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Abstract

We introduce new distributed algorithms that dynamically construct network topologies.
These algorithms not only adapt to dynamic topologies where nodes join and leave, but
also actively set up and remove links between the nodes, to achieve certain global graph
properties.

First, we present a novel distributed algorithm for constructing overlay networks that
are composed of d Hamilton cycles. The protocol is decentralized as no globally-known
server is required. With high probability, the constructed topologies are expanders with
O(log;n) diameters and 2v/2d — 1 + € second largest eigenvalues. Our protocol exploits the
properties of random walks on expanders. A new node can join the network in O(logyn)
time with O(dlog;n) messages. A node can leave in O(1) time with O(d) messages.

Second, we investigate a layered construction of the random expander networks that can
implement a distributed hash table. Layered expanders can achieve degree-optimal routing
at O(logn/loglogn) time, where each node has O(logn) neighbors. We also analyze a
self-balancing scheme for the layered networks.

Third, we study the resource discovery problem, in which a network of machines discover
one another by making network connections. We present two randomized algorithms to solve
the resource discovery problem in O(logn) time.

Fourth, we apply the insight gained from the resource discovery algorithms on general
networks to ad hoc wireless networks. A Bluetooth ad hoc network can be formed by inter-
connecting piconets into scatternets. We present and analyze a new randomized distributed
protocol for Bluetooth scatternet formation. We prove that our protocol achieves O(logn)
time complexity and O(n) message complexity. In the scatternets formed by our protocol,
the number of piconets is close to optimal, and any device is a member of at most two
piconets.

Thesis Supervisor: Kai-Yeung Siu
Title: Associate Professor
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Chapter 1

Introduction

Distributed algorithms can construct and alter network topologies efficiently. When network
size increases, centralized topology control becomes difficult. This thesis introduces new
distributed algorithms that change the connectivity of a topology and distributed algorithms
that construct highly scalable topologies. To assist the topology construction algorithms,
we also present several distributed algorithms that discover and collect information on these
changing topologies. Applications of our algorithms include resource discovery, distributed
hash tables, dynamic on-line communities, and topology construction for wireless ad hoc
networks.

We will give an overview of the thesis in the rest of this Chapter. Section 1.1 motivates
the construction of highly scalable expander networks. We preview the key theoretical
results in Section 1.2 and applications in Section 1.3. Section 1.4 describes the structure of
the thesis.

1.1 Motivations

1.1.1 Special Interest Networks

In this section we describe the main motivations behind our work on dynamic distributed
algorithms.

Most existing peer-to-peer systems focus on distributed sharing of resources. They usu-
ally facilitate sharing of storage (Napster, Gnutella, Freenet) or computation (SETI@Home).
Many systems implement distributed hash tables.

Many believe that resource sharing is the major benefit of peer-to-peer networks. To
facilitate resource sharing, a system usually needs to support resource searching. However,
designing a scalable search system has always been very difficult.

Resource searching without any centralized directory usually suffers from poor perfor-
mance when the number of participants grows. Distributed networks such as Gnutella
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1.1. MOTIVATIONS

simply search by flooding the network and cannot provide any performance guarantee. A
caching scheme such as the one employed by Freenet can replicate popular objects. However,
less popular objects remain hard to be found.

A search system using a centralized directory requires a high-end machine to support
a large network. Central directories are used by many established systems, such as ICQ,
Napster, and SETI@Home. However, machines currently affordable by most individuals
are unlikely to serve more than hundred thousand users. Although computers are getting
cheaper and more powerful, the sizes of peer-to-peer networks and the amount of resource
shared are also growing rapidly. Thus it is not clear whether a centralized server can serve
a global peer-to-peer network in the near future.

We suggest that participants in peer-to-peer networks exhibit ‘interest locality’. The
resources a particular participant is interested in obtaining and sharing are correlated. For
example, in a file-sharing network, the file that a participant will download in the future
is likely to be related to the files that she downloaded in the past. Consider the following
scenarios:

e In a music-sharing network, participants would have preferences in different genres.
For example, some participants could be interested in classical music but not pop
music, or vice versa. In a global network, participants would have different language
preferences too.

e In a file-sharing network, participants would have very different interests as well. Some
are interested in text documents only. Some are looking for multimedia files. Also,
users are usually interested in applications on specific platforms.

e In a general peer-to-peer network, participants usually have different goals. Some are
interested in file-sharing, some are looking for fellow on-line gamers, some are looking
for special interest discussion groups.

e In a heterogeneous environment, participants have different computing resources.
Computing devices can range from mobile phones to enterprise servers. Certain appli-
cations have delay constraints (action games), while others have bandwidth require-
ments (large file transfers).

In summary, it would be beneficial to peer with nodes of similar interests, instead of some
arbitrary nodes.

We believe that a huge and all-purpose resource sharing network might not be necessary.
Instead, we propose that different protocols can be used for “sharing” and “searching”. We
need large networks for searching so that we can potentially reach a large repository of
resources. However, smaller networks are more efficient for most sharing activities. In other
words, we mostly associate with smaller groups, we would like to be well-informed and have
good ‘connections’ so that we can easily find and join other interesting groups. In order
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1.2. THEORETICAL RESULTS

to reach such small groups easily, we would like to propose a protocol to connect as many
nodes as possible, so that any such group can be formed and discovered efficiently.

Small groups of peer-to-peer networks can be tied by common interests. However,
users need the means to search and reach the interest groups. We will present distributed
algorithms that create and maintain special interest groups. Any interest group can be
searched and reached with performance proportional to its size. We call this the Subset-
Search problem because we want to search for a subset in a network.

In this thesis, we propose a collection of algorithms to solve the problem we have de-
scribed. First, we need to scalable network to serve as a large search platform (Section 1.2.1).
We need data collection algorithms to run on such dynamic network (Section 1.2.4). Then
we need a hierarchical system to optimize for searches (Section 1.2.2). We also need an
effective algorithm for special interest networks to be established (Section 1.2.3). We did
an special study for this problem on wireless ad hoc networks (Section 1.3.3).

1.1.2 Distinctions

Subset-Search is different from group communications. Many distributed systems face scal-
ability problems, especially if they support features such as anonymity, data security, and
resistance to various attacks. Many features require the nodes to have a consistent view of
the entire network, thus making any protocol difficult to scale to a large number of nodes.
However, many applications do not need to satisfy these strong guarantees. For example,
some video streaming applications can tolerate packet losses. In general, we can usually
gain scalability by reducing requirements. We will design a protocol just strong enough to
support Subset-Search.

Subset-Search is different from distributed hash tables. It is because a user typically
does not have hashes of the objects that are interested to him or her. As an analogy, a web
search engine user usually searches by keywords and other attributes, but will not know the
hash or key of the relevant web pages.

Subset-Search is different from search engines. Machines in peer-to-peer networks are
much more dynamic than most web servers.

1.2 Theoretical Results

We highlight the main theoretical contributions of this thesis.

1.2.1 Random Expander Networks

We present a novel distributed protocol for constructing an overlay topology based on ran-
dom regular graphs that are composed of d > 4 independent Hamilton cycles. The protocol
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1.2. THEORETICAL RESULTS

is completely decentralized as no globally-known server is required. The constructed topolo-
gies are expanders with O(log,n) diameter with high probability.

Our construction is highly scalable because both the processing and the space require-
ments at each node grow logarithmically with the network size. A new node can join the
topology at any existing node in O(logyn) time with O(dlog;n) messages. A node can
leave in O(1) time with O(d) messages.

The analysis of our construction is based on a novel technique of studying a sequence of
probability spaces. We also applied many results from random walks and random graphs.

1.2.2 Layered Expander Networks

H-graph is efficient for locating a member of a subset, when the size of the subset is not too
small when compared with the size of the entire graph. However searching for a very small
subset could be slow. For example, the expected time to find any particular node is 6(n).

We show that layered random regular graphs can be constructed such that each node
has O(log n) neighbors and any node can be located in O(log n) steps given its identifier. We
also present a variant that achieves degree-optimal routing at O(logn/loglogn) steps. We
analyze the scheme where identifiers are assigned randomly and the scheme where identifiers
are obtained by sampling in the existing graph. These recursively overlaid H-graphs are
called layered H-graphs.

1.2.3 Resource Discovery and Connectivity

The problem of a network of computers discovering one another by making network con-
nections is called the resource discovery problem. This problem was proposed by Harchol-
Balter, Leighton, and Lewin [45]. The algorithmic task is to transform a weakly-connected
graph into a complete graph by a distributed algorithm.

We present randomized algorithms to solve the resource discovery problem with O(logn)
time complexity and O(n?) expected message complexity. There are several variations of
the algorithm with different tradeoffs in time and message complexities.

The problem of transforming a weakly-connected graph into a strongly-connected graph
is also very interesting, and in fact might not be easier than the resource discvoery problem.
We investigate several approaches to address this problem.

1.2.4 Algorithms on Dynamic Network Topology

We also study several interesting distributed algorithms on dynamic network topology.
These algorithms have applications in our constructions in of H-graphs, but they are also of
independent interests themselves. Most of the following algorithms depend on the expansion
of the network graph to achieve good performance.

18



1.3. APPLICATIONS

Broadcasts and Searches

We present and analyze broadcast and search algorithms on random regular graphs that
are composed of Hamilton cycles.

An important application of these algorithms is a service for the discovery of communities
sharing common interests. Let A be a subset of nodes of a degree-d H-graph G such that
|A] / |G| = %. For any such set A, we can find a member of A in O(log ¥ +loglogn) time
with O()~! logn) messages with high probability. Moreover, we can find a member of A in
O(¥~! + logn) hops in expectation even if set A is selected by an adversary.

Network Size Estimation

In a distributed network, any node does not easily know the size of the network. However,
our construction algorithms would run more efficiently if we have a good estimation of the
network size. Therefore, we would like to have an efficient distributed algorithm to gather
and disseminate the size estimates.

Estimating the size of a network graph distributedly is an interesting algorithmic prob-
lem. We propose a size-estimation algorithm based on random walks. With O(logn) walk-
ers, we can obtain an §2(n) estimate at all nodes in O(n) time, with high probability.

1.3 Applications

We overview several applications of our distributed dynamic algorithms.

1.3.1 Distributed Lookup Service

A layered H-graph can be used to implement a distributed hash table similar to those
supported by Chord [92], CAN [83], Tapestry [99], and Pastry [85]. A lookup service stores
key-value pairs in the network, such that the values can be looked up efficiently with the key.
To implement a lookup service on the layered H-graph, keys can be hashed into identifiers.
A key is stored at the node whose identifier has the longest prefix match with the hashed
identifier. Insertions, deletions, and updates of entries have O(logn) time complexity and
O(log n) message complexity. With optimizations, the time complexity can be improved to
O(logn/loglogn).

1.3.2 On-line Communities

A scenario where layered H-graph would be useful is a networked community where the
network address of a node may change from time to time. A layered H-graph construction
can allow us to form an on-line community without any centralized directory. A node
connected to the Internet by DHCP can have its IP address changed everyday. On a laptop
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1.4. STRUCTURE OF THESIS

or PDA capable of local wireless access, the IP address can change even more frequently. A
node changing its network address only needs to notify O(logn) other nodes in O(1) time.
Any node can reach another node in O(logn) hops given its identifier.

For example, a layered H-graph can be used to implement an on-line instant messaging
system without any centralized server. Consider a student Ben chatting on-line during
classes. If the on-line messaging system is implemented on a layered H-graph, then he only
needs to notify O(logn) neighbor nodes when he moves to another classroom. When his
friend Alice wants to obtain his new IP address after lunch break, she only needs to walk
through O(logn) hops. Such feature is not easy implement on distributed systems because
if Alice and Ben have overlapping lunch breaks, they would have difficulty finding each
others’ IP addresses in the afternoon.

1.3.3 Bluetooth Topology Construction

A Bluetooth ad hoc network can be formed by interconnecting piconets into scatternets. The
constraints and properties of Bluetooth scatternets present special challenges in forming an
ad hoc network efficiently. In Chapter 5, we present and analyze a new randomized protocol
for Bluetooth scatternet formation.

We prove that our algorithm achieves O(logn) time complexity and O(n) message com-
plexity. The scatternets formed have the following properties: 1) any device is a member of
at most two piconets, and 2) the number of piconets is close to be optimal. These proper-
ties can help prevent overloading of any single device and lead to low interference between
piconets.

We validate these theoretical results by simulations. In addition, the simulations show
that the scatternets formed have O(logn) diameter.

As an essential part of the scatternet formation protocol, we study the problem of device
discovery: establishing multiple connections simultaneously with many Bluetooth devices.
We investigate the collision rate and time requirement of the inquiry and page processes.

Deducing from the simulation results of scatternet formation and device discovery, we
show that the total number of packets sent is O(n) and that the maximum number of
packets sent by any single device is O(logn).

1.4 Structure of Thesis

In Chapter 2, we present and analyze the construction of the random expander networks.
In Chapter 3, we construct layered networks of random expanders to implement a fast dis-
tributed lookup service. Chapter 4 describes distributed algorithms for resource discovery.
Chapter 5 presents an application of the topology construction methodology in wireless ad
hoc networks. We conclude and discuss future work in Chapter 6.

A large portion of the results in this thesis first appeared in [65, 63, 62].
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Chapter 2

Construction of Expander
Networks

2.1 Introduction

The area of peer-to-peer networking has recently gained much attention in both the in-
dustry and the research community. Well-known peer-to-peer networks include Napster,
Gnutella, Freenet, FastTrack, and eDonkey. However, most of these systems either require
a centralized directory or cannot scale beyond a moderate number of nodes. The problem
of finding an efficient distributed scalable solution has attracted a lot of research interests
(83, 92, 85, 99]. This chapter introduces a distributed algorithm for constructing expander
networks, which are suitable for peer-to-peer networking, without using any globally-known
server.

Interesting properties and algorithms have been discovered for random regular graphs
[34, 36, 37, 58]. In particular, it has been found that random regular graphs are expected
to have big eigenvalue gaps [32] with high probability, and thus are good expanders.

In this chapter, we form expander graphs by constructing a class of regular graphs
which we call H-graphs. An H-graph is a 2d-regular multigraph in which the set of edges is
composed of d Hamilton cycles (Figure 2.1 is an example). Using random walk as a sampling
algorithm, a node can join an H-graph in O(logyn) time with O(dlog;n) messages, and
leave in O(1) time with O(d) messages.

Section 2.2 describes our network model and gives an overview of the design of H-graphs.
Section 2.3 introduces the protocol for constructing H-graphs. We discuss several perfect
sampling algorithms in Section 2.4 and a random-walk sampling algorithm in Section 2.5,
with simulation results in Section 2.6. Two useful maintenance algorithms are discussed
in Section 2.7. We discuss broadcasts in Section 2.8 and searches in Section 2.9. Then we
study distributed network size estimation in Section 2.10. At last, fault tolerance issues
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2.2. PRELIMINARIES

Figure 2.1: An H-graph consisting of 3 Hamilton cycles.

are discussed in Section 2.11. We discuss related work in Section 2.12 and conclude with
remarks on future work in Section 2.13.

2.2 Preliminaries

In this section, we will state our assumptions of the underlying network model and then
describe the goals and constraints that lead to our design based on random regular graphs.

2.2.1 Network Model

We assume a network environment where any node u can send a message to node v as long
as node u knows the address of v. If a node fails to receive a message for whatever reason,
the sending node can repeat sending the message without causing the algorithm to fail.
There can be node failures but not permanent link failures. Such model is assumed in [45]
and most peer-to-peer research. An example of such an underlying network is the Internet
when using some reliable messaging protocol such as TCP.

The space requirement will be expressed in the number of addresses. Theoretically,
O(log N) bits are required to encode the address of a node, where N is the largest possible
number of nodes. However, for all practical purposes, we can assume that the length of an
address is effectively constant (e.g., 128 bits in IPv6).

We assume that there is a maximum delay between all pairs of nodes in the underlying
network. In practice, the processing time per message is usually insignificant compared to

22



2.2. PRELIMINARIES

the communication time. Also, for a small message, the delivery time is mostly independent
of the message size.

Each execution of a distributed algorithm will lead to a set of messages sent among
the nodes in the graph. The message complexity of an algorithm is the size of this set.
Some of these messages have causal relationships: there is some sequence mj, ms,... of
messages where m; cannot be sent before m;_; has been received. We will express the time
complexity of an algorithm as the length of the longest such sequence.

We will be concerned with the logical topologies overlaid on top of the underlying
network. On a set of nodes with labels [n] = {1,2,...,n}, a topology can be effectively
determined by sets of neighbors N(u), which are nodes known to node u (not including u
itself), for u € [n]. In the rest of this paper, we represent such logical topology as a graph
G = (V,E), where V = [n] and

(u,v) € E iff v € N(u).

We consider distributed algorithms on the graph such that « can send a message to v
only if (u,v) € E. During the execution of our algorithm, an edge (u,v) can be added into
E if u is informed of the address of v. Node u might also choose to delete (u,v) for some v
to save space.

2.2.2 Goals and Requirements

Our first goal is to construct logical topologies that can support broadcasting and searching
efficiently. Our second goal is to make our construction highly scalable. This implies the
objectives:

A-1 Resources consumed at each individual node should be as low as possible.
A-2 Time complexities for joining and leaving of nodes should be as low as possible.

A key factor on the load of a node is the number of nodes that it has to communicate
with. This parameter determines a node’s minimum storage requirement and the maximum
number of potential simultaneous network connections. The number of neighbors of a node
is its degree in the graph. Therefore, objective A-1 dictates that the degrees should be
as small as possible. In order to achieve objective A-2, we need to make sure that the
algorithms for nodes joining and leaving are efficient.

2.2.3 A Random Graph Approach

To make worst-case scenarios unlikely, we have decided to construct the graph with a
randomized protocol. We would like our topology to be ‘symmetric’ in the sense that every
node shares an equal amount of responsibilities. For this reason and for providing better
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fault tolerance, we did not choose a hierarchical approach. After considering various random
graph models, we chose regular multi-graphs that are composed of independent Hamilton
cycles. Regular graphs are chosen because we would like the degree to be bounded. Also,
random walking on regular graphs, which is a key part of our protocol, has a uniform
stationary distribution. Graphs composed of Hamilton cycles have the advantage that the
join and leave operations only require local changes in the graph.

Now we shall define the set of H-graphs. Let H,, denote the set of all Hamilton cycles
on set [n]. We shall assume n > 3 for rest of this paper. Consider a multigraph G = (V, E),
such that V = [n] and F = (Cy, ..., Ca), where C1,Cs,...,Cy € H,. Let H, 24 be the set
of all such 2d-regular multigraphs. We call the elements in H, 94 the H-graphs. It can be
derived that |H,| = (n—1)!/2 and |H,, 24| = ((n — 1)1/2)4. If Cy, Cs, . . ., Cy are independent
uniform samples of Hy,, then (V,(C1,...,Cy)) is a uniform sample of Hy, 24.

Following the notation in Bollobds [16], a probability space is a triple (2, , P), where
() is a finite set, ¥ is the set of all subsets of 2, and P is a measure on X such that P(Q) =1
and P(A) = > ,ca P({w}) for any A € . In other words, P is determined by the values
of P({w}) for w € Q. For simplicity, we will write P(w) for P({w}).

Let Ug be the uniform measure on set €2 so that Ug {w} = 1/|9] for all w € Q. For
example, we have Uy, ,, {G} = (2/(n — 1)1 for all G € Hy, 24.

We shall consider two basic operations for a randomized topology construction protocol:
JoIN and LEAVE. A JOIN(u) operation inserts node w into the graph. Any node in G
should be able to accept a JOIN request at any time. Any node in G can also call LEAVE
to remove itself from the graph G. Our algorithms of JOIN and LEAVE are described in
Section 2.3. Given an initial probability space &y and a sequence of JOIN and LEAVE
requests, a randomized topology construction protocol will create a sequence of spaces
$1,82,....

Friedman [32, 33] showed that a graph chosen uniformly from Hp, 24 is very unlikely to
have a large second largest eigenvalue. In order to apply Friedman’s theorem, we need a
protocol that would produce a sequence of uniformly distributed spaces.

Given a probability space S = (¥, X', P'), let Q[S] = Q' and P[S] = P’. A probability
space S is uniformly distributed if P[S] = Ugq|s}- We would like to have a protocol that
creates a sequence of uniformly distributed probability spaces, given any sequence of JOIN
and LEAVE requests. In addition, a new node should be free to call JOIN at any existing
node in the graph.

Summarizing the objectives we have so far, we would like to have a protocol where

B-1 Low space complexity at any node.
B-2 Low time complexities for JOIN and LEAVE.

B-3 Low message complexities for JOIN and LEAVE.
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B-4 The probability spaces produced are uniformly distributed.

Satisfying the first three properties is crucial because they are necessary for our protocol to
be highly scalable. When property B-4 is not satisfied, we can try to construct sequences of
probability spaces Sy, Sy, ... having distributions close to be uniform. This can be achieved
by an algorithm based on random walks presented in Section 2.5. We have yet to find a
protocol satisfying all four properties simultaneously.

2.2.4 Global Variable Server

We will also consider variants where a globally-known server can simplify the algorithm
or enhance the performance. We call such server a global server, whose address is known
to all nodes in the graph. The global server should be reliable and highly available. We
note that similar servers are assumed in most related work [77, 57] of randomized network
constructions.

We will restrict our attention to those protocols that require the global servers to store
O(1) addresses. In other words, a global server implements O(1) global variables that are
visible to all nodes in the graph. The size of each variable is limited to O(logn) bits. We
assume that atomic updates of the variables are ensured by the global server. A global
server can be implemented as a cluster.

In summary, although the global server requires extra reliability, it does not need ex-
traordinary storage, processing, or communication capacity.

2.3 Construction

In this section we introduce a framework for constructing a random regular network.
The graphs that we shall construct are 2d-regular multigraphs in Hj, 24, for d > 4. The
neighbors of a node are labeled as

ngbr_,,ngbry, ngbr_,,...,ngbr_g, ngbry,.

For each 4, ngbr_; and ngbr; denote a node’s predecessor and successor on the ith Hamilton
cycle (which will be referred to as the level-i cycle).

We start with 3 nodes, because there is only one possible H-graph of size 3. In practice,
we might want to use a different topology such as a complete graph when the graph is small.

The graph grows incrementally when new nodes call JOIN at existing nodes. Any node
can leave the graph by calling LEAVE.

In the following algorithmic pseudocodes, the variable self identifies the node executing
the procedure. All the actions are performed by self by default. The expression u =PR0OC()
invokes a remote procedure call PROC at node u. The call is assumed to be non-blocking
unless a return value is expected. Expression u = var means that we request the value var
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from node u. Expression (u => var) «— = means that we set the variable var of node u to

value z. Thus, messages are exchanged between node self and node u.
Procedure LINK connects two nodes on the level-i cycle.

LiNK(u,v,1%)

1 (u= ngbr;)) —v

2 (v=>ngbr_;) —u

Procedure INSERT(u, ¢) makes node u the successor of self on the level-i cycle. We assume
that INSERT is atomic. This can achieved by having a lock for each of the d Hamilton cycles
at each node.

INSERT(u, 1)
1 LiNK(u,ngbr;,%)
2 Link(self,u,1)

A new node u joins by calling JOIN(u) at any existing node in the graph. Node u will
be inserted into cycle ¢ between node v; and node (v; => ngbr;) for randomly chosen v;’s for
i=1,...,d

JoIN(u)

1 for i+ 1,...,d in parallel
2 do v; +— SAMPLE()

3 fori—1,...,d in parallel
4 do v; = INSERT(u,1)

SAMPLE()
1 return a node in the graph containing self, uniformly at random

Procedure SAMPLE() returns a node of the graph chosen uniformly at random. Imple-
mentations of SAMPLE are presented in Section 2.4.

LEAVE()
1 fori<1,...,d in parallel
2 do Link(ngbr_;, ngbr;, 1)

We first show that JOIN can preserve uniform probability spaces.

Lemma 1. Let (Hy_ 24, X, P) be a uniformly distributed probability space. After an oper-
ation JOIN, the probability space (Hp 24, X', P') is also uniformly distributed.
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Proof. Let G = (V, E) be a uniformly random graph from Hy,_;24. Let G’ = (V', E’) be
the graph obtained after a JOIN operation. Let E; and E] be the set of level-i edges in E
and E' respectively, fori =1,...,d.

We need to show that each (V’, EY) is an independent Hamilton cycle chosen from Hi,
uniformly. Procedure SAMPLE returns a node chosen from V uniformly at random. This
means that it is equally likely that the new node is inserted between any pair of nodes in
the cycle (V, E;). Therefore, since (V, E;) is a uniformly random Hamilton cycle in H,,_;,
(V’, Ef) will be a uniformly random Hamilton cycle in H,.

Since the d calls to SAMPLE are independent, the Hamilton cycles (V’, Ef) are indepen-
dent. O

By Lemma 1, we can expect to obtain a uniform probability space if we remove the node
that has just joined. However, if the space is uniform, the nodes should not be differentiable
by the order of joining. Thus, Lemma 2 shows that the probability space remains uniformly
distributed no matter which particular node leaves.

Lemma 2. Let (Hy, 24, X, P) be a uniformly distributed probability space. After an operation
LEAVE at any node in G, the probability space (H,—1 24, X', P’) is also uniformly distributed.

Proof. Let G be a uniform sample from Hj, 25. We can consider each Hamilton cycle in G
separately. Consider any particular level-i cycle of G. Let j be the node calling LEAVE.
Given j, there are (";1) possible unordered sets of neighbors of 5. We can partition H,, into
(";1) sets according to these neighbors. We call these sets H, , for each set of neighbors
{u,v}.

Consider the map o : H,, — H

!

'_1, where H _, is the set of all cycles on

{1,...,i—-1,7+1,...,n},

such that o(C) is obtained by removing node j from the cycle C, and connecting the
neighbors of j. It is clear that HI,_, is essentially the same as H,_;, but with different
labels for the nodes.

Let 0~2(C") = {C € H, | 0(C) = C'}. Consider any graph C' € H/, ;. If (u,v) ¢ E(C"),
then 0~1(C) N H,, = 8. Therefore,

o1 (C)Cc U H,,
(u,v)EE(C)

For each adjacent pair {u,v} of neighbors in C, la_l(C’) N Hu,vl =1, because C is created
by removing j from a cycle in H, ,, which happens exactly when u,v are the two neighbors
of j. And then since C has n— 1 distinct pairs of neighbors and that the H, ,’s are disjoint,
we have |07}(C)| =n - 1.
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Since each graph in H,, has probability 2/(n — 1)!, each graph in H,,_; has probability
(n—-1)(2/(n—1)1) =2/(n-2)L

Since the d cycles are independent of each other, P/(G) = (2/(n — 2)!)¢ for any G €
H,,—1,24. Thus, (Hp—1 24, L', P’) is uniformly distributed. a

Theorem 3. Let Sg,S1,S2,... be a sequence of probability spaces such that
e So is uniformly distributed and Q(Sp) = Hy 24 for some k;
o S;;1 is formed from S; by JOIN or LEAVE;
o |Q[S;]| >3 for alli> 0.

Then S; is uniformly distributed for alli > 0.

Proof. We start with a H-graph of size 3. We note that |[Hj24| = 1, thus the initial
probability space Sp has uniform distribution. The theorem then follows from Lemma 1
and Lemma 2 by induction. O

A graph G of size n has a corresponding 7 by n matrix A, in which the entry A;; is
the number of edges from node i to node j. Let A(G) be the second largest eigenvalue of
graph G’s matrix. Friedman [32] showed that random regular graphs have close to optimal
A(G) with high probability. Although he mainly considered the graphs that are composed
of d random permutations, he also showed that his results hold for graphs composed of d
random Hamilton cycles. Theorem 4 restates a recent improvement by Friedman [33].

