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Abstract

Matrices that can be factored into a product of two simpler matrices can serve as a use-
ful and often natural model in the analysis of tabulated or high-dimensional data. Models
based on matrix factorization (Factor Analysis, PCA) have been extensively used in sta-
tistical analysis and machine learning for over a century, with many new formulations and
models suggested in recent years (Latent Semantic Indexing, Aspect Models, Probabilistic
PCA, Exponential PCA, Non-Negative Matrix Factorization and others). In this thesis we
address several issues related to learning with matrix factorizations: we study the asymp-
totic behavior and generalization ability of existing methods, suggest new optimization
methods, and present a novel maximum-margin high-dimensional matrix factorization for-
mulation.
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Chapter 1

Introduction

Factor models are often natural in the analysis of many kinds of tabulated data. This in-

cludes user preferences over a list of items (e.g. Section 5.1), microarray (gene expression)

measurements (e.g. [4]), and collections of documents (e.g. [22]) or images (e.g. [47]).

The underlying premise of such models is that important aspects of the data can be captured

via a low-dimensional, or otherwise constrained, representation.

Consider, for example, a dataset of user preferences for movies. Such a data set can be

viewed as a table, or matrix, with users corresponding to rows and movies to columns. The

matrix entries specify how much each user likes each movie, i.e. the users' movie ratings.

The premise behind a factor model in this case is that there is only a small number of

factors influencing the preferences, and that a user's preference vector is determined by

how each factor applies to that user. In a linear factor model, each factor is a preference

vector, and a user's preferences correspond to a linear combination of these factor vectors,

with user-specific coefficients. These coefficients form a low-dimensional representation

for the user.

Tabulated and viewed as a matrix, the preferences are modeled as the product of two

smaller matrices: the matrix of per-user coefficients and the matrix of per-movie factors.

Learning such a factor structure from the data amounts to factorizing the data matrix into

two smaller matrices, or in the more likely case that this is impossible, finding a factoriza-

tion that fits the data matrix well.

The factorization, or reduced (low dimensional) representation for each row (e.g. user),
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may be useful in several different ways:

Signal reconstruction The reduced representation, i.e. the per-row coefficients, may cor-

respond to some hidden signal or process that is observed indirectly. Factor analysis

was developed primarily for analyzing psychometric data: reconstructing the under-

lying characteristics of people that determine their observed answers to a series of

questions. A more modem application can be found in gene expression analysis (e.g.

[4]), where one aims at reconstructing cellular processes and conditions based on

observed gene expression levels.

Lossy compression Traditional applications of Principal Component Analysis (PCA, see

below) use the low-dimensional representation as a more compact representation that

still contains most of the important information in the original high-dimensional in-

put representation. Working with the reduced representation can reduce memory

requirements, and more importantly, significantly reduce computational costs when

the computational cost scales, e.g. exponentially, with the dimensionality.

Understanding structure Matrix factorization is often used in an unsupervised learning

setting in order to model structure, e.g. in a corpus of documents or images. Each

item in the corpus (document / image) corresponds to a row in the matrix, and

columns correspond to item features (word appearances / pixel color levels). Ma-

trix factorization is then used to understand the relationship between items in the

corpus and the major modes of variation.

Prediction If the data matrix is only partially observed (e.g. not all users rated, or saw, all

movies), matrix factorization can be used to predict unobserved entries (e.g. ratings).

Different applications of matrix factorization differ in the constraints that are sometimes

imposed on the factorization, and in the measure of discrepancy between the factorization

and the actual data (i.e. in the sense in which the factorization is required to "fit" the data).

If the factor matrices are unconstrained, the matrices which can be factored to two

smaller matrices are exactly those matrices of rank bounded by the number of factors. Ap-

proximating a data matrix by an unconstrained factorization is equivalent to approximating
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the matrix by a low-rank matrix.

The most common form of matrix factorization is finding a low-rank approximation

(unconstrained factorization) to a fully observed data matrix minimizing the sum-squared

difference to it. Assuming the columns in the matrix are all zero mean (or correcting for

this), this is known as Principal Component Analysis (PCA), as the factors represent the

principal directions of variation in the data. Such a low-rank approximation is given in

closed form in terms of the singular value decomposition (SVD) of the data matrix. The

SVD essentially represents the eigenvalues and eigenvectors of the empirical covariance

matrix of the rows, and of the columns, of the data matrix.

In many situations it is appropriate to consider other loss functions (e.g. when the tar-

gets are non-numerical, or corresponding to specific probabilistic models), or to impose

constraints on the factorization (e.g. non-negativity [47] or sparsity). Such constraints can

allow us to learn more factors, and can also be used to disambiguate the factors. Another

frequent complication is that only some of the entries in the data matrix might be observed.

In this thesis we study various such generalizations. We study the problem of learning

the factorizations, analyze how well we can learn them, and how they can be used for

machine learning tasks.

We begin in Chapter 2 with a more thorough discussion of the various formulations of

matrix factorization and the probabilistic models they correspond to.

In Chapter 3, we study the problem of finding a low-rank approximation subject to

various measures of discrepancy. We focus on studying the resulting optimization problem:

minimizing the discrepancy subject to low-rank constraints. We show that, unlike the sum-

squared error, other measures of discrepancy lead to difficult optimization problems with

non-global local minima. We discuss local-search optimization approaches, mostly based

on minimizing the weighted sum-squared error (an interesting, and difficult, problem on its

own right).

In Chapter 4 we aim at understanding the statistical properties of linear dimensionality

reduction. We present a general statistical model for dimensionality reduction, and analyze

the consistency of linear dimensionality reduction under various structural assumptions.

In Chapter 5 we focus on a specific learning task, namely collaborative filtering. We
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view this as completing unobserved entries in a partially observed matrix. We see how

matrix factorization can be used to tackle the problem, and develop a novel approach,

Maximum-Margin Matrix Factorization, with ties to current ideas in statistical machine

learning.

In Chapter 6 we continue studying collaborative filtering, and present probabilistic post-

hoc generalization error bounds for predicting entries in a partially observed data matrix.

These are the first bounds of this type explicitly for collaborative filtering settings. We

present bounds for prediction both using low-rank factorizations and using Maximum-

Margin Matrix Factorization.
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Notation

Throughout the thesis, we use uppercase letters to denote matrices, and lowercase letters

for vectors and scalars. We use bold type to indicate random quantities, and plain roman

type to indicate observed, or deterministic, quantities. The indexes i and j are used to index

rows of the factored matrices and a and b to index columns. We use Xi to refer to the ith

row of matrix X, but often treat it as a column vector. We use Xa to refer to the ath column.

The table below summarizes some of the notation used in the thesis.

Ix| The Euclidean (L2 ) norm of vector x: IxI = ZaE $x2

jxI. The L, norm of vector x: Ix I. = maxa IXal.

Ixl The L 1 norm of vector x: Ix11 = EaIXal.

IIXIIFro The Frobenius norm of matrix X: IIX IFrO = Zia Xja.

The spectral, or L2 operator norm of matrix X, equal to the
2 largest singular value of X: IIXI2 = max,,= 1 IXul.

X', X' Matrix or vector transposition

X 0 Y The element-wise product of two matrices: (X 0 Y)ia =

XiaYia-

X * Y The matrix inner product of two matrices: X e Y = tr X' Y.

X y0 The square matrix X is positive semi-definite (all eigenval-
ues are non-negative).

Table 1.1: Linear algebra notation used in the thesis
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Chapter 2

Matrix Factorization Models and

Formulations

In this chapter we introduce the basic framework, models and terminology that are referred

to throughout the thesis. We begin with a fairly direct statement of matrix factorization

with different loss functions, mostly derived from probabilistic models on the relationship

between the observations and the low-rank matrix (Section 2.1). In the remainder of the

Chapter we discuss how these models, or slight variations of them, can arise from different

modeling starting points and assumptions. We also relate the models that we study to other

matrix factorization models suggested in the literature.

2.1 Low Rank Approximations

Consider tabulated data, organized in the observed matrix Y E R'xm, which we seek to

approximate by a product of two matrices UV', U E Rnxk, V E Rmxk. Considering the

rows of Y as data vectors Y, each such data vector is approximated by a linear combination

UV' of the the rows of V', and we can think of the rows of V' as factors, and the entries

of U as coefficients of the linear combinations. Viewed geometrically, the data vectors

UE RER are approximated by a k-dimensional linear subspace-the row subspace of V'.

This view is of course symmetric, and the columns of Y can be viewed as linear com-

binations of the columns of U. We will refer to both U and V asfactor matrices.
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If the factor matrices U and V are unconstrained, the matrices which can be exactly

factored as X = UV' are those matrices of rank at most k. Approximating a matrix Y

by an unconstrained factorization is therefore equivalent to approximating it by a rank-k

matrix'.

An issue left ambiguous in the above discussion is the notion of "approximating" the

data matrix. In what sense do we want to approximate the data? What is the measure of

discrepancy between the data Y, and the model, X, that we want to minimize? Can this

"approximation" be seen as fitting some probabilistic model?

2.1.1 Sum Squared Error

The most common, and in many ways simplest, measure of discrepancy is the sum-squared

error, or the Frobenius distance (Frobenius norm of the difference) between X and Y:

Y - = (Yia - Xia)2  (2.1)
ia

We refer to the rank-k matrix X minimizing the Frobenius distance to Y as the Frobenius

low-rank approximation.

In "Principal Component Analysis" (PCA) [44], an additional additive mean term is

also allowed. That is, a data matrix Y c nxm is approximated by a rank-k matrix X E

Rnm and a row vector M E R', so as to minimize the Frobenius distance:

Z(Yia - (Xia + pa))2. (2.2)
ia

The low-rank matrix X captures the principal directions of variation of the rows of Y from

the mean row p. In fact, it can be seen as the k-dimensional projection of the data that

retains the greatest amount of variation.

Allowing a mean row term is usually straightforward. To simplify presentation, in this

thesis we study homogeneous low-rank approximations, with no separate mean row term.

Note also that by introducing a mean term, the problem is no longer symmetric, as rows

'In this Thesis, "rank-k matrices" refers to matrices of rank at most k

26



and columns are treated differently.

In terms of a probabilistic model, minimizing the Frobenius distance can be seen as

maximum likelihood estimation in the presence of additive i.i.d. Gaussian noise with fixed

variance. If we assume that we observe a random matrix generated as

Y=X+Z (2.3)

where X is a rank-k matrix, and Z is a matrix of i.i.d. zero-mean Gaussians with constant

variance o, then the log-likelihood of X given the observation Y is:

nm2Z(Y -Xia)2log Pr (Y = YJX)=-2-ln 27ra2 __p a-2 2
22u

aj
= 2i0.2 ~~X Fro +Const (2.4)

Maximizing the likelihood of X is equivalent to minimizing the Frobenius distance.

In Section 4.2 we discuss how minimizing the Frobenius distance is appropriate also

under more general assumptions.

The popularity of using the Frobenius low-rank approximation is due, to a great extent,

to the simplicity of computing it. The Frobenius low-rank approximation is given by the

k leading "components" of the singular value decomposition Y. This well-known fact is

reviewed in Section 3.1.

As discussed in the remainder of Chapter 3, finding low-rank approximations that min-

imize other measures of discrepancy is not as easy. Nevertheless, the Gaussian noise model

is not always appropriate, and other measures of discrepancy should be considered.

2.1.2 Non-Gaussian Conditional Models

Minimizing the Frobenius distance between a low-rank matrix X and the data matrix Y

corresponds to a probabilistic model in which each entry Yia is seen as a single observation

of a random variable Yia = Xia + Zia, where Zi ~,- A(O, a') is zero-mean Gaussian

error with fixed variance a2 . This can be viewed as specifying the conditional distribution

of YIX, with YialXia following a Gaussian distribution with mean Xia and some fixed
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variance a2 , independently for entries (i, a) in the random matrix Y.

Other models on the conditional distribution YialXia might be appropriate [31]. Such

models are essentially specified by a single-parametric family of distributions p(y; x).

A special class of conditional distributions are those that arise from additive, but not

necessarily Gaussian, noise models, where Yia = Xia + Zia, and Zia are independent and

follow a fixed distribution. We refer to these as "additive noise models", and they receive

special attention in some of our studies.

It is often appropriate to depart from an additive noise model, Y = X + Z, with Z

independent of X. This is the case, for example, when the noise is multiplicative, or when

the observations in Y are discrete.

Logistic Low Rank Approximation

For example, consider modeling an observed classification matrix of binary labels. It is

possible to use standard low-rank approximation techniques by embedding the labels as

real values (such as zero-one or +1) and minimizing the quadratic loss, but the underlying

probabilistic assumption of a Gaussian model is inappropriate. Seeking an appropriate

probabilistic model, a natural choice is a logistic model parameterized by a low-rank matrix

X E R""X, such that Pr (Yia = +1|Xia) = g(Xia) independently for each ia, where g is

the logistic function g(x) = . One then seeks a low-rank matrix X maximizing the

likelihood Pr (Y = YIX). Such low-rank logistic models were recently studied by Schein

et al [62].

Exponential PCA

Logistic low-rank approximation is only one instance of a general approach studied by

Collins et al [19] as "Exponential-PCA". These are models in which the conditional dis-

tributions YialXia form an exponential family of distributions, with Xia being the natural

parameters.

Definition 1 (Exponential Fammily of Distributions). A family of distributions p(y; x),

parametrized by a vector x E Rd, is an exponential family, with x being the natural param-

28



eters, if the distributions (either the density for continuous y or the probability mass for

discrete y) can be be written as:

p(y; X) = eEa 'a(y)xa+F(x)+G(y)

for some real-valued features 0, and real-valued functions F and G. The mean parameter-

ization of the distributions family is given by p(x) = E [4(y); x].

In this thesis, we will usually refer to exponential families of distributions of random

vectors y E R", where the features are simply the coordinates of the vectors Oa(Y) = Yi.

In Exponential-PCA the distributions YialXia form a single-parametric exponential

family of distributions of (one dimensional) random variables Yia, where the single pa-

rameter for Yia is given by Xia. That is:

p( YialXia) = eYia Xia+F(Xta)+G(Yia) (2.5)

for some real-valued functions F and G.

Other than logistic low-rank approximation, other examples of exponential PCA in-

clude binomial and geometric conditional distributions. The Gaussian additive noise model

can also be viewed as an exponential family, and it is the only conditional model which both

corresponds to additive noise, and forms an exponential family.

Gous [32] also discusses exponential conditional models, viewed as selecting a linear

subspace in the manifold of natural parameters for data-row distributions.

2.1.3 Other Loss Functions

So far, we have considered maximum likelihood estimation, and accordingly discrepancies

that correspond to the negative log-likelihood of each entry in X:

D(X; Y) = loss(Xia; Yia)
ia (2.6)

loss(X;y) = -log Pr (yjx),
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up to scaling and constant additive terms. Departing from maximum likelihood estima-

tion, it is sometimes desirable to discuss the measure of loss directly, without deriving it

from a probabilistic model. For example, when the observations in Y are binary class la-

bels, instead of assuming a logistic, or other, probabilistic model, loss functions commonly

used for standard classifications tasks might be appropriate. These include, for example a

zero/one-sign loss, matching positive labels with positive entries in X:

loss(x; y) = (2.7)
1 otherwise

or convex loss functions such as the hinge loss often used in SVMs:

loss(x;y) = 0 if y > 1 (2.8)
1 - xy otherwise

2.1.4 Constrained Factorizations

We have so far referred only to unconstrained matrix factorizations, where U and V are

allowed to vary over all matrices in Rnxk and Rmxk respectively, and so X = UV' is

limited only by its rank. It is sometimes appropriate to constrain the factor matrices. This

might be necessary to match the interpretation of the factor matrices (e.g. as specifying

probability distributions, see Section 2.3.1) or in order to reduce the complexity of the

model, and allow identification of more factors. Imposing constraints on the factor matrices

can also remove the degrees of freedom on the factorization UV' of a reconstructed X, and

aid in interpretation.

Lee and Seung studied various constraints on the factor matrices including non-negativity

constraints (Non-Negative Matrix Factorization [47]) and stochasticity constraints [46]. For

a discussion of various non-negativity and stochasticity constraints, and the relationships

between them, see Barnett's work [9].

30



2.2 Viewing the Matrix as an I.I.D. Sample

In the probabilistic view of the previous section, we regarded the entire matrix X as pa-

rameters, and estimated them according to a single observation Y of the random matrix Y.

The number of parameters is linear in the data, and even with more data, we cannot hope

to estimate the parameters (entries in X) beyond a fixed precision. What we can estimate

with more data rows is the rank-k row-space of X.

Here, we discuss probabilistic views in which the matrix Y is taken to be a sample

of i.i.d. observations of a random vector y. That is, each row y of Y is an independent

observation of the random vector y.

Focusing on a Gaussian additive noise model, the random vector y is modeled as

y = x + z (2.9)

where x is the low-rank "signal", to which Gaussian white noise z ~ .(0, U72 [m) is added.

The main assumption here is that the signal x occupies only a k-dimensional subspace of

R'. In other words, we can write x = u V', where V' E Rkxm spans the support subspace

of x, and u is a k-dimensional random vector. The model (2.9) can thus be written as:

y = uV'+ z (2.10)

where u E Rk and V' E Rkxm.

In the previous section, we treated u as parameters, with a separate parameter vector u

(a row of U) for each observed row y of Y. Here, we treat u as a random vector. A key

issue is what assumptions are made on the distribution of u.

2.2.1 Probabilistic Principal Component Analysis

Imposing a fixed, or possibly parametric, distribution on u yields a standard parametric

model for y. The most natural choice is to assume u follows a k-dimensional Gaussian

distribution [74]. This choice yields a Gaussian distribution for x, with a rank-k covariance

matrix. Note that without loss of generality, we can assume u - .A(0, Ik), as the covariance
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matrix can be subsumed in the choice of V. As z ~ K(O, 0.21m), the observed random

vector y also follows a Gaussian distribution:

y'~ K(O, VV'+ a.21m). (2.11)

This is, then, a fully parametric model, where the parameters are the rank-k matrix VV'

and the noise covariance .2 . Using this view, low-rank approximation becomes a standard

problem of estimating parameters of a distribution given independent repeated observa-

tions. Interestingly, whether a 2 is known or unknown, maximum likelihood estimation of

the parameters agrees with Frobenius low-rank estimation (i.e. PCA) [74]: the maximum

likelihood estimator of VV' under model (2.11) is the "covariance" -1X'X where X is the

Frobenius low-rank approximation.

2.2.2 A Non-Parametric Model

The above analysis makes a significant additional assumption beyond those of Section

2.1-we assume a very specific form on the distribution of the "signal" x, namely that

it is Gaussian. This assumption is not necessary. A more general view, imposing less

assumptions, is to consider the model (2.10) where u is a random vector that can fol-

low any distribution. Considering the distribution over u as unconstrained, non-parametric

nuisance, the maximum likelihood estimator of Section 2.1 can be seen as a maximum

likelihood estimator for the "signal subspace" V-the k-dimensional subspace in Rm that

spans the support of x. The model class is non-parametric, yet we still desire, and are able,

to estimate this parametric aspect of the model.

The discussion in this section so far refers to a Gaussian additive conditional model, but

applies equally well to other conditional models.

The difference between this view and that of Section 2.1, is that here the rows of Y are

viewed as i.i.d. observations, and the estimation is of finite number of parameters. We can

therefore discuss the behavior of the estimator when the sample size (number of rows in

Y) increases.

It is important to note that what we are estimating is the subspace V which spans the
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support of x. Throughout this thesis, we overload notation and use V to denote both a

matrix and the column-space it spans. However, we cannot estimate the matrix V for

which x = u V', as the estimation would be only up to multiplication by an invertible k x k

matrix.

2.2.3 Canonical Angles

In order to study estimators for a subspace, we must be able to compare two subspaces.

A natural way of doing so is through the canonical angles between them [71]. Define the

angle between a vector v, and a subspace V2 to be the minimal angle between v, and any

v2 E V2. The first (largest) canonical angle between two subspaces is then the maximal

angle between a vector in vi E V1 and the subspace V2. The second largest angle is the

maximum over all vectors orthogonal to the v1, and so on2. Computationally, if the columns

of the matrices V1 and V2 form orthonormal bases of subspaces V, and V2, then the cosines

of the canonical angles between V, and V2 are given by the singular values of V'V 2.

2.3 Low Rank Models for Occurrence, Count and Fre-

quency Data

In this section we discuss several low-rank models of co-occurrence data, emphasizing the

relationships, similarities and differences between them.

Entries in a co-occurrence matrix Y describe joint occurrences of row "entities" and

column "entities". For example, in analyzing a corpus of text documents, the rows corre-

spond to documents and columns to words, and entries of the matrix describe the (docu-

ment, word) co-occurrence: entry Yia describes the occurrence of words a in document i.

The order of words in a document is ignored, and the documents are considered as "bags

of words". Entries Yia of the co-occurrence matrix Y can be binary, specifying whether

the word a occurred in the document i or not; they can be non-negative integers specifying

the number of times the word a occurred in the document i; or they can be reals in the
2if there are multiple vectors achieving the maximum angle, it does not matter which of them we take, as

this will not affect subsequent angles
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interval [0, 1] specifying the frequency in which the word a occurs in the document i, or

the frequency of the word-document co-occurrence (that is, the number of times the word

a appeared in this document i divided by the total number of words in all documents).

In traditional Latent Semantic Analysis [22], a low-rank approximation of the co-

occurrence matrix Y minimizing the sum-squared error is sought. However, this analy-

sis does not correspond to a reasonable probabilistic model. In this section, we consider

various probabilistic models.

We will see that models for vary in two significant aspects. The first is the whether each

entry is seen as an observation of an independent random variable, or whether the entire

matrix is seen as an observation of a joint distribution with dependencies between entries.

The second is whether a low-rank structure is sought for the mean parameters or the natural

parameters of the distribution.

2.3.1 Probabilistic Latent Semantic Analysis: The Aspect Model

We will first consider a fully generative model which views the "factors" as latent variables.

In such a model, the observed random variables are the row and column indexes, i and a.

The generative model describes a joint distribution over (i, a). The matrix Y is seen as

describing some fixed number N of independent repeated observations of the random vari-

able pair (i, a), where Yta is a non-negative integer describing the number of occurrences

of i = i, a = a. The matrix Y is then an observation of a multinomially distributed random

matrix Y.

In the "aspect" model [37, 38], a latent (hidden) variable t is introduced, taking k

discrete values, t E [ki. The variable t can be interpreted as a "topic". The constraint

on the generative model for (i, t, a) is that i and a are independent given t. This can be
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equivalently realized by any of the following directed graphical models:

-+ t -- a
(2.12)

p(i, t, a) = p(i)p(tli)p(alt) = p(i, t)p(alt)

i- t -+ a
(2.13)

p(i, t, a) = p(t)p(ilt)p(alt)

i-t-a
(2.14)

p(i, t, a) = p(a)p(tla)p(ilt)

If we summarize the joint and conditional distributions in matrices:

Xia = p(i, a) Un = p(i, t) Vat = p(alt) (2.15)

we can write the joint distribution of a, i as a product of two matrices with an inner di-

mension of k. The model imposes a rank-k constraint on the joint distribution of a, i. The

constraint is actually a bit stronger, as the factorization of the joint distribution is to matri-

ces which represent probability distributions, and must therefore be non-negative. What we

are seeking is therefore a non-negative matrix factorization X = UV' ([47], see Section

2.1.4) that is a distribution, i.e. such that Zia Xia = 1.

