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Abstract

The design study of a 140 GHz, 100 W continuous wave gyroklystron amplifier is
presented. The device is intended for use in Dynamic Nuclear Polarization (DNP)
enhanced Nuclear Magnetic Resonance (NMR) spectroscopy experiments. The gy-
roklystron has five cavities and operates in the TE(0,2) mode with a low power elec-
tron beam. The design was performed using MAGY, a nonlinear code for modelling
gyrotron devices. The design process of the gyroklystron starting from the linear
theory to the optimization of the final design in MAGY has been described in detail.
Stagger tuning was employed to broadband the device. The design yields 130 W peak
power, 36 dB saturated gain, and a -3 dB bandwidth of over 1 GHz (0.75%) with a
15 kV, 150 mA electron beam having a beam pitch factor of 1.5, radius of 0.64 mm
and calculated perpendicular momentum spread of 4%. Preliminary designs of the
Magnetron Inject Gun (MIG), the input and output couplers, and the mode converter
to transform the TE(0,2) operating mode to the HE(1,1) mode for low loss transmis-
sion of the output power are also presented. The design meets the specifications for
the DNP experiment.

Thesis Supervisor: Richard J. Temkin
Title: Senior Research Scientist, Deptartment of Physics
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Chapter 1

Introduction

The gyroklystron amplifier is a high frequency vacuum electron device (VED) used

to amplify electromagnetic waves with wavelengths on the millimeter scale to higher

power levels. The gyroklystron is part of a larger class of general fast wave gyro-

devices that utilize the electron cyclotron resonance maser (CRM) instability. The

possibility of an electron beam interacting with an electromagnetic wave was known

by the end of the 1950s, laying the foundation for all gyro-devices [1]. In particular,

the gyrotron oscillator research that has been going on since the 1970s has focused

primarily on applications for plasma heating in the millimeter band range of 28 GHz

to 170 GHz, at power levels typically greater than hundreds of kilowatts or more [2].

More recently, gyrotron amplifier research has begun to take root in fertile fields such

as radar [3], target tracking, imaging, cloud physics [4] [5] and experiments utilizing

Dynamic Nuclear Polarization (DNP) [6] [7].

In gyro-devices, a weakly relativistic electron beam gives up energy to radio fre-

quency (RF) electromagnetic fields in the cavities through bremsstrahlung, a process

whereby the electrons emit radiation as they experience forces from the electromag-

netic fields. The term fast wave comes about because the phase velocity of the

electromagnetic wave in the interaction structure is faster than the speed of light.

In this regime, the cavity structures are typically several wavelengths long and the

energy is extracted from the perpendicular component of the electron momentum. In

contrast, the interaction structure of the slow wave device keeps the RF phase veloc-

17



ity below the speed of light so that the electrons travel in synchronism with the RF

fields. When this happens, Cherenkov radiation is emitted by interaction with the

parallel component of the electron's velocity instead of the perpendicular component.

In both slow wave and fast wave devices, the transverse dimensions of the interaction

structure scale inversely with frequency, which limits the power that can be safely

generated in the structure due to the increased ohmic losses. Fast wave devices can,

however, operate in higher order modes very efficiently. This allows the dimensions

of the interaction structures to be larger, making it possible to generate higher power

while limiting the thermal losses in the structure. The efficiency of slow wave devices

is very poor at higher order modes and thus the fast wave devices have a distinct

edge at the millimeter wave frequencies and above.

The gyroklystron amplifies RF via a focused electron beam travelling through a

series of resonant cavities. It is the fast wave extension of the klystron, which is itself

a slow wave device used for generating microwaves. Gyroklystrons are known for their

high efficiency and ability to provide high power in a frequency band that is out of

reach for both slow wave and laser devices (Fig. 1-1) [8]. Among the competitors for

the microwave band are conventional microwave tubes such as klystrons, magnetrons,

travelling wave tubes (TWTs), backward-wave oscillators (BWOs) and other slow-

wave devices. In the millimeter band, the competition thins out, leaving gyro-devices

as the only practical high-power sources. BWOs, Orotrons, and even some solid state

devices are capable of producing power in the millimeter bands, but do not extend

to sub-millimeter wavelengths at the necessary power levels. By operating at integer

harmonics of the fundamental, gyrotron devices have achieved operation frequencies

of up to 889 GHz [9].

1.1 Motivations for the Gyroklystron

Since this gyroklystron will be incorporated into an existing DNP experiment at the

Francis Bitter Magnet Laboratory, Cambridge Massachusetts, it is a desirable feature

that the source be capable of continuous wave (CW) operation as well as nanosecond-

18
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Figure 1-1: Recent advances in vacuum electron device technology showing gyro-

devices pushing the frontier to higher power and higher frequency.

scale short pulses. The short-pulse capability requires a fairly wide bandwidth and

a high amount of phase stability. The CW operation is much easier to achieve at

low electron beam power, whereas an amplifier would lend itself to phase-stable short

pulses [10]. Furthermore, lab safety is an important consideration, as higher voltage

makes shielding the power wires considerably more challenging. Unfortunately, the

lowering of beam voltage in most amplifier devices causes the bandwidth to become

narrow, but the gyroklystron provides a series of cavities that can be tuned to differ-

ent resonant frequencies to widen the bandwidth at the expense of amplifier gain, a

method known as stagger tuning [11]. The cluster cavity [12] technique can theoreti-

cally widen the bandwidth without losing gain if the cavities are uncoupled, but this

has yet to be achieved in practice. Another challenge of low beam power is that the

gain is severely restricted at low beam currents.
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1.2 Description of Operation

In all gyro-devices, an electron beam is emitted from an indirectly heated cathode

and guided along a precision magnetic field through a single cavity, series of cavities,

or a long gyro-travelling wave tube (gyro-TWT) section. The electron beam consists

of many electrons gyrating around the magnetic field lines in a. small helix with a,

cyclotron frequency near the operating frequency of the device as they propagate

from the cathode side of the tube to the collector side. These small helicies form a,

larger hollow annular ring beam.

If the Larmor orbits of the electrons are smaller than the guiding center radius

(average radius of the hollow annulus), then the device is called a small orbit device.

On the other hand, if the Larmor radius is greater than or equal to the guiding center

radius, the device is said to be a large orbit device. A small orbit beam can be easily

generated by a Magnetron Injection Gun (MIG), and this is the type of beam we

will utilize here. The generation of a large orbit beam is more complicated and is

usually achieved by imparting a kick to a linear beam by either a magnetic cusp or a,

microwave kicker.

Energy is extracted in the gyrotron interaction by the relativistic cyclotron res-

onance maser instability in which the electrons are phase bunched in the azimuthal

direction due the RF fields. The bunches grow along the beam, and if the operating

frequency is slightly higher than the cyclotron frequency of the electrons, the bunches

end up in the decelerating phase of the microwave field and give up it energy to it f13].
Only the transverse energy is extracted from the electron beam during a CRM fast

wave interaction and hence an electron beam with significant transverse energy is

chosen in a gyrotron device. Typically the pitch factor, or the ratio of the transverse

energy to the longitudinal energy of a gyrotron beam varies from 0.5 to 2.0 and is

given the symbol a.

At the end of the interaction, the beam has lost a significant amount of its original

energy to the RF fields in the cavities and is collected by a thermally cooled collector.

The remaining RF fields are extracted from the tube and sent through waveguides to

20
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Figure 1-2: Common gyro-device cavity profiles with an electron beam: (a) gyrotron
oscillator; (b) gyro-TWT; (c) gyroklystron.

the desired application. The particular variation of the interaction circuit falls into

several categories [14]:

1.2.1 Gyrotron

The gyrotron oscillator consists of a short cylindrical resonant cavity section bounded

on either side by a down-taper and up-taper (Fig. 1-2a). The energy is extracted from

the uptaper section and often sent through an internal quasi-optical mode converter

in high power gyrotrons. High power gyrotrons usually operate in a high order mode,

such as the TE22,6 mode so that a larger electron beam diameter can be used to

reduce the problem of space charge [15]. A mode converter is necessary to change

this mode to a Gaussian-like mode to further reduce spurious mode conversion and

transmission loss through a waveguide transmission line.

21



1.2.2 Gyro-TWT

Gyro-TWTs are capable of very high gain and large bandwidth due to a near match-

ing of the waveguide mode and cyclotron mode and because the group velocity is very

close to the electron beam velocity. The interaction structure is most simply a waveg-

uide with no resonant structures, so the bandwidth can be quite large (Fig. 1-2b).

Velocity spread is typically the limiting factor for how long a structure can be. The

gyro-TWT often suffers from problems with instabilities and self-oscillation due to

spurious backward waves, although the more recent use of heavily- loaded, lossy TWT

waveguides was found to be a good way of controlling these problems. Gyro-TWTs

have not been built at very low beam voltages.

Another version of the gyro-TWT uses confocal waveguide to avoid the use of

expensive, fragile and often temperature-sensitive lossy ceramic materials. The con-

focal gyro-TWT was first successfully demonstrated at MIT [16]. The large gap on

either side of the waveguide lowers the total Q by diffraction, allowing it to be easily

built without the use of lossy ceramics. In a confocal waveguide, the diffractive losses

from the open sidewalls allow the suppression of lower-order modes. Thus, using it

in a gyro-TWT allows operation in higher-order modes without mode competition.

This in turn allows the the use of an interaction structure with larger transverse di-

mensions and hence higher power handling capability. Because part of the annular

electron beam sees no RF fields, efficiency is lower than the gyro-TWT. Mode con-

version may also be more difficult from the hybrid modes to lower-order Gaussian

beams.

The new possibility exists of building a gyro-TWT using Photonic Band Gap

(PBG) structures. The PBG gyro-TWT would consist of a 2-D lattice of rods peri-

odically spaced with a defect in the lattice where some rods are removed. The PBG

interaction structure can be designed so that the backward wave frequency lies in

the passband of the PBG structure and hence leaks out of the lattice. This is likely

to dramatically reduce the Q of the structure for the backward wave mode and al-

low operation at higher beam currents in the forward wave amplifying mode. Hence
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the result is a mode-selective structure supporting only the design mode. A PBG

gyrotron oscillator was demonstrated at MIT [17]. A PBG amplifier has yet to be

built.

1.2.3 Gyroklystron

A gyroklystron consists of a series of nearly isolated prebuncher cavities, each of

which bunches the electrons such that gain occurs in each cavity (Fig. 1-2c). In

theory, the gyroklystron can have as much as 18 dB of power gain per cavity in

the linear regime [18], lending gyroklystron devices to relatively short circuits. A

small RF signal is coupled into the first cavity, then amplified in each cavity and

finally extracted at the end. Gyroklystrons typically have very good linearity, less

sensitivity to velocity spread and can have considerably wide bandwidth even at low

beam voltages. Since the gyroklystron typically has a more narrow bandwidth than

the gyro-TWT, it is also less noisy. This device, however, is more difficult to build,

since several cavities have to be tuned properly and the alignment of the cavities with

the electron beam can be difficult. Furthermore, the drift spaces, where ideally no

fields exist, are susceptible to a plethora of modes and resonances in practice.

A common method for adjusting the Q factor of each cavity in the gyroklystron

is to use lossy ceramics. However, other possibilities exist, such as lossy tunable slots

in the cavity that would lower the Q by diffracting some power out. Large slots could

be used in the drift sections to allow the fields to leak out and be absorbed by larger

lossy ceramics.

1.2.4 Gyrotwystron

A gyrotwystron is a hybrid device consisting of a gyroklystron section followed by

a gyro-TWT section. Utilizing this configuration rather than a plain gyroklystron

alone, higher bandwidth can be achieved, as well as extra protection against RF

breakdown. Another version is the inverted gyrotwystron, where the travelling wave

section appears first. The gyrotwystron is typically more susceptible to oscillations
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Table 1.1: Gyroklystron Achievements

Source V [kv] Io [A] POt [kW] eff fo [GHzI BW [MHz] gain [dB]
CPI, NRL [19] 55 6.0 10.2 (ave) 31% 95 700 (0.74%) 33

NRL [20] 72 9.6 208 (pk) 30% 35 178 (0.51%) 53
CPI, NRL [21] 53.7 5.1 72 (pk) 27% 95 410 (0.43%) 50
CPI, NRL [21] 56 4.4 84 (pk) 33.8% 95 370 (0.39%) 40
CPI, NRL [22] 58 4.2 60 (pk) 25% 93 640 (0.68%) 27
CPI, N1RL [23] 65 6 80 (pk) 29.5% 94 600 (0.64%) 24.7
Nusinovich [24] 40 0.3 1.0 (pk) 8.5% 360 72 (0.02%)

Proposed
GKL at MIT 15 0.15 0.10 (cw) 5% 140 1000 (0.71%) 36

than the gyroklystron.

sparse.

