
User Authentication and Remote Execution

Across Administrative Domains

by

Michael Kaminsky

B.S., University of California, Berkeley, 1998
S.M., Massachusetts Institute of Technology, 2000

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

© Massachusetts Institute of Technology, 2004.
MIT hereby grants the author the permission to reproduce and distribute publicly paper

and electronic copies of this thesis document in whole or in part.

A uth or
Department of Electrical Engineering and Computer Science

June 30, 2004
I

Certified by
M. Frans Kaashoek

Professor, Department of Electrical Engineering and Computer Science, MIT
Thesis Supervisor

Accept

.
David Mazieres

Assistant Professor, Department of Computer Science, New York University

Jesis Supervisor

ed by
Arthur C. Smith

MASSACHUSETTS INSTITUT
OFTECHNOLOGY hairman, Departmental Committee on Graduate Students

BAFRKER

OCT 28 2004

LIBRARIES

/1 /- -- //

Ce-rtified by

2

User Authentication and Remote Execution
Across Administrative Domains

by
Michael Kaminsky

Submitted to the Department of Electrical Engineering and Computer Science
on June 30, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

A challenge in today's Internet is providing easy collaboration across administrative boundaries.
Using and sharing resources between individuals in different administrative domains should be just
as easy and secure as sharing them within a single domain. This thesis presents a new authentication
service and a new remote login and execution utility that address this challenge.

The authentication service contributes a new design point in the space of user authentication
systems. The system provides the flexibility to create cross-domain groups in the context of a
global, network file system using a familiar, intuitive interface for sharing files that is similar to
local access control mechanisms. The system trades off freshness for availability by pre-fetching
and caching remote users and groups defined in other administrative domains, so the file server can
make authorization decisions at file-access time using only local information. The system offers
limited privacy for group lists and has all-or-nothing delegation to other administrative domains via
nested groups. Experiments demonstrate that the authentication server scales to groups with tens of
thousands of members.

REX contributes a new architecture for remote execution that offers extensibility and security.
To achieve extensibility, REX bases much of its functionality on a single new abstraction-emulated
file descriptor passing across machines. This abstraction is powerful enough for users to extend
REX's functionality in many ways without changing the core software or protocol. REX addresses
security in two ways. First, the implementation internally leverages file descriptor passing to split
the server into several smaller programs, reducing both privileged and remotely exploitable code.
Second, REX selectively delegates authority to processes running on remote machines that need
to access other resources. The delegation mechanism lets users incrementally construct trust poli-
cies for remote machines. Measurements of the system demonstrate that the modularity of REX's
architecture does not come at the cost of performance.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor, Department of Electrical Engineering and Computer Science, MIT

Thesis Supervisor: David Mazieres
Title: Assistant Professor, Department of Computer Science, New York University

3

4

Acknowledgments

It goes without saying that I've come a long way since I began graduate school. I have many people
to thank.

Frans Kaashoek and David Mazieres co-advised this work and helped guide it to maturity. Frans
has been a terrific mentor, always demanding the best. He has taught me much about computer
science and research in general. Without David and the SFS project, many of the ideas in this thesis
would never have come to fruition. Working with David has made me a better systems designer and
builder.

I have collaborated with many people over the years, many of whom have contributed to this
work in some way. In particular, I thank Chuck Blake, Kevin Fu, Daniel Giffin, Frans Kaashoek,
Maxwell Krohn, David Mazieres, Eric Peterson, and George Savvides. Daniel Jackson provided
value feedback on the thesis document itself. Numerous reviewers read drafts of our SOSP and
USENIX papers, offering many helpful comments. Being a member of PDOS has been a privilege;
I have learned much during my time here.

MIT has been a tremendous environment for personal growth. I am indebted especially to the
MIT Jewish community, and to the greater Boston area Jewish community, for providing me with a
warm and caring environment. The friends that I've made over the years have taught me invaluable
lessons about life.

It is difficult to express properly and adequately the thanks due one's parents. They provide
the foundation upon which a person builds the rest of his life. My parents have done no less.
Undeniably, I would not have made it to where I am today without their unwavering support and
encouragement.

Several years ago, I would have concluded these acknowledgments with the previous paragraph.
Since then, I have been blessed with an amazing wife and a beautiful family. Miriam deserves
immeasurable gratitude that is hard to express in a few short sentences. She takes care of me, our
children and our home. She is a source of strength and giving to our whole family. Thank you.

nnn 'D'Zi 4D n , 1'r

This research was supported by the DARPA Composable High Assurance Trusted Systems program (BAA #01-24) under

contract #N66001-01-1-8927; the National Science Foundation under Cooperative Agreement No. ANI-0225660 (as part
of the IRIS Project); the National Science Foundation Graduate Research Fellowship; and the Alfred P. Sloan Research
Fellowship.

Portions of this thesis are adapted from and/or contain text originally published in

Michael Kaminsky, George Savvides, David Mazieres, and M. Frans Kaashoek. Decentralized user au-

thentication in a global file system. In Proceedings of the 19th ACM Symposium on Operating Systems

Principles (SOSP '03), pages 60-73, Bolton Landing, New York, October 2003.

and

Michael Kaminsky, Eric Peterson, Daniel B. Giffin, Kevin Fu, David Mazieres, and M. Frans Kaashoek.
REX: Secure, Extensible Remote Execution. In Proceedings of the 2004 USENIX Annual Technical Con-
ference, pages 199-212, Boston, Massachusetts, June 2004.

5

6

Contents

1 Introduction
1.1 Sharing Across Administrative Domains

1.1.1 Current Approaches
1.1.2 Problem .
1.1.3 Solution .

1.2 User Authentication
1.2.1 Challenge
1.2.2 Approach

1.3 Remote Execution
1.3.1 Challenge
1.3.2 Approach

1.4 Contributions .
1.5 The SFS Computing Environment

1.5.1 Architecture
1.5.2 Security and Trust Model
1.5.3 Transparent, Persistent Network Connections

1.6 Outline .

2 User Authentication
2.1 Architecture
2.2 Authentication Server

2.2.1 Interface
2.2.2 User Records
2.2.3 Group Records
2.2.4 Naming Users and Groups

2.3 User Authentication Procedure . .
2.4 Determining Group Membership
2.5 Caching the Containment Graph

2.5.1 Cache Entries
2.5.2 Freshness
2.5.3 Revocation

2.6 Optimizations
2.6.1 Performance Analysis . .
2.6.2 Scalability

2.7 Privacy
2.8 A File System with ACLs

2.8.1 ACL Entries

7

2.8.2 Access Rights .3

3 User Authentication: Implementation, Evaluation and Usage 39
3.1 Authentication Server . 39

3.1.1 Evaluation: Methodology . 39
3.1.2 Evaluation: Results . 40

3.2 ACL-Enabled File System . 41
3.2.1 Locating ACLs . 41
3.2.2 ACL Format . 42
3.2.3 Permissions . 42
3.2.4 Caching . 42
3.2.5 Evaluation: Methodology . 42
3.2.6 Evaluation: Results . 43

3.3 Usage . 44

4 REX Design 47
4.1 Architecture . 47

4.1.1 Sessions, Channels, and Remote Execution 47
4.1.2 File Descriptor Passing . 49

4.2 Establishing a Session . 50
4.2.1 Stage I . 50
4.2.2 Stage II . 51
4.2.3 Connection Caching . 52

4.3 Extensibility . 52
4.3.1 TTY Support . 52
4.3.2 Forwarding X1I Connections . 54
4.3.3 Forwarding Arbitrary Connections . 54
4.3.4 Forwarding the SFS agent . 55
4.3.5 Same Environment Everywhere . 55

4.4 Security . 56
4.4.1 Minimizing Exploitable Code . 56
4.4.2 Restricted Delegation of Authority . 56
4.4.3 Naming Servers Securely . 58

5 REX Evaluation 59
5.1 Code Size 59
5.2 Performance . 60

5.2.1 Remote Login . 60
5.2.2 Port Forwarding Throughput and Latency 61

6 Related Work 63
6.1 User Authentication . 63

6.1.1 Kerberos/AFS . 63
6.1.2 Microsoft Windows 2000 . 64
6.1.3 Certificate-Based Systems . 64
6.1.4 Exposing Public Keys . 65

6.2 Remote Execution . 66
6 .2 .1 S S H . 66

8

38

6.2.2 Other Secure Remote Login Utilities . 66
6.2.3 Agents . 67
6.2.4 File Descriptor Passing . 67

7 Conclusion 69
7.1 Summary . 69
7.2 Open Problems . 70

7.2.1 Changing Server Keys . 70
7.2.2 Usability . 70
7.2.3 Site Policies. 70
7.2.4 Reducing Server Load . 71
7.2.5 Privacy . 71

9

10

List of Figures

1-1 The SFS computing environment . 22

2-1 Example user and group names. Both liz and students are remote names,
which include self-certifying hostnames. 29

2-2 The user authentication procedure . 30
2-3 Containment graph for CMU . 32

4-1 Anatomy of a REX session . 48
4-2 Using a REX channel to run Is . 49
4-3 How data travels through REX when is produces output 49
4-4 Setting up a REX session (Stage I). Rexd runs with superuser privileges (shown with

a thick border). 50
4-5 Setting up a REX session (Stage II). The gray line represents the master REX ses-

sion established during Stage I. 51
4-6 Sfsagent and rexd use the MasterSessionKeys and sequence number (i) to compute

new SessionKeys. 52
4-7 Supporting TTYs with emulated file descriptor passing 53
4-8 A GUI confirmation program . 57

11

12

List of Tables

2.1 Access rights available in ACLs . 38

3.1 Number of bytes transferred when fetching group records 40
3.2 LFS small file benchmark, with 1,000 files created, read, and deleted. The slow-

downs are relative to the performance of the original SFS 43
3.3 Cost of reading a file during the read phase of the Sprite LFS small file benchmark,

expressed as the number of NFS RPCs to the loopback NFS server. 44

4.1 REX channel protocol RPCs . 48

5.1 REX code size comparison. The numbers in this table are approximate and do not
include general-purpose RPC and crypto libraries from SFS. Programs shown in
bold run with superuser privileges. 59

5.2 Latency of SSH and REX logins . 60
5.3 Throughput and latency of TCP port forwarding 61

13

14

Chapter 1

Introduction

The Internet has changed the way people work. Increasingly, users are collaborating across admin-

istrative domains instead of just within them. Unfortunately, cross-domain collaboration is not as
easy or as secure as collaboration within a single domain.

In a single domain, collaboration is both easy and secure because users have convenient systems

for sharing and a trusted administrator that can make them secure. The two resources that users

typically share are data (files) and processor cycles (computers). Network file systems allow users

to share files, often with fine-grained access control, and remote execution and login utilities allow

users to share machines. The trusted administrator can secure these systems in a number of ways.
For example, he can place all of the computers that are on a private network behind a firewall, or he

can set up a secure infrastructure for sharing over untrusted networks by distributing password files,

public keys, and group lists.

Current systems for collaboration between administrative domains do not provide sharing that

is both easy and secure. The two main systems for cross-domain collaboration are electronic mail

(email) and the Web, which provide only application-level sharing rather than the generic file system

and remote execution interfaces available within a single domain. The absence of a trusted, central

administrator in cross-domain environments makes security challenging. The goal of this thesis is

to make sharing resources across administrative boundaries both as easy and as secure as doing so

within a single domain.

This chapter begins by providing a motivation for choosing a file system and a remote execution

utility as the two basic mechanisms for sharing. It then discusses the problems, particularly related

to security, that make extending these sharing mechanisms across administrative difficult. Sections

1.2 and 1.3 describe the two main contributions of this thesis that address these problems: a new

user authentication system and remote execution utility. These sections also describe in more detail

the motivation, technical challenges and approach for each system. Section 1.5 introduces our

implementation environment, and Section 1.6 provides a road map for the rest of the thesis.

1.1 Sharing Across Administrative Domains

An administrative domain is a collection of users who trust an administrator to manage their com-
puting infrastructure. Typically, domains represent an existing social structure. Examples of admin-
istrative domains include large organizations, such as universities, where the trusted administrator
might be an IS department. Domains might be smaller, such as a research group, or even an indi-
vidual with a single computer. The challenge in sharing across administrative domains is providing

15

easy-to-use systems and interfaces while maintaining security even in the absence of a central,
trusted administrator.

1.1.1 Current Approaches

Current systems for sharing across administrative domains are insufficient. For example, the two
most popular ways to share files between organizations are email and the Web. Sharing documents
over email has several disadvantages. Primarily, it does not provide a convenient interface for
collaboration. Each email sent creates a new copy of the document, so keeping track of multiple
versions quickly becomes unmanageable. Most email systems also do not provide security for
cross-domain environments (i.e., no confidentiality and no authentication).

Publishing documents on secure Web servers (or Web portals) is also awkward. Working on
a document might require several steps: logging into the system, downloading the latest version,
modifying it, and uploading the modified document to the Web server. Most programs cannot
perform these steps automatically and transparently; the user must open up a browser and perform
them manually.

Both systems suffer from a common core problem: they provide convenient sharing interfaces
perhaps for users but not for programs. Users prefer graphical, interactive interfaces that give all
of the necessary context and require minimal effort to use. Programs, however, need narrow, well-
defined interfaces that provide a basic set of low-level functions (e.g., read, write) and guarantees
(e.g., consistency) with which the program can perform higher-order tasks. To be general-purpose, a
system for accessing and sharing resources should provide "program-friendly" low-level interfaces
to resources; then, using those low-level interfaces, applications can provide users with the high-
level interfaces to the resources that they need.

In modem operating systems, most programs share through two basic program-friendly inter-
faces: the file system and stream abstractions (e.g., TCP sockets, terminals, pipes). These interfaces
are also the most natural way for programs to access and share remote resources in other administra-
tive domains. First, they provide a simple, proven interface that covers most of the sharing programs
need. Second, existing programs already use these two interfaces, so sharing across domains is au-
tomatic and transparent.

Extending the two basic interfaces to work over the network is possible with two pieces of
software-a network file system and a remote execution utility. The network file system server
allows users to share files and directories that they own with other individuals. The file system client
provides a way for those individuals to access the shared files remotely (without logging into the file
server). The remote execution utility runs a program for the user on a remote machine, sometimes
interactively (e.g., a login shell) and sometimes in the background. It provides a stream abstraction
by effectively setting up a pipe between the remote program and a local one (which might be itself).
The remote execution utility, through the stream abstraction, allows users to leverage computing
resources that are available only on a different machine. Extending these two systems to work
across administrative domains maintains the same program-friendly interfaces that are available in
a single domain, but introduces new problems related to security.

1.1.2 Problem

The state-of-the-art network file systems and remote execution utilities lack a number of important
properties necessary for use across administrative domains. With respect to network file systems,
most existing systems were not designed for cross-domain sharing. NFS [10], for example, is
insecure and inappropriate for wide-area networks. AFS [25] and the Microsoft Windows 2000

16

domain system [39] require an organized trust infrastructure based on pre-existing administrative
relationships. SFS [38] overcomes these shortcomings by providing a secure, decentralized network
file system with a global namespace; however, SFS has only basic support for user authentication
across administrative domains. In particular, it does not support cross-domain groups-groups
that contains users and other groups defined and maintained by administrators in other domains.
For example, such a group might contain researchers, or even entire research groups, from several
universities who are collaborating on a joint project.

SSH [65], the de-facto standard for remote execution, provides a secure stream 1/0 abstraction
over the network, but it lacks several features important in cross-domain environments. First, the
SSH architecture has limited extensibility. Collaboration across domains can introduce new needs
and applications. Users need a modular way to add new functions and features without changing
the protocols or even recompiling the software. Second, because the remote execution service is
often accessible to the entire Internet and parts of the service must run with superuser privileges,
the server software needs a clean design that limits remote exploits. Third, the system should allow
restricted delegation of authority. In a single domain, users often trust all of the machines that they
log into. When logging into machines in other administrative domains, where the remote machine
might be less-trusted than local machines, users need the ability to restrict the authority they delegate
to that machine. That is, the server should not be able to act on the user's behalf without the user's
authorization.

1.1.3 Solution

This thesis presents two new systems that address the deficiencies in existing cross-domain network
file systems and remote execution utilities. First, the thesis extends the original user authentication
service currently available in SFS to support cross-domain groups [29]. These groups can contain

users and nested sub-groups defined and maintained in other administrative domains. Second, this
thesis introduces a new remote execution utility. It has an extensible framework for adding new
features and functions outside of the core software and protocols; a safe, secure design that lim-
its the amount of remotely exploitable code; and restricted delegation of authority to less-trusted
machines [28].

The general approach taken in designing and building these systems is based on two principles.

First, the systems should be convenient and practical. That is, the usage model should be familiar
and intuitive. Creating cross-domain groups and sharing files should not be any more difficult than
in the local case. The new remote execution utility should, from the user's point-of-view, operate

similarly to existing tools. Second, the systems should have simple designs and implementations.
If possible, the underlying abstractions should reflect those presented to the user. For example, the
authentication service manipulates users and groups instead of certificates.

1.2 User Authentication

Several scenarios motivate the need for a new user authentication service that provides cross-domain
groups. For example, a professor Charles at CMU wants to share a courseware directory with
students in his class, as well as students at MIT and a user Liz at Boston University (BU). He
creates a file sharing group that contains these users and groups, even though some of them are
defined and administered in other domains. Then, Charles places this group on an Access Control
List (ACL) for his courseware directory. The ACL lists the privileges associated with various users
and groups (including the one he just created).

17

When a user accesses the directory, two critical steps must take place: user authentication and
authorization. User authentication is the process of mapping a user to set of identities, which we
call credentials. Typically, credentials include the user's name and the list of groups to which the
user belongs. Authorization is the process through which a file server checks a user's credentials
against an ACL to make an access control decision.

In the example above, when Liz at BU tries to access Charles's files, the user authentication
service determines Liz's credentials: that she is Liz and that she is on Charles's file sharing group.
The authentication service informs the file server of these credentials, and the file server makes an
authorization decision. If Liz or the group she is in has privileges to perform her desired action, the
file server permits her request.

1.2.1 Challenge

The primary task of the authentication service is to authenticate users who access the system. In the
simple case, the user is defined locally and is known to the server through a password or a public
key. Remote users defined in other domains, however, are unknown to the server, but they may in
fact still merit access to a file or directory. The remote user might appear directly on an ACL or
might appear as a member of a file sharing group that appears on an ACL.