Theorem 4 (Friedman). Let G be a graph chosen from Hy, o4 uniformly at random. For
any € > 0,

AMG)<2vV2d—1+¢€
with probability 1 — O(n™"), where 7 = [v2d — 1| — 1.

It has been known that A(G) > 2v2d—1 + O(1/loggn) for any 2d-regular graph.
Therefore, no family of 2d-regular graphs can have smaller asymptotic A(G) bounds than
Theorem 4.

As a consequence of Theorem 4, H-graphs are expanders with O(log;n) diameter with
high probability because of the relation between eigenvalues and expanders {7, 52].

Let p(G) = M(G)/A(G) for regular graph G of degree A(G). We note that p(G) is the
second largest eigenvalue of the Markov chain with transitions based on G.

2.4 DPerfect Sampling

In this section, we will discuss several implementations for procedure SAMPLE of Section 2.3.
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2.4.1 Global Server

In a simple centralized solution using a publicly-known sampling server, each joining node
can obtain d uniformly random nodes from the sampling server. Each JOIN or LEAVE
operation only takes O(1) time and O(1) messages. The space required at the sampling
server is O(n).

The sampling server sampleserver keeps the addresses of all nodes of the network.

SAMPLE-CENTRAL()
1 return sampleserver = RANDOM-NODE()

RANDOM-NODES()
1 return UNIFORM(G)

This process take O(1) time and 2d messages. We can also easily combine those 2d
messages into a single query. Whenever a node is added or removed from the network,
O(1) maintenance messages are required. The space (number of addresses) required at the
sampling servers are O(n).

This is a simple and efficient solution. However, it subjects to most of the disadvantages
of a centralized solution. For example, we need to have a complete trust on the sampling
server returning unbiased samples of the network. We also need to have a reliable public
source for the server’s address.

Although this solution is subject to most disadvantages of centralized systems, it is
still better than a fully centralized solution because only an address list is stored at the
sampling server. It is not required to store any description of the nodes, as searching is still
distributed. Thus the load on the sampling server only depends on the rate of topology
changes but not the search queries and other algorithms running on the network.

2.4.2 Broadcast

Instead of using a central server, a joining node can broadcast a request to all other nodes.
Each node is asked to reply with a chosen probability p = O(1/n). Thus the joining node
can expect to receive O(1) replies and then pick one as the sample. A broadcast on an
H-graph sends at most (2d — 1)n messages and terminates in O(log;n) steps with high
probability (Section 2.8).

The procedure SAMPLE-BROADCAST calls the generic service BROADCAST (Section 2.8)
so that SAMPLE-PROC is executed once on every node of the graph. Parameter p is the
probability of replying.
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SAMPLE-BROADCAST(p)
1 repeat
S1—8 =830
P «— NEW (SAMPLE-PROC, {s « self,p — p})
BRroADCAST(P)
SLEEP(O(log n))
until min)<;<q4 [Si| >0
S0
fori—1ltod
do S « S U UNIFORM(S;)
return S

O OO0 IO WG bW

—

Procedure SAMPLE-BROADCAST needs an estimation of logn. Estimation algorithms
are discussed in Section 2.10.

In procedure SAMPLE-PROC, the set I keeps the set of levels (Hamilton cycles) that a
node decides to respond to. Set I is a subset of {1,...,d} such that for each i € {1,...,d},
i € I with probability p.

SAMPLE-PROC()

1 locals s,p

2 I+90

3 fori—1ltod

4 do I « I Ui with probability p

5 ifI#0

6 then s = SAMPLE-REPLY(self, I)
7 return true

SAMPLE-REPLY (u, I)
1 foriel
2 do S, S;Uu

The replies are then aggregated at the variables S; at the source node s. The probability
that any set S; is empty is (1 — p)". The probability that all sets S; are non-empty is
(1— (1 — p)™)%. Thus, in expectation, (1 — (1 — p)")~? rounds of broadcast are needed.

The probability that a node calls the broadcast source s with SAMPLE-REPLY is 1— (1—
p)?. Thus the source s expects to receive n(l — (1 — p)%) reply messages during each round
of broadcast. The overall expected number of reply messages is nﬁ%. Let p = 8/n.
For large n,

1-(1-p) 48

o~

"T-a—pm " T—eP)
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A

4 2337 14.036

8 3.315 35.658
16 4.229  85.570
32 5.101 198.476

Table 2.1: The approximate optimal values of 3 (so that p = /n) and the expected number
of replied messages generated by SAMPLE-BROADCAST.

Therefore, it is possible to select the parameter p so that the expected total number of reply

messages is a function of d. The function (1—_‘:@—,97; is minimized when e® —1 = 8d. Table 2.1

gives the optimal values of 8 and (—1:‘—:%;—)3 for several choices of d.

2.4.3 Converge-Cast

In the worst case, the source node has to handle O(n) replies resulting from a broadcast.
We note that a broadcast can construct a O(logn)-depth spanning tree in O(logn) time.
Instead of asking each node to reply independently, a protocol can ‘combine’ the sampling
results at the internal nodes of the spanning tree, so that each node only needs to handle
O(d) messages in the worst case.

SAMPLE-SPANNING(PROC, nonce h)
1 if h was seen recently

2 then return NULL

3 for each v € N(self) in parallel

4 do S« SU {v = SAMPLE-SPANNING(PROC, h)}

5 2z« self

6 t—1

7 for each (2/,t')in §

8 dote—t+t

9 with probability ¢'/t

10 then z « 2/

11 return (z,t)

Theorem 5. Procedure SAMPLE-SPANNING returns each node in the graph G with proba-
bility 1/ |G|.

Proof. First, we observe that SAMPLE-SPANNING establishes a spanning tree rooted at the
initial node. Thus, we only need to show that in any subtree T rooted at node v, each node
in T is returned with probability 1/ |T'|.
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Figure 2.2: The minimum expected number of reply messages received in SAMPLE-
BRroADCAST for d =4,5,...,128.
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For the base case, a leaf has to return itself with probability 1. Inductively, let T1,..., Tk
be the subtrees of v so that the for loop in SAMPLESPANNING goes through these trees in
order of T1,...,T;. Let 2’ be the node returned by subtree T;. In the ith iteration of the

- -y T"' , . - -
for loop, there is a probability of ﬁf’f;lg_ﬁﬂ that 2’ replaces the existing value of variable

. . . .. 1 11T
z. And the probability that 2’ is not replaced in loop j > i is %ﬁfﬁ%ﬁl Therefore, the
)

probability that 2’ is returned by v = SAMPLESPANNING is

|Ti| 40Tl 14 3 a1 [T
1+ X< T 1+ 3 g T 1+ 3 <<k [T
_ | T3]
1+ << 1T
_ |7
1T}

Since each node in T; is selected with probability 1/ |T;| by our inductive assumption, each
node in 7; will be returned by v with probability 1/ |T'|. It is straightforward to verify that
v itself is returned with probability 1/ |T7. O

We note that SAMPLE-SPANNING is a broadcast together with information aggregation
along the broadcast tree from the leaves to the root. Therefore, it has O(loggn) time
complexity and O(dn) message complexity.

2.4.4 Coupling From The Past

Perfect sampling algorithms for Markov chains have been discovered in recent years. Lovész
and Winkler [68] gave the first exact sampling algorithm for unknown Markov chains.
Propp and Wilson [81] introduced faster algorithms based on their ‘coupling from the past’
(CFTP) procedure. They gave an algorithm COVER-CFTP which generates a state dis-
tributed with stationary 7 in expected time at most 15 times the cover time. The expected
cover time for H-graphs is around nlogn [6] with high probability. Thus the running time
of COVER-CFTP on an H-graph is O(nlogn). It is not clear if a faster CFTP algorithm
can be found by discovering a monotone coupling [80].

2.5 Approximate Sampling

The sampling algorithms in Section 2.4 are either centralized or require 2(n) messages,
and thus are not satisfactory for our goal of efficient and distributed construction. The
existence of a distributed perfect sampling algorithms for regular graphs with o(n) message
complexity is an open problem.

33



2.5. APPROXIMATE SAMPLING

Sampling Algorithm Time Messages Space  Sampling

Global Server 0(1) oQ1) O(n) perfect
Broadcast O(logyn) O(dn) O(d) perfect
CFTP O(nlogn) O(nrlogn) O(d) perfect
Random Walk O(loggn) O(loggn) O(d) approximate

Table 2.2: The complexities of the sampling algorithms. “Space” is the worst-case storage
requirement at any node.

In this section, we describe an approach for approximate sampling using random walks.
A graph can be considered as a Markov chain. Sampling by random walks is usually called
Markov Chain Monte Carlo [48]. Since H-graphs are regular, the limiting distribution of
random walks on H-graphs is the uniform distribution. Moreover, since an H-graph is an
expander with high probability, a random walk of O(logn) steps on an H-graph can sample
the nodes of the graph with a distribution close to be uniform. We shall show that our
protocol with approximate sampling increases the probability of producing ‘bad graphs’
(those with large A\(G)) by only a constant factor. Therefore, if the graph is sufficiently
large, the high probability result of Theorem 4 can still be applied. With approximate
sampling, we need to start with a uniformly distributed probability space of sufficiently
" large graphs. When the graph is small, we can use a perfect sampling algorithm described
in Section 2.4.
Procedure SAMPLE-RW (t) performs a random walk on the graph and returns the node
after ¢ steps.

SAMPLE-RW (%)

1 ift=0

2 then return self

3 else v « a random element in N(self)
4 return v = SAMPLE-RW(t — 1)

Procedure SAMPLE-RW is presented here as a tail recursion through remote procedure
calls. We can as well pass along the network address of the initial node. Procedure SAMPLE-
RW can serve as an implementation of SAMPLE in Section 2.3. The variant of JOIN using
SAMPLE-RW will be denoted as JOIN-RW. Table 2.2 summarizes the complexities of the
sampling algorithms we have considered.

2.5.1 Nodes Joining

We now analyze the sequence of probability spaces of H-graphs generated by the JOIN-RW
operations. Lemmas 6 and 7 are consequences of Theorem 5.1 in [67].
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Lemma 6. If G is a k-regular graph of size n, then for any i€ G,

Pr {SAMPLE-RW (t) returns i} — %‘ < (@)t
Proof. By Theorem 5.1 of [67], we have
IPG) - 7)< o/ Sy,
m(3)
where p = ﬂkgl Since 7 (j) = (i) = 1/n for all 4, j, ﬁ—%_ =1. O

Lemma 7. Let G € H, 54 be a graph such that A\(G) < 2v/2d — 1+ € for d > 2. Let

log 220
t= [—%3%——‘ = O (loggn)
log 3 AT+

where r and ¢ are positive constants. Then for any v € G, we have

~dnT’

Pr {SAMPLE-RW(t) returns v} — %’ <L

Proof. Let p = -2—3% and t* = log, /,dn" /c. By Lemma 6, if t > t*, then p* < ¢/dn". O

Theorem 8 shows that although our protocol using SAMPLE-RW does not sample per-
fectly, the probability that we obtain a graph of large second eigenvalue remains very small.

Theorem 8. Let d > 3. Let S,,8n+1,8n+2,-.. be a sequence of probability spaces where

Sk = (Hiod, Lk, Pr). Let Sp be a uniformly distributed probability space and let Spi1 be
dk"

formed from Sy, by operation JOIN-RW using SAMPLE—RW([—IO—E%——-I) with ¢ > 0 and

log 537 TT:
7 > 2. Then for allk > n,

Pk{ {G € Hy24 | A(G) < 2V2d -1+ e} } 21-0(n™"),
where T = [V2d —1] — 1.

Proof. Let Tn = { G € Hp24 | MG) < 2v/2d— 1+ € } be the set of ‘good’ graphs in Hy, 2.
Let J(G) be the set of graphs obtained by operation JOIN (it does not matter whether we
consider JOIN or JOIN-RW) on G. For any k > n, let

Tor1 = {G € J(Ye) | MG) < 2v3d—T1+¢ } . 2.1)
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The probability space S can be considered as a product space (C;)¢ where Q[Ci] =
For any C € Hy and L € {1,...,d}, let

Hi[l,C) = { G € Hgaq | C is the level-l Hamilton cycle of G }

be the set of graphs whose level-l cycle is C.
For any probability space (Q2,X, P) and any sets A, B C Q, let

P{A| B} = P{An B} /P{B}.

We shall prove that for m > n,

Pu{Tm}21- Y eTi=70(7), (2.2)
j=n
and
eﬂ E:'-.-.—nl -
P P {Hnll,C] | T} < T

1<i<d
Because of our assumption that S, is a uniformly distributed probability space and
Theorem 4, P, {Y,} > 1~ O(n™"). The eigenvalue of a graph depends on the structure of
the graph but not the labels. In other words, a graph has the same eigenvalue no matter
how we label the nodes. Thus, we have

(2.3)

1
n-1)1/2"

Therefore, Inequalities (2.2) and (2.3) are satisfied for the base case m =n.

Assuming that Inequalities (2.2) and (2.3) are satisfied for m = k, we shall show that
they are satisfied for m =k + 1.

Let t(k,d) = |}——-{3——] be the number of steps walked by SAMPLE-RW.

08 3B T+<
The set J(Yj) are those graphs that can be produced by an operation JOIN on the

graphs in T;. Let C' € Hj be the cycle such that node k + 1 is removed from a cycle
C € Hg41- A graph in Hp4[l,C] N J(Tk) must be created by inserting the node k + 1 at
level ! between two nodes of a graph in Hg[l,C'] N Ti. We have

sup  Peqr {Hena[L,C 1 J(Xk) }
CeHyy, 1<1<d

< sup P { Hi[l,C']| Tk } x
C’'eHy, 1<I<d

sup Pr{SAMPLE-RW(t(k,d)) on G returns v}.
ve[k],GET

Pn{Hn[l’C] |Tn} =Pn{Hn[l’C]} =
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Let

sup Pr{SAMPLE-RW(t(k,d)) on G returns v} = 1/k + €.
ve[k],GET

Informally, €}, is the amount of deviation resulted from the approximate sampling on some
G € Ty by a random walk. It would be zero if a perfect sampling algorithm is used. By
Lemma 7, € < z=. By the inductive assumption of Inequality (2.3) of m = k, we have

sup Py {Hk+1[l, C] | Trs1 }
CGH]H.;[, 1<i<d

sup Pey1 { Hia1[1,C) | J(Th) }
CeHyp1, 1<I1<d

k—1 ,1—
eiXisn it "1+ hr

S-DZ &

k+1)—-1 .1
eﬁz( )-11-r

i=n

S CES SV

Since all pairs (C,!) are symmetric, we have

sup Pepy {Heall,C) | Tra } = sup Piy1 { Hpa[l,C) | J(Tx) } -
C€Hg41, 1LILd CeHgy1,1<I<d

Thus Inequality (2.3) is satisfied for m = k + 1.

Since a new node is inserted into the d Hamilton cycles independently during each JOIN
operation, we have

sup Ppyi {G|J(Tk)}
GeJ(Tx)

< T sw P {Henll,C) | J(Tx)}

lslster“’l
gxrn-tanr \ ¢
< [ Bi== .
- (((k+1)—1)!/2)

Dividing both sides by Un,,, ,, {G}, we have

Per1{G | J(Tk)} kD11
sup S e€2ii=n t . 2.4
Ge(Ty) UHeyi4 {G} (2-4)
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Starting from Equation (2.1), we have

Pry1 {Tria}
— Popy {{G € J(T) [ MG) < 2v2d—1 +e}}
= > Pe+1{G}

GeJ(Tk), \(G)<2v2d—T+e

= Z P41 {G} - > Pe+1{G}. (2.5)

GeJ(Yy) GeJ(Tr), MG)>2v2d—T1+e

The first term can be derived from our inductive assumption that Inequality (2.2) is
satisfied for m = k:

Z Piy1{G} = Pey1 {J(Th)}

GeJ(Tk)
= P {Yi}
k N
=1- Y eZaToG™). (26)
j=n

Given Theorem 4 and Inequality (2.4), the second term can be bounded as follows:

> P11 {G}

GEJ(T1), MG)>2v2d=T+¢

< > Per1{G|J(Tx)}

GeJ(T1), \(G)>2v/2d=T+¢

(k+1)—1 —yp
< > eTi=n " Ug,, .. {G}
GeJ(Tk)MG)>2v2d—T+e

<e T U100 {{ G € Her124 | MG) > 2v2 T+ }}

< eZi=niTO((k +1)77). (2.7)

Substituting Equations (2.6) and (2.7) back into Equation (2.5), we obtain

k+1 o
Pepr{Tr}21-) (ec):,?:,{ @ ) o@™)-

j=n

Since r > 2, eZi=n """ is bounded by a constant. Similarly, Z?___n j~7 is bounded by a

constant since 7 > 1. In fact, E?___n 7~ 7 becomes negligible quickly with moderate 7. For
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example, when 7 = 4 and n = 50, we have Z;iso =% < 3x 1078, Therefore, for any k > n,

P {{G € Hy2a | MG) < 2v2d -1 + e}}

> P {Tx}
k s
>1-3 e T0G)
j=n
=1-0(n"").

a

We note that Theorem 8 is useful only when the initial graph size n is sufficiently large
for O(n™") to be close to zero. Section 3.2 considers the transitions between complete
graphs and H-graphs.

2.5.2 Nodes Leaving

The operation LEAVE can have a much larger effect on the probability of obtaining bad
graphs. We can obtain a similar result if the number of operations is bounded by a power
of the size n of the graphs in the initial uniformly distributed probability space. The proof
of Theorem 9 is similar to that of Theorem 8.

Theorem 9. Consider a sequence Sy, ...,Sn of probability spaces and an integer n such
that

e (01,02,...,0N) 18 a Sequence of operations, such that each operation o; is either a
d(i+n)”

LEAVE or a JOIN-RW using SAMPLE-RW ( [lo—g—-f,r—-l) where ¢ > 0 and r > 2;
log 57217+

o S is a uniformly distributed probability space and Q[So] = Hy, 24;
e S; is obtained from S;—1 by operation o; fori=1,...,N;
e |Q[Si]| >n forallie{0,...,N}.
Let T = [v2d = 1| — 1. If N = O(n***) such that ¢ < r — 1, then
P {{G € QS | MG) < 2v2d—T1+ e}} >1-0(n?")

fori=1,...,N.
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2.5. APPROXIMATE SAMPLING

Proof. For i = 0,...,N, let n; = |Q[S;]|. Let the set 2[Sp] of the nodes in the initial
probability space be {~1,-2,...,—n}. If 0; is a JOIN operation, then the new node is
labeled i. In this way, the requests can be represented as integers, such that

Q[S;|U{oirq1} o1 =i+1,

QSin] = {Q[ SiI\ {01} if 0i41 € QS]]

The request o; must either adds a node labeled i or removes an existing node in Q[S;_,].
For notational simplicity, we still use H,, for the set of Hamilton cycles on [S;], although
the labels of the nodes change after each request.
Let
Yo = {GeQ[So] (MG) §2\/—2d—1+e}.

Depending on the operation o;4;, we have

Tirr = {GEJ(T,‘)I)\(G)S\/2d—1+E} if 6341 is a JOIN,
VUG € Loy (T:) | AG) < VZd—T+€}  if 0341 is a LEAVE,

where L,(A) is the set of graphs obtained by removing node v in the graphs of A.
We can derive a sequence z from o by

1 if g; is a JOIN operation,
L= . . .
0 if o; is a LEAVE operation.

Let
j—1
9(d) =z}
i=0

We shall prove the following inequalities for m =0,1,...,N:

m
Prn{Tm}>1= 2e0)0(n;"),
7=0

and
P {Han[LC] | T} < 20
oup m { Hn [, C] | m}_m-
1<i<d

The base case and the inductive step for a JOIN operation is the same as the proof in
Theorem 8. In the following, we will consider the LEAVE operations.
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2.5. APPROXIMATE SAMPLING

Consider a LEAVE operation oy.;. Fix any I € {1,...,d}. A cycle C € Hp,,, can be

obtained by removing node o3 in exactly ng; = ni — 1 different cycles. Therefore,

sup Priq { an+1 [l, C] l Tri1 }
CEan+1, 1<i<d

sup Py { an+1 [l’ C] | L0k+1 (Tk) }
CeHy,, ,,1<I<d

< sup  (ng—1)P{HpJl,Cl| Tk}
CGan, 1<i<d
ed9(k)
< N |
S ey 1y
eﬁy(k+1)

(nes1 — 1)1/2°

We can show that g(j) is bounded by a constant:

j—1

9(j) =Y zml™T
=0
N-1

SZ 1-r

i=0
— an—r
=0o(1)
because N = o(n"1).
At last, we can conclude that for k =1,..., N,

k
P {Tr}>1- szecgU)O(n;T)

3=0
k
=1- Esz(nj_T)
j=0
=1-NO(n™)
=1-0(n%).

O

In the long run, the probability spaces may deviate further and further away from the
uniformly distributed spaces. (We expect that, in practice, the ‘degradation’ will be very
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slow, especially if the leaving nodes are not chosen by an adversary.) In the following,
we outline two strategies for slowing down the deviation. When the request sequence is
unbounded and arbitrary, we can also use a regeneration algorithm (Section 2.7.2) to refresh
the probability space. In Section 2.11 we study the effects of leaving nodes on the second
eigenvalue of the graph.

Youngest Node

We observe that if the node to leave is always the node just joined (the youngest node),
then Theorem 8 would remain applicable. But we cannot avoid other nodes leave be-
fore the youngest node z. Nevertheless, when some node v wants to leave, it can just
swap its set of neighbors N(v) with the neighbors of z. Thus, for the graph topology, it
would appear as if the youngest node z has left. We call the ordered list of the neighbors
{ngbr_y, ngbry,ngbr_,, ..., ngbr_g, ngbry) the shell of a node. Swapping shells takes O(1)
time and O(d) messages.

Now our problem reduces to locating the youngest node z by any leaving node. Let g be
a server known to all nodes in the graph. Each node u € G contains a field prev that points
to the node that joined just before u. Server g’s variable youngest should always point to
the current youngest node.

e When the youngest node z leaves, g = youngest is updated to z = prev.

e When a new node u joins the network, (v = prev) «— (g = youngest) and then
g => youngest is updated to u.

Only O(1) messages are required for each JOIN-RW or LEAVE operation. We note that
only O(1) space is required at the global server.

Instead of using a global server, the address youngest can also be broadcast over the
graph after every JOIN-RW or LEAVE operation. A broadcast takes O(logyn) time and
O(dn) messages.

However, this simple scheme only works for nodes leaving but not failing. It is possible
to detect failing nodes by the neighbors but the implementation can get quite complicated.

Shell Recycling

The previous approach either requires a global server or a broadcast during every JOIN-RW
or LEAVE. We now investigate a distributed solution without broadcasting.

When a node v departs, it can ask a neighbor u to store v’s shell. Then u will simulate
node v and have (at most) 4d effective neighbors. We call u a shell-host. The idea is to
save the shell and wait for a new node to adopt it. When there are sufficient shell-hosts, a
new node can easily find a shell-host and adopt a shell. This scheme can be extended so
that there are at most b extra shells for each shell-host.
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When the set of shell-hosts occupies a proportion 1 of the graph, a new node will only
need O(1~!) expected time to find a shell-host. In the worst case that the set of shell-hosts
is determined by an adversary, it will still only take O(¢)~! + logn) expected time to find
a shell-host. These search algorithms are studied in Section 2.9.

We note that this will only have a limited effect on the performance of the algorithms
running on the graph. If we allow b extra shells for each shell-host, then a graph of size n
will be simulating a graph of size (b + 1)n in the worst case. Each node has to store (2d)b
additional addresses. Since the time complexity of the algorithms presented in this chapter
is O(logn), the extra time cost is only O(log b).

Although this approach is distributed and efficient, it has the limitation that shell-hosts
can become saturated in the extreme case. The number of shells per shell-host dictates the
maximum factor that a graph can shrink. For example, if we set the load factor b to be
2, then the entire graph can host at most 2n additional shells. This means that a graph
shrunk by two-third will run out of shell-hosts.

At last, we note that shell-hosts recycling has the extra benefit of speeding up the process
of nodes joining, especially if an expensive perfect sampling algorithm is used.

2.6 Simulation Results

We have performed some simulations to gain more insights into the constructions of the
H-graphs. We would like to estimate the constants hidden in the asymptotic results. We
would like to obtain some guidelines for setting the various parameters of our algorithms.
For example, we would like to know what should be the sufficient size of d for an H-graph
of certain size.

According to Theorem 4, if an H-graph G is chosen from a set Hp, 24 uniformly at
random, then for any € > 0,

AG) <2v2d—T1+e (2.8)

with probability 1 — O(n™"), where 7 = [v/2d — 1] — 1. However, it is not clear that given
€, what size of n is sufficient so that O(n~7) is insignificant.

First, we have a program perfectHGraphs (in Python)that sample H-graphs from the
uniform probability spaces. Given n and d, perfectHGraphs generates d independent
Hamilton cycles on a set of n nodes. Program perfectHGraphs outputs matrices in CSC
format.

Program eigenvalues (in C++) takes in the matrices generated by perfectHGraphs
and finds their second largest eigenvalues using the library ARPACK++, which is a C++
wrapper for ARPACK in Fortran. ARPACK contains the fastest eigenvalue solver among
the numerical packages we have tested. Program perfectHGraphs is written in C++.

Program eigenAnalyze (in Python) takes in the eigenvalues found by eigenvalues and
calculate the number of instances satisfying Inequality (2.8) for a given e.
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Our program first creates a 3-node H-graph and then have new nodes joining sequen-
tially. When the size of the graph is 50,100, ...,1000, we find the second largest eigenvalue
of the graph by calling ARPACK++[40], an eigenvalue package.

We simulate our construction algorithm using sampling algorithm SAMPLE-RW. As
suggested by Lemma 7, number of steps taken is set to '-2 logays "—:‘l +4. Wefixedc=1

and 7 = 3 (no observable effects on the results when r is set to 1 or 5). Since the purpose
of the simulations is to evaluate the second largest eigenvalues of the graphs produced by
our protocol, we used the graph size n, instead of an estimate (discussed in Section 2.10),
for determining the number of random walk steps.

Let us call a graph ‘bad’ if it does not satisfy Inequality (2.8). In our simulations, we
count the number of bad graphs observed in 100,000 independent trials. In Figure 2.3, with
d = 4, we can see that the number of bad graphs drops quicker against increasing graph
size when the € in Inequality (2.8) is larger. For example, when ¢ = 0.1, we observed 218
bad graphs when n = 250, 26 bad graphs when n = 500, and 0 bad graph when n = 1000.

Next, we investigated the effects of parameter d (half of the node degree). The solid
lines in Figure 2.4 represent the number of bad graphs for d = 4, 8,16, with e = d/100. The
€ is set to be proportional to d because the eigenvalues should be normalized by dividing
2d, the largest eigenvalue, for a fair comparison. The number of bad graphs decrease with
increasing d. The dashed lines represent the graphs using perfect sampling. We did not
observe a significant difference between the results using perfect sampling and the results
using approximated sampling.

According to our simulation results, d = 4 is quite sufficient to obtain a high probability
of satisfying Inequality (2.8) when € > 0.1. A larger d gives us smaller eigenvalues for small
graphs, lower time complexity for joining and diameter (both O(log,;n)), but higher space
and message complexities.