Not many have been built and the documentation is rather

1.2.5 Gyro-BWO

In a BWO, the output frequency is directly adjusted by the operation voltage, but

higher magnetic fields are required for the BWO than for other gyro-devices because

of a negative Doppler shift, making the BWO undesirable at very high frequencies.

BWOs also suffer from a relatively low efficiency and low output power.

1.3 Previous Gyroklystron Work

Many advances have been made recently in the field of gyroklystron research. Tab. 1.1

lists several examples of gyroklystrons that have been built recently.

Some gyroklystron design advances and variations include a dual-cavity coax-

ial gyroklystron [25], third-harmonic gyroklystrons [26], and sub-millimeter second-

harmonic designs [24]. In addition, many advances have been made in the theory

of gyroklystrons, such as the optimization of gyroklystron efficiency [181, AC space

charge analysis [27], the effects of penultimate cavity position and tuning [28], and

the theory of stagger tuning [29].
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1.3.1 Novel Features of this Design

Because it is desirable to have CW operation on the order 100 W, a low beam power

is necessary to maintain reasonable efficiency. A low beam voltage would lend itself

to lab safety. Thus one aspect of this design that is considered novel is low beam

power. Operation as such low voltage (leading to a more weakly relativistic beam)

and low current poses significant challenges. Low voltage causes the bandwidth to

become more narrow as the cyclotron resonance line intersects the waveguide modes

near cutoff and also makes it difficult to avoid problems with space charge. Low

current significantly reduces the gain. Most gyroklystron designs have operated in

the neighborhood of 60 kV and above 4 A, whereas this design focuses on 15 kV at

0.15 A. No gyroklystron has ever been designed with such a low beam current.

The use of Photonic bandgap (PBG) resonators has been evaluated to reduce

or eliminate mode competition in the cavity circuit as well as a novel method for

adjusting the Q in the cavity without use of lossy dielectrics or ceramics.

1.4 Thesis Outline

Chapter two is an overview of the whole design, chapter three summarizes the theory

behind the operation of gyroklystrons, chapter four focuses on the cavity circuit,

chapter five shows the details of the electron gun design, chapter six touches on the

nonlinear uptaper and mode converter and chapter seven is the conclusion.
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Chapter 2

Overview of Program

Here is presented an overview of the whole test bed already in place at the Francis

Bitter Magnet Lab (FBML) in Cambridge, MA, as well as an overview of the proposed

gyroklystron amplifier.

2.1 Overview of the Current Experimental Setup

The current Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance

(DNP/NMR) test bed at the FBML consists of a 140 GHz gyrotron, waveguides, a

DNP probe and another superconducting magnet (Fig. 2-1). The gyrotron delivers

approximately 15 Watts in the TEO, mode into a snake mode converter which trans-

forms it to the TE11 mode before it propagates down straight copper pipes. Two

90' miter bends exist before the oversized waveguide is tapered down to fundamental

waveguide. The total losses were measured previously to be approximately 6.4 dB

with theoretical losses totalling 3.7dB [30]. At the probe, approximately 1 to 2 watts

of power is delivered into the sample.

In this DNP test bed, the 140 GHz gyrotron will be replaced with the proposed

140 GHz amplifier. The amplifier will deliver approximately 100 Watts in the TEO,

mode into the existing snake converter. If the existing waveguide is also used, the

resulting power at the probe is expected to be in the tens of Watts. A newer sys-

tem including a TE11 to HE,, scalar horn mode converter and low-loss corrugated
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Figure 2-1: The current DNP test bed utilizes a 140 GHz gyrotron, waveguide with 2

miter bends and a downtaper, a DNP probe, and another superconducting magnet.

Losses were measured previously.

waveguide lines are also available to lower the spurious mode conversion and waveg-

uide losses, if needed. The amplifier will feature ease of frequency tunability where

previously only a single frequency was used, and it will also allow nanosecond-scale

short pulses to be sent to the samples.

2.2 Overview of the Gyroklystron Operation

Referring to the block diagram of the gyroklystron in Fig. 2-2, an indirectly heated

cathode ring in the electron gun at one extreme of the gyroklystron tube emits an

annular beam of electrons by thermionic emission in a carefully designed region with

high electric fields. The electrons adiabatically spiral around the magnetic field lines

created by the magnet. The size of this spiral is determined by the Larmor radius

which is related to the static magnetic field and the relativistic mass of the electrons.

The electrons are initially randomly distributed in phase over the range (0, 27r) and

are assumed to produce a uniform current density over the area of the annular ring.

The gyroklystron cavity circuit consists of an alternating series of cavities and

drift spaces. In the first cavity, RF power is coupled in from an external source. As

28

I



* Source

140 GHZ RF
Gunn &
IMPATT

To Experiment

Electic Field

Profile

1OOW RF RH~

0Cavity Circuit

Gin Coil * Mode Converter

o Electron Gun

0 6.2T Magnet

Figure 2-2: The system block diagram: (1) Electron gun (MIG), (2) Solid state RF
source, (3) Superconducting magnet, (4) Cavity circuit (gyroklystron shown) and (5)
Mode converter.

the electron beam enters the first cavity, the electric field produces a force on the

electrons as they spiral around the magnetic field lines. This force not only changes

the phase of the electrons as their orbits are slowed down and sped up, but it also

causes the electrons to emit bremsstrahlung radiation, which is superimposed over

the existing fields in the cavity. This effect of changing the perpendicular momentum

of the electrons by interaction with an electric field leads to a process called bunching,

which causes a majority of the electrons to emit bremsstrahlung in phase coherently.

After the first cavity, the electron beam enters a cutoff region called the drift

space where the electromagnetic fields cannot propagate (evanescence). The electron

phases, being affected by the RF-induced forces in the first cavity, continue to evolve

in the drift space in a process known as ballistic bunching. The purpose of the drift

space is two-fold: To isolate adjacent cavities from coupling to one another, and to

allow the bunching to evolve. A beam that is more highly bunched tends to emit

bremsstrahlung in phase and hence emits more RF energy. However, if the beam
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is allowed to evolve too long, or if the bunching process is forced too strongly, an

overbunching may result in which the efficiency drops dramatically. Longer drift

spaces then have the effect of increasing the gain, unless they are too long.

Upon entering the second cavity, where no pre-existing RF is present, the electrons

give off RF at the Doppler-shifted frequency given by the beam line relation. If the

cavity is tuned properly, the bunching in the beam will be reinforced and the total

RF fields in the second cavity will be higher than those in the first cavity. The second

drift space has the same function as the first. This process continues in each following

cavity up to the fifth cavity in this design.

In the last (fifth) cavity, the RF energy is extracted from the beam, allowed to

travel through the uptaper section and then converted from the TE0 2 mode to a more

versatile Gaussian-like mode, such as the HE,, mode using a mode converter. The

mode conversion process happens in three steps. The Gaussian-like modes propagate

through the corrugated transmission lines and windows with very low loss and low

mode conversion compared to the TEr,, schemes [31].

The extraction cavity and uptaper must be very carefully designed to prevent

mode conversion from the design mode to unwanted modes. Usually, a nonlinear

uptaper is used to achieve this. Furthermore, this nonlinear taper must not allow RF

oscillations to occur from the spent electron beam.

Finally, the spent electron beam will be collected in the collector region, where

the beam dissipates on a water-cooled wall. The RF will reach the mode converter

and then propagate through an oversized, low-loss corrugated waveguide to the ap-

plication.

2.2.1 The RF Source

The low-power RF source must be able to supply approximately 50 mW CW with

a bandwidth of greater than 1 GHz at a center frequency of 140 GHz. The source

should also be capable of generating short pulses and be very phase stable. Possible

systems include an IMPATT diode injection locked by a GUNN diode in a 4-phase

pulse-forming network.
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2.2.2 Superconducting Magnet

The high precision superconducting magnet for this experiment was requisitioned

from Magnex Scientific, LLC. The maximum field strength is 6.2 T with a ±0.5%

uniform length of 28 cm. The magnet has a 5-inch horizontal, room-temperature

bore with a, flange at one end for mounting the external, copper gun coil. A unique

feature of this magnet is that it is actively shielded such that the magnetic field falls

off as Bz ~ i/z- in the vicinity of the cathode. Fig. 2-3 shows the predicted magnetic

field profile along with the fall-off exponent of the field strength.

2.2.3 Power Supply

The power supply must be capable of supplying at least 15 kV at 0.15 A continuously

and should be capable of millisecond-scale pulses. It may be necessary to have a

power supply capable of microsecond-scale pulses. Furthermore, the unit should be

capable of interfacing with a computer to facilitate automation and data acquisition.

2.3 Main Components

In the following chapters, the electron gun, cavity circuit and mode converter will be

discussed in detail. These are the main components that require careful design in this

project.
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The predicted magnetic field profile shown at the rated maximum field
6.2 T. The ±0.5% uniform field length is 28 cm and the field falls off as
~1/z4 in the vicinity of the cathode, which is located at z = -55 cm.
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Chapter 3

Theory

In the first section of this chapter, first-order design equations are presented for elec-

tron gun design. The first-order design is an essential part of optimizing an electron

gun. Next, the electron cyclotron interaction is explained and the gyroklystron theory

is presented in its linear and non-linear forms. Lastly, the topic of mode conversion

is discussed.

3.1 Magnetron Injection Gun

The Magnetron Injection Gun (MIG) is responsible for generating the high quality

electron beam necessary for successful operation of the gyroklystron. Figure 3-1 shows

a cross sectional slice of the electron beam and the typical electron orbit. Since the

electrons do not cross the straight, axial magnetic field lines, 00 and r. are essentially

fixed for a given electron in a constant magnetic field. This means the current density

is approximately constant throughout the length of homogeneity in the magnetic field.

The Larmor radius along with other parameters used in this section are defined below

in Sec. 3.1.2.

The characteristics of the electron beam are determined largely by the operation

voltage, V, which controls the acceleration, and therefore the velocity, of the electrons

as they are thermionically emitted from the cathode. The relativistic constant -,0
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Figure 3-1: Diagram of beam cross-section showing the guiding center and Larmor

radii.

relates V to the velocity components of the electron, vi and vIl as

Vo(kV)
511

where m, is the electron mass and c is the speed of light. For a typical design voltage

of around 60 kV, -yo ~ 1.12. The values for v1 and vIl are obtained by using the

definition of the pitch factor: o = vi/vll. The magnetic field controls the frequency

at which the electrons orbit the magnetic field lines through the relativistic electron-

cyclotron equation:

=eB _- V(3.2)
Yome TL

where e is the charge of an electron and rL is the Larmor radius at which the electron

orbits around the magnetic field.

MIG designs are typically either diodes or triodes. In the triode configuration,

there are two anodes (Fig. 3-2). The first anode is responsible for accelerating the
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Figure 3-2: Diagram of the typical triode MIG showing the beam and two anodes.

electrons up to the desired relativistic level, while the second anode allows the user to

tune parameters such as the pitch factor, a. In a diode configuration, the potentials on

both anodes are the same and they are fabricated as one unit. The advantages of the

diode configuration are that the power supply is much simpler and that there are fewer

ceramic insulation rings, which can be a source of electrical breakdown problems and

also drive up the cost and complexity. With a diode there also are fewer parameters

to optimize in the experiment. In the case where tuning a is important, or where

the electron beam requirements are such that the diode design does not meet the

specifications well, then a triode structure must be used.