Thus, for a user authentication service that operates across administrative boundaries, the main
challenge is how to determine what groups the user is in. The key difficulty is that groups can con-
tain users and even nested sub-groups that are defined in other domains. This level of indirection
allows for complex group membership hierarchies, but it simultaneously complicates the user au-
thentication process. Now, determining if a particular user is in a given group might involve entities
in several different administrative domains.

1.2.2 Approach

There are a number of properties that one might want in a user authentication service:

1. Flexibility. The system should be able handle groups that span administrative boundaries,
including nested groups.

2. Bounded Staleness. Group membership and user public key changes should take effect rela-
tively soon. The system should bound the staleness of old authentication information.

3. Scalability. The system should scale to large numbers of users and groups.

4. Simplicity. The usage and administration, as well as the design and implementation, should
be simple and intuitive.

5. Privacy. The system should ensure that group membership is private; furthermore, users
should not have to reveal their identities.

Existing solutions make different tradeoffs in addressing these desirable properties. One popular
approach to cross-domain user authentication, for example, is to create local accounts for all remote
users that want to access local files. This solution, though simple, is not scalable and does not
provide the flexibility desired. AFS [25] is an existing file system that supports groups and access
control lists; AFS's authentication is based on Kerberos [55]. AFS provides a simple and intuitive
file sharing interface, including a well-defined notion of freshness (e.g., Kerberos tickets expire

18

regularly), but it does not work well across administration domains. Though one can set up cross-
domain authentication in order to name remote users in specific domains, AFS does not support a
notion of remotely administered groups (or even nested groups).

This thesis presents a new design point in the space of user authentication systems. The proper-
ties of this system are the flexibility to use remotely administered groups (including nested groups);
a familiar, intuitive interface; and a simple design and implementation. The tradeoffs are that the
system does not have perfect freshness (freshness where remote authentication information is ver-
ified each time it it used). The staleness of authentication information, however, can be bounded
as described below. Experiments show that the system is scalable up to tens of thousands of users,
groups, and users per group, though it might not scale to millions of users. The system also has
limited privacy. Human-readable user names can be hidden behind public keys, but the list of which
public keys belong to a group is public. Finally, the system provides all-or-nothing delegation.
When a file owner names a remote group in his local group, he delegates to someone in the remote
administrative domain the ability to add essentially anyone to his local group.

A new authentication server provides this authentication service. The authentication server has
a familiar, intuitive interface that mirrors local access control mechanisms. Users create file sharing
groups, add local and remote principals to those groups, and then place those groups on ACLs in
the file system. When a user accesses this file system, the file server sends a request to its local
authentication server to authenticate the user. The authentication server establishes credentials for
the user and returns them to the file server. The file server uses these credentials, along with the file's
ACL, to make the authorization decision. In this model, users are not responsible for collecting and
presenting their credentials to the file system; the local authentication server provides any relevant
credentials that the file system might need to authorize the file access.

A key design decision in this authentication system is to restrict ACLs to list only local users
and groups. To name a remote user or group, the file owner creates a local group and places the
remote user and/or group in that local group. He then places the local group on the ACL. The
benefit of this design decision is simplicity because it allows for a clean separation between the
authentication server and the file server. The file server requires only local knowledge; it does not
need to understand anything about remote administrative domains. The authentication server can
produce credentials without any additional information (such as the contents of ACLs) from the file
server.

Another important design decision is that the authentication server pre-fetches and caches re-
mote authentication information, so that authentication and authorization require only local data.
This pre-fetching is important because we do not want file access to be delayed by having to contact
a potentially large number of remote authentication servers, some of which might be temporarily
unreachable. This strategy trades off freshness for availability because the server makes authentica-
tion decisions with information that could be out-of-date. The advantage, however, is that the server
does not need to block while contacting other machines at authentication time.

Though the authentication server does not provide perfect freshness, the server can bound the
staleness to a fixed, configurable value (e.g., one hour). We do not believe that this compromise
on freshness is an issue in practice. Many certificate-based systems make similar trade-offs; for
example, certificates might still be usable for hours after revocation [63]. Some systems employ
authentication caches that have timeouts [35, 4], and many systems use security tokens that specify
group membership for as long as a user is logged in to his workstation [39].

19

1.3 Remote Execution

Remote execution and login are network utilities that many people need for their day-to-day com-
puting; furthermore, many people layer their higher-level abstractions on top of remote execution
utilities (e.g., CVS [1], rsync [2, 56]). Existing systems, however, do not provide all of the necessary
features to operate adequately in today's complex network environments where users often move
across administrative boundaries. These desirable features of a cross-domain remote execution util-
ity fall into two categories: extensibility and security.

Extensibility. The concept of remote login is simple-local input is fed to a program on a re-
mote machine, and the program's output is sent back to the local terminal. In practice, however,
modem remote login utilities have become quite complex, offering their users many new features.
For example, the popular SSH [65] program provides users with features such as TCP port and
X Window System forwarding, facilities for copying files back and forth, cryptographic user au-
thentication, integration with network file systems, transfer of user credentials across machines,
pseudo-terminals and more. Extensibility means that adding new features should not require mod-
ifications to the core software or protocols; however, these new features must be added in a safe,
secure way that does not increase the trusted code base.

Security. When running across administrative domains, security is particularly important. The
remote execution utility should limit the amount of remotely exploitable code (code that deals di-
rectly with network connections) and the amount of code that runs with superuser privileges. The
system should also provide restricted delegation of authority to processes running on remote ma-
chines. Delegation of authority allows a remote process to access and authenticate itself to remote
resources. A user might want to limit that delegation if he trusts the remote machine less than the
local one. Finally, the system should offer several ways to name remote servers securely, avoiding
problems such as man-in-the-middle attacks.

1.3.1 Challenge

In remote execution, the main challenge is to design and build a remote execution utility that pro-
vides the diverse set of features necessary to operate across administrative domains. The utility
should offer a convenient, practical and familiar usage model and a simple, extensible design that
does not compromise security.

1.3.2 Approach

A new remote login and execution utility, called REX, operates across administrative domains. The
main contribution of REX is its architecture centered around file descriptor passing, both as an
internal implementation technique and as an external interface highly amenable to extensions.

REX provides extensibility through an abstraction that allows a process on one machine to
effectively transfer a file descriptor to a process on another machine. In reality, REX emulates
this operation by receiving the descriptor on one machine, passing a new socket to the recipient
on the other machine, and subsequently relaying data back and forth between the descriptor and
new socket over a cryptographically protected TCP connection. REX does not care if a passed
file descriptor is the master side of a pseudo-terminal, a connection from an X-windows client, a
forwarded connection to an agent that maintains the user's computing environment, or some as-

yet-unanticipated future extension. Thus, REX's core system and protocol can provide the simplest
possible interface on which external utilities can implement these more advanced features.

20

REX uses local Unix file descriptor passing to split the server into several smaller programs.
This division of labor limits both the amount of code that runs with superuser privileges and the
amount of code that deals directly with incoming network connections (which presents the great-
est risk of being remotely exploitable). The REX server is split into two components: a small
trusted program, rexd, and a slightly larger, unprivileged, per-user program proxy. Remote clients
can communicate only with rexd until they prove that they are acting on behalf of an authorized
user. Proxy, in turn, actually implements almost the entirety of what one would consider remote
execution functionality. Almost all of the extensions and features in REX are implemented by this
untrusted program (or some other untrusted helper program that proxy spawns). This separation
of functions and privileges is possible because rexd uses local file descriptor passing to hand off
incoming connections to proxy.

Another key security idea in REX is precise delegation of authority for users that need access
to less-trusted servers. REX can prompt users to authorize remote accesses on a case-by-case basis.
Users have an extensible, configurable "agent" process through which they can build up trust poli-
cies. By optionally instructing the agent to allow similar accesses in the future, users can construct
these policies incrementally.

REX also offers users a number of different ways to name remote servers (corresponding to
the server authentication mechanisms provided by the underlying secure computing infrastructure
upon which REX is built) that do not rely on being susceptible to man-in-the-middle attacks. In
SSH, for instance, the first time a user connects to a particular server, the server sends back its
public key insecurely. The user must confirm that this key is the correct public key for the server.
One technique REX uses to avoid man-in-the-middle attacks is to run the Secure Remote Password
(SRP) protocol [62]. SRP allows the user and server to mutually authenticate each other based on
a weak password. Additionally, REX can ask the user's agent for the server's public key; the user
can configure his agent to provide this key by running an arbitrary program. Such a program might,
for example, use a trusted corporate Lightweight Directory Access Protocol (LDAP) [58] server to
obtain the key securely.

1.4 Contributions

This thesis presents three main contributions. The first contribution is a new design point for user
authentication systems. The system supports groups that span administrative domains, and it has
a simple design and implementation plus a familiar, intuitive user interface. The system trades off
freshness for file system availability by having the server pre-fetch remote authentication informa-
tion. It has scalability appropriate for file systems and offers limited privacy for group lists. Finally,
the system has all-or-nothing delegation to other administrative domains via nested groups.

The second contribution is REX. REX introduces a new architecture for remote execution that
allows users to operate more easily in the context of multiple administrative domains. The REX
architecture is based largely on file descriptor passing, and it provides extensibility; a safe, secure
design that limits exposure to exploits; precise delegation of authority; and sophisticated server
naming mechanisms that avoid man-in-the-middle attacks.

The third contribution is an implementation of the authentication server and REX. Both systems
were built in Self-Certifying File System (SFS) [38, 36] computing environment. The SFS infras-
tructure offers a convenient development platform on which to build these components; it already
has a global file system with cryptographic server and user authentication, and it provides secure
client-server network communication with which to build new services. Finally, SFS has built-in
support for transparent access to servers without globally routed IP addresses (servers behind NAT)

21

Client Machine

sfsagent

rex
Secure

RPC
Transport

Server Machine

sfsauthd

rexd

Figure 1-1: The SFS computing environment

and transparent connection resumption [28]. The following section gives an overview of the SFS

computing environment.

1.5 The SFS Computing Environment

The user authentication server and remote execution utility (REX) are implemented as part of the

SFS computing environment. This section gives an overview of the SFS architecture, summarizes

the SFS security and trust model, and briefly describes how SFS provides transparent, persistent

connections in the presence of NAT and dynamic IP addresses.

1.5.1 Architecture

SFS is a collection of clients and servers that provide several services-a global file system, remote

execution, and user authentication. SFS clients and servers communicate using Sun Remote Proce-

dure Calls (RPCs) [53]. The SFS implementation environment provides an RPC compiler and li-

brary, which promote security by offering a concisely-specifiable communication interface between

local and remote components, and by parsing messages with mechanically-generated code.

When the client and server are located on different machines, the RPCs travel over a transport

that provides confidentiality, integrity and authenticity [38]. This secure channel is set up using

public-key cryptography as described below.

Figure 1-1 shows a single client and server in the SFS computing environment at a high-level.

The machines are running two subsystems: a file system and REX. The file system client is called

sfsrwcd and the file system server is called sfsaclsd. The REX client is called rex and the REX server

is called rexd. These subsystems share a common authentication infrastructure made up of an agent

(sfsagent) on the client machine and the authentication server (sfsauthd) on the server machine.

An SFS meta-server (sfssd) receives incoming connections on a well-known port and hands those

connections off to the appropriate sub-system.

1.5.2 Security and Trust Model

SFS depends on public-key cryptography. Servers have private keys, which they do not disclose.

Given the corresponding public key, a client can establish a connection to the server that provides

22

confidentiality, integrity and authenticity. In SFS, clients always explicitly name the server's public
key using self-certifying hostnames, a combination of the server's DNS name and a cryptographic
hash of its public key. SFS does not prescribe any specific means for distributing server public keys
to clients. A variety of methods are possible.

SFS guarantees the following security properties for connections between SFS clients and
servers:

" Confidentiality: A passive attacker, who is able to observe network traffic, can only accom-
plish traffic analysis.

" Integrity: An active attacker, who is able to insert, delete, modify, delay and/or replay packets
in transit, can, at best, only effect a denial of service. That is, the attacker can delay and/or
truncate the message stream but cannot insert or change messages.

* Server Authenticity: When the client initiates a secure connection to the server, the server
must prove that it knows the private key corresponding to the public key named in its self-
certifying hostname. Once the connection has been established, the client trusts the server to
be who it claims to be.

Mazieres et al. [38] describe the details of self-certifying hostnames and the protocols that SFS uses
to set up secure connections. REX, sfsauthd, and sfsaclsd take advantage of these security properties
offered by SFS.

1.5.3 Transparent, Persistent Network Connections

Two network configurations that users often encounter, particularly when working across admin-
istrative domains, are NAT and dynamic IP addresses. SFS has several mechanisms to provide
transparent connection persistence in the presence of these network configurations. This section
describes these mechanisms briefly; they are described more fully in previous work [28].

SFS employs two mechanisms to allow users to transparently connect to servers behind NAT
boxes. First, the SFS meta-server, sfssd, can listen on a globally-routed (external) IP address for
incoming connections. SFS connections all begin with a CONNECT RPC that includes the name
of the server and service the user wants to access. Based on this RPC, sfssd can proxy requests
to the appropriate server on the private network (similarly to the way that the HTTP Host header
and HTTP proxies enable virtual Web servers). Second, SFS clients use DNS SRV records [24] to
look up the IP address and port number associated with a service. In conjunction with a static TCP
port mapping on the NAT box, SRV records can provide transparent access to machines without
globally-routed IP addresses. For example, a user might want to access a service running on port
4 of pr iv. s f s .ne t, a machine on a private network behind a NAT box called s f s .ne t. The
administrator of the NAT box configures it such that connections to port 9000, for example, are
forwarded to port 4 of priv. sf s .net. Then, he sets up an SRV record for the service, which
names the NAT box (i.e, s f s .ne t and port 9000). SFS clients that try to connect to this service will
fetch the SRV record and connect to s f s .net, which will transparently forward the connection to
priv. sfs .net.

SFS handles dynamic IP addresses and dropped TCP connections differently for its two main
services. In the file system context, the underlying protocol is based on NFSv3 [10], which is de-
signed to be stateless (on the server) and idempotent whenever possible. Thus, even if the network
connection is lost, the client can resume where it left off once a new connection is established.

23

Remote execution connections, however, do not have these properties of statelessness and idem-
potence; therefore, REX provides transparent and automatic application-level session resumption.
This feature allows REX to resume an interrupted remote login session, including any associated
forwarding, over a new TCP connection.

1.6 Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the design of a user
authentication server, which supports groups that span administrative boundaries. It explains how
the server authenticates users and determines the set of groups to which a user belongs. The chapter
then discusses several properties of the system, such as freshness, performance, and scalability as
well as certain optimizations that we have implemented. It concludes with a discussion of ACLs
and authorization.

Chapter 3 describes the implementations of the authentication server (sfsauthd) and the SFS
ACL-enabled file server (sfsaclsd). It provides a performance analysis of sfsauthd and an experi-
mental evaluation of sfsaclsd. Finally, the chapter gives examples of how to use the system (sfskey,
sfsacl).

Chapter 4 describes the REX architecture and connection setup, including definitions of file
descriptor passing, sessions, and channels. The chapter then discusses the main goals of the REX
architecture: extensibility and security. Chapter 5 offers an evaluation of the REX implementation
in terms of code size and performance.

Chapter 6 discusses related work in the areas of network file system user authentication (specif-
ically remote users and groups) and remote execution and login. Chapter 7 concludes with a sum-
mary and some open problems.

24

Chapter 2

User Authentication

This chapter describes a user authentication service that supports cross-domain groups in a file

system context. The following example, introduced in Chapter 1, describes a typical file-sharing

scenario and is used throughout the remainder of the chapter to illustrate the design of the authen-
tication service. This scenario assumes the existence of a global, network file system that supports
ACLs.

Charles is a professor at CMU who is teaching a course called CS 100. He has developed course-

ware that he wants to share using a network file system. He places his courseware in a directory

called / home / c s 10 0. He creates entries on his ACL that describe the privileges he wants to assign

to various users and groups. For example:

User/Group Privileges

u=charles read,write,admin

g=charles . cs100-staff read,write
g=charles.cslOO-students read

These users and groups are defined in a local database at CMU. Users are simply public keys, and

groups are lists of users and possibly other groups. For example:

User/Group Definition Comment

u=charles f g6aniv... Public key
u=jenny t7bwb8n... Public key
u=joe tf8kcnq... Public key
g=charles .cslOO-students u=j enny Local user

u=joe Local user

g=mathl01-students Local group
u=liz@bu.edu,ur7vn2 ... Remote user
g=students@mit .edu,fr2eis ... Remote grp

Here, the group charles. cslOO- students contains four different kinds of members: local
users, local groups, remote users, and remote groups. Users are prefixed by u= and groups by g=.

Local users and groups are defined in CMU's authentication database; remote users and groups
are defined in authentication databases in other administrative domains. Remote users and groups

25

contain self-certifying hostnames (the server's DNS [42] name plus a cryptographic hash of its
public key). All remote user and group names (those with an @ character) are self-certifying, but for
brevity the hash component of the names is omitted throughout many of the examples below.

When a user connects to the file server and tries to access Charles's courseware, the server must
determine who the user is and what groups the user is in; that is, the server must generate credentials
for the user. If the user is local, such as j enny, the server's task is straightforward. Jenny can
prove she "is" a particular public key by signing a message using the corresponding private key. The
server can verify the signature and look up her public key in its authentication database. Because
j enny is local to CMU, an entry for her exists. Once the server knows it is talking to the user
named "j enny", it can determine that j enny is a member of the charles . c s10 0 -s tudents
group. Thus, the server can give j enny read access to the directory.

Authenticating the user accessing the file system is more complicated when the user is remote,
such as li z @bu. edu. Liz can also prove she is a particular public key, but because she does not
exist in CMU's authentication database, the server has no way to map her public key to a user name,
even though her name does appear on Charles's group.

