these constraints to improve the approximation
guarantee for the maxcut or dicut problems. However, Halperin and Zwick showed
how to use these so-called triangle inequalities to strengthen related relaxations and
improve the approximation guarantees for several cut problems such as the maximum-

'-bisection problem and the maximum-i-directed-bisection problem [HZO1]. The
maximum-'-bisection problem is that of finding a maximum cut with the further
constraint that the two sets S and S have the same cardinality (the cardinality of the
two sets differs by 1 vertex if n is odd). Similarly, the maximum-n-directed-bisection
problem is that of finding a maximum directed cut with the extra constraint that the
two sets S1 and S2 have the same cardinality.
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3.2.2 Vertex Ordering Problems

The edges in a directed cut form an acyclic subgraph. We can generalize the dicut
problem to that of dividing the vertices into k labeled sets S1 , S2 ,..., Sk so as to
maximize the weight of the edges (i, j) such that vertex i is in set Sh and vertex j
is in set Se and h < e. We call this the k-acyclic dicut problem. The linear ordering
problem is equivalent to the n-acyclic dicut problem.

" i
I, I I

Figure 3-3: We define the k-acyclic dicut problem to be that of dividing the vertices
of a directed graph into k sets labeled S1, $S2, S ,..., Sk so as to maximize the weight
of edges directed from Si to Sj, i < j.

Thus, the semidefinite programs for the dicut problem can also be generalized to
formulate semidefinite programs for vertex ordering problems. In this section, we will
discuss how to obtain such a formulation for vertex ordering problems. For example,
in the semidefinite relaxation for the dicut problem (3.9), we use two variables t and
fi to represent if vertex i is assigned to Si or S2. For the k-acyclic dicut problem,
we can use k vectors for each vertex-as opposed to two vectors-to indicate which
of the k positions vertex i occupies. Similarly, for the linear ordering problem, we
will use n vectors to indicate which position vertex i occupies. We will formulate
an integer program for the linear ordering problem in which v0o is an arbitrary unit
vector and vector Uih = v0 if vertex i is in position h in the ordering and Uih = 0
if vertex i is not in position h. Thus, our integer program will have n2 + 1 vectors.
The following constraints (3.13) are valid for an integer program in which the feasible
solutions are all permutations of the vertices of a given graph. Let N represent the
set {1, 2,...,n)}.

Vo Vo = 1 (3.13)
n

EUih' = 1 Vi E V
h=l
n

E UihVo = 1 VheN
i=l

uih E {0, o0 ViE V, Vh E N.

Lemma 7. There is a one-to-one correspondence between permutations of the vertices
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and feasible solutions for the set of constraints (3.13).

Proof. Consider a permutation of the vertices in which each vertex i has a unique
label h in the set N. Let Uih = v0, where vo is a unit vector, and let uie = 0 for e # h.
We will show that this solution satisfies the constraints (3.13). The first constraint
vo vo = 1 is satisfied since v0o is a unit vector. The second constraint,

n

Uih o = Vi E V,
h=1

is satisfied since for each i, there is only one value of h such that Uih = vo. The next
constraint,

n

Uih V lo = h E N,
i=l

is satisfied since for each position h, there is only one vertex i such that Uih = v0.

Thus, for every permutation, there is a unique feasible solution.

Now we argue that each feasible solution for the constraints (3.13) corresponds to
a permutation of the vertices. Consider a feasible solution to the constraints. By the
first constraint, for each vertex i, there is exactly one value of h such that Uih = o0,

so each vertex is assigned a position. By the second constraint, for each position h,
there is exactly one vertex i such that ih = v0, i.e. vertex i is assigned to position
h. Therefore, a feasible solution corresponds to a permutation of the vertices. 1I

Since a feasible solution for the constraints (3.13) corresponds to a permutation
of the vertices, we can measure the weight of the forward edges with respect to a
particular solution, i.e. vertex permutation, using the following objective function.
Let G = (V, A) be a given directed graph and let {Uih), vo be a feasible solution to
the constraints (3.13).

max E wij( uih ujt). (3.14)
ijEA h<e

Consider an edge (i, j) A. If (i, j) is a forward edge in the vertex permutation
corresponding to the given feasible solution, then there are some vectors uih, uje such
that Uih = uet and h < . Conversely, if i comes before j in the ordering, then there
is some h < e such that uih = ujt.

Unfortunately, optimizing the objective function (3.14) over the constraints (3.13)
is NP-hard, since this would yield an optimal solution to the linear ordering problem,
which is NP-hard. So we relax the constraint that each uih is either v0o or 0 to the
constraint that Uih E Rn2+1. We can also add constraints that are valid for integer
solutions and may strengthen our semidefinite relaxation. For example, the constraint
uih Uih = Uih Vo is valid in an integral solution since Uih is either 0 or equal to vo.
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Additionally, in an integral solution, it is the case that Uih Ui = 0, since for each
vertex i, the variable Uih is non-zero for exactly one value of h. Similarly, Uih Ujh = 0
is a valid constraint because for each position h, the uih is non-zero for exactly one
vertex i. Finally, we can also require that every pair of vectors from the set {uih}
has a non-negative dot product, since this constraint holds for an integral solution.
Combining all these constraints results in the following semidefinite programming
relaxation.

Vo0 V0
n

A, Uih V0

h=l
n

A, Uih Vo
i=l

Uih Uih

Uih ' it

Uih ' Ujh

Uih ·uje

Uih

(3.15)max E wij (I uih .ue)
ijEA h<f

= 1

= 1 ViEV

1 Vh E N

= Uih'Vo ViEV, hEN
= o ViEV, h,eEN
= 0 Vi,j E V, hN

> 0 i, j E V, h,EN
E Rn 2+1 i E V h E N.

Lemma 8. For a given graph G = (V, A), the optimal value of the semidefinite
program in constraints (3.15) is ijEA Wij.

Proof. We will show that the total contribution to the unweighted objective function
for any 2-cycle is one edge. A 2-cycle constraint can be written as follows:

l<h<t<n
Uih Uie + E

l<h<t<n
Ujh Uit = 1.

Since uih ujh = O, we have:

n n

>3 Uih U + E Ujh Uit = (E Uik) (E
l<h<i<n l<h<t<n k=l1 k=l1

Thus, we can bound the forward value for any edge by 1:

E Uih .Uje 1
lh<f <n ijEA l<h<e<n

ujk) = vo Vo = 1.

Wij(Uih U) < E Wij 
ijEA

This semidefinite program is related to the semidefinite program for the dicut
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Figure 3-4: A vertex ordering can be precisely described by n - 1 bipartitions of the
vertices.

problem (3.9). A vertex ordering can be completely described by a a series of n - 1
cuts. For example, the first cut has one vertex on one side and n - 1 vertices on the
other; the second cut has two vertices on one side and n - 2 on the other; the kth cut
has k vertices on one side and n - k on the other. In fact, if we consider a solution
to the constraints (3.15), {{Uih}, vo}, we can fix a value h E N and let

h n

ti= E Uih, f = E Uih.
i=1 i=h+l

This yields a feasible solution for the dicut semidefinite program (3.9). Moreover,
suppose ti and fi are computed using an integral feasible solution for the constraints
(3.15) (i.e. uih E {0, vo}). This integral solution corresponds to a vertex permutation.
Then the resulting objective value for the dicut semidefinite program is exactly the
weight of the edges crossing the cut (in the forward directed) that divides the first h
vertices from the last n - h vertices in the vertex permutation that corresponds to
the integral solution.

This semidefinite program (3.15) is based on representing an ordering using 0-
1 vectors (without loss of generality, we can assume that vo = (1,0,...,0)). For
example, a vertex ordering of a graph on four vertices in which vertex i is in position
i in the ordering has the following representation:

{Ull, U12, U13, U14 } = (1, 0, 0, 0},

{U21, U22, U23, U24 } = {0, 1, 0, 0},

{U31, U32, U33, U34 } = {0, 0, 1, 0},

{U41, U4 2, U43, U44 } = {0, 0, 0, 1}.

There are other ways to represent vertex orderings. We now discuss another way
that uses {1, -1} vectors (or {vo, -vo} vectors, where vo is an arbitrary unit vector).
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This representation is also based on the observation that a vertex ordering can be
fully described by a series of n - 1 cuts. This semidefinite program can be viewed as
a generalization of the second semidefinite program discussed for the dicut problem
(3.11). In this representation, each vertex i will have n + 1 associated unit vectors,
{vi, v, v, ... vn}. In an integral solution, we enforce that v = -1, v = 1 and that(Vi 1.2 i =
v/ and vh+l1 differ for only one value of h, 0 < h < n. This position h denotes vertex
i's position in the ordering. For example, suppose we have a graph G that has four
vertices, arbitrarily labeled 1 through 4. Consider the vertex ordering in which vertex
i is in position i. An integral description of this vertex ordering is:

{v° , v1, vl2 , v, v4 }

{v2, v2, v2, v2, v }
o 2v 32 42

{V3, v3, v3, v3, }

V4, ,V4, 4, V4, V4I

= {-1, 1,
= {-1,-1,
= {-1,-1,
= {-1, -1,

There is actually a connection between this representation (i.e. using {-1, 1}
variables and the previously discussed representation (i.e. using {0, 1} variables). In
integral solutions, we have the following relation between the uih and vih variables:

h

Vi = EUik-
k=l

E Uik.

k=h+l

Note that we can assume uio = 0. Then v° = - =l Uik. Similarly, we have:

vi ,h-1v/h - v/
Uih 2

Thus, using this connection between the two representations, we can obtain con-
straints for the linear ordering problem in terms of the {v} variables. Below, we
translate each of the constraints (3.15) line by line. Note that an edge (i, j) only
contributes 1 to the objective function when: vh- 1 = =-1 and v = = 1..2V .7V
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Valid:

Invalid:

h-1
-1

-1

h 
1

-1

h-1 h

. -1

1

e
1 . . .

-1 1

e-i £
-1 -1 . . . 1 -1

. .. -1 1 . . . 1 . . .

Figure 3-5: The invalid assignment violates the constraint (vh - vh-l) (v -v - 1) > 0
since the lefthand side of this expression evaluates to -4 for these vectors.

VO VO

(Vi - ) * z
n

i=1
h Vh-1 - Vh V -Vh- 1 Vo

(Vh - vh-1 ) (v - Vi- 1)

(V h vh-1) (Vh - Vh-1)
(V h V h- ) (V V - )- , v j 3

max E Z 4wij (vh- vh-1 ) (v -v. ) (3.16)
ijEA h<e

= 1

= 2 ViEV

= 2 Vh E N

= 1 i E V, hE N

= 0 Vi E V, h,e N

= 0 Vi,j E V, h E N

> 0 i,jeV, h,£eN

E R n 2+l Vi E V, Vh E N.

Other constraints we can add are triangle inequalities which are shown (3.12).

We can apply these triangle inequalities on any set of three vectors chosen from the
set {v/h}. We can also add the following constraint, which states that the number of
vertices on each side of the middle cut is for even n:2

Vi-v 2 = 0.
i,jEV

In Chapter 6, we will actually focus on the following semidefinite program, which
includes a subset of these constraints. These constraints are sufficient to prove that
the integrality gap is small for random graphs.
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max 4 E wii -vh-1).ve _ e-1)max - z) VVijEA l<h<e<n

(Vh _ h-1) · (V -Vje -1 )_ 0 Vi, j E V, h,[ E [n] (3.17)

vi vi = V1 i E V, h E [n]

Vi. o = -1 Vi E V

vi Vo = 1 Vi EV

vi- v = o (3.18)
i,jEV

V/h E 11,-11 Vi,h E [n]. (3.19)

3.3 Discussion

Besides the linear ordering problem, we can also model other vertex ordering problems
using the semidefinite programs presented in Section 3.2.2. For example, given an
undirected graph G = (V, E), the goal of the minimum bandwidth problem is to
assign each vertex i E V a unique label e(i) from the set of integers N = {1, 2,..., n}
so as to minimize the quantity: maxijEE Ie(i) -e(j) . We can use the constraints in the
semidefinite program (3.15) (without the objective function) and add the additional
constraint:

Uih uj =O Vij E E, , h E N, le -h > b.

We can run a semidefinite program solver for each integral value of b from 1 through
n and find the minimum value of b such that the semidefinite program is feasible.
This value of b is a lower bound on the value of the minimum bandwidth. We note
that we can easily extend this idea to obtain a relaxation for the minimum directed
bandwidth problem as well. The input to the minimum directed bandwidth problem
is an acyclic graph and the goal is to find a topological sort of the vertices that
minimizes the maximum length edge. If the graph G = (V, A) is acyclic, then in an
integral solution, we can require that every edge is a forward edge using the following
constraint for each edge (i, j) E A:

E Uih uj = 0. (3.20)
h>e

Another problem we can model is the minimum linear arrangement problem. For
a given undirected graph G = (V, E), the goal of this problem is to assign each vertex
i E V a unique label (i) from the set of integers N = {1, 2,.. ., n} so as to minimize
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the quantity: Eij (i) -e(i)l. Again, we can use the constraints from the semidefinite
program (3.15) substituting the following for the objective function:

min E IE- h'Iuui.j Uj.
ijEE h,eeN

Finally, another well-known vertex ordering problem that we can model with our
semidefinite program is the traveling salesman problem. Given a complete, weighted
undirected graph with weights obeying the triangle inequality, the goal is to find an
ordering of the vertices such that the total weight of edges connecting consecutive
vertices in the ordering is minimized. Let ui,n+l = uil. Then following objective
function corresponds to the traveling salesman problem:

n

min E E wij(uih' ujh+l).
i,jEV h=l1
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Chapter 4

2D String Folding

4.1 Introduction

In this chapter, we focus on an optimization problem known as the string folding
problem. The string folding problem is motivated by the protein folding problem,
which is a central problem in computational biology. It is considered to be one of the
simplest models of the protein folding problem and leads to a purely combinatorial
problem.

In this combinatorial problem, the input is a string: a path graph in which each
vertex except the two endpoints has degree exactly two and each end vertex has
degree one. Each vertex in the string is labeled 1 or 0. Throughout this chapter, we
will refer to such a path graph as a string S in {0, 1}*.

Figure 4-1: The input to the string folding problem can be viewed as a path graph.

Additionally, a particular type of lattice is specified as part of the input. In this
chapter, we use a square lattice. A two-dimensional square lattice (three-dimensional
square lattice) is a graph drawn in the (x,y)-plane ((x,y,z)-plane) in which the
vertices are all points with integral coordinates. The edges connect pairs of vertices
that are at distance one. Figure 4-2 illustrates a square lattice as well as a triangular
lattice, which is another possible type of input lattice.

We say a vertex from the string is placed on a lattice point (x, y) if that vertex
is assigned to lattice point (x, y). A folding of such an input string corresponds to
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Figure 4-2: A square lattice and a triangular lattice.

placing the vertices of the graph on a lattice subject to the following three constraints:

(i) Each lattice point can have at most one vertex placed on it.

(ii) Each vertex must be placed on some lattice point.

(iii) Adjacent vertices in the string must be placed on adjacent lattice points.

For example, suppose vertex i and i + 1 are adjacent in the input graph. On a
two-dimensional square lattice, if vertex i is placed on lattice point (, y), then vertex
i + 1 must be placed on one of four possible lattice points: (x ± 1, y) or (x, y ± 1).
In a valid folding of a string, the string is laid out on the lattice so that it does not
cross itself. Such a configuration on the square lattice folding is commonly referred
to as a self-avoiding walk.

Figure 4-3: Some examples of self-avoiding walks.

There are many possible valid foldings for an input string. We are interested in
finding certain types of foldings. With respect to a particular folding of an input
string, we say a pair of vertices forms a contact if they are not adjacent on the string,
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they are both labeled 1, and they are placed on neighboring lattice points. The goal
of the string folding problem is to find a folding of the input string that maximizes
the number of contacts.