In MIG design, there are five primary parameters constrained by the require-

ments of the system and four free variables that must be optimized for any given set

of primary parameters [32]. These parameters are listed in Tab. 3.1. Additional con-

siderations beyond these nine key gun design parameters are the mode of operation

in the tube, harmonic number, and magnetic field requirements or constraints.
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Table 3.1: Key MIG design parameters

Parameter Symbol Design value
Beam power P = V x J" 2.3 kW

Electron energy YO 1.029
Cyclotron frequency we 2-F x 140 x 10 9 rad/s

Guiding center radius rgo 0.64 mm
Pitch factor a ='v±/vil 1.5

Cathode Radius rc 4.02 mm
Cathode Current Density Je 2 A/cm 2

Cathode Slope Angle #c 500
Cathode-Anode Spacing Factor DF 3

While computer codes are very important in optimizing the electron gun design,

it is important to start with a, good first-order design. Typically, the most important

parameter is the cathode radius, r,. For some choices of variables, such as low voltages

(corresponding to low -yo), no suitable r, exists due the presence of space charge.

Analysis for a first-order cavity design begins with the assumptions of cylindrically

symmetric DC fields in the cavity, E(r,z) and B(r,z), as well as an assumption of

conservation of momentum. To lowest order, B(r,z) can be assumed to be constant

over the thickness of the electron beam, and thus becomes simply B(z), where the

boldface indicates a vector quantity.

The following first order analysis for the MIG is presented in Baird, et al [32].

The fundamentals of MIG design are cast in a way that simplifies the design down to

the four free variables that were listed in Tab. 3.1. The definitions for the parameters

used in this section are defined below in Sec. 3.1.2.

Figure 3-3 shows the first order approximation of the electron gun as two con-

centric cones. The DC electric fields in this configuration are approximated by the

equation for potential in a cylinder using a substitution to obtain the cones:

E (r) = " V (3.3)
I n( r' /r')

where r' co) and r' =r + d.

The spacing factor, DF, is normally chosen to have a minimum limit of 2, where
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the beam clears the anode wall by one Larmor diameter. DF satisfies the following

equation as a function of guiding center radius rg, and Larmor radius, rL,

DF = d o _L Cos c (3.4)
TLrgo

Larger values of DF give more clearance and also require higher second anode voltage.

At the point where the first and second anode voltages are the same, the second anode

becomes unnecessary.

The magnetic compression ratio, Fm, can be written,

Bo
F- = = 2RC (3.5)

The normalized slant length, L,, and the normalized cathode radius, R,, are

related by,
L,

Re
10 1

27r 2Je R2
(3.6)

The ratio of guiding center spread to guiding center is given by,

SR9  sin Oc

R9 K~2±+1

I0 1

27rr%2Jc R2
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The cathode to anode spacing variables, Dac and DF are related to the cathode

angle,

Dac _ DFK 38(3.8)
Re cos Oc

The normalized potential is given by,

ln(1 + DFr) 4 -y 2 - CV 1 + 23.
(Da = F + -_ 1 (3.9)

" ln(1 + 2r,) K2 R2 COS2 Oc a2 + I I + 2K

The electric field should never exceed approximately 100 kV/cm to prevent arcing,

although the actual design may need to be much below this limit. The cathode nose

is typically a point of high stress. One way to alleviate high electric field gradients

is to increase the cathode radius, r,. The possibility of arcing places a, lower limit on

rc-
Ec _ moc2/e Da cos #c _1E, -Tnoc2 / 4)aCOS C 1(3.10)

Emax EmarrLo in(1 + DFK) Rc

The ratio of beam current density to Langmuir limiting current density, Jc/JL,

must be kept below 15-20% because adiabatic MIG design assumes negligible effects

of space charge. As rc is increased, this ratio quickly increases, and this equation sets

a hard upper bound on the size of r, since it scales as approximately ri:

_c 27rri 2Jc(1 + DFK)C2 R2-=- - - (3.11a)
JL 4.0 X 0-6gC2/e3/2 COS2 Oc <3/2AL 14.66 x 10-6(mrno)/co2 b (Da 3.1a

1 _ 24 + 5 1
C1  exp(-C 2/2) [C2 + -0C2 + 300 + C 9900 (3.11b)

C 2  ln(1 + DFK) (3.11c)

where Eq. 3.11c is accurate to three significant figures up to C 2  3.0. If one finds the

lower bound on rc from (3.10) is greater than the upper bound from (3.11), then that

MIG design might not be possible unless beam voltage is increased or ao is lowered.

The perpendicular velocity, can be approximated as follows for small cylindricity

parameter, K:

F3/2 Ec cos (1
UvLo ~ o, (3.12)
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where the following relation also holds:

A- 2 aV (3.13)
VII V1

The assumption of adiabatic flow, meaning that the perpendicular energy of the

electrons is proportional to B(z), can be violated if the variations in the static electric

or magnetic fields occur on a scale smaller than the gyro-orbit of the electron:

d {BE}
-{B, E} < ' (3.14a)

dz ZL

d2 {B E}

dz2 {B, E} < , (3.14b)
'ZL

where ZL is the axial length travelled by the electron during one cyclotron orbit. In

the vicinity of the cathode, care must be taken to form shapes that promote adiabatic

flow. An elongated cathode nose is occasionally used to produce quick variations in

E-field, but this can lead to large non-adiabatic effects.

3.1.1 Other Sources of Velocity Spread

Besides the velocity spread due to geometric optics, velocity spreads also occur due

to thermal non-uniformity and roughness of the cathode surface. Estimates of these

values are given by Tsimring [33]:

A V_ KTc Fm 1/2 1 (3.15)

VI T [n 0 y, I v1 0

A vi 0 4  2eEcR Fm1 /
2 1 (3.16)

V" ) R m0  70 V 0

where K is Boltzmann's constant, T, is the cathode temperature in Kelvin, and R

is the radius of a small hemispherical bump characteristic of the cathode roughness.

The spreads are estimates of the standard deviations of the velocities such that the

average spread width would be given by ±(Avi/vi).
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These spreads due to optical, thermal and roughness effects combine orthogonally,

(Aj UI j0 +0 (A[(A Ui)
2  2 (AV)2- 1/2

\E- / total \ L / 0 \0- / T \ -L /_ (317

Generally, one can expect the total spread to be at least double that of the optical

spread when the roughness and thermal spreads are included. The value of total

perpendicular spread assumed for this design was 4% (parallel spread of 9%).
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3.1.2 Variable Definitions for MIG design section

Vo = Beam voltage, volts

I0 = Beam current, amps

0 =1 + eVo/moc2  1 + V(kV)/511 = relativistic mass factor

VO = c(1 - 1/7 )1/2 - electron velocity, M/s

vZO = vO/(a + 1)1/2 - longitudinal velocity, m/s

ao = V-Lolvzo = pitch factor

L,, = 2,rfcO = eBo/mo'o =relativistic cyclotron frequency, rad/s

rqo = guiding center radius at RF interaction region, in

rLo vi/o'c = Larmor radius at RF interaction region, m

R 9  = rgo/rLo = normalized mean guiding center radius

6Rg = 6rgo/TrLo = normalized full width guiding center spread

= (R 2 _ 1)-1/2 = cylindricity parameter

Fm = Bo/Bze = magnetic field compression ratio

R = rc/rLo = normalized mean cathode radius

Oc = Cathode tilt angle (always positive)

LS = 1l/rLo = normalized slant length of cathode

DF = Cathode to Anode spacing factor (select DF > 2)

Dac = d/rLo = normalized slant spacing between cathode and anode

(D a = eVa/moC2 = normalized first anode voltage

Ec = Cathode electric field

Emax ~ V/m as a conservative value

Je = Temperature limited cathode current density, A/rM2

JL = Langmuir space charge limited current density, A/n 2
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3.1.3 Computer Codes for MIG design

If Jc/JL in Equation (3.11) seems questionably high, the self consistent MIG design

codes will indicate whether there is a space charge problem or not. These codes

typically do not, however, estimate the spread due to thermal non-uniformity or

surface roughness, which must be considered separately.

Currently, there are several common MIG design codes available, such as several

versions of EGUN [34], OMNITRACK (2D and 3D) [35][36], and MICHELLE [37].

EGUN was used extensively in the design of this MIG. These computer codes self-

consistently compute the trajectories of the electrons as they propagate from the

cathode down through the cavity region. In the problem of the moving charge, it

is important to consider the self-consistent effects. Since the electron is a charge, it

experiences forces from the electrostatic fields in its path and simultaneously alters

them. Since it is also a moving charge, it generates a current of its own and therefore

a magnetic field, which affects the total magnetic field it experiences. 2-D codes

have been able to handle this just fine for over 20 years, but the newer 3-D codes

require a lot of computer power to get a fine enough mesh and time resolution for

the simulations. 3-D gun codes are gaining popularity in the multi-beam klystron

(MKB) community, where it is very important to consider everything in the full three

dimensions. 2-D gun codes are usually sufficient for present day gyro-devices, but

3-D codes can be used where it is desirable to simulate the effects of, for example,

non-uniform cathode emission.

3.2 The Cyclotron Resonance Maser interaction

Once the electron beam has been generated, it is passed through a series of cavities

where it interacts with RF fields in the cavities. In this section, we will consider

the RF fields in the cavities and the phase space of the electrons (since we already

determined that their position averaged over orbit is essentially fixed). Let us again
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Figure 3-4: Evolution of electrons in phase space: (a) Initial uniform distribution
of phases; (b) acceleration of electrons; (c-d) formation of the bunch and transfer of
electron momentum; (e-f) spent beam. (Courtesy of J. Anderson)
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consider the equation for electron-cyclotron frequency:

eB V1
wc-

')Tome 7rL

Note that w, is inversely proportional to the relativistic mass, yome. This is

important, because the relativistic mass of the electron changes if the electron gains

or loses energy. First, let us consider a beam travelling down a straight cylinder that

supports the TEOi mode. Fig. 3-4 illustrates snapshots of the distribution of electron

phases in Larmor space at 90 ps intervals as a beamlet interacts with RF energy. This

figure shows essentially one beamlet with a distribution of electron positions around

the central magnetic field line. Since initially there is no interaction and the electrons

are uniformly distributed, each electron is equally spaced around a circle of radius

equal to the Larmor radius, as in Fig. 3-4a. In (b), the RF electric field E begins

to grow and exerts a force F = -eE on the electrons, accelerating and decelerating

electrons at the rate F - v, which depends on the angle between F and v. Since

this is a relativistic beam, adding energy to the electron causes its mass to increase

(or equivalently, the magnetic field it sees to decrease). For electrons with a larger

mass, the Larmor radius now increases. For electrons that give up energy as RF,

their relativistic mass decreases, so their Larmor radius decreases. This is especially

evident in plot (c) where there is a high concentration of electrons (a "bunch") with

a decreased radius, indicating that the electrons are losing a significant amount of

energy. This is the goal of the bunching process and the main mechanism behind

the CRM interaction. In (d), there is clearly a new, smaller Larmor radius almost

concentric with the original Larmor radius. In (d) and (e), this smaller radius indicates

a spent electron beam. In (f), the radii appear slightly enlarged, indicating that the

electrons are again taking energy from the RF fields and the interaction is reversing.

Another important part of this CRM interaction is that the electron cyclotron

frequency w, depends on the perpendicular velocity. As the RF fields alter the tra-

jectories of the electrons, the cyclotron frequency changes. As the electrons lose rela-

tivistic energy, their electron cyclotron frequency increases. When velocity spread is
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added to the picture, there is a spread of cyclotron frequencies that can excite mul-

tiple stagger tuned cavities in a gyroklystron and actually enhance the power output

over a narrow range of frequencies.

Analysis of gyro-devices is usually done using a set of normalized variables. The

normalized field amplitude in the cavity is defined to be p, the normalized length of

the cavity is F, and A is the detuning parameter defined by

7r'LO L
P =:/3 - (3.18a)

011o A

E0o"- 4 n n-l

F B c 2-n!) J ± (kIrb) (3.18b)

A = 2 (1 nco) (3.18c)

where 311 v=1 /c and OL = vi/c are the normalized velocity components, L is the

length of the cavity, EO is the field amplitude in the cavity defined in Eq. 3.24, n

is the harmonic index (which will be assumed to be unity from here on), c is the

cyclotron frequency defined in Eq. 3.2, rb is the radius of the electron beam and the

subscript "0" denotes quantities at the entrance of the interaction region. The plus

and minus signs on the Bessel function indicate asymmetric modes (m # 0) rotating

in the same or opposite direction as the spiraling electrons, respectively.