Finally, the user accessing the file system could be alice@cam. ac . uk, who does not ap-
pear on the group's membership list at all. Alice could, however, still merit access to Charles's
files because the authentication service supports nested groups. Alice@cam. ac .uk could be
a member of a group mit-xchng@cam. ac . uk (a group maintained by Cambridge University
that contains a list of all of their students who are currently visiting MIT on an exchange pro-
gram). The group mi t - xchng@c am. ac . uk could be a member of the group s tudent s@mi t.
edu (a group maintained by the MIT registrar that contains all current MIT students). Charles,
as shown above, placed students@mit.edu in his group charles.cs100-students at
CMU. Thus, through a chain of nested group membership, alice@cam. ac .uk does actually
merit access to Charles's courseware. This relationship, however, involves three different adminis-
trative domains; furthermore, the relationship might not be known to al ic e@cam. ac . uk ahead
of time.

2.1 Architecture

A goal of the user authentication architecture (see Figure 1-1) is a simple design and implementa-
tion. To help achieve this goal, the system architecture separates the authentication server, which
provides the user authentication service, from the resource servers (e.g., file servers, remote execu-
tion servers), which use that service. This separation allows the file server, for example, to have only
local knowledge (i.e., ACLs can be restricted to contain only local users and groups), while the au-
thentication server knows about other administrative domains. Having only local knowledge allows
the authentication server to provide a generic user authentication service using a simple protocol as
shown in Section 2.2.

The authentication server that a particular file server contacts to authenticate users is called the
local authentication server. In the current implementation, the local authentication server runs on
the same machine as the file server. This restriction, however, is not fundamental to the design
of the system. Several file servers in a domain could share a single "local" authentication server
by naming it with a self-certifying hostname. Currently, file servers can share an authentication
database through replication, restricting updates to a single primary server.

26

2.2 Authentication Server

The authentication server serves two main functions. First, it provides a generic user authentication
service to resource servers. When a user accesses a resource, the server asks the authentication
server to determine the user's credentials. Once it has the credentials, the resource server can make
an authorization (access control) decision.

Second, the authentication server provides an interface for users to manage the authentication
name space. Users name remote authentication servers with self-certifying hostnames. They name
remote users and groups that are defined on authentication servers in other administrative realms
using the same idea (user name or group name "at" self-certifying hostname). Because remote
user and group names are self-certifying, they are sufficient to establish a secure connection to the
appropriate authentication server and retrieve the user or group's definition. By naming a remote
user or group, users explicitly trust the remote authentication server to define that user or group.
Delegation is discussed in more detail at the end of Section 2.2.4.

2.2.1 Interface

The authentication server maintains a database of local users and groups. To a first approximation,
this database is analogous to Unix's / etc /passwd and / etc / group. The authentication server
presents an RPC interface, which supports three basic operations:

" LOGIN allows a resource server to obtain a user's credentials (a user name and/or group
list). The authentication server generates these credentials based on data from the client (this
data is opaque to the resource server). LOGIN is the main step of the user authentication
procedure described below (Section 2.3).

" QUERY allows a user (or another authentication server) to query the authentication database
for a particular user or group record based on some record-specific key (e.g., name or public
key).

" UPDATE allows a user to modify records in the authentication database. Access control is
based on the record type and the user requesting the update.

These RPCs always travel over a secure connection that provides confidentiality, integrity, and
server authentication (or they are sent locally between two processes running on the same machine).
LOGIN, by definition, does not require a previously user-authenticated connection. QUERY can be
user-authenticated or not; when replying to an unauthenticated QUERY, the authentication server
hides private portions of the user or group record (see Section 2.7). UPDATE requires a user-
authenticated connection, so the authentication server can control access to the database.

If a user wants to modify a record using UPDATE, he first connects directly to the authentica-
tion server as he would connect to any other resource server. The authentication server generates
credentials for the user directly (it does not need to contact any external entity). Finally, the user
issues UPDATE over the user-authenticated connection.

2.2.2 User Records

Each user record in the authentication database represents a user in the system. Often, these user
records correspond to Unix user entries in / etc /pas swd, and system administrators can configure

27

the software to allow users to register themselves with the authentication server initially using their
Unix passwords. User records contain the following fields:

User Name
ID
GID
Version
Public Key
Privileges
SRP Information
Audit String

User Name, ID and GID are analogous to their Unix counterparts. Version is a monotonically
increasing number indicating how many updates have been made to the user record. Privileges is
a text field describing any additional privileges the user has (e.g., "admin" or "groupquota"). SRP
Information is an optional field for users who want to use the Secure Remote Password protocol [62].
The Audit String is a text field indicating who last updated this user record and when. Users can
update their Public Keys and SRP Information stored on the authentication server with the UPDATE
RPC.

2.2.3 Group Records

Each group record in the authentication database represents a group in the system. Administrators
can optionally configure the authentication server to treat Unix groups (in / etc /group) as read-
only groups. Group records contain the following fields:

Group Name
ID
Version
Owners
Members
Properties
Audit String

Groups have a name Group Name. Groups created by regular users have names that are
prefixed by the name of the user. For example, the user charles can create groups such as
charles. cs100- students and charles. colleagues. Users with administrative privi-
leges can create groups without this naming restriction. Each group also has a unique ID. Properties
is a text field describing any additional properties of the group, such as refresh and timeout values
(see Section 2.5.2).

Groups have a list of Members and a list of Owners; the group's Owners are allowed to make
changes to the group. The elements of these lists are user and group names, which are described
below. Users who create personal groups implicitly own those groups (e.g., charles is always
considered an owner of charles. csl0 0- s tudents).

Administrators can set up per-user quotas that limit the number of groups a particular user can
create, or they can disable group creation and updates completely. Per-user quotas are stored in the
Privileges field of the user record.

1When referring to field names, the convention throughout this thesis will be to use a sans-serif typeface.

28

p=bkfce6j dbmdbzfbct3 6qgvmpfwzs8exu

u=j enny

g=charles.cslOO-students

u=liz@bu. edu, ur7bn28ths99hfpqnibfbdv3wqxqj 8ap
g=students@mit.edu, fr2eisz3fifttrtvawhnygzk5k5jidiv

Figure 2-1: Example user and group names. Both li z and s tudent s are remote names, which
include self-certifying hostnames.

2.2.4 Naming Users and Groups

The authentication server understands the following types of names, which can appear on the Own-
ers and Members lists in group records:

" Public key hashes
" User names
" Group names

Public key hashes are SHA-1 hashes [16] of users' public keys. They are the most basic and direct
way to name a user. User names refer to user records defined either in the local authentication
database or on a remote authentication server. Local user names are simply the User Name field
of the record. Remote user names consist of the User Name field plus the self-certifying hostname
of the authentication server that maintains the user record. Similarly, group names refer to group
records defined either in the local authentication database or on a remote authentication server.
Local group names are the Group Name field of the record, and remote group names are the Group
Name field plus the self-certifying hostname of the remote authentication server.

To distinguish between public key hashes, users, and groups, Owners and Members lists use the
following two-character prefixes for each element: p=, u=, and g=. The table in Figure 2-1 shows
several examples of these three types of names. (In the last example, g=students@. . . is not
prefixed by a user name because it was created by a user with administrative privileges.)

Public key hashes are important for two reasons. First, they provide a universal way to name
users who do not need or want to run an authentication server. Second, they can provide a degree of
privacy as described in Section 2.7.

User names are also important because they provide a level of indirection. Naming an authen-
tication server (and its public key) instead of naming the user's public key provides a single point
of update should the user want to change his key or need to revoke it. Authentication server self-
certifying hostnames might appear in more than one membership list, but they typically change less
frequently than user keys.

With respect to group names, indirection through an authentication server can provide a simple
form of delegation. The last example in Figure 2-1 shows how a user might name all of the students
at MIT. The membership list for that group can be maintained by administrators at MIT, and people
who reference that group do not need to be concerned with keeping it up-to-date. Because all five
types of names listed above can also appear on Owners lists, groups with shared ownership are
possible. For example, a group might contain the members of a conference program committee.

The group's owners are the committee's two co-chairs. The owners and the members of this group
all belong to different administrative organizations, but the authentication server provides a unified
way to name each of them.

29

2kdd7dg. _ urn 5cMu

Agent 1
Signed Auth Request ACL-enabled

File Server

2
LOGIN

3
Credentials

Authentication
ii ~Server(B

Figure 2-2: The user authentication procedure

Naming remote users and groups delegates trust to the remote authentication server. Delegation

is important because it allows the remote group's owners to maintain the group's membership list,

but it implies that the local server must trust those owners. A dishonest group owner could insert

any number of users or groups into his group, even delegating further to another owner in a different

administrative domain.

2.3 User Authentication Procedure

User authentication is the process through which users prove their identity to a server and get

mapped to a set of credentials. The authentication service allows clients to initiate user authen-

tication any time after the connection is set up. Typically, it occurs right away. Some connections,

however, do not require user authentication immediately, and others do not require user authentica-

tion at all. User authentication only needs to happen once per connection for a given user (not on

every request).
User authentication is a multi-step operation that begins when a user accesses the file server.

The user has a public-private key pair, which she stores in her agent. The agent is a per-user process

running on the client machine that signs authentication requests on the user's behalf (see Figure 2-

2). The user sends this signed request to the file server (Step 1), which passes it, as opaque data, on

to the local authentication server using the LOGIN RPC (Step 2). The authentication server verifies

the signature on the request and issues credentials to the user based on the contents of its database.

The authentication server then hands these credentials back to the file server (Step 3), which is free

to interpret them as it sees fit. Subsequent communication by the user over the same connection

receives the same credentials but does not require interaction with the authentication server.

The authentication server supports three credential types:

* Unix credentials are fields from /etc /passwd such as User Name, UID, and GID. The

authentication server only issues Unix credentials to users who exist in the authentication

database (i.e., registered users who have local accounts). Unix credentials play an important

30

M

role in the default (non ACL-enabled) read-write file system, which uses NFSv3/Unix file
system semantics for access control. REX also uses Unix credentials to set the user's shell and
home directory. The ACL-enabled file system looks only at the User Name field of the Unix
credentials (which comes from the User Name field of the user's record in the authentication
database).

" Public Key credentials are a text string containing a SHA- 1 hash of the user's public key
(from his authentication request).

" Group List credentials are a list of groups to which the user belongs. Groups in this list
correspond to group records in the local authentication database (they do not contain self-
certifying hostnames).

The authentication server issues Unix credentials by looking in the database for a user record
with the user's public key. If found, the server constructs the Unix credentials from the user record,

/etc/passwd, and /etc/group.
The authentication server issues Public Key credentials by simply hashing the user's public key.

Even a user who does not have a user record in the authentication database receives Public Key
credentials (provided he has a key pair loaded into his agent and the signature on the authentication
request can be verified).

The server issues Group List credentials by checking to see if the user is a member of any local
groups in the authentication database. The next section describes how this is done.

2.4 Determining Group Membership

As illustrated at the beginning of this chapter, determining the groups to which the user belongs
in a cross-domain setting is challenging. Because the design restricts ACLs to contain only local

groups, the list of groups that the authentication server produces for the Group List credentials must

also be local (defined on the authentication server itself). Any remote groups (or users) of interest
to this authentication server will exist as members of some local group. Thus, the authentication
server's task is to determine this list of local groups to which a user belongs.

The authentication server determines group membership for a user by performing a search start-
ing from the local groups defined in its authentication database. For each local group, the server
expands its membership list, which contains public key hashes, user names, and group names. For

each member, the server uses the following rule:

" If the member is a public key or local user name, it stops.

" If the member is a local group name, it expands the local group, from the authentication

database, and recurses.

" If the member is a remote user or group, the server contacts the remote authentication server

securely using the self-certifying hostname contained in the user or group name. The server

securely fetches the remote user or group's definition and then proceeds as in the local case.
Fetching a remote user means fetching the user's public key; fetching a remote group means
fetching the group's membership list.

The authentication server continues to expand users and groups in a breadth-first manner, build-
ing up a containment graph. The server avoids cycles by never visiting the same node twice. When

31

g chardescs100-stud-nts 9. ghaeS.(s1rOO-staff

g=math1 01 -students u=jenny g=students@mit.edu u=liz@bu.edu

xgzaegc...

u=bob@mat.edu g=mit-xchng@cam.ac.uk

djwf2gi...

u=alice@cam.ac.uk

I2
2kdd7dg...

Figure 2-3: Containment graph for CMU

the traversal reaches a local user or a public-key hash, the server stops recursing. A path from a local
group to a public key or local user name means that the user is a member of the given local group.
The containment graph for the example given above (Charles at CMU) is shown in Figure 2-3.
Containment graphs contain the expansions of all local groups defined at a particular authentication
server, though the figure show only the expansion of charles. csl0 0 - students.

Constructing the containment graph is easy for two reasons. First, the authentication server
knows where to start its search (the local groups defined in its database). Second, the server knows
how and where to find all of the information it needs. If the group is local, so is its definition. If the
user or group is remote, the user name or group name is self-certifying, so the authentication server
can fetch its definition from the appropriate remote machine securely.

Fetching remote user and group definitions when the user accesses the file system presents a
problem because remote authentication servers might be unavailable or behind slow network links.
In some cases, the number of remote authentication servers that the local server needs to contact can
be quite large. Thus, constructing the containment graph on-demand might delay file access, which
is often unacceptable.

2.5 Caching the Containment Graph

We address this problem by splitting the authentication task into two parts: constructing the con-
tainment graph and issuing credentials. The authentication server does the first part, constructing
the graph, in the background by periodically pre-fetching and caching the records associated with
remote user and group names. It does the second part, issuing credentials, when the user accesses
the file system. Because the server has the containment graph cached, it can quickly generate the
group membership list for the given user.

Pre-fetching and caching membership information in the background trades off freshness for
availability, but it allows the authentication server to generate credentials using only local informa-

32

tion. The local server does not contact other authentication servers in the critical path, when users
access the file system. The server saves the cache to disk so that it persists across server restarts.

2.5.1 Cache Entries

The cache contains an entry for each node in the containment graph that represents a remote user or
group: remote users map to public key hashes and remote groups map to membership lists. Given
the containment graph in Figure 2-3, the cache would consist of the following entries:

g=studentsamit.edu: u=bob@mit.edu
g=mit-xchng@cam.ac.uk

g=mit-xchng@cam.ac.uk: u=alice@cam. ac .uk

u=1iz@bu.edu: xgzaegc ...

u=bob@mit.edu: djwf2gi ...

u=alice@cam.ac.uk: 2kdd7dg ...

The cache contains reverse mappings so the server can efficiently determine the group list for a user
at authentication time. The server creates these extra pointers at the time it updates the cache. Each
cache entry also has a refresh, timeout, and last updated value (see Section 2.5.2) and a version
number (see Section 2.6).

2.5.2 Freshness

To update its cache of user and group records, the local authentication server simply rebuilds the
containment graph. Updating the cache is a background task that the authentication server runs
periodically. The frequency with which individual cache entries are updated determines their fresh-
ness. Although the system does not have perfect freshness, periodically updating the cache scheme
bounds the staleness of cache entries.

Two factors influence a cache entry's update frequency: the local authentication server, which
does the fetching, and the remote authentication server, on which the user or group is defined. The
local authentication server's administrators can choose an update frequency that is appropriate for
that system. This frequency might be based on how many groups need to be fetched in total and the
machine's resource limitations. The remote authentication server's administrators can influence the
update frequency because they know how often the user or group record changes. A group that only
changes once a month does not need to be re-fetched every day.

The local authentication server influences the frequency with which cache entries are updated
through a global update frequency value. This frequency determines how often the authentication
server tries to rebuild its containment graph. The global update frequency defaults to once per hour,

but administrators can configure it to a different value. A higher update frequency means that the
authentication server will attempt to rebuild its containment graph more often.

Remote authentication servers influence the frequency with which cache entries are updated
through refresh and timeout values. These values are similar to the refresh and expire parameters
used in DNS [42] zone transfers. The owner of a user or group record (or an administrator) can
set these optional refresh and timeout values (in the Privileges or Properties field), and the server
returns them in response to a query. The refresh value indicates how often to fetch a new copy of
the user or group record, and the timeout value indicates how long to keep using the cached copy of
the record if the machine on which the record is defined is not available. If an entry does not have

33

a timeout value and the remote machine is unavailable during the update cycle, the authentication
server removes all references to that machine from the cache.

The global update frequency, per-record refresh, and per-record timeout values all play a role
in determining the freshness properties of the system. Refresh and timeout values allow remote
administrators to influence the freshness of cache entries, but these values are only suggestions.
The local authentication server can ignore them if it wants to refresh or flush its cache entries
more or less often. Regardless of the refresh value, the server will not update any cache entries
more frequently than dictated by the global update frequency value (i.e., how often it rebuilds the
containment graph).

In certain situations, the local authentication server will refresh one or more groups before the
time dictated by the global update frequency, refresh, and timeout values. For example, when a user
modifies a local group (e.g., by adding or removing members), the server will immediately update
the cache entries related to that group. When necessary, administrators can also force an early cache
update (for the whole server or just a particular group).

Although freshness is a key property of authentication systems, given the trade-off between
availability (using only local information to issue credentials) and freshness, we chose availability.
Delays during file system access are not acceptable. Given the trade-off between freshness and
minimizing the time to rebuild the containment graph (update the cache), however, we chose fresh-
ness. Reducing the time required to complete an update cycle was not a priority because updating
the cache is a background process. An earlier version of the authentication server sought to reduce
the amount of time that updates took to complete by fetching records incrementally. That system,
however, provided no guarantees on freshness.

2.5.3 Revocation

Revocation is closely related to freshness. When a remote user changes his key, or is removed from
a remote group record, that change will be reflected in the local cache at the end of the update cycle
(taking into account refresh and timeout values). If the administrator of the local authentication
server learns about the revocation, he can manually update his server's cache before the normal up-
date cycle takes place. Updating the cache, however, does not revoke existing connections because
users only authenticate when they first log into the file system.

For users who have their public key hashes on another user's group record or ACL (see Sec-
tion 2.8.1), revocation is more involved. If such a user wants to revoke his key, he must contact
the user who owns the group record or ACL where his key's hash appears, and ask that person to
remove it. For this reason, indirecting through a user name is often preferable (if possible).

Revoking the public keys of authentication servers is the most difficult because their self-
certifying hostnames might appear in many group records. Section 7.2 suggest several possible
solutions.

