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Translingual Grammar Induction for Conversational Systems

by

John Sie Yuen Lee

Submitted to the Department of Electrical Engineering and Computer Science
on June 9, 2004, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

We propose an induction algorithm to semi-automate grammar authoring in an interlingua-
based machine translation framework. This algorithm is designed for restricted domains
within the context of multilingual conversational systems. It uses a pre-existing one-way
translation system from some other language to the target language as prior information.
It then infers a grammar for the target language.

We-demonstrate the system's effectiveness on a weather domain and on a travel domain.
We automatically induced Chinese and French grammars for these domains from their
English counterparts, and then showed that they can produce high-quality interlingua to
be used in translation.

Thesis Supervisor: Stephanie Seneff
Title: Principal Research Scientist
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Chapter 1

Introduction

For more than a decade, the Spoken Language Systems group has been conducting research

leading to the development of conversational systems. These systems are capable of inter-

action in spoken dialogue in a variety of languages, including English [26], Japanese [21]

and Chinese [24]. They enable naive users to access and manage information in a variety

of domains, such as weather [26], travel [27], and task delegation [20].

For all domains and languages, a common framework for natural language understanding

(NLU) and natural language generation (NLG) is adopted. In the NLU component, a

language-independent meaning representation, or semantic frame, is extracted from the

user input. This representation facilitates effective communication with the application

back-end, the dialogue management and the discourse context resolution components.

Within this framework, a language learning system has recently been introduced [19].

A native speaker of Chinese who wishes to learn English, for example, can speak a sentence

in his/her native tongue and have the system paraphrase it in English. He/she can then

attempt to repeat the English sentence to advance a dialogue with the system in English.

Two criteria that would be useful evaluation metrics for such research are:

1. The effectiveness of the framework for translation, at least in restricted domains.

2. The ease of writing grammars that extract a meaning representation from user input

in multiple languages.

This thesis focuses on improving performance in the second criterion. Currently, gram-

mar authoring is a laborious, error-prone process that demands a lot of expertise and pa-
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tience. In many domains of interest to us, we already have mature, high-quality grammars

in place for at least one language, L (in most cases, English). We propose here a grammar

induction algorithm that leverages such pre-existing grammars to semi-automate grammar

authoring in another language L'.

We evaluate our induction approach by comparing induced grammars and hand-crafted

grammars with respect to the first criterion. Our experiments in two restricted domains

demonstrate that the induced grammar can generate high-quality translation from L' back

to L.

The intent of this document is to provide the reader with an understanding of our

induction approach. The chapters are divided as follows:

* Chapter 2: Related Work

in which we review previous work on grammar induction.

* Chapter 3: Framework Overview

in which we outline the NLU and NLG frameworks within which our grammar induc-

tion algorithm functions.

* Chapter 4: Word Alignment

in which we describe the L-L' word alignment process.

* Chapter 5: Tree Transformation

in which we illustrate the transformation of an L parse tree into its L' counterpart.

* Chapter 6: Trace Simulation

in which we infer constituent movements in the L' parse tree.

* Chapter 7: Evaluation

in which we report experiments and results for grammar induction in two different

domains and target languages.

* Chapter 8: Future Work

in which we suggest possible enhancements for grammar induction.

* Appendix A: Implementation Details

in which we provide details of the implementation of the induction algorithm.

16



Chapter 2

Grammar Induction

Grammar induction is the process of inferring the structure of a language, given a corpus of

sentences drawn from it. The structure is typically expressed as parse trees. The grammar,

then, evaluates the probability of trees.

The techniques used in the induction and the nature of the induced grammar vary

considerably. Below are some of the main factors for these variations:

* Prior information: This could range from no information to a treebank of parsed

sentences. Sometimes there might be examples from related domains or languages. In

general, a broad domain, such as the Wall Street Journal [13], would require more prior

information than a narrow one, such as the Air Travel Information Service domain

[17].

* Purpose of the grammar: The grammar might be used to define a parsing model,

i.e., to propose one or more parse trees for a sentence with associated probabilities.

Typically, the parse tree is post-processed to extract some further information for

specific natural language processing tasks. For example, predicate-arguments might

be extracted from a syntactic parse tree, or an interlingua from a semantic parse tree.

In this case, the parse tree, and hence the grammar, must provide meaningful labels.

Normally, some prior information, or manual post-editing of the induced grammar, is

necessary.

The grammar might also be used primarily as a language model, i.e., to give the

probability of a sentence. For example, in speech recognition, such a model would

help constrain the search space. In this case, the objective of the grammar is not so

17



much to give meaningful parses, but rather to capture patterns or structures in the

sentences, in order to maximize the likelihood of sentences. Often there is minimal or

no prior information available on sentence structure.

2.1 Grammar Induction for Language Models

N-grams, which may be considered the most basic grammar, could be directly estimated

from the corpus. For more sophisticated types of grammar, a common strategy is the

following: Assume a type of grammar (e.g., context-free grammar); generate a naive, initial

grammar from the corpus; define some function that measures how well the grammar fits

the corpus, then incrementally modify the grammar (e.g., by adding or removing a rule)

to optimize that function. Examples of such a function include a divergence measure and

mutual information [14, 22]; in other systems the function is optimized via the Inside-

Outside Algorithm [16] or in a Bayesian framework [4].

2.2 Grammar Induction for Parsing Models

The work described in this thesis falls into this category. The induction approach depends

largely on the prior information available.

2.2.1 Induction from In-domain Examples

For a broad domain, such as news, the dominant approach is to use a treebank of parsed

example sentences as training corpus. The corpus is used to estimate parameters in a

generative parsing model. Charniak argued in [2] that one could construct a high-quality

parser simply by reading the parent-child relationships in the trees as grammar rules. Both

Collins [6] and Charniak [3] later did without an explicit grammar.

This approach is often infeasible for smaller domains, since large corpora of parsed

sentences are less likely to exist.

2.2.2 Induction from Other domains

In this approach, an existing grammar in a related domain is used as a starting point. Hwa

[9] investigated the adaptation of a grammar from one domain to another (e.g., from the

18



Wall Street Journal to the ATIS corpus). She found that, even with a corpus that has only

high-level constituent information for the new domain, the adapted grammar consistently

outperforms a directly induced grammar.

Wang and Acero [25] make use of a 'grammar library', which contains common, cross-

domain concepts as part of the prior information for grammar induction. They also exploit

syntactic constraints in English, which are applicable for multiple domains. Similarly, Lavie

et al. [11] ported semantic grammars from one domain to another.

2.2.3 Induction through User Interaction

In Gavaldh and Waibel's GSG system [8], prior information is supplied by the user in

the form of a 'Domain Model', from which a basic context-free grammar is automatically

generated. When the system encounters a sentence that it could not parse, an interactive

learning episode starts. During the episode, the system solicits information from the user in

a natural-language dialogue, and constructs a parse tree for the sentences. It integrates new

rules into the grammar, and updates its Prediction Models using the hypothesized parse

trees. It also edits the rules and detects subsumptions and ambiguities.

The main strength of GSG is its ability to grow and refine the grammar through learning

episodes. The developer is thus able to incrementally expand the coverage of the grammar.

2.2.4 Induction from Other Languages

In [23], which is most closely related to our work, the prior information is a grammar for

some language L. A native speaker of L' provides pairs of aligned sentences in L and L'. The

induction algorithm transforms the L parse trees into L' parse trees. With no knowledge of

the structure of the L' language beyond the word alignments, the algorithm is sometimes

forced to make rather arbitrary assumptions, especially when re-ordering branches and

inserting new ones. The algorithm was used to induce a Polish grammar from an English

grammar in a domain for physical symptoms. On a test set of 39 sentences, the induced

grammar achieved 52% coverage of key-value pairs in the meaning representation.

Our approach is in fact quite similar to hers, with the following main difference. We

assume the existence of an L' generation grammar as part of the translation capability from

L to L'. Instead of asking the user to provide word alignments between L and L' sentences,

we infer the alignments. The L' generation grammar also provides information about word

19



dependencies in L', which is useful in hypothesizing new trees in L'.
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Chapter 3

Framework Overview

In an interlingua-based translation framework, two functions need to be implemented for

each language L:

* PARSE(SL, PL) -- F, which maps SL, a sentence in the language L, to a language-

dependent meaning representation F, according to some grammar PL; and

* GEN(F, GLI) SL,, which maps a meaning representation F to a surface string in

the language L', according to some grammar GLI.

The translation of SL in the language L' is, thus, SL, = GEN(PARSE(SL, PL), GLI')

In our case, the function PARSE is performed by the natural language understanding

(NLU) system TINA [18]; the function GEN is performed by the natural language generation

(NLG) system GENESIS [1]; the meaning representation is a semantic frame. In the next

two sections we give an overview of these systems and representations.

