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Abstract

This thesis addresses the problems of modeling the gene regulatory system from mul-
tiple sources of large-scale datasets. In the first part, we develop a computational
framework of building and validating simple, mechanistic models of gene regulation
from multiple sources of data. These models, which we call physical network mod-
els, annotate the network of molecular interactions with several types of attributes
(variables). We associate model attributes with physical interaction and knock-out
gene expression data according to the confidence measures of data and the hypothesis
that gene regulation is achieved via molecular interaction cascades. By applying stan-
dard model inference algorithms, we are able to obtain the configurations of model
attributes which optimally fit the data. Because existing datasets do not provide
sufficient constraints to the models, there are many optimal configurations which fit
the data equally well. In the second part, we develop an information theoretic score
to measure the expected capacity of new knock-out experiments in terms of reducing
the model uncertainty. We collaborate with biologists to perform suggested knock-
out experiments and analyze the data. The results indicate that we can reduce model
uncertainty by incorporating new data. The first two parts focus on the regulatory
effects along single pathways. In the third part, we consider the combinatorial effects
of multiple transcription factors on transcription control. We simplify the problem by
characterizing a combinatorial function of multiple regulators in terms of the proper-
ties of single regulators: the function of a regulator and its direction of effectiveness.
With this characterization, we develop an incremental algorithm to identify the reg-
ulatory models from protein-DNA binding and gene expression data. These models
to a large extent agree with the knowledge of gene regulation pertaining to the corre-
sponding regulators. The three works in this thesis provide a framework of modeling
gene regulatory networks.

Thesis Supervisor: Tommi S. Jaakkola
Title: Associate Professor
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Chapter 1

Introduction

1.1 Prelude

Life has been the inspiration for engineering and information science since the dawn

of human civilization. The earliest record (or more likely, the earliest mythology) of

humanoid robots dates back to 500 B.C. in ancient China ([116]). The flying machine

appeared in Leonardo DaVinci's manuscript ([38]) was a remarkable imitation of bird

wings. Computers, whose constitutional materials - beads, gears, wheels, vacuum

tubes, silicon chips - cannot be further from biological life, have a very biological

meaning in the etymological sense. The earliest use of this word denotes the clerks

who did computational works for military purposes ([18]). This word is also seman-

tically translated into Chinese as "electrical brain", which bears the connotation of

a living creature. This translation, although imprecise, partly reflects the subcon-

sciousness of pioneers of information and computer science during the early to mid

twentieth century. Alan Turing not only laid out the theoretical foundation of com-

putations and computability, but also coined the Turing test that could operationally

define artificial intelligence, and proposed the earliest quantitative model elucidat-

ing embryo development - diffusion-reaction models. Norbert Wiener studied human

brain waves and established cybernetics which applied control theory to explain the

dynamic behavior of biological systems. Frank Rosenblatt instilled the abstract no-

tion of neural information processing into a computational model - perceptrons -

17



which eventually evolved into extremely fruitful applications ranging from consumer

appliances to spam email filters. These big names are just few in the large eche-

lon of scientists/engineers who have spent substantial efforts bridging computational

and biological science. A wide range of sub-disciplines - including computer vision,

robotics, brain and cognitive science, computational linguistics, machine learning,

biomechanics, medical imaging, computational biology, and many others - have been

developed toward this direction since the beginning of the computer era.

However, it is not until the end of the twentieth century and the beginning of

the twenty first century that biological science per se is perceived as an information

science. Beforehand bench work comprised the whole life of biologists who work

at laboratories. As experimental technologies improve and more high-throughput

technologies are developed, the time and effort spent on data collection are reduced

while the analysis, extraction and processing information become more important

parts of biological research. It is not a wild conjecture that in the future experimental

work will be completely automated in a large scale. The main job of biologists will

be designing experiments, analyzing and processing the large amount of information

gathered from different sources. Information and engineering science are expected to

play important roles in the development of this "new" biology due to their expertise

in the processing of large amount of information.

This trend already becomes prominent in the fields of many "omics" (genomics,

proteomics, interactomics, etc.) and systems biology. A large amount of data cov-

ering different aspects of the biological system have been collected: DNA sequences,

structures of proteins or other molecules, mRNA and protein expressions, molecular

interactions, protein modifications and localizations, metabolic substrates fluxes, and

many others. The need to extract meaningful information from these data creates

many computational problems. The infrastructure of information storage, processing

and transfer is certainly an important aspect; for instance, the standardization and

management of biological databases, the platform of streamlining the data collection

processes, visualization and representation of information. However, more impor-

tant aspects are the quantitative techniques of studying a complex biological system:
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modeling or simulating a complex system, extracting statistically significant patterns

from data, and so on. These problems create tremendous opportunities for computer

scientists to contribute in biological science.

This thesis presents one of the many works that attempt to understand gene

regulation by building computational models on large-scale genomic data. Due to the

complexity of the gene regulation system and insufficient data, current progress in

this field are still preliminary. We view the works in this thesis as an effort of tackling

an important biological problem with a principled computational method.

1.2 Gene regulation

The goal of this thesis is to develop computational methods of inferring aspects of

gene regulation from large-scale genomic datasets. In this section I will give a crude

overview about the biological processes of gene regulation. This overview is incom-

plete and general. It serves the purpose of providing the biological background for the

discussions in subsequent chapters. Most of the content in this overview is excerpted

from [101].

It is now a commonly known that proteins are fundamental building blocks of

life and genes are the DNA segments encoding proteins. Proteins are important for

life because they participate in diverse biological processes. Few instances include

muscles and inter-cellular matrix, hemoglobins, enzymes, antibodies, transcription

factors, and signal transducers. The aggregate of these biological processes determines

the structures, morphologies and functions of organisms and their fitness in a specific

environment.

The information about proteins is encoded in DNAs. DNA (Deoxynuleic Acid)

is a long, double-helix shaped polymer composed of nucleotides with base pairs of

purines and pyrimidines. Like bits for digital computers, nucleotides are the basic

information units for a DNA. Each position along a DNA is filled with one of the four

bases: adenine (A), thymine (T), cytocine (C) and guanine (G). The bases along the

two strands of a DNA need to match each other in order to form a stable double-
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helix structure: A matches T and C matches G. The composition of bases from the

5-end to the 3-end of a DNA is called the sequence of this DNA. Because DNAs are

duplicated whenever cells divide via mitosis and all the cells of the same organism

originate from a single cell (zygote), the DNA sequences of different cells are almost

identical (with certain exceptions, for instance, the DNA sequence of a cancer cell

undergoes a series of mutations thus is significantly different from a normal cell). The

entire DNA sequence of an individual organism is called the genome of this organism.

The size of a genome varies from a few kilo bases to several giga bases.

The synthesis of protein products from DNA sequences is called gene expression.

The synthesis procedure of most contemporary organisms follows the central dogma:

DNA source --+ RNA template -+ protein product. The sequence information in a

DNA (A, T, C, G) is first transcribed into another type of polymer called messenger

Ribonucleic Acid (mRNA). mRNA is much smaller yet less stable than DNA. The

base thiamine (T) in a DNA is replaced by uracil (U) in an mRNA. After transcription

mRNAs in most eukaryotes are spliced by removing the sequences which do not encode

proteins (introns) and ligating together the separated sequences encoding the same

protein (exons). Spliced mRNA molecules are transported from nucleus to cytoplasm.

A spliced mRNA is then translated into a protein by ribosome and transfer RNAs

(tRNAs). A triplet of bases in the spliced mRNA (a codon) corresponds to a specific

amino acid. The tRNAs carrying the RNA bases complementary to mRNA codons

(anti-codons) are then sequentially recruited and the chain of amino acids (poly-

peptide chain) is elongated. The poly-peptide chain is released from ribosomes upon

completion and is folded into the proper protein conformation. The information flow

DNA source -- RNA template -+ protein product is not universal for all organisms.

Retroviruses, for instance, store genetic information in RNAs and reverse-transcribe

the genetic information into the DNA sequence of the host. The reversely transcribed

genes in the host DNAs are then expressed along with other host genes.

The protein synthesis mechanisms described above have been studied in a great

detail during the past fifty years. These mechanisms, although essential for under-

standing how genes control the biological processes, are not sufficient. They are
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common to all genes hence do not elucidate why the functions of some proteins are

manifested in specific cell types under certain conditions. In order to understand how

genes function under a specific internal and external condition, it is necessary to know

the fundamental processes of modulating the functions of genes. The modulation of

gene functions is called gene regulation.

The functions of many genes are modulated by the quantities of their products.

Obviously the number of protein molecules in a cell can affect the activities of this

protein. In analogy to computers, the activity of a gene is at "ON" state when its pro-

tein level is high and at "OFF" state when the protein level is low. In practice many

genes modulate their functions through this simple mechanism. For instance, the

quantities of enzymes Gal2p and Gal3p catalyzing galactose metabolism significantly

increase in a galactose-rich environment ([103]); heat shock proteins Hsp30p remain

low at room temperature but are expressed when the temperature rises ([137]). Since

genes are expressed through transcription and translation, the control of expression

levels operates on these processes.

The quantities of most gene products are modulated via the control of transcrip-

tion initiation. The transcription of genes is undertaken by a multi-unit complex

- RNA polymerase II holoenzyme - constituted of about ten proteins surrounding

the RNA polymerase II (RNAP II) ([77]). In eukaryotes, the RNAP II holoenzyme

binds to the TATA-box upstream of the transcription start site of DNA, reads its

sequence, synthesizes and elongates the mRNA molecule by sliding along the DNA.

The RNA polymerase II holoenzyme is a general and insufficient apparatus for tran-

scription initiation. To initiate transcription the RNAP II holoenzyme must interact

with the proteins which bind on the DNA regions upstream of the transcription start

site - the promoter regions of genes. Those DNA-binding proteins are gene-specific

transcription factors. The modulation of mRNA quantities of genes under a spe-

cific condition can be achieved by the bindings of gene-specific transcription factors.

A few instances of transcription initiation control have already been studied in a

great detail. For example, genes encoding galactose metabolism enzymes are acti-

vated when transcription factor Gal4 binds to their promoters. Under glucose-rich or
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galactose-poor conditions, repressor Gal80 binds to Gal4 and inhibits its interaction

with the general transcription apparatus, hence represses the expression of galactose

metabolism genes. When galactose is enriched, Gal80 is disassociated from Gal4 and

those genes are activated (103, 68]).

Although transcription factor bindings are widely conceived as a major mech-

anism of modulating transcription initiation, there are many unresolved problems.

An important problem is how the expression of the entire genome is controlled by

a relatively small number of transcription factors. Because most genes are bound

by multiple transcription factors on their promoters, coordinated and competitive

interactions among transcription factors are believed to be responsible for the diverse

control (for instance, [29, 125]). However, except a few cases (e.g., the interaction of

Gal4 and Gal80) most combinatorial control mechanisms are unknown. The speci-

ficity of transcription factor bindings on promoters is under intensive study. The

specificity of some transcription factors are achieved by the DNA sequence alone, for

the promoters bound by those factors are enriched with sequences of specific patterns

called motifs. However, the binding sites of many transcription factors do not seem

to have simple patterns. It is also unclear how important the non-transcription factor

proteins which indirectly bind to DNAs - chromatin modifying factors, MAP kinases,

and so on - are in terms of regulating transcription initiation.

The latency of transcription initiation control ranges from minutes (for example,

cell cycles of protozoan) to hours and days (for example, embryo development of meta-

zoan). It may not be fast enough to respond to some very dynamic environmental

changes. In order to respond to those changes cells have developed other mechanisms

of modulating protein functions. Protein modification is another common way to alter

protein functions. A protein often contains multiple "docking sites" which can accom-

modate small molecular groups. It is chemically modified when the molecular groups

are recruited to or disassociated from the docking sites. The activity of a protein may

depend on its modification state, for the presence of small molecular groups may alter

the conformation of the protein or provide energy for its activities. Phosphorylation,

for example, activates the protein by adding the energy in the phosphodiester bond

22



of phosphate into the protein ([101]). Other post-translational modifications include

methylation, acetylation, ubiquitination, and adenization ([1011).

Protein modifications play important roles in certain biological processes such as

signal transduction pathways ([89, 101]). Because the transcription initiation control

takes place in the nucleus, there must be a mechanism of propagating an external

stimulus into the nucleus. This mechanism is called signal transduction. The sig-

nal transduction goes through a series of amplification stages like analog electronic

circuits. The external stimulus often changes the conformation of receptor proteins

embedded on the cellular membrane (for instance, the binding of antigens on the

surface of T-cells or the binding or pheromones on the pheromone receptors). This

change in turn modifies the protein at the next stage (for instance, G-protein). The

signal of the external stimulus is then propagated along the pathway. The protein

at the preceding step modifies the protein at the subsequent step. Signals are am-

plified since one protein at the preceding step is capable of modifying many proteins

at the subsequent step. Signal proteins are transported into the nucleus and modify

transcription factors. Gene expression is affected in response to the modification of

transcription factors. A well-studied example of protein modification driven signal

transduction is Mitogen Activation Phosphorylation (MAP) kinase pathway ([133]).

The transduction of signals is achieved via a cascade of phosphorylations. This mech-

anism is responsible for the mating signal transduction of yeasts, and we will discuss

it in more detail in Chapter Four.

Although the functional roles of protein modifications are as prevalent as tran-

scription initiation control, they are not as intensively studied. The primary reason

is the difficulty of studying protein modifications in a high-throughput fashion. High-

throughput assays of detecting chemical modification states of proteins are actively

under development. High-resolution mass spectrometry is a promising technology,

but it is not yet able to efficiently measure the quantities and modification states of

all proteins in the proteome. On the other hand, the mRNA or protein levels alone

are not reliable indicators of the activities of protein modifications. Some studies

showed that the expression levels of MAP kinases along the same signal transduc-
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tion pathway were correlated (perhaps due to the feedback transcription control from

the end products of signal transduction, [136]). However, this observation does not

hold in general. Protein-protein interactions are more reasonable indicators for they

are the necessary conditions for certain types of protein modifications such as phos-

phorylations. However, most large-scale assays of protein-protein interactions do not

capture transient interactions ([132]), and the quality of these large-scale datasets is

often questioned ([31, 86]). Therefore, studying the gene regulatory effects of protein

modifications remains an open problem.

Transcription initiation and post translational modifications do not cover all mech-

anisms of gene regulation. In addition to post translational modifications, cells also

respond to abrupt environmental changes by localization. Some transcription factors

are occluded from the nucleus under normal conditions and are transported into the

nucleus under the environmental change. Gene expression can also be regulated at

translation levels in addition to transcription levels.

The mechanisms of gene regulation establish relations among all the genes which

can be viewed as a complex network. Understanding and reconstructing gene regula-

tory networks are one of the leading problems in contemporary biology ([25]).

1.3 Problem statement

The goal of this thesis is to study computational methods of reconstructing the gene

regulatory network from multiple sources of (primarily high-throughput) data. Due

to the availability of data and simplicity of models, we focus on the gene regulation

mechanisms which can be revealed by physical (molecular) interactions - protein-DNA

and protein-protein bindings. These mechanisms cover the control of transcription

initiation and signal transduction pathways.

We postulate that the effects of gene regulation are realized via pathways of molec-

ular interactions. For example, the effect of deleting a gene can be propagated along

a specific pathway and eventually alters a downstream gene. Therefore, the network

of physical interactions is essential for understanding gene regulation. However, the
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physical interaction network alone does not provide sufficient information about gene

regulation. To understand gene regulation we need to annotate the physical network

with various properties pertaining to the functions of gene regulation: the function

of a physical interaction as activation or repression, the direction of a protein-protein

interaction in a signal transduction cascade, the activity of a pathway, and so on.

These attributes are important since a specific setting of their values provides a sim-

ple yet self-consistent model about gene regulation. For example, if the direction and

function of each interaction along the pathway is known, then we can predict the

effect of deleting each gene along the pathway.

The first part of this thesis focuses on learning the annotations of the physical

network from multiple sources of data. Some annotated properties (such as the pres-

ence of a physical interaction) are directly observed via noisy measurements. However,

most properties are indirectly constrained from multiple data rather than directly ob-

served. For example, the expression response in a gene deletion experiment informs us

about the aggregate effect along the pathways connecting deleted and affected genes,

but does not reveal the effects of individual interactions. The computational model

needs to incorporate both direct observations and indirect constraints under the same

framework. Once we can express both direct observations and indirect constraints

within the same modeling framework, we want to find the algorithm which efficiently

infers the annotated properties that satisfy the constraints from data.

In addition to model formulation and inference algorithms, there are several other

sub-problems for annotating the physical network models. First, due to the sparse

constraints from existing knock-out data, there are often an astronomical number of

annotations which fit the data equally well. We want to efficiently represent these

annotations, for example, decompose a configuration into the product of subconfig-

urations of independent subnetworks. Second, once optimal annotations are inferred

from existing datasets, we want to systematically validate inferred results. This in-

cludes quantitative tests such as cross validation tests on the predictive accuracy of

the inferred models and qualitative tests such as literature survey on inferred subnet-

works.
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Due to the sparse constraints from existing data, there are likely many optimal

annotations which fit the data equally well. Further experiments are required in order

to discriminate the true annotation from other candidates. The second part of this

thesis focuses on automated experimental design and analyzing the data from new

experiments to reduce the uncertainty of inferred models. The purpose of experimen-

tal design is to suggest new experiments which would provide the maximal expected

information for discriminating existing models. Various computational problems are

linked to experimental design for physical network models: how to choose the loss

(objective) function for prioritizing new experiments, how to incorporate the property

of physical network models in the loss function, how to simplify the computation in

order to make it tractable, and so on.

The effectiveness of an experimental design scheme can be internally validated

by methods such as cross validation or learning curve analysis. However, the ulti-

mate test is to perform the suggested experiments and analyze the new data. We

collaborate with biologists to perform gene knock-out experiments according to our

experimental design criteria and analyze the new data. The purpose of data analysis

is two fold: to verify the consistency of model predictions regarding gene expression

changes and to reduce the uncertainty of annotations along these pathways. A num-

ber of computational problems emerge when achieving these goals in data analysis.

We will discuss these problems in Chapter Five.

The physical network models described in the first part only consider the effects of

single gene deletions on downstream genes. This approach can only extract the gene

regulation properties under the scenario when multiple transcription factors inde-

pendently control downstream genes. However, in many cases multiple transcription

factors control gene regulation in a coordinated fashion. Therefore, it is essential to

study how multiple transcription factors coordinately control gene regulation. This

is a challenging problem since there are many possible mechanisms involved in co-

ordinated gene regulation. For example, multiple proteins form a complex, or the

presence of one protein may block the recruitment of another protein on the same

promoter. For simplicity we only consider the functional aspect of regulation from
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multiple transcription factors. This means modeling the dependencies between the

observed quantities pertaining to gene regulation. The third part of the thesis focuses

on modeling the mRNA expression data between transcription factors and their reg-

ulated genes.

The problem of modeling the dependencies of gene expression data for multiple

transcription factor control is still complicated due to the combinatorial nature of the

functions. Consider a very simple scenario that mRNA expression data are quantized

to two levels (on or off) and the mRNA levels of regulated genes are deterministic

functions of regulators (transcription factors). With respect to the input size, there

are an exponential number of possible input configurations and a super-exponential

number of possible Boolean functions. The large size of the functional class makes the

inferred functions highly susceptible to over-fitting data of a limited size. Moreover,

most of these combinatorial functions are also hard to interpret in terms of simple

and fundamental mechanisms. Therefore, we want to simplify the combinatorial

functions to a reduced class such that they can be efficiently enumerated but still

capture essential properties of gene regulatory control.

In addition to simplifying the class of combinatorial functions, it is also important

to reduce possible assignments between regulators and regulated genes. In principle,

it is possible that each gene is controlled by a large number of transcription factors

with a distinct function. This scenario, however, is very unlikely due to the physical

limitation of proteins and DNAs and the lack of economy which is against evolution.

Instead, many biologists postulate that genes of similar biological functions are often

co-regulated by a small number of transcription factors. The combinatorial function

from the expression states of regulators to the expression state of each gene is identical.

The set of regulators and regulated genes that are tied together with a specific function

constitute the basic unit of gene regulation. Our goal is to infer these basic units

- or regulatory modules - from protein-DNA binding and mRNA expression data.

In other words, we want to identify pairs of regulator sets and gene sets and the

combinatorial functions which optimally fit binding and expression data. Once these

modules are identified, we also want to validate the results by applying external
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information such as the biological functions of regulated genes and the regulatory

functions of regulators.

1.4 Overview of previous works

There has been a rich literature of computational methods of inferring gene regulatory

networks during the past few years. Most early works rely on mRNA expression

data alone. As more types of high-throughput data become available, most recent

works incorporate multiple data sources in their models. In this section I will give

an overview of previous works which are relevant to this thesis. This overview is

divided into three parts. The first part introduces different approaches of modeling

gene expression data, including some of the works that address the combinatorial

aspects of multiple transcription factor control. The second part discusses efforts of

integrating expression data with other types of data sources. The third part covers

works about experimental design which are beyond modeling gene regulation but are

relevant to the experimental design framework in Chapter Five.

1.4.1 Modeling gene expression data

Classical methods of studying the gene regulatory circuitry rely on detailed investi-

gations on a small system through deletions of genes or cis-regulatory elements. The

works by Davidson et al. on sea urchins ([175, 29]) present a remarkable example. In

the earliest work, they focused on the regulation of a single gene Endo16 responsible

for endoderm development. The promoter region of Endo16 was subdivided into 7

cis-regulatory modules (modules A to G). Each module contains several transcription

factor binding sites. Because the transcription factors bound on Endo16 promoter

were not completely identified, they studied the single and combinatorial functions

of the cis-regulatory elements by deleting single or double modules from Endol6 pro-

moter. The effects of module deletions were observed by measuring the time-course

activities of CAT reporter genes. The computational model reported in their work

is a logical circuit-like model containing switches, multipliers and basic Boolean op-

28



erators. Although the resulting model is very accurate, reliable and conceptually

clear, this approach is very difficult to extend into the genome-wide scale. A com-

plete deciphering of the regulatory circuitry of one gene requires recognition of all

cis-regulatory elements on its promoter, mutations on all cis-regulatory elements and

many combinations of cis-regulatory elements, and time-course measurements of the

target gene under these conditions. Therefore, it would be too costly to apply the

same approach to the entire genome.

Another approach of studying gene regulatory networks is to construct detailed

models about the physical/chemical properties of gene expression. Each step of gene

expression - transcription initiation, elongation and termination, mRNA degradation,

translation initiation, elongation and termination, proteolysis, etc. - can be viewed as

a chemical reaction. The static properties (for example, concentrations of reactants

at equilibrium) and dynamic properties (for example, the rate of mRNA or protein

synthesis) can be modeled using statistical mechanics or molecular dynamics. This

approach achieves partial success in small subsystems involved with few genes. Chen

et al. constructed linear differential equation models of transcription and translation

([20]):

dr/dt = Cp - Vr +s,

dp/dt = Lr - Up.

where r denotes mRNA levels of all genes and p protein levels of all genes. Thattai et

al. modeled noisy processes of transcription and translation with stochastic differential

equations ([154]). A detailed and sophisticated computational model was proposed

by Arkin et al. to characterize the bifurcated fate of A phage ([6]). A phage can either

parasite on the host bacteria genome and remain dormant (lytic phase) or re-program

the host cell to massively reproduce its genome and kill the host (lysogenic phase).

The state of the virus is indirectly affected by environmental conditions and directly

determined by few proteins (Cro, CrI, CrII, etc.). These proteins regulate each other

and form a double feedback loop. Arkin et al. constructed detailed models at every

step of gene regulation. They applied discrete stochastic processes to model the highly

fluctuating processes involved with small molecular quantities. According to this
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sophisticated model, they simulated the dynamics of those proteins and demonstrated

their consistency with empirical measurements.

These bottom-up approaches from fundamental physical/chemical laws are per-

haps the most principled methods of modeling gene regulation. However, their use is

limited from both learning and modeling perspectives. From the learning perspective,

the bottom-up models often contain a large number of unknown parameters which

need to be estimated from a limited dataset. Examples stated above show that even

modeling a very small subsystem involved with few (less than five) genes requires hun-

dreds of parameters about the reaction coefficients at every step. Because biochemical

assays for measuring these parameters are very expensive and time-consuming, the

use of bottom-up models is restricted to either very well characterized systems (such

as the A phage) or very small systems (such as the expression of one gene). The

accurate values of these parameters often cannot be reliably learned due to the over-

fitting problem. Instead, most studies emphasized the qualitative properties emerged

from the quantitative models. For instance, the work by Arkin et al. focused on the

initial condition (relative concentrations of proteins Cro and CrII) which would lead

to different fates of A phage - lytic or lysogenic phase. However, from the model-

ing perspective, the qualitative properties may be very sensitive to specific values of

parameters. It is well known that a small system of non-linear differential equations

can yield very complex behaviors, such as exponential growth or decay, regular or

irregular oscillations, or chaos. The "territories" in the space of parameters which

would yield different behaviors can be intermingled, and their boundaries are often

irregular. Therefore, we may not be able to predict the qualitative behavior of a

system without knowing the accurate parameter values.

The bottom-up models are simplified in order to tackle the genome-wide data. For

example, the rate equation specifying transcription and translation can be simplified

as a set of linear differential equations.

dxi(t) - rxi(t) + E ajxj(M (1.2)
dt ix )
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where ri denotes the rate of mRNA degradation of gene i and aj denotes the catalytic

efficiency of transcription factor Jon gene i. At steady state the left hand side becomes

0, and the rate equations become a system of linear equations. Gardner et al. applied

gene expression data to to reverse engineer the rate coefficients and verified the models

by the new expression data with specified perturbation on input genes ((60]). Cheng

et al. clustered gene expression profiles according to the steady state responses in

equations 1.1(21]). Although these methods significantly simplify the bottom-up

models, their results are also less reliable due to the simplified assumptions. For

example, the mRNA levels of regulated genes are often not a linear function of the

mRNA levels of regulators.

Bottom-up models of gene regulation require detailed assumptions about the un-

derlying mechanisms, thus are difficult to construct from available data. In contrast,

there are statistical models which require very few hypothesis about the underlying

mechanisms. Clustering gene expression data is an extreme example of the data-

driven, mechanism-free modeling. The fundamental concept underlying clustering

gene expression data is very simple: genes involved in the same regulatory process

(or other biological processes) respond to some environmental signals in a similar (or

opposite) fashion. Therefore, the expression profiles of these genes are correlated. In

practice there are many problems associated with clustering data, and a whole branch

of machine learning is dedicated to solving these problems. We will not review all

previous works of clustering gene expression data but only discuss some important

variants.

The most commonly used clustering methods on gene expression data are hi-

erarchical clustering ([45]), k-means ([143]) and self-organizing maps (SOM, [148]).

Hierarchical clustering merges two data points at each iteration and replaces the

data of the merged cluster with the average expression profiles of its members. The

merging continues until all data points are in the same cluster. The result is a hi-

erarchy of clustering instead of one specific clustering. K-means clustering starts

with a fixed number of clusters and iteratively updates the centers of clusters and

the cluster memberships of data points. The iteration continues until a stationary
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solution is attained. Self-organizing map places clusters on a topological structure

(for instance, grids) and updates cluster centers and data point memberships that

respect the topological structure. Other clustering methods which have been applied

on gene expression data include the maximum likelihood membership allocation of

parametric models ([76]) and graph theoretic based clustering methods ([14]).

The most important element of distance-based clustering methods is the choice

of the distance or similarity metric. It is natural to treat a gene expression profile

as a data point in a high dimensional Euclidean space (the dimension is the num-

ber of experiments) and the distance metric as the Euclidean distance between two

vectors. Many works of clustering gene expression data use the Euclidean distance

(for instance, [148]). In addition, Pearson correlation coefficients are also commonly

used as the similarity metric (for example, [45]). It is straightforward to show that

the Pearson correlation coefficients are equivalent to Euclidean distances when the

expression data are normalized and centered. Other distance or similarity metrics ap-

plied in clustering include mutual information ([140]), Markov random walk distances

([147]), and various types of kernels.

The assumption that genes participate in the same biological process are correlated

across many different conditions is too simple and requires refinement. This is because

the correlation is manifested only under the conditions that perturbed the underlying

process. By relaxing the correlation assumption to a subset of experiments, clustering

is extended to bicluster both genes and experiments concurrently. Biclustering allows

us to extract correlated genes and the experimental conditions on which they are

correlated. There have been works of biclustering genes and experiments based on

graph theoretic criteria ([21], [151]) or geometric criteria ([80]).

Clustering gene expression data is a summarization of data rather than a mech-

anistic model about gene regulation processes. In contrast to the bottom-up models

described above, the use of clustering is to explore new data rather than understand-

ing the biological processes. Therefore, it can be exploited as a pre-processing step to

facilitate more sophisticated models, but the clustering per se can hardly be viewed

as a model of gene regulation processes.
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Clustering is unable to express the relations beyond cluster memberships (whether

genes belong to the same cluster) and pairwise distances (whether two genes are close

or apart). To uncover these relations, various statistical models are applied on gene

expression and other types of data. Bayesian networks are a class of models which

can capture statistical dependencies and independencies beyond pairwise relations.

In the Bayesian network formulation, the joint probability of a number of random

variables is expressed as the product of conditional probabilities.

n

P(Xi,... , X.) = P(xiIPai). (1.3)
i=1

where Pai denotes the parent variables of xi. In the context of gene expression

data, each random variable denotes the expression level of a gene. The formulation

in equation 1.3 seems to suggest the Bayesian network encodes the causal relation

of variables: Pai is the cause of xi. This semantics is incorrect when inferring the

Bayesian network for there are multiple equivalent causal models which yield the same

joint probability distribution ([74]).

The joint probability in equation 1.3 can be graphically represented as a directed

acyclic graph (DAG): edges are connected from the parents of xi to xi. The graph of

a Bayesian network is called its structure. The most important information contained

in a Bayesian network structure is the conditional independence relation. Variables

xi and xj are conditionally independent given variables Xk if the following equality

holds:

P(Xi, XJ|Xk) = P(XilXk)P(XjJXk). (1.4)

In other words, the dependency between xi and xj is mediated by Xk. This can be

interpreted as either Xk are the intermediate causes between xi and xj or Xk are the

common causes of xi and xj.

There are two types of computational problems on Bayesian networks. Inference

denotes computing the conditional probabilities of some variables given the evidence

of other variables. This task is often performed by recursively propagating the evi-

dence regarding a specific variable to the variables which are directly dependent on
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it (its neighbors in the network), until all evidence have been incorporated by each

variable. Learning the network structure denotes finding the conditional indepen-

dence relations which best fit the data. When expressing a probability distribution, a

Bayesian network is decomposed into two components. The structure of the network

pertains to the factorization of the joint probability function into smaller terms. The

factorization structure encodes the conditional independence relations of variables.

The parameters of the network specify the exact function of each term. To learn the

structure of a Bayesian network we need to define the objective function with respect

to the data. Typically this objective function is the likelihood function marginalized

over parameter values: ([73, 74]):

P(X, G; D) = JH f P(xi = di|PaG = dPaik,Oijk)P(0 G)P(G)dO. (1.5)
i i k

where G is the Bayesian network structure, 0 its parameters, dij and dpaik specific

values of xi and Pal. P(OfG) and P(G) are the priors of model parameters and

structure. The marginal likelihood function is less susceptible to overfitting compared

to the joint likelihood function since the effect of a particular parameter setting is

smoothed out by averaging. For discrete random variables the joint probability is

expressed as the multinomial distribution where 0 are the multinomial probabilities,

and the parameter prior follows the Dirichlet distribution ([74]). P(G) is often chosen

to penalize the complexity of the model, i.e., the number of edges in the graph.

Finding the model structure which maximizes equation 1.5 is known to be NP-hard

([22]). Henceforth various heuristics are applied to find suboptimal solutions ([74,

106, 56]).

Bayesian networks are advantageous over clustering in their capability to reveal

causal or functional relations from the conditional independence relations. One ex-

ample was proposed by Hartemink et al. on galactose metabolism genes ([71]). The

authors compared the scores of two gene regulation models illustrated. In model 1,

the function of repressor Gal80 on galactose metabolism genes (such as Gal2) is medi-

ated by Gal4; in model 2, Gal4 and Gal80 jointly affect Gal2. Model 2 yields a higher
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likelihood score, which matches the fact that the complex Gal4-Gal8O regulates the

expression of Gal2.

Despite the usefulness in limited examples, it is difficult to trust a single Bayesian

network model learned from the data as the underlying model of gene regulation. The

problems are due to the quality and size of gene expression data and the reliability of

the heuristic search methods. Friedman et al. alleviated these problems by applying

the bootstrap method to enlarge the effective size of data and reporting graph theo-

retic properties extracted from multiple high-scoring models ([56]). The two reported

properties (features) are the order of genes and the Markov properties (whether a

gene is in the Markov blanket - the minimal set of variables that shield the rest of the

variables in the model). Hartemink et al. adopted a similar approach by reporting

the consensus of the multiple Bayesian network structures of high scores ([72]).

Bayesian networks have been extended along several directions on the analysis

of gene expression data. For example, Pe'er et al. applied the method proposed by

Cooper et al. ([26]) of combining observational and perturbational data to learn the

model structure ([123]). Imoto et al. extended Bayesian network learning to contin-

uous variables by applying splines on the conditional probabilities ([85]). Similarly,

Friedman et al. proposed using Gaussian processes to model the functional relations of

continuous random variables ([57]). Murphy et al. proposed using dynamic Bayesian

networks to study the time course gene expression data ([114]). Steck et al. and Tong

et al. proposed different active learning methods on sequentially selecting/suggesting

new experiments which could best disambiguate candidate models ([159, 144]).

While Bayesian networks have much stronger expressive power and a clearer ob-

jective function than clustering, they suffer from several shortcomings in representing

gene regulatory models. First, the graph semantics of Bayesian networks does not

necessarily match our intuition about the representation of causal relations. Arrows

in a Bayesian network may not denote causal relations, for we can create a class of

models with different edge directions but are equivalent in the likelihood function

([73]). It is possible to extract causal relations from conditional independence re-

lations and a substantial number of works were devoted in this field (for example,
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[122]). However, these works often required strong assumptions (for example, there

were no hidden variables) and could often extract only a small number of causal

relations from a large number of dependency relations. Second, because of the con-

voluted semantics of Bayesian networks and incomplete data, it is often difficult to

interpret the learned models in terms of mechanisms. For example, a directed edge

in a Bayesian network may contain many intermediate steps of a biological pathway.

Third, the quality of learned Bayesian networks depends on the quality and the size

of the data. Theoretical and empirical studies indicate that the size of the dataset

which guarantee the learning method converges to the true model is exponential in

terms of the model size ([37, 149]). This result suggests currently available data can

hardly yield any confident Bayesian network model at genomic scale, though it is

possible to learn reliable subnetworks from it. Fourth, current methods of learning

fully parameterized Bayesian networks emphasize the dependency of variables rather

than the functions of them. More often we are interested in the specific functions of

genes such as the results in ([175, 29]). To extract the functions in a Bayesian way

we have to define the marginal likelihood function pertaining to a specific function

pertaining to conditional probabilities. This requires averaging over a restricted class

of parameters (for example, all the conditional probabilities which indicate variable

A activates variable B) rather than the entire parameter space. Current works of

applying Bayesian networks in gene regulation rarely address important problems in

this direction, such as how to divide the parameter space appropriately and how to

perform integration over the restricted space efficiently.

In order to exploit the functional aspects of gene regulation, another class of mod-

els - Boolean networks and their variants - are also widely used in modeling gene

regulation. The semantics of a Boolean network is a collection of Boolean functions

with possibly cascaded inputs and outputs ([94, 155]). The mappings from input

variables to output variables can be expressed as lookup tables of discrete variables.

In gene expression analysis, variables of the Boolean networks are quantized gene

expression levels. The score of a Boolean network is simply the fitness of the model

on the data: the number of model predictions contradicting with the data. One
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can also impose a complexity penalty to the score analogous to the score used for

Bayesian networks. Boolean networks have the advantage of being able to represent

the combinatorial functions of gene regulation in a very simple form. The gene regu-

lation model of cis-regulatory elements of sea urchins ([175, 29]), for example, can be

expressed as an extended Boolean network. However, the primary bottleneck is the

learning of Boolean network models from data. To uniquely learn a Boolean network

all possible input configurations must appear in the data. For a small network with

few inputs, input configurations may be manipulated by deleting and over-expressing

input genes, for example, [175]. Combinations of perturbations are expensive when

applying to a large system. In most cases not only the combinatorial functions but

also input variables are unknown. Similar to learning Bayesian networks, it is expen-

sive to directly learn the network structure, and the results are not reliable when the

data size is small. There have been efforts of incorporating prior knowledge about

network structure. Tanay et al. started with the core networks extracted from litera-

ture and expanded the network by incrementally adding input variables and adjusting

combinatorial functions which best fit the data ([149]). Many more works attempted

to incorporate the information about transcription factor binding motifs and protein-

DNA interactions in the model construction. We will introduce some of those works

in subsequent paragraphs. Finally, the learned Boolean network structures and func-

tions are subject to noise in the data. Instead of using the deterministic model, some

works modeled gene regulation with combinatorial functions plus noise and partially

improved the learned models, for instance, [151].

1.4.2 Data integration

Expression data alone do not suffice to provide mechanistic information about gene

regulation. As stated above, there are many possible explanations for the correlation

of gene expression profiles. To further elucidate gene regulation processes, it is nec-

essary to incorporate other types of data in the models. Since most gene regulation

models focus on the transcription initiation aspect, many works of data integration

focus on combining gene expression data with the evidence about transcription factor-
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promoter bindings. Other types of data - such as protein-protein interactions and

metabolic fluxes - are incorporated as more biological processes are taken into ac-

count.

We categorize previous works of data integration in terms of the following aspects:

the purpose of combining data sources, the relevance to the combinatorial control of

multiple regulators, the mechanisms these works are targeted, and the types of data

incorporated.

The most straightforward purpose of data integration is to use the information

extracted from one data source to verify the model generated by another type of data.

Many early works of gene expression analysis fall into this category. These works ap-

plied the hypothesis that genes co-expressed under some conditions were co-regulated

by the same transcription factor(s). Hence they clustered genes according to expres-

sion profiles and sought external evidence that members within the same clusters are

co-regulated. For example, Spellman et al. clustered cell cycle gene expression data

and verified the known binding motifs (SCB and MCB) appear on the promoters of

genes expressed at GI and S phases ([143]). Tavazoie et al. applied the motif find-

ing algorithm (AlignACE) on the promoters of cluster members and identified more

known motifs of transcription factors ([152]). In addition to motif sequences, the

functional categorization of genes is often used to verify the clustering results of ex-

pression data. For example, [152, 143, 136] all use the Munich Information Center for

Protein Sequences (MIPS) functional categories of yeast genes 1 to verify the results.

The use of one data source to validate the models inferred from other sources does

not "fuse" data in a strict sense. In contrast, most recent works of data integration

extract information jointly from multiple sources. A common approach is to con-

struct the model which jointly fits multiple sources of data. This approach has been

realized in several different ways. One can use one type of information as supporting

evidence to facilitate the learning from other types of data. Typically the "primary"

information is expression data and the supporting information pertains data about

sequences, physical interactions or gene functions. For instance, Hartemink et al. im-

lhttp://mips.gsf.de/



posed the protein-DNA interaction data from location analysis as the prior on the

structure of the Bayesian network gene expression model ([72]). Graphs contain-

ing transcription factor-gene edges extracted from location data were assigned with

higher confidence. Segal et al. used information about gene functions to construct de-

cision tree-like modules explaining gene expression data ([136]). Transcription factors

and signal transduction proteins are the candidates whose expression profiles could

partition the gene expression data under different conditions. One can also construct

models pertaining to different data separately and combine them by multiplying their

likelihood functions. For instance, Holmes et al. built a joint model of gene expression

and promoter sequence to cluster genes ([76]). The expression model is the Gaussian

noise model with an uninformative prior. The sequence model is the multinomial

distribution with a Dirichlet prior. Tanay et al. combined gene expression data and

sequence data to infer the unobserved variables of transcription initiation ([150]). Se-

quence data was used to model the binding affinity from a transcription factor to a

promoter. The activity of a transcription factor on a promoter was dependent on

its binding affinity and the mRNA concentration of the transcription factor. The

mRNA levels of regulated genes were functions of the transcription factor activities.

Segal et al. combined gene expression data, location data and sequence motif infor-

mation to construct a rich probabilistic model - probabilistic relation model (PRM)

([135]). The model predicted the expression level of a gene under a specific exper-

iment according to the sequence motifs and protein-DNA bindings on its promoter

and the information about the experimental types. In addition, one may combine

weak evidence from multiple sources to obtain more confident results. For example,

Bar-Joseph et al. developed the GRAM algorithm that captured co-expressed genes

which are also supported by the location data ([12, 100]). They obtained an initial

module of genes by thresholding the confidence values of protein-DNA binding and

the correlation coefficients with respect to the average expression profile within the

module. The initial module was extended by relaxing the thresholds on location data

confidence to incorporate more genes.

Data fusion has been used by several important works to explore the combinato-
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rial aspects of gene regulation. The modules inferred from the algorithm in ([136])

implicitly contain information about combinatorial control. The expression levels of

regulators in the module affect the expression levels of regulated genes in a com-

binatorial fashion. For example, regulated genes do not change when regulator A is

down-regulated or unchanged. When both regulators A and B are up regulated, mod-

ule members are down regulated. When A is up regulated and B is down regulated,

module members are up regulated. In a decision tree representation A "masks" the

influence of B on module members. An interpretation is that A is an activator but is

also necessary for the function of repressor B. Another work by Pilpel et al. attempted

to identify sequence motif pairs that exhibit stronger regulation effects than single

motifs ([125]). The synergistic effect of motif pairs is measured by comparing the

coherence of expression data against the hypothesis that each motif independently

affects expression coherence. In addition to identifying a set of dependent motif

pairs, they also discovered the relative strength of several motifs under some specific

experimental conditions.

In terms of the mechanisms, most works of data fusion focus on the transcription

initiation aspect of gene regulation. This is reasonable since most data (mRNA ex-

pression, sequence motifs, protein-DNA bindings) pertain to this aspect. With the

availability of other types of data, some works start to explore the signal transduction

or metabolic pathway aspects of gene regulation. Ideker et al. perturbed (deleted)

genes along galactose response pathways and reconstructed the partial order of genes

along the pathways ([83]). Following this approach, they proposed a statistical score

to measure the significance of an active subnetwork: a collection of genes connected

via molecular interactions that are co-expressed ([82]). They also developed a greedy

search algorithm to find active subnetworks. Steffen et al. adopted a similar assump-

tion that genes along the signal pathway were co-expressed and identified several

meaningful pathway members ([145]). Ihmels et al. adopted a similar assumption on

metabolic pathways and discovered that a significant number of genes along the same

metabolic pathways are co-expressed ([84]).

The types of data incorporated depend on the purpose of data integration, the tar-
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get mechanisms, and the availability of data sources. Currently most works incorpo-

rate combinations of the following types of data: mRNA expression, DNA sequences,

various protein-DNA and protein-protein interaction assays, protein expression, and

annotations of gene functions. As more types of large-scale data become available,

the data integration works are expected to include these new data very soon.

1.4.3 Experimental design

Biological experiments are the ultimate test of all computational models. The choice

of experiments, however, is a computational problem. This problem is not intensively

addressed in current computational models of gene regulation. We give an overview

of the experimental design works relevant to our methods. Most of these works do

not necessarily tackle the problems of modeling gene regulation.

Experimental design is an important topic in statistics. It is also termed as active

learning in the area of machine learning. Experimental design has been applied to

various theoretic and practical problems. Classical examples can be found in the

textbook by Fedorov ([48]). It formulates the criteria of choosing experiments (loss

functions) for typical statistical problems such as regression, classification, and model

discrimination. Different loss functions on different problems are all based on similar

principles: to reduce the uncertainty of the learned models based on the hypothetical

data generated from new experiments. Because actual data from new experiments are

not acquired, we can only compute the expected loss function according to current

models. For example, suppose the problem is to estimate the parameter 0 in multi-

dimensional regression:

Y = OT - X + n. (1.6)

where X, 0 are multi-dimensional vectors of input variables and parameters, and Y, n

are scalars of the output variable and noise. We have the freedom of setting the

values of X in order to estimate 0. The uncertainty of estimated parameters was

characterized by its dispersion matrix V(9(D)) which is simply the covariance matrix

of estimated parameters. V is in general a function of new data, thus it cannot
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be calculated a priori. Instead we evaluate the expected covariance matrix over the

hypothetical data generated by current models. Under the linear form in equation 1.6,

V only depends on inputs X:

IDI

V(O(D)) = ED{f} = 1 X X . (1.7)
i=21

Thus we can choose the set of inputs X, which minimize the uncertainty generated

from the dispersion matrix, for instance, by minimizing the determinant of V.

Experimental design is naturally applied in machine learning problems where data

collection is expensive. Remarkable examples are learning from a vast number of

World Wide Web documents. It is easy to automatically collect many web docu-

ments but relatively expensive to ask people to manually label the documents or

answer the queries about their preferences of documents. Therefore, active learning

algorithms are applied to generate queries which are critical to the target problems.

Examples include the query-by-committee algorithm ([54]) and active selection of doc-

ument clusters for information retrieval ([87]). The former method maintains a list of

learning "experts" (for example, binary classifiers) and chooses the queries where the

prediction results from these experts disagree. The latter method presents clusters

of documents which maximize the mutual information between the user's preference

about documents and the selection of document clusters.

Active learning for standard machine learning problems such as regression ([48]),

model discrimination ([48]), parameter estimation ([158]), and learning the structure

of Bayesian networks ([159, 144]) has been intensively studied recently. In learning

the Bayesian network structures, an experiment denotes the perturbation of one or

multiple variables to fixed values. A key problem is to define the loss function of

an experiment. In [159], the uncertainty of model structure is characterized by the

uncertainty of edge presence + direction in a graph. The presence + direction of an

edge between A and B can be modeled by a three-state random variable (no edge,

from A to B, from B to A), and the uncertainty of the graph is the sum of entropies

of these variables for each pair. In [144], new experiments were generated from a
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committee of experiments which yielded the highest disagreement in terms of the

average KL divergence of distributions.

Automated experimental design has recently been applied to biological exper-

iments. A remarkable example is the robot scientist which automated each step

in scientific discovery ([96]). The system focused on a small aromatic amino acid

metabolic pathway and sought for experiments which would best reveal the relations

between the identities of proteins and their enzymatic functions. They looked for

auxotrophic experiments which observed cellular phenotypes of a knock-out genotype

under different nutritional conditions. The loss function of prioritizing new exper-

iments was based on the monetary cost of experiments and expected reduction of

model uncertainty (entropy) according to hypothetical experimental results. In ad-

dition to experimental design, they also automated the processes of experimentation.

Despite of the very promising outcomes, the system currently works on a very small

and well known biological system. How to extend the principled approach of experi-

mental design to a large system with many unknowns and noise would be a primary

challenge in this area.

1.5 Roadmap

Following the questions proposed in Section 1.3, we structure the remaining parts of

the thesis as follows. Chapter Two lays out the general concepts of the physical net-

work models. It first states the objectives of the modeling framework, then describes

each element of the model at a broad level. This includes a skeleton graph of putative

physical interactions, attributes (annotated properties) of the model and their con-

figurations, data association and model inference algorithms, experimental design for

model discrimination, and combinatorial regulation of multiple transcription factors.

Following the conceptual framework in Chapter Two, Chapter Three discusses the

integration of different types of data to a great detail. It starts with introducing the

datasets used in this work, then describes the methods of incorporating different types

of data as constraints of the model. We will then discuss the model inference algorithm
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which efficiently approximates an annotation that satisfies the constraints from data.

We will also introduce the algorithm which decomposes optimal annotations into

annotations of subnetworks.

Chapter Four focuses on the empirical analysis of the physical network models on

several datasets. We first verify the inference results on a relatively small network of

yeast mating pathways. Various quantitative and qualitative methods are applied to

verify inference results. For instance, cross validation tests on the predictive accu-

racy of inferred models. We then analyze the inference results on the genome-wide

data. Since the system is much larger and less well known, we focus on presenting

the inferred subnetworks and linking them to existing knowledge about yeast gene

regulation.

Chapter Five discusses experimental design and the analysis of new experimental

data. We will first introduce the concept of experimental design for model discrim-

ination, then formulate the objective function for prioritizing new experiments. We

then apply the experimental design method to the physical network models obtained

in Chapter Four and rank new knock-out experiments accordingly. Suggested ex-

periments are first validated internally by showing their importance in the physical

network. We then perform some of the suggested experiments and analyze the new

data generated from these experiments. We will show how putative pathways are

verified and how the uncertainty of their annotations is reduced by incorporating the

new data in the model.

Chapter Six discusses the computational method of inferring regulatory models

involved with multiple transcription factors. It first states the problems and the

specific assumptions for the computational methods. We then define the elements of

a regulatory model and establish a criterion of fitting a regulatory model to protein-

DNA binding and gene expression data. We then describe an algorithm that identifies

regulatory modules from existing data. It is followed by the analysis and discussions

of inferred modules from real datasets.

Chapter Seven draws the conclusion about these works. It also points out limita-

tions of current models and possible extensions for future work.
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Chapter 2

Physical Network Models

Modeling the mechanisms and functions of gene regulation is a difficult task due to the

complexity of the system and insufficient data. We address these problems by making

a simplified assumption that the effect of gene regulation is propagated via cascades of

molecular interactions. Accordingly we build a computational model which incorpo-

rates evidence from multiple data sources compatible with the underlying hypothesis.

This model, which we call the physical network model, annotates physical interac-

tions with various attributes and links these attributes with constraints generated

from empirical data.

In this chapter, we will describe the framework of physical network models, which

is the basis of all the works in this thesis. First we will describe the objectives of

our models and discuss the level of detail and the gene regulation mechanisms that

the physical network models are aimed to capture. Following this discussion, we

will introduce elements of the physical network models, including a skeleton graph

composed of pairwise molecular interactions, functional attributes associated with

molecular interactions, and the biological interpretations of attribute configurations.

Methods of selecting and verifying models - including how to constrain attribute val-

ues from empirical data, how to infer attribute values, how to design new experiments

to discriminate degenerate models, and how to incorporate combinatorial aspect of

transcription control - will be briefly introduced in this chapter and covered in more

depth in subsequent chapters.
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2.1 Objectives of physical network models

In the realm of gene regulation, a key problem is to identify the regulatory relations

of genes and their physical mechanisms. Some mechanisms - such as transcription

factor bindings or protein modifications - appear in many gene regulation processes

and can be viewed as their building blocks. Using these building blocks to construct

the entire network of gene regulation remains an open problem due to the incomplete

knowledge in biology and the complexity of the underlying system.

We focus on molecular interactions - protein-DNA and protein-protein bindings -

as the primary physical mechanisms of gene regulation. In a brief review in Chapter

One, we have seen the important roles of transcription factor bindings and cascades

of protein modifications in transcription control. The bindings of transcription fac-

tors on DNA promoters serve as a major mechanism of interacting with the RNA

polymerase II holoenzyme, which directly controls transcription initiation. On the

other hand, an external stimulus is often transduced into the nucleus via a cascade

of protein modification events (phosphorylations, methylations, ubiquizations, acety-

lations, and so on). Hence protein modifications serve as an indirect mechanism of

relaying external signals to the transcription apparatus. Many of these modifications

are undertaken by protein-protein interactions. For example, phosphorylation, the

acceptance of a phosphate group, can take place by interacting with another pro-

tein named kinase. Since large-scale protein-protein binding data are currently more

accessible than protein modification data, we use protein-protein binding data as a

proxy to protein modifications and attempt to infer properties of signal transduc-

tion from them. These mechanisms certainly do not cover the entire picture of gene

regulation, but they are likely to be the necessary components for controlling gene

expressions.

It is important to understand what aspect of gene regulation can be attributed

to the effects of molecular interactions and what aspect requires other mechanisms.

By knowing the functional roles of molecular interactions, biologists are able to form

testable hypothesis and investigate other mechanisms.
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We intend to build a computational model to capture the physical interaction

aspect of gene regulation. There are several key questions pertaining to this kind of

model. First, we want to identify the active pathways and subnetworks which are re-

sponsible for transcription regulation. This is important since the datasets pertaining

to molecular interactions are noisy and many molecular interactions are not involved

in transcription regulation. Second, we want to know the functional attributes asso-

ciated with individual interactions or pathways. Functional attributes are important

because they provide interpretable abstractions to understand the underlying biolog-

ical processes of gene regulation. These attributes include the presence, the causal

directionality ( whether one gene affects the other or vice versa) and the functional di-

rectionality (whether the upstream gene activates or represses the downstream gene)

of an interaction and the activity of a pathway. Third, the inferred attribute values

reflect the beliefs about the mechanisms given the current data. Due to insufficient

data, there may be multiple putative mechanisms which explain the data equally well.

It is also possible that none of the putative mechanisms are indeed accurate. The only

way to discriminate or verify these models is to perform new experiments. Therefore,

a guiding principle of designing new experiments is critical for the models. Fourth,

empirical results indicate the promoters of most eukaryote genes are bound by mul-

tiple transcription factors. To understand transcription regulation, it is essential to

know the functional roles and combinatorial control schemes.

In order to answer these questions, we develop a computational framework of

modeling transcription regulation through molecular interactions. We name this

framework a physical network model because it is based on a network of physical

(protein-DNA and protein-protein) interactions. Various attributes associated with

the physical network are defined (they will be described in Section 2.3). These at-

tributes annotate the mechanisms of transcription control via cascades of molecu-

lar interactions. These attributes are constrained by various types of data includ-

ing high-throughput chromatin immunoprecipitation (CHIP-chip) assays for protein-

DNA interactions ([100, 78]), yeast two-hybrid systems for protein-protein interac-

tions ([160, 86]), gene expression microarray data ([143, 23, 152, 80, 61]), and po-
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tentially many others. We encode these data as probabilistic constraints of model

attributes and apply an efficient model inference algorithm to infer the optimal anno-

tations of these attributes. Since the physical network is often sparsely constrained

by data, there are likely many attribute annotations which fit the data equally well.

We define an information score of new experiments pertaining to their capacity of dis-

criminating these degenerate models. New experiments are performed following the

rankings of their information scores. Finally, we incorporate the combinatorial effects

of multiple transcription factors in the model, so that it is capable of explaining the

expression data beyond the pairwise knock-out interactions.

It is important to realize the limitations of this modeling framework before de-

scribing computational algorithms and analyzing data. First, our model focuses on

the aspect of molecular interactions. Other mechanisms certainly play important

roles and can not be ignored in understanding gene regulation. We have discussed

some of these mechanisms in Chapter One, such as chromatin modifications, protein

localization, and protein and mRNA degradations. Our model currently does not

include these mechanisms. Second, we treat the regulatory network as a circuit of

discrete states, hence all the physical (such as molecular bindings) and functional

(such as the change of gene expression levels) events are discretized. Quantitative

differences of these events - such as the number of transcription factors staying at

a promoter region or the number of mRNA copies generated within a time interval

- are not considered. Third, we ignore the spatial and temporal aspects of gene

regulation. The spatial aspect refers to the localization of gene regulation processes

and the variations of gene expression across space. The temporal aspect refers to the

temporal (and causal) order of regulatory events and the temporal variations of gene

expression. Spatial and temporal effects are the determining factors of development

and cell differentiation in multi-cellular organisms. Despite their importance, we ig-

nore these effects for the simplicity of building models and the availability of data.

Fourth, we use the error models or error measures provided in the data rather than

building refined error models for each dataset. Many previous works are dedicated to

this problem, for instance, [42, 44, 79]. We focus on the data integration framework
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in this thesis and leave building accurate error models as an external task whose

improvement can be "plugged in" the data integration framework.

In the following sections we will introduce each element of the physical network

modeling framework. They include a skeleton graph of putative physical interac-

tions, model attributes, data association and model inference, experimental design,

and combinatorial regulation of multiple transcription factors. Each element will be

discussed in details in the following chapters.

