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Abstract

In this thesis, we investigate three problems: the first broaches the control under informa-
tion constraints in the presence of uncertainty; in the second we derive a new fundamental
limitation of performance in the presence of finite capacity feedback; while the third stud-
ies the estimation of Hidden Markov Models. Problem 1: We study the stabilizability
of uncertain stochastic systems in the presence of finite capacity feedback. We consider
a stochastic digital link that sends words whose size is governed by a random process.
Such link is used to transmit state measurements between the plant and the controller. We
derive necessary and sufficient conditions for internal and external stabilizability of the
feedback loop. In addition, stability in the presence of uncertainty in the plant is ana-
lyzed using a small-gain argument. Problem 2: We address a fundamental limitation of
performance for feedback systems, in the presence of a communication channel. The feed-
back loop comprises a discrete-time, linear and time-invariant plant, a channel, an encoder
and a decoder which may also embody a controller. We derive an inequality of the form
L_ > E max{0, log(lAi(A)I)} - Cchannel, where L_ is a measure of disturbance rejection,
A is the open loop dynamic matrix and Cchannel is the Shannon capacity of the channel. Our
measure L_ is non-negative and smaller L_ indicates better rejection (attenuation), while
L_ = 0 signifies no rejection. Additionally, we prove that, under a stationarity assumption,
L_ admits a log-sensitivity integral representation. Problem 3: We tackle the problem of
mode estimation in switching systems. From the theoretical point of view, our contribution
is twofold: creating a framework that has a clear parallel with a communication paradigm
and deriving an analysis of performance. In our approach, the switching system is viewed
as an encoder of the mode, which is interpreted as the message, while a probing signal es-
tablishes a random code. Using a distortion function, we define an uncertainty ball where
the estimates are guaranteed to lie with probability arbitrarily close to 1. The radius of the
uncertainty ball is directly related to the entropy rate of the switching process.

Thesis Supervisor: Munther A. Dahleh
Title: Professor of EECS
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Chapter 1

Introduction

In an attempt to delineate research directions for this century, investigators have recently

gathered all over the world in workshops and study groups. The main reports that came

out [19, 15] alluded to new challenges, both in control and estimation. Among the consen-

tient ideas was the further study of control and system identification, under an information

theoretic viewpoint. The adoption of such approach is backed by:

* The need to analyze and design feedback systems in the presence of finite capacity

feedback. This problem is also intimately related to the state estimation of a dy-

namic system when the state information must be conveyed through a finite capacity

channel.

* The potential of using the information theoretic framework and results to study esti-

mation and system identification.

In this thesis, we identify three problems which are related to the items listed above. We

describe the first in section 1.1, while the second is expounded in section 1.2 and the third

is included in section 1.3. The remaining chapters explore each of these problems in detail.

In particular, Chapter 2 refers to problem 1, while Chapters 3 and 4 address problems 2 and

3, respectively. The Chapters are, mostly, self contained as they are extended versions of

published papers. The chapters are organized according to the following list:

* Chapter 2 [44]: Feedback Stabilization of Uncertain Systems Using a Stochastic

Digital Link.
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* Chapter 3 [42] Fundamental Limitations of Disturbance Attenuation in the Presence

of Finite Capacity Feedback.

* Chapter 4 [41]: An Information Theoretic Approach to the Modal Estimation of FIR

Linear Systems

1.1 Feedback Stabilization of Uncertain Systems

Motivated by applications, such as remote feedback, control in the presence of information

constraints has received considerable attention. Certainly, the exploration of such problems

is exciting as they foster the interaction between the disciplines of Information Theory and

Control. Finite capacity feedback results from the use of an analog communication channel

or a digital link as a way to transmit information about the state of the plant. It can also be

the abstraction of computational constraints created by several systems sharing a common

decision center.

1.1.1 Problem Statement

We wish to study the stabilizability of uncertain stochastic systems in the presence of finite

capacity feedback. Motivated by the structure of communication networks, we consider a

stochastic digital link that sends words whose size is governed by a random process. Such

link is used to transmit state measurements between the plant and the controller. We intend

to derive necessary and sufficient conditions for robust internal and external stabilizability

of the feedback loop. We expect that stability in the presence of uncertainty in the plant

can be analyzed using a small-gain argument.

In Figure 1-1, we depict the system interconnection that we have adopted in our study.

One of the motivations for the proposed formulation is the control of systems entrenched

in uncertain environments that change stochastically. Stochasticity in the environment im-

pacts the link and the plant by introducing randomness and uncertainty. Estimation and

modeling errors are also accounted for as uncertainty in the plant.
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Estimate of the
parameters of the system

External k with
Disturbance.... Decoder / Controller Uncertain rate

Estimate of the
parameters of the system

Figure 1-1: Control under information constraints paradigm

1.1.2 Discussion of Previous Publications

Various publications in this field have introduced necessary and sufficient conditions for

the stabilizability of unstable plants in the presence of data-rate constraints. The construc-

tion of a stabilizing controller requires that the data-rate of the feedback loop is above a

non-zero critical value [59, 60, 50, 54, 39]. Different notions of stability have been inves-

tigated, such as containability [66, 67], moment stability [54] and stability in the almost

sure sense [59]. The last two are different when the state is a random variable. That hap-

pens when disturbances are random or if the communication link is stochastic. In [59] it

is shown that the necessary and sufficient condition for almost sure stabilizability of finite

dimensional linear and time-invariant systems is given by an inequality of the type C > R.

The parameter C represents the average data-rate of the feedback loop and R is a quantity

that depends on the eigenvalues of A, the dynamic matrix of the system. If a well defined

channel is present in the feedback loop then C may be taken as the Shannon Capacity. If it

is a digital link then C is the average transmission rate. Different notions of stability may

lead to distinct requirements for stabilization. For tighter notions of stability, such as in the

m-th moment sense, the knowledge of C may not suffice. More informative notions, such

17



as higher moments or any-time capacity [54], are necessary. Results for the problem of

state estimation in the presence of information constraints can be found in [66], [55] and

[38].

1.1.3 Main Contributions of Chapter 2

In Chapter 2, we study the moment stabilizability of a class of uncertain time-varying

stochastic systems in the presence of a stochastic digital link. In contrast with [49], we

consider systems whose time-variation is governed by an identically and independently

distributed (i.i.d.) process which may be defined over a continuous and unbounded alpha-

bet. We also provide complementary results to [49, 21, 23, 35] because we use a different

problem formulation where we consider external disturbances and uncertainty on the plant

and a stochastic digital link.

Our work provides a unified framework for the necessary and sufficient conditions for

robust stabilizability by establishing that the average transmission rate must satisfy C >

R + a + /3, where a, p > 0 are constants that quantify the influence of randomness in the

link and the plant, respectively. As a consequence, C must be higher than R to compensate

for randomness both in the plant and the digital link. The conclusion that C > R does not

suffice in the presence of a stochastic link was originally derived by [55]. We quantify such

difference for stochastic digital links. The work of [55] was an important motivation for

our work and the treatment of the nominal stabilization of first order linear systems, using

a parameterized notion of capacity' for general channels, can found there. If the plant and

the link are deterministic, we get /3, a = 0 which is consistent with the condition C > R

derived by [59]. We also show that model uncertainty in the plant can be tolerated. By

using an appropriate measure, we prove that an increase in C leads to higher tolerance to

uncertainty. All of our conditions for stability are expressed as simple inequalities where

the terms depend on the description of uncertainty in the plant as well as the statistics of

the system and the digital link. A different approach to deal with robustness, with respect

to transmission rates, can be found in [37].

18
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Figure 1-2: Structure of the Feedback Interconnection

1.2 Fundamental Limitations in the Presence of Finite Ca-

pacity Feedback

So far, research in this field has primarily directed its attention to stabilization. The basic

framework is depicted in Fig 1-2 and comprises a plant, a channel, an encoder and a de-

coder, which implicitly embeds a controller. Measurements of the plant's output must be

encoded and sent through the channel. The information, received at the other end of the

channel, is decoded and used to generate a control signal. It has been shown that stabi-

lization, of a linear and time-invariant plant, requires [59, 60, 50] that Cchannel, the chan-

nel's Shannon capacity, is larger than E max{0, log(Xji(A) )}, where A is the dynamic

matrix of the state-space representation of the plant. For certain channels, the condition

Cchannel > E max{O, log(IAi(A) ) }is sufficient for stabilization in the almost sure sense

[60], but it may not suffice for moment stability[54]. Stabilization of nonlinear systems

has also been studied by [51] and [40]. The work by [22] has used the integral of the

log-sensitivity, as seen by the noise in an additive Gaussian channel, to establish that the

optimal encoding/decoding scheme can be constructed using standard optimal control the-

ory. Another recent area of investigation is the analysis in the presence of disturbances and

uncertainty (Chapter 2).

Understanding the fundamental limitations of performance in a feedback system is crit-

ical for effective control design. One of the most well known trade-offs is the water-bed

effect for linear feedback systems, which results from Bode's integral formula[13]. In such

classical theory, the transfer function, between the disturbance d and = ii + d (see Fig

1-2), is denoted as sensitivity and is represented by S(z). Bode's result, for a strictly proper
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loop gain, is expressed as:

1 7r 1 r
[log S(eJ)I]dw + [logS(e"')l]+dw= Emax{O, og(]Ai(A)J)} (1.1)

where [log IS(ejw)J]_ = min{0, log IS(ejw)I} and [log IS(eJ")I]+ = max{O, log IS(eJw)I}.

It implies that sensitivity can't be small at all frequencies,i.e., reduction of f, [log I[S(ew) l]dw

is achieved at the expense of increase in f ,[log IS(ejw)t]+dw.

1.2.1 Main Contributions of Chapter 3

Recent publications [27, 71] have provided new versions 2 of (1.1). The work by [71] has

introduced a Bode-like integral inequality for non-linear systems, which is derived based

on information theoretic principles.

In Chapter 3, we derive a fundamental limitation involving the directed information

rate3 [47, 60] at the channel, denoted by Io(v - z). Our results show that the following

must hold:
1
2L_ + (v - z) > , max{O, log(lAi(A)I)}

where L_ is a measure of disturbance rejection. Such measure satisfies L_ < 0, where

L_ = 0 means no-rejection and small L_ attests disturbance attenuation. We show that,

under stationarity assumptions, L_becomes an integral and our condition can be expressed

as:

2 [log IS(eiw)l]_do + ,oo(v z) > max{O, log(lAi(A)i)) (1.2)

By means of an argument similar to the water-bed effect, the inequality (1.2) asserts that

attenuation, when measured by fr[log IS(ejw)I]_dw, has to be repaid by a higher infor-

mation rate in the channel. Since Io,(v -- z) < Cchannel, we infer that the trade-off (1.2)

creates a fundamental limitation.

Using information theoretic arguments and assuming stationarity, we also derive the

Bode integral formula. Our derivations require a linear and time-invariant plant, but the

2 Recently John Doyle (CALTECH) and Jorge Gongalves have also derived a version of Bode's funda-
mental limitations for general feedback systems, by means of the properties of the Fourier series

3This quantity is represented as (v -- z) and will be precisely defined in section 3.2.
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L - ---------------------- -J

Figure 1-3: Diagram of the Estimation Setup

encoder, the channel and the decoder/controller can be any causal operators.

1.3 Estimation of a Class of Hidden Markov Models

Consider the estimation setup depicted in figure 1-3. That is the archetypal scenario where

an external observer intends to estimate qk, the mode of operation of the system F. The

estimator generates, or has access to, a probing signal Vk which is used to stimulate the

system so that the noisy observations of the output are informative. In this framework Vk

is i.i.d., zero mean and Gaussian with covariance matrix Ev, which is considered one of

the design parameters. Additionally, we assume that F is known. The reason to adopt Vk

i.i.d. is to eliminate the possibility that the agent, represented by F, can predict the probing

signal.

The aforementioned scheme corresponds to problem 2, according to the classification

in [53], but it can also be designated, in the context of Hybrid Systems [33], as mode

estimation. In [53], [4] and [68, 33] one finds applications that illustrate the flexibility

of this framework and suggest why its employment is so vast. Besides failure detection,

other usances are the mode estimation of systems in adversarial environments, where such

information might be critical in the prediction of attack maneuvers.

21
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1.3.1 Problem Statement

Let A = {1, ... , M} be a finite set, which we denote as alphabet, and qk be a Marko-

vian process, which we designate as mode sequence, taking values in A. Consider also a

function

F: (Rnv) x A -- Rn F

which is linear in (Rnv) . The function F is used to describe the input-output behavior

of the system in Figure 1-3 according to the following Hidden Markov Model (HMM):

Fk = F(Vk, - - , Vk-+l, qk) + Wk (1.3)

where Vk E Rnv and Wk E RnF are independent and identically distributed Gaussian

random processes that represent the input and measurement noise, respectively. We select

this finite impulse response (FIR) structure because it can be used as an approximation for

a broad class of stable systems, while providing a simple analysis framework. By adopting

this setup, we avoid the need to estimate the continuous state that would be necessary in

the formulation adopted by [33]. That allows us to concentrate on the mode estimation

alone as suggested by [58]. In physical applications, F is a passive element that reacts to

the probing signal. Typical examples are when F represents the reflection of an acoustic or

electromagnetic probing signal. The changes in the reflection characteristics are a function

of the mode and are represented by the function F.

If the transition probabilities of qk are available, then we can adopt a Maximum A

Posteriori (MAP) estimator. For each k, such estimator leads to the minimal probability of

error P ((q,..., qk) # (1, · · · , k)). On the other hand, since such quantity goes to one,

as k tends to infinity, we conclude that it is not useful as a measure of estimation fidelity.

Another approach is to minimize the probability of error P (qk qlk) at every step k.

If the transition probabilities are provided then this method can be efficiently implemented.

In [24], the estimator equations, for such paradigm, are elegantly derived by means of a

change of measure. A comprehensive discussion of the choice of fidelity measures can

also be found in [53].
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In previous publications, the parameter estimation of time-varying systems was also

studied in a deterministic framework. They corroborate the intuitive idea that, for a fixed

signal to noise ratio, slow varying systems can be estimated more accurately. More specifi-

cally, [70] shows that time-variation generates uncertainty in a robust estimation sense. The

natural extension to the present framework would be the use of P (qk $ qk) as a measure

of estimation fidelity. But, the reality is that the determination of the probability of error,

in the presence of sources with memory, is very difficult. A common approach is to use

Monte Carlo simulations [12]. The aforementioned way of determining estimation fidelity

does not allow a proper study of the influence of the probing signal, nor it reveals how the

statistic properties of qk and Vk affect fidelity.

Along these lines, we would like to address the following questions:

* Decide for a meaningful measure of distortion and derive a worst case analysis for the

achievable estimation fidelity. Such result must reflect the memory of qk. Intuitively,

one should expect that if qk is almost periodic (deterministic) then high fidelity can

be achieved even when the signal to noise ratio is small. That should be, mutatis

mutandis, analogous to the result where [70] relates the degree of time variation with

the magnitude of estimation uncertainty. In addition, we want to determine what

is the essential feature one must know about the source in order to provide such

analysis.

* Investigate how the probing signal affects estimation fidelity, when evaluated in terms

of distortion measures which are associated to the frequency of error.

1.3.2 Preview of the Main Contributions

In Chapter 4, we study a measure of distortion Dd(ql,k, ql,k), which is related to the con-

cept of divergence as in [3]. The distortion Dd(ql,k, ql,k) has several desirable properties

which are explored in [43]. In particular, Dd(ql,k, 4l,k) establishes a topology in the space

of sequences. The covariance matrix of the probing signal is one of the parameters that

define Dd(ql,k, ql,k) and, as such, it will shape the topology. In particular, scaling up the

covariance matrix of Vk leads to a finer topology.
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Figure 1-4: Framework for a communication system

An essential feature of Dd is the one expressed in the following theorem, proven in

chapter 4. We also stress that the proof of such result holds even if the transition probabili-

ties of qk are not known.

Let rq be the entropy rate [20] of the process qk, given by:

r = E[- n(pq(qkqk-1))] (1.4)

Theorem 1.3.1 Let c1l,k be determined according to the decoding process described in the

definition 4.3.4. For any given > O, there exists k E N and e E (0, 1) such that:

P )d(ql,k, l41,k) > ln(m)rq + - + ) <, ifr q > 0 (1.5)

P (d(ql,k, l1,k) > 6) < 6, ifrq = 0 (1.6)

The worst case analysis quantified in Theorem 1.3.1 enables the use of Dd(ql,k, ql,k)

to answer the following question: Is it possible to reliably communicate4 through the

sequence qk ? From Theorem 1.3.1 we find that the answer is yes, provided that we can

partition the typical sets of ql,k with balls of size 2 ln(m)r q + nF, as measured by Dd.

1.3.3 Comparative Analysis with Previous Work

In Chapter 4 we introduce a suitable measure of distortion and derive theorem 1.3.1. We

provide a unified probabilistic worst case analysis that analytically unveils the importance

of the covariance matrix of Vk as well as the entropy rate of qk.

4In a recent conversation with Anant Sahai, he suggested that this question could be phrased as:"Can f
transmit information through its behavior, as represented by the sequence q k?". Anant Sahai would call that
a Poltergeist channel to emphasize the fact that F is communicating as a passive element.
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There is an extensive list of articles in Signal Processing, Automatic Control and Infor-

mation Theory that broach the estimation and tracking of HMM. Although these commu-

nities are, with a few exceptions, self-referential, the disconnect is artificial. There exists a

great deal of intersection in the objectives and motivations. In common they lack a suitable

analysis of performance and that is what distinguishes our approach. We briefly discuss the

relevant publications according to the following classification:

* Information Theoretic Approaches to the Estimation and tracking of HMM The

similarities, between the estimation setup in Fig 1-3 and the communication scheme

in Fig 1-4, suggest that the study of estimation fidelity, in the present context, is

related to Rate-Distortion theory [7]. This view has already been explored in the

area of pattern recognition, as a way to study the effects of quantization [68]. The

same problem was broached in [36] for general HMM with discrete measurements.

In the aforementioned publication, the rate-distortion tradeoff has to be determined

point-wise by numerically solving two non-linear equations. The use of numerical

methods in the determination of the Rate-Distortion tradeoff is a common practice

since its introduction by [11]. The use of entropy-based distortion measures and

its relation to the probability of error has also received attention more recently in

[25]. When compared to these publications, our work makes a contribution for the

constrained coding established by the linear system in Fig 1-3. By suggesting how

the input shapes the distortion function, we also provide a unified framework to study

the influence of the probing signal. The design of probing signals was studied in a

similar framework, for the time-invariant case, by [48].

* Identification of Time-Varying Systems Several publications have addressed the

trade-off between tracking and disturbance rejection [29] or, alternatively, the trade-

off between the rate of time-variation and uncertainty [70, 6]. The latter one is the

deterministic analogous of the rate-distortion tradeoff. Also, in the scope of the de-

sign of probing signals, [10] refers that the state of the art is not satisfactory. A good

review of past results can also be found in [17], where it becomes apparent the lack

a unified framework as well as the use of assumptions such as slow variation.
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* Design of sub-optimal estimators for Hybrid Linear Systems Since the first con-

tributions came out [18, 1] several new algorithms have attempted to tackle the ex-

ponential complexity of the hypothesis set. A collection of the main results can be

found in [62, 4, 24, 57]. These results rely on approximations that make the study of

estimation fidelity very difficult [12] and [58] suggests that more attention should be

devoted to the mode estimation problem.
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Chapter 2

Feedback Stabilization of Uncertain

Stochastic Systems Using a Stochastic

Digital Link

2.1 Introduction

In order to focus on the fundamental issues and keep clarity, we start by deriving our results

for first order linear systems. Subsequently, we provide an extension to a class of multi-state

linear systems. As pointed out in [49], non-commutativity creates difficulties in the study

of arbitrary time-varying stochastic systems. Results for the fully-observed Markovian case

over finite alphabets, in the presence of a deterministic link, can be found in [49].

Besides the introduction, this Chapter has 5 sections: section 2.2 comprises the problem

formulation and preliminary definitions; in section 2.3 we prove sufficiency conditions by

constructing a stabilizing feedback scheme for first order systems; section 2.4 contains

the proof of the necessary condition for stability; some of the quanties, introduced in the

paper, are given a detailed interpretation in section 2.5 and section 2.6 extends the sufficient

conditions to a class of multi-state linear systems.

The following notation is adopted:

* Whenever that is clear from the context we refer to a sequence of real numbers x(k)
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simply as x. In such cases we may add that x E R .

* Random variables are represented using boldface letters, such as w

* if w(k) is a stochastic process, then we use w(k) to indicate a specific realization.

According to the convention used for sequences, we may denote w(k) just as w and

w(k) as w.

* the expectation operator over w is written as £[w]

* if E is a probabilistic event, then its probability is indicated as P(E)

* we write log2(.) simply as log(.)