Given a count matrix Y, we seek a distribution matrix X with such a non-negative

factorization X = UV', maximizing the log-likelihood:

log P(YIX) = E YalogXia (2.16)
ia

corresponding to an element-wise loss of

loss(x; y) = -y log x (2.17)

As in Section 2.1, the low-rank matrix X is interpreted as a parameter matrix. However,

in the conditional models of Section 2.1, each entry Yia of Y was generated independently

according to the parameter Xia. Here, the parameters X, together with total count N =
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Eia Ya, specify a multinomial distribution over the entries in the matrix Y, and different

entries are not independent.

2.3.2 The Binomial and Bernoulli Conditional Models

Consider the binomial conditional model:

Yia|Xia ~ Binom(N, Xia) (2.18)

The marginal distribution of each entry Yia in this model, and in the multinomial aspect

model, is the same. The difference between the two models is that in the binomial condi-

tional model (2.18) each entry is independent, and the total number of occurrences is equal

to N only on average (assuming Eia Xia = 1), while in the multinomial aspect model each

occurrence is independent, and the number of occurrences is exactly N. Conditioned on

the number of occurrences (Eia Yia) being exactly N, the two models agree. Since the to-

tal number of occurrences is tightly concentrated around N, the two models are extremely

similar, and can be seen as approximations to one another.

We further note that if NXia < 1 for all ia, we will usually have Yia E {0, 1}, and

the binomial conditional model (2.18) can be approximated by the Bernoulli conditional

model:

0 with probabilityl - NXia (2.19)
1 with probabilityNXia

Mean Parameters and Natural Parameters

It is important to note the difference between Bernoulli conditional model (2.19) and Lo-

gistic Low Rank Approximation discussed in Section 2.1.2. In both models, the family of

conditional distributions p(y; x) includes the same distributions-all distributions of a sin-

gle binary value. However, in Logistic Low Rank Approximation, entries Xia are the natu-

ral parameters to the single parametric exponential family of distributions p(y; x), whereas

in Bernoulli conditional models, the entries Xia are mean parameters. The difference then,

is whether we seek a low rank subspace in the mean parameterization or in the natural
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parameterization.

Although less commonly used, another instance of Exponential PCA (models where

Xi, serve as natural parameters) are low-rank models with Binomial conditional models,

where Xia is the natural parameter to the Binomially distributed Yia. In the binomial

conditional model as discussed before, as well as in the multinomial aspect model, the

entries Xia are scaled mean parameters, and we have:

Xia = -E [Yia;XiaI (2.20)
N

Another related loss function for binary data is the hinge loss, defined in equation (2.8).

The hinge loss and the logistic loss (i.e. the loss equal to the negative log likelihood for the

logistic conditional model) are actually very similar-both are convex upper bounds (after

appropriate scaling) on the zero-one loss (equation (2.7)), and have the same asymptotic

behavior, while differing in their local behavior around zero (see e.g. [10] for a discussion

on different convex loss functions).

2.3.3 KL-Divergence Loss

So far in this Section, the data matrix Y was taken to be a matrix of co-occurrence counts.

A related loss function, which is appropriate for non-negative real-valued data matrices

Y was suggested by Lee and Seung in their work on Non-Negative Matrix Factorizations

(NMF) [48]. The loss is a "corrected" KL-divergence between unnormalized "distribu-

tions" specified by X and Y:

D(X; Y) = loss(Xi; Ya)
ia (2.21)

loss(x; y) = y log -y +X

When X and Y specify distributions over index pairs, i.e. Eia Xia = Zia Yia = 1, the

discrepancy (2.21) is exactly the KL-divergence between the two distributions. Further-

more, when X specified a distribution (Eia Xia = 1) the discrepancy (2.21) agrees, up to

an additive term independent of X, with the multinomial maximum likelihood loss (2.17).
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Recalling that the factorization of the joint distribution in the aspect model is a non-negative

matrix factorization, we see that Probabilistic Latent Semantic Analysis and Non-Negative

Matrix Factorization with the KL-loss (2.21) are almost equivalent: the only difference is

the requirement E Xia = 1. Buntine [18] discusses this relationship between pLSA and

NMF.

2.3.4 Sufficient Dimensionality Reduction

Also viewing the data matrix Y as describing the joint distribution of (i, a), Globerson and

Tishby [28] arrive at low-rank approximation from an information-theoretic standpoint. In

their Sufficient Dimensionality Reduction (SDR) formulation, one seeks the k features of

i that are most informative about a (for a fixed, predetermined, k). Globerson and Tishby

show that the features U of i most informative about a are dual to the features V of a most

informative about i, and together they specify a joint distribution

px(i, a) oc e Xa X = UV'. (2.22)

The most informative features U and V correspond to the joint distribution of the form

(2.22) minimizing the KL divergence from the actual distribution given by Y. SDR is

therefore equivalent to finding the rank-k matrix X minimizing the KL-divergence from

Y, i.e. minimizing:

D (Y||px) = Z Yia109 a
iia px (, a)

- Yia log px(i, a) + Const
ia

eXia
L - Yia log Z eXi+ Const (2.23)
ia Ebei

SDR and pLSA are therefore similar in that both seek a low-rank representation of a joint

distribution on i, a which minimizes the KL-divergence from the specified distribution Y.

That is, in both cases we seek the distribution "closest" to Y (in the same sense of mini-

mizing the KL-divergence from Y, also referred to as projecting Y) among distributions in
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a limited class of distributions parameterizes by rank-k matrices. The difference between

SDR and pLSA is in how the low-rank matrix X parametrizes the joint distribution, and

therefore in the resulting limited class of distributions.

2.3.5 Subfamilies of Joint Distributions

Consider the nm "indicator" features of the random variables (i, a):

1 ifi=ianda=a
#ia(i, a) = (2.24)

0 otherwise

The family of all joint distributions of (i, a) is an exponential family with respect to these

features. In SDR, we project Y to the subfamily of distributions where the natural param-

eters (with respect to these indicator features) form a low-rank matrix. In pLSA, we project

Y to the subfamily of distributions where the mean parameters form a low-rank matrix.

Note that neither of these subfamilies is an exponential family itself!

It is important to note that although SDR can be seen as the problem of finding a low-

rank matrix minimizing some discrepancy to the target Y (namely the discrepancy given by

(2.23)), unlike all previous models that we discussed, this discrepancy does not decompose

to a sum of element-wise losses. This is because the normalization factor appear-

ing inside the logarithm of each term of the sum, depends on all the entries in the matrix.

In pLSA, and mean parameter models in general, this normalization can be taken care of

by requiring the global constraint Zia Xia = 1. However, in low-rank natural parame-

ter models, this is not possible as every two matrices correspond to different probability

distributions.

In Tishby and Globerson's formulation of SDR, the matrix X was not precisely a rank-k

matrix, and additional constant-row and constant-column terms were allowed, correspond-

ing to allowing information from the i and a marginals in the information theoretic formu-

lation. This is a more symmetric version of the mean term usually allowed in PCA.

Gous [32] also discusses exponential conditional models, viewed as selecting a linear

subspace in the manifold of natural parameters for data-row distributions.
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2.3.6 Latent Dirichlet Allocation

In the aspect model of Probabilistic Latent Semantic Analysis (2.12), as in all other models

discussed in this section, the distributions p(i, t) and p(alt) are considered as parameters.

This is similar to the Low Rank Approximation models of Section 2.1, where X = UV'

are considered parameters. Similar to the probabilistic PCA model described in Section

2.2.1, Blei et al [15] propose viewing the rows of Y as independent observations from a

fully generative model. In this model, Latent Dirichlet Allocation (LDA), the conditional

distribution p(alt) is viewed as a parameter to be estimated (analogous to the matrix V in

Probabilistic PCA). The conditional distribution p(tli), however, is generated for each row

i according to a Dirichlet distribution. It is important to note that unlike probabilistic PCA,

which shares the same maximum likelihood solutions with "standard" PCA (where U are

treated as parameter), assuming a Dirichlet generative model on U (i.e. on p(tji)) does

change the maximum likelihood reconstruction relative to "standard" probabilistic latent

semantic analysis.

2.4 Dependent Dimensionality Reduction

Low-rank approximation can also be seen as a method for dimensionality reduction. The

goal of dimensionality reduction is to find a low-dimensional representation u for data y

in a high-dimensional feature space, such that the low-dimensional representation captures

the important aspects of the data. In many situations, including collaborative filtering and

structure exploration, the "important" aspects of the data are the dependencies between

different attributes.

In this Section, we present a formulation of dimensionality reduction that seeks to iden-

tify a low-dimensional space that captures the dependent aspects of the data, and separate

them from independent variations. Our goal is to relax restrictions on the form of each

of these components, such as Gaussianity, additivity and linearity, while maintaining a

principled rigorous framework that allows analysis of the methods. Doing so, we wish to

provide a unifying probabilistic framework for dimensionality reduction, emphasizing what

assumptions are made and what is being estimated, and allowing us to discuss asymptotic
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behavior.

Our starting point is the problem of identifying linear dependencies in the presence of

independent identically distributed Gaussian noise. In this formulation, discussed in Sec-

tion 2.2, we observe a data matrix Y E R"d, which we take as n independent observations

of a random vector y, generated as in (2.10), where the dependent, low-dimensional com-

ponent x = u V' (the "signal") has support of rank k, and the independent component z

(the "noise") is i.i.d. zero-mean Gaussian with variance o2 . The dependencies inside y

are captured by u, which, through the parameters V and -specifies how each entry yj is

generated independently given u.

As we would like to relax parametric assumptions about the model, and focus only on

structural properties about dependencies and independecies, we take the semi-parametric

approach of Section 2.2.2 and consider x = u V' where u E Rk is an arbitrarily distributed

k-dimensional random vector.

Doing so, we do not impose any form on the distribution u, but we do impose a strict

form on the conditional distributions yiu: we required them to be Gaussian with fixed

variance o.2 and mean uVi'. We would like to relax these requirements, and require only that

yIu be a product distribution, i.e. that its coordinates yIIu be (conditionally) independent.

This is depicted as a graphical model in Figure 2-1.

U

Yi Y2 ... Yd

Figure 2-1: Dependent Dimensionality Reduction: the components of y are independent
given u

Since u is continuous, we cannot expect to forgo all restrictions on y I u, but we can

expect to set up a semi-parametric problem in which yIu may lie in an infinite dimensional
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family of distributions, and is not strictly parameterized.

Relaxing the Gaussianity leads to linear additive models y = uV' + z, with z inde-

pendent of u, but not necessarily Gaussian. As discussed earlier, relaxing the additivity is

appropriate, e.g., when the noise has a multiplicative component, or when the features of

y are not real numbers. These types of models, with a known distribution ys lxi, have been

suggested for classification using logistic loss, when yjjxj forms an exponential family

[19], and in a more abstract framework [31].

Relaxing the linearity assumption x = uV' is also appropriate in many situations,

and several non-linear dimensionality reduction methods have recently been popularized

[59, 73]. Fitting a non-linear manifold by minimizing the sum-squared distance can be

seen as a ML estimator for yIu = g(u) + z, where z is i.i.d. Gaussian and g : Rk + Rd

specifies some smooth manifold. Combining these ideas leads us to discuss the conditional

distributions yejg(u), or yju directly.

In this Thesis we take our first steps in studying this problem, and in relaxing restric-

tions on yIu. We continue to assume a linear model x = uV'. In Section 3.4 we consider

general additive noise models and present a general method for maximum likelihood esti-

mation under this model, even when the noise distribution is unknown, and is regarded as

nuisance. In Section 4.2 we consider both additive noise models and a more general class

of unbiased models, in which E [ylx] = x. We show how "standard" Frobenius low-rank

approximation is appropriate for additive models, and suggest a modification for unbiased

models.
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Chapter 3

Finding Low Rank Approximations

Low-rank matrix approximation with respect to the Frobenius norm-minimizing the sum

squared differences to the target matrix--can be easily solved with Singular Value Decom-

position (SVD). This corresponds to finding a maximum likelihood low-rank matrix X

maximizing the likelihood of the observation matrix Y, which we assume was generated

as Y = X + Z, where Z is a matrix of i.i.d. zero-mean Gaussians with constant variance.

For many applications, however, it is appropriate to minimize a different measure of

discrepancy between the observed matrix and the low-rank approximation. In this chapter,

we discuss alternate measures of discrepancy, and the corresponding optimization problems

of finding the low-rank matrix minimizing these measures of discrepancy. Most of these

measures correspond to likelihoods with respect to various probabilistic models on Y|X,

and minimizing them corresponds to (conditional) maximum likelihood estimation.

In Section 3.2 weighted Frobenius norm is considered. Beyond being interesting on

its own right, optimization relative to a weighted Frobenius norm also serves us as a ba-

sic procedure in methods developed in subsequent sections. In Section 3.3 we show how

weighted Frobenius low-rank approximation can be used as a proceedure in a Newton-type

appraoch to findind low-rank approximation for general convex loss functions. In Section

3.4 general additive noise, Y = X + Z, with Z independent of X, is considered where

the distribution of entires Zia is modeled as a mixture of Gaussian distributions. Weighted

Frobenius low-rank approximation is used in order to find a maximum likelihood estimator

in this setting.
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The research described in this chapter was mostly reported in conference presentations

[69, 70]. The methods are implemented in a Python/Numeric Python library.

3.1 Frobenius Low Rank Approximations

We first revisit the well-studied case of finding a low-rank matrix minimizing the (un-

weighted) sum-squared error (i.e. the Frobenius norm of the difference) versus a given

target matrix. We call such an approximation a Frobenius low-rank approximation. It is a

standard result that the low-rank matrix minimizing the sum-squared distance to A is given

by the leading components of the singular value decomposition of A. It will be instructive

to consider this case carefully and understand why the Frobenius low-rank approximation

has such a clean and easily computable form. We will then be able to move on to weighted

and other loss functions, and understand how, and why, the situation becomes less favor-

able.

Problem Formulation

Given a target matrix A E R"'X and a desired (integer) rank k, we would like to find a

matrix X E Rnxm of rank (at most) k, that minimizes the Frobenius distance

J(X) = (Xia- Aia)2

ia

A Matrix-Factorization View

It will be useful to consider the decomposition X = UV' where U E R'xk and V E Rmxk

Since any rank-k matrix can be decomposed in such a way, and any pair of such matrices

yields a rank-k matrix, we can think of the problem as an unconstrained minimization
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problem over pairs of matrices (U, V) with the minimization objective

J(U, V) = W,a (Ai,a - (UV')i,a) 2

i,a

)2
=5 Wi,a (Ai~a Zui~ctVaC).

This decomposition is not unique. For any invertible R E Rkxk, the pair (UR, VR-')

provides a factorization equivalent to ( U, V), i.e. J( U, V) = J( UR, VR- 1 ), resulting in a

k2-dimensional manifold of equivalent solutions. The singularities in the space of invertible

matrices R yield equivalence classes of solutions actually consisting of a collection of such

manifolds, asymptotically tangent to one another.

In particular, any (non-degenerate) solution (U, V) can be orthogonalized to a (non-

unique) equivalent orthogonal solution U = UR, V = VR- 1 such that V' V = I and U' U

is a diagonal matrix.' Instead of limiting our attention only to orthogonal decompositions,

it is simpler to allow any matrix pair (U, V), resulting in an unconstrained optimization

problem (but remembering that we can always focus on an orthogonal representative).

3.1.1 Characterizing the Low-Rank Matrix Minimizing the Frobenius

Distance

Now that we have formulated the Frobenius Low-Rank Approximations problem as an

unconstrained optimization problem, with a differentiable objective, we can identify the

minimizing solution by studying the derivatives of the objective.

The partial derivatives of the objective J with respect to U, V are

= 2(UV' -A)Vau (3.1)
a= 2(VU' - A')Uav

'We slightly abuse the standard linear-algebra notion of "orthogonal" since we cannot always have both
U'U = I and V'V = I.
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Solving - = 0 for U yields

U = AV(V'V)- 1 . (3.2)

Focusing on an orthogonal solution, where V'V = I and U'U = A is diagonal, yields

U = AV. Substituting back into O = 0, we have

0 = VU'U-A'U= VA - A'AV. (3.3)

The columns of V are mapped by A'A to multiples of themselves, i.e. they are eigenvec-

tors of A'A. Thus, the gradient 8 a1V) vanishes at an orthogonal (U, V) if and only if the

columns of V are eigenvectors of A'A and the columns of U are corresponding eigenvec-

tors of AA', scaled by the square root of their eigenvalues. More generally, the gradient

vanishes at any ( U, V) if and only if the columns of U are spanned by eigenvectors of AA'

and the columns of V are correspondingly spanned by eigenvectors of A'A. In terms of

the singular value decomposition A = UOSVO, the gradient vanishes at (U, V) if and only

if there exist matrices Q' Qv = Ik (or more generally, a zero/one diagonal matrix rather

than I) such that U = UoSQu, V = VoQv. This provides a complete characterization of

the critical points of J. We now turn to identifying the global minimum and understanding

the nature of the remaining critical points.

The global minimum can be identified by investigating the value of the objective func-

tion at the critical points. Let o- ... > o be the eigenvalues of A'A. For critical

(U, V) that are spanned by eigenvectors corresponding to eigenvalues {Jqq E Q}, the

error of J( U, V) is given by the sum of the eigenvalues not in Q (EqOQ L-q), and so the

global minimum is attained when the eigenvectors corresponding to the highest eigenvalues

are taken. As long as there are no repeated eigenvalues, all (U, V) global minima corre-

spond to the same low-rank matrix X = UV', and belong to the same equivalence class.

If there are repeated eigenvalues, the global minima correspond to a polytope of low-rank

approximations in X space; in U, V space, they form a collection of higher-dimensional

asymptotically tangent manifolds.

In order to understand the behavior of the objective function, it is important to study the

remaining critical points. For a critical point (U, V) spanned by eigenvectors correspond-
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ing to eigenvalues as above (assuming no repeated eigenvalues), the Hessian has exactly

q - (') negative eigenvalues: we can replace any eigencomponent with eigenvalue o

with an alternate eigencomponent not already in (U, V) with eigenvalue U' > o, decreas-

ing the objective function. The change can be done gradually, replacing the component

with a convex combination of the original and the improved components. This results in a

line between the two critical points which is a monotonic improvement path. Since there

are ZqEQ q - (k) such pairs of eigencomponents, there are at least this many directions

of improvement. Other than these directions of improvement, and the k2 directions along

the equivalence manifold corresponding to the k2 zero eigenvalues of the Hessian, all other

eigenvalues of the Hessian are positive (or zero, for very degenerate A).

Hence, when minimizing the unweighted Frobenius distance, all critical points that are

not global minima are saddle points. This is an important observation: Despite J( U, V)

not being a convex function, all of its local minima are global.

3.2 Weighted Low Rank Approximations

For many applications the discrepancy between the observed matrix and the low-rank ap-

proximation should be measured relative to a weighted Frobenius norm. While the ex-

tension to the weighted-norm case is conceptually straightforward, and dates back to early

work on factor analysis [82], standard algorithms (such as SVD) for solving the unweighted

case do not carry over to the weighted case. Only the special case of a rank-one weight ma-

trix (where the weights can be decomposed into row weights and column weights) can be

solved directly, analogously to SVD [41].

Weighted norms can arise in a number of situations. Zero/one weights, for example,

arise when some of the entries in the matrix are not observed. More generally, we may in-

troduce weights in response to some external estimate of the noise variance associated with

each measurement. This is the case, for example, in gene expression analysis, where the

error model for microarray measurements provides entry-specific noise estimates. Setting

the weights inversely proportional to the assumed noise variance can lead to a better recon-

struction of the underlying structure. In other applications, entries in the target matrix may
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represent aggregates of many samples. The standard unweighted low-rank approximation

(e.g., for separating style and content [72]) would in this context assume that the number

of samples is uniform across the entries. Non-uniform weights are needed to appropriately

capture any differences in the sample sizes.

Weighted low-rank approximations also arise as a sub-routine in more complex low-

rank approximation tasks, with non-quadratic loss functions. Examples of such uses are

demonstrated in Sections 3.4 add 3.3.

Prior and related work

Despite its usefulness, the weighted extension has attracted relatively little attention. Sh-

pak [66] and Lu et al [50] studied weighted-norm low-rank approximations for the design

of two-dimensional digital filters where the weights arise from constraints of varying im-

portance. Shpak developed gradient-based optimization methods while Lu et al. suggested

alternating-optimization methods. In both cases, rank-k approximations are greedily com-

bined from k rank-one approximations. Unlike for the unweighted case, such a greedy

procedure is sub-optimal.

Shum et al [67] extends the work of Ruhe [60] and Wibger [81], who studied the zero-

one weight case, to general weighted low-rank approximation, suggesting alternate opti-

mization of U given V and visa versa. The special case of zero-one weights, which can be

seen as low rank approximation with missing data, was also confronted recently by several

authors, mostly suggesting simple ways of 'filling in' the missing (zero weight) entries,

with zeros (e.g. Berry [12]) or with row and column means (e.g. Sarwar et al [61]). Brand

[17] suggested an incremental update method, considering on data row at a time, for effi-

ciently finding low-rank approximations. Brand's method can be adapted to handle rows

with missing data, but the resulting low rank approximation is not precisely the weighted

low-rank approximation. Troyanskaya et al [75] suggests an iterative fill-in procedure,

essentially identical to the one we discuss in Section 3.2.4 for zero-one weights.
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Problem formulation

Given a target matrix A E R""', a corresponding non-negative weight matrix W E R"

and a desired (integer) rank k, we would like to find a matrix X E R"' of rank (at most)

k, that minimizes the weighted Frobenius distance

J(X) = E Wia (Xia - Aia) 2 ,

ia

3.2.1 Structure of the Optimization Problem

As was discussed previously, the unweighted Frobenius low-rank approximation can be

computed in closed form and is given by the leading components of the singular value

decomposition. We now move on to the weighted case, and try to take the same path as

before. Unfortunately, when weights are introduced, the critical point structure changes

significantly.

The partial derivatives become (with 0 denoting element-wise multiplication):

= 2(W 0 (UV' - A))V

= 2(W (VU' - A'))U

The equation ' = 0 is still a linear system in U, and for a fixed V, it can be solved,

recovering the global minima U for fixed V (since J( U, V) is convex in U):

U* = arg min J(U, V). (3.4)
U

However, the solution cannot be written using a single pseudo-inverse. Instead, a separate

pseudo-inverse is required for each row (Uf) of U;:

(U ) = ( V'W V) V'W Ai
~- (3.5)

= pinv( W2 V)( WjAj)

where Wi E RAkk is a diagonal matrix with the weights from the i* row of W on the

49



diagonal, and Ai is the ith row of the target matrix. In order to proceed as in the unweighted

case, we would have liked to choose V such that V'W V = I (or is at least diagonal).