2.2 A skeleton graph of putative physical interac-

tions

Networks (graphs) are the most common metaphor in describing gene regulation.

They are widely used for the following reasons. First, networks are easy to visualize

and understand compared to texts and equations. Second, networks as a mathemat-

ical entity have been studied since Euler, and a wide range of tools are available to

study them. Third, graphs have a simple yet versatile representation. Therefore, they

are used to express many different relations in different contexts.

The versatility of graphs also creates the possibility of mis-communication if they

are not properly defined and illustrated. The networks appeared in the works in this

field all have different definitions. For example, an edge in a network can denote a

concrete physical interaction ([100, 82]), a statistical dependency ([72, 56, 123, 125]),

or a functional relation ([157]). It is thus necessary to clarify the meaning of a network

before we use it in the rest of the thesis.

Because we focus on molecular interactions as the physical mechanisms of gene

regulation, it is natural to construct our model on top of the network of protein-DNA

and protein-protein interactions. We define a skeleton graph of physical network

models as a collection of "likely" protein-DNA and protein-protein interactions. This

network serves as a template or superset for the interactions in the physical network

models. Whether a physical interaction is enlisted as a "likely" interaction is judged
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Figure 2-1: Toy example of skeleton graph
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93 94

by direct measurements of protein-DNA or protein-protein interactions. For example,

we threshold on the measurement p-values of CHIP-chip data ([100]) and include the

protein-DNA interactions which pass the threshold value. Notice each edge in the

skeleton graph is not necessarily a true interaction because false positives of measure-

ments are expected. On the other hand, we do not include all possible interactions

to eliminate false negatives because of the high cost of encoding this large model and

carrying out its inference. Formally, a skeleton graph is defined as:

G=(V,E),V= V U VP, E = EPd U EPP, EPd C VP x Vd, EPP C VP x VP. (2.1)

There are two types of vertices and two types of edges. V contains vertices of proteins

VP and DNA promoters Vd. Hence, a gene is mapped to two vertices in the skele-

ton graph. E contains edges of protein-DNA interactions EPd and protein-protein

interactions EPP. A toy example of a skeleton graph is shown in Figure 2-1. Squares

denote DNA promoters and circles denote protein products of genes. An edge be-

tween two circles denotes a protein-protein interaction and an edge from a circle to a

square denotes a protein-DNA interaction. An edge from the DNA promoter to the

protein product of the same gene denotes the functional relation of gene expression

(transcription -+ translation).

The directionality of edges needs to be specified. There is no ambiguity in the

orientation of an edge of protein-DNA interaction. The direction of a protein-DNA

edge is from the protein vertex to the DNA promoter vertex for this is always the
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direction of the information flow in gene regulation: a DNA-binding protein controls

the transcription initiation of a gene by binding to its promoter region. Notice the

source vertices of all protein-DNA interactions belong to the set of DNA-binding

proteins (transcription factors) in the genome.

The orientation of an edge of protein-protein interaction, in contrast, is not clear

without knowing the function of this interaction. If a series of protein-protein in-

teractions convey signal transduction such as the MAP kinase cascade introduced in

Chapter One, then the direction of each protein-protein interaction is clear from the

functional perspective: it is from the protein at the previous step of signal trans-

duction (e.g., a MAP kinase kinase) to the protein at the subsequent step (e.g., a

MAP kinase). However, although the directionality of protein-protein interactions

is clear in this context, the functional direction cannot be determined by the phys-

ical interaction data alone. On the other hand, many gene regulation mechanisms

do not have a sequential control flow. The direction of a protein-protein interaction

thus becomes ambiguous in those schemes. For instance, when two proteins form a

dimer in order to bind to a DNA promoter, it may not be clear about the meaning

of the functional/causal direction of their protein-protein interaction. Furthermore,

many protein-protein interactions are either artifacts or not playing any roles in gene

regulation. It is also inappropriate to specify the directions of those edges. For the

ambiguities in these aspects, we leave the directions of protein-protein interactions

unspecified when constructing a skeleton graph. In subsequent chapters, we will nar-

row down the definition of protein-protein interaction directions and discuss how to

infer them from functional data.

It is straightforward to express pairwise relations in a graph by simply encoding

each pairwise relation as an edge. In biology, it is common that multiple genes are

involved in the same regulation mechanism. Sometimes these multi-way interactions

can be reduced to aggregate effects of pairwise interactions, but more often such re-

ductions are not appropriate. Consider the following two cases: (1) three proteins

bind together and form a complex, (2) they bind pairwisely but do not form a com-

plex. Pairwise interactions of these cases are identical, but they correspond to very
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different mechanisms. To incorporate multi-way interactions such as complexes, the

skeleton graph should become a hypergraph: there are hyper-edges associated with

multiple (instead of two) vertices in the graph. We restrict our discussions to pair-

wise interactions in this thesis for the simplicity of the model and the lack of high

quality high-throughput data revealing complex formations.

In addition to these simplifications, we also collapse the protein product and DNA

promoter vertices of the same gene into the same node. They certainly correspond

to different physical entities and should not be confused. However, whether a vertex

denotes a protein or a DNA promoter is self evident according to the edges it appears:

a protein-DNA edge is always from a protein node to a DNA node, and a protein-

protein edge is always between two protein nodes. For the economy of notations and

the convenience of conducting inference, we combine protein and DNA nodes in the

skeleton graph. The simplified definition becomes

G = (V, E), E = EPd U EPP, EPd C V x V, EPP C V x V. (2.2)

With this definition, at most three edges are allowed between two distinct nodes:

protein-DNA interactions at both directions (if both vertices correspond to transcrip-

tion factors) and a protein-protein interaction. Moreover, self edges (both protein-

DNA and protein-protein) are allowed since a protein may be auto-regulated or bind

itself to form a homo-dimer. The collapsed version of the toy skeleton graph in Fig-

ure 2-1 is shown in Figure 2-2. A solid line denotes a protein-DNA interaction and

a dash line denotes a protein-protein interaction. When both a solid line and a dash

line are incident to a vertex g, it denotes that both the promoter of gene g is the

target of a DNA-binding protein and protein g interacts with another protein. We

adopt this collapsed representation of the physical network throughout the thesis.

The knowledge of pairwise interactions that appear in the skeleton graph comes

from experimental data. Since all experiments are subject to error, edges in the

skeleton graph may not reflect the ground truth. Therefore, we should view the

skeleton graph as a collection of likely physical interactions instead of true physical
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Figure 2-2: Collapsed toy example of skeleton graph

91 - 92

930~ -094

interactions. We expect to include many physical interactions which are false positives

or irrelevant to the gene regulatory mechanisms we are probing. The "likelihood" of

the presence of an interaction can be inferred by incorporating evidence from multiple

data sources. If the presence of an interaction is compatible with evidence from

multiple sources, then it is more likely to exist and be involved in a gene regulation

process. Conversely, if we exclude an interaction from the skeleton graph, we will not

be able to use it to explain data or infer the properties associated with that edge.

Because false negative interactions deteriorate the explanatory power of the phys-

ical network model but false positive interactions do not, it seems natural to in-

corporate all possible pairwise interactions in the skeleton graph. In other words,

the skeleton graph which does not have any false negative interaction is a complete

graph which contains three edges (two protein-DNA interactions of opposite direc-

tions and one protein-protein interaction) between every pair of distinct vertices and

two self-edges (one protein-DNA and one protein-protein interaction) for each vertex.

Such a dense graph is neither a reasonable characterization of physical interactions

nor computationally tractable at genomic scale. Therefore, we must trade off false

negative edges and include only the interactions which are reported with decent con-

fidence levels. If the data is already a list of likely physical interactions (such as the

protein-protein interaction data from curated databases), then we directly incorporate

these interactions in the graph. If the data reports the confidence (strength, affin-

ity) of bindings among all pairs of genes (such as the protein-DNA interaction data

from high-throughput chromatin immunoprecipitation experiments), then we choose
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a threshold and incorporate those pairs whose confidence values pass the threshold.

We will discuss the likelihood of a physical interaction, the effect of false negative

edges and the choice of threshold values in Chapters Three and Four.

2.3 Model attributes and configurations

As the name of the skeleton graph suggests, likely physical interactions only provide a

template to accommodate functions of gene regulation. In the analogy of an electronic

system, the skeleton graph corresponds to the wiring diagram of a circuit. It informs

us about the connections of devices in the circuit but does not specify the functions of

these devices. One cannot reverse-engineer the function of the circuit by investigating

its wiring diagram alone. We must either possess the knowledge about these devices

by checking their serial numbers or figure out their functions by probing the system

at various testing points. In biology, the functions of many genes remain unknown.

Therefore, we need to infer the functions of these "devices" from empirical data.

However, genes may not be the basic functional units. First, many genes possess

multiple functions. Which function is exercised depends on the interactions with

other genes, cellular compartments, and environmental conditions. For example, the

transcription factor Sok2 possesses both activating and inhibitory functions ([138]).

Second, many genes need to cooperate with other genes in order to perform a specific

function. Gene modules are very common in transcription regulation ([77]), signal

transduction ([133]) and protein synthesis ([101]). For example, one of the largest

module, ribosome complex, comprises two submodules. Each submodule is composed

of a large number of ribosome RNAs and proteins.

What is the appropriate characterization of regulatory functions if genes are not

the basic units? By linking the skeleton graph of physical interactions with the

actual transcription regulation processes, we notice that the information about gene

regulation is contained not only in vertices, but also in other features of the graph.

For example, when specifying that a transcription factor f regulates a gene g by

binding to its promoter region, the information that "f controls g" is associated with
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Figure 2-3: A toy example of a physical network model
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the edge from f to g. Furthermore, if we specify that f activates g, then this positive

regulation can be represented as the positive sign of the edge fg. Similarly, properties

of transcription regulation can be associated with other aspects of the graph such as

paths, cliques and clusters.

We enrich the network of physical interactions with various properties which allow

us to describe certain transcription control mechanisms and to explain certain types

of experimental data. In this thesis, the transcription control mechanisms are the

cascades of transcription initiation control and signal transduction pathways. The

experimental data of interest include physical interaction (protein-DNA and protein-

protein interactions) data and gene expression data. By specifying these graph-related

attributes, we are able to depict the transcription control via molecular interactions.

In the toy example of the yeast mating pathway illustrated in Figure 2-3, pathway

Stell -+ Ste7 -+ Fus3 -* Ste12 specifies the Mitogen Activated Phosphorylation

(MAP) pathway which transduces the mating signal generated by pheromone from

the cellular membrane to the nucleus. Ste12 is a transcription factor and activates the

genes related to mating responses including Agal. Each gene in the preceding step

of the pathway triggers the activity of the next step in the positive direction, thus

all edge signs are positive. Notice the activity of a gene is not necessarily reflected

in its mRNA or protein level, but can also be the chemical modification state (for

example, phosphorylation). The directions and signs of edges in this simple graph
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provide functional information about this pathway.

Our physical model contains the following types of attributes.

1. The presence or absence of a physical interaction denoted as x,, where e C E

is an edge in the skeleton graph. As mentioned previously, the presence of an

edge is uncertain due to the false positives in the physical data. Thus we treat

it as a random variable whose value will be inferred from the data. xe 1 if the

interaction exists, and xe = 0 otherwise. We denote XEPd xei ei EPd} as

the collection of protein-DNA edge presence attributes and XEPP =X e ej C

EPP} as the collection of protein-protein interaction attributes.

2. The causal direction of a physical interaction denoted as de. de specifies the di-

rection of information flow in a cascade of molecular interactions. In a protein-

DNA interaction, the direction of control flow is always from a protein (tran-

scription factor) to a DNA (promoter). In contrast, the causal direction of a

protein-protein interaction is undetermined from the physical data alone. We

need to observe the functional processes in which this interaction is involved

in order to infer its causal direction. Since the direction of a protein-protein

interaction depends on the pathways in which this interaction participates, a

protein-protein interaction can be bi-directional. It may possess one orienta-

tion in one pathway and the opposite orientation in the other. For simplicity

we exclude this possibility in our preliminary physical model and assign each

edge a unique direction. The following convention is adopted in order to map a

causal direction into a binary value (+1 or -1). First we select a directed path

as a reference. Then we assign +1 to the edge directions which are along the

reference path, and -1 to the directions which are against the reference path.

The selection of reference paths is arbitrary as long as their directions do not

contradict with each other. Denote DEPP = {de, : ei C EPP} as the collection of

protein-protein edge direction attributes. The directions of protein-DNA edges

are fixed, thus they do not need to be modeled as unknown attributes.

3. The immediate effect of a physical interaction denoted as se. se specifies whether
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the the source node activates or represses the activity of the destination node.

It can be treated as the sign of an edge. The semantics of se for a protein-DNA

interaction designates the function of a transcription factor as an activator or a

repressor. In contrast, the semantics of se for a protein-protein interaction des-

ignates the function of a signal transduction protein (such as a protein kinase)

on the next step of the signal transduction pathway. Notice that the "activity"

of a gene does not necessarily indicate its mRNA or protein level. For example,

the activity of a transcription factor can be the conformation of the protein

molecules, and the activity of a protein kinase can be the phosphorylation state

of the molecules. Therefore, the signs of many edges are not directly observable

from the gene expression data. The edge sign is also mapped into a binary value:

se = +1 if the function is activation and se = -1 if the function is repression.

Denote SEPd = fse : ei c EPd} and SEPP = fses : ei E EPP} as the collections of

protein-DNA and protein-protein edge signs.

These attributes are treated as variables whose values are uncertain. We define

a configuration of the physical network model as an instantiation of the settings of

all variables associated with the skeleton graph. A configuration entails a specific

model of gene regulation in terms of molecular interactions. As seen in the example

in Figure 2-3, a configuration specifies the relevant molecular interactions, the causal

orders of genes in the pathways and the regulatory functions of genes or gene modules.

Furthermore, we can predict the consequence of perturbing the system (deleting or

over-expressing genes) given a configuration. Because the physical network model is

able to express the gene regulation mechanism corresponding to any of the possible

configurations, it can be viewed as a meta-model of gene regulatory models.

The primary differences between the physical network models and previous works

introduced in Chapter One are the assumptions about gene regulation mechanisms

and the properties they attempt to capture. Most previous works focus on modeling

the attributes associated with genes. For example, Bayesian networks on gene expres-

sion modeling in [56, 71, 123] all treat the mRNA expressions of genes as the variables

in the model. Properties about the structure of a Bayesian network emerge from the
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dependencies of the expression data. In contrast, we assume the structure of the

network is pre-determined by physical interaction data and explicitly model various

properties associated with the structure. Learning the attributes with a fixed struc-

ture is typically undertaken by model inference algorithms such as max-product or

sum-product, while learning the model structure often resorts to sampling or greedy

search algorithms. Both problems have no efficient algorithms that guarantee to

find the solutions, but empirically structure learning is considered more difficult than

model inference. However, it should be pointed out that the difference between phys-

ical network models and previous works of Bayesian network gene expression models

is not computational. One can formulate a physical network model as a Bayesian net-

work with variables (nodes in the Bayesian network) defined as attributes of vertices,

edges and paths in the underlying physical network.

2.4 Data association and model inference

The purpose of a model is to study a complex subject with simplified and general-

ized assumptions. Therefore, a model is useful only when it links to data obtained

from observations or experiments. In the context of physical network models, the

configurations of annotated attributes are determined by empirical data. Without

any data each configuration is equally likely. As more data are included the uncer-

tainty of model configurations reduces; in other words, there are fewer configurations

compatible with existing data. The reduction of uncertainty can be understood from

two aspects. The uncertainty pertaining to a specific variable is reduced if there are

multiple data points probing it. For example, a protein-DNA interaction is more

likely to be real if it is supported by both CHIP-chip assays and promoter sequence

analysis. In addition, the overall uncertainty of model configurations is reduced when

the model is constrained by distinct yet related data. For example, the edge signs

along a pathway can be uniquely determined if each gene along the pathway is deleted

and the deletion effect on downstream genes are measured.

Linking an observed data with variables in the model is called a data association
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problem. When applying to physical network models, we categorize observed data into

two types: physical and functional data. A physical data is directly tied to a single

variable in the physical network model. In other words, the experiments which report

a physical data directly measure an attribute in the physical network model. The

data of protein-DNA interactions, protein-protein interactions, and protein complexes

all fall into this category. There is no ambiguity of interpreting the data because

they directly measure the attributes. When there are multiple data probing the

same interaction, we can assign the confidence of this interaction by combining the

confidence measures from multiple data. Therefore, the association with physical

data is direct and does not depend on other attributes in the model.

In contrast, a functional data is related to multiple variables in the physical net-

work model. We use the term functional because they probe the relations between

inputs (perturbations) and outputs (the changes of states such as gene expression

levels) of a system but do not specify the mechanisms underlying such relations.

However, since we are interested in modeling the mechanisms, we need to assign the

functional relations with attributes listed above.

All the gene expression data - including mRNA and protein level measurements -

fall into the category of functional data. Many gene expression experiments measure

the differential changes of deletion or over-expression mutants with respect to the

wild type. The cause and effect in these data are clear, though the intermediate steps

remain unknown. The changes of gene expression are the effects of the perturbation,

and the causes are the changes (deletion or over-expression) of the perturbed genes.

We can decompose a knock-out or over-expression data into these cause-effect pairs.

For instance, if deleting a gene g up-regulates one hundred genes gi, ... , 9100 and

down-regulates fifty genes ioi, - - - , 9150, then we can decompose this expression data

into 150 triplets (g, gi, +), * - , (g, 9iso, -), where the first and the second elements

stand for the cause and the effect of the experiment and the third element reports

the direction of the expression change. For simplicity we only consider the qualitative

changes of knock-out experiments (up or down regulations or no change). Quanti-

tative changes - the strength of expression changes - can be transformed into the
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probabilities of qualitative changes.

Other gene expression data probe the response of the system in different types of

cells or under different environmental conditions. It is not straightforward to assign

the cause of expression changes to specific genes as in knock-out or over-expression

data. Nevertheless, with certain assumptions we can assign the candidate causes of a

gene expression change to the bindings of transcription factors at its promoter region.

Other functional data include the phenotypical observations under perturbations. For

instance, in budding yeasts the complete list of lethal genes (the deletion of a single

gene is lethal) and many pairs of synthetic lethal genes (the deletion of individual

genes is not lethal, but the deletion of both genes is lethal) are readily available

([64, 169, 157]). We will not utilize this type of functional data in this thesis, despite

it is possible to incorporate them in the physical network model in the future work.

We can interpret a functional relation (cause and effect) in a functional data

with the mechanisms of molecular cascades. To make these mechanisms explain a

functional relation, the model attributes along the paths connecting the cause and

the effect must satisfy certain constraints. Using the example in Figure 2-3 again,

suppose knocking out Stel1 down-regulates the mRNA expression of Agal. To make

the path in Figure 2-3 explain this relation, the protein-protein interactions should

follow the direction Stell -> Ste7 -+ Fus3 -+ Ste12 -> Agal and the aggregate sign

of the four edges must be +1. These constraints usually do not uniquely determine

the value of an attribute, but they narrow down the space of possible configurations.

Both confidence values derived from physical data error models and hard con-

straints obtained from explaining the functional data can be represented as potential

functions. A potential function maps each configuration of a set of variables into a

non-negative real number pertaining to the constraint. The potential function of a

physical data observation contains a single argument of the model attribute and the

returned value is proportional to the likelihood ratio of measurements. For exam-

ple, if the conditional likelihoods of observing a binding affinity value in a chromatin

IP experiment are L, = P(ye~le = 1) and Co = P(yelxe = 0) respectively (where

Xe denotes the actual interaction and ye the observed binding affinity), then we can

60



construct the potential function of this interaction xe as

#(Xe) = ( .1) (2.3)

The potential function of a functional data involves multiple attributes to explain the

functional data. It returns a relatively large value (close to 1) if the configurations

of these variables satisfy the constraint of explanation, and a relatively small value

otherwise. In the example in Figure 2-3, suppose Agal is down-regulated in StellA

experiment. The potential function corresponding to this knock-out effect is a func-

tion of the edge presence, edge directions and edge signs along the pathway. It returns

a high value when edge presence and directions are consistent with the pathway and

the aggregated edge sign is consistent with the knock-out effect.

V)(Xei,-, Xe 4 , de, , de4, Sei, , Se4) = l.O0 f e1 =-- =de= +1, Fi se = ±1.

6 otherwise.

(2.4)

Notice the returned values of a potential function do not need to sum to one. The

normalization constant is immaterial when inferring the attribute configurations. In-

dividual potential functions correspond to disjunctive constraints that need to be

simultaneously satisfied. Therefore, we construct a joint likelihood function of the

model by multiplying potential functions from each physical and knock-out interac-

tion.

The goal of model inference is to find the model configurations which are consis-

tent with the physical data measurements and functional data explanation as good

as possible. This amounts to finding the optimal configurations which maximize the

joint likelihood function. The optimal configuration restricted to each single variable

is called the max-marginal probability and can be approximated by the max-product

algorithm ([97]). By recursively applying these algorithms, we can either enumerate

all optimal configurations or decompose the physical network model into submod-

els such that optimal configurations within each submodel are independent of the

others. This decomposition provides an expressive power to represent all optimal
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configurations without explicitly enumerating them. We will discuss the model infer-

ence procedures in Chapter Three.

2.5 Experiment design

The physical network model provides a consistent explanation for the physical and

functional interactions in the existing datasets. However, existing data may not

impose sufficient constraints to narrow down the space of configurations to a use-

ful extent. The functional interactions may be caused by mechanisms other than

molecular interactions. In addition, the physical network model may explain false

positive interactions and draw inaccurate conclusions from the erroneous data. All

these problems can only be resolved by acquiring data from new experiments. Al-

though high-throughput technologies drastically improve the measurement efficiency

of experiments, it is still expensive and time-consuming to do biological experiments.

To make the best use of limited resources, it is critical to combine the modeling

framework with the strategies of designing new experiments.

In this thesis, we focus on prioritizing the experiments of measuring expression

profiles in single deletion mutants. This is because it takes little extra effort to

incorporate new knock-out gene expression data in the model, and profiling mRNA

expressions of yeast single deletion mutants is cheap and accessible compared to other

assays. We use this type of experiments to discriminate degenerate configurations

obtained from existing data. Model degeneracy in molecular cascades may arise from

the freedom of assigning edge signs and edge directions. Eventually, we want to

narrow down these likely configurations to a small number so that we can test these

models in more details.

Given a probability distribution of a large number of configurations, how do we

find a knock-out experiment which can best distinguish them? The capacity of a

new perturbation experiment to discriminate candidate models relies on how diverse

responses the perturbation can evoke according to model predictions. If the new per-

turbation yields distinct outputs for each different model, then we are able to identify
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a single configuration from this experiment: just choose the model whose prediction is

the closest to the observed output of the new experiment. It is also possible that the

experiment outcomes contradict with all predictions and the true model is not in the

candidate list. In most cases, a knock-out experiment is not able to identify a unique

model because multiple configurations may predict the same outcomes in a knock-

out experiment. To determine which experiment to take at the next step, we need

to define a quantity to gauge the discriminative power of a knock-out experiment. In

this thesis we use the Shannon entropy about network attributes to represent model

uncertainty. The discriminative power of an experiment is the reduction of model

uncertainty given the predicted outcomes of the experiment. This quantity is re-

duced to mutual information between the identity of model configurations M and the

predicted response under experiment e Ye:

H(M) - H(MlYe) = I(M; Ye). (2.5)

Because we only include significant knock-out effects (up or down regulations) in the

physical network model but do not employ the information about insignificant effects

(a gene does not change in a knock-out experiment), the mutual information score is

revised so that it only incorporates significant predicted outputs in model discrimi-

nation. Discussions about revising the mutual information score will be covered in

Chapter Five.

2.6 Combinatorial regulation of multiple transcrip-

tion factors

Most gene promoters are bound by multiple transcription factors ([100]). These fac-

tors are likely to regulate genes in a coordinated fashion. Understanding the mech-

anisms of combinatorial control pertaining to multiple regulators at systems level

is a challenging problem. It requires the information about various gene regulatory

mechanisms in a genomic scale: protein-DNA bindings, complex formations, post-
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translational modifications, protein abundance and localization, binding occlusions,

and so on. Currently only part of those information are available.

Due to the lack of data which can reveal mechanisms, most computational works

focus on inferring the functional relations of multiple transcription factors. A func-

tional model establishes the relations between the "states" of regulators and regulated

genes while leave the underlying mechanisms unspecified. For example, we may infer

a transcription factor is a repressor but do not specify how it represses gene reg-

ulation. In reality, repression may be achieved by blocking the binding site of an

activator, altering the conformation of an activator protein to disable its function,

and so on. The states are typically mRNA or protein abundance of genes or other

attributes which indicate the activities of genes. We choose mRNA levels of genes as

their states due to the availability of data.

In the context of combinatorial control, a function specifying the relation between

mRNA levels of genes can be formulated as a discrete function with noisy outputs.

The number of such combinatorial functions grows super-exponentially as the input

size. Therefore, an essential step of building a model for combinatorial control is

to simplify these functions. A straightforward approach is to consider the effects of

single regulators independently. This approach can retrieve the functions of single

regulators but does not consider the combinatorial effect of multiple regulators. We

extend the scope of independent regulator effects and consider the simple combinato-

rial effects that can be inferred from limited data. Geneticists often characterize the

properties of single regulators in the context of combinatorial control. We decompose

the properties of single factors into two dimensions: the function of a regulator as an

activator or a repressor, and the direction of effectiveness of a regulator. The direction

of effectiveness specifies in which direction the change of a regulator can lead to the

change of regulated genes. A regulator is necessary if repressing it disrupts the normal

function of the regulator. Conversely, a regulator is sufficient if increasing its activity

enhances its normal function. A regulator can also be both necessary and sufficient

or neither. At transcription level, we tell whether a regulator is necessary or sufficient

by checking whether the mRNA change of the regulated gene is accompanied by the
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mRNA change of the regulator in a specific direction (up or down regulation). For

example, if a regulator is a sufficient activator, then it can explain the data that both

the regulator and the regulated gene mRNAs are up regulated. One simple mechanis-

tic explanation for necessary regulators is that they collaborate with other proteins

in order to function. Similarly, a mechanistic explanation for sufficient regulators is

that they are in redundant pathways which can independently function.

This characterization certainly does not capture all combinatorial effects. The

direction of effectiveness of a regulator may depend on the presence or absence of

other regulators. Moreover, this functional characterization covers only a specific

mechanism of combinatorial regulation: regulators control transcription initiation by

modulating their protein abundance (indirectly mRNA abundance). A transcription

factor may regulate transcription by modulating the number of proteins bound to a

specific promoter. The protein abundance localized on a promoter may not be pro-

portional to the average mRNA abundance of the regulator captured by microarrays.

Hence we may not be able to uncover the effect of this regulator from expression

data alone. In spite of these limitations, this characterization reduces the number

of possible functions from super-exponential to exponential in terms of input size.

Therefore, it allows us to enumerate all possible functions for small input sizes. We

will discuss the advantages and limitations of this characterization in Chapter Six.

We define the likelihood function of binding and expression data in order to fit a

regulatory model to those data. For binding data, the likelihood function is translated

into the constraint that all regulators bind to all regulated genes within a model. For

expression data, the likelihood function pertains to the consistency of gene expres-

sion changes between regulators and regulated genes with respect to the combinatorial

function. The actual binding and expression states are observed through noisy mea-

surements. We marginalize the likelihood function over the hidden variable states

consistent with the regulatory model.

Once the likelihood function is defined, we propose an algorithm which gener-

ates regulatory models that maximize likelihood scores. For a fixed set of regulators

and a combinatorial function, the algorithm incrementally adds genes which maxi-
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mize the likelihood score. It then selects the optimal and sub-optimal combinatorial

functions according to their likelihood scores, and infers each regulator's direction of

effectiveness from them. Finally it keeps the regulatory models which substantially

fit the data. The algorithm and the analysis on high-throughput data are discussed

in Chapter Six.
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Chapter 3

Integrating Data in a Physical

Network Model

We have described the motivation and the framework of the physical network models

at a conceptual level. In this chapter, we will discuss in-depth the two core aspects

of the physical network models - the association with the empirical data and the

inference of the likely configurations of the model. By applying an independence

assumption, we decompose each data into the evidence of pairwise interactions. This

evidence includes protein-DNA and protein-protein interactions captured by various

assays and the differential expression changes of genes in a single gene deletion mutant.

Both physical and knockout evidence impose constraints on the variables (edge

presence, directions, signs, etc.) of the model. The goal of model inference is to find

the configurations of variables which satisfy these constraints. To facilitate model

inference, we express each constraint as a potential function of variables. Model

inference then amounts to optimizing the joint likelihood function generated by the

potential functions. This optimization can be efficiently approximated by various

inference algorithms of graphical models. In this thesis we apply a special class of

the message-passing algorithms - max-product and sum-product algorithms of factor

graphs - in model inference. Furthermore, by recursively applying the max-product

algorithm, we are able to decompose multiple optimal configurations into the product

of the configurations of submodels.
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3.1 Data sources

It is necessary to discuss the types of data sources we use before introducing data

integration and model inference. In this thesis, we focus on the datasets which directly

capture pairwise physical interactions and the datasets which measure the mRNA

levels of deletion mutants in comparison with wild types. We name the first type

physical data and the second type functional data. The distinction relies on whether

the data probe the fundamental attributes in the model. The expression data under

gene knockouts are functional because knockout interactions are composite effects

related to multiple fundamental attributes such as directions and functions of physical

interactions.

3.1.1 Protein-DNA interaction data

As described in Chapter One, the bindings of transcription factors on DNA promoters

are necessary for transcription initiation. Currently there are several major methods

of probing protein-DNA interactions in a large scale. Here we briefly introduce two

of them. The least involved in terms of "wet" biological bench work is the sequence

analysis of DNA promoters. The analysis is based on the postulation that the DNA

sequence on the binding site of a specific transcription factor is closely related to

its binding affinity. Thus by investigating the promoter DNA sequences, we are

able to identify putative binding sites of transcription factors. A common approach

of sequence analysis is to first select the putative promoter targets of a transcription

factor (for example, by identifying the genes whose expression profiles are correlated),

then find the motifs - statistically enriched sequence patterns - in putative targets.

Many algorithms have been developed to identify motifs from promoter sequences;

some examples include ([130, 162, 10]). Despite its usefulness, sequence analysis has

two major limitations: the analysis does not directly observe protein-DNA bindings

and the sequence information alone may not be sufficient to determine the bindings.

Other techniques such as chromatin immunoprecipitation can directly probe protein-

DNA bindings. Chromatin immunoprecipitation - abbreviated as chromatin IP or



CHIP - purifies and amplifies the promoter segments bound by a specific transcription

factor. Chromosomal DNAs which are bound by DNA-binding proteins are cleaved

in vivo into small fragments. The target promoters of a transcription factor are puri-

fied by immunoprecipitation using the antibody specific to the DNA-binding protein.

The purified promoter fragments are then amplified by polymerase chain reaction

(PCR) and measured by Northern blot for single genes or DNA microarrays for high-

throughput outcomes. The measurement outcome is compared to the background

reading in control experiments where immunoprecipitation does not take place. This

technology is also called CHIP-chip when DNA microarrays are used to measure the

bindings of a large number of promoters. A technical introduction about chromatin

IP can be found in [128].

Currently there are several large-scale datasets of CHIP-chip experiments available

in budding yeasts. One of the most comprehensive datasets is the location analysis

data published by Lee et al. ([100]). This dataset consists of the genome-wide binding

profiles of 106 transcription factors in S. cerevisiae. Other similar datasets can be

found in [78].

In this thesis, we incorporate the high-throughput CHIP-chip data published by

Lee et al. in the physical network model. This choice is governed by the availability

and coverage of data. The modeling framework, however, is capable of incorporating

other types of data.

3.1.2 Protein-protein interaction data

In addition to protein-DNA interactions, physical interactions between proteins also

play an important role in gene regulation. As described in Chapter Two, protein-

protein interactions can influence transcription regulation via at least two mecha-

nisms. A protein may chemically modify another protein and propagate the infor-

mation of gene regulation by protein modification, or it may bind to other proteins

to form a complex and carry out a specific function. Both mechanisms may also oc-

cur simultaneously on a protein-protein interaction. We focus on the signal pathway

aspect of protein-protein interactions in this chapter.
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Various techniques have been developed to detect pairwise interactions of proteins.

Some methods include yeast two-hybrid systems ([160, 86]), co-immunoprecipitation

([146]) and mass spectrometry ([75, 62]). The basic idea of yeast two-hybrid systems

is as follows. A eukaryote transcription factor protein consists of two essential sub-

components (domains): one is responsible for binding to DNA promoters and the

other interacts with the RNA polymerase II holoenzyme to activate transcription

initiation. To detect whether proteins A and B bind, the DNA sequence encoding

transcription factor Gal4 DNA binding domain is inserted to the 5'-end of gene A,

and the DNA sequence encoding Gal4 transcription activation domain is inserted at

the 3'-end of gene B. Thus the expressed protein A contains Gal4 DNA binding do-

main, and the expressed protein B contains Gal4 activation domain. If proteins A and

B bind together, then the complex (Gal4 DNA binding domain-A-B-Gal4 activation

domain) acts as Gal4. We can probe the activity of this complex by measuring the

expressions of Gal4-controlled genes such as Gal3.

Yeast two-hybrid experiments can be applied at either a small or large scale. There

are already several high-throughput datasets of protein-protein interactions generated

by yeast two-hybrid systems, such as [160] and [86]. The quality of those datasets

is often questionable, for the false positive and false negative rates are reported to

be high ([31]). For instance, the datasets generated by two different laboratories but

under the same environmental condition and of the same model organism have less

than 30% overlap ([160] and [86]). In contrast, the results generated from small-scale

experiments are generally more reliable ([31]).

Co-immunoprecipitation is applied at a small scale to detect pairwise protein in-

teractions. Suppose we want to test whether proteins A and B bind. The antibody

specific to A is applied. The antibody-A complex is purified with immunoprecipita-

tion. The purified complex contains B if B already binds to A. We can detect the

presence of B by applying another antibody specific to B and performing a Western

blot assay.

Mass spectrometry has become another primary technology of measuring protein-

protein interactions. Mass spectrometry is typically employed to detect the presence
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of specific molecules (in this case, protein complexes) in a specimen. The specimen is

ionized and the ionized molecules move under an electric field. Similar to electrophore-

sis, ionized molecules are separated by their mass-to-charge ratios. Therefore, the

presence of certain molecules can be detected by reading the mass spectra (the num-

ber of ions in each mass-to-charge ratio) of the specimen. Since the charge-to-mass

ratio of a molecule is unique, it is possible to detect the presence of multiple types

of molecules simultaneously from the aggregate spectra of the specimen. This prop-

erty makes mass spectrometry intrinsically high-throughput. Therefore, it has been

recently applied in many problems of systems biology such as proteomics, metabolic

flux balance analysis and protein-protein interactions. A comprehensive review of

current mass spectrometry technology in proteomics is given in [1].
In comparison to yeast two-hybrid systems and co-immunoprecipitation, mass

spectrometry can detect protein complexes beyond pairwise interactions. However,

current high-throughput datasets also suffer from high false positives (reported com-

plexes which are artifacts) and false negatives (known complexes are not reported).

Currently, there are several on-line databases of pairwise protein-protein interac-

tions reported from literature. Examples include the Database of Interacting Proteins

(DIP) curated by UCLA 1 ([31]) and Biomolecular Interaction Network Database

(BIND) maintained by University of Toronto 2 ([8]). Most databases do not ex-

plicitly annotate the experimental technology which reports those interactions, and

none of the databases annotates the environmental conditions and assesses the confi-

dence of reported interactions based on information contained in individual sources.

Some databases such as DIP flag individual interactions according to the scale of

experiments or whether they are reported from multiple sources. These properties

(e.g., whether an interaction is reported in a large-scale assay, whether an interac-

tion is reported from multiple assays) allow to create subcategories of protein-protein

interactions. Interactions in certain subcategories are more reliable than other sub-

categories. For example, the interactions detected by small-scale experiments and

lhttp://dip.doe-mbi.ucla.edu/
2 http://www.blueprint.org/bind/bind.php
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confirmed by different types of technologies are more likely to occur than the interac-

tions reported only by high-throughput yeast two-hybrid experiments. The confidence

of interactions in each subcategory can be estimated by external experiments ([31]).
Like all other genomic databases, the databases of protein-protein interactions

continue growing. Despite their large and growing sizes, all the known protein-

protein interactions may constitute only a small fraction of all actual pairwise in-

teractions ([31]). Many reported interactions are generated by few (two or three)

high-throughput experiments, and most small-scale experiments focus on several small

subsystems which are well characterized and studied. Therefore, the current knowl-

edge about protein-protein interactions is both incomplete and biased.

In this thesis, we choose the protein-protein interaction data collected in the DIP

database for it provides a systematic measure on the confidence of interactions. The

details of the confidence evaluation will be discussed in the next section.

3.1.3 Gene expression data

Both protein-DNA and protein-protein interactions capture crude aspects of mecha-

nisms but not consequences of gene regulation. To understand the functional aspect

of gene regulation it is necessary to measure its "outputs" - mRNAs and proteins -

under various conditions.

High-throughput gene expression analysis has become a standard tool in most

biological laboratories. Those experiments quantitate the mRNA or protein levels of

a large number of genes. There have been a rich collection of gene expression data

under various conditions, and new datasets are generated in a fast pace. Here we give

a very brief overview about gene expression data relevant to our work.

Gene expression denotes the synthesis of mRNAs and proteins. Thus gene expres-

sion data cover the measurements of both mRNA and protein abundance. Currently

mRNA expression data are far more abundant than protein expression data. Many

technologies of high-throughput mRNA measurements - such as Affimetrix gene chips

([50]) or two-channel DNA microarrays ([35]) - are based on DNA hybridization. DNA

segments complementary to specific genes are implanted on different spots of a small
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substrate called a chip. The mRNAs from the whole cell extract are converted to

complementary DNAs (cDNAs) by reverse transcriptase and then hybridized with

the probes on the chip. The hybridized chip is scanned, and the quantities of mRNA

molecules captured on the chip can be measured by the fluorescence levels of spots in

the scanned image. One can find brief yet informative overviews of these technologies

in [70, 174] and the lecture note of MIT 2004 spring course "Computational functional

genomics" .

We can also categorize gene expression data in terms of experimental conditions.

Perturbation data probe gene expression under internal or external perturbations

and compare the measurements to the data from the control experiments without

perturbations. Relative changes with respect to the control experiments are reported.

Internal perturbation denotes disturbing the internal machinery of cells. The most

common internal perturbations are deleting single genes. A comprehensive data of

yeast gene knock-out expression is the Rosetta Compendium data ([80]). It reports the

genome-wide mRNA expressions of 300 experiments, including 271 single deletions,

5 double deletions and 24 drug response experiments. We use the subset of single

knock-out experiments to constrain the physical network models. Other internal

perturbations such as double knockouts ([157]) or over-expressions ([61]) have also

been applied. External perturbations denote altering the external environment of

the cellular culture. These perturbations expose cells under some abnormal (often

stressful) conditions such as high (low) temperature, nutrient starvation, or addition

of drugs. A comprehensive profiling of gene expressions under various stress conditions

is reported by Gasch et al. [61].

The fundamental difference between internal and external perturbations in our

work is that we can attribute the causal effects of internal perturbations to the changes

along physical interaction pathways. External perturbations such as environmental

stress often enter cells via receptors on the cellular membrane. We do not have

information about the transduction from environmental signals to protein states, thus

cannot reconstruct the pathways of their causal effects.

3 http://psrg.lcs.nit.edu/6.874/lectures.html, lecture 7.
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Observational data measure the expression of cells without perturbations. With-

out clearly defined control experiments, they often focus on the variations across tissue

types ([66, 127, 2]), cell cycle stages ([143, 23, 11]), and both spatial and temporal

variations in embryo development ([167]). Observational data provide snapshots of

the internal states of the cell, but they do not directly capture the causal orders of

gene regulatory events. It is possible, though, to reconstruct causal orders of genes

from the temporal orders of their expressions.

3.1.4 Other types of data

Physical interaction and mRNA expression data certainly do not constitute all high-

throughput datasets in systems biology. Many new technologies have been developed

or are under active development. These technologies probe different aspects of the

cellular processes. The growth of data in terms of quantity and variety is tremendous

Here we briefly review some of the data types which we do not currently incorporate

in the physical network model. We consider integrating some of them in the future

work.

DNA sequence information is the earliest large-scale genomic data available. With

the progress of automated sequencing technologies, the genomes of many organisms

are being sequenced at a fast pace. Current focus on sequence analysis is on compar-

ing the genomes of multiple organisms (for instance, [95]) and integrating sequence

information with other data (for instance, [100]).

Many cellular functions are performed by complexes comprised of multiple pro-

teins. The multi-way interactions of complex formation can be viewed as a gener-

alization of pairwise protein-protein interactions. Curated databases about known

protein complexes are available for a limited number of organisms '. In addition,

several large-scale datasets from high-throughput experiments are already published

([75, 62]). Similar to the pairwise interactions, the quality of these datasets is also

questionable.

Localization of proteins in different cellular compartments serves as an important

4http://mips.gsf.de/
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mechanism for various cellular processes. A number of large-scale datasets about

protein localization are available. Using fluorescence tagging, the presence of proteins

in each cellular compartment can be visualized using microscopes ([81]). In addition,

statistical analysis is also applied to infer the localization of proteins ([98]).
Protein expression (proteomics) is currently under active research. They are cer-

tainly important for understanding gene regulation since proteins are actual function-

ing units of cells. Currently protein expression data are not as common as mRNA

expression data due to the high cost. Limited high-throughput data are available

such as ([63]). With the progress of mass spectrometry, those data are expected to

become more accessible.

In addition to molecular quantities such as mRNA or protein levels, researchers

also measure cellular properties in a high-throughput fashion. For example, pheno-

type arrays measure the cellular phenotypes under different perturbation conditions

([64]). A special case of phenotype is cell death. There are also high-throughput

experiments to detect lethal single gene knock-out experiments ([156]) and synthetic

lethal double gene knock-out experiments ([157]).

3.2 Pros and cons of data integration

An increasing number of recent works in computational biology incorporate multiple

sources of data. Aside from the convenient access to different types of data, there

are several major arguments for favoring using multiple data sources in inferring gene

regulation. First, different types of data contain overlaping information regarding the

underlying system. These overlapped information can be used to reduce the ambi-

guities of the inferred models. In some cases, several different assays are designed to

capture identical or similar properties. Data fusion in this scenario is statistical: a

property is measured by independent experiments, and the noise after multiple ob-

servations is reduced. Many previous works pertaining to genomic data fusion follow

this track. For instance, in [143] and [152], putatively co-regulated genes are reported

by combining gene expression and promoter sequence motif data. On the other hand,

75



model uncertainty may also be reduced by different types of constraints from data. In

our problem, physical data provide information about possible mechanisms for gene

regulation, while knockout data reveal the causal order and functional effects of gene

regulation. By putting two types of information together, we may be able to uniquely

determine the attribute values in the physical network.

While the overlapped information between datasets helps reduce model uncer-

tainty, the orthogonal information among them expand the scope of the model. Know-

ing both physical and functional aspects of gene regulation is certainly better than

knowing each aspect separately. However, the information contained in multiple

datasets are not simply the concatenation of information from individual datasets.

This is because different datasets can be interrelated as described above. By applying

proper assumptions we can uncover the information which are not contained in single

datasets.

Despite its advantages, data integration also introduces new problems. The quality

of each dataset becomes crucial if we want to extract information by synthesizing

data. The errors in the overlapped part are more tolerable since this information

is contained in multiple sources. In contrast, the errors in the orthogonal part are

accumulated. For example, if both physical and knockout data are erroneous, then

we may assign a wrong pathway to explain a wrong knockout effect.

3.3 Overview of the data association approach

Relating model variables to measurements is called data association. One typical

data association problem in machine learning is to relate the measured data about

a place (images, laser scans, sonar scans, and so on) with the position of this place

in the internal map stored in the robot ([112]). Because of the uncertainty about

the robot position and the inaccuracy of the map, associating a captured image to a

corner in the map poses a non-trivial computational problem. In our problem, many

variables in the model are not directly observed, and many measurements capture the

aggregate processes involved with multiple variables. Thus it is essential to establish
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the rules of relating measurement data to model variables.

Before establishing the rules of data association, we need to demarcate the basic

units of the data. All the high-throughput data are quantitative descriptions of

gene relations. The fundamental properties of these relations are the same as the

descriptions in classical assays. Therefore, we can decompose high-throughput data

into the following basic units which can be understood in the context of classical

assays. Protein-DNA interaction data are essentially a collection of pairwise relations.

We express a pairwise relation as an ordered pair (f, g), denoting that transcription

factor f binds to the promoter of gene g. We can either assign confidence measures

(or p-values) to these pairs or treat them as discrete events. Pairwise protein-protein

interactions data can be expressed as an unordered pair: (91, 92) denotes that proteins

gi and g2 bind together. Knock-out or over-expression data of gene expression can be

treated as relations between perturbed genes and affected genes. For single knock-

out data, a signed and ordered pair (91, g2, +/-) denotes that deleting gi up or

down regulates 92. For simplicity we only consider qualitative changes (up or down

regulation or no change) of knock-out effects.

Protein-DNA, protein-protein interactions and knock-out gene expression data

can be decomposed into these basic units of gene relations without ambiguity. Each

decomposed relation from these three datasets (protein-DNA, protein-protein and

knock-out interactions) imposes a constraint on the physical network model. Evidence

from physical data is directly linked to a variable of physical interactions: it informs

us whether a physical interaction exists or the confidence about the observation.

Evidence from knock-out data contains two layers. The first layer is the existence or

the confidence about an actual knock-out effect: whether gene 2 is up/down regulated

or unchanged by deleting gene 1. The second layer is the interpretation of this actual

knock-out effect according to the physical network model: what are the constraints

on the directions and signs of the physical interactions along the pathways connecting

the cause and effect genes.

The problem of data association amounts to finding a mathematical representation

for these constraints. One common representation is potential functions of discrete or
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continuous variables. It maps each state of variables into a non-negative real number

reflecting the confidence pertaining to the constraint. To be precise, let x1 , - , x, be

n variables and Di is the domain of variable x,. A potential function of x 1, , x, is

defined as

: Di x -.-.- x Dn -+* R+. (3.1)

One can immediately see a hard constraint such as a Boolean function is a special

case of a potential function: # returns 1 if the constraint is satisfied and 0 otherwise.

In fact, potential functions are used to represent the hard constraints of complex sat-

isfiability problems. For example, in decoding complex error correction codes such as

turbo codes ([15]) or Gallager codes ([107]), parity check functions of received bits are

expressed as potential functions ([55, 173]). Moreover, potential functions can also

express (unnormalized) probability functions of random variables. For instance, expo-

nential families such as Bayesian networks and Markov random fields have equivalent

forms as the product of potential functions ([173]).

We decompose each dataset into simple constraints pertaining to pairwise re-

lations. Each constraint yields one potential function term. The construction of

potential functions pertaining to each type of data will be introduced in subsequent

sections. Potential functions are joined by multiplication because we assume con-

straints are independently imposed and require all constraints need to be (ideally)

simultaneously satisfied. These premises may not hold in general. For instance, er-

rors of adjacent spots on DNA microarrays may be correlated, or some constraints

are linked in an OR fashion (that the satisfaction of any one constraint suffices). We

leave the first problem to subtle error models in the future and discuss the treatment

of the second scenario in the next section.

Notice we should not confuse the independence of constraints with the indepen-

dence of data. Multiple datasets capture different (or even identical) aspects of the

same biological system. Hence these data are indeed highly dependent. This de-

pendency, however, does not prevent us from decomposing data into independent

constraints. More precisely, individual datasets are conditionally independent given
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the underlying process.

3.4 Constructing potential function terms

In this section we will discuss the construction of potential function terms for three

datasets: protein-DNA interactions, protein-protein interactions and knock-out gene

expression data. We focus on a specific instance for each type of data: yeast genome-

wide chromatin IP for protein-DNA interactions ([100]), protein-protein interaction

database DIP ([31]), and the Rosetta Compendium dataset for yeast knock-outs ([80]).

The procedure of data association can be extended to other datasets of the same types

if their measurement error models are provided.

3.4.1 Location analysis data

The raw data of CHIP-chip experiments are the images of two-channel microarrays

of promoter nucleotides. One channel reflects the population of DNA promoter frag-

ments bound by the target transcription factor and purified by immunoprecipitation,

and the other channel measures the background population without immunoprecipita-

tion. The image files were pre-processed (mapping spot intensities into real numbers,

error correction, normalization, and so on) and converted to real-valued matrices as

other gene expression data. The ratio (or the log ratio) of the readings on two chan-

nels reflects the enrichment of a transcription factor-bound promoter. We define the

ratio as purified The larger the ratio is, the more likely the promoter fragmentbackground' h agrtertoitemoelkl h rmtrfamn
is enriched after the purification. However, the ratio is also affected by the variations

of the readings on each spot. To take the spot-specific noise into account, a number

of control experiments (background versus background in both channels) were un-

dertaken. A null model was constructed from readings of control experiments, and

the p-values were computed according to this null model. The error model in loca-

tion analysis data was adapted from the error model in the Rosetta Compendium

data. Detailed discussions about this error model can be found in the supplementary

webpage of [80].
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We threshold on the reported p-values and only consider the factor-gene pairs

whose p-values are below the threshold. For each candidate pair, we construct a

potential function that incorporates its p-value information. To do this we introduce

the following notations.

" EPd = {ei = (f, g)} is the collection of all factor-gene pairs which pass the

p-value threshold on location data.

* XEPd {Xe, 2 ei EPd} denotes the indicator variables whether these protein-

DNA pairs interact or not. They are observed through noisy measurements.

" YEPd {Ye 2  i G EPd} denotes the measurements about the protein-DNA

bindings. They are directly reported and their domains are real numbers. We

can interpret ye, as the log ratio of the two channel readings or the p-value

derived from the log ratio.

The potential function e- (xei; Ye) pertaining to the location analysis evidence

about a protein-DNA interaction ei is proportional to the ratio of the conditional

probabilities derived from the error model:

#ei (Xei; Yei) P(yjre2 =O) . (3.2)

e'i (Xe 2 ; Ye) is a function of xe, only since the value of Ye2 is given by the data. We sim-

plify the notation by stating that P(yej Xe, = 1) denotes the conditional probability

of observing "Ye 2 = the empirical value" given xe, = 1. /ej returns the likelihood ratio

[P(y 2  if e = and if xe, 0. The problem becomes evaluating conditional
[P(YeuIXei =0)J I ,ad fc

probabilities P(YejjXe= 1) and P(Yejllej =0).

Suppose the error models of both false positives and false negatives were pro-

vided, then we could directly apply those models to evaluate P(yej e, = 1) and

P(ye, Ie, = 0). In reality, a complete characterization of measurement errors is not

yet available. In the CHIP-chip assay we use, the p-values associated with each

protein-DNA interaction are provided. These p-values are heuristically defined in-

stead of formally defined from known distributions.
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How do we estimate P(y,,Ix,, = 1) and P(ye,2 ze, = 0) from empirical p-values?

The ambiguity of the p-value definition allows multiple possible relations between

conditional probabilities and p-values. If we treat ye, as the binding affinity (log ratio

between two channels), and the measurement p-value as the p-value for ye, then

P(ye, > ee = 0) = by definition (e, and P are empirical values of affinity and

p-value). If we view ye, as the reported p-value itself, then P(yej Xe, = 0) = 1 due to

the definition of p-values. Suppose there is a test statistic T and the p-value p = P

of observing T = t is defined as P = Pr(T > tjHo) under the null hypothesis Ho.

There is a monotonic relation between T and p. Treating p as a random variable, the

cumulative distribution of p then becomes

F(P) - Pr(p < P|Ho) = Pr(T > t|Ho) = p. (3.3)

Thus p has a uniform distribution in [0, 1] and the probability density function is

P(P < p < P + dplHo) = 1 - dp. The condition xe, = 0 corresponds to the null

model since the control experiments are done by excluding protein-DNA bindings.

Therefore, P(yejXej = 0) = 1.

In both cases, however, computing P(yetlxe, = 1) is more problematic. It requires

us to build an alternative model of measurements: what is the distribution of log

ratios or p-values when there is a protein-DNA interaction? Since we do not know

whether an interaction exists a priori, it is difficult to evaluate this probability from

empirical data. Moreover, even if we can evaluate the probability from some known

interactions, the results can not necessarily be extrapolated to other interactions.

One remedy is to substitute P(yejzx, = 1) with an ad-hoc distribution. If ye, is

the p-value, then we expect the computed p-value is small if the interaction occurs.

Hence P(ye2 lXe. = 1) can be modeled as a decreasing function like an exponential

distribution ([135]). However, the choice of the distribution is arbitrary and does not

have a solid basis.

We approach this problem by interpreting the empirical p-value as the p-value of

the log likelihood ratio appeared in equation 3.2. Under certain regularity conditions
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about the likelihood functions, the log likelihood ratio under the null hypothesis has

an asymptotic x2 distribution. Therefore, we can convert the empirical p-value into

the log likelihood ratio.

We model the null hypothesis HO and the alternative hypothesis H1 as parametric

families of probability distributions of random variables z with parameters 0: HO :

O c Q0, H, : 0 c Q1. We assume the null hypothesis is a restricted subclass of the

alternative hypothesis: Qo C Q1. In our case, the non-binding model is subsumed to

the binding model since it can be conceived as a special case of very weak bindings.

The binding model has one extra degree of freedom compared to the non-binding

model, namely the affinity or strength of binding. By applying the asymptotic theory

of model selection, we are able to evaluate the asymptotic likelihood ratio without

specifying the parameter model classes Q0 and Q1.

The standard procedure of testing H1 against HO is to evaluate the maximum log

likelihood ratio. Let Qo and 61 be the maximum likelihood estimates in Q0 and Q1.

The test statistic is the maximum log likelihood ratio:

P(z; 41)
= 2 log (3.4)

(P(z; 00))

The larger L is, the more likely that the data is generated by H 1. We are interested

in the p-value of the test:

p(L) = Pr(L > L Ho). (3.5)

where t is the empirical maximum log likelihood ratio. The p-value is difficult to

evaluate since the true model classes Q1 and Q0 are often unknown. However, as

the number of samples increases, L asymptotically approximates the x 2 distribution

regardless of the underlying distributions ([27]):

p(L) ~ 1 - F2(L). (3.6)

where F 2 (.) is the x2 cumulative distribution with degree of freedom = 1. We denote

L as the empirical maximum likelihood ratio and p as the empirical p-value for the



economy of notations. Equation 3.6 establishes a one-to-one mapping between the

maximum log likelihood ratio and the p-value. In the location analysis data, the

p-values are reported. Hence can invert equation 3.6 and obtain the log likelihood

ratio

L = F-(1 - p). (3.7)

where F- (.) is the inverse x2 cumulative distribution. This value is biased toward

H1 since Q1 2 Qo. In other words, since we can always find a 01 E Q, which performs

at least as well as 0o, L is always > 0. To remove this bias we need to take the

complexity of model classes into account. Instead of the maximum log likelihood

ratio in 3.4, we are interested in the marginal log likelihood ratio

, ( P(z|H)
' =2log .P(zIHo) (3.8)

where P(zlHi) is the marginal likelihood over the parametric class Qj with a prior

P(Or):

P (z|IHj) = P(z; Oj) P (Oi j. (3.9)

The marginalization is often computationally demanding. However, by applying the

asymptotic theory again, this task is remarkably simplified. As the number of sam-

ples increases, the marginal likelihood approximates the maximum likelihood with a

penalty term for model complexity:

d.-
log P(zjHz) e log P(z;Oj) - 'logn. (3.10)

2

where di is the degree of freedom in Qj and n is the number of samples. The asymp-

totic approximation is independent of the prior distribution. Equation 3.10 is called

Bayesian Information Criteria (BIC) developed by Schwartz ([134]).