S = 1 0 1 0 1 0 0 1 0 1 0 1

~~~~~~~~~. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4-4: Two possible foldings for the string S = 10101010010101. The first folding
has four contacts and the second folding has six contacts. Contacts are indicated by
the d(lashed lines.

For example, suppose the input graph is the string 10101010010101. The first
folding shown in Figure 4-4 results in four contacts. The second folding shown in
Figure 4-4 results in six contacts, which is optimal. Throughout this chapter, vertices
labeled 1 are denoted by black dots and vertices labeled 0 are denoted by white or
unfilled dots..

4.1.1 Motivation

This string folding problem is motivated by the protein folding problem, a widely
studied problem in the field of computational biology. A protein is a sequence of
amino acids. Each sequence folds to a unique shape. The three-dimensional shape of
a protein determines its function. The protein folding problem is to determine the
three-dimensional shape of a protein given its amino acid sequence.

A simplified model of protein folding known as the Hydrophobic-Hydrophilic (HP)
model was introduced by Dill [Di185, Di190]. This model abstracts the dominant force
in protein folding: the propensity of hydrophobic amino acids to cluster together
to avoid water. In the HP model, each amino acid residue is classified as an H
(hydrophobic or non-polar) or a P (hydrophilic or polar). An optimal conformation
for a string of amino acids in this model is one that has the lowest energy, which
is achieved when the maximum number of H-H contacts (i.e. pairs of H's that are
adjacent in he folding but not in the sequence) are present. This model is further
simplified by restricting the foldings to the two-dimensional (2D) or three-dimensional
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Figure 4-5: A protein is composed of a one-dimensional amino acid sequence and
folds to a three-dimensional shape that determines its function.

(3D) square lattice. The protein folding problem in the hydrophobic-hydrophilic (HP)
model on the 2D square lattice is combinatorially equivalent to the string folding
problem described previously. We are given a string of P's and H's (instead of O's
and l's) and our goal is to find a folding on the lattice that maximizes the number of
adjacent pairs of H's (instead of l's). Hart and Istrail give an informative discussion
of the HP model and its applicability to protein folding [HI96]. In this chapter, we
focus on the string folding problem on the 2D square lattice, which we refer to as the
2D string folding problem. In Chapter 5, we focus on the string folding problem on
the 3D square lattice, which we refer to as the 3D string folding problem.

p p

t

H H H H

P P

t t
vh v 

p

H

........ ........
Figure 4-6: Each amino acid is
of hydrophobicity.

classified as either an H or a P depending on its degree

Figure 4-7: The three-dimensional HP model.
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4.1.2 Previous Work

The HP lattice model of protein folding is one of the simplest models of protein folding
in terms of the problem description. Nevertheless, the problem is computationally
difficult to solve. In 1995, Hart and Istrail introduced the string folding problem to
the theoretical computer science community and presented approximation algorithms
for the string folding problem [HI96]. At this time, neither the 2D nor the 3D problem
was known to be NP-hard and settling this question was a major open problem. They
gave linear-time algorithms that, for a given input string, output foldings with at least
1 and of the optimal number of contacts for the problem on the 2D and 3D square
lattice, respectively. In 1998, the 2D string folding problem was shown to be NP-hard
by Crescenzi, Goldman, Papadimitriou, Piccolboni and Yannakakis [CGP+98] and the
3D string folding problem was shown to be NP-hard by Berger and Leighton [BL98].

Additionally, Agarwala et al. gave approximation algorithms for the string fold-
ing problem on the 2D and 3D triangular lattice with approximation guarantees of
slightly better than [ABD+97]. It is not known if the string folding problem on the
2D or 3D triangular lattice is NP-hard. More recently, Mauri, Piccolboni, and Pavesi
gave another factor -approximation algorithm for the 2D problem based on dynamic
programming in 1999 [MPP99]. They claimed that their algorithm performed better
than Hart and Istrail's algorithm in practice. Improving the approximation guaran-
tees of and for the string folding problem on the 2D and 3D square lattices have
been open problems in computational biology for several years.

4.1.3 Organization

In this chapter, we show that the the approximation guarantee for the 2D folding
problem can be improved from to . In Section 4.2, we discuss the combinatorial
upper bound used by Hart and Istrail and describe their linear-time approximation
algorithms. In Section 4.3, we present an improved linear-time -approximation for
the 2D string folding problem. We prove that our algorithm outputs a folding with
at least as many contacts as prescribed by the simple combinatorial upper bound
described in Section 4.2. In Section 4.4, we discuss a linear programming relaxation
for the string folding problem and show that the bound provided by the linear program
is no more than three times the optimal number of contacts. In Section 4.5, we show
that both the combinatorial upper bound and our linear programming upper bounds
cannot be used to obtain an algorithm with an approximation factor better than 1
In particular, we describe a string for which the optimal folding achieves only half of
the combinatorial upper bound and only half of the linear programming upper bound.
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4.2 A Combinatorial Bound

Hart and Istrail gave linear-time algorithms that, for a given input string, output
foldings with at least and of the optimal number of contacts for the 2D and 3D
problems, respectively. For the 2D problem, they used a simple combinatorial upper
bound on the optimal number of contacts possible in any folding. The 2D square
lattice is a bipartite graph and a string is a bipartite graph. Therefore, when placed
on the lattice, each vertex with an even index in the string can only be adjacent to a
vertex with an odd index in the string and vice versa. We refer to vertices with even
(odd) indices labeled 1 as even- 's (odd-i 's).

Let S be a specified input string for the folding problem. Let [S] denote the
number of even-i's in S and let O[S] denote the number of odd-i's in S. Even-i's
can only have contacts with odd-i's and vice versa. In any folding of an input string,
each vertex (except for the two endpoints) has two vertices that are adjacent to itself
on the string and on the lattice. Since each lattice point has four neighbors, each
vertex can have at most two contacts. Let M2[S] denote the maximum number of
contacts possible for a string S. The maximum possible number of contacts in any
folding of S is:

M2[S] < 2 min{S[S], O[S]} + 2. (4.1)

Hart and Istrail used this upper bound to give a 4-approximation for the 2D
problem. In other words, they gave an algorithm that outputs a folding with at least
min{([S], o[S]}/2 contacts. Their algorithm is quite simple. First, choose a vertex
p in the input string S such that at least half the odd-l's are on one side of p and
at least half the even-i's are on the other side of p. It is easy to find such a vertex:
find a vertex in S such that at least half the even-i's are on one side and at least
half the even-i's are on the other side. One of these sides contains at least half of
the odd-l's-let this side be the odd side and the other side be the even side. Then,
place all odd-i's from the odd side in a straight line and place all the even-i's from
the even side in an adjacent straight line. See Figure 4-9 for an illustration. Without
loss of generality, assume O[S] < £[S]. Then this folding results in at least 0[S]/2
contacts. The maximum possible number of contacts is 2. O[S]. Thus, this algorithm
has an approximation guarantee of .

Hart and Istrail also gave a 3-approximation for the 3D string folding problem.
We discuss the 3D string folding problem in the next chapter, but we describe their 3D
algorithm now since it uses the 2D algorithm that we just described as a subroutine.
Let M3[S] denote the maximum number of contacts for a string S when folding on the
3D square lattice. For the 3D problem, the upper bound on the maximum number
of contacts is:

58



(dd ,ide p

Figure 4-8: . Vertex p is chosen such that at least half the odd-i's are on one side of
p and at least half the even-i's are on the other side of p.

P

odd side ,tcnl side

Figure 4-9: An illustration of a folding output by Hart and Istrail's -approximation
algorithm for the 2D string folding problem.

M3[S] < 4 min{O[S], S[S]} + 4. (4.2)

Let k = O[S]/'2. Then the odd side has at least k odd-i's and the even side has
at least k even-l's. The next step is to divide the odd side into segments with k
odd-i's and divide the even side into segments with k even-l's. The 2D folding
algorithm is then repeated vk times in adjacent (x, y)-planes. The idea is that each
of the odd-i's on the odd side has three contacts: one in the (x, y)-plane, one with
the plane above and one with the plane below. Without loss of generality, assume
O[S] < E[S]. Then, in particular, three contacts are made for O[S]/2 - cO[S] odd-
i's for some constant c. This results in an algorithm with an absolute approximation
guarantee of (3/8 - 0(1/O[S])) and an asymptotic approximation guarantee of .
See Figure 4-10 for an illustration of this algorithm.
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z=2

\\A-,-/X

Figure 4-10: An illustration of a folding output by Hart and Istrail's -approximation
algorithm for the 3D string folding problem.

4.3 A Factor 3-Approximation Algorithm

We now present a factor -approximation algorithm for the string folding problem
on the 2D square lattice. In Section 4.3.1, we state the algorithm itself, and in
Section 4.3.2 we analyze the approximation guarantee and the running time. The
approximation guarantee of for our algorithm is obtained by showing that at least
2 of the odd-i's or at least of the even-'s average at least one contact each. Without3 3
loss of generality, we make the following assumptions about any input string S to the
string folding problem.

(i) The length of S is even.

(ii) The number of odd-i's is equal to the number of even-l's, i.e. 9[S] = [S].

If the length of the string S is odd, we can pad the string with an extra vertex
labeled 0. If the string S does not have an equal number of odd-i's and even-l's, say
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Figure 4-11: Our algorithm folds a loop rather than a string.

O[S] < S[S], we can turn an arbitrarily chosen subset of £[S] - O[S] even-i's into
vertices labeled 0. Both of these modifications leave the quantity min{([S], [S]}--
and therefore the value of the upper bound (Equation (4.1))-unchanged.

For the sake of convenience, we consider folding a loop rather than a string. That
is, given a string S C {0, 1}* (which has even length by assumption (i) above), we

add an edge between the first and last vertices to obtain the loop L(S). Note that
the upper bound stated in Section 4.2 is also a valid upper bound for the number of
contacts that can be obtained by folding a loop. Since the loop is closed, we need to
demarcate which vertices are have odd indices and which vertices have even indices.
It suffices to choose any vertex, label it 'odd' and call every vertex an even distance
away from this vertex 'odd' and call the rest 'even'.

Lemma 9. Let S be a string such that if we join the endpoints, we obtain the loop
L(S). Then a folding of the loop L(S) resulting in k contacts also yields folding of
the string S with at least k contacts.

Proof. Consider any folding of L(S) with k contacts. Any string that is obtained
by disconnecting two adjacent vertices of L(S) can assume the same configuration as
this folding. So this configuration also yields at least k contacts for such a string. 

One of the combinatorial observations discussed in Section 2.1 plays a key role in
our algorithm. We apply Lemma 2 from Section 2.1. Lemma 2 states that if we have
a loop L C {(a, b}* with an equal number of a's and b's, then there is some element in
the loop such that if we go in the clockwise direction, we encounter at least as many
('s as b's and if we go in the counter-clockwise direction, we encounter at least as
many b's as a's.

Consider the loop L(S) in which each odd-i is replaced by an a. and each even- is
replaced by a b and each 0 is ignored. By Lemma 2, there is a vertex si in L(S) with
the following properties: if we start at vertex si and move in the clockwise direction,
we will encounter at least as many odd-i's as even-l's (i.e. at least as many at's as
b's), and if we start at vertex sil and move in the counter-clockwise direction, we
will encounter at least as many even-i's as odd-i's (i.e. at least as many b's as (I's).

We will refer to vertex si as vertex p.
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Consider the jth odd-1 encountered if we start at vertex p+l 1 and go along L(S) in
the clockwise direction, and define Bo (j) to be the substring from the vertex directly
following the (j - 1)st odd-1 up to and including the jth odd-1. Consider the ith even-1
encountered if we start at vertex p- 2 and move along L(S) in the counter-clockwise
direction, and define Be(i) to be the substring from the vertex directly following the
i - 1th even-1 up to and including the ith even-1. Let the length of Bo(j) be e,(j) + 1
and the length of Be(i) be fe(i)+1. Note that e6(i) and eto(j) are always odd integers.
For example, given the loop corresponding to the string S = 11010110100011, where
p = S7, we have that Bo(1) = 01, Bo(2) = 0001, Bo(3) = 11. We also have that
Be(1) = 01, Be(2) = 01, and Be(3) = 11. See Figure 4-12 for an illustration.

P

Figure 4-12: Moving clockwise from p, we have the substrings Bo (1), Bo(2), etc.
Moving counter-clockwise from p, we have the substrings Be(1), Be(2), etc.

4.3.1 Algorithm

We now describe our STRING FOLDING ALGORITHM. Our goal is to find a folding
of a given string S E {0, 1}* so as to maximize the number of pairs of adjacent l's.
Using Lemma 9, we consider folding the loop L(S). Using Lemma 2, we find a vertex
p, such that if we go around the loop L(S) in the clockwise direction from p, we
always encounter at least as many odd-i's as even-l's and if go around L(S) in the
counter-clockwise direction, we always encounter at least as many even-i's as odd-l's.
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STRING FOLDING ALGORITHM(S).

Input: A loop L(S) E {0, 1}* and a starting point p.

Output: A folding of the string S on the 2D square lattice.

1. Lay p and p + 1 and their adjacent vertices as shown in Figure 4-13.
Let i = j = 1.

2. Iteration: Consider Be(i) and Bo(j). There are four cases.

(i) t£(i) = 1 and to(j) = 1: Fold Be(i), B(i + ),Bo(j), and Bo(j + 1)
as in Figures 4-14(a) and 4-15(a). Set i = i + 2 and j = j + 2. The idea is to
make sure there are three contacts: one between the ith even-1 and jth odd-i,
one between the i + 1th even-1 and jth odd-i, and one between the i + 1th

even-1i and j + 1th odd-1.

(ii) te(i) > 3 and eo(j) > 3: Fold Be(i), B£(i+ 1), Bo(j), and Bo(j+l)
as in Figures 4-14(b) and 4-15(b). Set i = i + 2 and j = j + 2. The idea is
that same as in case (a), except we must move the segments Be(i) and Bo(j)
out of the way if either £E(i) > 3 or to(j) 3.

(iii) fe(i) = 1 and eo(j) > 3: Fold BE(i),Bo(j), and Bo(j + 1) as in
Figures 4-14(c) and 4-15(c). Set i = i + 1 and j = j + 2. The idea is to make
sure there are two contacts: one between the ith even-1 and the jth odd-1 and
one between the ith even-1 and the j + 1 th odd-1.

(iv) ge(i) > 3 and eo(j) = 1: Fold Be(i),Be(i + 1), and Bo(j) as in
Figure 4-14(d) and in the mirror image of Figure 4-15(c). Set i = i + 2 and
j = j + 1. The idea here is the same as in case (c) except here there are two
contacts for the jth odd-1 and one contact for the ith and i + 1th even-1.

3. Repeat Step 2 while Be(i) and Bo(j) do not overlap.

4.3.2 Analysis

Theorem 10. Given a binary string S, the STRING FOLDING ALGORITHM finds a
folding with at least M2[S]/3 contacts, i.e. a -approximation.

Proof. Without loss of generality, assume there are k more case (c) folds than case
(d) folds, where k > 0. We will count how many contacts the odd-i's are involved
in. (If there are more case (d) folds than case (c) folds, we would count how many
contacts the even-i's are involved in.) Consider the folding of a string S found by
the algorithm. Let i* and j* be the value of i and j during the last iteration of
the algorithm. Then (O[p + 1,p + 2,... j*] denotes the number of odd-l's that are