2.6 Optimizations

The authentication server implements three performance optimizations. First, during each update
cycle, the local authentication server connects only once to each remote authentication server and
maintains that open connection for later use. Caching connections to authentication servers avoids
the public-key operations involved in establishing new secure connections. For a large number of
remote users or a large remote group, the savings can be significant. (If the underlying transport
used SSL-like session resumption [14, 19], the authentication server would not need to implement

34

this optimization manually. This style of connection resumption would have the benefit of avoiding
repeated public-key cryptography operations without maintaining open TCP connections.)

Second, authentication servers transfer only the changes that were made to membership lists
since the last update. This optimization dramatically reduces the number of bytes a server must
fetch to update an existing cache entry. Because the authentication server's cache is written to disk,
even when the authentication server first starts, it can benefit from this optimization.

The authentication server implements the incremental transfer optimization using the Version
number field present in group records. The local authentication server sends the version num-
ber corresponding to the record it has cached, and the remote authentication server responds with
the changes that have occurred since that version. (When groups are updated, the server logs the
changes by version. If the log is lost or incomplete, the remote server sends back the entire group.)
Section 7.2 suggests an alternative approach that would allow the local server to fetch group lists
from a closer replica instead of the authoritative server on which they are defined. Fetching from
replicas can help reduce load on authentication servers with popular groups.

Third, remote authentication servers have a configuration option that causes them to transform
local user names (local to that remote server) into their corresponding public key hashes before
returning the membership list. In the example above, when the local authentication server down-
loads the group mi t-xchng@c am. ac .uk, the remote authentication server cam. ac .uk would
return the public key 2kdd7dg... instead of the user name al ice@cam. ac . uk. The server
cam.ac .uk knows (or can quickly compute) 2kdd7dg... because it has the user record for
alice@cam. ac .uk in its database. This optimization eliminates the need for local authenti-
cation servers to fetch the public keys separately for each of those remote users; for groups con-
taining a large number of local users, these additional fetches could be noticeable. Because group
owners want to see user names when they manage their groups, the authentication server does not
perform this transformation for user-authenticated QUERY RPCs. (QUERY RPCs from other au-
thentication servers travel over a secure connection that provides server authentication but not user
authentication; that is, the client authentication server is anonymous.)

2.6.1 Performance Analysis

Two main factors contribute to the performance of updating the cache: the number of bytes that the
local authentication server needs to fetch and the time required to traverse the containment graph.
A third factor that can affect performance is the number of public key operations required to update
the cache. The performance of updating the cache depends on the resources available both at the
client and at the server.

The number of bytes required to download a single remote group's membership list depends
on whether or not a copy exists in the cache. If the authentication server does not have a cached
copy, the number of bytes is proportional to the size of the group. If it does have a cached copy, the
number of bytes is proportional to the number of changes made to the group since the last update
cycle. The number of bytes required to fetch all of the remote users and groups in the containment
graph depends on the number of remote users and groups.

The time required to update the cache depends on the configuration of the containment graph.
Because the authentication server uses a breadth-first traversal, and it downloads each level of the
graph in parallel, the latency of the update will be the sum over the maximum download latency at
each level.

The authentication server does, however, need to operate smoothly in the presence of malicious
servers that might try to send back an extremely large or infinite group. The local server simply

35

limits the number of users (public key hashes plus local user names) that can appear in the transitive
closure of a given local group. In our current implementation, this limit is set to 1,000,000.

The number of public key operations (required to set up a new secure connection) is equal to
the number of unique servers appearing in the containment graph. Secure connections are cached
for an entire update cycle.

2.6.2 Scalability

We designed the authentication server and cache update scheme for a file system context. A typical
environment might be a large company or university with tens of thousands of users. Group sizes
could range from one or two members up to tens of thousands of members. Though we expect the
authentication server to scale to tens of thousands of users and group members, we did not design
it to scale to millions. Naming all of the citizens of a country or all Visa credit card holders might
require a different technique.

For example, MIT's Athena setup (which is based on Kerberos and AFS) has 19 file servers
holding user data, and a total of 20,363 file sharing (pts) groups.2 The average number of mem-
bers per group is 8.77. The number of groups with n members, though, declines exponentially as
n increases. In fact, only 240 Athena groups have more than 100 members. Based on these fig-
ures, the authentication server is well-equipped to handle authentication for a large institution, as
demonstrated in Section 3.1.1.

2.7 Privacy

A consequence of having the server determine group membership through the containment graph
is that group lists must be publicly available. Sometimes these group lists can contain private in-
formation, such as the names of individuals who are members of a particular interest group or the
organizational hierarchy of a company's employees. If the group list contains user names that cor-
respond to email addresses, those addresses might be abused to send spam.

Though the ability to fetch a group list is fundamental to the design of the system, the optimiza-
tion described in Section 2.6 provides some degree of privacy. By returning public keys instead of
local user names, administrators obfuscate that part of a group's membership list.

The current authentication server does not provide any way to hide local group names or remote
user and group names. Such privacy-enhancing mechanisms might be possible, to some extent,
as follows. To hide local group names, the server could similarly transform the group name into
a meaningless, arbitrary identifier. When it receives a query for that identifier, the server simply
returns the contents of the original group. This technique reveals the structure of the group mem-
bership hierarchy, but not the members of the group list.

Obfuscating remote user and group names is more difficult. One option might be for the owner
of the user or group to give it a meaningless identifier, so that others can refer to the group without
revealing its purpose. This technique, however, does not hide the self-certifying portion of the
remote user or group name, which might contain a meaningful DNS name; furthermore, using
meaningless, arbitrary names severely reduces usability.

In general, obfuscating user names with public keys does not prevent directed attacks, in which
an adversary knows the public key of a particular individual and then checks it against specific group
lists, or a correlation attack, in which an adversary compares two group lists to learn if any public
keys (users) are members of both groups. In the latter case, one possible solution is to use different

2 These numbers were accurate as of mid-June 2003.

36

keys on each group list. Unfortunately, this approach also reduces usability because one must know
in advance which key to use when authenticating to a server; moreover, guaranteeing a different
key on each group list is difficult because the owner of the key (the user) is typically not the person
creating the group.

Providing privacy in this style of user authentication service, where the server is responsible for
fetching group lists, is an open area for research. Section 7.2 discusses these privacy issues further
and some of the tradeoffs that exist.

2.8 A File System with ACLs

Once the user has credentials, the various resource servers (e.g., the file system, REX) can make ac-
cess control decisions based on those credentials. For example, the SFS computing environment has
a read-write file system that looks only at the Unix credentials and makes requests to the underlying
file system as if they were being issued by the local Unix user named in the credentials.

A modified version of the this read-write file system supports access control lists. In the ACL-
enabled variant of the file system, access control is based on all three credential types (Unix, Public
Key and Group List). The server checks the ACLs for the relevant files and/or directories to deter-
mine if the request should be allowed to proceed.

The ACL-enabled file system is only one example of how a file system could use the extended
credentials that the authentication server provides. The essential property that any file system needs
is the ability to map symbolic group names to access rights. The authentication server never sees the
details of this association; it simply issues credentials (e.g., a group list) in response to the LOGIN
RPC from the file system.

Recently, Linux and FreeBSD have introduced extensions that add ACL support directly in
their file systems [23]. These new file systems might provide an alternative to the ACL-enabled file
system. To allow the operating system to make access control decisions, however, the authentication
server would need to ensure that each of its local user and group records had a corresponding entry
in /etc/passwd and /etc/group.

2.8.1 ACL Entries

An ACL is a list of entries that specify what access rights the file system should grant to a particular
user or group of users. In the SFS-based ACL-enabled file system, ACLs can contain one of four
different types of entries. The first three ACL entry types correspond to the credential types that the
authentication server can issue to a user.

" User Names provide a convenient way to name users with Unix accounts on the local ma-
chine. User name ACL entries are matched against the User Name field of Unix credentials.

" Group Names refer to groups defined on the local authentication server. Group name ACL
entries are matched against each of the groups in the Group List credentials.

" Public Key Hashes are SHA-1 public key hashes which are matched against the Public Key
credentials.

" Anonymous is an ACL entry type that matches for all users regardless of their credentials.

Remote users and group names cannot appear on ACLs directly. Instead, users define personal
groups (prefixed by their user names) on the authentication server and place remote user and group

37

Permission Effect on files Effect on directories

r read the file no effect, but inherited by new files
w write the file no effect, but inherited by new files

1 no effect enter the directory and list its files
i no effect insert new files/dirs into the directory
d no effect delete files/dirs from the directory
a modify the file's ACL modify the directory's ACL

Table 2.1: Access rights available in ACLs

names on the membership lists of those new groups. This restriction offers several benefits. Pri-
marily, it allows the server to pre-fetch all remote authentication information. Adding a level of
indirection also provides a single location at which to place the remote authentication server's self-
certifying hostname. If the server's public key changes or is revoked, users can update a single
group record instead of hundreds or thousands of ACLs spread across the file system. Keeping
self-certifying hostnames out of ACLs also helps to keep them small.

2.8.2 Access Rights

We adopted the AFS [25] ACL access rights but extended them to differentiate between files and
directories (AFS only has ACLs on directories). Table 2.1 lists the different permissions that an
ACL can contain and the meaning that each permission has. Unlike AFS, the ACL-enabled file
server does not support negative permissions; once an ACL entry grants a right to the user, another
entry cannot revoke that right.

Chapter 3

User Authentication: Implementation,
Evaluation and Usage

This chapter evaluates the authentication server and ACL-enabled file server described above. The
evaluation of the authentication server is based on how many bytes a server needs to transfer when
fetching groups. We expect the number of bytes to scale with group size and to be such that the
system can scale to tens of thousands of members per group. The evaluation of the ACL-enabled
file server measures the performance penalty of reading, writing, and processing ACLs. We expect,
with appropriate caching, that the ACL-enabled file server will exhibit a minimal slowdown with
respect to the standard SFS file system. The chapter concludes with an example of how one might
use the system.

3.1 Authentication Server

The implementation of the authentication server in the SFS computing environment is called sf-
sauthd. It is fully functional and supports cross-domain, nested groups. Sfsauthd implements an
RPC interface (described in Section 2.2.1) to its authentication database. To improve scalability, the
server has a Berkeley DB [5] backend, which allows it to efficiently store and query large groups.
By using a database, the authentication server can scale to tens of thousands of users per group. The
authentication server also uses Berkeley DB to store its cache.

3.1.1 Evaluation: Methodology

Because the cache update scheme is a background process, the important metric by which to eval-
uate the authentication server's update scheme is how many bytes must be transferred (the compu-
tation that the server must do is insignificant). The number of bytes that the server must transfer
to update its cache depends on the number of remote records that it needs to fetch. The number of
bytes in each user record is essentially constant. (Some fields such as the User Name and the Audit
String have a variable length, but the difference is small.) For each group record, the number of
bytes that the server needs to transfer depends either on the size of the group (for new, uncached
groups) or the number of changes (for out-of-date, cached groups). We currently do not compress
any network traffic, but compression could produce significant savings.

An authentication server fetches a group record using the QUERY RPC. Because our imple-
mentation fixes the maximum size of a single RPC message, we limit the number of members plus

39

To Transfer

0 10,000 0 1,000
users users changes changes

Size of RPC Request (bytes) Q 72 72 72 72
Size of RPC Reply (bytes) R 136 136 108 108
Size of Single User/Change (bytes) S 40 40 40 40
Number of Users/Changes M 0 10,000 0 1,000
RPC Overhead Per 250 Users (bytes) 0 216 216 180 180

Total Bytes Transferred B 208 408,632 180 40,720

Table 3.1: Number of bytes transferred when fetching group records

owners (for uncached groups) or the number of changes (for cached groups) that are sent back in
the reply to 250. Larger groups require more than one QUERY RPC.

Connecting to the remote authentication server also requires two RPCs to establish the secure
connection. Because the implementation caches connections, it establishes only one such connec-
tion per update cycle per remote server; therefore, subsequent queries to a given authentication
server do not send these initial RPCs (or perform the associated public key operations). The num-
bers given below do not include the bytes transferred due to these RPCs, which total just over 900
bytes.

3.1.2 Evaluation: Results

We ran two experiments to measure the number of bytes transferred when fetching group records. In
the first experiment, the local authentication server fetched the entire group because it did not have a
version in its cache. Unsurprisingly, the number of bytes transferred scales linearly with group size.
The total number of groups transferred in this experiment was 1001. Each group consisted of an
increasing number of users: 0, 10, 20,..., 9990, 10000. Users in this experiment were represented
by the hashes of their public keys (34 bytes each). The group names were all 16 bytes, and the audit
strings were 70 bytes. The owners list was empty.

In the second experiment, the local authentication server had a cached copy of the group. As
expected, the number of bytes transferred scales linearly with the number of changes to the group.
In this experiment, we varied the number of changes that the server had to fetch from 0 to 9990 by
ten. Each change was the addition of a new user (35-bytes: the symbol "+" and a public key hash).
Here, the audit strings were slightly shorter (approximately 65 bytes).

Table 3.1 shows sample data from these experiments. Q is the size of the RPC request, R is
the size of the reply (excluding the group's users/changes), M is number of users in the group (or
the number of of changes to the group), S is the size of a single user (or change) and 0 is the
RPC overhead incurred for each additional 250 users (0 Q + R). B is the total number of bytes
transferred. All values (except for M) are in bytes.

The experimental results show that the total number of bytes transferred for a particular group
size or number of changes is given by the following formula:

B= Q+R+(M x S)+max (1,0 x 0

The values of Q, R, S, and 0 are constants that depend on the characteristics of the group, such as
the length of member names or the audit string.

40

These experiments also show that the RPC overhead is insignificant. For example, to transfer

10,000 users requires approximately 400 KB. The total RPC overhead is only [M] x 0 = 8,424

bytes, which is just over 2% of the total bytes transferred.

These numbers demonstrate that the authentication server can reasonably support the group

sizes found on MIT Athena. The largest Athena group has 1,610 members. Based on the formula

above, the number of bytes required to transfer that group is 65,904.

As a thought experiment, if all of the Athena groups existed as groups in an sfsauthd database,

and a different authentication server (in a different domain) wanted to fetch all 20,000 plus groups,

the transfer would require just under 16 MB. Once the groups are cached, subsequent runs of the

update cycle would transfer approximately 3.5 MB (= 180 bytes for zero changes x 20,363 groups).

This result, however, represents a worst-case scenario. Most likely, a remote administrative domain

would not want to reference all of these groups, most of which are not relevant outside of MIT.

In fact, about one half of the 20,363 groups contain only a single user. If such scenarios became

common, new RPCs could be introduced that first retrieve a list of groups that have changed, for

example.
The total number of bytes that an authentication server must transfer during each update cycle

depends on the size of the entire containment graph, not just a single group or a set of groups from a

single remote administrative domain. Because delegation through nested sub-groups is easy, these

graphs could become quite large in theory. Future usage studies and deployment experience might

indicate how people would build group hierarchies in practice.

3.2 ACL-Enabled File System

The SFS ACL-enabled file system (sfsaclsd) [51] is an extension of the SFS read-write file system.

Both variants store files on the server's disk using NFSv3 [10]. This technique offers portability to

any operating system that supports NFSv3 and avoids the need to implement a new in-kernel file

system.

3.2.1 Locating ACLs

The drawback to storing files on a standard Unix file system (through NFS) is that Unix file systems

do not provide a convenient location to store ACLs. Sfsaclsd stores file ACLs in the first 512 bytes

of the file and directory ACLs in a special file in the directory called .SFSACL.

These implementation decisions are motivated by the need to have an efficient way to locate the

ACL for a file system object given an NFS request for that object. NFS requests containfile handles

and storing the ACLs in a database indexed by NFS file handle would technically be possible;

however, it would impose constraints on how one treated the underlying file system. Backups and

restores, for example, would all need to preserve disk-specific meta data such as inode number to

ensure that the NFS file handles did not change (or tools would need to be written which updated

the ACL database appropriately).

To retrieve a file's ACL, sfsaclsd can simply read the first 512-bytes of the file to extract its

ACL. The server hides the ACL's existence from the client by doctoring the NFS RPC traffic as

it passes through the server (e.g., adjusting the of fset fields of incoming READ and WRITE
requests and the s i ze field of the attributes returned in replies).

To retrieve a directory's ACL, sfsaclsd issues a LOOKUP request for the file . SFSACL in the

given directory. LOOKUP returns the NFS file handle for the . SFSACL file which contains the

directory's ACL in its first 512-bytes. The server proceeds to read the ACL as in the file case above.

41

3.2.2 ACL Format

For rapid prototyping and to simplify debugging, we chose to use a text-based format for the ACLs.
The ACL for Charles's /home /c s 10 0 directory described in the previous chapter might be:

ACLBEGIN

user:charles:rwlida:

group:charles.cs100-staff:rwlid:

group:charles.cslO0-students:rl:

ACLEND

Charles creates these groups on his local authentication server before placing them on the directory's
ACL. Permissions such as r and w have no effect on directories, but they are still useful because
any new files created in this directory will inherit this ACL. Thus, users can determine the default
access permissions on files when they create the directory.

The on-disk ACL representation could be more compact. In the future, we may move to a binary
format to encode the ACL.

3.2.3 Permissions

When sfsaclsd receives an NFS request, it retrieves the necessary ACL or ACLs and decides whether
to permit the request. The access rights required for a given request are based on the type of that
request and the object(s) involved. The file system client can determine these rights (for instance,
when opening a file) by issuing the NFSv3 ACCESS RPC. The ACL-enabled file server replies to
ACCESS based on the object in question's ACL.

File attributes returned by the server still contain standard Unix permission bits. These bits
are not used by the file server to determine whether the request will succeed, but they may be
useful to the client. The server sets them to the nearest approximation of the file's ACL. When the
correct approximation is ambiguous, the server uses more liberal permissions. Client applications
might otherwise fail due to a perceived lack of access rights even though the request would actually
succeed based on the ACL.

3.2.4 Caching

The ACL-enabled file system server maintains two internal caches to improve performance. First,
the server caches ACLs to avoid issuing extra NFS requests to the underlying file system every time
it needs to retrieve an ACL. Because most NFS requests from the client will require an ACL to
decide access, the ACL cache can reduce the number of extra NFS requests by a factor of two or
more.

Second, the server caches the permissions granted to a user for a particular ACL based on his
credentials. The permissions cache avoids reprocessing the ACL, which might be expensive if the
user has many credentials (i.e., he is a member of many groups).

