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Abstract

It is desirable for many surveillance applications to have a portable high quality imag-
ing system capable of continuous monitoring in remote locations, often for extended
periods of time. Extended operation can be achieved with low power by taking ad-
vantage of the fact that no interesting action is occurring in the area of interest most
of the time, allowing the camera to be turned off. This type of operation requires
some type of trigger to detect when events occur and turn on the camera to collect
imagery. A novel technique for this type of detection is the use of signal processing
on low spatial and temporal resolution imagery with a low-power processor to detect
action events. The low-resolution imager operation and low-power processor allow the
system to consume minimal power, while still taking advantage of the information
available from the imager. Triggering is done by performing background subtraction
on the low resolution imagery to detect scene changes. Although there is extensive
research on this subject, no known research has attempted to implement this type of
algorithm in a low power system, which puts a significant constraint on the computa-
tion that can be performed. This paper describes research conducted at MIT Lincoln
Laboratory to develop a power constrained background subtraction technique, and
design a low power hardware system that utilizes this form of detection for image
based triggering.
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Chapter 1

Introduction and Purpose

It is desirable in many surveillance applications to have a portable high quality imag-

ing system capable of continuous monitoring in remote locations, often for extended

periods of time. This requires that the system be small, lightweight, and consume very

little electrical power in order to allow operation on batteries. Traditional, "always

on", high quality imaging systems consume a significant amount of power in both the

imaging sensor and control electronics, preventing their use for this application.

A low power system can be achieved by exploiting the fact that in many remote

surveillance applications, nothing is happening in the area of interest most of the time.

Average power consumption can be significantly reduced by turning the camera off

during these periods, only turning it on to collect imagery when something interesting

happens. For this type of system to be successful, a trigger is needed to detect

such events, and turn the camera on. Triggering has been done in the past using

external sensors such as acoustic, seismic, or single diode "fence" triggers that detect

an obstruction to a line of sight.

There are several problems that arise from using external sensors to trigger camera

operation. These include placement difficulty, risk, and synchronization of the event

with image capture. Many of these problems are solved using a Through The Lens

Trigger (TTLT). In this type of system, a trigger is determined by processing real-time

image data to identify interesting movement in the scene. The problem with this is

that running the camera continuously undermines the strategy of turning the camera

13



off during uninteresting periods to conserve power; however, continuous operation

can be low power if the imager is run at low spatial and temporal resolutions with a

fast readout. This allows image data to be quickly extracted from the imager, which

is then turned off or put into a standby mode until the next frame is to be collected.

This type of operation combined with low-power control and processing electronics

allows the system to consume minimal power while running the image-based trigger.

The low power constraint on the TTLT processing electronics requires that the

detection algorithm be implemented with a small amount of digital logic. The re-

sult is an algorithm that is relatively simple, and not very robust against dynamic

backgrounds. As a result, the TTLT by itself would not be a very useful system, as

battery life would be mostly eaten up by false triggers. The solution to this prob-

lem is a layered detection approach, whereby the power constrained TTLT algorithm

can be dynamically taught by a more robust detection algorithm using higher power

electronics that are only turned on when a trigger occurs. This method of layered

functionality with adaptive feedback provides greatly improved performance against

dynamic backgrounds with the TTLT. This approach also provides an additional level

of detection processing before a lot of power is drained in image transmission.

Research is currently being conducted at MIT Lincoln Laboratory to develop a

low power camera surveillance system based on the power constrained TTLT with

layered functionality and adaptive feedback. This paper describes the design and

implementation of the TTLT hardware and algorithms, as well as an overview of the

camera system as a whole.
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Chapter 2

Background

Before the details of the Lincoln Laboratory camera are described, it is valuable to

examine existing research that is related to the technology used in this system. There

is currently no published research on the topic of low power operation using through

the lens detection; however, research has been done related to low power operation

and through the lens detection taken separately. These research topics provide useful

insights into techniques that this system builds on, and the difficulties in combining

the two areas.

2.1 Low Power Camera Operation

Low power camera operation has been a popular area of recent research for both

commercial and military applications. The recent boom in digital technologies has

opened up an extensive commercial market for digital cameras, most of which require

some level of low power for operation on batteries. In the military domain, the ever

increasing need for surveillance information acquired with minimal human interven-

tion has led to fielded systems targeting the same type of low power application as

the Lincoln Laboratory camera.

Although the application of commercial cameras and the Lincoln Laboratory cam-

era are very different, they have the related hardware need of keeping power consump-

tion as low as possible. The rapidly expanding commercial imaging market has led to

15
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Figure 2-1: Example of Existing Trigger Based Camera System

several advances in low power imaging technology [1]. The most significant of these

advances is the emergence of Complementary Metal Oxide Semiconductor (CMOS)

imagers, which minimize power and space requirements by incorporating almost all

the analog and digital camera electronics into a single chip. This type of device offers

significant savings for any imaging application that requires low power [3].

The United States military currently has camera systems placed in the field for

the same type of extended surveillance application as the Lincoln Laboratory camera.

These systems use an external trigger concept, whereby the camera is left off most of

the time to conserve power, and only turned on when some type of external sensor

detects action in the area. Sensors used include acoustic, seismic, and single diode

"fence" triggers. An example of this type of system is shown in Figure 2-1. In the

system shown, a camera is placed at the top of a hill pointing down at a road. Seismic

sensors are placed next to the road to detect when vehicles drive by. These sensors

could be tethered to the camera either by wires or through a radio link. When a

vehicle drives by, the seismic sensors would detect the vibration in the road and

trigger the camera to turn on and take pictures.

There are several problems that result from this type of operation. First, these

types of sensors have very limited ranges, forcing them to be placed close to areas

in which targets are expected to occur. This can be difficult, especially when the

area of observation is large. A second problem with placing external sensors is one of

16



risk. In many military applications the area of interest is hostile, making it difficult

and risky to place sensors. The final problem that arises from using external sensors

is synchronization. In many cameras there is a time delay between when an image

sensor is powered on, and when imagery can be collected. The delay can result in the

object that caused the trigger not being imaged. It is these shortfalls that prompted

research into using Through The Lens Triggering to achieve low power operation.

2.2 Through the Lens Detection

Through the lens detection solves many of the problems with external trigger op-

eration discussed in the previous section. The form of through the lens detection

most relevant to this application is background subtraction. The goal of background

subtraction is to distinguish between background objects that exist in the image for

extended periods, and foreground objects which are only temporarily part of the

image scene.

A large amount of research has been done in recent years in the area of background

subtraction. Topics in this area are largely focused on theories of computer vision,

without regard to strict implementation constraints. As a result, the theories and

algorithms developed are implemented in high-power computer workstations, without

regard to power consumption. The application of these theories and methods to the

extremely power constrained processing in the Lincoln Laboratory camera will be

discussed in Chapter 4.

Most of the current research in background subtraction involves using an adaptive

statistical representation of the background on a pixel by pixel basis. The details of

the statistical model vary, but most methods model each pixel in the background by a

mixture of Gaussian distributions. The simplest of these models is a single Gaussian

per pixel. This type of model taken alone is only valid under the assumption of a

static scene, where the distribution represents a mean intensity value corrupted with

sensor noise [10].

For the single Gaussian per pixel model, the intensity mean can be obtained
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through temporal averaging. A common method for this type of averaging is a running

pixel mean, based on a learning coefficient, a [4],[12]. In this method, the pixel mean

at frame n, pn, is the combination of A_1, and the intensity at frame n, In. The

weighting of these two values is determined by a. The result is

Pn = (1 - a) -pLn_1 + a - In (2.1)

The variance about this mean in a static scene is the image sensor noise.

Using this model, any pixel showing an intensity value outside its background

distribution can be considered to contain foreground information. In the real world,

however, the assumption of a completely static background is almost always vio-

lated. Global illumination changes and recurring background motion are common

phenomena, especially in outdoor environments. An expanded description of real

world phenomenon affecting model performance is given in [11].

To deal with the complexity of real world scenes, current research is focused on

using algorithms much more complex than a single Gaussian [2],[4],[10]. One of the

most commonly used variations is a weighted mixture of Gaussians representing each

pixel. These models are built by observing recurring pixel intensities, and representing

each one by a Gaussian distribution. The weighting of the Gaussians is based on the

relative number of occurrences that fall into each distribution. Input pixel intensities

are compared with all the Gaussians in their respective mixture model to check if

they are part of any recurring trends. Pixels that are not part of a recorded trend

are detected as foreground. This method accounts for multi-modal pixel intensities,

such as a pixel that sees a road at some times, and a tree branch at others. A

broad description of this approach is given in [10]. This type of modeling has shown

promising results in a variety of indoor and outdoor scenes.

So far the discussion has focused primarily on pixel by pixel approaches to back-

ground modeling. In addition to individual pixel history, there is also information

in the contextual relationships between pixels. These relationships form the basis

for image segmentation and object tracking, where a priori object knowledge is used

18



to identify foreground shapes, and track their direction based on movements across

several frames. A method using high-level knowledge that is fed to pixel by pixel

algorithms to improve their performance is described in [7]. In this algorithm there is

both positive and negative feedback, corresponding to reinforcing positive detections,

and suppressing false detections, respectively.

In addition to contextual knowledge about inter-pixel relationships, there is also

information contained in the mathematical correlations between pixels in a local re-

gion. One such approach is presented in [9]. In this method, each frame is broken

into blocks, and a normalized correlation of the intensities in each block is calcu-

lated. During a training period, the variation in these correlations are used to create

a probability distribution of the correlation values for each block. Any block that

exhibits a correlation outside an acceptable range based on the distribution is con-

sidered foreground. Using this type of normalized correlation makes the detection

algorithm independent of global illumination changes.

2.3 Discussion

This chapter has provided a survey of the existing research in the fields of low power

camera operation and through the lens detection based on background subtraction.

The goal of this camera system is to combine these two areas of research, and create a

low power system based on through the lens triggering. This requires the development

of a simple, yet robust, detection algorithm to allow computation in a low power

device. In addition, low power hardware must be designed to support the algorithm,

and meet the high quality imaging requirements of the application. The development

of the hardware will be discussed in Chapter 3, and the development of the power

constrained detection algorithm in Chapter 4.
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Chapter 3

System Architecture

The purpose of this camera system is to continuously monitor an area over an ex-

tended period of time in order to collect high resolution imagery when events of in-

terest occur. As discussed previously, the extended mission requirement prevents the

use of traditional "always on" camera systems due to their high power consumption.

This chapter describes the system architecture of the Lincoln Laboratory camera,

and the way it achieves minimal power consumption while maintaining the desired

functionality.

3.1 Principle of Operation

3.1.1 Overview

Before a detailed examination of the low power architecture of this camera can be

done, a refinement of the operational scenario is necessary to be more specific about

the restrictions imposed by its application. The root restriction is that the system

must be portable, requiring that it be small and lightweight. The result is that all

the power must be provided be a few small batteries. Rom this power alone, the

camera must be capable of "extended operation," which for this purpose is defined

as running with full functionality, without any human intervention, for a period of

approximately one month.
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Figure 3-1: Battery Discharge Characteristic [5]

Extended operation is achieved through low power, which is best defined by a

specific example. The discharge characteristics of one of the top of the line small

batteries on the market is shown in Figure 3-1. From this chart, it can be determined

that this battery can provide on the order of 35,000 mW/hours of battery life, de-

pending on the rate of power drain. Assuming a power conversion efficiency of 75%,

there are approximately 26,000 mW/hours of usable power per battery, or 105,000

mW/hours with four batteries. Therefore, if the system is to operate for 30 days, or

720 hours, it must have a time average power consumption on the order of 150mW.

Traditional "always on" camera systems typically consume approximately 1000mW.

Thus, a significant reduction in power from traditional camera systems is necessary

to meet the requirements for this type of application. In existing systems, this kind of

power reduction is achieved by turning the camera off most of the time, triggering it

to turn on with external sensors designed to detect the desired type of trigger event.

Several problems arise from using external sensor triggering, as discussed in Chapter

2.

Through The Lens Triggering solves many of the problems involved with external

sensor triggering, but has the disadvantage that it requires the camera to be on all

the time, going against the principle of reducing power through triggered operation.

Because full camera functionality is not necessary to compute the TTLT, the cam-
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era can be run in a low resolution, low frame rate mode, which does not provide

imagery sufficient for the end application, but does provide imagery good enough to

detect motion. Detecting motion from this imagery with extremely power constrained

processing is a non-trivial task, and the subject of Chapter 4. Low frame rate and

resolution operation, coupled with appropriate processing, results in TTLT operation

on the order of 75 mW, as will be shown in this chapter.

Although 75 mW is well under the 150 mW time average power budget, there are

many other functions the camera must perform once the TTLT has determined an

event. These functions include more power intensive processing, image compression,

and image transmission. These topics will be touched on briefly, as they are part of

the overall Lincoln Laboratory system, but are not the main focus this paper.

3.1.2 Layered Functionality

The functionality beyond the TTLT requires hardware that would far exceed the

power budget if it were powered all the time. To solve this problem, a layered func-

tionality approach is taken, where the high powered hardware is only turned on a

small fraction of the time, significantly reducing the time-average power consump-

tion.

There are three layers, or modes, that make up the layered approach. The first

mode is the TTLT, in which the camera operates most of the time. This will be

referred to as the Trigger mode. If the TTLT detects an event, the second layer of

hardware is turned on, referred to as the Collection mode. In this mode the image

sensor is run at full resolution and frame rate to collect high quality images. A higher

power processor is turned on to process the high quality imagery and better determine

if an event of interest was in fact captured. If that determination is positive, a third

layer of hardware is turned on to transmit the imagery. This is the Transmission

mode.

The reduction in power consumption achieved by the layered approach depends

on the power consumption and time spent in each layer. Power consumption in each

layer is a function of the system hardware. Table 3.1 shows the power consumed by
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Parameter Trigger Collection Transmission
Total Power 74mW 764mW 2698mW
Time/Activation N/A 1 min. 5 min.

Table 3.1: Power Dissipation and Time/Activation of Operational Modes

the system during each layer of operation; these values will be explained in Section

3.3. Time spent in each layer is a function of the processing time per event in each

mode, and the number of real and false events detected by the triggering algorithm.

Table 3.1 shows the time spent per activation of each layer; these are estimated values,

as the DSP and transceiver have not yet been implemented.

The effect of layering on power is well illustrated by an example. A common mode

of operation would be observation of an area where three events would occur per day.

In addition to these three events, a number of false triggers would occur that is much

greater than the number of actual events. For each trigger, the DSP would be turned

on, and the high resolution imagery processed. For simplicity, it is assumed that the

DSP will correctly identify all three real events, and falsely identify one, resulting in

four image transmits. For each of these events, the transceiver is turned on for five

minutes to transmit the data. The power dissipation that results from this scenario

is calculated by multiplying the percentage of time spent per day in each mode by

the corresponding power consumption, which is dependent on the number of false

triggers. The result of this calculation is shown by the lower line in Figure 3-2. From

this line, it is shown that layered operation can meet the 150 mW power requirement

under the given scenario if there are fewer than 75 false triggers per day. The upper

line represents the power consumption without layering, which does not come close

to an acceptable average power.

Before further explanation of the system operation, the hardware architecture will

be defined to provide a background for this topic.

24



900

No Layering
700

&500.

S4W0

Layering300 /
200-

'10
(3 5 10 150

False Tiggers

Figure 3-2: Layered Powered Consumption Versus No Layering

3.2 Hardware Architecture

The functionality of the Lincoln Laboratory camera system depends on the compo-

nents used and the way in which they are connected. In addition to the functionality,

the hardware also defines the power characteristics of the system. The hardware

architecture of this system is designed to optimize the tradeoff between these two

characteristics by using the lowest power hardware that just meets functional needs.

3.2.1 Components

The first step in designing any type of power constrained system is picking parts

designed for low power applications. These parts typically offer low nominal power

consumption, and power saving features that allow them to be powered down when

not in use.

The most fundamental piece of hardware for any camera system is the image

sensor. This defines the imaging capabilities, and is typically one of the more power

hungry components of the system. The image sensor is controlled and read out by

external electronics. In addition to readout electronics, in this system there are also
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low power processing electronics to compute the TTLT. The image sensor, control

electronics, and processing electronics are the main components of the TTLT. These

devices must be extremely low power, as they are on all the time.

Beyond the TTLT, there must be additional processing electronics for more ad-

vanced event detection and image compression. These electronics can be higher power,

as they are not on for most of the time, but should still consume the minimum power

necessary for the task.