Now, with a qualitative understanding of the bunching process, we can look at the

governing equations of motion for the electrons. Under the assumption of a single-

mode fundamental interaction and an approximation of weakly relativistic electrons

(02 < 2), the so-called Yulpatov equations [38] reduce to the pendulum equations,

dp
dp - _Ff (() sin 0 (3.19a)

dO = -(A + p 2 
- 1) - Ff (()p- 1 cos 0 (3.19b)

d(
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where p, 0 and ( are given by,

p = (3.20a)

0 - to+ - (3.20b)
2

Z (3.20c)
3 o A

where 0 is the fast time scale phase angle of the electron, to is the time when the

electrons enter the interaction region, and ' was defined in Eq. 3.1. p((i,) = 1 is

the normalized momentum (assuming no velocity spread) and 0((i,) = 0, where 00

is uniformly distributed over (0, 2-r). In the final cavity, (j= - /5p/2 and (ou=

p/t2 are typically chosen as the normalized input and output distances.

The f(z) terms in Eqs. 3.19 and 3.22 are typically chosen to be a Gaussian field

profile or a sinusoidal field profile. The Gaussian profile is used in the extraction

cavity (last cavity) where the field leaks out toward the tube output. The sinusoidal

profile goes to zero at = {0, ji} and so is used for closed cavities. The forms are as

follows,

f (( C=e (3.21a)

f sin ( (3.21b)

The electric fields in the cavity structure typically fall into two categories: Az-

imuthally symmetric TEop modes and whispering gallery modes of the form TEmp

where m > p [2]. The TEop modes, where p is a low integer, like 1 or 2, are typi-

cally used in amplifier circuits because of low ohmic loss and a low presence of mode

competition in the frequency spectrum. Over a fairly wide bandwidth, one mode can

provide the needed power without losing power to different modes. Other modes, such

as TE2,3 or TE 21 1 3 , for example, fall into the intermediate volume mode category.

These modes fill the cavity, unlike the whispering gallery class, and may have even

lower ohmic heating losses due to their more even distribution of fields. However, they

are in a, dense part of the mode spectrum, so techniques such as the use of coaxial
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cavities are required to suppress mode competition.

The equations for electromagnetic fields in the gyroklystron cavity were derived

in detail by Fliflet et al [39]. The slow time scale equation for an annular electron

beam interacting with the circular TEmp mode is given by

Ei(r,<,z, t) = Re Eo [J,,(kir) + jmJm(kI-r) r1 f (z)e(wt-m*) (3.22)

where Jm is the Bessel function, f(z) is the normalized axial RF field profile, and k1

is the transverse wavenumber given by

k_ Vmp /k 2 - k k (3.23)
Ro

where vmp is the pth root of the Bessel function J,,(vmp) = 0 and Ro is the cavity

radius. The dO component of the EL field goes to zero in Eq. 3.22 at the cavity wall,

and in the case of a symmetric waveguide mode of the form TEop, JO(kir) = Ji(kir).

For a cylindrical cavity supporting the TEop azimuthally symmetric cylindrical

waveguide mode, the field amplitude EO is calculated by integrating over the fields to

obtain the energy. This equation, along with the equation for ohmic Q, allows us to

find EO for a sinusoidal profile,

Eo = Qtot ()Pn 2 (3.24)
S g0 7rL rcIJo(voP)(

where Pi, is the input power to the first cavity, and Qtot is defined as,

1 1 1= + 1(3.25)
Qtot Qohmic Qdiffractive

3.2.1 Linear Dispersion Relation

A linear dispersion relation for the RF/beam system can be derived if we ignore

coupling between the beam and the RF waveguide modes. The RF modes in a
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cylindrical waveguide produce the usual dispersion relation:

S c2k2  c2 (kI + k 2) (3.26a)

k, = 1",p (3.26b)
rc

w2  v2

k = k - kI = - (3.26c)

For gyro-devices, kl is typically much smaller than k1 , so the waveguide resonant

frequency is close to the cutoff frequency,

Wres C/7P (3.27)
rc

The efficiency of the beam and RF interaction is strongest when the cyclotron

frequency of the Doppler-shifted electron gyration is close to the resonant frequency

of the waveguide. We can write this expression as the beam resonance condition,

w nw + kIvIl (3.28)

where n is again the harmonic number. This relation is a straight line, as opposed

to the waveguide dispersion relation, Eq. 3.26a, which has even symmetry and is

quadratic (and furthermore depends on the mode). At the point where both of these

lines intersect, an interaction takes place efficiently. Fig. 3-5 shows these relations

plotted together.

3.2.2 Oscillation Start Current

If the electron-cyclotron frequency is close enough to the resonant frequency of the

cavity, the presence of the electron beam can cause self-oscillations if the current

is high enough. This is a serious problem for amplifiers, because the presence of

oscillations not only causes the desired output spectrum to be polluted, but it also

robs power from the frequency of interest, and can easily eliminate it completely.

Therefore, it is important to avoid the onset of oscillations by adjusting the cavity
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Figure 3-5: Uncoupled dispersion diagram for waveguide modes and resonance line.

dimensions, cavity Q's and the beam current. Here, the analysis adapted from Tran

et al [18] is used.

The normalized current is typically used in gyro-device literature to describe the

beam current, which takes into account the effects of the cavity Q, relativistic compo-

nents, cavity length and the mode being supported. The normalized current is given

(for the fundamental) by,

(v IAQtot i I304 A (3.29)
7r5/2 c3 meo/e -yo L mp

where 14 is the actual beam current in amps. The constant (v"2/7r / 2 ) in front of

Eq. 3.29 is for a Gaussian profile. It becomes simply (7r- 2) for a sinusoidal profile.

The term Cmp is the coupling coefficient for mode mp given by,

0 mp J~1(kI'rb)C ( p = m2 )(v) (3.30)
(v,- mn2) J'2(m
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The normalized oscillation start current is defined by,

4e2

/
2 = (3.31 a)

X pA 7 L - C (3.31b)
4 2/3 ,10 A \( )mpJ

where p and A are defined in Eqs. 3.18a and 3.18c, respectively, and the Wmp term is

the cutoff frequency in the waveguide for mode nip given by,

2 ,2)1/2

cmp = c + ) (3.32)

The procedure for calculating the actual start current is to set the normalized beam

current j equal to the normalized oscillation start current Le and then solve for the

actual current, IA. We then get the equation,

'A = cmero #3{7o L 't (3.33)
e Qp(tot) A Cmp

where CO is (7r 5/2 /V2') for a Gaussian profile or (wr2) for a sinusoidal profile. Qmp(tot)

is the total Q factor for the mode mp in the waveguide defined by Eq. 3.25.

The diffractive Q factor is assumed large for a closed cavity where the only losses

that exist are ohmic losses. For an open cavity, the diffractive Q is usually found

from a cavity simulation code, preferably one that self-consistently includes the effect

of the electron beam. The ohmic Q can be estimated by,

Qmp(ohmic) 'y 1 - 2 (3.34a)

6 = 2 (3.34b)

where 5 is the loss tangent and the conductivity is a-~ 5.7 x 107 S/m for pure

copper. In simulation, it is the conductivity value that is lowered to achieve a lower

ohmic Q and therefore wider resonant cavity bandwidth. However, changing the

conductivity of copper is usually not possible in the experiment, so lossy dielectric
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inserts are typically placed in the cavity to lower the ohmic Q factor. The effects of

the lossy dielectrics cannot be included in the present code, so they must separately

be evaluated in an electromagnetic simulation program such as HFSS [401. Lossy

ceramic loads are not very desirable, so a more favorable method is lowering the total

Q by cutting slots in the resonator that allow some of the fields to leak out and be

absorbed outside the cavity. This latter method may also allow the cavities to be

more accurately tuned in frequency and total Q.

For this experiment, only a lower-order mode is needed, so the start current profile

is rather simple. Fig. 3-6 shows a sample oscillation start current plot for a cavity

designed for the TE0 2 mode. Note that even though the TE0 2 mode start current

crosses below the operating current of 65 mA, the magnetic field operating point

(Bo) is such that oscillations will not occur. However, if for some reason the BO field

must be lowered close to the 5 T point, oscillations may begin. The oscillation start

current may be increased by lowering the Q and/or shortening the cavity length, L.

The TEO and TE 22 modes cannot be excited because the operating magnetic field is

too high. For this configuration, other modes, such as TE1j had starting currents of

over 2 amps.

3.2.3 Linear Theory

Using perturbation theory by expanding the momentum p and phase 0 in the limit

of small F parameter, we can linearize the pendulum equations presented in Eq. 3.19

for a simple two-cavity gyroklystron as follows,

P = (0) + PM + .(3.35a)

0 0(0) + 00) + ... (3.35b)
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Figure 3-6: Plot of the oscillation start current versus B-field strength for various
modes in a cavity designed to support the TE 2 mode.

the equations become,

= 0 
(3.36a)

d(o

= -(A + P()- 1), (3.36b)
d(

=pl -Ff (() sin 0(0), (3.36c)
d(

d_(__ Ff(() cos 0(0)
=_ -2p_)p_ - 0 ... (3.36d)

Solving these equations, integrating, approximating the result and making the as-

sumptions that Ipx - II < 1 and that there is no field in the drift spaces (F = 0),

the analysis presented in [18] generalizes to an N-cavity gyroklystron as follows,

Fj 2= J je-"qji(1 + IJ)1 /2, (3.37a)

qj=i Ip 1^dje-- x(1 + )/2 j = 2,... , N - 1 (3.37b)
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for beam current I, 3th normalized cavity length pj and parameter d,j, detuning

parameter Aj, parameter x defined by Eq. 3.31b and frequency pulling parameter

63 = 2(w - wo)Qo/w, where Qo and wo characterize the unloaded cavity and W is the

working frequency in the loaded cavity. The definition for NJj contains the normalized

jth cavity length pt and the normalized 'th drift space length pdj,

3
aj = -2 P + pdj, (3.38a)

qj = FF jIPj [dj 2xi (3.38b)

Using this method, the q parameter is calculated in the first cavity and sequentially

calculated for each following cavity until the extraction cavity is reached, where the

linear theory usually begins to fail due to the nonlinear saturation.

3.2.4 Nonlinear Theory

When the phase difference between the electrons and RF fields is the appropriate

value, a strong interaction takes place between them as described by the nonlinear

pendulum equations, shown modified as,

dp = i(A - 1+ Jp 2 )p + iFf(4), (3.39a)
d(

P(( = C) e m) (3.39b)

with zero velocity spread initial conditions,

pin = 1, (3.40a)

Oin = 0, + q sin Oc - V;, (3.40b)

where 0, is uniformly distributed over (0, 27), and / is the RF phase in the cavity.

The perpendicular efficiency is defined by,

dO
rij(F, P, A, q, r) 1-- Ip(( = (t) 1 2C (3.41)

2w
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Figure 3-7: Efficiency contours of an optimized gyroklystron. (a) Optimized perpen-

dicular efficiency q-L. (b) Bunching parameter q. (c) Detuning parameter A. (d)
Relative phase 4.

Applying an optimization for q_ over q, A and 0, the efficiency contours can be

plotted versus p and F, as shown in Fig. 3-7. The maximum perpendicular efficiency

of 90.8% cannot be reached in a gyroklystron amplifier because it is in the oscillation

regime. Furthermore, the optimal q value of 3.17 is difficult to reach for a low beam

power gyroklystron, such as the one that will be presented here.

3.2.5 Computer Codes

Using the linear theory above, a code was written to get a basic understanding of

the design fundamentals. The linear theory, however, turned out to be inadequate
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Figure 3-8: A sample output from a non-linear, non-stationary macroparticle code
showing the temporal evolution of the fields in the cavity (Courtesy of J. R. Sirigiri).

for design, as several major assumptions are made, including zero field (F = 0) in

the drift spaces, single mode and steady-state operation, validity of fluid theory and

that self-consistent effects are negligible. Velocity spread was also not included. More

detail on this linear code is presented in the next chapter.

