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Abstract

This thesis proposes a reorganization algorithm, based on the region abstraction, to exploit the natu-
ral structure in overlays that stems from common interests. Nodes selfishly adapt their connectivity
within the overlay in a distributed fashion such that the topology evolves to clusters of users with
shared interests. Our architecture leverages the inherent heterogeneity of users and places within
the system their incentives and ability to affect the network. As such, it is not dependent on the
altruism of any other nodes in the system.

Of particular interest is the optimality and fairness of our design. We rigorously define ideal and
fair networks and develop a continuum of optimality measures by which to evaluate our algorithm.
Further, to evaluate our algorithm within a realistic context, validate assumptions and make design
decisions, we capture data from a portion of a live file-sharing network. More importantly, we
discover, name, quantify and solve several previously unrecognized subtle problems in a content-
based self-organizing network as a direct result of simulations using the trace data.

We motivate our design by examining the dependence of existing systems on benevolent Super-
Peers. Through simulation we find that the current architecture is highly dependent on the filtering
capability and the willingness of the SuperPeer network to absorb the majority of the query bur-
den. The remainder of the thesis is devoted to a world in which SuperPeers no longer exist or are
untenable.

In our evaluation, we introduce four reasons for utility suboptimal self—reorgamzmg networks:
anarchy (selfish behavior), indifference, myopia and ordering. We simulate the level of utility and
happiness achieved in existing architectures. Then we systematically tear down implicit assump-
tions of altruism while showing the resulting negative impact on utility. From a selfish equilibrium,
with much lower global utility, we show the ability of our algorithm to reorganize and restore the
utility of individual nodes, and the system as a whole, to similar levels as realized in the SuperPeer
network.

Simulation of our algorithm shows that it reaches the predicted optimal utility while providing
fairness not realized in other systems. Further analysis includes an epsilon equilibrium model where
we attempt to more accurately represent the actual reward function of nodes. We find that by
employing such a model, over 60% of the nodes are connected. In addition, this model converges to
a utility 34% greater than achieved in the SuperPeer network while making no assumptlons on the
benevolence of nodes or centrahzed organization.

Thesis Supervisor: Karen Sollins
Title: Principal Research Scientist
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You are told a lot about your education, but some beautiful, sacred memory, preserved since
childhood, is perhaps the best education of all.

- Fyodor Dostoevsky

The impossible often has a kind of integrity to it which the merely improbable lacks.

- Douglas Adams
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The cleverest of all, in my opinion, is the man who calls himself a fool at least once a month.

- Fyodor Dostoevsky

Chapter 1

Introduction

This thesis proposes an architectural mechanism to address the scalability, fairness and optimality
issues at the heart of many overlay and distributed application networks. In particular, we make
no assumptions as to the benevolence of users or nodes as is done in many such systems. Our
architecture leverages the inherent heterogeneity of users and places within the system their incen-
tives and ability to affect the network. We believe such architectures are important in increasingly
competitive, and often hostile, environments such as the Internet.

By way of introducing our work, we detail trends in Internet usage and policy that motivate
this research. Indeed, actual data captured from the Internet is used throughout and many design
decisions are the result of analyzing how users behave in dynamic, complex systems. We briefly
review overlay architectures in general and their weaknesses including fairness, optimality aﬁd the
presumption of altruistic nodes. A summary of major contributions and an outline of the remainder

of the thesis conclude this Section.

1.1 Motivation

The physical and logical structure of networks is vital to their scalability and robustness. Network
overlays and distributed application frameworks are no exception. Two trends pose impending
challenges to the logical construction of future overlays. First, the number of network elements
is growing rapidly as devices become small and pervasive. Second, rather than being “simple”
clients, nodes are increasingly both producers and consumers of data. The popularity of Peer-to-
Peer (P2P) file sharing [38] and distributed computation systems, e.g. [39], provide compelling

evidence of this transformation. However, the proliferation of P2P overlays and the resulting traffic
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load has driven many policy implications. Among these changes are service providers who cap
the maximum aggregate traffic or traffic rate and organizations that block P2P systems to avoid the
traffic charges and liability issues.

As the functionality traditionally provided by servers is distributed among all nodes in the net-
work, it is useful to view every node as a small database or server. Rather than requiring support
from the underlying network infrastructure, nodes dynamically organize themselves in an ad-hoc
fashion to form logical overlays. By routing data through the overlay, program designers have been
able to create applications that solve the distributed lookup problem [3] without assistance from the
network or any centralized systems.

To date, the majority of overlay research has focused on algorithmic efficiency and purely tech-
nical issues, ignoring the policy and incentive problems that plague real systems. Current architec-
tures overlook issues of faimess and assume the benevolence of a large set of users. The lack of
fairness in the system causes: i) “free-riding,” where nodes exploit others without contributing; ii)
other nodes to be overburdened; and iii) lack of stability as nodes move or disconnect in an attempt
to equalize the unfairness.

A second problem is suboptimal performance due to architectures that ignore the inherent node
heterogeneity. The lack of optimality in the system causes: i) nodes to be burdened simply transiting
data they have no interest in; and ii) unnecessary traffic and congestion.

Our research considers the formation, fairness, optimality and equilibria of these logical over-
lays. We propose an interest-based reorganization architecture to address the issues outlined above.
We believe such architectures are important in increasingly competitive, and often hostile, environ-

ments such as the Internet.

1.2 Overlay Architectures and the Internet

We provide a detailed examination of prior work in overlays and topology formation in Chapter 2.
However, this section briefly reviews the two large classes of overlay architectures and their current
strengths and weaknesses as further motivation for our system.