· if x E ]R°°, then
00

I1Ixll Ix(i)l
i=O

11XI10o = sup Ix(i)l
iEN

Definition 2.1.1 Let E N+ U{oo) be an upper-bound for the memory horizon of an

operator: If Gf: R° - R°° is a causal operator then we define IGf lloo() as:

IG/(x)(j)l
IlGf loo(e) = sup I x ) (2.1)

k>o,Xo maxje{k-+l,.kJ Ix(j) 

Note that, since Gf is causal, IIGf lloo() is just the infinity induced norm of Gf:

IGf lo(oo) = IIGfIloo = SUPX#o IG (x)}1oI
11III

2.2 Problem Formulation

We study the stabilizability of uncertain stochastic systems under communication con-

straints. Motivated by the type of constraints that arise in most computer networks, we

consider the following class of stochastic links:
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Definition 2.2.1 (Stochastic Link) Consider a link that, at every instant k, transmits r(k)

bits. We define it to be a stochastic link, provided that r(k) E {O..., r} is an independent

and identically distributed (i.i.d.) random process satisfying:

r(k) = C - r6 (k) (2.2)

where E[r6 (k)] = 0 and C > O. The term r6(k) represents afluctuation in the transfer rate

of the link.

More specifically, the link is a stochastic truncation operator Tk ': {O, 1 U 0 , 1 }i

defined as:

kt (b . . . , b) = (b,.. . br(k)) (2.3)

where bi E {0, 1}.

Given x(0) E [--, ] and d > 0, we consider nominal systems of the form:

x(k + 1) = a(k)x(k) + u(k) + d(k) (2.4)

with Id(k)l < dand x(i) = O for i < 0.

2.2.1 Description of Uncertainty in the Plant

Let £ E N+ U{oo}, Zf E [0, 1) and Za, E [0, 1) be given constants, along with the stochastic

process Za and the operator Gf : R ° ° -, R ° ° satisfying:

!za(k)l < 2a (2.5)

Gf causal and IIGflloo(e) < Zf (2.6)

Given x(0) E [- , ] and d > 0, we study the existence of stabilizing feedback

schemes for the following perturbed plant (see Figure 1):

x(k + 1) = a(k) (1 + za(k)) x(k) + u(k) + Gf(x)(k) + d(k) (2.7)
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d(k) u(k)

1)

Figure 2-1: Diagram of the Plant with Model Uncertainty

where the perturbation processes Za and Gf(x) satisfy (2.5)-(2.6). Notice that z,(k) may

represent uncertainty in the knowledge of a(k), while Gf(x)(k) is the output of the feed-

back uncertainty block Gf. We chose this structure because it allows the representation of

a wide class of model uncertainty. It is also allows the construction of a suitable stabilizing

scheme.

Example 2.2.1 If Gf(x)(k) = ox(k) +... + unlx(k - n + 1) then IIGfI[oo(e) = E il

for e > n.

In general, the operator Gf may be nonlinear and time-varying.

2.2.2 Statistical Description of a(k)

The process a(k) is i.i.d. and independent of r(k) and x(O), meaning that it carries no

information about the link nor the initial state. In addition, for convenience, we use the

same representation as in (2.2) and write:

log(ja(k) ) = R + l (k) (2.8)

where £[16(k)] = 0. Notice that l6(k) is responsible for the stochastic behavior, if any,

of the plant. Since a(k) is ergodic, we also assume that P (a(k) = 0) = 0, otherwise the

system is trivially stable. Such assumption is also realistic if we assume that (2.7) comes

from the discretization of a continuous-time system.
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/ \

Figure 2-2: Structure of the Feedback Interconnection

2.2.3 Functional Structure of the Feedback Interconnection

We assume that the feedback loop has the structure depicted in Figure 2, also designated

as information pattern [65]. The blocks denoted as encoder and controller are stochastic

operators whose domain and image are uniquely determined by the diagram. At any given

time k, we assume that both the encoder and the controller have access to a(O), ... , a(k)

and r(k - 1) as well as the constants O, zf, a and d. The encoder and the controller are

described as:

* The encoder is a function k : Rk+l -+ {0, 1}f that has the following dependence

on observations:

f(x(O), .,x(k)) = (bl, .. ,b) (2.9)

* The control action results from a map, not necessarily memoryless, Fk: U= 0{0, 1 }i

R exhibiting the following functional dependence:

u(k) = OYk(b(k)) (2.10)

where b(k) are the bits successfully transmitted through the link, i.e.:

b(k) = k'~ (b,..., bf) = (b,..., b,(k)) (2.11)

As such, u(k) can be equivalently expressed as

u(k) = (koF ko o Fk)(x(0), . . . , x(k))

Definition 2.2.2 ( Feedback Scheme) We define a feedback scheme as the collection of a
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controller .kc and an encoder .Fk.

2.2.4 Problem Statement and M-th Moment Stability

Definition 2.2.3 (Worst Case Envelope) Let x(k) be the solution to (2.7) under a given

feedback scheme. Given any realization of the random variables r(k), a(k), Gf(x)(k),

z,(k) and d(k), the worst case envelope x(k) is the random variable whose realization is

defined by:

x(k)= sup Ix(k)l (2.12)
x(O)E[-,½]

Consequently, x(k) is the smallest envelope that contains every trajectory generated by an

initial condition in the interval x(O) E [- , 2]. We adopted the interval [- , ] to make the

text more readable. All results are valid if it is replaced by any other symmetric bounded

interval.

Our problem consists in determining necessary and sufficient conditions that guaran-

tee the existence of a stabilizing feedback scheme. The results must be derived for the

following notion of stability.

Definition 2.2.4 (m-th Moment Robust Stability) Let m > 0, E N+ U{oo}, 'f E [0, 1),

2a E [0, 1) and d > 0 be given. The system (2.7), under a given feedback scheme, is m-th

moment (robustly) stable provided that the following holds:

Ilimk,o [x(k)m] = 0 ifZf = d= 0
(2.13)

3b E R+ s.t. lim supk,M E [(k) ' ] < b otherwise

The first limit in (2.13) is an internal stability condition while the second establishes ex-

ternal stability. The constant b must be such that lim supk, £ [(k) m ] < b holds for all

allowable perturbations z, and Gf (x) satisfying (2.5)-(2.6).
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2.2.5 Motivation for our Definition of Stochastic Link and Further

Comments on the Information Pattern

Consider that we want to use a wireless medium to transmit information between nodes A

and B. In our formulation, node A represents a central station which measures the state of

the plant. The goal of the transmission system is to send information, about the state, from

node A to node B, which represents a controller that has access to the plant. Notice that

node A maybe a communication center which may communicate to several other nodes, but

we assume that node B only communicates with node A. Accordingly, we will concentrate

on the communication problem between nodes A and B only, without loss of generality.

Definition 2.2.5 (Basic Communication Scheme) We assume an external synchronization

variable, denoted as k. The interval between k and k+1 is ofT seconds, of which TT < T is

reservedfor transmission. We also denote the number of bits in each packet as H, excluding

headers. In order to submit an ordered set of packets for transmission, we consider the

following basic communication protocol, at the media access control level:

(Initialization) A variable denoted by c(k) is used to count how many packets are sent

in the interval t E [kT, kT + TT]. We consider yet another counter p, which is used to count

the number of periodsfor which no packet is sent. Such variable is initialized as p = 0.

(For node A)

(Synchronization) If k changes to k := k + 1 then step 1 is activated.

* Stepl The packets to be submitted for transmission are numbered according to the

order of priority; 0 is the highest priority. The order of each packet is included in

the header of the packet. The first packet has an extra header, comprising the pair

(c(k - p - 1), p). The variable c(k) is initialized to c(k) = 0 and p is incremented to

p := p + 1. Move to step 2.

* Step 2: Stands by until it can send the packet c(k). If such opportunity occurs, move

to step 3.

* Step 3: Node A sends the packet c(k) to node B and waits for an ACK signal from

node B. If node B receives an ACK signal then c(k) := c(k) + 1, p = 0 and move
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back to step 2. If time-out then go back to Step 2.

The time-out decision may be derived from several events: a fixed waiting time; a random

timer (CSMA/CA) or a new opportunity to send a packet (CSMA).

(For node B)

· Step 1: Node B stands by until it receives a packet from node A. Once a packet is

received, check if it is a first packet: if so, extract (c(k - p - 1), p) and construct

rd(i), with i E {k-p- 1,...,k- 1}, according to:

rd(k-p- 1) =c(k-p-1)II, rd(i) =O, i E {k-p,...,k-1} ifp> 1

rd(k- 1)= c(k- 1)II otherwise

where II is the size of the packets, excluding the header: If the packet is not duplicated

then make the packet available to the controller Move to step 2.

* Step 2: Wait until it can send an ACK signal to node A. Once ACK is sent, move to

step 1.

The scheme of definition 2.2.5 is the simplest version of a class of media access control

(MAC) protocols, denoted as CSMA. A recent discussion and source of references about

(CSMA) is [32]. Such scheme also describes the MAC operation for a wireless communi-

cation network between two nodes. Also, we adopt the following strong assumptions:

* Every time node A sends a packet to node B: either it is sent without error or it is lost.

This assumption means that we are not dealing with, what is commonly referred to

as, a noisy channel.

* Every ACK will go through before k changes to k + 1. This assumption is critical to

guarantee that no packets are wasted. Notice that node B can use the whole interval

t E (kT+TT, (k+ 1)T) to send the last ACK. During this period, the controller is not

expecting new packets. The controller will generate u(k) using the packets that were

sent in the interval t E [kT, kT + TT]. Consequently, such ACK is not important in

the generation of u(k). It will be critical only for u(i) for i > k.
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We adopt k, the discrete-time unit, as a reference. According to the usual frame-

work of digital control, k will correspond to the discrete time unit obtained by parti-

tioning the continuous time in periods of duration T. Denote by TT < T the period

allocated for transmission. Now, consider that the aim of a discrete-time controller is

to control a continuous-time linear system, which admits a discretization of the form

xc((k + 1)T) = A(k)xc(kT) + u(k). The discretization is such that u(k) represents

the effect of the control action over t E (kT + TT, (k + 1)T). What is left is reserved for

the transmission of information about x(k) = x0 (kT), the state of the plant at the sampling

instant t = kT. Whenever k changes, we construct a new queue and assume that the cycle

of definition 2.2.5 is re-initialized.

We denote by r(k) the random variable which represents the total number of bits that

are transmitted in the time interval t E [kT, kT + TT]. The r(k) transmitted bits are

used by the controller to generate u(k). Notice that our scheme does not pressupose an

extra delay, because the control action will act, in continuous time, in the interval t E

(kT + TT, (k + 1)T).

Synchronization between the encoder and the decoder

Denote by re(k) the total number of bits that the encoder has successfully sent between k

and k + 1, i.e., the number of bits for which the encoder has received an ACK. The variable

re(k) is used by the encoder to keep track of how many bits were sent. The corresponding

variable at the decoder is represented as rd(k). From definition 2.2.5 we infer that rd(k- 1)

may not be available at all times. On the other hand, we emphasize that the following holds:

c(k) 0 -== rd(i) = re(i) for i E {0,..., k- 1} (2.14)

In section 2.3, the stabilizing control is constructed in a way that: if no packet goes through

between k and k + 1, i.e., c(k) = 0 then u(k) = 0. That shows that rd(k- 1) is not available

only when it is not needed. That motivated us to adopt the simplifying assumption that

r(k-1) = re(k-1)= rd(k-1).
'A controllable linear and time-invariant system admits a discretization of the required form. If the system

is stochastic an equivalent condition has to be imposed
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Encoding and Decoding for First Order Systems

Given the transmission scheme described above, the only remaining degrees of freedom

are how to encode the measurement of the state and how to construct the queue. From the

proofs of theorems 2.4.1, 2.3.2 and 2.3.4, we infer that a necessary and sufficient condition

for stabilization is the ability to transmit, between nodes A and B, an estimate of the state

k(k) with an accuracy lower-bounded2 by £[jk(k) - x(k)m ] < 2 -R, where R > 0 is

a given constant that depends on the state-space representation of the plant. Since the

received packets preserve the original order of the queue, we infer that the best way to

construct the queues, at each k, is to compute the binary expansion of x(k) and position

the packets so that the bits corresponding to higher powers of 2 are sent first. The lost

packets will always3 be the less important. The abstraction of such procedure is given by

the truncation operator of definition 2.2.1. The random behavior of r(k) arises from random

time-out, the existence of collisions generated by other nodes trying to communicate with

node A or from the fading that occurs if node B is moving. The fading fenomena may also

occur from interference.

2.3 Sufficiency Conditions for the Robust Stabilization of

First Order Linear Systems

In this section, we derive constructive sufficient conditions for the existence of a stabilizing

feedback scheme. We start with the deterministic case in subsection 2.3.1, while 2.3.2 deals

with random r and a. We stress that our proofs hold under the framework of section 2.2.

The strength of our assumptions can be accessed from the discussion in section 2.2.5.

The following definition introduces the main idea behind the construction of a stabiliz-

ing feedback scheme.

Definition 2.3.1 (Upper-bound Sequence) Let f E [0, 1), 2 E [0, 1), d > 0 and E

2This observation was already reported in [60]
3The situation were the packets lost are in random positions is characteristic of large networks where

packets travel through different routers.
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N+ U{oo} be given. Define the upper-bound sequence as:

v(k + 1) = a(k)12-re(k)v(k) + ef max{v(k - o + 1),..., v(k)} + d, (2.15)

where v(i) = O for i < O0, v(0) = and re(k) is an effective rate given by:

re(k)= - log(2 - r(k) + a) (2.16)

Definition 2.3.2 Following the representation for r(k) we also define Ce and r(k) such

that:

re(k) = Ce - r(k) (2.17)

where £[r5(k)] = 0.

We adopt v(O) = to guarantee that x(O)l < v(O). If x(O) = 0 then we can select

v(O) = 0. Notice that the multiplicative uncertainty 2a acts by reducing the effective rate

re(k). After inspecting (2.16), we find that re(k) < min{r(k), - log(2a)}. Also, notice

that:

Z = 0 == re(k) = r(k), r(k) = r6(k) and C = Ce (2.18)

Definition 2.3.3 (Stabilizing feedback scheme) We make use of the sequence specified in

definition 2.3.1. Notice that v(k) can be constructed at the controller and the encoder

because both have access to , 2f, Zf, d, r(k - 1) and a(k - 1).

The feedback scheme is defined as:

* Encoder: Measures x(k) and computes bi E {0O, 1} such that:

(b,... , b) = arg max Zbii (2.19)
bi-- 2v(k) 2 i=1

Place (b,..., bf) for transmission. For any r(k) E {0,..., r}, the above construc-

tion provides the following centroid approximation x(k) for x(k) [-v(k), v(k)]:

r(k) 1 1

x(k) = 2v (k)k)+1 -2) (2.20)
i=3
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which satisfies Ix(k) - i(k) < 2-r(k)v(k).

* Controller: From the f bits placedfor transmission in the stochastic link, only r(k)

bits go through. Compute u(k) as:

u(k) = -a(k)k(k) (2.21)

As expected, the transmission of state information through a finite capacity medium re-

quires quantization. The encoding scheme of definition 2.3.3 is not an exception and is

structurally identical to the ones used by [14, 59], where sequences were already used to

upper-bound the state of the plant.

The following lemma suggests that, in the construction of stabilizing controllers, we

may choose to focus on the dynamics of the sequence v(k). That simplifies the analysis

in the presence of uncertainty because the dynamics of v(k) is described by a first-order

difference equation.

Lemma 2.3.1 Let Zf E [0, 1), a E [0,1) and d > 0 be given. If x(k) is the solution of

(2.7) under the feedback scheme of definition 2.3.3, then the following holds:

xc(k) < v(k)

for all p E N+ U{oo}, every choice Gf E Af,e and IZa(k)l < Z'a, where

Af, = {Gf R - R° : IIGfloI(e) < Zf} (2.22)

Proof: We proceed by induction, assuming that x(i) < v(i) for i E {0,..., k} and proving

that ±(k + 1) < v(k + 1). From (2.7), we get:

Ix(k + 1)1 < la(k)llx(k) + u(k) + Iza(k)lla(k)llx(k)l + IGf(x)(k)l + Id(k)l (2.23)

The way the encoder constructs the binary expansion of the state, as well as (2.21), allow

us to conclude that

U(k)
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Now we recall that IZa(k)l < Za, IGf(x)(k)I < f max{v(k - + 1),..., v(k)} and that

Id(k)l < d, so that (2.23) implies:

Ix(k + 1)1 < a(k)l(2- r(k) + a)v(k) + 2f max{v(k- t + 1),...,v(k)} + d (2.24)

The proof is concluded once we realize that Ix(O)] < v(O).

2.3.1 The Deterministic Case

We start by deriving a sufficient condition for the existence of a stabilizing feedback scheme

in the deterministic case, i.e., r(k) = C and log(la(k)l) = R. Subsequently, we move for

the stochastic case where we derive a sufficient condition for stabilizability.

Theorem 2.3.2 (Sufficiency conditions for Robust Stability) Let E N+ U{oo}, 2f E

[0, 1), Za E [0, 1) and d > 0 be given and h(k) be defined as

h(k) = 2k(R-C ), k > O

where Ce = r, = - log(2-C + 2a).

Consider that x(k) is the solution of (2. 7) under the feedback scheme of definition 2.3.3

as well as the following conditions:

* (C 1) C> R

· (C 2) zflhll 1 < 1

If conditions (C 1) and (C 2) are satisfied then the following holds for all Id(t)l < d,

Gf E Af,e and IZa(k)I < a:

x(k) < 11hll (Zf Ihllld+ + +h(k)l (2.25)
l-hl39f 2
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where Af,O is given by:

Af, = {Gf: R0 - JR: IIGfIloo() I zf} (2.26)

Proof: From definition 2.3.1, we know that, for arbitrary e E N+ U{oo}, the following is

true:

v(k + 1) = 2-CeV(k) + Zf max{v(k - o + 1),..., v(k)} + d

Solving the difference equation gives:

k-1
v(k) = 2 k(R-Ce)v(O) + E 2 (k-i-1)(R-Ce) (f max{v(i - Q + 1),..., v(i)} + d7),

i=O

which, using IIIIkVIJ0 = max{v(O),..., v(k)}, leads to:

v(k) < Ilhll(zfllnkvII0 o + d) + 2k(R-Ce)(0)

But we also know that 2 k(R- Ce) is a decreasing function of k, so that:

IIIvlloo < Ilhlll(fIvII 0kllo + d) + + v(O)

which implies:

iI1nkvii < •lhllI d+v(O)1 - lhlljfj

(2.27)

k>1
(2.28)

(2.29)

(2.30)

(2.31)

Direct substitution of (2.31) in (2.29) leads to:

v(k) < lhll ( ]hlll1d+ v(O)
v- k) • lihili zi 1 - Ilh ll f

(2.32)

The proof is complete once we make v(O) = and use lemma 2.3.1 to conclude that

x(k) < v(k).
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2.3.2 Sufficient Condition for the Stochastic Case

The following lemma provides a sequence, denoted by vm(k), which is an upper-bound

for the m-th moment of x(k). We show that vm is propagated according to a first-order

difference equation that is suitable for the analysis in the presence of uncertainty.

Lemma 2.3.3 (M-th moment boundedness) Let e E N+, zf E [0, 1), Za E [0, 1) and d > 0

be given along with the following set:

Af,e = Gf :{ -R R : lGf lloo(e) < zf} (2.33)

Given m, consider the following sequence:

k-1

v(k) = h(k) h (k)vm(O) +Zhm(k i 1) ( zf max{vm(i-+1),...,vm(i)}+)
i=O

(2.34)

where k > 1, vm(i) = 0 for i < 0, vm(0) = 2 and h,(k) is the impulse response given by:

hm(k)= ([ 2 k))(]) , k > (2.35)

and re(k) = -log (2 -r(k) + 2a). If x(k) is the solution of (2.7) under the feedback scheme

of definition 2.3.3, then the following holds

E[x(k) m ] < Vm(k)"

for all Id(t)I < d, Gf E Af,e and Ia(k) < Za.

Proof: Since lemma 2.3.1 guarantees that .(k + 1) < v(k + 1), we only need to

show that £[v(k + 1)m] < vm(k + 1). Again, we proceed by induction by noticing that

v(0) = vm(0) and by assuming that £[v(i)m]l < vm(i) for i E {1,..., k}. The induction

hypothesis is proven once we establish that E[v(k + 1)m] < Vm(k + 1). From definition
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2.3.1, we know that:

[v(k + 1)"] = £[(210g(la(k))-re(k)v(k) + if max{v(k- + 1),..., v(k)} + d)m] 

(2.36)

Using Minkowsky's inequality [31] as well as the fact that v(i) is independent of a(j) and

r, (j) for j > i, we get:

£[v(k + )m] <

£[2m("Og(la(k)l)-r(k))]pE[v(k)m] + 2f[max{v(k- + ), ... ,v(k)}m]m + d (2.37)

which, using the inductive assumption, implies the following inequality:

e[v(k+l)m] < [2m('og(lk(k)l)- ro(k))] vm(k)+pzf max{v(k- e+l), ... , vm(k)}+d

(2.38)

where we used the fact that, for arbitrary random variables sl,... ,s, the following holds:

n

£[max{Isl I .. snl}m] < £[E Isilm] < nmax{£[lslJm], X £[ISnm]}
i=1

The proof follows once we notice that the right hand side of (2.38) is just Vm(k + 1).