guaranteed to be used in some contact(s). How many odd-l's are not necessarily in
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Figure 4-13: Placement of vertices p- 2,.... p+ 1.
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Figure 4-14: Case (a), (b), (c), and (d) folds.

\- -- - - -- - - - -

Figure 4-15: Foldings for higher values of >(i) 5 and fo(j) 5.

any contacts? The odd-l's in the string p - 2, p - 3... i* are not necessarily used in
any contacts. By Lemma 2, we have:

CO[p - 2,p,- 3...i*] < [p - 2,p - 3,... i*]

[S] = O[ + ,p + 2,... *] + O[p - 2,p- 3,...i*]

Combining equations (4.3) and (4.3), we have:
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We assumed that there are k more case (c) folds than case (d) folds. Let's pair up
each case (d) fold with a case (c) fold and call each of these pairs a (c-d)-fold. Thus, the
number of odd-l's used in case (a), case (b), or (c-d) folds is O[p+ 1, p+ 2 , .. .j*]- 2k

and 2k odd-i's are used in unpaired case (c) folds, since each case (c) fold uses two

odd-l's. The number of even-i's used in case (a), case (b), or case (c-d) folds is also

[p + 1, p + 2,... j*]- 2k, since in these folds the number of even-i's used is the same
as the number of odd-l's. Then there are k even-i's used in the extra case (c) folds.
Thus,

£[p- 2, p- 3,... i*] = O[p + 1,p + 2,... j*]- k

Combining (4.3) and (4.3), we have:

O[S] < ([p + 1,p + 2,... j*]) + (O[p + , p + 2,.. j*]-k)

Equation (4.3) can be rewritten as:

O[S] k
O[p + 1, p + 2,...j*] > (4.3)

2 2

If we consider the subset of the odd-i's in the string p + 1, p + 2,...j* involved in
case (a), case (b), or (c-d) folds, we note that there are at least four contacts for every

three odd-l's. (i.e. In case (a) and case (b) folds, we have three contacts for every

two odd-l's, and in case (c-d) folds, we have four contacts for every three odd-l's.)
In the unpaired case (c) folds, we have at least one contact for every odd-i. Thus,
the number of contacts we have is at least:

4
(O[p + , p + 2,... j*] - 2k) + 2k (4.4)

3

Using equation (4.3), we have that the quantity in equation (4.4) is at least:

O[S] 3k 4 20[S]
(( >-) + k = (4.5)2 2 k3 3

Recall that O[S] = [S] by assumption, which implies that M2[S] = 20[S].
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Therefore, the number of contacts that the algorithm achieves is at least M2[S]/3. 

The algorithm runs in O(n) time where n is the number of vertices in L(S). We
can find point p in O(n) time. Finding Be(i) and Bo(i) and folding these blocks
takes time proportional to the size of the blocks, but since each vertex is included in
only one of the blocks, the total time it takes to find all the blocks and fold them is
@(n) .

4.4 A Linear Program for String Folding

We present an integer program for the 2D string folding problem and analyze the
upper bounds given by its respective linear programming relaxation. Our formulation
is similar to those studied previously in [GHL], which appears to contain the only other
description of this problem as an integer program. However, we are able to analyze
the strength of our linear programming relaxation, which has not been considered
previously for this problem.

The main idea behind this linear program is to use the assignment constraints
discussed in Section 3.1.1. Let I be the set of indices for the vertices in a given string
S of length n, i.e. I = {1, . .., n}. Let V be the set of lattice points on a 2D square
lattice; let Vo and V be the two bipartite sets of lattice points. Then we have a
variable xiv for each i E I, v E V. This variable xiv = 1 if vertex i is placed on
lattice point v. Since the square lattice is bipartite, we arbitrarily label one of the
bipartitions "odd" and the other set "even". We will refer to these sets as V and
V,, respectively. We will let 0 () denote the set of odd (even) indices in the string
S We break down E and 0 further as follows: Ho is the set of indices of odd-i's in
S, He is the set of indices of even-i's in S.

Since vertices in the string with odd (even) indices can only be placed on odd
(even) lattice points, we have the following constraints that require that each vertex
in the string is assigned to some lattice point in an integral solution.

E xiv = 1, ViEO,
vE Vo

Xjw = i, jE S.
vE Ve

We also require that each lattice point be occupied by at most one vertex. This
requirement will be met in an integral solution if we use the following constraint:
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E Xiv
iEO

, Xjw
jE£

< 1,

< 1,

Vv C Vo

Vw V.

Additionally, we need to enforce that in an integral solution, adjacent vertices in the
string occupy adjacent lattice points. In an integral solution, the following constraint
ensures that for any vertex assigned to a lattice point, the neighboring vertex with
lower index is assigned to a neighboring lattice point. We denote the set of lattice
points adjacent to lattice point v as 6(v). We call these constraints connectivity
constraints.

S
wES(v)
wE6(v)

Xi-l,w > zi i E I\ {n}, v E V

Xi+l,W > Xiv Vi E I \ n, v V

(4.6)

(4.7)

We use the variable h(v,w) to record the number of contacts made across edge (v, w),
i.e. h(v,w) = 1 if there is an odd-1 on lattice point V and an even-1 on lattice point
w. We also introduce additional constraints called backbone constraints. We have a
variable EI-J,, for each vertex i C I and each edge (v, w) in the lattice. In an integral
solution, the variable E-vw = if vertex i is on lattice point v and vertex i - is on
lattice point w. Similarly, the variable E+w = 1 if vertex i is on lattice point v and
vertex i + 1 is on lattice point w.

S E+W =
wEd(v)

S E+> =x
vES6(w) vE6

Ew,-- = Xiv,
wE6(v)

Ej+1,vw = Xjw,
(w)

Vi O, v E Vo

Vj E S,wE V8

Lemma 11.
(4.7).

Backbone constraints (4.8) imply the connectivity constraints (4.6) and

Proof. From the backbone constraints, we have:

xiv= E Evw
wEC(v)
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For each variable xi-l,w, we also have:

Xi-l,w = E E+-l,wu
uE&(w)

This last constraint implies that xi_-,w > E; 1 wvl since v E 6(w). Note that Ei+ wv =
E-iW. For each of terms in the first constraint in this proof, we can obtain the
inequality xi_1,w > Ev,. Thus, we have the desired inequality:

xiv < E Xi-l,w.
wE6(v)

We can repeat this argument to derive constraint (4.7). [

IPFOLD:

subject to: z Xiv
vEVo

vEVe

1- Xiv
iEO

jE£

max h(VW)

(v,w)EE

= 1, Vi E O

= 1, Vj£

< 1, Vv E Vo

< 1, Vw E Ve

w E(vw =
wE6(v)

o Ew(v)
WE6(v)

+ E E + h(vow)
iEHo

E-+ + Ejl, + h(v,w)
jEHe

Ew~, xiv, xjw, h(vw)

= xiv, Vi E H, v E Vo

= jw, Vj E He, w E Ve

< S Xiv,
iEHo

< Xjw 
jEHE

Vv E Vo

Vv E V8

E {O,1} ¥i E O,j E £,(v,w) E E.

We relax the integrality constraint for the above integer program to obtain:

0 < Es,, xiv, xjw, h(vw) < 1, Vi E , j E , (v, w) E.

E Ej-l,vw = E E+l,vw
vE&(w) vEb(w)

iEHo

E
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For a specified input string S, we refer to the optimal value of the resulting linear
program as LPFOLD(S).

Lemma 12. For any string S, the optimal solution for LPFOLD(S) is at most 2.
min{O[S], £[S]} + 2.

Proof. The optimal solution for the linear program is E(v,W)EE h(vw). Without loss of
generality, we assume O[S] < £[S]. The last constraint in the linear program can be
rewritten as follows:

h(V) < E iV- E - Ew.
iEHo iEHo iEHo

Summing over all the edges, we have:

(E h <(,)E E Xiv-
(V,W)EE (v,W)EE iEHo

(vE E Ew-
(v,W)EE iEHo (v,w)EE iEHo

The first sum is upper bounded by 40[S]. To show this, first we note that:

E Xiv = 1.
vEVo

If we sum over all edges, as opposed to all odd vertices, note that each odd vertex
v E Vo is an endpoint in at most 4 edges. Thus, we have:

E Xi= E E xiv= E E5Xi= E 1<4,
(v,w)EE VEV wE6(v) wE6(v) vEVo wE6(v)

Xiv =
(v,w)EE iEHo iEHo (v,w)EE

xiv, < • 4 = 40[S].
iEHo

Now we analyze the following sum:

(v,w)EE iEHo,il1
= iEHoi (vw E
iEHo,i:l (v,w)EE

Each variable E-vw is associated with a unique odd vertex, i.e. the odd vertex v. We
have the following constraints for each odd vertex:

Z Evw = xi, VE Ho,vE Vo
wES(v)
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Thus, we can rewrite the sum as follows:

E E
iEHo,i#1 (v,w)EE

Ew = E E E ivt = E E Xi = E 1 = O[-1.
iEHo,i$l vEVo wE6(v) iEHo,i#1 vEVo iEHo,i$1

Note that:

E E-,
(v,w)EE

E.
(v,w)EE

E E Evw =
iEHo,il (v,w)EE

S E E = O[S] -1.
iEHo,ion (v,w)EE

Therefore, we have:

E h(v) < 40[S] - (O[S] -1)- (O[S]- 1) < 20[S] + 2.
(v,w)EE

So the maximum value of the objective function is M2 [S] = 2-min{O[S], £[S]}+2. O

Theorem 13. LPFOLD(S) < 3 IPFOLD(S)

Proof. According to Lemma 10, we can always achieve a folding with value M2[S]/3.

We have IPFOLD(S) < M2[S] and M2 [S]/3 < IPFOLD(S). This implies the lemma.

4.5 Gap Examples

In this section, we examine the gaps between our upper bounds and the integral
optimal values for the 2D folding problem.

4.5.1 Gap for 2D Combinatorial Bound

First, we examine the upper bound for the 2D folding problem presented in Section
4.2. Recall that the upper bound on the number of contacts possible for a folding
of the string S is M2[S] = 2. min{O ],[S], }[S]} + 2. How good is this bound? In the
previous section, we saw that OPT/M 2[S] > 1/3 for any string S. In this section,
we describe a string S for which OPT/M 2 [S] = 1/2 + o(1). Thus, this upper bound
cannot be used to obtain an approximation factor better than .

Let = {0 }4k2{01}k{0 }8k { }1000k{0}4k2 for an integer k > 0. We will show that

no folding of S has more than (1 + o(1))M2 [S]/2 contacts.
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Theorem 14. No folding of S on the 2D square lattice results in more than (1 +
o(1)) min{O[S], £[S]} contacts.

Note that for the string S, there are k even-l's and k odd-l's. Thus, k = M 2[S]/2
for the string S. So we need to show that no folding contains more than ( + o(1))k
contacts. To prove Theorem 14, we consider two strings S1 and S2 such that S = S1S2.
Let Si = {O}q({O}k{O}q and let S2 = {O}q{(OOO}k{O}q, where q = 4k2. All the 's in

Si are even-l's and all the 's in S2 are odd-l's. Note that since all the 's in S1 are
even-l's, no folding of S contains a contact between a pair of 's from S1. Similarly,
no folding of S contains a contact between a pair of 's from S2, since all the 's in S2
are odd-l's. Thus, we can assume that all contacts are comprised of an even-1 from

S1 and an odd-1 from S2. Therefore, it suffices to show that no folding of S results
in more than (1 + o(i))k contacts between the two strings Si and S2.

Figure 4-16: The string Si = O}q{O(1}kO0}q is the "even string".

Figure 4-17: The string S2 = {(}{(1000}k0O}q is the "odd string".

Since we are only concerned with contacts between the strings S1 and S2, we focus
on foldings of these two strings rather than on foldings of S. Note that for any folding
of S, there is a folding of S1 and S2 that has at least as many contacts as the folding
of S. This is because S1 and S2 are substrings of S. Thus, proving that no folding
of the two strings S1 and S2 results in more than (1 + o(1))k contacts would prove
Theorem 14.

Suppose that for each of the strings S1 and S2, we color one side red and the other
side blue. A contact is a red-red contact if the red sides face each other in the contact,
or a red-blue contact if one red side faces a blue side in the contact. Some examples
of red-red contacts are illustrated in Figure 4-18. There are four types of contacts if
we always consider the color of the S1 string first: red-red, red-blue, blue-red, and
blue-blue. We now show that it is only possible to have one type of contact between
S1 and S2 in any folding. In other words, if some contact is a red-red contact, then
all the contacts must be red-red contacts. Thus, we only have to consider foldings in
which all contacts are of one type. If an odd-i is involved in two contacts, both must
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Figure 4-18: Some red-red contacts.

Figure 4-19: These two contacts are each of a different type.

be with even-l's on the same side of the odd-1. For example, we can ignore contacts
such as those shown in Figure 4-19.

Lemma 15. In any folding of S, all contacts between S1 and S2 are of the same type.

Proof. Assume for the sake of contradiction that there is some folding of S1 and S2
with at least two different types of contacts (of the four possible types). Let c be a
red-red contact and c2 be a blue-blue contact, as shown in Figure 4-20. Suppose cl
is a contact between x1 and Yl where x1 is an even-1 in S1 and Yl is an odd-i in S2.

Similarly, c2 is a contact between x2 and Y2, where x2 is an even-i in S1 and Y2 is an
odd-1 in S2.

Then there is a closed path from Yl to Y2 along S2, from Y2 to x2 , from x2 to x1

along S1 and from x1 back to Yl. Note that the farthest distance between any two
1's is 2k - 1 in S1 and 4k - 1 in S2. Thus, the total length of this closed path is no
more than 6k. However, as shown in Figure 4-20, at least one of the substrings of O's
at the end of S1 or S2 is enclosed by this path. The number of O's in this substring is
4k2. But this is a contradiction, because the maximum number of lattice points that
can fit an enclosed area of perimeter 6k is 9k2/4. We obtain the same contradiction
for the other possible arrangement of a red-red and a blue-blue contact as shown in
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Figure 4-20: One way to connect a red-red and a blue-blue contact.

Figure 4-21. Furthermore, we obtain the same contradiction for any arrangement of
a red-red contact and a red-blue contact or a red-red contact and a blue-red contact.
This can be verified by inspecting the two cases (which are similar to the two possible
arrangements of a red-red and a blue-blue contact) corresponding to each of these
pairs of different types of contacts. [

Now we consider the case in which all contacts are of the same type. Without loss
of generality, we assume they are all red-red.

Lemma 16. There are at most (1 + o(l))k red-red contacts between Si and S 2.

Proof. We will show that the average number of contacts per even-1 cannot exceed
(1 + o(l)). We note that if an even-i has two contacts, then its two contacts much
be perpendicular to each other since both are red-red contacts.

We will use the following notions in our proof. First, we assume that the contacts
are ordered consecutively in a folding of S1 and S2. We begin folding S1 and S2 by
considering a specific endpoint for each of these strings. Then the even-1 in S1 and
the odd-1 in S2 that are closest to these endpoints and that make a contact are in the
first contact. The next closest even-1 in S1 and the next closest odd-1 in S2 that make
a contact are in the second contact, etc. Note that consecutive contacts, e.g. the two
contacts involving x in Figure 4-22, may involve the same odd-1 or same even-i.

Next, we associate an orientation with each contact. A contact can have orien-
tation up, down, right, or left. For example, in Figure 4-22, say that the horizontal
contact involving the even-i labeled x is the first contact in the folding, and the ver-
tical contact involving x is the second, etc. Then the first contact has orientation up
and the second contact has orientation left. A horizontal contact has orientation up
if the next contact is above it and down if the next contact is below it. A vertical
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Figure 4-21: Another way to connect a red-red and a blue-blue contact.

Figure 4-22: The arrows indicate the orientation of each contact.

contact has orientation left if the next contact is to its left and right if the next con-
tact is to its right. Note that the orientation of a contact is only well-defined if the
next even-1 or the next odd-1 in the string are involved in a contact.

Let x be the first even-1 to have two contacts. Without loss of generality, assume
that the first of these contacts is oriented up. The two possibilities for this situation
are shown in Figure 4-23. First, we consider case (a) in Figure 4-23. Say that x has
an up and a left contact as in case (a). If the next even-1 also has two contacts, then
its second contact will have a down orientation as shown in Figure 4-24(a). If the
next even-1 has only one contact, but the next next even-1 has two contacts, then
its second contact will have a down orientation, as shown in Figure 4-24(b). In other
words, consider the next even-1 (call it y) after x that has contacts with two odd-l's.
If all the even-l's between x and y have at least one contact, then the orientation of
y's contacts makes a counter-clockwise turn. If some even-1 between x and y does
not have any contacts, then the second contact of y may have a left orientation. So
in this case, we are not in a downward orientation (i.e. we have not made a counter-
clockwise turn), but we do not have more than one contact per even-1 on average for
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(b)