3.2.5 Evaluation: Methodology

The ACL mechanism introduces a penalty in the overall performance relative to the original SFS
read-write file system. This penalty is mainly due to the extra NFS requests that the ACL file system

42

Original SFS ACL SFS with caching ACL SFS without caching
Phase seconds seconds (slowdown) seconds (slowdown)

CREATE 15.9 18.1 (1.14x) 19.3 (1.21x)
READ 3.4 3.5 (1.03x) 4.3 (1.26x)
DELETE 4.8 5.1 (1.06 x) 6.0 (1.25 x)

Total 24.1 26.7 (.11x) 29.6 (1.23x)

Table 3.2: LFS small file benchmark, with 1,000 files created, read, and deleted. The slowdowns
are relative to the performance of the original SFS.

needs to issue in order to locate and read (or write) the ACLs associated with the incoming requests
from the client.

To quantify the penalty, we measured file system performance between a server running Linux
2.4.20 and a client running FreeBSD 4.8. The machines were connected by 100 Mbit/s switched
Ethernet. The server machine had a 1 GHz Athlon processor, 1.5 GB of memory, and a 10,000 RPM
SCSI hard drive. The client machine had a 733 MHz Pentium III processor and 256 MB of memory.

We used the Sprite LFS small file micro benchmark [49] to determine the performance penalty
associated with our ACL mechanism. The benchmark creates, reads, and deletes 1,000 1024-byte
files. The benchmark flushes the client kernel's buffer cache, but we set the sizes of the internal ACL
and permission caches to large enough values so that entries were not flushed from those caches by
the time they were needed again. By ensuring that the caches do not overflow during the test, we
can better understand how the performance penalty relates to the extra NFS calls and permissions
checks that are needed for access control. Using this test, we measured the performance of the
original SFS file system, the ACL-enabled file system, and the ACL-enabled file system with the
caches turned off.

3.2.6 Evaluation: Results

Table 3.2 shows the results of running the benchmark on the three file system variants. The figure
breaks down the best result of five trials.

In the create phase, the performance penalty is due mainly to the extra NFS requests needed to
write the ACL of each newly created file. In particular, the NFS WRITE RPC to write the ACL
itself is synchronous (the server commits all of the ACL data to stable storage before returning).
Processing the directory's ACL to check permissions also contributes to the performance penalty.

For the read and delete phases of the benchmark, the ACL cache offers a noticeable performance
improvement. The server can avoid making NFS calls to retrieve ACLs because they are cached
from the create phase of the benchmark.

Table 3.3 shows the cost of reading a file during the read phase of the benchmark, expressed
as the number of NFS RPCs to the loopback NFS server. Each READ request from the client
is preceded by a LOOKUP and an ACCESS. In the current implementation, without caching,
LOOKUP and ACCESS each require two extra NFS RPCs to determine the directory's ACL and
the file's ACL. READ requires one extra RPC to determine the file's ACL.

The last row of Table 3.3 lists predicted slowdown, the ratio of the number of NFS RPCs re-
quired by the ACL-enabled file server (with and without caching) to the number required by the orig-
inal SFS file server. With caching enabled, the actual read-phase performance slowdown (1.03x)

43

Original SFS ACL SFS with caching ACL SFS without caching
NFS request (NFS RPCs) (NFS RPCs) (NFS RPCs)

LOOKUP 1 1 3
ACCESS 1 1 3
READ 1 1 2

Total 3 3 8

Predicted slowdown 1.00x 1.00 x 2.67 x

Table 3.3: Cost of reading a file during the read phase of the Sprite LFS small file benchmark,
expressed as the number of NFS RPCs to the loopback NFS server.

basically agreed with the predicted slowdown (1.00 x). The difference is likely due to the overhead
of cache lookups.

With caching disabled, the actual slowdown (1.26 x) was much lower than the predicted slow-
down (2.67 x). We attribute this discrepancy to the fact that the operating system on the server is
reading the entire file into its buffer cache when it reads the file's ACL (stored in its first 512-bytes).
When the operating system reads the file's contents, it does not need to access the disk.

These experiments indicate that the additional NFS requests required to support ACLs result in a
performance slowdown. We chose the small file benchmark in particular to expose the performance
overhead of having to retrieve ACLs through NFS loopback.

We expect that many end-to-end applications will experience a minimal performance impact
due to the introduction of ACLs. For example, we ran an experiment that involved unpacking,
configuring, compiling, and deleting an Emacs distribution on both the original SFS and on the
ACL-enabled SFS (with caching). We found that the total slowdown was only 1.02 x.

3.3 Usage

We provide two tools for manipulating groups and ACLs. Examples of their usage are given below.
First, we've extended the sfskey utility to view, create, and update group lists on an authentication
server.

Second, a new utility, sfsacl, allows users to view and set ACLs from their clients. The sfsacl
program uses two special RPCs which are not part of the standard NFS/SFS protocols; the ACL-
enabled file system server intercepts these RPCs and handles them directly (instead of passing them
to the underlying NFS loopback file system). The SFS client software provides a way for sfsacl to
obtain both a connection to the ACL file server and the file handle of the directory containing the
ACL it wants to access. (The user accesses a special file name in the directory, and the client file
system software creates a special symbolic link on-the-fly whose contents is the desired file handle).

Aside from sfskey and sfsacl, all of the implementation is on the server. The standard SFS
read-write file system client is completely compatible with the SFS ACL-enabled server.

The following example demonstrates how Charles at CMU might use this system to share his
course software. The software is on Charles's ACL-enabled file server in a directory called /home/
c s 10 0. First, Charles creates a personal group on the authentication server:

$ sfskey group -C charles.cslOO-students

He can now add members to this new group:

44

$ sfskey group \
-m +u=jenny \

-m +u=liz@bu. edu,ur7bn28ths99hfpqnibfbdv3wqxqj8ap \

-m +g=students@mit .edu, fr2eisz3fifttrtvawhnygzk5k5jidiv \

-m +p=anb726muxau6phtk3zu3nq4n463mwn9a \

charles.cslOO-students

jenny is a local user, liz is a remote user maintained at bu. edu, students is a remote group
at mit. edu, and anb726muxau6phtk3 zu3nq4n463mwn9a is a hash of the public key be-

longing to a user who is not associated with an organization that runs an authentication server. Both

bu. edu and mit . edu are self-certifying hostnames.
If Charles decides that he wants to share administrative responsibility for his group with his

friend George at Sun, he can make his friend an owner:

$ sfskey group \

-o +u=george@sun.com,ytzh5beann4tiy5aeic8xvjce638k2yd \

charles.cslO0-students

George is now free to add new members (or delete current ones) from Charles's group. Finally,
Charles is ready to use his group to share his courseware. He constructs an ACL and places it on
the directory as follows:

$ cat myacl.txt

ACLBEGIN

user:charles:rwlida:

group:charles.cslO0-staff:rwlid:

group:charles.cslOO-students:rl:

ACLEND

$ sfsacl -s myacl.txt /home/cslOO

Charles has full access permissions to the directory, his course staff have read-write access, but the

members of charles. cs1O 0 - students can only read and list its contents.

45

46

Chapter 4

REX Design

This chapter presents REX, a remote execution utility designed to work across administrative do-

mains. REX has an extensible, modular architecture that does not require changes to the core
protocol and software in order to add new features. REX provides this extensibility without com-
promising security, which is particularly important when operating across administrative domains.

Section 4.1 begins with an overview of the architecture, and Section 4.2 discusses REX session
establishment. Sections 4.3 and 4.4 describe how REX achieves its main goals of extensibility and
security.

4.1 Architecture

At its most basic level, REX provides a secure pipe abstraction between two machines. This secure

pipe is called a REX session, and it typically corresponds to a single TCP connection between a
REX client and a particular server. Sessions are the mechanism through which users run programs

on the server. Section 4.2 describes how REX establishes new sessions. This section describes the
anatomy of a session and provides a simple example of how remote execution works in REX. It

concludes with a discussion of file descriptor passing, the basic building block for extensibility in

REX.

4.1.1 Sessions, Channels, and Remote Execution

Figure 4-1 shows the anatomy of a REX session. A REX session is a connection between a process
called rex1 running on the client machine and a process call proxy running on the server (Section 4.2
provides details on how sessions are established). Each session contains one or more REX channels.

A channel is an abstraction that connects a pair of programs running on different machines; these

programs are called modules. REX channels allow modules to communicate as if they were running

on the same machine, connected by one or more Unix-domain socket pairs. The abstraction within

a channel that represents this socket pair is called a REXfile descriptor.

Users run programs on the server by creating new channels. The channel protocol involves three
main RPCs, summarized in Table 4.1 and described more fully below. The rex client creates a new
channel by sending a REXJIKCHANNEL RPC to proxy. The RPC specifies the name of the
server module to run, a set of command-line arguments and environment variables to set, and the
number of file descriptors the spawned module should inherit. (If fewer than three file descriptors

1 This thesis uses REX (capital letters) to refer to the remote execution utility as a whole and rex (italicized lowercase)
to refer to the client program that the user invokes to start a REX session.

47

Channel

File descriptor Module

Figure 4-1: Anatomy of a REX session

RPC Direction Description

REXMKCHANNEL rex - proxy Create a new channel

REXDATA rex -+ proxy Send data over a channel/file descriptor

REXNEWFD rex - proxy Pass a new file descriptor

REXCB-DATA proxy -* rex Send data over a channel/file descriptor

REXCBNEWFD proxy -- rex Pass a new file descriptor

Table 4.1: REX channel protocol RPCs

are specified, standard input, standard output, and possibly standard error of the spawned process

will be the same socket.) Depending on the channel, rex can either redirect 1/0 to a local module,

or else relay data between the channel file descriptors and its own standard input, output, and error.

Figure 4-1 shows several types of channels, including one for X1I forwarding and one for TTY

support. These channels are described in Section 4.3.

Figure 4-2 illustrates how a user might execute the program is on the server using REX. The

user runs the command rex -x host 1s. (The -x argument disables X11 forwarding.) The rex

client sends a REXMKCHANNEL RPC to proxy specifying that the user wants to run is and that

three REX file descriptors should be set up within the channel. When proxy receives this RPC, it

creates a new channel within the session and spawns is as the server module. Proxy assigns a unique

channel number (e.g., 15) to the channel and returns that number to rex.

The rex client, in this example, acts as the client module itself (instead of spawning a separate

program). Rex relays data that appears on the three REX file descriptors in the channel to its own

Unix standard file descriptors (FDs 0, 1, and 2). On the server, proxy spawns Is and creates three

Unix-domain socket pairs. Proxy connects one end of each socket pair to Is's standard file descrip-

tors, and it keeps the other end of these Unix-domain socket pairs itself, relaying data between them

and the REX file descriptors in the channel.

Figure 4-3 shows how data travels through the REX channel when is produces output. First, Is

writes to its own standard output (FD 1). That data travels through the Unix-domain socket pair

that is shares with proxy. Proxy reads the data from its end of the socket pair and then generates

48

$ rex -x host ls

IEI. III
MKCHANNEL (prog="ls", nfds=3)

channo=15

Sspawns

Figure 4-2: Using a REX channel to run Is

$ rex -x host ls

write (fd=1,) read (fd=x, .)

write (fd=1, ...)

Figure 4-3: How data travels through REX when Is produces output

a REXCBDATA RPC to rex, specifying the REX channel number and file descriptor number on

which the given data appeared. When rex receives this RPC, it copies the data from the indicated

channel file descriptor to the appropriate Unix file descriptor (in this case, FD 1). If the rex client's

standard output is the user's terminal, for example, the data from Is will appear there.

4.1.2 File Descriptor Passing

In addition to replicating reads and writes across the network, REX channels emulatefile descriptor

passing between modules running on different machines. Unix provides a facility for file descriptor

passing between two processes running on a single machine that are connected by a Unix-domain

socket pair [45]. Using the sendmsg and recvmsg system calls, one process can send one of its

file descriptors to the other process. The receiving process effectively gets a copy of the sending

machine's file descriptor (i.e., both sides have a file descriptor that refers to the same kernel data

structure). File descriptor passing is like the dup system call, except across processes.

The channel abstraction is the mechanism through which REX emulates file descriptor passing

over the network. When a client module passes a file descriptor to rex, rex notifies proxy through

the REXNEWFD RPC. Proxy then creates a new Unix-domain socket pair, passes one end to

49

1spawns

Figure 4-4: Setting up a REX session (Stage 1). Rexd runs with superuser privileges (shown with

a thick border).

the local server module, and allocates a new REX file descriptor number within the channel for

the other end. Conversely, when a server module passes a file descriptor to proxy, proxy allocates

a new REX file descriptor number for it within the appropriate channel and notifies rex through

the REXCB-NEWFD RPC. Rex makes a new socket pair and passes one end to the local client

module. As Section 4.3 demonstrates in detail, this emulated file descriptor passing is the foundation

of REX's extensibility.

4.2 Establishing a Session

REX sessions provide a secure pipe between two machines. All subsequent communication is

layered on top of this pipe. A primary goal in REX session establishment is security. Only the code

that needs superuser privileges has those privileges. A secondary goal in REX session establishment

is efficiency. Remote execution should be cheap, particularly if running multiple programs on the

same machine.

Establishing a REX session has two stages. In Stage I, the user's agent establishes a secure,

authenticated connection to the server using public key cryptography. This initial connection by

the agent is called the master REX session. In Stage II, the REX client creates new REX sessions,

based on the master session, to run programs on the server. When the user invokes the rex client,

the client first checks with the user's agent to see if a master session already exists with the desired

server. If so, rex proceeds directly to Stage II; otherwise, rex continues with Stage I and sets up a

new master REX session.

4.2.1 Stage I

Rex begins by contacting the sfsagent and asking it to establish a new master session to the desired

server (Figure 4-4, Step 1). In Step 2, the sfsagent uses the server's public key to establish a secure

connection to the rexd process running on the server.2 Section 4.4.3 describes several mechanisms

through which the client can obtain the server's key.

Next, the sfsagent authenticates its user to rexd (Step 3). The authentication procedure that REX

uses is the same one described in Section 2.3. The agent signs an authentication request, which it

passes to the server through the secure connection. Rexd passes the authentication request to the

2By default, the agent's connection to rexd goes through the sfssd "meta-server" as described in Section 1.5.1; for

simplicity, this extra step is omitted in here.

50

M. I

Figure 4-5: Setting up a REX session (Stage 11). The gray line represents the master REX session
established during Stage 1.

authentication server, sfsauthd, which verifies the signature and produces credentials for the user.

Rexd uses the Unix credentials it receives to map the client user to a local account.

Once the user is authenticated, rexd, which runs with superuser privileges, spawns a new process

called proxy, which runs with the privileges of the local user identified above (Step 4). Proxy is

responsible for most of the functions normally associated with remote execution.

The sfsagent and rexd now generate new symmetric cryptographic keys (one for each direction).

These keys are known as the MasterSessionKeys. All subsequent sessions with this proxy process

use session keys that are derived from these MasterSessionKeys.

Rexd hands proxy the connection it has with the sfsagent (Step 5). The sfsagent and proxy now

communicate with each other directly over their own connection, using their own protocol and their

own cryptographic keys (derived from the MasterSessionKeys). This connection is called the master

REX session. Rexd keeps track of all master REX sessions (i.e., all proxy processes it has spawned).

The sfsagent maintains its connection to proxy in order to keep the master session alive; once the

agent closes its connection to proxy (provided no other clients are still connected), proxy will exit

and rexd will delete the master session.

4.2.2 Stage II

The master REX session is a connection between the user's sfsagent and proxy, but all subsequent

sessions are connections between rex and proxy. To establish such a session, the rex client notifies

the sfsagent that it wants to create a new session to the desired server (Figure 4-5, Step 1).

The sfsagent computes the values shown in Figure 4-6 based on the MasterSessionKeys that were

established when proxy was spawned. The SessionKeys are the symmetric keys that the rex client

will use to encrypt its connection to proxy. They are computed as the HMAC-SHA-1 [16, 33] of a

sequence number i keyed by the MasterSessionKeys. The agent generates a unique sequence number

for each new REX session to prevent an adversary from replaying old sessions. The SessionID is a

SHA-1 [16] hash of the SessionKeys, and the MasterSessionID is the SessionID where the sequence

number is 0.
Once the sfsagent computes these values, it returns them to the rex client. Rex makes an ini-

tially insecure connection to rexd (Step 2) and sends the sequence number, the MasterSessionID,

and the SessionID. Session IDs can safely be sent over an unencrypted connection because adver-

saries cannot derive session keys from them. Rexd looks up the appropriate master session (i.e., the

appropriate proxy process) based on the MasterSessionID. Then, rexd computes the SessionKeys

and the SessionID for the new REX session (as in Figure 4-6) based on the sequence number that it

just received and the MasterSessionKeys that it knows from the initial connection by the sfsagent.

51

SessionKeySCi = HMAC-SHA- 1 (Mast erSessionKeySC, i)

SessionKeyCSi HMAC-SHA- 1 (MasterSessionKeyCS, i)

SessionlDi = SHA-1(SessionKeySCi,SessionKeyCSi)

MasterSessionID = SessionID0

Figure 4-6: Sfsagent and rexd use the MasterSessionKeys and sequence number (i) to compute
new SessionKeys.

Rexd verifies that the newly computed SessionID matches the one received from the rex client. If
they match, rexd passes the connection to proxy along with the new SessionKeys (Step 3). Finally,
rex and proxy both begin securing (encryption and message authentication code) the connection.

4.2.3 Connection Caching

The protocol REX uses to set up subsequent sessions (Stage II) is a form of connection caching [14,
20]. Rex uses the sfsagent to establish a master session with rexd/proxy first. This initial REX
connection is set up using public-key cryptography. Once this connection is established, REX
uses symmetric cryptography to secure communication over the untrusted network. The sfsagent
remembers (maintains) this connection in order to set up subsequent REX sessions to the same
machine quickly. Subsequent sessions bypass the public-key step and immediately begin encrypting
the connection using symmetric cryptography.

For an interactive remote terminal session, the extra time required for the public-key cryptogra-
phy might go unnoticed, but for batched remote execution that might involve tens or even hundreds
of logins, the delay is observable. Connection caching offers an added benefit; if the user's agent
was forwarded, that forwarding can remain in place even after the user logs out, allowing him to
leave programs running that require use of the his sfsagent. Sfskey lets the user list and manage open
connections.