The high probability results in Section 2.5 only apply when we start with a uniform
probability space of sufficient graph size. However, the simulations show that even if we
start from the 3-node H-graph, there is a small probability of obtaining bad graphs in the
long run, as most of the bad graphs become ‘good’ when the graph size increases.

2.7 Auxillary Algorithms

2.7.1 Small Graphs

We note that the high probability results are not very useful when the graph is small. In the
analysis in Section 2.5, we need an initial uniform distributed probability space of moderate
size. In this subsection we discuss small graphs and their transitions to H-graphs.

Besides the above concern, we also note that our protocol in Section 2.3 is not efficient
when the graph is small. If n < 2d+ 1, we can maintain a complete graph with fewer edges
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Figure 2.4: Number of graphs not satisfying Inequality (2.8) in 100,000 trials, for d = 4, 8,16
and € = d/100.
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than an H-graph. Even when n is slightly larger than 2d, it might still be more efficient to
maintain a complete graph. With a complete graph, each JOIN or LEAVE takes O(1) time
and O(n) messages.

The conversion from a complete graph into an H-graph is not difficult because each node
has the complete knowledge of the graph. In Section 3.2 we discuss algorithms that convert
H-graphs to and from complete graphs.

We note that a complete graph can be formed from a weakly-connected graph by a
resource discovery algorithm. These algorithms are discussed in Chapter 4.

2.7.2 Regeneration

Because of various reasons, the probability space produced by our protocol may deviate too
far away from the uniformly distributed space. It could be caused by the extraordinary
shrinkage discussed in Section 2.5.2 or by node failures. Although we are so far unable to
find a distributed algorithm to ‘repair’ a probability space, we can regenerate the graph
by creating a new set of Hamilton cycles. In the following, we will present a regeneration
algorithm.

Our approach is to start from a small graph again and insert nodes until the new graph
has included all existing nodes. Apparently, it would take up to n steps to construct a new
H, 24 graph. However, it is possible to speed up this process by having nodes joining in
parallel. For example, consider a set of new nodes joining G at the same time so that some
node v € G is picked simultaneously by & new nodes on the level-: Hamilton cycle. In this
case, v can insert the k nodes between v and v = ngbr; in a random order. However,
this parallel process should only proceed at a controlled rate. For example, we should not
simultaneously insert 7 nodes into a 3-node graph, because then each of the 3 existing nodes
has to manage around n/3 new nodes at the same time.

During each round, each node in the new graph can invite its neighbors in the old graph
to join. For example, let vp,v1,v2 be the initial members of the new graph. In the first
round, they will invite all their neighbors to join the new graph. Let these neighbors be
v3,...,Vk,. In the second round, after nodes vs, . .., v, have joined, they can in turn invite
their neighbors to join. In each round, the number of new nodes is at most 2d — 1 times
the current size of the new graph. Therefore, each existing node in the new graph expects
to see O(d?) LINK requests. Effectively, this process expands like a broadcast, which takes
O(loggn) rounds to cover the entire graph.

We can use a perfect sampling algorithm when the graph is small and switch to SAMPLE-
RW after some size ng. The overall time and message complexities are O(logZn) and
O(d(n2 + nlogy)).

It is technically impossible to detect a deviation of the probability space. Distributed
estimation of the second largest eigenvalue is likely to be very expensive. We can invoke a
regeneration based on a fixed schedule or an estimate of the number of LEAVE operations.
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There is a tradeoff between the frequency of regeneration and the number of steps taken
in sampling process by random walks. When the number of steps by SAMPLE-RW is smaller,
the probability space may deviate faster, but this can be compensated by a more frequent
invocation of the regeneration algorithm.

2.8 Broadcasts

In this section we discuss broadcasts on the H-graphs. We present a tree-based algorithm
with good time complexity and a cycle-based algorithm with good message complexity.

2.8.1 Broadcast with a Spanning Tree

We first describe a generic algorithm for constructing a tree on the graph on demand. The
TREEWALK service carries a generic procedure PROC to be executed at each node reached
by the algorithm. PROC should return false when the walk should be terminated at the
current node, and return true otherwise. In practice, this procedure can be implemented in
a portable language to be executed in the sandboxes of the nodes. The algorithm needs to
carry along a nonce, which should be a number that will not be repeated for a long time.
This is used to ensure that each node executes each instance of TREEWALK at most once.
As an example, procedure NEW-NONCE returns a random 64-bit number.

In the following algorithm pseudocodes, the variable self identifies the node executing
the procedure. All actions are performed by self by default. The expression 4 =PROC()
invokes a remote procedure call PROC at node u. The call is assumed to be non-blocking
unless the call returns a value. An expression # => var means that we access the variable
var of node u. And, (u = var) « z means that we set the variable var of node u to value z.
Thus, messages are exchanged between node self and node u.

TREEWALK(PROC, depth t, breadth g, parent u, nonce h)
1 if h is seen recently
2 then return
if Proc() and t>0
then S « a random subset of N(self) \ u of size at most ¢
for each v € S in parallel

3
4
5
6 do v = TREEWALK(PROC,t — 1, ¢, self, h)

NeEw-NoONCE()
1 return UNiForM({0,...,2% - 1})

UNIFORM(S)
1 return an element in S uniformly at random
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BroADCAST(PROC)
1 TREEWALK(PROC, 00, 00, NULL, NEW-NONCE())

Effectively, BROADCAST floods any connected graph by constructing a spanning tree,
because both the depth and breadth are not constrained.

There is nothing innovative in procedures TREEWALK and BROADCAST by themselves.
However, by exploiting the expander property of the H-graphs generated by our protocol,
we will be able to show that BROADCAST is fast and efficient on these graphs. The expander
property of a graph can be bounded from its second largest eigenvalue.

First, we show that BROADCAST can reach the entire graph in O(logn) steps.

Lemma 10. Consider a k-regular graph G of size n such that p = X\(G)/k. The number of
nodes reached by BROADCAST after t steps is at least

n

n—1
STy =

Proof. For any X C G, let N(X) be the set of neighbors of X:

NX)={J {v| (v,v) € E@G)}.

ueX

~

% (p‘1 +vp2 - 1)2t. (2.9)

Let N*(X) be the set of nodes reachable from X after ¢ steps. For any t > 0, N**1(X) =
N(N'(X)).

Let A = A(G).

By Theorem 2 of [53], we have

P2(k/X) | X|
P(k/X) - 1)|X|/n’

V') 2 1

where P; is the Chebychev polynomial of degree ¢, which is the unique polynomial satisfying
the equation
Pyi(cos z) = cos(tz),

for any complex number z.
When X = {v}, we have

P2 (k/X)
(PE(k/2) —1)/n
n

|Nt(v)| > T

> (2.10)

_..1 -
1+ 56/
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Let z = coshy = k/A. Then sinhy = vz2 — 1.
e = (coshy + sinhy)* = (z + V2 — 1)},
for x > 1. Then

FPi(k/A) = Py(coshy)
= coshty

> el)2 =

(z+ VE=I)
ervr o)

Substituting P;(k/\) back into Equation (2.10), we have

n

|2 14+4—n1 -
V1%

|Nt (v

a

Theorem 11. Let G be a 2d-regular H-graph generated by our protocol. Then with high
probability, the number of nodes reached by BROADCAST after t steps is at least

n (2.11)

n—1

1+ 4(7_57{2 1

Proof. From Theorem 8, we can pick e such that

2v2d — 2

<
p(G) < 5 1

with high probability. Then, we have

2d -1 Vad+1l —4d — 84+ 8

> +
= 2y2d -2 2v/2d - 2
_2d—1+2d—3

T 2y/2d=2
=/2(d—1).

This implies that the number of nodes reached by BROADCAST after ¢ steps is at least

P+ V21

n

_n__
1+ 4y
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Theorem 12. With high probability, BROADCAST on a 2d-regular H-graph generated by
our protocol terminates in [2%3%}%_] + 1= 0(log,;n) steps.
Proof. From Lemma 10, the number of nodes covered after t steps is at least
n
1+ 4@%7’ )
Therefore, we are done after ¢ steps if

n

T71=_>n" L
L+ 4r5hy

which is equivalent to
2log(n—1)+1
log(d—1)+1 "~

t>

O

Theorem 13. The number of messages sent by BROADCAST on a 2d-regular graph is at
most (2d — 1)n + 1.

Proof. There are dn undirected edges. The maximum possible number of messages sent is
2dn because two messages can be sent on each edge. However, there will be some one-way
edges where messages are sent in only one direction.

During the round that a node is discovered, all edges with incoming messages will not
have outgoing messages. Thus, each node, except the initial node, is responsible for at least
one one-way edge. Therefore, the total number of messages is at most 2dn — (n — 1) =
(2d —1)n+1.

O

2.8.2 Broadcast along a Cycle

In some situations, we do not need to broadcast under a tight time constraint but would
like to minimize the total number of messages sent.

We first present a generic algorithm for walking on a Hamilton cycle of an H-graph. We
note that in most random graph models, finding a Hamilton cycle is nontrivial.

CYCLEWALK(PROC, depth t, direction ¢, nonce h)
1 if h is seen recently

2 then return

3 if Proc() and t>0

4 then ngbr; = CYcLEWALK(PROC,t — 1,%,h)
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BROADCAST-CYCLEWALK(PROC)
1 i+« UnrrorM({1,...,d})
2 h <« NEW-NONCE()
3 CyCLEWALK(PROC, 00,1, h)
4 CycLEWALK(PROC, 00, —1, h)

The reason that we have a separate procedure CYCLEWALK and a depth parameter ¢ is
that we will reuse CYCLEWALK with finite depth in Section 2.9 and Chapter 3.

Theorem 14. Procedure BROADCAST-CYCLEWALK terminates in [n/2] steps and sends
at most n + 1 messages.

Proof. After [n/2] steps, the broadcasts along the two directions will meet. Number of
messages sent is at most 2[n/2] <n+ 1.
O

2.9 Searches

In this section we analyze the search algorithms on the H-graphs. These algorithms can be
used to implement a discovery service as proposed in Section 5.1. Although such algorithms
can run on almost any peer-to-peer networks, we can obtain good theoretical performance
bounds on H-graphs.

Starting at any node, we would like to search for some node satisfying certain properties
that can be expressed as a Boolean function ¢ : G — {true,false}. We call ¢ a criterion
function. Starting from an arbitrary node, a search algorithm has to look for a node v such
that ¢(v) = true. For example, we can have ¢’ so that ¢/(v) is true if and only if v is a
Freenet server with at least 128 kbps bandwidth and 10 GB storage. We assume that the
criterion function can be described in O(1) space and be evaluated in O(1) time. Sometimes
the evaluation of ¢ might require privacy—Fagin, Naor, and Winkler [25] discussed how we
can compare information without leaking it.

For any criterion function ¢, let

o(G] = {u € G| ¢(u) = true}

be the target set. We express the performance of a search algorithm in terms of a parameter
¥ = ¥4(G) = |¢[G]| / |G|, which is the proportion of the nodes in G satisfying ¢. We call
1 the density of ¢ on G. In most scenarios, we expect that ¢ can be lower-bounded by a
constant. In other words, when an H-graph grows, the number of nodes satisfying criterion
¢ is expected to increase proportionally.

Let A = ¢[G] be the target set. Our search algorithms to be presented will try to return
any node in A. We assume that another specific protocol can take over once a node in A
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is found. We note that the algorithms in this section can be easily modified to discover as
many nodes in A as possible given certain time and message constraints.

If we need a complicated function ¢, it can be implemented in a portable language. If
simple rule-based matching is sufficient, ¢ can be implemented in an XML query language
to access meta-data stored as Resource Description Framework (RDF) documents at the
nodes.

Effectively, our algorithms perform on-demand searching, instead of indexing at a cen-
tralized server. With sufficient hardware support, indexing could produce better response
time. However, the index cannot be refreshed very frequently and thus usually contains
obsolete entries. Moreover, a criterion function is much more flexible than indexes.

We will consider two models for the probability distribution of the target set A in
G. First, we can assume that set A is distributed independently from the randomized
construction of the H-graph G and the initial node u. This means that the selection of A is
independent of the random events that lead to the particular topology of G and the choice
of initial node u. We call such A an ‘independent target set’. Alternatively, we can assume
a worst case scenario where set A is picked by an adversary after G is constructed and node
initial node u is selected. We call such set A an ‘adversarial target set’. We will present
algorithms SEARCH-CYCLEWALK and SEARCH-TREEWALK for the independent target set
and algorithm SEARCH-RANDOMWALK for the adversarial target set.

Before we describe the search algorithms, we need to introduce a function NEW for
initializing a procedure object. The expression

New(PRrRoOC, {1 « v1,...,Zk — Vk})

creates a new instance of PROC such that local variables z1,...,zx are initialized to the
values vy, ..., v;. These values are stored within the procedure object PRoC.

SEARCH-PROC encapsulates the criterion function ¢ and remembers the node s that
initiated the search. It will be used in the our search algorithms.

SEARCH-PROC()
locals ¢,s
if ¢(self) = true
then s = SEARCH-REPLY(self)
return false
else return true

QU W N =

SEARCH-REPLY(v)
1 R—Ruvwvw

Procedure SEARCH-PROC returns true when the search should be continued. When a
node satisfying the criterion function is found, it notifies the initial node, and then returns
false to signal the end of the search.
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2.9.1 Search by Cycle Walk

As a warm-up, we start with a simple search procedure SEARCH-CYCLEWALK, which picks
a Hamilton cycle randomly and walks along that cycle. We assume an independent target
set for the complexity analyses.

SEARCH-CYCLEWALK (¢, t)

1 R0

2 P «— NEW (SEARCH-PROC, {¢ «— ¢, s — self})

3 CyCLEWALK(P,t, UNiFORM({~-1,1,-2,2,...,—d,d}), NEW-NONCE())
4 wait for ¢ steps or until R is nonempty

5 return R

Lemma 15. Consider two sets S,T C G, where S is randomly distributed over G, then S
and T are disjoint with probability at most e~ ISIITI/n

Proof. Let S = {s1, 83,---, 5k} The probability that TNS =0 is
Pri{s; ¢ T}Pr{se¢T|s1¢T}  -Pr{sc ¢T|{s1,..., 561} NT =0}

=1 -|T|/n)Q—=|T|/(n-1))--- 1~ |T|/(n— (k—1}))
< (1 -IT|/n)®
< e-ISiITl/n.

O

Theorem 16. Given an H-graph G constructed by our protocol and a criterion function

¢, the probability that SEARCH-CYCLEWALK(9, ) fails to find a node in ¢[G) is at most
e~ Ws(G)

Proof. After t steps, the algorithm should have reached a set of ¢t nodes. The probability
that ¢[G] does not intersect with this set is at most e~*¥¢() by Lemma 15. O

We can use SEARCH-CYCLEWALK (¢, o) if we are confident that the density of ¢ is not
too small.

Theorem 17. Given an H-graph G constructed by our protocol and a criterion function
o, the expected time complezity and message complezity of SEARCH-CYCLEWALK(¢, 00) is

(e))

Proof. At each step the probability that the algorithm reaches a node in ¢[G] is at least
¥4(G), thus the expected number of steps required is at most (14(G))~1. a
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2.9.2 Search by Tree Walk

Next, we will consider a search algorithm that is faster but also sends more messages.

SEARCH-TREEWALK(9, t, q)

R0

P — NEW (SEARCH-PROC, {¢ — ¢, s — self})
TREEWALK(P, t,q, NULL, NEW-NONCE())
wait for ¢ steps or until R is nonempty
return R

Tk W N

Theorem 18. Let G be a 2d-regular H-graph generated by our protocol and let ¢ be a
criterion function. Let n = |G| and ¢ = 94(G). With high probability,

4Inn logn
logy(g-1) m 0( on

steps are sufficient to find a node in $[G].

) = O (loglogn + logyy™1)

Proof. Let X; be the set of nodes reached by SEARCH-TREEWALK(¢,t,00) after ¢ steps.
By Lemma 15, if
|X:] 2> Inn/4p,

the probability that X; and A do not intersect is at most 1/n. By Theorem 11, this condition

is equivalent to

n I
> 2n

n
— g )
14+ 4'(7__57’2 ";_1 P

which can be rewritten as

41 - 1)
t > logy(y-1) f‘r
Inn~ n
4Inn logn
= logz(d_l) 'l/) + O ( "pn ) .

O

Lemma 19. Let G be a 2d-regular H-graph generated by our protocol and let ¢ be a criterion
function. The total number of messages sent by SEARCH-TREEWALK(¢, t,00) is at most

4Inn )\ 1o82a-22d-1 1 logn -1
( m ) (1+ﬁ+o(d¢n>) =0 (" logn)

when t = logyq_y) 4112”‘ +0 (13—1’:-)
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2.9. SEARCHES

Proof. Let ¥ = 94(G). In the worst case, SEARCH-TREEWALK(¢,t,00) will spawn a tree
of messages with depth ¢ and branching factor 2d — 1, except at the root, which can has 2d
children. Therefore, the total number of messages sent is at most

i
. (2d-1)l -1
—_— 1 o e—————eee

4Inn °B2e-22d-1 1 logn
<(5") (raz+o(@m)

2.9.3 Search by Random Walk

We now proceed to show that random walks can help us achieve good search performance
even when the target set is selected by an adversary.

SEARCH-RANDOMWALK(¢, t)
if ¢(self) = true
then return self
else ift>0
then return UNIFORM(N (self)) =
SEARCH-RANDOMWALK(¢,t — 1)

Ot N =

Theorem 20. Consider a k-regular graph G and a criterion function ¢ chosen by an on-line
adversary. Let ¢ = 94(G).
The expected number of steps required by SEARCH-RANDOMWALK(¢, 00) on G is at most

T—W (% + %m (('n. - 1)1—;—‘#)) =O(%™" +logn).

Proof. A random walk on G of size n can be considered as an n-state discrete-time Markov

chain such that each node in G corresponds to a state in the chain. Let X; be the state of a

random walk, where X is the initial state. The transition probability Pr{ X; = j | X;—1 =i}
is the number of edges from node % to node j divided by k (G is a regular multi-graph). Let

A = ¢|G]. Following the terminology of [5, 6], let T4 be the hitting time on set A:

Ta=min{t > 0| X; € A}.

Let 7 be the stationary distribution of the Markov chain. In other words, let 7(Y") be the
probability that X; € Y when t — oo. Since G is regular, 7 is the uniform distribution. Let
E; [Ta] be the expected value of T4 given initial state Xo = i. Let E, [T4] be the expected
value of T4 given a uniform initial distribution, i.e., Pr {Xo =i} =1/n for all i € G.
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Let 7 = —7=v7z. According to Corollary 8 of [5],
1-X(G)/k

1—7(i) Ex [T4) .

1
, < - .
E; [TA] <E, [TA] +74+ 2Tln V0 - (2.12)
forany i € G.
By Lemma 2 of [5], we have
Tr(4) _ 11 —9)
< = . .
Substituting Equation (2.13) into Equation (2.12), we have
E;[Tal<T (1/1!1 + -;—ln ((n— 1)1—;—¢)) :
O

2.10 Network Size Estimation

In a distributed environment, any node in a network may not easily know the total size of the
network. However, many of our algorithms, such as sampling by broadcasts (Section 2.4.2)
and sampling by random walks (Section 2.5) would run more efficiently if a good estimation
of the network size is available. Therefore, we would like to have an efficient distributed
algorithm to gather and disseminate estimates of the network size.

Cohen [20] introduced a framework for size estimation and discussed techniques for
parallelization. However, we are not aware of any work on a distributed version of the
framework.

Estimating the size of a network graph distributedly is an interesting algorithm problem.
Our goal is for every node to have an estimate that is close to the graph size. Since many
algorithms such as JOIN-RW have time complexity O(logn), if the estimate of the graph
size is n#, u > 1, then the complexity is increased by a factor of u. In the following, we
outline several approaches.

Server A simple solution is to use a global server to store the graph size. Whenever a
node joins or leaves the graph, the server is notified. The storage requirement at the server
is only O(logn). The number of messages sent to and from the server is only O(1) per JOIN
or LEAVE.
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2.10. NETWORK SIZE ESTIMATION

Broadcast Broadcasts can count the number of nodes in the graph. To avoid messaging
bottleneck at the root, we can accumulate the results from the leaves back to the root along
the broadcast tree. The message complexity is O(dn) and time complexity is O(log,n).
However, some protocol is required to decide which node should be the broadcast initiator.
Possible schemes include passing tokens and random initiators.

Random Walks Feige [27] gave a randomized LOGSPACE algorithm COMPONENT for
testing graph connectivity. We observe that COMPONENT can also be used to estimate the
size of an arbitrary connected graph in O(n?) time and a regular graph in O(n?) time.

For expander graphs, Gillman [38]’s Chernoff bound for random walks can be employed
to obtain a smaller time complexity. Adapting Gillman’s modified Aldous’s procedure [4],
we can show that, in O(8~2nlogn) steps, a node can estimate the size of the graph within
error An with high probability.

Gillman derived bounds for estimating w(A) with random walks, where A a subset of
the graph, and 7 is the stationary distribution.

In expander graphs, both algorithms of Feige and Gillman are based on random walks,
so they can be easily applied in a distributed setting. In the following, we will give a sketch
on applying the Gillman’s bounds for estimating the size of a graph.

Theorem 21. Using the modified Aldous’s procedure, the cost to estimate the size of a
reqular graph G to within Bn with probability 1 — n=®W) s at most O (-ﬂ-,(';—l_‘_’g%ﬁ) .

Proof. From Corollary 3.3 of [38], procedure APM can estimate w(A) to within an(A) with
probability at least 1 — ¢ in

o 1 lo E lo * + 1
1-p(G) B3 %8 m(s) a?n(A)
random walk steps.

We let A = {s} where s is an arbitrary node, thus n = 1/m(A) = 1/n(s). Let ¢t be an
estimate of 7(s). To estimate n to within error An, we need to have

1-Bn<l/t<(1+B)n

It’s sufficient if we have

1-8/2)/n<t< (1+8/2)/n

Setting o = 3/2 and 8 = n~®(), the time complexity required by the modified Aldous’s
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procedure is
1 1 1 1
o (r=re¢3 (o055 * =iy

=0 (1—_%@ logn (logn+ %))

nlogn

=0(m‘——p<c—»)'

2.10.1 Size Estimation by Mobile Agents

In the rest of this section, we study a new distributed protocol for network size estimation.
We consider mobile agents (walkers) that move from node to node on the network. Walkers
are also called ‘pebbles’ or ‘agents’ in some literature. A walker counts the number of nodes
that it has visited by marking the nodes. Whenever it visits an unmarked node, its counter
increments. The walker also notifies the nodes with its current estimate. The markings,
estimates, and the walkers themselves should all have expiry times. There can be multiple
walkers so that the nodes can take the maximum of all the non-expired estimates.

A natural strategy for the walker is to walk randomly. However, for our H-graphs, a
walker can choose to walk on the Hamilton cycles. Walking on Hamilton cycle is simpler
but is weaker against adversarial attacks. We will analyze both options.

2.10.2 Cycle Walks

We first analyze the effectiveness of a cycle walker. In the following, we assume that walkers
are created at arbitrary nodes, which can be chosen by an adversary.

In order to quantify the performance of such algorithm on a dynamic network, certain
assumptions must be made on the rates node arrivals and departures. For the rest of this
section, time complexity is normalized such that it takes a unit time for a single walk step
(moving from one node to another). We assume a maximum arrival rate o such that during
any time interval T > 7,, the number of node arrivals is at most ar. We also assume
maximum departure rate 4 such that during any time interval 7 > 7;, the number of node
departures is at most d7n, where n is the maximum size of the network during this time
interval.

Theorem 22. Let the mazimum arrival rate be o < 1. A cycle-walker is created on a size-n
Hamiltonian graph G at time 0. At time (1 + z)n where z > /(1 — a), every node v € G
has received an estimate est(v) such that

z—a(l+zx) ,

in est z—ao(l+zx)
min est(v) > 1+a(1+z)n’
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2.10. NETWORK SIZE ESTIMATION

where n' is the size of the graph at time (1 + z)n.

Proof. First, after time yn, the walker’s counter is yn (the number of nodes the walker
has visited). At time yn, the size of the network is at most (1 + ya)n. We let the walker
complete a round trip on the Hamilton cycle after this point. At the same time, more nodes
can arrive at the network. Since the total time taken by the walker is (1 + z)n, the time
required to complete a cycle after time yn is (1 + z — y)n. In the worst case, the size of the
graph could become as big as (1 + a(l + z))n. Therefore, we can pick y such that

(1+z—y)n=(1+al+2)n

and still have sufficient time to complete the round trip on the Hamilton cycle. Thus we
have
y=z—-a(l+z)

Since we need y > 0, we must have a < 1 and z > a/(1 — a). Thus, min,cq est(v) > yn =
(z ~ a(1 4 z))n. Since n’ < (1 + (1 + x)a)n, we have

mlnest(v) 2 x_:lﬁix_)n’.
1+ (1+2)o

O

The major disadvantage of the cycle walk algorithm is a fault tolerance concern. Since
there is only one option for the walker at each step, if the next node on the cycle is slow
or unavailable, then the walker will be stalled. On the other hand, a random walker to be
considered in the next section can simply pick another responsive neighbor.

2.10.3 Random Walks

In this section we analyze random walkers on static networks. We show that after sufficient
time, a walker can obtain an estimate which is a fraction of the graph size.

We will analyze the random walker in two phases. In phase I, the random walkers counts
a constant fraction of the total network. In phase II, the random walkers distribute the
estimates to all the nodes in the network. We note that the division of the two phases are
used for the convenience of the analysis only. The walkers and the nodes do not need to be
aware of the phases.

Let H be the binary entropy function:

H(z) = zlogoz™ + (1 — ) logy(1 — z) L.

First, we show that the random-walker can reach a certain fraction of the graph in phase
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Lemma 23. Consider a random-walker on graph G of n nodes. Let k be a real number
between 0 and 1. Let a = p(G) + k — p(G)k and ¢ > %’Z_lel After ¢gn +1 steps, the walker

has reached at least kn nodes with probability at least 1 — \/n27".

Proof. Consider any € (0,1). Kahale [51] has shown that the probability that a random
walk of length ¢ stays inside a set A of size kn is at most

\/vr(A)Zq(v)"’/vr(v)aH

veEA

where ¢ is the distribution of the initial position of the walk. Since 7(A4) = &, w(v) = 1/n,
and g(v) =1 only if v is the starting node, we have

Pr {walk stays in A} < knat—1

Since there are at most (;::z) choices for the set A,

Pr {walk stays in a set of size kn}

n
5( ) knat!
Kn

< 2nH(n) fenat—1
— \/’ﬁ2nH(n)+(t—1) logz a. (2.14)
Thus, if we choose t = ¢n + 1 where

_H(k)+1
"~ logya~l’

then
Pr {walk stays in a set of size xn} < /n27".

O

We need a technical lemma on the distribution of the position of random walker after
phase 1.

Lemma 24. Let r be the distribution of a random walk on a graph G after t steps, then

> < pepm -1 +1.

veEG ‘"(v)
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Proof. By Fill [28],

Z(Pz(v — () <pG)Y (po(v) — 7(v))

w(v) w(v) ’

veG veG

where po is the initial distribution of the walk. Since the random walk starts at an arbitrary
position, we have

3 @olv) ~mw)) (po(v) — m(v))?

veG ﬂ-(v)

1 1)?
=(n—1);+n(1——ﬁ)
=n-—1

Let r = py, then

_ _(112_
_ZW(U) 1.

veG

Therefore,

S <o -1 +1

veG
O

Next, we give a bound on the probability that a random walker fails to reach a certain
node in phase II.