Figure 4-23: x is the first even-1 in the folding with two contacts.

the set of even-i's between x and y.

(a) (b)

Figure 4-24: y is the next even-1 after x to have two contacts.

If the next even-1 after x has only one contact, it can have a left or a down
orientation, but it cannot have an up orientation. In order for a contact to have an
up orientation, we need to make a clockwise turn. However, for every clockwise turn,
there will be two even-i's with no contacts. To see this, consider Figure 4-25. Now
suppose r and s make a contact as shown in Figure 4-25. Note that r can be in the
same situation as x is in in Figure 4-23(a) or (b). If r is in case (a) and we make
another clockwise turn and then go back to case (a), etc., then we will average less
than 1 contact for each even-1. If r is in the same position as x in Figure 4-23(b),
then we can make a counter-clockwise turn so that the next two even-i's will have
two contacts each. But in this case, we will average only one contact per even-1 over
the course of a counter-clockwise and clockwise turn.

Next, we consider case (b) in Figure 4-23(b). If x is in case (b), then the even-i
that follows x will have one contact as shown in the first figure in Figure 4-23(b) or
it will have two contacts and be in the same position as x is in in case (a). Thus, if
we start from case (b), we can get only one more contact than if we were to start in
case (a).

Therefore, the only way to fold the string so that a constant fraction of the even-
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Figure 4-25: If the orientation of the contacts makes a clockwise turn, then two
even-l's have no contacts.

l's are contained in more than one contact is to have more counter-clockwise turns
than clockwise turns. In this case, the string forms a "spiral", as shown in Figure
4-26. Every time we make a counter-clockwise turn in this configuration, we can
have an even-1 with two contacts. How many counter-clockwise turns can we make?
After completing the first four counter-clockwise turns in the spiral, we have four
even-l's with two contacts each. Then, one out of the next five even-i's has two
contacts, then one out of next six, one out of the next seven, etc. Thus, the total
number of even-l's with two contacts each is v/. The total number of contacts is
k + (1) + v = (1 + o(l))k. Ol

Theorem 14 follows from Lemmas 15 and 16.

Figure 4-26: A "spiral" configuration of S.
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4.5.2 LP Integrality Gap

We show that the integrality gap for the linear programming relaxation in Section 4.4
is at least 2 - c for any > 0. We demonstrate this gap using the same string that
demonstrates a gap for the combinatorial bound in Section 4.5.1. Let the string S =
{0 }q{0 1 }k{0 }2q{1 0 0 0 }k0)}q, where k is a positive integer and q = 4k2. In Theorem
14, it is shown that no folding of S has more than (1 + o(1))O[S] contacts. However,
we can construct a fractional solution for LP2 for which the objective function is
20[S] - 4.

In Figure 4-27, we show how to fold the string S fractionally. Each vertex is placed
on a single lattice point, except the three vertices directly following the vertex labeled
y and the three vertices directly following the vertex labeled z. These six vertices are
fractionally folded, so that the string is allowed to cross itself, which cannot happen
in an integral folding.

Figure 4-27: Let S1 =
y and z, which allows
solution.

{Ol}k and let S2 = {0001l}k. The string splits in half at points
the string to cross itself, something not allowed in an integral
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4.6 Discussion and Open Problems

The main open problem related to this chapter is to find an algorithm for the 2D
string folding problem with an approximation ratio greater than . Possible ways
to design such a new algorithm include rounding the linear programming relaxation,
develop new combinatorial methods, or find strengthened upper bounds.

There is no evidence that the combinatorial upper bound given in Equation (4.1)
cannot be used to obtain an algorithm with an approximation guarantee as high as
2. In fact, for any particular string, it does not seem hard to find a folding in which
the number of contacts is at least half of this upper bound. Thus, intuitively, it seems
that one should be able to design an approximation algorithm in which the number
of contacts is at least half of this upper bound. We formalize this intuition with the
following conjecture.

Conjecture 17. For every binary string, there is a folding in which the number of
contacts is at least half of the combinatorial upper bound in Equation (4.1).

This conjecture can be settled in the affirmative if we could find an algorithm
achieving the stated number of contacts. It would be disproved if one could find a
family of strings in which the optimal number of contacts is asymptotically less than
half of the combinatorial upper bound.

Another question to address is, can the methods used in the STRING FOLDING

ALGORITHM be used to improve the approximation guarantee? It is easy to show
that there is a family of strings for which the algorithm achieves no more than of
the combinatorial upper bound, i.e. let S = 11111... 1001001001001... such that
the substring containing consecutive 's contains as many 's as in the substring
containing O's. If the starting point of the 2D folding algorithm is the point between
these two substrings, then the algorithm outputs a folding in which the number of
contacts is 1 of the combinatorial upper bound. However, if we use a different starting

point, namely a starting point in the middle of the first substring, the approximation
ratio will be at least since we will only use case (a) and case (b) folds. (Note that
there is also a simple folding for this string with an approximation guarantee of :
place the first substring so that the first half is adjacent to the second half and do
the same for the second substring.)

Jothi and Raghavachari implemented a variation of the STRING FOLDING ALGO-

RITHM in which they tested all possible starting points in our 2D folding algorithm.
Experimentally, they are unable to find a string for which this algorithm has an ap-
proximation ratio of less than with respect to the combinatorial upper bound [JR].
They pose the following conjecture.

Conjecture 18. [JR] Given a binary string S of length n, if the STRING FOLDING
ALGORITHM is run n times with each of n possible choices of a starting point p, the
number of contacts in the best resulting folding is at least of the combinatorial upper
bound.
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Chapter 5

3D String Folding

5.1 Introduction

In this chapter, we consider the string folding problem on the three-dimensional (3D)
square lattice, i.e. the 3D version of the string folding problem discussed in Chapter
4. The string folding problem is defined in Section 4.1. We will review it here, but
for a precise problem statement, we refer the reader to Section 4.1.

The 3D string folding problem is a simple combinatorial problem. The input to
the string folding problem is a string: a path graph in which each vertex except the
two endpoints has degree exactly two and each end vertex has degree one. Each
vertex in the string is labeled 1 or 0. Throughout this chapter, we will refer to such
a path graph as a string S in {0, 1*.

We will fold the string on the 3D square lattice, which is a graph in the (x, y, z)-
plane in which the vertices are all points with integral coordinates. The edges connect
pairs of vertices that are at distance one. We say a vertex from the string is placed
on a lattice point (x, y, z) if that vertex is assigned to lattice point (x, y, z). A folding
of such an input string corresponds to placing the vertices of the graph on a lattice
subject to the following three constraints:

(i) Each lattice point can have at most one vertex placed on it.

(ii) Each vertex must be placed on some lattice point.

(iii) Adjacent vertices in the string must be placed on adjacent lattice points.

For example, suppose vertex i and i + 1 are adjacent in the input graph. On a 3D
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square lattice, if vertex i is placed on lattice point (x, y, z), then vertex i + 1 must be
placed on one of six possible lattice points: (x i 1, y, z), (x, y ± 1, z), or (x, y, z i 1).

There are many possible valid foldings for an input string. We are interested in
finding certain types of foldings. With respect to a particular folding of an input
string, we say a pair of vertices forms a contact if they are not adjacent on the string,
they are both labeled 1, and they are placed on neighboring lattice points. The goal
of the string folding problem is to find a folding of the input string that maximizes
the number of contacts.

Figure 5-1 shows a 3D folding for a string. Throughout the figures in this chapter,
vertices labeled 1 are denoted by black dots and vertices labeled 0 are denoted by
white or unfilled dots.

.%......... ..

Figure 5-1: In this folding, all contacts are formed on or between the 2D planes z = 0
(lower) and z = 1 (upper). Black dots represent l's and white dots represent O's.

5.1.1 Background

Berger and Leighton proved that the 3D string folding problem is NP-hard [BL98].
On the positive side, Hart and Istrail gave a simple algorithm with an approximation
guarantee of 0OPT - O(VO-PT) [HI96]. This algorithm uses their 4-approximation
algorithm for the 2D string folding as a subroutine and is described in Section 4.2.
Improving on the approximation guarantee of 3 for the 3D folding problem has been
an open problem for almost a decade.
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5.1.2 Organization

We use some of the combinatorial methods from Chapter 2 to obtain a slightly im-
proved approximation guarantee of 8 +E for the 3D folding problem, where e is a small
positive constant. First, we present a new 3D folding algorithm in Section 5.2. Our
algorithm produces a folding with 30PT - E3(1) contacts, improving the absolute
approximation guarantee of 3 - O(J 1) for Hart and Istrail's algorithm. In Section
5.3, we show that if the input string is of a certain special form, we can modify our
algorithm to yield 30PT - 0(6(S)) contacts, where d(S) is the number of transitions
in the input string S from sequences of 's in odd positions in the string to sequences
of 's in even positions. In Section 5.3.2, we reduce the general 3D folding problem to
the special case above, yielding a folding algorithm producing .439 OPT - 0(6(S))
contacts. This reduction is based on a simple combinatorial theorem about binary
strings discussed in Section 2.2. In Section 5.4, we present a different combinatorial
algorithm that achieves .375 OPT + Q(6(S)) contacts. Finally, we combine these
two algorithms removing the dependence on d(S) in the approximation guarantee and
obtain an algorithm with a slightly improved approximation guarantee of .37501 for
the 3D folding problem.

5.2 A Diagonal Folding Algorithm

We will use the same notation as we did for the 2D folding problem (defined in Section
4.2). For the 3D problem, Hart and Istrail used a simple combinatorial upper bound
on the optimal number of contacts possible in any folding [HI96]. The 3D square
lattice is a bipartite graph and a string is a bipartite graph. Therefore, when placed
on the lattice, each vertex with an even index in the string can only be adjacent to a
vertex with an odd index in the string and vice versa. We refer to vertices with even
(odd) indices labeled 1 as even-l 's (odd-1 's).

Let S E {0, 1* be an input string for the folding problem. Let £[S] denote the
number of even-l's in S and let O[S] denote the number of odd-l's in S. Even-l's can
only have contacts with odd-l's and vice versa. In any folding of an input string, each
vertex (except for the two endpoints) has two vertices that are adjacent to itself on
the string and on the lattice. Since each lattice point has six neighbors, each vertex
can have at most four contacts. Let M3 [S] denote the maximum number of contacts
possible for a string S. The maximum possible number of contacts in any folding of
S is:

M 3[S] < 2 min{£[S], O[S]} + 4. (5.1)

We now present an algorithm that produces a folding with at least OPT - (1)
contacts in the worst case, thereby improving the absolute approximation guarantee
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of the algorithm of Hart and Istrail [HI96] (see Section 4.2). Our algorithm is based
on diagonal folds. The algorithm guarantees that contacts form on and between two
adjacent 2D planes. Each point in the 3D lattice has an (x, y, z)-coordinate, where
x, y, and z are integers. We will fold the string so that all contacts occur on or
between the planes z = 0 and z = 1. The DIAGONAL FOLDING ALGORITHM is

described below and illustrated in Figure 5-1.

Lemma 19. The DIAGONAL FOLDING ALGORITHM produces a folding with at least

OPT - O(1) contacts.

Proof. Without loss of generality, we assume that k = O[S]. Consider the ith odd-i
from the first half of So. It is placed on lattice point (i, i, 1). In Step 2, this odd-1
forms contacts with the even-l's on the lattice points (i, i+1, 1) and (i-1, i, 1). In Step
3, it forms a contact with the lattice point (i, i, 0). Thus, each odd-i from the first half
of So has three contacts. Now consider an odd-1 with an index k/4+i, where i ranges
from 3 and 4. Each such odd-i is placed on lattice point (k/4-i + 1, k/4-i +2, 0). In
Step 3, it forms contacts with even-l's on the lattice points (k/4- i + 1, k/4- i + 1, 0)
and (k/4- i + 2, k/4- i + 2, 0). In Step 2, it forms a contact with the even-1 on lattice
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DIAGONAL FOLDING ALGORITHM

Input: a binary string S.

Output: a folding of the string S.

1. Let k = min(O[S], [S]}.

2. Divide S into two strings such that So contains at least half the odd-l's and Se
contains at least half the even-l's. We can do this by finding a point on the string
such that half of the odd-l's are on one side of this point and half the odd-l's are
on the other side. One of these sides contains at least half of the even-l's. We call
this side SE and the remaining side So. Then we replace all the even-l's in So with
O's and replace all the odd-l's in SE with O's.

3. Place the first odd-1 in So on lattice point (1, 1, 1) and the next odd-1 in So on
lattice point (2,2, 1) and so on. For the first of the odd-l's in So, place the
ith odd-1 on lattice point (i, i, 1). Then place the (k/4 + 1) odd-1 on lattice point
(k/4- 1, k/4 + 1, i1). For the first - 1 of the even-l's in Se, place the ith even-1 on
lattice point (i, i + 1, 1). Use the dimensions z > 1 to place the strings of O's between
consecutive odd-l's in So and the strings of O's between consecutive even-l's in SE.

4. Place the (k/4 + 2) odd-1 in So on lattice point (k/4 - 2, k/4 + 1, 0). Then place
the (k/4 + i) odd-1 in So on lattice point (k/4 - i + 1, k/4 - i + 2, 0). Place the
(k/4) even-1 in SE on lattice point (k/4 - 1, k/4 - 1, 0). Place the (k/4 + i) even-1
in S£ on lattice point (k/4 - i - 1, k/4 - i - 1, 0). Use the dimensions z < 0 to place
the strings of O's between consecutive 1's in So or Se.



0 3 3 3 3 3 * S 3 S 3 3 3 3 S 3 3 3 0 0 -

Figure 5-2: In this string, there are two switches.

point (k/4 - i + 1, k/4 + i + 2, 1). Thus, it also has 3 contacts. By (5.1), we see that
an upper bound on the number of contacts is OPT < 40[S] = 4k + 2. We obtain
3 contacts for - 3 of the odd-l's. Thus, the number of contacts in the resulting
folding is at least 0OPT- 9. ]

5.3 Improved Diagonal Folding Algorithms

As the number of 1's placed on the diagonal in the DIAGONAL FOLDING ALGORITHM
increases, the length of the diagonal of the resulting folding (i.e. the length equals
2 min{O[S], £[S] ) increases in a direction parallel to the line x = y. The height of the
folding may also increase depending on the maximum distance between consecutive
odd-l's in Sco or consecutive even-l's in SE. However, regardless of the input string,
the resulting folding has the same constant width in the direction parallel to the line
x = -y. In other words, the resulting folding can be enclosed in a box of infinite height
and depth and constant width. Therefore, this third direction is relatively unused
and leaves room which we take advantage of in our improved folding algorithms.

We will take advantage of this unused space by modifying the DIAGONAL FOLD-
ING ALGORITHM. We say a switch is a transition from a sequence of consecu-
tive odd-l's to a sequence of consecutive even-l's. For example, for the string
S = 100100010101101101011, (S) = 2 since there are two transitions (underlined)
from a maximal sequence of consecutive odd-l's to a sequence of even-l's. We denote
the number of switches in a string S by 6(S).

In this section, we present two algorithms with the following approximation guar-