4.3 Extensibility

One of the main design goals for REX is extensibility. SSH has demonstrated that users want more
features than just the ability to execute programs on a remote machine. TTY support, XII for-
warding, port forwarding, and agent forwarding, for example, are critical parts of today's remote
execution tool. When working across administrative domains, however, the need can arise for new,
unanticipated features. REX, therefore, not only offers the features found in existing remote exe-
cution utilities, but it also provides users with a simple, modular interface to add new ones. REX's
extensibility stems primarily from the REX channel's ability to emulate file descriptor passing over
the network. None of the features described in this section required any changes to the REX proto-
col.

4.3.1 TTY Support

REX provides optional pseudo-terminal support to interactive login sessions (allocating a pseudo-
terminal is the default behavior if no command-line options are specified). REX implements pseudo-
terminal support using the channel abstraction and file descriptor passing as follows. When the user

52

$ rex host

El 3

NEWFD (channo=15, fd=O, newfd=5) 21

spawns
1

Figure 4-7: Supporting TTYs with emulated file descriptor passing

runs rex hos t, REX establishes a new session. Then, the rex client sends a REXMKCHANNEL
RPC to proxy telling it to launch a module called ttyd. Ttyd takes as an argument the name of the
actual program that the user wants to run. For an interactive login session, the user can omit the
argument to ttyd, and ttyd will automatically default to the user's shell. Proxy spawns ttyd, setting
up a Unix-domain socket pair between them as in the Is example above (here, however, the channel
has only one initial file descriptor).

Ttyd runs with only the privileges of the user who wants a TTY. The program has two tasks.
First, it obtains a TTY from a separate daemon running on the server called ptyd. Ptyd runs with
superuser privileges and is responsible only for allocating new TTYs and recording TTY usage in
the system utmp file. The two processes, ttyd and ptyd, communicate via RPC. When ptyd receives
a request for a TTY, it uses file descriptor passing plus an RPC reply to return the master and slave
sides of the TTY. Ttyd connects to ptyd with suidconnect, SFS's authenticated IPC mechanism

(described further in Section 4.3.4). This mechanism lets ptyd securely track and record which
users own which TTYs.3 After receiving the TTY, ttyd keeps its connection open to ptyd. Thus,
when ttyd exits, ptyd detects the event by an end-of-file. Ptyd then cleans up device ownership and
utmp entries for any TTYs belonging to the terminated ttyd.

Once ttyd receives a newly allocated TTY, its second task is to spawn the program given as

its argument, or, more commonly, the user's shell (see Figure 4-7, Step 1). Ttyd spawns the shell

with the slave side of the newly allocated TTY (left) as the shell's standard file descriptors and
controlling terminal. Then, ttyd uses local Unix file descriptor passing to send the file descriptor

of the TTY's master side back (right) to proxy (Step 2). Proxy receives the file descriptor of the

TTY's master side and uses the REXCB.NEWFD RPC to send it to rex (Step 3). The arguments
to REXCBNEWFD are the REX channel number and current file descriptor over which the new

file descriptor is begin sent, plus the new file descriptor's number. Once the rex client receives and

processes this RPC, rex and proxy add a new REX file descriptor to the channel over which the

modules can send data (Step 4). This file descriptor represents the master side of the TTY. On the

3 Unlike traditional remote login daemons, ptyd, with its single system-wide daemon architecture, could easily defend

against TTY-exhaustion attacks by malicious users. Currently, however, this feature is not implemented.

53

client machine, rex copies data back and forth between this copy of the TTY's master file descriptor
and its own standard file descriptors (which might, for example, be connect to the xterm in which
rex was started). When the user's shell running on the remote machine writes data to the TTY, proxy
will read the data and send it over the channel's new file descriptor to rex.

Rex and ttyd also implement terminal device behavior that cannot be expressed through the
Unix-domain socket abstraction. For example, typically when a user resizes an xterm, the appli-
cation on the slave side of the pseudo-terminal receives a SIGWINCH signal and reads the new
window size with the ioctl system call.

In REX, when a user resizes an xterm on the client machine, the program running on the remote
machine needs to be notified. The rex client catches the SIGWINCH signal, reads the new terminal
dimensions through an ioctl. It sends the new window size over the channel using file descriptor 0,
which is connected to ttyd. Upon receiving the window resize message, ttyd updates the server side
pseudo-terminal through an ioctl.

4.3.2 Forwarding X1I Connections

REX also supports X11 connection forwarding using channels and file descriptor passing. Rex
tells proxy to run a module called listen with the argument -x. Listen finds an available X display
on the server and listens for connections to that display on a Unix-domain socket in the directory
/ tmp / .X11-unix. Listen notifies the rex client of the display it is listening on by writing the
display number to file descriptor 0.

Based on this remote display number, rex generates the appropriate DISPLAY environment
variable that needs to be set in any X programs that are to be run. Next, rex generates a new (fake)
MIT-MAGIC- COOKIE-1 for X authentication. It sets that cookie on the server by having proxy
run the xauth program. When an X client connects to the Unix-domain socket on the server, the
listen program passes the accepted file descriptor over the channel to rex, which connects it to the
local X server (i.e., it copies data between the received file descriptor and the local X server's file
descriptor). Rex also substitutes the real cookie (belonging to the local X server) for the fake one.

4.3.3 Forwarding Arbitrary Connections

REX has a generic channel interface that allows users to connect two modules from the rex client
command-line without adding any additional code. Rex creates a channel that connects the standard
file descriptors of the server module program to a user-specified client module program. Unlike the
TTY channels described above, here the rex client itself does not act as the client module. Channels,
combined with file descriptor passing, allow REX users to easily build extensions such as TCP port
forwarding and even SSH agent forwarding.

TCP port forwarding. Port forwarding essentially makes connections to a port on one machine
appear to be connections to a different port on another machine. For example, a wireless network
user concerned about eavesdropping might want to forward TCP port 8888 on his laptop securely
to port 3128 of a remote machine running a web proxy. REX provides such functionality through
three short utility programs: listen, moduled and connect. In this case, the appropriate rex client
invocation is: rex -m "listen 8888" "moduled connect localhost:3128" host.

Rex spawns the listen program, which waits for connections to port 8888; upon receiving a
connection, listen passes the accepted file descriptor to rex, which uses the REXNEWFD RPC to
send it over the channel to proxy. The moduled module on the server is a wrapper program that
reads a file descriptor from its standard input and spawns connect with this received file descriptor
as connect's standard input and output. Connect connects to port 3128 on the remote machine and

54

copies data between its standard input/output and the port. A web browser connecting to port 8888
on the client machine will effectively be connected to the web proxy listening on port 3128 of the
server machine.

SSH agent forwarding. REX's file descriptor passing applies to Unix-domain sockets as well as

TCP sockets. One useful example is forwarding an SSH agent during a remote login session. The rex

client command syntax is similar to the port forwarding example, but reversed: r ex -m "modul e d
connect $SSH__AUTHSOCK" "listen -u /tmp/ssh-agent-sock" host.4 Here, the
"-u" flag to the listen module tells it to wait for connections on a Unix-domain socket called

ssh- agent- sock. Upon receiving a connection from one of the SSH programs (e.g., ssh, scp,

or ssh-add) listen passes the connection's file descriptor to the client. The moduled/connect com-

bination connects the passed file descriptor to the Unix-domain socket named by the environment

variable SSHAUTHSOCK, which is where the real SSH agent is listening. In the remote login ses-

sion on the server, the user also needs to set SSHAUTHSOCK to be / tmp/ ssh- agent- sock.

We have written a shell-script wrapper that hides these details of setting up SSH agent forwarding.

4.3.4 Forwarding the SFS agent

When first starting up, the sfsagent program connects to the local SFS daemon to register itself using

authenticated IPC. SFS's mechanism for authenticated, intra-machine IPC makes use of a 120-line

setgid program, suidconnect [36]. Suidconnect connects to a protected, named Unix-domain socket,

sends the user's credentials to the listening process, and then passes the connection back to the

invoking program. 5 Though suidconnect predates REX, REX's file descriptor passing was sufficient

to implement SFS agent forwarding with no extra code on the server. Simply running suidconnect

in a REX channel causes the necessary file descriptor to be passed back over the network to the

agent on a different machine.

Once the sfsagent is available on the remote machine, the user can access it using RPC. All of

the user's configuration is stored in one place; requests are always forwarded back to the agent, so

the user does not see different behavior on different machines.

4.3.5 Same Environment Everywhere

When a user logs into a remote machine, he should have the same environment as on the local

machine, even if the remote machine is in a different administrative domain. Providing the same

environment across domains is particularly important because the remote machines involved often

have different configurations than machines in the local domain. For example, the remote admin-

istrator might not have set up the same trust relationships or have mounted the same network file

systems that are typically available in the user's local domain.

REX provides a consistent computing environment during remote login by forwarding the sf-

sagent, which stores various state for the user. For example, the agent maintains a per-user view

of the / s f s directory (where all remote SFS file systems are mounted). When the user initiates a

remote login, the combination of REX, SFS, and the agent replicates the local / s f s on the remote

machine.
The agent is responsible for other state related to the user's computing environment as well:

server key management, user authentication, revocation. Thus, the remote login session behaves

4When possible, listen rejects Unix-domain connections from other user IDs (through permission bits, getpeereid,
or SO-PEERCRED ioctis). As this doesn't work for all operating systems, in practice we hide forwarded agent
sockets in protected subdirectories of / tmp /.

5getpeereid, when available, is used to double-check suidconnect's claimed credentials.

55

the same as the local one. For example, not only does the user have access, through the global
file system, to his home directory, but he can also authenticate to it in the same way. SSH differs
from this architecture in that an SSH user's environment might depend on the contents of his . ssh
directory, which might be different between the local and remote machines. Because SSH cannot
forward the sfsagent, even an SSH user whose home directory is on SFS would be unable to access it
without starting an agent on the remote machine, which is inconvenient when using many machines.

4.4 Security

The REX architecture provides three main security benefits. First, REX minimizes the code that
a remote attacker can exploit. Second, REX allows users to configure and manage trust policies
during a remote login session. Third, REX provides several ways to name remote servers that are
designed to avoid man-in-the-middle attacks.

4.4.1 Minimizing Exploitable Code

Remote exploits are a major concern for software developers. Buffer overruns and other bugs have
led to serious system security compromises. Protecting against remote exploits is critical, especially
when the remote execution service is open to logins from other administrative domains. In such
configurations incoming connections are not restricted to trusted, local users, but can be initiated by
any Internet user.

REX attempts to mitigate this problem by minimizing the amount of remotely exploitable code.
REX also attempts to protect against local exploits by minimizing the amount of code that runs
with superuser privileges. REX offers protection against both types of exploits through the REX
architecture's use of local file descriptor passing.

In REX, only rexd listens for and accepts connections from remote clients. Rexd runs with
superuser privileges in order to authenticate the user (via sfsauthd) and then spawn proxy with the
privileges of that user. Rexd uses local file descriptor passing to pass the client connection to proxy.

REX reduces the potential of local superuser exploits. For example, the privileged ptyd daemon
allocates pseudo-terminals and passes them, using local file descriptor passing, to ttyd which runs
with the privileges of a normal user. The privileged programs are small and perform only a single
task, allowing easy auditing. Not counting general-purpose RPC and crypto libraries from SFS,
rexd is about 500 lines of code and ptyd is about 400 lines.

Protecting against exploits in REX is straightforward because the architecture and protocols
were designed from the ground up to allow for easy privilege separation. Thinking about privilege
separation and other security issues is an important principle in designing new protocols.

4.4.2 Restricted Delegation of Authority

One particularly difficult issue with remote login is the problem of accurately reflecting users' trust
in the various machines they log into. Typically, users trust machines in their own administrative
domain, but they may trust machines in other domains less.

For example, a user may use local machine A to log into remote machine B, which is part of a
remotely administered shared computing cluster. From B, the user logs back into A. Many utilities
support credential forwarding to allow password-free login from B back to A-but the user may
not trust machine B as much as machine A. For this reason, other systems often disable credential
forwarding by default, but the result of that is even worse. Users logging from B back into A will

56

Figure 4-8: A GUI confirmation program

simply type their passwords. This approach is both less convenient and less secure, as untrusted
machine B will now not only be able to log into A, it will learn the user's password!

To address this dilemma, REX and the sfsagent support restricted delegation of authority through
a mechanism called selective signing. Selective signing offers a convenient way to build up trust
policies incrementally without sacrificing security. During remote login, REX remembers the ma-
chines to which it has forwarded the agent. In the remote login session, when the user invokes rex
again and needs to authenticate to another server, his sfsagent will run a user-specified confirmation
program. This program, which could be a simple text message or a graphical pop-up dialog box,
displays the name of the machine originating the authentication request, the machine to which the
user is trying to authenticate, the service being requested (e.g., REX or file system) and the key
with which the agent is about to sign. The user's agent knows about all active REX sessions and
forwarded agent connections, so the remote machine cannot lie about its own identity.

Because signed authentication requests contain the name and public key of the server being
accessed, as well as the particular service, the agent always knows exactly what it is authorizing.
With this information, the user can choose whether or not to sign the request. Thus, users can decide
case-by-case whether to let their agents sign requests from a particular machine, depending on the
degree to which they trust that machine. The modularity of the agent architecture allows users to
plug in arbitrary confirmation programs. Currently, SFS comes with a GUI program (see Figure 4-8)
that displays the current authentication request and the key with which the agent is about to sign it.
The user has five options: to reject the request; to accept (sign) it; to sign it and automatically sign
all similar requests in the future; to sign it and all similar requests where the server being accessed
is in the same DNS domain as the given server; and to sign it and all subsequent requests from the
same client, regardless of the server being accessed.

57

***** SFS Authentication Request **

REQUEST FROM: bard.lcs.mit.edu
TO ACCESS: amsterdam.lcs.mit.edu

WITH SERVICE: SFS File System
USING KEY: kaminsky pdos.Tcs.mit.edu

rOptions-- -

1 Reject the authentication request

Accept the authentication request

Accept and allow future authentication requests
from bard-lcs.mit.edu
to amsterdam.lcs.mit.edu

Accept and allow future authentication requests
from bard.lcs.mit.edu
to any host matching *,Ics.mit.edu

Accept and allow all future authentication requests
from bard.lcsnit.edu
to any host

4.4.3 Naming Servers Securely

Securely connecting to a remote machine requires securely naming and authenticating that machine.
At the lowest level, REX uses self-certifying hostnames to create such connections. The system also
provides, based on the server authentication mechanisms available in SFS, several ways to retrieve
these self-certifying hostnames automatically. These mechanisms free the user from having to type
self-certifying hostnames directly (though, of course, they are free to do so if desired). Having a
variety of secure, flexible server naming techniques is important in a cross-domain environment
because different users have different needs, which can depend on the particular machine they are
accessing.

The primary technique that REX uses to retrieve self-certifying hostnames is the Secure Remote
Password (SRP) protocol [62]. Using SRP, the user can authenticate the server based on a weak
password. The user registers for SRP ahead of time (e.g., by visiting a system administrator or
perhaps by bootstrapping with a Unix password). When the user runs "rex host", the REX
client software will prompt the user for his SRP password and execute the protocol. If successful,
the user will obtain a copy of the server's self-certifying hostname, which REX will use to create the
secure remote login connection. The sfsagent maintains a cache that maps DNS names (names that
the user types in) to their self-certifying hostnames. On successful completion of the SRP protocol,
REX adds a new mapping to the agent's cache. Later, if the user decides to connect to the same
server, rex can ask the agent for the server's self-certifying hostname without having to use SRP
(and therefore prompt the user for a password).

A second technique for securely naming servers is to use symbolic links in the file system. Self-
certifying hostnames allow the file system to double as a key management namespace. For example,
/ s f s /mi t could be a symbolic link pointing to self-certifying hostname of an MIT login server.
Users could REX directly to such a link. If the owner of the link updates it, that change is reflected
immediately the next time a user accesses it.

Finally, advanced users can employ dynamic server authentication. Here, users install certifica-
tion programs into their agents, which translate human-readable names into self-certifying names
on-the-fly. Dynamic server authentication is discussed more fully in SFS papers [38, 27].

58

Chapter 5

REX Evaluation

We have implemented REX as part of the SFS computing environment. This chapter quantifies

REX's extensible architecture in terms of code size. This comparison shows that the privileged
code in REX is small compared to the unprivileged code, which contains most of REX's features
and extensions. The chapter then compares the performance of REX with the OpenSSH [43] im-

plementation of SSH protocol version 2 [64]. The measurements demonstrate that the extensibility

gained from file descriptor passing comes at little or no cost.

5.1 Code Size

REX has a simple and extensible design; Table 5.1 lists the (approximate) relative code sizes of

different pieces of the system. REX's wire protocol specification is only 250 lines of Sun XDR

code [54]. REX has two component programs that run with enhanced privileges (shown in bold).

Rexd receives incoming REX connections and adds only 500 lines of trusted code to the system (not

counting the general-purpose RPC and crypto libraries from the SFS toolkit [37]). Ptyd allocates

pseudo-terminals to users who have successfully authenticated and is about 400 lines of code.

Proxy runs with the privileges of the authenticated users and is just over 1000 lines of code; the

rex client is about 2,350 lines. Extensions to the sfsagent for connection caching consist of less than

900 lines of code.

Program Lines of Code

XDR Protocol 250
rexd 500
ptyd 400

proxy 1000
rex+agent 3250
listen 250
moduled 30
connect 375
ttyd 260

Table 5.1: REX code size comparison. The numbers in this table are approximate and do not
include general-purpose RPC and crypto libraries from SFS. Programs shown in bold run with
superuser privileges.

59

Average Latency Minimum Latency
Protocol (msec) (msec)

SSH 121 120
REX (initial login) 51 50
REX (subsequent logins) 21 20

Table 5.2: Latency of SSH and REX logins

Modules that extend REX's functionality are also small. The listen, moduled, and connect
modules are approximately 250, 30, and 375 lines of code, respectively. Ttyd is under 260 lines.

If REX were to gain a sizable user base, we could expect the code size to grow because of de-
mands for features and interoperability. The code growth, however, would take place in untrusted
components such as proxy or in new external modules (likely also untrusted). Because of the exten-
sibility, well-defined interfaces, and the use of file descriptor passing, the trusted components can
remain small and manageable.