The final component is a transceiver. This device is comparatively very high

power, and is on for an even shorter amount of time than the advanced processing

electronics. There is not a wide range of transceivers available for remote applications,

leaving little choice for optimized power and functionality.

The major components of this system will be discussed in detail, with a full parts

list given in Appendix A.

Image Sensor. The requirements on the image sensor are the strictest of any of

the devices. The first requirement is that the image sensor have low nominal power

consumption, and be capable of a low power standby mode. It also must be capable

of both low and high resolution readouts. The sensor used is a Rockwell ProCam

2-Megapixel CMOS device. It provides a 12-bit digital output, with several pro-

grammable registers to control all aspects of operation. The most important of these

programmable registers are several power saving features, and programmable resolu-

tion. The sensor runs on the order of 80mW when powered, and 40mW when powered

down.

Control and Processing Electronics. The control and processing electronics are

implemented with programmable logic and static memory.

Two Xilinx CoolRunnerII CPLDs were chosen for the programmable logic com-

ponent. These devices are re-programmable, and designed for ultra-low power ap-

plications. Nominal power consumption at 15 MHz, with the majority of logic in

use, is on the order of 4mW. The tradeoff for such low power is a limited amount of
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logic in each device. This puts a major constraint on the complexity of the trigger

algorithm. An advantage of these devices is that they have a +1.8V core voltage,

with four independently powered I/O banks. This allows the CPLDs to interface to

devices of different voltage levels without separate signal level conversion.

In addition to the CPLDs, there are four low power Samsung SRAMs. These are

used in the computation of the triggering algorithm, and as a rate buffer to transfer

image data to the DSP. These devices are designed for low power applications, with

static power dissipation on the order of 80pW, and read/write power dissipation of

approximately 6mW.

Digital Signal Processor. A Digital Signal Processor (DSP) is needed for high

level image processing, data compression, and transceiver interfacing. This device

needs a lot of computational power, with as little power consumption as possible.

The device used is a Texas Instruments C5509 low power DSP. This is a 288 MIPS

device, on the order of the computational power of an Intel Pentium processor. The

power consumption is around 650mW when operating, and 1mW in standby. The

standby feature allows the device to remain powered down most of the time, but not

completely turned off, such that it can be interrupted and powered up when needed

without going through a complete boot cycle.

In addition to the favorable computational and power characteristics of the C5509,

the interface characteristics of this device are also ideal for this application. It has an

external sixteen bit I/O interface, which can be used for image data transfer with the

CPLDs. It has a built-in USB port, a commonly used interface that can be used to

connect to a variety of transceivers. There is also a built-in memory card interface,

giving it expanded storage capabilities for large data volumes, such as those that

result from imaging applications.

Transceiver. A transceiver is used to transmit image data to an operator termi-

nal, as well as receive operator commands. The transceiver used is very application

specific, and largely depends on the existing infrastructure available in the area of op-
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eration. Possibilities for this device include a cellular phone, satellite phone, or other

specialized communication device. Due to the wide range of transceiver possibilities,

it is desirable to use a common interface so that the camera can be easily connected

to different devices. Universal Serial Bus (USB) was chosen because it is a widely

accepted standard with simple connection hardware, and has enough bandwidth to

handle the data rate required for an imaging application.

Frame Grabber. The frame grabber interface interface allows image data to be

viewed in real-time directly from CPLDs, making it possible to develop the low level

algorithm without the DSP. The image data are transmitted to a frame grabber in

a computer via LVDS, where the data are reconstructed and displayed as an image.

This interface is powered with its own power supply to allow power measurements of

the system independent of this development interface.

Power Supplies. The low power demands of this system require that the power

system be as efficient as possible so that energy is not wasted in power conversion.

The system components have many different power connections, requiring several

voltages to be derived from the same battery source. This results in several different

power planes, with isolated analog and digital grounds to mitigate the effect of digital

noise on the analog image sensor electronics. Each of the positive voltage planes is

powered by a separate low dropout regulator, which are used to allow the supply

voltage to approach the regulator voltage as much as possible. The regulators are

powered by two switching power supplies, one +3.6V, and one +1.8V. These power

supplies are fed by the batteries, with approximately 75% efficiency. A summary of

the power system is shown in Table 3.2.

3.2.2 Component Connections

The connection of the hardware components is the second determinant, in addition

to the components themselves, of system functionality and power consumption. Con-

nection of the components is done in the Lincoln Laboratory camera with a custom

28



Voltage Plane Switcher Devices
+1.6V Digital +1.8V DSP
+1.8V Digital +1.8V Xilinx Core,Xilinx I/O,SRAM
+2.5V Digital +3.6V Imager Digital,Xilinx I/O
+3.3V Digital +3.6V DSP
+3.3V Analog +3.6V Imager Analog
+3.3V Frame Grabber N/A Frame Grabber

Table 3.2: Power System

printed circuit board', shown in Figure 3-4. A block diagram showing the connections

of all the major hardware components is shown in Figure 3-3.

The first CPLD is essentially the center of control for the camera. Its main function

is to control the imager, collect image data, and interface those data to other system

components. For this purpose, CPLD 1 has bus connections to all the major devices,

as shown in Figure 3-3. The flow of data to each component is determined by the

mode of the system, which is controlled by a finite state machine in CPLD 1. This

will be discussed in detail in Section 3.4.

The second CPLD is responsible for computation of the TTLT. This requires

a connection to CPLD 1 to receive data, and to the memory bank, which is used

during motion detection processing. The data bus to CPLD 1 is sixteen bits to allow

data communication, as well as control signals used to set motion parameters, and

communicate the TTLT status.

Once a trigger event is determined by the TTLT, full resolution data must be sent

to the DSP. The DSP's external data interface consists of sixteen data bits, eight

address bits, and a number of control signals. This data bus is connected to CPLD

1, and is asynchronous, requiring the use of the memory bank as a rate buffer. The

way this is done will be discussed in detail in the next section, but it is important to

note that data are not simply fed through CPLD 1 from the imager to the DSP, as

occurs when data are sent to CPLD 2 for the TTLT.

The frame grabber is connected to CPLD 1 and CPLD 2 via a common 16 bit

'Printed circuit board and schematic designed by Pete Lafaucci and Mike Dovidio at MIT Lincoln
Laboratory
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Figure 3-3: Component Connections

data bus. This allows both devices access to the frame grabber, which is very useful

for debugging. In addition, using a common bus provides an extra sixteen bits of

communication between the CPLDs, as the frame grabber is not part of the final

system.

The last major device connection is the Memory bus. The memory bus has sixteen

data bits, twenty address bits, four chip selects, and a number of control signals. This

bus is shared by both CPLDs, allowing both devices access to the memory bank.

3.3 Hardware Operation

Hardware operation can be broken down into the three modes discussed earlier: Trig-

ger, Collection, and Transmission. Under the layered functionality approach, the

hardware that acts as part of the trigger mode is always active, while the collection

and transmission hardware is only active when turned on by the preceding layer.

Thus, the system operates in a way that keeps trigger mode power at an absolute
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Figure 3-4: Printed Circuit Board
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Figure 3-5: Operating Sequence

minimum, and power in the collection and transmission modes as low as possible. A

diagram of the hardware operating sequence in shown in Figure 3-5.

3.3.1 Trigger Mode

The two main devices operating in this mode are the image sensor and the control

and trigger electronics. The most power intensive of these components is the image

sensor; therefore, lowest power is achieved by minimizing the amount of time this

device is on.

Time spent with the imager on is minimized because imagery is only needed at a

rate of approximately 1 fps, while the imager readout is capable of speeds up to 15
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Figure 3-6: Imager Power Consumption in Trigger Mode

fps2 . The imager is turned on to collect a single frame of data at this frame rate, then

powered down for the remainder of the frame period. Thus, during most of the frame

period, the imager consumes the standby power, 40 mW, with a spike to 80 mW

during image collection. The result is a time average power consumption of 44 mW.

A plot showing the image power consumption over a period of two frames is shown

in Figure 3-6. This illustrates the power spike to 80 mW during image collection.

The image data are sent to the second CPLD, where the TTLT is performed. If a

trigger is detected, the DSP is turned on and the system transitions to the Collection

mode. If there is no trigger, the system remains in its low power state until it is time

to power up the imager and collect a new frame.

The CPLDs consume approximately 4mW each, and the memories 2mW. It is

estimated that a transceiver in a low power listening state would consume approxi-

mately 20mW. These values combined with the 44mW imager power result in a total

average power dissipation in the trigger mode of 74mW. This result is summarized in

Table 3.3.

2While the image sensor is capable of 30 fps, memory write speed and circuit board limitations

reduce the maximum rate to 15 fps.
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3.3.2 Collection Mode

Once a trigger event occurs, the DSP is turned on, and high resolution imagery is

immediately collected and sent to the DSP. Once several frames are collected, these

data are processed to better determine if the cause of the trigger was an interesting

event. The algorithm to make this determination is still under consideration.

If it is determined that the imagery is not worthy of transmission, the DSP sends

information back to the TTLT to aid in future false alarm mitigation; this idea of

adaptive feedback will be discussed in Chapter 4. Once the information is sent, the

DSP is powered down and the camera returns to the trigger mode. If the imagery is

determined to be worthy of transmission, the imagery is compressed using the JPEG

2000 standard, and then transmitted in the transmission mode.

Power consumption in the collection mode is mostly driven by the DSP, which

dissipates 650mW. The image sensor power consumption is 80mW, and the CPLDs

use 4mW each. The memory power increases to 6mW due to the constant use as a

frame buffer. The transceiver power is again estimated at 20mW. The combination of

all these devices results in an average collection mode power consumption of 764mW.

This result is summarized in Table 3.3.

3.3.3 Transmission Mode

The transmission layer is turned on if the DSP determines that a collection of high

resolution images contains data that are interesting enough to send. The transmitter

is interfaced to the DSP over USB, allowing commands and data to be exchanged.

The data to be sent are already compressed using the JPEG 2000 standard when

the transmitter is turned on. JPEG 2000 uses multi-resolution compression, whereby

wavelet coefficients corresponding to very low resolution are sent first, followed by in-

creasing resolution coefficients until full resolution is achieved. Thus, a low resolution

image at the operator terminal is received quickly, allowing selection of a region of

interest that can be sent back to the DSP. Once this region of interest is sent back,

only those coefficients corresponding to that region are transmitted, making optimal
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Component Trigger Collection Transmission
Imager 44 mW 80 mW 40 mW
CPLDs 8 mW 8 mW 8 mW
SRAM 2 mW 6 mW 0 mW
DSP 0mW 650 mW 650 mW

Transmitter 20 mW 20 mW 2000 mW
Total 74 mW 764 mW 2698 mW

Table 3.3: Power Dissipation for Operational Modes

use of the limited transmission bandwidth and reducing the time the transceiver has

to be turned on.

Power consumption for the transceiver is largely unknown, and varies depending

on the device used. An estimate based on commercially available devices of this type

suggests power dissipation on the order of 2000mW. In the transmission mode, the

image sensor can be powered down, resulting in dissipation of 40mW. The CPLDs

consume 8mW, and the memory power consumption is not significant. The DSP

consumes 650mW as in the collection mode. The combination of all the devices

results in average power dissipation of 2698mW in the transmission mode. This is

summarized in Table 3.3.

3.4 Logic Implementation

System operation and data flow are controlled by programmable logic in CPLD 1.

This section describes the logic implemented in this device to accomplish the func-

tionality described in the previous sections. A diagram representing the logic blocks

of this device is shown in Figure 3-7. All logic is written in VHDL, and compiled

with Xilinx's ISE 5.0 software. The VHDL source code for this device is included in

the file CPLD1.vhd, included in Appendix B, along with the associated modules.
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3.4.1 Primary Controller

The center of control for the camera system is the Primary Controller. It has control

over all of the hardware components either directly or indirectly through a connected

process. It is implemented with a finite state machine that represents the sequence

of operations shown in Figure 3-5. The state determines control signals which route

data according to the current mode of operation, and start other processes. State

transitions are determined by the current state, process status inputs, and input

signals from other devices. The connections of control signals are represented by the

thin arrows in figure 3-7.

3.4.2 Data Flow

One of the primary functions of the first CPLD is to control data flow through the

different system devices. Data flow can be broken down into two data paths, corre-

sponding to the Trigger and Collection modes; these are shown by the thick lines in

Figure 3-7.

The black line in Figure 3-7 represents the data path that is used in the Trigger

mode. Image data are sent to the TTLT in real time as they are read out from the

sensor, where processing is performed. The background statistics, which are written

into the memory bank by the second CPLD during TTLT processing, are read out to

the frame grabber for debugging and analysis. The gray line in Figure 3-7 represents

the data path used in the Collection Mode. Data coming from the imager are routed

to the memory bank, which is used as a frame buffer. Once the data are stored in

memory, they are read out and routed to the DSP.

3.4.3 Image Sensor Control

The image sensor has a fairly simple interface because it is such a highly integrated

device. This is beneficial in that it greatly simplifies the control logic required to

run it, but detrimental in that it makes it difficult to run in the different modes this

application requires. The interface consists of three control signals, three register
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programming signals, a twelve bit data output bus, and two output control signals.

The image sensor is programmed with a three signal serial interface, consisting

of clock, strobe, and data. The programmed data words are sixteen bits long and

contain both the register address and data. A register programming module as part

of the image sensor control logic takes in 16-bit input words, and programs the imager

using the sensor's serial protocol. To begin this process, a start signal is sent from the

primary controller to the register programming module. The programming sequence

sends eight 16-bit data words, which are hard-wired in the CPLD and dependent on

the state of the primary controller. Once the programming sequence is complete, the

programming module sends a done signal back to the primary controller to indicate

that the imager is programmed.

The three sensor input control signals are frame, line, and clock. The image

sensor has an "integrate while read" architecture, where one frame is read out while

the next is being integrated. On the rising edge of the frame signal, integration of the

previous frame stops, and readout begins. The start of integration of the next frame

is determined by a programmable register that sets the time in rows after the rising

edge of the frame signal before the next integration begins. This simple architecture

is beneficial for continuous video applications, but in this application it results in an

extremely long integration time, as frames are only collected once per second. In

order to get around this problem, a "dummy" frame is taken before the actual data

frame, such that the data frame follows directly after the dummy frame, resulting in

an acceptably short integration time.

The frame signal is determined by an output from the primary controller. As data

are read out, the sensor provides line and frame output signals that are synchronized

with the readout data. The number and length of image data lines are determined

by the programmed resolution. The line pulses are counted to determine when the

readout is complete, as no signal indicating this is sent by the imager. Once all the

lines in the frame are read out, the image control module sends a frame done signal

to the primary controller to indicate that image collection is complete.
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Figure 3-7: CPLD 1 Block Diagram

3.4.4 DSP Controller

The DSP controller is an independent state machine that handles all interfacing to

the digital signal processor. Once the primary controller enters the DSP state, all

functionality is handed off to the DSP controller. The interface between CPLD 1 and

the DSP consists of a 16-bit bidirectional data bus, an 8-bit unidirectional address bus

commanded by the DSP, write enable, chip enable, and read enable. Once control is

handed off, the DSP is interrupted to power it up out of deep sleep, and the imaging

sensor is programmed to collect full resolution imagery. The controller then waits for

a command from the DSP.

The DSP is essentially a miniature computer with significant signal processing

capabilities. Once this device is powered up, it runs a program to retrieve image data

and process them. The DSP interfaces to the system by sending commands to the

DSP controller. Commands are sent to the DSP using the address bus of the data

interface, with addresses corresponding to specific commands. A command is issued
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by pulsing the write enable signal of the interface to the DSP controller while the

desired command is valid on the address bus. A description of the DSP commands

is given below.

Frame Read The first step in DSP processing is collecting image data. The DSP

is completely asynchronous to the CPLD, requiring a rate buffer to transmit data

between CPLD 1 and the DSP. In most asynchronous applications similar to this, a

FIFO would be used as a rate buffer. FIFOs can be implemented in several different

ways, none of which work well for this implementation. This is primarily because

data come out on every edge of the CPLD/imager clock, which is also very close to

the minimum cycle time of the SRAM. A register based FIFO would require a lot of

depth, as data would back up in the FIFO if a pixel were not read on any given cycle.

There is not space in the CPLD to accommodate a large FIFO.