This can certainly be done for a single i, but in order to proceed we need to diagonalize all

V'W V concurrently. When W is of rank one, such concurrent diagonalization is possible,

allowing for the same structure as in the unweighted case, and in particular an eigenvector-

based solution [41]. However, for higher-rank W, we cannot achieve this concurrently for

all rows. The critical points of the weighted low-rank approximation problem, therefore,

lack the eigenvector structure of the unweighted case. Another implication of this is that

the incremental structure of unweighted low-rank approximations is lost: an optimal rank-k

factorization cannot necessarily be extended to an optimal rank-(k + 1) factorization.

3.2.2 Gradient-Based Optimization

Lacking an analytic solution, we revert to numerical optimization methods to minimize

J( U, V). But instead of optimizing J( U, V) by numerically searching over (U, V) pairs,

we can take advantage of the fact that for a fixed V, we can calculate U;, and therefore

also the projected objective

J*( V) = min J( U, V) = J(U;, V). (3.6)
U

The parameter space of J*( V) is of course much smaller than that of J( U, V), making

optimization of J* ( V) more tractable. This is especially true in many typical applications

where the the dimensions of A are highly skewed, with one dimension several orders of

magnitude larger than the other (e.g. in gene expression analysis one often deals with thou-

sands of genes, but only a few dozen experiments).

Recovering U; using (3.5) requires n inversions of k x k matrices. The dominating fac-

tor is actually the matrix multiplications: Each calculation of V'W V requires O(mk2 ) op-

erations, for a total of O(nmk2 ) operations. Although more involved than the unweighted

case, this is still significantly less than the prohibitive O(n 3 k1) required for each iteration

suggested by Lu et al [50], or for Hessian methods on (U, V) [66], and is only a factor of

k larger than the O(nmk) required just to compute the prediction UV'.
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After recovering U*, we can easily compute not only the value of the projected objec-

tive, but also its gradient. Since aJ(v, U) = 0, we have
au =Uv

aJ(V) _ aJ(V,U) = 2(W & (VU*' - A'))U*.
aV a V I_=U

The computation requires only O(nmk) operations, and is therefore "free" after U , has

been recovered.

The Hessian 92 2jV) is also of interest for optimization. The mixed second derivatives

with respect to a pair of rows Va and V of V is (where 6 ab is the Kronecker delta):

R kxk a2j*(V) = 2Z (Wi-a'(U*r)(U*)'- G'ia(V'Wi V)-Gja( Va)) , (3.7)

where: Gia( Va) = Wia(Va(U*)' + ((U*)'Va - Aia)I) E !jkxk (3.8)

By associating the matrix multiplications efficiently, the Hessian can be calculated with

O(nrm 2 k) operations, significantly more than the O(nmk2 ) operations required for recov-

ering U*,, but still manageable when m is small enough.

3.2.3 Local Minima

Equipped with the above calculations, we can use standard gradient-descent techniques

to optimize J*(V). Unfortunately, though, unlike in the unweighted case, J(U, V), and

J*( V), might have local minima that are not global. Figure 3-1 shows the emergence of a

non-global local minimum of J*( V) for a rank-one approximation of A ( L{). The ma-

trix V is a two-dimensional vector. But since J ( V) is invariant under invertible scalings,

V can be specified as an angle 0 on a semi-circle. We plot the value of J* ([cos 6, sin 0]) for

each 0, and for varying weight matrices of the form W = ( it ). At the front of the

plot, the weight matrix is uniform and indeed there is only a single local minimum, but at

the back of the plot, where the weight matrix emphasizes the diagonal, a non-global local

minimum emerges.

Despite the abundance of local minima, we found gradient descent methods on J ( V),
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Figure 3-1: Emergence of local minima when the weights become non-uniform.

and in particular conjugate gradient descent, equipped with a long-range line-search for

choosing the step size, very effective in avoiding local minima and quickly converging to

the global minimum.

The function J* ( V) also has many saddle points, their number far surpassing the num-

ber of local minima. In most regions, the function is not convex. Therefore, Newton-

Raphson methods are generally inapplicable except very close to a local minimum.

3.2.4 A Missing-Values View and an EM Procedure

In this section we present an alternative optimization procedure, which is much simpler

to implement. This procedure is based on viewing the weighted low-rank approximation

problem as a maximum-likelihood problem with missing values.
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Zero-One Weights

Consider first systems with only zero/one weights, where only some of the elements of the

target matrix A are observed (those with weight one) while others are missing (those with

weight zero). Referring to a probabilistic model parameterized by a low-rank matrix X,

where Y = X + Z and Z is white Gaussian noise, the weighted cost of X is equivalent to

the log-likelihood of the observed variables.

This suggests an Expectation-Maximization procedure:

In the M-step, we would like to maximize the expected log-likelihood, where the

expectation is over the missing values of Y, with respect the the conditional distribu-

tion over these values imposed by the current estimate of the parameters X. For unob-

served Yi,, we have Yi, = Xia + Zia with Zia ~_ K(0, o.2), and so given Xi,, we have

YialXia ~ A/(Xia, .2 ). Let us now evaluate the contribution of X.Ct+l) to the expected

log-likelihood:

E N(xta2) log Pr(YiajX+(t1))

= LEy '~N(x2,,2) (Yla - X(t+)2 + Const

= Yia~r(O,,2) jYia 21
= b E [ - ? -g(X 2E[Yia]X +- + + + Const1: FsaAr21( ',2) rxi t i-I-
= 1 (([2 - )2LzaXX'z+ + X(+1)2 + Const+2 a a i

-1((or2 +X@) 2) 2tXtl)+ X.(t+l1) - os

= -(X.t - X(t+l))2+ Const.

The contribution corresponding to non-missing values is, as before, y Y taXf )2+Const,

and so the total expected log-likelihood is proportional to the Frobenius difference between

X(t+) and the matrix Y with missing values filled in from X(t).

In each EM update we would like to find a new parameter matrix maximizing the

expected log-likelihood of a filled-in A, where missing values are filled in according to the

distribution imposed by the current estimate of X. This maximum-likelihood parameter

matrix is the (unweighted) low-rank approximation of the mean filled-in Y, which is Y

with missing values filled in from X. To summarize: in the Expectation step values from
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the current estimate of X are filled in for the missing values in Y, and in the Maximization

step X is re-estimated as a low-rank approximation of the filled-in Y.

Such an approach was also suggested by Troyanskaya et al [75].

Multiple Target Matrices

In order to extend this approach to a general weight matrix, consider a probabilistic system

with several target matrices, Y(i), Y(2),... , Y(N), but with a single low-rank parameter

matrix X, where Y(,) = X + Z(r) and the random matrices Z(r) are independent white

Gaussian noise with fixed variance. When all target matrices are fully observed, the maxi-

mum likelihood setting for X is the low-rank approximation of the their average I Y(r).

Now, if some of the entries of some of the target matrices are not observed, we can use a

similar EM procedure, where in the expectation step values from the current estimate of X

are filled in for all missing entries in the target matrices, and in the maximization step X is

updated to be a low-rank approximation of the mean of the filled-in target matrices:

Real-valued Weights

To see how to use the above procedure to solve weighted low-rank approximation problems,

consider systems with weights limited to Wia = 9i with integer Qia E {O, 1, ... , N}.N

Such a low-rank approximation problem can be transformed to a missing value problem of

the form above by "observing" the value Aja in Qi of the target matrices Y(), . . ., Y(Q.)

(for each entry i, a), and leaving the entry as missing in the rest of the target matrices. The

EM update then becomes:

X('+') = LRA, (W 0 A + (1 - W) 0 X(')) (3.9)

where LRAk(X) is the unweighted rank-k approximation of X, as can be computed from

the SVD. Note that this procedure is independent of N. For any weight matrix (scaled

to weights between zero and one) the procedure in equation (3.9) can thus be seen as

an expectation-maximization procedure. This provides for a very simple, tweaking-free

method for finding weighted low-rank approximations.
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Initialization and a Heuristic Improvement

Although we found this EM-inspired method effective in many cases, in some other cases

the procedure converges to a local minimum which is not global. Since the method is

completely deterministic, initialization of X plays a crucial role in promoting convergence

to a global, or at least deep local, minimum, as well as the speed with which convergence

is attained.

Two obvious initialization methods are to initialize X to A, and to initialize X to zero.

Initializing X to A works reasonably well if the weights are bounded away from zero, or

if the target values in A have relatively small variance. However, when the weights are

zero, or very close to zero, the target values become meaningless, and can throw off the

search. Initializing X to zero avoids this problem, as target values with zero weights are

completely ignored (as they should be), and works well as long as the weights are fairly

dense. However, when the weights are sparse, it often converges to local minima which

consistently under-predict the magnitude of the target values.

As an alternative to these initialization methods, we found the following procedure very

effective: we initialize X to zero, but instead of seeking a rank-k approximation right away,

we start with a full rank matrix, and gradually reduce the rank of our approximations. That

is, the first m - k iterations take the form:

X (+') - LRAm-t ( W & A + (1 - W) 0 X() (3.10)

resulting in X (t) of rank (m - t + 1). After reaching rank k, we revert back to the iterations

of equation (3.9) until convergence. Note that with iterations of the form X(t+) = W 0

A+ (1- W) OX M, without rank reductions, we would have X (t) = (1 -(1- Wia)t))Aia

(1 - e-twia)Aia, which converges exponentially fast to A for positive weights. Of course,

because of the rank reduction, this does not hold, but even the few high-rank iterations

set values with weights away from zero close to their target values, as long as they do not

significantly contradict other values.
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3.2.5 Reconstruction Experiments

Since the unweighted or simple low-rank approximation problem permits a closed-form

solution, one might be tempted to use such a solution even in the presence of non-uniform

weights (i.e., ignore the weights). We demonstrate here that this procedure results in a

substantial loss of reconstruction accuracy as compared to the EM algorithm designed for

the weighted problem.

To this end, we generated 1000 x 30 low rank matrices combined with Gaussian noise

models to yield the observed (target) matrices. For each matrix entry, the noise variance

U-2 was chosen uniformly in some noise level range characterized by a noise spread ratio

max o.2/ min .2 . The planted matrix was subsequently reconstructed using both a weighted

low-rank approximation with weights W = 1/o-i, and an unweighted low-rank approxi-

mation (using SVD). The quality of reconstruction was assessed by an unweighted squared

distance from the "planted" matrix.

Figure 3-2 shows the quality of reconstruction attained by the two approaches as a

function of the signal (weighted variance of planted low-rank matrix) to noise (average

noise variance) ratio, for a noise spread ratio of 100 (corresponding to weights in the range

0.01-1). The reconstruction error attained by the weighted approach is generally over

twenty times smaller than the error of the unweighted solution. Figure 3-3 shows this

improvement in the reconstruction error, in terms of the error ratio between the weighted

and unweighted solutions, for the data in Figure 3-2, as well as for smaller noise spread

ratios of ten and two. Even when the noise variances (and hence the weights) are within a

factor of two, we still see a consistent ten percent improvement in reconstruction.

The weighted low-rank approximations in this experiment were computed using the EM

algorithm of Section 3.2.4. For a wide noise spread, when the low-rank matrix becomes

virtually undetectable (a signal-to-noise ratio well below one, and reconstruction errors in

excess of the variance of the signal), EM often converges to a non-global minimum. This

results in weighted low-rank approximations with errors far higher than could otherwise

be expected, as can be seen in both figures. In such situations, conjugate gradient descent

methods proved far superior in finding the global minimum.
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Figure 3-2: Reconstruction of a 1000 x 30 rank-three matrix: weighted and unweighted
reconstruction with a noise spread of 100.

3.3 Low Rank Approximation with Other Convex Loss

Functions

In this section we depart from the sum-squared error as a measure of loss, and consider

other loss functions. We consider the optimization problem:

min Zloss(Xia; Ya)
X,rank(X)=k

(3.11)

where the loss function, the target rank k and the target matrix Y are given. Specifically,

we consider the case in which the loss function is convex. By convex we mean that it is

convex in Xia for any value of Ya.
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3.3.1 A Newton Approach

Using a weighted low-rank approximation, we can fit a low-rank matrix X minimizing a

quadratic loss from the target. In order to fit a convex, but non-quadratic loss, we use a

quadratic approximation to the loss. At each iteration, we consider a quadratic approxima-

tion to the overall loss. The quadratic approximation can be written as a weighted low-rank

approximation problem, and we can apply the methods of Section 3.2.

For a twice continuously differentiable loss function, the second-order Taylor expansion

of loss(x, y) around z can be written as:

loss"(z; y)
los~z y)~~loss~z y) + loss' (J; y) (X - + 2

(3.12)
loss" (z; IY)

= (loss; ) - loss'(; Y)z + 2 2)

loss"(z; y)2
+ (loss' (; y) - loss"(z; y)z) x + 2 2

2

loss"(z; y)5 - loss'(E; y) 2

loss" (J; y)
+ Const (3.13)
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where the constant term depends on J and y, but not on x.

We can now write a second-order approximation for the total discrepancy of X about

an origin matrix X:

D(X; Y) =

loss"(kia; Yia) los
~ Xia

ia

I E Wja(Xja - Aia ) 2 + Const

s"(kia; Ya)kia - loss'(Xja; Ya) 2

loss"(Xia; Ya)

Wi = loss"(kia; Ya) Aja - loss"(kia; Yia)kia - loss'(Xia; Ya)
loss"(Xia; Ya)

Maximizing (3.14) is a weighted low-rank approximation problem. Note that for each entry

(i, a), we use a second-order expansion about a different point Xia. The closer the origin

Xia is to Xia, the better the approximation.

This suggest a Newton-type iterative approach, where at each iteration we set

WV(t+') = loss" (XW. Y ) A + loss(X.( ; YY )X., - loss' (XY ; Yia)(.7
ia loss"(XY) ; Ya

and then update the current solution X(t) by optimizing a weighted low-rank approximation

problem:

X(t+) = argmin W Vt+1(+(Xia - A +2 (3.18)

3.3.2 Low-rank Logistic Regression

As a specific example of optimizing a convex non-quadratic loss, we consider the prob-

lem of logistic low-rank regression: entries of an observed binary matrix are modeled as

Bernoulli variables with natural parameters forming a low-rank matrix X, and the maxi-
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mum likelihood low-rank matrix X is sought. The negative log-likelihood, which is our

objective to be minimized, can then be written as a sum of logistic losses:

D(X; Y) = -log Pr (YIX) = (-log g(YaXia)) (3.19)

where g(z) = is the logistic function.

Taking the derivatives of the logistic loss loss(x; y) = - log g(yx), we get the following

Newton updates for the weight and target matrices (3.17):

A+ = X + W(t+l) = g(X2)

Optimizing a Second Order Variational Bound

For the Taylor expansion, the improvement of the approximation is not always monotonic.

This might cause the method outlined above not to converge. In order to provide for a more

robust method, we use the following variational bound on the logistic [42]:

wr +y-yj _ tanh(i/2) /X2 2

log g(yx) ; logg(yz) + i / x)

tanhGi/2) X - tanh(/2) + Const,

with equality if and only if x = i. Bounding each entry, we get the corresponding bound

on the overall objective:

D(X; Y) < j tanh(Xta/2) Xia + Const (3.21)

with equality if and only if X = X. This bound suggests an iterative update of the param-

eter matrix X(t) by seeking a low-rank approximation X(t+) for the following target and

weight matrices:

A + = Y a/ WY+1) W+ = tanh(Xf/2)/X M (3.22)

Fortunately, we do not need to confront the severe problems associated with nesting
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iterative optimization methods. In order to increase the likelihood of our logistic model,

we do not need to find a low-rank matrix minimizing the objective specified by (3.22), just

one improving it. Any low-rank matrix X(+1) with a lower objective value than X(t), with

respect to A(t+) and W(t+1), is guaranteed to have a lower overall discrepancy D(X; Y)

(i.e. higher likelihood): A lower objective corresponds to a lower lower bound in (3.21),

and since the bound is tight for X(t), D(X(t+1); Y) must be lower than D(X(t); Y). More-

over, if the discrepancy of XWt ) is not already minimal are guaranteed to be matrices with

lower objective values. Therefore, we can mix weighted low-rank approximation iterations

and logistic bound update iterations, while still ensuring convergence.

In many applications we may also want to associate external weights with each entry

in the matrix (e.g. to accommodate missing values), or more generally, weights (counts) of

positive and negative observations in each entry (e.g. to capture the likelihood with respect

to an empirical distribution). This can easily be done by multiplying the weights in (3.22)

or (3.20) by the external weights.

Note that the target and weight matrices corresponding to the Taylor approximation and

those corresponding to the variational bound are different: The variational target is always

closer to the current value of X, and the weights are more subtle (less variation between the

weights). This ensures the guaranteed convergence (as discussed above), but the price we

pay is a much lower convergence rate. Although we have observed many instances in which

a 'Taylor' iteration increases, rather then decreases, the objective, overall convergence was

attained much faster using 'Taylor', rather than 'variational' iterations.

The same approach outlines here is applicable for any twice differentiable convex loss

function, and especially loss functions for which a second order variational bound is known

in closed form.
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3.4 Low Rank Approximations with Non-Gaussian Addi-

tive Noise

We now depart from Gaussian noise models, but still assume additive noise:

Y = X + Z, (3.23)

where the entries in Z are independent of each other and of X. We model the noise distri-

bution as a mixture of Gaussian distributions:

m

PZ(Zia) = pc(27r2 eXP((Z (2c.(3.24)
c=1

Given such a mixture model, an observed data matrix Y E R"X', and a target rank k,

we would like to find the rank-k matrix X maximizing the likelihood Pr (Y = X + Z; X),

where the entries of Z are i.i.d. with distribution pz.

3.4.1 An EM optimization procedure

To do so, we introduce latent variables Cia specifying the mixture component of the noise at

Yia, and solve the problem using EM.. In the Expectation step, we compute the posterior

probabilities Pr (CiaI Ya; X) based on the current low-rank parameter matrix X. In the

Maximization step we need to find the low-rank matrix X that maximizes the posterior

expected log-likelihood

Ecly [log Pr (Y = X + ZIC; X)] = - ZEC IYia log2ro + ( 2a]

-rCac L.... L.. 2 ia-(Yia +Lc)) 2 + Const
ia C

=- Wia (Xia - Aia)+ Const (3.25)
ia

where

Wia = Pr(Cia=c)r't Aja = Yia + Pr(Cia=c) I YiaIc (3.26)
C C Wia

C C
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This is a weighted Frobenius low-rank approximation (WLRA) problem. Equipped

with a WLRA optimization method (Section 3.2), we can now perform EM iteration in

order to find the matrix X maximizing the likelihood of the observed matrix Y. At each

M step it is enough to perform a single WLRA optimization iteration, which is guaranteed

to improve the WLRA objective, and so also the likelihood. The resulting iterative opti-

mization method can be viewed as iterative WLRA method, where the target and weight

matrices are dynamically updated as a function of the current solution.

Unknown Gaussian Mixtures

So far we discussed the situation in which the noise was i.i.d. according to a known Gaus-

sian mixture. However, we can easily augment our method to handle an unknown noise

distribution, so long as it is a Gaussian mixture. This can be done by introducing an opti-

mization of the mixture parameters of p (with respect to the current posteriors and low-rank

matrix X) at each M iteration. Note that again, this is a weakened EM method since the

mixture parameters and the low-rank matrix X are not concurrently optimized, but rather

are alternatively optimized, leading to a sub-optimal setting. Still, we do improve the ob-

jective, and are guaranteed convergence to a local minimum.

Infinite Gaussian Mixtures

We do not have to limit ourselves only to finite Gaussian mixtures. The maximum-likelihood

problem can be well-defined also for classes of noise distributions with an unbounded, or

infinite, number of Gaussian components. The target and weight matrices for the WLRA

in the M step can be written as

Wia = EC ia Yia [ Cia]

AIa = Yia + EC ia C [1 Wia

Any class of Gaussian mixture distributions which we can efficiently fit using EM, and

compute these two quantities for, is amenable to our approach.
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3.4.2 Reconstruction Experiments with GSMs

We report here experiments with ML estimation using bounded Gaussian scale mixtures

[6, 77], i.e. a mixture of Gaussians with zero mean, and variance bounded from bellow.

Gaussian scale mixtures (GSMs) are a rich class of symmetric distributions, which include

non-log-concave, and heavy tailed distributions. We investigated two noise distributions:

a 'Gaussian with outliers' distribution formed as a mixture of two zero-mean Gaussians

with widely varying variances; and a Laplace distribution p(z) oc e- 111, which is an infinite

scale mixture of Gaussians. Figures 3-4,3-5 show the quality of reconstruction of the L2

estimator and the ML bounded GSM estimator, for these two noise distributions, for a

fixed sample size of 300 rows, under varying signal strengths. We allowed ten Gaussian

components, and did not observe any significant change in the estimator when the number

of components increases.
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Figure 3-5: Norm of sines of canonical angles to correct subspace for a random rank-2
subspace in R 10 with 0.99K (0, 1) + 0.01K(0, 100) noise. Frobenius estimator is denoted
" L2"'-

The ML estimator is overall more accurate than the Frobenius estimator (standard

PCA)-it succeeds in reliably reconstructing the low-rank signal for signals which are ap-

proximately three times weaker than those necessary for reliable reconstruction using the

Frobenius estimator. The improvement in performance is not as dramatic, but still notice-

able, for Laplace noise.

Most usual caveats of learning a distribution as a Gaussian mixture apply, and we will

want to limit the admissible models, both in terms of complexity (e.g. number of compo-

nents) and in order to prevent singularities.

One particularly problematic situation, which is not specific to Gaussian mixtures,

should be pointed out. This situation occurs if we allow the density to attain unbounded

values at a point zo, while remaining bounded from bellow by some strictly positive func-

tion elsewhere. As the density at z0 increases, it becomes increasingly profitable to fit

some, even a few, values of y exactly, while paying only a constant penalty for completely
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missing all other entries. But it is always possible for X to fit at least k values in each row

of y exactly (e.g. when the columns of X are spanned by k columns of y). The likelihood

is thus unbounded, and will go to infinity for those X fitting some values of y exactly, as

p(zo) goes to infinity.

3.4.3 Comparing Newton's Methods and Using Gaussian Mixtures

Confronted with a general additive noise distribution, the approach suggested in Section 3.4

would be to rewrite, or approximate, it as a Gaussian mixture and use WLRA in order to

learn X using EM. A different option is to write down the log likelihood with respect to the

additive noise distribution, and to use Newton's method of Section 3.3.1, considering the

second order Taylor expansions of the log-likelihood, with respect to the entries of X, and

iteratively maximize them using WLRA. Such an approach requires calculating the first and

second derivatives of the density. If the density is not specified analytically, or is unknown,

these quantities need to be estimated. But beyond these issues, which can be overcome,

lies the major problem of Newton's method: the noise density must be strictly log-concave

and differentiable. If the distribution is not log-concave, the quadratic expansion of the

log-likelihood will be unbounded and will not admit an optimum. Attempting to ignore this

fact, and for example "optimizing" U given V using the equations derived for non-negative

weights would actually drive us towards a saddle-point rather then a local optimum. The

non-concavity does not only mean that we are not guaranteed a global optimum (which we

are not guaranteed in any case, due to the non-convexity of the low-rank requirement)- it

does not yield even local improvements. On the other hand, approximating the distribution

as a Gaussians mixture and using the EM method, might still get stuck in local minima, but

is at least guaranteed local improvement.