As mentioned, Q1 has one more degree of freedom than Q0 . By substituting

equation 3.10 in the marginal log likelihood ratio, we obtain

P(zIHI) 1,

P(zHO)~ e 2 g (3.11)
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L can be computed from the p-value p in equation 3.7. Thus

P(zlH1) 1F- 1 (1 -p)-jlogn

P(z Ho)

This is the likelihood ratio P 1 in equation 3.2. Hence we are able to transform
P(yej Ixei =0)

a p-value in the location analysis data into a potential function term.

The major limitation of this approach is the assumption of large sample size.

In fact, the sample size of all high-throughput genomic data is very small in the

statistical sense. In the location analysis data, most results have only three replicate

experiments. Thus both X2 approximation of p-values and BIC approximation of the

marginal likelihood ratio may make the estimated value substantially deviant from

the real value.

3.4.2 Protein-protein interaction data

Unlike location analysis data, protein-protein interaction data in DIP are obtained

from heterogeneous sources. These sources have different error properties in their

experiments. The database does not annotate the confidence of each reported inter-

action. In fact, many articles that report these interactions contain only qualitative

results. Even if error models or error estimations are provided, it will be very tedious

to excavate these information embedded in thousands of papers.

Despite this deficiency, DIP annotates the number of publications which report

each interaction and the types of assays (high-throughput or small-scale classical

assays) in these publications. These annotations provide useful information to esti-

mate the confidence of interactions ([31]). Intuitively, the interactions reported by

classical assays are more reliable than the interactions which are only reported in a

high-throughput experiment. Hence the authors in [31] specified a subset of interac-

tions in DIP that satisfied these criteria and viewed this subset dominated by true

interactions. They also generated a subset of random protein pairs and speculated

that it comprised predominantly false interactions. Once the positive and negative

reference sets were constructed, they devised two statistical tests on the confidence of
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an arbitrary subset of putative protein-protein interactions. The Expression Profile

Reliability Index (EPR) is based on an observation that interacting proteins tend

to be co-regulated. They evaluated the distributions of the Euclidean distances of

normalized expression profiles between pairs within each reference set. The distribu-

tion in the positive set pi(d 2 ) is tilted to small values compared to the distribution

in the negative set p,(d 2). They defined the EPR index acEPR of a subset of putative

protein-protein interactions as the mixture coefficient of the two distributions:

Pexp(d 2 ) = aEPRpA(d2) + (1 - aEPR)Pn(d). (3.13)

where pexp(d 2 ) is the expression profile Euclidean distance distribution in the target

set. This quantity was used to estimate the false discovery rate in a given set:

Pr((g1 , g2) does not interactl(gi, g2) appears in the subset) 1 - cEPR- (3.14)

In addition to expression data, they also evaluated the quality of individual interac-

tions by phylogenetic data. If a pair of proteins bind together and they have paralog

proteins, then their paralog proteins are also likely to interact. This is based on the

assumption that evolution tends to preserve non-random protein-protein interactions.

They developed the Paralogs Verification Method (PVM) according to this hypothe-

sis. For a pair of proteins, this test simply checks if there exist interactions between

their paralog proteins.

EPR and PVM assess the quality (reliability) of subsets of putative protein-protein

interactions categorized by different criteria. The aEPR coefficient on the entire DIP

dataset is about 0.5, suggesting that the false discovery rate in this set is about 50%.

In contrast, cEPR ~ 0.85 on the subset of interactions confirmed by at least two

studies. Thus the false discovery rate reduces to 15% in this restricted subset. PVM

is a property of individual interactions instead of the whole dataset. Thus we can

evaluate the false positive and false negative rates of the subset confirmed by PVM.

It turns out PVM is very selective (false positive rate < 5%) but also very insensitive

(false negative rate ~ 50%). Among the interactions in the positive reference set, only
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half of them are confirmed by PVM. Thus the positive evidence of PVM is a strong

indicator of true interactions, while the negative evidence is uninformative about true

interactions. The detailed description about EPR and PVM methods can be found

in [31].

Based on the results of EPR and PVM, we construct the potential function terms

of protein-protein interaction data. First we define the following notations similar to

protein-DNA interactions.

E = {e = (91, g2)} is the collection of protein pairs that appear in DIP

database.

" XEPP = fx ei E EPP} denotes the indicator variables whether these protein-

protein pairs interact or not. They are observed through noisy measurements.

* YEPP {fe ei E EPP} denotes the measurements about the protein-protein

bindings. They are directly reported.

The values in YEPP are yet to be defined. As mentioned earlier, we can divide

the entire DIP dataset into subsets according to several different criteria. For each

protein-protein pair ej, the observed value ye denotes its membership according to

these categorizations. We introduce four categorizations according to early discus-

sions.

1. 'y1(el) = 1 if ej appears in the DIP database, and -y1(ei) = 0 otherwise. Naturally

'y1 (ei) = 1 for all protein-protein edges in the skeleton graph.

2. 72(ei) = 1 if ei is reported from multiple sources, and 72 (ei) = 0 otherwise.

3. - 3(ei) = 1 if ej is validated in PVM, i.e., there exists protein-protein interactions

in the paralogs of their end proteins.

4. -74 (ei) = 1 if ej is reported in small-scale experiments, and 74(ei) = 0 if it

appears only in high-throughput experiments.



And we define ye, = ('1(e), 'Y2(ei), '73(ei), '74 (ei)) as the vector of labels according

to these categorizations. These labels are given in accompany of protein pairs in DIP

database.

Our goal is to compute the likelihood ratio

P(yei|ze = 1) P P((-7f(ei), 7 2(ei), 73(ei), Y4 (ei)) Xei = 1) (315)
P(yej Xe = 0) P((71(ei), 72(ei), 73(ei), Y4(e)) xei = 0)

[31] reports the empirical values of the false rates in each categorization. The EPR

analysis shows the false discovery rates in the entire DIP dataset and the subset of

multiple confirmations are 0.5 and 0.85. Thus P(xe, = 11l(Yei) = 1) = 0.5 and

P(Xej = 11Y2(Yei) = 1) = 0.85. The interactions verified in classical assays are treated

as true interactions in their analysis, thus P(Xe2 = 1174(Ye) = 1) = 1.0. To avoid

assigning zero values to potential functions, we set P(xe, = 1i74(Yei) = 1) = 1.0 - C,

where c is a very small number. P(Xei = 1Y1(yei) = 0), P(Xi = 1L72(Ye) = 0)

and P(Xe, = 1j'Y3(ye) = 0) are not designated in their paper. Since knowing that

a protein pair is not contained in a given dataset does not provide any information

about whether it is a true interaction, we assign Xei = 1 and xe, = 0 equal probability

conditioned on '7i(yei) = 0, 72(Ye) =0, 7Y3(Yei) = 0. Moreover, since we do not have

prior knowledge about P(Xe2 = 1), we assign an uninformative prior P(Xeg = 1)

P(xe, = 0) = 0.5.

The empirical analysis of PVM gives an error estimate of 73. In the negative

reference set, only 5% of protein pairs pass the PVM test, thus the false positive rate

P(73(Yej) = 1jxe6 = 0) = 0.05. In the positive set, however, 50% of interactions do

not have paralog interactions. Thus P(73(ye2 ) = 1Xei = 1) = 0.5.

The evidence from 71, 2, 73, '74 are combined by multiplication assuming they are

independent.

4

P((71(ei), 72 (ei), 73(ei), 74 (Ci))Ixe) = ]J P(yj(e)IXe). (3.16)
j=1
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By applying the Bayes law in equation 3.15,

P((y1(ei),7-2(ei),y3(ei),Y4(ei))Ixe =1) _ P(7y(ei) xe2 =1)P(-2(ei)xei=)P(3(ei)lxe=1)P(Y4(ei)lxe =1)
P(()(ei),7y2(ei),-Y3(ej),-y4(ei))Ixe =O) P(-Yi(ei)[Xe 2 =)P(y 2 (ei)|Xe e=O)P(-Y3 (ei) xe.=O)P(Y 4 (ei)lxei=O)

P
3

(xe =O)P(XeI-=llIYi(ei))P(x 6 i e=1I2(ei))P(-Y3 (ei)lxei=1)P(xei=ll74(e 2 ))

P
3

(Xe,=1)P(Xe,2 =Olyi(ei))P(xeI-i=01Y2(ei))P(7Y 3 (ei) Xe.=O)P(xei=Oly4(ei))

(3.17)

We substitute the empirical values of P(Xej = 11YI(ye) = 1), P(Xei = 1L72(Ye) = 1),

P(Xei = 11VY4(yei) = 1), P(-Y3 (yei) = 1|Xei = 0), P(Y3 (yei) 1|Xej = 1) and P(Xe, = 1)

into equation 3.17, and ignore the terms P(xe = 11Y1(yei) = 0), P(Xe = I7Y2(Yei) 0)

P(Xej = 1 y4(yei) = 0). The potential function term is constructed from the likelihood

ratio as the protein-DNA data:

e) = [P(y:Ixee4) Xe. (3.18)

3.4.3 Knock-out gene expression data

The association with knock-out expression data contains two layers. In the first layer,

the expression data are tied to the actual knock-out effects which are unobserved. In

the second layer, the actual knock-out effects are explained in terms of pathways in

the physical network.

For simplicity we hypothesize that a gene deletion can generate three effects on

other genes: it can up-regulate, down-regulate or have no effect on other genes.

These actual effects are unobserved; instead, the log ratios of the noisy expression

measurements between the mutant and the wild type are measured. Hence we need

to convert the log ratio measurements into the three-state actual effects. We first

define the following notations.

" 1C = {(i, j)} is the index set of significant knock-out effects in the data whose

p-values are below threshold p. An index is represented as a pair (i, ) for a

pairwise knock-out effect.

" K = {kjj : (i, j) E KA} is a collection of the discrete variables of pairwise

single knock-out effects whose domains are {-1, 0, +1}. kij denotes the effect
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of deleting gi on gene g2 . kij = -1 if gj is down-regulated, +1 if gj is up-

regulated, and 0 if gj is unaffected by the knock-out.

E E = {Si : (i, j) C /C,} denotes the log ratios (or ratios) of mutant versus wild

type gene expression levels in two-channel microarray experiments. E8j denotes

the log ratio of g3 in gjA (deleting gi) experiment.

We need to link an actual knock-out effect kij with its measurement Eij by a

potential function term. The relation between a measurement and an actual knock-

out effect is specified by an error model, and the p-values of measurements according

to the error model are reported ([80]). The translation from a measurement p-value

into a potential function is analogous to equation 3.12 for protein-DNA interaction

data. The potential function term is proportional to the likelihood ratio

i (ki[ i) = P I k) (3.19)
P P(8 Ikij = 0)1

#ij (kij= ;01 Ei) = 1 by definition. If kij # 0 and has the same sign as E8 p, then the

likelihood ratio can be calculated from its p-value pij as in Section 3.3.1:

P (.Eij Ikij) .1F- (1 -Pij)-y1 log n

P( Eg Ikij = 0)

What is the likelihood ratio when kij and SEj have opposite signs? It cannot be derived

from the p-value since the alternative model in the p-value calculation assumes that

the actual knock-out effect and the measurement change are in the same direction.

Given a stringent threshold on the p-value of knock-out observations and our interest

in significant knock-out effects only, it is very unlikely that the actual effect and the

measurement have opposite signs. Thus we assign P(Ik) a very small constantP (Sj I kij =0)aveysalcntt

when kij and S,, have opposite signs. To sum up,

-e F-21(1-Pij) - j log n{ if ki -E23 > 0,
#=(kij; Ejj) if kij = 0, (3.21)

otherwise.
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The potential function terms we have introduced so far are pertaining to the evidence

of single variables. "Data fusion" does not occur since this evidence are independent

of each other (unless there are several data probing the same set of variables). To

link these data (protein-DNA and protein-protein interactions, knock-out expression)

together, we need to build potential function terms which associate the knock-out

effects with attributes in the physical network model. These associations reflect the

constraints of the physical network model attributes in explaining knock-out effects.

Before constructing the potential function terms for explaining knock-out data,

we need to clarify what knock-out effects we plan to explain. In this chapter, we

focus on the effects of single deletion mutants for the simplicity of encoding their

potential functions. The cause and effect of a single knock-out effect are clear, and

we can explain this effect through the pathways of molecular interactions connecting

the terminal genes. Furthermore, the potential functions explaining single knockout

effects are easier to implement compared to double or multiple knockout experiments.

This is because we assume the perturbation along a single pathway suffices to affect

the downstream gene, hence do not consider the combinatorial effects of multiple

pathways. Among the single knock-out effects, we focus on significant interactions

(up or down regulations) whose end genes are connected via pathways in the physical

network model. We pre-select the knock-out effects by thresholding on the p-values

of knock-out data and checking whether their end genes are connected by candidate

paths. This restriction is for reducing the unnecessary complexity of the model. In-

significant knock-out effects which are not connected are trivially explained by the

disconnection of subsystems. This explanation, however, provides little information

about the underlying system. Significant knock-out effects which do not have con-

necting pathways of physical interactions cannot be explained by cascades of molec-

ular interactions alone. Insignificant knock-out effects which are connected may have

been suppressed for many reasons. They can be potentially explained by the physical

network model.

The explanation of knock-out effects imposes constraints on the physical network

model. For a path 7 in the skeleton graph G to to qualify in explaining kj, it must
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satisfy the following conditions:

1. The end nodes of 7F are gi and gj.

2. The length of 7 is less than or equal to a pre-defined upper bound.

3. If intermediate genes along 7r are deleted, they also exhibit a knock-out effect

on gj.

4. The last edge in 7r is a protein-DNA interaction.

5. All edges along 7r are present.

6. The path has a uniform direction from gi to gj; in other words, there are no

convergent nodes (---+ - -) or divergent nodes (<- -+) along the path.

7. The aggregate sign along -r - namely the product of edge signs along wr - is the

opposite of the sign of the knock-out effect.

The first condition manifests the assumption of using a cascade of physical inter-

actions to explain gene regulation. The second condition excludes using unreasonably

long cascades to explain knock-out effects. The optimal upper bound can be found

by verifying the performance of the model with different maximum path length. The

third condition requires that each interaction along 7r is a necessary component for

regulating g3 . Thus perturbing any member along 7r should also affect gj. This

condition does not address the change of gj when the deletion experiment of an in-

termediate gene is not available. The fourth condition reflects the current biological

model of gene regulation: the last step of transcription regulation is always a protein-

DNA binding from a transcription factor to a DNA promoter. The fifth condition

seems trivial since edges along a path are already present in the graph. However,

since the skeleton graph includes candidate interactions and the confidence of edge

presence is gauged from physical data, this condition prevents us from using unlikely

paths to explain knock-out interactions. The sixth condition ensures that the path

has a causal interpretation. Because the path has a uniform direction, the effect of

91



deleting the most upstream gene can be propagated to the most downstream gene.

The seventh condition ensures the actual knock-out effect is consistent with the pre-

dicted functional direction along the path. Since the deletion effect of a function is

reversed (deleting an activator yields down-regulation and vice versa), the aggregate

sign along -F needs to be the opposite of the knock-out effect.

A knock-out effect ki1 is explained by the physical network model if there exists

at least one path which satisfies all seven conditions. Conditions 1-4 can be verified

without knowing the model attribute values, thus we can identify the connecting paths

which satisfy conditions 1-4 before constructing potential function terms and carrying

out inference . They are the candidate paths which can possibly explain knock-out

effects. For the convenience of explanation we define the following notations. Suppose

we want to explain a knock-out effect kij,

" Ii = {r, - - -, 7} denotes a collection of paths connecting gi and gj which

satisfy conditions 1-4. We call them candidate paths or valid paths.

" a denotes the index of a candidate path and 7a E Elij denotes a candidate path

for explaining kij.

SFa = {e E wr } = Epd U EPP denotes the physical interactions along 7ra, where

Ead is their protein-DNA interaction edges and EaP protein-protein interaction

edges.

" Xa {x: e E Ea} denotes the presence variables of edges along 7Ta.

" Sa = {se e E Ea} denotes the sign variables of edges along 7ra.

" Da = {d : e E EaP} denotes the direction variables of protein-protein edges

along 7a.

" Da = {de: e C EaP} denotes the fixed values of protein-protein edge directions

along ra. d, follows the path direction from gi to gj. For example, if 7ra contains

one protein-protein edge el = (gi, g) and one protein-DNA edge e2 = (9k, g),
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then we set the fixed direction value of el is de1  +1, indicating the edge

direction is (gi, g).

Conditions 5-7 are translated into the hard constraints pertaining to variables in

Xa, Sa and Da:

* Ve Ea, xe = 1.

" Ve E EP, d, = d,.

*D HeEEa Se - ij.

The potential function encoding these conditions is expressed as

4ja(Xa, Da, Sa, kij) = JJ I(xe = 1) I( se = -kI ) -f I(de = de). (3.22)
eEEa eEEa eEa

where I(.) is the indicator function. Notice directions of protein-DNA edges are fixed

and need to satisfy condition 6 in order to be a candidate path. Vb2 a returns 1 if the

conditions are satisfied and 0 otherwise. We relax the hard constraints by constructing

the potential function term as follows:

Vja(Xa, Da, Sa, kij) = (1 - E)V?4ja(Xa, Da, S, ki) + . (3.23)

where e is small number whose value is externally set. 'bija returns 1 if all the hard

constraints are satisfied and returns c otherwise. e can be understood as the relative

weight of explaining the knock-out effect kij with causes other than path 7ra. Since

we do not specify alternative causes, c reflects our subjective belief and is a free

parameter. We will show in Chapter Four that the prediction outcomes are robust

against a wide range of e values.

When there are multiple candidate paths connecting gi and gj, we require that

the conditions along at least one of the paths suffice to explain kij. Translating into

logical phrases, the constraints corresponding to different candidate paths are joined
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by logical OR. For example, suppose two candidate paths r, and 7rb connect gi and

g3 . The potential function term of explaining kij becomes

bijab(Xa, Da, S, X, D, S, ke) if I "I(X, Da, S, ki) = 1) V I(W'/b(Xb, Db, Sb, kiy) = 1){ otherwise.
(3.24)

where V denotes logical OR. We introduce auxiliary path selection variables in order

to represent the potential function of multiple pathways with a compact form. Define

the path selection variables as

" E = {ia : kij E K, 7a E II} is a collection of binary (0/1) path selection

variables, where 1I is the set of all candidate paths in G. Uoja denotes whether

path 7ra is an active causal explanation of the knock-out effect kij.

" E C E denotes the selection variables of candidate paths for explaining kij.

Physically, Ocija represents whether the pathway ra plays a regulatory role and

is perturbed in giA experiment (gene i is deleted). The potential function term

corresponding to a single path hence is augmented with the condition that the path

is selected.

/ija(XaS, j k ija) = (1-E2)V40ja(Xa, Da, Sa, kij)-I(7ija = 1)+(C1-62)I(0ija = 0)+E2.

(3.25)

It returns 1 when the path is selected and explanatory conditions are satisfied, Ei

when the path is not selected, and e2 when the path is selected and the conditions

are violated. We require that 1 > i > E2 so that selecting a path that explains

the knock-out pair is the most desirable outcome. Not selecting 'ra is inferior to

selecting 7ra and explaining kij, but is still better than selecting 7ra but not being able

to explain kij with ra. The value of E2 is immaterial so long as it is sufficiently small.

Ei pertains to the a priori probability that a valid path 7ra should be active (explain

the knock-out effect).

We then construct a potential function term V9OR to specify the condition that at

least one candidate path is selected to explain kij if kij is explained. Similar to other
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potential functions, 4,2 is a "soft" or "noisy" version of logical OR:

4 R(ij i, - . 1) = 6 + (1 - Jj I(cija = 0)). (3.26)
a

Now we construct the potential function of a knock-out effect as the product of the

potential terms corresponding to individual paths and the noisy OR term. Recall

YiJ is the collection of candidate paths for explaining kij. Denote E = UiaErafjEa,

Xi. = UnreaHXa, Sij = U7rafSa, Dij = U-nraEirjjDd, and Ej = {-gija : 7ra E rij}.

Then

?j(XJSi2, D2 g, Ei3, kig) = #0"9(-ij1 ,-- oiji 1 i) Ha 2aa(X, Sa, Da, ija, kij).

(3.27)

i(.) returns a relatively high value if at least one path is selected and explains the

knock-out effect. It rewards the configurations where more paths are selected and

the knock-out effect is explained. However, the difference between the cases when

multiple paths explain kij and a single path explains kij is not large, provided that ei

in equation 3.25 is not very small. In contrast, V) (.) is severely penalized when no

paths are selected or selected paths cannot explain knock-out effects. This is because

62 in equation 3.25 and c in equation 3.26 are close to 0.

Since we currently explain significant knock-out effects (i.e., excluding unaffected

genes), we modify the potential function slightly to incorporate this choice a priori:

i4 (Xij, Di, Sij, Ej, ki) = I(ki = 0)# V)(Xij, DI Sij, Ej, kij) + I(kij = 0).

(3.28)

4'ij (.) returns a relatively high value if either there is a significant knock-out effect be-

tween gi and g. and the model explains this knock-out effect, or there is no significant

knock-out effect between gi and gj.
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3.5 Inference of model attributes

Each potential function term represents one constraint obtained from one or multiple

sources of data. Ideally, a model configuration which conforms with the underlying

biological mechanisms should be able to satisfy all these constraints simultaneously.

Therefore, potential functions are combined by multiplication to form a joint likeli-

hood function. Combining equations 3.2, 3.15, 3.19 and 3.28:

P(XE, SE, DEPP, K, E ;YE, SK) OC

Hg2 E~rd q5i. (% .;py) 'HU~JEEPP 0,j (XJ,; pJ * kij EK qij5(kij; Sij) HkiEK ij(ij, D k
(3.29)

The goal of model inference is to find the configurations of variables (XE, SE, D', K, E)

which maximize the joint likelihood function. There are multiple optimal configura-

tions when the the data do not provide sufficient constraints on the model. On the

other hand, the data may over-constrain part of the model so that not all constraints

can be satisfied simultaneously. The violation of hard constraints is allowed because

the potential functions return non-zero values for all input configurations.

In this section, we will describe the inference algorithm which obtains the optimal

configurations and represents them in a concise, decomposed form. We will start

with the introduction of factor graph models and two message-passing algorithms -

max-product and sum-product, then describe a recursive algorithm of decomposing

the model variables and finding the optimal sub-configurations.

3.5.1 Factor graph models

The joint likelihood function in equation 3.29 can be viewed as an unnormalized

probability distribution of a graphical model. A probabilistic model qualifies as a

graphical model if its probability density/mass function can be factorized into the

terms pertaining to subsets of the random variables it models. The model is graphical

in the sense that we can associate the factorization structure of the model with a

graph. By this definition every probabilistic model is trivially a graphical model of

a single term, though this expression is certainly of no interest. A graphical model
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Figure 3-1: A toy example of a factor graph

X1 X2 X3 X4

0 00

fl f2

is computationally useful only when there are multiple terms and the number of

variables involved in each term is small.

In this thesis, we represent the likelihood function in equation 3.29 with a class of

graphical models - factor graphs ([97, 173]). Like Bayesian networks or Markov ran-

dom fields, factor graphs model the probability functions which can be factorized into

potential function terms. For visualization and for structuring inference calculations,

a factor graph can be represented as an undirected, bi-partite graph with two types

of nodes: variable nodes and factor nodes. A variable node corresponds to a variable

in the model, and a factor node corresponds to a potential function term. Only edges

between variable and factor nodes are allowed. A variable node is adjacent to a factor

node if the corresponding variable appears as an argument of the corresponding po-

tential function. An example of a factor graph is shown in Figure 3-1. Circles stand

for variables and squares stand for factors. The corresponding probability function is

proportional to the product of potential functions:

P(Xi, x 2 , X 3 , X 4 ) = fi(Xi, x 2 , x 3)f 2(X3 , x 4 )- (3-30)

Notice the potential function does not need to sum up to one since the normalization

constant does not affect the inference results.

Factor graphs are widely used in decoding complicated error-correcting codes such

as Gallager codes and turbo codes ([55, 173]). In the channel coding problem, mes-

sages are encoded to codewords according to deterministic functions (for example,

parity check functions). On the other hand, codewords transmitted into a channel
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are corrupted by noise thus mapped to received bits through probabilistic functions.

Both deterministic and probabilistic functions can be formulated as potential func-

tions. The problem of retrieving the transmitted messages which conform with both

coding functions and channel noise becomes inferring the maximum likelihood con-

figuration of a factor graph.

3.5.2 Max-product and sum-product algorithms

Model inference denotes evaluating the probability of some variables conditioned on

the evidence of other variables. We are interested in two types of probabilities. The

marginal probability (or the conditional marginal probability) is computed by sum-

ming over all configurations of other variables. For example,

P(i, x2,z3 = 1, x4 =0, 5 ,.- -,xa)
P(Xi, X2|X3 = 1, x4 = 0) = E . (3.31)

(5,-,) P(x3 = 1, x 4 = 0)

The max marginal probability (or the conditional max marginal probability) is com-

puted by maximizing over all configurations of other variables. For example,

P(xi, x2, x3 = 1, x4 =0, zs, - -. , xn)
P"ax (Xi, X 2 1X3 = 1, x4 = 0) =max P( X2) . (3.32)

(X5,...,Xn) P(X3 = 1, X4 = 0)

Marginal or max-marginal probabilities of single variables are in general easier to

compute and also useful. Formally, the marginal probability of a single variable can

be written as

P() =j P(x, U\{x}). (3.33)

where - {x} denotes the summation is taken over the configurations of all variables

excluding the target variable x. Similarly, the max-marginal probability of a single

variable is

P(x) = max P(x, U\{}). (3.34)
~{x}

The time complexity for model inference seems to be exponential for there are an

exponential number of configurations. However, the marginal or max marginal prob-
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abilities can be approximated efficiently in graphical models due to their factorized

structure. Here we consider the marginal probability of a single variable. If the the

graph structure corresponding to the likelihood function does not have loops, then

we can order the variables in the expression of the likelihood function and carry out

the summation in a sequence. The time complexity becomes polynomial instead of

exponential. For example, consider the model in equation 3.30.

P(xi, X2, X3 , x 4) = f,(XI, x2, X3)f2(X3, x4) (3.35)

and evaluating the marginal probability P(X4 ). We operate summations in the fol-

lowing order:

P(X4) oC EX1,XX P(Xi, x 2 , X3 , x 4) =E ,X2s, fi(Xi, X2 , X3 )f 2 (X3 , x 4) (3.36)

= Ef{4 [f2(X3, x4) Z:{X3 1 fA(XI, X2, X3)].

where - {x} denotes the collection of all variables except xi. The summation in

the inner term (over - {x 3}) is carried out first. The result E1: } fi (X1, x 2 , x 3 ) is a

function of x3 . This function multiplies with f2 and is summed over ~{X4}. Hence

the summations are carried out over (Xi, X2 ) and x3 instead over (X1 , X2 , X3 ).

This property forms the basis of the well-known message passing algorithms for

graphical models. There are several variants of these algorithms on different types

of graphical models. We implement the sum-product and max-product algorithms for

factor graph models ([97]). We briefly describe the sum-product and max-product

algorithms as follows. A detailed discussion of the algorithm can be found in [97].

Define a message as a function associated with an edge in the factor graph. It

takes the variable node of the corresponding edge as the argument. For instance,

m7,1 _ 1( xi) is a message from #1 to x1 and is a function of xi. Notice messages are

directed, hence m0 1 , 1 (xi) $ m,0 1 (x 1 ). A message must be either from a variable

to a factor or vice versa due to the bi-partite property of the factor graph.

Intuitively, an initial message reflects the local property (a potential function) of

a factor graph model. To generate a globally consistent solution, each local message

99



Figure 3-2: Message updates in a toy factor graph
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must be propagated throughout the graph. The propagation of messages can be

achieved by updating all messages simultaneously. At each step, messages are updated

according to messages emanating from adjacent nodes at previous step. There are

two rules of updating messages. An updated message from a variable x to a factor f

is simply the product of all messages incident to x except from f:

mX-f (x) = mf x(x). (3.37)
fiEN(x)\{f}

where N(x) denotes the neighboring factor nodes of x. The update of a variable -

factor message is illustrated in Figure 3-2.

An updated message from a factor f to a variable x, in contrast, is the product

of the factor function and incident messages marginalized over N(f)\{x}:

mfx(x) E f(x, N(f)\{x}) J m,- (xi). (3.38)
N(f)\{x} XiEN(f)\{x}

where N(f) denotes the neighboring variable nodes of f, i.e., arguments in f. The

update of a factor --+ variable message is also illustrated in Figure 3-2.

We consider a connected factor graph where every node is reachable from every

other node. When the graph has no cycles (namely a tree), then the message pass-

ing algorithm yields exact estimations of marginal probabilities. The sum-product

algorithm initializes messages emanating from leaf nodes and iteratively updates

messages. It stops when all initial messages emanating from leaf nodes have been
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Figure 3-3: Sum-product algorithm

1. Initialize messages emanating from leaf nodes. An initial message from a vari-
able node x is m__,f(x) = 1 if x is not conditioned to a fixed value, and
mi-f(x) = I(x = c) if x is fixed to value c. An initial message from a fac-
tor node f is m_, (x) = E } f(X, ~{x}).

2. Iteratively pass messages to their neighbors (except the nodes where they come
from) and update messages according to equations 3.37 and 3.38.

3. Terminate when all messages converge to fixed functions. This is equivalent to
the condition that all initial messages have reached every node if the graph is a
tree.

4. The belief function of a variable x is the product of its incident messages:

b(x) = fJ mf2+x(x). (3.39)
fiEN(x)

propagated to every other node in the graph. The marginal probability - the belief

function - of a variable is proportional to the product of messages incident to the

variable. The procedures of the sum-product are described in Figure 3-3.

Max-product algorithm evaluates the max-marginal probabilities of single vari-

ables. It is identical to sum-product algorithm except summation in the message

update rule in equation 3.40 is replaced by maximization:

myf-(x) = max f (x, N(f)\{x}) fJ7 m f (xi). (3.40)
N(f)\{x} 

xjEN(f)\{x}

Sum-product and max-product algorithms can efficiently estimate marginal and max

marginal probabilities. The number of message updates at each iteration is propor-

tional to the number of edges in the factor graph, which is linear in the number of

variables for a tree. The number of iterations is also proportional to the number

of edges for a tree. The computational bottleneck is the sum or maximization in

equations 3.38 and 3.40. In the worst case, the running time is exponential in the

maximum number of variables in potential functions. Hence the time complexity is

O(nm2c) for each iteration, where n is the number of variables, m is the number of
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potential functions, and C is the maximum size of variables in potential functions.

Similarly, the space complexity is O(m20 ) since each factor takes at most 0(2C) space

if it is saved as a lookup table. The number of iterations for convergence on a loopy

graph is difficult to estimate. The algorithm may not converge in the worst case.

The running time and space required in our problem are much smaller than these

upper bounds because the potential functions have simple structures. The potential

functions of knock-out explanation are relaxed logical expressions and need not be

saved as lookup tables. The sum/maximization step in equations 3.38 can be eval-

uated by considering only a few scenarios without visiting all configurations. The

potential functions of physical or functional data observation are lookup tables, but

each potential function has only one variable. Thus max and sum product algorithms

can be efficiently implemented. The simplification of the sum/maximization step in

these algorithms is discussed in the Appendix.

The primary limitation for sum-product and max-product algorithms is the re-

quirement for the loopless graph structure. Both algorithms yield exact evaluations

of marginal or max-marginal probabilities if the factor graph is a tree ([97]). If a fac-

tor graph contains cycles, then messages may circulate around some loops, and the

information of one potential function may be utilized multiple times. The converged

solution is no longer the exact estimate of marginal or max marginal probabilities.

In the worst case, messages may oscillate between several functions and the algo-

rithm does not terminate. One can easily see that the factor graph becomes "loopy"

when two potential functions share more than one variable. Therefore, the factor

graph constructed from the joint likelihood function (equation 3.29) is guaranteed to

contain loops.

Resolving the inference problems on loopy graphs has attracted broad attention in

the machine learning community. We will not give a comprehensive overview in this

thesis but only introduce two approaches. Generalized belief propagation ([173]) is

an extension of the standard belief propagation algorithm. The algorithm divides the

graph into (possibly overlapped) clusters and further divides each cluster into smaller

units. One can construct a meta-graph specifying the relations between clusters and
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their subunits. Each node corresponds to a cluster or a subunit and each edge denotes

a subsume relation. This decomposition yields a hierarchical structure. Messages are

passed between the meta-nodes in this extended graph. Since the extended graph

is a tree, the belief propagation is guaranteed to converge. The generalized belief

propagation yields a higher order approximation than the standard belief propagation.

The crux of this algorithm relies on a proper decomposition of the original graph into

clusters. Currently there are no systematic ways of performing this task.

The other approach estimates the exact max marginal (max a posteriori) proba-

bility by applying tree decomposition of an arbitrary graph ([164]). The probability

function of a graphical model with fixed parameters can be represented as a convex

combination of the probability functions of all spanning trees for the graph. The

goal is to find a variable configuration which maximizes the likelihood function with

the fixed parameters. This has been shown equivalent to finding the parameters for

each tree and the weighting vector of trees, such that the convex combination of

tree distributions is equal to the given distribution, and the intersection of optimal

configurations for each tree distribution is non-empty. The authors expressed a tree

distribution as the product of max marginal functions of nodes and edges, and op-

erated the optimization problem on the max marginal functions. The transformed

problem can be solved by tree reweighted max-product algorithm.

Although these algorithms give better approximations or exact solutions under

certain conditions, their computations can be cumbersome, especially for large-scale

problems. In practice, the standard belief propagation algorithms are often applied

to large loopy graphs for computational efficiency. Empirical studies report good

performance in various problems such as decoding complex error-correcting codes

([55]). In this thesis, we apply standard max-product and sum-product algorithms

on the joint likelihood function equation 3.29. The inference results indicate that

they satisfy the constraints from data and reflect meaningful biological subnetworks.
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3.5.3 Recursive algorithms of inferring optimal configura-

tions

Max marginal probabilities of single variables immediately yield the optimal solution

if there is a unique optimal configuration. Suppose (I, * -- , Xn) = - - -, , ) is the

unique MAP (Maximum a Posteriori) configuration. It is clear that

argmaxPmax(xi) = argmax max P(x1 ,x 2 , . . .,Xn) = (3.41)X1 X1 (X2,---,Xn)

and the equality holds for every variable. Thus the MAP configuration is simply the

arg max of the max marginal probability of each variable. Equation 3.41 also holds

when there are multiple MAP configurations but they all have the same value on x1 .

Consequently, if the max marginal probability of a variable has a unique arg max

value, then all the MAP configurations have the same value arg max value on this

variable.

Problems arise when there are multiple arg max values of max marginal probabil-

ities. Suppose there are two MAP configurations k" and kb whose values on x1 differ:

14 = 0 and . = 1. Then

Pmax(x= 0) = (X2,--,Xn) P(Xi = 0, x2 ,1- , X)= P(x = ka) (3.42)

= F(x = kb) = max(X2,--,Xn) P(xl = 1, x2,- ,xo) =pmax

The first and last equalities are the definition of max marginal probabilities. The

second and fourth equalities state that maximizations at x1 = 0 and x1 = 1 occur at

fta and kb respectively. The third equality holds because :k and b are degenerate

MAP configurations. Consequently, degeneracy occurs on a variable whenever its

max marginal probability has multiple optimal values.

Although degenerate max marginals indicate the degeneracy of MAP configura-

tions on these variables, they do not suffice to retrieve these configurations. Consider

a simple example that (XI, x2) = (0, 1), (1, 0) are the degenerate MAP configurations.

Degeneracy occurs at both x, and x2, but not all the four possible configurations are
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MAP configurations.

Since max-product is an approximation algorithm for loopy graphs, the inferred

belief functions may not be identical to the true max marginal probabilities. How-

ever, the inferred belief functions are also likely to have degenerate max arguments.

Therefore, the degeneracy problem also exists in approximated max marginal proba-

bilities.

Degeneracy calls for a recursive algorithm to identify all optimal configurations.

We select a degenerate variable and branch out the procedure. In each branch we fix

the selected variable to one of its optimal values. Conditioned on the extra evidence

of the newly fixed variable, we run the max-product algorithm again to compute the

conditional max marginal probabilities. The degenerate variables which are tightly

coupled with the newly fixed variable should be subsequently fixed. We then choose

another variable which remains degenerate and repeat the same procedure recursively.

The algorithm terminates when all variables in all branches are fixed. We describe

the procedures of the algorithm in Figure 3-4.

The execution of the algorithm is illustrated by a simple example in Figure 3-5.

The aggregate signs from gi to g4, 95, 96 are positive, while individual edge signs are

not fixed. The recursive procedure branches out as a decision tree. At the first level

the sign of the first edge (si) is set, and at the second level the sign of the second edge

(s2) is set. The signs of the remaining edges are fixed once these two edge signs are

set. A leaf node is reached when all variables are fixed according to values specified

in the path from root to this leaf.

The choice of externally fixing a degenerate variable in each step may affect the

resulting configurations. In the example stated in Figure 3-5, if we choose to first fix

83 = +1 and then fix S4 =-1, then the remaining edge signs cannot explain both

knock-out effects of (gi, 94, -) and (91, g5, -) simultaneously. Thus not all configura-

tions along each branch of the tree are optimal. We employ a heuristic of choosing

the degenerate variable which connects to the greatest number of undetermined vari-

ables via factor nodes. In the same toy example, si and s2 have higher priorities than

S3, 84, 8 in the beginning because si and S2 have 3 one-step neighbors in the factor
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Figure 3-4: Recursive algorithm for obtaining all MAP configurations

1. Run max-product algorithm and fix the variables which yield unique optimal
values. Let XF denote the fixed variables and VF denote the configuration of
the fixed variables.

2. Generate a root node with configuration VF on variables XF and all other
variables undetermined.

3. Recurse on the following steps until all branches of the tree terminate.

(a) Select a variable xi which is not fixed according to the configuration des-
ignated by the path from the root to the current node. Denote this con-
figuration as Vc and the corresponding fixed variables as Xc.

(b) Find the optimal values of x by running the max-product algorithm. De-
note the optimal values as vi,- - , vm.

(c) For each optimal value vj,

i. Branch out a child node. Set xi = vj.

ii. Run max-product algorithm to estimate P (xI xi = v, Xc = Vc).

iii. Identify the variables which have unique max marginal probabilities.
Set these variables to their arg max values.

iv. If all variables are fixed, then terminate this branch. Otherwise recurse
on step 3.

graph as opposed to s3 , s4, s 5 with 2 one-step neighbors.

Complete enumeration of all branches in the decision tree suffers from the draw-

back of exponential explosion. This is the case for the large-scale data we use: there

are thousands of genes but only a few measurements. Consequently, we need to revise

the algorithm to avoid direct enumeration of all MAP configurations.

One approach to avoid exponential explosion is to traverse along one specific

path of the decision tree instead of branching out all degenerate values in each step.

However, this approach does not retrieve the degeneracy information of the model.

The other approach is to exploit the modular nature of the physical network models.

We decompose the entire physical network model into submodels according to the

decoupling relations of constraints. The variables which have unique max marginal

probabilities constitute a subset. The variable subconfigurations on this subset are
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Figure 3-5: A toy example of recursively fixing variables

(q,,A4-) gl Qe sJ= S=-1

(9,, -) " 2
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g gS +1 s -1 -+1
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Figure 3-6: A toy example of decomposed subnetworks

(g ,g4,-)gl g2 91 g2

93 93 93

94 95 96 g7 94 95 9 g7

invariant across all MAP configurations. The remaining variables can be further

divided into subsets. Variable degeneracies across different subsets are decoupled,

hence we can fix variables in one subset without affecting others. The overall MAP

configurations can be expressed as the product of subconfigurations in these subsets.

Each subset is small enough to enumerate all optimal subconfigurations. Therefore,

we have a concise representation for the exponential number of MAP configurations.

Figure 3-6 illustrates the concept of decomposed subnetworks with a toy example.

Knock-out effects (gi, g4, -), (gi, g5 , -), (g2, g6 , +), (g2, g7, +) decompose the physical

network on the left into two subnetworks on the right. Edge signs in one subnetwork

are free to adjust without affecting edge signs of the other. Notice the variables

contained in each subnetwork are disjoint, but these subnetworks share a vertex 93.

In other words, the variable sets associated with subnetworks are a partition of model

variables, but the subnetworks are not a disjoint partition of the physical network.

How do we identify these variable subsets? We can extract the dependencies

of degenerate variables when running the recursive max-product algorithm, and re-

construct the subsystems from these dependency relations. We define independent
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Figure 3-7: Recursive algorithm for decomposing MAP configurations

1. Find variables X = { x : i - I} such that Pmax(xi) has a unique max value at

sj for each xi. V is the invariant subconfiguration of the model.

2. Recurse on the following steps until all variables are fixed.

(a) Select an xi which is not yet fixed.

(b) Find one optimal value of xi denoted by vi. Set xi vi.

(c) Run max-product algorithm to compute pmax(XIX= v,).

(d) VXk which is not yet fixed and v = arg max.,, pma (Xk-Xi v= ) is unique,
establish a relation xi >- Xk.

(e) VXk whose value is determined at current iteration, identify the indepen-
dent variables xj which have been externally set at previous steps, and
which participate in the potential functions that contribute to determine
the value of Xk. Establish the dependency relations x >- Xk.

(f) Recurse to 2.

3. Construct a graph Gd of degenerate variables according to binary relation >-.

4. Identify connected components in Gd. The subsets G1,.-. , Gk are vertex sets
of connected components.

variables as the ones which are externally fixed during the recursion, and variables

affected by an independent variable as the ones whose values are determined by the

(approximate) max marginal probabilities conditioned on the evidence of fixing the

independent variable. Clearly, an independent variable and all its affected variables

belong to the same subsystem, for their degenerate MAP configuration values are

coupled. In addition, the unique determination of affected variables may also depend

on the independent variables fixed at previous steps. This can be checked by whether

the independent variable appears in the potential functions which contribute to de-

termine the affected variable. Back to the toy example in Figure 3-5, S3 depends on

both s, and S2 because they appear in the same potential function explaining the

knock-out effect (91, 94, -). After all dependency relations are established, we assign

the variables which have dependency relations in the same subsystem. The algorithm

of decomposing subsystems is described in Figure 3-7.
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x >- y is an asymmetric relation denoting variable x affects variable when running

the recursive algorithm to fix their values. The output of algorithm 3-7 is a partition

of variables in the physical network model. The subnetworks corresponding to the

partition of variables can be easily constructed. We can apply algorithm 3-4 on each

subset to enumerate all optimal subconfigurations. Notice the subnetworks induced by

different subsets may share nodes but not edges in the physical network, for variables

are associated with edges or paths.

There are several issues associated with the algorithm described in 3-7. The or-

der of selecting externally fixed variables may affect the quality of the solution: one

order of fixing variables may explain more knock-out effects than others. On the

other hand, the dependency relations described above may depend the values of an

externally fixed variable. This property will make the decision tree induced by de-

pendency relations contain different sets of variables at different branches. Therefore,

it would be insufficient to construct the decision tree by traversing a specific branch

as described in 3-7. This property may not hold when externally fixed variables are

edge directions. For example, two opposite directions of a protein-protein interaction

may explain two different sets of knockout effects. Therefore, the variables associated

with each set of knockout effects are different. Practically, this problem seems to be

a minor issue for degeneracy occurs predominantly on edge signs.

3.6 Comparison with Bayesian network models

The formulation of physical network models resembles to a large extent Bayesian net-

works for gene expression analysis. In fact, we can transform a factor graph into a

Bayesian network that represents the same joint probability distribution over the ran-

dom variables in the model. One way of transforming a factor graph into a Bayesian

network is as follows. Augment the set of variables in a factor graph with a set of

binary variables corresponding to factors in the model. For example, if the factor

graph has a joint likelihood function P(Xi, X2, X3) OC #1(Xi, X2) 0 2 (X 2 , X3), then define

evidence variables v, and v2 corresponding to factors #1 and #2. Set a uniform and
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independent prior of the variables in the factor graph. The conditional probability

over original variables is proportional to the potential function of the factor. For

example, P(vi = 1|X 1, X2 ) OC #1 (Xi, X2 ). The joint distribution P(Xi, x 2 , X 3 , vi, v 2 ) =

P(Xi)P(X2)P(X3 )P(v1iJX, X2)P(v2 |X 2 , X3 ) defines a Bayesian network on the augmented

variable set. Finding the MAP configuration of the factor graph is equivalent to find-

ing the MAP configuration of the likelihood function of the Bayesian network with

augmented variables fixed to 1: P(xI, X 2 , X3 , vI = 1, v 2 = 1).

Despite the similarity between factor graphs and Bayesian networks, the phys-

ical network models differ significantly from current approaches of using Bayesian

networks to model gene expression data, for instance, [71, 136, 123]. A primary dif-

ference is the meaning of variables in the model. Most current works of using Bayesian

network models on gene regulatory systems choose variables which are directly linked

to data, for example, gene expression levels and the presence or absence of a protein-

binding promoter. The structural and functional properties of the network have to be

extracted from the learned models. For example, the causal order between two genes

can be revealed by checking whether models with the two genes in a specific causal

order yield better scores than other models. In contrast, physical network models

directly model these properties as variables such as the presence and direction of

an edge. Notice that this difference does not apply to Bayesian network models in

general, since we can construct a Bayesian network model over edge directions, edge

signs and other attributes as stated in the previous paragraph. It only applies to a

typical use of Bayesian networks for modeling the dependencies of gene expression

levels (possibly with other measurement related variables such as motif presence).

The difference in model representation also leads to different computational treat-

ments. Model selection is required in order to learn the Bayesian network structure.

Random sampling or greedy search is often needed since it is infeasible to exhaust

all possible models of a moderate size. In contrast, since the structure of physical

network models is pre-determined by the skeleton network, learning the model in-

volves inferring the configurations of variables which in turn determine the molecular

interaction networks.
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Furthermore, since physical network models encode specific hypothesis about the

physical interaction aspects of gene regulation, the modeling results are easy to inter-

pret. In contrast, current Bayesian network models for gene expression capture the

statistical dependence of gene expression data. Each approach has its pros and cons.

Physical network models have a clear interpretation and are linked to the physical

processes of gene regulation, but their power of discovering novel information hidden

in the data is limited since they are built on specific hypothesis. Bayesian network

models can capture more general relations by learning the statistical dependencies

between variables, yet the learned properties may arise from complex underlying

physical processes thus lack clear interpretations.

Finally, although it is possible to express the constraints from the physical and

functional data as priors in Bayesian networks (for example, [72]), it is non-trivial

to find a concise prior representation of various constraints on model structure. For

example, to impose the constraint on the direction of a pathway, we would need to

assign higher probabilities to all the network structures whose directions along this

pathway are consistent with the constraint. Therefore, expressing these constraints

directly as potential functions is mathematically more convenient.
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Chapter 4

Empirical Analysis of Physical

Network Models

We discussed in Chapter Three the method of integrating the data of physical in-

teractions and knock-out expression in the physical network model. In this chapter,

we will apply the modeling framework to three high-throughput datasets and analyze

the inference results. We choose S. cerevisiae (budding yeasts) as the model organism

due to the rich datasets and knowledge about them. Three datasets are employed in

the model: high-throughput chromatin-IP data of protein-DNA interactions ([100]),
protein-protein interactions pulled out from the literature (DIP database), and the

mRNA expression of knock-out experiments ([80]).

The skeleton graph of likely physical interactions is constructed from protein-DNA

and protein-protein interaction datasets. We threshold on the p-values of the CHIP-

chip data and extract the protein-DNA interactions whose p-values are below the

threshold. To reduce false positives we set a stringent threshold (0.001) on the CHIP-

chip data. Later we will relax the threshold and study the robustness of inferred

results. The protein-protein interaction data is already a list of protein pairs thus can

be directly incorporated in the skeleton graph. We also extract significant pairwise

knock-out effects by thresholding their p-values in the knock-out gene expression data.

The threshold of knock-out data is set to be 0.02. The robustness of inferred results

by varying the knock-out data threshold will also be discussed.
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We first focus on a small subnetwork involved in the yeast mating pathway as a

specific example of our modeling framework. We choose this subnetwork for three

reasons. First, the size of the subnetwork is small enough such that we can examine

the inference results with more involved validation methods such as cross validations

on the predicted knock-out interactions. Second, the yeast mating pathway is well

constrained by the given data: about one third of genes in this subnetwork have

been deleted in the Rosetta data. Third, we can verify the biological significance of

inference results by refering to the rich knowledge about the mating pathway.

We run the inference algorithms described in Chapter Three to find the optimal

annotations according to the data. We find the MAP (maximum a posteriori) models

can explain a very high fraction of knockout effects in the data. This result, similar

to the training errors in supervised learning tasks, indicates the physical network

models have sufficient expressive power to fit the data. Nevertheless, fitting the data

with low training errors does not necessarily validate the model since overfitting is

possible. We validate the physical network models from the following perspectives.

First, by applying cross validation tests, we show that the physical model can not

only explain the existing data, but also predict the direction of changes of a knock-

out effect. Second, we demonstrate that the predictive ability of the models is robust

against various choices of values for the parameters and the addition of random edges

to the skeleton graph. Third, we compare the inferred models to the knowledge about

the mating pathway and verify that the inferred properties reflect the functions of

genes along those pathways.

After analyzing this subnetwork, we apply the modeling framework to the genome-

wide datasets. Quantitatively evaluating the predictive power of models by cross val-

idation and robustness tests is too expensive for models at genomic scale. Therefore,

we focus our validation on comparing the inferred subnetworks with the knowledge

of yeast biology. We apply the recursive algorithm introduced in Section 3.4.3 to

extract decomposed subnetworks whose configurations vary independently. We then

validate the subnetworks by examining whether they contain known pathways ac-

cording to previous studies and whether they are enriched with genes belonging to
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specific functional categories.

4.1 Mating response pathways

4.1.1 Mechanisms of mating response pathways

We give a coarse introduction about the yeast mating response pathway in this section.

The content in this section is mainly excerpted from [133] and [176]. More detailed

and comprehensive reviews are covered in the texts of these references.

The life history of yeasts contains the stages with single chromosomes (haploids)

and chromosome pairs (diploids). The transformation from diploids to haploids is

achieved by meiosis, and the conversion from haploids to diploids is carried out by

the mating process. There are two mating types in haploid cells - MATa and MATOZ.

A haploid cell fuses itself with its complementary mating type during the mating pro-

cess. The mating process is triggered when a haploid cell detects pheromone molecules

secreted by its complementary mating type in the surrounding. Various physiolog-

ical processes start upon the pheromone detection, for instance, cytokinesis against

the pheromone gradient, cell polarization, cell cycle arrest, and so on. Therefore,

pheromone response plays a critical role in yeast mating processes.

Pheromone response is carried out by a signal transduction pathway from the

cellular membrane to the nucleus. Pheromones are bound by receptors encoded by

Ste2 in MATa and Ste3 in MATa embedded on the cellular membrane. The recep-

tor interacts with a G-protein complex of three components: Go, GO, G-,. They are

encoded by genes Gpal, Ste4 and Ste18 respectively. Pheromone binding on the re-

ceptor results in the exchange of GDP for GTP and dissociation of G, from GOY,

which triggers the cascade of phosphorylations. The G-protein physically interacts

with a scaffold protein Ste5, in which a cascade of phosphorylations take place. Ste20

encodes a protein kinase which phosphorylates Stell. The cascade Stell -+ Ste7 -+

Fus3 is the classic mitogen-activated protein kinase (MAPK) pathway. Each protein

on the pathway phosphorylates the protein at the next step, which passes the signal
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along the pathway. Ste7 also phosphorylates another MAP kinase Kssl. Both Fus3

and Kssl phosphorylate Ste12, a transcription factor. Ste12 regulates genes involved

in mating response and filamentous growth under stress conditions. The phosphoryla-

tion by Fus3 and Kssl enables Ste12 to activate these two types of genes respectively.

However, Fus3 and Kssl also act in a redundant fashion. Genetic studies showed

deleting Fus3 or Kssl does not significantly affect the activation of mating response

genes.

4.1.2 Quantitative analysis

We selected 46 genes involved in Ste12 related pathways. These genes were selected

from two sources: 32 genes were chosen by Hartemink et al. ([72]) in their study

of learning Bayesian networks by combining gene expression and location data, 14

genes were bound by Ste12 in the location data (p-value < 0.001) and demonstrated

significant changes in Ste12A experiment of the Rosetta Compendium data (p-value

< 0.02). Table 4.1 enlists the selected genes and their annotated functions. Notice

this subset does not include all genes in the yeast mating pathway. Digi and Dig2,

for example, are the repressors of Ste12 function but are not on the list.

By setting the p-value threshold = 0.001, 37 protein-DNA interactions are ex-

tracted from the location analysis data on this subset of genes. Instead of directly

utilizing the protein-protein interaction data from DIP, we manually pulled out 30

interactions from the Yeast Knowledge Database (YPD) 1. This is because DIP does

not include transient interactions such as the binding of Fus3 and Stel2. These inter-

actions, however, are responsible for protein modifications such as phosphorylation

in signal transduction pathways. In this example, we want to demonstrate that the

model inference obtains meaningful results if sufficient data are provided. Thus it

is sensible to resort some external knowledge to reduce false negative interactions.

Figure 4-1 demonstrates the subnetwork of physical interactions. Solid lines denote

protein-DNA interactions and dash lines denote protein-protein interactions. The

directions of protein-protein interactions are unspecified.

Ihttps://www.incyte.com/tools/proteome/databases.jsp
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Gene
Ste2
Gpal
Ste18
Ste7
Ste5
Kssl
Ste50
Mfa2
Mfalpha2
Far
Agal
Sagi
Sst2
Tec
Sin3
Snf2
Kar4
Pry2
Gic2
YGR296W
Asg7
Kar5
YNL279W

Table 4.1: Selected genes in yeast mating response pathway
Function Gene Function
a-factor G protein-coupled receptor Ste3 a-factor G protein-coupled receptor
G protein subunit Ste4 G protein subunit
G protein subunit Fus3 MAP kinase for mating response
MAP kinase kinase Stell MAP kinase kinase kinase
scaffolding protein Ste12 transcription factor
MAP kinase for filamentous growth Ste20 MAP kinase kinase kinase kinase
signal transduction feedback control Mfal mating a-factor
mating a-factor Mfalphal mating a-factor
mating a-factor Ste6 membrane transporter
cyclin-dependent kinase inhibitor Fusi mating cell fusion
mating cell adhesion Aga2 mating cell adhesion
mating cell adhesion Barl a-factor degradation
G protein regulator Kar3 microtube motor
transcription activator Mcm1 transcription activator
transcription regulator Tupi repressor of RNA pol II
global transcription activator component Swil global transcription activator component
transcription factor Msb2 osmosensor protein
starvation response Figi calcium channel regulator
bud emergence Bem2 GTPase-activating protein
telomere maintenance YIL169C unknown
inhibition of Ste4p localization YMRO46C unknown
homotypic nuclear fusion Scw10 glucosidase activity
cell fusion Srl1 unknown

Inferring the annotations from the mating response pathway is advantageous be-

cause it is tightly constrained by the knock-out data. 13 genes on the list of Table 4.1

are deleted in the Rosetta Compendium Dataset: Ste2, Ste4, Ste18, Fus3, Ste7, StelI,

Ste5, Ste12, Kssl, Ste20, Sst2, Sin3, Tupi. There are 149 pairwise knock-out inter-

actions generated from these experiments on the mating pathway subset. The list of

physical interactions and knock-out effects are included in the Appendix.

The existence of candidate paths between deleted and affected genes is a prerequi-

site for explaining a knock-out interaction. The conditions specifying candidate paths

have been discussed in Section 3.3.3. Naturally, the longer path length is allowed,

the more knock-out interactions are connected by candidate paths. Figure 4-2 shows

the number of knock-out interactions connected by candidate paths as a function of

the maximum path length. The number of connected knock-out pairs steadily grows

as the maximum path length increases. The number stabilizes as the maximum path

length exceeds 5, indicating that all the explainable knock-out pairs in this set are

explained by paths < 5 edges. Consequently, we restrict the path length < 5.