The requirements of a FIFO make it impossible to implement with the existing

design. Instead of a FIFO, the memory bank is used as a frame buffer, where entire

frames are written to memory, then read out by the DSP. Transmission takes on the

order of a half a second, during which the memories are being read out, and cannot

be written to; therefore, if multiple frames with close temporal spacing are required,

all the desired frames must be written into memory before any are read out. In

the current hardware, there is enough memory to store three frames if the data are

reduced to eight bits per pixel. Once the data are stored in the frame buffer, they

must be sent to the DSP. This is done by the data path discussed in Section 3.4.2,

where the memory data bus is mapped to the DSP data bus. The DSP address bus

is only eight bits wide, which is not wide enough to address the memory. Instead, an

internal address counter is kept by CPLD 1, which is advanced through the memory

space by the DSP by toggling the read enable signal.

Feedback Write An important part of making the triggering algorithm robust to

false alarms is the ability to receive feedback from the DSP processing algorithm.

This consists of sending threshold updates for specific pixels to the TTLT. The pixel
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address and threshold value are sent to the DSP controller over the data and address

buses after the feedback write command. Once data are received by the controller, it

writes the updated values into the appropriate memory space for the specified pixel

parameter.

DSP Done Once the DSP is finished with processing and data feedback, it must

command the DSP controller to send the camera back into trigger mode. Once this

command is sent, the DSP is powered down to its sleep state. Control is given back

to the primary controller, and the system returns to trigger mode.

3.4.5 Memory Interface

The four Samsung memories have a standard SRAM interface. There are twenty

address bits, sixteen data bits, chip select, write enable, and output enable. All the

SRAM signals are shared between the two CPLDs, creating a potential bus contention

issue if one of the CPLD interfaces is not set to a high impedance state at all times.

To be certain contention never occurs, a register bit is set in CPLD 1, and shared

with CPLD 2, that specifies which device has control of the bus, and automatically

sets the non-controlling interface to high impedance.

3.4.6 Frame Grabber Interface

The frame grabber interface consists of three output control signals, a sixteen bit data

bus, and four input serial programming signals. Data are sent to the DSP over the

data bus, valid on the rising edge of an output pixel clock. In addition to the clock,

frame and line pulses are generated to dictate how the data on the bus should be

reconstructed to form an image. The four input signals allow a serial programming

interface with data, clock, and strobe. This is used to set algorithm parameters

dynamically from the frame grabber computer.
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3.5 Testing and Debugging

There were two stages of hardware testing for this system. The first was general

hardware testing to ensure that the devices were operating properly on the printed

circuit board. The second form of testing was functional, to ensure that the completed

system operates as described in Section 3.3.

The scope of this project was to develop the TTLT algorithm and Trigger mode

hardware, with the appropriate interfaces for the Collection and Transmission modes.

The role of the hardware and algorithms of these modes were discussed to better

understand the role of the Trigger functionality, but have only been implemented to

the extent that the interface to the first CPLD could be tested.

3.5.1 Device Testing

The first phase of device testing was checking the power to all devices to ensure

that all power regulator connections were made and stable. The second step was to

test device functionality and I/O. This was done by collecting full frame image data,

sending the data to the second CPLD, storing it in memory, and reading it out to the

frame grabber through the first CPLD. This data path utilizes all the I/O connections

as well as the basic functionality of all the devices.

The second phase of device testing was checking the functionality of the image

sensor in the unusual operation required by this application. The slow frame rate,

resolution switching, and constant power cycles are not conventional ways of operating

an imager. Thus, the results of this type of operation were not specified by the

manufacturer. The effects of these operations had to be tested to ensure that the

sensor would still function.

The first function tested was the effect of constantly changing the camera reso-

lution. It was discovered from this testing that the frame immediately following the

change of resolution was significantly brighter than other frames, using a constant in-

tegration time. The solution to this was coupled with the solution to the integration

time problem that results from a slow frame rate, discussed in 3.4.3, where an extra
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frame is always captured before the desired image frame.

The second function tested was the extent to which the image sensor could be

powered down between image frames without a significant effect on the imagery. The

first method explored was to turn off the image sensor's power regulator in order to

make the sensor power dissipation go to zero. Due to a long settling time on startup,

however, this mode of operation produced very poor results. The next method tried

was to use the power saving functions of the device that allowed the A/D converters

to be powered off, and the bias currents reduced. This proved to reduce power

consumption by 50%, without any noticeable effect on image quality.

3.5.2 Operational Debugging and Testing

Once the hardware was tested to ensure proper operation, the next stage of devel-

opment was to debug the logic in CPLD 1. During this stage of testing, interface

signals with CPLD 2 were simulated using test switches, as the logic for CPLD 2 was

developed after CPLD 1.

The first step in logic testing and debugging was simulation. The logic synthesized

using the VHDL source was simulated in the ModelSim environment. This testing was

useful for debugging the state machine sequencing and the resulting control outputs,

but full system testing was not possible because of a lack of an HDL description of

the camera sensor and SRAM. Several external test points connected to extra CPLD

I/O were built into the printed circuit board for the purpose of in-circuit testing. Any

CPLD signal can be mapped to these points and monitored on a logic analyzer. This

interface was used to complete debugging of the VHDL source code.

3.6 Summary

This chapter has described in detail the system architecture of the Lincoln Laboratory

camera. The low power design and operation make the hardware capable of extended

operation when associated with an effective TTLT in CPLD 2. The next chapter will

describe the theory and implementation of the TTLT.
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Chapter 4

Through The Lens Trigger

The success of this camera system is dependent on the ability to run a through the

lens trigger while still maintaining low power. This requires a triggering algorithm

that is simple enough to be implemented with limited logic, but intelligent enough to

be robust against false alarms. Without these two aspects, the system will consume

significant power, either from the trigger algorithm, or by constant triggering of the

higher power electronics due to false alarms.

4.1 Algorithm

The triggering algorithm is based on the concept of background subtraction, where

each new image frame is compared with a stored background in order to detect

significant deviations. Algorithms within the scope of background subtraction are

differentiated by the method used to collect and maintain the background, and the

criteria used to define a significant deviation. Several existing background subtraction

algorithms were discussed in section 2.2.

The purpose of this camera system is to continuously monitor remote areas for

extended periods of time. It is assumed that most of the time, no significant events

are occurring in the camera field of view. The scene remains mostly static, except for

changes that might occur due to natural events. The most significant natural events

that can cause a trigger to occur are wind blowing around objects in the background,
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and illumination changes caused by clouds or movement of the sun. Such events will

be referred to as local motion effects and illumination effects, respectively. These

types of variations pose the most significant challenge to developing a simple TTLT

algorithm.

4.1.1 The Basic Algorithm

The basic algorithm is based on the assumption that the scene is static, with no local

motion or illumination effects. Extensions of the basic algorithm to account for these

factors will be discussed in section 4.2.

The first part of the algorithm is collecting and maintaining the background model

based on a Gaussian distribution with mean pit, and standard deviation o-t. The mean

is calculated using a weighted average between pt_1 and It, the current pixel intensity.

The weighting between these two values are (1 - a) and a, respectively, where a is

the learning rate. The mean for each frame is then represented by

pt+=a-ptt+(1-a)- It (4.1)

This describes the calculation computed each frame for each pixel. Thus, the back-

ground at time t, 13t(ni, n 2), is described by equation

/t+1(fnl, n2) = a . 3 t(ni, n 2) + (1 - a) -It(ni, n 2 ) (4.2)

where It(ni, n 2) is the current image frame. The standard deviation, -t, is approxi-

mated by the image sensor noise, Onoise.

4.1.2 Choosing a

The constant a must be determined in order to use equation 4.2 to calculate the

background mean. The choice of a determines how quickly the background can adapt

to scene changes, as well as how sensitive it is to sensor noise. The variance in intensity

due to sensor noise will cause uncertainty in the calculated value of the running mean.
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This causes variance in the intensity PDF in addition to - Although this variance

could be accounted for when choosing the detection threshold, a should be made small

to keep the distribution as tight as possible. This additional variance can be neglected

if it is significantly smaller than the noise variance. In addition to determining the

mean variance, a also determines how quickly the system can adapt to changes in the

background. Adaptation should be fast to incorporate changes in the background as

quickly as possible. This requires a large value of a.

A tradeoff then exists on the choice of a. It should be small to minimize the

effect of variance in the mean, and large to allow the background to adapt to changes

quickly. Selection of a can be done by examining the relationship between mean

variance and settling time. Equation 4.1 is essentially a low-pass filter, with transfer

function

a
H,(es") a~e (4.3)H_(ew) -1 - (1 - a)e-iw 43

This can be used to determine the response to an input unit step, and input Gaussian

process with variance . These results can be used to measure the settling time

to adapt to an addition to the background, and the variance of the estimated mean.

Figure 4-1 shows a plot of the curves that result from these two inputs.

The points shown on the variance curve represent the values of a that are realizable

in the implemented system. Values of a must be of the set 2 , where n is an integer

less than zero; the reasoning for this constraint will be discussed in section 4.3. The

point circled in Figure 4-1 is a = 1, and represents a good compromise between

settling time and variance. The variance due to choice of a is 1 of the noise variance,

small enough that it can be neglected. The settling time is approximately 75 frames.

This settling time is longer than desired, but as Figure 4-1 shows, the point chosen is

on the corner of the curve, such that the settling time is not significantly improved

without a large increase in a.
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alpha = 1/16
variance z .05 x noise variance
settlIng time z 75 samples

a 0.1 0.2 2 .4 . .7 0.8 'I

Figure 4-1: Choice of a on Noise Variance and Settling Time

4.1.3 Choosing r

The next step in the basic background subtraction algorithm is comparing the current

frame with the background model to detect significant deviations. To begin this com-

parison, the absolute error between the current frame and the background, Et(ni, n2),

is calculated using

Et(ni, n 2 ) = 1It(ni, n2) - ,3t(ni, n2)1 (4.4)

Once the error frame is calculated, foreground pixels can be detected by com-

paring this frame with a detection threshold, r. Each pixel, (ni, n 2 ), is modeled by

a Gaussian distribution with mean ,t(ni,n 2), and standard deviation 0 -noise Using

this distribution, the probability, p, of an absolute deviation occurring that is greater

than r, given that it is part of the background, can be calculated. Thus, the detection

threshold can be set using

r = [ICDF( P)Onoise (4.5)

where (1 - p) is the desired probability of false alarm, and ICDF(-) is the inverse
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zero-mean normal cumulative distribution function, with a standard deviation of one.

A binary foreground map, F(ni, n 2), can then be generated using

Ft(ii, n2) = J1, Et(ni, n 2 ) > r(46)

0, Et(ni, n 2 ) < T

where 1's represent foreground pixels and O's background.

Once the foreground detection map is computed for a given frame, the Through

The Lens Trigger is easily determined. The simplest trigger would signal a detection

if any of the pixels in the foreground map are set to one. More complicated triggers

might require that a certain number of pixels in the foreground detection map be set

to one, or that there be a grouping of a certain size. In this implementation, the single

detection criterion is used in conjunction with enhancements to the basic algorithm.

4.2 Algorithm Enhancements

While the basic algorithm works well under the assumption of a static scene, the intro-

duction of local motion or global illumination changes violate the static assumption,

and make the algorithm ineffective in reliably detecting scene changes. In existing

background subtraction methods, these effects are handled using multiple Gaussian

mixture models and normalized intensity values. Using multiple Gaussian models

is not possible in this implementation, as the power constraint severely limits the

amount of logic that can be used for algorithm computation. An approach is then

required that allows the model to perform effectively using a single-Gaussian model.

4.2.1 Pixel Binning

The idea of pixel binning is to divide the image into blocks of mxn pixels, and

average the intensities in each block to form a single pixel. This is used in this system

to mitigate the effect of local motion through spatial averaging. For example, take a

tree branch against a uniform background that is 2 x 3 pixels in size, with a spatial

variation of 4 pixels in each direction due to blowing wind. If the branch were placed
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(b)

(d) (e) (f)

Figure 4-2: Effect of bin size on target/background contrast. Target is 16x 16 in (a),
bin sizes are (b)2x2, (c)4x4, (d)8x8, (e)16x16, (f)32x32.

in the middle of a 6 x 7 block, the average of the pixels would change very little, as

long as it remained inside the bin.

The price paid for doing this averaging is a dulling of the contrast of the image as

the resolution is reduced. The larger the bin size, the more the scene intensities will

blend together. This is a problem for background subtraction, since it operates on the

principal of differentiating foreground intensity from background intensity. Decreas-

ing the contrast between foreground and background will make this determination

much more difficult. If the approximate target size is known, and the bin size is

chosen such that it is half this size in the horizontal and vertical directions, it is guar-

anteed that at least one pixel will have the maximum contrast between foreground

and background. An example of this is shown in Figure 4-2(a-f), where in Figure

4-2(d) the bin size is set at half the horizontal and vertical target size.

In order to examine how the binned pixels behave, the probability distribution

functions of their intensity must be determined. The PDFs of the binned pixels are

the combination of the PDFs of the pixels in the bin. In a local region, pixels are

assumed to have approximately the same PDF, with a mean, paj, and variance, o'.

In many cases this distribution will be multi-modal, representing the different objects

that appear in the pixel, weighted by their relative occurrence. An example of a

distribution with two illuminations, possibly a tree and a road, is shown in Figure
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(a)

(c)

Figure 4-3: Sampled Bimodal Distribution -
n = 16, (d) n = 256

(b)

(d)

(a) Original Distribution, (b) n = 2, (c)

4-3(a).

Under the assumption that all the pixels in each bin have the same PDF, the

values of each pixel in the bin are essentially samples of that distribution. Using the

Central Limit Theorem [8], if the number of pixels in the bin is large enough, the

PDF of the bin can be approximated by a Gaussian distribution with mean pix, and

variance , where n is the number of pixels in the bin. The distribution that results

by sampling 4-3(a) for different values of n is shown in Figure 4-3(b-d).

Binning can then be used to create a unimodal distribution out of a multi-modal

distribution. The mean of a binned pixel frame, pu(bi, b2), can be calculated with a

running average of the bin intensity, just as it was in the basic algorithm. Unlike the

basic algorithm, the variance is not a constant value that can be measured a priori,

and is different for each bin.

Variance can change significantly from bin to bin for two reasons. The first is

that local motion will not always be contained within a single bin. In many cases

a moving object will fall into several bins, adding variance from movement in and
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out. The second is that the background behind moving objects will not always be

uniform. As a result, the bin intensity can vary from an object within the bin moving

and uncovering different parts of the area behind it. These problems suggest that an

adaptive method of estimating the bin intensity variance is needed to be able to set

individual detection thresholds for each bin.

The first method explored for estimating the variances uses the same type of

running average that is used to approximate the background mean. The variance

is represented by o(bi, b2), where (bi, b2) are the binned pixels. To calculate the

variance frame, the error frame is used as the input to a running average, calculating

the average error for each bin at time t, et(bi, b2). This is represented by

Et+1(bi, b2 ) = a - Et(bi, b2) + (1 - a) - Et(ni, n 2 ) (4.7)

It follows from the properties of a Gaussian distribution that the average error is

0.6745 times the standard deviation. The standard deviation of the binned pixels are

then given by

obin(bi, b2) = Et(blb 2) (4.8)
0.6745

With this estimate of the variance, a desired probability of false alarm can be used

to set the threshold as some multiple, s, of the bin average error, based on a desired

probability of false alarm (1 - p). This is represented by

-rt(bi, b2 ) = s - Et(b 1, b2) (4.9)

where

ICDF(1+P)
s = .74 2 (4.10)0.6745

In practice, a minimum fixed threshold value is also needed because quantization error

causes the error for pixels with very little motion to be calculated as zero. Without

a minimum threshold, these pixels cause frequent false alarms. Figure 4-4 shows the

50



z

JA

yaIu

Figure 4-4: Example of Gaussian shaped histogram of pixel bin

histogram of a bin with local motion over several frames. This shows that the bins

do follow an approximately normal distribution.

Using the running average method of estimating the binned pixel variance has

advantages and disadvantages. The advantage of this method is that it provides an

adaptive method of setting the detection threshold without the use of feedback from

a higher-level processor. The disadvantage is that with the slow 1 fps frame rate, the

variance is not very quick to adapt to changes in local motion. This requires that the

motion be fairly constant in order to build up a good model.

4.2.2 Adaptive Feedback

The second method explored for setting the detection threshold uses the concept of

adaptive feedback. The idea is to occasionally use computationally intensive pro-

cessing that is much higher power to better determine scene complexities, and use

this information to "teach" the TTLT to perform better. This is done using several

frames of high resolution imagery following the trigger, as well as the binary pixel

map. The exact method the DSP would use to process the imagery is still under con-

sideration, but it would likely be some type of morphological processing that would

take advantage of knowledge about target construction and movement.