Lemma 25. Let t and l be the lengths of phases I and II respectively. Consider a regular
graph G of size n. Any node in G is not reached by a walker during phase II with probability

at most
VoGYn—1)+1(1 - (1 - p(G))/n)'*.

Proof. Let p= p(G). Let v be any node in G. Let A= G\ v, and thus 7(A) =1-1/n.
Consider a random walker that walks for ¢ steps in phase I and [ steps in phase II.
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Pr {node v not reached by the walker in phase IT}
= Pr {walker does not start at v in phase II}
- Pr {walker stays in A in phase II}.
Let r be the distribution of the walker at the end of phase I. Let q be the distribution

of the walker in A given that the walker is in A at the end of phase I.
Foranyue€ A,

r(u) = g(u) Pr {walk ends in A in phase I}
= q(u)(1 — r(v)).
Thus,
_ r(u)?
21" = 2 T

u€A u€A
Let a = p+ 7(A) — pr(A) =1 — (1 — p)/n. By Kahale [51],
Pr {walk does not reach node v during phase II}
= Pr {walk does not start at v} Pr {walker remains in A}

<(1- r(v))\/;(A) 3 q(u)?/m(u)al?

ucA

= \/w(A) Z r(u)?/m(u)at?

ucA
<VEm-1)+1(1 - (1-p)/n) L,

where the last inequality follows from Lemma 24. O

The following theorem shows that after O(n) steps, each node in the graph will obtain
a size estimate of ©(n) if there are ©(logn) random walkers.

Theorem 26. Let G be a graph of size n. Let there be pulnn walkers. Let k € (0,1). Let
= p(G). Let a = p+ K — px. The probability that all nodes in G having received an

estimate of at least kn in time (%fatﬂ- + RI_Z—T)) n+2 is at least 1 — %(1 +O(e™)) for some
e< 1.
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Proof. Let ¢ = %%f—}-. Let v =2/(u(1—p)). Let t = ¢gn+1 and | = yn+ 1 be the lengths
of phases I and II.
By Lemma 25, we have

Pr {a walk fails to reach v in phase II}
<V -1)+11-Q1-p)/n)?

<eP 21— (1-p)/n)t.
< eP’("—l)ﬂ—'l’(l—P).

Then
Pr {any node not receiving an estimate of at least kn}

<n H Pr {all walkers with an estimate at least xn do not reach v in phase II}
veG

< n(Pr {a walker fails to obtain an estimate of at least xn in phase I}

+ Pr {a walker fails to reach a node in phase IT})*#»"
=n (\/52'" + e (-1 2'¢(1‘p))“lnn :
Since t > en for some constant ¢, we have

pn—1)/2 = O(e")
and
V2™ = O(e")

for some € < 1.
Thus,

n (v ™+ ep’(n—l)/2—¢(1—p))“ln"
= n (O(e") 4 OI-¥0-A) 0

In
< neQ)~pp(1-p)lnn (1 + O )“ "

0(e")~¥(1-p)
= =409 (1.4 O(e}))

= 2 (1+0()),

because p(l — p) = 2.
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Example 1. Consider an H-graph G of size n = 100000 with d = 8. If we have [50Inn] =

576 random walkers, after 15000 time steps, all nodes have received an estimate of 1000
with probability at least 0.999929.

Proof. Let £ = 0.01. First, we have p(G) < 0.48413 with high probability. Thus a =
p+ k — pr < 0.4893. We can easily derive the following parameters:

H(k) < 0.080793136
nH (k) < 8079.3136

u=250
t = 7900
1 =T7100

(t —1)logga < —8147

The total time required is ¢ + [ = 15000.
According to Equation (2.14) in the proof of Lemma 23,

Pr {walk stays in a set of size kn} < /kn2"#=)+({t-1)log;a

< 100028080—8147
< 2.15x 10719,
and by Lemma 25,

Pr {a walk fails to reach v in phase II}

< VP -1)+1(1-01-p)/n)

< 0.964045549.

Therefore,

Pr {any node not receiving an estimate of at least xn}

= n (2.15 x 10710 4 0.964045549)* "

< 100000 (2.15 x 107 + 0.964045549) > %%
< 0.0000701158.

In Theorem 26, there are three selectable parameters:

e the minimum estimate guarantee: xn,
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e total time required: t +! = (¢ + ¥)n+ 2,
e number of walkers: plnn.

Thus, this is a three-way trade-off among the quality of the estimate, the time complexity,
and the message complexity.

Although this scheme has higher overhead than other methods discussed above, it is
more robust and also easier to implement. In Example 1, our calculation predicts that 576
random walkers are required to achieve an estimate of 1000 in 15000 time steps. For fault
tolerance, we can simply dispatch 1000 walkers (each node can choose to spawn one with
probably 0.01) and prepare for the lost of many of them.

2.11 On-line Fault Tolerance

We have seen that the H-graphs can maintain small second largest eigenvalues against an
off-line adversary selecting the sequence of nodes joining and leaving. It is easy to see that
even an on-line adversary cannot do much harm by the selection of joining nodes. However,
it has much larger power when if it can choose the set of nodes to leave given the current
topology. We now investigate the effect of having such adversary choosing a leaving set.

Let Ej(G) be the set of adjacent nodes on the level-! Hamilton cycle of an H-graph G.

The sum >;<j<q D qupieEc)(f®) — f (v))?, where f is a function that assigns each
node v € G a real value f(v), is usually called the Dirichlet sum. It is known that the gap
between 2d and A\(G) can be expressed as a Raleigh quotient [19):

oY (- fw)?

] 1<I<d {uw}€E(G)
2d - XG) = inf
3 fw=0 Lueg fu)?

ueG

(2.15)

Given a nonempty subset A C G € Hj, 24, let
te(A)= sup D> H{veA|{uv}cE(G)}.
u€G\A 1<i<d

The value tg(A) is the maximum number of nodes in A that is next to any node in G \ A.
Since |G| > 3, we have 1 < tg(A) < 2d. Theorem 27 shows that {g(A) can be used to
bound the change of A(G) when a set A leaves an H-graph G.

Theorem 27. Given an H-graph G and a subset A C G, if G4 is obtained by removing A
from G by operation LEAVE, then

MG4) < A(G) +ta(A).
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Proof. Consider any function f on G4 such that 3 ¢, f(u) = 0. We can extend f to G
so that f(u) = 0 for any u € A. Therefore, we have >, .o f(u) = 0 and ), f(u)? =
Yueca f (W)

Let G € Hy 24. For each [ =1,...,d, consider the pairs

(ar,1,b11), (@12, b12), . - ., (GLh, bk, ),

such that for each pair ¢ = 1,..., h;, there is a sequence of nodes ui,...,ur on the level-l
cycle where

® uy = a;,

o up = by,
eu;€Aforj=2,...,k—1,

o ujngbry=ujyforj=1,...,k-1

After the nodes between a;; and b;; have left from G, a;; and b;; become neighbors in
G A- ThllS,

k-1
(Z(f(uj+1) - f(w))"’) — (f(ur) — fw))?
=1

= flur)® + f(u1)® — (F(ur) — Fu))?
= 2f(ug) f(u1)
= 2f(a1:) f(bis)-

because f(u;) =0for j=2,...,k—1.
Summing over the nodes on the level-l cycle, we have

Yoo (fw-f@)P = D). (Fw) - f@) =D 2f(ai)fbi).

{uv}eE(G) {u,v}€E(Ga) 1<i<h

Summing over all cycles I =1,...,d,

Yo @) - D (fw) - f)?

{uv}EE(G) {u,v}€E(Ga)
1<i<d i<i<d

=3 ¥ 2f(@)fh). (216)

1<I<d 1<i<hy
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Each node in G \ A appears in at most {g(A) terms in the summation

Y S 25 )

1<I<d 1<i<hy

Therefore, };<;<p, 2f(a1:)f(bi;) can be separated into at most tg(A) summations such
that each node in G\ A appears at most once in each summation. For any such summation,

we have
Z 2f(ui) f(vi) < Z Flw) + f(vi)? < Z Fw)?.

weG\A

Combining these tg(A) summations, we have

Yo Y 2@ f) Sta(4) Y f)2

1<i<d 1<i<hy veG4

Substituting back into Equation (2.16) gives

Y (-2 Y (@ -fE)?-ted) Y fE)

{u,v}eE(G4) {u,v}eE(G) veEGa
1<i<d 1<i<d

Now, let f be the function attaining the infimum for 2d — A(G4) in Equation (2.15),

2d — M\(G4)
Y (@ )
{u.v}EE(GA)
U KI<d
ZUGGA f(v)?
. > () - @)

=< 732
ZvEG f(’U) {u,v}€E(GA)
1<i<d

ZZ_E;?W > (@) - f)?-ta(d) Y 1)

{uv}eE(G) vEG4
1<i<d

2 (2d - MG)) — ta(A).

Therefore, we have
A(Ga4) < A(G) +ta(4).
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From Theorem 27, we can see that if tg(A) is small, then removing set A from G
has small effect on the second largest eigenvalue. Indeed, if A is not large and is chosen
randomly, we can expect that tg(A) is likely to be 1.

Theorem 28. If a subset A C G is selected randomly, where |A] < ﬂ%c:lﬁ +1/2, then
ta(A) > 1 with probability at most

24| 14] = 1)
G|
Proof. Let n = |G|. Let set A be {u;,us,...,ux}. Since A is a random subset of G, we
can assume that the nodes u,,us, ..., ux are chosen sequentially from G at random without

replacement.

Let N(A) be the set of neighbors of A in G. Let T; be the event that t¢({u1,...,ui}) = 1.
Given T;, if node u;41 is not in N(N({ua,...,u}))\ {1,...,ui}, then none of the nodes in
G\ {ui1,...,ui+1} have two neighbors in {u;,...,ui+1}. Since the set N(N({ui,...,ui}))\
{u1, - ..,ui} contains at most 2d(2d — 1)i nodes, we have

Pr{ﬂ+1|n}22——'2—;‘i(—_2_di—_—l)z

> (1 — 2d(2d ~ 1)%) (1 + %)
—1- ((Zd(zd 1) 1)% +2d(2d — 1);—22) .

Since Pr {T1} = 1, we have
Pr{T}}

k—1
= [[Pr{Tin I T:}

>[1- ((24(201 ~1)- 1)% +2d(2d — 1)%)

> i ((2d(2d - 1)2; Dk(k—1) + 2d(2d — 1)(1;7:21)k(2k — 1))

_ 2d%k(k—1) (2d+1)k(k—1) 2d(2d — 1)(k — D)k(2k —1)
=1- ( n B 2n + 6n? ) )

Since k < ﬂ%j + 1/2, we have

2d(2d - 1)(k -~ 1)k(2k -1) (2d+1)k(k—1) 0
6n2 - 2n <o
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Then,
2 -
Pr{Tx} >1- %_1)

O

Corollary 29. Given an H-graph G € H, 24 and a randomly-selected subset A C G, if
H-graph G 4 is obtained by removing nodes in A from G by LEAVE, then

AMG4) < AG)+1
with probability at least
_ 241 (41-1)

n

1

Corollary 29 shows that when a set A of leaving nodes is selected randomly, the effect
on the eigenvalue of G is likely to be limited. However, the bound given by Theorem 27
becomes trivial when tg(A) > A(G). An on-line adversary can possibly choose the set A
such that tg(A) = min(2d, |A|). Thus we cannot provide a strong guarantee against on-line
adversaries.

Nevertheless, we believe it is very difficult to launch such on-line attack on a large
network. The adversary needs to know the topology of the network, evaluate the effects
of removing subsets of limited size, and then attack those nodes in the selected subset.
Given that the network topology is changing all the time, an adversary will face significant
challenges in learning the topology and launching its attack in time.

In the following, we suggest a heuristic that can reduce the effect of a leaving set A C G
on the second largest eigenvalue A(G):

(Rule of Reinsertion) Whenever k neighbors of a node v leave the network, node
v should reinsert itself into the network by calling LEAVE and JOIN.

When an H-graph follows the rule of Reinsertion, it can prevent an adversary from
reducing A(G) drastically in a short time. The rule of Reinsertion does not work if an
adversary can remove a significant fraction of the network in a short time. In the extreme
case, rule of Reinsertion could lead to a disintegration of the network. Nevertheless, if an
adversary can disable such a large number of nodes, it can easily partition the network
anyway. In addition, if an adversary is able to remove selected nodes over an extended
time, we will still need a regeneration algorithm to recover from such attack.

In short, although we cannot prove the robustness of H-graph against persistent or large-
scaled on-line adversarial attacks, we believe these attacks are difficult to be implemented
in practice.

70



2.12. RELATED WORK

2.12 Related Work

Study of random graphs was introduced by Erdés and Rényi [23). In recent years, there have
been efforts in applying random graphs in many areas of computer science. For example,
in the area of switching networks, random graphs had been used in ATM networks [26] and
Internet telephony signaling networks [90].

Our protocol can be viewed as a membership tracking protocol. Probabilistic broadcasts,
with application for membership management, have been studied by Kermarrec, Massoulie,
and Ganesh [57] and Eugster et al. [24]. The analysis in [24] is based on the assumption each
node having “uniformly distributed random view” of a constant size. This is analogous to
having a fixed degree in a random graph. The assumption is justified by a good correlation
with the simulation results. However, it is not clear how fast their graph will converge to
a topology with property close to the assumption when nodes join or leave. In [57], the
random views of the nodes are provided by a set of dedicated servers.

There has been much research on membership service in the area of group communi-
cations [2]. But little has been studied that how such groups can be formed in the first
place.

Our work benefits from the Friedman’s result that random regular graphs are likely to
have small eigenvalues [33]. Relations between eigenvalues and expanders have been studied
by Alon [7] and Kahale [52].

There are geometric interpretations of a graph’s eigenvalues {19]. The eigenvalues has
been linked to a graph’s expander property [7, 52]. Expanders have applications in diverse
areas including switching networks and error-correcting codes (8, 42].

Little has been done on distributed algorithms for random graphs. Frieze and McDi-
armid [35]’s survey on random graphs algorithms included several parallel algorithms but
no distributed algorithms. There were several sequential algorithms for generating random
regular graphs [69, 91, 56]. Random graphs constructed by centralized algorithms were also
used for communication networks [26, 90].

Bauer and Wang [11] compared distributed search algorithms based on depth-first-search
and flooding on three special topologies by simulations.

Kermarrec, Massoulié, and Ganesh [57] and Eugster et al. [24] have studied randomized
networks for probabilistic broadcasts and membership management. The analysis in [24]
is based on the assumption each node having “uniformly distributed random view” of a
constant size, justified by some simulation results. It is not clear how fast their graphs
converge to a topology satisfying the assumption. In [57], the random views of the nodes
are provided by a set of dedicated servers that require O(n) storage space.

Pandurangan, Raghavan, and Upfal [77] proposed an algorithm for building low-diameter
peer-to-peer networks with bounded degrees. Although their random topology also achieves
O(logn) diameter with high probability, their approach and techniques are different from
ours. First, they assume a stochastic model for the arrivals and departures of nodes, while
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H-graph assumes arbitrary sequence of arrivals and departures. Second, their protocol uses
a special server that is known to all nodes in the network, which is not required in H-graphs.
Third, their network is connected with high probability instead of with certainty.

2.13 Concluding Remarks

This chapter introduces a distributed approach for constructing overlay networks as random
graphs. Using random walks as a sampling subroutine, we have demonstrated a scalable
construction of expander graphs without any centralized server support.

Previous studies of random regular graphs indicate that they are robust against failures
[97, 75]. We expect that most isolated faults would have limited effects on the probability
spaces. Further work is required to devise efficient schemes for recovering from node failures
and schedules for the regeneration algorithm.

Our protocol constructs one particular family of random regular graphs. It would be of
interest if some other models of regular graphs can also be constructed distributedly.

In a large network, there can be a significant variation of network distance between
pairs of nodes, which can be a function of the network delay, bandwidth, or reliability. We
can have a hierarchy of H-graphs based on the underlying network topology. For example,
there can be an H-graph for each regional network, an H-graph for each country, and then
a global H-graph. Each search query will first try to search within the smaller H-graphs
before querying nodes in the larger H-graphs.

In a heterogeneous network, a powerful machine can serve as several nodes in the
H-graphs, thus increasing the number of its effective neighbors by a constant factor. Such
scheme effectively utilizes machines of different capacities and is transparent to our algo-
rithms.

We consider the case where the JOIN requests are not well separated. If we assume an
O(1) arrival rate of new nodes, the number of nodes may increase from n to n + O(logn)
during the an execution of JOIN. Therefore, the protocol effectively samples from a subset
of n nodes in a graph of n + O(logn) nodes. Therefore, the probability of any node being
sampled is at most increased by a factor of 1 + O(logn)/n.  With perfect sampling, we
have

Pr {SAMPLE returns v} = ! (1 + M) .
n n
With approximated sampling, we have

Pr {SAMPLE-RW returns v}

- (2 ve) (14 208,
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In both cases, we can show that the probability of bad graphs are increased by a constant
factor, with a proof similar to that of Theorem 8.

At last, we expect that the distributed sampling algorithms and estimation algorithms
discussed in this chapter could lead to interesting further investigations and be useful in
other applications.
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Chapter 3

Layered Expander Networks

An H-graph is efficient for locating a member of a subset, when the size of the subset is
not too small when compared with the size of the entire graph. However, if we want to
locate a particular node, the expected time is ©(n). In this section, we will improve the
performance for such query by overlaying multiple H-graphs on the same set of nodes. We
introduce layered H-graphs in Section 3.1. Degeneration into complete graphs is discussed
in Section 3.2. We then discuss two variants that reduce lookup time in Section 3.3. We
study the effects of random and sampling identifiers on load-balancing in Section 3.4. We
discuss related work in Section 3.5.

3.1 Layered H-Graphs

Let us start with two layers. Let G be connected as an H-graph by our protocol. We can
randomly color half of the nodes red and half of the nodes green. All the red nodes are
then connected by an H-graph consisting of red nodes only. And there is an H-graph for
the green nodes. In this case, if we want to find a particular red node v, we first find any
red node using the original H-graph, and then locate node v following the edges of the red
H-graph.

The next natural step is to consider having layers of H-graphs until the deepest layer
consists of graphs of O(1) size. We call such topology a layered H-graph. Let layer 0 refer
to the H-graph connecting the entire graph.

In an layered H-graph with at most m layers, we can assign an identifier to each node.
Let an identifier be a string 2122 - - - 2z, such that z; € {0,...,¢; — 1} for all i € {1,...,m}.
We will assume that ¢; = ¢ in this chapter, although our results can be extended to the
general case of distinct ¢;’s. Let id(u) be node u’s identifier.

We first describe how identifiers can be used to construct a layered H-graph. Consider
a set of n nodes in which each node is assigned an identifier. The nodes are connected by
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identifier
O o...
@ 10..
@ ..

Figure 3.1: A layered H-graph with d = 1.

layers of H-graphs. In layer 0, the nodes are connected as an H-graph. In addition, for each
layer i and each prefix z; - - - 2;, the nodes with this prefix are connected as an H-graph, if
there are at least three such nodes. For example, nodes with z; = 0 should be connected
as an H-graph, and all nodes with z; = 1 should be connected as a separate H-graph.
Figure 3.1 shows an example of a 3-layer H-graph.

To search for a node with identifier z in a layered H-graph, we first search for a node
u with id(u); = 21 using the layer-0 links. After that, we can use the layer-1 links of the
z1-subgraph to search for a node v with id(v)2 = z3. We can repeat this process until we
reach a subset of O(1) size, which can be connected as a complete graph.

We will consider two possible assumptions on the assignments of the identifiers. In the
first case, the identifiers are determined before the nodes join the graph. These are called
fized identifiers . This is a common assumption made by many other peer-to-peer networks.
As another possibility, we can allow the node identifiers to be changed after the nodes have
joined the network. We call this case flezible identifiers . Most of the algorithms that we
will present are the same for both variants. We will indicate wherever flexible identifiers
can be exploited to improve the constructed layered H-graphs.

For any node u in a layered H-graph G, we define

layer(u,i) = {v € G | id(v)p =id(u), for 0< h <i}.

We note that layer(u,0) = G for any u € G. In other words, if v,w € layer(u, i), then v and
w share the same i-prefix identifier. Let |layer(u,i)| be the number of nodes in layer(u, 7).

The number of layers of a graph is not necessarily the length of the identifiers. When
the graph is small, few layers are sufficient.

IDSEARCH(z, 1)
1 return a node u such that id(u); = 2;
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Procedure IDSEARCH can be implemented with algorithms such as SEARCH-CYCLEWALK
and SEARCH-TREEWALK.
Now we present the algorithms for joining and leaving a layered H-graph.

LAYERJOIN(u, %)

1 if layer(self, %) is connected as a complete graph

2 then insert u into the complete graph

3 TOREGULAR()

4  else JOIN(u,i)

5 IDSEARCH(id(u),% + 1) = LAYERJOIN(u, % + 1)

For any node u in a layered H-graph G, let
depth(u) = min {7 | layer(u, ?) is connected as a complete graph }.
Let depth(G) be the maximum depth of the nodes in G:
depth(G) = max { depth(u) |u € G}.

LAYERLEAVE()

1 ToCoMPLETE()

2 for each j € {i,...,depth(self)} in parallel
3 do LEAVE(j)

Procedures JOIN(u, i) and LEAVE(i) are similar to the original JOIN and LEAVE proce-
dures except that they only use the edges in layer 1.

The LAYERSEARCH algorithm moves from layer 0 to the deepest layer of the target
node.

LAYERSEARCH(z, 1)

1 ifid(self) is a prefix of 2

2 then return self

3 else return IDSEARCH(z,7+ 1) = LAYERSEARCH(z,7 + 1)

The major advantage of layered H-graphs over simple H-graphs is that any node can be
located efficiently given its identifier.

Given a layered H-graph G and a node u € G. We say that a non-complete graph
layer(u, 1) is d-balanced if

min 1LY € layer(u,9) | 'd.(U)i+1 =j}i > S
0<j<q llayer(u, )] q

If for all v € G and all i € {0,...,depth(G)} where layer(u,%) is not a complete graph,
layer(u, ) is d-balanced, then we say G is d-balanced.
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Theorem 30. If G is 6-balanced, then LAYERSEARCH using SEARCH-CYCLEWALK takes
at most ((q — 1) log, n hops in ezpectation, where

-1
o o
8= (1— (1— -(;) log, 6 — Elogqa)

oc=q—0q+0.

and

Proof. We shall prove by induction. Let T'(n) be the expected time to search for a target
node when the graph size is n.

Base Case When the graph is connected as a complete graph. The target node can be
reached in 1 — 1/n steps in expectation. We need to show that

T(n)=1-1/n< B(q—1)log,n,

which can be written as
1-1/n _ Blg—1)

logn — logg (3.1)

First, Equation (3.1) is satisfied when n = 1. For n > 2, we have

1-1/n
logn

<2/3.

The right hand side of Equation (3.1) ﬂk‘;‘l_gall is minimized when ¢ = 2. Let

f(0)=1—-logd+ g (logé —logo) .

We can see that f(1) =1 and

& (4-8)@1-9)
2-8  2(2-6)

for 0 < d < 1. Thus f(d) > 1 for 0 < § < 1. Therefore, Equation (3.1) is satisfied for all
g=>22andn > 1.
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Inductive Step Assuming that T(k) < 8(g — 1)log, k for all k < n, we have
T(k)=1-1/k < B(g—1)log, k.

Let v be the target node. Consider the graph layer(u,7). It contains g layer-i + 1 graphs
Ly,...,Lg-1. Let the sizes of these graphs be agn, . ..,a,-1n. The probability that v is in
L; is a;j. The expected time it takes to reach a node in L; is 1/a; if id(v)i4+1 # id(w)iy1.

T(n)=-1+ Z a; (1/a; + T(ajn))

0<j<q
=q—-1+4 Z a;T(a;n)
0<i<q
<qg—1+B(g—1) ) ajlog,amn

0<j<q

< B(g—-1)logyn+(g—1) (1 +B8 > qj logq(aj))

0<j<q

We need to show that

B ) ajlogy(a;)+1<0.
0<j<q

. . . . - )
Since zlogz is a convex function, 3 4<;,a;jlog,(a;) is maximized at when a;'s has the
extreme values. Since a; > /g, we have

) ) ) s
5 a1ogy(as) < (2~ 1) logy & + (1 (a- 12 ) og, (1~ (a-1)3)
0<j<q q q q q
Aso=q— g+ 4, then § = (¢— 0)/(¢g — 1). Then we have
o 6 o o
a;log,(a;)<|1——]log, -+ —log, —
D" ajlog,(a;) ( q) gyt 18,

0<j<q

=-1+ (1—— %) logq6+%logqa

-1
o o
8= (1 — (1 - E) log, 6 — ;J—logqa) ,

then T'(n) < B(q — 1) log, n.

Thus, if we let
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The best possible expected number of hops required for a layered search is logyn on a
1-balanced layered H-graph when g = 2. In this case, § = ¢ =1, thus § =1 as well.
3.2 Transitions Between Complete Graphs and H-Graphs
Define integers regularsize and completesize such that

e regularsize > completesize > 0,

e regularsize > g,
and for any F = layer(u, 1) of a layered H-graph,

e if |F| < completesize, then F is connected as a complete graph and does not contain
deeper layers;

e if |F| > regularsize, then F is connected as a layered H-graph and may contain deeper
layers.

In a complete graph, each node has complete information of the entire graph. Thus it
is easy to attain good load-balancing among the nodes when they are used for distributed
lookup service. To control the size of the complete graphs, we need to implement procedures
ToCoMPLETE and TOREGULAR efficiently.

Here we suggest a set of choices of completesize, regularsize, and procedures ToCoM-
PLETE and TOREGULAR. Let completesize = 2d and regularsize = 4d.

ToCOMPLETE()
i « depth(self) — 1
if |layer(self, )| > completesize
then return
F « layer(self, 1)
Learn about all the nodes in F' by walking along any Hamilton cycle
Contact all nodes in F to make F' a complete graph
For all 7 > 1, layer-j edges in F' are removed

O AW N -

Let F = layer(u, depth(u) —1). Then the call u = TOCOMPLETE() requires |F|+1 steps
and 2|F| — 1 messages.
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TOREGULAR()

1 i« depth(self)

2 if |layer(self, )| < regularsize

3 then return

4 F « layer(self,)

5 for eachlin {1,...,d}

6 do Select a random Hamilton cycle C; for the nodes in F
7 Notify all nodes in F' about their neighbors on the d Hamilton cycles
8 For all u € F, graphs layer(u, i + 1) remain connected as complete graphs

The procedure © = TOREGULAR() can be completed in a single step, because the
graph F = layer(u,depth(u)) was a complete graph just before the transition. The number
of messages required is |F| — 1.

We should note that the innocent-looking condition check |layer(u,%)| < regularsize in
procedure TOREGULAR can be tricky in practice. Since during the check layer(u, 1) is still
an H-graph, node u may not know the size of layer(u,i). Although we presented some
estimation algorithms in Section 2.10, it is probably not necessary to use those complicated
algorithms for these graphs with limited size. A simple solution is for each node to keep
track of the size of the H-graph F until there are at least two layers above graph F. An
even simpler heuristic is to guess the size of the graph by observing one’s own neighbors.
When the graph size is small, we can expect that the number of distinct neighbors of a
node u is likely to drop below 2d. And this must be true once the total number of nodes is
at most 2d.

For the case of flexible identifiers, we should choose regularsize so that it is divisible by gq.
And then a modified version of procedure TOREGULAR can rearrange the node identifiers
to obtain an ideal layered H-graph.