Next a nonlinear, non-stationary code was written to solve the temporal evolution

of the nonlinear pendulum equations for arbitrary shapes of longitudinal field profile

in the cavity. This code included the effects of velocity spread by simulating a number

of macroparticles with different initial momentum conditions separated into bins. A

sample result of the temporal field evolution is shown in Fig. 3-8. This code does not

calculate self-consistent effects and also assumes zero field in the drift section.

Several widely used simulation codes exist for modelling gyro-devices in various

forms. MAGY is a self-consistent, time dependent code capable of modelling nonlinear

and non-stationary, multi-frequency processes in slow and fast wave devices [41]. The

code has been benchmarked against gyrotron and gyroklystron experiments and has

shown excellent agreement. We have used MAGY for the design and optimization of

our gyroklystron.

55

5 QC.1 -
CAV-2 -
CAV-3 ---

I



The sister code to MAGY is MAGYKL, which is specifically designed to model

klystron and gyroklystron devices more quickly than MAGY while retaining simula-

tion accuracy. MAGYKL is not self-consistent, and thus may not be a good choice

for a TWT; but it is quite accurate for devices that utilize closed cavities.

Other codes for modelling gyro-devices include the two-dimensional MAGIC [42]

and OOPIC [43], and the three-dimensional MAFIA [44] and ARGUS [45], which are

all Finite-Difference Time-Domain (FDTD) particle-in-cell (PIC) codes. While we

have access to MAGIC and OOPIC, we felt that the use of MAGY, a well established

code, was sufficient for our design. The costly MAFIA and ARGUS codes were

likewise not deemed necessary.

3.3 Mode Converter

Mode conversion is a very important matter in this project. In order to transmit the

power from the gyro-amplifier to the existing 140 GHz DNP experiment, a low-loss,

overmoded waveguide must be used. Such waveguides, however, support dozens of

modes by their very nature of being overmoded. Hence having small perturbations in

the waveguide wall, or bends of the waveguide, or different materials in the waveguide

can cause mode conversion.

On this existing 140 GHz DNP experiment currently in place, there are three mode

conversion steps to get to the desired HE,, mode. Two of the three mode conversion

steps already exist and do not need to be designed here. Fig. 3-9 shows this three-

step process: A circumferentially perturbed pipe converts TE0 2 to TEO; A "snake"

converter transforms TEO to TE11 , and a scalar horn converts TE11 to HE,, before

being transmitted through an overmoded corrugated waveguide. The latter two steps

are already part of the experiment. The theoretical maximum efficiency for this whole

process is 96.5%.
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Figure 3-9: The mode conversion process: A circumferentially perturbed pipe converts
TE0 2 to TEo,; A "snake" converter transforms TEO, to TE1 1 , and a scalar horn
followed by overmoded corrugated waveguide converts TEn to HE,,.

3.3.1 Theory

The first step of the mode conversion process is TE0 2 to TEO, and can be carried out

by use of a mode converter with a periodically perturbed nonuniform waveguide wall

of radius a(z).

The following equation for the waveguide radius can be used to convert a TE0 2

mode into a TEO, mode, provided the converter radius is periodic with the beat

wavelength AB(2, 1) of the two modes [46],

a(z)=ao[ -6o (27rz
a~) a 1- 6cos A

(3.42)

where p is the mode index, ao is the unperturbed cavity radius, 6o is the magnitude

of the perturbations and
2ir

Akz =kz - kz2 -
AB

(3.43)
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where the k,'s are propagation constants for the two modes defined by,

kzi =l (3.44a)

k,2 =0 (3.44b)

where J (vop) = 0 gives voi = 3.8317 and vo2  7.0156 for the TEoi and TE0 2 modes

respectively.

The size of the perturbations is related to N by the equation,

oN = 1k 2 = Constant (3.45)
vo1 v02 d

where d = 27/Akz is the beat length and z = Nd is the total length of the converter.

The length of the mode converter depends on the number N of beat period lengths

used to obtain the desired conversion efficiency. Long converters are known for in-

herently narrow bandwidth, but short converters may suffer from poor conversion

efficiency for certain mode conversion cases. In the case of TE0 2 to TEO conver-

sion, 99% conversion efficiency has been obtained with only two geometrical periods

(N = 2) [47].

The bandwidth of a mode converter can be evaluated by introducing a detuning

parameter A (w) to the definition of Akz in Eq. 3.43 as follows,

A (w) = ki(w) - k, 2 (w) - Akzo (3.46)

where AkO is the difference of propagation constants at the design frequency and k.,

and kz 2 are allowed to change simultaneously with frequency according to Eq. 3.44.

58



The efficiency as a function of detuning can then be derived,

ef ficiency 2 Si z (3.47a)

1 V01V26 (3.47b)
2 ao k 1k 2

3- a 2 + (3.47c)
4

Results of this theory along with simulation results are presented in Chap. 6.

A snake converter, such as the existing one in use in the DNP experiment, can be

designed using a non-axisymmetric mode converter consisting of sections of constant

radius of curvature periodically perturbed in one plane. In this case, we are trying to

convert TEO to TE11 . The equation for the waveguide radius coordinate is given by

Thumm [47],

a(z, 13) ao[1 + [61, cos (Akz,(01, 11) - z) - 612 sin (Ak-,7(01, 12) - z)

- 621 sin ( Akz,(11, 21) - z)] coso] (3.48)

where 73 {0, 7r} is the azimuthal angle in the perturbed plane and the 6's are

perturbation coefficients.

3.3.2 Computer codes

CASCADE is a commonly used, powerful mode analysis software and can be used

to optimize uptaper sections for minimal mode conversion [48]. For this project,

CASCADE was used to predict the behavior of the nonlinear uptaper and of the

TE0 2 to TEO mode converter.

3.4 Discussion

In this chapter, an overview of the gyroklystron operation theory was given that

focused on the electron gun (MIG), cavity structure and mode converter.
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In the first section, the details of the Magnetron Injection Gun operation were

discussed including different types of MIGs and their tradeoffs. Following that, the

details of a first-order MIG design were presented. The topic of velocity spread was

covered including its optical, thermal and roughness constituents. Several computer

codes were introduced as an aid to MIG design.

Next, the CRM interaction was discussed in detail, including a qualitative inter-

pretation of the bunching process. The common normalized parameter formalism was

introduced and the equations of motion were presented. The electric field components

and profiles were discussed along with the Q parameters. A linear dispersion relation

was constructed to illustrate the interaction of the waveguide modes with the electron

beam. The important self-oscillation start current was discussed and several methods

of how to avoid oscillations were presented. A linear theory for the gyroklystron was

presented followed by a nonlinear theory that led to efficiency optimization. Several

computer codes were discussed including two unpublished independent codes.

Finally, the topic of mode conversion theory was introduced and the equations

resulting from a simple mode converter theory were presented.
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Chapter 4

The Gyroklystron Cavity Circuit

In this chapter, the design of a gyroklystron amplifier cavity circuit is described

in detail. First, an overview of the gyroklystron cavity is presented followed by the

criterion for mode choice, the design of the cavity and its characteristics, a preliminary

design of the input coupler, and the conclusions.

4.1 Gyroklystron Amplifier Design

The choice of a gyroklystron design was motivated in part by a lack of other successful

amplifier tubes at low beam voltage and current. The gyroklystron promised high

gain per cavity and stability against oscillations that were not guaranteed in other

devices such as the gyro-TWT. The main challenges in the gyroklystron were getting

a high gain-bandwidth product in a device of very low beam current and voltage.

The basic concept of the gyroklystron is that a small RF signal is coupled into

the first cavity. In this design, we have assumed that around 25 milliwatts (mW)

will be coupled into the first cavity from an external source. These fields cause the

electron bunching process to begin in the first cavity, as outlined in Chap. 3. In

each of the following cavities, the stronger bunching strengthens the electric fields

until the last cavity where the power is extracted out by diffraction. Fig. 4-1 shows

a 5-cavity structure with evolving electric fields. The cavities are separated by drift

spaces, which are ideally cutoff to the RF fields in the cavities so that no coupling
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Figure 4-1: Profile of a 5-cavity gyroklystron with a linear uptaper section (top),
Evolution of electric fields in the cavities (bottom).

62

I



occurs between cavities. In these drift spaces, the bunching continues to evolve in the

near-absence of electric fields. Between cavities 4 and 5, a small electric field leakage

can be seen in the drift space. The leakage is present because of evanescence and

because the drift spaces are not perfect conductors. The presence of this leakage,

along with several other factors, make the dynamics of the evolution too complicated

to predict analytically, so computer codes are required for accuracy.

The drift spaces require special attention to ensure that unexpected modes are not

excited. The ideal drift space should prevent RF modes from being sustained. Usually,

a lossy dielectric is used to line the tube, but this actually opens the possibility of

exciting hybrid modes, such as HE,,, HAl11 , HE1 2 , etc. [23], which contain a mixture

of both E, and H, components, since the propagation constant becomes complex

3 = k, - ikj. Other modes, such as TE 11 , TM11 and TE12 must also be considered.

One method to verifying the desired operation is to evaluate the Qs of these modes

against the beam current to ensure that oscillations will not occur [49].

The design sequence was as follows: An operating mode was chosen, the number

of cavities and their dimensions were chosen based on linear theory, and the cavity

circuit was modelled and optimized using the MAGY code. A description of these

stages follows.

4.2 Mode of operation

The choice of operating mode is driven by ohmic wall losses, mode competition and

feasibility of the electron gun cathode design. The coupling coefficient between the

electron beam and RF fields in the cavities is given by,

C 2± (klrb) (4.1)
C (Lm - m 2 )2 (vmp)

where the variables are the same as defined in Chap. 3. Since only azimuthally sym-

metric modes (m = 0) were considered, we only needed to choose between TEop

modes, where p = 1, 2, 3, . .. Tab. 4.1 lists the coupling coefficients for several az-
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Table 4.1: Coupling Coefficient Cmp for TEOp modes

Radial Maximum : Cold cav
m p 1 2 3 4 radius ('mm)
0 1 0.1422 1.31
0 2 0.0764 0.0270 2.40
0 3 0.0525 0.0186 0.0116 3.48
0 4 0.0400 0.0142 0.0088 0.0064 4.56
0 5 0.0323 0.0114 0.0071 0.0052 5.64

Rb(m'm) : 0.63 1.82 2.92 4.01

imuthally symmetric TEop modes, showing the quick decrease in coupling as the

radial mode index p is increased and as the electron beam is placed further from the

most central Bessel maximum. Thus the lowest order mode should be chosen with

the TEO mode being the most efficient in terms of beam to RF coupling. However,

for a given beam current, the lower order modes require a smaller beam for a, given

frequency and smaller cavities. The beam is focused by the magnetic compression

factor F, = BO/BC introduced in Chap. 3, which is typically on the order of 30. The

size of the electron gun cathode is limited by this magnetic compression factor, by

current density and by space charge, so the beam cannot be made arbitrarily small.

Furthermore, small cavities have much smaller surface areas, so ohmic heating can

become a problem in these cases. The electron beam radii Rb are shown in Tab. 4.1

along the bottom and the cold cavity radii for several low order TEop modes are shown

in the far right column. For example, if one chose the TE03 mode, where the beam is

typically placed at the second Bessel maximum, the electron beam radius would be

1.82 mm, the coupling coefficient would be around 0.019 and the cold cavity radius

would be 3.48 mm at fo = 140 GHz.

4.2.1 Electron Gun Cathode

The average cathode radius r, (defined in Chap. 3) is related to the beam radius

rb by the magnetic compression as r, = rv/Fl. If this average radius is too small,

the slant length of the cathode will have to increase to meet the current density
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requirement, driving the velocity spread up. Hence it is desirable to choose a higher

order Bessel maximum to alleviate this consequence. Using higher Bessel maxima,

however, results in lower coupling efficiency and may place the beam too close to the

wall.