Adaptive feedback forms the basis for the second method of variance estimation.
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In this method, feedback from the DSP is used to adjust fixed thresholds for bins that

cause frequent false triggers. The algorithm begins by using the same low threshold

for every bin. When a trigger occurs, the DSP performs high-level processing to

determine if the trigger was in fact real, and if not, feedback information to the

TTLT to desensitize the pixels that caused the false detection.

An example of this method is illustrated in Figure 4-5. In this example, there

is a tree in the background whose branches move around in the wind. When the

algorithm is first started, this would likely cause a trigger, and send high resolution

imagery to the DSP. The DSP could determine from the fact that the tree was simply

waving back and forth, causing scattered detections, that this trigger was not caused

by an event of interest. It would then send a command to the TTLT to increase

the threshold for the bins containing the tree, such that a very large deviation would

be needed to cause a detection. In another instance, a car could drive through the

image, also causing a TTLT detection. The DSP would process the high resolution

imagery and determine that a contiguous block of pixels caused the detection, which

show a clear direction of motion over several high resolution frames. Based on this

analysis, the DSP could determine that the detection was an event of interest, and

transmit the imagery.

The advantage of this type of algorithm over the adaptive error estimation method

is that the scene is permanently learned. Thus, if local motion dies down and then

picks back up, there is a much lower probability that a false trigger will occur be-

cause that area is permanently desensitized. The disadvantage of this method is

that the startup time in the beginning is very long, and relies very heavily on adap-

tive feedback. Another disadvantage is that if local motion in a certain region stops

permanently, that area will still be desensitized.

Adaptive feedback can also be used with the first method described. In this case,

DSP feedback would alter the multiplier used to calculate the detection threshold

from the average error. This would allow feedback to desensitize pixels with a lot of

local motion, while still allowing the TTLT to maintain a self-adaptive threshold.

The threshold values, -rt(bi, b2), generated by the chosen method, can be used to
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Figure 4-5: Example of Adaptive Thresholding Using DSP Feedback

generate a binary foreground map, F(bi, b2 ), as in section 4.1. This is represented by

F(bi, b2 ) = { '

10,
(4.11)

The bin size is set such that only one bin is guaranteed to have maximum contrast

between the target and background. Thus, a trigger is generated if any bin is detected

as foreground.

4.2.3 Choosing g

The binary pixel map can also be used to detect global illumination changes. Changes

in global illumination would cause intensity values to change all over the image,
resulting in a large number of detections, especially in bright areas. This is in contrast

to an event of interest, which would likely be small compared to the size of the image,
and cause only a small number of detections. Thus, a constant g could be set, such

that if the number of detections were greater than g, the image would be determined

to have undergone a global illumination change. To ensure that an object of interest

is not mistaken for a global illumination change, g should be set at least twice as
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Symbol Parameter Source
a Learning Coefficient preset
m Horizontal Bin Size preset
n Vertical Bin Size preset
g Global Illumination Threshold preset
r(ni, n 2) Trigger Threshold preset or adaptive

Table 4.1: Trigger Algorithm Parameters

large as the number of pixels the desired target is expected to occupy.

If a global illumination change is detected, no trigger occurs, and the background

model must be adjusted. To make this adjustment, the background mean is set

to the current image intensity in order to immediately acquire the new background

illumination. The adaptive mean then proceeds under normal operation.

4.3 Algorithm Summary

The sections above have outlined a method for through the lens detection using ex-

tremely power constrained processing. The basic algorithm uses a running mean

based on the learning coefficient a to maintain an adaptive model of the background

intensity. Pixel binning is used with the basic algorithm to average out local mo-

tion in order to combine multi-modal distributions into unimodal distributions . The

threshold, r(bi, b2 ), for each bin can be set using either adaptive error estimation or

fixed thresholds that can be altered through adaptive feedback. The determination

of which method should be used depends on scene dynamics, and their relevance to

the advantages and disadvantages of each method. The computation of the enhanced

algorithm results in a binary foreground map, which is used in trigger determination

and detection of global illumination changes. The algorithm parameters are summa-

rized in Table 4.1.
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4.4 Logic Implementation

This chapter has developed a single-Gaussian based background subtraction algorithm

with the ability to adapt to background changes, local motion, and global illumination

effects. In order for this algorithm to be used for the Through The Lens Trigger, it

must operate in real time, and be computed with the logic in a single CoolRunner

CPLD. This section will describe the logic implementation of this algorithm in CPLD

2. All logic for this device was written in VHDL, and synthesized with the Xilinx

ISE software. The top level source code for this device is CPLD2.vhd, included in

Appendix B with all associated modules.

Within the second CPLD there are two main logic blocks, binning logic and back-

ground subtraction logic. In addition to these two blocks there is also a memory

interface and a parameter file. The parameter file stores the parameters for the back-

ground subtraction algorithm, and is programmed using a standard 3-wire interface,

either from CPLD 1 or the frame grabber. The external connections to CPLD 2 are a

bus to CPLD 1, a frame grabber bus, and a memory bus. This architecture is shown

in Figure 4-6, where the thick arrows are data buses, and the thin arrows control

signals.

4.4.1 Binning

The first step in the computation of the TTLT is pixel binning. Image data are

sent to CPLD 2 from CPLD 1, along with frame and line signals. The data are

binned as they comes in, then stored in the memory bank for background subtraction

processing. As described in section 4.2, the idea of binning is to divide the image into

blocks of mxn pixels, then sum the pixels in the block together to form bins. Two

of the major restrictions on this system are bus widths and memory capacity. These

require that binned pixels take as few bits as possible. For this reason, binning is done

by averaging the pixels in each block, rather than just summing them. This keeps

the binned pixel intensities to a maximum of twelve bits, just as in the original image

data. Another restriction imposed by the limited logic available is the impossibility
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Figure 4-6: CPLD 2 Block Diagram

of implementing a multiplier/divider. The division necessary for averaging must be

accomplished by bit down-shifting, allowing only divisors of 2", where n is an integer.

Divisors that are not of the set 2' are rounded up to the next value in the set.

The image data are sent by CPLD 1 in a line scan order. This means that the

entire frame is sent line by line and each line is sent a pixel at a time. The background

subtraction algorithm involves binning in both the horizontal and vertical directions.

This requires that blocks of m pixels in each line be combined over n lines. In order to

do this, intermediate summations must be stored to collect blocks over multiple lines.

This can be done with in-place computation, where only a single memory location is

needed for each bin. Intermediate values are read from that location, summed with

the incoming pixel values for that bin, then stored back in the same location.

A diagram of the binning logic is shown in Figure 4-7. The inputs to the logic block

are the video data and memory bus. The output is also connected to the memory

bus. For line 1 of n in each block, the signal zero-sel is set to '1' so that a zero input
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Figure 4-7: Binning Logic

is selected instead of the memory bus, because there are no intermediate values yet.

For the lines 2 : n of each block, zerosel is set to '0' so that the intermediate values

are read in from the memory. The data are then up-shifted to account for the fact

that previous summations were down-shifted. This is necessary to make the relative

magnitudes of the video data and intermediate values correct.

For pixel 1 of m for each block within the line, the signal feedback-sel is set to '1'

so that the intermediate summation is sent through. For pixels 2 : m, feedback.sel is

set to '0' so that the incoming video values are summed with all the previous values.

Once all m pixels for that block are summed, the data are down-shifted and then

written back to the memory location for that pixel. This sequence of operation shows

how in place computation is performed to calculate each bin.

Memory addressing and select signal generation are done using four counters, two

for intra-block counting, and two for inter-block counting. The intra-block counters

are set to count up to m and n, then roll over and count again. The values from these

counters are used to generate the signals zero-sel and feedback.sel. Every time the

counters roll over, they increment their respective inter-block counters. The values of

the inter-block counters are used to generate the row and column memory addresses.

The column counter is reset by the line signal, and the row counter by the frame

signal.
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4.4.2 Background Subtraction

Once the image data are binned, the next step in TTLT processing is background

subtraction. TTLT processing consists of thresholding the current error frame and

updating the background parameters. This is done using a microprocessor type ar-

chitecture, whereby control signals are generated by a state machine to run a simple

program that performs the threshold operation and background model update for

each pixel.

Background subtraction is started when a 'start' signal is received from the pri-

mary controller in CPLD 1. A state machine then runs the background subtraction

processing cycle for each bin.

Figure 4-8 shows the logic that makes up the background subtraction processor.

The inputs to the processor are the binned frame and background model frames, which

are accessed through the memory bus. The outputs are the updated background

frames to write back to the memory, and a detect signal that is set to one for each

pixel that is detected as foreground, in addition to writing the value into the binary

pixel map.

The learning coefficient, a, is programmed into the parameter file. This value is

limited to elements of 2", where n is an integer less than zero. This is because of the

restriction that all divides must be accomplished by bit shifting. The value set for a

determines the number of bit shifts that are used in the calculation of the running

mean. The nominal value for this parameter is !, as described in section 4.1.2, but

is also programmable.

The current bin frame and background parameter frames are all stored in a single

memory. The maximum number of bins, using m = n = 1, is the input image size of

480 x 270. Thus, a maximum of 18 bits of address space is needed to store a frame of

data. Each of the four memories has 20 bits of address space, so a single memory can

provide four frames of storage. This allows the bin intensity frame, background mean,

background variance, and binary pixel map to all be stored in the same memory. Each

bin has an 18-bit address, with the final two bits corresponding to each of its four
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Figure 4-8: Background Subtraction Logic

associated frames. The eighteen bit address is generated by a counter that moves

sequentially through all the bins. The two frame selection bits are set by program

control signals.

The background variance frame is either used to store the average error or fixed

threshold value, depending on which method of thresholding is used. These param-

eters are updated by adaptive feedback through CPLD 1, which writes parameter

updates from the DSP directly into the corresponding memory location.

During background subtraction processing, a count is kept of the number of fore-

ground pixels detected. This is done using the detect output of the processor. At the

end of processing, a trigger is sent to the primary controller in CPLD 1 if the count is

greater than zero and less than g. This simple counting system works just as well as

using the binary pixel map because the detection parameters rely on total counts, not

spatial location. Once all the pixels are processed, and the trigger is determined, the

state machine returns to a wait state, and sends a done signal back to the primary

controller in CPLD 1.
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4.4.3 Testing and Debugging

The TTLT hardware consists only of CPLD 2 and the memory bank. These devices

were operationally tested as part of the testing and debugging described in Chapter

3. The only testing and debugging that had to be done on the TTLT processor was

debugging the VHDL source code.

The first step in debugging was simulation in the ModelSim environment. This

was done to ensure proper operation of the state machine and counters. The logic

was then implemented in the CPLD, and further debugging was done using built in

test points and a logic analyzer.

4.5 Summary

This section has described the theory and implementation of the Through The Tens

Trigger. The algorithm is based on the idea of using binning and adaptive feedback to

allow a single-Gaussian background subtraction method to perform well under varying

background conditions. It is implemented in logic using in-place computation of pixel

bins, and a simple microprocessor architecture for background subtraction processing.
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Chapter 5

Results and Conclusion

The previous two chapters have described in detail the implementation of the camera

hardware and the TTLT algorithm. These two pieces combine to form the Lincoln

Laboratory camera, the main component of the TTLT demonstration system. The

first part of this chapter will describe the demonstration system and results. The

second part will provide some concluding comments and discuss future extensions of

the work in this paper.

5.1 TTLT Demonstration System

The final product of the work described in this paper is an operational system that

demonstrates the feasibility of through the lens triggering. This system contains all

the hardware described, except for the transmitter, which is replaced by a computer

that is connected to the DSP over USB. An application running on the computer

receives and displays the full resolution imagery captured when a trigger is detected.

The computer application also displays a power monitor that displays the system

power over time. This feature is used to demonstrate the significant reduction in

power achieved during trigger operation.'

The frame grabber interface is used to demonstrate the operation of the TTLT

algorithm by displaying the adaptive background model in real-time. This is done by

'Computer application and DSP software developed by Jim Sopchack at MIT Lincoln Laboratory

61



reading out the memory space in which the background model is stored through the

frame grabber. This allows the background data frames to be viewed, including the

binned image, background mean, average error, and binary pixel map.

The operation of the TTLT algorithm can be illustrated using imagery of back-

ground data, taken through the frame grabber interface. Figure 5-1(a) shows the

stored background over time as an apple is adaptively incorporated. The last image

in this sequence is the binary foreground map generated when the apple was first

placed in the field of view. Figure 5-1(b) shows the same type of image sequence as

5-1(a), but in this case 16 x 16 binning is used and the apple placed such that the

binned pixels are a quarter of the apple's size. The incorporation of the apple into

the background is more difficult to see in this case than in the previous case, but the

binary foreground map in the final image clearly shows that the apple was detected

when first placed in the scene. This demonstrates that although pixel binning does

not always provide imagery with enough resolution for a good picture by a person's

standards, it does provide imagery sufficient for background subtraction.

5.1.1 Performance

Testing was done on the TTLT to determine its performance in different background

conditions. The backgrounds used were a static indoor lab scene and a dynamic out-

door scene. In addition to varying background conditions, the thresholding method

used was also varied, using both the fixed and variable methods described in Chapter

4. Implementation of adaptive feedback is beyond the scope of this paper, and has

not yet been done.

The first scenario tested was the static indoor lab scene. The fixed and variable

threshold methods performed very well, as expected, with virtually no false triggers

and perfect detection. The two thresholding methods were essentially the same, as

the minimum threshold for the variable threshold method was set equal to the fixed

threshold value.

The second scenario tested was detection in an outdoor scene using a fixed thresh-

old. The scene used was the view from a window, looking out on a parking lot
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Figure 5-1: Adaptive Background Model Example

63



Figure 5-2: Background used for dynamic scene testing

surrounded by trees on a windy day, shown in Figure 5-2. This provided a good

dynamic background with trees waving in the wind. It also provided several targets,

with people walking by and cars pulling in and out of the parking lot. Cars in the lot

corresponded to approximately 16 x 50 pixels in size with the optics used, and people

approximately 18 x 6 pixels. This provided good variation in target size to judge the

effect of bin size on detection.

A range of bin sizes using both a low and high threshold value were tested, and

the number of false pixel detections per frame recorded. A plot of false alarms versus

bin size for both threshold values is shown in Figure 5-3. The false alarms were

normalized by multiplying the number of recorded false bin detections by the number

of pixels per bin. A log scale is used for both axes in order to better display the shapes

of the curves. This graph clearly shows that the number of false foreground detections

per frame is reduced with increasing bin size. As discussed in Chapter 4, the tradeoff

for this is a loss in contrast between targets and the background. Although there

were not enough targets present to take accurate measurements, it was observed that

cars were always detected for all bin sizes, but people were not reliably detected for

larger bin sizes, especially in the 16 x 16 case. This is the expected result, as contrast

is lost when the pixels become larger than a quarter the size of the target.

Figure 5-3 also shows that the number of false alarms is decreased as the threshold

is increased. Examination of the data in the low threshold case reveals that most of
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the detections were concentrated in areas of frequent motion. The number of false

detections in these areas was decreased with the higher threshold, and reduced to zero

in the 16 x 16 case. The downside to the increase in threshold was a noticeable decrease

in the likelihood of people being detected. This shows that adaptive feedback could

significantly reduce the number of false detections without significantly affecting the

positive detection rate by desensitizing only those areas in which a significant number

of false triggers occur.

The third scenario tested was similar to the one just discussed, but was done

using an adaptive threshold based on running error estimation. The same outdoor

scene was used as for the fixed threshold, on the same day and approximate time.

The algorithm was tested with several different bin sizes, using both a low and high

average error multiple to determine the threshold. The results for detections and

false alarms are plotted in Figure 5-3, along with the results from the fixed threshold

testing.

These results showed a similar trend to the fixed threshold in that the number of

false detections per frame decreased with increasing bin size. It was observed that cars

were always detected at larger bin sizes, while people became unreliably detectable,

just as in the fixed threshold case. The higher multiple showed improved perfor-

mance over the lower multiple, suggesting that using adaptive feedback to increase

the threshold error multiple in highly varying areas could be used to significantly

improve false alarm performance.

The experimental results overall show that the TTLT performs very well in static

environments, and moderately well in dynamic environments. In the static back-

ground case the false alarm rate is effectively zero, corresponding to a number of false

triggers well below the 75 maximum per day rate estimated in Chapter 2. The system

performed moderately well with a dynamic background, but in most cases had a false

alarm rate of over a pixel per frame, corresponding to a false trigger every frame. The

one case in which this did not occur was the largest bin size with a fixed threshold.