3.3 Better Recursive Searches

In this section we explore two ways to improve the recursive lookup time of layered H-graphs.

3.3.1 Search with Broadcasts

One approach to improve the performance of recursive search is to broadcast on every layer.
In Section 2.9, we showed that search by broadcast is O(log 1), where 1 is the fraction
of the target set. Let procedure IDSEARCH-B(z,1) be SEARCH-TREEWALK(¢, 00, 00) with
criterion function ¢ set to be id(u); = 2;. Therefore, IDSEARCH-B(z,1) broadcasts on layer
i — 1 and stops once a node u such that id(u); = z; is found.

In the rest of this section, logn means log, n.

We first establish a bound on the performance of IDSEARCH-B on any layer.
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Lemma 31. Consider an ideal layered H-graph G. Procedure IDSEARCH-B(z,%) finds a
node u with id(u); = z; in
2logy(g_1)(2logn)

steps with probability at least 1 — 1/n'-2.

Proof. First, we assume i = 1. By Theorem 11, the number of nodes reached by a broadcast

after ¢ steps is
n

1+ 4y
Now let ¢ be the number of steps that satisfies
n

1+ 450Gy
Then by Lemma, 15, a broadcast of ¢ steps finds a node u with id(u); = 2; with probability
at least 1 — 1/n'2% when it covers 1.25 Innlogn nodes. We have

4(1-3)

t =logyg-1) —F—"—1
125lnnlogn ~ n

< logg(g-1)((1.26)4Innlogn) +

= 1.251nnlogn.

1.25lnnlogn
nn2(d—1)
1.25Innlogn
nln2(d - 1)
log(1.251n2) 1.25log?n
log2(d—1) nlog2(d—1)
log(1.25In2) 1.25log?n
log2(d—1)  mnlog2(d—~1)
If i > 1, the graph size should be n/log’~! n instead of n. Therefore
log(1.251n2) log*ln
log2(d—1) mnlog2(d—1)

However, the size of the deepest H-graph layer is at least 2logn, because any complete
graph has size at least 2, and the next layer will have size 2logn > 2log 16 = 8.
And then we have

= logy(4-1)((1.251n2)4 lognlog n) +

= logaga_1)(41og?n) +

=2 1082(:1—1)(2 lOg n) +

t<2 logz(d_l)(2 IOg n) +

log(1.25In2)  1.25log"*1n
log2(d—1) " nlog2(d—1)

<log(1.251n2) + %)

1
[
~ log2(d —1)
<0.
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O

Theorem 32. Consider an ideal layered H-graph G with d = 1+logtn, € < 1, and ¢ = logn,
30 that each node has

logn _ _log'**n logn
loglogn ~ “loglogn loglogn

(2+ 2log" n)

neighbors. A LAYERSEARCH using IDSEARCH-B takes at most

2logn
eloglogn

steps with probability at least

1- 2,
n

Proof. Since g = logn, then there are logn/loglogn layers. The overall time required by
LAYERSEARCH using IDSEARCH-B is

logn
loglogn
logn
loglogn
1+loglogn logn
~ 1+ loglog®nloglogn
_9 1+ loglogn logn
1+ eloglogn loglogn

2logy(4-1)(21ogn)

=2 10g2 log*® n(2 log n)

2logn
eloglogn
with probability at least
logn 1 1
B loglognm >4 n
by the union bound, when n > 16. O

Corollary 33. Consider an ideal layered H-graph G with
2d = 2 + 2(log n)logloglogn/loglogn — 9190 19gn + 2

and ¢ = logn, so that each node has

1
21
ogn (1 + loglogn)
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neighbors. A LAYERSEARCH using IDSEARCH-B takes at most

2logn
logloglogn
steps with probability at least
1
1——.
n
Proof. The result follows by setting ¢ = logloglogn/loglogn in Theorem 32. 0O

3.3.2 Search with Layered Broadcasts

We further optimize the results we obtained in Section 3.3.1 by neighbors in multiple layers.

In algorithm IDSEARCH-BL(%), we first contact all neighbors in layers at least i —1, and
then perform IDSEARCH-B on those nodes. For example, when i = 4, the initial node first
contact all nodes at layers at least 3, and issue a IDSEARCH-B(3) request to each of these
nodes. Algorithm IDSEARCH-BL exploits the situation that on the shallow layers (when
i is small), a node has access to around 2dlog, n neighbors. Thus we can contact a much
lager number of nodes within a short time.

In the following we analyze the performance of LAYERSEARCH using IDSEARCH-BL.
We will show that this technique achieves the best possible asymptotic look up time as
limited by the node degrees.

We first analyze the number of broadcasting steps required for each layer.

Lemma 34. Consider an ideal layered H-graph G. Let b be the size of the smallest layer
considered. Let j = log,(n/b) —i+ 1. Let 6 > 1. With probability at least

1 ek 1
- (%)6 + elogl“n !

_1 d-—1 q
I

where

i

procedure IDSEARCH-BL(z, 1) finds a node u with id(u); = 2; in

glogt—n s 5 log!~¢n loggn)?
loga(4-1) -—j——+1052(d—1) 16/ ~logy(g1 (1 - mj +qu'—1 In2(d — 1) +0 bgi—1

steps
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Proof. According to Theorem 11, after the first step, a broadcast can reach

b _d-1
b— = d—
1+4z2—(d71175 2+T3
nodes.
Let
= d—1
gEE)

Let j = log,(n/b) — i+ 1 be the number of layers at or above layer i. The number of
nodes covered after the first step is at most jm. Let random variable X be the number of
overlapping nodes in the jm nodes covered by the first step. When there are k + 1 layers at
or above i, the expected number of overlapping nodes with previous layers is at most mk;q%,;
because the size of the layer is bg*. Therefore, random variable X is a sum of independent
hypergeometric variables with expectation:

j-1
mk
B<Y T
o ba
j-1
m k
= Z —
bioa
m_1/q

b (1-1/g)
m_ q

BICER

It is known that [93, page 29] we can apply the Chernoff bound on X:

<

ed—n
Pr {X > 5} < —3

(%)
for § > 1. We have

Pr{X>6}=Pr{mj—X<mj (1—%)}

Let
a=1———,.
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3.3. BETTER RECURSIVE SEARCHES

Now assume that X > 4. This means that there number of nodes reached after the first
step, across all layers above i, is at least mja.

Then by an argument similar to Theorem 11, we can show that after £ — 1 steps, the
number of nodes reached by the broadcast is at least

qJ'
1 qj . —1 .
AR s
By Lemma 15, a broadcast of ¢ steps finds a node u with id(u); = 2; with probability at
least 1 —1 /el°gl_e" when it covers glog!~¢n nodes. Then we have

1 _ 1
t <1+logyg_1) 4_1_11'1.;'%
qlogI_‘n T b
2
glog!™*n 1 log'~n log'*n
+1082(3-1) ( jma @ + bg'~1In2(d - 1) +0 bgi~1In2(d - 1)

1—¢

glog!~*n log!~¢n logg(g—1) 7\ ? d—3
<1+ logz(d_l) o + bqj—l 1n2(d — 1) +0 ——b’F— + log2(d_1) 2+ —b—
~ logyg—1)(d — 1) + logy(g_1) 4

_ glog'~*n log'n logy(g_1) 7\
= 10g2(d—1) ja + bqj_l 1n2(d — 1) + O ———bqj—l

d—3
+ 10g2(d-—1) (1 + "Tb“) + 10g2(d—1) 16

glogi™n d—3
< logy(-1) ——i;— 1081 16+ 55 e —1)

log!*n logy(a—1) 7\ ?
+ bg—1In2(d — 1) +0 ( bgi—1

glog'™n loge
1 ———— -
< l0g2(4-1) jo +logya-1) 16+ 4log2(d-1)
log;_.n 0 logy_1yn 2
bgi—1In2(d — 1) bg?—1
_ qlog'n 1/4 log'“n logaa-1) ™) *
= logy(a-1) a + logy(g1) 167/ + bgi—1In2(d — 1) 0 bgi—1

because b > 2d.
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3.3. BETTER RECURSIVE SEARCHES

Next we analyze the performance of LAYERSEARCH using IDSEARCH-BL up to a layer
of size b.

Lemma 35. Consider an ideal layered H-graph G. A LAYERSEARCH using IDSEARCH-BL
from layer 1 to layer h = log,(n/b) takes at most

log~*n 1
h [ logyg_1y 16/ + logy g 26———)+lo 1) ———
( 82(d—1) E2(d—1) A E2(d-1) 2hm

log'~*n login 0Hp 62
- 1/gm2@d—1) +0( 22 ) Tmmea—1 T O \miogd

steps with probability
h et logl~*n
1-— E'é——s' +1 / €
m

1 d-1 q
S b2+ 43 (1)
Proof. Let h = log,(n/b) be the number of layers. The expected total time required is at
most
h
Z E [time required for IDSEARCH-BL(h — j + 1)]
7j=1

=h (Iog2(d_1) 16e'/% + loga(g-1) log!—¢ n)

where

w

h - - 2 -1
—_\h -
=h (logz(d__l) 16el/4 + log(q—1) log?—< n) + loga(d-1) (¢ 1og;! ") + b= 11;)5)1 1; ;( -
+0 (loign) + mln(;I({;— 1) +0 (m;igd)
e \h
<h (logz(d_l) 16el/4 + 1og§af_1) n) + logy(g-1) %/‘1—21_%
1-¢ 2
tha o 11;5) lng(d —y O (loig n) + mlnazlg— 5O (#ng)

log!~¢n 1
= h ( logyy_q1) 16€* + logo _qi____) + logy( g1y ——
( 82(d—1) E2(d—1) h 82(d—1) J2hn

log'~*n logZn 8Hp, 82
YA 1/gme@—1 T ° ( 2 )t mmea—1 O\ mrgd)
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3.3. BETTER RECURSIVE SEARCHES

To prepare for Theorem 39, we first need to prove three technical lemmas.

Lemma 36. Forn > 16,

o log!~*n
B2(d-1) \/—2h7r bl—1/q)m2d—1) ©
where
logn logloglogn
= [(1-—=2—=22"1
eloglogn loglogn
and

logloglogn
b = n"loglogn™",

Proof. First, we can rewrite the expression as

1n2(d— ) (1“ bl 1_11;;))
1n2(d—1 In +he%w)

1 In ew
“In 2(d—1) N

For n > 16, € < 0.5, and q > 2. we have
— O log log n —_— 1/2 -_—
b(1 1/q) pfieglezn 1 —1/g 16 7(1-1/2) _
log!~ log!~ E'n - 2
And, for n > 16, we have

ok = \[ logn _ logloglog n) > Vir.

eloglogn loglogn

Since e < V4w, we conclude that for n > 16,

1

vV 2hw

€

<1,

which then implies

1 1 logl—€n
In + In e¥(1-174 ) < 0.
mra= (o v e
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3.3. BETTER RECURSIVE SEARCHES

Lemma 37. Let
_ loglogn
"~ logloglogn
_ loglogn
~ logloglogn Bq T
g=1logn
d =1+ (loglogn)/2,
where 1
loglogn

<e<05.

For n > 16,

6Hy loglogn
4.4 1.
min2(d - 1) < (log log log n)2 1

Proof.

0H}
mln2(d - 1)
S(Inh+ v+ 3;)
mlnloglogn

) logn logloglogn 1
< mlnlogn (ln (elog logn (1 loglogn +0.58+ 2h

é logloglogn 1
U 1 -— . —)1
miogloglogn (log ogn + log (1 loglogn + (0.58 + 2h) oge

< ——6——- (loglogn + log (1
mlogloglogn
loglogn loglogn
" log log log n mlog log log n
_ ( loglogn )2 2+ “—;3
" \logloglogn d-—1

loglogn 2 4 1
<1 (logloglogn) (loglogn + b)

loglogn 1.1(log log n)?

o (IOg ].Og log n)2 n lololgolo{gon'l (]_og ]_Qg log n)2

B logloglogn

1
loglogn ) + (0.58 + Z)log e)

loglogn 1.1
~ "(logloglogn)? '

for n > 16. O
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3.3. BETTER RECURSIVE SEARCHES

Lemma 38. For n > 16,

—lc%z)—lgo-lgirgl—n log 8¢%/4 + log Tm <0.
Proof. We need to show that
102)&2)5); n 08T !gf:%fslﬁﬂ < log 8¢%/4.
When n = 16,
log)ﬁ)?i):n 81 IOF(])igolEol:ngn =2 < log8e®/*.
The value of this expression decreases when n increases. O

Theorem 39 shows that a layered search with IDSEARCH-BL can achieve asymptotically
degree-optimal routing.

Theorem 39. Consider an ideal layered H-graph G of size n > 16, d = 1 + (loglogn)/2,

logloglogn
g =log‘n, b = n lelsn | ¢ € [1/loglogn,0.5]. A LAYERSEARCH using IDSEARCH-BL
from layer 1 to layer h = log,(n/b) takes at most

logn 7.2 1
—_— 1 _— ],
loglogn ( log log logn) +1.1+0 ((log log logn)3>

steps, with probability at least

1— log?n 4 loir: .
4n elog’ " cn

logloglogn
Proof. Since q = log® n, h = log,(n/b), and b = n"lelen" | we have
q

logn logloglogn
= 1—
eloglogn loglogn

layers.
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3.3. BETTER RECURSIVE SEARCHES

From Lemma 35, the number of steps required can be broken into five terms:

ge
h (10g2(d_1) 16el/4 + loga(d—1) F)

+lo 1 4 log~n
S0 John | b(1— 1/ m2(d— 1)
4 0H},
mln2(d—1)
52
© (m2 log d)
logZn
+0 ( z ) ,
where
e d—1
2+ 52
and
_ loglogn
" logloglogn’

The second term is bounded by Lemma 36, which shows that
log*™n

1
°824-1) Zomr Y B = T/gn2(@—1) = °

for n > 16.
The third term is bounded by Lemma 37, which shows that

0H;, loglogn
. 1.
min2(d—1) 4:(logloglog n)2 +1

For the fourth term, we have
(loglogn)? )

52
(m2 log d) =0 ( (loglog log n)2(log log n)? logloglogn

1
=9 ((log log log n)"') '

For the fifth term, we can also show that

login _ 1
0( b )_O((logloglogn)"’)'
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3.3. BETTER RECURSIVE SEARCHES

And for the first term,

log~*n
h (logz(d_l) 16€5/4 + logy(a-1) q_g___)

h
logn
=h (10g2(d—1) 1665/4 + logz(d_l) ’g" )
— log(n/b) 5/4 eloglogn
"~ elogloglognloglogn log 16¢™" + log 1— lgfoiggfotns n
logn logloglogn
< 1]—-—=>_
elogloglognloglogn loglogn

(log 16¢%/4 + log e + logloglogn + log

1
loglog1
1 Hhoen )
5/4
< logn 14 log 8e
eloglogn logloglogn

logn + 5
eloglogn logloglogn /-

In the last inequality, we had applied Lemma 38:

logloglogn 5/4
“Toglogn log 8e +log1_lo torioen < 0
loglogn
Therefore, the overall time required is
logn 5 loglogn 1
44— . —_—
eloglogn ( log log log 'n) + (logloglogn)2 +11+0 (logloglogn)3
logn 7.2 1
< 1 1140 —m—=
~ eloglogn ( + log log log n) L4 ( (logloglog n)3>

for n > 16 and € < 0.5.

The probability of not reaching the time constraint in each layer is at most

ed—# 1
(%)6 + elogl_E n’
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3.3. BETTER RECURSIVE SEARCHES

We have
m q
P -1
_d-1 q
T 2b+d—3(qg—-1)2
loglogn ¢
4b  (¢—1)2
__loglogn
= oy

where ¢’ = (g — 1)?/q.
We can verify that § — u < 0 for n > 5, thus e’~# < 1.
Then we have

h  logn logloglogn [ loglogn ) '08'8"/ logloglogn
(%)5 " loglogtn loglogn 4bq’

< logn (log log 'n,) loglogn/logloglogn

n 4q'
<1ogn loglogn 1 loglogn/logloglogn
=" 2 4(1-1/2)

1 2
< 8 n.

4n

For the second term, we have

h logn

<
elog'~*n — glogt—®

n

for n > 16.
The total probability of not reaching the time expectation is at most

log?n logn

l—e, °

4n elog ¢ n

Theorem 40. Consider an ideal layered H-graph G of size n > 16 and
2d =12+ (4 log log n)logloglogn/loglogn,

so that each node has
loglogn + O(log log log n)
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3.4. BALANCING OF LAYERED H-GRAPHS

neighbors. Let q = log®n, such that (loglogn)™ < e < 0.5. -

We perform recursive search using IDSEARCH-BL with b = n fog fos , and switch to
IDSEARCH-B after layer h = log,(n/b). The overall time required is

-1
(24 ¢ )logn 1+ 7.2 +1140 1
loglogn logloglogn logloglogn

with probability

1 logZn logn
1'(}I+ 4n | gogn )

log loglogn
Proof. From Theorem 39, the IDSEARCH-BL recursive search with b = n"loz foen s

logn 7.2 1
_ —_— 1. — -
loglogn (1 + log log logn) +11+0 ((log log logn)3)

log log log n
When the size of the graph is n feloen the time to IDSEARCH-B recursive search takes

logloglogn
logn fos fog +0 1 _ logn 10 1
logloglogn log log log o kogezn | loglogn logloglogn /-

3.4 Balancing of Layered H-Graphs

3.4.1 Random Identifiers

In this subsection we assume that identifiers are chosen uniformly at random. A hash
function can map the name of a node into an identifier. Alternatively, each node can pick
an identifier randomly. We will assume that the identifiers have sufficient number of bits so
that the probability of collisions is negligible.

One can expect that a uniform hash function or a good random number generator
should be able to produce well-balanced layered H-graphs. We will verify this intuition in
the following.

We first show that identifiers of length O(logn) are sufficient.

Theorem 41. Let completesize = 2d and d > 2. Consider a layered H-graph G with
uniformly distributed identifiers. The depth of G is at most (1 + €) log, n with probability at
least 1 — 1/n2de—1,
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3.4. BALANCING OF LAYERED H-GRAPHS

Proof. For any u € G, depth(u) is more than (1 + €) log, n only if
|layer(w, (1 + €) log, )| > completesize.

We have

E [|layer(u, (1 + ¢) log,m){] = n/q{"+9 8" = 1/n°.
Since completesize = 2d, and that the identifiers are picked independently, by the Chernoff
bound, we have

e2dnt—1 1/n¢
Pr {|layer(u, (1 + ¢) log, n)| > 2d} < (W)

< l/nZdE.

By the union bound, the probability that any u € G has depth more than (1 + €)log,n is
at most 1/n2de—1, O

We then show that layered H-graphs of sufficient size are likely to be 1/2-balanced.

Lemma 42. For any u € G and non-complete-graph layer(u, i), layer(u,:) is 1/2-balanced
with probability at least 1 — 2¢~™/12¢""

Proof. Consider the case that we are in a layer-i H-graph trying to search for a layer-(i + 1)
node. Let random variable X be the size of the layer-i H-graph. Let random variable Y be
the size of the layer-(i + 1) H-graph that we are trying to reach. Therefore, E [X] = n/¢,
and E[Y | X] = X/q. First, we derive the probability that Y is smaller than a linear
fraction of X.

Pr{Y < 6X/q} =

< 8

+Pr{xz(1;f)”}1> {Y<6q x> qf)"}.

Random variable X can be considered as a sum of n independent Poisson trials with
success probability 1/¢*. Thus, by Chernoff bound [73, p. 70], we have

Pr{X <(1-¢€n/¢'} < e~ /20"
Next, we have E [Y | X > (1 — €)n/q'] < (1 - ¢)n/g**!). Thus, by Chernoff bound,

Pr{Y <0X/q| X > (1~ e)n/q’} < e~1-8)*(=em/26"*
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3.4. BALANCING OF LAYERED H-GRAPHS

Setting 6 =1/2 and € = 1/3, we have

Pr{Y <éX/q} < e~ (1-6)2(1-e)n/2g*+? + e—<n/2¢"
= ¢ M/12¢*t! | -n/18¢°

_ 12i+1
< 2e~™12T

because g > 2 and 1/12¢g < 1/18.
O

Once we have Lemma 42, we can prove Theorem 43, which gives the time complexity
of LAYERSEARCH. Analyses of message complexities are omitted for brevity.

Theorem 43. If the identifiers of a layered H-graph G are randomly distributed, then with
high probability (with respect to the topology G), LAYERSEARCH(z,0) returns in exzpected
time O(gqlogn).

Proof. First consider those layer(u,:) where
E ||layer(u,)|] = n/q¢' > 12qInn.
According to Lemma 42, such layer(u, %) is not 1/2-balanced with probability at most
2e=/126" < 9 /p,

By Theorem 41, there are at most 2log, n layers with probability at least 1 — 1/n%-1. By
the union bound, the probability that any of these H-graph is not 1/2-balanced is at most
2log, n/n.

When LAYERSEARCH reaches a layer(v, j) with expected size at least 12¢1nn, the actual
size of layer(v, 7) is at most 24¢qInn with high probability:

1241
Pr {|layer(v, j)| > (1 + 1)12¢Inn} < (2) RN _ p12(na-1)

Then we only need to traverse at most 24qlnn nodes to reach our target. Therefore,
the total expected time of the search is O(glogn).
a

The time complexity of LAYERJOIN is the same as LAYERSEARCH because at each level,
JOIN can be performed with IDSEARCH in parallel.
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3.4. BALANCING OF LAYERED H-GRAPHS

3.4.2 Sampling Identifiers

Sometimes a solution based on random identifiers is unsatisfactory. If identifiers are gen-
erated by a hash function, an adversary can potentially select the logical locations of new
nodes by choosing the ‘name’ of the nodes accordingly. Even if we assume that joining nodes
have uniformly distributed identifiers, the leaving nodes can be picked by an adversary to
make the graph unbalanced.

For certain applications, we can construct a layered H-graph that is “self-correcting”
by allowing the new nodes choose their own identifiers with the goal of enhancing the
balancedness of the graph.

We shall illustrate this approach with an example where ¢ = 2. To balance the “tree”
of H-graphs, a new node should try to join the smaller H-graphs. For example, in a graph
with 1000 nodes, if there are 700 nodes with 2; = 0 and 300 nodes with 2; = 1, a new node
joining the graph should try to set its z; to 1. It is expensive to actually count the number
of nodes with z; = 0 or 2; = 1. However, it is not difficult for a node to guess intelligently
which set is larger. If node u samples one node in the graph, there is a probability of 7/10
observing a z; = 0 node and a probability of 3/10 observing a z; = 1 node. So if u observes
a 23 = 0 node, then it should set its z; to 1, and vice versa. For a more prudent decision,
u can sample more nodes and pick the one with the least-frequently observed prefix. This
method can be generalized to arbitrary ¢:

SAMPLING-IDENTIFIER(q, ©)
1 u«— SAMPLE(: — 1) // using layer-(i — 1) edges only
2 return UNIFORM({0,...,q— 1} \ id(u);)

We first consider 2-layer H-graphs. For any g, let random variable S(g),, be the number
of 23 = 0 nodes in a layered H-graph of n nodes if identifiers are chosen by SAMPLING-
IDENTIFIER. Let random variable X(g)n be the number of z; = 0 nodes when identifiers
are chosen uniformly at random.

It is natural to expect that this scheme will lead to more balanced graphs, when com-
pared to graphs with uniformly distributed identifiers. In the following we will analyze
S(q)n and show that the variance of S(q), is smaller than the variance of X(g)p.

Initially, when n = 1, we have

Pr{S(g)o =0} =1.
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First, we state the recurrence relation of S(q)n:

Pr{S(q)n+1 = i}
=Pr{S(g)n+1=1|S(q)n =1} Pr{S(g)n =i} +

Pr{S(@)n+1=1|S(q)n =i~ 1}Pr{S(g)n =i~-1}
- (%Jr q_f”n )Pr{S(q),.=z}+
1 n—(i—1
g—1 n

) Pr {S(@)w =i~ 1}.

When q = 2, let Sp, = S(2),. The recurrence is simplified to

Pr{Sp41 =i} = %Pr{sn=i}+ ?‘—(:Lillpr{s,, =i—1}.

Let sgn be the sign function:

-1 z<0
sgn(z)=¢0 z=0
1 z>0
We can show that
Pr{S, =i} = 1)| Z( 1)k( ) — k)" sgn(i — k)

k=0

satisfies the recurrence Equation (3.2):

Pr {Sn+l = 7'}

=£Pr{Sn=i}+?——(—:;_—12Pr{Sn=i—1}

2(n ( Z( 1)'“() — k)" sgn(i — k)

n—(i—1) ¢ k[T, n-1 . )
+——> (-1) (i—1—-k)""sgni—1—k)
) -
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_ 2_11%_' (i}:(—l)k (’I:) (i — k)" sgn(i — k)

k=0

- +1—i)n(—1)k " Y- k)"t sgnii — k)
(n k; (k—l) sgn

+ (—1)"+1('i _ (n + 1))(n+1)—1)
_ 2in‘ (Z 3 (-1 (”Z 1) (i — k)" L sgn(i — k)
) k=1
=Y ute(" ) - s - )
k=1

+3"+ (-1)" (- (n+ 1))("+1)-1)

= ﬁv (Zn:(—l)’“ (” }: 1) (i — k)" sgn(i — k)
k=1

+4" + (1)~ (n + 1))("+1>—1>

n+l

= 5 V(M) - B gt ),

k=0

Theorem 44 derives an upper bound of the moment generating function of S(2),. Al-
though in practice, an H-graph is bootstrapped by a conversion from a complete graph, we
assume, for our analysis, that the regular graph start from scratch and the first node picks
its identifier uniformly at random (this will only weaken the results).

Theorem 44. Let S, be the number of 2y = 0 nodes in a layered H-graph of n nodes when
identifiers are selected by SAMPLING-IDENTIFIER(q = 2,i = 1). We have

E [et] < (et t_ l)n

forn > 2.

Proof. We shall prove by induction. Let S, = S(2),. First, when n = 2, we have
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Pr{S; =1} =1 and E [¢"®?] = ¢'. And since

(e—l) Ze +1

'15 2t)’_22 |+1>

=0

1 t)1—2t’
—22
=2

_ Z (2z _ 2)t1, -2
- =2 il

_ oo (2i+2 _ 2)t1,

22 (i +2)

00 i
> ZH
=0

= et’

we have B [etSZ] < (Ett‘—1>2

n
Assuming E [etS"] < (itf—l) , we can show that

E [etS"“]
n+1

=Y Pr{Sun = i} et
=0

n+1

:Z(pr{sn+1:i | Sp =i} Pr{Sn =1}

i=0

+Pr{sn+1=i\Sn=i—1}Pr{sn:i—1})eit

n+1

= (pr{sn+1 =i | Sp =14} Pr{Sy =i}

=0

+ etPr{sn+1=z'+1\Snzi}Pr{sn:i}) et

n+1

—Z( Pr{Sn —'L}+e

i=0

—'pr {Sn = z}) et
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= etZPr{S =i}e + ———ZzPr{S =i} et

=0 =0

- td
<é (e ; 1) ne ZPr{Sn—z}e’t
<é et—l —etd (1)

n dt t

t t n-1, t
YA e -1 te" —e" +1
_e( ) +u—w( t) .

et — )"

- ()™

Theorem 45 derives the limit of the variance of S(q), as n becomes large.