Limiting ourselves to only log-concave distributions is a rather strong limitation, as it

precludes, for example, additive noise with any heavy-tailed distribution. Consider even

the "balanced tail" Laplace distribution p(z) oc e-Izl. Since the log-density is piecewise

linear, a quadratic approximation of it is a line, which of course does not attain a minimum

value.
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Chapter 4

Consistency of Low Rank

Approximation

Viewing dimensionality reduction as a subspace estimation problem (Section 2.2.2) allows

us to investigate its properties as an estimator. In this chapter, we begin doing so, by study-

ing the most basic property, namely asymptotic consistency, under various assumptions.

We will see that even this minimal requirement cannot be taken for granted.

Maximum likelihood estimation assuming a fully parametric model, e.g. low rank

Gaussian signal and white Gaussian noise (Seciton 2.2.1), is certainly consistent by virtue

of it being a maximum likelihood estimator in a finite dimensional parameter space. How-

ever, in line with Section 2.4, our interests lay in focusing on the structural, non-parametric,

aspects of the model, and understanding what the minimal requirements for consistency are.

We begin by studying the asymptotic consistency of maximum likelihood estimation

for various conditional models, under the framework of Section 2.2.2. The question we ask

is: if the observed data is generated from a low-rank matrix using the assumed conditional

model, does the maximum likelihood estimator for the low-rank subspace spanning the

low-rank matrix converge to the true subspace when more data rows are available? To

answer this question, we first develop a series of necessary and sufficient conditions for

consistency (Section 4.1.1) and then proceed to analyze a number of specific conditional

models. We show that maximum likelihood estimation of the subspace in most of these

conditional models is, in fact, not consistent.
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On the other hand, in Section 4.2 we show how the simple Frobenius low-rank approxi-

mation is consistent for the general class of additive noise models. The Frobenius low-rank

approximation is not appropriate for non-additive conditional models, but in Section 4.2.2

we suggest a correction that is appropriate for unbiased conditional models.

Most of the research described in this chapter is reported in a conference presentation

[70]. Matterial which appears here for the first time includes formulation of the necessary

and sufficient conditions for non-additive models, as well as the analyzis of the consistency

of maximum likelihood estimation for the logistic and Bernoulli conditional models.

4.1 Consistency of Maximum Likelihood Estimation

We consider maximum likelihood estimation for low-rank linear models with a known

conditional distribution ylx, where x = uV' lies in the low-rank subspace V, which is

the "parameter" of interest. These include both additive models y = x + z, where z

is i.i.d. with known distribution pz, and non-additive models with a known conditional

distribution, such as Exponential-PCA.

The question we ask is: assuming the data Y does follow the known conditional distri-

bution ylx, where x = u VO1, will the maximum likelihood estimator

V = arg max sup Pr (YIUV') (4.1)
V U

converge to the true subspace Vo as more data rows of Y are available? We would like this

to hold for any distribution over u. That is, we would like to reconstruct the correct support

subspace for any distribution over x with low-rank support.

Note that due to degrees of freedom in the representation (rotations of V, and in fact,

any linear invertible transformations), we cannot expect the matrix V to always converge

to V0. Instead, we must discuss the convergence of the subspace it represents. Throughout

the presentation, we will slightly overload notation and use a matrix to denote also its

column subspace. In particular, we will denote by Vo the true signal subspace. In order

to study estimators for a subspace, we must be able to compare two subspaces. A natural
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way of doing so is through the canonical angles between them (Section 2.2.3). All results

described bellow refer to convergence with respect to the canonical angles.

4.1.1 Necessary and sufficient conditions

In order to answer this question, we present a necessary and sufficient conditions for the

consistency of the maximum likelihood estimator, under a known conditional distribution

PYIX-

A necessary condition

Consider the random function:

ID(V) = inf - log pyIx (yIuV'). (4.2)
U

Here y is a random vector, hence oD(V) is a random variable. The maximum log-likelihood

of V for the data Y can be written in terms of the empirical mean of c(V):

log Pr (YIV) = sup log Pr (YUV')
U

= sup log Pr (YIUaV')
U

= sup log Pr (YaIuV')
U

a

= -nE [D(V)] (4.3)

where E [] denotes the empirical mean with respect to the data 1. Maximizing the likelihood

of V is equivalent to minimizing the empirical mean k [4(V)].

When the number of samples increase, the empirical means converge to the true means,

and if E [D(V)] < E [4D(V 2)], then with probability approaching one V2 will not minimize

E [4D(V)]. For the ML estimator to be consistent, E [1(V)] must be minimized by Vo,

establishing a necessary condition for consistency:

Condition 1. Ey [1(V)] is minimized by VO.
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Proposition 1. Condition 1 is necessary for the consistency of the maximum likelihood

estimator V.

The sufficiency of this condition rests on the uniform convergence of {E [4(V)]}, which

does not generally hold, or at least on uniform divergence from E [4( Vo)]. It should be

noted that the issue here is whether the ML estimator at all converges, since if it does

converge, it must converge to the minimizer of E [1(V)].

Conditions independent of the signal distribution

When discussing E ['1(V)], the expectation is with respect to the conditional distribution

pyIx and the signal distribution px = pu. This is not quite satisfactory, as we would like

results which are independent of the signal distribution, beyond the rank of its support. To

do so, we must ensure the expectation of 4)(V) is minimized on Vo for all possible signals

(and not only in expectation).

Denote the negative maximum likelihood of a data vector y E Rm:

q(V; y) = inf(- log p(yIuV')). (4.4)
U

and for any signal vector x E RI consider the expected conditional negative log-likelihood:

'I(V; x) = Eyi [#(V; y)] = Eyjx inf - log pyix(yIuV) x] (4.5)

This is the expected contribution of a signal vector x to the maximum log-likelihood of V.

For additive models y = x + z, '(V; x) can be written in terms of the error distribution

Pz:

J(V; x) = E. inf - log p,((x + z) - uV) (4.6)

We can now formulate a condition which is independent of the signal distribution, and is

necessary for the maximum likelihood estimator being consistent for all signal distribution:

Condition 2. For all x E R', 'I(V; x) is minimized with respect to V exactly when x E

span V.

70



Proposition 2. For any conditional distribution ylx (e.g. for any additive noise distribu-

tion), Condition 2 is necessary for the consistency of the maximum likelihood estimator V

for all distributions x = u Vo. That is, if Condition 2 does not hold, then it cannot be the

case that for all VO and all distributions u, we have V -+ Vo.

We will also consider the following more specific condition, which focuses on the ex-

pected contribution to the log-likelihood '(V; 0) when no signal is present (i.e. x = 0):

Condition 3. TI(V; 0) is constant for all V.

Proposition 3. If the conditional distribution ylx has a continuous density (e.g. if it is

additive and Pz is continuous), then Condition 3 is necessary for the consistency of the

maximum likelihood estimator V for all distributions x = u Vo.

If Condition 3 does not hold, we have 'I(V; 0) < I(V 2 ; 0) for some V, V2, and for

small enough x E V2, J(Vi; x) < xJ(V2; x). A non-constant 'I(V; 0) indicates an a-priori

bias towards certain sub-spaces.

Sufficiency of the conditions

The sufficiency of Conditions 1 and 2 rests on the uniform convergence of {E [<D(V)]},

which does not generally exist, or at least on uniform divergence from E [<D( Vo)]. It should

be noted that the issue here is whether the ML estimator at all converges, since if it does

converge, it must converge to the minimizer of E [<b(V)].

Such convergence can be guaranteed at least in the special case of additive noise when

the marginal noise density pz(za) is continuous, strictly positive, and has finite variance

and differential entropy. Under these conditions, the maximum likelihood estimator is

guaranteed to converge to the minimizer of E [<D(V)] [76, Theorem 5.7].

Condition 4. y = x + z, where z is i.i.d and the density of each component of z is contin-

uous, strictly positive, and has finite variance and differential entropy.

Lemma 4. Condition 4 gurantees the uniform law of large numbers for {<b(V)}.
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Proof We will show that <b(V) is continuous in V, which varies over a compact space

(since we can view V as unit-norm matrices), and has a finite envelope:

E [max1D (V)I] < oo. (4.7)

For additive noise models, pyrx(yjuV') = pz(y - V') goes to zero when u is far

enough from the origin, and the infimum in (4.2) is always attained at finite u and can be

replaced with a minimum. The random function

<D(V) = min - log pz(y - uV') (4.8)
U

is then continuous in V for all y. Furthermore, we have:

(D (V) -maxlog pz(z) > -oo (4.9)
z

ensuring

Ey max<>(V) > -00. (4.10)

On the other side, we have:

Ey [<(V)] Ey - maxlogpyjx(yjuV')

_ Ey -maxlogpyix(yI0)]

= D (py||pylo) - Hpy < oo (4.11)

where py is the true distribution of y and pylo is the distribution YIX = 0. Together, (4.11)

and (4.10) provide a finite envolope for <D(V). L

Proposition 5. Conditions 4 and 1 together are sufficient for the consistency of the maxi-

mum likelihood estimator V. Conditions 4 and 2 together are sufficient for the consistency

of the maximum likelihood estimator V for any "signal" distribution x = u Vo.
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4.1.2 Additive Gaussian Noise

We first analyze the maximum likelihood estimator V of VO in the presence of i.i.d. adda-

tive Gaussian noise:

y = x + z

where x = y VO and the the noise z is i.i.d. Gaussian. This is the standard Frobenius-

distance minimizing estimator (PCA). By using Proposition 5 it is possible to show that the

maximum likelihood estimator in this case is consistent.

Theorem 6. For any signal distribution x = u Vo, and for additive i.i.d. Gaussian noise,

the maximum likelihood estimator V is consistent.

Proof For a fixed subspace V, consider the decomposition y = yli + y± of vectors into

their projection onto V, and the residual. As z is an isotropic Gaussian random vector,

any rotation of z is also isotropic Gaussian, and so z1 and z1I are independent, and we can

decompose:

PY(y) = p11(yli)p(y±) (4.12)

We can now analyze:

q(V; y) = inf(- log pl (yii - uV') - log p±(y±)) = - log p1 (0) + 1 1ywI 2+ Const (4.13)

yielding

JI(V; x) oc E. [IXi + z1|2] + Const, (4.14)

which is minimized when x1 = 0, i.e. x is spanned by V. This fulfills Condition 2. The

Gaussian density fulfills Condition 4 and so by Proposition 5 V is consistent. L

This consistency proof employed a key property of the isotropic Gaussian: rotations

of an isotropic Gaussian random variable remain i.i.d. As this property is unique to Gaus-

sian random variables, maximum likelihood estimators in the presence of other conditional

distributions (or even additive noise distributions) might not be consistent.
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4.1.3 Inconsistency

To show inconsistency, we will analyze '(V; 0) and use Condition 3 and Proposition 3.

For some distributions, it is possible to evaluate '(V; 0) analytically. In addition to the

additive Gaussian noise, this can be done, for example, for additive Laplace noise, as well

as for a logistic model.

Additive Laplace Noise

We now analyze the maximum likelihood estimator V of V in the presence of i.i.d. adda-

tive Laplace noise:

y=x+z

where x = y VO and the the noise z is i.i.d. with:

PZ(Za) = e (4.15)
2

The log-likelihood

1og py1 (yIx) = -logpz(y - X) = - Iya - xal - m = ly - x1l - m (4.16)

is essentially the L1-norm l y -1. We focus on rank-one approximation in a two-dimensional

space, that is, finding the direction in the plane (line through the origin) in which the signal

resides.

Consider first a one dimensional subspace at an angle of 0 < 0 < 2 to the y1 axis. That

is, a one dimensional subspace spanned by V = (1, tan 0), where 0 < tan 0 < 1. For

any y = (yi, y2) the L1-norm ly - uV'Ii = ly1 - uj + 1y2 - u tan 01 is minimized when

yi - u = 0, i.e. u = yi, yielding

<(V; z) = Iz - ziV'jj + 2 = jz2 - tan 9zil + 2. (4.17)
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We can now calculate:

'I(Vo; 0) = Ez [#(Vo; z)] = J dzi J dz2pz(z)(Vo; z)

= dzi dz2 e--_z1H1z2 Iz 2 - tan ozidzidz2 + 2

2+ tan2 0 + tan9 + 1
tan 9 + 1

(4.18)

which is monotonic increasing in 9 in the valid range [0, 2], and I(V; 0) is certainly not

a constant function of V. The necessary Condition 3 does not hold, and the maximum

likelihood estimator is not consistent.
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Figure 4-1: The function xF(Vo; 0) for one-dimensional subspaces Vo C R2

(cos 9, sin 9), as a function of 9 in the presence of additive Laplace noise.
spanned by

To understand the asymptotic bias of the maximum likelihood estimator, Figure 4.1.3

displays the function 'IF(V; 0) as calculated above, for the entire range of directions (sym-

metry arguments apply to 9 > E). In particular, we have 3 = 4I'(Vo; 0) < TI(Va; 0) = .

When no signal is present, the likelihood is maximized (' is minimized) by axis-aligned
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subspaces. Even when a signal is present, the maximum likelihood estimator will be biased

towards being axis-aligned.

Gaussian mixture additive noise

The asymptotic bias of the maximum likelihood estimator can also be observed empirically.

To do so, we consider a two-component Gaussian mixture additive noise distribution. Al-

though it is not possible to analyze the T analytically in closed form for such a distribution,

using the methods of Section 3.4, the maximum likelihood estimator V can be found.
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Figure 4-2: Norm of sines of canonical angles to the correct subspace span(2, 1, 1)' c R'
with a two-component Gaussian mixture 0.9Af(0, 1) + O.1A/(O, 25) additive noise. The
maximum likelihood estimator converges to (2.34, 1, 1). Bars are one standard deviation
tall.

Figure 4.1.3 demonstrates the asymptotic bias of the maximum likelihood estimator

empirically. Two-component Gaussian mixture noise was added to rank-one signal in R3 ,

and the signal subspace was estimated using a maximum likelihood estimator with known

noise model, and a Frobenius estimator for comparison. For small data sets, the maximum
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likelihood estimator is more accurate, but as the number of samples increase, the error

of the Frobenius estimator vanishes (see Section 4.2.1), while the maximum likelihood

estimator converges to the wrong subspace.

Logistic conditional model

So far we discussed additive noise models. The Gaussian additive noise model can also be

viewed as an instance of Exponential PCA, i.e. a conditional model in which the conditional

distributions yIxa form an exponential family, with xa being the natural parameters. In

fact, as mentioned in Section 2.1.2, Gaussian models are the only instance of additive noise

models which form an exponential family distributions, with a natural parameterization.

We turn now to studying a different instance of Exponential PCA, which does not corre-

spond to an additive noise model. We consider a logistic conditional model, where ya E +

and x, are natural parameters:

__ 1
P(Ya+a) g(Xa) (4.19)

1 + e-11

where g(-) is the logistic function.

We again focus on a estimating a rank-one subspace in two dimensions and analyze

J(V; 0) for all rank-one subspaces, i.e. lines through the origin, V. A setting of x = 0

implies a uniform distribution on y over (+, +), (+, -), (-, +), (-, -) and we have:

J(V; 0) = Ey=o [(V; y)]
=1 (V;++) + -+) + 4 V; +-) + 1 (V;- (4.20)

4 4' 4'' 4''

We analyze the axis-parallel and non-axis-parallel subspaces V separately.

For an axis-parallel subspace, e.g. V = (1, 0) without loss of generality, we have, for
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any y E {+}2:

0((1, 0); y) = - sup logp(yIu(1, 0)) = - sup (logp(y1|u) + logp(y210))
U U

1
= -sup log p(yI|u) - logp(y2|0) = -log 1 - log 1 = 1

U2

XI'(Vo; 0) = TI(Vt;O) = 1

(4.21)

(4.22)

We now turn to analyzing non-axis-parallel subspaces V = (1, tan 0), where without

loss of generality we concentrate on 0 < 0 ; E. For y = ++ and y -- we can push the

likelihood p(yIu(1, A)) to one by pushing u to infinity or negative infinity, and therefore:

#((1, tan 0); ++) = 0((1, tan 0); -- ) = - log 1 = 0 (4.23)

For y = +-, increasing u increases p(y, = +Iu) but decreases P(Y2 = - u tan 9). The

value of u maximizing

q((1, tan ); +-) = -sup log p(+ - Iu, u tan 0)
U

= - sup (log g(u) + log g(-u tan 0)),
U

(4.24)

can be found by setting the derivative of the log-likelihood to zero:

O= a = log p(+ - ju, u tan 0) = g(-u) - (tan 9)g(u tan 0) = 1 1

1 + tan0 + tan 0(eu) + (eu)-tano = 0

tan 0
1 + e-u tan 0

(4.25)

Due to u <-+ -u symmetry, we have q(V; +-) = q(V; -+).

For the mid-axis diagonal Vm = (1, 1), the maximum in (4.24) is obtained at u = 0
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(this can also be seen from symmetry considerations), yielding

#(V;+-) = #(VI; -+) = - logp(+ - 10, 0) = -log I = 2 (4.26)

and combined with (4.23),

1 1 1 1
'IF(VM; 0) = -0+ -O + -2-2 = 1. (4.27)

4 4 4 4 4

However, for 0 < 0 < 1, a lower value is obtained for m(Vo; +-). In particular, when

0 approaches zero, the optimizing u (the solution of (4.25)) approaches - In "A and2

#(Vo; +-) = q(V; -+) =. 1. (4.28)

Combined with (4.23), we therefore have:

T'(Vo; 0) -0- -0+ 0 + -1 1 = . (4.29)

The expected contribution of the negative log-likelihood from a distribution generated

by parameters on the origin 'J(Vo; 0), decreases as the subspace becomes close to being

axis aligned, as long as it is not completely axis aligned. At the axis-aligned subspaces,

we observe a discontinuity, with the value at these subspaces substantially higher (in fact,

the highest possible, and equal to the value on the mid-axis diagonals). The quantitative

behavior of IQ (Vo; 0) as a function of 0 is presented in Figure 4-3. This behavior indicates

that the maximum likelihood estimator for this setting is biased towards being axis aligned

(though not on the axis itself).

Bernoulli conditional models

The next model we analyze is also a binary observation model, ya E +, but unlike the

logistic conditional model in which xa are natural parameters, here xa are taken to be mean

parameters:

P(Ya = +lXa) = Xa (4.30)

79



1.0 0

0.9

0.8

0.7

0.6

0.5

0 n/4 a/2 3n/4 7E

Figure 4-3: M(V; 0) for a logistic conditional model

where 0 < xa < 1.

We again analyze estimation of a rank-one subspace (line through the origin) in two

dimensions.

For x. = 0 we have Pr (y = - -|0) = 1. For any subspace V, by choosing u = 0, we

have O(V; -- ) = - log 1 = 0 and so IQ(V; 0) = 0. The necessary condition 3 is satisfied,

and the estimator might be consistent. However, this is only a necessary condition, and

does not imply the consistency of the estimator. In order to study the consistency, we now

turn to analyzing TI(V; x) for any x E [0, 1]2_

Consider V = (1, tan 0), where without loss of generality 0 0 <, i.e. 0 <

tan9 < 1 (calculations for other subspaces can be extrapolated by symmetry). We can
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calculate (all maximization are constrained by 0 < u < 1 and 0 < u tan 0 < 1):

#(Vo;++) = -sup log (u(u tan )) = -log tan
U

O(VO;-- =sup log ((1 - u) (1 - utanO0)) = logi1 = 0
U

(4.31)

(4.32)

O(Vo;+-) = - sup log (u(1 - u tan 0))
U

Solving 0 = 8u(1-u tan0) = 1 - 2u tan 0 yields u = 1 which is in the legal domain only
whn tn >tan

when tan 0> , and so:

when tan 0 > 2,

when tan9 < 1,

-log (21o(1 - 1)) = 2+logtan9

- log (1 - tan 0)

Symmetrically:

when cot 0 < 1 ,

when cot 0 < ,

2 + log cot 9

- log (1 - cot 9)

From (4.31)-(4.34) we can calculate

J(V; x) = x1X2(Vo; ++) + X1(1 - X)#(Vo; +-) +

(1 - x1)x2(V; -+) + (1 - x1)(1 - x2)#(Vo; -- ) (4.35)

and check whether it is indeed minimized, with respect to 9, when x E V, as Condition 2

requires.

Numerical calculations reveal that M(V; x) is generally not minimized when x E Vo.

Biases in different directions, and different magnitudes, are observed for different x E

[0, 1]2. Figure 4.1.3 displays the bias, from the true direction of x to the direction 9 mini-

mizing M(Vo; x).
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Uniform additive noise

Before concluding that the maximum likelihood estimator is only consistent with addi-

tive Gaussian noise, consider maximum likelihood estimation in the presence of additive

i.i.d. uniform noise. The likelihood in a uniform model is either some positive constant,

if all errors are within the support, or zero otherwise. Thus, the maximum likelihood es-

timator is any low-rank matrix that is consistent with the required margin of error. But

for any incorrect low-rank subspace, there exists some positive probability of producing

noise incompatible with it. Hence, the only low-rank subspace which is compatible with

probability one is Vo, and the estimator is consistent.
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4.2 Universal Consistency of Subspace Estimation

In contrast to the lack of consistency of maximum likelihood estimation, we show here

that the "standard" approach to low-rank approximation, minimizing the sum squared error

(i.e. Frobenius estimation), yields a universal estimator which is consistent for any additive

noise model. Minimizing the sum squared error corresponds to maximum likelihood esti-

mation in the presence of Gaussian additive noise. We already saw in the previous section

that in the presence of additive noise that does indeed follow a Gaussian distribution, this

estimator is consistent. Here, we establish a much stronger result: the Frobenius estimator

is consistent for any additive i.i.d. noise distribution.

For non-additive conditional models yIx, the Frobenius estimator might not be consis-

tent. In Section 4.2.2 we relax this requirement, and require only that the conditional model

is unbiased, i.e. E [yjx] = x. This happens, for example, in the presence of multiplica-

tive noise (a constant bias can easily be corrected) or when the conditional distribution yjx

form an exponential family with x being the mean parameters.

We suggest a modified universal estimator, the variance-ignoring estimator, that is ap-

propriate for unbiased conditional models.

4.2.1 Additive noise

Consider the "standard" approach to low-rank approximation, minimizing the sum squared

error, and the corresponding Frobenius estimator for signal subspace V:

VML=arg min inf |1 Y - UV'lFro (4.36)
V U

Theorem 7. For any i.i.d. additive noise model y = uV o+z (coordinates of z are i.i.d. and

independent (?f x), where u and z have finite fourth moments, the Frobenius estimator

(4.36) is a consistent estimator of VO.