This suggests that while the variable threshold method works better in general, it is

difficult to get down to zero false alarms. For both the fixed and variable threshold
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Figure 5-3: False Alarm Performance

cases, the improved performance with increasing thresholds suggests that with adap-

tive feedback to better determine individual pixel thresholds, those few pixels that

caused consistent false alarms could be desensitized even further, allowing the false

alarm rate to approach zero in order to achieve fewer than 75 false triggers per day.

5.2 Future Work

The first piece of future work is completing the current system beyond the TTLT.

Adaptive feedback and transmitter interfacing still need to be implemented to com-

plete the system outlined in this paper. The completed system also needs to be

packaged in a weather resistant chassis so that it can be placed outside and field

tested.

In addition to completing the current system, there are simple modifications that

could be made to expand the capabilities of the Lincoln Laboratory camera for specific

applications. One of the applications for which this type of camera system could

become very useful is border monitoring. Several TTLT cameras could be set up at

intervals, pointing down a border to detect and image anything that crosses.

A test bed for this type of system has already been conceived at MIT Lincoln Lab-
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Figure 5-4: Proposed Border Monitoring System

oratory. The proposed system is designed to monitor a five mile border in Yellowstone

National Park, and detect bison that attempt to leave the park in the winter in search

of food. The system would be set up as shown in Figure 5-42, whereby cameras are

placed on poles, with two cameras per pole pointing in each direction down the bor-

der. The cameras are spaced such that there is redundant coverage, with two cameras

covering the space between each pole. With this type of redundant system, false alarm

mitigation could be improved by correlated detection through inter-camera commu-

nication. This is an example of an application specific modification that expands

system capabilities.

Another possible extension of the current TTLT system is the use of color in

trigger processing. Many background subtraction techniques in current research use

color information as a key aspect of their detection methodologies [6],[10]. This type

of information could be especially useful in the Lincoln Laboratory system if the color

characteristics of the object of interest were known. For example, if the object were

known to have a large red component, the detection algorithm could be run on only

the red component of the RGB data, effectively filtering out objects in other colors

2 Proposal and graphic by Dr. William Ross at MIT Lincoln Laboratory
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such as trees or sky. If a trigger was determined, full-color high-resolution imagery

could then be transmitted.

These are only a few of the possible extensions of the work presented in this

paper. This new area of research offers many opportunities for future research in

signal processing for low power applications.

5.3 Conclusion

This paper has described work done at MIT Lincoln Laboratory to develop a low

power surveillance system using image based triggering. This work has specifically

focused on the Through The Lens Triggering aspect of the system. This is a new area

of research, but is related to previous research in externally triggered low power cam-

eras, and background subtraction algorithms without power constrained processing.

The low power hardware developed for the TTLT uses a combination of low power

devices and power conscious operation to achieve the lowest power possible and still

maintain necessary functionality. The TTLT algorithm uses background subtraction

based on a single-Gaussian model for each pixel. A single-Gaussian approximation

is achieved in dynamic backgrounds by using binning to reduce local motion effects

through averaging. These effects are further mitigated using adaptive thresholding

based on average error, and adaptive feedback from high-level processing in a DSP.

The experimental results show that the TTLT works very well against static back-

grounds, and moderately well in dynamic outdoor backgrounds when the bin size is

appropriately chosen. It is hoped that future work with adaptive feedback from a

DSP will help mitigate dynamic background effects, and allow the system to operate

with fewer than 75 false alarms per day to achieve the desired power consumption.

The research presented in this paper provides a solid first step towards the goal

of producing a fieldable system that can be used for continuous video surveillance

without human intervention for long periods of time. This type of system would

provide the capability for video monitoring with higher resolution, higher flexibility,

and less risk than any system currently available.
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# QTY Part Number Value Description
1 53 YAG 04022F10427B20D .1UF CAP0402
2 16 PAN ECJ-3YF104Z7A1O6Z 1OUF CAP1206
3 1 PAN ECJ-0EF1H103Z .01UF CAP0402
4 3 SAM FTMH-125-02-F-DV-ES-A-P SAM 2X25

5 3 ETCH
6 1 MOLEX 87332-1420 JTAG 2X7 2MM
7 1 HDR2X18
8 1 HDR2X25
9 3 BERG 68024-136 2 FROM HEADER2X1
10 1 SAMTEC TSW-107-07-S-D JTAG 2X7 1MM
11 1 TUCHEL ELECTRONICS MMC RECEPTICAL
12 2 JMPR3
13 3 BLM31P500S 80 AT IND EMI
14 8 MTG VIA
15 3 LL115-100 10K RES0805
16 1 LL114-200 2K RES0805
17 2 LL112-332 33.2 RES0805
18 11 LL114-475 4.75K RES0805
19 3 LL116-100 100K RES0805
20 3 LL113-332 332 RES0805
21 3 PAN ERJ-6GEYOROOV 0 RES0805
22 2 EECO 230057GB HEX SWITCH
23 1 LINEAR TECH LTC6900CS5 LTC6900
24 2 XILINX XC2C512-6PQ208 XC2C PQ208
25 1 NATIONAL DS90C032TM DS90CO32TM
26 4 SAMSUNG K6F1616R6A-EF70 K6F1616R6A
27 1 ROCKWELL PROCAM HD PROCAM 65
28 5 NATIONAL DS90CO31TM DS90CO31TM
29 1 NATIONAL LP2981IM5-2.5 LP2981 2V5
30 2 NATIONAL LP2981IM5-3.3 LP2981 3V3
31 1 AT25128N-10SI-1.8 AT25128
32 1 NATIONAL LP29921M5-1.5 LP2992 1V5
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library IEEE; constant

use IEEE.STD_LOGIC_1164.ALL; constant

use IEEE.STDLOGICARITH.ALL; constant

use IEEE.STDLOGIC_UNSIGNED.ALL; constant
constant
constant

entitv CPLD1 is constant

dsp-handoff-wait : stdlogicvector := "01010";
xframel std_logic-vector "01011";
xframe2 stdlogicvector "01100";
mem_readout: stdlogicvector "01101";
memreadout2 std-logic-vector "01110";
fullpgml stdlogic_vector "01111";
full-pgm2 std_logicvector "10000";

-- signals
signal cycle-start : stdlogic;
signal frnnst : stdlogic;
signal binenb,fg-enb,sram_cont,fgcont

signal
signal
signal
signal
signal

-- PROC
signal
signal
signal
signal

: stdlogic;

a_re_int stdlogic;
a_oe_int stdlogic;
a_weint stdlogic;
a_ce_int stdlogic;
ardyint stdlogic;

M
fstpulse,line-pulse,frnldone : stdlogic;
bin-frmucnt : stdlogic-vector(19 downto 0);
frame : stdlogic;
regO,regi,reg2,reg3,reg4,reg5,reg6,reg7 : stdlogicvector(15 do

Port (clk : in stdlogic;
clkout : out std-logic;
--ProCam Interface
pclk out std_logic;
video in stdlogic-vector(ll downto 0);
framesync, linesync : out stdlogic;
framestart, linestart : in std~logic;
ser-clk,ser-stb,ser-dat : out std-logic;
ponresetb,resetb : out std-logic;
ret-dat : in stdlogic;
--Memory Interface
memdata inout stdlogicvector(15 downto 0);
menuaddr out stdclogicvector(19 downto 0);
memwe,mem_oe : out stdlogic;
mem-cs : out stdlogic_yector(3 downto 0);
--DSP Interface
dsp-data inout stdlogic-vector(15 downto 0);
dspaddr in stdlogic-vector(7 downto 0);
interupt out stdlogic;
are in stdlogic;
a_oe in std-logic;
a_we in std_logic;
a_ce in stdlogic;
ardy out stdlogic;
--Frame Grabber(over interconnect bus)
fgdata : out stdlogicvector(15 downto 0);
fg-line,fg-frame,fgclk : out stdlogic;
fgin : out stdlogicvector(2 downto 0);
--CPLD interconnects
motion : in stdlogic;
fg-con,sratL-con : out std_logic;
md~st out stdlogic;
mdrdy in stdlogic;
binen out stdlogic;
fg-en out stdlogic;
--Test Points
tpl,tp2,tp3,tp4,tp5,tp6,tp7,tp8 : out stdlogic;
model,mode2 : in std_logic-vector(3 downto 0);
--Power Enables
dsp33_enb,dspl5_enb : out stdlogic);

end CPLDl;

architecture Behavioral of CPLD1 is

signal reset stdlogic;
signal cycle stdlogic-vector(23 downto 0);

-- SYTSTEM CONTROLLER
-- control
signal syscontrol-ps, syscontrol-ns stdlogicvector(4 downto 0);
constant standby : stdlogic-vector "00000";
constant fpa-powerupl stdlogicvector "00001";
constant fpa-powerup2 stdlogicvector "00010";
constant binnerl stdlogic-vector "00011";
constant binner2 stdlogicvector "00100";
constant fpa-powerdownl stdlogicvector "00101";
constant fpa-powerdown2 stdlogicvector "00110";
constant motion detectionl stdlogicVector "00111";
constant motion detection2 stdlogicvector "01000";
constant dsp-handoff : stdlogicvector := "01001";

downto
downto
downto
downto
downto
downto
downto
downto

0);
0);
0);
0);
0);
0);
0);
0));

signal pgm-strt,pgm-done,pgmnclk,pgn-stb,pgm-dat : stdlogic;

-- EDGE
component edge is

Port (clk : in stdlogic;
sig : in stdlogic;
pulse : out stdlogic );

end component;

--MOTION DETECTION
signal md&strt : std-logic;
signal mot : stdlogic;
signal trigger : stdlogic;
signal trigger-cnt : std_logicvector(2 downto 0);

-- DSP
signal
signal
signal
signal
signal
signal

dsp-on,dsp-strt : stdlogic;
dsprdy : stdlogic;
dsppgm_strt stdlogic;
dspfrm-strt stdlogic;
dspcoimuand stdlogic;
dspmem_addr std_logic_vector(20 downto 0);

wnto 0);

--SERIAL PROGRAMMER
component pgmer is

Port (s-clk,reset : in std_logic;
pgm_st : in stdlogic;
pgnLdone out std-logic;
serclk out stdlogic;
serstb out stdlogic;
serdat out std-logic;
regO in stdlogic-vector(15
regl in stdlogicvector(15
reg2 in std_logicvector(15
reg3 in stdlogicvector(15
reg4 in stdlogic-vector(15
reg5 in stdlogic-vector(15
reg6 in std_logicvector(15
reg7 in std-logicvector(15

end component;



signal dsp-mem-data-in std_logicvector(ll downto 0);
signal dsp-menmdata-out stdlogicvector(15 downto 0);
signal dspmemwe,dsp_mem_oe : std_logic;
signal dsp-state : std_logicvector(2 downto 0);
signal interupt-int stdlogic;
signal dspcontreq stdlogic;

component dspcont is
Port (clk : in stdlogic;

start in stdlogic;
ready out stdlogic;
pgmstrt out stdlogic;
pgm.done in stdlogic;
frmstrt out std_logic;
switch : in stdlogic;
control-request : out stdlogic;
--Sensor
video : in stdlogicvector(ll downto 0);
frame_edge std_logic;
lineedge stdlogic;
--SRAM Interface
memraddr : out stdjlogicvector(20 downto 0);
mem-data-out out std.logic-vector(15 downto 0);
memdatain in std_logic-vector(ll downto 0);
menwe out std_logic;
menoe out stdlogic;
--DSP Interface
dspaddr : in stdlogic-vector(7 downto 0);
dsp-data : inout std-logicvector(15 downto 0);
interupt : out stdlogic;
a_re in std_logic;
a_oe in stdlogic;
awe in std_logic;
a_ce in stdlogic;
ardy out stdlogic;
stateout : out stdlogic-vector(2 downto 0));

end component;

-- MEMORY READOUT
signal memd0,memdl,memd-pulse : std-logic;
signal memdcnt : stdlogic-vector(19 downto 0);
signal memd done,memdline,memdframe : stdlogic;
signal memdaddr stdlogicvector(19 downto 0);
signal memrdstrt stdlogic;
signal sraxcs,sramcsl : stdlogic;
signal men_addr_int : stdlogicvector(19 downto 0);
signal men_we_int,memoeint : std-logic;
signal dataenb : stdlogic;

--METERING
signal low_level,high.level : stdlogic;
signal metrowcnt stdlogic-vector(8 downto 0);
signal metrowtc std_logic;
signal hlev_cnt stdlogicvector(4 downto 0);
signal hlevtc std_logic;
signal llev_cnt stdlogic-vector(4 downto 0);
signal llev-tc stdlogic;
signal inccnt,dec_cnt : stdlogicvector(l downto 0);
signal inc-tc,dectc : stdlogic;
signal integ-time : stdlogicvector(3 downto 0);
signal tmtc,tmntc : stdlogic;
signal dec-int,inc_int : std&logic;

--TEST PATTERNS

signal decode : std-logic-vector(3 downto 0);

signal memd-data std-logic-vector(15 downto 0);
signal test-patl stdlogic_vector(15 downto 0);

begin

clk~out <= clk;

reset < '0';

-- OPERATING MODE

--"00" No Handoff
--"01" Triggered Operation
--"10" Always Handoff

-- CYCLE (FRAME) TIMER

process(clk)
begin

if risingedge(clk) then
--if reset = '1' then
-- cycle <= (others => '0');
--else

cycle <= cycle + 1;
--end if;

end if;
end process;

cycle-start <= '1' when (cycle = "000000000000000000000010") else '0';

--PRIMARY CONTROLLER

--State Register
process (clk)
begin

if rising-edge(clk) then
syscontrol-ps <= syscontrolns;

end if;
end process;

--tp7 <= clk;

--State Transitions

process(cyclestart,pgnLdone, syscontrol_ps, frm-done,model,mdrdy, tri
gger, memd-done, dsp-rdy, dsp-pgm-strt, dsp_frm_strt)

begin
case syscontrol-ps is

when standby =>
-- control
if cyclestart = '1' then

syscontrol-ns <= fpapowerupl;
else

syscontrol_ns <= standby;
end if;
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--signals memrdstrt <= '0';
pgm_strt <= '0'; sram_cs <= '0';
frmust < '0';
mdstrt <= '0'; when xframe2 =>
dsp-strt <= '0'; --control
fg-cont <= '0'; if frmrdone = '1'
sramcont <= '1'; syscontrol

binenb <= '0'; else
fg-enb <= '0'; syscontrol

memrd-strt <= '0'; end if;
sranucs <= '0'; pgmstrt <= '0';

when fpa-powerupl =>
if pgm-done = '0' then

syscontrol_ns <= fpa-powerup2;
else

syscontrol_ns <= fpapowerupl;
end if;
-- signals
pgmstrt <= '1';
frnLst <= '0';
mdstrt <= '0';
dsp-strt <= '0';
fg-cont <= '0';
sram-cont <= '1';
bin-enb <= '0';
fg-enb <= '0';
bin-enb <= '1';
fg-enb <= '0';
memrdstrt <= '0';
sranmcs <= '0';

when fpa-powerup2 =>
--control
if pgm_done = '1' then

syscontrol-ns <= xframel;--binnerl;
else

syscontrolns <= fpa_powerup2;
end if;
-- signals
pgm-strt <= '0';
frnst <= '0';
md~strt <= '0';
dsp-strt <= '0';
fg-cont <= '0';
sramcont <= '1';
bin.enb <= '1';
fg-enb <= '0';
memrdstrt <= '0';
sranrucs <= '0';

when xframel =>
-- control
if frn~done = '0' then

syscontrol-ns <= xframe2;
else

syscontrol-ns <= xframel;
end if;
--signals
pgmustrt <= '0';
frmLst <= '1';
md_strt <= '0';
dspstrt <= '0';
fg-cont <= '0';
sranLcont <= '1';
bin.enb <= '0';
fg-enb <= '0';

then
_ns <= binnerl;