There are 1291 candidate paths satisfying conditions 1-4 in Section 3.3.3. We

relaxed the conditions on the paths containing Fus3 or Kssl by not requiring signifi-
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Figure 4-1: Yeast mating response subnetwork
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cant effects of deleting Fus3 or Kssl on downstream genes. This is because we know a

priori that both Fus3 and Kssl can independently phosphorylate Stel2. Deleting ei-

ther gene only affects few genes regulated by Stel2. Potential functions pertaining to

physical interactions and explaining knock-out effects were constructed as described

in Section 3.3. Table 4.2 summarizes the properties extracted from the joint likelihood

function. We report the 103 connected knock-out pairs in the Appendix.

We applied the recursive max-product algorithm described in Section 3.4.3 to infer

the optimal configurations from the joint likelihood function. Because this network

is small and relatively well constrained, there are only 4 optimal configurations. The

optimal configurations are shown in Figure 4-5.

We first measured the flexibility of the physical modeling approach by verifying

how many of the knock-out effects can be explained. By explaining a knock-out

effect we mean the following conditions are satisfied. For each MAP configuration we

identified all the paths which connected the knock-out pair and were active according
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Figure 4-2: Number of connected knock-out pairs
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Table 4.2: Properties of the inferred physical network model
max path length 5
# candidate paths 1291
# variables 556
# constraints 576
# connected knock-out pairs 103

to the configuration (0-a 1). The variables along each active path (edge presence,

edge directions, edge signs and the knock-out effect) must satisfy the path explanation

conditions specified in Section 3.3.3. If no connecting path is active or any active

path violates the explanation constraints, then this configuration does not explain

the knock-out effect. We required all MAP configurations to explain the knock-out

effect in order to make the knock-out effect qualified as explained. According to this

stringent criterion, we compared the number of knock-out effects which were explained

to the number of knock-out effects which could possibly be explained by physical

interactions (namely, the number of knock-out effects connected by candidate paths).

Table 4.3 shows the comparison result as a function of the maximum path length.

Clearly, all possibly explainable knock-out effects are explained regardless of the upper

bound of the path length. This suggests that the knock-out effects do not contradict

each other, so that we can find multiple configurations of edge directions and signs
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Table 4.3: Training accuracy of knock-out prediction
max path length # connected ko pairs # explained ko pairs
1 22 22
2 26 26
3 73 73
4 89 89
5 103 103

consistent with all of them. Moreover, the model is able to capture the flexibility of

the path regulation hypothesis by demonstrating all configurations consistent with

the observed data. Finally, only 21 knock-out interactions are trivially explained by

paths of length one, namely the direct bindings of Ste12 on promoters. This shows

the importance of incorporating pathway constraints in elucidating knock-out effects.

Since the direct effects of protein-DNA interactions comprise only a small fraction of

knock-out interactions, consistent explanations of other knock-out interactions rely

on the inferred properties along the paths.

The results in Table 4.3 demonstrate the capability of our model inference al-

gorithm to find the configurations fitting the constraints from the data. The high

percentage of explained knock-out effects is not surprising given the fact that the

model is under-constrained. The capability of fitting existing data is nevertheless not

a proper gauge for a model, since we can easily construct an over-complicated model

to fit the data. A better way of validating model quality is to check whether the

model is capable of predicting the behavior of a new data.

We performed leave-n-out cross validation tests to evaluate the predictive accu-

racy of the model. We randomly held out a fixed number of knock-out pairs when

constructing the joint likelihood function and running the inference algorithm. For

each leave-out pair, we then examined whether all the connecting candidate paths in

all MAP models predicted the same sign change consistent with its knock-out effect.

This procedure was repeated many times and the average fraction of wrong predic-

tions among the held-out examples was evaluated. For leave-one-out cross validation,

the number of trials is the size of the training data (the number of connected knock-
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Table 4.4: Cross validation on knock-out pairs
# held-outs # trials % error
1 106 2.83 %
5 200 3.5 %
20 200 5.9 %

out pairs): we held one example each time and use the remaining data to train the

model. For leave-n-out tests, we performed a fixed number (200) of random trials

instead of exhausting all possible n-sets as held-out sets. Table 4.4 shows the re-

sults of leave-n-out cross validation test error rates, where n equals to 1, 5 and 20.

For n > 1, the error rate is the total number of mistakenly predicted held-out pairs

divided by the total number of held-out pairs in all trials. For instance, in the leave-

20-out experiments over 200 trials, there are 20 x 200 = 4000 held-out pairs (many of

them are repeated) and 236 pairs are inaccurately predicted over the 200 trials. The

reported error rate is thus 236/4000 = 5.9%. The knock-out pairs considered in the

cross validation experiments are connected via valid paths. The low error rate in each

experiment indicates that the algorithm can predict the knock-out effects with high

accuracy. This is expected since there are sufficient number of knock-out experiments

perturbing a small network, and the information about a knock-out interaction is dis-

tributed among multiple interactions along pathways. We may also ask whether such

a high accuracy rate can be achieved by a trivial predictor, namely always predicting

+1 or -1 regardless of the knock-out pairs. By checking the balance of positive and

negative changes of knock-out effects in the training set, we found negative effects

substantially outnumbered positive effects (103 versus 11). Therefore, by applying a

-1 predictor on knock-out effects the error rate is about 10%. In spite of unbalanced

ratios of positive and negative effects, our prediction results are still substantially

better than the trivial prediction.

In addition to randomly holding out knock-out pairs and predicting sign changes,

the predictive power of the physical network models were further elucidated by two

additional tests. We first performed the leave-one-out cross validation test in terms

of knock-out experiments: held out all knock-out pairs generated by one deletion
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experiment in each trial. Among the 13 experiments whose deleted genes are in the

subnetwork, only 9 experiments contain pairs connected via candidate paths: Ste4,

Stel8, Fus3, Ste7, Steil, Ste5, Stel2, Kssl, Sst2. Unlike the previous test results, the

error rates of the hold-experiment-out tests are 100% in all trials. Notice all errors are

caused by uncertainty of model configurations rather than wrong predictions. In each

trial, there are multiple optimal configurations which predict knock-out effects with

opposite directions. The big difference between the two cross validation outcomes is

not due to the number of held-out examples, since the number of held-out knock-out

pairs in each experiment is roughly identical to the leave-20-out test for random held-

outs. Instead, it is due to the pathway topology of the physical network. A relatively

small number of proteins (Ste2, Ste4, Ste20, Ste5, Ste7, Steil, Fus3, Kssl, Stel2)

form pathways of protein-protein interactions which end at Stel2. Ste12 in turn

controls a relatively large number of genes by protein-DNA bindings. All knock-out

effects are between the genes along this pathway and the downstream genes bound

by Stel2. Directions and signs of edges along the main pathway are constrained by

a large number of knock-out interactions on downstream genes. If some knock-out

interactions are randomly removed, the remaining knock-out interactions are still

likely to provide sufficient information to constrain those protein-protein edges. In

contrast, if all knock-out pairs from one experiments are removed, then some edges

or subpaths of these protein-protein pathways are under-constrained. Hence we can

no longer predict the held-out knock-out effects.

We then evaluated the predictive power of the model by checking whether it

predicted the occurrence or absence of a knock-out interactions. Ideally, a model

should be able to predict not only the sign change of a knock-out effect, but also

whether a knock-out interaction is significant or not. Hence the predictive accuracy

should also be measured by false positive (fraction of knock-out effects which are

expected to occur but do not) and false negative (fraction of knock-out effects which

are not expected to occur but do) rates. Strictly speaking, our model does not

predict the occurrence of knock-out effects because it only specifies necessary but

not sufficient conditions for knock-out effects and it ignores the negative evidence of
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knock-out interactions (a knock-out effect does not occur). We nevertheless discuss

briefly the degree of match/mismatch in this sense. In a simple extension of the

physical network models, we define that the model predicts the occurrence of a knock-

out interaction if end genes are connected by valid paths and all edges along these

paths are utilized in explaining known knock-out effects. This extension only predicts

the occurrence but not the absence of a knock-out interaction. Therefore, we only

discuss the false positive rate in this setting. According to this definition, if a gene is

bound by Ste12 with a protein-DNA interaction, and its expression level is perturbed

in any one of the 9 experiments (Ste2A, Ste4A, Ste18A, Fus3A, Ste7A, StellA,

Ste5A, Ste12A, KsslA), then it is expected to change in the experiments that delete

genes downstream of the target experiment. For example, if Agal is down-regulated

in StellA experiment, then it is expected to experience a significant change in Ste12A

experiment. This is because we assume every intermediate gene along an explanatory

pathway is a necessary component for activating/repressing the downstream gene.

Hence deleting any one of them will lead to a significant change (condition 3 in Section

3.3.3). According to this criterion, 216 knock-out interactions are expected to occur

among 24 genes. Since there are only 106 knock-out interactions in this set, about

half of the predicted changes are missing. Some of these false positive predictions

are due to the threshold of knock-out data (for instance, if we relax the threshold to

0.05, then there are 121 knock-out interactions). Some other false positive predictions

can be understood from the exception of the explanatory conditions stated in Section

3.3.3 based on the knowledge of the pheromone response pathway (for instance, Fus3

and Kssl phosphorylate Ste12 in parallel, thus a single deletion of either one does not

create a significant response). There are still some false positive interactions which

cannot be attributed to these simple explanations.

A more systematic way of utilizing negative evidence is to constrain network

attributes (thus build potential functions) according to the lack of each pairwise

knock-out effect. If genes A and B are connected by valid paths but B is unaffected in

AA, then we may explain A's response by assuming either some edges along the paths

are false positives or there are multiple redundant paths. We leave the incorporation
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of negative evidence for the future work.

The randomly held-out cross-validation outcome suggests the knock-out effects

are predictable with sufficient constraints in the data. This is quite encouraging for

it validates the hypothesis that pathways of molecular interactions are responsible for

gene regulation. However, we still need to ensure that the results are not artifacts of a

particular setting of the model parameters. We have externally set the following free

parameters when constructing the model and performing the inference: the thresholds

on p-values for including protein-DNA and knock-out pairs, the returned values of

potential functions for knock-out explanation (c, and E2 in equation 3.25) and noisy

OR (c in equation 3.26), and the upper bound of the path length. The default setting

of these parameters is as follows:

Pt0e = 0.001, P re = 0.02, ci = 0.4271, E2 = 0.0014, c = 0.001, Imax = 5. (4.1)

A standard procedure to verify that the inference results do not vary with different

parameter settings is the robustness (sensitivity) test: measuring the variation of the

results by changing the values of one parameter each time. If the variation is high,

then the outcome is sensitive with respect to a parameter and is less reliable.

In addition to the robustness tests against parameter settings, it is also important

to test whether the predictive accuracy varies as noise are introduced in the datasets.

We introduced noise by adding random protein-DNA and protein-protein interactions

to the skeleton graph. The confidence of the randomly added edges is assigned to

be the strongest confidence value according to the existing protein-DNA and protein-

protein interaction data.

We consider the following adjustable parameters for robustness tests: the maxi-

mum length of candidate paths, thresholds on p-values of selecting candidate protein-

DNA and knock-out pairs, the error probabilities used as soft constraints in the po-

tential functions (c, in the definition of 4'ija), and the number of random edges added

to the skeleton graph. Figure 4-3 shows the leave-one-out test accuracy rates across a

wide range of these parameters. The test accuracy here is normalized by the number
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Figure 4-3: Sensitivity analysis on test accuracy
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of knock-out effects that the inferred model can in principle explain (i.e., the number

of connected knockout pairs). Clearly, test errors are very robust against location

and knock-out p-value thresholds and as well as the potential function values. The

test accuracy is above 90% across wide ranges of location and knock-out thresholds

(10-5 to 0.1 and 10- 4 to 0.1 respectively), and remains at 95% across the potential

function value from 0.1 to 0.45. The result of the potential function value is not

drawn for the test accuracy remains as constant. In contrast, test errors are very

sensitive to the path length upper bound. The models constructed from short paths

(length < 3) can hardly predict knock-out effects for short paths can receive very few

(or no) constraints from other knock-out pairs. The test errors are also very robust

against the addition of random edges: it increases only from 2% to 7% even when the

number of random edges added to the skeleton graph is approximately equal to the

original size of the skeleton graph.

4.1.3 Qualitative verification

Quantitative tests results suggest the inferred models can both fit existing data and

predict new knock-out effects according to related constraints. To further validate the
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Figure 4-4: Invariant part of yeast mating response network
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results, we directly compared the inferred models with the knowledge about the yeast

mating pathway. We first applied the max-product algorithm once and identified the

variables whose values were uniquely determined by the max-marginal probabilities.

Figure 4-4 shows the physical subnetwork annotated with these attributes. It is

visualized using Cytoscape2 , a free software for visualizing gene networks. Solid lines

correspond to protein-DNA and dash lines represent protein-protein interactions. The

directions of protein-DNA arrows are given in the data, while the arrows (and the

existence) of protein-protein edges are inferred from the model. Edge signs are color-

coded with black (positive) and light grey (negative).

Comparison shows the inference results are highly overlapped with previous stud-

ies. First, all protein-DNA edges emanating from Stel2 have positive signs. This re-

sult confirms the activating role of Stel2, yet it can be directly obtained from location

and knock-out data without doing the inference. Second, the inferred directions of

most protein-protein interactions - including (Stel8,Ste4), (Ste4,Ste5), (Ste5,Stel1),

126

2 http://www.cytoscape.org.



(Ste7,Fus3), (Ste7,Kssl), (Fus3,Ste12) and (Kssl,Stel2) - are consistent with the

directions of the signal transduction pathway. Interestingly, the directions of protein-

protein interactions have a variety of interpretations beyond phosphorylations. Al-

though the binding (Ste18,Ste4) is part of a complex and cannot indeed be viewed

as a pathway, the interaction with the scaffolding protein Ste5 is via the contact of

Ste4. Thus we can view Ste18 -> Ste4 -+ Ste5 as a pathway of information flow from

the G-protein to the MAP kinase phosphorylation. The interaction (Ste5,Stel1) de-

notes the binding of MAP kinase kinase kinase Stell on the scaffolding protein Ste5.

Its direction can be treated again as the information flow from the G-protein to the

MAP kinases if we view it together with the path Ste18 -+ Ste4 --+ Ste5. The infor-

mation flow follows this direction because the G-protein does not directly contact the

MAP kinase kinase kinase Stel1 but via the scaffolding protein. The directions of

(Ste7,Fus3), (Ste7,Kssl), (Fus3,Ste12) and (Kssl,Stel2) clearly denote the directions

of MAP kinase phosphorylations. These directions are obtained because they yield

consistent explanations for the depressions of the Ste12-regulated genes in deletion

experiments Ste5A, StellA and Ste7A. For example, Ste4 is on all valid pathways

from Ste18 to Ste12, hence only the direction from Ste18 to Ste4 is feasible.

However, some inferred attribute values contradict with current biological knowl-

edge. The inferred direction of (Ste7,Stell) is the opposite of the MAP kinase phos-

phorylation from Stell to Ste7. The model infers the wrong direction of (Stell,Ste7)

because Stell also binds to Kssl and Fus3. These bindings provide shortcuts to

bypass Ste7 when generating paths to explain knock-out effects of Stell. As the

shortcuts are established, the edge (Stell,Ste7) becomes non-critical for explaining

the knock-out effects of Stel1. Furthermore, its direction may be reverted to explain

other knock-out effects. For example, the effects of deleting Ste7 can be explained by

the path Ste7 - Stell -+ Kssl/Fus3 --+ Ste12 -* downstream genes. The interaction

(Ste20,Ste4) does not carry a role in the signal transduction pathway, but its inferred

direction is from Ste20 to Ste4 for it allows us to explain the knock-out effects on

deleting Ste20. Finally, the phosphorylation of Stel1 by Ste20 is not captured in the

skeleton graph, thus we cannot infer its direction.

127



In addition to the directions of some protein-protein edges, the inferred signs of

edges (Fus3,Ste12), (Ste7,Fus3), (Ste5,Fus3) and (Stell,Fus3) are also opposite to

the actual functions of these MAP kinases. These inferred signs are negative and

contradict with their functions as activations in the MAP kinase phosphorylations.

The reason for the sign flip of these edges is the up-regulations of genes Pry2, Msb2,

Srll, and YMR046C in Fus3A experiment and down-regulations in Ste12A and Ste7A

experiments. The path Ste7 --+ Fus3 -> Ste12 -+ downstream genes is utilized to ex-

plain these knock-out effects. The only viable explanation is to make (Ste7,Fus3),

(Fus3,Stel2) negative and (Ste12,downstream genes) positive. In fact, most down-

regulated genes in Ste7A and Ste12A experiments are not affected by Fus3 deletion.

The up-regulation of the small number of genes in Fus3A experiment is probably

caused by some feedback regulation outside the scope of this subnetwork. The nega-

tive signs of these edges, however, are the best explanations to fit the given data under

the simplified hypothesis about gene regulation. The negative signs of (Ste11,Fus3)

and (Ste5,Fus3) are obtained for the same reason.

Although these discrepancies reduce the explanatory power of the computational

model, they also provide good opportunities to verify the existing biological model

and discover new biological mechanisms. The discrepancy of the edge direction

(Stell,Ste7) leads us to challenge the regulatory functions of protein-protein interac-

tions (Stell,Fus3) (Stell,Kssl). These interactions are not part of the signal trans-

duction cascade. However, their functions cannot be falsified before further valida-

tion. The discrepancy of the edge signs (Fus3,Ste12), (Ste7,Fus3), (Ste5,Fus3) and

(Stell,Fus3) suggests the existence of another pathway connecting Fus3 to the genes

up-regulated in Fus3A experiment, or a different function of Fus3 as a repressor for

the activity of Ste12. In fact, Fus3 is shown to play a inhibitory role on Ste12 ([176]).

Although the double function of Fus3 is not necessarily related to the up regulations

of few genes in Fus3A experiment, complexity of this type should be considered when

interpreting the results.

We then applied the recursive max-product algorithm to decompose all MAP

configurations into the product of subconfigurations in subnetworks. Since the net-
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Figure 4-5: Variant part of yeast mating response network
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work was small and well-constrained by knock-out experiments, we found only four

MAP configurations which were decomposed into two subnetworks. Each subnet-

work has two optimal subconfigurations. The decomposed MAP configurations of

the variant part of the models are shown in Figure 4-5. All degeneracies occur at

edge signs. Subnetwork 1 reflects the ambiguity of the sign of protein-protein interac-

tion (Stel2,Mcml). Some genes which are down-regulated in Ste12A experiment are

jointly bound by Stel2 and Meml with protein-DNA interactions. Thus their knock-

out effects in Ste12A can be explained either by the direct protein-DNA bindings of

Stel2 or the paths mediated by Mcml. Since McmlA experiment is unavailable (in

fact deleting Mcml is lethal for yeast cells), we speculate that both paths Stel2 -+

downstream genes and Stel2 -+ Mcml -+ downstream genes are active. The product

of signs of (Stel2,Mcml) and (Mcml,downstream gene) is fixed while individual signs

are not. Hence both (+, +) and (-, -) are viable. Subnetwork 2 reflects the ambi-

guity of the sign of protein-protein interaction (Gpal,Stel1). This edge is essential

for explaining the up-regulation of some genes in Sst2A and Ste2A experiments. The

same group of genes are also down-regulated in StellA experiment, and these down
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regulations can be explained by paths from Stel1 to the affected genes. Therefore,

the aggregate signs along the paths from Stel1 to these genes are positive, and the

aggregate signs along the paths Sst2 -- Gpal -+ Steil and Ste2 -- Gpal --+ Steil

are negative.

4.2 Genome-wide analysis

4.2.1 Summary statistics

The analysis of the pheromone response pathways demonstrates the capability of

physical network models on a small, well-constrained system with rich knowledge

about the underlying biology. The primary goal of our modeling approach, however, is

to uncover and annotate regulatory mechanisms on a sparsely constrained, large-scale

system. Therefore, we applied the same modeling framework to the high-throughput

datasets of the entire genome and attempted to interpret the biological meanings of

the inference results. The analysis work is still preliminary since we have not done a

comprehensive literature survey on inferred subnetworks. All the biological knowledge

cited in this section is pulled out from the Yeast Protein Database (YPD 3).

The location analysis data covers the binding profiles of 106 transcription factors

on 6135 genes ([100]). By choosing the p-value threshold = 0.001, we extracted 5485

protein-DNA interactions from the data. There are 14876 protein-protein interac-

tions of yeast proteins reported in the DIP database snapshot in May 2003. The

Rosetta Compendium data contains 271 single deletion experiments (we discarded

the remaining 29 experiments of double deletions and drug response) on 6295 genes.

By choosing the p-value threshold = 0.02, we extracted 23766 pairwise knock-out

effects.

Compared to the mating response network, the size of the entire physical network

is about 300 times larger (in terms of the number of interactions), and the number

of knock-out effects grows by about 150 times. However, a much smaller fraction

3 https://www.incyte.com/proteome/Retriever/index.html
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of knock-out effects can possibly be explained by cascades of molecular interactions.

Table 4.5 compares the numbers and fractions of knock-out interactions connected

by valid paths of different upper bounds on path length. While > 60% knock-out

interactions are connected by paths < 3 in the mating pathway, only about one

twentieth (1091 out of 23766) are connected in the entire physical network. This small

fraction may be due to the limitation of the model (a longer path length is required,

or mechanisms beyond molecular interactions dominate the knock-out effects) or the

limitation of the data (physical interaction data are incomplete, knock-out data are

not reliable). In this thesis, we restrict path length < 3 for computational efficiency

purpose and focus on the knock-out pairs which can be explained by short paths.

We applied the same modeling framework to construct the joint likelihood func-

tion. The returned values of potential functions (c, and E2 in equation 3.25 and E in

equation 3.26) are identical to the default settings in mating pathway analysis (equa-

tion 4.1). Table 4.5 summarizes the statistics of the genome-wide network including

the number of candidate paths, the number of knock-out pairs connected by these

paths, the numbers of variables and potential function terms. Compared to the model

of the mating response pathways, the number of variables increases by 103 folds but

the constraint number is scaled up only by 41, indicating that the entire physical

network is much less constrained and more optimal configurations are expected.

We investigated the flexibility of the model to explain knock-out effects. Similar

to the analysis of the mating pathway, we first applied the max-product algorithm

once and checked the knock-out interactions which could be explained by the uniquely

determined part of the network. The resulting model induces a much smaller net-

work: it contains 128 genes and 142 physical interactions, and explains 194 knock-out

interactions. Many other knock-out interactions may still be explained by the variant

part of the model. For example, if a knock-out pair is connected by a valid path of

length 2, it can be explained by all optimal edge sign configurations along the path.

Since there are a large number of optimal configurations, we can no longer enumerate

all optimal configurations and identify the knock-out effects explained by all of them.

Instead, we randomly selected 100 optimal configurations and identified the over-
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Table 4.5: Summary statistics of the large-scale network
# genes 6135
# protein-DNA interactions 5485
# protein-protein interactions 14876
# knock-out effects 23766
# valid paths 4836
# connected knock-out effects 1091
# connected knock-out effects via path length 1 125
# connected knock-out effects via path length 2 127
# connected knock-out effects via path length 3 839
# connected but isolated knock-out effects 534
# variables in the model 57484
# constraints in the model 23771
# knock-out effects explained by the invariant configuration 194
# explained knock-out effects via path length 1 121
# explained knock-out effects via path length 2 20
# explained knock-out effects via path length 3 53
# utilized pd edges in the invariant configuration 209
# utilized pp edges in the invariant configuration 55
# knock-out effects explained by one MAP configuration 987
# explained knock-out effects via path length 1 118
# explained knock-out effects via path length 2 118
# explained knock-out effects via path length 3 751
# utilized pd edges in one MAP configuration 861
# utilized pp edges in one MAP configuration 281
# genes appeared in subnetworks 773
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lapped set of their explained knock-out effects. Random optimal configurations were

generated by running the max-product algorithm recursively as described in Section

3.4.3. When we had to externally fix a variable to one of the degenerate values, we

randomly chose one degenerate value and continue running the max-product. It turns

out a large fraction of connected knock-out pairs remained explained in all sampled

configurations: 984 out of 1091 knock-out interactions connected via valid paths are

explained by 100 randomly selected MAP configurations. Notice many knock-out

interactions are compatible with the optimal configurations but are not connected in

the uniquely determined subnetwork.

We then instantiated one MAP configuration and examined the properties of its

explained knock-out pairs. This configuration explains 986 knock-out interactions.

The explanatory paths of 792 knock-out pairs are not constrained by any other knock-

out effects. This happens when every edge along the explanatory path is utilized only

once to explain knock-out effects. In this case, we have the freedom to adjust the sign

configurations to fit a knock-out effect, and the inference result is less reliable.

There are 105 knock-out pairs connected by valid paths but are not explained by

the MAP configuration. This is because the edge signs of explaining one knock-out

effect contradict with the edge signs of explaining the other knock-out effect. For

instance, in Figure 4-6 the sign of edge (Gln3,Gcn4) is known to be negative from

the invariant part of the network. Since Gln3 -+ Gcn4 -* Met4 -+ Met14 is the only

pathway connecting Gln3 and Gcn4 to Met14, the knock-out effects (Gln3,Metl4,-)

and (Gcn4,Met14,-) cannot be simultaneously explained. This type of contradiction

suggests one (or multiple) of the following scenarios may occur: the physical interac-

tion data are incomplete, some knock-out gene expression data are spurious, or the

knock-out effects are not caused by perturbations along molecular cascades.

As mentioned in Chapters Two and Three, the quality of protein-protein inter-

action data reported from high-throughput assays is often questioned. We want to

know whether the differential quality of protein-protein interaction data is also re-

flected when combining with knock-out gene expression data in model inference. We

summarize the types of protein-protein interactions involved in explaining knock-out
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Figure 4-6: Contradictory knock-out effects
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Table 4.6: Protein-protein interactions used in explaining knock-out effects
Type Not used Used < 10 times Used > 10 times
High-throughput 11650 140 23
Small-scale 2647 93 19

effects in Table 4.6. There are roughly similar number of active protein-protein in-

teractions from small-scale experiments and from high-throughput data. However,

since there are far more interactions reported in high-throughput data, the equal pro-

portion is strongly biased toward the interactions from small-scale experiments. The

p-value of the hyper-geometric test is 4.8 x 10-17.

We did not perform cross-validation tests on predicting the knock-out effects as in

the previous analysis for computational efficiency. This task is not necessary provided

we already understand the conditions for the model predictability.

4.2.2 General properties of inferred subnetworks

We then applied the recursive algorithm described in Section 3.4.3 to decompose the

network of physical interactions. The inference results are a collection of 48 sub-

networks covering 671 genes and 1111 physical interactions and one of their optimal

annotations. One subnetwork contains attributes (edge presence, directions and signs)

which are uniquely determined. In other words, they are sufficiently constrained by

the Rosetta data. Other subnetworks contain multiple optimal annotations. We will

discuss in details about the properties and biological knowledge associated with each

subnetwork in the next section. In this section we discuss general properties of the
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inference results.

The subnetwork whose annotations are uniquely determined contains several well-

studied regulatory pathways in yeast genetics. This is not surprising due to the se-

lection bias of both knock-out and physical interaction data. Knock-out experiments

in Rosetta data were selected to fulfill two distinct purposes. Genes belonging to sev-

eral well-studied biological systems were chosen for the confirmation of computational

methods (clustering in their case). Genes with unknown functions were chosen for the

interest of understanding their functions by comparing their responses to known gene

deletions. Experiments of the first category are likely to constrain the subnetwork

tightly since they are targeted to a relatively small network. For example, almost all

genes along the pheromone response pathway are perturbed. In contrast, experiments

of the second category are likely to scatter throughout the physical network, thus pro-

vide sparse constraints on the entire network. Moreover, because both protein-DNA

and protein-protein interaction data have strong bias toward the interactions of genes

with known functions, effects of deleting unknown ORFs are unlikely to be explained

by the current physical interaction network.

The power of the constraint-based modeling framework relies on the property

of indirect inference: we can infer the value of an attribute from the constraints

which indirectly relate to this attribute. Direct observations of this property are

not necessary when there are sufficient indirect constraints. We have seen in the

mating pathway example that directions and signs of protein-protein interactions are

not directly observed but indirectly inferred from the data. Indirect inference also

holds for edge signs of protein-DNA interactions. Because many transcription factors

require only a small number of molecules in order to activate/repress genes, the control

between transcription factors may not be revealed by checking the expression level

changes of transcription factors. For example, the sign of protein-DNA interaction

(Gln3,Gcn4) in Figure 4-7 is inferred as negative because a subset of genes involved

in amino acid metabolism are down regulated in Gcn4A and up regulated in Gln3A.

Although Gcn4 is also up regulated in Gln3A, the change is weak (p-value < 0.039)

thus does not qualify as a significant knock-out effect in our model.
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Another important property about inferred subnetworks is the interpretation of

protein-protein interaction directions. Previously we interpret the direction of a

protein-protein interaction as the direction of information flow in regulatory control.

This meaning can be understood as the direction of in a signal transduction pathway,

like the MAP kinase cascade in the mating response. However, because protein-

protein interactions can also foster other regulatory mechanisms, signal transduction

pathways may not be the only interpretation for edge directions. An interesting ex-

ample occurs on the pathway Tupi -> Ssn6 -+ Nrgl in Figure 4-8.3. The complex

Tupl-Ssn6 is needed in order to activate the function of Nrgl. Here the pathway

does not denote a signal transduction cascade but a causal relation similar to Markov

properties in a Bayesian network. Tupi affects Nrgl via Ssn6 because it forms a

complex with Ssn6 and Ssn6 directly binds to Nrgl. This relation provides another

interpretation on pathways of protein-protein interactions. Detailed discussions about

this subnetwork will be covered in the next section.

We mentioned at the end of Chapter Three about the potential problems of the

recurive algorithm for network decomposition (Figure 3-7). A major concern is that

the decomposed subnetworks generated by traversing along different branches of the

decision tree may have different structures. To show this problem is empirically minor,

we applied the decomposition algorithm 500 times by randomly varying the values

of fixed variables and checked whether the structures of decomposed subnetworks

varied across the sample. The results are encouraging. Among the 47 decomposed

subnetworks 46 of them are identical across the 500 random trials. Only one edge from

one subnetwork varies across random trials. The results indicate that the networks

reported in this chapter are not the artifacts of a specific MAP configuration.

4.2.3 Descriptions of inferred subnetworks

The inferred subnetworks and their optimal annotations are visualized in Figures 4-7

to 4-13. The graph semantics of edges is identical to the subnetworks of pheromone

response in Figure 4-4. Edge types are represented by line types (solid - protein-DNA

interaction, dash - protein-protein interaction) and edge signs are color coded (black
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- positive, gray - negative). For conciseness we only draw one optimal annotation

in these figures. Among the 47 subnetworks we only report 34 of them which can

explain a substantial number knockout interactions relative to the network sizes.

To demonstrate the inferred subnetworks reflect the gene regulation mechanisms,

we applied two types of internal validations. First, we extracted pathways from all

subnetworks and searched online databases (PubMed ' and YPD 5) to check whether

these pathways are reported in previous studies. 44% (15 out of 34) of the sub-

networks contain pathways at least partially identified in previous works. Table 4.7

enlists the known pathways and their functions appeared in the subnetworks. Second,

we evaluated the enrichment of functional categories of genes in the same subnetwork.

We calculated the hyper-geometric p-values of enrichment according to Munich In-

formation Center for Protein Sequences (MIPS) functional categories 6 and reported

the p-values on Table 4.8. 11 of 34 subnetworks are significantly enriched with genes

belonging to the same functional category (p-value < 0.07 after Bonferroni correction

of multiple hypothesis).

We have discussed in Chapter Three about the unreliable quality of high-throughput

protein-protein interaction data from yeast two hybrid systems. By inspecting the

subnetworks which contain neither known pathways nor genes enriched with certain

functions, we found most of them contained protein-protein interactions reported

from high-throughput experiments, primarily yeast two-hybrid systems ([160, 86]) or

complex detection ([75]). We suspected most of these subnetworks were spurious due

to the unreliable quality of their protein-protein interactions. As a sanity check we

excluded the protein-protein interactions reported from high-throughput experiments

and performed the same tests on restricted subnetworks. The results (Tables 4.9, 4.10)

indicate a moderate improvement in both known pathway fraction and the functional

enrichment. There are 24 subnetworks inferred from the restricted protein-protein

interactions. Among them 13 subnetworks contain verified pathways and 9 subnet-

works are enriched with genes belonging to the same functional categories. These

4http://www.ncbi.nlm.nih.gov/PubMed/
5https://www.incyte.com/proteome/index.html
6http://mips.gsf.de/
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Table 4.7: Verified pathways in subnetworks with high-throughput pp interactions

subnetwork pathway function reference
invariant Kssl->Ste12, Fus3->Stel2 mating response, filamentous growth [46, 108]
varianti Sok2->Msn4 yeast PKA pathway [141]
variant2 Tup1->Hhf1 histone regulation [30]
variant3 Tupi/Ssn6->Nrgl glucose metabolism [121]
variant4 Tupl/Ssn6-> a2/Mcml repression of a-specific genes [163]
variant5 Rpd3-+Abfl histone modification [33]
variant6 Swi4-*Nddl--*Ace2 cell cycle control [139]
variant8 Slt2->Rlml, Slt2->Swi4 PKC pathway [91, 9]
variant 10 Med2-*Gal4, Med2->Gcn4 general transcription mediator [120]
variant15 Cmd1-+Cnal, Cnal-*Skn7 calcium signaling [51, 168]
variant29 Yapl-+Cadl metal response [12]
variant30 Med2-+Gal4, Med2-*Srb6 general transcription mediator [120, 77]
variant32 Med2-+Gal11-+-Gal4 general transcription mediator [120]
variant33 Med2-+Srb5, Med2-+Gal4 general transcription mediator [77, 120]
variant34 Stel2->Mcml mating response [47]

Table 4.8: Functional enrichment of subnetworks with high-throughput pp interac-
tions

subnetwork # genes functional category p-value
invariant 109 cell fate, homeostasis, metabolism 1.48 x 10-7, 0.0067
variant2 63 protein synthesis 7.13 x 10-8
variant3 44 transport, metabolism, energy 1.05 x 10-5, 5.41 x 10-4, 0.0766
variant4 58 cell fate 1.12 x 10-5

variant7 26 cell cycle 0.035
variant19 9 cell defense 6.33 x 10-6
variant23 17 metabolism, energy 1.49 x 10-6, 0.04
variant26 8 cell defense 9.62 x 10-5

variant34 9 cell fate, homeostasis, cell signal 4.55 x 10-8, 0.0012, 0.0345
variant36 7 metabolism 0.0258
variant40 5 metabolism 0.0017
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Table 4.9: Verified pathways in subnetworks without high-throughput pp interactions

subnetwork pathway function reference
invariant Kssl->Stel2, Fus3->Stel2 mating response, filamentous growth [46, 108]
variantI Sok2->Msn4 yeast PKA pathway [141]
variant2 Tupl/Ssn6->Nrgl glucose metabolism [121]
variant3 Tup1/Ssn6--+a2/Mcm1 repression of a-specific genes [163]
variant4 Swi4->Nddl--+Ace2 cell cycle control [139]
variant6 Slt2-*Rlml, Slt2--+Swi4 PKC pathway [91, 9]
variant7 Cmdl-+Cnal, Cnal-*Skn7 calcium signaling [51, 168]
variant 10 Med2-+Gal 1 --+Gal4 general transcription mediator [120]
variant14 Gcn4-*Met4 methionine synthesis [113]
variant16 Stel2-*Mcml mating response [47]
variantl7 Cka2--Abfl casein kinase pathway [161]
variant22 Ckal-+Abfl casein kinase pathway [161]
variant25 Ckal-*Abfl casein kinase pathway [161]

test results suggest the quality of physical interaction data is crucial for capturing

relevant properties of gene regulation. However, we cannot disclaim the usefulness

of high-throughput protein-protein interaction data because they do not match the

prior knowledge. The better match between the inferred models from the interactions

of small-scale assays and prior knowledge may also merely reflect the bias of previous

studies concentrated on a small number of well-known systems. Further experiments

are required in order to verify the inferred models which are not confirmed by prior

knowledge.

The invariant subnetwork can be further divided into 5 components. Each compo-

nent reflects known biological processes in yeast gene regulation. It is expected since

the high-throughput we use are biased toward known biological pathways. Details

about each component of the invariant subnetwork are as follows.

9 Part of the pheromone response pathway is retrieved by the algorithm as demon-

strated in Section 4.1. Because we restrict the maximum path length < 3, this

subnetwork can be viewed as a hierarchy of four levels. The bottom level con-

tains mating response genes such as Agal and Mfal. They are all controlled the

transcription factor Ste12 at the second level. Ste12 is connected by another
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Table 4.10: Functional enrichment of subnetworks without high-throughput pp inter-
actions

subnetwork # genes functional category p-value
invariant 109 cell fate, homeostasis, metabolism 1.48 x 10-7, 0.0067
variant2 44 transport, metabolism, energy 1.05 x 10-5, 5.41 x 10-4, 0.0766
variant3 58 cell fate 1.12 x 10-5

variant8 9 cell defense 6.34 x 10-6
variant12 7 metabolism 0.0258
variant13 17 metabolism, energy 1.49 x 10-6, 0.0406
variant14 6 metabolism 2.88 x 10-4

variant16 9 cell fate, homeostasis, cell signal 4.55 x 10-8 , 0.0012, 0.0345
variant20 5 metabolism 0.0017

transcription factor (Digi) and MAP kinases (Kssl, Fus3) via protein-protein

interactions at the third level. The top level contains genes involved in signal

transduction cascade (Stell, Ste7, Ste5) and some other genes (Pmal, Sst2).

The edge signs emanating from Ste12 and edge directions of most protein-

protein interactions are consistent with prior knowledge as stated in Section

4.1. The negative sign of protein-DNA interaction (Digl,Stel2) is also verified

in previous study ([153]). There are also some discrepancies with previous stud-

ies. For instance, edge signs connecting to Fus3 and the spurious interaction

from Pmal.

o A subnetwork centered at Gcn4 is involved with amino acid metabolism. Gcn4

directly controls 32 genes by protein-DNA interactions and most of the in-

teractions are positive. Gln3 indirectly controls some of these genes via the

protein-DNA interaction to Gcn4. The sign of (Gln3,Gcn4) edge is negative

because these downstream genes are down-regulated by Gcn4 and up-regulated

by Gln3. In addition, Arg3, Arg5,6, and Arg8 are also negatively regulated by

Arg8O. Gcn4 is known to be a master regulator for amino acid synthesis in re-

sponse to amino acid or purine starvation ([115]). The knock-out data suggests

it also regulates these genes under normal condition. Gln3 is a transcription

factor for nitrogen regulation ([171]). Its negative effects on several amino acid
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Figure 4-7: Physical model uniquely determined from Rosetta data
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metabolic genes are explained by pathways via Gcn4. Arg80 is a member of a

regulatory complex for arginine synthesis. Arg3, Arg5,6, Arg8 and Cpal are all

known to be regulated by this complex ([111]).

9 The cell cycle related genes are distributed at two components. One component

is centered at Swi5 with positive protein-DNA interactions. Swi5 is known to

activate genes at M/G1 phase ([139]), and the genes controlled by Swi5 in

this component are all active at M/G1 or GI phase. The activative function of

Swi5 is consistent with the positive signs on protein-DNA edges emanating from

Swi5. The other component contains cell cycle regulators Swi4, Swi6, and Mbpl

for G1/S phase ([139]). Most genes controlled by these factors occur at G1/S

phase, which is consistent with their functional roles. However, some protein-
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DNA edges are annotated with negative signs, contradicting with the knowledge

about the activating roles of Swi4 and Swi6. The components of cell cycle related

genes are smaller than the cell cycle regulatory networks proposed in [139]. This

is because our results are based on the static knock-out measurements rather

than time-course measurements of synchronized cell culture. Moreover, some

of these factors play complementary roles (such as Mbpl and Swi6). Single

deletions will not manifest significant changes on their regulated genes.

" A small component is centered around Yapi and controlled by protein-DNA

interactions. Yapi is known to be a regulator for oxidative stress response

([24]). All the controlled genes in this component except YLR460C are involving

in oxidative stress response. The knock-out data suggests that Yapi also has a

regulatory role under normal condition.

" Hir2 regulates histones Hhfl and Hhf2 ([142]). Maci regulates Frel and Ftri

involved in iron utilization ([92]). These regulatory relations have been identified

in previous studies.

We then investigated the biological relevance of variant subnetworks. Some sub-

networks are unlikely to bear biological meanings because they contain many edges

but only explain few knock-out effects. We discarded the subnetworks whose ratios

(# explained knock-out pairs)/ (# edges) is less than 0.5. Each variant subnet-

work contains subconfigurations which differ only on edge signs. We illustrate these

subnetworks in Figures 4-8, 4-9, 4-10, 4-11, 4-12 and 4-13.

* Subnetwork 1 constitutes hubs Swi4, Sok2, Cup9, Hap4, Msn4 and Yap6 con-

nected by protein-DNA interactions. Swi4 connects to hubs Cup9, Hap4, Msn4

and Yap6 via Sok2. Each hub is a transcription factor and directly controls a

number of genes by protein-DNA interactions. This structure explains many

knock-out effects in Swi4A experiment. The explanations are carried out along

paths Swi4 -+ Sok2 -+ (Cup9, Hap4, Msn4, Yap6) -+ downstream genes. De-

generacy arises in the freedom of varying edge sign configurations. There are
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5 edges connecting hubs and two hub genes have significant changes in Swi4A,

thus there are 8 degenerate edge sign configurations. Sok2 is known to repress

Msn4 according to previous studies ([141]): Sok2 is at the end of the PKA

pathway and Msn4 is repressed by PKA pathway. Further discussions and val-

idations about this subnetworks will be covered in Chapter Five.

" Subnetwork 2 constitutes the protein-protein pathways Tupi -* Hhf1 -+ Fhll,

Tupi -> Hhfl -- Fkhl, and Tupi -+ Hhfl -* Rfx1. The terminal proteins Fhll,

Fkh1 and Rfx1 are transcription factors and each in turn binds to a number

of genes. These pathways explain the knock-out effects in TuplA on their

downstream genes. The path lengths are three while the aggregate signs are

fixed by the knock-out constraints. Thus there are 4 degenerate configurations.

Only part of these pathways is verified in previous studies. Tupi is known to

mediate the repression of many genes via interacting with histones including

Hhfl ([30]). This interaction may affect transcription factors including Fhll,

Fkh1 or Rfx1. Notice a number of ribosome genes are down regulated in TuplA.

These knock-out effects are explained via the pathway Tupi -+ Hhfl -+ Fhll.

" Subnetwork 3 constitutes a mixed pathway Tupi -- Ssn6 -+ Nrgl -+ Yap6.

Both Nrgl and Yap6 are transcription factors and bind to a number of genes.

(Nrgl,Yap6) is a protein-DNA binding and other edges along the path are

protein-protein bindings. It explains the knock-out effects in TuplA and Ssn6A

experiments. These pathways contain 3 edges and are constrained by 2 knock-

out experiments. Thus there are 2 degenerate configurations. These pathways

match the biological knowledge about glucose repression response. Nrgl is a

transcription repressor regulating glucose metabolic genes such as Stal. Its re-

pression activity is known to be enabled by recruiting the Ssn6-Tupl complex

([121]). There is a freedom of assigning the edge sign of (Ssn6,Nrgl). This

degeneracy can be removed by performing Nrg1A experiment.

" Subnetwork 4 constitutes intermediate hubs A2 and Mcml. It explains the

knock-out effects in TuplA by the path Tupi -- A2 -- Mcml -- downstream
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genes. It has 4 degenerate configurations. Downstream genes are enriched

with mating response genes. According to previous studies, the homeodomian

protein a2 together with Mcml, recruits general transcription repressors Ssn6

and Tupi to the promoters of a-specific genes ([163]). A2 is similar to a2. These

interactions are exactly captured in this subnetwork.

* Subnetwork 5 constitutes the protein-protein pathway Rpd3 - Ckb2 -+ Abf1.

Abf1 is a DNA-binding protein that controls a number of genes. It explains the

knock-out effects in Rpd3A and Ckb2A experiments. There are 2 degenerate

configurations for pathway length is 3 and is constrained by two knock-out

experiments. Ckb2 is a casein kinase which phosphorylates Abfl ([161]), and

Rpd3 is a histone deacetylase required for the regulation of many genes. The

transcription activation function of Abfl is weakly repressed by Rpd3 ([33]).

This evidence supports using the pathway Rpd3 -> Ckb2 --* Abf1 to explain

knock-out effects.

" Subnetwork 6 constitutes cell cycle related genes mediated by cell cycle tran-

scription factors Nddl, Ace2 and Swi5. It explains mostly the knock-out effects

in Swi4A experiment. The pathways mediated by Nddl contain 2 edges while

the ones mediated by Nddl and Ace2 contain 3 edges. Thus there are totally 3

degenerate configurations. These transcription factors control cell cycle genes

at different phases: Swi4 - S/G1, Nddl - G2/M, Ace2 - M/G1 ([139]). The

data of ASwi4 experiment indicates deleting Swi4 affects not only genes occur-

ring at S/G1 phases but also G2/M and M/G1 phases as well. Some of these

affected genes are bound by Nddl and Ace2. A causal explanation is difficult

because an intervention of cell cycles can lead to drastic changes. Nevertheless,

the pathway Swi4 -> Nddl -> Ace2 provides one possible explanation.

" Subnetwork 7 constitutes the protein-protein pathway Cdc42 -> Adh2 -> Fkh2,

and Fkh2 controls a number of genes. It explains the knock-out effects in

Cdc42A experiment. There are 4 degenerate configurations. Downstream genes

are enriched with cell cycle genes. We have not found the support of this
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pathway from literature survey. The binding of (Cdc42,Adh2) belongs to a

complex detected by systematic mass spectrometry ([75]). Thus it might be

generated from artifacts.

" Subnetwork 8 constitutes hubs Slt2, Rlml, and Swi4 connected by protein-

protein interactions. Rlml is a transcription factor that controls a number of

genes. The knock-out effects in experiments YOR080WA, PmalA, Qcr2A and

Swi6A are explained by paths mediated via (Slt2,Rlml) or (Slt2,Swi4). There

are 4 degenerate configurations. Rlml regulates the genes involved in cell wall

integrity. It is enabled by the MAP kinase Slt2 ([91, 9]). Interestingly, most

knock-out effects explained by (Slt2,Rlml) are on the genes involved in cell

wall structure (Exgl, Scw1O, Mnnl, YGR153W, Hapi, Pry2, Sat2, YDR451C,

Svs1). This fact supports the validity of our explanation.

" Subnetwork 10 constitutes hubs Med2, Srb4, Gcn4, Gal4, Mcml and Yap6. The

knock-out effects of deleting Med2 are explained by pathways Med2 -+ Srb4 -+

Gal4, Med2 -+ Srb4 -+ Gcn4, Med2 -+ Srb4 -+ Mcml, or Med2 -+ Srb4

Yap6. Med2 and Srb4 belong to the general transcription apparatus which are

known to interact with Gcn4 and Gal4 ([120]).

" Subnetwork 11 constitutes the protein-protein pathway Rpd3 -> Vpsl -+ Rebi,

and Rebi is a transcription factor. It explains the knock-out effects in Rpd3A

experiment and has 4 degenerate configurations. Rpd3 and Vpsl belong to the

same complex detected by systematic mass spectrometry, and Vpsl and Rebi

belong to another complex detected by the same technology.

" Subnetwork 13 contains intermediate hubs of cell cycle regulators Fkh2, Ace2

and Mcml which relay the effects of deleting Sin3 to downstream genes. The

protein-protein interaction (Sin3,Fkh2) is reported from the high-throughput

experiment of protein complexes ([62]). Therefore, the results are less reliable.

" Subnetwork 14 constitutes the protein-protein pathway Sin3 -> Ckb1 -+ Abf1

and explains the knock-out effects in Sin3A. The interaction (Sin3,Ckbl) is
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again reported from high-throughput experiment of protein complexes ([75]).

* Subnetwork 15 constitutes the protein-protein pathway Cmdl -> Cnal -> Skn7,

and Skn7 is a transcription factor. It explains the knock-out effects in Cmd1A

experiment and has 4 degenerate configurations. Cmdl and Cnal are on the

calcineurin pathway ([51]). Skn7 is involved in oxidative and osmotic stress

response and cell cycle control, but is also required for the calcineurin pathway

([168]).

" Subnetwork 16 contains the pathways of explaining the knock-out effects in

Vma8ZA experiment. The explanation is carried out by paths Vma8 -* Gcn3 -+

Fhll, and Vma8 -+ Gcn3 - Maci. There are 8 optimal configurations along

the two pathways. (Vma8,Gcn3) and (Gcn3,Fhll) belong to separate complexes

detected by systematic mass spectrometry ([75]), and (Gcn3,Macl) is detected

by two-hybrid experiment ([86]).

* Subnetwork 19 constitutes the mixed pathway Sir4 -+ Rapi -+ Msn4, and Msn4

binds to the DNA promoters of stress response genes. (Sir4,Rapl) is a protein-

protein interaction and (Rapl,Msn4) is a protein-DNA interaction. It explains

the knock-out effects in Sir4A experiment. Downstream genes are enriched with

stress response genes. There are 4 degenerate configurations along the pathway.

Rapi is known to be a silencer of telomere sites, and its activity is enabled by

binding to Sir4 ([105]).

" Subnetwork 20 constitutes the protein-protein pathway Rrp6 -+ Rif2 -* Rap1.

It explains some knock-out effects in Rrp6A experiment. Downstream genes

are enriched with ribosome genes. The interaction (Rrp6,Rif2) is reported from

a high-throughput experiment ([86]) thus is less reliable.

" Subnetwork 21 constitutes the protein-protein pathway Cmdl -+ Hap5 -> Gal4.

It explains some knock-out effects in CmdLA. The interaction (Cmdl,Hap5) is

reported from a high-throughput experiment ([177]).
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" Subnetwork 23 explains several knock-out effects in Gcn4A and Gln3A experi-

ments by protein-DNA pathway Gln3 - Gcn4 -- Rtg3. There are 2 degenerate

configurations. Downstream genes are enriched with genes involved in amino

acid synthesis. Most affected genes are also directly connected to Gcn4, for

instance, Yhml, Arg5,6, Argi, YHR162W, Arg1l, Uga3, Cpa2, Arol. The

pathway via Rtg3 may not be necessary to explain these knock-out interac-

tions. However, evidence shows Rtg3 is involved in amino acid synthesis as

Gcn4 and Gln3 ([88]). Thus this alternative pathway may still be valid.

" Subnetwork 24 contains protein-protein pathway Swi4 -+ Spk1 -* Cbf1. It

explains a few knock-out effects in Swi4A. Downstream genes are enriched

with genes involved in metabolism. The interaction (Swi4,Spkl) is reported

from a high-throughput experiment ([75]).

" Subnetwork 25 contains protein-protein pathway Erg2 --> Sohl -* Yap6. It

explains some knock-out effects in Erg2A. Both protein-protein interactions

are reported from yeast two-hybrid high-throughput experiments ([86]).

" Subnetwork 26 contains protein-protein pathways YER083C -> YDL100C -+

Msn4 and YER083C -> YDL100C --+ Yap6. Downstream genes are enriched

with stress response genes. These protein-protein interactions are reported from

high-throughput experiments ([86]).

" Subnetwork 27 contains protein-protein pathways Kim4 -+ Sua7 -+ Gal4, Kim4

-+ Sua7 -> Pho4, and Kim4 -+ Sua7 -* Ace2. It explains some knock-out effects

in Kim4A experiment. The protein-protein interactions in this subnetwork are

again reported from high-throughput experiments ([86]).

* Subnetwork 28 contains pathway Sin3 -+ Stbl -> Nddl. (Sin3,Stbl) is a protein-

protein interaction and (Stbl,Nddl) a protein-protein interaction. It explains

a few knock-out effects in Sin3A experiment. Stbl and Sin3 are known to form

a complex which affect histone acetylation of many genes ([93]). However, the

effect of Sin3-complex on Nddl is not reported.
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" Subnetwork 29 contains protein-protein pathways Yapi -- Nup116 -* Cadi and

Kim4 -+ Nup116 -> Cadi. It explains some knock-out effects in YaplA and

Kim4A experiments. The interactions (Yapl,Nup116) and (Kim4,Nupll6) are

reported from high-throughput experiments ([86]).

" Subnetwork 30 contains protein-protein pathway Med2 -+ Srb6 -+ Gal4. It

explains some knock-out effects in Med2A experiment. Med2 and Srb6 belong

the the general transcription apparatus and affect the function of Gal4 ([120]).

" Subnetwork 31 contains protein-protein pathway YER044C -+ Lys14 --+ Yap6.

It explains some knock-out effects in YER044CA experiment. Both protein-

protein interactions are reported in high-throughput assays ([86]).

" Subnetwork 32 constitutes protein-protein pathway Med2 -+ Gal -+ Gal4.

It explains some knock-out effects in Med2A. Med2 and Gal belong to the

general transcription apparatus and it is known to affect the function of Gal4

([120]).

" Subnetwork 33 constitutes protein-protein pathway Med2 -> Srb5 -+ Gal4. It

explains some knock-out effects in Med2A. Med2 and Srb5 belong to the general

transcription apparatus and it is known to affect the function of Gal4 ([120]).

* Subnetwork 34 constitutes protein-protein pathway Ste12 -> a1 -> Mcml. It

explains some knock-out effects in Stel2A. Downstream genes are enriched with

mating response genes. However, most of these interactions can be explained

by direct binding from Ste12.

" Subnetwork 36 contains pathway Swi4 -+ Tye7 -> Ino4. (Swi4,Tye7) is a

protein-DNA interaction and (Tye7,Ino4) a protein-protein interaction. It ex-

plains a few knock-out effects in Swi4A experiment. Downstream genes are

enriched with genes involved in metabolism. The protein-protein interaction

(Ino4,Tye7) is reported in previous study ([129]), and Ino4 is known to regulate

some of the downstream genes ([67]). Thus this pathway is possibly active.
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" Subnetwork 39 contains protein-protein pathway Gln3 -+ Gtsl -+ Yap6. It

explains knock-out effects in Gln3A. Both interactions are reported in high-

throughput assays ([160, 86]).

" Subnetwork 40 explains the knock-out effects in Rtg1A experiment on Ade

genes by the protein-DNA edges (Rtgl,Basl). There are 2 degenerate con-

figurations. ADE genes are responsible for amino acid synthesis and Basi is

known to activate these genes ([34]). (Rtgl,Basl) interaction is reported in a

high-throughput experiment ([86]). Although its function is not supported by

previous studies according to literature search, this small subnetwork is worth

of further verification.

" Subnetwork 42 contains protein-protein pathway Clb2 -> Napi -> Yap6. It

explains some knock-out effects in Clb2A experiment. Napi is known to be

required for the function of Clb2 ([3]), but the interaction (Napl,Yap6) is re-

ported from high-throughput assays ([86]). Thus it is uncertain whether the

entire pathway is active.

From the descriptions above, we can see some subnetworks correspond to known

gene regulatory networks, while others do not have clear biological interpretations.