Theorem 2.3.4 (Sufficient Condition) Let m, E N+, f E [0, 1), 2a E [0, 1) and d > 0

be given along with the quantities bellow:

p(m) = log £ [2ml (k)]

ae(m) = - log£ [2 m e( )]

hm(k) = 2 k(k+(m)+e(m)-C ), k> 0

where r comes from (2.17). Consider that x(k) is the solution of (2.7) under the feedback

scheme of definition 2.3.3 as well as the following conditions:
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· (c 3) Ce > 1Z + (m) + a,(m)

* (C 4) QmzflIhmIl < 1

If conditions (C 3) and (C 4) are satisfied, then the following holds for all Id(t) d,

Gf E Af, and Iz,(k) < za:

[R(k)-]~•m < hmll
( 1

LI Z
1llhmZ.d + 

1- zf lhm.11
+ hm(k)2

2
(2.39)

where Af, O is given by:

Af,e = {Gf : -- R°°: Gf Iloo(e) < f} (2.41

Proof: Using vm from lemma 2.3.3, we arrive at:

vm(k) < hm(k)vm(O) + IIhmIH1 (Qmf lIkmIo + d)(2.4

where we use HIHIkVmloo = max{vm(O), . . , vm(k)}. But from (2.41), we conclude that:

InIIkVmlloo < vm(O) + Ilhmlli (QMflnHkmlloo + d) (2.4

0)

1)

2)

or equivalently:

(2.43)IIr1kVmln.oo < Vm() + Ihmid
1 - 1h.11hm e~ Z

Substituting (2.43) in (2.41), gives:

Vm(k) < hm(k)vm(O) + IlhmHli L 1|hml1emf Jf + (2.44)

The proof follows from lemma 2.3.3 and by noticing that hm(k) can be rewritten as:

hm(k) (cg[2
r (1 g ( a(k)D)- r (k))) -= 2 k(R+13(m)+ae(m)-Ce) k > 0

O
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2.4 Necessary Conditions for the Existence of Stabilizing

Feedback Schemes

Consider that Za = f = d = 0. We derive necessary conditions for the existence of an

internally stabilizing feedback scheme. We emphasize that the proofs in this section use

the m-th moment stability as a stability criteria and that they are valid regardless of the

encoding/decoding scheme. They follow from a counting argument4 which is identical to

the one used by [60]. Necessary conditions for stability were also studied for the Gaussian

channel in [61] and for other stochastic channels in [54, 55]. A necessary condition for

the almost sure stability of general stochastic channels is given by [59]. We include our

treatment, because it provides necessary conditions for m-th moment stability, which are

inequalities involving directly the defined quantities a(m) and P(m). Such quantities are

an important aid on the derivation of the conclusions presented in section 2.5. In section

2.6.8, we show that the necessary condition of Theorem 2.4.1 is not conservative.

We derive the necessary condition for the following class of state-space representations:

x(k) = U(k)x(k) + Bu(k) (2.45)

where x(k) E R n, u(k) E R nnb, B E RnXnb and U(k) is a block upper-triangular matrix of

the form:

U(k) =

a(k)Rot(k)

O a(k)Rot(k) '-.

0 ... 0 a(k)Rot(k)

(2.46)

and Rot is a sequence of random rotation matrices satisfying det(Rot(k)) = 1. We also

assume that Rot is independent of r.

Theorem 2.4.1 Let x(k) be the solution of the state-space equation (2.45) along with a(m)

4 We also emphasize that this proof is different from what we had originally. The present argument was
suggested by a reviewer of one of our publications
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and P3(m) given by:

ao(m) = log(E[2
m

P/(m) = log(E[2"' (k)])
m

and the norm on the vector x(k) be represented as:

[Ix(k) llo = max I[x(k)]i I,
i

where [x(k)]i are components of the vectors x(k).

If the state satisfies the following:

sup E[ sup
k 2(O)E[-1/2,1/2]'

then the following must hold:

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)C - a(m) > n(m) + nRn

Proof: Consider a specific realization of Rot, r and a along with the following sets:

Pk = {a(k)Rot(k)x(O) : x(O) E [-1/2, 1/2]n}

Qk(u(k)) = {a(k)Rot(k)x(O) : x(O) [-1/2, 1/2], .((0), k) = u(k)}

(2.52)

(2.53)

where u(k) is a function of x(0) and k, according to u(k) = .F(x(0), k).

Since x(k) is given by (2.45) and u(k) can take, at most, 2 e=' r(i) values, we find that:

Vol(
max,(k) Vol

1- 

(Qk(u(k))) -

Computing bounds for the volumes, we get:

Vol(f2k) = 2 ]i=1 log det(U(i))

(2.54)
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I ) ) k )j I-`-1

jjx(kE11' < o



(2.56)

where v(k) is given by:

v(k) = 2 sup
X(O)E[-1/2,1/2]n

IIx(k)Io = 2 sup
x(0)e[-1/2,1/2]

Ila(k)R(k)Rot(k)x(O) + F(x(0), k) llI

Consequently, using (2.54) we infer that:

2I=I log det(U(i))l 2 - =i r(i) < 2nvn(k) (2.57)

By taking expectations, the m-th moment stability assumption leads to:

lim sup(E[2 log det(U(k))l][ 2 -r(k)])k 2m lim sup E[vm (k)] < oo
k--loo k-+oo

(2.58)

which implies that:

C > (n) + n(m) + nR (2.59)

where we used the fact that E[2 log Tdet(U(k))l]£[ 2 - n(k)] < 1 must hold and that:

log Idet(U(k))l = n log la(k)l

Corollary 2.4.2 Let x(k) be the solution of the following linear and time-invariant system:

x(k + 1) = Ax(k) + Bu(k) (2.60)

If the state satisfies the following:

sup E[ sup
k x(O)E[-1/2,1/2]n

(2.61)
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then the following must hold:

n

C - a( ) > max{log I(A)I,0} (2.62)
nunstable

where nunstable is the number of unstable eigenvalues.

Proof: The proof is a direct adaptation of the proof of Theorem 2.4.1. O

2.5 Properties of the measures a (m) and p(m)

Consider that a and r are stochastic processes, that there is no uncertainty in the plant and

no external disturbances, i.e., Zf = a = d = 0. In such situation, (2.7) can be written as:

x(k + 1) = a(k)x(k) + u(k) (2.63)

For a given m, the stability condition of definition 2.2.4 becomes:

limkoo£[x(k) m ] = 0 (2.64)

If v is a real random variable then Jensen's inequality [20] implies:

£[2V] > 2v]

where equality is attained if and only if v is a deterministic constant.

As such, log(E[2v]2 - [vl) > 0 can be used as a measure of "randomness" which can

be taken as an alternative to variance. Notice that such quantity may be more informative

than variance because it depends on higher moments of v. We use this concept to interpret

our results and express our conditions in a way that is amenable to a direct comparison

with other publications. Along these lines, the following are randomness measures for

log(la(k) ) and r(k):

/3(m) = log(E[2ml"(k)]) (2.65)
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a(m) = log(E[2 mr(k)]) (2.66)
m

where l1(k) and r6 (k) are given by:

log(la(k)l) = E[log(la(k)l)] + l(k) = R + (k) (2.67)

r(k) = E[r(k)] - r6(k) = C - r6(k) (2.68)

The following equivalence is a direct consequence of the necessary and sufficient con-

ditions proved in theorems 2.4.1 and 2.3.4:

B feedback scheme s.t. lim E[R(k)m] = 0 = C > R + a(m) + (m) (2.69)
k--oo

After examining (2.69), we infer that o(m) and P(m) encompass the influence of m

on the stability condition, while C and R are independent of m. The condition (2.69)

suggests that a(m) is the right intuitive measure of quality, of a stochastic link, for the

class considered in this Chapter.

The following are properties of a(m) and /3(m):

* Note that Jensen's inequality implies that a(m) > 0 and /3(m) > 0, where equality

is achieved only if the corresponding random variable is deterministic. Accordingly,

(2.69) shows that randomness in r(k) implies that C > R + a(m) is necessary for

stabilization. The fact that randomness in the channel creates the need for capacity

larger than R, was already established, but quantified differently, in [54]. In addition,

we find that randomness in the system adds yet another factor /3(m).

* by means of a Taylor expansion and taking limits, we get

lim a(m) = lim /3(m) = 0 (2.70)
m\O m\O

Under the above limit, the necessary and sufficient condition (2.69) becomes C > R.

That is the weakest condition of stability and coincides with the one derived by [59]
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for almost sure stability. By means of (2.69) and (2.70) we can also conclude that if

C > R, i.e. the feedback scheme is almost surely stabilizable [59], then it is m-th

moment stabilizable for some m > 0.

* the opposite limiting case, gives

lim &a(m) = C - rmin (2.71)m-oo

lim /3(m)= log(auP) - R (2.72)
m- oo

where

rmin = min{r E {0,..., I): P(r(k) = r) # 0}

asup - p{a: P(la(k) > a) #- 0}

* a(m) and P(m) are non-decreasing functions of m

From the previous properties of ao(m) and /3(m) we find that

* a feedback scheme is stabilizing for all moments, i.e., Vm, supk £E[.(k)m] < oo if

and only if rmin > log(aSuP).

* if rmin = 0 then there exists mo such that Vm > mo, supk £[k(k)m] = oo. This is the

case of the erasure channel suggested by [54]. This conclusion was already reported

in [54] (see Example 2.5.2).

* similarly, if log(asuP) = oo then there exists mo such that Vm > mO, SUPk £[x(k)m] =

oo (see example 2.5.1). Notice that asup can be larger than one and still £[a(k)m] < 1

for some m. Even more, in example 2.5.1, we have asup = oo and E£[a(k)Im ] < o

Example 2.5.1 Consider that lal is log-normally distributed, i.e., log la(k) is normally

distributed. An example where a(k) is log-normally distributed is given by [16]. If Var(la(k)l )

is the variance of (a(k)l then /3(m) is given by:

(m) = - log + ( [a(k)]j) (2.73)
2 (,F [a(k))1>
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where the expression is obtained by direct integration. Note that 3(m) grows linearly with

m. It illustrates a situation where, given Var(a(k)) > O, C and ac(m), there always exist

m large enough such that the necessary and sufficient condition C > R + 3(m) + ac(m) is

violated.

The above analysis stresses the fact that feedback, using a stochastic link, acts by in-

creasing mma, for which Vm < mmax supk £[(k)m] < oo. In some cases one may get

mmax = 00.

The Exponential Statistic

Directly from (2.65) and (2.66), we derive the equivalence below:

C > R + ca(m) + :(m) - £[la(k)lm]£[2- mr(k)] < 1 (2.74)

The equivalences expressed in (2.69) and (2.74) show that all the information we need

to know about the link is a(m) and C or, equivalently, E[2 -mr(k)].

Example 2.5.2 (From [54] ) The binary erasure channel is a particular case of the class of

stochastic links considered. It can be described by taking r(k) = 1 with probability 1 - Pe

and r(k) = 0 with probability of erasure pe. In that case, [2 - mr(k)] = 2-m(1 - Pe) + Pe.

After working through the formulas, one may use (2.74) and (2.69) to get the same result as

in [54]. In particular, the necessary and sufficient condition for the existence of a stabilizing

feedback, for the time-invariant system with a(k) = a, is given by

0<e < 1 al(- - )
lalm( - 2--)

2.5.1 Determining the decay of the probability distribution function

of x

In this subsection, we explore (2.69) as way to infer the decay of the probability distribution

of x(k).
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From Markov's inequality (pp. 80 of [9]), we have that:

Vm > 0,Vk, P(x(k) > 0) < '?-m£[x(k)m ] (2.75)

On the other hand, for any given m, if x(k) has a probability density function then:

3E, 6 > O, k 0, V> 0, 7(x(k) > ) < 0-(m+6+l) ==> lim sup [(k) m ] < oo
k-*oo

(2.76)

As such, we infer that (2.69) and (2.75)-(2.76) lead to:

C > R + a(m) + P(m) 3e > 0, Vk, V, P(x(k) > 0) < e' - m (2.77)

C < 7? + a(m) + 3(m) == e, 6 > 0, 3k, 30, P(x(k) > ) > e0- (m++l) (2.78)

2.5.2 Uncertainty Interpretation of the Statistical Description of the

Stochastic Link

We suggest that a(m) can be viewed not only as a measure of the quality of the link,

in the sense of how r(k) is expected to fluctuate over time, but it can also be modified

to encapsulate a description of uncertainty. To be more precise, consider that A1 is an

uncertainty set of stochastic links and that the "nominal" link has a deterministic data-rate

r°(k) = C. The elements of At are the following probability mass functions:

A1 C {Pi : {0,...,) - [0, 1]: Epl(i) = 1, Ei x pl(i) = C}
i=O i=O

where p E A1 represents a stochastic link by specifying its statistics, i.e., P(r(k) = i) =

pi (i). The following is a measure of uncertainty in the link:

-(m) = sup -log(e[2 mr(k)]) (2.79)
p EAi M
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In this situation, (2.69) implies that the following is a necessary and sufficient condition

for the existence of a feedback scheme that is stabilizing for all stochastic links in the

uncertainty set Al:

C - R - (m) > (m)

The authors suggest that C - R- Pf(m) > d(m) should be viewed as a stability margin

condition well adapted to this type of uncertainty.

If the plant and the link are time-invariant then C - R 7?> 0 is necessary and sufficient

for stabilizability. Stability is preserved for any stochastic link in Al characterized by

a(m) < C - R. This shows that the results by [59, 60] are robust to stochastic links with

average transmission rate C and a(m) > 0 sufficiently small.

2.5.3 Issues on the Stabilization of Linearizable Non-Linear Systems

In this section, we prove that a minimum rate must be guaranteed at all times in order to

achieve stabilization in the sense of Lyapunov 5. The fact that the classical erasure channel

cannot be used to achieve stability in the sense of Lyapunov could already be inferred from

[55]. Consider that the following is a state-space representation which corresponds to the

linearization of a non-linear system around an equilibrium point:

x(k + 1) = Ax(k) + Bu(k) (2.80)

y(k) = Cx(k) (2.81)

where x(k) E Rn

If the linearized system is stable in the sense of Lyapunov then (2.80) must also be

stable in the sense of Lyapunov. Consequently, that implies that:

sup sup Ilx(k)llI < oo (2.82)
k (O)E[-1/2,1/2]

where llx(k)lloo = max il[x(k)]il and [x(k)]i are the components of x(k). But (2.82) im-

5 Also denoted as e - 6 stability
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plies that x(k) is stable for all moments, so Corollary 2.4.2 leads to:

Vm, C - a( m )> Emax{loglAi(A)I,0} (2.83)
nunstable

which also implies that:

rmin > E max{log IAi(A), 0} (2.84)
i

where we have used (2.71). As a consequence, local stabilization imposes a minimum

rate which has to be guaranteed at all times. The classical packet-erasure channel is char-

acterized by rin = 0 and, as such, it cannot be used for stabilization in the sense of

Lyapunov. This is an important issue in the control of non-linear systems because, fre-

quently, it is necessary to keep the state in a bounded set. That may arise from a physical

limitation or as a way to stay in a region of model validity. The stabilization of non-

linear systems in this framework was studied in [45], for deterministic channels. Since

rmin > Ei max{log IAi(A)I, 0}, we conclude that it is sufficiently general to consider de-

terministic links with rate rmin, in the study of stabilization in the sense of Lyapunov.

2.6 Sufficient Conditions for a Class of Systems of Order

Higher Than One

The results, derived in section 2.3, can be extended, in specific cases, to systems of order

higher than one (see section 2.6.1). In the subsequent analysis, we outline how and suggest

a few cases when such extension can be attained. Our results do not generalize to arbitrary

stochastic systems of order n > 1. We emphasize that the proofs in this section are brief as

they follow the same structure of the proofs of section 2.3 6.

We use n as the order of a linear system whose state is indicated by x(k) E R n . The

following is a list of the adaptations, of the notation and definitions of section 2.1, to the

multi-state case:

* if x E Rn then we indicate its components by [x]i, with i E {1,..., n}. In a similar

6The authors suggest the reading of section 2.3 first
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way, if M is a matrix then we represent the element located in the i-th row and j-th

column as [M]ij. We also use I MI to indicate the matrix whose elements are obtained

as [IMI]ij = I[Mijl.

* R "XO is used to represent the set of sequences of n-dimensional vectors, i.e., x E

1 "
nX

° ==. (k) E In, k E N.

* the infinity norm in "
n

°
x is defined as:

IIxl10 = sup max I[x(i)]jl
i 3

It follows that if x E Rn then llxlloo = maxjEl,.}n I[x]jl-. Accordingly, if x E Rn"X °

we use IIx(k)1oo = maxjl,...,n} I[x(k)]jl to indicate the norm of a single vector, at

time k, in contrast with lxl100 = supi maxj I[x(i)]jl.

* the convention for random variables remains unchanged, e.g., [x(k)]j is the jth com-

ponent of a n-dimensional random sequence whose realizations lie on IRnxo

* If H is a sequence of matrices, with H(k) E RIn x " , then

o00 n

IiHIll = max I [H(k)]ij
k=O j=1

For an arbitrary vector x E R" we use Hx to represent the sequence H(k)x. For a

particular matrix H(k), we also use IIH(k) I 1 = maxi E= 1 I[H(k)]ijl.

* we use E n to indicate a vector of ones, i.e., []j = 1 for j E {1,..., n}.

2.6.1 Description of the nominal plant and equivalent representations

In this section, we introduce the state-space representation of the nominal discrete-time

plant, for which we want to determine robust stabilizability. We also provide a condition,

under which the stabilizability, of such state-space representation, can be inferred from

the stabilizability of another representation which is more convenient. The condition is

stated in Proposition 2.6.1 and a few examples are listed in remark 2.6.2. Such equivalent
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representation is used in section 2.6.2 as way to obtain stability conditions that depend

explicitly on the eigenvalues of the dynamic matrix.

Consider the following nominal state-space realization:

5r(k + 1) = A(k)x(k) + fi(k) + d(k) (2.85)

where 11d11o < d and d is a pre-specified constant.

We also consider that A is a real Jordan form with a structure given by:

A(k) = diag(Jl(k),. .. , Jq(k)(k)) (2.86)

where Ji(k) are real Jordan blocks[34] with multiplicity qi satisfying Ei qi = n.

The state-space representation of a linear and time-invariant system can always be

transformed in a way that A is in real Jordan form. The discretization of a controllable

continuous-time and time-invariant linear system can always be expressed in the form

(2.85), i.e., with B = I. If the system is not controllable, but stabilizable, then we can

ignore the stable dynamics and consider only the unstable part which can be written in the

form (2.85).

If the system is stochastic then, in general, there is no state transformation leading to

A(k) in real Jordan form. The following is a list of conditions, under which a state-space

representation of the form x(k + 1) = A(k)x(k) + u(k) can be transformed in a new one,

for which A is in real Jordan form:

* When the original dynamic matrices are already in real Jordan form. A particular

instance of that are the second order stochastic systems with complex poles.

* A collection of systems with a state-space realization of the type x(k+ 1+) = J(k)x(k)+

u(k) which connected in a shift-invariant topology. Here we used the fact that if sev-

eral copies of the same system are connected in a shift-invariant topology then they

can be decoupled by means of a time-invariant transformation [46].

Still, the representation (2.85)-(2.86) cannot be studied directly due to the fact that it

may have complex eigenvalues. We will use the idea in [60] and show that, under certain
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conditions, there exists a transformation which leads to a more convenient state-space rep-

resentation. Such representation has a dynamic matrix which is upper-triangular and has a

diagonal with elements given by Ai(A(k)) .

If we denote R(O) as the following rotation:

R(O) = [cos(O) sin(O)
-sin(o) cos(O)]

(2.87)

then the general structure of Ji(k) E Rqi is:

-... 0O

if ri (k) is real

I ... 0
'- k). 

o o jn(k)lR(0i(k))

(2.88)

We start by following [60] and defining the following matrix:

Definition 2.6.1 (Rotation dynamics) Let the real Jordan form A(k) of (2.85) be given by

(2.86). We define the rotation dynamics RA(k) as the following matrix:

RA(k) = diag(JR(k), ... , JR(k))

JR(k) = fsgn(rli(k))I if ri(k) is real

diag(R(i(k)), ..., R(Oi(k))) otherwise
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ri(k)

0

1

i(k) 1 0

Ji(k) =
0 0

1l(k)lR(0i(k))

0

0

o o ,(k)

I

17i(k)J R(0i(k))

0

otherwise

where JiR(k) E IRqi are given by:

(2.89)

(2.90)



For technical reasons, we use the idea of [60] and study the stability of x given by:

x(k) = RA(k - 1)-1 . . .R. (O)-lx(k) (2.91)

Remark 2.6.1 The motivation for such time-varying transformation is that, by multiplying

(2.85) on the left by RA(k) - ... RA(0) -1, the nominal dynamics of x is given by:

x(k + 1) = A(k)x(k) + d(k) + u(k) (2.92)

where d(k) = RA(k - 1)- 1 ... RA(O)-l(k), u(k) = RA(k - 1)- 1 ... RA()-lf(k) and

A(k) is the following upper-triangular matrix7:

[A(A(k))I ...