4.2.2 Cavity Heating

Another consideration in choosing the mode of operation is the ohmic heating of the

cavity walls. In a relatively low power system such as this one, ohmic heating on the

cavity walls is fairly small. The reason for this is somewhat hidden: In simulations

we arbitrarily alter the Q value by essentially lowering the conductivity of the copper.

In reality, this artifice is abandoned because it is impractical to change the copper

conductivity; instead, the total Q is lowered by either introducing lossy ceramic inserts

into the cavity (lowering the ohmic Q), or by cutting leaky slots in the wall to lower

the diffractive Q. Since the ohmic Q is very high (low loss), the copper ohmic heating

is small. If the total Q is lowered by diffraction, the absorbers outside of the cavity

will have to handle the power dissipation. Fig. 4-2 shows the two methods for altering

cavity Q pictorially.

In a PBG structure, however, the wall heating can become more important, as

surface area of the rods is much smaller than the surface area of a pure cylinder. Due

to the complexity of the field distributions in a PBG structure, the heating must be

evaluated by observing the field intensities predicted by simulation. Fig. 4-3 shows a

possible confinement of the TE02 mode in a PBG structure. The TE0 4 mode was also

well confined, but the TE03 mode did not lay well in the triangular lattice structure.

4.2.3 Mode Conversion

In the most attractive mode conversion methods for us, higher order modes are likely

to be converted to the TEO, mode before being converted to the Gaussian-like HE,,.

It is rather easy to convert the TE02 mode to the TEO, so it is again advantageous
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(b) Cavity
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diffract out

Figure 4-2: Two methods for lowering the cavity total Q: (a) loading the cavities
with lossy ceramic inserts to lower the ohmic Q, (b) lowering diffractive Q by leaky

slots.

E FieldEY/nI

(Courtesy of J. R. Sirigiri)
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to choose a low order mode, like TE 2 . Higher order modes can be strongly cou-

pled to other unwanted modes, often requiring longer mode converters that restrict

bandwidth.

4.2.4 Mode Selection

The TE0 2 mode was chosen as the operating mode because it appeared to be a

reasonable compromise between the design parameters and their tradeoffs. The fairly

high coupling coefficient, lower ohmic losses, possible PBG mode confinement, feasible

cathode design and lower sensitivity to machining tolerances were some of the benefits

that the TE02 mode had over other modes.

4.3 Cavity Circuit

The cavity circuit design was done in stages. First, linear theory was used to get a

rough idea of the behavior of the system, then the circuit was optimized using the

MAGY simulation code. Tuning the uptaper section and output cavity required the

use of a cold cavity code to predict the resonant frequency and Q.

4.3.1 Number of Cavities

Using a simple code based on the linear theory equations from Sec. 3.2.3, Fig. 4-4

was produced, which shows around 40 dB of unsaturated, linear gain using 5 cavities

resulting in a normalized field amplitude of around F = 0.04, corresponding to an

output power of around 150 W for cavity lengths of 3.5AO and Qs of 1000 each with

a 15 kV, 65 mA beam at a = 1.5 and an input power of 15 mW. The drift spaces

were each 8.0AO long and the effects of velocity spread were not included. Based on

this model, a 5-cavity gyroklystron was chosen as the starting point. A gyroklystron

consisting of more than five cavities would be too difficult to construct and tune, so

five was kept as the maximum number of cavities.
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Figure 4-4: Output from an independent code based on linear theory showing target

unsaturated gain of around 40 dB obtained with 5 cavities and cavity field amplitude

F = 0.04.
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4.3.2 Initial Cavity Dimensions

The TE0 2 mode required a cavity radius of 2.4 mm and the linear theory predicted

reasonable results using cavity lengths of 3.5AO and drift section lengths of 8AO. The

linear code, however, assumes no fields in the drift section, so the radii of the drift

sections are inconsequential.

4.3.3 Optimizing Cavity Circuit

The cavity optimization took place in several steps. Several parameters were at first

assumed or roughly estimated and then later found more precisely. The initial design

was based on linear theory results, but was not very realistic in terms of some of the

parameters chosen.

A strategy had to be developed in order to perform this optimization. The outputs

from MAGY show the electric field profiles in the cavities and the power in the cavities.

Due to the delicate nature of the electron phases, in some cases, decreasing the electric

field in the first few cavities actually caused an increase in predicted output power,

and vice versa. Therefore, the strategy of maximizing the electric fields in the cavities

was taken. This procedure was performed from the first cavity to the last cavity, since

the electron beam travels in this manner.

To greatly ease the difficult and messy process of changing each parameter by

hand, which would have been a prohibitively tedious task for evaluating bandwidth,

MATLAB scripts were used to adjust the parameters of the input file, run MAGY, and

collect and display the results. This method allowed an overlaying of a series of the

important results due to parameter adjustments on one graph, making it much easier

to pick a more favorable configuration. At the press of a button, difficult calculations

requiring dozens of MAGY runs, such as evaluating bandwidth, could be performed

easily, although it could still take several hours to get the result. Furthermore, once

it was determined that MAGY's time-step parameter governing resolution could be

relaxed and the number of simulation steps could be greatly reduced without loss of

accuracy, it was possible to run MAGY at literally ten-times the previous speed. The
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peak rate at which MAGY had been run to optimize this cavity circuit is estimated

to be up to 5000 times per week! The total number of runs probably approached

50,000.

Once a stable design had been reached with very little or no stagger tuning, it

was found that bandwidth and gain could increase simultaneously by increasing the

cavity Q's. The cavities start to saturate from the center frequency outward, so the

outer band edges benefit from increased gain while the center stops growing due to

saturation. At some point, oversaturation sets in and the output power at the center

frequency begins to decrease with further increases in gain or input power. At this

point, we began stagger tuning the cavities to relieve the regions of oversaturation

and spread the gain out more evenly. At first, this concept didn't seem to work as

both power and bandwidth plummeted, but eventually it began to work as the right

magnetic field and tuning patterns were found. After each few tuning steps, checking

for oversaturation (varying input power) or scanning the magnetic field to make sure

it was the optimal value were required operations. This was a lengthy process that

required much trial and error. The cold-cavity resonant frequency of a cavity is

around 400 to 500 MHz lower than the "hot" frequency, so figuring out which cavity

was the cause of a feature of the frequency response was not always straightforward.

Furthermore, each cavity's tuning frequency, Q and length contributed to the whole

frequency response plot, so that none of the cavities had an independently variable

contribution.

A brief discussion of the early stages of the design process follows. Next, three

designs are shown below highlighting major milestones in the optimization of the

cavity circuit: First, a low beam power circuit (Io=65 mA) was designed that achieved

660 MHz bandwidth at 43 W, which seemed to be the limit for that beam current.

Increasing the beam current increases the gain significantly, which helps get more

power in the band edges, thereby increasing bandwidth and power. Thus the beam

current was increased to 100 mA to yield a 920 MHz, 51 W design. Finally, the

beam current was increased to 150 mA and stronger stagger tuning was used, which

resulted in a 130 W output with almost 1.1 GHz bandwidth, theoretically exceeding
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Table 4.2: Initial Design Parameters

Operation Voltage, Vo 15 kV Cavity Length 3A
Beam Current, 1o 0.065 A Drift length 8A

Pitch factor a v/ 11  1.5 Cavity radii 2.4 mm
Design Mode TE0 2  Drift space radii 1.2 mm

Input Power, Pi 5 mW Cavity ohmic Qs all 1000
Magnetic Field, Bo 5.1 T

Output Power 32 W Bandwidth 375 MHz
Saturated Gain 38 dB

the required specifications.

4.3.4 Initial Designs

The initial parameters chosen for the initial designs are shown in Tab. 4.2 and were

based on linear theory. Initially, MAGY predicted no gain in the gyroklystron based

on some of these parameters. The cavity radii were too large for the CRM interaction

to occur and it took several dozen MAGY runs before any gain was found. The reasons

for the difficulty in finding a suitable set of operating parameters are that MAGY

is self-consistent and makes no assumptions about the fields in the drift spaces and

that the presence of the electron beam causes a frequency upshift of 400 to 500 MHz

in the cavities not predicted by linear theory, hence the cavity sizes and drift space

lengths had to be sequentially modified from the simple linear theory.

Initially, the cavity lengths were held constant while the cavity radii were adjusted

for maximum electric fields. The drift lengths were thought to be rather long at

around 8AO each. The result (as shown in Tab. 4.2) was 38 dB of gain at an output

power of around 32 watts and bandwidth of 375 MHz. However, a major problem with

this design was that the drift space radii were not sufficiently large for the electron

beam, which should be a minimum of three Larmor radii away from the electron

beam guiding centers. Smaller drift space radii resulted in significantly higher gain,

according to MAGY. Furthermore, when the input power was increased, the electrons

became over-bunched, resulting in less output power as the input power increased.
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Figure 4-5: (a) Characteristic power saturation and over-saturation; (b) optimal sat-

urated electron bunching and (c) over-bunching due to an elongated structure.
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Fig. 4-5 illustrates the concept of the power saturation and over-saturation as

well as the electron bunching process at saturated bunching and at over-bunching.

In Fig. 4-5a, as the input power was increased, the result was a decreasing of the

output power at higher beam current (design parameters are in Tab. 4.2). This can

be explained as follows: The input power causes the electrons to bunch more quickly

initially and the bulk of the electrons have lower momentum as they advance in

the (-direction, but eventually many electrons regain momentum as a result of the

CRM interaction and the result is a high average momentum, meaning the electrons

have not given up the maximum amount of their energy. The same effect occurs

if the structure is too long: Fig. 4-5b shows optimal gyrotron bunching using the

normalized optimal positions ( ± //2 at the input and output of the interaction

region, resulting in few high momentum electrons and maximum efficiency. As the

length is increased slightly to ( = tN/3.3/2 in Fig. 4-5c, the high momentum electrons

reappear, resulting in a reduction of output power. Maximum output power represents

maximum momentum loss in the electrons on average.

4.3.5 First Design

The next adjustments were increasing the drift space radii to three times the Larmor

radius plus the beam guiding center radius, increasing the input power to a more

reasonable 25 mW, lowering the ohmic Qs to increase the bandwidth, and optimizing

over all dimensions of the cavity circuit: cavity radii, cavity lengths and drift space

lengths. This procedure is rather time consuming, as only one parameter can be

adjusted for a given simulation run. Typically, the cavity lengths were fixed based

on the oscillation start current. The first cavity was then optimized for electric field

strength, followed by the first drift space length, then the second cavity, etc., ending

with the last cavity and the uptaper, which were both maximized for power. After

performing this process several times and also readjusting the reference frequency and

magnetic field, the gain usually went over 30 dB saturated. Tab. 4.3 shows the results

of a 15 kV, 65 mA design achieving a saturated gain of 32 dB and a bandwidth of

660 MHz (with no velocity spread). This design is pushed to the limits by exploiting
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Table 4.3: First Design Parameters

Operation Voltage, V
Beam Current, jo

Pitch factor a = v/vs
Design Mode

Input Power, P,
Magnetic Field, B0

Output Power
Bandwidth

Saturated Gain
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15 kV
0.065 A

1.5
TE0 2

25 mW
5.11 T

43 W
660 MHz

32 dB

Length(Ao) Radius(mm) fo(GHz) Qohm Qdiff
cav1 5.5 2.401 139.9 800 800
dftl 9.9 1.85
cav2 5.5 2.410 139.8 500
dft2 9.8 1.85
cav3 5.5 2.410 139.8 500
dft3 9.2 1.85
cav4 5.5 2.410 139.8 500
dft4 11.1 1.85
cav5 5.5 2.401 139.9 1200 660
upt 16.3
dft5 12.6 4.0



saturation to widen the bandwidth and increase the power output by increasing the

cavity Qs. This is an unusually wide bandwidth and high gain for a gyroklystron

operating at such low voltage and current.

4.3.6 Second Design

In order to get more gain to allow for mild stagger tuning, the beam current was

increased to 100 mA. The new design parameters are shown in Tab. 4.4. With the

new higher value of current, high gain was possible, but it was necessary to alter the

cavity Qs to push the saturation. If the cavity Qs are carefully adjusted, it is possible

to widen the bandwidth and increase the output power simultaneously by exploiting

saturation. To evaluate the bandwidth for a certain set of parameters, MAGY must

be run typically a dozen times even for a rough resolution. Hence it becomes very

time consuming to evaluate more than a small portion of parameter space. However,

with enough work, the bandwidth and power levels slowly increased.