3.1 Meaning Representation

Our design of the meaning representation is inspired by Government-Binding theory [5],

which posits that a sentence has both a surface form, and a deep structure that represents

its underlying meaning. While the deep structure is shared across different languages, the

surface form is language-dependent, and is derived from the deep structure by constituent

movements called in [10] the "move-a" paradigm.

In our conversational systems, the meaning representation is a semantic frame, a language-

independent, hierarchical structured object that encodes meaning. It is a frame that con-

21



{clause verify
:auxil "will"
:topic {topic pronoun

:name "it" }
:pred {pred rain

:pred {pred temporal
:topic {topic weekday

:name "tomorrow" ) } }

Figure 3-1: Semantic frame for the utterance Will it rain tomorrow? ( ... } designates a
frame, which in our framework may be one of three major classes: a clause, a topic or a
predicate.

tains key-value pairs. The values could, in turn, be frames, or simple strings, written in

English. Figure 3-1 shows a semantic frame representation of the utterance Will it rain

tomorrow?.

3.2 Natural Language Understanding

TINA decomposes the PARSE function into two steps, FRAME o TREE:

1. TREE(SL, PL.rules, PL.constraints), which maps SL to a parse tree TL according

to:

* PL.rules, a set of probabilistic context-free rules.

* PL.constraints, a set of semantic constraints for constituent movements.

2. FRAME(TL, PL.actions, PL.translations), which maps TL into a semantic frame

according to:

* P.actions, a set of instructions that guide designated nodes in TL to create

frames or assign key values in the frame under construction 1.

* PL.translations, a lexicon that translates key values in the semantic frame

from L into English.

A TINA grammar PL thus consists of four parts: PL.rules, PL.constraints, PL.actions,

and PL.translations. We now examine the role of each of these parts.

'In practice, P.actions often differs slightly from one language to another. Our grammar is induced
such that it would work with the P.actions for English.
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sentence > full-parse

fullparse question

question doquestion

doquestion > auxil subject predicate

weekday - tomorrow
weatherverb - rain

Table 3.1: Some rewrite rules taken from PEngli,h.rules for JUPITER, a weather domain.

3.2.1 Parsing Rules

As in most NLU systems, PL.rules is a set of context-free rules that describe the sentence

structure in the language L. The grammars we are working with incorporate both syntactic

and semantic information simultaneously.

At the higher levels of the parse tree, major syntactic constituents, such as subject,

predicate, obj ect, etc., are explicitly represented through syntax-oriented grammar rules.

The syntactic structures tend to be domain-independent, capturing general syntactic con-

straints of the language. The upper half of Table 3.1 shows some of these rules for our

English weather domain, JUPITER.

Near the leaves of the parse tree, major semantic classes, such as weather_verb, date name,

etc., are constructed according to semantic-oriented grammar rules. The semantic structures

tend to be domain-dependent, capturing specific meaning interpretations in a particular ap-

plication domain. The lower half of Table 3.1 shows some of these rules for JUPITER. The

rules in Table 3.1 are a subset of those needed to parse the utterance Will it rain tomorrow

to the tree in Figure 3-2.

3.2.2 Movement Constraints

Up to this point, our parse tree reflects the surface form of the sentence. Due to differences

in word order and structure between the languages L and L', two equivalent sentences, SL

and SL, may have parse trees with substantially different hierarchical structures. However,

in theory, they share the same deep structure, and PARSE should map them to identical

semantic frames. To facilitate the construction of these frames, TINA uses a trace mechanism

to move tree branches, so that their final positions would resemble the deep structure, or

23



sentence
vacuous:: clause

I
full_parse

0

question

0

do_question

verify: :clause

auxil subject predicate

auxil: :enter-key object: :topic verbphrase: :predicate

I I I
will it predicatev

pronoun: :key 0
l l
it verbphrase

verbphrase: :predicate

I
intrverb_phrase

0

intr_verb intr_verbargs
verb::key 0

l l
weather_verb when-node

0 0
l l

rain which_days
temporal: :predicate

I
daylist

weekday: :key

I
datename_list

weekday: :key

I
tomorrow

Figure 3-2: Parse tree for Will it rain tomorrow. The top label in a node is given by
PEng9 lsh.rules (see §3.2.1). The bottom label, given by P.actions (see §3.2.3), is of the
form <name>:: <type>, specifying the type of component to be created in the frame, and
the name of that component.
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sentence

full_parse

statement question_particle

ma5
(0)

timetopic will vpprecip

j Ip

whenphrase hui4
I (will) precip timetrace

onIdate xia4yu3 [*trace *

monthdate (rain)

rel_date

ming2-tianl
(tomorrow)

Figure 3-3: Parse tree for ming2_tianl hui4 zia4_yu3 ma5. The trace is licensed through a
process involving a designated generator time_topic, an activator vpprecip, and a trace
tag *trace*.

the canonical hierarchy in the semantic frame.

According to Government-Binding theory, the object of a verb or a preposition may be

moved during surface form realization, leaving behind a trace in its original position. An

example is the sentence (What)l did she say (tl)?, where what is moved from its original

position, t1, to the front of the sentence.

Many other languages exhibit constituent movements that could be handled elegantly

as traces for our computational purposes, even though they are not traces as defined in

[5]. An example is topicalization in Chinese [12], where temporal and locative phrases

could be moved forward. For example, Will it rain tomorrow is translated in Chinese

as (ming2tianl)l hui4 xia4_yu3 (tl) ma5, whose topic, the temporal phrase ming2tianl

(tomorrow), is moved to the front of the sentence.

TINA uses a common mechanism to handle all constituent movements 2. An important

goal of this research is to both detect when a trace is needed and to provide the developer

2In the rest of the thesis, we will use the term trace broadly to denote these constituent movements.
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with a specification of its encoding. In this thesis, a trace is deemed necessary when the

word order and hierarchy in SL and SLI are so different that it is impossible to transform TL,

to the original TL simply by changing the order of siblings. In other words, the hierarchical

structure of the parse tree of SLI must be altered. For example, in the parse tree for ming2

tiani hui4 ia4 yu3 ma5 in Figure 6-2, the branch for tomorrow is a sibling of will, whereas

in Figure 3-2 it is a sibling of rain. No rearrangement of the siblings could transform this

Chinese parse tree to its English counterpart.

The trace mechanism is controlled by PL.constraints, which defines the nodes from

which, and to which, branches may be moved, as well as the semantic constraints for these

movements. Formally, it contains:

* A set of semantic categories, e.g., time, location, complement ... ).

* A set of semantic category assignments for selected parse nodes, e.g., timetopic be-

longs to the category time, locationtopic belongs to location, and complementphrase

belongs to complement.

* A set of generators, e.g., timetopic, locationtopic, and complement-phrase.

These are nodes whose subtree may be moved to a different location in the parse

tree.

* A set of activators, e.g., vp-precip, hotelthing, and vptaketime. These are nodes

whose descendants are obliged to absorb a generated constituent. Each activator node

is restricted to activate only those generated constituents that match its assigned

activation categories, e.g., vpprecip is assigned {location, time}, hotelthing is

assigned {location}, and vptaketime is assigned {complement).

* A set of absorbers, denoting the original location of the moved constituent.

Every subtree whose root node is a generator is considered a candidate for trace move-

ment, or, in short, generated. The candidate is tagged with the union of the semantic

categories of its descendant nodes. The candidate then searches for a valid activator among

its siblings to the right. A valid activator must have, as one of its activation categories,

one of the semantic categories tagged to the candidate. If such an activator is found, the

generated subtree is grafted onto the first appropriate trace node among the activator's

descendants.

26



Node Instruction
predicate verb-phrase
which-days - temporal

vacuous, verify - clause
pronoun, weekday topic
verbphrase, temporal - predicate
verb, auxil -4 key
weekday, pronoun - namedtopics

Table 3.2: Some rewrite rules from P.actions for JUPITER.

In our example in Figure 6-2, the subtree whose root is timetopic is a candidate for

trace with the semantic category time. Since the node vp_precip is an activator that has

the same activation category, the subtree under timetopic is moved under the node trace.

This yields a Chinese parse tree that is identical in structure to its English counterpart in

Figure 3-2.

Trace movements complete the TREE function and output a tree TL that corresponds

to the 'deep structure' of SL and is well-positioned to construct a semantic frame.

In the induction process, we will use TL as a basis to hypothesize an equiva-

lent parse tree TL'.

3.2.3 Actions

Since the trace mechanism produces parse trees that correspond to the deep structure, TINA

could derive the semantic frame directly from the tree. It does so by assigning instructions

to designated nodes to guide the construction of the frame. The bottom label of the nodes

in Fig 3-2 shows these instructions.