antees:

(i) .3750PT + 6,

(ii) .4390PT - 166(S).

The first approximation guarantee is preferred when there are many switches in the
string S, i.e. the value of (S) is large. And the second approximation guarantee
is preferred when there are few switches in the string S, i.e. the value of (S) is
small. These two algorithms lead to an approximation guarantee that is independent
of (S). For any input string S, we output the folding from the algorithm that
results in the most contacts for that string. The output guarantee of this combination
of the two algorithms is lowest if the two approximation guarantees are equal, i.e.
8OPT + 6() = .4390PT - 166(S), which occurs when (S) = .00399902370PT,yielding an approximation guarantee of at least .37501562.
yielding an approximation guarantee of at least .37501562.
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Theorem 20. There is a linear time algorithm for the 3D folding problem that outputs
a folding with at least .37501 OPT - 0(1) contacts for any input string S.

In Section 5.3.1, we give an algorithm for the 3D string folding problem that has
an approximation guarantee of OPT - 166(S) - O(1) for a special class of strings.
In Section 5.3.2, we show how to apply this algorithm to any string to obtain a factor
.439 - 166(S) approximation algorithm. To apply this algorithm, we show that given
any input string S, we can find a subsequence that belongs to the special class of
strings. This subsequence will contain at least a .5857-fraction of the vertices in the
original input string. Thus, we obtain an algorithm with an approximation guarantee
of 3 (.5857)OPT - 166(S) - O(1) = .4390PT - 166(S) - O(1). Finally, in Section
5.4, we give an algorithm for the 3D string folding problem with an approximation
guarantee of OPT + 6().

5.3.1 An Algorithm for a Special Class of Strings

We will now give an algorithm that has an approximation guarantee of OPT -
166(S) - O(1) for a special class of strings. First we will describe this class of strings.

We define consecutive odd-1 's (consecutive even-1 's) to be odd-l's (even-l's) that
are not separated by even-l's (odd-l's). For example, in the string 101000110001101,
there is a sequence of three consecutive odd-l's followed by two consecutive even-l's
followed by two consecutive odd-l's. A string S belongs to the special class of strings
if it can be divided into two substrings, So and SE such that Sco is odd-monotone and
SE is even-monotone.

Definition 21. A string So is called odd-monotone (even-monotone) if every maxi-
mal sequence of consecutive even-1 's (odd-1 's) is immediately preceded by at least as
many consecutive odd-1 's (even-1 's).

For example, the string 10101100011 is odd-monotone and the string 010001010110
1101011 is even-monotone.

Theorem 22. Let S = SoS such that So is an odd-monotone string and SE is an
even-monotone string and 0[So] = £[S] and £[So] = O[Se]. Then there is a linear
time algorithm that folds the string S achieving OPT - 166() - (1) contacts.

The main idea behind the algorithm referred to in Theorem 22 is to partition the
elements in So and S into main-diagonal elements and off-diagonal elements. We
then use the DIAGONAL FOLDING ALGORITHM to fold the main-diagonal elements
along the direction x = y and the off-diagonal elements into branches along the
direction x = -y. All 's will make three contacts except for a constant number
of 's-for each switch in the strings So and Se-sacrificed to align the off-diagonal
branches and a constant number of l's for each repetition of the DIAGONAL FOLDING

ALGORITHM. This yields the claimed number of OPT - (6(S)) - O(1) contacts.4V \\/ \/~IU~~U
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Figure 5-3: .If the strings So and S are odd-monotone and even-monotone, respec-
tively, then we can divide the vertices in So and S into main-diagonal elements and
off-diagonal elements. The main-diagonal elements are denoted by solid lines and the
off-diagonal elements are denoted by dotted lines.
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elements (bold) and the off-diagonal elements.

To precisely define main-diagonal and off-diagonal elements, we use additional
notation. We use 0 k and 1 k (for some integer k > 0) to refer to the strings consisting
of k 0's and k l's, respectively. By writing S = .k for some integer k, we mean that
S is of the form S = 2io+1 1 0 2i+1 1 0 2i2+1 1 0 2i3+1** ... 02..1+11ik fo.. integers ij > 0. and

all the i's in S are even-i's. Likewise, we write 5 = ( 9 k to refer to a string of the
same form where all 's are odd-i's, i.e. S = o

2
i1

1
i0

2
i2+1 

1 0
2i

3
+ 

2iL+i .. 02 0i

So we can express any string S, as SE = Eaobliga
2
b

2
.. . akk for k = (S) and

integers a and b. If SE is even-monotone, then a bi for all i. We can express any
string So as So = QCidlOC 

2
d

2
A ... OcIEd- for = (S...) and integers c and d. If

SFigure 5-4: The DIAGONAL FOLDING ALGORITHM is even-monotone, then cmain- di for all i.

Definition 23. For an odd-monotone string So = 0 1cEd1 0 0 28 d 2 ... OCegdf, the first
set of ci - di odd-i's in each block, i.e. the elements 0 c1-dj 0 C2 -d 2 ... Qce-d, are the
main-diagonal elements and the remaining elements QdjEdi 0 d2 ,8d2 dde are the
off-diagonal elements in So.

For even-monotone strings, we define main-diagonal and off-diagonal elements
analogously. In our modified algorithm, it will be useful to have stri and Sist in a
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special form. Two sets of off-diagonal elements in So, Odigdi and Odi+ldi+, are
separated by ci+l - di+l odd-l's that are main-diagonal elements. We want them
to be separated by a number of main-diagonal elements that is a multiple of eight.
This will guarantee that the off-diagonals used to fold the off-diagonal elements are
regularly spaced so that none of the off-diagonal folds interfere with each other. We
will use the following simple lemma.

Lemma 24. For any odd-monotone string So it is possible to change at most 8(So)
1's to O's so that the resulting string S' is of the form S' = 0 alg£bla 2

£ b2 . . . Oak,

where ai - bi is a positive multiple of eight for 1 < i < k.

Proof. Suppose that So initially is of the form

So = OQ1£E 10 2£3P2 ... (f.e

First, we convert all H£i with pi < 8 into O's. This will merge some maximal sequences
of odd-l's, yielding a string of the form

Oal £-r Oa2 £72 ... Oak

with k < . For each i, we then convert (yi - ai)mod 8 even-i's of E7i into O's, yielding
a string of the desired form. O

We note that there is an analogous version of Lemma 24 for even-monotone strings.
Additionally, we want the number of even-l's deleted from So to equal the number
of odd-i's deleted from S. In other words, we want the number of main-diagonal
elements in each of the strings to be equal. Without loss of generality, assume that
number of even-l's deleted (i.e. changed to O's) in So is greater than the number of
odd-l's deleted in S. Then, starting from the end of SE, we simply delete consecu-
tive odd-l's until the number of deleted elements in each string is equal. With this
preparation, we can now state our folding algorithm.

Proof of Theorem 22: By the correctness of the DIAGONAL FOLDING ALGO-

RITHM, it suffices to consider whether some off-diagonals intersect each other. The
first step of the algorithm ensures that all off-diagonal branches are spread apart by
multiples of eight on the main-diagonal. Thus, neighboring branches do not intersect.
Furthermore, branches off the upper (z = 1) plane do not intersect with branches
off the lower (z = 0) place due to Step 4. Changing the plane when the main diag-
onal has a length _ 2 mod 4 ensures that branches on the upper plane will follow
diagonals x = -y + 8k for some k, and branches on the lower plane follow diagonals
x = -y + 8k + 4 for some k. Thus, branches are at least four lattice points apart,
showing that the folding is non-intersecting.

It remains to analyze the number of contacts produced by the folding. The DIAG-

ONAL FOLDING ALGORITHM produces three contacts for almost every 1 in the string
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OFF-DIAGONAL FOLDING ALGORITHM

S. So it suffices to bound the number of l's in S that do not receive three contacts.
The following is an exhaustive list: (i) the up to 85(S) 's changed into O's in Step 2;
(ii) a constant number of 's at the ends of the main-diagonal (see Lemma 19) and
because we fold over at a length 2 mod 4 in Step 3; (iii) in Step 4, for each of

the at most b(S) off-diagonal branches: at most three 's at the end of each branch
(by Lemma 19), and at most five 's to connect the off-diagonal branch to the main-
diagonal (see Figure 5-5). So in summary, up to 166(S) + 0(1) 's might not receive
three contacts, so that we obtain 30[S] - 166(S)- 0(1) > 0OPT - 166(S) - 0(1)
contacts. O

5.3.2 Relating Folding to String Properties

We will now show how to apply the algorithm for the special class of strings from
the previous section to the general string folding problem. The main idea is given
a string, find a long subsequence that has the special form required by the OFF-

DIAGONAL FOLDING ALGORITHM. If we can keep most of the elements, then using
this algorithm, we would get very close to the performance guarantee of OPT -
166(S) - 0(1) contacts.

Thus, the combinatorial problem that we want to solve is the following: given a
string S E {0, 1)* such that £[S] = O[S], we want to divide the string into two sub-
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Input: A binary string S = SoSe, such that So is odd-monotone, S is even-
monotone, 0[So] = £[S] and £[So] = [S£].

Output: A folding of the string S.

1. Change at most 86(S) 1's to O's in So and Sg to yield the form specified in

2. Change at most 8(S) 1's to O's in So and Se so that for each maximal block of
odd-l's (even-l's) and following maximal block of even-l's (odd-l's) in So (S£), the
number of odd-l's (even-l's) and even-l's (odd-l's) differ by a multiple of eight (see
Lemma 24).

3. Run DIAGONAL FOLDING ALGORITHM on main-diagonal elements along the direc-
tion x = y and change from plane z = 0 to z = 1 when the length of the main
diagonal equals 4 L[O[So]/8J + 2.

4. Run DIAGONAL FOLDING ALGORITHM on the off-diagonal elements along the di-
rection x = -y. The off-diagonal elements attached to the main-diagonal elements
on the plane z = 1 are folded along the diagonals x = -y + 8k. The off-diagonal
elements attached to the main-diagonal elements on the plane z = 0 are folded along
the diagonals x = -y + 8k + 4. (See Figure 5-5.)
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with So and Sc odd- and even-monotone, respectively, (9[So] = £[S£], 8[So] = [SE],
and O[So] + O[So] > (2 - x/2)k. Furthermore, this partition can be constructed in
linear time.

Proof. We first apply Lemma 2 from Chapter 2 to cut the string into two substrings.
This lemma states that we can always find a vertex p E L(S) such that as we start in
that position and go clockwise, we encounter at least as many odd-l's as even-l's and
as we go in the counter-clockwise direction, we encounter at least as many even-l's as
odd-l's. We cut the loop L(S) at such a point p and then make another cut in L(S)
at a point such that the number of 's in each of the two resulting strings is equal.
We refer to these strings as So and Se, respectively. Note that in these two strings,
the number of odd-l's in one string equals the number of even-l's in the other and
vice versa, i.e. O[So] = E[Se] and £[So] = O[S].

Now we have two substrings So and So. The substring So has the property that
every suffix (or prefix-depending on how you view the string) has at least as many
odd-l's as even-l's and Sc has the property that every suffix has at least as many
even-l's as odd-l's.

We want to change the minimum number of 's to O's in So and Sc so that the
resulting substrings are odd-monotone and even-monotone, respectively, and O[S] =
£[S] and E[So] = O[Se], since these are the conditions required by Theorem 22.
Consider a binary string SE corresponding to the subsequence of 's in Se in which
each odd-1 is replaced by an a and each even-i is replaced by a b. The problem
of changing the minimum number of 's to O's in SE so that the resulting string
is odd-monotone is equivalent to finding the longest block-monotone subsequence in
the string SE. A subsequence is block-monotone if every block of a's is immediately
followed by a block of at least as many b's. (For the string So, we have the same
problem stated with a's and b's inverted: we want to find the longest subsequence in
which every block of b's is immediately followed by a block of at least as many a's.)
By Lemma 6, we can furthermore choose these subsequences such that O[S] = £[S ]
and £[S'] = O[S ] after the transformation. O

Lemma 25 implies that every 3D folding instance can be converted into the case
required by Theorem 22 by converting not too many l's into O's. We obtain the
following corollary of Lemma 25 and Theorem 22.

Corollary 26. There is a linear time algorithm for the 3D folding problem that
generates at least .439 OPT - 166(S) - 0(1) contacts.

Proof. Given an input string S, first obtain So and SE with Lemma 25. Note that
the number of switches does not increase from S to SoS. Since the number of 's
is reduced by a factor of (2 - V/), the optimal number of contacts might also have
been decreased by that factor. Applying Theorem 22 to So and SE therefore leads to
a folding with at least (2- \v)OPT- 163(S) - O(1) > .439. OPT- 16(S) - O(1)
contacts. O
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5.4 Another 3D String Folding Algorithm

In this section, we give a case-based algorithm that has an approximation guarantee
of .375 + O(6(S)). Consider the substrings So and Se of the loop L(S) such that
O[So] = [S£] and E[So] = O[Se]. We can do this by cutting the loop L(S) at
the point p chosen according to Lemma 2 in Chapter 2 and cutting L(S) at a point
so that the two resulting substrings have an equal number of l's. Furthermore, in
this section, we can assume that O[So] = E[So]. If we have O[So] > £[So], then
the algorithms we describe below will have strictly better approximation ratios than
what we prove.

We will consider the following modified version of the string So. For every se-
quence of consecutive even-l's, we turn all but one of them into a 0. For example,
we would transform the string 1101011 into 1100001. Abusing notation, we will from
now on refer to this modified string as So. We will divide the even-i's in So into the
following disjoint categories. Suppose each of these categories has 61k, 62k, 63k, and
64 k even-l's respectively, where k = O[S]. Without loss of generality, we assume that
61 + 62 + 63 + 64 > 6/2, i.e. half the switches occur in So.

For each of the four cases above, we will show how to slightly modify the DIAGONAL
FOLDING ALGORITHM SO that it gives an approximation guarantee of + ciji for
some constant ci. In the DIAGONAL FOLDING ALGORITHM, one way to account for
contacts is to attribute of a contact to each odd-i on the main diagonal and 3 of a2 VI L~ ~VIIL~CI~~U ~V ~jU~II VUU-I VII ~11~ 111~111 UIC;L~ES~ll~lrl C~IIU 2
contact to each even-1 on the main diagonal. The main idea behind the modifications
of the algorithm is to fold the string so that some odd-l's may no longer be on the
main diagonal (thus losing 3 contacts per odd-1) but form more than 3 contacts2 2
per odd-1 with neighboring even-l's (making use of the switches). In some of the
modifications (such as Case 2) we do not actually remove any of the odd-l's from the
main diagonal; due to the nature of the switches, we can still get 0(1) contacts per
switch. We will first prove a lemma that we will use in several of the cases.
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Each even-1 in So falls in exactly one of the following categories:

1. Even-i's in blocks of 's of length at least ten or in a block of 's of length
nine that begins with an odd-1.

2. Even-i's in blocks of 's of length at least two and at most nine that begin or
end with an even-1.

3. Even-l's in blocks of length one.

4. Even-l's in blocks of length at least three and at most seven that begin and
end with an odd-1.



Lemma 27. Suppose we delete (i.e. change 1's to O's) i odd- 's in So. Then we can
re-divide S into substrings So and Sc so that we again have £[Se] = O[So]. If we
run the DIAGONAL FOLDING ALGORITHM on these new strings SE and So, we will
obtain a folding with at least (O[S] - i) contacts on the main diagonal.

Proof. We use Lemma 2 from Chapter 2 to choose s so that O[Si] > £[Si] for all
i = 1,... n, where Si = s ... si. If we define Si := nSn-1 ... si, then again by Lemma
2 we have £[Si] > O[Si] for all i = 1,... n.

If we remove i odd-i's from So, then the main diagonal fold of So would be much
shorter than that of Se. However, if we move si = si+j for some j so that once again