_ns <= xframe2;

frnst <= '0';
mdstrt <= '0';
dspstrt <= '0';
fgcont <= '0';
sram_cont <= '1';
bin-enb <= '0';
fg-enb <= '0';
memrd~strt <= '0';
sram-cs <= '0';

when binnerl =>
--control
if frmdone = '0' then

syscontrolxns <= binner2;
else

syscontrolns <= binnerl;
end if;
-- signals
pgm-strt <= '0';
frnrst <= '1';
md-strt <= '0';
dspstrt <= '0';
fg-cont <= '0';
sramrcont <= '1';
bin-enb <= '1';
fg-enb <= '0';
memrdstrt <= '0';
srarcs <= '0';

when binner2 =>
--control
if frmndone = '1' then

syscontrolns <= fpa.powerdownl;
else

syscontrolns <= binner2;
end if;
pgnLstrt <= '0';
frm-st <= '0';
md.strt <= '0';
dsp.strt <= '0';
fg-cont <= '0';
sramcont <= '1';
bin-enb <= '1';
fg-enb <= '0';
memrdstrt <= '0';
srax.cs <= '0';

when fpa-powerdownl =>
if pgntdone = '0' then

syscontrolns <= fpa-powerdown2;
else

syscontrol_.ns <= fpa-powerdownl;
end if;
-- signals
prm.strt <= '1';
frnL-st <= '0';
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when fp

md_strt <= '0'; end if;
dspstrt <= '0'; --signals
fg-cont <= '0'; pgn-strt <= '0';
sramncont <= '1'; frm_st <= '0';
bin~enb <= '0'; mdstrt <= '0';
fg-enb <= '0'; dsp-strt <= '0';
memrdstrt <= '0'; fg-cont <= '0';
sramcs <= '0'; sranLcont <= '1';

bin-enb <= '0';
a-powerdown2 => fg-enb <= '0';
--control memrd strt <= '0';
if pgndone = '1' then sraewcs <= '0';

syscontrol_ns <= motion detectioni;
else

syscontroljns <= fpa-powerdown2;
end if;
-- signals
pgrrLstrt <= '0';
frmst <= '0';
mdstrt <= '0';
dsp-strt <= '0';
fg-cont <= '0';
sram-cont <= '1';
bin~enb <= '0';
fgenb <= '0';
memrd-strt <= '0';
sranrcs < '0';

when motion-detectionl =>
--control
if md_rdy = '0' then

syscontrol-ns
else

when mernkreadoutl =>
--control
if memddone = '0' then-- dsp-on = '1' then

else
syscontrol_ns <= memireadout2;

syscontrolns <= nemreadoutl;
end if;
-- signals
pgm-strt <= '0';
frmnst <= '0';
mudstrt <= '0';
dsp-strt <= '0';
fg-cont <= '0';
sramncont <= '0';
binenb <= '0';
fg.enb <= '1';
memrd strt <= '1';
sramEcs <= '0';<= motiondetection2;

syscontrol_ns <= motiondetectionl;
end if;
-- signals
pgm-strt <= '0';
frmst <= '0';
md~strt <= '1';
dsp-strt <= '0';
fg-cont <= '0';
sraxcont <= '1';
bin~enb <= '0';
fg-enb <= '0';
memrdstrt <= '0';
srarcs <= '0';

when motiondetection2 =>
--control
if md-rdy = '1' then

if model(l downto 0) = "00" then
syscontrol_ns <= mem_readoutl;

elsif model(1 downto 0) = "01" then
syscontrol_ns <= dsphiandoff;

elsif model(l downto 0) = "11" then
if trigger = '1' then

syscontrol_ns <= dspha

else
syscontrol_ns <= memre

else

else

end if;

end if;

syscontrolns <= standby;

syscontrol-ns <= motion-detection2;

when mem_readout2 =>
-- control
if memddone = '1' then

syscontrol_ns <= standby;
else

end if;
syscontrolns <= mem-readout2;

-- signals
pgm-strt <= '0';
frm_st <= '0';
md-strt <= '0';
dsp-strt <= '0';
fgcont <= '0';
sram._cont <= '0';
bin enb <= '0';
fgenb <= '1';
memrd~strt <= '0';
sramcs <= '0';

when dsp-handoff =>
--Control
if dsp_rdy = '0' then

syscontrol-ns
else

<= dspiandoff-wait;

syscontrol_ns <= dsp.handoff;
end if;
-- Signals
pgmstrt <= dsp-pgnstrt;
frmnst <= dsp-frmstrt;
mudstrt < '0';
dsp-strt <= '1';
fg-cont <= '0';
sramkcont <= '0';
binenb <= '0';

ndof f;

adoutl;



fgenb <= '0';
memrdstrt <= '0'; --ProCam Control

sram-cs <= '1';

when dspJiandoff-wait =>
--Control
if dsp-rdy = '1' then

syscontrol-ns <= memreadoutl;--standby;
else

syscontrol-ns <= dsphandoffwait;
end if;
-- Signals
pgirstrt <= dsp-pgm-strt;
frnst <= dsp_fn.strt;
md-strt <= '0';
dspstrt <= '0';
fg-cont <= '0';
sran,._cont <= '0';
binenb <= '0';
fg-enb <= '0';
memrdstrt <= '0';
sramcs <= '1';

when others =>
--control
syscontrol-ns <= standby;
-- signals
pgm.strt <= '0';
frn.st <= '0';
md-strt <= '0';
dsp-strt <= '0';
fg.cont <= '0';
sram-cont <= '1';
binenb <= '0';
fg-enb <= '0';
memrd-strt <= '0';
sramcs <= '0';

end case;

end process;

md-st <= md.strt;
bin-en <= bin-enb;
fg-en <= fgenb;
sramcon <= sramcont;
fg-con <= fg-cont;

--DSP CONTROLLER

ardy <= ardy_int;
interupt <= interupt-int;

dspcomand <= model(0);
dspmemdatain <= memidata(11 downto 0);

dsp-controller : dsp-cont port map(clk,dsp-strt,dsp-rdy,dsppgtmstrt,pg
m_done, dspfrnstrt, dsp-command, dsp-cont.req,

video,fstpulse,linepulse,dsp_

mem_addr, dsp-mem-data-out, dsp-mem.data-in,
dsp-jmenmwe,dsp-memnoe,dsp-addr,

dspdata,interupt-int,a-re,a-oe,a-we,a-ce,ardy-int,dsp-state);

ponresetb <= '1';
resetb <= '1';

--Frame Counter for Binning
process(clk)
begin

if rising-edge(clk) then
--if reset = '1' then

-- bin-frnL_cnt <="1111111111;
if fst-pulse = '1' then

bin.frmcnt <= "01000000000000000000" ;--"111111
11110000000000";

elsif frmndone = '0'then
binfrmcnt <= binfrLcnt + 1;

end if;
end if;

end process;

friLdone <= '1' when (binfrrrLcnt = "11111111111111111111") else '0';

frmedge : edge port map(clk,framestart,fst-pulse);
lineedge : edge port map(clk,linestart,line-pulse);

--CONTROL SIGNALS
linesync <= '1';
framesync <= frame;
pclk <= cycle(0);

frame <= frm_st;

--Register Values
process(syscontrolps,integtime)
begin

case syscontrolps is

when fpa-powerupl =>
regO <= x"00"&"00000000";
regl <= x"FB"&"llll0Ol";--NO INTERLACE
reg2 <= x"F3"&"01000100";--subsample
reg3 <= x"FD"&"00000000";--powerup ADC
reg4 <= x"F4"&"00010111";--set ADC clock
reg5 <= x"80"&"10000000";--Integration Time
reg6 <= x"00"&"00000000";
reg7 <= x"00"&"00000000";

when fpa-powerup2 =>
regO <= x"00"&"00000000";
regl <= x"FB"&"1000l000";--NO INTERLACE
reg2 <= x"F3"&"01000100";--subsample
reg3 <= x"FD"&"00000000";--powerup ADC
reg4 <= x"F4"&"00010l00";--set ADC clock
reg5 <= x"80"&"11111111";--integ-time&"0000";--"1111111

1";--Integration Time
reg6 <= x"00"&"00000000";
reg7 <= x"00"&"00000000";

when fpa-powerdownl =>
regO <= x"00"&"00000000";
regl <= x"FB"&"l0001000";--NO INTERLACE
reg2 <= x"F3"&"01000l00";--subsample
reg3 <= x"00"&"00000000";
reg4 <= x"00"&"00000000";



reg5 <= x"00"&"00000000"; begin
reg6 <= x"00"&"00000000"; if rising-edge(clk) then
reg7 <= x"00"&"00000000"; memd0 <= memrdstrt;

memdl <= memd0;
when fpa-powerdown2 =>

regO <= x"00"&"00000000";
regl <= x"El"&"00000000";--bias current
reg2 <= x"E3"&"00000000";--bias current
reg3 <= x"FD"&"l1lllll";--powerdown ADC
reg4 <= x"E0"&"00000000";--main bias current
reg5 <= x"E4"&"00000000";--bias current
reg6 <= x"E8"&"00000000";--bias current
reg7 <= x"EA"&"00000000";--bias current

when dsphandoffwait =>
regO <= x"00"&"00000000";
regl <= x"FB"&"1000l000";--NO INTERLACE
reg2 <= x"F3"&"00000000";--subsample
reg3 <= x"FD"&"00000000";--powerup ADC
reg4 <= x"00"&"00000000";
reg5 <= x"00"&"00000000";
reg6 <= x"00"&"00000000";
reg7 <= x"00"&"00000000";

when others =>
regO <= x"00"&"00000000";
regl <= x"00"&"00000000";
reg2 <= x"00"&"00000000";
reg3 <= x"00"&"00000000";
reg4 <= x"00"&"00000000";
reg5 <= x"00"&"00000000";
reg6 <= x"00"&"00000000";
reg7 <= x"00"&"00000000";

end case;
end process;

--SERIAL PROGRAMMER

ser-pgmer : pgmer port map (cycle (O) ,reset,pgm-strt,pgm-done, pgmuclk,pgm
_stb, pgnmdat, regO, regl, reg2, reg3, reg4, reg5, reg6 , reg7);

ser_clk <= pgmclk;
serstb <= pgnrstb;
ser_dat <= pgm-dat;

-- FRAME GRABBER

fg-data <= "0000"&video when (bin-enb = '1') else "0000"&memddata(ll d
ownto 0);

fg-line <= linestart when (bin-enb = '11) else memd-line;
fg_frame <= frm_done when (binenb = '1') else memdcframe;
fg-clk <= not cik;
fg-in <= (others => 'Z');

dsp33_enb <= '1';
dspl5_enb <= '1';

--Readout Memory
process (clk)

end if;
end process;
memd-pulse <= memd0 and (not memdl);

process(clk)
begin

if rising-edge(clk) then
-- reset = '1' then
--fgdisp-cnt <= "11111111111111111111";
if memd.pulse = '1' then

memrdcnt <= "00000000000000000000";
elsif memddone = '0' then

memd~cnt <= memd cnt + 1;
--elsif tpon = '1' then
-- fgdispcnt <= fgdispcnt + 1;
end if;

end if;
end process;

memd-done <= '' when (memd..cnt = "11111111111111111111") else '0';
memd_addr <= memdcnt (19 downto 0);
memd_line <= '1' when (memd_cnt(8 downto 4) = "11111") else '0';
memd-frame <= '1' when (memdcnt(19 downto 13) = "1111111")else '0';

--MEMORY INTERFACE
process(clk)
begin

if risingedge(clk) then
sranLcsl <= srantcs;

end if;
end process;

mezmaddr-int <= memd-addr when (sranmcsl = '0') else dsp-mem-addr(19 do
wnto 0);

mem-we-int <= '1' when (srantcsl = '0') else dspmenLwe;
menoe_int <= '0' when (sranrLcsl = '0') else dspmenLoe;
memcs <= "1110" when (sranmcsl = '0') else "ll"&dsp_menraddr(20) &(not

dsp.menaddr (20) ) ;

memnaddr <= mem.addr_int when (sra..cont = '0') else (others => 'Z');
memLwe <= memnwe-int when (srantcont = '0') else 'Z';
men.oe <= menuoe-int when (sranucont = '0') else 'Z';
mendata <= dspinendata_out when (data-enb = '1') else (others => 'Z')

data-enb <= dsp-menuoe and (not sramrcont) and srancsl;

--Test Pattern
process (clk)
begin

if risingedge(clk) then
if cyclestart = '1' then

if test-patl = x"AAAA" then
test-patl <= x"5555";

else
testpatl <= x"AAAA";

end if;
end if;

end if;



end process; elsif dec-tc = '0' then
deccnt <= dec_cnt + 1;

end if;
end if;

end if;
memd~data <= "0000"&menmdata(ll downto 0);

--Row Counter
process(clk)
begin

if rising-edge(clk) then
if line-pulse = '1' then

metrowcnt <= "000100000";
elsif metrow_tc = '0' then

metrow_cnt <= metrowcnt + 1;
end if;

end if;
end process;

met_rowtc <= '1' when (metrow._cnt = "111111111") else '0';

highjlevel <= video(ll) and video(10) and video(9);
lowlevel <= (not video(ll)) and not(video(10)) and not(video(9));

--High Level Counter
process(clk)
begin

if rising-edge(clk) then
if fstpulse = '1' then

hlevcnt <= "00000";
elsif highlevel = '1' and met_rowtc = '0' and hlevtc

- '0' then
hlevcnt <= hlevcnt + 1;

end if;
end if;

end process;

hlevtc <= '1' when (hlevcnt = "11111") else '0';

--Low Level Counter
process(clk)
begin

if rising-edge(clk) then
if fst-pulse = '1' then

llev_cnt <= "00000";
elsif lowlevel = '1' and metrowtc = '0' and llev_tc

= '0' then
llev_cnt <= llevcnt + 1;

end if;
end if;

end process;

llevtc <= '1' when (llevcnt = "11111") else '0';

dec-int <= hlevtc and (not llevtc);
inc-int <= llevtc and (not hlevtc);

-- Total Counters
process(clk)
begin

if rising-edge(clk) then
if fst-pulse = '1' then

if dec-int = '0' then
deccnt <= "00";

end process;

dec-tc <= '1' when (dec-cnt = "11") else '0';

process(clk)
begin

if risingedge(clk) then
if fst-pulse = '1' then

if inc-int = '0' then
inc-cnt <= "00";

elsif inc-tc = '0' then
inccnt <= inc-cnt + 1;

end if;
end if;

end if;
end process;
inc-tc <= '1' when (inc-cnt = "11") else '0';

process(clk)
begin

if risingedge(clk) then
if fst-pulse = '1' then

if dec-tc = '1' and tmntc = '0' then
integtime <= integ-time + 1;

elsif inc-tc = '1' and tmntc = '0' then
integ-time <= integ-time - 1;

end if;
end if;

end if;
end process;

tn..tc <= '1' when (integ-time = "1111") else '0';
tmntc <= '1' when (integ-time = "0000") else '0';

--MOTION

process(clk)
begin

if risingedge(clk) then
if md-strt = '1' then

triggercnt <= "000";
elsif motion = '1' then

if trigger = '0' then
triggercnt <= triggercnt + 1;

end if;
end if;

end if;
end process;

trigger <= (triggercnt(0) and triggercnt(l) and trigger-cnt(2)) or ds
p_cont-req;

--Detect Global Illumination Change



-- TEST POINTS

tpl <= syscontrol-ps(O);
tp2 <= syscontrol-ps(1);
tp3 <= syscontrol-ps(2);
tp4 <= syscontrol-ps(3);
tp5 <= interupt-int;
tp6 <= dsp-state(2);
tp7 <= dsp-state(1);
tp8 <= dsp-state(O) ;--dsp-menmaddr(O);

end Behavioral;



library IEEE;

use IEEE.STDLOGIC_1164.ALL; state-out <= dspsmps;

use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL; reset <= '0';

-- Uncomnent the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;
--use UNISIM.VComponents.all;

entity dspcont is
Port (clk : in std_logic;

dsp-strt : in std_logic;
dsp.on : out stdlogic;
dsp-frame : out std_logic;
dsp-fg : out std-logic;
dsp-pgmnstrt : out std_logic;
pgnmdone in std_logic;
state-out out std_logicvector(3 downto 0));

end dspcont;

architecture Behavioral of dspcont is

signal dsp-sm-ps,dspsmns : stdlogicvector(3 downto 0);

constant dsp-smstandby : stdlogicvector(3 downto 0) := "0000";

constant dsp-suimageconfigl stdlogic-vector(3 downto 0) := "0001";

constant dspsm_imageconfig2 std_logicvector(3 downto 0) "0010";

constant dsp_sm_videol std_logicvector(3 downto 0) "0011";

constant dsp_sXvideo2 std_logicvector(3 downto 0) "0100";

signal dspfrrmresetdspfrKtc,dsp_frTinc : stdlogic;
signal dspjfrmcnt : stdlogic_vector(21 downto 0);
signal dsptotfrm_tcdsptotfrnLreset,dsptotfrinc std_logic;

signal dsptotfrmcnt : std_logicvector(4 downto 0);

signal dsp_imageon : stdlogic;
signal dspvideostrt std_logic;
--signal dsp-pg~strt stdlogic;
-- signal pgiwdone : stdlogic;

signal reset : std_logic;