P.actions assigns these instructions to nodes in TL. A sample from P.actions, for the

weather domain, JUPITER, is shown in Table 3.2. There are two main types of instructions.

Those in the upper half of the table give the semantic names of the node; those in the lower

half specify whether the node is to contribute a clause, a predicate, a topic, or a key to the

frame.

In the induction process, we will track this frame construction process to

create an alignment between words in SL and the components in the semantic

frame.
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Key WChinese WEnglish
date ming2_tianl tomorrow
date zingl_qilyil monday
date xingl_qiler4 tuesday
quality leng3 cold
quality re4 hot

Table 3.3: Some entries from Pchinese.translations for JUPITER.

verify - ($if :rhet >exist >verifyl) :qparticle
verifyl · ($if :complement >whcomplement >verify2)
verify2 - :topic ($if :phatic.pronoun >pulltimeloc) >auxil >preds
pulltimeloc ) <==temporal
temporal - :topic
topictemplate - (:name $core)
preds ... rain...
predicatetemplate - (:verb $core)

Table 3.4: A subset of Gchinese.order used in generating ming2tianl hui4 xia4_yu3 ma5.

3.2.4 Key Value Translation

English is the designated language for the key values in the semantic frame. When cre-

ating a frame from a non-English language, the key values are translated into English.

PL,.translations is a list of three-tuples in the form of (English, WLI, component). This

tuple means that whenever the word WLr is a key value under the frame or key called

component, it is to be translated to wEnglish. A portion of Pchinese.translations, taken

from the Chinese weather domain, MUXING, is shown in Table 3.3.

In the induction process, we will automatically infer PL,.translations from

the L-interlingua-L' alignment.

3.3 Natural Language Generation

GENESIS decomposes the GEN function into two steps, VERBALIZE o PREPROCESS:

1. PREPROCESS(F, GL,.pre) --- FL', which maps a language-independent semantic

frame F to a frame, FL', that is tailored for surface string realization in the language

L'.
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Table 3.5: Entry for sister in Gchinese.lexicon.

GLI.pre [7] is a set of grammar rules that edit key values in F with the goal of

facilitating language generation in L'. Typically, the key values concerned encode

linguistic features. For example, a Gspanish.pre might add gender information

for nouns.

2. VERBALIZE(FL,, GLI.order, GLI.lexicon) -- SL, which paraphrases a pre-processed

semantic frame FL, in language L' according to:

* GL'.order, a set of rewrite rules that specify the order in which the components

of FL, are to be processed.

* GLI.lexicon, a lexicon that maps key values in the frame components to surface

strings in L'.

3.3.1 Feature Propagation

Hardly any component in a semantic frame could be paraphrased in isolation. Word-sense

disambiguation and inflectional endings, to name just two decisions among many other,

need to be resolved by syntactic, semantic and prosodic contexts from other components of

the frame.

GENESIS provides these contexts in two ways. In PREPROCESS, it inserts the relevant

context by explicitly adding or modifying key values. In VERBALIZE, it allows components

to set features which are propagated along the generation process.

3.3.2 Lexicon

One component in our NLG framework that relies on features is the lexicon. For example,

there are three ways to translate the word sister in Chinese, depending on her age with

respect to the speaker. The lexicon entry in Table 3.5 lists these alternatives.
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{q relationship
:name "sister"
:pred {p relative-age

:topic "younger" } }

Figure 3-4: Semantic frame for younger sister.

In Figure 3-4, younger sister is represented as a relationship topic frame and a

relative-age predicate. When paraphrasing in Chinese, the relativeage predicate does

not generate any surface string, but simply sets the feature $:younger. When the :name

key under relationship is processed, GENESIS looks up the lexicon for the sister entry. In

this case, the feature determines that mei4_mei5 is to be generated.

3.3.3 Generation Rules

Table 3.4 shows a portion of GChinese.order taken from JUPITER. There are two main types

of rules. In the first type, the left hand side (LHS) is a frame name and the right hand side

is the generation instruction. For example, the first rule in Table 3.4 says that the verify

frame is to generate a question article, if the key :qarticle exists.

In the second type, the LHS is simply a step name. The generation instruction found

in the RHS is to be carried out for the frame that is being processed. For example, for the

verify frame, we execute a sequence of steps - verifyl, verify2, and pulltime-loc -

while remaining in the same frame. Then, pulltime loc takes us down to the temporal

frame, for which there is a rule of the first type.

These rules clearly define the words generated by each frame component.

In the induction process, we will track the generation process to infer the

sentence structure for SL,, and to infer an alignment between words in SL, and

the components in the semantic frame.

3.4 Induction Approach

We propose an induction algorithm that automatically infers PL'. It takes as input the

following three pieces of prior information:

* TRAINL: Training sentences in some other language L.
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* PL: The parse grammar for L.

* GLI: The generation grammar for L'.

In theory, the development effort needed for adding a new language L' to the conversational

system is then reduced to GLI.

3.4.1 Algorithm Outline

We summarize below the major steps of the induction algorithm. For each sentence SL E

TRAINL:

1. Translate SL to SL,: Using PL and GLI,

(a) Compute the parse tree TL = TREE(SL, PL.rules, PL.constraints).

(b) Map TL to the semantic frame F = FRAME(TL, P.actions, PL.translations).

(c) Paraphrase F in L', SL, = GEN(F, GL).-

2. Infer L-L' word alignments: During step lb, infer an alignment between the words

in SL and the frame components in F (see §4.1). During step c, infer an alignment

between the frame components and the words in SL, (see §4.2). Combining these two

alignments yields an L-L' word alignment.

3. Infer the sentence structure of SL': During step c, infer a bracketing of the L'

sentence (see §5.4.1).

4. Construct TL': Apply the following operations on TL (obtained in step la) to trans-

form it into TLI:

* Translate a leaf, using the L-L' word alignments (see Chapter 4).

* Reposition a branch: Move a subtree in TL to a new position to reflect the word

order in L'. If the repositioned branch leaves behind a trace, insert appropriate

trace nodes at its original and new positions (see Chapter 6).

* Insert a branch: Insert new subtree(s) for each zero-to-one, zero-to-many, or one-

to-many L-L' word alignment (see §5.4). Use the SL, bracketing to determine

the point of insertion.
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* Prune a branch: Prune the appropriate subtree(s) for each one-to-zero, many-

to-zero or many-to-one word alignment (see §5.2).

5. Grow PL' grammar: Add to the following parts of the grammar:

* PL.rules: Add rewrite rules read off from TL,. Flag the new rules if they

introduce left recursions.

* PL'.translations: Add entries to the lexicon based on the L-L' word alignment.

The induced grammar is designed to use the same values for P.actions as were

assigned for the English grammar. For trace movements, we induce a P.constraints

which simulates a trace mechanism with no semantic constraints (see §6.1).
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Chapter 4

Word Alignment

The first step in our induction algorithm is to align words in SL, a sentence in the language L,

to those in SLI, a paraphrase of SL in the language L'. In our interlingua-based translation

framework, the semantic frame serves as the common link between SL and SLI. We split

the alignment task into two subtasks:

1. During PARSE, we align L words to components in the semantic frame;

2. During GEN, we align components in the frame to L' words.

We then combine the two alignments to create an L-L' alignment.

In the rest of the thesis, we will use SL = Will it rain tomorrow and SLi = ming2tianl

hui4 xia4_yu3 ma5 as our examples.

4.1 L-interlingua Alignment

We define the yield of a node in a parse tree as the words (i.e., the leaf nodes) that are

descendants of that node. For example, the yield of the node verbphrase in Figure 4-1 is

rain tomorrow.

As described in §3.2.3, each component in a semantic frame is created by a node in the

parse tree. In our alignment process, a leaf is aligned to the component of the frame that

is created by the node closest to the leaf.

In practice, the algorithm proceeds as follows. When a node creates a frame, we align

its yield to that frame. Suppose the yield is wlw2 ... w5. As we descend down the tree,
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vacuous:: clause

verify::clause

::predicate

will pronoun::key
verb temporal::predicate

it I I

rain weekday::key

tomorrow

Figure 4-1: Parse tree for SL, showing only the semantic labels given by P.actions.

another node might create a subframe. If the yield of this node is wlw2, then we would

narrow the alignment of the previous node to W3W4W5.

We illustrate this process with an example. The parse tree for SL is reproduced in

Figure 4-1, but showing only the node labels that are used by P.actions to construct the

semantic frame. We now work through the process of creating the semantic frame in Fig.

3-1:

1. The vacuous node creates a clause with the same name. The whole sentence is aligned

to the clause.