Structured overlays [34, 47] tightly constrain node and content identifiers, which determine their
locations in the topology, through a Distributed Hash Table (DHT) abstraction. Uniformly allocating
content in the system, such that each node stores approximately the same amount of data, requires

the use of a consistent hash function. The hash function determines which node stores each piece of

12




content. For example, in Chord nodes and content are hashed to identities that are uniformly spread
over an identifier “ring”. Therefore nodes must store others’ content, irrespective of their interest
in it, to maintain the DHT invariants that guarantee correct lookups with bounded complexity. A
nodes’ incentive to store content that is not her own is based on an expectation that others will act
similarly and store her content. Rather than make strong assumptions as to the altruistic nature
of nodes in the network, we focus on unstructured networks which can form organically, allowing
nodes to selfishly connect and affect their topology.

A second class of overlays is those which are unstructured. In unstructured overlays, nodes
connect to other willing nodes. Since content may exist at any topological point in the overlay,
queries are flooded with a limited horizon breadth first search. An inherent trade off exists between
the likelihood of locating content in the system versus replication factor, i.e. the extent to which a
piece of content is duplicated and query propagation distance, i.e. the query traffic overhead. Short
of flooding queries to all members of the overlay, users have no guarantee against false negatives.
The compromise between successful operation and query flooding limits the self-scaling properties
which motivate distributed P2P systems.

To alleviate query overhead, Gnutella [17] and other systems implement a two-level hierarchy
of leaves and “SuperPeers” [42]. SuperPeers are nodes with high-bandwidth and low-latency con-
nectivity. Leaves connect to SuperPeers and SuperPeers interconnect with each other. The system
makes use of a simplified Bloom filter to shield leaves from irrelevant query traffic. Each SuperPeer
maintains a hash of file names stored on its leaves. Queries are flooded between SuperPeers, but
only forwarded on to leaves if the hash indicates a possible query match.

While this architecture has several benefits and has allowed the continued operation and expan-
sion of the Gnutella network, we believe it has several flaws based on the fact that it is dependent
on strong assumptions about users’ benevolence. First, it relies heavily on the existence and altru-
istic nature of the SuperPeers. Second, it treats all users equivalently, regardless of their interests,
ignoring rather than exploiting the inherent heterogeneity of users. Third, while users have the abil-
ity to change their behavior, for example by moving around the system or tailoring their sharing
preferences, the current architecture places these functions outside of the system.

This work presents an alternative architecture that brings the user’s ability to affect the network
and their incentives within the system. As such, our architecture is no longer dependent on the

assumed altruism of the SuperPeers or any other nodes in the system.
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1.3 Contributions

In this thesis, we argue that the region abstraction [44] provides novel insight into finding optimal
logical network structures in large distributed content systems. The region architecture is a proposed
construct in designing large scale, widely distributed and heterogenous networks. A region is an ab-
straction that provides a grouping and partitioning mechanism. Members of a region share or inherit
a set of common invariants, may move between regions or be in multiple regions simultaneously.

We use the region abstraction as a basis for developing a logical reorganization architecture. At
a very high-level, it is intuitively obvious that network elements may wish to logically reorganize
in response to load, performance or failure scenarios if given the mechanisms to do so. We extend
previous notions of interest-based locality [2, 45] to define regions and support our architecture.

The architecture we propose, and detail in subsequent Chapters, is a distributed mechanism
whereby nodes explore and reorganize on the basis of interests. We define a utility function that
captures interests and traffic load. In our design, nodes independently reorganize to maximize their
local utility. We do not constrain the connections of any node; a node may add any number of
neighbors that increase its utility. However nodes which are dissatisfied with a peer will disconnect
from that peer, for example if the cost of connecting to that peer is higher than the benefit.

Network reorganization is an important fundamental concept that is well explored, particularly
in altruistic, cooperative environments. Less well understood is the ability to provide both optimality
and fairness in the presence of selfish nodes. We consider reorganization algorithms in domains
of non-cooperative nodes that increase global utility and prevent free-riding thereby facilitating
formation of an optimal and fair network.

To evaluate our algorithm within a realistic context, we capture data from a portion of the live
Gnutella network and simulate various aspects of our algorithms. More importantly, we discover,
name, quantify and solve several previously unrecognized subtle problems in a content-based self-
organizing network as a direct result of using the trace data. We show, through simulations driven
by our Internet trace data, the ability of our architecture to provide fairness while maintaining opti-
mality.

The key contributions contained in this work are:

1. The formalization of ideality, fairness and optimality notions in P2P systems. We use these

formalisms to evaluate our architecture.
2. An interest-based reorganization scheme. We perform simulations of our algorithms using
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real-world work loads captured from a live portion of the Gnutella network. We provide

extensive analysis assessing optimality and fairness and show the system achieving both.

3. An extensive trace-driven analysis of the relevant patterns of similarity and user behavior in
P2P traffic. This both validates the assertion of prior work and provides a rich basis for our

analysis.

4. A quantitative analysis of the dependence of systems such as Gnutella on the existence and

altruism of SuperPeers, bringing a significantly new level of understanding to the problem.

5. Delineation, as a direct result of using real-world data, of several previously unrecognized
problems in content-based self-organizing networks along with solutions and their quantita-

tive analysis.