Proof The Frobenius estimator of the signal subspace is the subspace spanned by the lead-

ing eigenvectors of the empirical covariance matrix A, of y. Assuming the fourth moments

of the distribution of y are finite, the empirical covariance matrix A, converges to the true
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covariance matrix AY, which in turn is the sum of the covariance matrices of x and z:

A, -+ Ay = Ax + Az (4.37)

The covariance Ax of x is a matrix of rank k, and since z is i.i.d., Az = .2 I. We should

also be careful about signals that occupy only a proper subspace of V0, and be satisfied

with any rank-k subspace containing the support of x, but for simplicity of presentation we

assume this does not happen and x is of full rank k.

Let si 82 > - - - > sk > 0 be the non-zero eigenvalues of Ax. Since z has variance

exactly oU2 in any direction, the principal directions of variation are not affected by it, and

the eigenvalues of Ay are exactly s1 +a 2 7 . .. + s+0. 2 o2 .2, with the leading k eigen-

vectors being the eigenvectors of Ax. This ensures an eigenvalue gap of sk > 0 between

the invariant subspace of Ay spanned by the eigenvectors of Ax and its complement, and

we can bound the norm of the canonical sines between V and the leading k eigenvec-

tors of A, by IAn"-AyI [71]. Since I A - AyI -- 0 a.s., we conclude that the estimator is
Sk

consistent.

It is interesting to note that even though the standard Frobenius estimator is consistent,

while the maximum likelihood estimator is not consistent, empirical results (Figure 4.1.3)

demonstrate that on reasonable-sized samples the maximum likelihood estimator outper-

forms the Frobenius estimator. But as the sample size increases, the Frobenius estimated

subspace converges to the correct subspace, whereas the maximum likelihood subspace

converges to the wrong subspace.

4.2.2 Unbiased Noise and the Variance-Ignoring Estimator

Before discussing unbiased noise, let us turn our attention to additive noise with indepen-

dent, not not identically distributed, coordinates. This is essentially the classic setting of

factor analysis.
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Non-identical Additive Noise

Consider an additive model y = x+z where the components of the noise z are independent,

but not necessarily identical, Gaussians. If the noise variances are known, the ML estimator

corresponds to minimizing the column-weighted (inversely proportional to the variances)

Frobenius norm of Y - X, and can be calculated from the leading eigenvectors of a scaled

empirical covariance matrix [41]. If the variances are not known, e.g. when the scale of

different coordinates is not known, there is no maximum likelihood estimator: at least k

coordinates of each y can always be exactly matched, and so the likelihood is unbounded

when up to k variances approach zero.

The Frobenius estimator is not appropriate in this scenario. The covariance matrix Az

is still diagonal, but is no longer a scaled identity. The additional variance introduced by the

noise is different in different directions, and these differences may overwhelm the "signal"

variance along VO, biasing the leading eigenvectors of Ay, and thus the Frobenius estima-

tor, toward axes with high "noise" variance. The fact that this variability is independent of

the variability in other coordinates is ignored, and the Frobenius estimator is asymptotically

biased.

The Variance-Ignoring Estimator

Instead of recovering the directions of greatest variability, we can recover the covariance

structure directly. In the limit, we still have A -y = Ax +Az, a sum of a rank-k matrix

and a diagonal matrix. In particular, the non-diagonal entries of A, approach those of Ax.

We can thus seek a rank-k matrix Ax approximating A, e.g. in a sum-squared sense,

except on the diagonal. This is a (zero-one) weighted low-rank approximation problem, and

the methods of Section 3.2 apply. The row-space of the resulting Ax is then an estimator

for the signal subspace. Note that the Frobenius estimator is the row-space of the rank-k

matrix minimizing the unweighted sum-squared distance to An.
Although in most cases the Variance-Ignoring estimator will converge to the correct

subspace, discussing consistency in the presence of non-identical noise with unknown

variances is problematic: The signal subspace is not necessarily identifiable. For exam-
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ple, the combined covariance matrix Ay = (1 1) can arise from a rank-one signal co-

variance Ax = (1/ a) for any < a < 2, each corresponding to a different signal

subspace. Counting the number of parameters and constraints suggests identifiability when

k < m - v/8m+1-1, but this is by no means a precise guarantee. Anderson and Rubin

[5] present several conditions on Ax which are sufficient for identifiability but require

k < [ ], and other weaker conditions which are necessary.

Non-Additive Models

The above estimation method is also useful in a less straight-forward situation. Until now

we have considered only additive noise, in which the distribution of Ya - Xa was indepen-

dent of Xa. We will now relax this restriction and allow more general conditional distribu-

tions YalXa, requiring only that E [YaIXa] = Xa. With this requirement, together with the

structural constraint (Ya independent given x), for any i -f j:

CoV [Ya, Yb] = E [YaYb] - E [ya]E [Yb] E [E [YaYb xI] - E [E [YaIx]]E [E [YbIx]]

= E [E [yaIX]E [YbIx]] - E [Xa]E [Xb] = E [XaXb] - E [Xa]E [xb] = CoV [Xa, Xb]. (4.38)

As in the non-identical additive noise case, Ay agrees with Ax except on the diagonal.

Even if Ya Xa is identically conditionally distributed for all i, the difference Ay - Ax is not

in general a scaled identity:

Var[ya] = E [y2] E[ya] 2

= E [E [y2Ixa] - E [yaIxa] 2 ] + E [E [YaI xa] 2] - E [Ya] 2

= E [Var [YaIXa]] + E [x2] - E [Xa] 2

= E [Var [Ya LXal] + Var [Xa]. (4.39)

Unlike the additive noise case, the variance of Ya IXa depends on Xa, and so its expecta-

tion depends on the distribution of Xa.

These observations suggest using the variance-ignoring estimator. Figure 4.2.2 demon-

strates how such an estimator succeeds in reconstruction when YaIXa is exponentially dis-
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tributed with mean xa, even though the standard Frobenius estimator is not applicable. We

cannot guarantee consistency because the decomposition of the covariance matrix might

not be unique, but when k < [4] this is not likely to happen. Note that if the conditional

distribution yIx is known, even if the decomposition is not unique, the correct signal covari-

ance might be identifiable based on the relationship between the signal marginals and the

expected conditional variance of of yjx, but this is not captured by the variance-ignoring

estimator.

4.2.3 Biased noise

The variance-ignoring estimator is also applicable when y can be transformed such that

E [g(y) ju] lie in a low-rank linear space, e.g. in log-normal models. If the conditional

distribution yix is known, this amount to obtaining an unbiased estimator for xa. When

such a transformation is not known, we may wish to consider it as nuisance. In particular,
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this might be possible when g(y) - x is Gaussian. However, this does not provide a general

consistent estimator for V if no unbiased estimator exists for xa.

Of particular interest are distributions ya IXa that form exponential families where Xa

are the natural parameters (Exponential-PCA). When the mean parameters form a low-

rank linear subspace, the variance-ignoring estimator is applicable, but when the natural

parameters form a linear subspace, the means are in general curved, and there is no unbiased

estimator for the natural parameters.

The problem of finding a consistent estimator for the linear-subspace of natural param-

eters when Ya Xa forms an exponential family, or in other general settings, remains open.
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Chapter 5

Maximum Margin Matrix Factorization

In the previous chapters of this thesis we limited ourselves to learning with low-rank ma-

trices. In terms of the factorization X = UV', we constrained the dimensionality of U and

V. In this chapter we suggest constraining the factorization by constraining the norms of U

and V, yielding a novel class of factorisable matrices. We show how these constraints arise

naturally when matrix factorizations are viewed as feature learning for large-margin linear

prediction, and how they lead to convex optimization problems that can be formulated as

semi-definite programs.

We present maximum margin matrix factorizations in the context of "collaborative pre-

diction": predicting unobserved entries of a target matrix, based on a subset of observed

entries. We begin the chapter by discussing this setting and defining the framework.

5.1 Collaborative Filtering and Collaborative Prediction

"Collaborative filtering" refers to the general task of providing users with information on

what items they might like, or dislike, based on their preferences so far (perhaps as inferred

from their actions), and how they relate to the preferences of other users. For example,

in a collaborative filtering movie recommendation system, the inputs to the system are

user ratings on movies they have already seen. Prediction of user preferences on movies

they have not yet seen are then based on patterns in the partially observed rating matrix,

e.g. predicting preferences which correlate with the rating of the movie by other users with
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overall similar preferences, but anti-correlate with users with distinctly opposite ratings.

This approach contrasts with a more traditional feature-based approach where predictions

are made based on features of the movies (e.g. genre, year, actors, external reviews) and

the users (e.g. age, gender, explicitly specified preferences). Users "collaborate" by sharing

their ratings instead of relying on external information.

In some collaborative filtering tasks, the preferences might not be given explicitly by the

user, but rather inferred from the user's actions. The input for such tasks typically consists

of the items each user has already requested (e.g. web pages visited, items purchased), and

the goal is to predict which further items the user is likely to request. Note that generally

no negative data is available in such situations.

The desired output of collaborative filtering varies by application. One type of often

useful output, is to predict for each user a few items the user is highly likely to like. This

answers a user query of the form "What movie should I go see?", or can be used to place

recommended links on a web page. Here, we will focus on "collaborative prediction":

predicting the user's preference regarding each item, answering queries of the form "Will

I like this movie?". Although it is certainly possible to use this output in order to generate

a list of the predicted most strongly preferred items, answering the first type of query, this

requires going over all possible items, which is often impractical. Furthermore, it might

be possible to find a few items with high certainty the user will like them, even when the

collaborative prediction problem is hard. Therefore, although the basic ideas studied in the

thesis may be relevant for both types of tasks, methods for efficiently predicting the top

items may be substantially different, and lie outside the scope of the thesis.

5.1.1 Matrix Completion

In this thesis, collaborative prediction is formalized as a simple matrix-completion prob-

lem: predicting the unobserved entries of a partially observed target matrix. A subset of

entries S of a target matrix Y is observed. Based on the observed values Ys, and no other

external information, we would like to predict all other values in Y.

A key issue is how the discrepancy between the target values in Y and the predictions
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X is measured. For the collaborative prediction tasks studied, we would like to ensure each

entry is correctly predicted, and accordingly use a per-entry loss function:

D(X; Y) = Zloss(Xia; Ya). (5.1)
ia

The matrix completion formulation is also appropriate for other applications, such as

filling in missing values in a mostly observed matrix of experiment results. Such a situation

is often encountered in gene expression analysis, where the expression levels of thousands

of genes are measured across different "experiments" (different experimental conditions,

time points, cell-types, etc), but where some entries in the experiment-gene matrix might

be missing [75]. The main difference between such applications and typical collaborative

filtering applications is the observation sparseness: whereas when completing experimental

results, only a small proportion matrix entries are missing, the typical situation in collabo-

rative filtering is that only a small fraction of entries are observed.

A learning task with a somewhat similar formulation, but different measure of discrep-

ancy, is completing a partially observed covariance matrix. In such situations, the measure

of discrepancy is not a per-entry sum-of-losses measure, as we are not usually interested in

each covariance separately, but rather a measure of discrepancy between the implied joint

distributions.

5.2 Matrix Factorization for Collaborative Prediction

Using matrix factorization for matrix completion is fairly straight forward. A factorization

(U, V) is sought that minimizes the discrepancy between the observed entries Ys and the

corresponding entries of X = UV'. Unobserved entries in Y are then predicted according

to the corresponding entries in X.

5.2.1 Low Rank Matrix Completion

Several authors have recently suggested, and experimented with, low-rank (unconstrained

or almost unconstrained) matrix factorization for collaborative prediction. Methods mostly
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differ in how they relate real-valued entries in X to preferences in Y, and in the associated

measure of discrepancy.

Hoffman [39] suggests a collaborative prediction method based on a probabilistic la-

tent variable model, which corresponds to view the entries in X as mean parameters for a

probabilistic model of the entries of Y, and fitting X by maximizing the likelihood. Mar-

lin [52] also studied low-rank collaborative prediction, viewing the entries of X as mean

parameters. In [69] we study low-rank collaborative prediction, both with a sum-squared

loss, and viewing X as natural parameters to Bernoulli distributions on the entries of Y,

yielding to a logistic loss. In a recent paper, Marlin et al [53] also implicitly suggest fitting

X as natural parameters.

Azar et al [8] proved asymptotic consistency of a method in which unobserved entries

are replaced by zeros, observed entries are scaled inversely proportionally to the probability

of them being observed, and a squared error loss is used. No guarantees are provided for

finite data sets.

Other have suggested using a low-rank approximation in combination with other meth-

ods. Goldberg et al [29] use a low-rank approximation of a fully-observed subset of

columns of the matrix, thus avoiding the need to introduce weights. Billsus et al [13]

use a singular value decomposition of a sparse binary observation matrix. Both Goldberg

and Billsus use the low-rank approximation only as a preprocessing step, and then use

clustering (Goldberg) and neural networks (Billsus) to learn the preferences.

Extensive experiments with various collaborative prediction methods can be found in

Marlin's MSc thesis [51].

5.2.2 Matrix factorization and linear prediction

If one of the factor matrices, say U, is fixed, and only the other factor matrix V' needs to

be learned, then fitting each column of the target matrix Y is a separate linear prediction

problem. Each row of U functions as a "feature vector", and each column of V' is linear

predictor, predicting the entries in the corresponding column of Y based on the "features"

in U.
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In the matrix factorization approach to matrix completion, both U and V are unknown

and need to be estimated. This can be thought of as learning feature vectors (rows in U)

for each of the rows of Y, enabling good linear prediction of all of the prediction problems

(columns of Y) concurrently, each with a different linear predictor (columns of V'). Since

the factorization is symmetric, the symmetric view, of learning features for the column

enabling good linear prediction of the rows, is equally valid.

In collaborative prediction, both U and V are unknown and need to be estimated. This

can be thought of as learning feature vectors (rows in U) for each of the rows of Y, enabling

good linear prediction across all of the prediction problems (columns of Y) concurrently,

each with a different linear predictor (columns of V'). The features are learned without

any external information or constraints which is impossible for a single prediction task (we

would use the labels as features). The underlying assumption that enables us to do this in

a collaborative filtering situation is that the prediction tasks (columns of Y) are related, in

that the same features can be used for all of them, though possibly in different ways.

The symmetric view, of learning features for the column enabling good linear prediction

of the rows, is equally valid.

Low-rank collaborative prediction corresponds to regularizing by limiting the dimen-

sionality of the feature space-each column is a linear prediction problem in a k-dimensional

space. Instead, we suggest allowing an unbounded dimensionality for the feature space, and

regularizing by requiring a low-norm factorization, while predicting with large-margin.

5.2.3 Maximum Margin Matrix Completion

Consider adding to the loss a penalty term which is the sum of squares of entries in U and

V, i.e. UI1Io + IIVI12r (II IIFro denotes the Frobenius norm). Each "conditional" problem

(fitting U given V and vice versa) again decomposes into a collection of standard, this time

regularized, linear prediction problems. With an appropriate loss function, or constraints

on the observed entries, these correspond to large-margin linear discrimination problems.

For example, if we learn a binary observation matrix by minimizing a hinge loss plus such

a regularization term, each conditional problem decomposes into a collection of SVMs.
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5.3 Maximum Margin Matrix Factorizations

We present two variations of maximum margin matrix factorizations, corresponding to two

different norms, or constraints on U and V.

5.3.1 Constraining the Factor Norms on Average: The Trace-Norm

The squared Frobenius norms IIUI12r and ||V||2 are the sums of the L 2 norms of the

rows of U and V. That is, constraining the Frobenius norm is in a sense a constraint on

average: taking the features-and-predictors view, any particular predictor may have large

norm (small margin), but on average, the predictors must have a small norm.

The Trace-Norm

Matrices with a factorization X = UV', where U and V have low Frobenius norm (recall

that the dimensionality of U and V is no longer bounded!), can be characterized in several

equivalent ways, and are known as low trace-norm matrices:

Lemma 8. For any matrix X the following are all equal:

1. min uV IIUIFro IIVIIFrO
X=UV'

2. min ,v }(IIU1tr + IIVI1)
X=UV'

3. The sum of the singular values of X, i.e. tr S where X = UAV' is the singular value

decomposition of X.

Furthermore, If X = UAV' is the singular value decomposition of X, then the matrices

UV'S and V /T minimize the first quantity.

Definition 2. The trace-norm IIX Itr of a matrix is given by the above quantities.

It is also known as the nuclear norm [26] and the Ky-Fan n-norm (e.g. [40]).

The trace-norm is, in fact, a matrix norm, and in particular it is a convex function,

and the set of bounded trace-norm matrices is a convex set. For convex loss functions,

seeking a bounded trace-norm matrix minimizing the loss versus some target matrix is a
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convex optimization problem. This contrasts sharply with minimizing loss over low-rank

matrices-a non-convex problem.

In fact, the trace-norm has been suggested as a convex surrogate to the rank for various

rank-minimization problems [26], noting that:

Lemma 9 ([26, Theorem 1]). The convex envelope (smallest bounding convex function) of

the rank function, on matrices with unit spectral norm, is the trace-norm.

Here, we justify the trace-norm directly, both as a natural extension of large-margin

methods and by providing generalization error bounds (Section 6.2).

The relationship of the trace-norm to the Frobenius norm and the rank of a matrix is

given by the following bounds:

Lemma 10. For any matrix X:

|IX||Frv:! IItr :5 VrankX ||X||Fro

Proof Recall that the Frobenius norm IIXIIFrO is equal to the L 2 (Euclidean) vector norm

of the singular values of IX IFro, while the trace-norm IX Itr is the L1 norm of the singular

values. The relationship between the L, and L2 vector norms establish the left inequality.

To establish the right inequality, recall that the number of non-zero singular values is equal

to the rank.

Furthermore, we can characterize the unit ball of the trace-norm

Btr ={X I IIXI|tr 5 1} (5.2)

in terms of the convex hull of unit-norm rank-one matrices

x1 [1]= {uv' Ju E R',vE1Rmu 2 = v 2 =1} (5.3)

Lemma 11. Btr = convX1 [1]

Proof Lemma 10 ensures that X [1) 9 Btr, and combined with the convexity of the trace-

norm we have convX1 [1] C Btr. For a unit trace-norm matrix X with singular value
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decomposition X = USV' with tr S = 1, we can write X = Zi SiUiV' which is a convex

combination of matrices in X [1], establishing Btr C convX 1 [1]. 0

This characterization is both helpful in understanding the class, and serves a vital role

in Section 6.2.2 for proving generalization error bounds on learning with low trace-norm

matrices.

Maximum Margin Low Trace-Norm Matrix Factorization

To simplify presentation, we focus on binary labels, Y E {+l}"n"m. We consider hard-

margin matrixfactorization, where we seek a minimum trace-norm matrix X that matches

the observed labels with a margin of one:

minimize IIXI|tr (54)

subject to YaXia ;> 1 for all ia E S

We also consider soft-margin learning, where we minimize a trade-off between the trace-

norm of X and its hinge-loss relative to Ys:

minimize IIXI1tr + c E max(O, 1 - YiaXia). (5.5)
iaES

As in large-margin linear discrimination, there is an inverse dependence between the norm

and the margin. Fixing the margin and minimizing the trace-norm is equivalent to fixing

the trace-norm and maximizing the margin. As in large-margin discrimination with certain

infinite dimensional (e.g. radial) kernels, the data is always separable with sufficiently high

trace-norm (a trace-norm of /nriSI is sufficient to attain a margin of one).

5.3.2 Constraining the Factor Norms Uniformly: The Max-Norm

Instead of constraining the norms of rows in U and V on average (by considering their

squared Frobenius norms), we can also constrain all rows of U and V to have small L 2

norm.
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The Max-Norm

We refer to matrices with a factorization X = UV', where all rows of U and V have

bounded L 2 norm, as low max-norm matrices:

Definition 3. The max-norm IX|m. is given by:

liXila= min (maxiUi|)(max|VaI)li ilax UV \ ' l \ a (
X=UV'

where Uj and Va are the row-vectors of U and V.

The max-norm is also known as the ry2-norm [43].

Note that if we would have bounded the norm of the column vectors of U and V we

would have defined the spectral norm. Unlike the spectral norm (largest singular value),

Frobenius norm (euclidean norm of singular values) and trace-norm (sum of singular val-

ues), the max-norm is not a function of the singular values. In fact, calculating the max-

norm requires using quadratic programming in order to solve the optimization problem in

the definition of the max-norm.

By considering the first characterization in Lemma 8 we can establish the connection

between the max-norm and the trace-norm:

Lemma 12. For any X c R1x m , ||X| Ilm 5 |IXI|tr \in- IX|max.

Although it is easy to verify that the max-norm is also convex, and so its unit ball:

Bmax= {X I|Xilmax 5 1} (5.6)

is convex, we cannot provide an exact characterization of the unit ball in terms of a simple

class of matrices, as we did for the trace-norm in Lemma 11. We can, however, provide an

approximate characterization in terms of the class of rank-one sign matrices:

{uv' Iu E {1}", V C {i}m} (5.7)

Lemma 13.

convX± C B.. C KGconvX±
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where KG is Grothendiek's constant, and:

1.67 < KG 1.79

Proof The left inclusion is immediate from the convexity of the max-norm and the fact

that the factorization uv', with u and v sign matrices, establishes IIuv'I| J 1. The right

inclusion is consequence of Grothendiek's inequality (see Appendix F). El

Maximum Margin Low Max-Norm Matrix Factorization

Parallel to the low trace-norm problems (5.4)-(5.5), we also consider the hard-margin max-

norm minimization problem:

minimize ||Xilma (5.8)

subject to YaXia > 1 for all ia E S

and the soft-margin max-norm minimize problem:

minimize IX||tr + c max(O, 1 - YaXia). (5.9)
iaES

As with the trace-norm counterpart, the problem is always separable.

A Geometric Interpretation

Low max-norm learning has a clean geometric interpretation. First, note that predicting

the target matrix with the signs of a rank-k matrix corresponds to mapping the "items"

(columns) to points in Rk, and the "users" (rows) to homogeneous hyperplanes, such that

each user's hyperplane separates his positive items from his negative items. Hard-margin

low-max-norm prediction corresponds to mapping the users and items to points and hy-

perplanes in a high-dimensional unit sphere such that each user's hyperplane separates his

positive and negative items with a large-margin (the margin being the inverse of the max-

norm).
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5.4 Learning Large-Margin Matrix Factorizations

In this section we investigate the optimization problems (5.4),(5.5),(5.8) and (5.9) of learn-

ing with low trace-norm and max-norm matrices. We show how these optimization prob-

lems can be written as a semi-definite programs.

5.4.1 Trace-Norm Minimization as Semi Definite Programming

Bounding the trace-norm of UV' by I(IIUI 2 + IIVI1| ), we can characterize the trace-

norm in terms of the trace of a positive semi-definite matrix:

Lemma 14 ([26, Lemma 1]). For any X E R"' and t E R: 11XI|tr 5 t iff there exists

A E R"x' and B E R"' such that[ ,] y OandtrA+trB < 2t.