{c vacuous L=will it rain tomorrow )

2. The verify node renames the clause after itself. The alignment is unchanged.

3. The auxil node creates a key under the clause, and assign its yield, will, as its value.

Since auxil is closer to the leaf than verify, we associate will to the: auxil key, and

take will away from the alignment at the verify clause.

{c verify L=wi!! it rain tomorrow

:auxil "willP' L=will }

4. The object node then creates an empty topic frame, which is aligned with its yield,

it. As in the previous step, the word it is deleted from the alignment at the verify

clause.
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{c verify L=will it rain tomorrow

:auxil "wilf L=will

:topic {q null L="it" } }

5. The child of object, pronoun, creates a key :name and assigns a value to the key:

{c verify L=wil it rain tomorrow

:auxil "wile' L=will

:topic {q pronoun L=i

:name "it" L=it } }

6. Next, verbphrase creates a predicate:

{c verify L=will it rain tomorrow

:auxil "wilP L=will

:topic {q pronoun L=it

:name "if' L=it }

:pred {p verbphrase L=rain tomorrow }

7. Then verb renames the predicate to rain.

8. Lastly, temporal creates a predicate and a key under the predicate, assigning its yield

as the key value.

{c verify L=will it rain tmorrow

:auxil "will' L=will

:topic {q pronoun L=it

:name "it" L=it }

:pred {p rain L=rain too.row

:pred {p temporal L=om-tOrw

:topic {q weekday

:name "tomorrow" L=tomorrow } } }
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By now we have filled in all the L entries in the alignment in Figure 4-2.

4.1.1 Limitations

In some sentences, certain components of the semantic frame are not directly constructed

by nodes in the parse tree. One example is the in and state frames for American states,

which are produced upon separation of city and state namesl , independent of the parse

tree. The parse tree of the utterance Los Angeles, California is:

sentence

Icityname
uscityname

and is represented

:topic {q city

:name "los

los angeles california

as a :topic in the semantic frame:

angeles california" }

Without taking any information from the parse tree, the :topic is further broken down

into:

:topic {q city

:name "los angeles"

:pred {p in

:topic {q state

:name "california" } } }

Our current implementation does not track these further analyses, and would consider

all three words, city and state, to be aligned to the :name key under the city frame.

1We turned off the function pick-apart when inducing a new grammar.
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4.2 Interlingua-L' Alignment

To infer an interlingua-L' alignment, we observe the L' words generated by each component

of the frame when it is verbalized as an L' string. As an example, we work through this

process for the semantic frame in Figure 3-1, according to the Chinese generation grammar

in §3.4. For the sake of clarity, we present these steps breadth-first rather than depth-first,

which is the way it was implemented.

1. The rule

verify + ($if :rhet >exist >verifyl) :q_particle

generates the question particle ma5 at the verify clause.

{c verify L=0, L'=ma5

:auxil "wil'l" L=will

:topic {q pronoun L=0

:name "i't" L=it }

:pred {p rain L=rain

:pred {p temporal L=0

:topic {q weekday

:name "tomorrow" L=tomorrow } } }

2. The rule

verify2 -> ($if :phatic-pronoun >pulltimeloc) >auxil >preds

verbalizes the :auxil key under the verify clause. After consulting the lexicon, will

is realized as hui4.

{c verify L=O, L'=ma5

:auxil "wil'l L=will L'=hui4

:topic {q pronoun

:name "if' L=it L'=0 }

:pred {p rain L=rain

:pred {p temporal
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:topic {q weekday

:name "tomorrow" L=tomorrow } } }

3. The pulltimeloc step executes a "pull" of the temporal predicates (<==temporal).

The temporal predicate then generates, according to predicatetemplate, the :name

key in the weekday topic:

topic_template - (:name $core)

which is mapped to the surface string ming2 tianl.

{c verify L=0, L'=ma5

:auxil "wilP' L=will L'=hui4

:topic {q pronoun

:name "it" L=it L'=0 }

:pred {p rain L=rain

:pred {p temporal

:topic {q weekday

:name "tomorrouw" L=tomorrow L'=ming2tianl ) ) )

4. The >pred command processes the rain predicate, which is verbalized as zia4_yu3

under the predicate_template step.

predicatetemplate -- (:verb $core)

{c verify L=0, L'=ma5

:auxil "will' L=will L'=hui4

:topic {q pronoun

:name "it" L=it L'=0 }

:pred {p rain L=rain tomorrow L'=xia4~yu3

:pred {p temporal L=teimsrtt'w

:topic {q weekday

:name "tomorrowu" L=tomorrow L'=ming2tianl } }
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{ verify [L=null, L'=ma5]
:auxil [L=will, L'=hui4]
:topic { { q pronoun

:name [L=it, L'=null) }
:pred {p rain [L=rain, L'=xia4 yu3]

:pred {p temporal
:topic {q weekday

:name [L=tomorrow,
L'=ming2 tianl] } } } }

Figure 4-2: L-L' word alignment for Will it rain tomorrow?

The final alignment is shown in Figure 4-2.

4.2.1 Features

Multiple components in the semantic frame may propagate features to influence the gener-

ation of one L' word. For example, in Table 3.5, the generation of mei4_mei5 depends on

the feature $:younger, which is propagated by the relative-age predicate in Figure 3-4.

Since the word mei4_mei5 is generated at the :name key, it is aligned to the word sister.

However, it should be aligned to both younger and sister. We achieve this by remembering

the features propagated by each component of the frame, and the features that are used

by each component during lexicon look-up. If a component cl is aligned to 0, but issues a

feature that is later used in the generation of another component c2, then the yield of the

cl is also aligned to c2.

4.2.2 Limitations

Just as the trace mechanism reconfigures the parse tree to enforce a canonical structure in

the semantic frame, the PREPROCESS stage (see §3.3) manipulates the semantic frame to

facilitate generation of surface strings in certain languages. For example, the utterance I

do not know of any bank machine in the vicinity is represented by the semantic frame:

{c statement

:topic {q pronoun

:name "z" }

:aux "do"
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:negate "no't"

:pred {p know

...II

Before generation in Chinese, however, the pre-processor moves the :negate key inside the

know predicate:

{c statement

:topic {q pronoun

:name "" }

:aux "do"

:pred {p know

:negate "not' "

Our current implementation does not keep track of these manipulations by the pre-processor.

4.3 Interlingua-L Alignment

It is possible to enhance our L-L' alignment by aligning the components of the frame to

the words in SL. Due to limitations such as the one discussed in §4.1.1, we might have

an incomplete alignment. In particular, in the example in §4.1.1, luo4_shanljil (Chinese

for Los Angeles) would be aligned with los angeles california, while jialzhoul (California)

would be aligned with 0.

If we repeat the generation and alignment process in §4.2 with the language L, then we

would benefit from knowing the L word(s) associated with each frame component. Hence,

we would be able to align california with jialzhoul.

Note that this approach is feasible only if

* GL is also available

* The paraphrase in L, i.e., GEN(PARSE(SL, PL), GL), is identical to SL.
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Key WChinese WEnglish

weekday ming2tianl tomorrow
:auxil hui4 will
:verb xia4_yu3 rain

Table 4.1: Induced translation lexicon for JUPITER.

4.4 Translation Lexicon Induction

The PL .translations is induced based on the word alignments. Some translation lexicon

entries inferred from Figure 4-2 are shown in Table 4.1.

4.4.1 Limitations

Note that the same L word might have multiple translations. For example, in a different

sentence in the training set, the algorithm learns that an alternative translation of hui4

under the :auxil key is going to. We keep a count of the number of occurrences of each

translation variant, and pick the most frequently occurring one.

A statistical approach might be warranted to learn how the context disambiguates will

and going to. In general, we would like to calculate P(WEnglish wL', key, context), where

context may include, for instance, the other key-value pairs in the frame, or the name of

the parent frame.
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Chapter 5

Tree Transformation

We will illustrate the tree transformation steps with our running example, SL = Will it

rain tomorrow, with its parse tree TL in Figure 3-2, and SLI = ming2_tianl hui4 xia4_yu3

ma5. These steps depend on two pieces of information: the L-L' word alignment, and the

structure of SLI, which is gleaned from its generation process.

The output of the alignment process on SL and SL, is shown in Table 5.1. In general,

one could classify an alignment as one of five types, depending on whether there is zero, one

or many words on either side of the alignment. In many languages, there is no consensus

on what constitutes 'one' word. In our context, the number of words in a sentence may

be defined as the number of lexicon look-ups (see §3.3.2) during its generation process in

GENESIS. The five alignment types are shown in Table 5.2. Note that there is no manyL,

column, because, in practice, GENESIS uses features (see §3.3.1), rather than multiple look-

ups, to generate semantically composed words. These words are then concatenated with

underscores and generated at the same time.