O[So] = £[S], then the number of odd-l's in So is at least O[S]-. Thus, we obtain' ~~~~~~~~~~~~~~~~~2
at least (O[S] - i) contacts on the main diagonal. C1

Figure 5-6: Cases 1 and 2. The first figure shows a folding for even-l's in Case 1. At
point a, the folding for a block of i's of length nine that starts with an odd-1 begins.
Note that three odd-l's are not placed on the main diagonal, but five contacts - in
addition to those that will be formed on the main diagonal - are obtained. At point
b, a block of i's of length 13 is folded. Here, five odd-l's are not placed on the main
diagonal, but eight additional contacts are formed off the main diagonal. At point c,
a block of i's of length 11 is folded. It is basically the same folding as used for blocks
of length nine. The second figure shows even-l's in Case 2. For at least half of the
blocks of i's of length at least two and at most nine that begin or end with an even-1,
we can get an extra contact by placing an even-1 adjacent to an odd-1 on the main
diagonal.

Case 1

Lemma 28. There is a modification of the DIAGONAL FOLDING ALGORITHM with
approximation guarantee at least 3 + 6.
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Proof. An even-1 in Case 1 occurs in a block of l's of length at least ten or in a block
of l's of length nine beginning with an odd-1. Suppose we have a block of 11 l's
that begins with an odd-1, which will give the worst case approximation ratio. Then
we fold this block as in Figure 5-6 starting at the point labeled c. Note that three
odd-l's from So that would be on the main diagonal in the DIAGONAL FOLDING
ALGORITHM are not placed on the main diagonal. Thus, the main diagonal will be
shorter - at least 3k shorter, because for every five even-i's in Case 1, we take at5

least three odd-l's off the main diagonal. By Lemma 27 we can then assume that the
length of the main diagonal is:

I( [S] _ 361[S])

For every odd-1 in So on the main diagonal, we obtain three contacts. For every
three odd-l's in So off the diagonal (corresponding to five even-l's in Case 1), we
obtain five contacts. Thus, the approximation guarantee is:

3 [S 361[S\1 56.[S ] 1 3 961 + 3 + 1

(··2 35 1 5 4 J [S] 8 40 4 8 40

Case 2

Lemma 29. There is a modification of the DIAGONAL FOLDING ALGORITHM with
approximation guarantee at least 3 + .

Proof. An even-i in Case 2 is in a block of 's of length at least two and at most
nine that begins or ends with an even-1. In this case, the main diagonal will remain
the same length as in the DIAGONAL FOLDING ALGORITHM. We will obtain extra
contacts by placing even-l's from So next to odd-l's on the main diagonal. This is
shown in Figure 5-6.

For at least half of the blocks (in So) of i's of length at least two and at most nine
that begin or end with even-l's, we can get an extra contact by placing an even-i
adjacent to an odd-1 on the main diagonal. We may only be able to do this for half
of the blocks, because the folding in Figure 5-6 will work only for an even-1 followed
immediately by an odd-1 or an odd-1 followed immediately by an even-1, but does not
allow alternating between these two cases. Among these types of blocks, the worst
case is a block of eight 's that begins or ends with an even-1. Such a block uses four
even-l's from Case 2. If all the Case 2 even-l's fell in this category, we could get an
extra contact for half of them, which is one per eight switches. This ratio is better
for block lengths other than eight. In particular, note that a block of length nine that
begins with an even-1 must also end with an even-1, so we always get a contact for
one of the two ends of such a block. In summary, we get the following approximation
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guarantee:

30[S] + 62 [S] 1 3 + 62
2 8 322 8 )40[S] -- 8 32

Case 3

... - . ..... . .. ... .....i " ' : iii .. ... ... .. . . . . (iii) 

Figure 5-7: Case 3.

Lemma 30. There is a modification of the DIAGONAL FOLDING ALGORITHM with
approximation guarantee at least + .

Proof. An even-1 in Case 3 is in a block of length 1. Thus, substrings containing such
an even-1 look like: 1001001, 100001001, etc. In other words, an even-1 in Case 3 is
in a substring 0410q0q21 where q and q2 are both positive even integers. Consider
the string 10ilOqxoq210J1 where i and j are odd integers, i.e. the first two 's and
last two l's in the string are odd-l's and the middle 1 is an even-1. (We can assume
for now that there is no even-1 between the first two odd-l's or the last two odd-l's
because as we will discuss later, if there are two Case 3 even-l's that share an odd-1 as
a neighbor, our folding will only use one of these even-l's.) We will use four different
modifications of the DIAGONAL FOLDING ALGORITHM based on the values of i and
j. We name these types of even-i's as follows: (i) i > 3, j > 3; (ii) i = 1, j = 1; (iii)
i > 3, j = 1; (iv) i = 1, j > 3. See Figure 5-7 for illustrations of the foldings for each
of these types. We now distinguish two cases: first, if more than half of the Case 3
even-i's are of type (i),(ii) or (iii), and second, if more than half are of type (iv).

Suppose that more than half of the Case 3 even-i's are of types (i)-(iii). The
foldings for these three types can be used consecutively (as opposed to the folding of
(iv), which cannot be applied right after itself). However, we can only guarantee a
contact for half of the even-l's in these three types because we may have, for example,
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100ilOqloq21001001, i.e. two even-i's that are both adjacent to the same odd-1. In
this case, we can only get an extra contact for one such even-1.

We note that the approximation guarantee obtained is a linear combination of the
approximation guarantees for the three types, weighted by their relative frequency.
The worst case therefore occurs if half the of Case 3 even-i's are of a single type,
(i),(ii) or (iii). Since they change the length of the main diagonal, types (i) and (ii)
are worse than (iii).

Since types (i) and (ii) either remove an odd-i from the main diagonal (type (ii))
or result in some even-l's from SE not having contacts on the main diagonal (type
(i)), they are worse than type (iii). Both of these types have the same approximation
guarantee. We will just analyze the case when half the Case 3 even-i's are type (i).
The folding modification for this type changes the length of the main diagonal to at
least:

i ([s]+ 630[S])

This is because we assumed that at least half of the Case 3 even-l's are of types
(i)-(iii) and we can use half of these even-l's. For each even-i in Case 3, we lose 1
odd-i on the main diagonal and we gain 2 contacts per even-i off the main diagonal.
Therefore, the approximation guarantee is:

('3( (os]+ 630[]) 63 0[S]) + 2630[S]) 1
2 4 4 4 0[s]

8 8 4 2 40[S] 8 3 2

In the other case, when more than half of Case 3 even-i's are of type (iv), per
type (iv) even-i we obtain 2 contacts and one odd-i is not used on the main diagonal.
Therefore, in this case the approximation guarantee is better than + 6. D

Case 4

Lemma 31. There is a modification of the DIAGONAL FOLDING ALGORITHM with
approximation guarantee at least +-.

Proof. In Case 4, even-l's occur in blocks of length at least 3 and at most 7 that
begin and end with an odd-1. Consider all the odd-i's that occur in blocks of length
at least 3 and at most 7 and that begin and end with an odd-1. Note that the number
of such odd-i's is at least 464 since the ratio of odd-i's to even-i's in this case is at
least 4 to 3. To deal with Case 4, we will cut the loop L(S) into two pieces in a
particular way. Previously, we cut the loop L(S) into two pieces to secure certain
properties. ere, we will cut the loop L(S) into two pieces in the following (different)
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way: Let so be an element in So that divides So into two parts, each containing half
the odd-i's of Case 4 (i.e. odd-i's that are in blocks with Case 4 even-l's). This will
be one of the new points at which we cut L(S). Then we find another point such that
one string contains at least half the odd-i's and the other string contains at least half
the even-l's. For these new strings, let us call them S' and SE, note that now Se
contains at least half of the O[S] odd-i's that were in blocks with the Case 4 even-l's.
Thus, we can apply the Case 2 folding to S , i.e. S now contains blocks of 's that
begin with odd-l's. This gives the following the approximation guarantee:

30[S] + 1 4640[S] 1 1 3 + 64

2 4 3 2 40[S] 8 24

Lemma 32. We can modify the DIAGONAL FOLDING ALGORITHM to create a folding
with 3 OPT + 6(S) - 0(1) contacts for any binary string S.

Proof. Setting all the approximation guarantees equal, we have:

61 _ 62 _ 63 _ 64
40 32 32 24

Using the fact that 61 + 62 + 63 + 4 , we obtain that when 61 > , we should use2 , _, we 2o se
the Case 1 modification. This implies that the approximation guarantee for the four
cases is at least:

3 56 1 3 6

8 32 40 8 256

5.5 Discussion

We have described an algorithm for the 3D string folding problem that slightly im-
proves on the previously best-known algorithm to yield an approximation guarantee
of .37501. The contribution of this algorithm is not so much the actual gain in the ap-
proximation ratio, but the demonstration that the previously best-known algorithm
is not optimal, even though there have been no improvements for almost a decade.
Our algorithm capitalizes on combinatorial properties of the string rather than using
purely geometric ideas. New geometric ideas are most likely necessary to improve the
approximation guarantee significantly.

In conclusion, improvement on the 2D algorithm does not immediately lead to
an improvement for the 3D case because it might be the case that the 2D folding
is asymmetric and therefore cannot be "layered". Thus, despite the fact that the
first algorithm of Hart and Istrail [HI96] for the 3D problem used their 2D algorithm
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as a subroutine, improving the approximation ratios for the two problems seems to
present different difficulties.
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Chapter 6

Linear Ordering

6.1 Introduction

Vertex ordering problems comprise a fundamental class of combinatorial optimization
problems that, on the whole, is not well understood. For the past thirty years, com-
binatorial methods and linear programming techniques have failed to yield improved
approximation guarantees for many well-studied vertex ordering problems such as the
linear ordering problem and the traveling salesman problem. Semidefinite program-
ming has proved to be a powerful tool for solving a variety of cut problems, as first
exhibited for the maximum cut problem [GW95]. Since then, semidefinite program-
ming has been successfully applied to many other problems that can be categorized as
cut problems such as coloring k-colorable graphs [KMS98], maximum-3-cut [GW04],
maximum k--cut [FJ97], maximum bisection and maximum uncut [YeOl, HZ01, YZ03],
and correlation clustering [CGW03], to name a few. In contrast, there is no such com-
parably general approach for approximating vertex ordering problems.

In this chapter, we focus on a well-studied and notoriously difficult combinatorial
optimization problem known as the linear ordering problem. Given a complete di-
rected weighted graph, the goal of the linear ordering problem is to find an ordering
of the vertices that maximizes the weight of the forward edges. A vertex ordering is
defined as a mapping of each vertex i E V to a unique label e(i). An edge (i, j) A is
a forward edge with respect to an ordering if £(i) < e(j). Without loss of generality,
we can assume that the labels are integers chosen from the range {1, 2,..., n}, where
n=IVl.

Although the problem is NP-hard [Kar72], it is easy to estimate the optimum
to within a factor of : In any ordering of the vertices, either the set of forwardto within a factor o
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Figure 6-1: The maximum acyclic subgraph of the graph on the left is shown with a
corresponding optimal vertex ordering.

edges or the set of backward edges accounts for at least half of the total edge weight.
It is not known whether the maximum can be estimated to a better factor using a
polynomial-time algorithm. Approximating the problem to within better than 65 is
NP-hard [NV01].

The linear ordering problem is also known as the maximum acyclic subgraph
problem. Given a weighted directed graph, the maximum acyclic subgraph problem
is that of finding the maximum weight subgraph that contains no cycles. The forward
edges in any linear ordering comprise an acyclic subgraph and a topological sort of
an acyclic subgraph yields a linear ordering of the vertices in which all edges in the
acyclic subgraph are forward edges.

6.1.1 Background

Improving upon the best-known approximation guarantee of for the linear ordering
problem has been an open problem since the 1970's from the inception of the field
of approximation algorithms. It is one of the most fundamental graph optimization
problems for which no non-trivial approximation algorithm is known. Another prob-
lems that falls into this category is, for example, the vertex cover problem. Given an
undirected graph, the vertex cover problem is to find a minimum cardinality subset
of the vertices such that every edge in the graph has at least one endpoint in this set
of vertices. The vertices in any minimal matching has size at most twice the size of
the minimum vertex cover. No better approximation factor is known and there is a
gap between this approximation ratio and the best known hardness of 1.36 [DS02].

A major open problem is to close the gap between the best-known approximation
guarantee of 1 and the best-known hardness of 65 for the linear ordering problem.
Combinatorial methods have failed to yield algorithms with a constant-factor approx-
imation guarantee of more than . The goal of most approaches for improving the
approximation guarantee for an NP-hard maximization problem is to find a good
upper bound on the value of an optimal solution. For a directed graph, G = (V, A), a
trivial bound on the size of an optimal linear ordering is the total edge weight, which
is Al if the graph is unweighted. This is the upper bound used in the combinatorial
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factor -approximation algorithm in which a arbitrary ordering of the vertices is con-
sidered, and either the set of forward edges or the set of backward edges is selected.
At least one set contains at least half the total edge weight. Thus, the "all edges"
or "total edge weight" bound can be no more than twice as large as optimal. The
major open problem is to find an efficiently computable bound that is strictly less
than twice the value of an optimal solution for all graphs.

Linear programming formulations are often used to compute upper bounds on the
optimal values of instances of NP-hard maximization problems. A classical integer
program for the linear ordering problem has a variable xij for each edge (i, j) in the
graph.

max wijxij
ijEA

xij < ICd-1 VcyclesCEA
ijeC

Xij E {O, 1.

In a solution for this integer program, at least one edge (i, j) in each cycle C has value
xij = O. Thus, a solution comprised of all edges (i, j) such that xij = 1 corresponds
to an acyclic subgraph. The linear programming relaxation is obtained by relaxing
the constraint that the xij variables are integral.

max wijxij (6.1)
ijEA

xij < (C(-1 Vcycles C E A
ijEC

0 < xij < 1.

This linear programming relaxation has an exponential number of constraints. How-
ever, there is a simple polynomial-time separation oracle, so the upper bound it
provides can be computed in polynomial time. The separation oracle is as follows:
Given a solution xij) to the linear program, let yij = 1- xij. Find the shortest cycle.
If the shortest cycle C' has value less than 1, then the total value of the xij variables
corresponding to the cycle C' is greater than C', - 1.

There is another well-studied linear programming relaxation for this problem. It is
a relaxation of the following integer program in which there is a variable xij for every
pair of vertices i, j E V, i.e. there is a variable for every edge in the complete graph
on n vertices. If for a pair of vertices i, j E V, there is no edge (i, j) in the graph,
then the edge weight wij = O. This integer program has a constraint for each directed
2-cycle and each directed 3-cycle in the complete directed graph on the vertices of
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the input graph G = (V, A). This integer program is due to Potts [Pot80]. Integer
solutions correspond to acyclic subgraphs. A proof of this can be found in [NewOO].
In contrast to the previous linear program (6.1), the linear programming relaxation
of this integer program has a polynomial number of constraints.

max E wijxij (6.2)
i,jEV