Proof Note that for any matrix W, ||WjiFrO = tr WW'. If [, x] is p.s.d. with tr A +

tr B < 2t, we can write it as a product [ u[u, v']. We have X = UV' and !(1|U112 +

IIVI12) = 1(tr A + trB) t, establishing I|XI1tr t. Conversely, if I|XI|tr 5 t we

can write it as X = UV' with tr UU' + tr VV' < 2t and consider the p.s.d. matrix

Lemma 14 can be used in order to formulate minimizing the trace-norm as a semi-

definite optimization problem (SDP).

The hard-margin matrix factorization problem (5.4) can be written as:

A X

min (tr A + tr B) s.t. X' B (5.10)
2L

YaXia > 1 ViaES

And introducing slack, soft-margin matrix factorization (5.5), can be written as:

A X
S0

min 1(trA + tr B) + c & s.t. - Via E S (5.11)
iiaES YaXia 1 - &a

ia > 0
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5.4.2 The Dual Problem

Both to aid in optimization, and to better understand the problems, we study the dual of the

above problems.

Introducing the Lagrange multipliers F, A, T, Qia we can write the optimization prob-

lem (5.11) as (we arbitrarily choose a scaling of 1 for the multiplier [ rT

min max 1 (tr A + tr B)
A,B,X r T1>-o 2

Cta O ViaES LT A
Qia !O ViaES

+ C E Cia
iaES

1F T A X

2 T' A -X' B - E Qia(YiaXia
iaES

+ ia -1)

The existence of an interior feasible solution guarantees there is no duality gap and allows

us to change the order of minimization and maximization without a duality gap:

= max min
r T ] >o A,B,X

Qia>0 ViaES d"0vas
iaES1

I F T A X

2 T' A X' B - Z Qia(YaXia + &a - 1)
iaES

(5.12)

Treating Q and Y as sparse matrices (with zero where ia V S), and collecting terms of

primal variables, we can write:

= max min Qia
I vAsCias>bO ViaES iaES

Qia O ViaES-

1
+ E(c - Qia)&ia + -(I - F) *A

iaES 2

1 1
+ -(I - A) e B - (T + q y) -X (5.13)

In order for the minimization to be finite, we must have c- Qia > 0 (since 'ia is constrained

to be positive) as well as F = I, A = I and T = -Q 0 Y (since A,B and X and
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unconstrained). We can therefore write the dual to (5.11) as:

F I (-Q ® Y)l
max 2i Qi, s.t. Y 0, 0 Qia 5 C (5.14)

iaES (Q 0 Y)' I ]

where Qia is a dual variable associated with each ia E S and Q 0 Y denotes the sparse

matrix (Q 0 Y)ia = QiaYia for ia E S and zeros elsewhere. The dual of the hard-margin

problem is similar, but without the box constraints Qia < c.

In either case, problem is strictly feasible, and there is no duality gap.

The p.s.d. constraint in the dual (5.14) is equivalent to bounding the spectral norm of

Q 0 Y, and the dual can also be written as an optimization problem subject to a bound on

the spectral norm, i.e. a bound on the singular values of Q 0 Y:

max Qia s.t. 11QY112<1 (5.15)
iaES 0 < Qia <C Via E S

In typical collaborative prediction problems, we observe only a small fraction of the

entries in a large target matrix. Such a situation translates to a sparse dual semi-definite

program, with the number of variables equal to the number of observed entries. Large-

scale SDP solvers can take advantage of such sparsity.

5.4.3 Recovering the Primal Optimal from the Dual Optimal

Most SDP solvers use internal point methods and return a pair of primal and dual optimal

solutions. The prediction matrix X* minimizing (5.5) is part of the primal optimal solution

of (5.11), and can be extracted from it directly.

Nevertheless, it is interesting to study how the optimal prediction matrix X* can be

directly recovered from a dual optimal solution Q* alone. Although unnecessary when

relying on standard internal point SDP solvers, this might enable us to use specialized

optimization methods, taking advantage of the simple structure of the dual.

As for linear programming, recovering a primal optimal solution directly from a dual

optimal solution is not always possible for SDPs in general. However, at least for the hard-
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margin problem (5.10) this is possible, and we describe below how an optimal prediction

matrix X* can be recovered from a dual optimal solution Q* by calculating a singular value

decomposition and solving linear equations.

Complimentary Slackness Considerations

Consider the hard-margin trace-norm minimization problem (5.10) and its dual, and let

(X*, A*, B*) be primal optimal and Q* be dual optimal solutions.

Strong complimentary slackness for the SDPs guarantees that not only the matrix inner

product , (-QY) 1 [I *, X] is zero for any primal and dual optimal solutions,

but in fact the matrix product

[(-Q*
I (-Q* 1 Y) A* X*1

(0 Y ' I X*' B*

0

L0
(5.16)

is zero everywhere for the optimal solutions. The blocks of this matrix equality yield the

following necessary condition for dual and primal optimality:

A* = (Q* ® Y)X*'

X*' = (Q* ® Y)IA*

X* = (Q* Y)B*

B* = (Q* Y)'X*

Together with complimentary slackness of the label constraints, this condition is also suf-

ficient. Recalling that [f., x.] > 0, we can write [*, X*] = [ , [a' /'] with [(i' ]

of full row rank. Expressing A* = UU', B* = VV' and X* = UV', we can now rewrite

(5.17) as:

O/ = (Q* ® Y)VU'

ffi' = (Q* ® Y)'U0'

f' = (Q* ® Y)VV'

' = (Q* 0 Y)'0?'

Combining each row of matrix equations into a single matrix equation yields:

(U - (Q* ® Y)) '' (fr - (Q* & Y)'LI) [(j' V/]
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Since [CT' i/] is of full row rank, we have:

U = (Q* 0 Y)V V = (Q* Y) 'U (5.20)

Together these equations specify that the columns of and V are corresponding eigenvec-

tors of eigenvalue one of (Q* 0 Y)(Q* 0 Y)' and (Q* 0 Y)'(Q* 0 Y). Or in other words,

U and V are correspondingly spanned by the singular rows and vectors of (Q* 0 Y) with

singular value one.

Note that since [ IQ!®y), (-Q*®Y) 0, the singular values of (Q* 0 Y) are all less

than or equal to one, and those that are equal to one correspond to zero eigenvectors of
[I (-Q*OY))

(-Q*@Y)' I I'

The singular rows and columns of (Q* 0 Y) corresponding to singular value one define

a linear space in which U and V lie. The optimal U and V from this space can be recovered

by solving the linear equations

Xia = Ya VSia > 0. (5.21)

Recovering X* from Q*

To summarize, we obtain the following procedure for recovering an optimal solution of

(5.4) from an optimal solution of (5.15) (with no slack, i.e. no box constraints):

1. Let Q* be a dual optimal solution.

2. Calculate the singular value decomposition Q* 0 Y = UAV'.

3. Let U E R"XP and V E R"XP be the columns of U and V with singular value exactly

one.

4. For every Q* > 0, consider the equation X;*a = UiRR'Va' = Ya and solve these as

linear equations in the entries of RR'.

5. X* = URR'V is an optimal solution of (5.4).
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5.4.4 Using the Dual: Recovering Specific Entries of X*

The approach described above requires solving a large system of linear equations (with

as many variables as observations). Furthermore, especially when the observations are

very sparse (only a small fraction of the entries in the target matrix are observed), the

dual solution is much more compact then the prediction matrix: the dual involves a single

number for each observed entry. It might be desirable to avoid storing the prediction matrix

X* explicitly, and calculate a desired entry Xi*0 , or at least its sign, directly from the dual

optimal solution Q*.

Consider adding the constraint Xioo > 0 to the primal SDP (5.11). If there exists an

optimal solution X* to the original SDP with Xiao > 0, then this is also an optimal solution

to the modified SDP, with the same objective value. Otherwise, the optimal solution of the

modified SDP is not optimal for the original SDP, and the optimal value of the modified

SDP is higher (worse) than the optimal value of the original SDP.

Introducing the constraint Xioao > 0 to the primal SDP (5.11) corresponds to introduc-

ing a new variable Qioao to the dual SDP (5.14), appearing in QQY (with Yoao = 1) but not

in the objective. In this modified dual, the optimal solution Q* of the original dual would

always be feasible. But, if Xiao < 0 in all primal optimal solutions, and the modified

primal SDP has a higher value, then so does the dual, and Q* is no longer optimal for the

new dual. By checking the optimality of Q* for the modified dual, e.g. by attempting to

re-optimize it, we can recover the sign of Xiao.

We can repeat this test once with Yioao = 1 and once with Yioao = -1, corresponding

to Xioao < 0. If YioaoXi*oao < 0 (in all optimal solutions), then the dual solution can be

improved by introducing Qioao with a sign of Yioao.

5.4.5 Max-Norm Minimization as a Semi-Definite Program

The max-norm can also be characterized with a similar positive semi-definite matrix. How-

ever, if before we were interested in summing the norms of the rows of U and V, now we

are interested in bounding them:

Lemma 15. For any X -R"x' and t E R: ||XI|m| : t if and only if there exists
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A X
A E Rnx" and B E Rrnx"n such that is positive semi-definite with diagonal

X' B
elements at most t (i.e. Aii - t and Baa < t for all i, a).

Similarly to (5.11) we have the following SDP for the soft-margin max-norm minimiza-

tion problem (5.9):

Aii < t Vi

min t + c S ia S.t.
iaES

Baa < t Va

YiaXia 1 - &a Via E S

&ia > OVia E S

And the corresponding dual:

max E qia S.t.
iaES

[ Q I )

(-Q®0Y)'

(-Q Y)]
IF, A are diagonal

tr F + tr A = 1

0_qa c ViaES

where again the dual variables are Qia for each ia E S and Q 0 Y denotes the sparse matrix

(Q 0 Y)ia = QiaYia for ia E S and zeros elsewhere.

5.4.6 Predictions for new users

So far, we have assumed that learning is done on the known entries in all rows. It is

commonly desirable to predict entries in a new partially observed row of Y (a new user

in a collaborative filtering task), not included in the original training set. This essentially

requires solving a "conditional" problem, where V is already known, and a new row of U is

learned (the predictor for the new user) based on a new partially observed row of X. Using

large-margin matrix factorization, this is a standard SVM problem.
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5.5 Loss Functions for Ratings

In our discussion of matrix completion so far, we focused on binary classification target

matrices, where target values take only two possible values. In Chapter 3 we also discussed

various loss functions appropriate for real-valued observations, and in particular the ubiqui-

tous sum-squared loss. But for many collaborative filtering problems, the user preferences

are specified as discrete ratings, or levels, in some integer range, e.g. one to five "stars".

This type of labels falls between real-valued labels and multi-class labels. Although

discrete like multi-class labels, they have a particular ordering, like real-valued labels. In

order to apply the suggested matrix completion methods to such data, we need to choose

an appropriate loss function.

Rating data has been considered both in the statistical literature [54, 27] and in the

machine learning literature [64, 23, 20, 36]. Some approaches extract from the rating levels

binary comparison relationships on the rated items and thus map the problem to a partial

ordering problem [36]. Here we focus on approaches that use real-valued predictors x, and

assign a loss loss(x; y) relative to each rating level y. We are particularly interested in loss

functions imposing a margin between predictors corresponding to different levels.

5.5.1 Threshold-based loss functions

Several loss functions, which are generalizations of standard loss functions for binary clas-

sification, have recently been suggested in the machine learning literature. Most of these

are based on separating the real line to (possibly infinite) intervals corresponding to the

rating levels.

For binary classification, a single threshold (zero) separates between positive and neg-

ative predictions. For R rating levels, R - 1 threshold b1 < ... < bR-1 are necessary. We

will also denote bo = -oo and bR = oo for convenience. A predictor x then corresponds

to the rating level r(x) such that br(x)- 1  x < br(x).

The simple zero-one loss (lossoi(x) = 0 if r(x) = y and zero otherwise) does not

reflect how far away the correct rating is from the predicted rating. A simple alternative is
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the absolute rank difference loss

lossad(x; y) = Ir(x) - yI.

This loss might correspond well to the actual cost of rating errors. In fact, we might want

to measure the generalization error (over the entire matrix) in terms of this loss. However,

it is not convex, and does not impose a separation margin.

Shashua and Levin[64] suggested imposing a hinge loss on each end of the interval

corresponding to y. That is:

loss(x; y) = max(, by-1 + 1 - x) + max(O, x - by - 1).

Other standard convex loss functions 1(x), such as logistic or exponential loss, can be used

instead of the hinge loss in a similar way, with the general form:

loss(x; y) = l(x - by- 1 ) + l(bv - x),

where l(oo) = 0.

However, such loss functions do not bound the absolute rank difference, which might

be desirable if our true objective is minimizing the overall absolute rank difference [10].

Although they penalize predictions which are far away on the real line from the "target

segment", they do not take into account that variations in some regions of the real line

(corresponding to large target segments) are not very expensive, while variations in other

regions, across densely concentrated threshold, are more expensive.

An alternative is to superimpose the loss functions associated with all thresholds, not

only those bounding the segment corresponding to y:

y-1 R-1

loss(x; y) = l(x - b,) + Z:l(b, - x).
r=1 r=y

This loss function might lead to a slightly more complicated objective. In particular, for

the hinge it corresponds to more constraints in the learning optimization problems. How-
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ever, it might reduce the generalization error, particularly with respect to the absolute rank

difference, and perhaps also yield better generalization error bounds.

In either case, the thresholds need to be determined. Although it is possible to fix the

thresholds in advance, significant flexibility can be gained by fitting the threshold from the

data [64, 20]. In the context of matrix factorization, it is possible to fit one set of thresholds

for the entire matrix, or fit separate thresholds for each row, or for each column. This can

allow us, for example, to account for user variations in the use of different ratings, as an

alternative to explicit normalization.

5.6 Implementation and Experiments

All the methods described in this Chapter were implemented in MATLAB, optionally

using YALMIP [49].

We conducted preliminary experiments on a subset of the MovieLens dataset1 , consist-

ing of the 100 users and 100 movies with the most ratings. The ratings are on a discrete

scale of one through five, and we experimented with both generalizations of the hinge loss

described above, allowing per-user thresholds. We used CSDP [16] to solve the result-

ing SDPs. Solving with the immediate-threshold loss took about 25 CPU minutes on a

3.06GHz Intel Xeon. Solving with the all-threshold loss took up to eight hours. We com-

pared against methods described in [51], randomly selecting 50% of the entries for training

and 50% for testing. We tested a range of regularization parameters (C/K) and present

the best zero-one agreement error (ZOE) and mean-absolute-error (MAE) result for each

method, with the regularization parameters attaining it.

all-9 immediate-9 K-medians WLRA WLRA
LMMF,C=0.2 LMMF,c=0.3 K=2 K=1 K=2

MAE 0.508 / 0.670 0.621 / 0.715 0.620 / 0.674 0.679 / 0.698 0.622 / 0.714
ZOE 0.450 / 0.553 0.462 / 0.542 0.510 / 0.558 0.550 / 0.559 0.519 / 0.553

Table 5.1: Lowest train/test errors for various methods.

lhttp: //www.cs.umn.edu/Research/GroupLens/
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5.7 Discussion

Learning a large-margin matrix factorization requires solving a sparse semi-definite pro-

gram. We experimented with generic SDP solvers, and were able to learn with up to tens

of thousands of labels. We propose that just as generic QP solvers do not perform well on

SVM problems, special purpose techniques, taking advantage of the very simple structure

of the dual (5.14), might be necessary in order to solve large-scale large-margin matrix

factorization problems. An itterative update procedure for the dual would not only allow

us to find the optimal dual, but also extract entries in the primal optimal solution from the

dual optimal, using the methods of Section 5.4.4.

SDPs were recently suggested for a related, but different, problem: learning the features

(or equivalently, kernel) that are best for a single prediction task [45]. This task is hopeless

if the features are completely unconstrained, as they are in our formulation. Lanckriet et al

suggest constraining the allowed features, e.g. to a linear combination of a few "base fea-

ture spaces" (or base kernels), which represent the external information necessary to solve

a single prediction problem. It is possible to combine the two approaches, seeking con-

strained features for multiple related prediction problems, as a way of combining external

information (e.g. details of users and of items) and collaborative information.

An alternate method for introducing external information into our formulation is by

adding to U and/or V additional fixed (non-learned) columns representing the external

features. This method degenerates to standard SVM learning when Y is a vector rather

than a matrix.
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Chapter 6

PAC-type Bounds for Matrix

Completion

A central type of results in machines learning are probabilistic post-hoc bounds on the gen-

eralization error of predictors. The classic setting for such result is learning a classification

based on a random supervised training set. An important aspect is that no assumptions are

made about the source of examples, other than the central assumption that all examples are

drawn i.i.d. from the same unknown source distribution. PAC (Probably Approximately

Correct) bounds then assure us that regardless of the source distribution, with certain prob-

ability over the random training set, the expected error over future samples from the same

source will not be much more than the average error over the training set. Although such

bounds do not provide for an a-priori guarantee on the performance of the predictor, and

such an a-priori guarantee cannot be expected without assumptions on the source distribu-

tion, they do provide a post-hoc guarantee in terms of an observed quantity-the training

error. The relationship between the probability of failure, the degree of approximation

and the sample size is generally governed by the complexity of the class from which the

predictor is chosen.

Similar types of bounds can be shown on the generalization error of matrix completion

via matrix factorization. The major assumption made, paralleling the i.i.d. source assump-

tion, is that entries in the target matrix to be observed are chosen randomly. The bounds

will then be stated with high probability over the choice of the random subset of observed
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Figure 6-1: Correspondence with post-hoc bounds on the generalization error for standard
prediction tasks

entries. With this probability, we will bound the overall discrepancy between the entire pre-

dicted matrix X and the target Y as a function of the discrepancy on the observed entries.

The bounds will hold for any target matrix Y.

More formally, bounds of the following type will be shown:

VYeRnxd Pr (VxExD(X; Y) < Ds(X; Y) + c(n, d, IS|, X, 6)) > 1 - 6
s

where the distribution on S is uniform over all subsets of |Sj entries, X is a class of matri-

ces,

D(X; Y) =-loss(Xia; Yia)nm.

is the average discrepancy over the entire prediction matrix and

Ds(X; Y) = f loss(Xia; Ya)

is the average observed discrepancy. Such results ensure that the bound on the overall

prediction error hold also for the specific matrix in the class X chosen by the learning

algorithm.

6.1 Bounds for Low-Rank Matrix Factorization

In this section, we consider generalization error bounds for the class of rank-k matrices,

Xk = {X rank X = k}. The allowed rank k is a complexity parameter that will determine

the relationship between the sample size ISI and the error E.

112

arbitrary source distribution > target matrix Y
random training set ' random set S of observed entries

hypothesis predicted matrix X
training error ' observed discrepancy Ds(X; Y)

generalization error ' true discrepancy D(X; Y)



6.1.1 Prior Work

Previous results bounding the error of collaborative prediction using a low-rank matrix all

assume the true target matrix Y is well-approximated by a low-rank matrix. This corre-

sponds to a large eigengap between the top few singular values of Y and the remaining

singular values. Azar et al [8] gives asymptotic results on the convergence of the predic-

tions to the true preferences, assuming they have an eigengap. Drineas et al [25] analyzes

the sample complexity needed to be able to predict a matrix with an eigengap, and sug-

gests strategies for actively querying entries in the target matrix. To our knowledge, this

is the first analysis of the generalization error of low-rank methods that do not make any

assumptions on the true target matrix.

Generalization error bounds (and related online learning bounds) were previously dis-

cussed for collaborative prediction applications, but only when prediction was done for

each user separately, using a feature-based method, with the other user's preferences as

features [20, 21]. Although these address a collaborative prediction application, the learn-

ing setting is a standard feature-based setting. These methods are also limited, in that

learning must be performed separately for each user.

Shaw-Taylor et al [65] discuss assumption-free post-hoc bounds on the residual errors

of low-rank approximation. These results apply to a different setting, where a subset of the

rows are fully observed, and bound a different quantity-the distance between rows and

the learned subspace, rather then the distance to predicted entries.

6.1.2 Bound on the Zero-One Error

We begin by considering binary labels Yi E ± and a zero-one sign agreement loss:

loss(Xia; Ya) = 1 Yi.XG<O (6.1)

Theorem 16. For any matrix Y E {±l}nm, n, m > 2, 6 > 0 and integer k, with proba-

bility at least 1 - 6 over choosing a subset S of entries in Y uniformly among all subsets
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of IS| entries:

k(n+:m) log ' - log 9
Vx,rankX<kVD(X;Y) <VDs(X; Y) + l21S -

where the discrepancies are with respect to the zero-one loss (6.1). The logarithms are base

two, and e is the natural base.

To prove the theorem we employ standard arguments about the generalization error for

finite hypothesis classes with bounded cardinality (e.g. [24, Theorem 8.3]).

To prove the theorem, first fix Y as well as X E R"x'. When an index pair (i, a)

is chosen uniformly at random, loss(Xia; Ya) is a Bernoulli random variable with proba-

bility D(X; Y) of being one. If the entries of S are chosen independently and uniformly,

ISIDs(X; Y) is Binomially distributed with mean ISID(X; Y) and using Chernoff's in-

equality:

Pr (D(X; Y) > Ds(X; Y) + e) e-2ISIe 2  (6.2)
S

The distribution of S in Theorem 16 is slightly different, as S is chosen without repetitions.

The mean of Ds(X; Y) is the same, but it is more concentrated, and (6.2) still holds.

Now consider all rank-k matrices. Noting that loss(Xia; Ya) depends only on the sign

of Xia, it is enough to consider the equivalence classes of matrices with the same sign

patterns. Let f(n, m, k) be the number of such equivalence classes, i.e. the number of

possible sign configurations of n x m matrices of rank at most k:

F(n, m, k) = {sign X E {-,0,+} mIX E R"xm rankX k}

f(n, m, k) = OF(n, m, k)

1 If Xia > 0

where sign X denotes the element-wise sign matrix (sign X)ia =0IfXia =.

-1 If Xia < 1

For all matrices in an equivalence class, the random variable Ds(X; Y) is the same, and

taking a union bound of the events D(X; Y) Ds(X; Y) + E for each of these f(n, m, k)
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random variables we have:

Plog f(n, m, k) - log6
Pr 3xrankX<kD(X; Y) Ds(X; Y) + ' g I1 < 6 (6.3)

by using (6.2) and setting e = og'f(ngk)-og6 . The proof of Theorem 16 rests on bound-V 21SI fTerm1 et nbud

ing f(n, m, k), which we will do in the next section.

Note that since the equivalence classes we defined do not depend on the sample set,

no symmetrization argument is necessary. One might suggest improving the bound us-

ing more specific equivalence classes, considering only the sign configurations of entries

in S. However, not much can be gained from such refinements. Consider, for example,

bounding the number of S-specific equivalence classes by f (n, m, k, |S|) 5 SK' using

VC-dimension arguments. Then we have f (n, m, k) (nm)v, and since for meaningful

sample sizes IS max(n, m) (otherwise we cannot hope to generalize), the improvement

in the bound is by at most a constant factor of two, which is lost in the symmetrization ar-

guments. Bounding the growth function f(n, m, k, ISI) directly might yield improvements

for specific sample size, but since f(n, m, k) f(n, m, k, 1 5 )Iognm, the improvement

would not be by more than a factor of log nm.