The remainder of this thesis is organized as follows. In Chapter 2 we present related work
in overlays and distributed network formation, many of which this work builds upon. Chapter 3
describes our P2P data capture methodology and includes detailed analyses of locality and similarity
present in the system. In addition, we discuss reasons why the current architecture is strained and
provide further motivation for our work. Before reasoning about optimizing or reorganization, we
first formally define ideality, fairness and optimality in the context of P2P systems in Chapter 4.
The Chapter continues by detailing our interest-based reorganization design and implementation
Chapter 5 begins by presenting details of the simulation methodology. We evaluate our design
against existing architectures through extensive simulation and show the success of our approach.
Finally, Chapter 6 concludes with a summary of major findings, contributions and suggestions for

further research.
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He always attributed to his critics a more profound comprehension than he had himself, and always
expected from them something he did not himself see in the picture.

- Leo Tolstoy

Chapter 2

Background and Related Work

In this chapter we review the existing body of work on topics related to our thesis. We begin
by presenting an overview of different network overlays, both research based and in popular use,
including how they solve the distributed lookup problem. Next, we discuss other schemes that
rely on locality within the overlay to provide context for our own work. Finally, we consider prior

research that examines incentives, reorganization and selfish network formation.

2.1 Peer-to-Peer Overlays

To capitalize on the power and scaling properties of large distributed Peer-to-Peer (P2P) overlay
systems, considerable research has focused on the distributed lookup problem [3]. A node seeking
a piece of content must find, in a distributed fashion, which nodes store that content. Distributed
lookup in P2P overlays holds the promise of self-scalability: the aggregate capacity of the network to
service requests grows as a function of the number of nodes. Naturally the self-scalability property
is limited by the altruism of network participants, a central theme of the work presented here.

The remarkable promise of self-scalability embodied by the P2P paradigm, has led to a wealth
of theoretical, i.e. academic, and production systems. These systems fundamentally implement one

of two approaches to building application layer overlays: unstructured and structured.

2.1.1 Unstructured

Unstructured systems are simple to build and maintain as evidenced by the relative success and
popularity of working implementations on the Internet. Unstructured P2P overlays such as Gnutella

[17], Kazaa [26] and FreeNet [11], despite their effectiveness and wide-spread use, are neither
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optimal nor fair [1] and provide excellent motivation for our work.! A central tenant of this thesis,
shown in later Chapters, is the ability to retain the properties which make unstructured overlays
successful while achieving optimality and fairness.

Unstructured systems can adapt, grow organically and reorganize dynamically. Nodes inde-
pendently store their content without relying on any system-wide resources. Popular content, for
instance a particular file, is often replicated by many nodes in the network. Nodes connect to one an-
other with minimal constraints, flooding queries through the overlay with a limited horizon breadth
first search. An inherent trade off exists between the likelihood of locating content in the system
versus replication factor, i.e. the extent to which a piece of content is duplicated and query propaga-
tion distance, i.e. the query traffic overhead. Short of flooding queries to all members of the overlay,
users have no guarantees against false negatives. The compromise between successful operation and
query flooding limits the self-scaling properties which motivate distributed P2P systems.

To alleviate query overhead, Gnutella and other systems implement a two-level hierarchy of
leaves and “SuperPeers” [42]. SuperPeers are nodes with high-bandwidth and low-latency connec-
tivity. In contrast leaves are generally poorly connected and often behind firewalls. 2 Leaves use a
bootstrap mechanism to connect in a pseudo-random fashion to SuperPeers and SuperPeers inter-
connect with each other. Each SuperPeer constrains the maximum number of leaves it will serve,
so a leaf must repeatedly attempt connecting to many SuperPeers. In time, the leaf establishes a set,
typically two to four, of stable connections into the SuperPeer network. Figure 2-1 illustrates an
example section of the Gnutella network. >

The system makes use of a simplified Bloom filter to shield leaves from irrelevant query traffic.
Upon connecting to a SuperPeer, a leaf sends a hash of the file names which it stores. Thus, each
SuperPeer maintains a hash of file names stored on its leaves. Queries are flooded between Super-
Peers, but only forwarded to leaves if the hash indicates a possible query match. The SuperPeer can
know definitely that a leaf does not serve a piece of content, but cannot know with certainty that it

does. Thus, queries may still be inadvertently sent to leaves who cannot provide an answer. We give

We save precise definitions of optimality and faimess for Chapter 4. Intuitively however, optimal and fair networks
can be said to maximize global welfare and ensure that nodes contribute in proportion to their derived benefit.

2The distinction between well and poorly connected is often fraught with difficulties. Most existing systems make
use of ad-hoc mechanisms to make a determination as to which nodes should serve as SuperPeers. Well-connected nodes
may elect not to serve as SuperPeers. We note that our architecture, presented later, is not required to make such a
determination as nodes naturally evolve and emerge as central hubs.

3In reality, there is a third-class of node in Gnutella: a non-leaf, non-SuperPeer node. These nodes implement the
older, flat topology of the original Gnutella architecture. They are allowed to connect in order to provide a migratory
path to the hierarchical network. These nodes present some difficulty when collecting data which we detail in the next
Chapter.
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Figure 2-1: Gnutella Two-Level Hierarchy

details of Bloom filters in general and Gnutella filtering in particular in Section 4.5.

The two-level hierarchy has been lauded as a significant success, allowing the continual opera-
tion and expansion of the Gnutella network. However, the system depends on the alfruistic nature
of well-connected users to serve as SuperPeers and does not increase the chance of finding unpop-
ular content. Singh et al. argue for placing the burden of maintaining SuperPeers on the service
providers [41]. In contrast, our architecture turns the problem into a selfish distributed algorithm

without depending on SuperPeers.