The pathways which are not verified in previous studies are generated by high-

throughput experiments such as coIP, two-hybrid systems, and systematic mass spec-

trometry. These data are subject to high false positive rate, thus the resulting path-

ways may be artifacts. However, if a subnetwork is able to explain the knock-out

effects from multiple experiments, then it is less likely to be generated by random

chance. In any case, the only method to verify/falsify these explanations is to perform

further experiments - for example, deleting other genes along the pathway.
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Figure 4-8: Decomposed subnetworks 1-6
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Figure 4-9: Decomposed subnetworks 7-14
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Figure 4-10: Decomposed subnetworks 15-23
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Figure 4-11: Decomposed subnetworks 24-29
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Figure 4-12: Decomposed subnetworks 30-36
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Figure 4-13: Decomposed subnetworks 39-42
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Chapter 5

Experimental Design

The value of a scientific model lies on its capability of predicting the behavior of a

system in addition to explaining existing data. A model is falsified if its prediction

contradicts with data from new experiments or new evidence. Philosopher Karl Pop-

per employed the concept of falsifiability as the criterion to distinguish science from

other discourses of natural/social phenomena such as astrology ([126]). He argued

that scientific theories generated from singular experience could never be logically

verified as universal statements. Conversely they must be possible to be refuted by

experience (where experiments are a specific realization of experience). In reality, sci-

entists may have different strategies of dealing with contradictions. They may choose

either to abandon the current model and establish a new one, or to revise the current

model to make it compatible with new data. One can easily find precedents of both

scenarios in science history.

From either the falsification or the modification perspective, data generated from

new experiments or observations are the ultimate way of judging a scientific model.

Very often experiments and even observations are expensive in terms of various re-

sources (brain power and labor, time, money, social impact). Therefore, it is critical

for experimental scientists to prioritize experiments in terms of various goals which

can be scientific or not.

By applying the physical network modeling framework described in Chapters Two

and Three, we have generated a collection of models - likely molecular interaction
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pathways responsible for gene regulation and their functional annotations - which

explain the high-throughput data of physical interactions and knock-out gene expres-

sion. There are two questions pertaining to further inquiring the inferred models.

A model discrimination problem concerns which one among the many equally good

models is true (or is consistent with the new data). A model validation problem con-

cerns whether the true model is on the list of candidate models. We cannot answer

either question without having the new data. Nevertheless, we can establish criteria

for selecting new experiments in order to fulfill these goals without knowing the new

data. The method of selecting new experiments according to existing models and

data is called experimental design.

We discuss in this chapter methods of selecting experiments in order to discrimi-

nate the degenerate models inferred from existing data. We introduce an information

theoretic score to prioritize new knock-out experiments. A list of experiments gener-

ated from these criteria are proposed to biologists, and a number of experiments on

this list are conducted. We further analyze the data generated from the new experi-

ments, validate and discriminate several subnetworks described in Chapter Four. We

leave the experimental design for model verification for the future work and discuss

it in Chapter Seven.

5.1 Overview of experimental design

Experimental design, also known as active learning, involves prioritizing or selecting

new experiments or observations according to the information obtained from existing

data. It has been employed in a wide range of problems in statistics and machine

learning, such as design of surveys ([53]), generation of interactive queries for World

Wide Web information retrieval ([87]). Recently, experimental design is applied in

computational biology. A prominent example is the robot scientist which automates

every step of scientific inquiry (hypothesis generation, inference, experimental design,

performing experiments, and so on) ([96]). Although the methods used in these

applications are different, they all follow three general principles. First, they cannot
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utilize the data generated by the proposed experiments because the experiments are

not yet performed. Alternatively, they predict the outcomes of experiments according

to the current model and take the expectation over the hypothetical data generated

by proposed experiments. Second, designed experiments can perturb and modify

the target system. Perturbation data differ from observation data and need to be

incorporated in the model in different ways. For instance, if variable X causes variable

Y in an unperturbed system, perturbing Y breaks its causal link with X. When the

goal is to learn the unperturbed system, the procedures of learning the models should

also be modified in accordance with the perturbation experiments ([26, 123]). Third,

although in principle batch experiments are allowed under the same experimental

design method ([48]), most current approaches sequentially choose one experiment

each time. Moreover, most works adopt the myopic learning approach: compute the

scores of new experiments based on the models (or the distribution of models) learned

at the previous step ([158, 159]).

A brief review about the previous works of experimental design is already covered

in Chapter One and not repeated in this Chapter. We will discuss the method of

prioritizing experiments for model discrimination in the next section.

Notice the term of experimental design is used in an abstract and computational

sense. This definition can be very different from experimental scientists' views about

experimental design - for example, designing protocols, choosing instruments, tun-

ing the environmental factors, and so on. The details about the procedures of the

experiments will not be discussed in this thesis.

5.2 Experimental design for model discrimination

5.2.1 Model uncertainty and model discrimination

We have defined in Chapter Three a configuration of the physical network model as an

instantiation of variable values pertaining to the physical interaction network. We are

interested in the optimal or sub-optimal model configurations which fit the current
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data. In Chapter Three, we also proposed various recursive inference algorithms to

either enumerate all optimal configurations or obtain a concise representation of them.

The term model discrimination typically denotes finding the model among mul-

tiple candidates which optimally fit the data. In our context, this means narrowing

down the optimal configuration to a unique setting. In a more general sense model

discrimination denotes reducing the uncertainty about model configurations; in other

words, making the distribution of model configurations more "peaked" at a small

number of configurations. These two definitions do not contradict and will eventually

converge. However, they may lead to different criteria of selecting new experiments.

Here we adopt the reduction of model uncertainty as the goal of model discrimination.

The amount of uncertainty about model configurations can be measured by Shan-

non's entropy of the posterior distribution of model configurations. The entropy

is small when the posterior probability mass is concentrated on a small number of

configurations. However, the entropy of the joint posterior distribution is difficult

to evaluate and visualize. To facilitate understanding its network properties, we il-

lustrate the notion of model uncertainty with extreme cases of degenerate optimal

configurations. When explaining model uncertainty, we only show the number of opti-

mal configurations in the network or the number of optimal values of single variables.

However, we consider all possible configurations when prioritizing new experiments.

The number of variables in the physical network model often far exceeds the num-

ber of constraints imposed by existing data. Consequently, there are many optimal

configurations which fit the data equally well. One of the most comprehensive knock-

out gene expression datasets in yeasts is the Rosetta Compendium data. Despite

it covers 271 single gene deletion experiments, the physical interaction network is

still highly under-constrained. Less than 5% (1091 out of 23766) knock-out interac-

tions are connected with path length < 3 in the physical network, and only 5.6%

(1142 out of 20361) physical interactions are on paths connecting knock-out effects.

Moreover, among the 1091 knock-out interactions which are connected in the phys-

ical network, 534 are connected by paths which are not used to explain any other

knock-out effects. Variables along these paths are constrained by only single knock-
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Figure 5-1: Examples of edge sign and direction degeneracy.
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out interactions. "Explanation" of these knock-out interactions is easily achieved by

tuning edge directions and signs. However, the inferred results are unreliable because

they fit single evidence with complex model configurations.

Given the sparse constraints from existing data, many model configurations are

expected to fit the data equally or nearly equally well. Two model configurations

are degenerate when both yield the maximal likelihood value. The degeneracy of an

edge presence variable occurs when the evidence from one data (for instance, yeast

two-hybrid data) supports its absence while the evidence from another (for instance,

knock-out data) supports its presence. Currently, we incorporate the physical inter-

actions with high confidence values in the skeleton graph. The potential functions of

physical data corresponding to these edges all prefer the presence of their interactions.

Under this construction, #(x = 1) > #(x = 0) for all potential functions of pairwise

physical interactions. Since knock-out explanations do not force the absence of edges,

the scenario of contradictory evidence from physical and functional data does not

occur. Degeneracy of edge signs arises when there are not sufficient knock-out in-

teractions probing each gene along the same path. In this scenario, the aggregate

sign along a path is fixed, while the signs of individual edges are not. There are

multiple edge sign configurations which yield identical aggregate sign. The number
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of degenerate configurations depends on the number of aggregate sign configurations

and the path length. This scenario is illustrated in an example in the left part of

Figure 5-1. A knock-out interaction (Stel2,Agal,-) (deleting Ste12 down-regulates

Agal) forces the aggregate sign along the path Ste12 - Mcml - Agal to be +1.

Signs of individual edges (Stel2,Mcml) and (Mcml,Agal) can vary as the path sign

parity conforms with the knock-out effect. Degeneracy of edge directions arises when

different knock-out effects are explained by paths with opposite directions. The right

part of Figure 5-1 illustrates the case. The paths Mbpl -+ Rad5l and Mbpl -+

Swi6 -+ Rad5l explain the knock-out effect (Mbpl,Rad5l,+), and the paths Swi6 -

Rad5l and Swi6 -* Mbpl --+ Rad5l explain the knock-out effect (Swi6,Rad5l,+),

The two paths Mbpl - Swi6 -+ Rad5l and Swi6 -+ Mbpl --+ Rad5l have opposite

directions on protein-protein edge (Mbpl,Swi6). Edge direction degeneracy is not

likely to occur because the confidence values of two knock-out effects are hardly iden-

tical. If one interaction has a slightly higher value, then the model would prefer one

edge direction in order to explain the stronger knock-out effect. The degeneracy of

a path selection variable occurs when the explanatory paths of two knock-out effects

yield a contradiction of edge directions or edge signs. Figure 5-1.2 also illustrates this

case. The paths Mbpl -+ Swi6 - Rad5l and Swi6 - Mbpl -+ Rad5l are involved

in different knock-out effects. They cannot co-exist if a protein-protein edge has a

unique direction. Either Mbpl -+ Swi6 -- Rad5l or Swi6 -+ Mbpl -+ Rad5l is an

optimal configuration for both knock-out effects are explained in each scenario. The

degeneracy of a knock-out effect occurs when the evidence from knock-out gene ex-

pression measurement contradict the constraints of explanation. This is unlikely to

occur because we incorporate the knock-out effects with high confidence values. In

the analysis of high-throughput datasets in Chapter Four, the model contains 14876

direction variables of protein-protein edges and 20361 edge sign variables. We evalu-

ated the max-marginal probability of each variable using the max-product algorithm.

Among the 1597 variables whose max-marginal probabilities yield degenerate opti-

mal values, 1403 of them are edge sign variables, 184 are edge direction variables and

10 are path selection variables. Hence a predominant number of degenerate model
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configurations are on edge signs.

5.2.2 Prioritizing experiments for model discrimination

Our experimental design method focuses on the (mRNA) gene expression experiments

of single deletion mutants. This type of data is a natural extension of the Rosetta

data used in the model inference. Therefore, the incorporation of the new data into

the existing model and its mechanistic interpretation can be undertaken without

expanding the data association methods to other types of data. Single knock-out

experiments are also easier to implement compared to other gene perturbation assays

such as over-expression or double deletion experiments.

How do we define the capacity of a knock-out experiment for model discrimination?

Before answering this question, we need to understand how to discriminate model

configurations from the outcomes of a knock-out experiment. Roughly speaking, each

model configuration predicts the response of all genes under a knock-out experiment.

We can calculate the likelihood values of the new data under each configuration. The

models whose predicted responses are close to the actual response from the real data

yield high likelihood values. We can thus narrow down the candidate models by

comparing the likelihood values of the new data.

We illustrate the procedures of model discrimination and experimental design in

Figure 5-2. A physical network model on the pheromone response pathway yields

two degenerate configurations ([172]). The aggregate sign along the paths from Ste12

to a number of genes via Mcml is positive, hence the signs of individual edges are

either all positive or all negative. These two configurations explain the knock-out

effects in Ste12A equally well, but their predicted responses of deleting Mcml are

distinct. Thus one may compare the measurement data in the McmlA experiment to

the predicted responses according to the models. Configuration 1 is preferred if more

downstream genes are down-regulated and vice versa. Deleting other genes (except

Ste12) in the subnetwork does not affect downstream genes of Mcml, hence the pre-

dicted responses according to both configurations are identical (no changes). There-

fore, McmlA is suggested as it discriminates between the two degenerate models.
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Figure 5-2: Toy example of model discrimination
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In practice, deleting Mcml is difficult because it is lethal to yeast

approaches such as temperature sensitive mutants are required.

cells. Elaborated

We define the following notation. Denote e as a new knock-out experiment and

Ye - (Y, .... , Y) as a predicted expression profile under experiment e. Each com-

ponent of Ye is the predicted response of a gene, which takes values in {+1, -1, 01

denoting up/down regulations or no change. ye is the vector of quantized, actual

expression data of experiment e. M denotes the identity of model configurations.

The uncertainty about model configurations M is reduced as the data from new ex-

periments ye are provided. The reduction of model uncertainty is captured by the

reduction of Shannon's entropy given the new evidence Ye:

H(M) - H(MYe - ye). (5.1)

This quantity is not computable since ye is yet to be measured. We thus substitute

it with the expected reduction of entropy conditioned on the predicted response ye:

H(M) - E P(Ye - ye)H(Mlye - ye) = H(M) - H(MYe) = I(M; Ye). (5.2)
ye
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This quantity is the mutual information between M and Ye-

I(M; Ye) = Em,yc P(m, ye) log (P (>)

= Em,ye P(m)P(ye lm) log (P((e.)

- Lye P(ye) log p(ye) + Em P(m) EYe P(yeIm) log P(yeIm)

H(Ye) - H(Ye|M) = H(M) - H(M|Ye).

where m denotes the index of model configurations, ye the vector of predicted re-

sponses, H(Y') and H(YefM) the entropy and the conditional entropy of ye. It can

be interpreted as the maximal amount of "information" about M that can be ex-

tracted from Ye'. Equivalently, it is the reduction of uncertainty about M by knowing

Ye. Because the mutual information is symmetric, it can also be understood as the

reduction of uncertainty about Ye by knowing M. The intuition of extracting the

maximal information about model identity from their predicted responses is in line

with the goal of model discrimination.

We ignore measurement noise and assume the mapping from model configuration

M to predicted response Ye is deterministic. The conditional probability P(Ye|M)

can be expressed as

P(Ye = yeM = m) = 6(ye - ye (m)). (5.4)

where 6(.) is an indicator function and ye(m) is the predicted response according to

model m. We will describe how to predict the perturbation response in the next

section. The conditional entropy term H(Y' M) in equation 5.3 vanishes because

P(YPIM) is deterministic. Equation 5.3 becomes

I(M; Ye) = H(Ye). (5.5)

5.2.3 Revision of the mutual information score

Using the mutual information score in equation 5.3 to gauge the discriminative capac-

ities of experiments implies the model discrimination procedure utilizes evidence of
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both significant and insignificant changes from ye. Candidate models are narrowed

down according to the response Ye of the entire genome under the new experiment.

The models whose predicted responses (over the entire genome) are identical to the

measured response are considered as new candidate models, and those which yield

different vectors of predicted responses are excluded. This procedure, however, is

not how we construct physical network models. As discussed in section 3.3, we ig-

nore negative evidence when incorporating knock-out data in the model: insignificant

knock-out effects (whose p-values are above the threshold) do not constrain the model

variables. Neglecting negative evidence reduces the discriminative power of new ex-

periments since it creates more degenerate models. For example, suppose two classes

of model configurations predict two distinct response vectors ye and Ye'. They differ

only on the first gene: Yje = -1 while Yie' = 0. If the actual response under ex-

periment e is Ye, then these two model classes are discriminated because they yield

different likelihood values. On the other hand, if the actual response is Ye' instead,

then the likelihood values of these two model classes are identical. This is because

Y," = 0 and we ignore the evidence pertaining to gene 1 when constructing the

likelihood function.

In order to be consistent with our model discrimination procedure, the mutual

information score should only capture the information about the significant aspect

(up/down regulation) of the predicted response. We revise the mutual information

score in the following way. Denote pe as the predicted pattern of change/no change

under experiment e. For instance, pe = (01110) denotes that genes 2, 3 and 4

are changed (up or down regulated) and genes 1 and 5 remain unchanged under

experiment e. In addition, denote YP as the predicted responses restricted to the

genes which have significant predicted responses according to pe. For example, if

Pe = (01110), then YP is a three-component vector with entries ±1, denoting the

predicted response of genes 2, 3, 4. A proper revision to the mutual information

score is to condition on change/no change patterns Pe and then compute the entropy

reduction given the predicted response Y restricted to significantly changed genes.

The information gain is the expected reduction of model entropy over the change/no
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change patterns. To be precise,

G = ( P(Pe = p)[H(MPe = P) - H(M|P e = AYe)] = I(M Y IP') . (5.6)
P

where YPC denotes the predicted response on significantly changed genes consistent

with pattern Pe = p. The averaging probability P(Pe = p) is taken over all 2n binary

(0/1) vectors of length n where n is the number of genes. The information gain

is the mutual information conditioned on the change/no change pattern. Because

the predicted pattern of change/no change P' and the predicted change of genes Ye

consistent with Pe = p are deterministic given the model configuration, equation 5.6

can be reduced to the conditional entropy H(YJ|P) and further simplified to the

difference of marginal entropies H(Ye) - H(Pe):

G = E P(Pe = p)H(Ype|Pe =p) = H(Y) - H (Pe). (5.7)
P

The derivation of equation 5.7 is as follows. Readers who are not interested in tech-

nical details can skip the rest of this section and the next section and directly read

the empirical results.

Recall that

I(M; Y|Pe) = H(M|Pe) - H(M|Y; Pe) (58)

= E P(Pe = p) [H(M|Pe = p) - H(M|Ype; pe = p)

The first term of 5.8 is

H(M|P = p) = - E P(M = m|Pe = p) log P(M = m|Pe = p). (5.9)
mEM

Denote Fe(p) as the model subclass whose predicted change/no change pattern is p.

Thus

Vm C Fe(p), P(Pe =-p|M = m) = 1. (5.10)

Vm Fe(p), P(Pe = p|M = m) = 0.
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P(M=m)

P(M = m|Pe p) - P(PP=P)

0

1(

if m E Fe (

otherwise.

P(M = m|Pe = p) log P(M = m|Pe = P).

The second term of equation 5.8 is

H(M|Ye; Pe - P) =

-mEMyE{-1,+1}PI P(M = mY pe = P) - log P(M =mY - , Pe p)

- EmEM,yC{-1,+1}IPI P(M = mlPe = p)P(Y = yM m, Pe -)

log P(M = m|Ye - y pe - p)

= - EmCM,ye{-1,+1}IPI P(M m Pe = p)P(Ye = yIM = Pe P)

-[log P(M = M =pe = p) + log P(Ye = ylM = m,=P p) - log P(Ye = ype = p)]

- EmEM P(M = mTPe = p) log P(M = mlPe =) . Ey{-1,+1}IPl P(ye = ylM = TPe - p)

+H (Y|M, Pe = p) - H(Ye|Pe = P).
(5.13)

H(Y;eIM, Pe = p) = 0 because Ye is deterministic given the model identity and

change/no change pattern. The term -H(YelP' = p) is what we want to keep. Thus

we want to show the first term cancels out with H(MlPe = p) in equation 5.8.

Because P(M = m|Pe = p) = 0 for m V Fe(p),

- EmEM P(M = m|Pe = p) log P(M = mlPe = p) EYE{- 1,+1 }p P(Ype = yIM m, eP)

- EmEe(p) P(M =m|e = p) log P(M = m|Pe P) EyE{-1,+1PI(y = yM = m, pe =

= m- cmp) P(M = m|Pe = p) log P(M = m|Pe P) - 1.
(5.14)

The second equality arises from equation 5.11 and the fact that

z P(Y' = ylM =m, Pe =p)= 1.
yE{-1,O,+1}

(5.15)

Substituting equation 5.14 into equation 5.13 and combining it with equation 5.12,

H(M|P = p) - H(M|YPe- Pe = p) = H(YP = . (5.16)
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H(M|Pe =p) = -

(5.11)

(5.12)



Thus

(5.17)I(M; Y)|pe) - P(Pe = p)H(Yp"|Pe =P).
p

P(Y pe = p) is the marginal probability of predicted significant responses over the

models in ye(p). It can be expressed as

P(Ye = y|Pe = p) = me(p) P(M = m|Pe = p)P(Ype = y|M = m; Pe = P)

= P(Pp) , M P( M = m)P(Ye = y|M = M).

(5.18)

where y is a vector of length IpI with ±1 entries. P(Pe = p) is the sum of model

probabilities over the class Fe(p):

P(P =P) = Y
mCFe(p)

P(M = m). (5.19)

The second equality in equation 5.18 holds since

Vm V F(p), P(M = mPe = P) = 0.

and

Vm efe(p), P(P =p|M = m) = 1.

(5.20)

(5.21)

Therefore, extending the summand in equation 5.18 into the model universe M does

not add extra contributions except for a normalization constant. Plug 5.18 into 5.17,
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I(M; Y |pe) =E P(Pe = p)H (Y|Pe = p)

= EP P(Pe p)[ ZE P(YCe = y|Pe = p) log P(Ype - y|Pe - A

- z ppe =P)[Ey(PAI_,) EmCM P(M = m)P(YP = y|M =n))-

log(p(pl>_) ZmeM P(M = m)P(Ye = M m))

= - E Zy[ZmeM P(M = n)P(Ye = y1M =Tn) - log(EmeM P(M =in)P(Y = yM =m))]+

EP Ey[ZmeM P(M = m)P(Ye = yIM = m) - log P(P e = )

= - Ep EyEmeM P(M = M)P(Ye = [y, 0]1M = M).

log(EmCM P(M = M)P(Ye = [y, 0]M = M)+

E p(Pe = p) log P(Pe - p)

= - Ez EmCM P(M = m)P(Ye = zIM = M) log(EmCM P(M = M)P(Ye = zIM = M))+

E P(Pe = p) log P(Pe = p)

= -E P(Ye = z) log P(Ye = z) + EP P(Pe = p) log P(pe = p)

H(Ye) - H(Pe).

(5.22)

where y is over binary vectors of length IpI with ±1 entries, z is over vectors of length

n with -1, 0, +1 entries, [y, 0] denotes filling the zero entries in pattern p with Os

in z. The third equality is from equation 5.18, the fifth and sixth equalities state

that marginalizing over patterns and non-zero predictions together is equivalent to

marginalizing over all possible predictions.

5.2.4 Approximation of the mutual information computation

Evaluating the mutual information of random variables in a high dimensional space

is generally intractable for it requires enumerating an exponential number of variable

configurations. The number of optimal configurations in our model can be astronom-

ical. For example, in our previous analysis of the genome-wide molecular interaction

network ([172]), we reported more than 24 optimal configurations. To resolve this

problem, we approximate the joint probability of output responses as the product

of marginal probabilities and evaluate each marginal probability by using the sum-
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product algorithm. This section describes details of the approximation method of

evaluating the mutual information scores in equations 5.3 and 5.6. The readers not

interested in technical details may skip it and directly read the section of empirical

analysis.

The evaluation of equation 5.7 requires computing the entropies H(YE) and H(Pe).

To evaluate them we need to obtain the distribution of the predicted response and

pattern vectors:

P(Ye = y) P(M = m)P(Y" = yIM = M). (5.23)

P(Pe = p) = E P(M = m )P(Ye = yIM = m). (5.24)
m y~p

where y - p denotes the set of predicted responses y consistent with the change/no

change pattern p. The marginalization is taken over the model configurations in the

candidate set. It requires enumerating an exponential number of model configurations

thus is generally intractable. To simplify the problem, we approximate the joint

probability function with the product of marginal distributions of individual genes.

Recall that Ye = (Ye, - -, Y) is a vector of the predicted response of n genes. We first

approximate the joint distribution P(YC) with the product of marginal distributions

p(ye)

i=1

P(Y") is known to be the projection of P(Y") on the space of independent distribu-

tions Fo:

P(Y") = arg min DKL(P(Ye)|Q(Ye)). (5.26)
Q(Ye).Fo

The mutual information and revised mutual information are approximated by the

sum of marginal entropies:

n n
H(Ye) < H(Ye), H(Pe) < H(P). (5.27)

i=1 i=1
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n
H(Yp) - H(P6) ~ H(Y/e) - H(PC)]. (5.28)

Notice the approximation in 5.28 may not be the upper bound of the actual value of

the subtraction of the two terms. By definitions of Ye and Pe,

H(Yie) = - S P(Y = yi) log P(Y =e y=). (5.29)
Yi={-1A0+1}

and

H(Pf) = -P(Ye = 0) log P(Y = 0) - P(Yi = ±1) log P(Y ±1). (5.30)

Subtracting 5.30 from 5.29, and substituting the result into 5.28,

I(M; Ype) = H(Y) - H(P) (5.31)

- Z~ Zy=i,+i~(e = y) log(jP(I2 §~))

The marginal probability of the predicted response in gene i is

p(Y= yC) = P(M = m)P(Yi' = yeIM = M). (5.32)

Evaluating P(Y) is the inference problem of graphical models thus can be efficiently

approximated by the sum-product algorithm without enumerating all model config-

urations. Denote X = (X 1 , - - -, XN) as variables in the physical network model. A

model configuration m is an instantiation of values in X. Denote this instantiation

as (X 1 = xI(m), - - -, XN = XN(m)). The probability of a model configuration is pro-

portional to the joint likelihood value evaluated at this configuration. Recall that we

express the joint likelihood function as the product of potential functions.

P(M = m) OC L(X1 = X (m), ,XN = XN (m)) = fqc, (Xc, = xc, (m)). (5.33)

where Oc. (.) is a potential function pertaining to a constraint from physical interaction
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or knock-out data. By substituting 5.33 into 5.32,

(Ye) - m P(Y6 = ye M = m) FJj #c, (XC0 = xC, (m)) =
P (Yi Yi i(5.34)

Ex p(ye = ye|X = X) fj Cc, (X0 3  =XC

The summation is taken over all configurations of X. We augment the joint likelihood

function L by inserting a term P(Yie|X):

L'(X, Y,') = L(X)P( YiIX). (5.35)

The augmented likelihood function contains variables XUYie. Equation 5.34 evaluates

the marginal belief of Yie under the new model:

p(Yie - = 3 Z '(X, YY-). (5.36)
x

The normalization constant Z is immaterial since we can do normalization after the

inference. The marginal belief of a single variable can be efficiently approximated by

various algorithms such as sum-product of factor graphs ([97]) and generalized belief

propagation ([173]). In this thesis, we implemented the sum-product algorithm for

the inference. The sum-product algorithm is described in Chapter Three.

The term P(Yie|X) represents the prediction of Yie according to model configura-

tion X. Similar to the potential terms of knock-out explanation, we adopt a potential

term for model prediction:

I if ye - the prediction from model configuration x,
P(Ye - JX = -)

0 otherwise.

(5.37)

To predict the response of gene gj by deleting gene ge, we first identify all candidate

paths (the paths satisfying conditions 1-4 in section 3.3.3) connecting ge to gi. For

each path, we then verify the following conditions: whether all edges are present,

whether all edges appear in some active paths that explain existing knock-out effects,

and whether directions are consistent according to the given configuration. If they
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do then we predict the positive or negative response according to edge sign config-

urations along the path. Otherwise the predicted response along this path is that

the downstream gene does not change. If all valid predictions (which predict positive

or negative changes) along connecting paths agree, then we predict gi is up or down

regulated, otherwise we predict gi does not change.

We express the predictions formally with potential functions as follows. Suppose

valid paths 7ir, - - -, 7WiN connect g, to gi, Let Xjj, Dij, Sij be the variables of edge

presence, edge direction and edge sign along the path wrij. Without loss of generality

we define all edge directions consistent with the prediction to be 1. Denote Yl, - --, YiN

to be the predicted responses of gi along each path. We first construct the potential

term for each path prediction:

I if (Vx E Xj, x=1) = i (Vd E Dij, d =1) n (Hsesj s = -Yij),

#ij (Yi, Xjj , Dij , Sij) = I if ((Ex E- Xjj, x = 0) U (Ed C Dij, d # 1)) n (Yi = o) ,
0 otherwise.

(5.38)

The first scenario denotes the configuration along the path to predict a significant

change of Yj. The second scenario denotes conditions for predicting a significant

change are violated and the predicted response is no change. The third scenario

states all cases when the predicted response is inconsistent with Yjj.

Predictions along paths are then combined to give an overall prediction Y of gi

response. The potential function of prediction aggregation is

1 if (Y = +1) n (Vj, Yi E o, +i1}) n ((Y1,i -, YiN) (O- - -, O

1 if (Y = -1) n (Vj, Y {f, -1}) n ((Y,. - ,YiN) #(, -7

1 if (Y 0) n (all other configurations),

0 otherwise.
(5.39)

The first scenario states the condition when the aggregate prediction is positive:

predictions along all paths are either positive or zero, but not all zeros. The second

scenario states the condition when the aggregate prediction is negative in a similar
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fashion. The third scenario states all other conditions that the aggregate prediction

is no change. The fourth scenario occurs when Y contradicts with the aggregate

prediction.

Usually only a relatively small number of genes are connected to the deleted gene

via valid paths in the physical network. We identify those genes and incorporate only

the variables relevant to their predictions in the new potential functions. Other genes

and variables will not affect the mutual information score. This pre-processing step

greatly simplifies the inference procedure.

5.3 Empirical results on existing datasets

We applied the experimental design framework to large-scale datasets of physical in-

teractions and knock-out gene expression including high-throughput chromatin IP

data [100], yeast protein-protein interaction database [31] and Rosetta Compendium

knock-out data [80]. Deletion experiments were ranked in terms of their mutual in-

formation scores. We first performed leave-one-out cross validation analysis of the

Rosetta data. The hold-out experiments whose data are constrained by other ex-

periments are on the top-ranking list, suggesting the mutual information score is a

sensible metric for model discrimination. We then established the physical network

model on the entire datasets and ranked new deletion experiments according to their

mutual information scores. We investigated the subnetworks associated with several

top-ranking experiments and qualitatively justified the importance of these exper-

iments. Finally we evaluated the accuracy of inferred attributes (with respect to

an artificially chosen reference model) by incrementally adding data from suggested

experiments. The results - the learning curve analysis - demonstrated using the

information gain for experimental design outperformed straightforward approaches

such as choosing deleted genes randomly or based on the number of connections.
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5.3.1 Cross validation tests on Rosetta data

The cross validation test was performed in the following way. We first held out

a deletion experiment and removed the knock-out interactions associated with the

experiment when building the physical network model. The mutual information scores

of all single deletion experiments outside the training set were computed, and those

experiments (including the leave-out experiment from Rosetta data) were ranked

according to their information scores. We then checked the rank and the mutual

information score of the leave-out experiment. This procedure was repeated for all

single deletion experiments in Rosetta data.

To validate the mutual information score, we need an external metric of the impor-

tance of a deletion experiment which was already performed. We built the physical

network model from the entire Rosetta data and counted the number of knock-out

interactions from each experiment which were explained by an optimal model config-

uration. We chose the number of explained knock-out effects as the external metric

for an experiment because it reflected the constraints imposed on the model.

The Rosetta Compendium data contain knock-out experiments of 253 single dele-

tions (some deletion experiments were repeated). Among them only 64 experiments

have knock-out interactions connected by valid paths of length < 3 in the physical

network. Furthermore, among the 64 experiments, only 24 contain knock-out effects

which are predictable from the data of other knock-out experiments. This means

the edges connecting the knock-out interactions in these experiments are utilized at

least once to explain the knock-out interactions from other experiments. The mu-

tual information scores and the rankings of these 24 knock-out experiments in the

cross-validation setting are shown in Table 5.1.

Figure 5-3 plots the number of explained knock-out pairs versus the rank and the

mutual information score of the 24 experiments. Among the 9 experiments with >

20 knock-out interactions explained by the model, 6 of them are ranked within top

10. The 3 experiments which have > 20 explainable knock-out interactions but are

ranked low - CmdlA, Ckb2A, YaplA - reflect the false negatives of model prediction
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Table 5.1: Cross validation tests on Rosetta gene deletion experiments
Experiment Entropy Rank # explained knock-outs
Fus3A 72.033761 0 1
Kss1A 68.950833 0 9
Swi6A 61.792096 0 21
Sin3A 48.420267 1 47
Mbp1A 45.491117 3 4
Swi4A 44.319638 3 162
Gcn4,A 38.612689 7 40
Ssn6ZA 35.511490 8 59
Stel2A 30.079665 10 27
DiglA 17.243579 21 12
Arg80A 12.563430 26 5
Ckb2A 10.129493 32 36
YapLA 7.727912 34 21
MaclA 6.874793 39 5
Swi5A 5.622311 46 13
Ade2A 3.652650 60 7
CmdLA 1.933891 64 20
Qcr2A 3.254703 66 14
PmalA 2.758714 66 14
YER083CA 0.957696 66 10
Clb2A 2.474916 67 14
Sst2A 2.301133 67 12
Kin3A 1.936279 67 2
Rnr1A 0.677027 67 2

or the false positives of model explanation. A number of knock-out interactions are

connected from these genes to their downstream targets via valid paths, thus these

knock-out effects can be explained when they are incorporated in the model. However,

the paths connecting the deleted genes and the downstream target genes are sparsely

utilized to explain the knock-out effects in other experiments. This can be due to

the fact that these paths are sparsely probed (deleted) in the Rosetta data, or that

these paths are indeed not active and the knock-out effects are resulted from the

mechanisms not captured by the current physical interaction datasets. Conversely,

among the 15 experiments with less than 20 knock-out interactions explained by

the model, only 3 of them - Fus3, Kssl, Mbpl - are ranked within top 20. These

cases reflect the false positives of model prediction or the false negatives of model

explanation. Many genes are predicted to change in these knock-out experiments but

only few of them are changed in the real data. These anomalies can be due to the

parallel pathways connecting the target genes. Both Fus3 and Kssl phosphorylate

Ste12 under different environmental conditions ([108]), but they also function in a

complementary fashion. Deleting either Fus3 or Kssl causes few changes in Ste12-
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Figure 5-3: Cross validation tests on Rosetta gene deletion experiments
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controlled genes while the double deletion significantly affects those genes ([46]). The

protein complexes Mbpl-Swi6 and Swi4-Swi6 co-appear on the promoters of many

genes and they are also known to serve parallel functions ([39, 139]). However, from

our analysis of the Rosetta data Swi4A seems to induce more changes than Mbp1A.

This suggests other functional roles of Swi4.

To sum up, cross validation results show that the mutual information scores faith-

fully reflect the relevance of a deletion experiment with respect to other experiments.

False positives (experiments which are predicted to be important but not) are often

caused by parallel pathways, whereas false negatives (experiments which are predicted

to be unimportant but are) are caused by sparse constraints along the pathways.

5.3.2 Analysis on suggested experiments

Cross validation test results suggest that the experimental design scheme picks up

the experiments constrained by other knock-out data even though the data from

these experiments are hidden. It is more convincing to show the new experiments

suggested by the information scores are important. Although the importance of a new

experiment cannot be really confirmed until it is performed, we can argue internally

why those experiments are selected according to the inferred models from the current

datasets. To fulfill this goal we applied the experimental design scheme to the entire
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Table 5.2: Top ranking experiments for model discrimination
Gene Rank Score Lethal Gene Rank Score Lethal Gene Rank Score Lethal
Hhfl 1 52.1429 no Nrgl 11 31.6501 no Adh2 21 18.2773 no
Mcml 2 50.2682 yes Fkhl 12 29.1195 no Ace2 22 16.8774 no
FhlI 3 47.0964 yes Fkh2 13 26.7131 no Rapi 23 16.1825 yes
Srb4 4 46.4398 yes Slt2 14 23.4728 no Cup9 24 14.7758 no
Sok2 5 45.0279 no Msn4 15 21.8224 no Gcd2 25 14.0608 yes
Ckal 6 45.0075 no Ino4 16 21.8105 no Gal4 26 14.0602 no
A2 7 40.9023 no Rebi 17 21.0964 yes Rlmi 27 12.7152 no
Abfl 8 40.0967 yes Ckbl 18 19.0418 no Htbl 28 12.6566 yes
Yap6 9 35.1652 no Srpl 19 18.9938 yes Vps1 29 12.6547 no
Nddl 10 34.5169 yes Htal 20 18.9790 no Rfxl 30 12.1417 no

Figure 5-4: Learning curves of four experimental selection criteria
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Rosetta data and ranked experiments which did not appear in the Rosetta data.

Table 5.2 shows the top 30 experiments according the revised mutual information

scores. We also included the lethality information to indicate the feasible experiments.

By referring to the subnetworks generated by the model decomposition algorithm

in [172], we can explain why these experiments are chosen. Hhfl and Fhl2 are along

the pathways of explaining the knock-out effects in TuplA experiment (Figure 4-

8.2). Sok2 is an important hub mediating the paths from Swi4 to many genes down-

regulated in Swi4A experiment (Figure 4-8.1). Nrgl is on the pathway of explaining

the knock-out effects in TuplA and Ssn6A experiments (Figure 4-8.3). The deletion

of those genes help narrowing down consistent edge sign configurations along these

paths. To sum up, all the top-ranking experiments probe "hub" genes on subnetworks

whose model configurations are uncertain.
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5.3.3 Learning curve analysis

Although the cross validation test and the analysis on suggested experiments justify

the importance of selected experiments, they do not give a direct and quantitative

evaluation on the experimental design algorithm. A common approach of evaluating

an active learning method is to incrementally add data points according to the active

learning criteria and measure the performance of the learned model at each iteration

according to some loss function. This procedure is called learning curve analysis.

To evaluate the performance of our experimental design approach, we compared the

learning curves generated by four methods of choosing new knock-out experiments.

The results of learning curve analysis are shown in Figure 5-4.

We performed the analysis on a subnetwork of yeast mating pathway introduced in

Section 4.1. There are 8 experiments from Rosetta data whose knock-out effects can

be explained by the physical network model. We have inferred the physical network

model of the yeast mating pathway from those three datasets in Chapter Four. There

are 4 configurations of model variables which explain the data equally well. We chose

one of those optimal configurations as the reference model.

We obtained the learning curves of the four methods with the following proce-

dure. For each initial subset of knock-out experiments, we tracked the history of the

learning performance by incrementally adding data from newly selected experiments.

As more data were incorporated, the inferred model would converge to the reference

model regardless of the choice of experiments. However, a better criterion for choos-

ing experiments should yield a faster convergence. We chose initial sets of 3, 5 and 6

knock-out experiments and enumerated all combinations of these initial sets from the

8 relevant knock-out experiments. For each initial set, the incremental learning proce-

dure was performed. At each iteration, a model was inferred from the current dataset.

The loss function of an inferred model was the number of undetermined variables in

the inferred model plus the number of variables whose values mismatched the values

in the reference model. We then chose a new experiment according to four different

methods. The first method ranked experiments in terms of their revised mutual infor-
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mation scores (equation 5.7), and selected the top-ranking experiment. The second

method randomly chose a gene which was possible to affect the transcription of other

genes according to the molecular cascade hypothesis. In other words, a candidate

gene linked to a downstream gene in the subnetwork via valid pathways introduced

in Chapter Three. The third method ranked genes according to their connectivity in

the physical network and chose the top-ranking gene which was not yet incorporated.

The connectivity was defined as the number of edges emanating from a gene. This

excluded the protein-DNA interactions incident to the gene because the deletion of

a downstream gene did not affect its upstream. The fourth method ranked exper-

iments according to approximated typical mutual information (equation 5.3). The

knock-out data of the selected experiment were then incorporated separately for the

four methods. If the data of the new experiment were available in Rosetta data, then

the real data were incorporated. Otherwise hypothetical data were generated by the

predicted responses of the new experiment according to the reference model. The

incremental learning proceeded until the mutual information criteria did not suggest

new experiments (in other words, the mutual information scores of all left experiments

were zero).

The incremental learning procedure was carried out over all possible combinations

of initial datasets. There are (8) = 56, (8) = 56 and () = 28 initial datasets with

3, 5 and 6 experiments. We show the means and standard deviations of these curves

in Figure 5-4. Clearly, both schemes of hub selection and revised mutual information

criterion significantly outperform the random selection scheme: both the means and

the variances are smaller in the non-random schemes. Moreover, the performance

of the revised mutual information criterion improves as more data are incorporated

in the model. Hub selection performs better than the revised mutual information

criterion during the first half of the learning curve. As the incremental learning

proceeds, the mutual information criterion catches up with the hub selection and

eventually outperforms it. However, the difference between random selection and

typical mutual information scores is small during the early iterations. This is because

mutual information scores are relevant only when current models contain certain
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amount of information regarding the true model. Using revised mutual information

scores outperforms the random selection even at early iterations. This is probably

because using the revised mutual information can avoid choosing irrelevant deletions

(that would yield equal probability for +1, -1 and 0 predictions) in the beginning and

directly focuses on the experiments which would generate many significant changes

but the predicted changes are uncertain. The typical mutual information score, in

contrast, would rank irrelevant deletions high at early stage since they would yield

uncertain responses in terms of changes/no changes.

The difference of the performance between the mutual information criterion and

hub selection can be understood from the properties of the physical network models.

When the available dataset is small, the inferred model has weak predictive power

hence it does not help to choose the critical experiment at the next step. As the

learning proceeds, the inferred model contains more information about the under-

lying model, thus it can help to select the informative experiments which at best

discriminate the current model. In contrast, connectivity becomes less important as

we acquire more information about the underlying process, since many physical in-

teractions may not carry functional roles in gene regulation. This observation is in

line with the typical performance of a myopic active learning procedure, where the

inferred model is assumed to be correct when generating the next experiment. As

inferred models are closer to the true models, mutual information scores can give a

better answer to select optimal experiments.

This difference suggests a more efficient way of selecting experiments for model

discrimination. When the available dataset is small and the target system is relatively

unprobed, the best strategy is to follow a simple yet intuitive criterion such as selecting

hubs. As more information is obtained from the updated dataset, the simple method

is preferred to a quantitative experimental design scenario which utilizes the updated

information. The "switching point" between the naive and the elaborated schemes

can be decided by the learning curve analysis.
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5.4 Analysis of new experimental data

The "wet experiments" are the primary (or perhaps the only) link of computational

models to the real world. The discussion about experimental design is incomplete

without covering the analysis of new data from suggested experiments. In order to

complete the process of scientific inquiry, we collaborated with the biologists at the

Ideker Laboratory at Unversity of California, San Diego to perform some suggested

experiments and analyze the new data. In this section I will describe the computa-

tional methods of analyzing the new data as well as their biological findings.

5.4.1 Selection of experiments

The top-ranking experiments in Table 5.2 are prioritized according to their capacity

of reducing the uncertainty of model configurations. However, if we are allowed to

perform n knock-out experiments (n > 1), selecting the top n experiments on the list

is not necessarily the best strategy. First, we have to exclude deleting lethal genes for

they require more careful and costly treatment such as making temperature sensitive

mutants. Second, the revised mutual information score of equation 5.8 is for single

experiments. It is possible to extend the same framework to batch experiments, but

the evaluation of the mutual information scores of all batch experiments would be

time-consuming. Therefore, we adopt a less formal way of selecting batch experi-

ments. There are two basic strategies for selecting batch experiments. One can focus

on deleting genes within the same subnetwork or probe different parts of the entire

network. Although the learning curve analysis in Section 5.3.3 suggests the latter is

a better strategy when the model is very sparsely constrained, it needs a large num-

ber of scattered perturbations in order to narrow down any subnetwork configuration

within a useful range. In contrast, the former strategy may be risky at the initial stage

because the target subnetwork may be a false positive, but it can lead to a complete

characterization of a subsystem. We decide to adopt the former strategy to obtain a

complete characterization of a subnetwork rather than very limited characterizations

of many subnetworks.
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Figure 5-5: Subnetwork deciphered by Sok2A
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Following these criteria we selected the deletions of Sok2 and several other genes

in the same subnetwork. Sok2 ranks the fifth in Table 5.2 and is the second among

all non-lethal deletions. Although Hhfl is non-lethal and has better ranking, the

subnetwork deciphered by its deletion (Figure 4-8.2) contains protein-protein inter-

actions (Tup1,Hhf1), (Fhll,Hhfl) reported from a high-throughput assay. Thus the

validity of this subnetwork is less confident. Figure 5-5 shows the subnetwork disam-

biguated by Sok2 deletion. It contains purely protein-DNA interactions and explains

65 knock-out interactions in Rosetta Swi4A experiment. We can view this subnet-

work as a concatenation of 4 pathways connecting Swi4 to the downstream genes

affected in Swi4A: Swi4 -+ Sok2 --+ Msn4, Swi4 -- Sok2 -- Hap4, Swi4 -- + Sok2 --

Yap6, and Swi4 -> Sok2 -> Cup9. Uncertainty of model configurations arises from

the freedom of adjusting edge signs along these pathways to fit the knock-out effects.

To completely determine edge signs in this subnetwork, 5 new knock-out experiments

are needed: Sok2, Msn4, Hap4, Yap6 and Cup9. We also applied the mutual infor-

mation scores restricted to the genes in this subnetwork and found they were the top

5 experiments within this restricted set. Therefore, we chose to perform all these 5

knock-out experiments. The post processing of experimental data indicated the qual-
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Table 5.3: Top-ranking repeated experiments
Gene Function
Swi4 cell cycle regulator
Ssn6 general repressor of RNA polII
Rpd3 histone deacetylase
Swi6 cell cycle regulator
Tupi general repressor of RNA pollI
Med2 component of RNA polII holoenzyme
Sin3 component of RNA polI holoenzyme
Ckb2 casein kinase
Gcn4 amino acid synthesis control
Gln3 amino acid synthesis control

ity of Cup9A data was unsatisfactory. Therefore, we only analyzed the data from the

remaining 4 deletion experiments.

In addition to new knock-out experiments, we also repeated several deletion ex-

periments which appeared in the Rosetta data in order to verify the reproducibility of

knock-out expression data. We chose the repeated experiments according to their con-

tribution to the explanatory power of the physical network model. The contribution

of an existing experiment is the number of knock-out interactions which are explained

by the paths containing the deleted gene in this experiment as the intermediate or

terminal gene. For instance, Stell and Ste12 are along the pathway connecting to

mating response genes, and Stell is the upstream of Ste12. If those genes did not

change in Stel2A, then this pathway could not explain the knock-out effects in StellA

due to the conditions of pathway explanation. Intuitively, a Rosetta experiment is

chosen if it affects many genes which connect to the deleted gene via valid pathways.

Table 5.3 enlists the top-ranking repeated experiments. We chose Swi4A and Gcn4A

as the repeated experiments. Swi4A ranks top on the list. Although Gcn4A only

ranks the ninth, other higher ranking genes either belong to the general transcription

apparatus (Ssn6, Tupi, Med2, Sin3), have an overlapped function with Swi4 (Swi6),

or explain knock-out effects via pathways containing high-throughput protein-protein

interactions (Rpd3, Ckb2). Notice Swi4 is also the key gene in the Sok2 subnetwork.
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Table 5.4: Summary statistics of comparing repeated experiments
Swi4 total Gcn4 total

corr. -0.013 0.340
corr. pval 0.84 < 10-4

rank corr. -0.058 0.145
rank corr. pval 1.0 < 10-4

hyper-geom. pval 0.188 4.88 x 10-"
Swi4 subset Gcn4 subset

corr. 0.344 0.831
corr. pval 8 x 10-5 < 10-4

rank corr. 0.353 0.705
rank corr. pval 9 x 10-5 < 10-4

hyper-geom. pval 1.05 x 10-5 1.80 x 10-13

5.4.2 Analysis of repeated experimental data

The goal of comparing the knock-out data in Swi4A and Gcn4A between the two

datasets is to verify the reproducibility of the knock-out gene expression data. Because

the annotations of the physical network are inferred from the knock-out interactions

of high-throughput gene expression data, the inferred annotations are meaningful

only if the knock-out data are reliable. Ideally, the expression data generated from

two laboratories should be similar, and the significant knock-out effects should also

be robust across the two repeated experiments.

In reality, these two datasets are very dissimilar at genome scale. The Pearson

correlation coefficient across 5901 genes is 0.34 and the rank correlation coefficient

is 0.145 between the two Gcn4 datasets. For Swi4, the correlation between the two

datasets is even lower. The Pearson correlation coefficient is -0.013 and the rank

correlation coefficient is -0.058. By thresholding the reported p-values (Rosetta data

p < 0.02, new data p < 0.05) and counting the overlap of up and down regulated

genes, the two datasets are also dissimilar; the hyper-geometric p-value of the overlap

in Swi4A is 0.188, while the hyper-geometric p-value in Gcn4A is very significant (

4.88 x 1021). Table 5.4 summarizes the statistics of the comparison results.

The disparity between datasets generated from repeated experiments seems to be

universal for a variety of high-throughput assays. Examples are reported in DNA mi-
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croarrays ([2, 127]), CHIP-chip experiments ([100, 78]) and yeast two-hybrid systems

([160, 86]). In each example, the overlapped fraction of up/down regulated genes

or significant physical interactions is very small. This disparity can be attributed

to many causes such as the fluctuations of experimental conditions, measurement

noise, variations of specimen, and human factors. Overall the disparity reflects the

improvement space of high-throughput assays in order to achieve the quality control

level similar to mature technologies such as semiconductor fabrication.

One plausible explanation for the disparity in our case is the mixture of the re-

sponses to target perturbations and fluctuations from irrelevant factors. The actual

changes induced by perturbing the target regulatory systems are buried in these fluc-

tuations. This explanation is consistent with the observation that Gcn4A datasets

are more similar than Swi4A datasets. Gcn4 is a master regulator of amino acid

metabolism which is known to affect many genes ([115]). Hence deleting Gcn4 should

change a large number of genes. In contrast, the function of Swi4 is partially com-

plemented by Swi6 ([39, 139]). Therefore, its deletion may induce less significant

responses and these responses are more likely to be overwhelmed by noise.

To test this hypothesis, we compared the two datasets on the subsets of genes

putatively regulated by each factor. For Gcn4 we chose 32 genes that were bound by

Gcn4 in location analysis and that were down regulated in Rosetta data. For Swi4

we chose 82 genes which were either bound by Swi4 or were in the Sok2 subnetwork

(Figure 5-5) and down regulated in the Rosetta data. These genes are likely to

experience significant changes in Swi4 or Gcn4 deletions, thus they should yield more

consistent changes in the repeated experiments. The lower part of Table 5.4 shows

the comparison results on restricted subsets. The two deletion experiments are much

more strongly correlated in the restricted subsets: the Pearson correlation coefficient

is 0.831 in Gcn4A and 0.344 in Swi4A. Since correlation coefficients are sensitive

to the data size, we calculated the p-values by randomly permuting the data and

compared the results with the whole genome correlation. The two datasets are still

significantly similar in the restricted subsets. Furthermore, hyper-geometric tests

indicate a significant fraction of genes in the restricted set are up or down regulated
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in repeated experiments.

5.4.3 Analysis of deletion data in Sok2 subnetwork

We analyzed the data of five knock-out experiments: Swi4A (from the repeated

deletion experiment), Sok2A, Msn4A, Hap4A and Yap6A. The purpose of analyzing

this data is two-fold. First, we want to validate or falsify the three pathways (Swi4 -+

Sok2 -> Msn4, Swi4 -+ Sok2 -+ Hap4, Swi4 -* Sok2 -+ Yap6) in the subnetwork shown

in Figure 5-5. Second, we want to uniquely determine the edge sign configurations

in the subnetwork. We will show that these two goals are inter-related and hence

need to be considered together. We then revise the original models according to the

analysis results.

We validate a pathway by showing that downstream genes experience significant

and coherent changes by deleting each intermediate gene along the pathway. This cri-

terion follows from the conditions of explaining a knock-out interaction using molecu-

lar cascades in Section 3.3.3. Each intermediate gene along the pathway is a necessary

component for the regulation of downstream genes, hence perturbing each interme-

diate gene changes the downstream genes. The combinatorial effects on downstream

genes (for example, redundant pathways) may invalidate some of the "true" path-

ways but do not nullify the pathways that pass this test. In addition, we assume

the downstream transcription factors (Msn4, Hap4, Yap6) possess single functions

(either activators or repressors). Thus the changes in the most downstream genes are

expected to be coherent: they experience either all positive or all negative changes in

each deletion experiment. Notice we do not require an intermediate gene to change

significantly in the deletion of its upstream gene. For example, deleting Swi4 may not

change Msn4. This property also arises from the condition of pathway explanation in

Section 3.3.3. Intermediate genes are either signal transduction proteins whose activi-

ties are not modulated by mRNA abundance or transcription factors whose activities

are very sensitive to protein quantities. Therefore, their activity changes may be

very small in the absolute scale and are below the detection threshold of microarray

technologies.
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To quantitatively validate or falsify a pathway, we need to select the downstream

genes of this pathway and then evaluate the significance of coherent changes on these

downstream genes in each experiment. The downstream genes are putatively regu-

lated by the downstream transcription factors (Msn4, Hap4, Yap6). We use different

criteria to generate three sets of genes for each pathway. The first set contains genes

which are bound by a downstream transcription factor according to CHIP-chip data

and are significantly changed in Rosetta Swi4A. In other words, the set contains

downstream genes in Figure 5-5. The second set contains all genes bound by a

downstream transcription factor. The third set contains genes which are putatively

regulated by a transcription factor according to previous studies.

A straightforward approach of evaluating the coherence of expression data is to

check whether all genes downstream of the pathway exhibit significant changes in

same the direction for each experiment. A hypothetical example is that all genes

downstream of Hap4 are significantly down regulated in Hap4A, up regulated in

Sok2A, and up regulated in Swi4A. This strong condition holds only for few genes:

among the 98 genes bound by Hap4, only 6 have significant changes in all three

deletion experiments, the fraction of significant genes is also small for genes bound

by Msn4 (4 out of 74). Table 5.5 summarizes the number of genes bound by Msn4,

Hap4 and Yap6 which experience significant and consistent changes in Rosetta Swi4A

and new Swi4A, Msn4A, Hap4A and Yap6A experiments. In each pathway, only a

small fraction of downstream genes are significantly and consistently changed in all

deletion experiments along the pathway. Therefore, the stringent condition requiring

that individual genes experience significant changes in all deletion experiments would

falsify all three pathways in the subnetwork. However, as seen in the comparison

of repeated experiments, high-throughput gene expression data are very noisy. The

expression changes of individual genes are subject to fluctuations and thus are difficult

to draw conclusions from. Instead, we evaluate the aggregate properties which are less

sensitive to noise. Rather than setting the stringent criterion that all genes experience

significant and coherent changes in all experiments, we ask whether a gene set as a

whole has the propensity of significant changes in each experiment. This aggregate
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Table 5.5: Consistency of two Swi4A data in Sok2 subnetwork
Sok2 subnetwork

# genes 337 consistent and significant changes 23
Swi4--+Sok2--*Msn4 pathway

# downstream genes 74 consistent and significant changes 4
Swi4-+Sok2--*Hap4 pathway

# downstream genes 98 consistent and significant changes 6
Swi4-+Sok2-+Yap6 pathway

# downstream genes 120 consistent and significant changes 8

perspective calls for a method of measuring the coherence of gene expression data on

a set of genes.

Different methods of measuring the coherence of gene expressions can be used - for

instance, correlation coefficients or p-values of hyper-geometric tests. Here we adjust

the method adopted by Ideker et al. to identify the subnetworks which are active

under certain experiments ([82]). We assume the p-values of expression changes are

provided in the datasets. They reflect the significance of measured changes and can

be computed by different error models. The p-values in our data are computed by

assuming Gaussian additive noise on measurement data. Details can be found in [82].

Given a subset of genes G under a specific condition e, the log ratio of expression

changes xie and the p-value of these changes pi, are provided (i denotes gene index

and e experiment index). We convert the p-values into the z-scores by applying the

inverse Gaussian cumulative distribution function:

zie = 4D--1 (1 - Pie). (5.40)

We are interested in the coherence of expression changes in a certain direction. Hence

we compute the average z-score over a subset of genes. The average directional z-

score over a subset of n genes is the average z-score weighted by their directions of

changes. To avoid an insignificant response contributing a large negative value to the
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average z-score, we consider only the significant responses where zie > 0:

I n
z(G, e, d) = - 6 6 (zie > 0)sgn(Xie -d)zie. (5.41)

1

An absolute measure of expression coherence such as the average z-score is difficult to

interpret and compare. Instead, we use the relative measure of p-values to compare

the coherence on our target gene set to random sets of genes of the same size. We

randomly selected gene groups of the same size of G and counted the fraction of

random trials whose average z-scores were greater than the empirical value. This

fraction is the p-value against random sets of genes,

1
p(G, e, d) = I E I(z(Gi, e, d) > z(G, e, d)). (5.42)

Girandom,jGi|=G

To ensure that the significant and coherent responses were specific to the downstream

genes in the model, we also compared the expression coherence significance of down-

stream genes in each pathway versus genes downstream of unrelated transcription

factors. For each transcription factor, we evaluated the expression coherence p-value

on genes bound by it. We then checked the rank of expression coherence p-value of

the target gene set among the p-values of all transcription factors. The expression

coherence on the target gene set was considered significant if the p-value ranked high

on the list. The rationale was that a significant portion of genes bound by a transcrip-

tion factor were regulated by the factor. Hence these genes would exhibit significant

and coherent changes if the transcription factor activity were altered. Due to the lack

of evidence from physical interaction and Rosetta knock-out data, we assumed tran-

scription factors outside the target pathway were not affected by all deletions along

the pathway. Consequently, the genes bound by other factors were not expected to

have significant and coherent changes in all deletion experiments.