For example, while younger sister is considered two words, its Chinese equivalent,

L word L' word Alignment type
will +--+I hui4 oneL-oneLl
it ) 2 0 oneL-OLI
rain - )3 xia4-yu3 oneL-oneL,
tomorrow e )4 ming2tianl oneL-oneL
0 4 )5 ma5 OL-oneL

Table 5.1: Word alignments between SL and SL,, and their types.
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Type OL' oneL,

0L n/a insert (§5.4)
oneL prune (§5.2) replace (§5.1)
manyL prune (§5.2) choose (§5.2.1)

Table 5.2: Types of L-L' word alignments.

mei4_mei5, is considered one word because it is generated by one lexicon look-up on sister

with the $younger flag.

We now describe how each type transforms the L parse tree.

5.1 Leaf Replacement

The most straightforward cases are oneL-oneL, and oneL-manyL, alignments, where we

simply replace the leaf for the L word with its aligned L' word(s). This transformation

handles alignments 1, 3 and 4 in Table 5.1. The resulting parse tree is shown in Figure 5-1.

5.2 Branch Pruning

For oneL-0 L, and manyL-OL, alignments, we prune the branch(es) corresponding to the L

word(s). For example, due to alignment 2 in Table 5.1, the branch for it in the tree in

Figure 5-1 is pruned.

If the pruned branch contains a node that constructs a component in the semantic

frame, that component would be lost. For example, the semantic frame produced by the

proposed parse tree in Figure 5-1 would lack the :topic frame for the pronoun it, because

the subject and it nodes are missing. The effects of branch pruning will be evident in our

experiments on Chinese-to-English translation.

5.2.1 Choice for Pruning

Similarly, a pruning decision has to be made for a manyL-oneL, alignment. Out of the

many L branches, only one could remain and have its leaf replaced by the aligned L' word.

The rest must be pruned.
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sentence

fullparse

question

doquestion

auxil subjeet predicate

hui4 predicate-v

(wilo I I
( ) verbphrase

intrverbphrase

intrverb intrverb-args
I I

weatherverb whennode
I I

xia4_yu3 which-days
(rain) I

day list

date-name 1 ist

I
ming2_tianl
(tomorrow)

Figure 5-1: The proposed TuL after Leaf Replacement (§5.1). The leaves of TL in Figure 3-2
were replaced with their aligned L' words. At Branch Pruning (§5.2), the subject branch,
whose leaf is aligned with 0, is pruned.
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sentence

fullparse

weather_description

a-mix-of

i.Fl mix of mix o big Beather act

jiaoltiJ 
clouds and sun

Figure 5-2: Due to a manyL-oneL alignment, a mix of (- jiaol-ti4, either the inva or
the mixof branch is to be pruned. A majority decision prunes the former.

Some of the L branches might have a non-null label1 given by P.actions (see §3.2.3).

This label indicates that the branch constructs a component in the frame, and is therefore

presumably important to preserve. If there is only one such branch, we keep that branch

and prune the rest.

There are two exception to this general principle. The first applies when a node with

the instruction to create a topic has an ancestor with the same instruction. Unless it has

priority2 over the ancestor node, it is 'overridden' and its instruction ignored. Hence, it has

no semantic importance.

The utterance Any weather advisories in Boston in Figure 5-3 illustrates this situation.

The words weather advisories are aligned to a single L' word, zailhai4_tianqi4jing3bao4.

Although weather has the instruction to create a topic, it is overridden by an-advisory,

which has a higher priority for topics. The algorithm hence should not keep the weather

branch simply because it has a non-null label from P.actions.

The second exception applies when a node is designated a named-topic, which means

that it produces a topic frame with the key :name in it. The value of :name consists

of the yield of the nodes, except those that are covered by another node with a non-null

instruction.

For example, in Figure 5-3, the word advisories alone should be aligned to the :name

1Except the special .invisible label, which dictates that the node is irrelevant to the semantic
interpretation.

2By virtue of the ordering in the . actions file.
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sentence

anadvisory
advisory:: topic

disaster

weather advisory
weather:: topic

weather advisories

Figure 5-3: The topic instruction does not give the weather node any semantic importance,
because it is overridden by an-advisory. The advisory branch should be kept because it
contributes to the :name key in the advisory topic frame.

key in the advisory topic, because weather is covered by another topic-creating node.

The general principle does not suffice when there is none, or more than one such branch.

In this case, we keep the branch whose label given by PL.rules appears most often among

the branches under consideration. The utterance A mix of clouds and sun, taken from the

WEATHER RESPONSES domain, and its parse tree are shown in Figure 5-2. Its Chinese

paraphrase is yun2 he2 tai4_yang5 jiaolti4. This pair of utterances has a manyL-oneL'

alignment, a mix of ) jiaolti4. Since the label mix-of appears twice, it is preferred over

the label inva. We hence prune the latter, and keep the former and replace its leaf with

jiaolti4.

5.2.2 Limitations

When there is a tie on the number of appearances of the labels, we take the first label.

Although this heuristic generally works well for our test domains, we suspect it is a language-

dependent issue. The proper solution to this problem, it seems, is to combine the nodes of

the branches. As an example, for the alignment younger sister -+ mei4-mei5, one might

imagine putting the relative-age node under the relationship node in Figure 5-4, and

indicating that it is to construct a relativeage predicate under the relationship topic

frame. This would necessitate a new feature in P.actions.
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sentence

fullparse

statement

subject ..-

I I
aperson is

a-relationship

poss relative age relationship

I I I
my younger sister

Figure 5-4: An example manyL-oneL, alignment: both younger and sister map to one L'
word, mei4_mei5.

5.3 Branch Movement

After replacing the L leaves with their L' translations, we re-order the branches to conform

to the L' word order. The resulting parse tree is shown in Figure 5-5. This tree is by itself

incorrect in at least two ways. It suggests that

* a verbphrase node could be rewritten as a when-node, which contains no verb.

* a doquestion node could be rewritten as two predicate nodes, with an auxil

sandwiched between.

Pragmatically, this tree is also undesirable because it would place the temporal predicate

directly under the verify frame, rather than under the rain predicate.

We will address these issues with the trace mechanism, described in Chapter 6. This

naive branch movement is executed to facilitate the next transformation step, branch inser-

tion.

5.4 Branch Insertion

When there is a 0L-oneL, or OL-manyL, word alignment, a new branch has to be inserted

into the tree. While the L' word order fixes the horizontal location of this new branch, it is
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sentence

fullparse

question

ma5

predicate auxil

predicatev hui4
(wilo

verb_phrase

intr_verbphrase

intr_verbargs

when-node

which_days

day-list

predicate

predicatev 3

verbphrase ma5
I

intr_verb_phrase

I
intrverb

weather_verb

I
zia4_yu3

(rain)

date name-list

ming2tianl
(tomorrow)

Figure 5-5: The proposed parse tree for SLI, after Branch Movement (§5.3). The branch
for ming2_tianl is moved to the front to conform to the L' word order. At Branch Insertion
(§5.4), the branch for ma5 may be inserted at three different locations. Location 1 is the
most appropriate one.
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verify

ticle

ma5
(0)

pull-timeloc

pulltimeloc_2

temporal

:topic

topic-template

npcore

:name

ming2_tianl
(tomorrow)

Figure 5-6: Generation tree for
(xiayu3) ) (ma5) ).

auxil preds
I I

:auxil otherpreds

hui4 predicate-template

predicate-templatel

rain

zia4_yu3
(rain)

SL,, yielding the bracketing ( ( (ming2tianl) (hui4)

unclear at which vertical location it should be merged with its neighbors.

In our running example, the alignment 0 ( ) ma5 necessitates a branch insertion. As

shown in Figure 5-5, there are three possible merge locations, all of which preserve the

Chinese word order. We choose the most appropriate location on the basis of the structure

of SL, which could be inferred during its generation process.

5.4.1 SL, bracketing

The generation rules in GENESIS (see Table 3.4) may be viewed as context-free rules. The

non-terminals are either a frame name (e.g., verify), or a step name (e.g., pulltime oc);

the terminals are the surface strings produced by the lexicon. The generation process of

SL, could thus be mapped to a 'generation tree', as shown in Figure 5-6. We interpret this

tree as the structure of SL'.

In general, we should insert a new branch into the parse tree in Figure 5-5 such that
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the result would have the "same" structure as the generation tree. More concretely, the

siblings of the inserted branch should have the same yields as the siblings of the branch in

the generation tree.

In Figure 5-6, the sibling of the ma5 branch is verifyl, whose yield is ming2tianl

hui4 xia4yu3. If the ma5 branch is inserted at location 1 in Figure 5-5, its sibling would be

do-question, which has the same yield. However, if it were inserted at location 2, its sibling

would be predicate, auxil, predicate, each with different yields. Location 3 would also

result in different yields. The appropriate merge location, therefore, is 1.