2.1.2 Structured

Despite the popularity of unstructured overlays, they lack cotrectness guarantees and are reliant
on flooding. To address these shortcomings, often perceived as being too significant to overcome,
many structured overlays [3] exist in the academic community. Chord and Tapestry [47, 48] are
two popular examples; others include [19, 34, 37). These structured overlays are generally realized
through a Distributed Hash Table (DHT) abstraction. In contrast to unstructured systems, these over-
lays tightly constrain node and content identifiers, which determine their locations in the topology,
through a Distributed Hash Table (DHT) abstraction. Structured overlays impose strong homogene-
ity where nodes maintain both a constant number of connections and probabilistically equivalent
amounts of content. In most implementations, queries are guaranteed to be successful in O(log
n) overlay hops if the content is present in the system. We compare structured and unstructured
overlays in the next chapter.

Because structured networks enforce strict content placement such that nodes do not necessarily
store their own content, the designers of structured networks rely on the benevolence of nodes to
store others’ content. Nodes are willing to store the content of other users in the system because

they similarly rely on other nodes to store their own content. Thus, altruism is maintained through
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expectation.

Clearly, the storage fairness of structured networks can be easily gamed. Ngan et al. suggest an
approach whereby nodes publish their resource consumption and contribution to the system [29].
By using a distributed auditing technique, nodes have an incentive to publish their resource records
truthfully. However, this is just one of many fairness and incentive problems in structured overlays.
The authors do not consider the problem of fairness as it relates to the bandwidth resources of
nodes. Since content is allocated to nodes according to a consistent hash mechanism, a node may
randomly be asked to store a piece of content that is very popular in order to be a part of the P2P
system. Current methods rely on load-balancing mechanisms to prevent any node from saturating.
The issue of fairness within structured networks is beginning to be recognized as a significant issue,
particularly in proposed DHT services such as OpenHash [20]. |

Our work is similarly concerned with providing incentives such that users consume P2P re-
sources in proportion to their resource contribution. However, we investigate the selfish formation
of unstructured networks where nodes store their own content thereby eliminating fairness problems
as they relate to file space resource consumption. Instead our distributed algorithm allows groups
of users to interconnect such that the imposed query load is proportional to the benefit nodes derive

from their connections.

2.1.3 Overlay Locality

Earlier work recognized the intuition that by preferentially connecting peers with similar interests
together, one can minimize query flooding and thus optimize unstructured P2P systems. Keleher,
et. al [21] put forth some of the first arguments for maintaining locality in distributed P2P systems.

Semantic Overlay Networks (SON) are proposed in [13] which develop a classification hierar-
chy such that a node belongs to one or more independent overlays and queries are tagged so they
are sent to the right overlay. The difficulty with a rigid classification scheme is that its performance
depends on defining criteria that classifies the data with sufficient granularity and requires users and
nodes to classify their data.

The work of Sripanidkulchai, et. al [45] relies on the presence of interest-based locality to create
interest based “shortcuts”. Each peer builds a shortcut list of nodes that answered previous queries.
To find content, a peer first queries the nodes on its shortcut list and floods the query only if querying
the shortcut nodes is unsuccessful. We extend this idea to the network formation and use a utility

model that considers fairness and cost.
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2.1.4 Reputation Systems

A significant issue of concern is that of free-riders, nodes who download files without providing any
value or who somehow misrepresent themselves to obtain benefit. Proposals, including this one, that
attempt to mitigate the impact of free-riding generally rely on some type of reputation mechanism.

“Whitewashing” is the phenomenon whereby a malicious player (i.e. network node) circum-
vents reputation and repudiation algorithms by continually assuming new identities. Since nodes
are assumed to be honest initially (otherwise the system could not bootstrap), malicious nodes ex-
ploit their initial credit by whitewashing. Note that identity in the system is typically not an IP
address, but rather some system-specific identifier. While IP addresses provide an architectural
mechanism for uniqueness, the proliferation of NAT and firewall devices does not preserve a one-
to-one mapping between hosts and IP, i.e. violating the end-to-end principal.

In a self-reorganizing system, this certainly is a potential problem as there is a tradeoff be-
tween exploring a node and being exploited by that node. Free-riding and systems for establishing
reputations are an issue of a significant amount of research {1, 23, 14]. However, reputations and

truthfulness are beyond the scope of this paper.

2.2 Network Formation

This Section examines prior work in network formation, particularly as an optimization.

2.2.1 Reorganization

In {9] Chun outlines a network optimization game to optimize structured P2P networks. We use a
similar framework to model our optimization game in the context of an unstructured P2P network.
Gia [7] is an unstructured P2P system that reorganizes in spirit similar to our design. Gia uses
random walks for queries and biases the walk toward high-degree nodes. The additional insight
in Gia is that these high-degree nodes can then become overloaded, so Gia implements a topology
adaptation mechanism. Gia attempts to force high-degree nodes to be the ones with high-capacity
and connects low-capacity nodes within short reach of high-capacity nodes. The simulation results
demonstrate several orders of magnitude scalability improvement with the Gia scheme but does not

address fairness or node attempting to game the system.
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2.2.2 Selfish Formation

Recent research has examined the structure of selfishly constructed overlay networks [10]. The
authors define a cost function that is proportional to distance and find node-degree distributions
varying from node-degree to power-law. Similarly, through simulation we seek to understand the
equilibria of graphs that are the product of our algorithm and measurement data. Because our utility
is a function of interest locality, we expect to find significantly different results that complement
this previous work.

Finally, the utility-based economic clubs proposed in [2] are closely related to our scheme.
Their scheme also uses a utility function to drive each peer’s reorganization strategy. While our
simulation results of networks that include altruistic SuperPeers are similar, we are interested instead
in purely selfish network. Thus, our focus is on network reorganization and formation in a world
where SuperPeers no longer exist. Our work is complementary in that we examine the class of
purely selfish and homogenous nodes derived from our trace measurements. In addition, we define

different utility and reorganization models based on several previously unrecognized problems.