Table 5.6 summarizes the testing results on three pathways: Swi4 -* Sok2 -

Msn4, Swi4 -- Sok2 -* Hap4, Swi4 -- Sok2 -- > Yap6. The table shows the coherence p-

values, ranks and the directions of changes in the downstream genes of these pathways
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Table 5.6: Expression coherence on genes bound by factors in Sok2 subnetwork
exp. factor # genes rank p-value change direction
Swi4zA Swi4 175 1 < 10-4 -

Swi4A Sok2 65 64 0.197 +
Swi4A Msn4 74 1 < 10-4 +
Swi4A Hap4 98 13 1.3 x 10- +

Swi4A Yap6 120 70 0.211 -

Sok2A Sok2 65 40 0.1164 -

Sok2ZA Msn4 74 94 0.429 +
Sok2A Hap4 98 17 0.0276 +
Sok2A Yap6 120 7 0.0107 +
Msn4A Msn4 74 101 0.433 -

Hap4A Hap4 98 1 < 10-4 -

Yap6A Yap6 120 43 0.134 +

in each deletion experiment. We chose genes bound by Msn4, Hap4 and Yap6 (p-

value < 0.001 from location data [100]) as the downstream genes in each pathway

respectively. We also show the coherence p-values in the genes bound by each of the

106 transcription factors in Tables B.3-B.7 in the Appendix.

We first perform a "sanity check" to confirm the reliability of the expression

coherence p-values. Genes bound by Swi4 and Hap4 exhibit very significant down

regulations (p-values < 10-4, rank top among all transcription factors) in Swi4A and

Hap4A respectively. This observation is consistent with the knowledge about Swi4

and Hap4 as transcription activators ([39, 109]). In contrast, genes bound by Sok2,

Msn4 or Yap6 did not exhibit strong coherence (see Table 5.6). The lack of coherence

may be due to the dual functions of transcription factors (e.g., Sok2, [138]), the

existence of parallel pathways (e.g., Msn4, [61]), or the false positives in the binding

data.

We then investigate the coherence scores of downstream genes in each path-

way. For genes bound by the downstream transcription factor of each pathway

(Msn4, Hap4, Yap6), both Msn4 and Hap4 downstream genes were strongly up reg-

ulate in Swi4A (Msn4-downstream genes ranks first and had p-value < 10-4, Hap4-

downstream genes ranks 13th and had p-value 0.0013). Hap4-downstream genes also

exhibit moderate up regulations in Sok2A (p-value 0.0276, ranks 16th) and strong
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Table 5.7: Genes putatively regulated by Msn4
Gene Function Gene Function
Gdh3 glutamate dehydrogenase Ssa3 chaperone
Hsp26 heat shock protein Tkl2 transketolase
Tps1 trehalose-6-phosphate synthase Aral dehydrogenase
Glki glucokinase Hsp30 heat shock protein
YDL124W NADH-dep. reductase Hsp42 heat shock protein
Hsp78 heat shock protein Ttrl glutaredoxin
Hor2 glycerol phosphate phosphatase Ssa4 chaperone
Hspl2 heat shock protein Mdj1 chaperone
Gsyl glycogen synthetase Hxkl hexokinase
CttI catalase T Trx2 Thioredoxin
So14 6-phosphogluconolactonase Sod2 manganese superoxide dismutase
Dog2 2-Deoxyglucose-6-phosphate phosphatase Gre3 aldo/keto reductase
SpslOO spore wall formation Dot5 nuclear thiol peroxidase
Lap4 aminopeptidase YKRO11C unknown
Hspl04 heat shock protein Ahpl alkyl hydroperoxide reductase
Glol glyoxalase YML131W NAD-dependent oxidoreductase
Pgm2 phosphoglucomutase Ald3 aldehyde dehydrogenase
Ddr48 stress protein YMR315W oxidoreductase
Ras2 GTP-binding protein YNL134C dehydrogenase
YNL194C sphingolipid metabolism YNL200C stress protein
YOL150C unknown Gre2 stress protein

Table 5.8: Genes putatively regulated by Hap4
Gene Function Gene Function
Pet9 ADP/ATP carrier protein Cor ubiquinol cytochrome c reductase
Atpl ATP synthase Atp3 ATP synthase
Atp16 ATP synthase Cox9 cytochrome c oxidase
Atp5 ATP synthase Atp17 ATP synthase
Qcr7 ubiquinol cytochrome c reductase Ripi ubiquinol cytochrome c
Qcr6 ubiquinol cytochrome c reductase cox4 cytochrome c oxidase
Cox13 cytochrome c oxidase Qcr9 ubiquinol cytochrome c reductase
Qcr10 ubiquinol cytochrome c reductase Cox6 cytochrome c oxidase
Atp2 ATP synthase Atp7 ATP synthase
Cox12 cytochrome c oxidase Cox5A cytochrome c oxidase
Pori mitochondria membrane porin Cyti cytochrome ci
Tufi mitochondria translation elongation Atp15 ATP synthase
Atp20 ATP synthase Qcr2 ubiquinol cytochrome c reductase

down regulations in Hap4A (p-value < 10-4, ranks first). Msn4-downstream genes

had weak coherence scores in both Sok2A (p-value 0.492, ranks 94th) and Msn4A

(p-value 0.433, ranks 101th). Yap6-downstream genes had weak coherence scores in

Swi4A (p-value 0.211, ranks 70th) and Yap6A (p-value 0.1346, ranks 43th), and mod-

erate up regulations in Sok2A (p-value 0.0107, ranks 7th). From these observations,

only the Swi4 -+ Sok2 -- Hap4 pathway was validated; the other two pathways were

falsified. We can also infer the sign of each edge by inspecting the aggregate changes

in the three deletion experiments: (Swi4,Sok2) is positive, (Sok2,Hap4) is negative,

and Hap4 activates (in aggregate sense) downstream genes.
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Table 5.9: Expression coherence on genes putatively regulated by factors in Sok2
subnetwork

exp. factor # genes rank p-value change direction
Swi4A Swi4 175 1 < 104 -

Swi4A Sok2 65 76 0.25 +
Swi4A Msn4 43 10 5 x 10-4 +
Swi4A Hap4 36 37 0.044 -

Swi4A Yap6 120 61 0.154 -

Sok2Z Sok2 65 25 0.0578 -

Sok2Z Msn4 43 1 < 10-4 +
Sok2A Hap4 29 10 0.0107 +
Sok2A Yap6 120 5 0.0015 +
Msn4A Msn4 43 1 < 10-4 -

Hap4A Hap4 29 1 < 10-4 -

Yap6A Yap6 120 43 0.114 +

The protein-DNA binding data from CHIP-chip experiments are noisy, and some

protein-DNA interactions may not play functional roles. Therefore, including all genes

bound by the same transcription factor will substantially degrade the coherence score.

To overcome this problem, we pulled out sets of genes which were putatively regulated

by Msn4 or Hap4 according to the yeast proteome database (YPD). Tables 5.7 and

5.8 list these genes. Msn4-regulated genes are stress response genes which are down

regulated in Msn2AMsn4A double deletion mutants under normal or stress conditions

([17]). These genes do not necessarily exhibit significant changes in Msn4A due to the

complementary function of Msn2 as discussed. Hap4-regulated genes are bound by

Hap4 and experience significant down regulations in Hap4A. Most genes are related

to respiration, such as ATP synthase or ubiquinol cytochromone c oxidoreductase

complex. This is consistent with the function of Hap2-Hap3-Hap4-Hap5 complex of

regulating respiration genes ([109]).

In contrast to the previous sets of downstream genes, both Msn4 and Hap4 regu-

lated genes exhibit strong or moderate coherence scores in each deletion experiment.

Msn4-regulated genes are up regulated in Swi4A (p-value 5 x 10-4, ranks 10th), up

regulated in Sok2A (p-value < 10-4, ranks first), and down regulated in Msn4A

(p-value < 10--4, ranks first). Hap4-regulated genes are down regulated in Swi4A
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(p-value 0.044, ranks 37th), up regulated in Sok2A (p-value 0.0107, ranks 10th), and

down regulated in Hap4A (p-value < 10-4, ranks first). The effects of deleting genes

along Swi4 -* Sok2 -- Msn4 is particularly strong, which suggests this pathway may

indeed relay the gene regulatory effects of perturbations to downstream genes. We

survey the literature and find Sok2 does repress the function of Msn4 ([141]); Sok2

is the terminal gene of PKA signal transduction pathway, and Msn4 is repressed by

enabling the PKA pathway. We have direct evidence (Msn4 is up regulated in Sok2A)

and indirect evidence (Msn4-controlled genes are up regulated in Sok2A) to support

the inhibitory function of Sok2. Since Hap4 also has the same response in Sok2A,

we suspect Sok2 imposes the same effect on Hap4. However, Hap4-regulated genes

responded weakly in the Sok2A experiment. One possible explanation is that each

sub-unit of the Hap complex needs to increase in order to up regulate the relevant

genes. Since Sok2A only brings up Hap4 but not Hap2, Hap3 or Hap5, it does not

suffice to increase the levels of respiration related genes. The function of Swi4 on

Sok2 is reported in some works but not yet conclusive ([165, 5]). Also, Swi4 does

not belong to the PKA pathway. Thus the first edge of the Swi4 - Sok2 -- Msn4

pathway needs to be further verified.

Figures 5-6 and 5-7 visualize the log ratios of expression change of Msn4 and Hap4-

regulated genes in the new deletion experiments, and Table 5.9 enlists the expression

coherence scores on restricted genes. Msn4-regulated genes have moderate propensity

for down regulation due to the redundant function of Msn2. In contrast, they exhibit

strong propensity for up regulation in both Swi4A and Sok2A. Hap4-regulated genes

have very strong propensity for down regulation, which supports the prior knowledge

about Hap4 as an essential component for the regulatory complex Hap2p-Hap3p-

Hap4p-Hap5p. They have moderate propensity for down regulation in Swi4A and

weak propensity of up regulations in Sok2A.

Since the prioritization of experiments is based on the expected information from

current predictions, new data from the suggested experiments are not guaranteed

to reduce model uncertainty. The responses of genes from the new data, however,

demonstrate that they reduce the uncertainty about edge signs along Msn4 and Hap4
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Figure 5-6: Responses along Msn4 pathway
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Figure 5-7: Responses along Hap4 pathway
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pathways. We can now uniquely infer the edge signs along the pathways from the

aggregate responses of their regulated genes. Figure 5-8 shows the inferred edge signs

along the two pathways. (Swi4,Sok2) is positive along the pathway Swi4 -* Sok2 -*

Msn4 and negative along Swi4 - Sok2 -+ Hap4. Sok2 inhibits both Msn4 and Hap4,

and both Msn4 and Hap4 are activators. The contradictory edge sign on (Swi4,Sok2)

may be due to many possible causes. One of the pathways may be invalid, Swi4 may

not regulate Sok2, Swi4 may affect downstream genes via another hidden pathway,

the function of Swi4 on Sok2 may depend on the pathway, the expression data may

be inaccurate, and so on. More elaborate experiments are needed in order to test
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Figure 5-8: Inferred edge signs of Sok2 subnetwork
Swi4
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Msn4 Hap4

these hypothesis.

The uncertainty about edge signs in the Sok2 subnetwork is reduced by incorpo-

rating new deletion data. However, the way to infer the edge signs from new data

in previous discussion is by visually inspecting the gene expression changes in the

deletion experiments. This "common sense reasoning" is not in line with the model

inference algorithm introduced in Chapter Three, albeit their inferred values may co-

incide. In order to make the methodology consistent, we incorporated the new data in

the physical network model with the same way as incorporating Rosetta data: break-

ing knock-out data into pairwise interactions and constructing potential functions to

explain knock-out effects. We then applied the inference algorithm on the augmented

model and identified the optimal configurations in the Sok2 subnetwork. The inferred

edge signs along the two pathways were consistent with Figure 5-8 except the sign of

the (Swi4,Sok2) edge was positive according to inference results. Notice we relaxed

the condition of a valid pathway by not requiring that the deletion of all intermediate

genes significantly alters the downstream gene (conditions in Section 3.3.3). This is

because there are very few pathways satisfying this criterion as mentioned previously.

We did not either impose the constraint that a transcription factor has a coherent

function throughout all regulated genes (thus all protein-DNA edges emanating from

the same factor have identical edge signs). Therefore, the edges emanating from

Msn4 or Hap4 can have different signs. Without this constraint, the edge signs along

the pathways are still uniquely determined. This is because the overall change of
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the downstream genes tends to a specific direction in each experiment. Hence the

evidence pertaining to the knock-out effects in one direction dominates the other

direction. For example, if 9 of 10 Hap4-downstream genes are down regulated in

Hap4A and 8 genes are up regulated in Sok2A, then setting the sign of (Sok2,Hap4)

to negative yields much greater joint likelihood score than setting it to positive.

To sum up, our analysis on the new data validates certain pathways and falsifies

the others. It also reduces the uncertainty of model configurations by uniquely deter-

mining edge signs along pathways. On the other hand, the new analysis results also

indicate the contradiction on edge sign (Swi4,Sok2) and introduces new uncertainty

in the model. Another scientific inquiry process would be needed in order to clarify

this new uncertainty.
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Chapter 6

Inferring Combinatorial Functions

of Multiple Transcription Factors

It is evident that many genes are controlled by multiple transcription regulators. Both

chromatin IP data and sequence data show many genes are bound by multiple pro-

teins on their promoters. The RNA polymerase II holoenzyme, for example, consists

of multiple subcomplexes and each subcomplex contains multiple proteins ([77]). Fur-

thermore, the number of transcription factor genes is far less than the total number

of genes in a genome, but most genes can be activated or repressed under multiple

conditions. A plausible mechanism for a small number of transcription factors to

regulate a large number of genes under a variety of responses is through the combi-

natorial effects of these factors. Empirically combinatorial control mechanisms have

been identified in gene regulation circuitry. For instance, some transcription factors

need to form a complex in order to bind to DNA promoters ([4]), homologous tran-

scription factors complement each other function when one factor is missing ([61]), a

repressor blocks the binding of an activator ([13]), and many others.

While fragmented instances of combinatorial control are discovered, biologists do

not yet have a systematic understanding about the combinatorial control on genomic

scale. This poses a challenging problem in both experimental and computational

biology. The difficulty resides on the complexity of the underlying mechanisms, the

lack of experimental technologies to reveal these mechanisms, and the insufficient
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data points to even determine the functional relations of combinatorial control.

In spite of its difficulty, computational biologists have started inferring the com-

binatorial functions of multiple transcription factors from large scale datasets and

achieved certain progress. Rather than emphasizing the complexity of the problem,

the crux of the current progress relies on simplifying the problem and extracting in-

formation from limited data. For example, most of the computational studies focus

on the regulatory mechanisms through modulating the abundance of transcription

factors ([136, 12, 149, 150]). Other possible mechanisms such as protein modification

and localization are ignored due to the lack of data.

The physical network model described in Chapter Three does not consider the

combinatorial effect of multiple transcription factors. It assumes the perturbation of

any regulator suffices to induce changes in the regulated gene. In this chapter, we

extend this simplified assumption and consider the combinatorial effect of multiple

transcription factors. We characterize the properties of single transcription factors

in the context of combinatorial control. These properties are decomposed into two

aspects: the functions of single factors as activators or repressors and the directions of

effectiveness such as necessary or sufficient regulators. Based on this characterization,

we can construct regulatory models and evaluate how well do these models fit the

binding and expression data. An incremental algorithm is proposed to identify the

regulatory models which best fit the data. Finally we apply this algorithm to large-

scale datasets and analyze the experimental results.

6.1 Problem statement and hypotheses

There are different levels of questions regarding transcription regulation. Problems

at structural level pertain to re-constructing the identities of members (who regulates

who) in transcription regulation and detecting the "signatures" (motifs) on DNA

promoters which can help to recognize these identities. CHIP-chip assays and motif

analysis, for example, are meant to answer the structural questions. Problems at

functional level pertain to characterizing the relations between the activities - such
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as mRNA levels, protein levels, DNA or protein modification states - of transcrip-

tion factors and regulated genes. For example, we may characterize a transcription

factor as an activator or a repressor; or more specifically, whether its activating or in-

hibitory function relies on the presence of another protein. Problems at mechanistic

level pertain to understanding the biophysical/biochemical mechanisms underlying

transcription regulation. For example, whether a transcription factor affects tran-

scription initiation by increasing its protein abundance, importing from cytosol to

nucleus, chemically modifying the chromosome, blocking the access of other regula-

tors to DNA promoters, or the combination of these mechanisms.

The goal of the work in this chapter is to identify the genes regulated by a set of

transcription factors and to re-construct the functional relations between the mRNA

levels of regulators and of regulated genes. Our work tackles problems at structural

and functional levels. We do not intend to address problems at mechanistic level

except simply assuming the primary mechanism is by modulating the protein (and

mRNA) abundance of regulators. The reasons for avoiding the structural problems

are due to the complexity of the system and the lack of data to reveal the underlying

mechanisms. Nevertheless, fast-growing technologies and assays will soon provide

abundant information about diverse gene regulation mechanisms at a large scale.

We apply the following simplified hypotheses in building the gene regulatory model

of multiple transcription factors.

First, we assume transcription factors are the only immediate causes of tran-

scription regulation and only concern about the effects of transcription factors which

directly bind to DNA promoters. This assumption is consistent with the general

picture about transcription regulation (Section 1.2) but does not cover certain excep-

tions. Other "direct causes" such as chromatin modification proteins may come into

play. Moreover, ignoring the effects from indirect causes such as protein kinases may

not be able to accurately characterize gene regulation at function level.

Second, given that a transcription factor binds to a specific promoter, we pos-

tulate the activity of the factor on the target promoter is modulated by its protein

abundance. Furthermore, we assume the mRNA levels captured by DNA microarrays
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faithfully reflect the abundance of their corresponding proteins. These assumptions

combined allow us to use mRNA levels to indicate the activities of genes, hence di-

rectly model the dependencies of mRNA data as many previous works did. However,

both assumptions may be too simple. Modulation of protein activities can be achieved

by post-translational modifications or localization which are not captured by protein

abundance. The binding profile acquired under one condition may be very different

from the profile acquired under the other condition ([12]). Moreover, previous stud-

ies showed mRNA and protein levels of the same gene were poorly correlated ([83]).

Therefore, inferred results according to these simplified assumptions - including most

previous works of gene expression analysis and our work in this chapter - need to be

carefully scrutinized.

Third, very often a group of genes are co-regulated by a set of transcription fac-

tors with the same function. This assumption implies gene modules - rather than

individual genes - are the basic units of gene regulation. The module hypothesis is

the foundation of many previous works including clustering gene expression, and the

regulatory module works in [12] and [136]. In our work, the module assumption helps

reducing over-fitting since the combinatorial functions are built from multiple genes

rather than single genes.

Fourth, following the assumption of physical network models, we quantize the

changes of mRNA levels with respect to a reference condition into three states: up

regulation, down regulation, no change. The state "no change" can be unfolded into

two possible scenarios: the state of "actually no change", meaning that the mRNAs

in the majority of the cells do not change, and a uniform mixture of up and down

regulations over the population. We do not distinguish between these two scenarios

because they are indistinguishable at population level in the mRNA data we use.

Fifth, we hypothesize that each transcription factor has a distinct function (ac-

tivator or repressor) on all genes it regulates, and its function is not inverted in the

context of combinatorial control. Therefore, an activator will not become a repres-

sor when it collaborates with other factors to regulate other genes. Nevertheless, its

function can be disabled in the context of combinatorial control. For example, Hap4
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forms a complex with Hap2, Hap3 and Hap5 to activate genes involved in respiration

(see Section 5.4). The activating function of Hap4 is disabled when any other mem-

ber of the complex is absent. This is certainly a strong assumption and unlikely to

hold for most transcription factors. However, many transcription factors do have a

primary function (as an activator or a repressor) on most genes they control. To a

crude approximation we can thereby assume they have a consistent function.

Sixth, although a transcription factor may coordinate with other factors to regu-

late genes, sometimes the effect of altering a single factor can be exhibited regardless

of the states of other factors. For example, if a factor has to form a complex with

several other proteins in order to activate a gene, then the deletion of this factor will

down-regulate the affected gene regardless of the presence or absence of other factors.

We categorize the combinatorial property of a transcription factor in terms of the

direction of its activity changes that alters the regulated genes. A transcription fac-

tor is a necessary regulator if its down regulation disables its function. Conversely, a

transcription factor is a sufficient regulator if its up regulation enhances its function.

A regulator can also take effect in both directions or neither direction. We construct

the combinatorial functions in terms of the functions and combinatorial properties of

single factors. Details about this construction will be elaborated in the next section.

Seventh, we encode the uncertainty/stochasticity of functional relations by assign-

ing probabilistic outputs to combinatorial functions. However, unlike fully parame-

terized Bayesian networks which integrate over all possible probabilistic functions, the

probabilistic functions in our model are derived from a small number of deterministic

combinatorial functions. For instance, if the deterministic function is the identity

operation of a single input, then its probabilistic function outputs +1 with a high

probability and 0 with a low probability when the input is +1.

Eighth, we view the actual protein-DNA bindings and expression states as discrete

hidden variables. They are measured via noisy experimental processes (CHIP-chip or

microarrays). The relation between hidden and observed variables can be specified

as a noisy sensor model and derived from the error model of the measurements.
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6.2 Elements of a regulatory model

Evidence from various experiments suggest genes are regulated as groups rather than

individuals. Identifying the co-regulated gene groups - which are often termed as

modules - becomes an important topic in current computational biology. Several

works have attacked this problem and achieved fruitful results (see Section 1.4).

Different from these works, we emphasize on the interpretability pertaining to the

mechanisms. We also distinguish our works from some other studies by focusing on

the effects of transcription factors on regulated genes.

We view a regulatory model as a combination of three elements: a set of tran-

scription factors, a set of genes regulated by these regulators, and the regulatory

program of the model - the combinatorial function specifying the relation between

the activities of regulators to the mRNA levels of regulated genes.

6.2.1 Regulators and regulated genes

The meanings of regulators and regulated genes are self evident. To establish regulator

and regulated gene sets of a model, we require empirical evidence indicating their

relations. An obvious choice is to include bicliques in the protein-DNA interaction

network: all transcription factors (proteins) bind to all genes (promoters) in each

biclique. False positives in this set are expected since physical bindings per se may

not have functional roles. False positives in the initial establishment can be reduced

by incorporating gene expression data. For example, one gene is excluded if its

expression profile is significantly different from other members in the module. On

the other hand, false negatives are not easy to be re-incorporated due to the lack

of evidence of physical interactions. For instance, if only the binding data under

normal condition are provided, one gene is bound by a regulator member under a

perturbation condition but not under normal condition, it will not be considered as

a member of the module. There are multiple pairs of regulators and regulated genes

sets inferred from the data. They are not required to be disjoint.
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6.2.2 Regulatory programs

A regulatory program specifies the relation between the activities of regulators and

the mRNA levels of regulated genes. As discussed in Section 6.1, we choose the mRNA

levels of transcription factors as the proxies to their activities due to the lack of other

types of data. Therefore, the regulatory program in this work are the functions of

gene expression level changes (with respect to the normal condition).

A straightforward way of generating regulatory programs is to consider all tri-state

(up or down regulation, no change) Boolean functions. In spite of its expressiveness,

this formulation has several shortcomings. The number of possible Boolean functions

is super-exponential to the number of inputs (3 3', n is the number of inputs). The

large size of combinatorial function space implies a serious over-fitting problem. To

uniquely determine a function, all 3n possible input configurations need to appear in

the dataset. This is unlikely to occur in real data. Furthermore, the representation of

Boolean functions is difficult to interpret in terms of the underlying mechanisms. We

often need to decompose the function into smaller elements and understand each com-

ponent in terms of the mechanisms. Finally, the deterministic property of Boolean

function is incapable of representing the stochasticity of gene regulation and its mea-

surements.

These problems inspire us to modify the tri-state Boolean functions in the sense of

reducing the complexity of the model class and introducing probabilistic components.

A key step of simplifying the regulatory programs is to investigate the properties of

single transcription factors in the context of combinatorial control. In this work, we

annotate each transcription factor with two properties. First, a single transcription

factor possesses a consistent function throughout all its regulated genes. In other

words, a factor is either an activator or a repressor for all its regulated genes. Second,

in each regulatory model, a transcription factor can be categorized according to the

direction of effectiveness on its affected genes. A regulator is necessary if decreasing

its expression level leads to the responses inverted from the function of this regulator.

One mechanistic example is a protein complex as an activator. Each subunit protein

205



of the complex is a necessary activator for the absence of each member will decrease

the levels of its regulated genes. Conversely, the increase of a necessary regulator may

not affect regulated genes. A regulator is sufficient if increasing its expression level

leads to the responses along the direction of its function. A mechanistic example is

two transcription factors independently activate regulated genes. The increase of any

regulator suffices to up regulate the regulated genes. Conversely, the decrease of a

sufficient regulator may not affect regulated genes. The categorization of necessary

and sufficient regulators is neither mutually exclusive nor exhaustive. A regulator can

be both necessary and sufficient if its change in each direction affects regulated genes.

A regulator can be neither necessary nor sufficient if its expression level change does

not affect regulated genes. This scenario occurs when the activity of a regulator is

dictated by unobserved properties such as protein abundance or protein modifications.

It is also possible that this regulator does not have functional roles in this model.

Table 6.1 enlists the responses of regulated genes under each combination of single

factor function and the direction of effectiveness.

Notice our definition of necessary or sufficient regulators does not entirely follow

the convention of the same terms in biology. In biology, the necessary property of a

regulator is often determined by comparing the response of deleting this regulator ver-

sus the control experiment. Similarly, the sufficient property is determined by check-

ing whether the presence of the regulator on a promoter suffices to activate/inhibit

genes. We do not use these terms to characterize the biological functions of regulators

but only to delineate their directions of effectiveness in terms of gene expression data.

Consequently, a regulator which is labeled as neither necessary nor sufficient does

not suggest it plays no functional roles in a module. Instead, it suggests its effect on

gene expression may not be revealed by its mRNA levels. Furthermore, since we are

interested in the directions of mRNA level changes relative to normal conditions, the

necessary and sufficient labels depend not only on the intrinsic properties of regula-

tors but also the expression states of genes under the normal condition. For example,

if the expression level of a gene is low under the normal condition, then a regulator

cannot be necessary because the gene cannot further decrease. We are aware of these
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Table 6.1: Responses of regulated genes in each combinatorial category
necessary sufficient both neither

activator f {4 g t f Ta g T f t->g t, f to g T g any value
repressor f t= g I f T> g t f tr g T, f T= g I g any value

shortcomings in our categorization and will discuss possible improvement methods in

Chapter Seven.

Table 6.1 characterizes the predicted response of regulated genes by altering single

transcription factors. We want to build combinatorial functions of multiple transcrip-

tion factors based on the properties of single regulators. To do that we have to specify

the rules of combining the predictions from single factors. The goal is to construct

a mapping from each configuration of multiple regulators to the "typical response"

of regulated genes. Denote S = {-1, 0, +1} as the state of gene expression changes.

The combination rules are as follows.

1. Let the function of a regulator r be fr (+1 for activator and -1 for repressor).

If the direction of effectiveness of r is necessary and the input configuration on

r is -1, then the output influenced by r is xg(r) = -fr.

2. If the direction of effectiveness of r is sufficient and the input configuration on

r is +1, then the output influenced by r is xg(r) = fr.

3. For other combinations of directions of effectiveness and input configuration,

the output influenced by r is xg(r) = 0.

4. For each input configuration, if the output influenced by each factor is either

+1 or 0 (but not all Os), then the output is +1. If the output influenced by

each factor is either -1 or 0 (but not all Os), then the output is -1. Otherwise

the output is 0.

To summarize these rules, the predicted responses of regulated genes are the con-

sensus of the predictions according to the changes of individual regulators. Predictions

of no change according to a regulator can be overwritten by predictions of significant
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changes according to other regulators. In addition, when predictions from different

regulators contradict (some predictions are +1 and some are -1), the output is 0. This

means that we are unable to predict the response, or that the output is a mixture

of positive and negative responses with an unknown proportion. Notice again that

we do not distinguish between the actually no change state and the mixture state, as

stated in the hypotheses.

The predictions from single regulators in Table 6.1 and the combination rules

stated above generate a unique combinatorial function given the function and the

direction of effectiveness of each transcription factor. This setting allows us to gen-

erate combinatorial functions from the properties of single regulators. It is certainly

a simplification, and the resulting functions generated by the setting do not cover all

possible tri-state Boolean functions. Some regulators are known to be activators for

some genes under some conditions and repressors for other genes under other con-

ditions (for example, Sok2, [141]). One can also easily picture a scenario that the

"necessary" or "sufficient" label of a factor depends on certain input configurations

of regulators. For example, two independent activator complexes are formed by fac-

tors fi, f2 and f3, f4 respectively. fi is a necessary activator only when the complex

f3f4 is not functioning. In addition, regulator groups fi, f 2 and f3, f4 form sufficient

regulators but individual factors do not. Despite these limitations, this categorization

greatly reduces the complexity of combinatorial functions and provides a clear inter-

pretation from mechanistic perspective. With fixed single factor functions (we can

either infer single factor functions from data or find them from literature survey), each

factor can choose one of the four combinatorial labels (necessary, sufficient, neither,

both) independently. Hence the number of possible combinatorial functions in this

restricted class is exponential in terms of the input size (4 ' - 1, where n is the number

of inputs; we exclude the scenario when all factors in a model are neither necessary

nor sufficient for they denote regulated gene expression changes are independent of

regulator gene expression changes). Although the number of possible functions is still

large for large n, empirically we are able to exhaust all functions of small input sizes

(e.g., 2 to 3 regulators) and find the one(s) which optimally fit the data. The models
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Table 6.2: Conversion from deterministic to probabilistic outputs
Xg Yg

0 P(yg = -1) = P(yg 0) = P(y 1)=
+ 1 P(yg = 1) = I - E, P(y9 = 0) = 6

-1 P(yg = -1) = I - 6, P(y9 = 0) =

with many regulators are biologically less interesting, for there are very few genes

bound by many regulators.

An example of a two-factor function with both factors as necessary activators is

shown in the first three columns in Table 6.3.

The outputs of the combinatorial functions described above are deterministic. We

want to make these outputs to cope with noise and uncertainties of experiments.

The most general approach is to replace the truth table of a Boolean function with

a probability table specifying the probability of each output state under each input

configuration (i.e., a Bayesian network). However, learning Bayesian networks with

specific functions is more involved. Learning the structure of a Bayesian network is

less interesting in this context for it evaluates the marginal likelihood by averaging

over all possible probabilistic functions (the marginal likelihood function equation 1.5

in Chapter One). To learn the specific functions in a Bayesian network we have

to partition the parameter (probability table) space according to the combinatorial

functions stated above and integrate over the restricted parameter space. In this

work, we adopt a simpler approach by assigning each deterministic output (the typical

response predicted from multiple regulators) to a fixed probability distribution over

expression states. For example, if the typical response is +1, then the probability of

the "real response" to be +1 is 2, and the probability of no change is !. The mapping

from deterministic to probabilistic outputs is shown in Table 6.2.

c can be interpreted as the expected fraction of experiments among the dataset

which are consistent with the combinatorial function. This construction is much less

flexible and does not require learning the probability values from data. It reduces

the burden and overfitting of learning from data but also raises the concern about

the accuracy of learned models. The learned models can be sensitive to the choice of
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Table 6.3: A combinatorial function, both regulators are necessary activators
tmri X7_2 X9  YgJ
-1 -1 -1 P(yg = -1) = ,P(y = 0) =
-1 0 -1 P(yg = -1) = ,P(yg = 0) =

-1 1 -1 P(y_ -1) = P(y =31 3
0 -1 -1 P(yg = -1) =, P(y = 0) =

0 0 0 P(yg = 1)=P(y = 0) P(yg = 1) = }
0 1 0 P(yg = -1) P(yg = 0)= P(yg = 1) =
1 -1 -1 P(yg = -1) ,P(yg = 0) =
1 0 0 P(yg =1) =P(yg= 0) = P(yg = 1)
1 1 0 P(yg = -1) P(yg 0) = P(yg = 1) =

the free parameter c. We will show in the empirical results that this is not the case.

The mapping of no change prediction assigns equal probability to each state. This

implies we are unable to predict no change of regulated genes. This seems to be a

shortcoming of the model but has a desirable feature for practical purposes. In the

expression data used, most genes are not significantly changed in most experiments.

Allowing the model to predict no change thus would strongly bias toward the function

which outputs no change regardless of input states. Our choice of probability values

does not have this problem because it emphasizes on predicting significant changes

of regulated genes.

Table 6.3 shows the probabilistic function derived from the deterministic function

that both regulators are necessary activators.

6.3 Likelihood function of a regulatory model

The regulatory model described in previous sections is a generative model. We can

thus formulate the joint likelihood function of binding and expression data according

to the model. Once the joint likelihood function is defined, we adopt an incremental

algorithm which identifies the regulatory models that yield the maximum likelihood.

In this section we discuss the formulation of the likelihood function.

We use protein-DNA binding data under the normal condition and two-channel

microarray gene expression data of perturbations versus normal conditions. Intu-
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itively, a regulatory model fits a binding data if all regulators bind to all regulated

genes. A regulatory model fits an expression data if the gene expression changes in

each experiment conform with the combinatorial function described in the previous

section. These criteria are transformed into the likelihood function of observed data.

Since binding and gene expression data are independent sources, we construct the

likelihoods of the two data separately and combine them by multiplication.

We first define the following notations pertaining to protein-DNA bindings. De-

note M = (R, G, f) as a regulatory model, where R and G are regulator and regulated

gene sets and f the regulatory program. For each r E R and g E G, define brg as

the binary variable indicating whether r binds to g. brg is not directly observed but

through a measurement outcome xg. In the CHIP-chip data, Xrg corresponds to the

log ratio of DNA abundance between the promoters purified by immunoprecipitation

and the background. We transform the conditional probabilities P(Xrglbrg) from the

p-values of CHIP-chip data as stated in Section 3.3.1.

The values of all indicator variables {brg}rER,gEC constitute configurations in the

space {O, 1}IRixG. Since {bg} are hidden, the likelihood function is the joint prob-

ability of measurements {xg} marginalized over hidden states {bg}. Its evaluation

requires specifying the prior probabilities P({br,}). We are interested in two priors.

First, the only configuration consistent with the regulatory model is that each regula-

tor binds to the promoter of each gene. This prior concentrates the entire probability

mass on a single state:

H, : P({brg}) = 6(brg = 1, Vr E R, g E G). (6.1)

where 6(.) is the indicator function. Second, as a comparison we build a uniform prior

over all binding states:
1

Ho : P({brg}) 2i|G|' (6.2)
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The marginal likelihood of binding data is

P({xg}) = P({brg}, {Xrg}) j (P(brg)P(x,, brg). (6.3)
brg (r,g) b,_9

The second equality arises from the independence of binding measurements. Substi-

tuting the priors of H1 and Ho into equation 6.3,

P({x,}|H1) = (rg) P(xrgIbrg = 1). (6.4)
P({xg}~H) =2IR1 IH(rg)(F(xrgjbrg 1 + P(xrg Ibrg =0)).

P({Xr9}|H0) = 2|R G| r, g = 1) 9

The log likelihood ratio of the model consistent with the module assumption versus

the null model then becomes:

Lb(R, G) = log P({xg}|H1) - log P({xg}|Ho) =

|R||G log 2 + E(,g) [log P(xrg|brg = 1) - log(P(xg bg = 1) + P(xrg|brg = 0)).
(6.5)

The log likelihood ratio of gene expression data is analogously defined. Denote E

as a set of experiments and e E E an experiment index, cre as the actual gene ex-

pression change (with respect to the normal condition) of regulator r in experiment

e, cge as the actual gene expression change of gene g in experiment e. Also denote

xre and xge as the measurements of Cre and cge respectively. Conditional probabilities

P(XreCre) and P(xgeicge) can be derived from p-values of gene expression measure-

ments as described in Section 3.4. When measurement p-values are not provided, we

evaluate the conditional probabilities according to Gaussian and exponential distri-

butions. We will discuss this calculation in the Appendix.

The regulatory function described in Section 6.2 operates on the actual gene ex-

pression changes cre and cge. Figure 6-1 illustrates a generative model of a regulatory

function on expression data. The actual regulator expression changes {Cre} are the

input states of the function. The function f first maps an input state into a determin-

istic, intermediate state f({Cre}). The value of f({cre}) belongs to S = {-1, 0, +1}

according to the rules depicted in Section 6.2. f({Cre}) then generates the output
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Figure 6-1: Generative model of expression data

-----------------------------

Xrie Xr2eQ Xr3e0

Cr1 e Cr2e Cr3e

f(r0 2e C3e)

CCge:

Xge

state cge of each gene in each experiment according to the conversion rules in Table 6.2.

We adopt the plate representation in Figure 6-1: nodes within the inner box (cge, xge)

are instantiated by gene indices g and nodes within the outer box (all variables in the

figure) are instantiated by experiment indices e. For notational convenience, define

probability measures [_, po, -+ as

p-(y = -1) 1 - C, p_ (y = 0) C.

'o(y = -1) = o(y = 0) = 'o(y = 1) = . (6.6)

P+ = +1) = 1-- e,+(y = 0) =E.

We apply the following functions to the conditional probability P(cge If({cre})):

P(cge f({cre}) = +1) = A+(cge) )(1 - E) 5(Cge = +1) + e6(cge = 0).

P(cge lf({cre}) = -1) = [ (cge) ) (1 - E)6(cge = -1) + e(cge = 0). (6.7)

P(cgelf({cre}) = 0) = puo(cge) 31(cge = +1) + 16(Cge = -1) + '6(cge = 0).

p+ assigns a large probability to +1 and the remaining probability mass to 0 when the

predicted value f ({cre}) = +1. p works analogously to -1. When f ({cre}) = 0, we

are uncertain about the actual expression changes of regulated genes, thereby assign

an equal probability to each state.
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We construct the log likelihood function of expression data similar to the binding

data. The hidden variables are cre and cge for each regulator r E R, gene g E G and

experiment e C E. We are interested again in two priors of hidden states. H1 assigns

equal probability to each input hidden state {Cre} and determines the probability of

output hidden state {Cge} according to the regulatory function and input hidden state

{Cre} Ho assigns a uniform probability to all possible hidden states.

H1 : P({cre}{cge}) = 3JER ge (6.8)

HO : P({cre}{cge}) = 3 EI(IRIIGI) '

where P({cge)}|{cre},f) = HeHgFP(Cgejf({cre})). The marginal likelihood of gene

expression data over hidden states is

P({Xre}, {xge}|H) = E P({cre}{cge}IH) fi fJ P(Xre Cre) fJ P(xgeicge).
{cre},{cge} eEE rcER gEG

(6.9)

Substituting equation 6.8 into equation 6.9, we obtain

P({Xre}, {Xge}Ho) = 31E (IR+GI) HeEE HrER(P(Xre Cre +1) ± P(XrelCre ~1) + P(XreCre 0))

g1EG(F(Xge lge ±1) + P(XgelCge ~ -1) + P(XgelOge 0))-
(6.10)

and

P({xre}, {xge}|HI) = 3 |E1|RI HeE[Z{cre} HrzR P(Xre Cre) HgEG Zcge P(cgelf ({cre}))P(xgege)]

= 3 IEiIRI HeCEIEv={-1,o,+1} Pv(e) Hg EG Zcge Pcge) ge cge -

(6.11)

where Pv (e) denotes the probability of the regulator configurations in experiment e

which generates deterministic output v:

Pv(e) = E 6(f ({Cre}) = v) J7J P(XreICre). (6.12)
{cre} rER
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The log likelihood ratio of H1 versus Ho is:

Le(R, G, f) = log P({xre}, {xge} H1 ) - log P({xre}, {xge}|H o)

= -JEHRI log 3 + EeEE[log(Ev={-1,0,+1} Po (e) - FgEG Zcge P(CgecV)P(Xg eCge))

+EI(IR I + G) log3 - EeCE[E ERlog(P(eJcre = +1) + P(XeCCr = -1) + P(XrelCre 0))

+ ZgEG 1(P(Xgecge = +1) + P(xelcge = -1) + P(XgelCge = 0))].

(6.13)

We define the joint log likelihood ratio as the weighted sum of the functions of

binding and expression data:

L(R, G, f) = Lb(R, G) + ALe(R, G, f). (6.14)

A is a free parameter specifying the relative importance of expression data with respect

to binding data. Since the number of expression experiments far exceeds the number

of binding experiments, we have to degrade the importance of expression data in

order to make binding data relevant. We set A = 0.1 in the experiments but will also

show modeling results are insensitive against A values.

There are several distinctions between the joint likelihood ratio defined in equa-

tion 6.14 and a deterministic score of fitting a Boolean function to the data (for

example, by counting the number of empirical instances which do not conform with

the Boolean function). First, our formulation takes the uncertainty of measurements

into account. Measurement uncertainty is encoded in the conditional probabilities

P(xrg brg), P(Xre cre) and P(xgeicge) and marginalized over all consistent states of

hidden variables. Second, equation 6.14 jointly considers the strength of binding and

the coherence of gene expression. A gene can be included in a model if its binding

confidence is low but its expression profile conforms with the regulator expression

data and the combinatorial function. Conversely, a gene can be included if its ex-

pression data are not very consistent with the combinatorial function but the binding

score is strong. Third, we do not require the expression data of all regulated genes

conform with the predictions of the combinatorial function on all experiments. When

the prediction from a deterministic function is +1, then either up regulations or no
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changes yield reasonable scores. This is because we assign a non-negligible probabil-

ity to 0 when the deterministic output is +1 (equation 6.9). Similar arguments hold

when the deterministic prediction is -1. When the deterministic prediction is 0, then

either most regulated genes do not change or regulated genes with mixed responses

yield high likelihood scores. This formulation is much less stringent than the require-

ment that all regulated genes must conform with the combinatorial function on all

experiments. For example, if the first half of the regulated genes are down regulated

and the second half of the regulated genes do not change in experiment 1, and the

first half of the regulated genes do not change and the second half of the regulated

genes are down regulated in experiment 2, then this model will yield high likelihood

score even though the regulated genes are not highly correlated.

6.4 Identifying regulatory models from data

Equation 6.14 evaluates the likelihood score of a given regulatory model. We are

interested in identifying the regulatory models which maximize the likelihood ratio.

We adopt a greedy algorithm to incrementally add members to the regulatory model.

The algorithm first identifies regulator groups which co-bind to a considerable number

of genes. For each regulator group, it incrementally adds genes which optimize the

likelihood score. It stops when the improvement of adding a new gene is insignificant

compared to randomly selecting genes. The algorithm then reports the models which

yield significant likelihood scores.

6.4.1 Finding candidate regulator sets

A candidate regulator set contains regulators which co-bind to a number of genes

according to the protein-DNA interaction data. In principle, any collection of regu-

lators constitute a candidate set. In practice, we threshold on the binding p-values

(p < 0.005) and only consider the regulator sets whose binding p-values to their

targets are below the threshold.

All significant protein-DNA interactions constitute a bi-partite graph which is a
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subset of the physical network in Chapter Three. A candidate regulator set and

their candidate gene set are the vertex sets of a biclique in the graph. A biclique in

the physical network is a maximal complete subgraph containing edges connecting

between all members in the regulator set and the regulated gene set. It is maximal

in the sense that there exists no extra regulator which binds to each member in the

regulated gene set and no extra regulated gene which is bound by each member in the

regulator set. Finding the largest bicliques in a bi-partite graph is known to be NP-

hard ([124]). Hence finding all bicliques is also NP-hard. We apply a heuristic similar

to [12] to identify a subset of them. Each gene is bound by a subset of transcription

factors (the subset can be a null set). We call this subset the binding pattern of

this gene. The number of binding patterns appeared in the data is upper bounded

by the total number of genes since each gene possesses one binding pattern. It is

straightforward to enumerate all the binding patterns and count the number of genes

which possess each pattern. We then select the binding patterns which are possessed

by a significant number of genes (> 10 genes). The selected binding patterns (subsets

of regulators) and their corresponding genes form the candidate sets of regulators and

regulated genes. Empirically, we find very few binding patterns contain more than

3 regulators and are possessed by more than 10 genes. To be able to generate all

regulatory programs of each regulator set, we only consider the binding patterns with

< 3 regulators. Notice that each binding pattern is associated with a biclique, but

not all regulator sets in bicliques are binding patterns. For example, intersections

of binding patterns may also be associated with bicliques, though they may not be

binding patterns.

6.4.2 Determining regulated genes and regulatory programs

Significant bindings do not suffice to generate a model. To demonstrate the regu-

lation influence, gene expression data in the model should also be consistent with

the regulatory program. In this section we will discuss an incremental algorithm of

determining combinatorial functions and regulated genes.

Given a regulator set and a regulatory program, the incremental algorithm of in-
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cluding regulated genes is straightforward: at each iteration, choose the gene from

the candidate set which maximizes equation 6.14. The stopping criterion needs to

be specified. Stop when the joint likelihood function starts decreasing is not viable

because the likelihood function monotonically increases with the number of regulated

genes (see the Appendix). Instead, we evaluate the p-value of the likelihood function

generated from random data and stop when the p-value of adding a gene is insignif-

icant (p > 0.1 in our analysis). We are able to analytically approximate the p-value

without performing random sampling. The derivation of the p-value approximation

is shown in the Appendix.

The incremental algorithm finds a regulated gene set for each regulatory program.

We compare the likelihood functions of models corresponding to each regulatory pro-

gram and identify the one with the maximum score. Because the the likelihood

function increases with the size of the regulated gene set, we need to fix the size of

regulated gene sets when comparing the scores of different regulatory programs. Each

regulatory program has a regulated gene set with possibly different size. We fix the

size of each regulated gene set to the size of the smallest gene set among all regula-

tory programs. Since genes in each regulated gene set are added with an decreasing

order of importance (the first gene added to the set fits the combinatorial function

the best), we restrict each gene set to top n genes, where n is the fixed size. We then

compare the likelihood functions of all regulatory programs in the restricted gene sets

and identify the ones which yield optimal or suboptimal scores.

6.4.3 Significance of a regulatory model

For each candidate regulator set, the incremental algorithm finds a combinatorial

function and a regulated gene set. However, some of those regulator sets are likely

to be spurious, which make the resulting regulatory models fit the data less well. We

are interested only in those regulatory models which fit the binding and expression

data. To filter out unfitted models, we evaluate the p-values of the likelihood score

by comparing the empirical likelihood scores to the scores calculated from randomly

permuted gene expression data. Only the models with significant p-values are kept
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for further analysis. The computation of model p-values is discussed in the Appendix.

6.4.4 Merging multiple regulatory programs

The gene expression data on a regulatory model often cannot uniquely determine

its combinatorial function because some input configurations do not appear in the

data. Consequently, there are likely multiple regulatory programs which yield equal

or approximately equal scores. A suboptimal function is also of interest since the log

likelihood values can be affected by noise of data or specific values of free param-

eters. A single regulatory program in this context is not very meaningful because

it may contain incomplete and misleading information. For example, if all optimal

and suboptimal functions indicate activator r, is necessary, then r1 is likely to be

necessary. Conversely, if two optimal functions yield similar scores but one indicates

r1 is necessary and the other does not, then it is unclear whether r1 is necessary.

We want to find a representation of inferred regulatory programs which can faith-

fully communicate the information about all optimal and suboptimal functions. Be-

cause the combinatorial functions are generated by the properties of single regulators,

it is sensible to extract the properties of single regulators compatible with all optimal

and suboptimal functions. In the example stated above, the property "r1 is a neces-

sary activator" holds under all optimal functions. Thus it is more reliable than any

specific optimal function.

We evaluate the significance of a statement about a regulator's direction of effec-

tiveness by investigating whether negating this statement would substantially reduce

the score of the model. We calculate the gap of likelihood scores between the optimal

model where the statement holds and the optimal model where the statement does

not hold. For example, to evaluate the significance of "r1 is a necessary activator", we

find the optimal model M1 where r1 is a necessary activator and the optimal model

MO where r1 is not a necessary activator. We compare the empirical gap score with

the gap scores obtained by randomly permuting gene expression data. Notice the

gap score of each permuted data is obtained by re-optimizing the regulatory models

to fit the permuted data. The p-value is the fraction of the random gap scores ex-
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ceeding the empirical gap. Details about the p-values of combinatorial properties are

discussed in the Appendix.

6.4.5 Model finding algorithm

We have introduced each element of the regulatory model finding algorithm. Now we

can put them together and summarize the algorithm.

1. Find the candidate regulator sets by identifying all protein-DNA binding pat-

terns which are possessed by a significant number of genes.

2. For each regulator set and each combinatorial function, incrementally add genes

which maximize the likelihood score in equation 6.14. Stop adding genes when

a consecutive number of newly added genes have p-values > 0.1.

3. Restricting to the size of the smallest regulated gene set, find the combinatorial

functions which maximize the likelihood score.

4. Retain the models which yield significant p-values.

5. Combine optimal and suboptimal functions and identify the properties of single

regulators extracted from all optimal and suboptimal functions.

6. Evaluate the significance of the combinatorial property of each factor.

7. Report information about model members and single regulator properties ex-

tracted from all optimal and suboptimal functions.

6.5 Empirical analysis and discussion

We applied the regulatory model finding algorithm on the CHIP-chip protein-DNA

interaction data ([100]) and two sets of mRNA gene expression data: Rosetta com-

pendium data of gene knock-outs ([80]) and the stress response gene expression data

published by Gasch et al. ([61]). Rosetta data contains 300 single measurements
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Table 6.4: Statistics of candidate regulator sets
# factors # patterns
0 1
1 105
2 145
3 49
4 8
5 4
6 1
8 1

of different conditions, and both log ratios and p-values are provided. Gasch data

contains 173 time-series data points covering 49 different conditions.

Table 6.4 shows the statistics of candidate regulator sets extracted from the

protein-DNA binding data. The p-value threshold is 0.005 and only the binding

patterns possessed by > 10 genes are considered. There are 314 valid patterns under

these criteria. A predominant fraction of these patterns contain < 3 regulators. Only

14 out of 314 patterns have more than 3 regulators. Because it is time consuming to

evaluate the likelihood scores on large regulator sets and the results are difficult to

interpret, we only considered the candidate regulator sets of 1 to 3 regulators. These

sets cover 95% of the candidate regulator sets.

The single factor functions of the 106 transcription factors are determined from

literature survey. Table B.8 in the Appendix shows the single factor functions of these

regulators and the sources reporting their functions. Few regulators are reported as

both activators and repressors (for instance, Sok2). In this case we applied the physi-

cal network model described in Chapter Three to Rosetta data with extra constraints

that all protein-DNA edges emanating from the same transcription factor have the

same sign. The inferred protein-DNA edge sign emanating from a transcription factor

was assigned as its function. Alternatively, we may allow single factor functions un-

fixed and generate the combinatorial functions covering all possible combinations of

activators and repressors. Since the number of combinatorial functions multiplies by

2' folds (n is the number of regulators) in this setting and most transcription factors
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have known functions, introducing this degree of freedom may overfit the data, be

time-consuming and unnecessary.

We summarize and analyze the inferred models in the following aspects. First,

we visualized the regulatory models inferred from two expression datasets separately

and validate them with gene function ontology and literature survey. Second, we

investigated the overlap of regulatory models inferred from both expression datasets

and study their biological functions. Third, we performed sensitivity analysis of

inference results in terms of various free parameters.

6.5.1 Models inferred from Rosetta and Gasch data

Figures 6-2 and 6-3 exhibit various types of information of the regulatory models

inferred from Rosetta and Gasch expression data respectively (both sets of models

use the same binding data). We represent a regulatory model as a bi-partite subgraph

between regulators (circles) and a regulated gene set (a square): a regulator and a

regulated gene set are adjacent if they participate in the same model. The color of a

circle (regulator) indicates its regulatory function as an activator (red) or repressor

(green). The color of a square (regulated gene set) indicates the MIPS functional

categories enriched in the regulated gene set. The colors of an edge indicate the

direction of effectiveness of a regulator in a model: red for necessary regulator, green

for sufficient regulator, and black for neither. Two edges can exist between two

nodes since a regulator can be both necessary and sufficient. Notice that we obtained

the directions of effectiveness not from the optimal regulatory function alone but by

combining the all optimal and suboptimal functions. The width of an edge indicates

the confidence about about necessity or sufficiency to expression data as described in

Section 6.3.4. We only show the necessary and sufficient edges when their p-values

< 0.05. For visual simplicity, we only show the regulatory models with multiple

regulators and whose significance of likelihood scores are high (p-value < 0.02 for

Rosetta models and p-values < 0.001 for Gasch models). We use the visualization

software Cytoscape to draw the graphs.

An immediate observation of the graph topologies in Figures 6-2 and 6-3 is the
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Figure 6-2: Models inferred from Rosetta data

172

1m473

1

ml183 m283 m487 m3 6m343

511

m14 
'n7

m2 m3

m328 
mr435

21

reguloor-

ribanme

cefl cycle
aihers

comulel ebl

existence of few regulators (hubs) that participate in a relatively large number of

regulatory models. The "hub" regulators in Rosetta models are Gcn4, Msn4, Ste12,

DigI, and Rapi, and the hub regulators in Gasch models are Rapi, Msn4, Msn2,

Ste12 and Swi6. We suspect that the existence of hubs arises from both the nature of

gene regulatory systems and the bias from data. These hub regulators are certainly

important for biological processes. For example, Gcn4 is a master regulator for a large

number of genes involved in amino acid synthesis, and Ste12 is a key regulator for

mating response and invasive growth of yeasts. On the other hand, these regulators

appear the most frequently because the biological processes they are involved are

intensively probed in the datasets. For example, stress response regulators Msn2 and

Msn4 naturally explain a lot of expression changes in the stress response dataset.

We validated the inferred models from four aspects. First, whether regulated gene
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Figure 6-3: Models inferred from Gasch data
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sets were enriched with genes in the same functional categories. Second, whether

regulators in the model were known to control members in the regulated gene set.

Third, whether regulators participating in the same model were known to interact.

Fourth, whether the inferred directions of effectiveness were consistent with previous

studies.

We first validated regulated gene sets with gene function annotations in Munich

Information Center for Protein Sequences (MIPS) database of yeast genome. The

functional categories in MIPS formed a hierarchy. Table 6.5 enlists the top-level

functional categories relevant to yeast cellular processes. We only considered the 11

functional classes when evaluating the functional enrichment of models. The "un-

known" category was excluded from the analysis for it was not informative about

gene functions.
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Table 6.5: Top-level MIPS categories
index function
01 metabolism
02 energy
03 DNA processing
04 transcription
05 protein synthesis
06 protein fate
08 cellular transport
10 cellular communication
11 stress response
13 regulation with environment
14 cell fate
99 unknown

We evaluated the hyper-geometric p-values of functional enrichment of regulated

genes in each model. The hyper-geometric test calculates the probability of randomly

choosing a subset of genes which yields the functional enrichment better than the

empirical value. Because there are multiple categories, the probability of randomly

selecting genes which are enriched in any category is higher than the hyper-geometric

p-value from any single category. To correct the bias from multiple hypotheses we

approximated the p-value of multiple hypotheses as follows. Denote Pi, - - - , Pk as

the hyper-geometric p-values of n categories, and Pi, - -- , Pk as their empirical values.