0 0 An(.A(k)) I

A(k) = RA(k)-l(k) = (2.93)

The following proposition is a direct consequence of the previous discussion:

Proposition 2.6.1 (Condition for equivalence of representations) Let A(k) be such that

RA(k) satisfies:

sup IRA(k) - 1 ... RA(O)-I1 < l 1 < oo

sup II (RA(k) - 1 ... RA(O)1) - 1 I r2 < oo00
k

(2.94)

(2.95)

Under the above conditions, the stabilization of(2.92)-(2.93) and the stabilization of (2.85)-

(2.86) are equivalent in the sense of (2.96)-(2.97).

lim sup Ilx(k) 11 < rl lim sup Ill(k) Iloo rlF 2 lim sup Ix(k) 110
k-*oo k--oo k-oo

lim sup £[llx(k) ll] < r lir sup E[II(k) II'] r"r lim sup £[llx(k) 11]
k-oo k-*oo k--oo

(2.96)

(2.97)

Remark 2.6.2 Examples of A(k) for which (2.94)-(2.95) hold are:

7Here we use an immediate modification of lemma 3.4.1, from [60]. It can be shown that, if A(k) is
a real Jordan form then RA(j)-lA(k) = A(k)RA(j) - l holds for any j, k. This follows from the fact
thatR(O1)R(02 ) = R(01 + 02) = R(02)R(O1) holds for arbitrary 01 and 02.
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· all time-invariantA

* A(k) = diag(Jl(k) ,..., Jq(k)) where qi are invariant.

* all 2-dimensional A(k). In this case RA(k) is always a rotation matrix, which in-

cludes the identity as a special case. Under such condition, the bounds in (2.94)-

(2.95) are given by

sup IIR(k) - 1 ... Ri(O)-111 < 2
k

sup 11 (RA(k)- ' . RA(O)-)- 1 I < 2
k

2.6.2 Description of uncertainty and robust stability

Let E N+ U{oo}, d > 0, _, ~,Y c [0, 1) and a > 0 be given constants then we study the

stabilizability of the following uncertain system:

x(k + 1) = A(k)(I + Za(k))x(k) + u(k) + d(k) + Gf(x, u)(k) (2.98)

A(k) =
I ...

.. . (2.99)

o IAn(A(k))I

where IIdll1o < d, I[Za(k)]ijl < Za and Gf(x, u)(k) satisfies:

IIGf(x,u)(k)IIo < max{IIx(k - o+ )llo,..., Ilx(k)llo}+

max{llu(k- - + 1)l,..., IIu(k)llo} (2.100)

Recall, from Proposition 2.6.1, that the stabilizability of a state-space representation of the

form (2.85), satisfying (2.94)-(2.95), can be studied in the equivalent form where (2.99)

holds. We emphasize that, in (2.98), we incorporate u in the description of the feedback

uncertainty. As it will be evident from the subsequent discussion, such generalization can

be treated with the same techniques used in section 2.3. We decide for including u in Gf

because that allows for a richer description of uncertainty.

A given feedback scheme is robustly stabilizing if it satisfies the following definition.
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Definition 2.6.2 (m-th Moment Robust Stability) Let m > 0, E N+ U{oo}, q, Zf E

[0, 1), Za E [0, 1) and d > 0 be given. The system (2.98), under a given feedback scheme,

is m-th moment (robustly) stable provided that the following holds:

110o = 0 ife = = d = 0
sup~]=0 Ezf2~~=zy~~ ~ klh(2.101)

SUPk oo £ [IIk(k) II-] <b otherwise

where x(k) is given by:

[R(k)]i = sup I[x(k)]il
X(O)E[-1/2,1/2]n

2.6.3 Feedback structure and channel usage assumptions

In order to study the stabilization of systems of order higher than one, we assume the

existence of a channel allocation F(k) E {0,., . , satisfying:

n

,[r(k)] = r(k) (2.102)
j=1

where r(k) is the instantaneous rate sequence as described in section 2.2.5. We also em-

phasize that A(k) and f(k) are i.i.d and independent of each other.

Using the same notation of section 2.1, we define Cj and [r (k)]j as:

[r(k)]j = Cj - [r-(k)]j (2.103)

Similarly, we also define ai(m) as:

ai=(m) 1 log E[2
m [r(k)ii] (2.104)

m

In the general case, the allocation problem is difficult because it entails a change of the

encoding process described in section 2.2.5. The encoding must be such that each [ (k)]i

corresponds to the instantaneous rate of a truncation operator. In section 2.6.8 we solve the

allocation problem for a class of stochastic systems in the presence of a stochastic link.

As in the one dimensional case, we assume that both the encoder and the controller
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have access to A(0),..., A(k) and ir(k - 1) as well as the constants Q, zf, zf, 2a and d. The

encoder and the controller are described as:

* The encoder is a function Fk : Rnx(k+ l) --+ {0, l}n" X that has the following depen-

dence on observations:

FkF(x(O),..., x(k)) = (bl,..., bf) (2.105)

where bi E {O, 1}n.

· The control action results from a map, not necessarily memoryless, k : Ui=0{O, }j xi

IR exhibiting the following functional dependence:

u(k) = Sk(b(k)) (2.106)

where b(k) is the vector for which, each component [b(k)]j, comprises a string of

[r(k)]j bits successfully transmitted through the link, i.e.:

[b(k)]j = [k (bl,., bf)]j = ([bl]j, ... [b[F(k)j]j) (2.107)

As such, u(k) can be equivalently expressed as

u(k) = ( o Fk o k)((),. ., x(k))

2.6.4 Construction of a stabilizing feedback scheme

The construction of a stabilizing scheme follows the same steps used in section 2.3. The

following is the definition of a multidimensional upper-bound sequence.

Definition 2.6.3 (Upper-bound Sequence) Let f, f E [0, 1), za C [0, 1), d > 0 and

E 5N+ U{oo} be given. Define the upper-bound sequence v(k), with v(k) IRn, as:

v(k + 1) = Ac(k)v(k) + ( I + fylA(k)I) max{ v(k- -+ 1)o,..., v(k) loo} + dl,

(2.108)
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where [IA(k)llij = I[A(k)]ij , v(i) = Ofori < 0, [v(O)]j = and A, (k) is given by:

Ac1(k) = IA(k)l (diag(2-[(k)]l ... 2
-[ (k)]n) + aiT) (2.109)

Adopt the feedback scheme of definition 2.3.3, mutatis mutandis, for the multi-dimensional

case. By measuring the state x(k) and using [(k)]j bits, at time k, to encode each compo-

nent [x(k)]j, we construct [(k)]j such that

I[x(k)lj - [(k)]j.l < 2-[rk)l [v(k)]j (2.110)

Accordingly, u(k) is defined as:

u(k) = -A(k)St(k) (2.111)

The following lemma establishes that the stabilization of v(k) is sufficient for the sta-

bilization of x(k).

Lemma 2.6.2 Let Aj, 2f E [0, 1), Za E [0, 1) and d > 0 be given. If x(k) is the solution of

(2.98) under the feedback scheme given by (2.110)-(2.111), then the following holds:

[x(k)]j < [v(k)]j

for all e E N+ U{oo}, IId(k)oo < d, every choice I[Za]ijl < a and Gf satisfying:

IGf(x, u)(k)IoI < max{lIx(k -p+ e1)Ioo,..., I[x(k)[oo}

+ 4 max{ IIu(k- + 1)lloo ... , uII(k)Ikoo} (2.112)

Proof: The proof follows the same steps as in lemma 2.3.1. We start by assuming that

[x(i)]j < [v(i)]j for i E {0,..., k} and proceed to prove that [(k + 1)]j < [v(k + 1)]j.
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From (2.98) and the feedback scheme (2.110)-(2.111), we find that:

I[x(k + 1)]1I

I[x(k + 1)].1I

I[v(k)]ll2-1(k)

element-wise
IA(k) 

I

+ A(k)l IZa(k)I

[I [v(k)]j

I [v(k)].l

r1 max{llv(k - e+ 1)11oo,..., Ilv(k)I lo} + f max{IJu(k - p+ 1)1oo, ... Ilu(k)loo}

(2.113)

In order to address the dependence on u, we notice that (2.111) implies that:

I[u(k)]jl • [IA(k)l Iv(k)l]j (2.114)

which by substituting in (2.113) leads to the conclusion of the proof. [

2.6.5 Sufficiency for the deterministic/time-invariant case

Accordingly, the following theorem establishes the multi-dimensional analog to theorem

2.3.2.

Theorem 2.6.3 (Sufficiency conditions for Robust Stability) Let A be the dynamic matrix

of (2.98), E N+ U{oo}, a, Pf E [0,1), a E [0, 1) and d > 0 be given and H(k) be

defined as

H(k) = A k, k > 0

where A = IAI (diag(2-c l .. 2- " ) + ai) and [IAI]ij = I[A]ijl-Consider that

x(k) is the solution of (2.98) under the feedback scheme of (2.110)-(2.111) as well as the

following conditions:

* (C 1) maxi Ai(Ac) < 1

* (C 2) ( + IIlAIIi)llHIll < 1

If conditions (C 1) and (C 2) are satisfied then the following holds:(i + AliA7) 1-Hl1 + q- II11 ool + d) + 19( ) 1l-)_ (- + IIAII 1--)1lHII1 2
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(2.115)

1
[v(k)].12-'��n (k)

.t~k) < IIHII,



where g(k) = Akif.

Proof: We start by noticing that the condition (C1) is necessary and sufficient to guarantee

that IIHIi is finite. Following the same steps, used in the proof of theorem 2.3.2, from

definition 2.6.3, we have that:

v(k) = Ad1v(O)+
k-1

EAk-i- ((zI + 27lA(k)l) max{llv(i - + 1),. ., llv(i)11o} +
i=O

1l7rkvllo < 11 11 + IIHIIoo((2 + IIAIl2)llI7rkvIl + d)

where we use II rkkVIoo = max{I v(O)Ioo, ... , IIv(k)I1oo} and g(k) = ACi4.

lemma 2.6.2, the formula (2.115) is obtained by isolating IkvlIloo in (2.117)

ing it back in (2.116).0

d ) (2.116)

(2.117)

By means of

and substitut-

Interpretation for Za = 0

If Za, = 0 then AC, of Theorem 2.6.3, can be written as:

IAi(A)12-cl ...

Ac = 0"

O O

(2.118)

The increase of Ci causes the decrease of Ai(Ac,) and IIHII1. Accordingly, conditions

(C1) and (C2), from theorem 2.6.3, lead to the conclusion that the increase in Ci gives a

guarantee that the feedback loop is stable under larger uncertainty, as measured by ( +

IIAII11 Y). In addition, if we denote Ri = log(JAi(A)[) then we can cast condition (C1) as:

Ci > Ri (2.119)
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2.6.6 Sufficiency for the stochastic case

We derive the multi-dimensional version of the sufficiency results in section 2.3.2. The

results presented below are the direct generalizations of lemma 2.3.3 and theorem 2.3.4.

Definition 2.6.4 (Upper-bound sequence for the stochastic case) Let p E N+, a, 2 E

[0, 1), 2a E [0, 1) and d > 0 be given. Given m, consider the following sequence:

v,(k + 1) = Acl,,v,(k)+

((no) ( + IIA ll) max{Illvm(k - + l) lo ..., lIvm(k) 1oo} + d) f (2.120)

where vm(i) = O for i < O0, vm(0) = 21 and Ac,m is defined as

Ac,m = Am (diag(2-c1+(m), ... 2-Cn+n(m)) + a lf)

and

[Am]ij = £[[A(k)]ijm] 

Lemma 2.6.4 (M-th moment boundedness)

If x(k) is the solution of (2.98) under the feedback scheme of (2.110)-(2.111), then the

following holds

E[x(k)m] < vm(k)

Proof: We start by showing that £[[v(k)]j"]~ < [vm(k)]i. We proceed by induction, by

assuming that £[[v(j)]T] < [vm(j)]i holds for j E {0, ... , k} and proving that £[[v(k +

1)]n] < [vm(k + 1)]i.

Let z, s and g be random variables with z independent of s. By means of the Minkovsky

inequality, we know that £[Izs + glm]- < £[zlm]m£[lslm] + £[Igm]p. Using such
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property, the following inequality is a consequence of (2.108):

£[[v(k + 1)]1 ]m

£[[v(k + l)]] 1

I element-wise

rn 1£[[v(k)]1 ]m1

Acl,m

C[[v(k)]1 ]
n

+

(sfI + sfAm)&[max llv(k- ,+ 1)f11,..., Iv(k) ll}m]k + dJ (2.121)

But using the inductive assumption that £[[v(j)]m] < [Vm(j)]i holds for j {0,..., k}

and that:

S[max{l v(k -- Q + 1)11..., lv(k)H c<}
m ] <

(nQ) l max{£[| [v(k - + 1)]omo] , [11 m[v(k)]lm] }

we can rewrite (2.121) as:

(2.122)

£[[v(k + 1)]m]-

£[[v(k + 1)]m]m
element-wise

Acl,m (k)+

.. , 1im(k) loo} + d) 

Since the induction hypothesis is verified, we can use lemma 2.6.2 to finalize the proof.

O

Theorem 2.6.5 (Sufficiency conditions for Robust m-th moment Stability) Let A be the

dynamic matrix of (2.98), C N+, Z, Zf E [0, 1), Za C [0, 1) and d > 0 be given and

Hm (k) be defined as

Hm(k) = A ,m, k > 0

where Ac,m = Am (diag(2 -c 1 + 1(m),.. ., 2
--C n+n(m)) + Za1T), [Am]ij = I [A(k)]ijIm]

and [ A ] ij = I [A]ij 1. Consider that x(k) is the solution of (2.98) under thefeedback scheme

of (2.110)-(2.111) as well as the following conditions:
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* (C 1) rlaxi Ai(Ac,,m) < 1

* (C 2) (ne') ( + Am lfy) lHml.1 < 1

If conditions (C 1) and (C 2) are satisfied then the following holds.

J 1I A 11 zuN
I II1111 I1f) 1 - (nA) (f +

f -
IIAmlllZ )IIHmlll

1
Igm (k)II

22
(2.124)

where 9m (k) = A, m.

Proof: We start by noticing that the condition (C1) is necessary and sufficient to guarantee

that I Hm II is finite. From definition 2.6.4, we have that:

Vm(k) = A',mV(°O)+

k--1

Ak-i-1

i=O

((no) (f + y lAml1) max{flvm( i- - p + )ll, ... , l v m(i)oo} + d) 

(2.125)

t7rkVml|| <_ jI mllI + IIHm I1
2 ((n) (Zf + Z; IAm ll 1) 7kVm I Ioo +

where we use II' kvm lo = max{llvm(O)II~O, . . , IIVm(k) oo} and m(k) = A-kiml By

means of lemma 2.6.4, the formula (2.124) is obtained by isolating Illrkvm l]O in (2.126)

and substituting it back in (2.125).C1

2.6.7 Sufficiency for the case a - 0

If Za = 0 then Ac,m of Theorem 2.6.5 can be expressed as:

I[\(A(k))lm]12-cl+"'(m) ...

Acl,m -= 0

0 0

(2.127)

[IA(A(k)) Im]1 2 -Cn+n(m)
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Accordingly, if we define

;i (m) = I-log(E[2m(log(Ai(A(k))I)-Ri)])

where Ri = £[log(lAi(A(k))l)], then condition (C1) of Theorem 2.6.5 can be written as:

Ci > Ri + ai(m) + pi(m) (2.128)

Also, from condition (C2), we find that by increasing the difference Ci - (Ri + ai(m) +

3pi (m)) we reduce Hm II1 and that improves robustness to uncertainty as measured by (z +

IIAm 1Zfu)
·

2.6.8 Solving the Allocation Problem for a Class of Stochastic Systems

Given d > 0 and fz , zf E [0, 1), consider the following n-th order state-space representa-

tion:

x(k + 1) = J(k)x(k) + u(k) + d(k) + Gf(x, u)(k) (2.129)

where Gf is a causal operator satisfying IIGf(x, u) 1o, < llxl o + ZI ullu , Idlloo < d

and J(k) is a real Jordan block of the form:

a(k) 1

0 a(k)

0 0

1 0

0 0 0 0 a(k)

if a(k) is real

la(k)lIRot(k)

0

0

I

la(k) Rot(k)

0

*'' 0

I

0

0

0 0 la(k) Rot(k)

otherwise

(2.130)

where Rot is an i.i.d.sequence of random rotation matrices.
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Take the scheme of section 2.2.5 as a starting point. Assume also that r(l) is always

a multiple of n, i.e., r(l) E {O, n, 2n,..., fr. In order to satisfy this assumption, we only

need to adapt the scheme of section 2.2.5 by selecting packets whose size is a multiple

of n. By doing so, we can modify the encoding/decoding scheme of section 2.2.5 and

include in each packet an equal number of bits from each [r(l)]i. By including the most

important bits in the highest priority packets, we guarantee that each [(l)]i corresponds to

the instantaneous rate of a truncation operator. As such, we adopt the following allocation:

rKl]i = ) (2.131)n

where we also use Ci and define the zero mean i.i.d. random variable [r(l)]i, satisfying:

[F(l)] = Ci - [r(l)]ji (2.132)

From the definition of ai(m) and a(m), the parameters characterizing the allocation

(2.131) and r(l) are related through:

1 1in 1 m
ci (m) = - log£[2_m[p(l)i] = logog[2- r6()] =a( ) (2.133)

m nm n n

Ci = C (2.134)
n

We also adopt P(m) according to section 2.6.7:

/3(m) = 1 log [2m5(k)] (2.135)m

where log a(k) = R + l6(k).

The following Proposition shows that, under the previous assumptions, the necessary

condition of Theorem 2.4.1 is not conservative.

Proposition 2.6.6 Let g E N+ be a given constant. If C- (m) > no/(m) + nR then there

exists constants d > 0 and Zf, 2Y E [0, 1) such that the state-space representation (2.129)

can be robustly stabilized in the m-th moment sense.
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Proof: From Proposition 2.6.1, we know that (2.129) can be written in the form (2.98)-

(2.99). From section 2.6.7 we know that we can use Theorem 2.6.5 to guarantee that the

following is a sufficient condition for the existence of d > 0 and ,, ] E [0, 1) such that

(2.129) is robustly stabilizable:

Ci > ai(m) + 3i (m) + Ri (2.136)

where, in this case, Ri = R and pi(m) = /3(m) is given by (2.135). On the other hand,

by means of (2.133)-(2.134), the assumption C - a( ) > np(m) + nR can be written as

(2.136). O
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Chapter 3

Fundamental Limitations of

Disturbance Attenuation in the Presence

of Finite Capacity Feedback

3.1 Introduction

The Chapter is organized in 4 sections. Besides the introduction, section 3.2 lays down the

problem formulation as well as a preview and a discussion of the results; the limitations

resulting from causality are derived in section 3.3 and section 3.4 develops a fundamental

limitation that results from finite capacity feedback.

3.1.1 The following notation is adopted:

· Whenever it is clear from the context, we refer to a sequence {a(k)}r- of elements

in Rn as a. A finite segment of a sequence a is indicated as akma = a(k) }knax. If

kmax < kmin then akmax = 0.

* If 0 C Rq is a Borel set then we denote its volume by Vol(O)

* If M is a matrix then the element in the i-th row and j-th column is indicated as

[M]i,j. Similarly, if a E Rn then [a]i denotes the i-th component of the vector.
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· Random variables are represented using boldface letters, such as a.

* If a(k) is a stochastic process, then we use a(k) to indicate a specific realization.

Similar to the convention used for sequences, we may denote a(k) just as a and a(k)

as a. A finite segment of a stochastic process is indicated as akmZ

* The probability density of a random variable a, if it exists, is denoted as Pa. The

conditional probability, given b, is indicated as Palb

* The expectation operator over a is written as £[a]

* We write log2(.) simply as log(.)

* We adopt the convention 0 log 0 = 0

* The auto-covariance function of a given stochastic process a is given by:

Ra(k, 1) = £ [(a(k) - [a(k)])(a(l) - 9[a(l)])T]

If a is stationary then it's power spectral density is written as

00

Fa(W) = Ra(k, O)eiwk
k=-oo

* If a is a stochastic process taking values in RI then we use the following covariance

matrix:

[C ( akn')] (i-ki,+l),(j- k1i+l) = £ [(a(i) - £[a(i)])(a(j) - [a(j)])]

where i, j E {kmin,... , kmax}.

* The Singular Value Decomposition of a matrix M = MH > 0 is indicated as M =

VMjAMVM, where the usual ordering of singular values is assumed [AM]i+l,i+l <

[AM]i,i. The singular values of M are represented in a more streamlined form as

Ai(M) = [AM]i,i. If A is a square matrix, we also represent its eigenvalues as Ai(A).
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* If a E IR then we define the negative and positive parts of a as [a]_ = min{a, 0} and

[a]+ = max{a, 0}, respectively.