-- SERIAL PROGRAMMER
-- component pgmer is
-- Port (sclk,reset : in std_logic;
-- pgmLst : in std-logic;
-- pgmdone out st._logic;
-- serclk out std_logic;
-- serstb out stdlogic;
-- ser-dat out stdlogic;
-- regO in stdlogic-vector(15 downto 0);
-- regl in stdlogic-vector(15 downto 0);
-- reg2 in stdlogicvector(15 downto 0);
-- reg3 in stdlogicvector(15 downto 0);
-- reg4 in stdlogic-vector(15 downto 0);
-- reg5 in stdlogic__vector(15 downto 0);
-- reg6 : in stdlogicvector(15 downto 0);
-- reg7 in stdlogicvector(15 downto 0));

-- end component;

-- signal pgnmclk,pgostb,pgmdat : std_logic;
--signal regO,regl,reg2,reg3,reg4,reg5,reg6,reg7 : std.logic.vector(15

downto 0);

begin

-- State Register
process(clk)
begin

if rising-edge(clk) then
dsp-smps <= dspsm_ns;

end if;
end process;

process (dsp-smns,dsp-strt,pgnudone, dspimage-on)
begin

case dsp_smps is

when dsp-sm-standby =>
--control
if dsp-strt = '1' then

dsp-snt.ns <= dsp-snLimageconfigl;
else

dspsmLns <= dsp-snistandby;
end if;
--signals
dsp-on <= '0';
dsp-pgm-strt <= '0';
dsp-video-strt <= '0';

when dsp_smimageconfigl =>
if pgi.done = '0' then

dsp-smns <= dspsm-imageconfig2;
else

dsp_snns <= dsp_srL_imageconfigl;
end if;
--signals
dsp-on <= '1';
dsp-pgm-strt <= '1';
dsp-video-strt <= '0';

when dspsmimageconfig2 =>
--control
if pgixudone = '1' then

dsp.smns <= dsp-smvideol;
else

dspsm,_ns <= dsp-smjimageconfig2;
end if;
-- signals
dspon <= '1';
dsp-pgm.strt < '0';
dsp-video-strt <= '0';

when dsp-sm-videol =>
--control
if dsp-image-on = '1' then

dsp_smns <= dsp_snvideo2;
else

dsp_s..ns <= dspsmvideol;
end if;
-- signals
dsp.on <= '1';
dsp-pgm-strt <= '0';
dsp-videostrt <= 'l';

when dspsmvideo2 =>
--control



if dsp_imageon = '0' then
dspsmns <= dsp_smtstandby;

else
dspsmns <= dsp_snTLvideo2;

end if;
--signals
dsp-on <= '1';
dsp.pgnLstrt <= '0';
dspvideostrt <= '0';

when others =>
dsp-smns <= dsp-smLstandby;
dsp-on <= '0';
dsp.pgm-strt <= '0';
dsp-video-strt <= '0';

end case;
end process;

--VIDEO COUNTERS
--frame pulse generator
process (clk)
begin

if rising-edge(clk) then
if dsp-frntreset = '1' then

dsp-frnLcnt <= "0000000000000000000000";
elsif dspfrnuinc = '1' then

dspfrnLcnt <= dsp-frnmcnt +1;
end if;

end if;
end process;

else '0';

eostrt;

11111") else '0'

-- reg4 <= x"FFFF";
-- reg5 <= x"FAFA";
-- reg6 <= reg5;
-- reg7 <= reg4;
-- SERIAL TESTING
-- serpgmer : pgmer port map(clk,resetdsppgmstrt,pgm done,pgm

_clk, pgnmstb,pgm-dat ,regO, regl, reg2, reg3, reg4, reg5, reg6, reg7);

-- serclk <= pgntuclk;
-- serstb <= pgnustb;
-- serdat <= pgnmdat;

end Behavioral;

dspfrnLtc <= '1' when (dsp-frucnt = "1111111111111111111111")

dsp-frnmreset <= (dsp-frttc and (not dsp-totfrmntc)) or dsp-vid

dsp_frnminc <= not dsp-frmtc;

dsp-totfrmAtc <= '1' when (dsp-totfrnLcnt = "11111") else '0';
dsp-totfrnureset <= dspvideo-strt;
dsptotfrnLinc <= dsp_frm-tc and (not dsp-totfrnxtc);

dsp_fg <= '1' when (dspfrnucnt(21 downto 19) = "111") else '0';
dsp-frame <= '1' when (dsp-frnLcnt(21 downto 4) = "1111111111111

dsp-image-on <= not dsptotfrntc;

-- total frame counter
process (clk)
begin

if rising-edge(clk) then
if dsptotfrm_.reset = '1' then

dsptotfrmncnt <= "10000";
elsif dsptotfrnlinc = '1' then

dsp-totfrnmcnt <= dsp-totfrmcnt + 1;
end if;

end if;
end process;

-- regO
-- regl
-- reg2
-- reg3

x "AAAA";
x"5555";
x"1234";
x"4567";



library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STD_LOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;

-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity edge is
Port (clk : in stdlogic;

sig : in std_logic;
pulse : out stdlogic );

end edge;

architecture Behavioral of edge is

signal sO stdlogic;
signal sl stdlogic;

begin

process (clk)
begin

if rising-edge(clk) then
so <= sig;
s1 <= so;

end if;
end process;

pulse <= sO and (not sl);

end Behavioral;





library IEEE; pgmncnt <= "11111111";
use IEEE.STD_LOGIC_1164.ALL; elsif pgm-strt = '1' then
use IEEE.STDLOGICARITH.ALL; pgnm.cnt <= "00000000";
use IEEE.STD_LOGICUNSIGNED.ALL; elsif pgmnstop = '0' then

pgm-cnt <= pgnmcnt + 1;

unconuent the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity pgmer is
Port ( sclk,reset

pgm-st
pgrndone
ser_clk
ser-stb
ser-dat
regO ir
regl in
reg2 ir
reg3 in
reg4
reg5
reg6
reg7

in
in
in
in

in stdlogic;
in stdlogic;

out stdlogic;
out stdlogic;
out stdlogic;
out stdlogic;
std-logic-vector(15
std~logicvector(15
std-logic-vector(15
std~logicvector(15
std-logicvector (15
std-logic-vector (15
stdjlogicvector (15
std_logicvector (15

downto
downto
downto
downto
downto
downto
downto
downto

0);
0);
0);
0);
0);
0);
0);
0));

end pgmer;

architecture Behavioral of pgmer is

--counter for testing
signal testcount : std-logicvector(9 downto 0);

--PROCAM SERIAL PROGRAMMING
signal pgmterm,pgntstop,ld-pgmreg stdlogic;
signal pgnudata,datastrb,pgm-strt stdlogic;
signal pgnmcnt std_logicvector(7 downto 0);
signal pgmnreg stdlogicvector(15 downto 0);
signal pgm_val std-logic-vector(15 downto 0);
--signal regO, regl, reg2, reg3, reg4, reg5, reg6, reg7

downto 0);
signal stO : std.logic;

begin

stdlogicvector (15

-- ProCam Control
------------ -~ ------------- -------------------------------------

process (s-clk)
begin

if rising-edge(sclk) then
stO <= pgnmst;

end if;
end process;
pgnmstrt <= pgmst and (not stO);

-- SERIAL PROGRAMMING

process(s-clk)
begin

if rising-edge(sclk) then
if reset = '1' then

end if;
end if;

end process;

process (s_clk)
begin

if rising-edge(s-clk) then
if ld-pgmreg = '1' then

pgmreg <= pgntval;
elsif pgmterm = '0' then

pgm-reg(15) <= pgnmreg(14);
pgm-reg(14) <= pgnmreg(13);
pgm-reg(13) <= pgmreg(12);
pgnereg(12) <= pgnmreg (11) ;
pgm-reg(ll) <= pgm-reg(10);
pgmnreg(10) <= pgnLreg(9);
pgnmreg(9) <= pgm_reg(8);
pgm-reg(8) <= pgnmreg(7);
pgm-reg(7) <= pgm-reg(6);
pgnLreg (6) <= pgm-reg(5);
pgm-reg(5) <= pgn-reg(4);
pgm-reg(4) -= pgm-reg(3);
pgm-reg(3) -= pgnmreg (2) ;
pgnLreg (2) <= pgmrreg(l);
pgmnreg(l) <= pgnLreg (0);
pgnrLreg(0) <= '0';

end if;
end if;

end process;

pgntdata <= pgm-reg(15);

process(pgmcnt,regO, regl, reg2, reg3, reg4, reg5, reg6, reg7)
begin

case pgiicnt(7 downto 5) is
when "000" => pgm-val <= regO;
when "001" => pgnLval <= regl;
when "010" => pgm-val <= reg2;
when "011" => pgnuval <= reg3;
when "100" => pgxuval <= reg4;
when "101" => pgm-val <= reg5;
when "110" => pgntval <= reg6;
when "111" => pgnLval <= reg7;
when others => pgm-val <= regO;

end case;
end process;

pgm_term <= pgmncnt (4);
pgmnstop <= pgnmcnt (0) and pgmncnt (1) and pgnrcnt (2) and pgmicnt (3) and

pgm-cnt(4) and pgaucnt(5) and pgmrcnt(6) and pguLcnt(7);
ld-pgmreg <= pgntcnt (4) and pgntcnt (3) and pgmecnt (2) and pgm-cnt (1) a

nd pgmcnt(O);
pgnLdone <= pgmstop;

ser-clk <= not s_clk;

ser-stb <= pgmnterm;

process(s-clk)
begin

if rising-edge(s-clk) then
serdat <= pgmdata;



end if;
end process;

--END ProCam SERIAL PROGRAMMING

end Behavioral;



library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;

-- Uncomnent the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity CPLD2 is
Port (clk

end CPLD2;

in stdlogic;
-- Memory Interface
sram-data inout std-logic-vector(ll downto 0);
sraxn_addr out stdlogicvector(19 downto 0);
sraxnLwe,sranoe : out stdlogic;
srancs : out stdlogicvector(3 downto 0);
--Frame Grabber Interface (over interconnect bus)
fgdata : out std_logicvector(15 downto 0);
fg-line,fg-frame,fgclk out stdlogic;
fgenb : out std-logic;
parclk,parstb,pardat in std_logic;
--CPLD interconnects
md~strt in stdlogic;
mdrdy out stdlogic;
motion out std-logic;
sramcont : in stdlogic;
fg-cont in stdlogic;
bin-enb in stdlogic;
fgen in stdlogic;
line in std_logic;
frame in stdlogic;
video in std-logic-vector(ll downto 0);
--Power Enables
fpaenb,fpdenb : out stdlogic);

architecture Behavioral of CPLD2 is

-- BINNER
component binner is
Port (clk,enb : in std-logic;

data : stdlogicvector(11 downto 0);
frame, line : in std.logic;
hbsize, vsize : in std-logicvector(5 downto 0);
memdatain in stdlogic_vector(ll downto 0);
mem-data-out out stdlogic-vector(ll downto 0);
mem-addr : out stdlogic-vector(19 downto 0);
oe, we : out std_logic);
-- tp out stdlogic;

--add out stdlogic;
-- add-inl,add-in2 : out std-logic-vector(23 downto 0);
-- addout : in stdlogicvector(23 downto 0);
-- cout : in std-logic);

end component;

signal
signal
signal
signal
signal
signal

bindata : stdlogic-vector(11 downto 0);
b_frame, bline : stdlogic;
h_size,vsize : stdlogic_vector(5 downto 0);
b-sram-data-in,b-sram-data-out : std-logic-vector(11 downto 0);
bsram_addr stdlogicvector(19 downto 0);
boe, b-we stdlogic;

-- MOTION DETECTOR
component mot is
Port (clk,reset : in stdlogic;

--Memory Interface
sram_data-in in stdlogic-vector(ll downto 0);
sranidataout out std-logic-vector(ll downto 0);
sram-addr : out stdlogic-vector(19 downto 0);
sranLwe,sram_oe : out stdlogic;
--CPLD interconnects
mdstrt in std_logic;
mdrdy out stdlogic;
motion out std_logic;
coljnax, row-max : in stdlogic-vector(8 downto 0);
shiftamt : in stdlogic-vector(l downto 0);
thresh in stdlogic-vector(8 downto 0));

--add out std-logic;
--up._a,lowa : out std-logicvector(16 downto 0);
--output : in stdlogicvector(16 downto 0);
--add~cout : in stdlogic);

end component;

signal
signal
signal
signal
signal
signal
signal

m_sram_datain,msram_data-out : std_logicvector(ll downto 0);
m_sranLaddr : std_logicvector(19 downto 0);
m_we,moe,mrdy stdlogic;
col_max,rowmax stdlogic-vector(8 downto 0);
shiftamt stdlogicvector(l downto 0);
motionjint stdlogic;
thresh : std_logicvector(8 downto 0);

--Parameter programing
signal decode : std-logicvector(7 downto 0);
signal pd : stdlogicvector(15 downto 0);
signal par-shift : stdlogic;
signal validl,valid2,valid3,valid : std-logic;
signal dval : std&logic-vector(l downto 0);
signal par_clksyncpar-stb.sync,par-datsync stdlogic;
signal pgn~stbl,pgm-stb2,pgm-stb3 : stdlogic;
signal pgnLenb : stdlogic;

--Connections
signal addr std_logic_vector(19 downto 0);
signal oe,we std_logic;
signal datin, dat_out : std_logicvector(ll downto 0);
signal reset : std-logic;

--fpulse
signal fpulse0,fpulsel,fpulse : stdlogic;

--adder
signal motaddinl,motaddin2 stdlogicvector(16 downto 0);
signal binadd_inl,bin-addin2 std_logic-vector(23 downto 0);
signal mot.add,binadd stdlogic;
signal addinl,addin2 stdlogicvector(23 downto 0);
signal add_output : std_logicvector(23 downto 0);
signal add_add,addcout : stdlogic;

component ripp-add_20 is
Port (add in std-logic;

a : in stdlogicvector(23 downto 0);
b in stdlogicvector(23 downto 0);
sum out stdlogic-vector(23 downto 0);
cout out stdlogic);

end component;

-- TEST PATTERN
signal testp-flip : stdlogic;
signal video_in std_logicvector(11 downto 0);
signal test-patl stdlogicvector(ll downto 0);



begin

out) ;

1;

2;

reset <= '0'; > 'Z');

--ADDER
--adder : ripp-add_20 port map (addadd, add_inl, add_in2, addoutput, addc

--addadd <= motadd when (binenb = '0') else bin-add;
--addinl <= "0000000"&mot-addinl when (binenb = '0') else binadd~in

--addin2 <= "0000000"&mot-addin2 when (bin-enb = '0') else binaddin

--BINNER

bin : binner port map(clk,binenb,bindata,bframe,b~line,hsize,v-size
bsra_data_in, b sram data-out, bsramaddr, boe, bwe) ;

bin-data <= video;-- when (bin-enb = '1') else "000000000000";
b-line <= line;-- when (binenb = '1') else '1';
b_frame <= frame;-- when (bin_enb = '1') else '1';

--MOTION DETECTOR

md : mot port map(clk,fpulse,nusramdata_in,mnsrandataout,sram..addr
, mwe ,noe ,md_strt, mr_rdy, motion_int, colmax, row_max, shif t_amt, thresh);

mdrdy <= m-rdy;

--reset motion detector
process (clk)
begin

if risingedge(clk) then
fpulseO <= frame;
fpulsel <= fpulse0;

end if;
end process;
fpulse <= (not fpulse0 and fpulsel);

--Only allow motion detect while motion detector is on
motion <= motionint and (not m-rdy);

-- MEMORY CONNECTIONS
addr <= bsraLaddr when (mrdy = '1') else misranuaddr;
sram-addr <= addr when (sramcont = '1') else (others => 'Z');

sramncs <= (others => 'Z');--"0111";-- when (sramcont =
ers => 'Z');

oe <= b_oe when (nrdy = '1') else moe;
we <= b_we when (mLrdy = '1') else mTwe;
sranmoe <= oe when (sranLcont = '1') else 'Z';
sramnwe <= we when (sramcont = '1') else 'Z';

datin <= sram_data;
nsramndata_in <= datin;
bsramdata_in <= dat_in;

datout <= bsranLdataout when (m_rdy = '1') else nmsrandataout; -- b
_sramdataou

'1') else (oth

sramdata <= datout when (sramncont = '1' and oe = '1') else (others =

-- ENABLES
fpa-enb <= '1';
fpdenb <= '1';
fg-enb <= not fg.en;