Pi,-- , pn are uniformly distributed within [0, 1] by the definition of p-values. Let

Pmin = min(pi,. -, Pk) be the minimum of the k p-values and pmin its empirical

value. The p-value for multiple categories is

= Pr(pmin Pmin) .=1 Pr( pi lain) = kPmin. (6.15)

The inequality follows from the union bound. This construction is similar to the

Bonferroni correction. The number of MIPS categories involved (k) is 11.

The verification of the remaining aspects relies on reviewing previous studies. We

searched the on-line PubMed database from National Library of Medicine I and the

lhttp://www.ncbi.nlm.nih.gov/PubMed/
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Table 6.6: Validation of models inferred from Rosetta data, Table 1

Incyte Yeast Proteome Database 2 to identify

regulated genes, between regulated genes, and

with previous works.

the relations between regulators and

the consistency of inferred properties

Tables 6.6, 6.7 and 6.8, 6.9 show the validation results of the models inferred

from Rosetta and Gasch data respectively. Overall, the inference results agree to a

large extent with previous studies. By considering the models with high log likelihood

values (permutation p-value < 0.02 for Rosetta models and p-value < 0.001 for Gasch

models, including the models of single regulators), 48% of the Rosetta models (53 out

of 110) and 38% of the Gasch models (84 out of 220) are enriched with at least one

MIPS category (hyper-geometric p-value for multiple categories < 0.06). The results

suggest that genes in these models are likely to be co-regulated since many of them

2https://www.incyte.com/tools/proteome/databases.jsp
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Regulator 1 Regulator 2 Regulator 3 Size Module pval MIPS MIPS pval Interaction
Mcml 5 < 10- cell fate 0.032
Ashi Ste12 10 < 10-4 [19]
Basi 28 < 10-

4  metabolism 4.09 x 10-7

Digi Ste12 57 < 10-4 cell fate 7.37 x 10-13 [13]
Phdl Ste12 13 < 10-4 homeostasis 6.09 x 10- [59]
Rapi 31 < 10-

4  
protein synthesis 2.08 x 10-25

Rlml 35 < i0-4 cell fate 9.39 x 10-4

Rapi Fhll 28 < 10-4 protein synthesis 1.08 x 10-27 [12]
Gcn4 Hsf1 14 < 10~4 transport 0.045 [41]
Ste12 49 < i0- 4  cell fate 1.04 x 10-14

Hap4 24 < 10-4 energy 1.29 x 10-28
Gcn4 125 < 10-

4  metabolism 5.68 x 10-14
Gal4 16 < i0-

4  metabolism 7.26 x 10-4

Msn4 Hsfl 8 < i0-4 stress response 0.0026 [61]
Msn4 13 < 10-4 stress response 0.0018
Phdl Msn2 Msn4 18 < 10-4 stress response 0.0102
Ino2 Ino4 13 < 10-4 metabolism 4.30 x 10-5 [4]
Rgml Gat3 8 < 10-4 stress response 0.0464
Gcn4 Abfl 11 < i0-

4  metabolism 0.0605 [99]
Digi Ste12 Mcml 19 < 10-4 cell fate 7.59 x 10- [47]
Yapi Gcn4 18 < 10-

4  metabolism 0.0726 [49]
Phdi Swi4 9 < 10-

4  cell fate 0.0231 [65]
Rtg3 Gcn4 25 < 10-

4  metabolism 0.0041 [12]
Phdi Sok2 52 < 10-

4  transport 7.172 x 10-5 [165]
Mbpl Swi4 Swi6 9 < 10-4 cell cycle 0.0103 [139]
Msn2 Yapi 13 < 10-

4  stress response 0.022 [61]
Nrgl Sok2 37 < i0-

4  metabolism 1.144 x 10-4 [12]
Mbpl Swi6 12 < 10-

4  cell cycle 0.05 [139]
Msn2 Msn4 55 < 10-4 stress response 8.69 x 10- 7  [61]
Ashi 48 < 10-

4  metabolism 0.0209
Msn2 Msn4 Gcn4 14 < 10-

4  [32]
Digi 66 < 10-

4 cell fate 0.0052



Table 6.7: Validation of models inferred from Rosetta data, Table 2
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Regulator 1 Regulator 2 Regulator 3 Size Module pval MIPS MIPS pval Interaction
Cin5 Yap6 6 < 10-4 [58]
Hap4 Hap2 11 8 x 10-

4  energy 8.294 x 10-9 [1091
Phdl Msn4 15 < 10-4 stress response 0.004
Ste12 Mcml 24 < 10-4 cell fate 9.34 x 10- 9  [47]
Met4 16 < 10-4 metabolism 7.96 x 10-5
Gcn4 Leu3 8 < 10-4 metabolism 3.35 x 10-4 [170]
Rapi Gat3 Fhll 20 < 10-4 protein synthesis 8.70 x 10-25 [12]
Swi4 Swi6 10 < 10-

4  [139]
Gcn4 Basi 8 < 10-

4  metabolism 3.36 x 10-4 [7]
Smpl Rlml 11 < 10-4 stress response 0.0112 [40]
Cin5 Yapi 12 10-

4  [49]
Msn2 Msn4 Yapi 17 < 10-4 stress response 0.0649 [61]
Rapi Fhll Yap5 20 < 10-4 protein synthesis 3.047 x 10-22 [12]
Cin5 Gcn4 12 < 10-

4  [43]
Hir2 7 < 10-4 transcription 4.59 x 10-6
Msn4 Yapi 22 < 10-4 stress response 3.53 x 10-

4  [61]
Rapi Gcn4 8 <10-

4  [36]
Cbf1 Met4 8 < 10-4 metabolism 0.0059 [16]
Ste12 Gcn4 14 < 10-

4  [131]
Rtg3 47 < 10-

4  metabolism 0.0046
Phdl Gcn4 20 < 10-

4  transport 0.0035
Cbf1 Gcn4 6 < 10-4 metabolism 0.1086 [117]
Msn2 Hsfi 10 < 10-4 stress response 0.0319 [61]
Msn2 Rlmi 6 0.0186 [69]
Phdl Msn4 Yapi 7 9 x 10-4 stress response 0.0014
Sok2 Swi4 7 < 10-4 [5]
Mbpl Swi6 Fkh2 8 0.0015 [139]
Ste12 Sok2 11 < 10-4 homeostasis 0.0469
Fkhl Fkh2 12 < 10-4 [139]
Mcml Gcn4 6 < 10-4 [110]
Phdl Msn2 22 <10-4 transport 0.0061
Ashi Swi4 Swi6 8 < 10-4 cell cycle 0.058
Rapi Rgml Gat3 12 0.001 protein synthesis 1.09 x 10-14

Msn4 Gcn4 20 < 10-4 [32]
Phdl Skn7 9 < 10-4 [104]



Table 6.8: Validation of models inferred from Gasch data, Table 1

Regulator 1 I Regulator 2 1 Regulator 3 Size [ Module pval I MIPS I pvalue Interaction
PhdI
Maci
Mthl
Cbfl
RebI
Ashl
Sok2
DigI
Mot3
Cadi
Phdl
Rapi
Put3
Zapi
Rapi
Gcn4
Fkh1
Stel2
Hap4
Gat3
Hap3
Mcml
Msn4
Cup9
Sumi
Fhll
Sfpl
Msn4
Hsf 1
Ino2
Gcn4
Digi
YapI
Phdl
Rtg3
Swi6
Phdl
Mbpl
Msn2
Yapi
Mbpl
Yap6
Yap5
Msn2
Smpl
Msn2
RapI
Cin5
Hap4
Met3l
RapI
Rox1
Ime4

Cup9

Ste12

Ste12

Ste12

Fhll
Hsfl

Nddl
Hsf 1

Ino4
Abfl
Ste12
Gcn4
Swi4
Gcn4

Sok2
Swi4
Yapi

Swi6

Msn4

Msn4
Smpl
Yap6
Hap2

Fkh2

38
17
19
27
37
16
44
46
7
34
11
148
15
24
121
13
9
107
40
52
21
17
22
46
43
130
39
16
63
22
6
25
11
15
18
36
18
15
25
10
19
27
62
31
23
7
14
17
11
26
16
12
16

< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-

4

< 10-4
< 10-4
< 10-4
< 10-4
< 10-

4

< 10-4
< 10-4
< 10-4
< 10-

4

< 10-4
< 10-4
< 10-4
< 10-

4

< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-

4

< 10-4
< 10-4
< 10-4
< 10-

4

< 10-
4

< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4

< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4
< 10-4

stress response
protein synthesis
protein synthesis
transcription
transcription
stress response
protein synthesis
cell fate
metabolism
stress response
cell communication
protein synthesis
metabolism
protein synthesis
protein synthesis

protein synthesis
cell fate
energy
protein synthesis
energy

stress response
protein synthesis
cell fate
protein synthesis
protein synthesis
stress response
protein fate

protein synthesis
cell fate

cell cycle
stress response
cell cycle

stress response
cell cycle
metabolism
protein synthesis
stress response
protein synthesis

protein synthesis
metabolism
energy
protein synthesis
protein synthesis
protein synthesis
stress response

0.0143
5.203 x 10-11
0.0385
0.0407
0.0418
0.0516
0.033
2.365 x 10-6
0.0257
0.007
0.0517
9.49 x 10-94

0.0027
0.003
1.1 x 10-107

0.0154
1.903 x 10-6

5.5 x 10-32
5.379 x 10-43

0.0013

0.0034
2.189 x 10-24
1.265 x 10-4

1.463 x 10-121
5.26 x 10-17
0.0517
0.0627

0.0016
3.06 x 10-6

5.26 x 10-5

0.08
3.37 x 10-5

4.015 x 10-
4

4.147 x 10-6

0.0023
4.675 x 10-39

5.95 x 10-5
1.43 x 10-7

[32]
8.95 x 10-13
0.0015
8.294 x 10- 9

7.183 x 10-4
0.0165
0.0037
0.0516

[12]

[19]

[13]

[59]

[12]
[41]

[139]
[61]

[4]
[99]
[47]
[49]
[65]
[12]

[165]
[139]
[61]

[61]

[12]
[58]
[109]

[12]

Fkh2

Mcm1

Swi6

Gcn4
Fhli
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Table 6.9: Validation of models inferred from GaSch data, Table 2

Regulator 1 1 Regulator 2 1 Regulator 3 Size Module pval [ MIPS pvalue I Interaction

energy5
5
30
9
5
61
5
13
22
28
7
7

Hap3
Cbf1
Ste12
Mcml
Gcn4
Rapi
RapI
Rcsl
Swi4
Pdrl
Cin5
Gcn4
DigI
Msn2
RapI
Maci
Cin5
Hir2
Msn4
Gat3
Maci
Fzfl
Rapi
Pdrl
Pdrl
Mcml
Phdl
Cbf1
Rapi
Maci
Msn2
YapI
Mbpl
RapI
Msn2
Sok2
Mbpl
Ste12
Msn4
Fkhl
Rebi
Abfl
Phdi
Maci
Pdrl
RapI
RapI
Rmel
Rapi
Msn4
Phdl
Mcml
Fkhl

Hap4
Abfl
Mcml
Skn7
Leu3
Gat3
Rcsl

Swi6
Rapi
Rtgl
Basi
Ste12
Msn4
Fhll
Cup9
Gcn4

Yapi
Yap5
Yap5

Gcn4
Cup9
Gat3
Rlm1
Yap6
Gcn4
Pho4
Gat3
Hsfl
Cadi
Swi5
Swi4
Rlmi
Swi4
Swi6
Sok2
Rtg3
Fkh2
Abf1
Hsfl
Msn2
Rapi
Smp1
Rgml
Yap6
Rox1
Gal4
Gcn4
Skn7
YJL206C
Nddl

Fhll

Fhll

Swi4
Yapi
Yap5
Yap5

Yap5

Fkh2

Fhll
Yap5
Gat3

Fkh2

< 10-T
<i1- 4

< 10-
4

< 10-4

< 10-4
< 10-4

< 10- 4

< 10- 4

< 10- 4

< 10- 4

0.0004
< 10- 4

< 10- 4

< 10- 4

< 10-4

< 10-4

0.0029
< 10-4

< 10-4

< 10-4

< 10-4

< 10-4

< 10-4

< 10-4

< 10-4

< 10-4

< 10-4
0.009
< 10- 4

< 10- 4

< 10-4

< 10-4

< 10-4

< 10-4
0.0021
< 10-4
< 10-4

< 10-4

< 10-4

< 10-4

< 10~4
0.0005
< 10-4

< 10-4

< 10-4

< 10-4

< 10-4

< 10--4

< 10-4

< 10-4
0.0039
0.0001
< 10-4

1.243 x 10-1

3.08 x 10-6cell fate

metabolism
protein synthesis
protein synthesis
protein synthesis
cell cycle
protein synthesis
metabolism
metabolism
cell cycle

protein synthesis
protein synthesis

transcription
stress response
protein synthesis
protein synthesis
transcription
protein synthesis
protein synthesis
protein synthesis
stress response
metabolism
metabolism
protein synthesis
protein synthesis
stress response

protein synthesis

cell cycle
cell communication

protein synthesis
stress response
protein synthesis
protein synthesis
protein synthesis
protein synthesis
protein synthesis
protein synthesis

energy
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0.0419
5.984 x 10-54
5.478 x 10-

4

0.0539
2.45 x 10-4
1.08 x 10-27
0.0253
0.0253
0.0264

6.66 x 10-45
3.553 x 10-12

0.0396
3.531 x 10-4
5.159 x 10-30
1.375 x 10-18
0.0158
0.0187
1.606 x 10-11
1.672 x 10- 9

0.0014
0.0451
0.0418
0.0352
8.95 x 10-13
0.0242

5.478 x 10-4

0.0017
0.0616

0.0825
0.0473
5.335 x 10-21
0.0016
5.159 x 10-30
0.0016
0.0596
5.522 x 10-6

0.0062

[109]
[118]
[47]
[102]
[170]
[12]

[139]
[12]

[7]

[61]
[12]
[12]

[43]

[61]
[12]
[12]

[36]
[12]
[12]
[166]

[117]

[12]
[61]
[24]
[139]

[69]
[5]
[139]

[28]
[139]
[52]
[90]
[119]
[12]

[12]

[32]
[104]

[1391



are involved in the same cellular processes. Since the functional annotations in MIPS

are incomplete, we expect more models are enriched with genes involved in the same

process.

We also found a strong consistency between the biological functions of regula-

tors and the functional enrichment of regulated models. Here we summarize these

relations. In Rosetta models, models enriched with metabolism genes are predomi-

nantly regulated by Gcn4. This is sensible since Gcn4 is a master regulator for genes

involved in amino acid synthesis ([115]). Moreover, in each of these models Gcn4 of-

ten pairs with another biosynthesis regulator to perform specific function. Examples

include Basi (histidine and arginine, [43]), Leu3 (leucine, [170]), Cbf1 (methionine,

[117]), and Rtg3 ([12]). A small number of phospholypid synthesis genes are regu-

lated by Ino2 and Ino4, which are known to regulate phospholypid synthesis genes

([4]). Models enriched with stress response genes are primarily regulated by Msn2,

Msn4, Yapi and Hsfl. These regulators are known to be involved in stress response

([61]). Models enriched with genes of cell fate (such as mating or invasive growth

for yeasts) are mostly regulated by Ste12, Digi and Mcml. These regulators are

well known to control the fates of yeast cells ([47]). Furthermore, many ribosomal

genes are regulated by Rapi and Fhll. There is yet no direct evidence in genetics

or molecular biology suggesting Rapi and Fhll regulate ribosomal genes. However,

this is indirectly supported from other computational works of combining the same

binding data but different expression data ([12]). The highly significant enrichment

of ribosomal genes is unlikely due to errors or coincidence.

The relations between the known functions of regulators and regulated genes in

Gasch models are similar to Rosetta models. Msn2, Msn4, Yapi and Hsfl are again

involved in regulating stress response genes; Rapi and Fhll regulate ribosomal genes;

and Ste12 regulates genes involved in cell fate. There are several regulators whose

functions are revealed only in Gasch data. Swi4, Swi6 and Mbp1 participate in several

models enriched with cell cycle genes. This is consistent with the functions of these

regulators as cell cycle transcription factors ([139]). Hap2 and Hap4 participate in a

model enriched with genes involved in respiration. This is also consistent with the
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functions of Hap-complex ([109]). On the other hand, the function of Gcn4 is hardly

revealed in Gasch data. Although the amino acid starvation experiments in Gasch

data should invoke the activation of Gcn4, Gcn4 is not significantly changed in these

experiments. The function of Digi is also not revealed in Gasch data due to similar

reasons.

Tables 6.6, 6.7 and 6.8, 6.9 also show the regulatory models whose regulators par-

ticipate in the same biological functions (regulators interact functionally) according

to previous studies. Here we only consider the models with multiple regulators. 44

out of 85 models inferred from Rosetta data and 61 out of 114 models from Gasch

data contain regulators which are known to interact. Many interacting regulators are

already discussed earlier, for example, Ste12, Digi and Mcml, Msn2, Msn4, Hsfl and

Yapi, Gcn4 and other biosynthesis regulators, Ino2 and Ino4, Rapi and Fhll, Hap2

and Hap4, Swi4, Swi6 and Mbpl. Several other interacting regulators include Ste12

and Phdl (filamentous growth, [59]), Cbf1 and Met4 (methionine synthesis, [16]),

Fkh1 and Fkh2 (control genes expressed at G2/M phase during cell cycle, [139]), and

Ashi and Ste12 (pseudohyphal growth, [19]).

We then investigated the inferred directions of effectiveness and compared them

to previous studies. Interestingly, despite we allowed the directions of effectiveness

to be model dependent, most regulators possessed a consistent direction across the

models in which they participated. In Rosetta data, for example, Ste12 is a necessary

activator (edge colors are red) for most of its regulated models. This is compatible

with our knowledge that Ste12 is required for the activation of mating response genes.

Similarly, stress response regulators (Msn2, Msn4, Yapi, Hsfl) are predominantly

sufficient activators. This is also consistent with the knowledge that each regulator

suffices to activate stress response. Rapi is a necessary activator for ribosomal genes.

Gcn4 is primarily a sufficient activator in models shown in Figure 6-3. This seems

to contradict with the fact that Gcn4A experiment is in Rosetta and genes bound

by Gcn4 are down-regulated in this experiment. By inspecting the model regulated

by Gcn4 alone, we find Gcn4 was also a necessary activator with high confidence.

Thus we suspect most models in Figure 6-3 do not respond in Gcn4A but are up-
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Table 6.10: Directions of effectiveness of models inferred from Rosetta data, Table 1

Regulator 1 Nece pval Suff pval Regulator 2 Nece pval Suff pval Regulator 3 Nece pval Suff pval

Msn2 1.0 10-' Msn4 1.0 0.7 Hsf1 1.0 0.002
Ashi < 10-4 1.0 Ste12 1.0 < 10-4

Digi 0.044 < 10-4 Ste12 0.019 < 10-4

Phdl 1.0 0.184 Ste12 0.0059 < 10-4

RapI < 10-
4  1.0 Fhl1 1.0 1.0

Gcn4 < 10-4 < 10-4 Hsf1 1.0 1.0
Msn4 1.0 < 10-

4  Hsfl 1.0 < 10-4

Phdl 1.0 0.055 Msn2 1.0 < 10-4 Msn4 1.0 0.96
Ino2 < 10-4 1.0 Ino4 < 10-4 1.0

Rgm1 1.0 < 10-
4  Gat3 1.0 1.0

Gcn4 < 10-
4  < 10-4 Abfi 1.0 1.0

Digi 0.0041 0.181 Ste12 < 10-4 < 10-
4  Mcm1 0.076 1.0

Yapi 1.0 0.99 Gcn4 < 10-4 < 10-4

Phdl < 10-4 0.0368 Swi4 0.0052 0.0511
Rtg3 < 10-4 0.049 Gcn4 < 10-

4  < 10-4

Phdi 1.0 0.89 Sok2 1.0 0.84
Mbpi 0.28 1.0 Swi4 0.96 1.00 Swi6 8 x 10-

4  1.0
Msn2 1.0 < 10-

4  Yapi 1.0 < 10-4

Nrgl 0.64 1.0 Sok2 1.0 < 10-4

Mbpi 6 x 10-4 1.0 Swi6 < 10-4 1.0

Msn2 1.0 0.97 Msn4 1.0 < 10-4 Gcn4 < 10-4 < 10-4

Cin5 0.985 1.0 Yap6 1.0 < 10-4

Hap4 1.0 < 10-4 Hap2 1.0 < 10-4

Phdi 1.0 < 10-
4  Msn4 1.0 < 10-4

Ste12 < 10-4 < 10-
4  Mcml 0.073 0.069

Gcn4 < 10-
4  < 10-

4  Leu3 0.13 0.23
Rapi < 10-

4  1.0 Gat3 1.0 1.0 Fhll 1.0 1.0
Swi4 < 10-

4  1.0 Swi6 < 10-4 1.0

Gcn4 0.0241 0.72 Basi 0.009 0.03
Smp1 1.0 0.925 Rlml 1.0 < 10-4

Cin5 0.88 1.0 Yapi 1.0 < 10-4

Msn2 1.0 0.054 Msn4 1.0 0.179 Yapi 1.0 0.243
Rapi < 10-4 1.0 Fhll 1.0 1.0 Yap5 1.0 0.946
Phdi 1.0 0.253 Msn2 1.0 0.003 Sok2 1.0 0.935
Cin5 0.99 1.0 Gcn4 0.0026 < 10-4

Table 6.11: Directions of effectiveness of models inferred from Rosetta data, Table 2

Regulator 1 Nece pval Suff pval Regulator 2 Nece pval Suff pval Regulator 3 Nece pval Suff pval

Msn4 1.0 1- Yapi 1.0 < 10-4

Maci < 10-4 < 10-
4  Yap5 0.02 0.078

Rapi 1.0 1.0 Gcn4 < 10-4 < 10-4

Cbf1 1.0 0.99 Met4 1.0 < 10-4

Phdl 1.0 0.98 Gcn4 1.0 < 10-4

CbfI 1.0 1.0 Gcn4 1.0 < 10-4

Msn2 1.0 < 10- 4  Hsf1 1.0 < 10-4
PhdI 1.0 0.0175 Msn4 1.0 0.95 Yapi 1.0 < 10-4

Sok2 1.0 0.0175 Swi4 1.0 < 10-4

Mbpi 0.01 1.0 Swi6 0.0245 1.0 Fkh2 0.98 1.0
Ste12 < 10-4 0.045 Sok2 0.99 1.0
Fkhl < 10-4 1.0 Fkh2 < 10-4 1.0
Mcml 1.0 1.0 Gcn4 < 10-4 < 10-4

Phdi 1.0 < 10-4 Msn2 1.0 < 10-4

Ashl 1.0 0.0046 Swi4 0.172 1.0 Swi6 0.14 1.0
Rapi < 10-4 1.0 Rgml 0.0034 1.0 Gat3 1.0 1.0
Phdl < 10-4 < 10-

4
Skn7 0.028 0.103
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Table 6.12: Directions of effectiveness of models inferred from Gasch data, Table 1

Regul
Msn2
Maci
Ashi
Digi
Phdl
RapI
Gcn4

Msn4
Ino2
Gcn4
Digi
Yapi
Phd1
Rtg3
Phdl
Mbpl
Msn2
Nrgl
Mbpl
Msn2
Msn2
Rapi
Cin5
Hap4
PhdI
Hap3
Cbf1
Ste12
Mcm1
Gcn4
RapI
RapI
Swi4
Pdrl
Cin5
Gcn4
Digi
Msn2
Rapi
Maci
Cin5
Msn4
Gat3
Rapi
Pdrl
Pdrl
Mcml
Phdi
Cbfl
Rapi
Maci
Msn2
DigI
Yapi
Mbpl

ator 1 Nece pval [ Suff pval I Regulator 2 Nece pval Suff pval Regulator 3 [ Nece pval I Suff pval
1.0
0.96
1.0
1.0
1.0
0.994
1.0
0.880
1.0
1.0
0.0121
1.0
< 10-4
1.0
1.0
1.0
0.863
1.0
< 10-4
1.0
1.0
1.0
< 10-4
0.386
1.0
1.0
< 10-4
< 10-4
< 10-4
0.931
0.0694
0.993
< 10-4
1.0
1.0
1.0
10-4
1.0
1.0
0.449
0.965
1.0
1.0
0.764
< 10-4
1.0
1.0
< 10-4
1.0
0.0024
< 10- 4

0.538
1.0
1.0
1.0
0.661

9 x 10-
1.0
1.0
1.0
1.0
< 10-4
0.0316
1.0
< 10-4
0.878
1.0
1.0
< 10-4
0.369
0.291
< 10-4
1.0
0.979
< 10-4
1.0
1.0
0.0043
< 10-4

1.0
< 10-4
< 10-4
2 x 10-

4

1.0
< 10-4
1.0
1.0
< 10-4
0.0224
1.0
1.0
0.0037
0.226
1.0
1.0
0.449
1.0
< 10-4
< 10-4
0.0199
< 10-4
1.0
1.0
2 x 10-4
1.0
0.378
< 10-4
0.399
0.879
1.0
0.969
1.0

Msn4
Cup9
Ste12
Ste12
Ste12
Fhll
Hsfl
Nddl
Hsfl
Ino4
Abfl
Ste12
Gcn4
Swi4
Gcn4
Sok2
Swi4
Yapi
Sok2
Swi6
Msn4
Msn4
Smpl
Yap6
Hap2
Msn4
Hap2
Abf1
Mcml
Skn7
Leu3
Gat3
Rcs1
Swi6
Rapi
Rgtl
Basi
Ste12
Msn4
Fhll
Cup9
Gcn4
Yapi
Yap5
Gcn4
Cup9
Gat3
Rimi
Yap6
Gcn4
Pho4
Gat3
Hsfl
Ste12
Cadi
Swi5

9 x 10-
< 10-4
< 10-4
0.001
< 10-4
1.0
0.636
0.685
0.99
1.0
3.00 x 10-

4

< 10-4
1.0
< 10-4
1.0
1.0
1.0
0.0271
1.0
< 10~4
3 x 10-4

< 10-4
1.0
< 10-4
1.0
< 10-4
< 10-4
0.447
0.834
< 10-4
< 10-4
1.0
1.0
0.0361
< 10-4
1.0
0.0138
< 10-4
1.0
0.925
< 10-4
1.0
0.597
0.0461
0.979
< 10-4
0.0155
1.0
< 10-4
1.0
1.0
0.0012
< 10-4
< 10-4
0.131
< 10-4

< 10-
2.10 x 10- 3

< 10-4
< 10-4

< 10-4
< 10-4
0.515
1.0
5 x 10-4
8.30 x 10-3
< 10-4
< 10-4
1.0
0.99
0.290
0.907
1.0
0.002
1.0
< 10- 4

< 10- 4

< 10-4
1.0
< 10-4
1.0
< 10-4
0.390
0.363
0.0705
< 10-4
< 10-4
1.0
1.0
< 10-4
< 10-4

0.277
0.0668
< 10-4

< 10-4
0.0438
0.999
1.0
0.0295
< 10-4
1.0
10-4

0.0073
0.567
0.0101
0.005
1.0
1.0
< 10-4
< 10-4
0.501
0.661

Hsf 1

Fkh2

Mcml

Swi6

Gcn4
Fhl1

FhIl

Fhl1

Swi4
Yapi
Yap5
Yap5

Yap5

RImi

1.0

0.132

1.0

< 10-4

1.0
< 10-4

1.0

1.0

1.0
0.138
1.0
1.0

1.0

1.0

0.98

1.0

0.00270

< 10-4

1.0
< 10-4

< 10-4

< 10-4

1.0
0.263
1.0
0.236

0.0029

1.0
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Table 6.13: Directions of effectiveness of models inferred from Gasch data, Table 2

Regulator 1 Nece pval Suff pval Regulator 2 Nece pval Suff pval Regulator 3 Nece pval Suff pval
Rapi < 10-4 1.0 Swi4 1.0 1.0
Msn2 0.0045 < 10-4 Rlmi 0.997 1.0
Sok2 < 10-

4  1.0 Swi4 2 x 10-4 0.742
Mbpl 1.0 1.0 Swi6 0.978 < 10-4 Fkh2 0.0029 < 10-4

Ste12 < 10-4 0.139 Sok2 0.678 1.0
Msn4 1.0 < 10-

4  Rtg3 0.009 0.223
Fkhl 0.638 1.0 Fkh2 1.0 0.130
Rebi 6 x 10-

4  0.935 Abf1 1.0 1.0
Abfl 1.0 0.961 Hsfl < 10-

4  < 10- 4

Phdi 1.0 0.540 Msn2 1.0 0.0649
Maci 1.0 1.0 Rapi < 10-

4  < 10-4 Fhll < 10-
4  < 10-4

Pdrl 1.0 1.0 Smpl 0.148 1.0 Yap5 0.0018 < 10-4

Rapi < 10-4 < 10-4 Rgml 1.0 1.0 Gat3 1.0 1.0
Rapi < 10-4 < 10-4 Yap6 1.0 1.0
Rmel 1.0 1.0 Rox1 < 10-4 < 10-4

Rap < 10--4 < 10-4 Gal4 1.0 1.0
Msn4 < 10-4 < 10-4 Gcn4 1.0 1.0
Phdl 1.0 < 10-4 Skn7 1.0 1.0
Mcm1 0.117 1.0 YJL206C < 10-4 1.0
Fkh1 0.0525 1.0 Nddl 0.960 1.0 Fkh2 0.169 0.0031

regulated in other e

these regulators are

sufficient activators

Ste12 is a necessary

xperiments where Gcn4 was also up-regulated. The properties of

preserved in Gasch data. Msn2, Msn4, Yapi and Hsfl remain

for stress response models, Rapi is a necessary activator, and

activator for mating response genes. However, there is moderate

evidence to support these regulators also function in the opposite direction. For

example, Rapi is also a sufficient regulator for ribosomal genes, the model regulated

by Msn2 and Msn4 shows they are both necessary and sufficient. The same statement

is true for Ste12 and Swi6.

By investigating the directions of effectiveness of multiple regulators in different

models, we summarize three patterns of regulation scenarios and suggest possible

mechanisms for these scenarios.

" Each regulator in a model is a sufficient regulator. This scenario is common for

stress response genes regulated by Msn2, Msn4, Hsfl, Yapi and Cadi. In this

scenario, each regulator suffices to activate genes. A possible mechanism is that

these regulators bind independently on the promoters and serve as redundant

pathways.

" A model contains a significant necessary or sufficient regulator and other regu-
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lators which are not well correlated with regulated genes in expression data. For

instance, in Rosetta data Gcn4 pairs up with several other regulators to control

a number of models. In these models Gcn4 is both necessary and sufficient,

but the confidence about the effectiveness direction of the other regulator is

low. The interactions between Rapi and Fhll and Yap5 on ribosomal genes for

Rosetta data, and between Swi6, Swi4 and Mbp1 on cell cycle genes for Gasch

data also fall in this category. This other regulator may not play any functional

roles thus can be discarded. However, they may also control transcription not

by modulating their mRNA abundance but through other mechanisms. For

example, a regulator may constituently stay on promoters and its function is

not manifested without its deletion.

9 Another scenario is each regulator is a necessary regulator. Examples include

Ino2 and Ino4, Swi4 and Swi6, Fkh1 and Fkh2 in Rosetta data. A variant of

this scenario is each regulator is necessary but some are also sufficient. An

example is Ste12 and Mcml in Rosetta data. A likely mechanism is that they

form a complex when binding to promoters. This is indeed the case for Ino2-

Ino4 complex ([4]), Hap2-Hap4 complex ([109]), Fkhl-Fkh2 complex ([139]),

and Ste12-Dig1 complex ([13]).

6.5.2 Overlap between Rosetta and Gasch models

The quality of inferred models can be judged by the robustness of models with respect

to different datasets. We have generated two sets of regulatory models from Rosetta

and Gasch expression data respectively. A natural question is to what extent these

models are overlapped. The consensus parts of the models suggest they are more likely

to reflect the underlying system. The parts where they differ may be due to condition-

specific properties of gene regulation: certain regulatory systems are revealed only in

one dataset. However, without further validation these results are less confident.

We investigated the overlapped parts between Rosetta and Gasch models. There

were 110 Rosetta models and 220 Gasch models which fit the data well (permutation
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p-value < 0.02 for Rosetta models and < 0.001 for Gasch models). We considered the

intersection of the regulator sets of these models and found 89 regulator sets appear

in both sets of models. We then compared Rosetta and Gasch models corresponding

to these 89 regulator sets in two aspects. First we checked the overlap between the

regulated gene sets of the corresponding models. Second we inspected the consensus

of inferred directions of effectiveness of the corresponding models.

Tables 6.14 and 6.15 shows the comparison results of Rosetta and Gasch models.

The semantics of columns is as follows. SizeR denotes the number of regulated genes

of Rosetta models and SizeG the number of regulated genes of Gasch models. Each

bit in NeceR and SuffR columns indicates whether each regulator is necessary or

sufficient in Rosetta models. NeceG and SuffG denote the same properties about

Gasch models. Overlap rate 1 is the number of genes which appear in both Rosetta

and Gasch models divided by the number of genes in the Rosetta model. Overlap

rate 2 is the overlap with respect to the number of genes in the Gasch model. The

results suggest that these two sets of models are significantly overlapped. Among

the 89 regulatory model pairs, about 55% of them (49 out of 89) are significantly

overlapped in their regulated gene sets (more than 40% members with respect to

either model are overlapped). 55% of model pairs (49 out of 89) agree upon either

direction of effectiveness for all their regulators. That means, all necessary regulators

or all sufficient regulators in the two models coincide.

By inspecting the overlapped regulatory models, we found they corresponded to

the regulatory processes which were better captured in both datasets. Among the

89 significant models whose regulator sets appear in both datasets, 61 of them are

enriched with genes belonging to certain MIPS categories. The regulatory processes

involved in these overlapped models include stress responses, mating responses, ribo-

somal regulation and cell cycle.

6.5.3 Sensitivity analysis of inferred models

The validity of a model is questionable if the modeling results are sensitive to specific

settings of its parameters. In this section we show the inferred models are robust
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Table 6.14: Overlap of inferred models between Rosetta and Gasch data, Table 1

Regulator 1 Regulator 2 1 Regulator 3 1 SizeR SizeG NeceR NeceG SuffR SuffG Overlap ratel Overlap rate2
MCm1
Abfl
Fkh2
Rebi
Ashi
Basi
Sok2
Digi
Maci
Phd1
Rapi
Rlml
Rapi
Gcn4
Fkhl
Ste12
Hap4
Gcn4
Ino4
Gal4
Msn4
Uga3
Msn4
Ino2
Rgml
Gcn4
Digi
Yapi
Phdl
Swi5
Swi4
Swi6
Phdi
Mbpi
Rfxl
Msn2
Nrgl
Yapi
Mbpl
Yap5
Msn2
Ste12
Aro80
Ashl

Ste12

Ste12

Ste12

Fhl1
Hsfl

Hsf 1

Ino4
Gat3
Abfl
Ste12
Gcn4
Swi4

Sok2
Swi4

Yapi
Sok2

Swi6

Msn4
Ino4

Mcm1l

Swi6

14.3%
0%
6%
35.1%
12.5%
15.8%
6.8%
39.1%
0%
36.4%
19.6%
0%
23.1%
69.2%
22.2%
13.1%
57.5%
66.7%
9.09%
12.5%
13.6%
36.4%
18.8%

5
5
7
27
10
28
54
57
12
13
31
35
28
14
12
49
24
125
5
16
8
26
13
13
8
11
19
18
9
19
5
5
52
9
10
13
37
10
12
7
55
5
9
48
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7
39
50
37
16
19
44
46
7
11
148
9
121
13
9
107
40
12
11
56
22
11
16
22
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1
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0
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1
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10
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1
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1
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00
00
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1
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10
11
1
1
11
0
11
11
0
11
10
1
10
1
1
1
1
11
10
1
01
10
01
011
10
00
1
1
1
10
001
10
01
10
1
01
1
01
10
1
1

20%
0%
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48.1%
20%
10.7%
5.6%
31.6%
0%
30.8%
93.5%
0%
100%
64.3%
16.7%
28.6%
95.8%
6.4%
20%
43.8%
37.5%
15.4%
23.1%
15.4% 9.09%
0%
0%
57.9%
50%
11.1%
42.1%
0%
60%
21.1%
44.4%
10%
69.2%
5.4%
10%
41.7%
0%
36.4%
80%
77.8%
18.8%

0%
0%
44.0%
81.8%
6.67%
27.6%
0%
8.3%
61.1%
26.7%
11.1%
36.0%
33.3%
10%
26.3%
0%
64.5%
66.7%
28%
40.9%



Table 6.15: Overlap of inferred models between Rosetta and Gasch data, Table 2

Regulator 1 Regulator 2 Regulator 3 SizeR [ SizeG I NeceR [ NeceG SuffR [ SuffG I Overlap ratel Overlap rate2

Msn2
Digi
Cin5
Hap4
Phdl
Usvl
Stp2
Ste12
Digi
Met4
Riml0l
Gcn4
Rapi
Swi4
Gcn4
Digi
Msn2
Rapi
Maci
Hir2
Msn4
Gat3
Mthl
Maci
Rapi
Rtg3
Ashi
Mcml
Msn2
Digi
Ste12
Ashi
Ashi
Phdl
Sok2
Ste12
Fkhl
Msn4
Mcm1
Phdl
Swi4
Gal4
Ashi
Msn4

Msn4

Yap6
Hap2
Msn4

Mcm1
Ste12

Leu3
Gat3
Swi6
Basi
Ste12
Msn4
Fhl
Cup9

Yapi
Yap5
Gcn4
Yap5
Gcn4

RImi
Rimi
Hsfl
Ste12
Skn7
Cin5
Mssll
Msn4
Swi4
Sok2
Fkh2
Rapi
Gcn4
Msn2
Gcn4
Gat3
Rapi
Gcn4

Gcn4

Msn2

Fhll

Swi4
Yapi
Yap5
Yap5

RImi
Sok2
Yap6

Yapi
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001
1
00
00
00
0
0
10
010
1
0
10
100
11
11
010
000
100
101
1
00
11
01
11
01
1
00
00
00
000
100
000
10
000
00
10
11
00
01
00
00
10
10
01

010
1
01
00
01
1
1
10
010
1
1
01
000
01
11
010
000
000
010
1
00
01
10
00
10
1
10
10
01
010
100
001
10
000
11
10
00
01
01
00
10
01
01
10

001
1
01
11
11
1
1
10
000
1
1
10
000
00
01
010
100
000
100
1
11
11
01
10
01
1
01
01
11
001
101
001
00
101
11
10
00
11
01
11
01
11
00
01

110
1
01
10
11
10
1
101
011
1
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010
101
010
01
010
010
010
000
10
11
110
10
010
10
1
00
10
01
010
110
010
00
000
00
00
00
01
00
00
10
01
01
10

35.7%
18.2%
16.7%
100%
46.7%
50%
0%
54.2%
75%
31.25%
37.5%
50%
100%
50%
50%
28.6%
70.6%
100%
0%
100%
59.1%
0%
0%
0%
0%
31.9%
42.9%
50%
30%
22.2%
60%
33.3%
35.7%
57.1%
0%
45.5%
75%
0%
33%
36.4%
54.5%
12.5%
0%
35%

71.4%
52.2%
5.88%
63.6%
29.2%
15%
0%
43.3%
40%
31.25%
50%
80%
32.8%
22.7%
57.1%
26.7%
50%
38.5%
0%
25.9%
59.1%
0%
0%
0%
0%
51.7%
66.7%
42.9%
11.5%
40%
42.9%
50%
83.3%
50%
0%
41.7%
37.5%
0%
25%
32%
75%
7.69%
0%
70%



Figure 6-4: Robustness tests on parameters
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against the variations of several free parameters.

We consider the following three parameters. A appearing in the joint likelihood

function (equation 6.14) is the relative weight of importance between expression and

binding data. Larger A puts more weight on expression data. C in Table 6.2 relates

the the prediction of a regulatory program to the hidden states of expression changes.

Smaller E makes the regulatory program more deterministic. pS'P in the greedy algo-

rithm specifies the stopping criterion of the p-values of adding genes (Section 6.4.2).

The smaller pstOP is, the earlier the greedy algorithm stops incorporating genes, hence

the smaller the regulated gene set is. The default setting of these parameters is

A = 0.1, = l, pst"P = 0.1. We performed three robustness tests by varying each

parameter while fixing the other two as the default values. Inferred models generated

from the new parameter settings were compared to the default models in two aspects.

First, we calculated the average overlap rate of regulated gene sets (with respect to

the default models) over all models. Second, we counted the fraction of new models

which had identical inferred directions of effectiveness to the default models. Fig-

ure 6-4 shows the sensitivity of parameters in Rosetta and Gasch models. Either

sensitivity measure is very robust against each parameter in each dataset except E
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on Rosetta data. For example, when varying A from 0.01 to 0.9, the average overlap

rate of Gasch models ranges between 90% and 100% and more than 85% of inferred

models agree on directions of effectiveness. In contrast, models inferred from Rosetta

data are sensitive to c: the average overlap rate drops to 50% when 6 varies from 1

to 0.1.
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Chapter 7

Conclusion

We conclude this dissertation by discussing the contribution and limitations of the

current models. We subsequently propose several improvement directions for future

work.

7.1 Contribution and limitations of current mod-

els

The physical network model described in Chapters Two and Three is the foundation

of all the works in the dissertation. In general, this model provides a systematic

framework for integrating explicit hypothesis of gene regulation and multiple types

of data. Hypotheses about the underlying processes and confidence of measurements

are expressed as constraints on the variables in the model. By applying approxi-

mate inference algorithms, we are able to identify variable configurations consistent

with the constraints. From a biological perspective, the inferred results have clear

interpretations since the hypotheses about the underlying process are explicit. From

a computational perspective, on the other hand, this approach avoids the difficult

model selection problem and translates the computational problem into an inference

problem. Specifically, in this dissertation we adopt the hypothesis that the regulatory

effects of gene perturbation propagate along pathways of molecular interactions. By
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applying the physical network modeling framework and the inference algorithms, we

are able to find the properties of the physical network which are consistent with the

pathway hypothesis and measurement data. Moreover, by applying various validation

tests described in Chapter Four, we have shown that the models can accurately predict

new knock-out effects and the inferred results are consistent with known biological

processes.

Despite these advantages, the current physical network models are also limited in

many ways. The constraint-based framework requires concrete hypotheses specifying

relations between the variables or properties in the model. Often simple assump-

tions which can capture the complexity of a biological system are not available. It

would be beneficial to extract novel information without strong assumptions about

the underlying processes. While most statistical models in gene expression analysis

can capture these novel information without specifying the biophysical process, the

current physical network model requires more specific hypotheses pertaining to gene

regulation. For example, a Bayesian network model might capture the feedback rela-

tion from a transcription factor to the kinases upstream of this factor by identifying

their statistical dependencies. In contrast, unless the location data shows that the

transcription factor binds to the promoters of these kinases, physical network models

are not able to recover the feedback relation.

The current physical network model is built on a very simple pathway hypothesis

and may be inadequate in many cases. For example, only 1/20 of the knock-out

interactions are connected via short pathways of molecular interactions. While it is

possible to extend the current model to incorporate refined assumptions and vast

amount of knowledge about gene regulation, various technical issues may become

prohibitive as the models become more complex. For instance, the computational

cost will be very high if we want to model detailed processes at individual molecular

level. Moreover, less data will be available as the model targets low level biophysical

processes.

The experimental design work depicted in Chapter Five can be viewed as a nat-

ural extension to the physical network models. We automate the selection of experi-

242



ments according to inferred models for the purpose of reconstructing gene regulatory

networks. Moreover, we have empirically demonstrated that automatically selected

experiments confirmed several putative pathways predicted by the model. While a

number of previous works exist in prioritizing new experiments or applying experi-

mental design methods in various problems, we are among the first authors to apply

experimental design to study gene regulation at genomic scale and demonstrate this

approach empirically.

Since the experimental design method is tightly coupled with the physical net-

work models, it has similar limitations as the physical network models. The use of

the mutual information score depends on the information available about the system.

As shown from the learning curve analysis (Figure 5-4), the performance of the mu-

tual information score is not superior to other criteria when data are limited. This

is an intrinsic limitation of using the expected reduction of model entropy as the

criteria for selecting experiments. When the data from less than 4 knock-out experi-

ments are available, we may prefer other criteria for selecting experiments. Another

restriction of the current experimental design method is the goal of discriminating

candidate models. In most studies in computational biology, the purpose of doing wet

experiments is to verify predictions generated from models. Although we have shown

that the empirical outcomes of selected experiments also confirmed our predictions of

putative pathways, the mutual information criterion is not designed for model veri-

fication. Moreover, the current method only considers single knock-out experiments.

In practice, we can also select double deletion experiments or vary growth conditions

of the cells among others.

The regulatory models described in Chapter Six relate gene expression levels.

There are already a large number of studies dedicated to this topic; some of them are

discussed in the literature review in Chapter One. The primary contribution of our

models is a simplified way of characterizing the regulatory programs of multiple tran-

scription factors. We characterize the regulatory programs in terms of the properties

of single regulators - the functions of directions of effectiveness of single transcription

factors. This simple characterization gives an intuitive interpretation of a complex
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combinatorial function and reduces computational cost and over-fitting due to the

restricted class of possible functions. Empirically, we found that about half of the

inferred regulatory models were confirmed in previous studies. The results indicate

that we are able to explain a large fraction of gene expression data with aggregate

effects of single regulators.

The major limitation of this regulatory model is its simplicity. The model is built

on several strong assumptions depicted in Section 6.1. In reality, these assumptions

may hold only in special cases. For example, some transcription factors may not need

to adjust their mRNA expressions in order to activate or inhibit genes; the necessary

or sufficient property of a regulator may depend on the presence or absence of other

regulators. Another limitation is the simple characterization and the discrete nature of

the models. To fully specify the combinatorial effects of multiple regulators, efficient

and large-scale assays that can capture many configurations of multiple regulators

together seem to be required. For example, if we are able to perform all possible

combinations of deletions and over-expressions of multiple regulators, then we can

reconstruct the combinatorial function automatically from the data.

7.2 Future extensions

There are many possible directions to extend the current framework of physical net-

work models. We close this chapter by discussing some of the primary extensions.

These fall into two categories: overcoming the current limitations described earlier

and broadening the types of data that the models can process.

e Incorporating regulatory models of multiple regulators within the physical net-

work models

The physical network models discussed in Chapters Two to Four do not consider

the combinatorial effects of multiple pathways. When multiple pathways connect to

the deleted and affected genes, we require that any pathway suffices to explain the

knock-out effect. This setting implies that each pathway is essential to regulate the
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downstream gene. Redundant pathways, for example, are not modeled under this

formulation. On the other hand, the regulatory models discussed in Chapter Six only

consider the combinatorial effects between transcription factors and regulated genes.

We want to extend the combinatorial effects to pathways in addition to protein-DNA

bindings. A natural extension of combining the two models is to treat the physical

network as a hypergraph: protein-DNA interactions incident to a gene (or a gene

module) are taken as a hyperedge. Relevant functional data include multi-way inter-

actions from single or double knock-out, over expression, or general expression data.

Previously negative evidence (insignificant responses in knock-out experiments) were

ignored, but negative evidence is important in the new scheme. For example, insignif-

icant responses in single deletions are essential for inferring redundant pathways.

* Incorporating other types of data

Current physical network models are limited to clear causal effects on genes -

namely pairwise knock-out interactions. Since most gene expression data are not

under gene deletion or over expression conditions, it is important to extend the cur-

rent model to incorporate general expression data. This requires generalizing causal

explanation. In a general expression dataset, genes are changed under certain en-

vironmental conditions (for instance, heat shock). We have to link environmental

changes to pathways of physical interactions, but there is a large degree of freedom

for building those links due to the lack of direct evidence. Therefore, a major issue

is to limit the assignment of pathways to environmental changes.

There are a vast amount of data capturing different aspects of cellular processes.

Some examples include sequence data, mass spectrometry data of protein abundance

and modification, information about protein complexes and localization, fluxes of

metabolic reactions. In order to build a large-scale model of gene regulation, each type

of data is important. As mentioned in Chapter Two, the advantages of data fusion

are not only reducing errors from independent observations but also constraining the

model space from complementary sources. In the long run, we plan to build models

which can account for more types of data.
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* Including spatial and temporal aspects in the model

Both physical network models and regulatory models of multiple regulators cur-

rently ignore the spatial and temporal dimensions of gene regulation. This is cer-

tainly unrealistic for they are essential elements of gene regulation. When extending

to multi-cellular organisms, the spatio-temporal effects are the determining factors

for development. Despite their importance, modeling spatio-temporal effects require

much more fine-grained data and quantitative models. Many challenges exist in solv-

ing this problem. For example, the behavior of a complex, dynamic system depends

on specific values of parameters. However, it is difficult to learn the exact values of

these parameters from a small number of samples. In the setting of physical network

models, an immediate extension to incorporate temporal aspects is to use dynamic

data to restrict causal orders along pathways. In the long run, a new characterization

of the model is required if exact values of parameters such as reaction rates are of

interest.

* Generalizing experimental design

The current experimental design method focuses on a specific type of experiments

(single knock-outs) on a specific task - to reduce uncertainty of model configura-

tions. Experimental design can be generalized to other types of experiments and to

fulfill other goals. For example, in addition to model discrimination we are also in-

terested in choosing experiments to validate whether the true model is contained in

a class of candidate models. Any type of perturbation experiments can be designed

by the current framework as long as their effects can be predicted by the models.

Over-expression experiments can be included as single knock-outs. Including double

mutant experiments requires the model to cover combinatorial effects of pathways.

Including external perturbations of environment requires modeling the links between

environmental changes and molecular pathways.

* Incorporating physical mechanisms of combinatorial control
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The combinatorial control scenarios depicted in Chapter Six cover only limited

functional aspects. We want to endow the inferred functional relations with mech-

anistic basis like molecular cascades as the basis of knock-out effects. A possible

direction of inferring the physical mechanisms is to categorize them into simplified

"primitives". For example, two transcription factors can compete at a specific bind-

ing site, cooperatively bind at two sites, or form a complex to bind to a site. The

recruitment of factors at promoters depends on the binding affinity of promoters,

protein abundance and localization of factors, and the presence of other factors. We

can arrange the settings of these primitives to fit the binding and expression data,

like fitting the network configurations to explain physical and knock-out interaction

data. However, the over-fitting problem is more serious since there are many com-

binations of these primitives and current datasets only probe very limited aspects of

these mechanisms.

* Improving error models of data

To ensure the accuracy of inferred models, high quality datasets are essential.

Except sequence data, data from high-throughput experiments is often questionable.

A better characterization of their experimental errors is essential to make them useful.

The current error models of CHIP-chip and knock-out data are not satisfactory for

they are based on asymptotic statistics from large sample size. This contradicts with

the fact that the reported data are drawn from few experiments. The error model of

protein-protein interaction data is also unsatisfactory for the problematic hypothesis

about EPR and PVM tests. Although error model improvement of individual datasets

is independent of the modeling framework and can be dealt with separately, it still

needs to be undertaken.

* Inferring missing links of molecular pathways

Due to the high false negative rate of physical interaction data, many effective

pathways may not be present in the skeleton network constructed from existing

datasets. Restricting inference to pathways of observed physical interactions may
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greatly hinder the power of physical network models. We want to include the links

which substantially empower the model to explain functional data even though the

direct evidence pertaining to physical interactions are weak. For example, we can

incrementally add links to the physical network which maximize the number of ex-

plained knock-out interactions.
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Appendix A

Simplifying marginalization

calculations

In this section we will discuss the methods of simplifying the marginalization calcu-

lations in equations 3.38 and 3.40:

mf-+(x) = E f(x,N(f)\{x}) fJ mxf (xi). (A.1)
N(f)\{x} xiEN(f)\{x}

mj-*(x) max f (x, N(f)\{x}) HJ moxf (xi). (A.2)
N~f)\{} X2EN(f)\{x}

The main body of the max-product and sum-product algorithms comprises mes-

sage updates. The update of messages from a variable to a factor (equation 3.37) is

simply the product of single-variable functions. Computational bottlenecks occur at

the update of messages from factors to variables (equations 3.38 and 3.40). Consider

the maximization marginalization in equation 3.40 and assume all variables are bi-

nary. The maximization is carried out over all configurations in N(f)\{x} variables.

We can enumerate all these 21N(f)-11 configurations and find the one which yields

the maximum of f(x, N(f)\{x}) HxjeN(f)\{x} mx 2 f(xi). This naive implementation

requires the overall time complexity for each iteration to be O(|Vfj2(maxN(f)-1))7

where |VfI is the number of factor nodes and max N(f)I is the largest size of fac-

tor arguments. A similar implementation can apply to the sum marginalization and
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the time complexity is of the same order. Furthermore, if potential functions are

lookup tables, then the algorithm also requires O(lVf 2(maxIN(f)-1)) amount of space

to store the potential functions. This naive implementation leads to inefficient use of

resources. Consider our problem of model inference from large-scale datasets. When

restricting the max path length to 3, there are 23771 potential function terms. The

largest potential function can contain 10 variables (3 edge presence, 2 directions, 3

signs, 1 path selection, 1 knock-out effect). Hence in the worst case it requires about

1.2 x 107 units of computational time and storage space at each iteration.

This obstacle is insurmountable if potential terms are arbitrary functions. Fortu-

nately, most potential functions in our model are relaxations of Boolean functions.

We can apply basic logic deductions to simplify the evaluations of equations 3.38 and

3.40. Rather than exhausting all configurations, we only need to consider few config-

urations according to the deduction. Hence the running time is greatly reduced. The

required space is also highly compressed because we only need to store the type of

the potential function and its variable indices. The returned values under different

configurations can be automatically deduced from simple rules.

As mentioned in Section 3.3, there are three types of potential functions in the

physical network model: 0(.) pertaining to the confidence of physical interactions or

knock-out effects, 0(.) for explaining knock-out effects via paths, and V/fR(.) for en-

forcing the selection of at least one path to explain a knock-out effect. We discuss the

simplification of marginalizations in different types of potential functions separately.

A. 1 Potential functions of measurement confidence

0(.) links a measurement with the underlying variable that the measurement is tar-

geted to capture: 0,# (Xei; ye) for location data links the enrichment of protein-binding

DNAs with the protein-DNA binding, or for protein-protein data links the catego-

rizations of the reported protein pair with the actual protein-protein binding, and

iij(kjj; EFg) links knock-out expression data with the actual knock-out effect. These

functions are depicted in equations 3.2, 3.18 and 3.19. The returned values of 0(.)
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under different configurations reflect the confidence about measurements or observa-

tions.

0(.) is not a relaxation of a logical function, hence its message update equations

3.38 and 3.40 cannot be simplified. However, the factor-to-variable message mf_.(x)

is simply the potential function f(x) itself for all #(.)s are functions of single variables.

This holds for both max and sum marginalizations.

A.2 Potential functions of knock-out explanation

0(.) links a knock-out effect with variables along a path connecting the cause and

effect. The function is depicted in equation 3.28. It returns 1 when the knock-

out effect is explained, ei when the path is unselected, and 62 otherwise. It is a

relaxed Boolean function, thus the marginalization can be simplified by applying

logic deduction.

We first describe the simplification for max marginalization then for sum marginal-

ization. Within each scheme we discuss the message updates of different types of

variables separately.

A.2.1 Max marginalization

We first consider the message update from )(.) to an edge presence variable x1 . From

equation 3.40, the maximization marginalization equation is

m4 21 (x 1) = maxu,,\{ 1} 7i(Xi, x 2, 1 , x7 , dX ,--- , d, Si, , s O, k)- (A.3)

i=S2 mnxi'I(xi ) - =1 mad,,b(di ) - m_.(8si ) - M,,,(O-) - Mk, ( k ).

where Up denotes arguments in 0, i, di, si are variables of edge presence, edge di-

rection, edge sign respectively, - is path selection variable and k is knock-out effect

variable. For brevity we may write a message mx,,(x) as m(x). For xi = 0 and

x, = 1, we want to find the configurations which maximize the term in equation A.3.