* The following is a shorthand notation for the log-density of the eigenvalues with

magnitude smaller than 1, of a covariance matrix:

kma.T-kmin+l

L-(a ) = kmax - kmin + lomin
i=l

Similarly, we also define the positive counterpart of L_ as:

kmaz-kmin+l

L+(an) = kmax - kmin + 1 Z [log (ii(n(a~2n ))]+
i=l

3.1.2 Basic Facts and Definitions of Information Theory

In this section, we summarize the main definitions and facts about Information Theory

which are used throughout the Chapter. We adopt [52], as a primary reference, because it

addresses general probabilistic spaces in a unified framework. Let (Q, S,,,, ,) be a prob-

ability space along with the random variables a, b and c, taking values in the measurable

spaces (A, Sa), (, Sb) and (C, Se). We define mutual information and conditional mutual

information, between any two random variables, as:

Definition 3.1.1 (from [52] pp. 9 ) The mutual information, between a and b, I: (a; b) -

R+ U{oo} is given by:

I(a; b) = sup Pa,b(Ei x Fj) log Pa(Ei (Fj)
ij '.(E)P(Fj)

where the supremum is taken over all partitions {Ei} of A and {Fj} of B.

Definition 3.1.2 (from [52] pp. 37 ) The conditional mutual information I: (a; bIc)

R+ U{oo}, between a and b given c, is defined as:

I(a; blc) = sup E P.,b,c(E x Fj x Nk) log P ,b,c(E x Fjx Nk)
ijk Pa,bjc(Ei Fj XNk)
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where the supremum is taken over all partitions Ei E A, Fj E B and Nk E C and Pa,blc is

given by:

Pabic(E x F x N) = N Palc(El))Pblc(FlTy)Pc(dT)

Notice that, in definition 3.1.1, A and B may be different.

Consistent with the usual notation [52, 20], we define entropy as:

Definition 3.1.3 (Entropy) Let a and b be random variables. The entropy of a given b is

defined as:

H(alb) = I(a; alb)

Since entropy may be infinite for random variables defined in continuous probability spaces,

we also define the following quantities, denoted as differential entropy and conditional dif-

ferential entropy.

Definition 3.1.4 If a is a random variable, where A = Rq, along with a Lebesgue measur-

able and bounded probability density function Pa() then we define the differential entropy

of a as:

h(a)= ja)l -Pa(a) log Pa ()d7 - j Pa(7) logpa( ()d
(7)<1 a(7)>1

Notice that if Pa is Lebesgue measurable and bounded then we use fpa(y)>l Pa(Y) < 1 to

assert that fpa( y)>l Pa(y) logpa(y)dy < oo. This implies that h(a) is always well defined,

although not necessarily bounded. We have just shown that a bounded Lebesgue measur-

able Pa leads to an almost-integrable' Pa(y) log(pa(7)). If b is another random variable

and I(a, b) < oo then the conditional differential entropy of a given b is defined by:

h(alb) = h(a) - I(a; b) (3.1)

For technical reasons, we also define the following class of random variables:

'According to [26], all the properties of Lebesgue integrable functions hold for almost-integrable func-
tions. A Lebesgue measurable function f on (, X) is almost integrable [26] if at least one of the following

holds: fx[f]+p(dx) < oo or f [-f]+g(dx) < oo. The integral of an almost integrable f is defined as
fx f(dx) = fx[f]+(dx) - fx[-f]+M(dx). This issue is also briefly discussed in pp. 200 of [9].
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Definition 3.1.5 (Dither Class denoted as D) Let b be a random variable with alphabet

B C R, for some q E N. We denote b as type 1 if it has a countable alphabet with

inf{maxi bi - il : b, b E B, b b} > 0 and type 2 if it has a probability density Pb which

is Lebesgue measurable. The random variable b is of the class Dither, denoted as D, if it

is type 1 or type 2. If b E D then we also define b as:

= b + As ifbistype 
~~~~~~~b= ~~~(3.2)

b if b is type 2

where s is independent of b and uniformly distributed in (-1/2, 1 /2 ) q and A is given by:

A = inf{max Ibi - bil: b, b E 13, b P /} (3.3)

Notice that A is such that the following projections always exist:

b= rB(b)

s ifb is type 
s( = ifb is type 2

The following is a list of properties used in the sections 3.3 and 3.4. The proof of such

properties may be found in [52] and, in some cases, in [20]. We emphasize that, in this

Chapter, we write h(al.) only if the assumptions stated in definition 3.1.4 are satisfied.

* (P1): I(a; b) = I(b; a) > 0 and I(a; blc) = I(b; alc) > 0

* (P2) Kolmogorov's formula 2 (equation 3.6.6 in [52]):

I((a, b); cid) = I(b; cfd) + I(a; cl(b, d))

* (P3) Theorem 3.7.1 in [52]: If f and g are measurable functions then I(f(a); g(b)lc) <

2Notice that equation 3.6.3 in [52] has a typographic mistake. On the left hand side of the equality, the
correct is I(, )
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I(a; blc) and equality holds3 if f and g are invertible.

* (P3') It follows from (P3) that if b E DI) then I(a; blc) = I(a; (b, s)lc) which, since

s is independent from the rest, also implies that I(a; ljc) = I(a; blc). A similar

argument, using (P2), also leads to I(a; blc) = I(a; blk), provided that c E ID.

* (P4) Corollary 2., pp. 43 in [52]: Given a function f : C --- C' it follows that

I(a; f(c) c) = 0.

* (P5): From property (P3), we conclude that I(a; (b, c)ld) = I(a; (b - c, c)ld).

Using (P2), such equality also leads to:

I(a; bl(c, d)) = I(a; b - cl(c, d))

* (P6): By means of (P1) and (3.1), we infer that h(a) > h(alb), where equality

holds if and only if a and b are independent. Likewise, we can use properties (P1)-

(P2) to state that I(a; (b, c)) > I(a; b), which can be used with (3.1) to derive

h(alb) > h(al(b, c)).

* (P7) [20]: Let a, with A = Rq, be a random variable with p, bounded and Lebesgue

measurable and a covariance matrix denoted as E,. In Proposition C.1.1, of Ap-

pendix C, we show that finite E, implies finite h(a). Under such hypothesis, pa(-y) log(p (y))

is Lebesgue integrable and the following holds[20]:

h(a) < 1 log((27re)' det(E.))

where equality holds if a is Gaussian.

In order to simplify our notation, we also define the following quantities:

Definition 3.1.6 Let a and b be stochastic processes. The following are useful limit infor-

3The general version of this property states that equality holds if f and g are everywhere dense [52].
Every-time we use an invertible function to claim equality in (P3) the function is everywhere dense.
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mation rates:

I,(a; b) = limsup I(a ; , b) (a -- b) = lim sup - b)
k-oo k k-oo k

where I(a - bk) is denoted as directed mutual information [47, 60] and is defined as:

k

I(ak -+ bk)= ZI(a; b(i)lb- 1)

i=1

In this Chapter, we will also refer to Channels which are stochastic operators conform-

ing to the following definition:

Definition 3.1.7 (Memory-less Channel) Let V and Z be given input and output alpha-

bets, along with a white stochastic process, denoted as c, with alphabet C. Consider also a

function f : V x C -+ Z such that the following functions are invertible:

gl(v(k), c(k)) = (v(k), f(v(k), c(k)))

g2 (v(k), c(k)) = (f(v(k), c(k)), c(k))

The pair (f, c) defines a memory-less channel.

The previous definition is sufficiently general to encompass the following examples:

* Additive white Gaussian channel: V = Z = C = R, c is an i.i.d. white Gaussian

sequence with unit variance and f(c, v) = c + v.

* Binary symmetric channel, with error probability pe: V = Z = C = {= 0, 1 },

is an i.i.d sequence satisfying P(c(k) = 1) = Pe and f(c, v) = c +mod2 V

3.2 Problem Formulation and Discussion of Results

Consider the feedback interconnection depicted in Figure 1-2. In such information pattern

[65], measurements of the state of the plant have to be encoded and sent over a communi-

cation channel. The transmitted information is used, at the decoder/controller, to generate
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Figure 3-1: Simplified Structure of the Feedback Interconnection using e = G-1 e and
u = G-lii, with the correspondence, relative to the blocks of Fig 1-2.

the control signal u. In order to simplify the presentation, we proceed with the equivalent

block diagram of Fig 3-1.

3.2.1 Assumptions

Before stating our assumptions, we need the following definitions:

Definition 3.2.1 We define the following set of probability densities:

Lq = {f : R>olf is Leb. meas., f (y)d-y = 1, f (-y)-yT'yd-y < oc, sup f (y) < oo}

(3.4)

In addition, we also define:

Lq = {f E Lqjl3E > 0, such that Ir has limited interior} (3.5)

where

fr = E R 'f(/) > ((1 .+ 1'1) (1 + IYsl))l+E

An important property of Lq is that if Pa,b E L q +qb then Pa E Lq and Pb E IL b.

In the present formulation, which is schematically depicted in Fig 3-1, the following

assumptions are made. Notice that the diagram in Fig 3-1 is derived from Fig 1-2, by

means of incorporating G in the plant and G-1 in the decoder. The Appendix A comprises

a discussion of several important aspects related to the assumptions made.

We adopt the following assumptions:

* (Al): w, with w(k) E R, is an i.i.d., zero mean, unit variance and white Gaussian

process.
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* (A2): the control signal satisfies u k E ID for every k. We denote the alphabet of u

as U C R, so that uk E Uk. According to definition 3.1.5, we indicate the dithered

version of u(k) as ii(k).

* (A3): G(z) is an all-pole stable filter of the form:

G(z) =amz m

for some integer p > 1 and constants ai and c > 0.

* (A4): given n, P is a single input plant with state x(k) E Rn , which satisfies the

following state-space equation:

x(k + 1) = x(k + ) 0 x(k)+ b e(k) (3.6)
x(k + A b,

y(k) = Cx(k), IAi(A)lI > 1, Ii(A 8)l < 1

The state partitions xu and x8 represent the unstable and stable open-loop dynamics,

respectively. In addition, if A - A 8 then x,(k) is a random variable, with a given

probability density Pxu(k) ().

* (A5): the capacity [20] of a channel, specified by (f, c), is denoted as Cchannel and

is defined as:

Cchannel = sup I(f(v(k), c); v(k)) < oo
P,

where the supremum is taken over all probability measures P,, defined in (V, S).

* (A6): the encoder and the decoder are causal operators defined in the appropriate

spaces, i.e., E : Y -4 V, D : Z° -4 U° where v(k) = f(ykoo) and u(k) =

fk (k,) for some functions f and fd.

* (A7): additionally, the decoder satisfies the following finite memory condition:

Vk > , U+a = t(u, Zl) (3.7)
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for some a E N+ and a sequence of functions : U x Zk , U k - a - l

· (A8):(Fading memory condition) For technical reasons, we assume that the following

condition holds:
1

lim sup I(u 1; x(1), w lzk) = 0
k-ook

where a is the smallest constant for which (A7) holds. If a = 0 then we adopt the

convention that (A8) is satisfied. Several aspects of this assumption are clarified in

Appendix A. In particular, this condition is automatically satisfied if U is countable

and H(u') < oo holds.

* (A9): We assume that, for each k, (wk, iu, x(1)) admits a probability distribution

satisfying p,kx,kc(1) E L 2k+ l. In Appendix A, we explore a few special cases related

to this assumption.

3.2.2 Problem Statement and Discussion of Results

We investigate the fundamental limitations of the eigenvalue distribution of i(e1). In order

to simplify the expose, we state our results in terms of L_(e k ) and L+(ek).

In section 3.3 we reach a fundamental limitation which is a consequence from causality

alone. The result is presented in theorem 3.3.3, which states that if the feedback system in

Fig 3-1 is stable then the following must hold:

1 lim inf (L_(ek) + L+(e)) > Emax{O, log(i(A)(3.8)2 k-+oomaf, ( A13

The inequality in (3.8) demonstrates that not all of the eigenvalues, of ,(ek), can be made

small and that the reduction of some necessarily imply the increase of others. That is

comparable to the water-bed effect, associated to the classic Bode integral limitation. Such

comparison is not coincidental and is explored in section 3.3.1.

In the fundamental limitation expressed in (3.8), the characteristics of the channel do

not play a role. It remains the question of whether the "shaping" of the eigenvalues of E(e )

depends on the information flow in the feedback loop. The answer is given in theorem 3.4.3
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which states that:

- lim inf L_ (ek(k)) + I-(v z) > max{0, log(lAi(A)I)} (3.9)
2 koo 9

where g : N+ -- N+ is any arbitrary function satisfying:

lim g(k) = 0 (3.10)
k-oo k

As a consequence of (3.9), we find that reduction of the eigenvalues of (ek(k), for values

bellow unity, must come at the expense of information flow in the channel, as quantified by

loo( -- ).

Under stationary assumptions, corollaries 3.3.4 and 3.4.4 show that the inequalities

(3.8) and (3.9) can be expressed as:

2 - [log(S(w))]_dw + 1 [log(S(w))]+dw > Emax{0,Og(Ai(A)[)} (3.11)

1 7r
2 J [log(S(w))]_dw + io(v -- z) > E max{0, log(,Ai(A) )} (3.12)

where S(w) = Fe(w)= / PI) (

The inequalities (3.11) and (3.12) must be satisfied by any stable and causal loop of the

form depicted in Fig 1-2 or Fig 3-1. The first inequality is the Bode integral formula, which

is the basis of the disturbance attenuation/amplification water-bed effect, while the second

entails a new attenuation/capacity trade-off.

3.3 Fundamental Limitations Created by Causality

In this section, we derive a fundamental limitation that arises from causality. The results

are valid under the assumptions listed in section 3.2.1, with the exception of (A7)-(A8)

which are not needed. The discussion is also used to present some of the preliminary

results, which will be used in section 3.4. Our technique follows the one by [71], with the
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exception of the way we tackle initial conditions and unstable modes of the plant. More

specifically, theorem 3.3.3 states a fundamental limitation that explicitly incorporates the

eigenvalues of A. At the end of the section, we specialize the result, under stationarity

assumptions, and derive the Bode-Integral formula in Corollary 3.3.4.

The following lemma shows that the difference, between the entropy rate of e and the

entropy rate of w, is lower-bounded by the mutual information between the plant's state

and e.

Lemma 3.3.1 (Entropy-rate amplification) If x(k) is the solution of the state-space equa-

tion (3.6) then the following holds:

h(el) I(ekx(j))
liminf () > liminf I )) + h(w(1)) (3.13)

k-oo k - koo k

Proof: We start by noticing that, since the plant is strictly proper and causal, w(k), with

k > 1, is independent of (x(1), uk, wk-), which implies:

h(w(k)) = h(w(k)lx(l), Uk, Wk- ) = h(e(k)lx(l), Uk , ek- ) h(e(k)lx(l), ek-),k 1
(3.14)

where we used properties (P6) and lemma C.2.1 of Appendix C. Since h(w(k)) does not

depend on k, we use (3.14) and the chain rule of differential entropy to derive:

k

Eh(e(i)lx(1), e-l) = h(e lx(1)) > h(w(l)) (3.15)
i=l

Notice that the chain rule of differential entropy in (3.15) is valid because Pw,u.,x(1) E

L2k+1 implies, using a change of variables and an integration argument, that the marginal

densities4 Pl,(1) E Ii+ 1. Consequently, the proposition C. 1.1 and the lemma C. 1.2, of Ap-

pendix C, guarantee that all the quantities in (3.15) are well defined. The proof is concluded

once we notice, from (3.1), that h(eklx(1)) = h(ek) - I(ek; x(1)). [

The following lemma, corroborates the results by [59, 60, 54, 69, 50], and unveils that

4 Notice that Fubinni's Theorem [2] guarantees that the marginal densities are Lebesgue measurable. The
co-variance matrix of (e , x(1)) is bounded since the covariance matrix of (w k, l,(1)) is bounded. The
integration and change of variables are need just to show that p :,(1) is bounded.
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stability implies that e must carry a bit-rate, of information about the state of the plant, of

at least Ei max{O, log(lAi(A) )}.

Lemma 3.3.2 Let x(k) be the solution of the state-space equation (3.6). If the plant is

stabilized, i.e., supk £[xT(k)x(k)] < oo holds then the following is satisfied:

lim inf(ek ()) > E max{0, log(lAi(A)l)) (3.16)
k-oo k

Proof: If A = As then we just use I(ek ;x(1)) > 0. If A - As then we consider the

following homogeneous system:

x,(k + 1) = Auxe(k) + bue(k), e,(1) = 0 (3.17)

and define the estimate x(k) = A kxe(k). Since xu(k) = x,(k) + Ax,(1) = A(R(k) -

xu(1)), we know that:

k log({ det(AuAT)) + log(det(Rxro,,,(k))) = log(det(R. (k, k))) </3 < oo (3.18)

where x,eror(k) = x(k) - xu(1). Since x(k) is a function of e , we have that:

I(x(1); ek) > I(xu(1); ek) > h(xu(1))-h(xu(1)le k) = h(xu(1))-h(xu(1)-k(k)le k) >

h(x(1)) - h(R(k) - xu(1)) (3.19)

where we have used (P3), (3.1), lemma C.2.3 of Appendix C and (P6).

But, from (P7) we know that limsupk o h(*-x(1)) < im supk, 1g(det(Rxrror(k)))

As a consequence, we can use (3.18) to get:

lirn sup h(x(k) - xu(1)) < - log(I det(Au)I) (3.20)
k-oo k

The proof follows by direct substitution O.

Using the results in the previous lemmas, we derive theorem 3.3.3. It states that causal-

ity and stability imply that the log-sum of the eigenvalues of E(e k) are, in the limit, lower
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bounded by the unstable eigenvalues of the plant.

Theorem 3.3.3 (Causality fundamental limitation) Let x(k) be the solution of the state-

space equation (3.6). If the plant is stabilized, i.e., SUpk £[xT(k)x(k)] < oo holds then the

following is satisfied:

lim inf (L_(el) + L+(el)) > 2 max{O, log(Ai(A)l)} (3.21)
k--.oo

Proof: From lemmas 3.3.1 and 3.3.2 we know that:

h(e) I(e' ax(1))
liminf ( - h(w(1)) > liminf 1 )) (3.22)

k-oo kk k--ooo ko

Using the fact (P7), we conclude that h(e k ) - kh(w(1)) < log(det(E(ek))) which, to-

gether with (3.22), leads to the final result O

3.3.1 Deriving Bode's Integral Formula

Under stationarity assumptions, theorem 3.3.3 is at the base of the Bode-integral formula.

A precise description of such property is in the subsequent Corollary.

Corollary 3.3.4 Let x(k) be the solution of the state-space equation (3.6). If the plant

is stabilized, i.e., SUpk E[xT(k)x(k)] < oo holds and e is a stationary process, where

O < m < Pe(w) < M < oo is Lebesgue integrable, then the following is satisfied:

2 J log(S(w))dw > max{O, log(Aj(A)l)} (3.23)

where S(w) = F(c) = (eiWS)12 The processes e and d are the ones depicted in Fig

1-2.

Proof: From theorem B.2.1, of Appendix B, we have that:

lim L_(ek) + L+(ek) = - log(FP(w))dw (3.24)
k--oo 2
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The proof follows by means of (3.24) and Theorem 3.3.30

3.4 Fundamental Limitations Created by Finite Capacity

Feedback

In this section, we examine the fundamental limitations, in the eigenvalues of5 (eI(k)),

that originate from the constraint Io(v -* z) < Channel. The main inequality, involving

the channel directed information rate and the eigenvalues of A, is given in theorem 3.4.3.

Sub-sequentially, we provide a lemma which unveils how the information flux is allo-

cated in the feedback loop. We identify that the directed information rate in the channel

must account for two terms. The first is due to the stabilization information and is given by

I(x(1); eI); while the second represents the interaction between the control signal and the

disturbance and is quantified by I(uk; W ).

Lemma 3.4.1 (Fundamental Lemma of the Flux of Information) If x(k) is the solution

of the state-space equation (3.6) then the following holds:

Ioo(v - z) > liminf kI(x(1); e) + oo(u; wl) (3.25)
k---oo kI 

Proof: We start by using (P2) to write I((x(1), wk); Uk) = I(x(1); u Wk) +I(uk; Wk)

which can be rewritten as:

I((x(1), w); u) = I(x(1); elw) + I(uk; wk) (3.26)

where we used (P5) to establish that I(x(1); u kwl k) = I(x(1); e Iw). On the other hand,

using (P2) we get

I(x(1); e kw) = I(x(1); e) - I(x(1); w ) + I(x(l); wIle I) (3.27)

5We investigate the eigenvalues of E(eg(k)), for arbitrary g satisfying limk g(k) = . Such general-
ization allows the derivation of an integral formula for exponentially asymptotic stationary processes. More
details are provided in section 3.5.1
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Since w is independent from x(1), the second term, on the right-hand side of (3.27), van-

ishes and we resort to (P1) to get I(x(1); eflw') > I(x(1); ek). Consequently, we substi-

tute the aforementioned inequality in (3.26) and obtain the following:

I((x(1), wlk); u) > I(x(1); e) + I(u; w) (3.28)

The final inequality follows from (3.28) and the Theorem B.1.1 of Appendix B. O

The following lemma suggests that attenuation can happen only if the channel conveys

information about the disturbance.

Lemma 3.4.2 The following holds:

k-ko + I() > -L (ek) (3.29)

Proof: Let the following be the singular value decomposition of E(eIo):

(ek) = [V+ [A [(3.30)

where [A_] < and [A+]ii > 1.

As a second step, we establish the following relation 6:

I(Wk ; Uko) > I(Vwk; VUk) = h(VWk o)-h(VWkIVUk) > h(V-w )-h(V eo)

(3.31)

where we have used (P3), (3.1), lemma C.2.2 of Appendix C and (P6). Moreover, since w

is i.i.d, h(w(k)) = log(27re) and V is unitary, we use (P7) to derive:

k 1 k - k +Ih(V Wk) - h(V-ek) > - log(det(V (e )V)) = ko + 1 L_ (e) (3.32)
ko V IOo- 2 Io 2 I

6Notice that we have used an abuse of notation in equation (3.31). We write V_ek to indicate the random
e(k)

variable whose realizations are computed as V_ (
86(ko)
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Subsequently, we provide the theorem which states the main inequality in the Chapter.

It reflects a trade-off between disturbance attenuation, as measured by L_(e(k)), and the

directed information rate through the channel, expressed by Ioo (v - z).

Theorem 3.4.3 (Main theorem) Let x(k) be the solution of the state-space equation (3.6)

and g : N+ N+ be an arbitrary function satisfying

lim g(k) = 
kazoo k

If the plant is stabilized, i.e., supk E[xT(k)x(k)] < oo then the following is satisfied:

1k
Ioo(v - z)- max{O, log(lAi(A))} > - lim infL_(ek(k)) (3.33)

Proof: We begin by using (P3) to arrive at the following fact:

1 . k
Io(u; w) > limsup 1 I(k);Wgk) (3.34)

k--.oo k - g(k) + 1(k)w( k))

The proof follows by substituting the results of lemmas 3.3.2 and 3.4.2 into lemma 3.4.1.

The corollary bellow is an immediate consequence of theorem 3.4.3 and shows that if

Cchannel is too close to the critical stabilization rate, given by Ei max{0, log(lAi(A)I)},

then disturbance rejection is not possible.

Corollary 3.4.4 Let x(k) be the solution of the state-space equation (3.6) and g(k) be a

function satisfying

lim g(k) = 0
k- oo k

If the plant is stabilized, i.e., supk £[xT(k)x(k)] < o then the following is satisfied:

2 lim infL_ (es(k)) + Cchanne > max{0, log(IAi (A) )} (3.35)

Proof: Follows from theorem 3.4.3 and the fact that I(v:k -Zlk) < Cchannel OiProof:' Follows from theorem 3.4.3 and the fact that I(v~ --. z) _< channel. L]
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3.4.1 An Integral Formula under Stationarity Assumptions

Under stationarity assumptions, the condition in theorem 3.4.3 can be expressed by means

of an integral formula.

Corollary 3.4.5 Let x(k) be the solution of the state-space equation (3.6). If the plant is

stabilized, i.e., supk £[xT(k)x(k)] < oo and e is stationary, where 0 < m < Fe(w) <

M < oo is Lebesgue integrable, then the following is satisfied:

J[log S(w)]_dw + Io(v z) > max{0, log(IAi(A))} (3.36)

where S(w) = S() = X) = GI(.e)j2 The processes e and d are the ones

depicted in Fig 1-2.

Proof: By means of a direct application of the theorem B.2.1 of Appendix B, we find that:

lim L_(e)= -j[log(Fe(w))bdw (3.37)
k--oo 2r [

The result follows by direct substitution of (3.37) in (3.33). O

3.5 Example

Consider the linear feedback loop of Fig 3-2 and that the blocks and signals represented

satisfy:

* (El) P(z) is a strictly proper linear and time-invariant plant of order np.

* (E2) K(z) is a proper linear and time invariant system of order nK

* (E3) w is a zero mean Gaussian i.i.d. and unit variance random process. The process

c is i.i.d. and Gaussian, with variance ac2.

* (E4) x(1) is also zero mean Gaussian.

* (E5) the initial state of K is taken as xK(1) = 0
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Disturbance

tChannel

Figure 3-2: General structure for a linear feedback loop with disturbances and noisy mea-
surements.

* (E6) the feedback loop is stable.

The example of Fig 3-2 is a particular instance of the scheme of Fig 3-1. All assump-

tions stated in section 3.2.1 are satisfied, in particular (A7) and (A8). Since we assume that

K(z) has zero initial state then (A7) is satisfied with a = 0 and (A8) is also immediately

true.

In the following sub-sections, we discuss a numerical computation which suggests that

the following inequality (from the main Theorem 3.4.3) is not conservative:

[I(v -z) E- max{O, log(lAi(A))} > -2 lim inf L_ (e{(k)) (3.38)

3.5.1 Preliminary Results: Extension to the Non-Stationary Case

The aim of this subsection is to derive computable upper and lower bounds for the inequal-

ity (3.38). The subsequent Lemmas comprise integral formulas for the Gaussian asymptotic

stationary case. The final inequality is presented in Corollary 3.5.4, where the upper and

lower bounds are easily computable through integrals. Consequently, we can obtain the

numerical results of section 3.5.2 and test for the tightness of the inequality (3.38).

We emphasize that, all the quantities in the statements and in the proofs of this subsec-

tion, refer to the example of Fig 3-2. As such, we assume that they comply with (E1)-(E6).

Lemma 3.5.1 Let e be a stationary stochastic process with auto-covariance Re(r). Con-

sider that F(w) is a real-valued, Lebesgue integrablefunction and that the following holds:

3 > , y E (, 1) such that Vko, r > O, IRe(ko, ko + r) - Rg(r)l < 3_yk ° (3.39)
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We denote by m and M the essential lower bound and upper bound of Feg(w), respectively,

and assume that m and M are finite. The following is satisfied:

lim inf L_ (ek2)
k--*oo

=- [log(fe(w))]_dw
27r ,r

Proof: We follow the same steps of the proof of lemma 3.4.2 and get the following decom-

position of (e k
2 ):

([k2) = k [Ak 2k [V: 1
(3.41)

where [A_]i < 1 and [A+]ii > 1. Now, assumption (3.39) and Theorem B.2.1 of Appendix

B, guarantee that:

lim inf L_ (ek2) = lim inf k 1 log(det(Vk_i(ek 2 )V _)) -
k--oo k-oo k2 -k+ ()

lim inf log(det(Vk,-(e Vk,)) = lim L _(e 2 )
k-oo k2 -k+1 oo

1

2r
7r [log(
-7r

Fe(w))]_dw

(3.42)

The proof is complete, once we provide more detail on the validity of the equality marked

with (*) in (3.42). From assumption (3.39) and the fact that [Ak,_]ii > m, we know that:

lim cO(Ak,e) = 0
k--*oo

(3.43)

where (Ak,e) = maxi ,j I [Ak,eijl and Ak,e is a matrix satisfying:

Vk, - (ek2 ) Vk = Vk,- (k2 ) V

Ak,-

+ Vk, ((ek') k(e 2)) V =T Ak, (I + Ak,,)

(3.44)

We finalize, by using Gershgorin's circle Theorem to infer that i (I + Ak,e) [1 -

(Ak,e), 1 + Q(Ak,e)]-. l

Lemma 3.5.2 Let z be a stationary stochastic process with auto-covariance Rz(7-). Con-
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sider that PF,(w) is a real-valued, Lebesgue integrable function and that the following

holds:

3 > O, y E (0, 1) such that Vko, > 0, IRz(ko, ko + r) - R(r)I < p3yko (3.45)

We denote by m and M the essential lower bound and upper bound of Fg(w), respectively,

and assume that m and M are finite. The following holds:

j47 j 0log( Z) )dw > ,oo(v - z) (3.46)

Proof: Choose arbitrary v E N+. We start by noticing that:

lim sup h(z(k) zk-i+1) - h(c(k)) >
k-- oo

limsup h((k)lzlk -) -h(c(k)) = lim up I(z(); vl-l) > I~(v z) (3.47)
k--oo k-+oo

Now, notice that assumption (3.45), guarantees that:

lim h(z(k) k-+l)
k-}oo

- lim h(,(k)I - -k - 1 )
k-+oo v+ stationarity

(3.48)

which, from (3.47), implies:

h(z(v) I1- ') - h(c(1)) > Ioo(v - z) (3.49)

Since v was arbitrary, we can use (3.49) and Theorem B.2.1, from Appendix B, to state

that:

1ioo(v --o z) < lirn h(z(v)Iz; - ) - h(c(1)) =- log(F U))dw
7r ' c

91

(3.50)

h(Z-(v) I 01-1



Theorem 3.5.3 If the feedback system of Fig 3-2 is stable then the following holds:

1 7r

4- log(
4 J

Fz() )dw -E max{O, log( lA(A)l)} >

I,(v ~Z) -E max{O, log(Ai(A)1)} > - lim inf L_(e(k)) =
2 |2mi

2~[log(Pe(w))]_dw
2-r 7r

Proof: Since the system is stable, the exponential asymptotic stationarity conditions of

Lemmas 3.5.1 and 3.5.2 are satisfied. The result follows from these Lemmas and the main

Theorem 3.4.3. 0

The following Corollary, specializes Theorem 3.5.3 to the feed-back loop of Fig 3-2:

Corollary 3.5.4 If the feedback system of Fig 3-2 is stable then the following holds:

4 o 1 +P( d >
4i' 7r 0-2C

Ioo(v - z)- E max{O, log(lAi(A)l)} >
i

1 lim inf k
- lim inf L_ (e a(k) ) 

1 r 1 + ac2l 12K(ei) 1

2 7r -7r [og 1 + P(ei-w)K(eiW)1 2 J_

Proof: We start by computing the power spectral density Fzj(w) to obtain:

Fi(w) 
C2

1

11 + P(ejw)K(ej)l 2 1 IP(ejw)1 2 )
2 )

But, from the residue theorem, we use (3.53) to show that:

41 | log( g )dw4w]~z>d 4I f log (1 + IP(e)l) dw + A max{O, log(lAi(A) )}

(3.54)

The power spectral density of Fe(w) leads to:

Fg(w) _

c
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dw (3.52)

(3.53)

1 + ~2lK(ew)1 2

II1 + P(ejw)K(ejw) 2 (3.55)
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The proof is concluded by direct substitution of (3.54) and (3.55) in Theorem 3.5.3. 0

3.5.2 Numerical results

From Corollary 3.5.4, we infer that an indication for the tightness of the inequality (3.38)

is that the following lower-bound and upper-bound are close:

ub(a) 4 log (1 + IP(ejw 12 dw (3.56)

(c2) = 1f I ( 1 + aocK(ed")I2

log 11 + P(eJiw)K(ew)- I2 -

(ac2)

2 4 6

Figure 3-3: Plot of the upper-bound and lower-bound, computed as a function of a¢.

In Figure 3-3, we depict the numerical results for the following P and K:

P(z) =
z-1

(1- 1.5z-1) ° (3.58)

(3.59)
1

K(z)= z - (z)

Notice that K is the dead-bit controller. We emphasize that the choice of the multiple pole

of P(z) was arbitrary. We have tried other values and the bounds behaved in a similar way.

By inspection, one can argue that the bounds get more accurate for increasing values
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1
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0

0.

0

0.

0

0.

2 4 6 8 210
ac

Figure 3-4: Plot of the relative difference between the upper-bound and lower-bound, com-
puted as a function of ac.

of o2 (see Fig 3-4). Moreover, we have verified empirically that such relative accuracy can

be made arbitrarily small by considering P(z) = (1-z-5)n, with n arbitrarily large and

K(z) = z- 1

94



Chapter 4

An Information Theoretic Approach to

the Modal Estimation of Switching FIR

Linear Systems

4.1 Introduction

The implications of modal estimation span applications in Adaptive Control and fault detec-

tion. Depending on the formulation, modal estimation may be realized as part of a hybrid

state estimation paradigm[57], comprising discrete (modes) and continuous states. Al-

though the investigation of such problems has generated a vast portfolio of algorithms and

methods, [58] suggests the need to devote more attention to the modal estimation alone. By

adopting the framework used in the identification of FIR-LPV systems [17], the estimation

of the continuous state can be avoided. Consequently, we focus on the modal estimation

problem by considering systems that switch among a set of modes which comprise finite

impulse response, or moving average, filters. A discrete stochastic process qk drives the

switching, while the system is excited by a white Gaussian process (probing signal). The

optimal modal MAP-estimation problem can be cast as a Bayesian Hypothesis testing. The

search space grows with m k, where m is the number of modes and k is the number of

observations.
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We recognize that the modal estimation problem is equivalent to a communication setup

in the presence of randomly generated codes [5]. Under that framework, the input probing

signal defines a constrained code and the system is perceived as an encoder of the mode

sequence qk. Motivated by that, we adopt a decoder structure for the mode estimator.

The search space is reduced to mk(r q+e) elements, where rq E [0, 1] is the entropy rate

of qk and e > 0 is a quality parameter that determines the degree of optimality of the

estimates. Such reduction is achieved by constraining the search to the typical set [20] of

mode sequences. Since such set is simultaneously a high probability set no information is

lost. This reduction is a unified and asymptotically optimal way to implement the merging

and pruning of hypothesis that otherwise would rely on approximations, mode transition

detectors, slow variation hypothesis [30] or the use of forgetting factors. We also present

an alternative low complexity estimation algorithm that converges in probability, as k tends

to infinity, to the decoder proposed. It is based on a binary search that requires, at every

step, an optimization using a forward dynamic program of complexity km2 .

Although using a different formulation, we refer to [12] where it is exposed the dif-

ficulty of computing measures of quality for the available modal estimation algorithms.

In practice, such quality evaluation may have to resort to Monte Carlo simulations. We

address that problem by using Shannon's theory to define a measure of distortion Dd that

is suitable for a probabilistic worst-case analysis. Using this distortion, we determine the

probability that a sequence of mode estimates (1,..., qk) (generated by the decoder) is

in a ball, of radius /3, around the true sequence (ql,..., qk). An interesting feature of this

framework is that there exists /3 such that the probability of D(ql,k, ql,k) < converges to

1 as k tends to infinity. We compute such 3 and show that it is an affine function of rq, the

entropy rate of the switching process. In that sense, as a theoretical result, our work relates

to [70], where it is proven that the uncertainty [63] in identifying time-varying systems

is directly related to the speed of variation. Information theoretically inspired distances,

have been widely used in system identification and parameter estimation [64, 56, 3]. The

distortion Dd can also be used as a quality measure on the design of probing signals and

can be viewed as a first step to the proper study of the effect of observed inputs on the

mode observability of linear hybrid systems. We also stress that our analysis and methods
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are applicable to other classes of stable switching systems [39]. In these cases, the moving

average coefficients should be the truncation of the impulse response of such stable linear

systems. Worst-case LPV-FIR system identification was also broached by [6] in the case

where the coefficients have a specific functional form.

This chapter is organized as follows: Section 4.1.1 introduces the notation used through-

out the text. The problem is stated and its information theoretic equivalence established in

section 4.2, while section 4.2.1 provides a guide through the main results. The estima-

tion paradigm is described in section 4.3, while the performance analysis is carried out in

section 4.4. An efficient estimation algorithm is presented in section 4.4.1 and numerical

examples are provided in section 4.4.2.

4.1.1 Notation

The following notation is adopted: Large caps letters are used to indicate vectors and ma-

trices. Small caps letters are reserved for real scalars and discrete variables. In addition, p

is reserved to represent probability distributions. Discrete-time sequences are indexed by

time using integer subscripts, such as Xk. Finite segments of discrete-time sequences are

indicated by the range of their time-indexing as in the following example (k > n):

qn,k = (qn· ·. , qk) (4.1)

Superscripts are reserved for distinguishing different variables and functions according to

their meaning. Random variables are represented using boldface letters and follow the con-

ventions above. As an illustration, x is a valid representation for a scalar random variable,

while a sample (or realization) is written as x. Also, a finite segment of a discrete-time

sequence of random variables, would be ql,k. A realization of such process would be in-

dicated as ql,k. The probability of an event is indicated by P(event). We use the entropy

function, of a random variable Z, given by:

'7[Z] = E[- lnpZ(Z)] (4.2)
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where pZ is the p.d.f. of Z and [-] is the expected value, taken over Z. Similarly, the

conditional entropy is given by 7-[Z1lZ2 ] = -[Z1, Z2] - [Z2] where, in this case, the

expectation is taken with respect to Z1 and Z2. The covariance matrix of a random matrix

Z, with Z E RnlXn2 , is given by:

E = £ [(Z-£6[Z]) ] ) , where Z = vec(Z) (4.3)

4.2 Problem statement

Consider the mode alphabet A = {1,..., m}, with m > 2, and the random process Fk,

with Fk E RnF, described by:

Fk = Yk + Wk, k > 1 (4.4)

Yk = Gi(qk)Vk-i, k > 1 (4.5)
i=O

where k, a E N and Gi: A --t R n F x n are matrices that specify the switching system. The

stochastic processes Vk (probing signal), Wk and qk are mutually independent and satisfy:

* Vk and Wk are Gaussian zero mean i.i.d. processes, with Vk E R nV and Wk E RnF.

In order to avoid degeneracy problems, we assume Ew > 0. In contrast to Wk, the

probing signal Vk is assumed to be observed by the estimator. Examples where this

is a realistic assumption are: when Vk is generated by the estimator; when it is an

exogenous process that can be observed by the estimator or a combination of both.

* qk is a discrete, stationary and ergodic Markovian stochastic process with alphabet

A. For a given k E N, we write the p.d.f. of ql,k as Pq(ql,k), regardless of k and

Pq (qklqk-) = Pq qk1 The entropy rate [20] of qk, designatedby rq, is computed

as:

rq = £[-logmp q (qklqk-1)] (4.6)

For a given k, we wish to use the probing signal V1_,k and a decision system that, by

means of the measurement of Fl,k, produces an estimate ql,k of ql,k. The estimation
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method must have an associated measure of distortion Dd(ql,k, ql,k) that allows the speci-

fication of a ball around ql,k where the estimates ql,k will lie with a given probability. In

particular, for a given /> 0, we are interested in computing P(Dd(ql,k, ql,k) > ). Such

probability is expected to depend on / and k. By using an information theoretic formu-

lation, this characterization must also reflect the informativity of Vk and rq, the entropy

rate of the switching process. We would like to stress that, without loss of generality, we

develop our analysis using the origin of time as k = 1. In real applications, this setup can

be used in a sliding window scheme and k should be viewed as the time horizon of the

estimator.

4.2.1 Main results

Among the results presented in this Chapter, the following are central to answering the

questions posed above: In definition 4.4.2 a measure of distortion Dd is introduced. It

is through this function that the informativity of Vk can be gauged. If Vk, or only part

of it, are generated by the estimator then that generated portion of Ev may be tuned to

achieve a desired distortion function. Similar methods for the distance-based design of

probing functions were derived in [3]. In lemma D.1.6 we show that, as k increases,
F

P(Dd(ql,k, l1,k) > 3) decreases. Theorem 4.4.1 proves that if /3 > rq ln(m) + -T then

P(Dd(ql,k, l,k) > 3) can be made arbitrarily small by increasing k.

4.2.2 Posing the Problem Statement as a Coding Paradigm

As the generality of the estimation paradigms [64], the estimation of the mode of (4.4)-(4.5)

can be interpreted as a problem of communication through a noisy channel. The message to

be transmitted is ql,k, the probing signal V1_,k specifies the code while the measurement

noise Wl,k completes the setup of such channel. The decoder is bound to use Vl_,,k and

the noisy measurements F1,k to make a decision as to which is the best estimate ql,k-
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4.3 Encoding and decoding

A specific feature of this communications setup is that the encoder does not know the

message to be transmitted. This is a problem if one wants to adopt the approach of coding

long words as a way to reduce the probability of error (channel coding theorem). In order

to circumvent this difficulty, we follow the procedure in the proof of Shannon's channel

coding theorem, i.e., the use of random coding [5]. Consequently, we consider the white

Gaussian process Vl-a,k as establishing a constrained random code specified by Ev. In

the decoding process we will use the following estimate:

Yk(qk) = EGi(k)Vk-i (4.7)
i=O

The decoding process has a hypothesis testing structure. The likelihood of a given candi-

date sequence 41,k is gauged by means of the estimation error Fk - Yk(qk).

4.3.1 Description of the estimator (decoder)

By following the approach that leads to a standard decoder [20], in this section we construct

a mode estimator. In the subsequent analysis we use the following result:

Remark 4.3.1 If X is a Gaussian, zero mean random variable with covariance matrix

CX E Rnxxnx, then:

(X) in ((2)re Ix) (4.8)

The following is the definition of the noise entropy rate rW. Such quantity is important in

the construction of the estimator.

Definition 4.3.1 Define the noise entropy rate rw as:

In ((27re)nF Ewl)
rw = 7(Wk) = (4.9)2

The following definitions complete the list of mathematical objects needed to describe the

decoder.
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Definition 4.3.2 Consider l1,k E Ak and realizations F,k and Y1,k(q,k). Given param-

eters k E N and e E (0, 1), define the selection indicator s',k Ak -- {True, False}

as:
- npW,k(Flk-yk(41 < r+ E

False otherwise

The decoding process is a search in the typical set defined bellow.

Definition 4.3.3 Given the parameters k E N and e E (0, 1), the set of typical sequences

T¶e,k is defined as:

Te,k = 1{q,k E Ak g- g pq (1k)< (4.11)

It is the cardinality of E ,k that determines the computational complexity of the estimator.

According to [20] such quantity is bounded by mk(r q+ e). The structure of the decoder is the

following:

Definition 4.3.4 (Decoder) Given the realizations Fl,k and V1,k, parameters k E N and

e E (0, 1), define the decoder as a search in TEk that generates ql,k satisfying:

ql,k E TEIk and s' k(ql,k) = True (4.12)

If for a given realization, there is no such ql,k, then the decoder generates an arbitrary

ql,k E TE' k . The decoding process defines a random variable, which we designate by tl,k.

4.4 Performance Analysis

The following definition, describing a conditional test random variable, will facilitate the

performance analysis of the decoder.

Definition 4.4.1 Given k E N, k > 1 and qk, qk E A, define the random variable Tk(qk, k)

as:

Tk(qk, k) = (G(qk) - Gi(k)) Vk-i + Wk (4.13)
i=O
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Note that, given k E A, the random variable Fi - Y(qk) conditioned to a fixed qk is

given by Tk(qk, qk). If k = qk, then Tk(qk, qk) = Wk. For any given indices kl, k2 and

qkl,k2, qkl,k2 E Akk + l, we adopt the following abuse of notation:

Tkl,k2 (qkl,k2, kl,k2)= (Tkl (qkl, qk), ... , Tk2 (qk2, k2)) (4.14)

The quality evaluation, of the coding/decoding process, is carried out by computing the

probability that q1,k is in a ball around ql,k. Such uncertainty set is specified by means of

the distortion Dd defined bellow. This function is related to the concept of divergence as in

[3].

Definition 4.4.2 (Measure of Distortion)The distortion Dd : Ak x Ak -, R is given by:

Dd(qlk, k) (Tl,k(ql,k, ql,k)) _ rW (4.15)

The following theorem is the main result of this Chapter.

Theorem 4.4.1 Let 1,k be determined according to the decoding process described in the

definition 4.3.4. For any given > O, there exists k E N and e E (0, 1) such that:

P d(q, ql,k) > n(m)r + +) < , ifrq >0 (4.16)

P (d(ql,k, ql,k) > 6) < 6, ifr q = 0 (4.17)

Proof:

The result for rq > 0 follows directly from lemma D. 1.6 in section D. 1. 

4.4.1 An Efficient Decoding Algorithm

In this subsection, the main result is lemma 4.4.2. It shows that, for k sufficiently large, the

exhaustive search of definition 4.3.4 can be replaced by a binary search over a non-negative

parameter y. The stopping condition relies on the minimal solution of the following cost

functional:
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Definition 4.4.3 Given realizations ql,k, Fl,k, V1,k and Wl,k, define the following costfunc-

tion:

-in [pWlk (Fl,k - Y1,k(ql,k))] -logm (pq(ql,k))
J7y(lk=k +k (4.18)

where ql,k E Ak is a candidate sequence and 'y is a non-negative constant. Thefirst term of

the cost function is a sample divergence, while the second is designated as sample entropy

rate. Note that the two terms in the cost (4.18) are identical to the ones in (4.10) and (4.11).

Lemma 4.4.2 Let q,k be the optimal solution given by:

q,k = argminj( ql,k) (4.19)
ql,kEAk

and ql,k be the estimate of definition 4.3.4. If qk is i.i.d., then the following holds:

lim P (E A E 2 == 3a, b, Vy E (a, b) E 3 A E 4) = 1 (4.20)
k--oo

where El, E2, E3 and E 4 are the following events:

E1 se k(ql,k), E 2 = (,k E T k) (4.21)

E3 = s 2Ek(q l,k), E4 = (q, e T2 E,k) (4.22)

Remark 4.4.1 (Binary Search) The two terms in the cost (4.18) analyzed separately, in

terms of the events (4.21)-(4.22), lead to the following structure for the binary search:

* A simple optimality argument is sufficient to show that for any -y > 0, the optimal

solution satisfies E1 A E 2 =- E3 V E 4.

* If y = O, then the optimal solution is the maximum likelihood estimate over the

unrestricted search space Ak. It implies that, for 7 sufficiently small, E1 - E3.

* As y increases the first term (divergence) is non-decreasing and the second term

(entropy rate) is non increasing at the optimal solution. In the limit, the sample
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entropy rate converges to a constant c < r q. It shows that for y sufficiently large E4

is true.

* Lemma 4.4.2 shows that, with probability arbitrarily close to 1, there exists an in-

terval (a, b) such that for all y E (a, b) the optimal solution satisfies E 1 A E2 ==

E3 A E4. The aim of the binary search is to find some y* in this interval. Given y at

time k, if E3 A -,E4 then, at time k + 1, y must be increased. On the other hand, if

-E 3 A E4 then y must be decreased. If E 1 A E2 is satisfied, then, after afinite number

of steps, -y will be in (a, b) and E3 A E 4 is satisfied. The optimal sequence is taken as

the resulting mode sequence estimate.

* A minimum size for the interval (a,b) must be specified. If the binary search reaches

such limit it must end, declare that the condition E 3 A E 4 could not be satisfied and

qlk be chosen arbitrarily. Since the smallest the minimal size of the interval the

better, a safe approach is to simulate the estimator and decrease that quantity until

the estimates are within the performance predicted in theory. The minimal size will

impact the number of iterations and, as such, the final complexity of the algorithm.

We verified empirically that, even in cases where k > 1000, a = 10 and nF = 2 the

search is concluded within afew seconds.

The proof of lemma 4.4.2 follows by continuity arguments. We also believe that lemma

4.4.2 extends to general Markovian qk. So far, we keep it as a conjecture that is empirically

verifiable through simulations.

Computational complexity of minimizing J7 (ql,k)

In the following analysis we show that the minimization of J7 (ql,k) has a computational

complexity that grows linearly with k. We start by recalling that since Wk is i.i.d. and qk
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is Markovian, we can rewrite J,,(ql,k) as:

k )npwi(Fi - Yi(gq)) logmpq(qjq_ 1)
-k k +

i=2

lnpW1 (F1 - Y1 (ql)) logmpq(q) (
- (4.23)k k

Now, notice that (4.23) is suitable for forward dynamic programming [8]. The optimal

ql,k is the the minimal path solution of (4.23). At every step k* E {1,..., k}, the algo-

rithm recursively determines the optimal path q4,k for all end points. The total number of

operations is m 2k and, as such, computational complexity grows linearly with k.

4.4.2 Numerical Results

In order to illustrate the previously described optimization method, we refer to figures 4-1

and 4-2 where we depict the results for the following parameters:

* A={1,2}, m=2

* Go(l) = 1, G1(1) = 0.9, G2(1) = 0.81

* Go(2) = 1, G1(2) = 0.3, G2 (2) = 0.09

* k = 200

After inspection, we notice that the distortion measure is much smaller than the upper-

bound in 4.16. In the first case, we get - 0.07 when the upper-bound dictates 0.469 + 0.5 =

0.969. In addition, we notice that lower r q leads to lower distortion measures. After ex-

tensive simulations, we found that such conservatism was consistent. Moreover, it should

be expected that, as r q decreases, the distortion measure gets smaller with high proba-

bility. Such behavior cannot be captured by theorem 4.4.1 as the contribution of r q gets

masked by the 1/2 factor. After analyzing the proof of theorem 4.4.1, we concluded that

the cause was that the upper-bound expressed in lemma D.1.4 was too conservative. A
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more general version of theorem 4.4.1 will be reported in future publications. The afore-

mentioned extension replaces the 1/2 factor by a variable /3 which determines the prob-

ability P (Dd(q,k, :1,k) > ln(m)r q + /3). If / = 1/2 then the result in theorem 4.4.1 is

recovered. Lower values of p lead to a non-zero limit probability, as k tends to infinity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Gamma

Figure 4-1: Simulation for a switching process described by pq(l1l) = pq(2 12 ) = 0.9 and
pq(1 12 ) = pq(2 11 ) = 0.1 and entropy rate r q = 0.469
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Figure 4-2: Simulation for a switching process described by pq( 1 11 ) = pq(21 2) = 0.99 and
pq(1 12 ) = pq(2 11 ) = 0.01 and entropy rate rq = 0.08
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Chapter 5

Final Conclusions and Future Directions

In this chapter we present the conclusions of Chapters 2, 3 and 4. We provide a separate

list of conclusions along with future directions.

5.1 Conclusions About Chapter 2

The main results of Chapter 2 are the sufficiency theorems 2.3.2 and 2.3.4 proven in section

2.3 as well as the extension to the multi-state case given in section 2.6. The sufficiency con-

ditions are proven constructively by means of the stabilizing feedback scheme of definition

2.3.3.

Our results lead to the following conclusions:

* The necessary and sufficient conditions can be expressed as inequalities involving C

and R plus a few more terms that depend on the statistical behavior of the plant and

the link as well as the descriptions of uncertainty. The intuition behind, the auxiliary

quantities, that enable such representation is given in section 2.5.

* In order to preserve stability, the presence of randomness must be offset by an in-

crease of the average transmission rate C. From the necessary and sufficient condi-

tions for stabilizability, we infer that the limitations created by randomness in the

plant and the link are mathematically equivalent. In addition, we find that the higher

C the larger the tolerance to uncertainty in the plant.
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* Our results extend to a class of multi-state systems.

As a future direction, we suggest the study of stabilization of uncertain systems using

output feedback, in the presence of information constraints. It is also important to investi-

gate the stabilization of more general stochastic systems.

5.2 Conclusions About Chapter 3

From our results in Chapter 3, we conclude the following:

* Bode's integral inequality can be derived by means of Information Theoretic argu-

ments. In this case, the fundamental limit appears as a result of causality alone.

* In Lemma 3.4.1 we show that the channel must carry information about the distur-

bance in addition to the information about the state of the plant.

* The ability to reject disturbances and the directed mutual information rate at the

channel are strongly related. Good disturbance rejection requires a large directed

mutual information rate at the channel. Theorem 3.4.3 presents the main inequality

expressing the fundamental limitation.

* The numerical examples show that the inequality of Theorem 3.4.3 is not conserva-

tive.

It remains to solve the design problem, i.e., to have systematic methods of designing

the encoders and the decoders that make the feedback system meet certain specifications,

such as disturbance rejection or trajectory following.

5.3 Conclusions About Chapter 4

The main theorem of Chapter 4 shows that there exists an estimator for which the estimates

are contained in a ball - defined by the metric Dd - centered around the true sequence, with

probability arbitrarily close to 1. The radius of the ball can be made as close to r q + as

desired.
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One of our main conclusions is that, regarding the process qk, the entropy rate rq is a

fundamental quantity in the study of estimation fidelity. The following is a list of reasons

for that:

* If the transition probabilities are known then rq can be computed.

* If r q is not known then one can select any probabilistic structure for qk. By assuming

that qk is i.i.d., we get the scenario where, according to classical estimation theory

(Van Trees), the probability of error can be arbitrarily close to 1.

* This is in accord with what should be expected from rate-distortion theory.

The following complete our conclusions about Chapter 4:

* The metric Dd(ql,k, ql,k) has several desirable properties which are explored in [43].

In particular, Dd(ql,k, l1,k) establishes a topology in the space of sequences. The co-

variance matrix of the probing signal is one of the parameters that define VDd(ql,k, ql,k)

and, as such, it will shape the topology. In particular, scaling up the covariance matrix

of Vk leads to a finer topology.

* The worst case analysis quantified in Theorem 4.4.1 enables the use of Dd(ql,k, 1,k)

to answer the following question: Is it possible to reliably communicate through

the sequence qk ? From Theorem 4.4.1, we find that the answer is yes, provided

that we can partition the typical sets of ql,k with balls of size 2 ln(m)r q + nF , as

measured by Dd.

In future publications, we will report an extension to the main Theorem of Chapter 4. In

particular, such extension has the right limit behavior for rq - 0. We show that, for a fixed

signal to noise ratio, there exists an estimation scheme such that limq. 0o P(qk t qk) = 0.
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Appendix A

Aspects Related to Assumptions

(A5),(A7)-(A9) of Chapter 3

A.1 Further Remarks About Assumption (A5)

The following upper-bound holds:

Ioo(v - z) < Cchannel

By means of property (P3), we know that the following is satisfied:

Vk > i, I(z(i); vzil -) < I(vz(i);lz-) oo( - )< I(V;Z) < Cchannel

(A.1)

where the last inequality is standard and can be found in [20].

A.2 Further Remarks About Assumption (A7)

Notice that a synchronous block decoder, with delay ac, falls into this category. In ad-

dition, any dynamic system, of the form u(k) = f(uk-1, zk_,), will satisfy (3.7). We

emphasize that this representation does not pressupose a full-information system. For ex-

ample, if y,(k) is the output of an observable n-th order linear and time-invariant sys-
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tem, with input z(k), then it is possible to represent its input-output behavior in the form