Theorem 45. \
lim Yor[S@a] _ (¢-1)*
n—oo ¢*(g+1)

Proof. Let P,; = Pr{S(q)n =i} and Sp = S(q)n. Let E [S2] = —; + vpn. We have

—Z(Pr{Sn_H—zlS =1} Poi+Pr{Sns1=1|8n =i~ 1} Poi1 )
i=0

n . . n+1
—Z i n—iq—2 Z 1 n+1—z 2
B : (E * n q- 1) "”' + 1—1 Pn‘i_lz

z 2 1 1 1
— .2 1— . _ 2 »
;(z( @-on) V=1 P R) tem) B
2
T o) (1-2) 42 (2= 1)
g2 n q n g—1

n+1)° (a+1n , g-1
1 2

Il

+vn(n+1) -
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Since E [S2,4] = %; + (n + 1)vp41, we have

Untl =Un +

1 (_(q+1)'vn+ q—l)

n+1 g—1 q?
_ g+1 (-1
=tnt (g=1)(n+1) (q2(q+1) v">'

Therefore, vny1 < v, if vy > qqﬁ_: . If, in addition, G—_lqﬁrll_-HT < 1, then vp41 > E(}(%.
When g = 2 and n = 3, we have Pr {S(2); =1} = Pr {S(2)3 =2} = 1/2, and thus

5 3 3
E [3(2)3] =57 + IR

When g = 3 and n = 2, we have Pr {S(3)2 = 0} =1/3, Pr {S(3)2 = 1} = 2/3, and thus
2 22 2
E[S(3)3] =2/3 = 3t

When q > 4 and n = 1, we have

Pr{S(g)1 =0} =1-1/q,
Pr{S(¢g)1=1}=1/q.

. 132
Thus E [S(g)?] = 1/q and Var [S(g)1] = 1/q¢—1/¢?. We can verify that 1/g—1/¢* > ig(q—i)ﬁ
andn+1> %}- forany g >4 and n=1.

Therefore, Var [S(q)n] tends to -34%1-% in the limit.

The random variable S(2), is a special case of “The Safety Campaign” in Friedman’s
urn model [31}. However, Friedman’s expression of the moment generating function for his
more general urn model was not in a closed form. It is also a special case (p = —1) of the

balls and bins models with feedback in [22].

Freedman {29] gave an analysis of Friedman’s urn when n is large. He shows that the
distribution of S(2),, converges to the normal distribution with mean n/2 and variance

n/12.

The following comparisons of X(g)n, and S(g), confirm our intuition that sampling
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identifiers should lead to better load-balancing.

E[X(q)n] =n/q E [S(q)n] = n/q
— Y
Var [X(g)] = L1 Var [s(@h) ~ ST
E [etX(2)n] _ (et;_ ])" E [etS(2)n] < (et t_ 1)11
Pr{X(z),, < %} < (0.883)" Pr{S(z),, < %} < (0.665)"

Applications with this self-balancing approach is more restrictive than the random iden-
tifiers approach. Since the identifier of a node depends on the graph topology when it joins,
the identifier cannot be derived from the “name” of the node. Therefore, a node has to
announce its identifier before others are able to locate it. Certain applications might find
this limitation undesirable.

3.5 Related Work

Napster [74] is a well-known file-sharing system based on a centralized directory. Gnutella
[39] is distributed for both indexing and file-sharing. However, it is based on ad hoc pro-
tocols that could lead to unbalanced topology and bottlenecks easily. Gnutella searches
with controlled broadcast which is similar to SEARCH-TREEWALK. Freenet [30] gives high
priority to anonymity. Freenet uses depth-first-search with caching to improve performance.

The fault-tolerant content addressable network by Saia et al. [86] is robust against
adversarial removals of nodes and supports strong guarantees of data availability. However,
it is not very dynamic because it relies on a static butterfly network of supernodes. It also
has higher message and space complexities. The adversary is limited—during any period
of time the number of new nodes must exceed the number of deleted nodes.

CAN [83], Chord [92], Pastry [85], and Tapestry [99] are recently proposed systems
designed mainly for distributed storage and lookup service. These systems have O(logn)
routing time and O(logn) neighbor size.

Chord [92] is a recent design of a distributed lookup service. Chord uses a consistent
hash function [54] to map the nodes randomly on a virtual ring. In the default protocol
each node points to O(logn) nodes. (In a variant with better load-balancing, each node
points to O(log?n) other nodes.) A look up takes O(logn) times, and nodes joining or
leaving the network take O(log?n) messages. Therefore, Chord and our layered H-graphs
features essentially the same asymptotic results except that leaving a node in a layered
H-graph takes only O(logn) messages. Both Chord and layered H-graphs have extensions
to improve look up time to O(logn/loglogn), albeit via different techniques as well.
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Content-Addressable Network (CAN) [83] is another hash-table based solution. Instead
of hashing the nodes to points on a ring, CAN hashes the nodes to points on a d-dimensional
torus. Each node owns a ’zone’ in the torus and stores the items with hashed value in
this zone. The average routing path is (d/4)(n1/%) hops, where each node maintains 2d
neighbors. By setting d = (logyn)/2, this becomes (logy n)/2 hops and log, 7 neighbors.
In this case, CAN has the same asymptotic performance as Chord and layered H-graphs.
However, CAN’s protocol for node departures is complicated and could be costly.

Comparing to these systems, it is likely that layered H-graphs will require more over-
heads in terms of larger constant factors in the number of neighborhoods per node and
the number of messages required during JOIN. However, we note that layered H-graphs
are particularly efficient and robust for node departures. layered H-graphs do not need a
background process to fix broken routing pointers, because there are no explicit routing
tables. Fault-tolerance support is relatively easy to implement because we can simply apply
ring-based solutions on the Hamiltion cycles independently. In addition, layered H-graphs
support a unique ‘self-balancing’ approach by sampling the current state of the network.

Loguinov et al. [66] compare the properties of de Bruijn topologies with other existing
topologies, mostly with Chord and CAN. The metrics they used include diameter, eigen-
value, and expansion. In those metrics, our H-graphs lie between the de Bruijn and other
topologies that they had compared in the paper. This is because de Bruijn is an ideal con-
struction with best possible diameter and expansion. Another interesting result is that they
found that both Chord and CAN are not expanders. One reason that they can obtain even
better eigenvalues than our H-graphs is that they use directed graphs instead of undirected
graphs. This make their graphs more efficient in terms of the number of edges used, as we
count each undirected edges twice in our work.

Although de Bruijn graphs are the ideal expander graphs, in practice it is probably not
feasible to construct such graphs exactly. In [66], a dynamic construction approximates
the de Bruijn graphs. It is not clear how the effect of the approximation would affect the
constants of the performance measures.

Kaashoek and Karger [50] proposed Koorde as a de Bruijn version of Chord. Ko-
orde is degree-optimal as it can look up in Ologn) steps with O(1) neighbors, or in
O(logn/ loglogn) steps with O(logn) neighbors.
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Chapter 4

Resource Discovery and
Connectivity

4.1 Introduction

The resource discovery problem of networked machines seeking and learning about each
others was introduced by Harchol-Balter, Leighton, and Lewin in [45]. In a distributed
network, if machine u knows the address of machine v, machine u« can connect machine to v
and inform it of other machines known to u. A resource discovery algorithm specifies how
the machines should communicate with each other so that, eventually, each machine will be
aware of all other machines.

There are three performance measures for a resource discovery algorithm:

1. time complexity — number of time steps taken;

2. message complexity — number of messages sent (called connection communication
complexity in [45]) ; and

3. pointer complexity — number of pointers (machine addresses) passed (called pointer
communication complexity in [45]).

Prior algorithms for resource discovery include the Flooding algorithm, the Swamping
algorithm, and the Random Pointer Jump algorithm (all described in Harchol-Balter et
al. [45]). However, it was shown in [45] that these algorithms do not perform well in certain
network topology.

Their paper [45] introduced the NAME-DROPPER algorithm: During each round, each
machine picks a neighbor randomly and passes the neighbor all its known pointers. It was
shown that the machines can learn about one another in O(log? n) time, O(n log? n) message
complexity, and O(n? log? n) pointer complexity, all with high probability.
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Kutten, Peleg, and Vishkin [60] proposed a deterministic resource discovery algorithm
with O(logn) time O(n logn) message complexity, and O(n?logn) pointer complexity.

There has been much research on connected component algorithms on the Parallel Ran-
dom Access Machine (PRAM) model. The algorithm KUTTEN-PELEG-VISHKIN is an ex-
tension of a parallel algorithm by Shiloach and Vishkin [89]. Awerbuch and Shiloach [10]
also proposed a parallel connected component using similar techniques. Greiner [41] com-
pared these two algorithms with an algorithm based on Reif [84] and Philips [79). More
recently, Karger, Nisan, and Parnas [55], and Halperin and Zwick [44] gave fast randomized
connected component algorithm for this computation model.

All algorithms considered in [45] and this chapter assume synchronous networks. Kut-
ten and Peleg [59], and Abraham and Dolev [1] studied resource discovery algorithms on
asynchronous networks.

In this chapter, we introduce two related randomized algorithms, ABSORPTION and As-
SIMILATION. Algorithm ABSORPTION’s performance analyses assume strongly-connected
graphs. Both algorithms run in O(logn) time with O(nlogn) message complexity. The
pointer complexities of ABSORPTION and ASSIMILATION are O(n?) and O(n?logn) respec-
tively. A variant of ABSORPTION with O(log? n) running time achieves O(n) message com-
plexity.

We observe that resource discovery can be considered in two parts: from weakly-
connected graph to strongly-connected graph, and then from strongly-connected graph to
complete graph.

In Section 4.2, we describe a graph-theoretic model for the resource discovery problem.
We introduce and analyze ABSORPTION algorithm in Section 4.3. Section 4.4 discusses some
variants of ABSORPTION. We study ASSIMILATION algorithm in Section 4.5 and conclude
Section 4.6.

4.2 Resource Discovery

In this section, we describe a model of the resource discovery problem by studying dis-
tributed algorithms that evolve a connected directed graph into a complete graph. We will
also give simple lower bounds on the three performance measures defined in Section 4.1.
A network can be modeled by a directed graph (V, E), such that each machine is a node
in V. If machine u« knows about machine v, then there is an edge (u,v) € E.
For any node u, we let I" (1) be the set of machines known to u:

Fuy=uU{veV|(u,v)€E}.

A message is a set of nodes. A node u can send messages to any node in I' (u). When a
node u receives a message M from v, node u’s known set I' (u) is updated to I (u) UM. In
this case, we also say node u passes a set M of pointers to node v.
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Figure 4.1: A worst-case strongly-connected graph for Remark 46.

The goal of a resource discovery algorithm is to evolve a connected graph into a complete
graph. In a complete graph, every node knows all other nodes: I'(u) = V for allu € V. The
algorithm needs to be distributed in the sense that each node runs the algorithm without
knowledge of the global state. For the convenience of analysis, we assume that a global
clock is available such that the algorithm on each node can run in discrete steps.

Remark 46. Any resource discovery algorithm on a strongly-connected graph requires at
least logy(n — 1) time steps, n messages, and n(n — 2) pointers passed in the worst case.

Proof. Consider Figure 4.1, in which node 7 knows about node 7 + 1 mod n only.

Time In the worst case, logy(n—1) time steps are needed because the graph has diameter
n — 1, but after each time step, the diameter of the graph can at most reduced by half.

Messages We need at least n connections because each node must receive at least one
message.

Pointers Each node needs to receive at least n — 2 pointers because each node knows
two nodes initially, but needs to know n nodes at the end. Therefore, a total of n(n — 2)
pointers have to be passed. a

4.3 The ABSORPTION Algorithm
We now describe the algorithm ABSORPTION.

For any node v, let I (v) denote the leader of v. Naturally, we have I (v) € T (v) for any
node v. A node v is a leader if and only if I (v) = v.
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A graph can be partitioned into disjoint clusters such that two nodes are in the same
cluster if they share the a leader. Each cluster contains exactly one leader.
For any leader u, let C (u) be the set of nodes that have u as their leader:

C(u)={w|l(w)=1u}.

We will show in Lemma 47 that a leader’s known set is a superset of the union of its
members’ known sets.

In the beginning, there are n clusters such that every node is the leader of its single-node
cluster. Each round consists of the following three Steps.

1. Each leader u becomes active with probability p if I' (u) # C (u). If leader u is active,
it randomly chooses a node v € I' (u) \ C (u) and then passes the set I' (u) to v. We
call these messages seek messages.

2. Each node v that was contacted by some leaders in the previous Step now passes the
seek messages to its leader I (v).

3. (a) Any active leader u remains idle in this Step.

(b) Any inactive leader that had not received any seek message in Step 2 remains
idle in this Step.

(c) For each leader « inactive in Step 1 and had received k > 0 messages in Step 2,
we will construct a bigger cluster led by u. Let vy, ..., vk be the leaders that had
contacted some members of C (u) in Step 1.

The new cluster is a merge of the original cluster of « and the clusters of these
retiring leaders vy, ..., vg. After the merge, C (u) is updated to contain all these

clusters:
Cw=Cu |J cw),
1<i<k
and I (u) will absorb the pointers received from vy, ..., v:
U =Twu |J T'@).
1<i<k

Leader u informs all nodes w € C’ (u) of their new leader u and I" (u) \ T (w).
We call these messages update messages.

In the first Step, each node independently decides to be active or inactive. This is
somewhat similar to the symmetry-breaking techniques used in parallel algorithms [47).

Now we proceed to show that ABSORPTION terminates and produces a complete graph.
We will also analyze the complexities of ABSORPTION on strongly-connected graphs.
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First, we need to extend our notation of I' to take in a set of nodes:

rw)= |J r(w
weW
Lemma, 47 states that the known set of a leader is the union of the known sets of the
members of its cluster.

Lemma 47. During the ABSORPTION algorithm, we have
FC(u) =T (u)
for any leader u.

Proof. Initially, each cluster consists of a single node. Therefore, Equation (47) is satisfied
because C (u) = {u} forallu e V.

We now need to show that Equation (47) is maintained during any merging in Step
3. During any round, assume that leader u becomes the new leader of the clusters of
v1,2,...,0. Let IV (u) and C’' (u) be the known set and the cluster of u after the merge.

It is sufficient to show that IV (C' (v)) 2 IV (u).

Since u receives the known pointers from v, vz, , Uk, we have

I(u)=T(u)U U I'(v).

Applying our inductive hypothesis, we have

k
I(w)=T(C@)uJTEm®).
i=1
We also have .
C'wy=Cc@ulJcw).
i=1

At last, since IV (A) D T'(A) for any set A,

k
' (C(w) =T (c wulJe (v,-))
=1
k
or (c (w) U UC(v,-))
i=1
=T(C(u))u U I (C ()

=1
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Lemma 48. At the end of each round, for any node v,
Tw)=T((v)).

Proof. This follows from messages containing I'V (u) \ T' (v) from the new leader before the
end of each round. O

Lemma 49. In each round of the ABSORPTION algorithm, each leader u where " (u)\C (u) #
( is retired with probability at least p(1 — p).

Proof. A leader u is retired in a round if and only if

1. leader u is active; and

2. leader u selects a node v such that leader I (v) is not active.

By Lemma 51, leader u can always pick a node v not in the cluster of u.

The probability that leader u being active in any round is p. The probability that the
leader ! (v) being inactive is 1 — p. Therefore the probability that leader u is retired in any
given round is p(1 — p). O

Theorem 50. On a weakly-connected graph, the ABSORPTION algorithm terminates in
O(n) rounds with high probability.

Proof. In each round there exists at least one leader u where I' (u) \ C (u) # @. Thus in
each round, with probability at least p(1 — p), one leader retires. Let X be the number of
successes in kn trials with success probability p(1 —p). Let k = 2/p(1 — p). The probability
that X is smaller than n is

Pr{X < n} =Pr{X < (1/2)kp(1 — p)n} < e ™4,
0

If the graph is strongly-connected, than any leader knows about at least one node not
among its own cluster.

Lemma 51. Running ABSORPTION on a strongly-connected graph, unless there is only one
leader left,

I'(u) #C(u)
for any leader u.

Proof. Assume there is a leader u such that I' (u) = C (u) and there is another leader v
where v # u. By Lemma 47, for any node w € C (u), we have I (w) C T (C (I (w))) =T (u).
This means that none of the nodes in C (u) points to any node not in C (u). Thus there
is no path from any node in C (u) to v, contradicting our assumption that the graph is
strongly-connected in the beginning. O
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Using Lemma 51, we can show that the expected number of leaders in the graph is
reduced by a constant factor in each round.
Now we are ready to state our main results.

Theorem 52. On a strongly-connected graph, the ABSORPTION algorithm terminates in

2log_1 n

1—p+p

rounds with probability greater than 1 — 1/n.

Proof. The main loop of the ABSORPTION algorithm terminates when we are left with only
one leader.

Let G be any strongly connected directed graph with n nodes.

We start with n leaders. By Lemma 49, at each round, any leader has a probability of
p(1 — p) of retiring if there are more than 1 leader in the graph. Consider any leader u, the
probability that u is not retired after 2105—1"5-'1‘—— rounds is

1-p+p
(1-p+p’) =7 =

Therefore, the probability that there are more than one leader after 2log_ 1 _ 7 rounds is
1-p+p

at most 1/n. O

Corollary 53. With high probability, the message complezity of the ABSORPTION algorithm
is O(nlogn) and the pointer complezity of the ABSORPTION algorithm is O(n?logn).

Next, we derive the upper bounds on the constants of the asymptotic bounds.

Theorem 54. Let g = 1/(1—p+p?). The expected time steps of the ABSORPTION algorithm
is 3log, n; the expected total number of messages is at most nlog,n+2n/(1 — p); and the
ezpected total number of pointers passed is at most (1 +2/(1 — p))n(n — 1).

Proof. By Lemma 49, the number of leaders is reduced by p(1 —p) in each round. Therefore,
there are log, n rounds in expectation, where ¢ = 1/log(1—p+ p?). Since each round takes
3 steps, the expected total running time is 3log, n steps.

As introduced in Section 4.3, there are two types of messages:

1. the seek messages are those sent by leader « in Step 1 to some node not in C (u), and
the forwardings of those messages in Step 2;

2. the update messages are those sent by a leader u in Step 3 to members of the new
merged cluster.
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We can count the number of messages seek messages originated from each node.

Let u be any node. Let X is the total number of messages originated from node u.
Let X; be the total expected number of seek messages originated from node u after the ith
round. We have

X; < Pr{u is inactive in round i} X1
+ Pr {u is active in round i} (2 + Pr {u does not retire} X,-+1)

= (1 -p)Xiy1+ P2+ pXit1)
=2+ (1 -p+ ) Xip1.

Therefore, we have
Xo = _2115 -2
p—p* 1l-p
Thus there are 2n/(1 —p) seek messages. The size of each seek message is at most n—1,
therefore, the expected total number of pointers in seek messages is at most 2n(n—1)/(1—p).
In Step 3, the new leader informs its members in update messages. Since the clusters are
disjoint, the number of update messages passed in each round is at most n. Therefore, there
are nlog,n messages in total. In these update messages, any node only receives addresses
not known before. Therefore, the total number of pointers in all update messages is at most
n(n — 2).
O

Corollary 55. When p = 1/2. The ezpected time steps of the ABSORPTION algorithm is
3logy 3 n; the ezpected total number of messages is at most nlog, /3N +4n; and the ezpected
total number of pointers passed is at most 4n(n — 1) + n(n — 2).

To estimate how far we are from the optimal algorithm, we can compare our bounds
derived in Theorem 54 with the best possible centralized algorithm.

Corollary 56. When p =1/2, the ratio of the expected running time of ABSORPTION to the
worst-case running time of the optimal centralized algorithm is at most 11.5 for strongly-
connected network with at least 3 nodes. The ratio approaches 3log2/log(4/3) ~ 7.23 as
network size grows.

If the given graph is weakly-connected, we can first run the NAME-DROPPER algorithm
for O(logn) rounds. According to [45], the NAME-DROPPER algorithm makes O(n) con-
nections per round, and passes O(n?) pointers per round in high probability.

At last, we demonstrate a nice property of ABSORPTION— equal probability leader
election.
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Theorem 57. On a strongly-connected graph with n nodes, each node has probability 1/n
to become the ultimate leader of the ABSORPTION algorithm.

Proof. We shall prove by induction on the number of leaders. We will show that in any
graph with n leaders, each leader has probability 1/n to become the ultimate leader.

For the base case, if there is only one leader, than it has probability 1 to become the
ultimate leader.

Consider a graph with n leaders, where n > 1. In each round, each leader has the same
probability p(1 — p) of retiring. Assume that k leaders are retired in the next round. By
symmetry, the probability that any leader does not retire is (n —k&)/n. Therefore the overall
probability of becoming the ultimate leader for any leader is

n—k 1
n n—k

1
=

4.4 Variants of ABSORPTION

In this section we discuss two variants of the ABSORPTION algorithm.

4.4.1 Optimizing Pointers

We can see from Table 4.2 that, on a weakly-connected graph, the subroutine of evolving the
graph to be strongly-connected is the bottleneck of the ABSORPTION algorithm’s pointer
complexity. We describe a method to improve the pointer complexity at the cost of higher
message complexity. Instead of NAME-DROPPER, we can use the following simple algorithm
to obtain a strongly-connected graph.

DoUBLE-LINK: Each node sends a message about itself to each node in its known set.
Thus, after one time step, the graph is strongly-connected.

Algorithm DOUBLE-LINK takes 1 time step, sends at most n(n—1) messages, and passes
at most n(n—1) pointers. On a weakly-connected graph, if DOUBLE-LINK is executed before
ABSORPTION, the overall pointer complexity is improved to O(n?) in expectation. However,
the message complexity would degrade to O(n?) with high probability.

4.4.2 Optimizing Messages

We describe a variant of the ABSORPTION algorithm that reduces the expected message
complexity of the ABSORPTION algorithm to O(n), at the cost of higher time complexity.
We call this variant “ABSORPTION-M”, for optimizing the message complexity.

We now describe the changes required on the ABSORPTION algorithm.
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In Step 3, the new leader u does not notify all nodes in the new cluster. Instead, leader
u only tells the retiring leaders vy, .. ., vk to update their leader pointers. The retired leader
will forward future seek messages to its new leader. Therefore, during Step 2, a retired
leader u will forward the seek messages received from its members to u’s leader. The side
effect of this modification is that Step 2 can no longer be finished in a single time step. In
fact, during the ith round, Step 2 needs ¢ — 1 time steps for the chain of retired leaders to
forward the seek messages to the current leaders.

There will be a final stage where the last remaining leader notifies all nodes with the
entire graph.

Theorem 58. With high probability, algorithm ABSORPTION-M runs in O(log?n) time.

Proof. This follows immediately from Theorem 52 that ABSORPTION finishes in O(logn)
rounds in high probability, and that the ith round in ABSORPTION-M takes i—1+2=1i+1
time steps. 0

Theorem 59. Let g = 1/(1—p+p?). Running the ABSORPTION-M algorithm on a strongly-
connected graph, the expected time steps is %logg n+ g—logq n+ 1; the expected total number
of messages is at most (:—;’ﬁ%@ + 2) n—2; and the expected total number of pointers passed

is at most (11—,5”:25—@ + 1) n{n—1).

Proof. Applying the analysis of ABSORPTION, the expected number of rounds of ABSORP-
TION-M is log, n. Since the ith round takes 7 + 1 time steps and final stage takes 1 time
step, the total expected time is

log, n
log, n
1+ Z(i+1)= gz" (log,n+3) +1

i=1

1. o 3
= Elogqn+ -2-logqn+ 1.

As introduced in Section 4.3, there are two types of messages:

1. the seek messages are those sent by leader u in Step 1 to some node not in C (u), and
the forwardings of those messages in Step 2;

2. the update messages are those sent by a leader u in Step 3 to notify the retiring leaders
that u is their new leader.

We can count the number of messages seek messages originated from each node.

Let u be any node. Let X is the total number of messages originated from node u.
Let X; be the total expected number of seek messages originated from node u after the ith
round.
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Since,
X; = Pr {u is inactive in round i} X;,
+ Pr {u is active in round i} (z + Pr {u does not retire} X,-+1)

= (1 - p)Xit1+p(i + pXit1)
=pi+(1-p+p) X1,
Therefore, we have
_1+p-p
p(1—-p)?’
Since each seek message contains at most n — 1 pointers, the expected total number of
. o 14p?—
pointers is m%p—)@n(n -1).
In the final stage, there are n — 1 messages and (n — 1)2 pointers.
In summary, the expected total number of messages is at most 2% Pn+ n—-1)+Mm-

Xo

p(1-p
1) = (:ﬁ’f—;@ + 2) n — 2; and the expected total number of pointers is at most
1+p°—p
;(—1%)—2—71(71—1)+(n—1)+(n—1)2
1+p° -
1+p*—p
- (gt +1) e

O

Corollary 60. When p = 3—"2\@, the message complezity of the ABSORPTION-M algorithm
is (5 + vb)n — 2. The time complezity is %login + %logqn + 1, where ¢ = ?m;@. The
message complezity is (4 + V5)n(n — 1).

4.4.3 Optimizing Time

We can also optimize the constant of the time complexity with the cost of slightly larger
constant for the message complexity.

We introduce another variant, the ABSORPTION-T algorithm. In Step 1, an active leader
u notifies all nodes in C (u). Step 2 is skipped because all nodes in C (u) already knows if
that cluster is active in that round. In Step 3, a inactive node contacted in Step 1 send
update messages to the nodes of the cluster being merged. In this variant, we also need a
final stage where the last leader broadcasts the entire graph.
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Theorem 61. Let ¢ = 1/(1 — p+ p?). The expected time steps of the ABSORPTION-T
algorithm is 2log,n + 1; the expected total number of messages is at most 2nlog,n + 1+
2/(1—p))n; and the expected total number of pointers passed is at most (1+2/(1—p))n(n—
1) + nlogn.

Proof. Let ¢=1/(1 — p? + p).

We only need to consider the difference between the complexities between ABSORPTION
and ABSORPTION-T.

First, there is an extra broadcast of the activeness decision in each round. There are at
most n such messages in each round.

Instead of the n(n — 2) pointers for the update messages in total, we now have n pointers
for the update messages for each round. However, at the final stage, there are n—1 messages
and (n — 1)? pointers.

The total difference in messages is nlog,n +n — 1. The total difference in pointers is

nlog,n+ (n~1)2 — n(n — 2). O
Time Messages Pointers
ABSORPTION 3logy/zm nlogy/sn +4n 5n(n — 1)
ABSORPTION-M %log";_t‘f@ n$ log s+l (5+V5)n (4 + V5)n(n —1)
ABSORPTION-T 2logy/zn +1 2nlogy/an+5n 5n(n—1)+nlogn

Table 4.1: Performance of ABSORPTION, ABSORPTION-M, and ABSORPTION-T on
strongly-connected graphs.

4.5 The ASSIMILATION Algorithm

While ABSORPTION is an eflicient algorithm with both time complexity and pointer com-
plexity very close to be optimal, the performance of ABSORPTION depends on the graph
being strongly-connected. Coupling ABSORPTION with a strongly-connecting algorithm
could tricky in implementation and is not an entirely satisfactory solution.

In this section we introduce algorithm ASSIMILATION that achieves O(logn) time on
weakly-connected graphs. Algorithm ASSIMILATION is a “union” of NAME-DROPPER and
ABSORPTION, because it contains the properties of both algorithms. There are five Steps
in each round of ASSIMILATION:

1. For each leader u, if I' (u) # C (u), u becomes active for this round with probability
p>1/2.
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If leader u is active, it randomly chooses up to |C (u)| nodes in I' (u) \ C (u) and then
passes the set I' (u) to them. These are the seek messages.