4.3.7 Unusual effects of Q and velocity spread

The results in Tab. 4.4 show a bandwidth of 918 MHz at 51 W with no velocity

spread. Firstly, the higher cavity Q's drive the gain up on the band edge while the

center frequencies tend to saturate. This widens the 3 dB bandwidth in a somewhat

counterintuitive way, since high Q's are normally associated with narrow bandwidth.

Secondly, since this design had a large amount of oversaturation to widen the band-

width, the velocity spread has the effect of relieving the oversaturation and producing

higher power in the oversaturated region. This is very interesting because we are used

to seeing only detrimental effects arising from velocity spread.

Fig. 4-6 shows one such plot whereby velocity spread up to 6% seems to help

the power output. With velocity spread, there are some electrons with lower v1 and

higher v1 and vice versa, such that the relativistic -y, is conserved. With differences in

cyclotron frequency, and an array of resonant cavities tuned to different frequencies,

it is possible to excite multiple cavities and increase the bunching and hence the gain.
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Table 4.4: Second Design Parameters

Operation Voltage, V
Beam Current, 10

Pitch factor a = v_/VIl
Design Mode

Input Power, Pi,
Magnetic Field, Bo

Output Power
Bandwidth

Saturated Gain
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15 kV
0.10 A

1.5
TE0 2

35 mW
5.11 T

51 W
918 MHz

32 dB

Length(Ao) Radius(mm) fo(GHz) Q,,, Qdiff
cavl 5.5 2.3995 140. 850 800
dftl 9.9 1.85
cav2 5.5 2.410 139.8 690
dft2 9.8 1.85
cav3 5.5 2.410 139.8 690
dft3 9.2 1.85
cav4 5.5 2.410 139.8 690
dft4 11.1 1.85
cav5 5.5 2.4015 139.9 1300 660
upt 16.3
dft5 12.6 4.0



MAGY: Power vs. Frequency with vperpsprd
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Figure 4-6: The effect of velocity spread on an amplifier system. The power increases

up to a point and the peak shifts to higher frequencies due to the slower electrons.
Note that the bandwidth at the 50-watt level around 140.8 GHz is increasing with
increasing velocity spread.
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There is a frequency shift evident as well in the figure as the peak shifts toward higher

frequencies at higher velocity spread values, while the lower frequencies suffer a loss

of gain (not an oversaturation). The tendency in this case is, to some extent, to shift

the gain upward. Above approximately 6% in this case, the velocity spread begins to

have only detrimental consequences.

4.4 Final Gyroklystron Design

In the final design, the beam current was increased to 1o = 150 mA to increase the

overall gain. With the larger gain allowance, a stronger stagger tuning was used

to widen the bandwidth. It became apparent that the ability to vary the shape of

the magnetic field profile could have helped widen bandwidth and increase efficiency,

but nonetheless, quite a lot could be done with the flat profile we have. Having

an adjustable profile means having an extra coil (gradient, trim or otherwise), extra

leads, power supply and higher helium loss rate, adding approximately 30% to the

cost of the magnet.

The larger amount of stagger tuning is apparent in the table for the final design, as

the two extremes of the tuning vary by over 1%. Finding suitable tuning frequencies

consisted of finding some feature at some frequency that should be changed, finding

the cavity that is the likely cause and then tuning in accordingly. For example,

cavities 4 and 5 are known to be very persuasive in their contributions to high power

and bandwidth. If they are too close, oversaturation will result; too far and the power

may fall.

The first cavity is very sensitive in terms of tuning. It should be tuned to within

1 micron (50 MHz), but even electroforming a cavity can only produce accuracy of

0.2 mils (300 MHz), so tuning by hammer or screw or some other means becomes

important. Other cavities may only need to be tuned to within 100 MHz or more.

4.4.1 Final Design characteristics

To characterize this design, many parameters were varied over a reasonable range.
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Table 4.5: Final Design Parameters

Operation Voltage, V 15 kV
Beam Current, 1 o 0.15 A

Pitch factor a = vi/vg 1.5
Design Mode TE0 2

Input Power, P, 25 mW
Magnetic Field, B0 5.14 T

Output Power
Efficiency

Bandwidth
Bandwidth at 50W

Saturated Gain

129 W
5.7%

1050 MHz
1270 MHz

35 dB
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Length(Ao) Radius(mm) fo(GHz) Qohm Qdiff
cavi 3.73 2.400 140.02 500 800
dftl 16.1 1.85
cav2 4.20 2.417 139.04 750
dft2 9.33 1.85
cav3 3.73 2.423 138.70 700
dft3 11.2 1.85
cav4 5.37 2.413 139.27 400
dft4 14.5 1.85
cav5 4.53 2.394 140.37 1700 360
upt 17.7
dft5 12.6 4.0



MAGY: Power vs. Frequency with beam-current
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Figure 47 Current variations on the final design. The design value of current is

=0l5 A showing a 3 dB bandwidth of 1050 MHz, a bandwidth of 1270 MHz at

the 50 Watt level and a peak power of 130 W.

Figure 4-7 shows variations of the beam current and their effect on the frequency

spectrum of this design. At higher beam current, there seems to be an excess of gain

around 139.7 GHz. If the GKL is operated at this beam current level, detuning the

magnetic field may help relieve the oversaturation at that frequency.

In Figure 4-8, the effect of varying the magnetic field is seen. Over the B-field

range of at least 51.3 kG to 51.5 kG, there is over 1 GHz of bandwidth available at the

50-Watt level. This 0.4% difference seems tolerable and the field drift specification

for the magnet is <0.05 ppm/hour, meaning the magnet will have to be re-adjusted

slightly every 10 years to maintain the proper operating regime.

Variations of the input power illustrate that the -3 dB bandwidth is typically lower

at higher input powers, but the bandwidth at the 50-Watt level typically increases

(Fig. 4-9). Again, some oversaturation is apparent around 139.7 GHz, as the output

80



MAGY: Power vs. Frequency with B field scale
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Figure 4-8: Magnetic field variations on the final design. The design value is
BO=51.38 kG. Even over a BO deviation of 0.4%, over 1 GHz of BW is available

at 50 W.
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MAGY: Power vs. Frequency with power_inp_perpje(1)
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Figure 4-9: Input power variations: The design value is P2,=25 mW.

power decreases with increasing input power.

The gain of the device shows good behavior across a range of input powers (Fig. 4-

10). The linear gain is around 39 dB and the saturated gain is 36 dB. The maximum

saturated output power under these operating conditions is above 160 watts.

Figure 4-11 shows the effect of velocity spread. This design delivers over 1 GHz of

bandwidth at the 50-watt level even at perpendicular spreads of 6% (13.5% parallel

spread). Again, the peak in the power spectrum tends to shift to higher frequencies.

This effect could be attributed to the output cavity, which is tuned to the highest

frequency of 140.4 GHz and correspondingly peaks in magnetic field. The bandwidth

and power tend to increase from 0% to 4% spread due to the cavities being tuned to

a range of frequencies and therefore more easily excited by the spread in cyclotron

frequencies.

The pitch factor (a) spread, shown in Fig. 4-12, reveals a high sensitivity on the

performance of the amplifier to the value of a. This points to a preference for a triode
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Gain and Power Out vs. Input Power
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Figure 4-10: Gain and output power versus input power. The linear gain is 39 dB

and the saturated gain is 36 dB. The frequency here was 140.5 GHz, roughly the peak

of the power spectrum.
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MAGY: Power vs. Frequency with vperpsprd
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Figure 4-11: Velocity spread variations. The design value was 4%, but it delivers over
1 GHz of BW at 50 W even with 6% spread.
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MAGY: Power vs. Frequency with pitchang
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Figure 4-12: Beam pitch factor (a) variations. The nominal value is 1.5 for the design.

electron gun to tune a to the required value. If this pitch factor is off, it can also be

compensated for by adjusting the beam current.

The electric field profile in the cavities shows gain in each cavity at each frequency

(Fig. 4-13). There is a visible electric field leakage between the last and penultimate

cavities as a result of the finite copper conductivities, although it is not clear if this

leakage has a significant influence on the simulation the device.

Figure 4-14 shows the short pulse behavior for a 4-ns trapezoidal input pulse at

various frequencies. The propagation delay though the cavity circuit is around 1-ns.

The pulses can be shortened to 1 or 2 ns with a slight reduction in output power. This

delay is due to the propagation of the electron beam through the tube at about 13%

the speed of light and will increase upon addition of the non-linear uptaper and mode

converter. The peaks on, for example, the rising and falling edges of the 139.6 GHz

pulse can be attributed to the fact that the gain increases at lower power levels.
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Figure 4-13: The electric field profiles in the cavities for several frequencies.
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MAGY: Pulse shape in time with frequency
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Figure 4-14: The pulse shapes for a 4 ns trapezoidal pulse showing a propagation
delay of approximately 1 ns.
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4.5 Preliminary Input Coupler

Preliminary work was performed to construct a suitable input coupler to get the low

power RF signal into the first cavity. HFSS was used to design a wrap-around coupler

using the TE81 mode of a coaxial cavity with four coupling slots into the first cavity

(Fig. 7-1). In this simple treatment, industry standard WR6 (0.065 x 0.0325 inch)

rectangular waveguide was used for the input and ring resonator sections, as well as

the four short segments that connect the ring to the cavity. The difficulty in designing

this coupler is forming a clean TE 2 mode inside the cavity over the frequency range

of interest. The figure shows the HFSS simulations over 1 GHz with a decent TEo2

mode shape in the cavity. Measurements on bandwidth and coupling were not made

at this time.

4.6 Conclusions

In this section, the design of the gyroklystron cavity circuit was discussed in detail,

with a focus on the optimization of the bandwidth and power. Three designs were

presented highlighting the major milestones in the optimization of the gyroklystron.

The final design was presented and variations on its characteristics were explored.

This theoretical final design seems solid, with some room for error in the maximum

power and bandwidth. If some parameters fall short of their design values, such as

the pitch factor, they can be compensated to some degree by external controls, such

as beam current and magnetic field.

Preliminary work on a wrap-around input coupler was presented. This coupler

uses the TE81 coaxial mode to couple to the TE02 mode in the input cavity using four

slot couplers. The TE02 mode is reasonably well formed over the range 139.4 GHz to

140.3 GHz.
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Figure 4-15: The preliminary work on the input coupler (quarter-slice shown): (a)

139.4 GHz; (b) 140.0 GHz; (c) 140.3 GHz.
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Chapter 5

The Electron Gun

The performance of the electron gun design is essential to building a successful gy-

roklystron. The velocity spread must be as low as possible since the cavity circuit

is rather long. Many non-ideal effects exist, including velocity spread due to cath-

ode surface roughness and thermal non-uniformity, gun misalignment, insufficient

vacuum, cathode poisoning, etc. All of these performance-hindering effects must be

minimized for a successful result.

5.1 Overview

The electron gun consists of several major parts (Fig. 5-1). The filament heats the

cathode uniformly to a suitably high temperature such that electrons are emitted by

thermionic emission. The two anodes ("triode" MIG) and the cathode form a region

where the equipotential contours are designed to guide the electrons along a proper

path as they gain weakly relativistic energy. If the potentials are not carefully formed,

the electron paths may cross (non-laminar flow) or sharp regions of the cathode

(typically the "nose") may experience such high electric fields that breakdown occurs.

The purpose of the second anode (a.k.a. the "mod-anode") is to adjust the potentials

as an aid in obtaining the correct pitch factor (oz = vi/v 11). If, during the MIG

design, the two anode potentials are identical, then only a single anode is required

(diode MIG), simplifying the design and saving cost. Another reason to use a diode
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Figure 5-1: The MIG parts: Cathode, Anode 1, Anode 2 ("mod-anode"), shown with
an electron beam and the equipotential contours.

instead of a triode is that it is not always easy to obtain an arbitrary voltage for

the second anode, since lossy resistor dividers are commonly used. The diode power

supply is thus simpler. Once the electrons are emitted, they are caught in a spiral

around the magnetic fields lines as they are guided through the cavity circuit down

to the collector region.