2.2.3 Regions

Our work is part of the regions project [44, 43] and develops methods of reorganization within and
among network regions. The region architecture is a proposed construct in designing large scale,
widely distributed and heterogenous networks. Regions are based on the notion that the Internet
is an increasingly complex network of networks where elements are connected and interrelated by
a set of common invariants. A region is thus a partition of the network where the member nodes
share consistent control, state, policy or knowledge. The canonical example of a region is the set of
nodes within an autonomous system (AS) [35]. The regions project seeks to provide an architectural
mechanism with which to define and use regions.

We expand on earlier regions work [25] to understand how nodes participating in an overlay
region can organize and segment in order to maximize their performance. The resulting, selfishly
constructed islands of interest may be considered sub-regions, defining nodes with commonality

that have reorganized together. In this work, we further codify the regions abstraction.

21



Explanations were advanced, but most of these were simply phrases which restated the problem in
different words, along the same principles which had given the world “metal fatigue.”

- Douglas Adams

Chapter 3

Analysis of P2P Data

The ability of a distributed reorganization algorithm to exploit interests depends on the ability to
successfully drive a node to the proper region of the network. However, if a node’s queries and files
are sufficiently dissimilar, finding a sustainable position in the network for the node is tantamount
to an impossible bartering problem.

Prior work has assumed the existence of high-degrees of locality within unstructured Peer-to-
Peer (P2P) systems. Before considering reorganization algorithms based on presumptions of local-
ity, we validate this assumption against real-world work loads. To perform the validation, we collect
several days worth of data from a portion of a popular unstructured P2P network. Understanding
the degree of locality in working systems allows us to better design a mechanisms to exploit that
locality.

In this Chapter, we first present our data collection methodology and operational specifics of
the Gnutella network relevant to gathering the data. We then give details of our collection program.
Next we provide descriptive statistics on the data collected including the distribution of: connection
duration, shared file count, query count, query rate and shared file size. As a basis for subsequent
design decisions in future Chapters, we analyze the prevalence of file replication among nodes in
our data set.

Finally, we ask to what extent, if any, interest-based locality can be leveraged in an architecture.
We examine and quantify the existence of locality in our data set using algorithms and techniques
adopted from the information retrieval community.

The data and results in this Chapter are tangential to our actual architecture, but vital in validat-

ing assumptions, making design choices and modeling real-world work loads.
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3.1 Data Collection Methodology

For our study we gather data from a portion of the Gnutella network over a 72-hour period including
approximately 1500 nodes. Our capture program, grawl, short for Gnutella-crawler, establishes
itself as a SuperPeer on the Gnutella network and anonymously gathers queries and file lists from
all nodes that connect to the host running our collector program. A significant fraction (approxi-
mately two-thirds) of peers refuse to answer directory queries, presumably for privacy reasons. Our
analysis includes only those hosts which allowed listing of their shared files. While this eliminates
many nodes from consideration, the duration of our data collection in conjunction with the proba-
bilistic nature of node attachment ensures that our sample is reasonably representative of the true
population. All IP addresses are anonymized to maintain the privacy of the Gnutella nodes grawl
converses with. The data collected for this study is publicly available from the following URL:
http://ana.csail.mit.edu/rbeverly.

We are primarily interested in the correlation between a node’s queries and its existing content
(i.e. shared file list). Queries do not contain the IP address of the originating peer, instead they con-
tain a unique identifier from a 16-byte space randomly chosen by the node issuing the query. Nodes
have no knowledge of where a query originated beyond knowing from which directly attached peer
the query arrived. Presumably this design feature provides additional privacy against third-parties
mapping queries to nodes and IP addresses.

Query routing in Gnutella is performed as follows. Nodes in the network maintain finite state
on previous queries, mapping identifiers to the peer from which the query was received. On the
basis of the identifier mappings, query hits are forwarded back toward the originator. Figure 3-1
illustrates the query response mechanism with an example. A node issues a query for key “ABC”
and gives the query an identifier of “101.” The query is flooded among the SuperPeers and sent to
a node attached to S5 that can answer the query. SuperPeer S5 maintains a table that maps query
identifiers to incoming interfaces and routes the reply to S3. Similarly, S3 sends the reply back to
S1. The arrow in the figure represents the query return path.

As mentioned in Chapter 2, a third-class of Gnutella nodes are those legacy nodes which do
not implement the latest protocol supporting the two-level hierarchy. These nodes are allowed to
connect in order to provide a migratory path from the old, flat Gnutella architecture. We also allow
these nodes to connect and term them “non-leaf, non-SuperPeer” nodes.

In order to disambiguate queries received from peers that originated the request from queries

23



Query: ABC
QueryID: 101

Figure 3-1: Gnutella Query/Response Mechanism

simply forwarded on behalf of other peers, grawl uses two techniques. Leaf nodes are guaranteed
to have no children. As a SuperPeer, grawl records all queries from its leaf peers since these
queries must be generated by that peer. Second, peers are required to increment the hop count and
decrement the time-to-live (TTL) fields in the Gnutella packet header. Grawl records all queries
from non-leaf, non-SuperPeer nodes with a hop count of one. When a peer disconnects, its query
list is flushed to disk along with the connection duration.