2. Each node v contacted by some leaders in the previous Step now passes the seek
messages to its leader [ (v).

3. Let u be any inactive leader that had received k£ > 0 seek messages in Step 2. Let
v1,...,Ux be the leaders that had contacted some members of C (u) in Step 1. The
known set I" (u) will absorb the pointers received from v, ..., v:

I =T@u |J I'@).

1<i<k
Leader u sends notify messages to v1, ..., v containing pointer to u only.

4. Each leader v received notify messages from uy, ..., U, in Step 3 returns reply mes-
sages that partition C (v). (Our analysis does not depend on the way that C (v) is
partitioned. )

5. For any leader u having received reply messages, the new cluster is a merge of the
original cluster of u and the reply messages received from retiring leaders vy, ..., vg.
After the merge, C (u) is updated to contain all these clusters:

C'(u)=C(u)U U v;.reply.

1<i<k

Leader u informs all nodes w € C’ (u) of their new leader v and I (u) \ I (w). These
are the update messages.

Lemma 62 ([45]). Let a,b be two neighboring nodes in G. They will be in the same
1

connected component after O(clogn) rounds of ASSIMILATION with probability 1 — —5r.
Proof. This proof is an adaptation of the proof of Lemma 2.2 in [45].

Without loss of generality, we assume there is an edge from a to b in the initial graph.

Let set A be the set of nodes having pointers to both a and b. For any node u € A,
we have {a,b} C I' (u). Initially, we have a € A. Qur goal is to bound the time before
some node in A contacts b successfully. Because once that happens, a and b will be strongly
connected.

The key observation is that algorithm ASSIMILATION simulates NAME-DROPPER. In
each round, with probability p, each leader u randomly picks |C (u)| nodes. This is better
than having each node in C (u) picking independently because the leader does not pick a
node in C (u), which will be useless, nor does have duplicate picks. Therefore, we can apply
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the analysis of NAME-DROPPER and only adjust certain probabilities by factors of p or
(1-p)

Let d(u) be number of outgoing edges of u.

Let A’ be the set of active nodes in A. Since |A’| is a binomial variable with expectation
p|A|, we have

Pr{X < (1/2p)p|A|} < e—lAl1-1/2p)%/2 < e—(1-1/2p)/2

Since p > 1/2, we have e~(1-1/2P)/2 < 1. Therefore, with probability at least 1 —
e~(-1/20)/2 e have |A'| > |A] /2.

. o 1
Pr {b is contacted by a node in A’ while inactive} =1 - (1 — p) ug, (1 — E(u—))

>1— (1 —pe” Zuen Toy,

If
Pr {b is contacted by a node in A’ while inactive} <1 — (1 — p)e~1/18,

then, ) .

Y s

oyt d(u) — 16

This implies that there are at least |A’| /4 with degree greater than 4 |A’|. Then there are
at least |A| /2 nodes with degree greater than 2|A| with such probability.

Since each of these nodes points to at least |A| nodes not in A, there is a probability
of 1/4 that each of these nodes points to a new node. The expected number of new nodes
is then at least |A[ /8. Following the proof of Lemma 2.2 in [45], with a bounded Markov
argument, it can be shown that with probability at least 1/15, the size of A grows by |A| /16.

In summary, during each round, either there is a probability (1 — e=(1-1/2)%/ 2) a-

p)e~1/16 that b is contacted and merged, or there is probability (1 — e~(1-1/2p)%/ 2) % that

|A| grows by a fraction of 1/16. Thus, after O(clog n) rounds, the probability that b is still
not contacted and merged is at most n—ol(;y. 0

Theorem 63. The ASSIMILATION algorithm terminates after O(logn) rounds with high
probability.

Proof. By Lemma 62, for any a,b € G where a points to b in the beginning, node b will
point to a in O(clogn) rounds with probability at least 1 — 1751(3 Since there are at most
n(n — 1)/2 such pairs in G, we can pick ¢ such that with high probability, the graph is
strongly-connected in O(clogn) rounds.
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Time Messages Pointers
NAME-DROPPER [45] O(log?n) O(nlog’n) O(n2log®n)
KUTTEN-PELEG-VISHKIN [60] O(logn) O(nlogn) O(n2log?n)
ABSORPTION O(logn) O(nlogn) O(n?)
ASSIMILATION O(logn) O(nlogn) O(nZlogn)

Table 4.2: Performance of NAME-DROPPER, KUTTEN-PELEG-VISHKIN, ABSORPTION, and
ASSIMILATION on three complexity measures. The bounds on row “ABSORPTION” assume
a strongly-connected graph.

Time Messages Pointers

NAME-DROPPER O(logn) Of(nlogn) O(n?logn)
DoUBLE-LINK o) O(n?) O(n?)
ASSIMILATION O(logn) Of(nlogn) O(n?logn)

Table 4.3: Asymptotic bounds of strong-connecting algorithms.

We note that Theorem 52 is also applicable for ASSIMILATION on strongly-connected
graphs. Therefore, once the graph is strongly-connected, the graph becomes a single cluster
in O(logn) time with high probability. O

Corollary 64. The message complezity of algorithm ASSIMILATION is O(nlogn). The
pointer complezity of algorithm ASSIMILATION is O(n?logn).

Proof. The theorem follows from the observation that there are O(n) messages and O(n?)
pointers in each Step of the ASSIMILATION algorithm. O

4.6 Concluding Remarks

In this chapter, we describe and analyze the ABSORPTION algorithm, variants ABSORP-
TION-M and ABSORPTION-T, and the ASSIMILATION algorithm. We proved strong bounds
on the performance measures. Table 4.2 compares the performance of ABSORPTION and
ASSIMILATION with NAME-DROPPER and KUTTEN-PELEG-VISHKIN. We note that these
algorithms except KUTTEN-PELEG-VISHKIN are randomized algorithms. Both ABSORP-
TION and ASSIMILATION are Las Vegas algorithms while NAME-DROPPER is a Monte Carlo
algorithm.

A weakness of ABSORPTION and ASSIMILATION is their reliance on few machines (those
leaders that retire late) to distribute most of the pointers. However, we note that fault
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tolerance can be easily obtained by running independent instances of ABSORPTION in par-
allel. In particular, we have shown that any node in a strongly-connected graph has equal
probability to become the ultimate leader.

The open question is whether there exists a resource discovery algorithm achieving
optimal asymptotic bounds on all three complexity measures.

Of related interest is the problem of transforming a weakly-connected graph to a strongly-
connected graph. For this problem, open question also remains that whether there exists
an O(logn) time algorithm with O(n) messages or O(n?) pointers (Table 4.3).
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Chapter 5

Bluetooth Scatternet Formation

5.1 Introduction

Bluetooth [14, 43, 17, 72] is an emerging low-cost and low-power short-range radio technol-
ogy. Many useful applications can be supported by an ad hoc network over Bluetooth. For
example, in a conference room, a special announcement can be broadcast to the Bluetooth-
enabled mobile phones and hand-held computers through an ad hoc network. Bluetooth
ad hoc networks can also be used for rapid deployment of electromagnetic identification
readers [9).

The area of ad hoc networking has gathered significant research interests in recent years.
Many studies have concentrated on the routing issues of ad hoc networks {78, 95]. These
studies usually assume that any two in-range nodes can communicate with each other.
Therefore, an ad hoc network can be modeled as a graph such that the in-range nodes are
adjacent. For example, simulation-based studies [18, 21] of ad hoc routing protocols have
been conducted with a link-layer model based on or similar to the IEEE 802.11b standard.

An ad hoc network based on Bluetooth, however, brings new challenges. There are
specific Bluetooth constraints not present in other wireless networks. For example, a Blue-
tooth network is composed of piconets. Each piconet contains one master and up to seven
slaves. Piconets can be connected into a larger scatternet (Figure 5.1) by sharing slaves. As
shown by Miklos et al. [71] and Zurbes [100], the configuration of a scatternet has signifi-
cant impact on the performance of the network. For instance, when a scatternet contains
more piconets, the rate of packet collisions increases. Before we can make effective use of
Bluetooth ad hoc networking, we must first devise an efficient protocol to form a scatternet
from isolated Bluetooth devices.

In this chapter, we study the problem of scatternet formation in the situation where
the devices are in-range of one another. The communication range is at least 10 meters
according to the current Bluetooth specification. This means that our formation algorithm
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Figure 5.1: A Bluetooth scatternet.

should work when the maximum distance between any two devices is at most 10 meters. We
will discuss in Section 5.8 how the algorithm should adapt if the assumption is not satisfied.

We adopt a two-layer approach to this problem. First, we investigate how these devices
can be organized into scatternets. We design and evaluate the performance of a new scat-
ternet formation protocol. Second, as a subroutine of the formation protocol, we study how
the devices can discover each other efficiently.

This chapter is organized as follows: In Section 5.2, we discuss the related research on
Bluetooth scatternets. To get a better understanding of how our results differ from prior
work, readers may skip this section and come back to it after going through the results of
this chapter. In Section 5.3, we introduce the problem of scatternet formation. Our new
scatternet formation protocol is presented in Section 5.4. We present theoretical analyses
and simulation results of our protocol in Section 5.5. We discuss device discovery with
simulation results in Section 5.6. In Section 5.7 we estimate the overall performance of the
protocol. We discuss several variations and extensions to our protocol in Section 5.8 and
conclude in Section 5.9. Theoretical results in this chapter have appeared in a conference
paper [64]. Simulation results in this chapter have appeared in a conference paper [61] and
a thesis [70].
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5.2 Related Work

Miklos et al. [71] apply heuristics to generate scatternets with some desirable properties.
They evaluate these scatternets of different characteristics through simulations. Johansson
et al. [49] perform link-layer simulations of piconets. Raman, Bhagwat, and Seshan [82]
argue for cross-layer optimization in Bluetooth Scatternets.

Aggarwal et al. [3] introduce a scatternet formation algorithm. Their algorithm first
partitions the network into independent piconets, and then elects a ‘super-master’ that
knows about all the nodes. However, the resulting network is not a scatternet, because the
piconets are not inter-connected. A separate phase of re-organization is required.

Salonidis et al. [87] discuss the issues of symmetric connection between a pair of Blue-
tooth devices. In their symmetric protocol, the devices switch states (INQUIRY and INQUIRY
SCAN) with a random schedule. In contrast, in our work, the devices switch states periodi-
cally, but pick the states randomly.

Salonidis et al. [88] introduce a scatternet formation algorithm—Bluetooth Topology
Construction Protocol (BTCP). BTCP has three phases: (I) a coordinator is elected with a
complete knowledge of all devices, (II) this coordinator determines and tells other masters
how a scatternet should be formed, and (III) the scatternet is formed according to the
instructions. A formation scheme is presented in [88] for up to 36 devices. In contrast,
our algorithm has only one phase. Since the topology is decided by a single device (the
coordinator), BTCP has more flexibility in constructing the scatternet. However, if the
coordinator fails, the formation protocol has to be restarted. BTCP’s timeout value for the
first phase would affect the probability that a scatternet is formed. Qur protocol’s timeout
value for each round only affects the overall performance of the protocol—the scatternet
will be formed with certainty. In addition, BTCP is not suitable for dynamic environments
where devices can join and leave after the scatternet is formed.

The algorithms in [3, 88] depend on a single device to design the scatternet topology
and notify other devices. Therefore these algorithms will have time complexity Q(n/k),
where n is the number of nodes, and k is the maximum number of slaves in a piconet.
In comparison, our algorithm consists of a single phase and has O(logn) time complexity.
However, as pointed out in [88], the coordinator election phase dominates the total time
requirement. Thus, the advantage of our protocol’s O(logn) time complexity might not
be relevant in practice unless the number of devices is very large. Moreover, we note that
at least the phase II of BTCP can be modified to run in O(logn) time, if the topological
information is distributed along a tree. However, a tree-based distribution scheme will
increase the complexity of the protocol.

Tan [94] gives a distributed Tree Scatternet Formation (TSF) protocol. The extensive
simulation results indicate relatively short scatternet formation latency. However, TSF is
not designed to minimize the number of piconets. The simulation results suggest that each
master usually has fewer than 3 slaves. In comparison, our protocol guarantees that all but
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one of masters have at least 6 slaves. Thus, our protocol leads to fewer number of piconets
and fewer collisions among the piconets.

Bluetree [98) and Bluenet [96] are scatternet formation protocols for larger-scale Blue-
tooth networks, in which the devices can be out of range with one another. Simulation
results of the routing properties of the scatternets were presented in [98, 96]. However,
there were no simulation or theoretical analyses on the performance of the scatternet for-
mation process.

5.3 Preliminaries

In this section we introduce some terminologies and performance measures for the scatternet
formation problem.

Bluetooth devices share 79 channels of 1 MHz bandwidth in the 2.4 GHz band using
frequency hopping. When two Bluetooth devices are connected, one of the devices acts as
a master and the other device acts as a slave. Any Bluetooth device can perform the role
of a master or a slave.

A Bluetooth device can discover other devices by the inquiry process. A master in
INQUIRY state hops 3,200 times per second according to a 32-channel inquiry hopping se-
quence. At the same time, a slave in INQUIRY SCAN state changes its listening frequency
every 1.28 seconds, along the same sequence.

If the inquiry process succeeds, the master learns the address (which is unique for each
Bluetooth device) and the clock of the slave. In the page process, the master in PAGE state
contacts the slave with a 32-channel page hopping sequence, which is a function of the
slave’s address and (estimated) clock. Similarly, the PAGE SCAN slave hops with the period
of 1.28 seconds along the same sequence. After the master and the slave are connected,
they communicate with a hopping sequence over all 79 channels at the rate of 1600 hops
per second. This hopping sequence is determined by the master’s clock and address.

A piconet consists of 1 master and 1 to k active slaves!. All packets are exchanged
between a master and its slaves within a piconet. There is no direct master-master or slave-
slave communication. A device can be a slave in several piconets but be a master in only
one piconet. The degree of a device is the number of piconets to which the device belongs.
A device is unshared if its degree is 0 or 1. Otherwise, it is shared. A scatternet is a set of
piconets connected through shared devices.

The problem of scatternet formation: How does a collection of isolated devices form a
scatternet? The devices are isolated in the beginning; each device is not aware of the other
devices. Therefore, the scatternet formation protocol must be distributed. We assume that
the devices are in the communication range of each other. Thus, potentially, any two devices
can be connected directly.

'k is 7 in Bluetooth Specification 1.1 [15]
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A scatternet formation protocol has two major performance measures:

e time complexity — amount of time to form a scatternet. A scatternet should be
formed as fast as possible to minimize the delay experienced by the users.

e message complexity — number of messages sent between the devices. This is impor-
tant because Bluetooth devices usually operate with limited power. By reducing the
number of messages sent, power consumption is conserved.

Furthermore, it is also crucial to have scatternets of good quality. It is not very useful
to have scatternets leading to poor communication performance. Thus, we should aim to
form a scatternet that facilitates inter-piconet communications. It is not easy to quantify
the quality of a scatternet, but we believe the following measures are good indicators.

e number of piconets — a measurement of a scatternet’s efficiency. Since all piconets
share the same set of 79 channels, there will be more collisions when there are more
piconets. As shown in [100], the burst failure rate increases with the number of
piconets.

¢ maximum degree of the devices — the maximum number of piconets that any device
belongs to. Since the piconets communicate through shared slaves, if a slave belongs
to many piconets, then this slave could become the bottleneck of inter-piconet com-
munications. A shared slave has to be time multiplexed between the piconets that it
belongs to. Therefore, a shared slave of high degree could become overloaded.

e network diameter — maximum number of hops between any pair of devices. This will
provide us with an estimation of the maximum routing delay of the scatternet.

A good balance among the quality measures is desirable. Consider, for example, a star
topology: a single “central” slave is shared by all piconets. In such a scatternet of n devices
with every piconet containing k slaves, there are [(n — 1)/k] piconets. Although the number
of piconets is minimized (see Remark 65), this scatternet probably would not perform very
well in practice because the shared slave will be overwhelmed, unless the network is small.

Remark 65. Let k be the mazimum number of slaves in a piconet. A scatternet of n devices
must contain at least [(n — 1)/k] piconets.

Proof. We need to show that a scatternet of n devices has at least [(n — 1)/k] piconets.
Let p(n) be the minimum number of piconets for a scatternet of n devices. We will show
that p(n) > [(n — 1)/k] by induction on p(n).

First, if p(n) = 1, then n < k+ 1 by our assumption that each piconet can have at most
k + 1 devices. Therefore

p(n) =1=T[k/k] 2 [(n—1)/k].
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Next, assume that if p(n) < m, then p(n) > [(n — 1)/k]. Then we consider the case that
p(n') = m+ 1. Given a scatternet of n’ devices, we pick a master and remove its piconet so
that the rest of the scatternet is still connected. We can at most remove k devices because
this piconet was connected with the rest of the scatternet. Therefore, after this removal,
we are left with m piconets, and at least n’ — k devices. By the inductive hypothesis, we
have p(n) > [(n - 1)/k] if p(n) < m. Since n > n' ~ k, we have p(n) > [(n' -k —1)/k] =
[(n' —1)/K] — 1. Thus, p(n') > p(n) +1 > [(n' — 1)/K].

O

5.4 Scatternet Formation

In this section, we first present our scatternet formation protocol and then evaluate its
performance and properties by analyses and simulations. The development of this algorithm
was inspired by our research on resource discovery algorithms in general networks [63]. The
main idea is to merge pairs of connected components until one component is left. Each
component has a leader. In each round, a leader either tries to contact another component
or waits to be contacted. The decision of each leader is random and independent. Our
protocol in [63] forms a complete graph in O(logn) rounds. In this paper, we apply the
same idea to connect Bluetooth devices in O(logn) rounds.

5.4.1 Algorithm

Initially, we are given a set of isolated but in-range devices. During the execution of the
algorithm, the devices are partitioned into components. A component is a set of intercon-
nected devices, and can be a single device, a piconet, or a scatternet. There is one leader
in each component. For a single-device component, the only member is the leader. For a
piconet, the master is the leader. For a scatternet, one of the masters is the leader. When
a leader retires, it stops being a leader and will be inactive for the rest of the algorithm
(unless it becomes a leader again). For any device v, let S(v) be the set of v’s slaves. If v is
not a master or has no slaves, then S(v) = 0. Let k > 2 be the maximum number of slaves
allowed in a piconet. Thus |S(v)| < k for any v.
In Lemma 66, we will prove the following invariants for the algorithm:

e Each leader either has no slave, or has at least one unshared slave in its piconet.
o Each leader has fewer than k slaves in its piconet, i.e., |S(u)| < k for any leader u.

All leaders execute procedure MAIN in the beginning of each round. We assume a
constant &, such that procedure MAIN and the procedures called by it can be completed
in § seconds. A good choice of § can be found by simulations (see Section 5.6) and by
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prototyping. We assume that all leaders call procedure MAIN at time £p+i4, fori = 0,1,...,
where tg is the start time.

In the beginning, all devices are leaders. In procedure MAIN, a leader calls SEEK with
probability p € (1/3,2/3). Otherwise, the leader calls SCAN or asks an unshared slave to
call SCAN. During each round, only one device in each component should call SEEK or
ScAN.

MAIN(leader u)

1 z < arandom number in [0,1)
2 ifz<p (1/3<p<2/3)

3  then SEEK(u)

4 else ifS(u)=0

5 then SCAN(u)
6 else v < an unshared slave of u
7 ScaN(v)

When a leader executes SEEK, it tries to acquire a new slave (which is running SCAN).
However, the leader may not always succeed, because, in any given round, the number of
devices running SCAN can be smaller than the number of devices running SEEK. Therefore,
if a leader is not able to contact a slave after certain time, it should give up and run MAIN
again in the next round. Similarly, SCAN might also fail in any given round. During each
round, a matching is found between the SEEK devices and SCAN devices. The number of
connections established (size of the matching) is the smaller of the number of SEEK devices
and the number of SCAN devices.

SEEK(u)

1 wu performs INQUIRY

2 if a slave v is found

3 then u connects to slave v by PAGE
4 // S(u) — S(u) U {v}

5 CONNECTED(u, v)

Scan(v)

1 v performs INQUIRY SCAN

2 if v is contacted by a master u

3 then v waits for u in PAGE SCAN

We note that SEEK and SCAN devices will go into PAGE and PAGE SCAN modes respec-
tively after all inquiries are completed. The amount of time required is investigated in
Section 5.6. In general, we make sure that each master is matched to only one slave, and
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vice versa. When a leader u running SEEK connects to a slave v running SCAN, procedure
CONNECTED(u, v) is called.

Procedure CONNECTED(u, v) merges the component of u and the component of v. There
are several cases:

1. If v is an isolated leader, then v would become a slave of u unless the piconet of u
has become full, in which case a new piconet with master v and unshared slave y is
created, as shown in Figure 5.2. This is necessary because otherwise u’s piconet would
be full, violating the second invariant. To satisfy the first invariant, we also need to
give the new master v an unshared slave y.

2. If v is not an isolated leader, then let w be the master of v.

(a) If the piconet of u and the piconet of w can fit into a single piconet (with at
most k — 1 slaves because of the second invariant), then w and its slaves join the
piconet of u, as shown in Figure 5.3.

(b) Otherwise, we cannot merge the two piconets, and thus we should let w retire.

i. If u was an isolated master, © would not have an unshared slave. Thus, we
will let u become the slave of retiring master w and let v become an unshared
slave of u (Figure 5.4).

ii. If the merged piconet is just full, violating the second invariant, we will need
to let v become a master and give it an unshared slave y (Figure 5.5).

iii. Otherwise, we will just try to move as many nodes allowed by the invariants

as possible from the piconet of u to the piconet of retiring master w, so as
to reduce the overall number of piconets (Figure 5.6).
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CONNECTED(leader u,slave v)
1 if v is a leader
2 then //v was an isolated leader
3 if [S(u)| < %
4 then v retires
5 else wu retires // Figure 5.2
6 y «+— an unshared slave of u
7 Move({y},u,v)
8 else w « the other master of v
9 w retires
10 switch
11 case |S(u)US(w)|+1<k: // Figure 5.8
12 MERGE(u, v, w); return
13 case |S(u)| =1: // Figure 5.4
14 Move({u}, NIL, w)
15 v disconnects from w ; return
16 case [S(u)US(w)|+1=k: // Figure 5.5
17 u retires
18 y « an unshared slave of u
19 MERGE(u, v, w)
20 Move({y},u,v)
21 v becomes a leader ;return
22 case default : // Figure 5.6
23 MIGRATE(u, v, w); return

Communications between » and w in CONNECTED, MERGE, MIGRATE, and MOVE are
via their common slave v.

Procedure MERGE(u, v, w) makes w and all its slaves become u’s slaves.

MERGE(master u,slave v, master w)
1 v disconnects from w

2 Move(S(w) \ v,w,u)

3 Move({w},NIL,u)

Procedure MIGRATE(u, v, w) moves slaves from S(u) to S(w) until S(w) is full or when
only two slaves are left in S(u).
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Figure 5.2: Lines 5-7 in procedure CONNECTED for k =7
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Figure 5.4: Lines 13-15 (|S(u)| = 1) in procedure CONNECTED for k = 7.
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Figure 5.5: Lines 16-21 (|S(u) US(w)| + 1 = k) in procedure CONNECTED for k =7
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Figure 5.6: Lines 2223 (default) in procedure CONNECTED for k = 7.

MIGRATE (master u,slave v, master w)
i« min(k — |S(w)|, |S(u)| — 2)
// i is the number of slaves to migrate
ifi>0
then y < an unshared slave of u
Z « { i slaves in S(u) \ {y,v} }

MOVE(Z, u,w)

A W

Procedure MOVE is a subroutine called by CONNECTED, MERGE, and MIGRATE. All

devices in set Z disconnect from u and become slaves of w.

MoVE(set Z, master u, master w)

1 devices in Z disconnect from u

2 devices in Z wait for w in PAGE SCAN
3 w connects to devices in Z by PAGE

Lemma 66 proves the invariants of the algorithm.

Lemma 66. During the execution of the algorithm, the following invariants hold:

e Fach leader has either no slave, or has at least one unshared slave.
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o Each leader has fewer than k slaves.

Proof. We will prove the invariants by induction.

In the beginning, all devices are leaders without slaves. So our invariants are satisfied.

Assuming a state satisfying the claim, we only have to make sure that CONNECTED and
its calls to MERGE, MIGRATE, and MOVE preserve the invariants, because no piconet is
formed or modified in MAIN, SEEK, and SCAN.

Let S’(u) and &’(v) be the slaves of u and v after CONNECTED(u, v) is returned.

First, we consider the case that v is a leader (lines 1-7). If v is a leader, it means that
v does not have any slave. If |S(u)| < k (lines 3-4), v would become an unshared slave of
u. If u has exactly k slaves (lines 5-7), then one unshared slave y is moved from S(u) to
S(v). Thus, §’(v) contains an unshared slave. In this case, u is retired so that it does not
need an unshared slave.

Second, we consider the case that v is a slave of a leader w. Master w will no longer be
a leader, so it does not have to satisfy the invariants. There are four cases:

(|S(w) US(w)| + 1 < k): All devices in S(w) become slaves of u. Device v was an unshared
slave in S(w). After the merge, u is the only master of v, so v becomes an unshared
slave of u. Also, we note that |S'(u)| = |S(u) US(w)| + 1 is smaller than &k by
assumption.

(|S(w)| = 1): Leader u will have v as its only slave. Slave v is unshared because it was w’s
unshared slave.

(IS(uw) US(w)| + 1 = k): In this case, u retires so it does not need to satisfy the invariants.
When slave v becomes a leader, it obtains an unshared slave y from wu.

default: Slaves in S(u) are migrated to S'(w) until |S'(w)| is k or &'(u) contains only two
slaves (one of them is v). Procedure MIGRATE will always reserve an unshared slave
y for §’'(u). By assumption, w had at most k — 1 slaves before CONNECTED is called.
Therefore, we can move at least one slave from S(u) to S’(w). Therefore, |S'(u)) is at
most & — 1, because at least one slave is removed after u has obtained slave v. 0

This algorithm does not minimize the absolute number of messages passed between the
devices. This is not crucial in practice, as Section 5.6 will show that most of the packets are
sent during the inquiry processes. The current design is a compromise between simplicity
of the algorithm and the constant factors of the message complexity of the algorithm.

The last leader will keep calling MAIN even after the scatternet is formed. It is because
the leader cannot be certain that all devices are already connected unless it knows the total
number of devices. In practice, we can let the leader stop after it has failed to find any device
for certain number of rounds. The probability that n leaders fail to make any connections
for | rounds is (p™ + (1 — p)™)’, which is less than (5/9) for n > 2 and 1/3 < p < 2/3.
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5.5 Performance and Properties

5.5.1 Theoretical Results
Scatternet Properties

We show that the scatternet formed possesses two useful properties: small degrees for shared
devices and small number of piconets.

Lemma 67. At most one piconet in the scatternet formed by the algorithm contains fewer
than k — 1 slaves.

Proof. When a scatternet is formed, only one component is left. Therefore, except for one
piconet, the masters of the other piconets have retired. We will show that a retired master
has at least k—1 slaves. Therefore, when the scatternet is formed, all but one of the masters
have at least k — 1 slaves.

We only need to make sure that if a leader becomes a retired master in a round, it should
have at least k — 1 slaves, because a retired master will not lose any slave in subsequent
rounds. There are four places in CONNECTED that a leader is retired.

line 4: v becomes a slave.

line 5: The test |S(u)| < k is false. Thus u had at least k slaves before line 7: MOVE({y}, 4, v),
which reduces the number of u’s slaves by 1. Thus u would have k — 1 slaves when
retired.

line 9: We must show that for all the four cases in lines 11-23, w will have at least £ — 1
slaves when CONNECTED returns if w remains a master.