xij + j = 1 Vi, j EV

Xij + Xjk+Xki < 2 Vi,j,kEV
0 < xij < 1.

Both of these relaxations, (6.1) and (6.2), have the same optimal value [NVO1].
The quality of a linear programming relaxation in terms of the upper bound it provides
is usually measured by the integrality gap. The integrality gap is the maximum ratio
of the optimal fractional solution to the optimal integral solution taken over all graphs
with non-negative edge weights. For example, if there is a graph with a maximum
acyclic subgraph of half the edges for which the optimal value of a linear programming
relaxation is all of the edges, then this example would demonstrate that the integrality
gap of this relaxation is 2.

The integrality gap of both of these relaxations is 2-e for any e > 0 [NVO1, NewOO].
Since the gap is arbitrarily close to 2, in the worst case the upper bound provided by
these linear relaxations is no better than the "all edges" bound. Thus, it is unlikely
that these relaxations can be used to approximate the problem to within a factor
greater than . The graphs used to demonstrate these integrality gaps are random
graphs in which each edge in the complete undirected graph on n vertices is chosen
with uniform edge probability of approximately 2vTS /n and then randomly directed.
For sufficiently large n, such a random graph has a maximum acyclic subgraph close
to half the edges with high probability. However, each of the polyhedral relaxations
studied provide an upper bound for these graphs that is asymptotically close to all
the edges, which exceeds the integral optimal by a factor arbitrarily close to 2.

6.1.2 Organization

We first discuss a new semidefinite programming relaxation for the linear ordering
problem. A vertex ordering for a graph G = (V, E) with n vertices can be fully
described by a series of n - 1 cuts. We use this simple observation to relate cuts and
orderings and to relate cut and ordering semidefinite programs. This and other ideas
behind the development of our semidefinite programming relaxation are thoroughly
discussed in Chapter 3.

Next we show that for sufficiently large n, if we choose a random directed graph on
n vertices with uniform edge probability p = d (i.e. every edge in the complete undi-n
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rected graph on n vertices is chosen with probability p and then directed randomly),
where d = w(1), with high probability, the bound provided by our semidefinite pro-
gram for this graph will be no more than 1.64 times the integral optimal. In particular,
the graphs used in [NV01] to demonstrate integrality gaps of 2 for the widely-studied
polyhedral relaxations fall into this category of random graphs, i.e. each edge in these
graphs is chosen with probability 2%'9/n. The main idea is that our semidefinite
relaxation provides a "good" bound on the value of an optimal linear ordering for a
graph if it has no small roughly balanced bisection. With high probability, a random
graph with uniform edge probability contains no such small balanced bisection. These
results are also presented in [NewO4].

6.2 Relating Cuts and Orderings

The techniques we apply to study efficiently computable upper bounds for the lin-
ear ordering problem are based on semidefinite programming techniques applied by
Goemans and Williamson to the maximum cut problem [GW95]. We discuss their
methods and the connections between cut problems and vertex ordering problems.

6.2.1 Relaxations for Cut Problems

Given an undirected weighted graph G = (V, E), the maximum cut (maxcut) prob-
lem is to find a bipartition (S, S) of the vertices that maximizes the weight of the
edges crossing the partition. The maxcut problem is one of Karp's original NP-
complete problems [Kar72]. Because it is unlikely that there exist efficient algorithms
for such NP-hard optimization problems, a common approach is to find an efficient
p-approximation algorithm. A p-approximation algorithm is a polynomial time al-
gorithm that produces a solution with value at least p times that of an optimal
solution. In 1976, Sahni and Gonzales [SG76] gave a -approximation algorithm
for the maxcut problem. Their greedy algorithm iterates through the vertices in an
arbitrary order and adds vertex i to S or S depending on which placement maxi-
mizes the weight of the edges crossing the cut so far. For nearly twenty years, 
was the best constant factor approximation known. Linear programming relaxations
have been studied in order to find improved bounds on the value of an optimal so-
lution [Bar83, BGM85, BM86, PT95], but the bounds provided by these relaxations
were shown to be larger than the optimal by a factor of 2 in the worst case [Po192].

In 1993, Goemans and Williamson used a semidefinite programming relaxation to
obtain a breakthrough .87856-approximation algorithm for the maxcut problem [GW95].
The goal of their algorithm is to assign each vertex i E V a vector vi E {1, -1} so as
to maximize the weight of the edges (i, j) such that vi 4 vj. Integer solutions for the
following quadratic program correspond to integer solutions for the maxcut problem
in which each vertex i in S is assigned vi = 1 and each vertex i in S is assigned
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vi = -1. That is, an edge (i, j) such that vi = 1 and vj = -1, contributes value wij
to the objective function and an edge (i, j) such that vi = vj contributes 0 to the
objective function.

max 2 wij(1- vi . j) (6.3)
i<j

vi C {1,-1} Vi EV.

A semidefinite programming relaxation is obtained by relaxing the constraint that
vi E {1, -1} to the constraint vi E 7Zn and adding the constraints that the vectors vi
are unit vectors and that the matrix of dot products vi vj is positive semidefinite.

max Zwij(1-vi - j) (6.4)
i<j

Vi Vi = 1 Vi E V

Vi E n Vi E V.

Goemans-Williamson gave an algorithm for the maxcut problem in which they
first solve this semidefinite programming relaxation, then choose a random hyperplane
r CE n, and finally place a vertex i in S if r vi < 0 and in S if r vi O0. The
expected value of the edges crossing such a cut is at least .87856 of optimal [GW95].

A closely related graph optimization problem for which Goemans and Williamson
also gave a radically improved approximation guarantee is the maximum directed cut
(dicut) problem. Given a directed weighted graph G = (V, A), the dicut problem is to
find a bipartition of the vertices-call these disjoint sets S1 and S 2 -that maximizes
the weight of the directed edges (i, j) such that vertex i is in set S1 and vertex j is in
set S2. In 1993, the best-known approximation guarantee for the dicut problem was
4. This approximation factor can be achieved by randomly assigning the vertices to
either S1 or S2. The expected weight of the edges (i, j) such that i falls in S1 and j
falls in S2 is the total edge weight.

Goemans and Williamson gave a greatly improved .79607-approximation algo-
rithm for the dicut problem. Solutions for the following quadratic program corre-
spond to dicuts, i.e. only edges (i, j) such that vi = -1 and vj = 1 contribute weight
wij to the objective function.
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max z (1 - vi v vj + vi - vo - vj Vo )5)

i<j

vi E {1,-1} Vi V U {O}.

The semidefinite relaxation that Goemans and Williamson use for their algorithm
is obtained by replacing the requirement that vi be integral with the constraint that
the vectors vi are unit vectors in lZn+l and the matrix of dot products vi vj is positive
semidefinite.

max E j -v j + vi -v .O) (6.6)
i<j

v, i Vi E VU{O}

vi E Rn+ Vi E V U {O}.

6.2.2 A Relaxation for the Linear Ordering Problem

We can generalize the semidefinite programming relaxation for the dicut problem
[GW95] to obtain a new semidefinite programming relaxation for the linear ordering
problem. The development of this semidefinite relaxation is discussed thoroughly in
Chapter 3. We describe a vertex ordering using n + 1 unit vectors for each vertex.
Each vertex i E V has n + 1 (n = IVI) associated unit vectors: v°, v1, v2,.. . vn. In
an integral solution, we enforce that v° = -1, v? = 1 and that vh and vh+l differ for
only one value of h, 0 < h < n. This position h denotes vertex i's position in the
ordering. For example, suppose we have a graph G that has four vertices, arbitrarily
labeled 1 through 4. Consider the vertex ordering in which vertex i is in position i.
An integral description of this vertex ordering is:

{Vl, v1 , 1 , , v} = {-1, 1, 1, 1, },

, 2 -1,-1, 1, 1, 1},

V 0 1 V 2V 3

{ 4, v4, v4, , v} = {-1,-1,-1, 1, 1}.

This representation of an ordering can be viewed as a generalization of the dicut
semidefinite program. If we fix an h, and consider the set of vectors {vh} in an integral
solution, which corresponds to an actual vertex ordering. If we plug these vectors into
the dicut semidefinite program (6.5), then the value of the objective function on this
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set of vectors is exactly the weight of the forward edges crossing the cut obtained by
partitioning the first h vertices and the last n - h vertices in the ordering.

In an integral solution, we can enforce that for each vertex i, the vectors vh and
vh+ l differ for only one value of h between 1 and n, by setting (v -vh-l) (v -

v1t-) > 0. Consider the first value of h such that v- 1 =-1 and v = 1. Then
(v~ - vh-) = 2. If there is any other values of j, f such that =-1 and v- = 1,
then (vi -vi-) (v- vjl) = -4, which violates the constraint.

We also enforce that the sum of the dot products of the v vectors sum to 0:
n n

EijEv vi vj2 = 0. For the sake of convenience and without loss of generality, we
assume that n is even, possibly by adding a dummy vertex. If n is even, then in an
integral solution, exactly half of the vectors in the set {v } are 1 and exactly half are

-1. So the sum of the vectors in this set, i.e. Eie v, is 0.

The set of constraints below form an integer quadratic program for the linear
ordering problem based on the description of an ordering using unit vectors. A set
of vectors J{v~ ,vi, , ve- } contributes value wij to the objective function exactly
when vh- 1 v-1 = -and v = v = 1, i.e. when vertex i is in position h in the
ordering and vertex j is in position e in the ordering.

max 4 wi(ih-hl) . (e _ ve-
ijEA 1<h<t<n

(P) h- vje ) > 0 Vi, j E V, h, E [n] (6.7)

Vi.vh = 1 Vi E V, h E [n]
vi .vo = -1 Vi E V

Vi*o = 1 Vi E V
n n

Vi2 Vj2 0

i,jeV

Vih E {1,-1 Vi, h E [n].
Let G = (V, A) be a directed graph. By P(G), we denote the optimal value of the

integer quadratic program P on the graph G. We obtain a semidefinite programming
relaxation for the linear ordering problem by relaxing the last constraint in (P) to:
Vih E Rn

2+ 1. We denote the optimal value of the relaxation of P on the graph G as
PR(G). There are many additional inequalities that we can add, but we will focus
on the relaxation of (P) since the corresponding relaxation is strong enough to prove
the results in this chapter. Additional constraints are discussed in Chapter 3.

6.2.3 Cuts and Uncuts

Suppose we have a directed graph G = (V, A) and we are given a set of unit vectors
{Vi) E Rn + l , 0 < i < n. We define the forward value of this set of vectors as
the value obtained if we compute the value of the dicut semidefinite programming
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relaxation [GW95, FG95] using these vectors. Specifically, the forward value for this
set of vectors is:

4 wij((vo +vi) (o-j) =4 wij(1 - vi .vj + o vi - Vo. vj). (6.8)
ijEA ijEA

In an integral solution for the dicut problem, there will be edges that cross the cut
in the backward direction, i.e. they are not included in the dicut. For a specified
set of unit vectors, we can view the vectors as having backward value. We define the
backward value of the set of vectors {vi} as:

1 1
4 E wij(vo-Vi) ( + =j) 4 wij(1-vi - vo i + v o vj). (6.9)

ijEA ijEA

This can be obtained by replacing vi by -vi for i 0 in the forward value. The
difference between the forward and backward value of a set of vectors {vi} is:

1
2 E wij(vivo - vj c ). (6.10)

ijEA

Lemma 33. If a directed unweighted graph G = (V, A) has a maximum acyclic
subgraph of ( + 6)IAI edges, then there is no set of unit vectors {vi} such that the
difference between the forward and backward value of this set of vectors exceeds 261AI.

Proof. We show that given a unit vector solution {vi} to the semidefinite program
which maximizes the objective function (6.10), we can find an integral solution (i.e.
an actual cut) in which the difference of forward and backward edges crossing the
cut is exactly equal to the objective value. If the difference of an actual cut exceeds
261Al, e.g. suppose it is (26+e)lAI, then we can find an ordering with ( +6+E/2)AI
forward edges, which is a contradiction. This ordering is found by taking the cut that
yields (26 + E) A more forward than backward edges and ordering the vertices in each
of the two sets greedily so as to obtain at least half of the remaining edges.

Suppose we have a set of unit vectors {vi} such that the value of equation (6.10)
is at least (26 + e)lAI = P/lA. We show that we can find an actual cut such that the
difference between the forward and the backward edges is at least OIAI. Note that
vo · vi is a scalar quantity since v0o is a unit vector that without loss of generality is

(1, 0, 0,... ). Thus, our objective function can be written as EijeA Wij(Zj- Z i ) where
1 > zi > -1. This results in the following linear program. We claim that there is an
optimal solution to the following linear program that is integral.
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1
max E wij(zj - zi) (6.11)

ijeA
-1 < Zi < 1, Vi E V.

To show this, note that we are optimizing a linear objective function over a poly-
tope that is the cube with vertices in (-1, n' . The vertices of the polytope are
integral and so there is always an optimal solution that is integral. Thus, the integral
solution obtained must have difference of forward and backward edges that is equal
to the objective value (6.11). O

By Lemma 33, if a directed graph has a maximum acyclic subgraph close to half
the total edge weight, then there are no cuts that have a high difference of forward
and backward value. We will show that if PR(G) is large, i.e. if the linear ordering
semidefinite programming value for a graph G is large, then the backward value for
all sets of vectors vih for each fixed h is small. If a maximum acyclic subgraph of
G is close to half the edges, the the forward value for all sets of vectors will also be
small by Lemma 33. In particular, the sum of the forward and backward value across
defined by the vectors v2 } will be small. In other words, the value of the maxcut

n
semidefinite program (6.4) evaluated at the vectors v } will be small. By constraint

Ei,jeV v . vj2 = 0, these vectors are very "spread out". Thus, we can show that if
PR(G) is large, then in expectation, a random hyperplane will find a cut with small
edge weight crossing it such that at least a constant fraction of the vertices are on
each side of the cut.

We will also find a discussion of the following problem useful. Consider the prob-
lem of finding a balanced partition of the vertices of a given graph (i.e. each partition
has size ) that maximizes the weight of the edges that do not cross the cut. This
problem is referred to as the max-n-uncut problem by Halperin and Zwick [HZ01].
Below is an integer quadratic program for the max-n-uncut problem.

max E wij (1 + vi vj)
max 2 2

ijeA

(T) E vi .j = 
i,jeV

Vi ' Vi = 1 Vi E V

Vi E {1,-1} ViEV.

We obtain a semidefinite programming relaxation for the max-a-uncut problem by
relaxing the last (integrality) constraint to: vi RY, Vi. We denote the value of the
relaxation of T on the graph G as TR(G).
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Lemma 34. Let G = (V, A) be an unweighted graph and let , 6 be positive constants.
Suppose the maximum acyclic subgraph of G is ( + -)IAl. If PR(G) > (1 - e)JAl,
then TR(G) > (1 - 2c - 2)IAI.

Proof. For each edge ij E A, using constraint (6.7), we have:

h (vh_ vh-1). (V -_£-1) <
l<h<e<n

l<h<~ ,l<e< _

E (·-v )· (-e _ vi-1.

l<h<- vh , -2 

(6.12)

(6.13)

(6.14)

(6.15)

For each edge, we refer to the quantity (6.12) as the forward value for that edge with
respect to PR(G). The same term summed instead over h > e is referred to as the
backward value of the edge with respect to PR(G). We can simplify the terms above.

nLet Let vi = vi2.

ic-- Zf ( h h-Z ' -1LL (Vh _ Vh-1) I VT v; ) = (V + VO) (Vj + vo),

aij (V h vh-I) (Vj V- -

n<h<n,I<I<n

aLR (v-h _h- 1)(ve Vje ) = (vi + o) (vo - j)
l<h<n, n<t<n

LRj E (Vh Vh-1) e jVjI1)

n<h<n,ll<n2

Lemma 35. EijEA 4( L R RL LAaR +iEaij 4ij aij a
Proof. For every edge ij A, we have:

aLL + aRR L+ aL R aRL = 4.aT3 +a3 +aJ +-

By definition, we have PR(G) < ijEA 4ja +
PR(G) > (1- )IAI, so we have:

aiR + a$iR). By assumption,