A more intuitive way to describe the branch insertion algorithm is through bracketing.

A parse tree may be converted into a bracketed sentence. For example, the trees in both

Figure 5-6 and Figure 5-5 (if location 1 is taken) may be converted to ( ( (ming2tianl)

(hui4) (ia4_yu3) ) (ma5) ).

Thus, the new branch should be inserted such that the resulting parse tree and the SLI

generation tree would have the same bracketing. For example, if the bracketing from the

generation tree were ( (ming2_tianl) (hui4) (xia4yu3) (ma5) ), location 2 would have been

the correct choice; if the bracketing were ( ( (ming2_tianl) (hui4) ) ( (xia4_yu3) (ma5) ) ),

location 3 would have been the correct choice.
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Chapter 6

Trace Simulation

After the Branch Insertion step (§5.4), the proposed parse tree TL, (see Figure 5-5) contains

all the words in SL, in the correct order. However, the problems caused by the naive branch

movement in §5.3 still remain. In this chapter, we address these problems using TINA's

trace mechanism.

6.1 Trace Simulation

As discussed in §3.2.2, the trace mechanism in TINA is implemented as an implicit partner-

ship among generators, whose constituents are allowed to move; activators, which license

movement of the generated constituent; and absorbers, the designated destination of the

generated constituent. This mechanism depends crucially on semantic constraints to re-

strict the kind of movements allowed. If these constraints are not carefully devised, the

mechanism would lead to overgeneration.

The semantic constraints are specified in the form of semantic category assignments for

the generators, activators and absorbers. These assignments are difficult to induce without

substantial world knowledge. We therefore make the following simplifications, and leave it

to the developer to implement the full trace scheme1 :

* There is one generic generator, which has the general label extraposed. The developer

will need to classify this general label into appropriate semantic categories.

'During evaluation, the grammars are automatically induced and are not further edited by humans. To
accomodate the incomplete trace constraints of the induced grammars, a few adjustments were made to the
parser. The details are described in §7.3.
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* There is one generic activator, which has the general label extrapose. Similarly, the

developer will need to specify semantic restrictions for this general label.

* In place of the special trace tag *trace*, we use a keyword, *hyptrace*, to denote

a trace. It behaves like a normal word, and appears in the L' paraphrase when TINA

and GENESIS are run in the grammar induction mode 2. For example, SL would be

paraphrased as ming2-tianl hui4 xia4_yu3 *hyptrace* ma5. The *hyptrace* indi-

cates that one of the preceding words has been extraposed. This helps the developer

locate places where traces are necessary.

Since nodes are not assigned any semantic categories, there are no semantic constraints. In

other words, a branch with an extraposed node would be moved to the closest branch to

its right that has a *hyptrace* leaf.

6.2 Trace Detection Algorithm

6.2.1 Terminology

We start with a few definitions to facilitate our discussion:

* Suppose that SL is of length N, with the words wlw2w3 ... WN; and that SL, is of

length N', with the words wfw2w a ... wuN,.

* The head node of a set of nodes is the root node of the smallest subtree that contains

all the nodes in the set. For example, in Figure 6-3, the head node of hui4 and xia4_yu3

is doquestion; the head node of xia4-yu3 and ming2tianl is intr verbphrase.

* The constituent node of a word wi is one of the following two nodes, whichever is

the root of a smaller subtree. (1) the head node of the two leaf nodes corresponding

to the words wi-1 and wi; or (2) the head node of the two leaf nodes corresponding

to wi and wi+l. For example, in Figure 6-3, the constituent node of zia4_yu3 is

intrverb-phrase.

* The constituent of a word wi is the yield of the constituent node of wi. Let CONSTITUENTL(Wi)

be the constituent of the word wi in the L parse tree. For example, in Figure 6-3,

2See Appendix A.
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sentence

full-parse

I I
nl m2

n 2 ...

... mj

nk

9ws ... Wt extrapose Wt+l .

·~ *hyptrace*

Figure 6-1: Schematic diagram of a typical trace movement. The word w' is extraposed
from the position between w' and w+l. Of the nodes taken from the branch of ALIGNL()
in the L parse tree, only nl ... nk should be moved forward to the extraposed branch. The
nodes ml . .. mj should not appear in that branch.

the constituent of xia4_yu3 is ia4yu3 ming2_tianl. Generally speaking, if wi E

CONSTITUENTL(Wi), then, wi and wj are likely to appear within the same subframe

in the semantic frame.

* Let ALIGNL(Wi) be the SLI word to which wi is aligned. If wi is unaligned, then

ALIGNL(Wi) is 0. Similarly, let ALIGNL(W) be the SL word to which wi is aligned.

6.2.2 Algorithm

Figure 6-1 shows a typical trace movement. The surface word w' (in our example, ming2_tianl)

has been extraposed from its original position, between wl and w'+1. At parse time, we

would like to place it back under an extrapose node between w' and w+l.
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lfor i = N' to 1
2 if ALIGNL(W) 0

3 f or each w E CONSTITUENTL(ALIGNL(Wi))
4if ALIGNLI(W) 0 CONSTITUENTL'(Wi)

Insert trace node (§6.2.3)
Edit extraposed branch (§6.2.4)

end if
end for

end if
end for

Table 6.1: Trace detection algorithm

After the Branch Movement step (§5.3), all extraposed words are already in their surface

position. What we need to do, then, is the following:

1. Identify t, i.e., the original location of the extraposed words, and insert *hyptrace*.

2. Identify s, i.e., the words that have been extraposed, and insert an extraposed node

in its branch. Furthermore, the Branch Movement step has copied the entire path of

w', taken from root to leaf in the L parse tree, to its new location. As illustrated in

Figure 6-1, the nodes ml ... mj should not be in this new branch. Hence, we need to

edit the extraposed branch.

One of the main objectives of the trace mechanism is to standardize the hierarchy of the

subframes in the semantic frame. As discussed above, words in the same constituent tend

to form components within the same subframe. Our premise is that if wj is in the same

constituent as wi in the SL parse tree, then ALIGNLI(Wj) and ALIGNL,(wi) should also be in

the same constituent in the SL, parse tree. If not, then one of them is considered to have

been extraposed.

The Trace Detection algorithm is presented in pseudocode in Table 6.1. It traverses SL'

from right to left (1). At every word w:, the algorithm computes its constituent in the L

parse tree. If w~ is not aligned to any L word, e.g., ma5, then the algorithm moves on to

ia4_ yu3 (2).

The algorithm then examines every member of the constituent (3). In our example, this

constituent consists of rain and tomorrow. The aligned L' word of each member is expected
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sentence