In addition to recording the queries, grawl attempts to acquire the shared file list of each new
peer that connects. The collector asks peers for their file list in two ways. First, grawl attempts
an HTTP connection to the host as several clients provide an HTML list of files. Unfortunately
many hosts are behind firewalls. If the HTTP method fails, the collector sends a special query
message with a TTL of 1 and search of four spaces. This special query is honored by many clients
to index all files the host is sharing. Despite the best efforts of these two methods, a significant
fraction (approximately two-thirds) of peers refuse to answer these directory queries, presumably
for privacy reasons. Our analysis includes only those hosts which allowed listing of their shared
files. Table 3.1 summarizes the operation of the collector program by describing its actions taken in
response to network events. Unless otherwise specified, grawl acts as a normal SuperPeer. !

We perform a tokenization procedure on the queries and file names. To tokenize we eliminate:
i) non-alphanumerics; ii) stop-words: “it, she, of, avi, mpg,” etc.; and iii) single character tokens.
We do not use other normalization techniques such as stemming tokens [24] to their root words,
e.g. “singing” — “sing”. Although stemming methods could raise the match quality, the issue is
orthogonal to our problem. Thus, our similarity measures are under-estimators of the true similarity.
The resulting tokens are produced by separating on remaining white-space in the string. We assume

tokenization in the remainder of this document.

!In fact, grawl is based on the freely available open-source Mutella [27] SuperPeer code.




Table 3.1: Data Collector Event/Action Summary

| Event # | Description | grawl action
1 Leaf i connects HTTP-get i’s shared files. If get fails, goto 2.
2 HTTP-get of i fails Send special “get all files” query with TTL=1
to 1.

3 SuperPeer s connects Allow up to 50 SuperPeer connections.

4 Receive query from leaf ¢ | Record and timestamp query.

5 Receive query from non- | If hop-count=1, record query.
leaf, non-SuperPeer i

6 Non-SuperPeer ¢ discon- | Anonymize IP, flush queries and connect time
nects to disk.
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Figure 3-2: CDF of Node Connection Duration, Mean = 708 seconds

3.2 Data Descriptive Statistics

‘We now present descriptive statistics of the data captured and used in simulation which we refer to in
later Chapters. For instance, we use the average query count and query rate to drive our calculation
of the discount factor in our utility formula. Figure 3-2 presents the cumulative distribution of
connection times our SuperPeer experienced during data collection. Similar to previous studies
[18, 38], we see that the average connection time is approximately 11.8 minutes, a very short time.
As few as 5% of the nodes were connected for more than an hour. 50% of the nodes connected for
less than 349 seconds, approximately 6 minutes.

Such high degrees of connectivity churn are likely indicative of three factors. First, many nodes
are free-riding, i.e. connecting only long enough to download a particular piece of content and
then leaving the system. Second, many nodes are attempting to find SuperPeers that are nearby as

measured by some latency mechanism. And third, many nodes are attempting to find content, but
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are unable to do so and are thus manually reorganizing.

In the next section we present our algorithm which places the reorganization within the sys-
tem. We believe that our algorithm, as it takes incentives into account and prevents users that are
connected for long durations from being taken advantage of, will lead to longer connection dura-
tions and hence greater stability. Indeed, in order for a node to reorganize such that it maintains
connections to its preferred regions will take a finite amount of time providing a disincentive to
disconnecting.

From capturing the list of file names and sizes, we gain insight into the properties of the content
which nodes are willing to share. In Figure 3-3 we see that on average, hosts shared 134 files and
only 20% offer fewer than 10 different pieces of content. Thus, even in a network where users have
no incentive to provide files or answer the queries of other nodes, a significant proportion of those
nodes that do share files share a fairly large number of files. 2 We use this fact as inspiration for our
epsilon equilibrium model in Section 5.4. The mean number of queries per host was 11 as shown
in Figure 3-4. Over 40% of the hosts in our data set sent a single query, again a likely indicator of
churn in the system.

The total size of all files shared was almost 1 GB as seen in Figure 3-5. This leads to the
observation that not all files should necessarily be considered equal. A file that is very large might
provide greater utility than one that is small. We do not differentiate between files in this work, but
our design could be supplemented by this intuition.

Finally, the average per-node query rate was approximately 0.012 queries per second, a value

we use to determine an appropriate discount factor ¢ in our simulations. Figure 3-6 displays the

2Recall that we must exclude approximately two-thirds of the nodes that refused to provide their list of files.
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distribution of query rates seen from all nodes.

3.3 Replication

An interesting feature of the data is understanding the extent to which file replication occurs in real
systems. After tokenization, we find the number of nodes holding each unique file in the network
as shown in Figure 3-7. Approximately 76% of the files are unique to a single node, indicating that
24% are duplicated at least once.

Two files may be different, for instance different formats of the same image, and still provide
the same benefit for a user searching for that file. However, it may also be the case that replication
is a more specific phenomenon where the file must be an exact replica. To determine the number of
exact replicas of files, we change our definition of a unique file in the system to be the tuple of its

file size in bytes and set of tokens. We see that approximately 86% of these unique files reside on a
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single node. Thus, 14% are duplicated at least once.

3.4 Interest-Based Locality

The ability to design a distributed interest-based reorganization algorithm depends on being able
to successfully drive a node to the proper region of the network. For example, consider a node
holding files that are all classical music, but issuing only queries for acid jazz. That node will
have significant difficulty finding a portion of the network to which she can connect because nodes
answering her queries will likely be unable to derive any benefit from her file store. In essence, this
is a classic bartering problem and leads to our first question:

Question #1: “To what extent, if any, can interest-based locality be leveraged?”

We are primarily interested in the correlation between a node’s queries and its existing content,

i.e. shared file list. In this Section, we seek to determine the similarity.