6.1.3 Sign Configurations of a Low-Rank Matrix

In this section, we bound the number f(n, m, k) of sign configurations of n x m rank-k

matrices over the reals. We follow a course outlined by Alon [3].

Any matrix X of rank at most k can be written as a product X = UV' where U E Rnx

and V e Rkxm. In order to bound the number of sign configurations of X, we consider the

k(n + m) entries of U, V as variables, and the nm entries of X as polynomials of degree

two over these variables:
k

Xia = Z UiaVat
a=1

Appendix A presents a bound on the number of sign configurations of polynomials of

bounded degree. Applying Theorem 34 from the Appendix, we obtain:

115



Lemma 17. f(n, m, k) "e-2 k(n+m) < (16em/k)k(n+m)

Using this bound in (6.3) would yield a factor of log 16m in the bound. In considering

sign configurations, we differentiate between zero entries and non-zero entries. However,

for each entry, we only care about two possible states of Xia: either it has the same sign as

Yia, or it does not, in which case we do not care if it is zero or of opposite sign. For any

fixed matrix Y it is therefore enough to consider the configuration of sign agreements with

Y, which can by bounded using Theorem 35:

Lemma 18. For any Y E {+, -_}n,, the number of configurations of sign agreements of

rank-k matrices with Y is bounded by

4e - 2 - nm k(n+m)

<(8em/k)k(n+m)

This establishes Theorem 16

Lower bound on the number of sign configurations These upper bounds on the number

of low-rank matrices are tight up to multiplicative factors in the exponent.

Lemma 19. For m > k2 , f(n, m, k) m2(k1)n

Proof Recall that rank-k matrices are those that can be written as X = UV' with an inner

dimension of k. Fix any matrix V E Rmxk with rows in general position, and consider the

number f(n, V, k) of sign configurations of matrices UV', where U varies over all n x k

matrices. Each row of sign UV' is a homogeneous linear classification of the rows of V,

i.e. of m vectors in general position in Rk. Focusing only on +/- sign configurations (no

zeros in UV'), there are exactly (2 -uO (v)) possible homogeneous linear classifications

of m vectors in general position in Rk, and so these many options for each row of sign UV'.

We can therefore bound:

k1 k-

f&,m, k) 2 &, V, k) ! 2E (Mi)
i=0

> ( 1 n >( n(k-1) >V (k-1)n = MI(k-1)n
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Related work The number of sign configurations of low-rank matrices was previously

considered in the context of unbounded error communication complexity.

Consider two parties, Alice and Bob, who would like to jointly calculate a function

X(i, a) : [n] x [m] -+ +1 where Alice holds the input i and Bob holds the input a.

Alice and Bob would like to communicate as little as possible between them, so that at the

end of the computation each one of them would hold the correct answer with probability

greater than half (both Alice and Bob are unlimited computationally). The unbounded

error communication complexity of a function A is the minimum number c such that there

exists a probabilistic protocol, under which no more than c bits are exchanged between

Alice and Bob for any input, and for any input, at the end of the computation, both Alice

and Bob hold A(i, a) with probability greater than half. Viewing A as an n x m matrix,

its unbounded communication complexity is roughly the logarithm of its rank, and more

precisely bounded by [57, Theorem 2]:

[log rank Al 5 c < [log rank Al + 1

In order to show the existence of functions with high unbounded error communication

complexity, Alon, Frankl and Rodl [1] bound the number of sign configurations of low-rank

matrices. They then use counting arguments to establish that some (in fact, most) binary

matrices can only be realized by high-rank matrices, and therefore correspond to functions

with high unbounded error communication complexity.

Alon Frankl and Rodl's bound is based on a two-step approach similar to a preliminary

result independently obtained by the author of this thesis [68], and made obsolete by the

stronger results discussed above. First, a fixed matrix U is considered, and a bound on the

number of sign configurations of X = UV' is obtained, where only V is variable. Each

column of UV' is a linear separation of the rows of U. The number of linear separations of

n points in Rk is less than 2(k + 1)nk-1, and so the number of sign configurations for any

fixed U is less than (2(k + 1)nk-1)tm. This bound should be multiplied by the number of
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different matrices U, i.e. the number of matrices U yielding different sets of possible sign

configurations. The important aspect of U is the different ways its rows can be linearly

separated, i.e. the set of covectors the rows of U define. And so, what we are after is the

number of possible different sets of covectors realizable by n vectors in Rk, i.e. the number

of possible realizable oriented matroids [14]. There are at most nk(k+1)n oriented matroids

realizable by n points in Rk [30, 2], yielding a bound of

f(n, m, k) < (2(k + 1)nk-1)m nk(k+1)n < 2 kmlog2n+k(k+1)nlogn. (6.4)

The bound of Theorem 34 avoids the quadratic dependence on k in the exponent. Alon,

Frankl and Rodl used a different bound on the number realizable oriented matroids, bound-

ing it by 2n3+O(n2), which is looser for small k, but slightly tighter then (6.4) when k =

E(n).

6.1.4 Other Loss Functions

In Section 6.1.2 we considered generalization error bounds for a zero-one loss function.

More commonly, though, other loss functions are used, and it is desirable to obtain gener-

alization error bounds for general loss functions.

When dealing with other loss functions, the magnitude of the entries in the matrix are

important, and not only their signs. It is therefore no longer enough to bound the number

of sign configurations. Instead, we will bound not only the number of ways low rank

matrices behave with regards to a threshold of zero, but the number of possible ways low-

rank matrices can behave relative to any set of thresholds. That is, for any threshold matrix

T E Rnxm , we will show that the number of possible sign configurations of (X -T), where

X is low-rank, is small. Intuitively, this captures the complexity of the class of low-rank

matrices not only around zero, but throughout all possible values.

We then use standard results from statistical machine learning to obtain generalization

error bounds from the bound on the number of relative sign configurations. The number

of relative sign configurations serves as a bound on the pseudodimension-the maximum

number of entries for which there exists a set of thresholds such that all relative sign config-
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urations (limited to these entries) is possible. The pseudodimension can in turn be used to

show the existence of a small E-net. Roughly speaking, and E-net is a finite set of matrices

(the number of which we will bound) such that every low-rank matrix has entries withing

E of some matrix in the E-net. We can then use arguments similar to those in the proof of

Theorem 16, taking a union bound only over the matrices in the E-net and arguing that the

error for any other matrix is within E of one of these matrices. The E-net we actually use is

not an e-net for the low-rank matrices themselves, but of the element-wise losses of these

matrices relative to a fixed target matrix.

The Pseudodimension of Low-Rank Matrices

Recall the definition of the pseudodimension of a class of real-valued functions:

Definition 4. A class F of real-valued functions pseudo-shatters the points x1 , . . . , xn with

thresholds t1 , . . . , tn iffor every binary labeling of the points (s1, ... , sn) E {+, -} there

exists f E F s.t. f (xi) < tj iff si = -. The pseudodimension of a class F is the supremum

over n for which there exist n points and thresholds that can be shattered.

The pseudodimension is a generalization of the VC-dimension, which is defined only

for classes of indicator functions. The pseudodimension is also equal to the VC-dimension

of the subgraphs of F, that is, the class of the sets {(x, y) I f(x) < y} for each f E F.

Classes with finite pseudodimension are known as VC subgraph classes.

In order to apply known results linking the pseudodimension to covering numbers, we

consider matrices X E Rnxm as real-valued functions X : [n] x [m] -+ R over index pairs

to entries in the matrix. The class Xk of rank-k matrices can now be seen as a class of real-

valued functions over the domain [n] x [m]. We bound the pseudodimension of this class

by bounding, for any threshold matrix T E Rnx, the number of relative sign matrices:

GT(n, m, k) = {sign*(X - T) E {-, +}nxm|X E Rnxm, rank X < k}

gT(n, m, k) = OGT(n, m, k)

where sign* X denotes the element-wise binary sign matrix (sign X)i, = -if X , 0
-1 If Xia < 1
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where zero is considered as positive, in accordance with our definition of shattering.

Lemma 20. For any T E R"', we have gT(n, m, k) < (")k(n+m)

Proof We take a similar approach to that of Lemmas 17 and 18. Any matrix X of rank at

most k can be written as a product X = UV' where U E Rnxk and V E Rk xm. we consider

the k(n + m) entries of U, V as variables, and the nm entries of X - T as polynomials of

degree two over these variables:

k

(X - T)ia = , UaVaa -Tia
a=1

Applying Theorem 35 yields the desired bound.

Corollary 21. The pseudodimension of the class Xk of n x m matrices over the reals of

rank at most k, is less than k(n + m) log -"

A Generalization Error Bound

Viewing rank-k matrices as real-valued functions over index pairs, standard results in sta-

tistical machine learning provide us with a bound on the generalization error in terms of

the pseudodimension. Substituting the bound on the pseudodimension from Corollary 21

in Theorem 44 we obtain:

Theorem 22. For any monotone loss function with jloss M, any matrix Y E {kl}nxm,

n, m > 2, 6 > 0 and integer k, with probability at least 1 - 6 over choosing a subset S of

entries in Y uniformly among all subsets of ISI entries:

VX,rankX<kD(X; Y) < Ds(X; Y) + e

where:

k(n + m) log 8 log MIS - log 6
|k(n+m)
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6.2 Bounds for Large-Margin Matrix Factorization

In this section, we consider generalization error bounds for Large-Margin Matrix Factoriza-

tion. More specifically, we provide bounds that hold for all learned matrices X, but where

the bound on the generalization error depends on either the trace-norm or the max-norm of

X. Since the norms are a scale sensitive measure of complexity, the bounds depend on the

scale in which the loss function changes, as captured by the Lipschitz continuity constant

of the loss function. Recall that:

Definition 5. A function f : R -- R is Lipschitz continuous with constant L iffor every

X1, X2:

if (Xi) - f(X2) < L~x 1 - x21

In particular, differentiable functions with a bounded derivative are Lipschitz contin-

uous with a constant equal to the bound on the derivative. We say that a loss function

loss : R x Y -- R is Lipschitz continuous with constant L if loss(x, y) is Lipschitz contin-

uous in x for every y, with constant L.

6.2.1 Bounding with the Trace-Norm

Theorem 23. For all target matrices Y E { ± l}xm and sample sizes ISI > n log n, and

for a uniformly selected sample S of ISI entries in Y, with probability at least 1 - 6 over

the sample selection, the following holds for all matrices X E Rnxm:

1 Z loss(Xia; Yia) < 1 Z loss(Xia; Yia)+
nm iaES

KLIIXIItr, /. (n+m) lnn ln(1 + Ilog IIXIr 1) ln(4/5)
KS + I + 2Sj

Where K is a universal constant that does not depend on Y,n,m, the loss function or any

other quantity, and loss is Lipschitz continuous with constant L, and we assume n > m.

By bounding the zero-one error in terms of a piecewise linear margin loss loss(x, y) =

max(O, min(yx - 1, 1)), which in turn is bounded by the zero-one margin loss, the gener-
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alization error bound can be specialized to bounding the true zero-one error in terms of the

empirical zero-one margin error:

Corollary 24. For all target matrices Y E {kl}"' and sample sizes ISI > n log n, and

for a uniformly selected sample S of ISI entries in Y, with probability at least 1 - 6 over

the sample selection, the following holds for all matrices X E Rnxn' and all 7 > 0:

11
-I{ia|XiaYia 5 0}| < -|{ia E SIXiaYia:! 7}|+nm ISi

KII|XIr (n + m) In n 1(1 /n(4/)K____ m; n ,n_+ I log IIXIItr /_Yj) + n(4/3
N/SIni+ ISI + 21S

To understand the scaling of this bound, it is useful to consider the scaling of the trace-

norm for matrices that can be factored into X = UV' where the norm of each row of U

and V is bounded by r. The trace-norm of such matrices is at most r 2 /in7i, leading to a

complexity term of r 2 . Recall that the conditional problem, where V is fixed and only U is

learned, is a collection of low-norm (large-margin) linear prediction problems. When the

norms of rows in U and V are bounded by r, a similar generalization error bound on the

conditional problem would include the term r2  S, matching the term in Theorem 23 up

to log-factors. We see, then, that learning both U and V does not introduce significantly

more structural risk than learning just one of them.

Also of interest are low-rank matrices. Since the rank is not a scale-sensitive measure,

we must impose a scale constraint, and we do so by bounding the entries in the matrix. For

low rank matrices we have

IIXIItr vrankII X IIFro < rank XnmB (6.5)

where B is a bound on the entries in the matrix. This inequality yields:

Corollary 25. For all target matrices Y E {+l}x ' and sample sizes |SI > nlog n,

and for a uniformly selected sample S of fSj entries in Y, with probability at least 1 - 6

over the sample selection, the following holds for all rank-k matrices with bounded entries

122



X E [-B, B]nxm

1k~ _ _ _ _ + 4/
loss(Xa ;Yia) < \ loss(Xia;Ya)+KB m k(n + m) inn In(4/6)

nm |S| i L|S jS| 21S\

Where K is a universal constant that does not depend on Y,n,m the loss function or any

other quantity, and loss is L-Lipschitz.

When the loss function is bounded only by the Lipschitz continuity and the bound on

the entries in X, this bound provides the same guarantee as Theorem 22, up to log factors.

However, Theorem 22 avoids the dependence on the magnitude of the entries in X when

the loss function is explicitly bounded.

This is the best (up to log factors) that can be achieved without explicitly bounding the

loss function. But for bounded loss functions, analyzing the covering number of bounded

low-rank matrices directly, yields a bound that scales only logarithmically with B.

6.2.2 Proof of Theorem 23

To prove the theorem, we consider matrices X E R"x as functions X : [n] x [m] -- R

from index pairs to entries in the matrix, and bound their Rademacher complexity (see

Appendix D) as such. The proof is then an application of Theorem 45 (Theorem 2 of [56]).

In order to calculate the Rademacher complexity of matrices with bounded trace-norm,

we calculate the Rademacher complexity of unit-norm rank-one matrices,

X1[1] = {uv' I u E Rn, V E Rm ,Jul = lvi = 1}, (6.6)

and use the fact that the Rademacher complexity does not change when we take the convex

hull of this class. We first analyze the empirical Rademacher complexity, for any fixed

sample S, possibly with repeating index pairs. We then bound the (average) Rademacher

complexity for a sample of IS| index pairs drawn uniformly at random from [n] x [m]

(with repetitions). The resulting generalization error bound applies to samples selected by

this process, and therefore also bounds the more concentrated situation of samples drawn
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without repetitions.

The Empirical Rademacher Complexity

For an empirical sample S = {(ii, a,), (i2 , a 2 ), ... .} of jS index pairs, the empirical

Rademacher complexity of rank one unit norm matrices is the expectation:

2 s
Rs(X 1 [1]) = E, sup -- e Ui,-,Vac]

Where oa, are uniform ±1 random variables. For each index pair (i, a) we will denote

Sia the number of times it appears in the empirical sample S, and consider the random

variables

(
7ia )(=

Since the variables a are independent,

E [Ta] = E [o] = sia 1 =sia

We can now calculate:

2
Ns(X1[1]) = E, sup - i-aUiVa

_lul=lvl=1 iS

=---E, sup IU'U-V]
S IUI=IVI=1

= 2Ea [I1112(6.7)
IS'

where a is an n x m matrix of O-ia.

The Rademacher complexity is equal to the expectation of the spectral norm of the

random matrix a (with a factor of ) Using the Frobenius norm to bound the spectral

norm, we have:
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2 2
Rs(Xi[1]) = E, [ICo] :5 E, [ila-lFro

2 27i2

Xiai

:5 rdE,[ori|

= E sia = 2 V/[SI = 2 (6.8)
|S' |ia f- Vs I--

As a supremum over all sample sets S, this bound is tight.

Examples of worst-case empirical Rademacher complexity

Consider a sample of IS! identical index pairs, i.e. s1l = ISI and sia = 0 elsewhere. The

maximizing u and v have u1 = v, = 1 and the Rademacher complexity is essentially the

expectation of the distance from the origin of a 1-D jSI-step random walk: E [loul ] :=

p and Ns = [80, 55].

As an even tighter example of a bad sample without repeated entries, consider a sam-

ple of IS! index pairs, all in the same column. The rank-one unit-norm matrix attain-

ing the supremum would match the signs of the matrix with 1 yielding an empirical

Rademacher complexity of 2

The form of (6.8) is very disappointing, as it would lead to a term of in a general-

ization error bound using Theorem 45. Even a matrix of constant sign requires a trace-norm

of Vn-m to represent with margin 1. This would indicate that to get a meaningful bound

we would need ISI > nm, i.e. more sample entries than entries in the matrix-not a very

useful situation.

In order to get a meaningful bound, we must analyze the expected spectral norm more

carefully.
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Bounding the Expected Spectral Norm E, [-0| 2 1

Instead of using the Frobenius norm, we bound the expected spectral norm directly. We

do so by applying Theorem 3.1 of [63] (see Appendix E), which bounds the expected

spectral norm of matrices with entries of fixed magnitudes but random signs in terms of

the maximum row and column magnitude norms. If S contains no repeated index pairs

(sia = 0 or 1), we are already in this situation, as the magnitudes of a are equal to s. When

some index pairs are repeated, we consider a different random matrix, & which consists of

sign flips of sia:

a = iaSia (6.9)

where eta are i.i.d. unbiased signs. Applying Theorem 3.1 to &ia we obtain:

E. [| A12 1 K(Inm) (max jsi.|I+ max sIal)

=K(Inm) (max sa + max ZS?a (6.10)

where si. and s-a are row and column vectors of the matrix s, and K is the absolute constant

guaranteed by Theorem 3.1 of [63].

To see that E, [ I0II2] provides an upper bound on the Rademacher complexity, we prove

that such "sign consolidation" can only increase the Rademacher complexity.

Consolidating Signs of Repeated Points

We show that for any function class and distribution, the Rademacher complexity can be

bounded from above by consolidating all random signs corresponding to the same point,

into a single sign. We first show that consolidating a single sign can only increase the

Rademacher complexity:

Lemma 26. For any function class F and sample S = (x 1, ... , xn) with x1 = X2:

E)2n
E, sp aif (i) : E, UP 22f (X2) + EZ rf (i
f fEx 2 )]f EY[ui=3 i)
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where o-i are i.i.d. unbiased signs (the expectation on the right is over n - 1, rather then n,

random signs).

Proof We first note that removing x 1, x2 can only decrease the expectation:

Ea sup oif(xi)

= E o, 70'2 sup O-if(x1)

> Eo,- sup E,1 [O-if(x 1)] +
f EX

r n
=E13 jsup Zo-if(xi)

fEY i=3 I
And now calculate, using (6.12) for the inequality:

n]
E, [sup Zaif xi

i=1 :

= Pr (a-1 7 o2)E, supZ o- f(xi)
i=3.

+ Pr (u = o2)E, sup o2 2f(x2 ) +
[f EY

1 E,
n'[sup ZOif (Xi)

f EYi= I+ 1Ea
2

n

Ei: if
i=3

sup -22f(X2)
fY E.)

Subtracting the first term on the right hand side from the original left hand side, gives us

the desired inequality.

By iteratively consolidating identical sample points, we get:

Lemma 27 (Sign Consolidation). For any function class F and sample S = (xi, ... ),

denote s, the number of times a sample appears in the class, and let o-, be i.i.d. unbiased

random signs, then:

lZs(F) Eo, [ 2spf-Z OrXsxf W)f . XES I
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(6.11)

n

+aO2f (X2) + Zoif (xi)
i=3

n
1]

Eo2 [o2f(x 2 )] + O-if(Xi)
i=3 I

(6.12)

(xi)

n

+ E aif (Xi)

i=3



Bounding the Row and Column Norms of a Uniformly Random Sample

We now consider the Rademacher complexity with respect to a sample S of ISI (where IS

is fixed) index pairs, chosen independently and uniformly at random:

Rs(X[1]) = -E 5 [s(x 1 [1]

K
< -(In m)4 Es maxjsj.| +Es max~s.,,I (6.13)

For the worst samples, the norm of a single row or column vector of s might be as high

as IS1, but for random uniformly drawn samples, we would expect the norm of row vectors

to be roughly M and of column vectors to be roughly L. To make this estimate precise we

proceed in two steps.

We will first bound the maximum value of Sia, uniformly over all index pairs. When

the maximum entry in s is bounded, the norm of a row can be bounded by the number of

observations in the row. In the second step we will bound the number of observations in a

row and conclude a bound on the maximal row (and similarly column) norm.

In deriving these bounds, we assume m < n < ISI < nm. We also assume m > 3 in

order to simplify some of the logarithmic factors and constants.

Lemma 28.

Pr (maxsia> 9lnn) <

Proof Using Bernstein inequality for the binomial distribution (Corollary 39), with t =

2 1n(nmIS12 ), for every Sia:

Pr sia> + 21n(nmIS|) exp - ) exp -
nm t+2 2 - 2 nm|S|

Taking a union bound over all nm entries in s, and bounding ln(nmIS|) < 4 In n and

< 1 ln(n) we get the desired bound.
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We now bound Es [maxi Isi. I], for samples in which sia < B for all sia:

Es maxlsi. II Vsia < B = ES max sa I Vsia < B
i a

= Es max BSia BEs [max si

Where si is the number of observation in the row i. Viewing the sample as |S indepen-

dent and uniform selections of i rows, we can bound ES [maxi si] 5 6(M + In ISI) using

Theorem 43.

Combining this bound with Lemma 28, we can now meaningfully bound the Rademacher

complexity, for a random sample set where each index pair is chosen uniformly and inde-

pendently at random (on each line, K designates some fixed universal constant, but this

constant changes from line to line):

Rfo""(Xi [1]) = ES [Rs(XI [1])]

< Pr (m axsia > 9 In n) sup Rs(X[1]) + Es Rs(X [1]) MaxSia 5 91nn

1 2 K
_ IS- + --- (In m)ZEs maxsi. maxs. max sia 9n]

S + (InM) 4 6-9In n( I+ In|ISI)+ 6-9In n( +n||

SK 1 n+m+ nn
<K 1(nm) (1nn)2 ISI

(in the last inequality we also used 2 Inn > In IS1)

So far, we bounded the Rademacher complexity of unit-norm rank-one matrices, X [1].

Taking the convex hull of this class (Lemma 11) and scaling by the desired norm we have

(following Theorem 46):

R(B[M]) = R(MconvX1[1]) = MR(X1 [1])
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establishing:

Theorem 29. For some universal constant K, the Rademacher complexity of matrices of

trace-norm at most M, over uniform samplings of index pairs is at most (forn > m):

M i/(n+m+"Inn)lnn
R(B[M]) < K (ln m)4

When ISI > n In n, the last term can be subsumed in the constant K.