In the first and third cases, w loses all of its slaves in the procedure MERGE and
becomes a slave itself.

In the second case (lines 13-15), we have |S(u)| = 1 but |[S(u) US(w)|+1 > k because
the condition of the first case is not satisfied. Since u and w share one slave, we have
|S(u)| +|S(w)|—1+41 > k. Thus, S(w) > k—1 before MOVE is called. Master w loses
slave v, but gains a new slave u, so w still has at least k¥ — 1 slaves when procedure
CONNECTED returns.

In the last case (lines 22-23), we have |S(u) US(w)| +1 > k + 1, and MIGRATE will
move all devices in the piconet of u to the piconet of w until w has k slaves or u has
only 2 slaves left. In the latter case, only one slave in S(u) U S(w) will not become a
slave of w. Thus w would have at least k — 1 slaves after the MIGRATE operation.

line 17: All slaves of w and w itself become slaves of v in line 19. We note that u and w
had % — 1 slaves in total (line 16), thus u should have k slaves after MERGE (line 19).
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MoVE (line 20) would remove one slave from u. Therefore, u still has k — 1 slaves
when CONNECTED returns. O

Lemma 68. The algorithm forms a scatternet with m — 1 devices of degree 2 and n—m+1
devices of degree 1, where n is the number of devices and m is the number of piconets.

Proof. First, we will show that any device has maximum degree 2. We will verify that the
shared slaves and shared masters have degrees at most 2.

Shared Slaves We observe that only unshared slaves may participate in SCAN. Thus, a
shared slave will not be shared again through SCAN. A shared save might become unshared
in a MERGE or become a degree-2 shared master in lines 16-21 of procedure CONNECTED.

Shared Masters A shared master can only be a slave of a retired master. Therefore, a
shared master will never be shared again with another master through SCAN. In addition,
a shared master v is always created from an unshared slave or an isolated master. This
means that v had no slave before becoming a shared master. Therefore, a device can only
become a shared master once.

We can now consider the topological graph of the scatternet, in which each piconet is
a node and each degree-2 device is an edge. We can show that this topological graph is a
tree. Initially, each component is a tree (a single node). During each CONNECTED call, at
most one edge is created between the two merging components. And since each component
only participates in one CONNECTED process during each round, the components remain
trees throughout the protocol.

In a tree of m nodes, there are exactly m — 1 edges. Therefore, there are m — 1 degree-2
devices, and n — (m — 1) degree-1 devices. O

Theorem 69. The scatternet formed by the algorithm contains at most | (n — 2)/(k — 1)]+1
piconets.

Proof. Consider a scatternet produced by the algorithm. Let n be the number of devices
and m be the number of piconets. By Lemma 67, at most one piconet has size less than k.
(A piconet has size less than k if and only if it has fewer than k — 1 slaves.) Such piconet
has size at least 2. By Lemma 68, m — 1 devices have degree 2 and the rest of the devices
have degree 1. Therefore, we can conclude that the scatternet contains at least

k(m~1)+2—(m—1) = (k—1)(m—1) + 2

devices. Thus, n > (k—1)(m—1)+2. Since m is an integer, m < |(n —2)/(k—1)|+1. O
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Comparing Theorem 69’s upper bound |(n —2)/(k — 1)} + 1 with Remark 65’s lower
bound [(n — 1)/k], we note that our bound is very close to be optimal. For example, when
n = 100 and k = 7, our algorithm forms a scatternet containing at most 17 piconets, while
the lower bound requires 15 piconets.

Asymptotic Complexities

We first derive the algorithm’s time complexity and then its message complexity.

Lemma 70. During a round with at least 2 leaders, the number of leaders is reduced by a
constant fraction with a constant probability.

Proof. Let m > 2 be the number of leaders. Let p be the probability that a leader chooses
to run SEEK. The algorithm specifies that 1/3 < p < 2/3. We will assume p < 1/2, because
if p > 1/2, we can switch the roles of SEEK and SCAN and the proof follows similarly.

During each round, we have a matching between the SEEK devices and the SCAN devices.
Let random variable X be the number of SEEK devices in a given round. Since X is
distributed binomially with parameter p, we have E [X] = pm and Var [X] = mp(1 — p).

Let « be a real number between 0 and 1. If (1 — a)pm < X < (1 + a)pm, then at least
(1 — a)pm connections are made between the SEEK devices and SCAN devices because: (1)
there are at least (1 — a)pm SEEK devices; and (2) there are at least

m—(1+a)pm=(1-p-ap)m > (1-a)pm

SCAN devices since (1 —p) > pif p<1/2.
Thus, the probability of having at least (1 — a)pm connections (size of the matching
between SEEK devices and SCAN devices) is

Pr {at least (1 — a)pm connections}
=Pr{l-a)pm < X <(1+ a)pm}
= Pr{|X — pm| < apm}
=1-Pr{|X — pm| > apm}.

The Chebyshev’s inequality states that

Pr{|X — E [X]| > t} < t~*Var [X].
By setting t = apm, E [X] = pm, and Var {X] = mp(1 — p), we have

mp(l—p) _1-p
(apm)?  ma?p’

Pr{|X — pm| > apm} <
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Since m > 2 and p > 1/3, we have (1 — p)/pm < 1. Thus we can pick a so that a? >
(1—p)/2p > (1 — p)/mp. Then c = (1 — p)/(2c?p) is a constant smaller than 1. Therefore,

Pr {at least (1 — a)pm connections} > 1 —ec.

Each connection reduces the number of leaders by 1. Therefore, with probability at least
1 — ¢, the number of leaders is reduced by a fraction (1 — a)p. a

Theorem 71. The algorithm forms a scatternet in O(logn) rounds with probability at least
1-0(1/n),

Proof. We note that a scatternet is formed when there is only one leader left. By Lemma 70,
when there are at least two leaders, the number of leaders is reduced by a fraction with
some probability g. The probability that the algorithm takes more than O(logn) rounds to
reduce the number of leaders to 1 is at most ¢°(1°€™) = O(1/n). O

Theorem 72. The expected message complezity of the algorithm is O(kn).

Proof. We first consider the message complexity of each invocation of the procedures. We
note that each of the procedures MAIN, SCAN, SEEK, CONNECTED, MERGE, MIGRATE
sends O(1) messages. Procedure MOVE moves at most k devices. Thus it sends O(k)
messages.

To analyze the message complexity of MAIN, SEEK, and SCAN, it is sufficient to find
the expected number of times that MAIN is called, because each call to MAIN leads to a
call to SEEK or a call to SCAN.

First, we can assume that when a leader w chooses SCAN such that if it or its slave is
contacted by another leader u, then w will retire. This is true except that if u has k slaves,
then u will retire instead. See lines 5-7 in procedure CONNECTED. However, for simplicity
of the analysis, we can assume that w retires instead of u. In other words, we can assume
that w and u swap their identities whenever we are in this case. This will not affect our
result because we only care about the total number of messages sent by these leaders. The
high-level algorithm does not rely on an identifier of the device. (Device address is used
by low-level Bluetooth INQUIRY and PAGE. But these processes are independent between
different rounds in the algorithm.)

During any round, each leader chooses SCAN with probability 1 — p. Assume that a
leader w has chosen SCAN. Leader w or w’s unshared slave will definitely be contacted by
another leader if the total number of SCAN devices is not more than the number of SEEK
devices.

Let X; be the random variable of the number of SCAN devices over i components. Thus,
E [X;] = (1 — p)i. Let m > 2 be the number of components.
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We now assume that p > 1/2 because if otherwise, we can switch the roles of SCAN and
SEEK. Assume w has chosen SCAN.

Pr {w or w’s slave is contacted by a leader}
=Pr{Xm-1<m/2-1}.
By Markov inequality, we have
Pr{Xm-1>m/2—-1} =Pr{X,,-.1 >m/2~1/2}
<E[Xm]/(m/2-1/2)
=2(1 - p).

Thus,
Pr{Xm-1<m/2-1}>1-2(1-p)=2p—1.

Thus, each leader retires with probability at least (1 — p)(2p — 1), which is positive except
when p =1/2.
We now consider the case where p = 1/2. In the proof of Lemma 70, we have

Pr {at least (1 — a)pm connections} > 1 — (1 — p)/(a?pm).
Let p=1/2, a =1/2, and m > 5, then

Pr {at least m/4 connections} > 1/5.

Therefore, with probability at least 1/5, at least m/4 connections are made. And when
that happens, each device has a probability of at least 1/4 to be the slave of a connection
being made. This proves our argument for m > 5. The cases where m = 2,3,4 can be
easily verified.

We have shown that any leader has a constant probability of retiring during each round.
This means that each leader is active for O(1) rounds. Thus MAIN is called O(n) times in
total, and the overall message complexity for procedures MAIN, SEEK, SCAN is O(n).

Procedure CONNECTED is called exactly n — 1 times. Thus, the message complexity of
CONNECTED is O(n). Each call to CONNECTED could result in at most 1 call to MERGE, at
most 1 call to MIGRATE, and at most 3 calls to MOVE. Thus the overall message complexity
of MERGE and MIGRATE is O(n), and the overall message complexity of MOVE is O(kn).

]

Corollary 73. If k is a constant, then the message complezity of the algorithm is O(n).

We note that O(n) is the optimal asymptotic message complexity because each device
needs to send at least one message.
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5.5.2 Simulation Results

In this subsection, we investigate the properties and performance of our scatternet formation
protocol.

We simulate our scatternet formation algorithm with simjava [46], a discrete event
simulation package for Java. The probability p that each leader chooses to execute SEEK in
each round is 1/2 in our simulations. Following the Bluetooth specification, we set k = 7.
We start with 2, 4, and 8 nodes, and then increase by increments of 8 nodes, up to 128
nodes. This allows us to present the results against the number of nodes in linear scale and
in logarithmic scale. Each data point in the graphs of this section represents an average of
50 trials.

Scatternet Properties

First, we found that the maximum degree of the scatternet formed is 1 when there are
fewer than 8 nodes and is 2 when there are at least 8 nodes. This means that the maximum
degree is optimal except when there are 8 nodes, in which case a maximum degree of 1 is.
possible.

As we discussed in Section 5.3, it is important to minimize the number of piconets
because piconets interfere with each other. Figure 5.7 shows that the number of piconets
formed lies between the protocol’s theoretical upper bound |(n —2)/(k —1)] + 1 and the
universal lower bound [(n —1)/k]. The largest difference between our simulation result
and the lower bound is 2.2 piconets.

The network diameter, which is the maximum shortest path length between any pair of
devices, captures the maximum routing delay between any pair of nodes in the scatternet.
Although we do not have a theoretical analysis of the network diameter, Figure 5.8 shows
that the network diameter grows about logarithmically with the number of devices (x axis
is in logarithmic scale).

Performance

First, it is crucial that the scatternet is formed as fast as possible, because this translates
to the latency experienced by the users. In Figure 5.9, we can see that the number of
rounds required to form the scatternet is around 1.2log, n + 2. This validates the O(logn)
time complexity theoretical result. In Section 5.6, we will investigate the amount of time
required in each round.

Second, as most mobile Bluetooth devices are expected to run on batteries, it is impor-
tant to minimize the number of messages sent in order to conserve battery power. We can
put the messages into three categories:

Inquiries — Bluetooth INQUIRY and INQUIRY RESPONSE packets.
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Figure 5.7 Number of piconets in the scatternet formed, compared to upper bound
[(n—2)/(k—1)] + 1 and lower bound [(n — 1)/k], where k = 7.
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Figure 5.8: Network diameter of the scatternet formed.
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Figure 5.9: Number of rounds to form a scatternet.

Pages - Bluetooth PAGE and PAGE RESPONSE packets.
Algorithmic Messages — other messages used by our scatternet formation algorithm.

Figure 5.10 presents the total number of the Algorithmic Messages, Inquiries, and Pages.
We can verify that the numbers of all three types of messages increase linearly with the
number of devices. This agrees with the O(n) message complexity theoretical result.

In Figure 5.11, we can see that the maximum number of messages sent by any device
increases logarithmically with the number of nodes. This implies that the power requirement
of the “unluckiest” device is O(logn). A likely candidate of such unlucky device is the last
remaining leader in the protocol. Since the last leader is not retired, the number of messages
sent by this leader is ©(logn).

In the next section, we will find out how long it takes to finish one round of inquiry and
page. We will also see how many packets are sent during the inquiry and page processes.

5.6 Device Discovery

In this section, we investigate the performance of the device discovery protocol used during
each round of the scatternet formation algorithm.

During scatternet formation, there are many devices trying to get connected at the
same time, so the inquiry and page processes will interfere with each other. We call this the
problem of device discovery when a set of in-range devices try to connect with each other.
In the following, we discuss our approach and present the simulation results.
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5.6.1 Protocol

We describe a simple randomized protocol for the problem of device discovery. This pro-
tocol is repeated during each round of the scatternet formation algorithm introduced in
Section 5.4. We are given n devices that are not aware of each other. Qur goal is to es-
tablish as many connections as possible. We are not concerned with exactly which of the
devices are connected.

First, each device independently decides to be a SEEK node (with probability p) or a
SCAN node (with probability 1 — p).

The protocol contains two phases - the inquiry phase and the page phase. In the inquiry
phase, all the SCAN devices stay in the INQUIRY SCAN state. Each SEEK device will try
to contact a SCAN device. However, a SEEK device may not always succeed in finding a
slave because the number of SCAN devices can be smaller than the number of SEEK devices.
Therefore, if a SEEK device is not able to contact a slave after certain amount of time, it
will simply give up. Similarly, a SCAN device might also fail to be connected. In the page
phase, the already paired devices are connected with PAGE and PAGE SCAN.

This protocol makes sure that each SEEK device is connected to at most one SCAN
device and each SCAN device is connected to at most one SEEK device. In other words, we
obtain a one-to-one matching between the SCAN devices and SEEK devices. The number
of connections established is the smaller of the number of SEEK devices and the number of
SCAN devices.

5.6.2 Simulation Results

We also used simjava [46] to simulate this protocol®. Each Bluetooth device is simulated
by a thread. In each time slot, all devices first send messages, which include the frequency
channel numbers, to a special object Air. Object Air detects the collisions in each of the
79 frequency channels, and only delivers the uncollided messages to those devices listening
on the respective frequency channels. Inquiry and page frequency hopping sequences are
implemented according to the Bluetooth specification. Since the overall time scale of the
simulation is small, we did not simulate the clock drift. Each data point in the figures of
this section is an average of 10 trials. In each trial, the devices are assigned addresses and
clocks randomly.

Figure 5.12 shows the running time of the inquiry phase with three different master-
to-slave ratios. For example, when there are 16 devices in total, a 50%-50% split leads
to 8 masters and 8 slaves, and a 25%-75% split leads to 4 masters and 12 slaves. In
the simulations of our algorithm in Section 5.5.2, we set p to 1/2. Thus, we expect to
see 50% masters and 50% slaves in each round. The actual outcomes at each round are

2IBM’s BlueHoc simulator [13] is not used because we began implementing our simulator before BlueHoc
was released in public.
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Figure 5.12: Running time of the inquiry phase with three master-to-slave ratios.

distributed according to the binomial distribution. For more than 8 devices, the 256%-75%
split and 75%—-25% split encompass at least 2 standard deviations around the expectation.
We observe that the inquiry time of the 50%—-50% split case increases sharply when there
are around 64 devices. Since all SEEK devices follow the same inquiry hopping sequence
(the phase depends on the device’s clock), packet collision is a major problem when there
are many devices. From the collision graph (Figure 5.13) on the 50%—-50% split case, we
can deduce that collisions start to hurt the performance severely when there are around 64
devices.

In Figure 5.14, we observe that, for up to 64 devices, the time consumed by the page
phase is below 0.02 seconds, which is insignificant compared to the time required for the
inquiry phase. This is because the SEEK devices already know the addresses and clocks
of their target SCAN devices, thus they are able to contact the SCAN devices quickly. In
addition, since they have different hopping sequences, the amount of collisions is lower in
this case.

Figure 5.15 shows the total number of packets sent. Again the number of packets sent
rises sharply around the 64-device case, due to collisions. However, we can see that the
total number of packets is around (10000/32)n for n = 32, 64, and 128. This means that
the total number of packets sent increases roughly linearly with the number of devices.
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5.7 Overall Performance

We now estimate the overall performance of our protocol, using the results of Sections 5.5.2
and 5.6.2.

In Section 5.5.2, we learned that the number of Inquiries, Pages, and Algorithmic Mes-
sages all increase linearly with the number of devices. And in Section 5.6.2, we found that
the number of packets sent during a single round of the protocol increases linearly with the
number of devices. Therefore, we can conclude that overall message complexity of the pro-
tocol is linear. This means that the average power consumed by a device remains constant
when the number of devices increases. In Section 5.5.2, we also showed that the number of
Inquiries, Pages, and Algorithmic Messages of any single device increases logarithmically.
Thus, our protocol does not cause a very high load on any single device.

To estimate the total time taken by the protocol, we can multiply the number of rounds
(Figure 5.9) by the time required for each round. The time taken in each round is the sum
of the time required for the inquiry phase (Figure 5.12), the page phase (Figure 5.14), and
the procedure CONNECTED.

We can estimate the time required for CONNECTED. During each round, each device
will perform either PAGE or PAGE SCAN at most once as a result of procedure CONNECTED.
Procedure CONNECTED does not cause any INQUIRY because the clocks and addresses of
the devices are already known. Therefore, the time required for the PAGEs caused by
CONNECTED should be more than the time required in the 50%-50% case of the page phase
(Figure 5.14). In addition, O(k) messages need to be exchanged among leader u, slave v,
and leader w in procedure CONNECTED. The amount of information to be passed is small,
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and thus the time required to pass these messages is insignificant compared to the time
required for the INQUIRYs and PAGEs.

For example, according to our simulation results, for up to 32 devices, we expect that
1.39 + 0.02 x 2 = 1.43 seconds are required for each round. The protocol takes on the
average 7.7 rounds to form the scatternet. Thus, the total time requirement is about
7.7x%1.43 < 11.1 seconds. Similarly, the estimated total time required for 16 devices and 64
devices are at most 10.2 seconds and 30.3 seconds respectively. Section 5.8 discusses how
the overall performance can be improved with an asynchronous version of our protocol.

5.8 Variations and Extensions

In the following, we discuss several limitations of our protocol and suggest techniques for
overcoming them.

5.8.1 Inquiry Collisions

When there are many devices, packet collisions among INQUIRY devices can adversely affect
the performance. In particular, if two INQUIRY devices happen to have their clocks in phase
so0 that their inquiry sequences are synchronized, then their inquiry packets will collide
repeatedly. This effect was observed in our simulations in those cases with large numbers
of devices. It is conceivable that this problem can be alleviated if the INQUIRY devices back
off randomly during a heavy-collision situation. We note that this back-off by the INQUIRY
device is not related to the random back-off by an INQUIRY SCAN device after receiving an
inquiry packet, as specified in Bluetooth 1.1.

5.8.2 Asynchronous Protocol

The overall time requirement estimated in Section 5.7 is longer than the phase I of BTCP
[88]. To improve the performance, we should consider an asynchronous version of our
protocol. We believe that the overall time requirement can be reduced because of the
following observations:

e The worst-case time required per round happens when there is a perfect split between
the masters and slaves. However, if this happens frequently, the total number of
rounds required is small. For example, if there is a perfect split every round, the
protocol will only need log, 32 = 5 rounds to form a scatternet of 32 nodes.

e The number of active leaders decreases rapidly. Thus, the device discovery processes
in the later rounds can be completed faster.
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We can consider an asynchronous version of our protocol with the following change: Once
CONNECTED returns, the remaining leader can proceed to MAIN immediately. The synchro-
nized nature of the current protocol is useful for the theoretical analyses of the performance.
In practice, it is not necessary for all devices to execute CONNECTED at the same time. The
overall performance of the asynchronous version should be better than the synchronous
version. Moreover, the analyses on the degrees of devices (Lemma 68) and the number of
piconets (Theorem 69) remain valid in the asynchronous version.

We note that it is not necessary for the devices to start at the same time in practice.
Even in the synchronous version, a device can join the scatternet in a later round (see
Section 5.8.4 for a discussion of dynamic environments).

5.8.3 Out of Range Devices

In some scenarios, some of the Bluetooth devices might be out of range of one another.
Given arbitrary device connectivity, it is not possible to maintain the performance and
scatternet properties guarantees. Despite such limitations, we can augment the protocol
to try to form a scatternet whenever possible. Procedures SEEK and SCAN will not need to
be modified because two devices will be connected only if they are in-range. We note that,
other than SEEK, the only place that master-slave connections are established (by PAGE and
PAGE SCAN) is in procedure MOVE. Therefore, procedure MOVE might fail. Let us consider
the places in CONNECTED where MOVE is called:

lines 5-7 (Figure 5.2) If y cannot be connected to v, then we can try to use other un-
shared slaves of u. If all unshared slaves of u are not able to connect to v, then v
should become a retired master and have u as its only slave.

lines 11-12 (Figure 5.3) The MERGE call might fail. In this case, we can let w retire
with its smaller piconet.

lines 13-15 (Figure 5.4) If u cannot be connected to w, then we can let u be the slave
of v. This will be similar to the original outcome except that v will be the new leader,
instead of u.

lines 16—21 (Figure 5.5) If MERGE fails, we will just let w retire.

lines 2223 (Figure 5.6) The MIGRATE procedure should move as many devices to the
retiring master w as allowed by the underlying connectivity.

The above modifications, except the one on lines 57, only affect the total number of piconets
of the scatternet formed, but not the maximum degree of any device in the scatternet formed.

Each execution of modified lines 5-7 might increase the degree of » by one. Without a
distribution assumption of device locations, we cannot bound the probability of such event.
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However, we can provide some reasons that such event is unlikely. Given that v was still
an isolated device before the connection, we can show that it is unlikely that u has more
than one shared slaves. If u has at least two shared slaves, then the component led by u
has at least k& + (k — 1) + (k — 1) devices, because each retired piconet has at least £ — 1
slaves. This implies that at least [log,(3k — 2)] rounds have passed before v is able to make
a connection. If p = 1/2, v has a probability of at least 1/2 to make a connection in each
round. Thus, if kK = 7, then the probability that v is not connected for [log, 19] = 5 rounds
and then connect to u as a slave is at most (1/32)(1/2) = 1/64. When u has no more than
1 shared slave, it is unlikely that the k — 1 or k — 2 unshared slaves are all out of range with
v.

Depending on the underlying connectivity of the devices, the piconets are likely to have
smaller sizes, implying a larger number of piconets in the scatternet formed. Unless the
situation discussed in the previous paragraph happens, the maximum degree of any device
in the scatternet will still be two.

LY

5.8.4 Joins, Leaves, and Faults

Our protocol can be easily extended to work with dynamic environments (with devices
joining and leaving the scatternet) and device failures. Our current protocol already handles
the events of devices joining—the new devices can simply start as leaders and thus discover
or be discovered by other devices. Additional work is required to deal with the case of
devices leaving or failing. We give an outline in the following:

o If a master fails (or leaves the network), then a new master can be elected from the
slaves. If the failed master was shared, then the new master should become a leader
and merge with the rest of the scatternet by the protocol.

e If a shared slave fails, its older master (the master who connected to this slave first)
should become a leader again and then it will be connected to the rest of the scatternet
by the protocol.

¢ Nothing needs to be done when an unshared slave fails, unless it is the only unshared
slave of an active leader.

e In general, if we end up with a leader u with no unshared slave, then this leader has
to disconnect from its shared slaves. Other masters of those shared slaves should now
become leaders again. This will allow the protocol to proceed as usual. Fortunately,
this expensive reorganization should occur rarely.
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5.9 Concluding Remarks

In this chapter, we introduced a new Bluetooth scatternet formation protocol. We pre-
sented both theoretical and simulation results to show that our protocol has O(logn) time
complexity and O(n) message complexity.

We have shown that the algorithm produces scatternet with desirable properties: small
number of piconets for minimizing inter-piconet interference, and small degrees for the
devices for avoiding network bottlenecks. In addition, according to the simulations, the
diameter of the scatternet, which corresponds to the maximum routing distance between
nodes, is about O(log n). At last, we also demonstrated that no single device is particularly
exhausted by the protocol.
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Chapter 6

Conclusions

This thesis presented three new dynamic topology construction algorithms: a distributed
construction of expander graphs, a resource discovery algorithm, and a Bluetooth scatternet
formation algorithm.

Traditional distributed algorithms often assume a complete graph topology, a rigid topol-
ogy such as ring or hypercube, or an arbitrary static topology. In contrast, the algorithms
considered in this thesis work on evolving topologies. These algorithms not only adapt to a
dynamic topology where nodes join and leave, but also actively establish and remove links
between the nodes, to achieve certain global graph properties.

Much of the distributed computing research had focused on fault-tolerant group ser-
vices. Algorithms such as leader election and consensus assume a set of processes (those
non-malicious) working towards a common goal. However, since such service requires partic-
ipation from all cooperating processes, scalability is limited. On the other hand, algorithms
for peer-to-peer networks must consider scalability as the primary requirement. Further-
more, in order to establish a large-scale network in practice, the individual nodes have to be
self-motivated. Recent examples are file sharing and distribution systems such as Overnet
[76] and BitTorrent [12].

We believe that this new class of scalable algorithms that manipulate topologies will
have impacts on practical large-scale distributed systems.

Many algorithms discussed in this thesis can be applied to other problems. For example,
we expect the size estimation algorithm we proposed in Chapter 2 would be useful in other
distributed systems. One future direction is to utilize the estimates in a load-balancing
scheme for layered H-graphs. It is also possible to improve the estimates on layered H-graphs
with cooperation across the layers.

In the following, we outline two systems that can be implemented with the H-graphs
introduced in this thesis.

We believe that networked virtual environments will be the next momentous application
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on the Internet. The Internet has already captured a significant portion of the population.
Very soon, our interactions on-line will become as natural as traditional connections through
real-life presence. In addition, as advances in virtual reality will bring users immersive
experiences, people will spend more time working, learning, and playing in the virtual
worlds.

We need a protocol that can scale the size of our on-line societies to those of the off-line
societies, and also scale with the bandwidth requirement of future virtual reality technolo-
gies. Instead of simply employing more powerful servers, I believe the ultimate solution will
depend on direct client-to-client communications. In other words, we should model after the
distributed physical world, in which we usually perceive each other directly through light
and sound. Our objective is to implement client interactions with an active distributed
algorithm — to see as little as possible (to conserve energy), yet still see those need to be
seen (to be aware of one’s proximity).

This problem can be considered as a distributed version of the dynamic nearest neighbor
problem — each point is a process and has to maintain its own set of nearest neighbors. We
can set up layers of networks so that each node is connected to all of its nearby neighbors, as
well as random samples of those that are further away. The expander construction algorithm
developed in this thesis serves as a building block of this novel protocol.

Another applied research direction of H-graph is dynamic addressing. The demand for
dynamic addressing arises from several trends:

1. each user will switch between different personal devices frequently;
2. mobile devices will have intermittent connections and dynamic IP addresses;
3. direct connection is preferred for applications such as instant messaging and gaming,.

We can study the issues of implementing dynamic addressing with a distributed construction
based on layered H-graphs.

Our approaches to these problems carry a common thread — new graph-theoretic algo-
rithms that work under an uncertain, changing topology and make use of local information
about each node in the graph and its neighbors to achieve certain global graph properties.
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