5.2 Performance

We measured the performance of REX and OpenSSH 3.8pl [43] on two machines running Debian
with a Linux 2.4 kernel. The client machine consisted of a 2 GHz Pentium 4 with 512 MB of RAM.
The server machine consisted of a 1.1 GHz AMD Athlon with 768 MB of RAM. A 100 Mbit,
switched Ethernet with a 118 ysec round-trip time connected the client and server. Each machine
had a 100 Mbit Ethernet card.

We configured REX and SSH to use cryptographic systems of similar performance. For authen-
tication and forward secrecy, SFS was configured to use the Rabin-Williams cryptosystem [60] with
1,024-bit keys. SSH uses RSA with 1,024-bit keys for authentication and Diffie-Hellman with 768-
bit ephemeral keys for forward secrecy. We configured SSH and SFS to use the ARC4 [30] cipher
for confidentiality. For integrity, SFS uses a SHA-l -based message authentication code while SSH
uses HMAC-SHA-1 [16, 33]. Our SSH server had the privilege separation feature [46] enabled.

5.2.1 Remote Login

We compare the performance of establishing a remote login session using REX and SSH. We
expect both SSH and REX to perform similarly, except that REX should have a lower latency for
subsequent logins because of connection caching.

Table 5.2 reports the average and minimum latencies of 100 remote logins in wall clock time.
In each experiment, we log in, run /bin/true, and then immediately log out. The user's home
directory is on a local file system. For both REX and SSH, we disable agent forwarding, pseudo-tty
allocation, and X forwarding.

The results demonstrate that an initial REX login is faster than an SSH login. In both cases,
much of the time is attributable to the computational cost of modular exponentiations. An initial
REX connection requires two concurrent 1,024-bit Rabin decryptions-one by the client for forward
secrecy, one by the server to authenticate itself-followed by a 1,024-bit Rabin signature on the
client to authenticate the user. All three operations use the Chinese Remainder Theorem to speed
up modular exponentiation.

An SSH login performs a 768-bit Diffie-Hellman key exchange-requiring two 768-bit modular
exponentiations by each party-followed by a 1,024-bit RSA signature for server authentication and

60

Throughput Round-Trip Latency
Protocol (Mbit/sec) (psec)

TCP 87.1 118
SSH 86.2 294
REX 86.0 394

Table 5.3: Throughput and latency of TCP port forwarding

a 1,024-bit RSA signature for user authentication. The Diffie-Hellman exponentiations cannot be

Chinese Remaindered, and thus are each more than 50% slower than a 1,024-bit Rabin decryption.
The RSA operations cost approximately the same as Rabin operations.

The cost of public key operations has no bearing on subsequent logins to the same REX server,

as connection caching requires only symmetric cryptography. Development versions of OpenSSH
have started to implement a connection caching-like ability [40]; with this feature, we would expect
performance similar to REX's on subsequent logins.

5.2.2 Port Forwarding Throughput and Latency

Both SSH and REX can forward ports and X11 connections. To demonstrate that REX performs

just as well as SSH, we measure the throughput and round-trip latency of a forwarded TCP port
with NetPipe [52]. NetPipe streams data using a variety of block sizes to find peak throughput and
minimum round-trip latency. The round-trip latency represents the time to send one byte of data
from the client to the server, and receive acknowledgment.

Table 5.3 shows the maximum throughput and minimum round-trip latency of three different
types of connections. First, we measure the throughput and latency of an ordinary, insecure TCP
connection. Next, we measure the throughput and latency of a forwarded port over established SSH
and REX connections. The results show that file descriptor passing in REX does not noticeably

reduce throughput.
We attribute the additional latency of ports forwarded through REX to the fact that data must

be propagated through both proxy and connect on the server, incurring an extra context switch in

each direction. If rex and proxy provided a way to "fuse" two file descriptors, we could eliminate

the inefficiency. Note, however, that over anything but a local area network, actual propagation time
would dwarf the cost of these context switches.

61

62

Chapter 6

Related Work

The user authentication and remote execution systems described in this thesis are designed to op-
erate effectively across administrative domains. The authentication server provides an important
property-cross domain groups-that few other systems provide in practice. Its main contribution
relative to these systems is a simple design and implementation that is practical and works well in a
file system context. REX builds upon the success of SSH, but provides a new architecture based on
file descriptor passing that allows for easy extensions without compromising security. This chapter
describes the relevant previous systems. Both systems draw on ideas from and address limitations
in previous systems.

6.1 User Authentication

As mentioned in Chapter 1, there are certain desirable properties that one might want in a user
authentication system: flexibility, bounded staleness, scalability, simplicity, and privacy. The au-

thentication server described in this thesis offers a new design point with respect to these properties.
It provides the flexibility to name remote users and groups and a simple usage model that mirrors
local access control mechanisms. It has limited freshness, but can bound staleness; has scalability

reasonable for a file system context; and provides limited privacy for group lists. This section dis-
cusses several previous approaches to user authentication and how they relate to the authentication
service presented above.

6.1.1 Kerberos/AFS

The AFS [25] file system, combined with the Kerberos authentication system [55], provides a se-
cure distributed file system with centralized user authentication, but it does not support cross-domain

groups. Kerberos principals are organized into realms which are usually defined along administra-

tive boundaries. AFS has no mechanism to refer to remote principals; users can place only principals
that are in the local cell's authentication database in their ACLs. Cross-realm authentication through
Kerberos allows remote users to appear on local ACLs but requires the remote user to first register
himself in the local realm. Registration only works if the two realms have been "joined" ahead of
time. Because Kerberos is based on shared-secret cryptography, joining two realms is a complicated
operation which requires coordination between the two realm administrators. Kerberos itself has no
support for groups of principals. AFS has basic support for local groups which can contain local
principals; these groups can appear on ACLs.

63

AFS makes different tradeoffs than our authentication server. AFS does not have the flexibil-
ity to reference remote groups (or even nested groups in general). AFS has reasonable freshness;
staleness is bounded because Kerberos tickets have a fixed lifetime (assuming roughly synchro-
nized clocks). Like the authentication server, AFS has a simple, familiar usage model based on
users, groups, and ACLs. Because AFS does not support remote groups, privacy of group lists and
scalability are not applicable.

6.1.2 Microsoft Windows 2000

Microsoft Windows 2000 servers [39] differ from the authentication server and SFS primarily in
that they require an organized trust infrastructure. The Windows system supports a sophisticated
distributed computing infrastructure based on collections of domains. Windows domains combine
to form domain trees and forests (sets of domain trees under a single administrative authority),
which have automatic two-way transitive trust relationships between them based on Kerberos V5.
Administrators can manually set up explicit, non-transitive, one-way trust relationships between
different forests.

The Windows 2000 domain system supports several types of groups, each with different se-
mantics and properties. Some groups can contain members only from the local domain but can be
placed on ACLs in other domains. Other groups can contain members from other domains but can
be placed only on local ACLs. A third type of group can contain members from any domain and
can be placed on any ACL in the domain tree, but these universal groups require global replication.
The Windows domain system uses this combination of group types to reduce login time and limit
the amount of replication required.

By requiring an organized trust infrastructure, the Windows domain system limits flexibility by
preventing users from naming arbitrary remote users and groups in their group membership lists
without first having their administrators set up trust relationships. In choosing to have multiple
group types, the Windows domain system sacrifices simplicity, not only in terms of their design
(and presumably their implementation) but also in terms of their usage model. SFS provides a
single group type, which can contain members defined on any authentication server and which can
be placed on any group list (and thus any ACL). Windows domain administrators can configure the
frequency with which group information is replicated, providing bounded staleness similar to the
authentication server.

6.1.3 Certificate-Based Systems

Certificate-based authentication systems can provide the flexibility to name remote users and groups,
scalability to millions of users per group (e.g., naming all of the Visa users in a country), and privacy,
but they often lack simplicity and freshness. For example, instead of a familiar usage model based
on users, groups and ACLs, users must often deal directly with certificates, certificate chains, and
proofs of group membership; furthermore, many of these systems require that the user (client) dis-
cover and present these identity proofs to the server. In SFS, the authentication server has the burden
of determining the groups to which the user belongs. Assigning this burden to the client, however,
enables certificate-based systems to provide better scalability and privacy. Finally, certificate-based
systems often rely on trusted third-party certificate authorities (CAs) that are offline; consequently,
freshness suffers because certificate expiration times are long (e.g., a year). This section describes
two popular certificate-based systems in more detail. Several other systems [4, 26, 9, 34] are based
on this model.

64

The Taos operating system [35, 61] and the Echo file system [7] provide a secure distributed
computing environment with global naming and global file access. Echo supports globally named
principals (users) and groups on access control lists.

User authentication in Taos is based on CAs which "speak for" named principals, issuing cer-
tificates which map a public key (associated with a secure channel) to a name. In a large system
where not everyone trusts a single authority, the CAs can be arranged into a tree structure which
mirrors the hierarchical name space. Authentication in such a system involves traversing a path in
the authority tree from one principal to another through their least common ancestor. This traversal
establishes a chain of trust through a series of CAs. Gasser et al. [21] and Birrell et al. [8] discuss
similar hierarchic authority trees and suggest "symbolic links" or "cross-links" as a way to allow
one CA to directly certify another without traversing a path through their common ancestor.

Taos certifies public keys using certificates and a simple proof system. The SFS user authenti-
cation model does not use certificates or have CAs (in the traditional sense). Instead, SFS exposes
public keys to the user in two ways: group records and ACLs can contain public key hashes, and
remote user and groups names can contain public keys of authentication servers in the form of self-
certifying hostnames. Taos, however, insists that ACLs contain human-sensible names and relies on
one or more CAs to give meaning to those names.

SPKI/SDSI [15, 48] provides a sophisticated, decentralized public-key naming infrastructure
that can be used in other systems, and it offers a number of advantages over strict hierarchical PKIs,
such as X.509 [63], and web-of-trust based systems such as PGP [66]. SPKI/SDSI principals are
essentially public keys, which define a local name space. Users who want to authenticate themselves
to a protected resource must prove they have access to that resource by providing a certificate chain.
SPKI/SDSI requires complex proof machinery and algorithms to discover and validate certificate
chains [11]. No truly distributed implementations of SDSI exist because distributed chain discovery
algorithms are difficult to deploy.

SFS users name principals more directly using public keys and self-certifying hostnames. SPKI/
SDSI certificates (using meta data) offer more fine-grained control than SFS can provide, but we
argue that in a file system context, public keys and self-certifying hostnames are sufficient. SDSI
only uses local information (plus the client-provided certificate chain) to decide group membership;
SFS also takes this approach of not contacting other entities when issuing credentials.

6.1.4 Exposing Public Keys

The authentication server takes the idea of exposing public keys to users via self-certifying host-
names and applies it to user authentication. The idea of exposing public keys has its basis in earlier
systems such as PGP [66]. SSH [65] also allows users to directly manipulate public keys in the
context of remote login. Users can place a copy of their public keys in an authori zedkeys
file on the server. This authorized keys file acts like an ACL for remote login.

In the context of file systems, Farsite [3] allows users to place public keys on ACLs. Farsite,
however, does not cross administrative domains; its target is a large corporation or university. Other
file systems [47, 41] expose keys by providing capabilities. These systems (like SFS) allow users
who do not have a local account to access the file system, but they do not provide a traditional file
sharing interface based on users, groups, and ACLs (instead, users must present the appropriate
capability).

65

6.2 Remote Execution

Several tools exist for secure remote login and execution. This section focuses primarily on those
tools but concludes with a discussion of agents and file descriptor passing.

6.2.1 SSH

SSH [65] is the de-facto standard for secure remote execution and login. REX differs from SSH
primarily in its architecture. REX uses file descriptor passing plus external modules to implement
many of the features available in both system. In REX, these features are built outside of the core
REX software, and they do often do not require any protocol changes, or even recompilation. In
SSH, they are typically part of the main code base.

The REX architecture also attempts to limit exploits by placing code that handles incoming
network connections and code that runs with superuser privileges in separate processes. The latest
versions of OpenSSH [43] have also embraced privilege separation [46, 50], but the SSH protocol
was not designed to facilitate such an architecture. The complexity of the implementation reflects
this fact. For example, in one step, SSH must extract the memory heap from a process and essentially
recreate it in another process's address space. Moreover, even the least privileged, "jailed," SSH
processes still require the potentially dangerous ability to sign with the server's secret key.

Aside from file descriptor passing and integration with SFS, REX offers several features not
presently available in SSH. REX's connection caching improves connection latency. Connection
resumption and NAT support (from the underlying SFS infrastructure) allow REX to operate trans-
parently over a wider variety of network configurations. Selective signing improves security in
mixed-trust environments and saves users from typing their passwords unnecessarily. Conversely,
SSH provides features not present in REX, notably compatibility with other user-authentication
standards.

6.2.2 Other Secure Remote Login Utilities

Before SSH, researchers explored other options for secure remote login [32, 57]. Kim et al. [32]
implemented a secure riogin environment using a security layer beneath TCP. The system defended
against vulnerabilities created by hostname-based authentication and source address spoofing. Se-
cure riogin used a modular approach to provide a flexible security policy. Like REX, secure riogin
used small, well-defined module interfaces. REX uses a secure TCP-based RPC layer implemented
by SFS; secure riogin used a secure network layer between TCP and IP, similarly to IPSec [31].

Kerberized remote login is based on a centralized architecture, and therefore requires a trusted
third party for client-server authentication. REX and SFS both support third-party authentication,
but do not require it, and in practice they are often used without it. Because AFS uses Kerberos
for authentication, Kerberized remote login can authenticate users to the file system before logging
them in. REX provides similar support for the SFS file system.

The Globus [17] Project provides a Grid metacomputing infrastructure that supports remote ex-
ecution and job submission through a resource allocation manager called GRAM [13] and access
to global storage resources through GASS [6]. Globus was designed to provide a uniform interface
to distributed, remote resources, so individual client users do not need to know the specific mech-
anisms that local resource managers employ. By default, GRAM and GASS provide simple output
redirection to a local terminal for programs running on a remote machine. Tools built on top of
Globus can offer features such as pseudo-terminals, X1I forwarding and TCP port forwarding [22].

66

These features, however, seem to be built into the software and protocol whereas REX provides the
same extensibility and security (privilege separation) through file descriptor passing.

6.2.3 Agents

While REX is not the first remote execution tool to employ user agents, it makes far more exten-
sive use of its agent than other systems. The SFS agent holds all of the user's state and provides
access to it through an RPC interface. Encapsulating all state behind an RPC agent interface allows
a user's configuration to be propagated from machine to machine simply by forwarding an RPC
connection. By contrast, the SSH agent is responsible for essentially just authenticating users to
servers. For other tasks such as server authentication, however, SSH relies on configuration files
(e.g., knownrhosts) in users' home directories. When users have different home directories on
different machines, they see inconsistent behavior for the same command, depending on where it is
run.

Another significant difference between the REX and SSH agents is that the SSH agent returns
authentication requests that are not cryptographically bound to the identity of the server to which
they are authorizing access. As a result, a remote SSH client could lie to the local agent about what
server it is trying to log into. Concurrently and independently of REX, the SSH agent added support
for a simple confirmation dialog feature, but the SSH agent is unable to build up any meaningful
policies or even tell the user exactly what is being authorized.

Other systems do, however, provide restricted credential forwarding. For example, global iden-
tities within the Grid Security Infrastructure (GSI) [9, 18], part of the Globus project, are based
on X.509 [63] public-key certificates and the SSL/TLS protocols [14]. Recent extensions to GSI
add support for proxy certificates [59], which allow an entity to delegate an arbitrary subset of its
privileges. A new GSI-enabled version of SSH can use these proxy certificates to provide lim-
ited delegation to applications running on the remote machine, similarly to REX's selective signing
mechanism.

Finally, the security architecture for the Plan 9 system [12] has an agent, factotum, which is
similar to the SSH and SFS agents. Factotum, however, is implemented as a file server.

6.2.4 File Descriptor Passing

Though local Unix file descriptor passing is used in a number of systems, REX extends this idea
to work between processes running on different machines. OpenSSH, for example, as part of its
privilege separation code, internally uses local file descriptor passing to handle pseudo-terminals.
Though file descriptor passing is part of the source code, it is not part of the protocol. Generalizing
the idea cleanly to pass file descriptors for other purposes would require modification to the SSH
protocol, which we hope people will consider in future revisions.

An alternative to file descriptor passing is file namespace passing, as is done in Plan 9 [44].
Plan 9's cpu command can replicate parts of the file namespace of one machine on another. When
combined with device file systems like / dev/ fd, this mechanism effectively subsumes file de-
scriptor passing. Moreover, because so much of Plan 9's functionality (including the windowing
system) is implemented as a file system, cpu allows most types of remote resource to be accessed
transparently. Unfortunately, Unix device and file system semantics are not amenable to such an
approach, which is one of the reasons tools like SSH have developed so many different, ad hoc
mechanisms for handling different types of resources.

67

68

Chapter 7

Conclusion

The Internet has enabled a new kind of collaboration in which users access and share resources
between different administrative domains. In a single domain, users have convenient, easy tools for
sharing both data and machines: a network file system and a remote execution utility. Extending
these tools to work across administrative boundaries presents a number of challenges, particularly
with respect to security.

This thesis presents a new user authentication service and a new remote execution utility de-
signed to address these challenges. Section 7.1 summarizes their contributions, designs, and imple-
mentations. As usual with research, answering one question results in more questions. Section 7.2
identifies some open problems.

7.1 Summary

The goal of the authentication server and REX is to make using and sharing resources across ad-
ministrative domains just as easy and secure as using and sharing resources with a single domain.
The authentication service contributes a new design point in the space of user authentication. It
provides cross-domain groups for access control and a familiar, intuitive interface for sharing re-
sources. Users create groups, place local and remote principals in those groups, and then place
those new groups on their ACLs. A main goal is simplicity of design and implementation. Thus,
the system restricts ACLs to contain only local users and groups, allowing for a separation of the
service into two components: an authentication server and the file server. The authentication server
pre-fetches and caches relevant remote authentication information periodically in the background;
at login time, it uses that information to issue credentials (e.g., group membership) for the user. The
file server uses these credentials and ACLs to make access control decisions.