fullparse

question

doquestion :q article

ma5

.cate

p-e i e hui4 predicatev
~~~I ~ (wilo I

prdieate-_v verb-phrase

vcrb-phrasc intrverb-phrase
.. t. ""er intrverbphraseint r- r-b -phr-as intrver extrapose

which-days I
weather-verb *hyptrace*

dayi--List zia4_yu3

date-name list (rain)

ming2_tianl
(tomorrow)

Figure 6-2: Proposed parse tree for SL,, after applying the Trace Detection Algorithm
(§6.2). At run time, the branch beneath extraposed would be cut off and grafted onto the
extrapose node.

to be in the constituent of w' in the proposed L' parse tree (4). If not, it is considered

to have been extraposed. In our example, the aligned L' word of tomorrow, ming2_tianl,

is not in the same constituent as xia4_yu3. Hence, the operations in §6.2.3 and §6.2.4 are

triggered.

6.2.3 Insert Trace

We insert the activator extrapose and the trace word *hyptrace* at the location from

which the word w' has been extraposed.

We first find CONSTITUENTL(ALIGNL(w's)). In our example, the constituent of tomorrow,
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sentence

full-parse

question

do-question : qarticle

ma5

auxil predicate (0)

hui4 predicatev
(wilo I

verbphrase

intrverbphrase

intrverb extrapose

I I
weatherverb intrverbargs

I I
zia4_yu3 when-node

(rain)
whichdays

daylist

date-namelist

ming2_tianl
(tomorrow)

Figure 6-3: Proposed parse tree for SLI, after its trace has been moved.

to which ming2tianl is aligned, is intr_verbphrase. Under this node, we insert an

extrapose node, with a *hyptrace* as leaf, as in Figure 6-2. When the trace is moved

during parsing, *hyptrace* absorbs the extraposed branch.

6.2.4 Edit Extraposed Branch

The algorithm first determines the head node of the nodes between w' and *hyptrace*. In

our example, it is the node do-question. The generator extraposed is inserted under this

node. Further, we insert the nodes under CONSTITUENTL(ALIGNL((s)), corresponding to

the nodes nl,..., nk in Figure 6-1. The resulting tree is shown in Figure 6-2.
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When the trace has been moved, the normalized parse tree should look like Figure 6-3.

6.3 Limitations

Without semantic categories, it is impossible to handle nested traces. Consider the example

(Which hospital)l was (Jane)2 taken (t2) to (tl), taken from [18]. There are two traces in

this sentence: first, which hospital is generated, and is eventually absorbed by (tl), which

takes an object modified by the preposition to. Nested within this trace, Jane is generated,

and is absorbed by (t2), which absorbs the direct object of the verb taken. This nested

trace would not have been feasible if the two traces were not distinguished by their different

semantic categories.
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Chapter 7

Evaluation

We evaluated our translingual induction approach outlined in previous chapters on two

domains and two target languages. A Chinese grammar was induced from a hand-crafted

English grammar in the JUPITER [26] domain; a French grammar was induced from a hand-

crafted English grammar in the PHRASE BOOK [19] domain.

7.1 Evaluation Domains and Languages

JUPITER, a weather domain, is our group's most mature domain to date. Its English

parsing grammar, Pe, and its Chinese generation grammar, Gc are well developed and

tested. They are thus ideal as the prior information to our induction algorithm, and as

the "gold standard" in the evaluation. Having been deployed on a public phone line for

many years, the domain boasts a large data set available for training. Table 7.1 lists some

example utterances in the domain.

Table 7.1: Example utterances in the JUPITER domain.

61

i would like to know the weather in washington D C for the weekend
tell me about cities in california
thank you bye bye
what about dallas
what will the temperature be in los angeles california tomorrow october seventh
i am finished
nothing thanks
what is the wind speed in boston
is it going to be cloudy in new york tomorrow
is there any severe weather
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i'm british
i'm having trouble understanding you
how many days do you plan to stay
how much would it cost in american dollars
i want to exchange traveler's checks into local currency
where can i watch television
please help me
what bean curd dishes do you have
turn left at the next light
i have reserved a table for three people for six p m

Table 7.2: Example utterances in the PHRASE BOOK domain.

PHRASE BOOK is part of an on-going project aimed at providing translation assistance

for travelers, and for students of a foreign language. Its nature requires that multilingual

grammars be written rapidly. It is on domains like this that we hope to be able to apply

our induction approach. Recently, a French generation module Gf was developed.

Compared to JUPITER, PHRASE BOOK covers a broader range of concepts, and has less

data available for training. We felt that it would be a challenging domain and would provide

complementary evaluation for our induction approach.

7.2 Evaluation Metric

Suppose we take a grammar for L = e(nglish) as prior information to induce a grammar

for L' = c(hinese). Ideally, we should measure the quality of the induced Pc against a

handcrafted Pe. Our group has developed MUXING [24], a Chinese version of JUPITER.

However, the style of the semantic frames used in MUXING was found to be substantially

different from JUPITER. Since the induced grammar aims to imitate JUPITER, MUXING

would not be a good point of reference.

We decided to compare PC against Pe in their ability to map two equivalent sentences,

Se and Sc, to the same semantic frame. This metric rewards the induction algorithm for

producing semantic frames that are as close as possible to those in the source language. It

thus has the long-term effect of encouraging uniformity across all languages in the domain.

We used Pe and the induced Pc, respectively, to produce two semantic frames, say Fe

= PARSE(So, Pe) and FC = PARSE(S, Pc). If Pc were perfect, then Fe and FC should be

identical.

A possible metric, then, would be to compare Fe and Fc via, for example, the accuracy

62



of the frame names, and the precision/recall of the key-value pairs. However, we felt that

this metric would not be informative for those who are not familiar with our semantic frame.

Moreover, for the travelers and students who use PHRASE BOOK, it is not the accuracy of

semantic frame, but ultimately the quality of the translation, that matters most. Therefore,

we decided to measure the accuracy of the English paraphrase of Fc.

We then obtained the English paraphrases, GEN(FC, Ge) and GEN(Fe, Ge). The latter

was assumed to be correct and served as the "gold standard". We calculated the word error

rate of GEN(FC, Ge) with respect to this gold standard. Note that, if PARSE failed to parse

Sc, then GEN(FC, Ge) is considered to be the empty string and hence given a 100% deletion

error.

In the experiment with PHRASE BOOK the same metric was used, with L' = f(rench).

Since the coverage of Ge for this domain was still limited, we evaluated Ff by comparing the

French paraphrases GEN(Ff, Gf) and GEN(Fe, Gf). This evaluation provides additional

insights into the translation challenges in a language other than English.

7.2.1 Limitations

For machine translation in broad domains, such as news articles, the current prevailing

metric is BLEU [15]. BLEU requires multiple reference translations, and reports on a modified

form of N-gram precision, with a penalty for sentence brevity.

We did not use BLEU as our metric for several reasons. First, we simply do not have

access to multiple English paraphrases of Fe . Second, we would like to be conservative

in our evaluation, given that the translation in PHRASE BOOK would be used as teaching

material. Also, in restricted domains like JUPITER and PHRASE BOOK, a sentence does not

exhibit as much nuance, nor as wide a range of possible translations as in broad domains

for which BLEU is designed.

Nonetheless, the word error rate is a rather harsh measure for translation quality. For

example, the following pair of GEN(FC, Ge) and GEN(Fe, Ge) incurred a 43% error rate.

What is the temperature in England tomorrow?

What is temperature tomorrow in England?

In many cases different phrase orderings resulted in high error rates in paraphrases that

were entirely acceptable. Hence, the error rate should be treated as an upper bound on the
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actual performance.

7.3 Parser Preparation

As described in §6.1, the induced grammar gives only a subset of the necessary trace spec-

ifications. For example, it does not define any semantic constraints. Normally, a developer

is expected to fill in the gaps. For evaluation purposes, however, we would like to avoid

human intervention.

Hence, we enabled TINA to handle the induced form of traces by the following:

* The node extrapose is dynamically identified as an activator.

* The word *hyptrace* is dynamically identified as a trace node that serves the same

function as *trace*.

Roughly speaking, these changes emulate a normal trace mechanism with no semantic

constraints.

The trace simulation (§6.3) does not currently handle multiple, serial traces in a sen-

tence. Consider the sentence a few showers early then changing to snow showers overnight,

an example taken from WEATHER RESPONSES. Its Chinese paraphrase is zao3zianl (early)

you3 (0) yilxiel (a few) zhen4-yu3 (showers), guo4hou4 (then), ye4jianl (overnight)

zhuan3_cheng2 (change) zhen4xue3 (snow showers). Under the trace mechanism, zao3zianl

is extraposed and should be moved after zhen4_yu3; similarly, ye4_jianl is extraposed, and

should be moved after zhen4_xueS.

One possible solution is to break complex sentences like this into two, leaving only one

trace per sentence. However, in practice, most sentences in the test domains contain no

more than one trace.

7.4 Experiments on JUPITER

7.4.1 Data Preparation

We have a large corpus of English utterances of naive users asking about weather over the

phone. Since it is critical for the induction algorithm to learn from valid English parse trees

and Chinese paraphrases, we filtered this corpus in three stages.
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First, we filtered out sentences to which our English grammar, Pe, could not give a

complete parse. Next, we obtained Chinese paraphrases for the remaining sentences using

our Chinese generation module, G. Since this generation module was not yet entirely

mature, we further tested the quality of these paraphrases. We filtered out those paraphrases

that could not be parsed by a previously authored Chinese grammar 1. Finally, we manually

filtered out those paraphrases that translated only a part of the original English sentence.

At the end of the process, we were left with a little over 7000 sentences. The average

length of sentences in the test set is 6.0 words. We randomly set aside roughly 10% of these

sentences for testing.

0la(D
00§A

fi

Training Set Size