Because of the property of V), we can summarize the candidate configurations as
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follows.

" When x, = 0, the path cannot explain k. Thus the best scenario occurs at either

o7 = 0 (the path is not active) or k = 0 (the knock-out effect is insignificant).

Under these settings, 'b(.) no longer constrains other values. Instead, their best

values are determined by their incident messages separately. For example, the

best value of X2 is arg maxx2 m(x 2 ). Denote the best values of these variables

as Q, then mVpx 1 (xi = 0) = 'El - [EU,,\{X, m(y = ).

" When x1 = 1, the path may or may not explain k. The optimal scenario is

the supremum of the two cases. If the path explains k, then o = 1, k / 0,

all edge presence variables xi = 1, and all edge direction variables follow the

direction of k. We exhaust all configurations of edge signs and the knock-out

effect which are consistent, and identify the one which yields the best value of

m(k) . fi m(s2 ). The best scenario of case 1 is consequently obtained.

" When x, 1 and the path does not explain k, then either a = 0 or k = 0.

The optimal values of the remaining variables are determined by their incident

messages separately. The outcome is the best scenario of case 2. We choose the

supremum of scenarios 1 and 2 to be mrn (X1 = 1).

The message update for an edge direction variable d, is very similar to that of an

edge presence variable. d, has two possible values +1 and -1, where one of them is

consistent with the direction of the knock-out effect k. Without loss of generality we

assume d, = +1 is consistent with k. Consequently, the message update simplification

is exactly the same as the edge presence xi if we treat -1 in d, as 0 in x1.

An edge sign variable s, also has two values +1 and -1. At s, = -1, we consider

two cases identical to previous discussions.

1. In the first case, the path explains k. Hence a = 1, k # 0, all xi's are 1 and all

di's are consistent with the knock-out effect. We have the freedom to change

82, - - -, Snunder the constraint that the aggregate sign (together with si = -1)
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is -k. Hence we choose the subconfiguration of s2  , s which satisfies this

condition and yields the best product of incident messages -=2 m(si).

2. In the second case, the path does not explain k. Hence u = 0 or k = 0. The

values of the remaining variables are determined by their incident messages

separately.

The message mev,, (si = -1) is the supremum from these two scenarios. mV,,l (si =

+1) is obtained analogously.

A path selection variable -has two possible values 0 and 1. When U = 0, the path

is not selected hence the constraint of explanation is removed. The best configuration

of other variables can be obtained by finding their best values separately according

to their incident messages. When - = 1, the path may or may not explain the knock-

out effect. k = 0 if the path does not explain k, and other variables are separately

determined as before. If the path explains k, then we fix k, xi and di according to

explanation constraints and find the best edge sign configurations which are consistent

with k. The best scenario of these two cases gives mV,,(- = 1).

A knock-out variable k has three possible values -1, 0, +1. The message update

procedure for k = 0 is exactly the same as o- = 0. When k = +1 or -1, we again

consider the cases when the path is selected to explain k or not. If the path is

selected, then all variables except edge signs are fixed, and we find the best edge sign

configurations as before. If the path is not selected, then we find the best value of

each variable separately according to its incident message.

A.2.2 Sum marginalization

The sum marginalization in equation 3.38 can also be simplified for path explanation

potential functions. By expressing a potential function in terms of the configurations

of variables, we can efficiently evaluate the sum marginals without enumerating all

configurations.

We normalize the returned values of p(.) under three conditions (the path explains

the knock-out effect, the path is not selected, the path does not explain the knock-out
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effect) to be v1 , v2, v3 . The sum of the returned values over all configurations is 1.

This function can be expressed in terms of the indicator function I(.):

V)(config) =(vI-V3 )I(config explains k)+(v 2 --v 3)[I(0-= 0)+I(k = 0)-I(o- = 0, k= O)]+v 3.

(A.4)

The message update from equation 3.38 has the form of

MO -- (X) = E V)(Ug) fl m(Y). (A.5)
Ue\{x} ycUep\{x}

If all potential functions are normalized and messages are normalized after update,

then they can be treated as probability mass functions. The following equality holds

for any set of variables U.

E fJ m(yi = val(U)i) = 1. (A.6)
val(U) yiE U

This is because m(y)'s can be treated as probability mass functions of independent

random variables and the sum of the joint probabilities equals to 1. Equation A.4

greatly simplifies the sum marginal computation in equation 3.38. By substituting

equation A.4 into the potential function in equation 3.38, the sum marginal of the

second and the third terms is immediately obtained.

U,\{x}[(V2 - v3)(I(O- = 0) + I(k = 0) - I(- = 0, k = 0)) + v3 ] - HYEU+\{x} m(y)

= (v2 - v3)[m(U- = 0) + m(k = 0) - m(o- = 0)m(k = 0)] + v3 = Q2 + V3 .

(A.7)

Similar to previous discussions, the marginal of the first term in equation A.4 requires

summing over edge sign configurations only. The constraint of explaining a knock-out

effect forces o = 1, all edge presence variables = 1, and all edge direction variables

consistent with the knock-out effect. Thus,

n

1(config explains k) = I(o- = = 1, = , - -, = 1, di = di -, dn = dn.I(k = 0, si =-)
i=1

(A.8)
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Thus the sum marginal of first term in equation A.4 is

EUX ((Vi - v 3)I(config explains k) -HycU,\fxI m (y)

(vI - v 3 ) - H>- m(xi = 1) H>1 m(di di)m(- = 1)-

(m(k = -1) EZ.A,=+1 H' 1 m(si = .i) + m(k = +1) Zsl.nz_ _>i m(s= Qi.
(A.9)

Equations A.9 and A.7 can be applied to the message update of all types of variables.

For edge presence variable x1 ,

m(x1 = 0) - Q2 + v 3.
(A.10)

m(x1 = 1) = Qi + Q2 + v 3.

For edge direction variable d, (assume d, = +1 is consistent with k),

m(di = -1)

m(di = +1)

= Q 2 + v 3.

= Qi+Q 2 +v 3.

For edge sign variable si,

m(si = -1) = (vI - v 3 ) H- m(Xi = 1) H_ m(di = di)m(- = 1)-

(m(k = -1) Zs 2 . _1 H2 m(s = si) + m(k = +1) Zf 2 -n+ H> 2 m(si = si))

+Q2 + V3 .

m(si +1) = (v 1 - v 3 ) - lI m(xi = 1) H>_1 m(di = di)m(o- = 1)

(m(k = -1) EZ2-9-+ 1 M7- 2 m(si= si) + m(k = +1) Ei2 .,_= i H2=2 m(s =

+Q2 + V3.

(A.12)

For path selection variable -,

m(U- =0) = v 2.

m(o- = 1)
(A.13)

= Qi + (v2 - v 3 )m(k= 0) + v 3.
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For knock-out effect variable k,

m(k = 0) = v2.

m(k = -1) = EgPVxI(vI

= (vi - v3) -H-l m(Xi =

Es,. 1 Hn 1 m(s, = si)

m(k = +1) = EU\{f}(Vi

= (vi - v 3 ) - H- 1 m(xz =

Es,.3f,_ _ _1 mn(si s)

- v3)I(config explains k) -Hycu,\{x} m(y)

1) H', m(di = di)m(o 1)

+ (v 2 - v3)m(o- = 0) + v3.

- v3)I(config explains k) - HyUp\{x m(y)

1) i1 m(di = di)m(- 1).

+ (v 2 - V3)m(o-= 0) + v3.

A.3 Potential functions for noisy OR

4 ,OR(.) is a noisy-OR function that returns a small value when all input arguments

are 0 and a large value otherwise. Similar to 4(.), the marginalization of <,OR(.) can

also be simplified by applying deduction.

A.3.1 Max marginalization

The message update equation of the max-product algorithm is

n

mToR__, (or) =max OXOR(- 1 ,-- , on) J m(cri)
2,'',0ni=2

(A.15)

The max configuration in the case ai = 0 is either (1)all other aos are separately

determined from their incident messages or (2)one -i is fixed to 1 and all other or's

are separately determined from their incident messages. We find the supremum con-

figuration of (1) and (2) and compute the updated message. The max configuration

in the case c-1 = 1 is when all other o's are separately determined from their incident

messages. This is because the constraint encoded in 4 ,OR is satisfied when o- = 1.
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A.3.2 Sum marginalization

The message update equation of the sum-product algorithm is

n

mgbOR,Uj (91) - )"0(Oi, --- ,Orn) 11 m(aj). (A. 16)

Similar to equation A.4, OOR can be expressed as

OR(u1. - - , 9n) = (v 3 - v1)I(cI = 0... , n = 0) + Vi. (A.17)

and the normalization equation A.6 holds. The message update becomes

mgoR-_,1 ( 0) = (v 3 - vi) -L 2 m(O = 0) + v 1. (A.18)

mToR,.(a, = 1) = v 1 .

A.4 Potential functions for model prediction

When evaluating the mutual information scores of new experiments, we have to pre-

dict the responses of single genes under a deletion perturbation. This is achieved

by augmenting the factor graph model with potential functions pertaining to pre-

dictions and applying the sum-product algorithm. In this section we describe the

simplification of evaluating the marginal belief functions of predicted responses. The

max-marginalization simplification is not discussed since it is not used.

Recall the augmented potential function pertaining to the prediction along a single

path is equation 5.38:

1 if (vxE ij,xz= 1) n(Vd E Dij, d = 1) n (-lscsj s = -Yi ),

Oij (Yi, Xjj, Dij, Sjj) =1 if ((3x E Xjj, x = 0) U (Ed E Dij, d: i )) n (Yi = o),
0 otherwise.

(A.19)

Xjj, Dij, Sij are the variables of edge presence, edge direction and edge sign along the

path 7ri. Yi is the predicted response of gene i along path j. We can evaluate the
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marginal probability of Yij according to the belief functions of other variables.

P(Yig) = EXij ,Di9 ,Si ij (Yij, Xij, Dij, Sij) -P(Xi3 , Dij, Sij) ~ZXij,Dij,Si ij (Yij, Xij, Dij, Si2 )-

P (Xi) )P (Di) )P (Sij).
(A.20)

For simplicity we approximate the joint probability with the product of marginal

beliefs of single variables. Substituting 5.38 into the equation, the approximated

marginal probability of Yij then becomes

P(Y?, = +1) H xcxj b(x =1) -dCD~j b(d = 1) P(E~s.. OS -

P(Yi = -1) ~Hvex2 b(x = 1) -fldD 2 b(d =E1) ( SS S = +1). (A.21)

P(Yij = 0) ~1 - HC b(x = 1) - dED, b(d -1).

These probabilities can be directly evaluated from the marginal beliefs of model vari-

ables.

To synthesize the predictions along all paths connecting to the same gene, we

couple the predictions along single paths with the potential function equation 5.39:

1 if (Yi = +1) n (Vj, Yij c {0, +1}) n ((Y, ... ,YiN) (0, '

1 if (Yi =-1) n (Vj, Yij E {0, -1}) n((Y, -- , YiN) (0,**

1 if (Y 0) n (all other configurations),

0 otherwise.
(A.22)

The marginal probability of Y is

P(Y) = E Vi(Yi, Y, --, YiN)
il,*'',iN

N

H P (Yi).
j=l

With some algebra,

P(Yi = +1) = H 1[P(Y'j = +1) + P(Y = 0)] - Ht P(Yi = 0),

P(Y _ = -1) = HN 1[P(Yy = -1) + P(Y = 0)] - A P(Yiy = 0),

P(Yt 0) = I - P(Y = +1) - P(Y -)

(A.23)

(A.24)

258



Appendix B

Addendum of empirical results

In this appendix, we include various empirical results which are not reported in the

main text of the thesis. They include pairwise physical and knock-out interactions in

the yeast pheromone response subnetwork (Chapter Four), the significance of expres-

sion change coherence among the genes bound by each transcription factor (Chapter

Five), and the single factor function of each transcription factor (Chapter Six).

B.1 Pairwise interactions in the empirical analysis

We demonstrate the lists of physical interactions and knock-out interactions of the

yeast mating pathway in Tables B.1 and B.2. The "type" columns in Table B.1

refer to the types of physical interactions: pd for protein-DNA interactions and pp

for protein-protein interactions. For conciseness we do not show the physical and

knock-out interactions of the entire physical network.

B.2 Significance of expression coherence

We introduce the method of measuring the expression coherence of a group of genes

in Section 5.4. The p-value of expression coherence (equation 5.42) measures the

significance of coherence against random sets of genes. However, the null model of

random sets may be too weak to reflect the coherence significance. To make sure genes
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Table B. 1: Physical interactions
type gene 1 gene 2 type gene 1 gene 2 type gene 1 gene 2
pd STE12 SST2 pd STE12 FARl pd STE12 SCW1O
pd STE12 GPA1 pd STE12 BARI pd STE12 MFA2
pd STE12 KAR4 pd STE12 STE2 pd STE12 YMR046C
pd STE12 GIC2 pd STE12 FIGI pd STE12 AGA2
pd STE12 TECi pd STE12 KAR5 pd STE12 ASG7
pd STE12 FUS1 pd STE12 MFA1 pd STE12 YNL279W
pd STE12 PRY2 pd STE12 STE6 pd STE12 FUS3
pd STE12 AGAl pd STE12 BEM2 pd STE12 MSB2
pd MCM1 FARl pd MCM1 GPA1 pd MCM1 BARI
pd MCM1 MFA2 pd MCM1 STE6 pd MCM1 STE2
pd MCM1 AGA2 pd MCM1 MFAl pd MCM1 AGAl
pp FARl STE4 pp FUS3 GPA1 pp FUS3 STEll
pp FUS3 STE5 pp FUS3 STE7 pp FUS3 YIL169C
pp GIC2 STE50 pp GPA1 SST2 pp GPA1 STEll
pp GPA1 STE4 pp KSS1 SST2 pp KSS1 STEll
pp KSS1 STE12 pp KSS1 STE5 pp KSS1 STE7
pp KSS1 TECI pp MCM1 STE12 pp SIN3 TUPI
pp STEll STE50 pp STEll STE5 pp STE18 STE4
pp STE4 STE5 pp STE50 STE5 pp STE5 STE7
pp FUS3 STE12
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Table B.2: Knock-out interactions

deleted affected effect I deleted affected effect I deleted affected effect
STE4
STE4
STE4
STE4
STE4
STE4
STE18
STE18
STE18
STE18
FUS3
STE7
STE7
STE7
STE7
STE7
STEll
STEll
STEll
STE5
STE5
STE5
STE5
STE12
STE12
STE12
STE12
STE12
STE12
STE12
KSS1
SST2
SST2
SST2
SST2

STE2
MFAl
FARl
SST2
MSB2
SCw1O
FUS3
STE6
SST2
MSB2
PRY2
FUS3
AGAl
TECi
PRY2
ASG7
GPA1
FARl
AGA2
STE2
STE6
AGAl
TECI
GPA1
MFA2
FUSI
SST2
MSB2
GIC2
KAR5
FUS1
FUS3
AGA2
ASG7
YNL279W

STE4
STE4
STE4
STE4
STE4
STE18
STE18
STE18
STE18
STE18
STE7
STE7
STE7
STE7
STE7
STE7
STEll
STEll
STEll
STE5
STE5
STE5
STE5
STE12
STE12
STE12
STE12
STE12
STE12
STE12
KSS1
SST2
SST2
SST2

GPA1
MFA2
FUSI
TECI
GIC2
STE2
MFAl
FARI
TECI
GIC2
STE2
STE6
AGA2
KAR4
FIGI
YNL279W
FUS3
FUSI
SST2
GPA1
FARl
AGA2
KAR4
FUS3
STE6
AGAl
TECI
PRY2
BEM2
SCwlo
FIGI
FUSI
KAR4
KAR5

STE4
STE4
STE4
STE4
STE4
STE18
STE18
STE18
STE18
STE18
STE7
STE7
STE7
STE7
STE7
STEll
STEll
STEll
STEll
STE5
STE5
STE5
STE12
STE12
STE12
STE12
STE12
STE12
STE12
STE12
KSS1
SST2
SST2
SST2

FUS3
STE6
AGAl
KAR4
ASG7
GPA1
MFA2
AGAl
KAR4
SCW10
GPA1
FUSI
SST2
MSB2
GIC2
STE2
STE6
AGAl
TECI
FUS3
FUSI
SST2
STE2
MFAl
FARl
AGA2
KAR4
FIGI
ASG7
YNL279W
ASG7
AGAl
FIGI
SCW10
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regulated by Msn4 or Hap4 undergo significant and coherence expression changes in

each deletion experiment, we also compare their coherence p-values with sets of genes

bound by each transcription factor. If the effects of deleting genes along a pathway

are specific to this pathway rather than on a wide range of the network, then we shall

see downstream genes of this pathway are more coherent than genes (putatively)

regulated by other factors.

Tables B.3-B.7 rank the coherence p-values of genes putatively regulated by each

factor in the five deletion experiments: Swi4A, Sok2A, Msn4A, Hap4A and Yap6A.

Genes putatively regulated by Hap4 and Msn4 are selected according to literature

review (see Section 5.4), and genes putatively regulated by other factors are based on

location data (binding p-values < 0.001). The semantics of the tables is as follows:

the first column denotes factor name, the second column denotes the number of genes

putatively regulated by the factor, the third column denotes the coherent direction

of expression changes, and the fourth column denotes the coherence p-value. Factors

are ranked according to the coherent p-values.

B.3 Single factor functions

We determine the single factor functions of transcription factors according to lit-

erature review and simple correlations. We first check the description about each

transcription factor in the Yeast Proteome Database (YPD) 1. If the factor is re-

ported as either an activator or a repressor, we categorize it accordingly. Otherwise

we impose a hard constraint that all protein-DNA edges emanating from the same

transcription factor have the same sign. This is equivalent to the assumption that a

factor has one consistent function throughout all its regulated genes. We then run the

physical network model inference algorithm with these hard constraints and deter-

mine the signs (single factor functions) of the transcription factors. Table B.8 enlists

the single factor functions of the 107 transcription factors.

1https: //www.incyte.com/tools/proteome/databases.jsp
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Table B.3: Coherence significance in Swi4A

+ < 1.00e-04
+ < 1.00e-04
+ < 1.00e-04
+ 5.00e-04
+ 1.10e-03
- 3.00e-03
+ 5.40e-03
- 8.30e-03
- 1.20e-02
+ 1.69e-02
- 2.31e-02
- 4.24e-02
+ 4.54e-02
- 6.92e-02
+ 7.52e-02
+ 8.43e-02
+ 9.06e-02
+ 1.04e-01
+ 1.21e-01
- 1.37e-01
- 1.54e-01
- 1.71e-01
- 1.93e-01
- 2.18e-01
+ 2.33e-01
+ 2.50e-01
- 2.68e-01
- 2.79e-01
+ 2.99e-01
- 3.23e-01
+ 3.65e-01
+ 4.09e-01
- 4.19e-01
- 4.25e-01
+ 4.37e-01
+ 4.40e-01
- 4.68e-01
- 5.29e-01

SW14
MCM1
FHL1
ARG81
HIR2
PUT3
PHD1
SW'5
STE12
RGT1
ACE2
IME4
MIG1
SFP1
RCS1
RTG1
ROX
SRD1
IN02
IXR1
HSF1
ECM22
MET31
GTS1
NDD1
MET4
MATal
GCR2
UGA3
ABF1
YFLO44C
RFX1
MTH1
MSN1
ADR1
ZMS1
REB1
YBR267W

175
141
192
36
46
20
137
132
88
19
89
52
36
65
65
55
76
44
39
64
100
1
43
43
125
56
28
58
34
441
62
55
91
11
24
34
235
0

- < 1.00e-04
+ < 1.00e-04
- < 1.00e-04
- 5.00e-04
- 1.80e-03
- 3.40e-03
+ 7.20e-03
+ 1.13e-02
+ 1.43e-02
+ 2.01e-02
- 2.47e-02
+ 4.33e-02
+ 6.11e-02
- 7.09e-02
+ 7.54e-02
+ 8.94e-02
- 9.37e-02
+ 1.07e-01
- 1.23e-01
+ 1.41e-01
- 1.60e-01
- 1.76e-01
+ 2.05e-01
+ 2.19e-01
+ 2.42e-01
- 2.65e-01
+ 2.72e-01
- 2.88e-01
+ 3.15e-01
- 3.36e-01
- 3.83e-01
- 4.09e-01
- 4.22e-01
- 4.32e-01
- 4.38e-01
- 4.5le-01
+ 4.90e-01
- 1.00e+00

RGM1
GCN4
DIGI
NRG1
MAL13
RPH1
GRF10(Pho
GAT1
YAP1
IN04
DAL81
HAP4
RAPI
HIR1
FKH2
DOT6
MAC1
CHA4
AZF1
STB1
SWI6
SIG1
THI2
CAD1
ASH1
ZAP1
PHO4
MAL33
HAP5
HAP3
GCR1
YJL206C
SIP4
SMP1
USv1
HMS1
FKH1

72
115
54
100
32
15
70
18
71
84
68
29
353
66
158
71
74
40
33
53
145
43
21
58
22
46
92
8
35
62
40
41
52
96
42
29
129

+ < 1.00e-04
- < 1.00e-04
+ < 1.00e-04
- 1.00e-03
+ 2.50e-03
+ 5.30e-03
- 7.20e-03
- 1.13e-02
- 1.54e-02
- 2.17e-02
- 3.71e-02
- 4.44e-02
- 6.20e-02
- 7.49e-02
- 8.28e-02
+ 9.02e-02
+ 1.00e-01
+ 1.18e-01
- 1.35e-01
- 1.53e-01
+ 1.69e-01
- 1.86e-01
+ 2.18e-01
- 2.21e-01
- 2.45e-01
+ 2.67e-01
- 2.79e-01
+ 2.97e-01
+ 3.15e-01
+ 3.37e-01
+ 4.08e-01
+ 4.12e-01
+ 4.22e-01
+ 4.34e-01
- 4.39e-01
+ 4.62e-01
- 4.92e-01
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factor N dir pvalue I factor N dir pvalue I factor N dir pvalue
YAP5
PDR1
GAT3
MSN4
GAL4
ARG80
MOT3
SKN7
CIN5
RME1
RLM1
LEU3
SFL1
CBF1
YAP7
RTG3
SUMi
RTS2
HAP2
CUP9
YAP6
HAL9
CRZ1
BAS1
MBP1
SOK2
SKO1
RIM101
STP1
DAL82
YAP3
STP2
FZF1
MSS11
GLN3
MSN2
ARO80
HAA1

141
100
139
42
54
49
44
158
219
45
76
39
32
91
4
47
86
19
34
51
120
31
27
69
144
65
23
21
40
47
7
37
61
61
40
13
63
2



Table B.4: Coherence significance in Sok2A
factor N dir pvalue [ factor N dir pvalue I factor N dir pvalue

+ < 1.00e-04
- 2.00e-04
- 3.80e-03
+ 1.07e-02
- 1.64e-02
- 1.97e-02
+ 3.47e-02
+ 5.70e-02
+ 5.78e-02
- 6.50e-02
- 7.39e-02
+ 9.04e-02
+ 9.39e-02
+ 1.17e-01
- 1.58e-01
- 1.88e-01
- 2.05e-01
+ 2.22e-01
+ 2.5le-01
+ 2.63e-01
+ 2.77e-01
+ 2.87e-01
+ 2.88e-01
+ 2.99e-01
- 3.07e-01
+ 3.1le-01
+ 3.30e-01
+ 3.63e-01
+ 4.07e-01
- 4.15e-01
+ 4.26e-01
- 4.42e-01
+ 4.45e-01
+ 4.57e-01
+ 4.64e-01
- 4.76e-01
- 4.91e-01
- 4.96e-01

FHLI
YAP6
RAP1
STE12
GCN4
NRG1
PH04
SUMi
HSF1
FKH2
STB1
MTH1
MCM1
SKO1
RIM101
GRF10(Pho
ARO80
YAP3
GAL4
HIR2
MAC1
RME1
GAT1
DAL82
NDD1
SWI5
GAT3
SKN7
RTG3
GTS1
RTG1
ASHI
UGA3
MATal
MIG1
ACE2
HIR
YBR267W

192
120
353
88
115
100
92
86
100
158
53
91
141
23
21
70
63
7
54
46
74
45
18
47
125
132
139
158
47
43
55
22
34
28
36
89
66
0

+ < 1.00e-04
+ 1.50e-03
+ 4.10e-03
- 1.lOe-02
- 1.82e-02
+ 2.46e-02
- 3.67e-02
- 5.72e-02
+ 6.02e-02
- 6.74e-02
- 7.62e-02
- 9.13e-02
- 9.56e-02
+ 1.47e-01
- 1.59e-01
- 1.93e-01
+ 2.16e-01
- 2.40e-01
- 2.54e-01
- 2.74e-01
+ 2.79e-01
- 2.87e-01
- 2.92e-01
+ 3.00e-01
- 3.08e-01
+ 3.23e-01
+ 3.36e-01
+ 3.83e-01
- 4.08e-01
- 4.22e-01
- 4.32e-01
+ 4.42e-01
- 4.49e-01
- 4.62e-01
- 4.65e-01
- 4.84e-01
+ 4.95e-01

MSN4
IN04
ARG80
HAP4
DAL81
SWI4
YFLO44C
CUP9
SOK2
ECM22
MBP1
HAP2
BASI
PHD1
DIG1
RTS2
MSN1
ROX
RFX1
STP2
FZF1
SFL1
RCS1
HAA1
SIP4
IME4
GLN3
HAP5
ADR1
RPH1
THI2
MAL33
RGT1
YJL206C
MAL13
YAP7
CRZ1
MSN2

264

42
84
49
29
68
175
62
51
65
1
144
34
69
137
54
19
11
76
55
37
61
32
65
2
52
52
40
35
24
15
21
8
19
41
32
4
27
13 1.00e+00

IN02
ARG81
IXR1
REB1
MET31
FKH1
PDR1
AZF1
SFP1
HAL9
GCR2
ZAP1
SWI6
RGM1
YAPI
MSS11
PUT3
MET4
YAP5
RLM1
Usv1
SIG1
SMP1
SRD1
HAP3
CIN5
STP1
GCR1
ABF1
HMS1
DOT6
ZMS1
CHA4
LEU3
CBF1
CAD1
MOT3

39
36
64
235
43
129
100
33
65
31
58
46
145
72
71
61
20
56
141
76
42
43
96
44
62
219
40
40
441
29
71
34
40
39
91
58
44

- 1.00e-04
- 2.60e-03
+ 7.80e-03
- 1.10e-02
+ 1.85e-02
- 3.43e-02
+ 5.26e-02
+ 5.75e-02
+ 6.34e-02
+ 7.35e-02
+ 8.43e-02
- 9.17e-02
- 1.13e-01
- 1.57e-01
- 1.65e-01
- 2.02e-01
- 2.20e-01
+ 2.42e-01
+ 2.55e-01
+ 2.76e-01
- 2.85e-01
- 2.87e-01
+ 2.95e-01
+ 3.04e-01
- 3.10e-01
+ 3.24e-01
- 3.38e-01
- 3.87e-01
+ 4.10e-01
- 4.23e-01
+ 4.33e-01
- 4.44e-01
- 4.54e-01
+ 4.62e-01
- 4.72e-01
- 4.85e-01
- 4.96e-01

-



Table B.5: Coherence significance in Msn4A

- < 1.00e-04
- < 1.00e-04
+ 2.00e-04
+ 1.00e-03
- 2.90e-03
+ 4.10e-03
- 1.90e-02
+ 3.91e-02
+ 4.56e-02
+ 5.76e-02
+ 6.85e-02
+ 7.34e-02
+ 7.95e-02
+ 9.83e-02
+ 1.15e-01
+ 1.35e-01
+ 1.43e-01
- 1.60e-01
- 1.72e-01
+ 2.07e-01
+ 2.16e-01
+ 2.71e-01
- 2.85e-01
+ 3.02e-01
- 3.12e-01
+ 3.35e-01
+ 3.44e-01
+ 3.60e-01
- 3.68e-01
+ 3.79e-01
+ 3.95e-01
- 4.12e-01
+ 4.17e-01
+ 4.27e-01
+ 4.49e-01
- 4.53e-01
- 4.65e-01
+ 4.97e-01

MBP1
ARG81
FHL1
FKH1
DAL81
MAC1
HIR2
SRD1
CIN5
RAP1
HIR1
BASI
ZAP1
DOT6
CRZ1
UGA3
ECM22
ADR1
IN02
NRG1
YFL044C
PHD1
RLM1
MSS11
RME1
ZMS1
DAL82
STP2
MET4
SFL1
CUP9
MAL33
HAP2
SOK2
MOT3
REB1
GRF10(Pho
YBR267W

144
36
192
129
68
74
46
44
219
353
66
69
46
71
27
34
1
24
39
100
62
137
76
61
45
34
47
37
56
32
51
8
34
65
44
235
70
0

+ < 1.00e-04
- < 1.00e-04
+ 3.00e-04
+ 1.00e-03
- 3.00e-03
+ 1.22e-02
+ 1.96e-02
+ 4.43e-02
- 4.72e-02
+ 5.93e-02
+ 6.88e-02
+ 7.5le-02
+ 8.22e-02
+ 1.09e-01
- 1.20e-01
+ 1.36e-01
- 1.56e-01
+ 1.64e-01
- 1.8le-01
- 2.11e-01
- 2.16e-01
+ 2.75e-01
+ 2.94e-01
+ 3.04e-01
+ 3.14e-01
- 3.37e-01
- 3.49e-01
+ 3.62e-01
+ 3.69e-01
+ 3.80e-01
+ 3.96e-01
- 4.12e-01
+ 4.22e-01
- 4.39e-01
- 4.5le-01
- 4.63e-01
+ 4.71e-01
- 1.00e+00

HSF1
ARG80
PUT3
ABF1
SKN7
GTS1
GCR2
CAD1
HAP4
RCS1
RTG1
Usv1
YJL206C
ARO80
IXR1
SUMi
IME4
SIP4
HAA1
SIG1
GAT3
RGM1
ROX1
HAP3
RFX1
FZF1
AZF1
MET31
LEU3
RIM101
ASHi
HAP5
HAL9
HMS1
PHO4
STE12
MATal

100
49
20
441
158
43
58
58
29
65
55
42
41
63
64
86
52
52
2
43
139
72
76
62
55
61
33
43
39
21
22
35
31
29
92
88
28

- < 1.00e-04
- 1.00e-04
- 6.00e-04
+ 1.50e-03
- 3.70e-03
+ 1.25e-02
+ 3.26e-02
- 4.53e-02
- 5.28e-02
+ 5.99e-02
+ 6.96e-02
+ 7.80e-02
- 9.23e-02
+ 1.10e-01
+ 1.34e-01
- 1.42e-01
+ 1.60e-01
+ 1.66e-01
+ 1.92e-01
+ 2.12e-01
+ 2.49e-01
- 2.77e-01
+ 2.94e-01
- 3.07e-01
+ 3.19e-01
- 3.41e-01
- 3.52e-01
+ 3.64e-01
- 3.73e-01
- 3.89e-01
+ 4.10e-01
+ 4.13e-01
- 4.25e-01
+ 4.40e-01
+ 4.52e-01
- 4.65e-01
- 4.75e-01
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factor N dir pvalue [ factor N dir pvalue factor N dir pvalue
MSN4
GCN4
SWI6
FKH2
MTH1
CHA4
IN04
NDD1
CBF1
RPH1
SWI4
GCR1
RTG3
STP1
YAP6
RTS2
MIGI
SWI5
GAL4
SMP1
DIG1
GLN3
GAT1
STB1
YAP1
MAL13
PDR1
MSN2
MCM1
YAP3
SKO1
MSN1
THI2
YAP5
YAP7
SFP1
RGT1
ACE2

42
115
145
158
91
40
84
125
91
15
175
40
47
40
120
19
36
132
54
96
54
40
18
53
71
32
100
13
141
7
23
11
21
141
4
65
19
89



Table B.6: Coherence significance in Hap4A

factor N dir pvalue I factor N dir pvalue I factor N dir pvalue
- < 1.00e-04
- 5.00e-04
- 2.90e-03
+ 1.10e-02
- 1.75e-02
+ 2.19e-02
+ 2.59e-02
+ 3.56e-02
+ 4.93e-02
+ 5.43e-02
+ 7.80e-02
- 8.5le-02
- 9.43e-02
- 1.04e-01
+ 1.20e-01
- 1.46e-01
+ 1.55e-01
+ 1.68e-01
+ 1.90e-01
- 2.04e-01
+ 2.20e-01
+ 2.26e-01
- 2.57e-01
- 2.73e-01
+ 2.89e-01
+ 3.01e-01
- 3.11e-01
+ 3.30e-01
+ 3.48e-01
- 3.57e-01
+ 3.79e-01
+ 4.00e-01
+ 4.11e-01
- 4.27e-01
+ 4.44e-01
- 4.80e-01
+ 4.84e-01
+ 7.26e-01

FHL1
GAT1
RGM1
GCR2
CHA4
PHD1
SWI5
MBP1
MOT3
STP1
IN04
DOT6
YAP1
GLN3
HAL9
SRD1
REB1
AZFM
MAL13
STB1
YJL206C
ARO80
IN02
NDD1
MTH1
MIG1
ZMS1
RTG3
FZF1
MSN2
SIP4
STP2
SFP1
YAP7
YAP6
HMS1
PDR1
YBR267W

192
18
72
58
40
137
132
144
44
40
84
71
71
40
31
44
235
33
32
53
41
63
39
125
91
36
34
47
61
13
52
37
65
4
120
29
100
0

+ < 1.0e-04
- 1.10e-03
- 3.60e-03
+ 1.16e-02
+ 1.83e-02
- 2.39e-02
- 3.33e-02
+ 3.61e-02
+ 4.98e-02
+ 6.19e-02
- 7.97e-02

+ 8.55e-02
- 1.00e-01
+ 1.04e-01
+ 1.42e-01
+ 1.48e-01
- 1.66e-01
+ 1.73e-01
- 1.93e-01
+ 2.05e-01
+ 2.21e-01
- 2.46e-01
- 2.61e-01
+ 2.82e-01
- 2.92e-01
+ 3.06e-01
- 3.14e-01
- 3.36e-01
- 3.53e-01
- 3.66e-01
+ 3.82e-01
+ 4.02e-01
- 4.15e-01
- 4.38e-01
- 4.66e-01

+ 4.80e-01
+ 4.85e-01
- 1.00e+00
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+
+±
+
+±
+
+
+
+±

HAP4
HAP2
HSF1
FKH2
CIN5
GCR1
FKH1
RFX1
RAP1
ARG81
HIR1
SKN7
PUT3
HAP5
DIG1
CBF1
RPH1
SIG1
IXR1
RIM101
MATal
ADR1
CUP9
CAD1
SKO1
YAP3
NRG1
MSSl1
ACE2
CRZ1
USv1
RGT1
GTS1
RLM1
GCN4
UGA3
STE12
ECM22

29
34
100
158
219
40
129
55
353
36
66
158
20
35
54
91
15
43
64
21
28
24
51
58
23
7
100
61
89
27
42
19
43
76
115
34
88
1

SWI6
BAS1
MET4
MAC1
ZAP1
ABF1
RCS1
MET31
HAP3
GAT3
GAL4
HIR2
GRF10(Pho
RTG1
SWI4
RME1
DAL81
HAA1
MSN4
MSN1
YAP5
SOK2
RTS2
ROX1
SFLl
SUMi
PHO4
DAL82
MCM1
MAL33
ARG80
LEU3
IME4
THI2
SMP1
ASH
YFLO44C

145
69
56
74
46
441
65
43
62
139
54
46
70
55
175
45
68
2
42
11
141
65
19
76
32
86
92
47
141
8
49
39
52
21
96
22
62

1.00e-04
1.20e-03
5.40e-03
1.22e-02
1.90e-02
2.44e-02
3.54e-02
3.62e-02
5.38e-02
7.09e-02
8.37e-02
8.63e-02
1.02e-01
1.12e-01
1.44e-01
1.50e-01
1.67e-01
1.84e-01
1.98e-01
2.10e-01
2.2le-01
2.56e-01
2.65e-01
2.87e-01
2.98e-01
3.09e-01
3.19e-01
3.41e-01
3.54e-01
3.79e-01
3.86e-01
4.08e-01
4.25e-01
4.44e-01
4.74e-01
4.80e-01
4.89e-01

,



Table B.7: Coherence significance in Yap6A

+ < 1.00e-04
+ < 1.00e-04
- < 1.00e-04
+ 3.00e-04
- 1.50e-03
+ 5.40e-03
+ 2.32e-02
- 3.43e-02
- 3.68e-02
+ 5.04e-02
- 5.59e-02
- 6.59e-02
- 7.87e-02
+ 9.20e-02
+ 1.14e-01
+ 1.74e-01
- 1.88e-01
+ 1.98e-01
+ 2.14e-01
- 2.25e-01
+ 2.33e-01
- 2.54e-01
- 2.64e-01
- 2.90e-01
+ 2.97e-01
- 3.05e-01
- 3.14e-01
+ 3.18e-01
- 3.44e-01
- 3.54e-01
- 3.66e-01
+ 3.89e-01
+ 4.12e-01
+ 4.22e-01
+ 4.43e-01
- 4.62e-01
+ 4.88e-01
+ 6.87e-01

NDD1
FKH2
LEU3
ACE2
FKH1
MAL13
ARG81
STB1
MOT3
SIG1
RTG1
SOK2
RFX1
IME4
HIR1
GAT1
CUP9
YFL044C
RPH1
GCR1
DIG1
YAP7
RTS2
ASHi
HAL9
PDR1
YJL206C
IN04
CBF1
GCR2
HMS1
MCM1
STP2
IN02
SFL1
CADI
CHA4
YBR267W

125
158
39
89
129
32
36
53
44
43
55
65
55
52
66
18
51
62
15
40
54
4
19
22
31
100
41
84
91
58
29
141
37
39
32
58
40
0

+ < 1.00e-04
+ < 1.00e-04
- 1.00e-04
+ 5.00e-04
+ 1.90e-03
+ 1.77e-02
- 2.85e-02
+ 3.52e-02
- 4.05e-02
- 5.16e-02
+ 5.86e-02
+ 7.58e-02
- 7.90e-02
+ 1.01e-01
+ 1.34e-01
+ 1.79e-01
+ 1.97e-01
- 2.10e-01
- 2.16e-01
- 2.25e-01
- 2.34e-01
- 2.61e-01
- 2.88e-01
+ 2.95e-01
- 3.00e-01
+ 3.06e-01
+ 3.16e-01
- 3.23e-01
- 3.49e-01
- 3.58e-01
+ 3.80e-01
+ 3.96e-01
- 4.14e-01
- 4.25e-01
- 4.54e-01
+ 4.72e-01
- 5.00e-01
- 1.00e+00
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factor N dir pvalue 1 factor N dir pvalue I factor N dir pvalue
+

-+
+
+

SWI4
HAP4
ABF1
MBP1
GCN4
PHDI
HIR2
DAL81
SRD1
MAC1
UGA3
MET31
YAP3
PUT3
YAP6
SWI6
FZF1
DAL82
GTS1
MSN2
STE12
CRZ1
STP1
GRF10(Pho
RCS1
RME1
RLM1
ZMS1
SKOl
REB1
THI2
CIN5
YAP1
GAL4
IXR1
MTH1
RGM1
ECM22

175
29
441
144
115
137
46
68
44
74
34
43
7
20
120
145
61
47
43
13
88
27
40
70
65
45
76
34
23
235
21
219
71
54
64
91
72
1

MSN4
FHL1
SWI5
SKN7
NRG1
RAPI
AZF1
MSS11
ZAP1
ARG80
RGT1
SMP1
MIG1
BAS1
MSN1
SIP4
GLN3
MATal
MET4
DOT6
HAP2
Usv1
HSF1
HAP3
SUMi
PH04
SFP1
RTG3
ROX1
MAL33
RIMOl
ARO80
YAP5
HAP5
GAT3
ADRI
HAA1

42
192
132
158
100
353
33
61
46
49
19
96
36
69
11
52
40
28
56
71
34
42
100
62
86
92
65
47
76
8
21
63
141
35
139
24
2

< 1.00e-04
< 1.00e-04
3.00e-04
7.00e-04
4.80e-03
2.22e-02
3.37e-02
3.60e-02
4.63e-02
5.47e-02
6.51e-02
7.59e-02
8.52e-02
1.06e-01
1.39e-01
1.82e-01
1.97e-01
2.11e-01
2.22e-01
2.26e-01
2.40e-01
2.62e-01
2.89e-01
2.96e-01
3.04e-01
3.06e-01
3.16e-01
3.44e-01
3.53e-01
3.64e-01
3.86e-01
4.03e-01
4.20e-01
4.43e-01
4.59e-01
4.76e-01
5.64e-01



Table B.8: Single factor functions

factor function factor function factor function factor function
ASHI - AZF1 + CBF1 + CHA4 +
DIGI - PHD1 + STE12 + CIN5 -

DAL82 - ECM22 + FZF1 + GATI +
GCR2 + GTS1 + HMS1 + IN02 +
IXR1 + MACi + MAL13 + MAL33 -

MCM1 + MET4 + MIGI + MSN2 +
MSN4 + MTH1 - NRG1 - PDR1 +
PUT3 - RAP1 + RFXI + RGM1 +
RGT1 - RIMlOl + RME1 + ROXI -

RTG1 + RTG3 + RTS2 - SFLl -

SIG1 - SKN7 + SKOl - SMP1 +
SOK2 + SRD1 + STB1 + THI2 +
UGA3 + YAPi + YAP3 + YAP6 +
YAP7 + ZMS1 + MSS11 + IN04 +
PHO4 + USV1 + CUP9 - GLN3 -

HAP3 + REBI + ACE2 + FKH1 +
MBP1 + NDD1 + SWI4 + SW15 +
SWI6 + FKH2 + GCN4 + ARG80 -

ARG81 - HAP4 + HAP5 + LEU3 +
MET31 + CRZ1 + GAL4 + GAT3 +
GCR1 + HIR2 + RPH1 + SUMi +
MSNl + SIP4 + HAAl + RLM1 +
ZAPI + ABFl + HSF1 + IME4 +
MATal + FHL1 + SFPI + YFL044C +
YJL206C + DOT6 + RCSl + HIRI +
ADRI + ARO80 + BASI + DAL81 +
HAL9 + HAP2 + STPl + STP2 -

CADI + MOT3 + YAP5 -
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Appendix C

Computational derivations

regarding regulatory models

We describe four computational derivations in Chapter Six. First, we propose a

simple error model of time-course gene expression measurements and demonstrate the

calculations of conditional probabilities of measurements given the actual expression

changes. Second, we show that the likelihood score of a regulatory model defined

in equation 6.14 monotonically increases with the size of a module under certain

conditions. The results suggest penalties on the size of regulated genes are required in

order to construct regulatory models. Third, we propose a definition of the confidence

values of incorporating genes in a regulatory model and demonstrate the analytic

evaluation of the p-values. Fourth, we describe the permutation tests of evaluating

the significance about the likelihood score of a regulatory model and the significance

about the combinatorial property of a regulator.

C.1 Computing conditional probabilities from data

Computing the joint likelihood score in equation 6.14 requires us to know the condi-

tional probabilities P(xgbrg), P(xrelcre) and P(xgelcge) a priori. These probabilities

can be approximately transformed from the p-values or directly calculated if the error

models of data are provided. We convert the p-values of location analysis data and
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Rosetta gene expression data into conditional probabilities using the x 2 approxima-

tion with Bayesian score. The conversion exactly follows the procedures described in

Section 3.3.1.

Computing P(x,,ecre) and P(xgeicge) from the gene expression data which do not

provide p-values is more problematic. We use the stress response gene expression

data ([61]) as the second expression dataset. It contains the time-course measure-

ments of expression log ratios over 49 stress conditions. Because error models are not

specified in the dataset, we use a simple parametric distribution to model the uncer-

tainty of measurements. Let y E {-1, 0, +1} denotes the actual, quantized expression

change of a gene under one experimental condition, and x(ti), -- -, x(t") are its n time-

course measurements. We relate discrete state y to measurements x(ti), ... , X(tn)

with a two-level process. The discrete state y generates a continuous time-course

expression profile m(ti),. -, m(tn); and x(ti), - --, x(t,) are noisy measurements of

m(ti), , m(tn). We model measurement errors x(t1 ) - m(ti),--- , x(tn) - m(t,) as

iid Gaussian random variables with variance a.

(1 2z~>2(P () MM(0)) e- 2a2 (C. 1)
2-Fr2

The actual expression profile m(ti), , m(tn) is a zero vector given y = 0. Thus

P(X(ti), - , x(tn) y = 0) is the product of normal densities:

1 2 ~
P(x(ti),- , x(t") y = 0) = (212) e 2,. (C.2)

To model P(x(ti), - , x(tn) y = ±1) we have to specify prior probabilities P(m(t), - ' , m(tn)|y =

t1). We model the prior probabilities with an iid exponential distribution:

P(m(ti), -- ,m(tn)|y = +1) = f7 =1 P(m(ti)|y = +1).

P(m(ti)ly = +1) = y mti) if m(ti) > 0, (C.3)

0 otherwise.

P(m(ti), , m(t,)Iy = +1) assigns a non-zero probability to each non-negative ex-
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pression profile, and penalizes the expression profiles deviating from 0. P(m(ti), - - -, m(t,) ly

-1) is defined analogously. By marginalizing over m(ti), the conditional probability

P(x(ti), - - - , x(t)|y = +1) becomes

P(x(ti),-- , x(t)|y = +1) = HR 1 fo P(m(tj)jy = +1)P(x(t-)jm(tj))dm(tj)

= l H '_Y,(__Yx(t,)+_j_ 2 02 ) (1 _ 4J( -(X(t) -Yoa 2))

(C.4)

where 4b(.) is the standard normal cumulative distribution function. Similarly,

P(X(ti), , x(tn) y =-1) = .f2o P(m(ti)|y = -1)P((tl)ym(ti))dm(ti)

(C.5)

o- and -y are free parameters. In the empirical analysis we set - = Y = 0.5 for they

are close to the variance of the entire Gasch data.

C.2 Monotonicity property of fitness scores

Theorem Suppose the following conditions hold for the binding and expression prob-

abilities on a regulatory model:

1. The probabilities of binding (P(xrglbrg = 1) Prg in Section 6.3) of each

regulator-gene pair satisfy Prg > 2-IRI, where JR1 is the number of regulators in

the model.

2. The probability of expression changes (pge = P(xgeIcge = +1), qge = P(Xge cge =

-1), Uge = P(xgeIcge = 0)) for each gene g in each experiment e satisfies either

(2 pge + Uge) > 1 or (2qge + uge) > 1.

3. The conditional probabilities of binding and expression are normalized. In other

words, prg + g + urg = pge + qge +Uge = 1.

4. For each gene g under each experiment e, either pg,+Uge >> qge or qge+uge > Pge.

Then the likelihood score defined in equation 6.14 monotonically increases with the

number of regulated genes in the model.
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Proof We will show both Lb and L' increase with the size of the regulated gene set.

According to equation 6.5, the change of Lb by adding a regulated gene g is

AL b R log 2 + log pg - log(prg + qrg). (C.6)

Since Prg > 2 - IRI according to condition 1 and prg + g = 1 according to condition 3,

ALb > 0.

Similarly, according to equation 6.13, the change of L' on a specific experiment e

by adding a regulated gene is

A Le(e) = log 3 + log[a - (bPge + uge)Pi(e) + b - ( qge + uige)P (e)+

C - ('Pge + qge + ltge)P(e)] (C.7)

- log[aP1(e) + bPI(e) + cPo(e)].

where a = Hg, (2pge +}luge), b = Hg,(2qge + Iugie), C = 9(IP9e+ The

definitions of P,(e)s follow equation 6.13. By condition 4, either a or b is negligible.

Without loss of generality assume b < 1. Substituting it into equation C.7,

ALe(e) ~ - log[aP1(e) + cPo(e)] + log[a - (2pge + uge) - P1(e) + cPo(e)] > 0. (C.8)

The inequality arises from condition 2. Therefore, AL > 0 by adding a gene into the

model. Q.E.D.

Conditions 1-4 are reasonable assumptions for binding and expression data. Con-

dition 1 states that the candidate genes have decent conditional probabilities for bind-

ing. Conditions 2 and 4 assume that the probabilities of up and down regulations

cannot be simultaneously non-negligible. Condition 3 can be achieved by normalizing

the conditional probabilities to sum to 1.
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C.3 Confidence measures of incorporating a new

gene into the model

The incremental algorithm of finding the regulated gene set stops when p-value of

adding a new gene to the model is insignificant. In this section we describe the method

of analytically computing the p-value of gene addition.

We consider only the p-value of the expression log likelihood ratio in equation 6.13

because each regulator-gene pair in the candidate set is already supported by the

binding data. We establish the following scenario of generating random data for the

likelihood score p-values. Conditional probabilities pre, 1 e, 'Ure of all regulators and

Pe, qge, ?ge of genes already in the regulated gene set are calculated from empirical

data. Conditional probabilities Pge, qge, age of the newly incorporated gene in each ex-

periment are uniformly sampled from the simplex Pge +qge + Uge = 1, 0 < Pge, qge, Uge <

1. This scenario is desirable because it only considers the fitness of the newly added

gene. The simplex constraint is for mathematical convenience and can be achieved

by normalizing the conditional probabilities.

Let Go be the current set of regulated genes and g be the newly added gene. The

contribution of the expression likelihood score in equation 6.13 from each experiment

is

log( E P'(e) - [ J P(g"e'v)P(xgpejcgae)] - P(g,\v)P(xgjc.g)). (C.9)
v={-1,0,+1} goEGo cgoe Cge

The term from H0 vanishes due to the simplex constraint. This quantity depends

on the score of the current regulated gene set thus is less desirable. To simplify the

calculation, we define a new test statistic for the newly added gene g on experiment

T, = log( 3 P,(e) P ZF(ceIv)P(xIcg,)). (C.10)
v={-1,0,+1} Cge

273



By applying P(cge f ((cre))) in Chapter Six,

Te = log(Pi(e)(3pPe + 3Uge) + P_1(e)Xqge + Uge) + Po e1 pge + 1qge + 1age))

log(aiepPe + aleqge + aoeuge).

(C.11)

The overall test statistic is

T = Te. (C.12)
e

Let i be the empirical test statistic. The p-value of adding gene g to the model is

p = Pr(T > T(pge, qge, uge) sampled from simplex pge+qge+Uge = 1, 0 Pge, qge, Uge < .

(C.13)

The distribution of each Te can be analytically calculated. (pge, qge, Uge) is uniformly

sampled from the simplex Pge + qge + Uge = 1, 0 < Pge, qge,Uge < 1 embedded in a

three-dimensional space. The test statistic exp(Te) is a linear function of (pge, qge, uge).

Without loss of generality, assume ale > aOe > ale. T reaches the maximum when

(Pge, qge, age) = (1, 0, 0) and reaches the minimum when (Pge, qge, age) = (0, 1, 0). The

cumulative distribution of aiepge + a_1eqge + aoeuge is then the area of the intersection

of the simplex triangle and the band between alepge + a_1eqge + aoeuge = a-le and

aiepge + a_1eqge + aoeage = r as shown in the shaded region in Figure C-1.1. Using

geometry,

Pr~le~e +a-lqge+ aeu -- 0 a-, < r < ao,
Pr(aiepge + aeqge ± aoeage r) = (a-a-1)(ao-a-1) (C.14)

(a-r)2  a ,
(al-a-)(al-ao) a0  r < a1.

And the probability density function of alepge + aleqge + aoeuge is the saw-tooth

function as shown in Figure C-1.2.

2(r-a_
1 )dr a-, < ao

Pr(r < alepge + a-leqge + aoeage < r + dr (al-a-1)(ao--a1)
2(ai -r)dr T a1 .

(al-a_1)(a1 -ao) a0 < r

(C.15)
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Figure C-1: The restricted region within a simplex and its density

(p,q,u)=(0,0,1)

(p,q,u)=(1,0,0) (p,q,u)=(0, 1,0)

al p+a q+a u=r

The density of log(aiepge + a_1eqge + aoeuge) becomes

Pr(y <

Denote

p-value

function

log(aiepge+aIeqge+aoeuge) < y+dy) - (al-a-1)(ao--1) log(a 1 ) y log(ao),

-(al-1)(ado log(ao) < y < log(ai).
(C. 16)

re alePge + aieqge ± aoeUge and ye log(aiepge + a1eqge -± aoeuge). The

of the test statistic is

p = Pr(Eye >T ). (C.17)

The sum of ye can be in principle calculated by convolution but has a complex dis-

tribution. We apply the central limit theorem to approximate e, ye by a Gaussian

distribution with mean p = E, E(ye) and variance a 2 = Ee V(ye). The p-value can

be calculated by the Gaussian cumulative distribution function:

P -T
p =1 - -_[I).

U-
(C.18)

C.4 Fitting a regulatory model to expression data

To filter out the regulatory models which do not fit the data, we have to define

the confidence measure of a regulatory model on data. Here we consider only gene

expression data because the physical interactions in the model already pass a relatively

stringent p-value threshold (p < 0.005).
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We measure the fitness the expression data by permuting rows (genes in the reg-

ulated gene set) and columns (experiment indices) of the matrix of gene expression

data restricted to the regulated gene set. We measure the fitness by normalizing

the log likelihood score with respect to the means and variances of the scores from

permuted data.

We rewrite the expression likelihood ratio function in equation 6.13 of Chapter

Six:

Le (R, G, f) = log P((xre), (xge)IHi) - log P((xre), (xge)IH o)

= -|E||R| log 3 + ZeE [log(Ev={-1,,+1} P,(e) H HgGcge P(Cge V)P(Xge Cge))]

+|E|(|RI + G I)log 3 + Ee E[rER log(pre + re +Ure) + Zg-Glog(pge + qge + Uge)].

(C.19)

We discard the contribution from HO since it is independent of data. We can calculate

Le(R, G, f) according to empirical data and each permuted data. Denote Le(R, G, f)
and V(Le(R, G, f)) the mean and variance of the expression log likelihood score eval-

uated over a population of permuted data. We then normalize Le(R, G, f) in terms

of the mean and variance:

(Le(R, G, f) - Le(R, G, f))
N(Le (R, G, f = ' ' '.f)) (C.20)

We use the normalized score as the confidence measure about the fitness to expression

data. In the empirical analysis in Chapter Six we report the models whose normalized

scores > 10.0.

C.5 Confidence measures of regulatory models

We apply permutation tests to evaluate the significance of the likelihood score of a

regulatory model and the significance of the combinatorial property of a regulator.

The significance of the likelihood score of a regulatory model is evaluated with the

following procedures. We fix the members of regulated genes in the model and ran-

domly permute their gene expression data. The binding data and gene expression
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data of regulators remain unchanged. The optimal regulatory program is obtained

for each permuted expression data. We compare the empirical likelihood score of

the optimal model and the likelihood scores obtained from randomly permuted data.

The p-value is the fraction of random trials which yield the likelihood scores > the

empirical value. In practice, almost all regulatory models are very significant (no

random score exceeds the empirical score over 10000 trials). This result does not help

us to choose regulatory models. To degrade the significance from the permutation

tests, we introduce an offset value of likelihood scores proportional to the number of

experiments times the size of the model (number of regulators + number of genes).

The p-value is the fraction of random trials which yield the score > empirical score -

offset value.

The significance of the direction of effectiveness of each regulator is also calculated

by permutation tests. Suppose we want to evaluate the significance whether regulator

f is necessary. With members of the regulatory model fixed, we first identify the opti-

mal combinatorial function with f as a necessary regulator and the optimal function

with f as not necessary. The gap of the likelihood scores between the two models

reflects the power of a combinatorial property to fit the data. We then permute the

expression data of regulated genes, re-identify the two optimal functions, and calcu-

late the likelihood gaps of the updated functions. The p-value of the statement that

f is necessary is the fraction of random trials which yield the likelihood gap > the

empirical value.
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