y.(k) = f(y k-n Zk ).

A.3 Further Remarks About Assumption (A8)

The following is the assumption (A8), repeated here for convenience:

(A.2)
lim oI(u'; (x(1), wlkiZk)) = 0

k bo k 1 1

A.3.1 Assumption (A8) when U is countable

If U is countable then we can use (P1)-(P2) to conclude that:

(A.3)

As such, if H(u') < oo holds then I(u'; wlklk) < oo is satisfied. If U has Ru elements,

such quantity is upper-bounded [20] as H(uc) < alog(Ru). The confinement to finite

control alphabets is expected if the channel, itself, is discrete or in the presence of quantiz-

ers. Finite U further encompasses digital controllers, as they constitute dynamic systems

evolving on a finite precision algebra. The following proposition is also useful:

Proposition A.3.1 Let U be countable, u E D and pu(i) E L1 for i E {1., a}. If

Var(u(i)) < oo for i E {1,... ,a} then the following holds:

lim 1I(u'; (x(1), w l)lz) = 0

Proof: Since u E D, we can compute A > 0 as:

A = inf{lu- i : u, E U, u fL}
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We start by means of proposition C. 1.1 of Appendix C, we can use Var(ii(i)) = Var(u(i))+

4 < o and p,(i) E L to reach the following:

h(ii(i)) < oo (A.6)

On the other hand, such integral can be related to H(u(i)) as:

Qcow ~a
I(u'; (x(1), W k)Iz) < H(u0) < E H(u(i))= E h(fi(i))- log(A) < (A.7)

i=l i=l

where we use the fact that pj((i) ((i)) = P(u(i) = u(i)) pS(u(i)u(i)) and ps(s) = 1 if

s E (-1/ 2, 1/2) and p (s) = 0 otherwise. ]

A.4 Further Remarks About Assumption (A9)

We start our comments, about (A9), by saying that we require that Pw, x(1), E L2k+ l, just

as a way to compactly guarantee that any q dimensional marginal distribution is in Lq. This

condition is important to ensure that the differential entropy integrals are well defined.

If Uk is not countable and Pwk,x(), [ is Gaussian then Pwk,x(l), E L 2k+ 1 holds if and

only if the covariance matrix of (w, x(1), iik) is positive definite.

We list a few facts of relevance about assumption (A9), for the case where u(k) is on a

countable alphabet:

* Notice that if U is countable then Var(fi(k)) = Var(u(k)) + a.

* It remains to show that there are no measurability problems, provided that P(l1) is

measurable. Assume that x(1) has a bounded and Lebesgue measurable p,(l). For

every Borel set 0 E 7Zk+l, we have:

33 > 0, P((wk,x(1)) E 0,ul = uk) < jPWo (w,)P x()(X(l))(dwcXdx(l)) •

pVol(O) (A.8)
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where we used assumption (Al) to guarantee the existence of a bounded and Lebesgue

measurable Pwk and causality to split Pwk,,(1) = Pwkp,(l). As such, from (A.8) and

the Radon-Nikodym theorem (pp.4 2 2 [9]), we know that, for each uk E Uk, there

exists a measurable probability density function Pwk,,X(1)lk (, , uk) : Rk + l
- >o.

On the other hand, Pwk,x(1),ik is given as:

Pwk,x(), 2(l/ Y, Yx(1), L) ) = E Pwk,x()luk('w, Y'x(1), Ul )Ps(Q k -Ul)P(Ul = U1)
tk uk

I EU&

(A.9)

s = u1 - u1 (A.10)

which allow us to infer that Pw,x(),r is a countable linear combination of posi-

tive Lebesgue measurable functions. Clearly, besides (Al), we only need to assume

bounded and Lebesgue measurable px(1) to guarantee that Pwl,x(1), l is bounded and

Lebesgue measurable.
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Appendix B

Auxiliary Results Used in Chapter 3

B.1 Extension of the Data Processing Inequality

The following theorem provides an extension of the directed data processing inequality,

originally derived in [60]. Compared to the version in [60], the result presented bellow

allows encoders and decoders that depend on past inputs indexed by k < 1. The quantities

in the statement of the theorem refer to the scheme depicted in Fig B-1.

Theorem B.1.1 (Directed Data Processing Inequality, Adaptation of Lemma 4.8.1 of[60])

Let the following assumptions, stated in section 3.2.1 and summarized bellow for conve-

nience, hold:

* (A4) The plant is LTI with a state-space representation where D = 0 (strictly proper)

* (A6) The encoder and decoder are causal operators

Figure B-i: Casting the feedback loop as a channel in feedback.
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· (A7) The decoder satisfies:

(B.1)Vk > fo, Ua+1- f(U1 ,Z )

for some a N+ and a sequence offunctions .

· (A8) Thefading memory condition lim supk,,o kI(u; (x(1), w) Iz ) = 0 holds.

Under the above conditions, the following is true:

lim sup kI((x(1), wl); u7)
k-oo k

(B.2)

Proof: We separate the proof in two parts.

As a first step we show that I(zk; (x(1), wk)) < I(v + zk).

Using (P2) we can write the following equality, for any given i E { 1,..., k}

I(z(i); (x(1), wi-1)lzi-1) = I(z(i); vIzi-1) + Iv((i); (x(1), Wif-)Iz' )

- I(z(i); v Iz 1, (1), wi-1) (B.3)

Now notice that (P2) allows us to rewrite:

I(z(i); (x(1), wi-')Izi- v) = I((zil, vi); (x(1), w-l)) - I((zi- 1 v;); (x(), (B.4-l))

(B.4)

But, from (P3), we know that

(B.5)

where we used the fact that, from the definition 3.1.7 (channel), the following map is in-

vertible:
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Causality makes c(i) independent of (zi - , vl x(1), w'), so that (B.5) implies the fol-

lowing:

(B.6)

By making use of (B.6) and (B.4) we infer that I(z(i); (x(1), wi-l)zilz - , vl) = 0. Such

fact, together with (P1) and (B.3), leads to:

(B.7)

The first part of the proof is concluded once we notice that, from causality, w' is indepen-

dent of (x(1), w- 1 , z), which implies:

(B.8)

so that (B.7) implies:

k

(zlk; (X(1), Wk)) = E I(z(i); (X(1), W-1)
i=l

k

ziL1 ) < E I(z(i); Vzi-) =
i=l

In the second step we prove that:

lir sup I(ul; (x(1), wk)) <
k-- ook

lim sup I (z ; (x(1), w))k-ook

Once again, we use (P2) to write:

JI(ul; (x(), w)) = JI(z; (x(1), w)) + I(u; (X(1), k)lZk) _ I(Zk; (X(1), W)(Uk)

(B.10)

It follows from (P2), (P4) and assumption (A7) that:

I(uk; (x(1), W')IZ) = I(u +l; (x(1), Wl)lZl, Uk ) + I(u,; (x(1), Wk)IZZk) =

(B.11)
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Substitution of (B.11) in (B.10), together with property (P1), leads to:

I(u; (x(1), w)) < I(z; (x(1), wD)) + I(u~; (x(1), wl)Iz) (B.12)

Accordingly, (B.12) and the assumption (A8), which requires that

lim sup (u; (x(1), w1)l .) = 0
koo k

imply that:

limsupI(u; (x(),w)) < limsup I(zl; (x(1),w ) (B.13)
k--oo k k-- oo k

which, together with (B.9), concludes the proof. O

B.2 A Limiting Result for Covariance Matrices

The following is the statement of the main theorem of Chapter 5 of [28], repeated here for

convenience:

Theorem B.2.1 (Reproducedfrom [28], pp.64-65) Let F,(w) be a real-valuedfunction of

the class L1 ( Ie()lI is integrable in the sense of Lebesgue). We denote by m and M the

essential lower bound and upper bound of Fe(w), respectively, and assume that m and M

are finite. If G(A) is any continuous function defined in the finite interval m < < M, we

have:

lim = ( 1 G(FAi(w))d (B.14)
k-oo k + 1 2 7r
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Appendix C

Measure Theoretic Aspects of

Differential Entropy

C.1 Basic Results

Proposition C.1.1 If a is a random variable with a probability density Pa E Lq then

h(a) < oo.

Proof:(By contradiction) We start by noticing that Pa E Lq implies that:

p.(y)-yTyd-y < oo (C.1)
JRq

If we assume that h(a) = oo then we should have:

-Pa (Y) log Pa (y)dy = oo (C.2)
ja,),

Since Pa is bounded, (C.2) also implies that:

I -pa(-y) 1og Pa(y)d-y = 00oo

= {Y : Pa(Y) < l,Pa ()TTy < (yTy)-q/2 (vTf)1+q/2 > e}

(C.3)

(C.4)
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where we used the fact that Pa is bounded and IRq\E has finite volume. On the other

hand, -plogp is an increasing function of p for p < 1/e and p(y) < ( T )l+q/2 < e

for -y E E. These facts imply that -pa(Y)logpa(y) < og((yT y)l+q/
2 ) for 7 E , but

f- l°g((yTy)l+q/ 2) d < oc holds, thus reaching a contradiction.i

Lemma C.1.2 (Mutual information expressed by means of differential entropy) Let a and

b be random variables that admit pa E Lq, Pb E Lq' and Pa,b E fLq+q, defined in A x B =

Rq x ~q.

The following holds:

I(a; b) = h(a) + h(b) - h(a, b) (C.5)

Proof:

Factl: We start by noticing the fact that if s is a random variable with p, bounded then

the following holds:

[p (s) log(p ())]+d-y < pP log (pu) (C.6)

which, together with h(s) < oo, implies that p,(-y,) log(p, (y,)) is Lebesgue integrable (see

lemma 5 of [2]).

From fact 1, we can use proposition C.1.1, of this Appendix, to conclude that P,b log pa,b,

Pa log pa and Pb logpb are Lebesgue integrable. As such, using Theorem 7 of [2], we can

split the integral of Theorem 2.1.2. of [52] into a sum of three terms as in (C.5). O

C.2 Auxiliary Results for Chapter 3

Lemma C.2.1 Let the following assumptions hold:

· uED

* Pwk k,(1) E L 2k+l
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Under the above assumptions, the following holds:

h(w(k)w - 1, ul, x(1)) = h(e(k) le - ', u, x(1)) (C.7)

Proof: Since u E , we can use (P3') to write:

h(w(k)Iwk -l , x(1)) = h(w(k)) - I(w(k); (wk-l , Uk, x(i))) =

h(w(k)) - I(w(k); (Wk- 1, iik x(1))) (C.8)

Since Pwk, ,k(1) E L2 k+l, using the change of variables e(k) = w(k)+u(k) and integration,

we can show that PW-1 ikX(1) E L2k, Pekix(l) E L2k+l , pek- k(l) E L2k and Pe(k) E L1 .

Accordingly, we can use lemma C. 1.2, of this appendix, to express (C.8) as:

h(w(k) Iwk-1 u, x(1)) = h(wl, lk, x(1)) - h(wk-1 ,U, x(1)) (C.9)

which, by means of the change of variables' e(k) = w(k) + u(k), leads to:

h(w(k) w - 1, uk, x(1)) = h(e, ii, x(1)) - h(e 1, i, x(1)) (C.10)

Similarly, we can use lemma C.1.2, of this appendix, to re-express (C.10) as:

h(w(k) lwk -1, Uk,x(1)) = h(e(k))- I(e(k); (ek - 1 , ik x(1))) )

h(e(k)) - I(e(k); (elk- l, lk, x())) (C.11)

which, from the definition of conditional differential entropy, concludes the proof. O

Lemma C.2.2 Let V E Rmxk-ko+1 be a full row-rank matrix. Assume that the following

assumptions are satisfied:

· uEDI

1Notice that this change of variables is legitimate because we can recover u(k) from i(k). Such fact
results from the existence of the inverse projection u(k) = ru1(k)
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Under the assumptions above, the following holds2:

h(VWk oVu o ) = h(VeIV ) (C.12)

Proof: The proof of this lemma is concluded by following the same steps of lemma C.2. 1,

mutatis-mutandis by means of the transformation Veto = Vuko + Vwko. O

Lemma C.2.3 Let the following assumptions hold:

· uED

P,1 , (1) E L 2 k+ 1

Given a Lipschitz function f : Rk --- Rdim((1)), under the assumptions above, the follow-

ing holds:

h(xu()el ) = h(xu(1)- f(el) e) (C. 13)

Proof: Since f is Lipschitz, we know that if (wk, Ulk, x(1)) has a finite covariance ma-

trix then (Wk, Uk, x,(1) - f(ek)) also has a finite covariance matrix. As such, we can

use changes of variables and integration to show that k k,(1) E L2k + 1 implies Pkxu(1) E

k+dim(x(1)), Peu(1)-f(e k) E k+dim(,(1)), px(1) E ]Lk+dim(x()), Pek E Lk and Pu(1)-f(ek) E

Ldim(xu(1)). These facts allow us to use lemma C.1.2 freely to write:

h(xu(1)le) = h(x,(1), e) - h(e ) (C.14)

By applying a change of variables in (C. 14), we get:

h(x~ (1) e) = h(x,(1) - f(e ), ek) -h(e~ ) (C. 15)

We finish by recognizing that (C.15) is equal to h(x(1) - f(e )Iek) []

2Here we adopt an abuse of notation by using Ve ko, VUko and VWko to denote matrix multiplication. For

instance, Vet = V [e(k) *.. e(ko)]T.
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Appendix D

Auxiliary results for Chapter 4

D.1 Auxiliary results leading to the proof of theorem 4.4.1

The main result of this section is lemma D.1.6, where explicit expressions are given to

bound the probability (4.16). In order to guarantee notational simplicity, we start with the

following definitions:

Definition D.1.1 We define the following random variable:

In pWlk (Wl,k)
Zk - kn F ) (D.1)

We also adopt D = Ddas a way to make equations smaller.

Lemma D.1.1 For any given positive definite Ex E RnXXnx, designate by X the zero-

mean Gaussian random variable with covariance matrix Ex. The following holds:

sup [( ] ([ X)]) < X (D.2)

1 XT]-1X
where pX(X)= e- -X lx and a = 1

((2r)nX[Yx)/2 2'

Proof: The result is obtained by evaluating the expected values in (D.2) and applying the

change of variables X = Exl/2X. °
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Lemma D.1.2 Given e > 0 and k > 1 the following holds:

P (iZk- - > e)<2k (D.3)

Proof: Since Wk is i.i.d. and Ew > 0, lemma D.1.1 and the fact that Wk E RknF lead to:

1
Var(zk)< 2k (D.4)

- 2knF

Now notice that £[zk] = -a, so that the final result is a direct application of the Chebyshev-

Bienaym6 inequality [9]. [

Definition D.1.2 Given e E (0, 1) and n E N, define rk as the event that the search space

of the decoder is empty:

True if { ql,k E T ' k : 'k ( ql, k) = True} = 0
Fk = (D.5)

False otherwise

Lemma D.1.3 For any given c E (0, 1), if k > 1, then the following holds:

lim P(rk) = 0 (D.6)k-oo

Proof:

Notice that, from definition 4.3.4, if a given realization ql,k satisfies ql,k E Te' k and

se'k(ql,k) = True, then k is false because ql,k is itself a valid choice for ql,k. That leads

to the following inequality:

rw
P(rk) < P(lZk- > ) + P(ql,k ¢ T 'k) (D.7)

The first term in the RHS of (D.7) can be bounded by means of lemma D.1.2. For the

second term it suffices to show that P( I- 1°gP _(ql > ) -) 0. Our analysis startsk k-oo
126



with the expansion:

k

log" p (ql,k) = E log p (qilqi- 1) + log p (ql) (D.8)
i=2

Since P (I ogm p ( q) > 0, we only have to show that:

( -Ei=2 q(qilqi-i) rq > 2 -o 0 (D.9)

If rq = 0, then P(logmpq(qijqi_ 1 ) = 0) = 1 and the result is proved. For rq > 0, recall

that qi is ergodic. Since qk has a finite alphabet, there are no unboundedness problems and

we conclude that log, pq(qilqi_l) is ergodic, which implies (D.9). 0

Lemma D.1.4 For any given ql,k, ql,k E A k and k > 1 the following holds:

max pT1,k(qlkO1,k)(X) = mk F(-D(ql,k,l,k)-+) (D.10)
XERknF

Proof: From the definition of the Gaussian distribution:

__k )T1k(qj,ke41k) 1-1/2max pTl,k(ql,kl,k) (X) k( F (D.11)
XERknF (27r) 2

or equivalently, using (4.8), it can also be written as:

max pTlk(qlk'ql'k)(X) = m ln(,m) (D.12)
XERknF

The final result is achieved once we recall that D(ql,k, ql,k) = knF ' r i 

Lemma D.1.5 Let k > 1, e E (0, 1), q,k E Ak and ql,k E T'ek . The following is an upper-

boundfor the conditional probability that l,k satisfies the decoding condition sE'k(ql,k) =

True.

P(s (ql,k) = Truelql,k) < mkln(m(-V(ql,k,lk)+a++) (D.13)
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Proof: The structure of the decoder leads to :

P(s k(4l,k) = Trueql,k) = jpTk(qLiks1k) (X)dX

where S, the set of realizations leading to (4.10), is given by:

- lnpWl,k(X) rw
kn F

We can use lemma D. 1.4 to infer that:

k nF (-(q)dX <jmkI'n(m) k,1k) I+)dX <

< Vol(S)m (-(qklk)-r+I)

The proof is completed once we notice that the volume of S is upper-bounded by Vol(S) <

mF w -- ) 

Lemma D.1.6 (Main lemma) Given E R+ and e E (0, 1), thefollowing holds:

7>(D (ql,k, ql,k) > P) < P(rk) + mk n) ((m)F-P+ 2( nF ) (D.17)

where P(rk) is given in lemma D. 1.3.

Proof:

We separate the two events that may generate D(ql,k, l1,k) > /3, and write the following

bound:

P(TD(ql,k, ql,k) > 3) < P(rk) + z E P(s'e (4l,k) =Truelql,k)p (qlk)
ql,kEA 4l,kED(ql,k)

(D.18)

where ID(ql,k) = {0l,k E TE,k : D(ql,k, ql,k) > /3}. Using lemma D.1.5 and the inequality

above, we get:

P(D(ql,k, l,k) > 3) < ( Trek) mkYn'(-+E+' ) + p(rk) (D.19)
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(D.14)

S = {X e RknF :

P(S'k (Ql,k) = Truelql,k) <

(D.15)

(D.16)



The fact that TEk < mk(r q + E) concludes the proof. 

129



130



Bibliography

[1] G. A. Ackerson and K. S. Fu. On state estimation in switching environments. IEEE

Trans. on Automatic Control, 15(1): 10-17, 1970.

[2] M. Adams and V. Guillemin. Measure Theory and Probability. Birkhauser, 1996.

[3] S. Arimoto and H. Kimura. Optimum input test signals for system identification - an

information-theoretical approach. Int. J. Syst. Sci., 1(3):279-90, 1971.

[4] Y. Bar-Shalom and X. R. Li. Estimation and Tracking: Principle, Techinques and

Software. Boston, MA:Artech House, 1993.

[5] G. Battail. On random-like codes. Information Theory and Applications II, Lecture

notes in Computer Science 1133, pages 76-94, 1995.

[6] G. Belforte and P. Gay. Optimal worst case estimation for lpv-fir models with bounded

errors. In IEEE, editor, Proceedings of the IEEE Conference on Decision and Control,

pages 4573-4577, 2000.

[7] T. Berger. Rate Distortion Theory: A Mathematical Basis for Data Compression.

Eglewood Cliffs, NJ:Prentice Hall, 1971.

[8] D. P. Bertsekas. Dynamic Programming and Optimal Control. Volume One, Athena

Scientific, 1995.

[9] P. Billingsley. Probability and measure. Wiley Inter-5Science, 3rd Ed., 1995.

131



[10] S. Bittanti, M.C. Campi, and L. Guo. Persistence of excitation properties for the

identification of time-varying systems. IEEE Conf. on Decision and Control, pages

680-684, 2000.

[11] R. E. Blahut. Computation of channel capacity and rate-distortion functions. IEEE

Trans. on Inf. Theory, 18:460-473, 1972.

[12] H. A. P. Blom and Y. Bar-Shalom. The interacting multiple model algorithm for sys-

tems with markovian switching coefficients. IEEE Trans. A. C., (8):780-783, 1988.

[13] H. Bode. Network Analysis and Feedback Amplifier Design. D. Van Nostrand, Prince-

ton, 1945.

[14] R. W. Brockett and D. Liberzon. Quantized feedback stabilization of linear systems.

IEEE Trans. Automat. Control, 45:1279-1289, 2000.

[15] Edited by Richard M. Murray. Control in an information rich world: Report of the

panel on future directions in control, dynamics, and systems. SIAM, 2002.

[16] J. J. Campbell and L. M. Viceira. Strategic Asset Allocation. Oxford University Press,

2002.

[17] M. C. Campi. Exponentially weighted least squares identification of time-varying

systems with white disturbances. IEEE Tr. Sig. Proc., 42:2906-14, 1994.

[18] C.B. Chang and M. Athans. State estimation for discrete systems with switching

parameters. IEEE Trans. on Aerospace and Electronic Systems, 14(3):418-425, 1978.

[19] European Comission. European commission workshop on future and emerging con-

trol systems, June 2000.

[20] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience,

1991.

[21] N. Elia. Stabilization of systems with erasure actuation and sensory channels. In

Proc. 40th Allerton Conference in Communication, Control and Computing, 2002.

132



[22] N. Elia. Control-oriented feedback communication schemes. In IEEE, editor, Pro-

ceedings of the IEEE Conference on Decision and Control, pages 3161-3166, 2003.

[23] N. Elia. Stabilization in the presence of fading channels. In IEEE, editor, Proc. of

American Control Conference, pages 4438 - 4443, 2003.

[24] Robert Elliot. Hidden Markov Models, Estimation and Control. Springer-Verlag,

1995.

[25] M. Feder and N. Merhav. Relations between entropy and error probability. IEEE

Trans. on Inf: Theory, 40:259-266, 1994.

[26] P. J. Fernandez. Medida e Integraiao (In Portuguese). Instituto de Matemdtica Pura

e Aplicada, Projeto Euclides, Segunda EdigSo, 1996.

[27] J. S. Freudenberg and D. P. Looze. Frequency Domain Properties of Scalar and

Multivariable Systems. Springer-Berlin, 1988.

[28] U. Grenander and G. Szego. Toeplitz Forms and Their Applications. University of

California Press, 1958.

[29] S. Gunarsson and L. Ljung. Adaptation and tracking in system identification - a

survey. Automatica, 26:7-21, 1990.

[30] S. Gunnarson. On the quality of recursively identified fir models. IEEE Tr Sig. Proc.,

40:679-82, 1994.

[31] P. R. Halmos. Measure Theory. Springer Verlag, 1974.

[32] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and G. Duda. Performance anomaly of

802.1 lb. In IEEE, editor, Proceedings of the IEEE Infocom, 2003.

[33] M. W. Hofbaur and B. C. Williams. Mode estimation of probabilistic hybrid systems.

HSCC 2002, LNCS 2289, pages 253-266, 2002.

[34] R. Horn and C. Johnson. Matrix Analysis. New York, NY: Cambridge University

Press, 1985.

133



[35] R. Jain, T. Simsek, and P. Varayia. Control under communication constraints. In

IEEE, editor, Proceedings of the IEEE Conference on Decision and Control, pages

3209-15, 2002.

[36] Hanseok Ko and R.H. Baran. Entropy and information rates for hidden markov pa-

rameters. In IEEE, editor, Proc.IEEE ISIT, page 374, 1998.

[37] K. Li and J. Baillieul. Robust quantization for digital finite communication bandwidth

(dfcb) control. In IEEE, editor, Proceedings of the IEEE Conference on Decision and

Control, pages 3130 - 3135, 2003.

[38] X. Li and W.S. Wong. State estimation with communication constraints. Systems and

Control Letters, 28:49-54, 1996.

[39] D. Liberzon. On stabilization of linear systems with limited information. IEEE Trans-

actions on Automatic Control, 48:304-7, 2003.

[40] D. Liberzon. On stabilization of non-linear systems with limited information feed-

back. IEEE Conf. on Decision and Control, pages 182-186, 2003.

[41] N. C. Martins and M. A. Dahleh. An information theoretic approach to the modal

estimation of fir linear systems. In IEEE, editor, Proceedings of the IEEE Conference

on Decision and Control, 2003.

[42] N. C. Martins and M. A. Dahleh. Fundamental limitations of distrubance attenuation

in the presence of finite capacity feedback. In University of Illinois, editor, Allerton

Conference on Communication, Control and Computing, 2004.

[43] N. C. Martins and M. A. Dahleh. Rate distortion trade-off in the modal estimation of

switching fir linear systems. Proceedings of the IEEE Conf. on Decision and Control,

2004.

[44] N. C. Martins, M. A. Dahleh, and N. Elia. Stabilization of uncertain systems in the

presence of a stochastic digital link. Proceedings of the IEEE Conf. on Decision and

Control, 2004.

134



[45] N. C. Martins, M. A. Dahleh, and N. Elia. Stabilization of uncertain systems in the

presence of finite data-rate feedback. In IFAC, editor, Proceedings of the IFAC Nolcos,

Germany, 2004.

[46] N. C. Martins, S. Venkatesh, and M. A. Dahleh. Controller design and implementa-

tion for large scale systems, a block decoupling approach. Proceedings of the IEEE

Amreican Control Conference, 2001.

[47] J. Massey. Causality, feedback and directed information. In ISITA-90, editor, Proc.

of the 1990 Int. Symp. on Information Theory and its Applications (ISITA-90), pages

303-305, 1990.

[48] E. Mosca. Probing signal design for linear channel identification. IEEE Trans. on

Information Theory, 18(4):481-487, 1972.

[49] G. N. Nair, S. Dey, and R. J. Evans. Infimum data rates for stabilizing markov jump

linear systems. In IEEE, editor, Proceedings of the IEEE Conference on Decision and

Control, pages 1176-81, 2003.

[50] G. N. Nair and R. J. Evans. Stabilization with data-rate-limited feedback: Tightest

attainable bounds. Systems and Control Letters, 41:49-76, 2000.

[51] G. N. Nair, R. J. Evans, I. M. Y. Mareels, and W. Moran. Topological entropy and

nonlinear stabilization. to appear in the Special Issue on Networked Control Systems,

IEEE Transactions on Automatic Control, 2004.

[52] M. S. Pinsker. Information and Information Stability of Random Variables and Pro-

cesses. Holden Day, 1964.

[53] L. R. Rabiner. A tutorial on hidden markov model and selected applications in speech

recognition. Proceedings of the IEEE, 77:257-286, 2003.

[54] A. Sahai. Evaluating channels for control: Capacity reconsidered. In IEEE, editor,

Proc. of American Control Conference, pages 2358 - 2362, 2000.

135



[55] A. Sahai. Anytime Information Theory. PhD dissertation, Massachusetts Institute of

Technology, Department of Electrical Engineering and Computer Science, 2001.

[56] B. R. Upadhyaya H. W. Sorenson. Bayesian discriminant approach to input signal

selection in parameter estimation problems. Information Sciences, 1(12):61-91, 1977.

[57] D. D. Sworder and J. E. Boyd. Estimation Problems in Hybrid Systems. Cambridge

University Press, 1999.

[58] D. D. Sworder, J. E. Boyd, and R. J. Elliott. Modal estimation in hybrid systems.

Journal of Math. Analis. and Ap., (245):225-247, 2000.

[59] S. Tatikonda. Control under communication constraints: Parts i and ii. submitted to

the IEEE Transactions on Automatic Control.

[60] S. Tatikonda. Control under Communication Constraints. PhD dissertation, Mas-

sachusetts Institute of Technology, Department of Electrical Engineering and Com-

puter Science, 2000.

[61] S. Tatikonda, A. Sahai, and S. Mitter. Control of lqg systems under communication

constraints. In IEEE, editor, Proc. Conference on Decision and Control, 1998.

[62] Jitenda K. Tugnait. Detection and estimation for abruptly changing systems. IFAC -

Automatica, 18(5):607-615, 1982.

[63] S. R. Venkatesh and M. A. Dahleh. On system identification of complex systems from

finite data. IEEE Trans. A. C., 46(2):235-257, 2001.

[64] H. L. Weidemann. Entropy analysis of parameter estimation. Inf: and Control,

(14):493-506, 1969.

[65] H. Witsenhausen. Separation of estimation and control for discrete-time systems.

Proceedings of the IEEE, 59, 1971.

[66] W. S. Wong and R. W. Brockett. Systems with finite communication bandwidth con-

straints -i: State estimation problems. IEEE Trans. Automat. Control, 42:1294-1298,

1997.

136



[67] W. S. Wong and R. W. Brockett. Systems with finite communication bandwidth con-

straints -ii: Stabilization with limited information feedback. IEEE Trans. Automat.

Control, 44:1049-1053, 1999.

[68] Y. Dong Y. Rate distortion analysis of pose estimation via hidden markov model. In

IEEE, editor, Proc.IEEE ICASP, pages 2985-2988, 2002.

[69] S. Yuksel and T. Basar. Quantization and coding for decentralized lti systems. In

IEEE, editor, Proc. Conference on Decision and Control, 2003.

[70] G. Zames, L. Lin, and L. Y. Wang. Fast identification n-widths and uncertainty prin-

ciples for lti and slowly varying systems. IEEE Trans. A. C., 39(9):1827-1838, 1994.

[71] G. Zang and P. A. Iglesias. Nonlinear extension of bode's integral based on an infor-

mation theoretic interpretation. Systems and Control Letters, 50:11-19, 2003.

137