Figure 7-1: Performance of induced JUPITER grammar with respect to size of training data

7.4.2 Results

Figure 7-1 shows the learning curve of the induction algorithm. The best induced Chinese

grammar performed at 27.3% word error rate (15.5% deletion, 7.7% substitution and 4.1%

insertion rate) and 1.0% parse failure rate on the test set. Table 7.3 lists the 20 most

1In general, such a grammar of course would not pre-exist, and some other methods, such as manual
assessment, would be required here.
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Table 7.3: Twenty most frequent errors in the English paraphrases, GEN(F, Ge), as per-
centages of the total error. (del = deletion, sub = substitution, ins = insertion)

frequent errors, which collectively accounted for 65.0% of the total error.

7.4.3 Error Analysis

Almost all deletions of tomorrow or today in GEN(FC, Ge) were coupled with insertions of

the same words elsewhere in the paraphrase. This phenomenon illustrates the limitations

of the word error rate as discussed in §7.2.1, and artificially increased the error rate.

Aside from tomorrow and today, none of the other words in Table 7.3 are content words

that significantly alter the meaning of the paraphrase in the weather domain. The majority

of the errors were deletions of words that were in fact absent from the Chinese paraphrases.

The induction algorithm therefore pruned the branches of these words, leading the induced

Pc to produce impoverished semantic frames. Such deletions would exist even for a grammar

developed by an expert. It should be the responsibility of the pre-processor Ge.pre (see

§3.3) to reinstate such missing features based on first principles and/or statistical methods.

Other errors were caused by translation variants of Chinese words in the domain (see

§4.4.1). In the experiment, we simply selected the variant that was seen most often in the

alignments. For instance, zhildao4 translates to the more frequently occurring know about

rather than to know, accounting for most of the insertion errors for about.

Finally, mistakes in word alignment introduced some noise and redundancies to the

grammar.
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Error Word % Error Word %
del is 9.6% sub any - a 1.7%
del the 7.9% sub is -+ does 1.7%
sub for -4 in 7.0% del today 1.6%
del be 6.2% sub will -+ is 1.5%
del for 4.8% ins tomorrow 1.5%
del it 4.8% del in 1.4%
del like 3.9% sub how -- what 1.4%
ins about 2.4% del tomorrow 1.3%
ins today 2.0% ins now 1.3%
del will 1.9% sub are -- is 1.1%



Table 7.4: Errors in French paraphrases, GEN(Ff, Gf), that occurred more than twice in
the test set. The percentages are with respect to the total error. (del = deletion, sub =
substitution, ins = insertion)

7.5 Experiments on PHRASE BOOK

7.5.1 Data Preparation

We have a corpus of just over 500 sentences in this domain, collected from students and

research scientists in our research group. The average length of these sentences is 5.9 words.

Using Gf, we obtained their French paraphrases. We then randomly set aside 20% of these

sentence pairs for testing.

7.5.2 Results

The induced French grammar performed at 13.5% word error rate (2.9% deletion, 7.5%

substitution and 3.1% insertion) and 0.0% parse failure rate on the test set. Table 7.4

shows all errors that appeared more than twice. They collectively accounted for 28.8% of

the total error.

Since our test set consisted of only about 100 sentences, we would like to further inves-

tigate if the errors listed in Table 7.4 were characteristic of the domain. We hence ran the

experiment again with the same induced grammar on the training set. The word error rate

was 14.0% (3.1% deletions, 7.7% substitution and 3.2% insertions) 2. Table 7.5 shows the

ten most frequent errors, which include as a subset all errors tabulated in Table 7.4.

2Since the grammar had been trained on sentences used in this experiment, the reduced error rate has
no significance. The main objective of the experiment was to analyze errors not manifested in the small test
set.
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Error Word %
ins pas 10.8%
del de 4.8%
del pas 4.8%
sub voudrais -+ aime 4.8%
ins de 3.6% 



Table 7.5: Ten most frequent errors in the French paraphrases, GEN(Ff, Gf), in the training
set. (See discussions in §7.5.3 for the errors involving <verb>.) The percentages are with
respect to the total error. (del = deletion, sub = substitution, ins = insertion)

7.5.3 Error Analysis

The insertions and deletions of pas were caused by mistakes in the word alignments. In

French, negation is expressed by two words, ne and pas, which precedes and follows the

verb. For example, the utterance I do not eat meat is translated as Je(I) ne mange(eat)

pas la viande(meat). The induction algorithm erroneously aligned ne to not, and pas to 0.

During generation, ne and pas were both placed in front of the verb, resulting in Je ne pas

mange la viande, with one deletion and one insertion of pas.

Incorrect word alignments were also responsible for the confusion between beaucoup and

combien. The former was properly aligned to much. However, the latter, which means how

much, was aligned only to much, resulting in ambiguity between the two words.

The words vouloir and aimer are French translation variants of like. The generation

module generally maps like to aimer, except when it is preceded by would, in which case

it maps would like to vouloir. Our induced grammar failed to learn this rule, and always

translated like to vouloir, which was seen more frequently in the training data than aimer.

The French word de is a function word that could roughly be translated as of, as in quels

types de plats (what kinds of dishes). In some expressions, such as combien de jours (how

many days), it is not aligned to any English word, and is generated according to propagated

features and frame contexts. For some sentences the induced grammar created frames that

did not generate de, or inserted it at inappropriate positions.
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Error Word %
ins pas 4.9%
sub voudrais -+ aime 3.9%
del pas 3.7%
del de 3.0%
ins me 2.0%
sub me -+ <verb> 1.7%
ins un 1.7%
sub combien -+ beaucoup 1.5%
sub apporter -+ apporte 1.5%
ins de 1.5%



:pred {p bring
:topic {q knife }
:pred {p indir

:topic {q pronoun
:name "me" 

Figure 7-2: The bring predicate in the semantic frame for bring me the knife.

A failure to detect constituent movement produced the errors involving <verb>, me

and apporter. In French, an indirect object of the verb may be moved to the front of the

verb. For example, the translation of can you bring me a knife is pouvez (can) - vous(you)

m' (me) apporter (bring) un couteau (knife).

The semantic frame of the phrase bring me a knife is shown in Figure 7-2. The induced

French grammar, not recognizing the movement, put the indir predicate on the same level

as the bring predicate, resulting in an extra, ill-formed verb frame. This frame generated

the <verb>, and also misplaced the me and conjugated apporter incorrectly.
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Chapter 8

Future Plans

We plan to further our research in many directions, including:

8.1 Growing a Grammar

We anticipate that a developer will need to make adjustments to an induced grammar. After

the developer has improved the grammar, s/he may later want to extend its coverage to

more sentences in the domain. We would like to enable the induction algorithm to carefully

add new induced rules to the modified grammar, while respecting the changes made by the

developer.

8.2 Other Languages

We are presently developing generation modules for Mandarin, French, Japanese, Spanish

and Korean in the PHRASEBOOK domain, intended for tourists who do not speak the lan-

guage in their destination countries. In the future we plan to expand to Arabic and Urdu.

This domain will be incorporated into our language learning system. All three languages

used in our experiment, English, French and Chinese, are subject-verb-object languages.

We would like to see the performance of this induction approach when L and L' have very

different word ordering, such as English and Japanese.
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8.3 Improvement on Word Alignment

The current algorithm is very sensitive to correct L-L' word alignment. If GLI is not yet

working well, the quality of the induced grammar degrades significantly. A substantial

amount of errors in our experiments directly or indirectly resulted from misalignments.

A statistical treatment on word alignment may be warranted. A side benefit is that the

induction algorithm may be useful for identifying generation errors.

8.4 Other Evaluation Metrics

While we have thus far only evaluated the induced grammar on paraphrases into natural

languages, we are also interested in applying the grammar in spoken dialogue applications,

where the system must understand the query and respond appropriately. We generally use

a 'paraphrase' into a flattened (key: value) representation to transform the semantic frame

into a format that is more transparent to the dialogue manager. Formal evaluation of the

differences in this (key: value) representation could help us judge the effectiveness of our

generated grammars for dialogue interaction.
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Appendix A

Implementation Details

A.1 Induction Command

To induce a grammar, issue the command:

tina < D > -language L' -frame -induce L -induceFile < path > -sentences

< train file >

where:

* < L' > is the target language

* < L > is the source language

* < D > is the domain

* < trainfile > is the file containing training sentences in L

* < path > is the directory in which the induced grammar files will be placed.

The induced grammar files include the following:

induced.trace.rules The rewrite rules in PL,.rules (see §3.2.1).

induced.translations The key value translations in PL ,.translations (see §3.2.4).

induced.trace.sents The L' paraphrases of the sentences in < trainf ile >, with hypoth-

esized traces indicated by *hyptrace*.

induced.constraints See description below.
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induced.log This file shows the word alignment and rules induced from each training

sentence.

A.2 Constraints File

The .constraints file is the same for all induced grammars:

.*list*
*generators*

. *generators*

extraposed

The purpose of this file is to declare extraposed as a generator.

A.3 Trace Simulation Command

To run TINA with the trace simulation (see Chapter 6), use the -sim.trace option. For

example, to run the induced grammar, issue the command:

tina < D' > -language L" -frame -simtrace -sentences < path >/induced.trace.sents

where:

* < D' > is an appropriately defined domain for the induced grammar

* < L" > is the language in which the induced grammar is to be evaluated

In the -simtrace mode, extrapose is declared an activator, and *hyptrace* declared

a trace node, just before TINA starts parsing.
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