3.4.1 Similarity Metric

To assess the correlation between a Gnutella node’s files and the queries it issues, we use two
metrics from the information retrieval (IR) community. The Jaccard similarity [33] between a set of
file tokens F" and queries @) for node 4 is simply:

|Fi N Qs

sim(F;, Q;) = BU0i 3.1

We calculate the Jaccard similarity for the nodes in our data set where we successfully capture
both the files and queries. Figure 3-8 displays the cumulative distribution of Jaccard similarity.

A more accurate and widely accepted similarity metric is cosine similarity, also known as the
vector space model (VSM) [4]. Let the union of files and query tokens of node i be U; = F; U Q;.
For all nodes i in IV total nodes from our study, let U = |J, U;. Let n; = |U;| for the files and
queries of node ¢. We define two vectors of size n: ﬁ and g; such that each element of the vector
is a weight for a token in U. We use the Text Frequency, Inverse Document Frequency (TFIDF)

formula for the vector weights:

wei = (fregsi)loga( ) (3.2)

N
freq
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Where fregq, ; is the frequency of token  in U; and fregq; is the frequency of token £ in U (all
of F,Q). In order to cope with the varying lengths of each F;, Q;, we normalize by the length
of the vectors. The similarity between the vectors is then the distance between them in an n-
dimensional space. We compute the dot product of the length-normalized vectors to determine the

cosine similarity between the files and queries of a node i:

sim(F;, Qi) = %% (3-3)

Figure 3-9 displays the TFIDF weighted normalized cosine similarity between the files and
queries of our data set. We see that 60% of the nodes we capture exhibit similarity between their file
sets and queries. Our interest-based reorganization scheme, described in the next Chapter, is based

on this encouraging result.
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Conviction is worthless unless it is converted into conduct.

- Thomas Carlyle

Chapter 4

Design and Implementation

We present our design and implementation of a interest-based reorganization scheme in this Chapter.
We focus on designing a system that converges to an optimal and fair structure, properties which
we rigorously define. The system should be robust to malicious users who can misbehave or derive
benefit from the system without contributing, i.e. “free-riding.”

First we formally define ideal and fair networks within the context of Peer-to-Peer (P2P) over-
lays. To evaluate our design, we outline a continuum of optimality ranging from global to individual
welfare maximizing networks. In addition, we show that enumerating all possible networks in order
to find an optimal one, a task we perform in our subsequent algorithm evaluation, is exponentially
hard.

Next we evaluate the dependence of the current architecture on the presence of SuperPeers. To
support our argument, we show the use of Bloom filters in the system and analyze the false positive
rate. As expected, we find that the system is highly dependent on the SuperPeers.

To take the first step toward a rational network equilibrium, we look at a SuperPeer model
where leaves behave in an individually rational fashion. We then examine the potential for leaves to
reorganize around a static SuperPeer network.

Finally we consider the problem at the root of our work, a world in which SuperPeers disappear
or are no longer altruistic. We show a number of previously unrecognized problems in content-based
self-organizing networks along with their quantitative analysis. Our utility function and reorganiza-
tion algorithm are the result of careful analysis of these problems and the ability to properly model
the system. Based on our trace data, we defend a choice of discount factor. We conclude by intro-

ducing four reasons for utility suboptimal self-reorganizing networks: anarchy (selfish behavior),
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indifference, myopia and ordering to give further basis for our subsequent analysis and results.

4.1 Defining Ideal and Fair Networks

Before we can begin to reason about optimization or reorganization we must first define metrics by
which to evaluate our networks and algorithms. Here we provide our base definition for optimal and

fair networks. The basic framework we consider, which we extend shortly, is:

e A set of nodes, N.

e An undirected graph G = (V, E) of vertices (V') and edges (E) where each vertex is a node
(V=N).

e Forall i € N, a set of files F; and queries Q;.

o A time-to-live (TTL), ¢, representing the query propagation depth.

4.1.1 Ideal

We define an ideal network as one where every query that can possibly be answered by any other
node is successful. More formally, define F; ;(t) as the set of files available to node i as a result of
maintaining an edge F connecting to j when queries propagate to a depth of ¢. For ¢t > 0, we can

express F; ;(t) by the recursive expression:

t>0
Fity=Ful |J Ft-1) @.1)
kenbrs(j)~i

Thus F; ;(t) includes the files of the neighbor j to which 1 attaches as well as the files available
to 7, through all k of j’s neighbors!, with the TTL decremented. In other words, this expression
gives the set of files determined by the union of all files available to 7 via nodes within its query
reach as a result of the connection with neighbor j.

Let S; ; be the set of successful queries for node ¢ as a result of connecting to node j:

Sij=@Q:iNF; 4.2)

!k may or may not also be a neighbor of i depending on whether a cycle exists, but nothing prevents this from being
the case. Since we are interested in the union of ail files, multiple paths to the same node does not affect our definition
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Let S; be the set of successful queries for node i as a result of sending its queries Q; to its

complete neighbor set:

Si= U Sij 4.3)
JjE€nbrs(i)

Define F; as the set containing all possibly answerable queries of i, i.e. the number of queries
answered as a result of connecting to every other node:

IN|
3=0

An ideal network graph G construction then implies that the number of satisfied queries for all

nodes i € G equals the maximum possible successful queries:
|S;| .
7] @

The canonical ideal network is a fully-meshed graph (a total of %n('n —1) edges) such that every
node has an undirected edge to every other node; many others will exist in practice.

Note that these definitions of the ideality of a network do not take into consideration identical
context duplicated at more than one node. Thus, we require that each query be answered only by
at least one other node for a match and give no additional benefit to multiple matches for a single
query. In later sections, we consider the benefit of redundancy, i.e. the situation where query g of

node i is for file f and nodes a and b both store f where a # b # 4.