5.2 A 20 kV MIG design

Initial work early in the design focused on the electron gun since some information

was needed to specify the magnet that would be required. During this time, extensive

use of EGUN was made and design efforts pushed for both diode and triode designs.

The beam voltage was chosen to be 20 kV, a value that later became 15 kV for the

cavity circuit design. The design we present here is at 20 kV, but it could be scaled

back to 15 kV with proper design modifications and still meet the requirements for

the system. The triode design is presented because the diode gun had some difficulty

keeping the space charge to acceptable limits. The triode gun will require some extra

parts, but will also allow the beam a to be controlled to some extent.

The main goal of any MIG design is low velocity spread. These days, the transverse

velocity spread due to beam optics is typically the lowest contributor to the total
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Table 5.1: MIG Design Parameters

Parameter Value Unit

V 20 kV

I0 0.1 A
Pitch factor, a 1.5

Beam Radius, Rb 0.64 mm
Magnetic field at cavities 5.2 T

Cathode Radius 4.02 mm
Slant-length 0.5 mm

Current density 2 A/cm 2

Cathode slope 50 degrees
Cathode-Anode spacing factor 3

Cathode temperature 1000 0C
Cathode roughness 64 x 10-6 inches

Cathode position* 55 cm

Results:
a 1.59

a spread 1.9
Avi/vi optical 0.55
Avi/vi thermal 1.3 %

Avi/v1 roughness 4.0 %
Total velocity spread 4.2 %

(* z=O is center of magnetic field)

spread and is around a few percent. The two other major contributions come from

cathode roughness and thermal non-uniformity, which all together typically push the

total transverse spread up to about 5%. Tab. 5.1 shows the design parameters and

the results of this MIG design. The optical velocity spread is very low as well as the

thermal spread estimate, but the estimate of velocity spread due to cathode surface

roughness is very high (approx. 4%). By using a surface finish of 32 micro-inches

instead of 64, this figure drops to about 2.8%. If this finer finish is realistic for a

cathode this small (4.02 mm radius), the total spread could be as low as around 3%.

This is rather difficult to achieve in practice, and even with the finer finish, we could

expect the total spread to be elevated by 1 to 2% in practice.

The simulation result of 0.55% transverse velocity spread due to optics is a very

good result. Rarely do gun designs achieve under 1% spread even in simulation. The
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reason for this low spread can be attributed to the fact that the beam current is rather

low. Low beam current with a modest beam current density means that the emitter

surface area can be quite small. Since the magnetic compression is rather high at 40,

the cathode radius is fairly large, so the emitter slant length is very short. Also, there

is even less of a difference in electron trajectory lengths because the cathode angle is

quite high.

The predicted a value of 1.59 is slightly over the design value of 1.5, but to

compensate, the beam current could be lowered slightly, or the mod-anode voltage

could be altered (causing the velocity spread to rise slightly). The alpha spread of

under 2% is also phenomenal.

Fig. 5-2 shows the EGUN output for the simulation run from the cathode to the

center of the magnetic field. A blow-up of the electron beam, equipotential contours,

and cavity shape is shown back in Fig. 5-1.

Fig. 5-3 shows the dimensions of the gun section used for the EGUN simulation.

The cathode is at -20 kV, the mod-anode is at -14.7 kV and the main anode is at
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Figure 5-3: The dimensions in millimeters of the gun section used for the EGUN
simulation.

ground potential (0 V).

5.3 Conclusion

In this chapter, a 20 kV MIG design was presented with a remarkably low perpen-

dicular optical spread of only 0.55%. Such low spreads will be necessary for the

operation of a successful electron gun. The velocity spread due to roughness is by far

the limiting factor to keeping the total velocity spread low, so steps must be taken to

ensure a smooth finish on the emitter surface. Although the design was for a 20 kV

beam as presented, similar results should be achievable at the lower beam voltage of

15 kV with proper design modifications.
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Chapter 6

The Output Section

In this chapter, the designs of the gyroklystron output section and mode converter

are discussed. A nonlinear uptaper was designed to replace a, portion of the linear

uptaper in the gyroklystron design in order to minimize mode conversion. Following

the output section is the mode converter region, which converts the TE0 2 mode coming

out from the gyroklystron circuit to the TEO mode. The electron beam is collected

in a region just past the mode converter.

6.1 Nonlinear Uptaper

The output section of the gyroklystron consists of the final cavity, a linear uptaper

and a nonlinear uptaper. A diagram of this output section is shown in Fig. 6-1.

The nonlinear uptaper consists simply of a fillet that suppresses mode conversion.

CASCADE [48] was used to estimate the mode purity to be 99.98% at the center

frequency of 140 GHz.

6.2 Mode Converter

The equations from Chap. 3 were used to get an idea of the expected bandwidth and

size of the mode converter. The resulting mode converter design was evaluated in

CASCADE [48] and the results of the simple theory and CASCADE simulations are
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TE 02 to TEM mode converter
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Figure 6-2: The results of the simple equations and the CASCADE simulations show
reasonable agreement. The mode converter consists of N = 5 periods and has a
bandwidth of 14 GHz and a peak efficiency of 98.6%.

shown in Fig. 6-2. Using N = 5 periods gives good bandwidth and efficiency, as well

as a relatively short mode converter. Over the frequency range of interest (139 GHz

to 141 GHz), the conversion is typically better than 98%.

6.3 Complete Output Section

The nonlinear uptaper and mode converter were put together in CASCADE for eval-

uation. Mode purity from the final cavity all the way to the end of the mode converter

remained above 98% over the frequency range from 140 to 141 GHz (frequencies below

140 GHz are cut off in the final cavity and cannot be evaluated without an electron

beam).
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6.4 Conclusion

In this section, the nonlinear uptaper and mode converters were presented. The

nonlinear uptaper yielded greater than 99% mode purity over the frequency range of

interest. When the nonlinear uptaper and mode converter were joined together, the

TE0 2 mode was converted to TEO with over 98% efficiency in theory over the band

of interest. These results seem reasonable and meet the goals of the design.
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Chapter 7

Discussion and Conclusions

The tradeoffs, theory and design of a 140 GHz, 100 W gyroklystron amplifier have

been presented in this thesis. The gyroklystron consists of a series of cavities each

tuned to a specific frequency. The benefits of this method are high gain and wide

bandwidth from a low voltage device as well as good linearity and very low noise.

This work is specifically designed to meet our needs and is an extension to the pre-

vious foundational work done by others. This design included detailed studies on

the electron gun, cavity circuit, and mode converter, as well as the background and

theory for each. Several established simulation codes were used in the design of this

vacuum electron device.

The overall goals of this experiment were 1 GHz of -3 dB bandwidth with a

peak of 100 W with the capability to run from nanosecond-scale short pulses to

full continuous wave operation. This design achieved a 130 Watt output at over

1 GHz of -3 dB bandwidth and a bandwidth of nearly 1.3 GHz at the 50-Watt level.

The design also performs well with nanosecond-scale short pulses over the whole

frequency range. While some parameters in the design, such as the pitch factor, a,

are somewhat sensitive, they can be compensated for by external controls, like beam

current and magnetic field. The circuit can provide over 1 GHz of bandwidth at the

50-Watt level over a magnetic field deviation of 0.4%, meaning the superconducting

magnet will need to be re-tuned approximately once every ten years. The circuit

design theoretically meets the specifications over the range of approximately 4% to
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6% transverse velocity spread (9% to 13.5% parallel spread), a robustness that other

designs may not deliver.

7.1 Future Work

Following the acceptance of this thesis, the evaluation of other possible designs such

as the gyro-TWT or gyrotwystron will begin if necessary. While the gyroklystron

promises to meet the specifications in theory, the actual construction and demonstra-

tion of such a five-cavity device is rather difficult, as very careful tuning is required

to obtain the correct cavity characteristics. A gyro-TWT is perhaps easier to build,

as it is most simply a straight copper pipe with distributed loss added, but it may be

difficult to troubleshoot, as backward waves and spurious modes are difficult to sup-

press correctly. Furthermore, reliable sources for the necessary precision lossy ceramic

parts are scarce and slow to deliver, and many of the other materials have not been

fully or properly characterized. A gyrotwystron, on the other hand, while having the

benefits of both of the aforementioned methods, also suffers from the disadvantages

of both. Newer possibilities, such as the Confocal-TWT or PBG-based solutions, may

be too risky to pursue at this time, simply because those designs have not been widely

explored experimentally. In light of these remarks, perhaps the gyroklystron would

be most suitable after all.

7.2 A 500 W Gyroklystron

There has been interest in a 140 GHz, 500 W gyroklystron with perhaps 2 GHz of

bandwidth. This device could be more useful to the FBML as they attempt to perform

DNP Electron Paramagnetic Resonance (EPR) measurements using a train of pulses

approximately 1 nanosecond in duration. In order to get enough energy to their probe

in such a short time, an estimate of 500 W is needed. Designing such a device in

theory is a reasonable extension to the 100 W design. Currently, however, RF switch

technology has not been able to provide switches with turn-on and turn-off times
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MAGY: Power vs. Frequency with B field scale
600 ------------------------ --- -------------------- -,-------- - ...- ...-- ... ..- ..--.. ... .. ... ..-. ....r..- - ..

B52.55SkG; 1145 MHz @250W
rav- 0 2402 fres 139.90S - 0 - 27 kV - =4

0 2428 138.412 0 - 0.4 A
0 241 8 138.986 alpha - 1.0 5518

02424 138642 vsprd 6 % 00
0 2394 140.365 P - 0. 01 V

Lav- 0 75 Oohn : 410
500.. . . . . . . . . 60 -CO-----.................--------0 7 60 -- -

00e 600
08a 1500

Idlt - 3 46 Lupt.- 3.8
2 rupt 0A
2 4 ,df6 0 185
3 1
2 7

4 0 0 -- --- ------ ---- - --- -- - -- -- - -.. . -------- -- -- -- -- --- ---- - -- - ---- - - ---- -- ---- - - --- -----

0 300 -- ---- - -- --- - - -

S1067MHz

200 ------- ---- --.- - --- - - --- ----- - .......

100 /----0--- - ---- -- - -

T39 139.5 140 140.6 141 141.5
Frequency [G-k]

Figure 7-1: The preliminary design of a 500 W gyroklystron circuit with a 27 kV,
0.4 A electron beam and saturated gain of 47.4 dB at 6% transverse velocity spread.

below 1 ns that meet our power level requirements. Nonetheless, some preliminary

work is presented here in reaching toward a 500 W, 140 GHz gyroklystron with 2 GHz

of -3 dB bandwidth.

The first requirement to reaching higher power is to increase the beam power.

Using a 27 kV, 0.4 A electron beam and re-tuning the cavity circuit, it was possible

to achieve an output of over 550 W with a bandwidth of over 1 GHz (over 1.1 GHz at

the 250 W level). The input power was reduced to 10 mW and a transverse velocity

spread of 6% was selected, resulting in a saturated gain of 47.4 dB. Other parameters

for this preliminary design are given in Tab. 7.1. No careful optimizations were made

for this design, and it is possible that the desired results could be achieved with only

four cavities instead of five, which is an attractive possibility.
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Table 7.1: 500 W GKL Preliminary Design Parameters

Operation Voltage, V 27 kV
Beam Current, 1o 0.4 A

Pitch factor a = vi/gv 1.5
Design Mode TE0 2

Input Power, P 10 mW
Magnetic Field, Bo 5.26 T

Output Power
Efficiency

Bandwidth
Bandwidth at 250W

Saturated Gain

553 W
5.1%

1067 MHz
1145 MHz
47.4 dB

104

Length(Ao) Radius(mm) fo(GHz) Q0jjm Qdiff
cavI 3.50 2.402 139.905 450 800
dftl 16.1 1.85
cav2 3.27 2.428 138.412 600
dft2 9.35 1.85
cav3 3.27 2.418 138.986 600
dft3 11.2 1.85
cav4 3.74 2.424 138.642 600
dft4 14.5 1.85
cav5 3.74 2.394 140.37 1500 360
upt 17.8
dft5 12.6 4.0
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