6.2.3 Bounding with the Max-Norm

Since the max-norm gives us a bound on the trace-norm:

lXIttr! 5; /iV IXItma foreveryX E Rnxm

we can apply Theorem 23 also to matrices of bounded max-norm, replacing with

|lXlmax. However, when the max-norm is bounded it is possible to more simply obtain

slightly better bounds, avoiding the log-terms and with explicit constants:

Theorem 30. For all target matrices Y E {k1±}nxm and sample sizes |SI > n log n, and

for a uniformly selected sample S of IS| entries in Y, with probability at least 1 -J over

the sample selection, the following holds for all matrices X E Rnxm:

1 15(j; t)
1 Z loss (Xj"; Yia) < Y iaEloss(Xi.;Yi)+

2|Xm+_m__ n(+lelog ||XI|m. 1) + ln(4/6)
12 IIXIImx rt n + /n(+ eot~ta )+ 1St

Where loss is Lipschitz continuous with constant L. For large enough n, m, the constant 12

can be reduced to kRV/8 n 2 < 4.197, where kR is Grothendiek's constant (see Appendix

F).

Moreover, unlike the bound in terms of the trace-norm (Theorem 23), the bound in

terms of the max-norm can be generalized to index pairs chosen under an arbitrary distri-

bution, with the generalization error measured appropriately:
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Theorem 31. For all target matrices Y E { l}nx m and sample sizes |SI > n log n, and

for any distribution D over index pairs, for a sample S of ISI i.i.d. index pairs selected

according to D, with probability at least 1 - 6 over the sample selection, the following

holds for all matrices X E Rnxm:

Eia~D [VOSSX.; Yia)] < 1 loss(Xia; Yi,)+
iaES

12iX|ma n +m + 1 ln(1+le log lXima 1) + n(416)

Where loss is Lipschitz continuous with constant L and the constant can be improved as in

Theorem 30.

This generalization is a consequence of the empirical Rademacher complexity of low

max-norm matrices being bounded for any sample set of indexes. As was discussed in

Section 6.2.2, this is not the case for low trace-norm matrices, for which the empirical

Rademacher complexity might be high, and only the average Rademacher complexity over

uniformly selected index pairs is low.

6.2.4 Proof of Theorem 30

To prove Theorems 30 and 31 we bound the empirical Rademacher complexity of low max-

norm matrices, again viewing them as functions X : [n] x [m] -+ R from index pairs to

entries in the matrix.

As we did for low trace-norm matrices, we bound the Rademacher complexity of low

max-norm matrices by characterizing the unit ball of the max-norm (i.e. unit max-norm

matrices) as a convex hull. Unlike the trace-norm unit ball, we cannot exactly characterize

the max-norm unit ball as a convex hull. However, using Grothendiek's Inequality (see

Appendix F) we can bound the unit ball as with the convex hull of rank-one sign matrices:

convXi C Br. C 2convX± (6.14)
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where

Bmax = {XIliXimax < 1}

is the unit max-norm ball and

X± = {uv'|u E {-1, +1}n, v E {-1, +1}m} = {X E {-1, +1}|1rank X = 1}.

The class of rank-one sign matrices is a finite class of size IX±I = 2n+m-1, and so its

Rademacher complexity can be bounded by (Theorem 47):

E2(n+ m) + log|IS|
RS (X) < 7 ( A g(6.15)'SI

Taking the convex hull of this class and scaling by the desired norm we have (following

Theorem 46):

R(Bmax[M]) < R(2MconvXA)

< 2M 7 2(n+)+<logS| <12M n + m (6.16)

where in the last inequality we use 2 < ISI <rnm. This establishes:

Theorem 32. The Rademacher complexity of matrices of trace-norm at most M, for any

index-pair distribution, is at most:

R(Bma[M) <;12M n + m

For large enough n, m, the constant 12 can be reduced to kRv'8In 2 < 4.197, where kR

is Grothendiek's constant (see Appendix F).

6.3 On assuming a random observations

A major assumption we make throughout the treatment of the matrix completion prob-

lem is that the entries to be observed (indexes in S) are selected randomly, independent of
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one another (except perhaps avoiding repetitions), and independent of the target Y. This

assumption underlies the learning method suggested, and is made explicit in the general-

ization error bounds.

However, this assumption is often unrealistic. For example, it would imply a binomial

distribution on the number of movies people rate, and on the number of people who rate

a movie. A heavier tailed distribution is probably more realistic, implying dependencies

among the choice of observations.

More importantly, whether a rating is observed or not can be related to the rating itself.

User are more likely to see, and rate, movies they like. An extreme example of such

dependencies is in collaborative filtering situations where the preferences are implied by

user requests, where all observations are assumed positive.

Even in more subtle situations, significant benefit can probably be gained by modeling

the observation process and its relationship with the target values.

The bound in terms of the trace-norm (Theorem 23) heavily relies on the uniformity of

the sample selection. Since the trace-norm is average over rows and columns, it is not sur-

prising that it is an effective constraint only when all rows and column are used uniformly.

Indeed, as was discussed in Section 6.2.2, bounding the trace-norm is not effective when

only a subset of rows or columns is used.

Requiring low rank or low max-norm constrains all rows and columns uniformly. In-

deed, the generalization error bounds in terms of these complexity measures apply also

when the indexes are not chosen at random, and even when the observation process is de-

pendent on the ratings themselves (i.e. to the target matrix Y). However, in such cases,

the guarantee is on the expected loss when future entries are sampled under the observed

subset. In a collaborative filtering setting, this is extremely unsatisfying, as with would

guarantee low error on items the user is likely to want anyway, but not on items we predict

he would like.
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Chapter 7

Summary

In this thesis, we examined several aspects of learning with matrix factorizations. Learn-

ing with matrix factorizations is not a new idea: low-rank and factor models have been

extensively used in statistical analysis of tabulated data for over a century [58]. Through-

out this century of matrix factorization, new formulations, methods and analysis have been

devised, based on the central motivating assumption that tabulated data can be modeled

by underlying factors. Continued research on learning with matrix factorizations is fueled

by evolving trends and approaches to statistical analysis and machine learning, such as

the study of exponential families and generalized linear models, high-dimensional large-

margin linear methods, and distribution-free post-hoc generalization error bounds, as well

as by advances in convex optimization and the constant growth in sheer processing power.

This thesis continues this tradition, and offers several novel contributions to the field:

Study of Weighted Low Rank Approximations We show how the structure of the opti-

mization function breaks down when weights are introduced, and suggest novel local

search heuristics for finding weighted low-rank approximations. These include a very

simple update inspired by Expectation Maximization and a more complex conjugate

gradient method. We show how weighted low-rank approximations can be used as a

procedure in other low-rank optimization problems, including ones with convex loss

functions or with additive noise modeled as a (possibly unknown) Gaussian mixture.

Asymptotic Consistency and Inconsistency We show that asymptotic consistency of max-
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imum likelihood low-rank approximations should not be taken for granted. For a

Gaussian noise model, estimation of the low-rank subspace is consistent, but we

show that for a variety of other conditional models, including some that have re-

cently been suggested and studied (e.g. Exponential PCA and Logistic Low-Rank

Approximation in particular) estimation is not consistent even when the data follows

the modeling assumptions. On the other hand, we show that simple Frobenius low-

rank approximation (using the SVD) is consistent for any additive noise, even when

the noise distribution is not Gaussian. For non-additive noise models, we are able

to provide an appropriate correction to Frobenius low-rank approximation only for

unbiased conditional models, i.e. only when a low-rank approximation to the mean

parameters is sought. This leaves open the important problem of consistent estima-

tion of a linear subspace of the natural parameters (as in Exponential PCA).

Maximum Margin Matrix Factorizations We propose a novel method for completing

entries in a partially observed matrix: instead of approximating the observed entries

with a low-rank factorization, we approximate the observed entries with a low-norm

factorization while maintaining a large-margin. Unlike low-rank matrix approxi-

mation of a partially observed matrix, which is a non-convex optimization problem

for which no efficient solutions are known, maximum-margin low-norm matrix fac-

torization is a convex optimization problem that can be formalized and solved as a

semi-definite program. Using generic optimization methods for sparse semi-definite

programs we are able to find maximum-margin matrix factorizations for problems

with up to a few tens of thousands of observations-far from the size of actual data

sets. The applicability of the methods to large data sets is contingent on developing

specialized optimization techniques which take advantage of the very simple struc-

ture of the dual semi-definite programs.

Post-hoc Generalization Error Bounds We present, for the first time, post-hoc gener-

alization error bounds, without assumptions on the "true" preferences, for collab-

orative filtering viewed as a matrix completion problem. We present bounds both

for low-rank approximation, based on combinatorial results on the number of sign
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configurations of low-rank matrices, and for maximum-margin matrix factorization,

based on bounding the Rademacher complexity of low trace-norm and low sum-norm

(-2-norm) matrices. All of our results assume a random observation process-an as-

sumption which often does not hold in practice. An important challenge is to develop

generalization error bounds for the more realistic scenario in which the observation

process is dependent on the value of the entries in the matrix.
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Appendix A

Sign Configurations of Polynomials

We briefly quote here a discussion from Alon [3] on the number of sign configurations of a

set of real polynomials.

Let P1, . . , Pm be real polynomials in q variables, and let V be the complement of the

variety defined by I1iPi, i.e. the set of points in which all the m polynomials are non-zero:

V={XER VPi(X) $ 0}

Theorem 33 (Warren [78], Theorem 5.2 [3]). If all m polynomials are of degree at most

d, then the number of connected components of V is at most:

c(V) 2(2d)q E 2 (m) < (4edm)*

where the second inequality holds when m > q > 2.

We are interested in the number of sign configurations of the polynomials, i.e. the

cardinality of:

S = {(sign P1(x), sign P2(x),... , sign Pm(x)) c {-, 0, +}m I x E Rq}

Each connected component of V maps to a single sign vector. And so, the number of

connected components of V bounds the number of sign configurations that do not contains
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zeros:

iS n {-, +} ml c(V)

To bound the number of sign configurations, including those with zeros, we will modify

the polynomials slightly. Consider a set C C Rq containing one variable configuration for

each sign pattern in S, i.e. jCJ = ISI and such that S = {(sign P(x)) E {-, 0, +}m I x C}.

Define c as:
.1

e min IPi(x)I (A.1)
2 1 :im,xECP(x):0

Since S is finite (at most 3m sign vectors are possible), C is also finite, the minimum is

justifies, and e > 0. We can now consider the 2m polynomials Pi+(x) = P(x) + E and

P;-(x) = Pi(x) - E and:

V' = {x E R"|ViPi+(x) # 0, Pi-(x) 0 0}

Different points in C lie in different connected components of V', and so (S = IC <

Ic(V') I establishing:

Theorem 34 ([3, Proposition 5.5]). The number of sign configurations of m polynomials,

each of degree at most d, over q variables, is at most (8edm/q)q (for 2m > q > 2).

If we consider only +/- signs by identifying zero as (arbitrarily) positive, instead of

ignoring zeros, that is sign*p + p ;> , it is enough to take the modified polyno-
- otherwise

mials P7(x) = P(x) - E, obtaining a bound of (4edm/q)". This is true also if we identify

zero as positive or negative differently for each polynomial:

Theorem 35. Let P1,... , Pm be polynomials over q variables, each of degree at most d

and y, . .. , ym E ±1. Define the relative sign confi guration for a variables assignment

x E Rq as

(X) = + yiPi(x) > 0

- yiPi(x) 0

The number of different relative sign configurations is at most (4edm/q)q (for m > q > 2).
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Appendix B

Basic Concentration Inequalities and

Balls in Bins

We quote here basic concentration inequalities about the sums of random variables that are

used in the Thesis. In Section B.2.1 we use Bernstein's inequality to bound the expected

number of balls in the fullest bin, when balls are tossed randomly into bins.

B.1 Chernoff and Heoffding Bounds

Chernoff's original inequality applies to a binomial distribution, i.e. a sum of i.i.d. Bernouli

random variables:

Theorem 36. Let S Binom(n, p) be a binomial random variable. For any e > 0:

Pr (S > E [S] + E) < e-2e2 /n

and

Pr (S < E [S] - e) , e~2n

Heoffding relaxed the assumptions that the variables are identically distributed, and that

they are Bernoulli:

Theorem 37 (Heoffding 1963, [24, Theorem 8.1]). Let X be independent random vari-
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ables such that a2  Xi : bi with probability one for all i, then for any E > 0:

Pr X > E [Xi] + < e2e2 / _ai) 2

and

Pr X< E[X 2]-E <e- =/(bj-aj)2

Chernoff's and Heoffding's inequalities are pessimistic. They do not depend on the

distribution of the summed random variables X, and assume the worst possible variance.

For Bernoulli random variables, this variance is achieved, and the inequality is tightest,

when P(Xi = 1) = 1. However, when the probability of 'success' in each trial is very low,

i.e. E [S] is small, the inequality is very loose. Bernstein's and Bennett's inequalities are

tighter when the variance is small.

B.2 The Bernstein Bound and Balls in Bins

Theorem 38 (Bernstein 1946, [24, Theorem 8.2]). Let Xi be independent random vari-

ables such that Xi < c with probability one for all i, then for any e > 0:

Pr(ZXi > E[Xi]+c) rkex[XI-Pr X,> E[X~c exp 2 E_~ __ Var [ Xi ] + 2 nce( i=1 i=1 i

Specialized to the binomial distribution, Bernstein's bound can be written as:

Corollary 39.
)>n + 2

Pr Binom(n,P) > -+ t) exp -
P ~ t + 2np)

Note that the (1 - p) term was dropped from the variance, and the factor 1 was also3

dropped, giving a slightly looser version of the bound, specialized to small p.

B.2.1 The Expected Number of Balls in the Fullest Bin

Consider an experiment in which n balls are independently and uniformly tossed, each

ball to one of m bins. Denote by si the number of balls in bin i. We can use Bernstein's
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inequality to bound the expected number of balls in the fullest bin, i.e. E [maxi si].

Lemma 40. For 7 < n < m, if n balls are tossed into m bins:

EImax si] 31nm

Proof Each si is Binomially distributed with n trials and success probability 1, and so

using Corollary 39 of Bernstein's bound, and setting t = (2 ln(nm) - 1 - "):

Pr (si > 3In m - 1) < exp ( (31nm-1 - ")2
31nm - I - " + 2n

<exp ((31n2)2)

< exp 9(ln m)2 - 6 Inm + 4

< exp (-3ln m + 2) ! exp(-2ln m) =
1

M

Taking the union of these events over all bins, the probability that at least one bin has more

than 3 In m - 1 balls is at most = 1. Noting that in any case, the maximum is at most

n, we have:

E max si] Pr maxsi>31nm-1 n+31nm-1

1
< -n+3nm-1 <3lnm

m

0l

Lemma 41. For n < m < n:

E [maxisi] < 6l nn
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Proof We use the same argument, with t = 4 In n, getting:

+ 4 inn) < exp -
(4 In n)2"

4 In n + 2 n

< exp(-2 n n) =

E maxsi &Pr maxs > n +41nn n+ n +41nn
rn

m n
K -n+-+4nn 6nn

n2 n

E max si < +4 Inn < 51
rn m

Proof Choose t = 11--inn:

n
rn

+ n + 11-in exp

< exp

11 ll Inn '
- 11n n + 2 -mm

11-n In+n

11) -innV M + 2 )

Since Inn < -a and vinn < n:In - m

< exp -
11 n Inn '

1"In n < exp(-2Inn) =
(v/i+ 2) "

E [max si- < Pr max si >
n+ 1 In N + + 11 n n-+ 11Mnj++1-n

+ In n n < ++ 11in- 4I-nn <5-
m rn
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Pr (si > rn

And so:

< exp -
16(In n)2

61n n )

1

Lemma 42. For m < n:

Pr si

And so:

1
n2

m n
< - m



Combined, these three lemmas cover the entire range of ratios of balls to bins:

Theorem 43. If n balls are tossed into m bins uniformly and independently at random,

then the expectation of the number of balls in the fullest bin is at most:

6 max 1-, ,In n, In m
( nM
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Appendix C

Generalization Error Bounds in Terms

of the Pseudodimension

We quote here standard results from statistical machines theory (e.g. [7, Chapters 17-18]).

Definition 6. A class F of real-valued functions pseudo-shatters the points x 1, . . . , x" with

thresholds t 1, . . . , tn iffor every binary labeling of the points (s1, ... , sn) E {+, -} there

exists f e F s.t. f (xi) < ti iff si = -. The pseudodimension of a class F is the supremum

over n for which there exist n points and thresholds that can be shattered.

Definition 7. We say a loss function loss : R x Y --+ R is monotone if for all y E Y,

loss(x, y) is a monotone (either increasing or decreasing) function of y.

Theorem 44. Let F be a class of real-valued functions f : X --+ R with pseudodimension

d, and loss : R x Y -+ R be a bounded monotone loss function, with loss < M. For any

joint distribution over (X, Y), consider an i.i.d. sample S = (X 1, Y 1),..., (Xv, Yn). Then

for any E > 0:

S32eM epsilon2
Pr -f ErExy [loss(f(X), Y)] > n nloss(f (Xi), Y) + e < 4e(d+1) e 32

The bound is a composition of a generalization error bound in terms of the L1 covering

number [7, Theorem 17.1] and a bound on the L1 covering number in terms of the pseu-

dodimension [34], as well as the observation that composition with a monotone function
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does not increase the pseudodimension [7, Theorem 12.3],[33].
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Appendix D

Bounding the Generalization Error

Using Rademacher Complexity

The Rademacher complexity is a scale-sensitive measure of complexity for a class of real

valued function.

Definition 8. The empirical Rademacher complexity of a class of function Y : X -+ R

over a specific sample S = (x 1 , x 2 .. .) E X~Is is given by:

Rs(Y) = S E. sup o-if(xi)

where the expectation is over the i.i.d. random signs u-, with Pr(o-i = +1) = Pr(ai =

-1) = 1.

The Rademacher complexity of F with respect to a distribution D over X is the expec-

tation of the empirical Rademacher complexity:

Z (F) = ESDn [S(D)]

where the expectation is over and i.i.d. sample of |SI points chosen according to D.

The distribution-free Rademacher complexity of F is the supremum of over all samples

of ISI points:

VZP(F) = sup RS(F)
SEXn
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and is an upper bound of the Rademacher complexity over any distribution.

The Rademacher complexity can be used to bound the generalization error:

Theorem 45 ([56, Theorem 2]). For any class of function T : X -> R and any joint

distribution D of (X, Y) over X x {1}, for a sample of a D-i.i.d. sample (Xi, Yi) of size

of size n, with probability at least 1 - 6 with respect to choosing the sample, all functions

f E F satisfy:

1 n2 RD Fln(2/:J)
Pr (Yf(X) 5 0) - E loss'(f(Xi); Yi) + -n)(F) + (S) (D.1)

(X,Y)D n =7 21SI

Furthermore, with probability at least 1 - 6 with respect to choosing the sample, all

function f E F satisfy:

Pr (Yf(X) 0) <
(X,Y)~D

Dn( +.F +og Y 1) lninf (ZlossY(f(Xi); Yi) + R(F) + ) + 2nSJ (D.2)Y>0 n . n 2|S|

The presentation here differs from the original presentation [56]:

" Only the form (D.2) was presented in [56]. The form (D.1) is an intermediate result,

and is the presentation in, e.g. [11].

" The presentation here is specialized to the zero-one margin loss loss", as a bound on

the truncated hinge loss. The original presentation applies to any Lipschitz-bounded

bound on the zero-one sign loss.

" The original presentation takes an infimum over 0 <-y K 1. Here, a slightly modified

form is presented, where the bound is over any 0 < y. This form can be easily derived

from Theorem 1 in [56] by taking a union bound over the two cases -Y < 1 and - > 1.

As a result, the failure probability doubles (expressed in the bound by a j instead of

2 inside the logarithm of the last term). The expression of the third term also has to
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change to accommodate y > 1, and ln(1 + I log 7 1) replaces In log . in the original

presentation.

Some properties of the Rademacher complexity (e.g. from [11, Theorem 12]):

Theorem 46. For any classes of functions:

1. If F C H then R(F) 5 7Z, (H).

2. R(F) = 7Z,(convF).

3. For c C R, R1Z(cF) = Ic|IZ(F).

4. Rn (E F) :5 Ej Rn (E F).-

Rademacher Complexity of a Finite Class of Sign Functions

Theorem 47. Let F be a finite class of sign functions functions X -+ {-1, +1}, then its

empirical Rademacher complexity, and so also its distributionfree Rademacher complexity,

is bounded by:

2 log IF| + log IS|RS (T)< F7 Is'
The constant can be reduced to 4 in 2 < 2.773 for large enough IF.

Proof For any f E F, Ej f(xi)oi are all identically distributed (when o are random), and

it is enough to analyze sumioa. Using Chernoff's bound (Theorem 36), for any a > 0:

Pr 2jZc a~T = Pr Binom(|S|, 1)

And so for any f E F we have:

Pr ( f(i)oi a ) 2 a2 /8

Taking a union bound over all f E 7:

Pr ( f(xi)oa !
a 2 2/8
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Noting that 2 >j f (xi)a < 2, and setting a = 8ln(41YF) + 4in IS ! we can now

bound:

Rs (F) = E, sup -if(i)

< a + 4Ne -*2/s

8 ln(4IFI) + 4n IS + 1

S 7 21og|IF+ logISj (D.6)

ISI

for I.l, IS5> 2. L
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Appendix E

The Expected Spectral Norm of A

Random Matrix

Many results are known about the asymptotic distribution of the spectral norm of a ran-

dom matrix, where the entries in the matrix are i.i.d. Gaussians. Seginer [63] provides a

bound on the expectation for finite size matrices, for matrices with i.i.d., but not necessarily

Gaussian entries, and for matrices with independent sign-flips, but not necessarily identical

magnitudes.

Theorem 48 ([63, Corollary 2.2]). There exists a constant K such that, for any m, m, any

h < 2 Inmax(m, n) and any m x n random matrix A = (aij), where ai3 are i.i.d. zero

mean random variables, the following inequality holds:

max E max laj. ], E maxIa.j } E [11AII1] <

K h E max la.Ih] + E [maxIa.Ih]

where aj. is a row of A and a.3 is a column of A.

Theorem 49 ([63, Theorem 3.1]). There exists a constant K such that, for any n, m,

any h < 2 In max(m, n), and any m x n deterministic matrix A = (ai3 ), the following
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inequality holds:

E , [Ile® All] <; (K In/4 min(m, n))h (maxIai.h + maxla.jlh

where e is an i.i.d. sign matrix with Pr (Eij = 1) = Pr (ci, = -1) = 1, the operation 0

denotes an element-wise product, and aj. and a.3 are row and column vectors of A.
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Appendix F

Grothendiek's Inequality

We quote here Grothendiek's inequality, and a corollary of the inequality that we use in the

Thesis.

Theorem 50 ([79]). For any A E R"xm :

maxx=uv/,' ,, = 1 A * X > kR max A e X
X..mx.1

where kR is Grothendiek's constant, and:

1.67 < kR < 1.79

Let

Bma = {XI iXi|max 11

denote the unit ball of the max-norm,

Cinf = {UV'I u|. = Iv|K = 1}

denote rank-one matrices with unit-bounded entries and

C± = {uv'Iu E {-1, +1}, E {-1, +1}m} = {X E {-1, +1}rankX = 1}
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denote rank-one sign matrices.

Corollary 51.

convC± = convCif C Bma C 2convC±
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