4.1.2 Fair

Fairness is the ability of the network to prevent nodes from gaining utility without contributing. A
node that issues queries but does not provide any reciprocal benefit is a free-rider and should be
disconnected from the network. Nodes provide benefit either by answering queries directly or by
providing transit to other nodes who answer the query. The network should ensure the query success

of each node is proportional to the query success it provides to its neighbors: 2

Vn € N,Vi € nbrs(n) : sp « 8iq 4.6)

More precisely we are interested in maintaining utility faimess, but forego introducing utility until Section 4.6.2.
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4.2 Defining Optimality

Optimality is then the balance between an ideal and fair network. We define a utility function that
rewards ideal and fair networks while penalizing those with needless communication. The utility
function is discussed in detail in Section 4.6.2, but abstractly we define u;(E;, t) as the utility of a
node i in the system when i has neighbors defined by E; and queries are sent with a TTL of ¢. E;,
the edges of i, are defined by the graph G. The global utility of a graph G for TTL ¢ is the aggregate
utility of all individual nodes:

|N]

u(G,t) =) ui(E;,1) 4.7

i=0
In this section, we formally develop definitions for a continuum of optimality. At one end of the
range are socially optimal networks which maximize the global welfare. Diametrically opposed are
purely selfish networks where nodes maximize their individual their individual utilities. An optimal
network of selfish nodes must provide no incentive for them to change their topology. Thus, we
refer to selfish network optima as “equilibrium optimal.” Finally, in the middle of the spectrum is
risk-adverse altruistic optimality. Each of the three types of optimality are discussed next.

4.2.1 Socially Optimal

The socially optimal network is one that ignores individual user preference or happiness and instead
maximizes the aggregate utility. For all possible graphs in the exponential set {G}, the socially

optimal network is one that maximizes utility for a given TTL ¢:

Gso(t) = g € {G} : u(g, t) > mazfu(G — g,t)] (4.8)

Socially optimal networks assume a centralized oracle planner is controlling node connections
in order to provide the highest aggregate social utility. Because nodes cannot act autonomously in
this model, individual nodes may be disenfranchised in order to provide benefit to other nodes if
such a connection yields higher global utility.

To illustrate the fact that lowering one node’s utility can increase the global utility by a larger
amount than was lost by that node, we examine two possible networks. From a set of edges F, let
eij € E denote the undirected connection from node ¢ to j. Consider graphs g,h € G identical

except for g having an additional edge from i to j: g = h U e; ;.
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Then in the socially optimal model, the utility of g may be greater than the utility of ~ even if
the utility for the single node 1 has gone down as a result of the connection from ¢ to j. In this highly
plausible situation, the global utility is greater with the connection from ¢ to 5 because a third node
k (possibly k = j, but not necessarily) contributes more global utility to the system than ¢ detracts.
Formally, 37, j,k € N, i # j,1 # k such that:

ui(e;; € E) < ui(e;; ¢ E)
ur(eij € E) > up(e;; ¢ E)

u(g) > u(h)

The importance of this example is that some individual nodes may be “unhappy,” or less happy
than they might be, in order to maximize global welfare. The ratio between the socially optimal

utility and the selfish utility is commonly known as the *“Price of Anarchy” [30].

4.2.2 Risk-Adverse Altruistic Optimal

We consider a new class of optimality we term “Risk-Adverse Altruistic.” Such networks fit between
socially and equilibrium optimal. While these networks cannot be considered in equilibrium for
purely selfish nodes, they provide a reasonable approximation of existing P2P networks. That is to
say, we believe many P2P nodes are altruistic so long as they derive some, but not necessarily all, of
the benefit of connecting to the system. We make only passing use of this model in our simulations
and present it here primarily for completeness.

A risk-adverse altruistic optimal network is one where all nodes have non-negative utility (i.e.
are “happy”). However, a node may not maximize its individual utility in order to provide higher
global utility (i.e. be altruistic). We assume that nodes are not myopic and can implement a dis-
tributed algorithm to determine if their actions maximize the global utility.> Alternatively, we may
again assume an oracle that serves as the central planner. Formally, the risk-adverse altruistic opti-

mal network for a given ¢ TTL is:

Grao(t) = g € {G} : u(g, t) > maz[u(G — g,t)];ui(g,t) > 0Vi 4.9

3Unfortunately, assuming complete or semi-complete knowledge requires significant coordination, authentication and
verification in a distributed system. Such a system is beyond the scope of this work and we use risk-adverse altruistic
optimal only as a model by which to measure the performance of real systems.
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4.2.3 Equilibrium Optimal

The final class of optimality we consider is equilibrium optimal. Such networks represent the high-
est global utility obtainable subject to the constraint that no node can disconnect one of its peers, i.e.
remove an edge, and increase its individual utility. In other words, for the action space that includes
dropping connections, the node cannot obtain higher utility by taking an action. Thus, the network
is considered stable and in equilibrium. Formally, we define the equilibrium optimal network for a

given ¢t TTL as:

Geolt) = g € {G} : u(g,t) = maz[u(G — g,t)]; wi(Ei, t) > wi(E; — e j,t) Vi, Vj € nbrs(i)
(4.10)

4.3 Comparing Structured and Unstructured Overlays

Having defined ideality, fairness and optimality, we consider how to best architect a system to realize
these goals. Again we turn to previous work for inspiration and a basis upon which to build. In this
section we compare structured and unstructured overlays in the context of our goals.

The remarkable promise of self-scalability embodied by th