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Figure 6-2: Summing aLR over all the edges results in the forward value and summing
aRL over all the edges results in the backward value.

aRL < IAI.
ijEA

The above inequality says that the backward value of the vectors {vi} (i.e. quantity
(6.9)) is at most the backward value of PR(G). By Lemma 33, the difference of the
edges crossing the cut in the forward direction and the edges crossing the cut in the
backward direction is at most 21AI.

1 (aLR - a/L) < 261A I.
ijEA

This implies that the forward value cannot exceed the backward value by more than
251A[. Thus, we can bound the forward value as follows:

_LR < ( + 2) AI.
ijEA

This implies that if we sum the quantity (aiLj + aiR) over all edges in A, then the
total value of this sum is at least (1 - 2e - 2)IAI.

l(aLL + aRR) = l+viVj
ijeA ijeA

Thus, we have:

Z +Vi _ V > (1-2E-26)IAI.
2 -

ijEA
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6.3 Balanced Bisections of Random Graphs

A bisection of a graph is a partition of the vertices into two equal (or with cardinality
differing by one if n is odd) sets. We use a related definition in this section.

Definition 36. A y-bisection of a graph for y is the set of edges that cross a cut
in which each set of vertices has size at least fyn.

Suppose we choose an undirected random graph on n vertices in which every edge
is present with probability p = d. The expected degree of each vertex is d and then
expected number of edges is dn. We call such a class of graphs Gn,.

Lemma 37. For any fixed positive constants , y, if we choose a graph G E Gn,p on
n vertices for a sufficiently large n with p = and d = w(1), then every ?y-bisection
contains at least (1 - e)y(1 - y)nd edges with high probability.

Proof. We use the principle of deferred decisions. First, we choose a n, (1 - y)n
partition of the vertices. Thus y(l - y)n2 edges from the complete graph on n
vertices cross this cut. Then we can choose the random graph G by picking each edge
with probability p = d. The expected number of edges from G crossing the cut isn
M = (y(l - y)n2 )() = y(l - y)dn. For each edge in the complete graph that crosses
the cut, we have the indicator random variable Xi such that Xi = 1 if the edge crosses
the cut and Xi = 0 if the edge does not cross the cut. Let X = EXi, i.e. X is the
random variable for the number of edges that cross the cut. By Chernoff Bound, we
have:

E2, (1--y)dn
Pr[X < (1- e)y(1- y)dn)] < e 2

We can union bound over all the possible y-bisections. There are less than 2 ways
to divide the vertices so that at least yn are in each set. Thus, the probability that
the minimum y-bisection of G is less than a (1 - E) fraction of its expectation is:

2n
Pr[min y-bisection(G) < (1 - e)y( - y)nd] < n

e 2

Let d = w(1). Then for any fixed positive constants, e, this probability will be
arbitrarily small for sufficiently large n. []
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6.4 A Contradictory Cut

In this section, we prove our main theorem. Suppose we choose a directed random
graph on n vertices in the following way: we include every edge in the complete
undirected graph with probability p = . Then we randomly direct each edge. Wen

call this class of graphs Gn,,. Note that if we randomly choose a graph from Gn,p, the
underlying undirected graph is randomly chosen from Gn,p.

Theorem 38. For sufficiently large n, d = w(1), and p = d, if we randomly choose
a graph G E G,,p, then with high probability, the ratio PR(G)/P(G) < 1.64.

We divide the proof of Theorem 38 into two cases: (i) when d = o(n) and (ii)
when d = Q(n). The proof of both cases is similar. As stated above, we choose a
directed graph G from Gn,,p since the linear ordering problem is defined for directed
graphs. However, in our proof, we really only rely on properties of the underlying
undirected graph, which we refer to as G (chosen from Gn,p).

The main idea behind the proof is that since with high probability, every y-
bisection of random graph is very close to y(l - y)dn edges, we can weight the edges
in the complete graph in such a way so that with high probability, every y-bisection
of the complete graph has negative weight. We refer to this weighted graph as G,.
Then we can show that if the value PR(G) is "high", we can use a random hyperplane
to find a y-bisection of the weighted graph Gw that is non-negative for some constant
- > 0.

Let E represent the edges in the complete undirected graph Kn for some fixed
n. Let A C E represent the edges both in the directed graph G and the underlying
undirected graph G, which is chosen at random from Gn,. Let el be a small positive
constant whose value can be arbitrarily small for sufficiently large n. We weight the
edges in E as follows:

n
wi= - )d if ij E A, (6.16)(1 - )d
Wij 1 if ij E E-A. (6.17)

We refer to this weighted graph as G,. If we choose a random -bisection of G,,
2

the expected contribution of the edges from A to the bisection is roughly -. The
expected contribution of the edges from E-A is roughly n2 d. Thus, in expectation,
the bisection should have a negative value.

Lemma 39. Let -y > 0 be a fixed positive constant. If G, is chosen on n vertices,
for sufficiently large n, then with high probability every -bisection of G, has negative
weight.
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Proof. By Lemma 37 with high probability a y-bisection of G has at least (1-e1)7(l-
y)nd edges. Thus, with high probability the total weight of the edges in the minimum
y-bisection of Gw is at most:

IE-Al + IAI - (1 - )d) =

-y(l-)n 2- (1 -E)(l- y)nd + (1 - E)y(l - y)nd (- )d) =

((1-y) (n - (1 -l)nd + (1 -l)nd ((1 )d

y(l -) (-(1 - l)nd) < 0.

If the value of PR(G) is high, i.e. at least (1- e1)lAl for some small constant
E1 > 0, and the maximum acyclic subgraph is ( + 26)1AI, then by Lemmas 33 and
34, we have TR(G) > (1 - 2e - 26)IAI. Let e2 = 2e + 26.

To prove our next lemma, we use the following theorem from [GW95]. The quan-
tity W stands for the weight of the edges cut by a random hyperplane and E[W]
stands for the expected value of the edge weight cut by a random hyperplane.

Theorem 2.7 [GW] Let W_ = Ei<j w-, where x- = min(O, x). Then

{E[W]-W_} > a 2 ij (1- vi vj) - W_

We will apply this theorem to the graph G,, and show if the value of TR(G) is
high, i.e. TR(G) > (1 - e2)IAI, and if e2 < .36, then the expected weight cut by a
random hyperplane is non-negative. Moreover, the expected weight is On2, where P
is a small positive constant. Thus, at least x/3n vertices appear on each side. So
setting y = x/0, we will be able to prove the lemma.

Lemma 40. Let y > 0 be a small fixed constant (e.g. y = .01). For sufficiently large
n, choose a graph G E Gn, for p = d where d = w(1). Let G, be the weighted graph
obtained by weighting each edge in G with edge weight - (n1-)d and each remaining
edge in the complete graph on n vertices with edge weight 1.

Let {vi), i E V be a set of unit vectors that satisfy the following constraints:

S vivj = 0 (6.18)
i,jeV
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+ v > (1- E2)AI. (6.19)
2

ijEA

If e2 < .36, then we can find a y-bisection of Go with a strictly positive value.

Proof. We use Goemans-Williamson's random hyperplane algorithm to show that we
can find a cut that is roughly balanced and has a strictly positive value. Let W
represent the total weight of the edges that cross the cut obtained from a random hy-
perplane. Let W_ denote the sum of the negative edge weights, i.e. W_ = -IAI (1-n)d
Applying Theorem 2.7 from [GW], we have:

1
E[W] > C Ewij(1 - vi .v j) - W_ + W_

i<j

> a E wij 2* i + E Iwijl 2i j +W_.
i<j:wij>O 2 i<j:wij<o2

To bound E[W], we need to determine the values of three quantities:

(i) Ei<jwij>o Wi 2 

(ii) i<j:wij<o Iijl 2 X

(iii) W_.

By definition W_ = -IAI (1-)2d, so we know quantity (iii). We will now compute
quantities (i) and (ii). First, we will compute quantity (i), i.e. we want to calculate the
value of Ei<jw.,,o l2-i.j which is equal to quantity (i) since all edges with positive
edge weight have weight 1.

By condition (6.18), we have that EiJEv vi.vj = O and therefore Ei<j 1- = 
By condition (6.19), we have that 2i<j:wij<o 2"' • 62JA]

1- vi vj - j = 1 -VijZ2 L 2 2
i<j:wij>O i<j i<j:wij<O

> El i v j - e21AI
i<j
n 2

_- -- e 21AI.
4
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Thus, quantity (i) is at least T _ c2-AI. By constraint (6.19), quantity (ii) is at
least (1 - e2)AI(ll)d . Now we have:

{W 2n n 
E[W] > o( - 62lA) + ( (1 -2) AI - )d I.Al

For large enough n, we can choose el to be arbitrarily small. (Recall that el is a
small positive constant such with high probability the minimum y-bisection of G for
some fixed positive constant y has at least (1 - l)y(1 - y)2nd edges.) Let us assume
that AI = (1 + e)dn, where d = w(1) and d = o(n) and is an arbitrarily small
positive constant. With exponentially high probability, the number of edges in A is
(1 -e) < IAI < (1 + e)-d. This can be seen using one application of a Chernoff
Bound. The expected weight of the edges cut by a random hyperplane, E[W], can
be bounded from below by a value arbitrarily close to the following (i.e. because 
and el can be made arbitrarily small):

1 4 2 2-)n - o(n2 > (.1585 - 2) 2 - ( 2). (6.20)
4 2 2 2

If the value of 62 is such that the quantity on line (6.20) is strictly greater than pn2

for some positive constant 3, then we will have a contradiction for sufficiently large
n. Note that if this value is at least n2 , then each side of the cut contains at least
x/on vertices, so it is a v/J-bisection. So we have:

(.1585 - 62 )n2 > n2 (.1585 E2 ) .
2 2

This value will be strictly positive (i.e. greater than .00035) as long as 2 < .36.
Thus, it must be the case that 2 > .36. Setting y = V.00035 > .01, there must
be a y-bisection of positive value if e2 < .36. This contradicts Lemma 39: For any
fixed constant y > 0 and for sufficiently large n, every y-bisection of Gw has negative
weight.

To conclude the proof, we need to prove the case when d = Q(n), i.e. d = cn for
some constant c < 1. In this case, we will weight the edges in Gw differently, but the
idea is the same. We weight the edges as follows:

Wij = - if ij E A, (6.21)
C

Wij = 1 if ij E E-A. (6.22)

With these edge weights, we can modify Lemma 39 to show that with high proba-
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bility, every y-bisection of G, has weight no more than eln2 for some arbitrarily small
positive constant el and sufficiently large n. We again apply Theorem 2.7 [GW95].
We need to compute the quantities (i), (ii), and (iii) denoted above. First, note that
quantity (i) is the same as above. Namely,

1 - vi vj n 2

wij - - e2lAl.
2 4

i<j:wij>O

Next we compute quantity (ii):

wij 1+ vi v = (1-e 2)AI (1 c)
2 c

i<j:wij<O

Next we compute quantity (iii). We have W_ = IAI (c 1). Thus, we have:

~4 C C

2 3n E22 cn n2 cn2=a 4
4 2 2 2 2

3a 62a_ ca 1 2

4 2 2 2 /n2

With high probability, all y-bisections are arbitrarily small, i.e. eln2 for an arbi-
trarily small positive constant el. Thus, we have:

T-h + c(-- 1)) < e2.

The quantity on the left is minimized when c = . Thus, 2 > .36. [

We now prove our main theorem.

Proof of Theorem 38: We fix very small positive constants y, el and choose suf-
ficiently large n. We choose a random undirected graph G from Gn,p and randomly
direct each edge to obtain the graph G. We weight the edges of the undirected graph
Kn as discussed previously (we use weights (6.16) and (6.17) for d = w(1), o(n) and
(6.21) and (6.22) for d = O(n)) and obtain Gw. By Lemma 39, the minimum y-
bisection of Gu is negative with high probability. Thus, with high probability, if we
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solve the linear ordering semidefinite program and obtain PR(G), then equation (6.19)
n

holds for the set of vectors {v -= v/2 } only when 2 > .36.

Suppose the maximum acyclic subgraph of G, i.e. P(G) is (1 + 6)IAJ for some

positive constant . Then for the set of vectors {vi = v }, the value of PR(G) is
upper bounded by:

PR(G) < E (aLL + aR + aR
ijEA

By Lemma 40:

(a IL + aRR . < .641AI.Z 2 L+3 = 2 -
ijEA ijEA

By Lemma 33, the difference between forward and backward measured according to
the {vi} vectors is:

E 4 (a LR - a RL ) < (26) AI.
ijEA

Thus,

I (a R) < (.18 + 6)AI.
ijeA

So we can upper bound the value of PR(G) by (.82+6) 1AI. Thus, with high probability,
for the graph G, we have:

PR(G) .82 + .82(G) < 82 + < 82 = 1.64.
P(G) - .5+6 - .5

6.5 Discussion and Conjectures

In this chapter and in Chapter 3, we make a connection between cuts and vertex
orderings of graphs in order to obtain a new semidefinite programming relaxation
for the linear ordering problem. We show that the relaxation is "good" on random
graphs chosen with uniform edge probability w(1), i.e. if we choose such a graph at
random, then with high probability, the ratio of the semidefinite programming bound
to the integral optimal is at most 1.64.

In [HZO1], Halperin and Zwick give a .8118-approximation for a related problem
that they call the max -directed-uncut problem. Given a directed graph, the goal
of this problem is to find a bisection of the vertices that maximizes the weight of the
edges that cross the cut in the forward direction plus the weight of the edges that do
not cross the cut. We note that a weaker version of Theorem 38 follows from their
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Figure 6-3: This graph demonstrates the worst integrality gap that we are aware of
for the semidefinite programming relaxation for the linear ordering problem (P). For
a 3-cycle with five isolated vertices, the gap is about 2.25.

.8118-approximation algorithm. This is because their semidefinite program for the
max -directed uncut problem is the sum over all edges of terms aL, R, and a LR

(To obtain their .8118-approximation, they use a semidefinite program that includes
the triangle inequalities (3.12).) If for some directed graph G = (V, A), PR(G) has
value at least (1 -e)lAl, then the value of their semidefinite programming relaxation
also has at least this value. Thus, if is arbitrarily small, we can obtain a directed
uncut of value close to .8118 of the edges, which is a contradiction for a random graph
with uniform edge probability. With high probability, the largest directed uncut of a
random directed graph is arbitrarily close to 3 of the edges. In this chapter, our goal
was to give a self-contained proof of this theorem.

We would like to comment on the similarity of this work to the work of Poljak
and Delorme [DP93] and Poljak and Rendl [PR95] on the maxcut problem. Poljak
showed that the class of random graphs with uniform edge probability could be used
to demonstrate an integrality gap of 2 for several well-studied polyhedral relaxations
for the maxcut problem [Pol92]. These same graphs can be used to demonstrate an
integrality gap of 2 for several widely-studied polyhedral relaxations for the linear
ordering problem [NV01]. The similarity of these results stems from the fact that the
polyhedral relaxations for the maxcut problem are based on odd-cycle inequalities and
the polyhedral relaxations for the linear ordering problem are based on cycle inequal-
ities. Poljak and Delorme subsequently studied an eigenvalue bound for the maxcut
problem that is equivalent to the bound provided by the semidefinite programming
relaxation used in the Goemans-Williamson algorithm [GW95]. Despite the fact that
random graphs with uniform edge probability exhibit worst-case behavior for sev-
eral polyhedral relaxations for the maxcut problem, Delorme and Poljak [DP93] and
Poljak and Rendl [PR95] experimentally showed that the eigenvalue bound provides
a "good" bound on the value of the maxcut for these graphs. This experimental
evidence was the basis for their conjecture that the 5-cycle exhibited a worst-case
integrality gap of 0.88445 for the maxcut semidefinite relaxation [DP93, Pol92]. The
gap demonstrated for the 5-cycle turned out to be very close to the true integrality
gap of .87856 [FS].

For the semidefinite relaxation of the integer program (P), the worst-case inte-
grality gap of which we are aware is for the graph that contains a directed 3-cycle and
isolated vertices. (This was discovered in a joint effort with Prahladh Harsha.) For
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example, for a graph G made up of a directed 3-cycle with five isolated vertices, the
optimal value PR(G) is about 2.25. As the number of isolated vertices increases, the
value of PR(G) seems to increase. It was too difficult computationally to run graphs
with more than eight vertices.

In closing, we conjecture that our semidefinite programming relaxation provides
a "good" bound on the optimal value of a linear ordering for all graphs.

Conjecture 41. The integrality gap of the semidefinite programming relaxation of
(P) is at most 2 - e for some positive constant e.
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