The authentication service design makes several tradeoffs. To maintain file system availability,
the system does not provide perfect freshness. Local authentication servers can, however, bound

the staleness of the information that they use. Experiments demonstrate that the server can scale to
groups with tens of thousands of users, reasonable for a file system context. The system's server-
pull design has limited privacy with respect to group lists. Finally, the ability to name remote users
and particularly remote groups means that the system has all-or-nothing delegation.

REX provides secure remote login and execution in the tradition of SSH, but it is designed from
the ground-up with a new architecture centered around extensibility and security, two important
properties in cross-domain settings. REX's extensibility, based on emulated file descriptor passing
between machines, allows users to add new functions to REX without changing the protocol. REX
and the SFS agent also provide users a consistent environment across machines. REX's security

69

benefits are a limited amount of exploitable code and a convenient mechanism for limited delegation
of authority when accessing less-trusted machines.

Both the authentication server and REX are implemented as part of the SFS computing environ-
ment. The SFS distribution is open-source and available at http: / /www. f s .net!.

7.2 Open Problems

The section describes several open problems related to the user authentication service and some
extensions and/or improvements to addresses these questions.

7.2.1 Changing Server Keys

In the current design of the authentication system, changing or revoking an authentication server's
public-private key pair is inconvenient. Hashes of the public keys appear in the self-certifying
hostnames that are part of remote user and group names. These user and group names can appear
in a number of different groups across several authentication servers. Changing the keys involves
updating all of those group records with new self-certifying user and group names.

The SFS file system uses symbolic links to add a level of indirection so that users do not need
to refer to servers by their self-certifying hostnames. Using this approach, authentication servers
could allow individuals to name remote users and group (i.e., remote authentication servers) through
symbolic links in the file system. When refreshing the cache, the server would traverse the symbolic
links to determine the self-certifying hostname of the remote authentication server. To change or
revoke the server's key, one needs only to change a single symbolic link.

Simply revoking a key for an authentication server (as opposed to changing it) is potentially an
easier problem. First, authentication servers can maintain revocation lists of keys that are no longer
valid. Second, during the periodic cache refreshes, the authentication servers could exchange SFS-
style key revocation certificates [38]. These certificates are self-authenticating in that they are signed
with the private key of the server whose key is being revoked; therefore, the receiving authentication
server does not need to worry about the trustworthiness of the server from which the certificate came.
Once the authentication server verifies the revocation certificate, it can add that key to its personal
revocation list and refuse to contact remote authentication servers with that key.

7.2.2 Usability

Ease-of-use is an important issue in deploying secure systems that deal directly with keys and
hashes. For example sfskey currently requires users to specify self-certifying hostnames explicitly
when modifying a group list. Most users, however, do not want to type self-certifying hostnames.
For convenience, sfskey could allow users to specify a symbolic link in the file system instead. Sfskey
would dereference this link and store the resulting self-certifying hostname in the group list. Other
server naming techniques from SFS might also be useful. For example, sfskey could look up DNS
names using SRP (including the agent's cache) or using dynamic server authentication. In general,
sfskey could use the secure server naming techniques described in Section 4.4.3.

7.2.3 Site Policies

The authentication server and ACL-enabled file system support user-centric trust; individual users
can set up trust relationships by placing remote principals into local groups. In many environments,
such as academia or free-software development communities, this flexibility is welcome. In some

70

environments, such as large corporations, administrators might want to have a site policy that re-
stricts users from naming certain remote principals. SFS could provide administrators with this
ability by allowing them to install blacklists or whitelists. These lists could have patterns that the
authentication server matches against remote principals before fetching them.

7.2.4 Reducing Server Load

The load on remote authentication servers is an important design consideration, particularly for
servers that provide large and/or popular groups. The current fetching strategy requires local au-
thentication servers always to contact the authoritative remote server that defines a given remote
user or group group. If many references to a particular remote server exist, that server might have
to handle many incoming network connections and send back gigabytes of data.

To reduce load on remote authentication servers, local servers could fetch group records from
replicas. These replicas, however, should not need to know the authoritative server's private key.
One way to achieve this goal might be to have the authoritative authentication server sign its user
and group records. Then, local servers could retrieve these signed records from untrusted replicas.

A second way to use replicas to reduce server load might be to employ a different technique
to compute the deltas between the locally cached version of a group and the authoritative version.
Currently, the remote authentication server stores change logs for each group, which it uses to
transfer the deltas. An alternative would be to use an "rsync"-style [2, 56] approach in which only
the differences between the remote and local copies of a group are sent. With this strategy, a local
authentication server could retrieve a copy of the group from an untrusted replica (possibly even a
nearby, higher-bandwidth authentication server's cache). Even though this copy might be out-of-
date or incorrect, the local server could then quickly check it against the authoritative version (on
the authoritative authentication server) and retrieve the differences.

7.2.5 Privacy

Inherent in the design of the authentication service is that group membership lists are public. Sec-
tion 2.7 describes several possible techniques to provide some degree of privacy within the current
system. These techniques, however, at best only obfuscate private information behind public key
hashes or arbitrary identifiers.

A tradeoff exists between the privacy that a system provides and the burden placed on a user
when accessing a resource. One end of the spectrum is an authentication system that provides
complete privacy-all group membership lists are private and only the owners of the group know its
membership. Even the server providing the resource does not know the entire group membership,
only that the user currently accessing the resource is a member of a particular group on the resource's
ACL. The server also does not know about any other groups to which the user belongs, except the
one on its ACL. The tradeoff in such a system is that the user must know exactly how he merits
access to the resource. That is, he must know at least one group that is on the ACL and prove to the
server that he is a member of that group. Client-supplied certificate chains are an example of such a
system.

On the other end of the spectrum, the system could provide little or no privacy by having public
group lists. Here, the server already knows the members of every group on all of its resource's
ACLs. The burden on the user, however, is minimal. He simply proves his identity to the server
(e.g., that he possesses some public-private key pair), and the server checks to see if the user merits
access. The authentication system described in this thesis is an example of this privacy-burden
tradeoff.

71

Other design points exist with respect to this tradeoff. For example, a system could still have
private group lists but reduce the burden on the user by allowing the server to know all of the user's
memberships. In a certificate-based system, the user could provide certificate chains for all groups
of which he is a member. The server would use the proof that is relevant for the resource/ACL the
user is trying to access. Here, the user does not need to know anything about the groups on the ACL
ahead of time, but the server will know more than strictly necessary about the user.

Other privacy tradeoffs are also possible. For instance, including ACLs on user and group
records could improve privacy in a system like the authentication server where these records are
shared publicly. Then, only specific authentication servers could fetch certain private group lists.
This design decision would increase complexity, however. First, record owners would have to man-
age these new ACLs, which name the servers (or users) that can fetch the record. Second, nested
groups might require further policies. If server B has permission to fetch a group record on server
A, does server C, which includes a group on B have permission to fetch the record from A also? If
so, to how many levels of nesting does that permission extend?

72

Bibliography

[1] Concurrent Versions System. URL http: / /www. gnu. org/manual/cvs/index.
html.

[2] rsync. URLhttp://samba.anu.edu.au/rsync/.

[3] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken, John R.
Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger P. Wattenhofer. FAR-
SITE: Federated, available, and reliable storage for an incompletely trusted environment. In
Proceedings of the 5th Symposium on Operating Systems Design and Implementation, pages

1-14, Boston, MA, December 2002.

[4] Eshwar Belani, Amin Vahdat, Thomas Anderson, and Michael Dahlin. The CRISIS wide area
security architecture. In Proceedings of the 7th USENIX Security Symposium, pages 15-30,
San Antonio, TX, January 1998.

[5] Berkeley DB. http: //www.sleepycat.com/.

[6] Joseph Bester, Ian Foster, Carl Kesselman, Jean Tedesco, and Steven Tuecke. GASS: A data
movement and access service for wide area computing systems. In Proceedings of the Sixth

Workshop on Input/Output in Parallel and Distributed Systems, pages 78-88, Atlanta, GA,
May 1999.

[7] Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy Mann, and Garret Swart. The Echo

distributed file system. Technical Report 111, Digital Systems Research Center, Palo Alto,

CA, September 1993.

[8] Andrew D. Birrell, Butler W. Lampson, Roger M. Needham, and Michael D. Schroeder. A
global authentication service without global trust. In Proceedings of the 1986 IEEE Symposium

on Security and Privacy, pages 223-230, Oakland, CA, April 1986.

[9] Randy Butler, Douglas Engert, Ian Foster, Carl Kesselman, Steven Tuecke, John Volmer, and
Von Welch. A national-scale authentication infrastructure. IEEE Computer, 33(12):60-66,
2000.

[10] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version 3 protocol specification. RFC

1813, Network Working Group, June 1995.

[11] Dwaine Clarke. SPKI/SDSI HTTP server/certificate chain discovery in SPKI/SDSI. Master's
thesis, Massachusetts Institute of Technology, September 2001.

[12] Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean Quinlan. Security in Plan 9. In

Proceedings of the 11th USENIX Security Symposium, pages 3-16, San Francisco, CA, August
2002.

73

[13] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren Smith, and
Steven Tuecke. A resource management architecture for metacomputing systems. In Proceed-
ings of the IPPS/SPDP '98 Workshop on Job Scheduling Strategies for Parallel Processing,
pages 62-82, Orlando, Florida, March 1998.

[14] T. Dierks and C. Allen. The TLS Protocol, Version 1.0. RFC 2246, Network Working Group,
January 1999.

[15] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, and Tatu
Yl6nen. SPKI certificate documentation. Work in progress, from http: / /www. pobox.
com/~cme/html /spki .html, 2002.

[16] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/N.I.S.T., National Tech-
nical Information Service, Springfield, VA, April 1995.

[17] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit. Intl J.
Supercomputer Applications, 11(2):115-128, 1997.

[18] Ian Foster, Carl Kesselman, G. Tsudik, and Steven Tuecke. A security architecture for compu-
tational grids. In Proceedings of the 5th ACM Conference on Computer and Communications
Security Conference, pages 83-92, San Francisco, CA, November 1998.

[19] Alan 0. Freier, Philip Karlton, and Paul C. Kocher. The SSL protocol version 3.0. Internet
draft (draft-freier-ssl-version3-02.txt), Network Working Group, November 1996. Work in
progress.

[20] fsh - Fast remote command execution. http: / /www. lysator. liu. se/ f sh/.

[21] Morrie Gasser, Andy Goldstein, Charlie Kaufman, and Butler Lampson. The Digital dis-
tributed system security architecture. In Proceedings of the 12th NIST-NCSC National Com-
puter Security Conference, pages 305-319, Baltimore, MD, October 1989.

[22] glogin. http: / /www. gup.uni-linz. ac. at/glogin/.

[23] Andreas Griinbacher. POSIX access control lists on Linux. In Proceedings of the 2003
USENIX Annual Technical Conference, pages 259-272, San Antonio, TX, June 2003.

[24] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying the location of services
(DNS SRV). RFC 2782, Network Working Group, February 2000.

[25] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan,
Robert N. Sidebotham, and Michael J. West. Scale and performance in a distributed file sys-
tem. A CM Transactions on Computer Systems, 6(1):51-81, February 1988.

[26] Jon Howell and David Kotz. End-to-end authorization. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementation, pages 151-164, San Diego, CA, October
2000.

[27] Michael Kaminsky. Flexible key management with SFS agents. Master's thesis, Massachusetts
Institute of Technology, May 2000.

[28] Michael Kaminsky, Eric Peterson, Daniel B. Giffin, Kevin Fu, David Mazieres, and M. Frans
Kaashoek. REX: Secure, Extensible Remote Execution. In Proceedings of the 2004 USENIX
Annual Technical Conference, pages 199-212, Boston, Massachusetts, June 2004.

74

[29] Michael Kaminsky, George Savvides, David Mazieres, and M. Frans Kaashoek. Decentralized
user authentication in a global file system. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP '03), pages 60-73, Bolton Landing, New York, October
2003.

[30] Kalle Kaukonen and Rodney Thayer. A stream cipher encryption algorithm "arcfour". Internet
draft (draft-kaukonen-cipher-arcfour-03.txt), Network Working Group, July 1999. Work in
progress.

[31] S. Kent and R. Atkinson. Security architecture for the internet protocol. RFC 2401, Network
Working Group, November 1998.

[32] Gene Kim, Hilarie Orman, and Sean O'Malley. Implementing a secure rlogin environment:
A case study of using a secure network layer protocol. In Proceedings of the 5th USENIX
Security Symposium, pages 65-74, Salt Lake City, UT, June 1995.

[33] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-hashing for message authen-
tication. RFC 2104, Network Working Group, February 1997.

[34] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels,
Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Westley Weimer,
Christopher Wells, and Ben Zhao. Oceanstore: An architecture for global-scale persistent
storage. In Proceedings of the 9th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages 190-201, Cambridge, MA, November
2000.

[35] Butler Lampson, Martin Abadi, Michael Burrows, and Edward P. Wobber. Authentication in
distributed systems: Theory and practice. ACM Transactions on Computer Systems, 10(4):
265-310, 1992.

[36] David Mazieres. Self-certifying File System. PhD thesis, Massachusetts Institute of Technol-
ogy, May 2000.

[37] David Mazieres. A toolkit for user-level file systems. In Proceedings of the 2001 USENIX,
pages 261-274, Boston, Massachusetts, June 2001.

[38] David Mazieres, Michael Kaminsky, M. Frans Kaashoek, and Emmett Witchel. Separating
key management from file system security. In Proceedings of the 17th ACM Symposium on
Operating Systems Principles, pages 124-139, Kiawa Island, SC, December 1999.

[39] Microsoft Windows 2000 Advanced Server Documentation. http: / /www .microsoft.

com/windows2000/en/advanced/help/.

[40] Damien Miller. http: / /www.mindro t. org/pipermail/openssh-unix-dev/
20 04- June /021522 .html, June 16, 2004, openssh-unix-dev@mindrot.org.

[41] Stefan Miltchev, Vassilis Prevelakis, Sotiris Ioannidis, John loannidis, Angelos D. Keromytis,
and Jonathan M. Smith. Secure and flexible global file sharing. In Proceedings of the USENIX
2003 Annual Technical Conference, Freenix Track, pages 165-178, San Antonio, TX, June
2003.

[42] P. Mockapetris. Domain Names-Concepts and Facilities. RFC 1034, Network Working
Group, November 1987.

75

[43] OpenSSH. http: / /www. openssh. com/.

[44] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Winterbottom. The use
of name spaces in plan 9. ACM SIGOPS Operating System Review, 27(2):72-76, April 1993.

[45] Dave Presotto and Dennis Ritchie. Interprocess communication in the Eighth Edition Unix
system. In Proceedings of the 1985 Summer USENIX Conference, pages 309-316, Portland,
OR, June 1985.

[46] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing Privilege Escalation. In Pro-
ceedings of the 12th USENIX Security Symposium, pages 231-242, Washington, DC, August
2003.

[47] Jude Regan and Christian Jensen. Capability file names: Separating authorisation from user
management in an internet file system. In Proceedings of the 10th USENIX Security Sympo-
sium, pages 221-234, Washington, DC, August 2001.

[48] Ronald L. Rivest and Butler Lampson. SDSI-a simple distributed security infrastructure.
Working document from http: / /theory. lcs.mit . edu/~cis /sdsi . html, 2002.

[49] M. Rosenblum and J. Ousterhout. The design and implementation of a log-structured file
system. In Proceedings of the 13th ACM Symposium on Operating Systems Principles, pages
1-15, Pacific Grove, CA, October 1991.

[50] Jerome Saltzer. Protection and control of information in multics. Communications of the ACM,
17(7):388-402, July 1974.

[51] George Savvides. Access control lists for the self-certifying filesystem. Master's thesis, Mas-
sachusetts Institute of Technology, August 2002.

[52] Q. Snell, A. Mikler, and J. Gustafson. Netpipe: A network protocol independent performace
evaluator. In Proceedings of the IASTED International Conference on Intelligent Information
Management and Systems, June 1996. http: / /www. sc1. ames lab. gov/netpipe.

[53] R. Srinivasan. RPC: Remote procedure call protocol specification version 2. RFC 1831,
Network Working Group, August 1995.

[54] R. Srinivasan. XDR: External data representation standard. RFC 1832, Network Working
Group, August 1995.

[55] J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An authentication service for open
network systems. In Proceedings of the Winter 1988 USENIX, pages 191-202, Dallas, TX,
February 1988.

[56] Andrew Tridgell and Paul Mackerras. The rsync algorithm. Technical Report TR-CS-96-05,
Australian National University, 1997.

[57] David Vincenzetti, Stefano Taino, and Fabio Bolognesi. Stel: Secure telnet. In Proceedings of
the 5th USENIX Security Symposium, pages 75-84, Salt Lake City, UT, June 1995.

[58] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol, (v3). RFC 2251,
Network Working Group, December 1997.

76

[59] Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura Pearlman, Steven Tuecke, Jarek
Gawor, Sam Meder, and Frank Siebenlist. X.509 proxy certificates for dynamic delegation. In
Proceedings of the 3rd Annual PKI R&D Workshop, Gaithersburg, MD, April 2004.

[60] Hugh C. Williams. A modification of the RSA public-key encryption procedure. IEEE Trans-
actions on Information Theory, IT-26(6):726-729, November 1980.

[61] Edward P. Wobber, Martin Abadi, Michael Burrows, and Butler Lampson. Authentication in
the Taos operating system. ACM Transactions on Computer Systems, 12(1):3-32, 1994.

[62] Thomas Wu. The secure remote password protocol. In Proceedings of the 1998 Internet
Society Network and Distributed System Security Symposium, pages 97-111, San Diego, CA,
March 1998.

[63] X.509. Recommendation X.509: The Directory Authentication Framework. ITU-T (formerly
CCITT) Information technology Open Systems Interconnection, December 1988.

[64] T. Yl6nen and D. Moffat (Ed.). SSH Transport Layer Protocol. Internet draft (draft-ietf-secsh-
transport-17.txt), Network Working Group, October 2003. Work in progress.

[65] Tatu Yl6nen. SSH - secure login connections over the Internet. In Proceedings of the 6th
USENIX Security Symposium, pages 37-42, San Jose, CA, July 1996.

[66] Philip Zimmermann. PGP: Source Code and Internals. MIT Press, 1995.

77