-- DATA PARAMETER LATCHES
-- Decoder

with pd(ll downto 9) select
decode <= "00000001" when "000", --hsize

"00000010" when "001", --vsize
"00000100" when "010", --col-max
"00001000" when "011", --row_max
"00010000" when "100", --shiftamt
"00100000" when "101", --threshold
--"01000000" when "110",
-- 10000000" when "111",
"00000000" when others;

-- PARAMETER PROGRAMMING RECEIVER
process (clk)
begin
if rising-edge(clk) then

if parclksync = '1' then
dval <= "00";

elsif dval = "00" then
dval <= "11";

elsif dval = "11" then
dval <= "01";

else
dval <= "01";

end if;
end if;
end process;

validi <= dval(0) and dval (1);

process (clk)
begin

if rising-edge(clk) then
valid2 <= valid;
valid3 <= valid2;

end if;
end process;

valid <= valid3 and (not parclksync);

process(clk)
begin

if risingedge(clk) then
par-dat_sync <= pardat;
parstbsync <= parstb;
par.clk-sync <= parclk;

end if;
end process;

process (clk)



begin --process(cik)

if rising-edge(clk) then
if valid = '1' then

pd(O) <= pardatsync;
pd(l) <= pd(0);
pd(2) <= pd(l);
pd(3) <= pd(2);
pd(4) <= pd(3);
pd(5) <= pd(4);
pd(6) <= pd(5);
pd(7) <= pd(6);
pd(8) <= pd(7);
pd(9) <= pd(8);
pd(10) <= pd(9);
pd(ll) <= pd(10);

end if;
end if;

end process;

--CATCH Strobe to program registers
process (cik)
begin

if rising-edge(clk) then
pgm stb2<= pgnLstbl;
pgntenb <= pgniLstb2;

end if;
end process;
pgm-stbl <= valid and parstbsync;

-- begin
-- if rising-edge(clk) then
-- if pgnLenb = '1' and decode(5) = '1' then

thresh <= "010000000";--pd(8 downto 0);
-- end if;
-- end if;
--end process;

process(cik)
begin

if rising-edge(clk) then
if pgm-enb = '1' and decode(4) = '1' then

shift-amt <= pd(l downto 0);
end if;

end if;
end process;

end;

process (cik)
begin

if rising-edge(clk) then
if pgmenb = '1' and decode(0) = '1' then

h-size <= "11"&pd(3 downto 0);--"1100";
end if;

end if;
end process;

--process (clk)
--begin
-- if rising-edge(clk) then
-- if pgnuenb = '1' and decode(1) = '1' then

v-size <= hsize;--"11"&pd(3 downto 0);--"1100";
-- end if;
-- end if;
--end process;

--process (cik)
--begin
-- if rising-edge(clk) then
-- if pgmenb = '1' and decode(2) = '1' then

coljmax <= "111111111";--pgm-data(8 downto 0);
-- end if;

-- end if;
--end process;

--process (cik)
--begin
-- if rising-edge(clk) then
-- if pgm-enb = '1' and decode(3) = '1' then

rowmax <= "100000000";--pgnLdata(8 downto 0);
-- end if;
-- end if;
--end process;





library IEEE; signal rowaddr std-logic-vector(8 downto 0);

use IEEE.STD_LOGICll64.ALL; signal row_.beg std-logic;

use IEEE.STDLOGICARITH.ALL; signal col-stop stdlogic;

use IEEE.STDLOGICJNSIGNED.ALL; signal tcount stdlogic_vector(ll downto 0);--TESTING
signal tdata std-logicvector(11 downto 0);--TESTING

-- Uncomment the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity binner is
Port (clk,enb : in stdlogic;

data : std_logicvector(11 downto 0);
frame, line : in std_logic;
h~size, v_size : in std-logicvector(5 downto 0);
mendatain in stdlogic-vector(ll downto 0);
mem-data-out out stdjlogic-vector(ll downto 0);
memaddr : out stdlogicvector(19 downto 0);
oe, we : out stdlogic);
--tp out stdlogic;

--add out stdlogic;
--addinl,add_in2 : out std-logic-vector(23 downto 0);
--add~out : in stdlogicvector(23 downto 0);
--cout : in std_logic);

end binner;

architecture Behavioral of binner is

FLOW
inputmux : stdlogic.vector(23 downto 0);
memdh std-logic-vector(17 downto 0);
memdv stdlogicvector(23 downto 0);
mem-h stdlogic_vector(17 downto 0);
memv stdlogicvector(11 downto 0);
outdata : stdlogicvector(ll downto 0);
outaddr,outaddrl : std_logicvector(19 downto 0);
sell, sel2 : std_logic;
binstop : stdlogic;

-- ADDER
component ripp-add_20 is
Port (add in stdlogic;

a : in std_logicvector(23 downto 0);
b in std-logicvector(23 downto 0);
sum out std_logic-vector(23 downto 0);
cout out stdlogic);

end component;

add.inl, addin2 : stdlogicvector(23 downto 0);
add-out : stdlogic-vector(23 downto 0);
add std-logic;
cout stdlogic;
addin2_p : stdlogicvector(23 downto 0);

-- MEMORY
signal address : stdlogicvector(19 downto 0);

--TIMING
signal precoltc,col_tc,rowtc,wrt: stdlogic;
signal colload,row_load : std-logic;
signal frame-pulse,linepulse : std-logic;
signal col_cnt,rowcnt : stdlogicvector(5 downto 0);
signal fO,fl,10,11 : std_logic;
signal tc-delay stdlogic;
signal col_addr stdlogic-vector(8 downto 0);

begin

-- EDGE DETECTORS
process(clk)
begin

if rising-edge(clk) then
fO <= frame;
fl <= fO;

end if;
end process;
frame-pulse <= (not f0) and f1;
--tp <= line-pulse;

process(clk)
begin

if rising-edge(clk) then
10 <= line;
11 <= 10;

end if;
end process;
line-pulse <= (not 10) and 11;

--TIMING

precol_tc <= '1' when (colcnt = '111111") else '0';

process(clk)
begin

if risingedge(clk) then
col_tc <= precol_tc;
wrt <= col-tc;

end if;
end process;

row_tc <= '1' when (rowcnt = "111111") else '0';
rowbeg <= '1' when (row._cnt = vsize) else '0';

sell <= row~beg;
sel2 <= col-tc;

col-load <= line-pulse or precol-tc;
row_load <= frame-pulse or (rowtc and linepulse);

process(clk)
begin

if risingedge(clk) then
if col-load = '1' then

col-cnt <= h-size;
else

col-cnt <= col-cnt + 1;
end if;

end if;
end process;

process(clk)
begin

if rising-edge(clk) then
if rowload = '1' then

row-cnt <= vsize;

-- DATA
signal
signal
signal
signal
signal
signal
signal
signal
signal

signal
signal
signal
signal
signal



elsif line-pulse = '1' then if v-size(5) =
rowcnt <= row-cnt + 1; memd-v

end if; elsif vsize(5
memd-v

elsif v-size(5
memd~v

elsif vsize(5
memd~v

elsif v_size(5
g_edge(clk) then memd,
if line-pulse = '1' then elsif v-size(5

col-addr <= "000000000"; memd_v
elsif precol-tc = '1' and col-stop = '0' then

col-addr <= col-addr + 1;
end if;

end if;
end process;

colstop <= '1' when (col-addr = "111111111") else '0';

process (clk)
begin

if rising-edge(clk) then
if frame-pulse = '1' then

rowaddr <= "000000000";
elsif row_tc = '1' and line-pulse = '1' and binstop =

'0' then
row_addr <= rowaddr + 1;

end if;
end if;

end process;

address <= "00"&rowaddr&col_addr;
binstop <= '1' when (rowaddr = "111111111") else '0';

--MEMORY INPUT DATA
process (hsize,mem-datain)
begin

--if hsize(7)= '0' then
-- memdh <= men-data-in&"00000000";
--elsif h-size(7 downto 6) = "10" then
-- memdh <= '0'&menrdata_in&"0000000";
if h_size(5) = '0' then

memd_h <= menudata_in&"000000";
elsif h.size(5 downto 4) = "10" then

memdh <= '0'&mem-data-in&"00000";
elsif h-size(5 downto 3) = "110" then

memd_h <= "00"&memdata_in&"0000";
elsif hsize(5 downto 2) = "1110" then

memd-h <= "000"&memndata_in&"000";
elsif hsize(5 downto 1) = "11110" then

memdh <= "0000"&memdata_in&"00";
elsif h_size(5 downto 0) = "111110" then

memdh <= "00000"&mem_datain&'0';
else

memdh <= "000000"&mentdata-in;
end if;

end process;

process (v-size,memd~h)
begin

--if vsize(7)= '0' then
-- memdv <= memdh"00000000";
--elsif v_size(7 downto 6) = "10" then
-- memdv <= '0'&memdh&"0000000";

else

end if;
end process;

memd~v

'0' then
<= memdh&"000000";
downto 4) = "10" then
<= '0'&memdh&"00000";
downto 3) = "110" then
<= "00"&memd_h&"0000";
downto 2) = "1110" then
<= "000"&memdh&"000";
downto 1) = "11110" then
<= "0000"&memdh&"00";
downto 0) = "111110" then
<= "00000"&memdh&'0';

<= "000000"&memd-h;

with sell select
inputmux <= memdv when '0',

"000000000000000000000000" when '1',
memdv when others;

with sel2 select
add_in2_p <= addout when '0',

inputmux when '1',
add~out when others;

process (clk)
begin

if rising-edge(clk) then
add_in2 <= addin2_p;

end if;
end process;

--DATA FLOW
addinl <= "000000000000"&data;

--ADDER
add <= '1';
adder : ripp-add_20 port map(add, add-inl,addin2,addout,cout);

--WRITE REGISTER
process (h.size, add-out)
begin

if h-size(5) = '0' then
memh <= addout(23 downto 6);

elsif h_size(5 downto 4) = "10" then
memqh <= addout(22 downto 5);

elsif hsize(5 downto 3) = "110" then
menth <= add-out(21 downto 4);

elsif h_size(5 downto 2) = "1110" then
memnh <= addout(20 downto 3);

elsif hsize(5 downto 1) = "11110" then
merLh <= addout(19 downto 2);

elsif h_size(5 downto 0) = "111110" then
menLh <= addout(18 downto 1);

else
menbh <= addout(17 downto 0);

end if;
end process;

process (vsize,me..h)

end if;
end process;

process (clk)
begin

if risir



begin
if v_size(5) = '0' then

menmv <= mem-h(17 downto 6);
elsif v_size(5 downto 4) = "10" then

menmv <= menrLh(16 downto 5);
elsif v.size(5 downto 3) = "110" then

mem-v <= mem-h(15 downto 4);
elsif v._size(5 downto 2) = "1110" then

mem-v <= menuh(14 downto 3);
elsif v_size(5 downto 1) = "11110" then

menmv <= memtLh(13 downto 2);
elsif vsize(5 downto 0) = "111110" then

memruv <= menrLh(12 downto 1);
else

memrv <= menrh(ll downto 0);
end if;

end process;

process (cik)
begin

if risingedge(clk) then
outdata <= memrv;
outaddrl <= address;
out-addr <= out-addrl;

end if;
end process;

-- MEMORY
meniTdata-out <= out-data;

oe <= wrt;
we <= ((not (wrt and (not cik))) or binstop) or (not enb);
menuaddr <= outaddr when (wrt = '1') else address;

--TESTING
process (cik)
begin

if rising-edge(clk) then
if frame-pulse = '1' then

tcount <= tcount + 1;
end if;

end if;
end process;

end Behavioral;





library IEEE; signal

use IEEE.STDLOGIC_1164.ALL; signal
use IEEE.STDLOGICARITH.ALL; signal

use IEEE.STDLOGICUNSIGNED.ALL; signal
signal

-- Uncomment the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents.all;

entity mot is
Port (clk,reset : in std_logic;

--Memory Interface
srandata_in in stdlogic-vector(l1 downto 0);
sram-dataout out stdlogic_.vector(1l downto 0);
sram_addr : out stdlogic-vector(19 downto 0);
sramwe,srauoe : out stdlogic;
--CPLD interconnects
mdstrt in std_logic;
md~rdy out stdlogic;
motion out std_logic;
coljmax, row-jnax : in std-logic-vector(8 downto 0);
shift-amt : in stdlogic-vector(l downto 0);
thresh : in stdlogicvyector(8 downto 0));

--add : out stdlogic;
--up~a,lowa : out std-logicvector(16 downto 0);
--output : in std_logicvector(16 downto 0);
--addcout : in stdlogic);

end mot;

architecture Behavioral of mot is

--Motion Detection
signal mot-cnt : stdlogic-vector(2 downto 0);
signal add_md,mdon stdlogic;
signal md-we,mdoe std-logic;
signal mdaddr stdlogic_vector(19 downto 0);
signal md-data stdlogic-vector(l1 downto 0);

--state machine

signal control stdlogicvector(17 downto 0);
--signal shiftamt : stdlogicvector(l downto 0);
signal present-state,nextstate : std_logicvector(3 downto 0);
constant stateO stdlogic-vector(3 downto 0) "0000";
constant statel std-logic-vector(3 downto 0) "0001";
constant state2 std logicvector(3 downto 0) "0010";
constant state3 std logic-vector(3 downto 0) "0011";
constant state4 std-logicvector(3 downto 0) "0100";
constant state5 std logic_vector(3 downto 0) "0101";
constant state6 std logicvector(3 downto 0) "0110";
constant state7 std logic-vector(3 downto 0) "0111";
constant state8 std-logic_vector(3 downto 0) "1000";
constant state9 std logicvector(3 downto 0) "1001";
constant statelO std-logic_yector(3 downto 0) "1010";
constant statell std logic-vector(3 downto 0) "1011";
constant state12 stdlogic_vector(3 downto 0) "1100";
constant statel3 stdlogic-vector(3 downto 0) "1101";
constant state14 std.logic-vector(3 downto 0) "1110";
constant state15 stdlogic-vector(3 downto 0) "1111";

--control signals
signal upOsel std-logic;
signal upOenb std_logic;
signal uplsel stdlogic;
signal uplenb std-logic;
signal upshift stdlogic;
signal lowsel std_logic;

signal
signal
signal
signal
signal

signal
signal
signal
signal
signal

signal
signal

lowenb : stdclogic;
lowshift : stdlogic;
cupenb std-logic;
clowenb : std-logic;
cshift std.logic;
mdenb std-logic;
mensel stdlogicvector(l downto 0);
wrtreg stdlogic;
wrtenb std.logic;
nextpix: std-logic;
--registers/muxes

upO-in, upOout stdlogicvector(16 downto 0);
upl_in, uplout stdlogicvector(16 downto 0);
low_in, lowout,lshift : stdlogic-vector(16 downto 0);
cupout stdlogicvector(16 downto 0);
add_out stdlogicvector(16 downto 0);
--comparator
compup, complow : std_logicvector(ll downto 0);
mot,mot-reg : stdlogic;

signal cpld2_ps,cpd2_ns : stdlogicvector(l downto 0);
constant start : stdlogicyvector(1 downto 0) := "00";
constant loadcounters : stdlogicvector(1 downto 0) := "01";
constant motiondetection : std_logic-vector(l downto 0) := "10";
signal mdcbegin: stdclogic;
--signal col_max,row_max : std_logic_vector(8 downto 0);
signal col_count,rowcount stdlogicvector(8 downto 0);

signal col-reset, col-linit std.logic;
signal rowreset,row_inc,rowlimit : stdlogic;
signal mddone : stdlogic;

--adder
component ripp-add_21 is

Port (add : in stdlogic;
a : in std_logicvector(16 downto 0);

b : in std_logic_vector(16 downto 0);
sum out stdlogicvector(16 downto 0);
cout out std_logic);

end component;
-- signals

signal output,upa,lowa : stdlogic-vector(16 downto 0);
signal add,addcout std_logic;
signal upper,lower stdlogicvector(16 downto 0);

-- SRAM
signal
signal
signal

memdata-in,mem-data-out : stdlogicvector(ll downto 0);
memoe,menmwe : stdlogic;
menuaddr : stdlogicvector(19 downto 0);

begin

-- MOTION CONTROLLER
--------------------------------------------------------------------------- ----

--State Register
process(clk)
begin

if rising-edge(clk) then
--if reset = '1' then
-- cpld2_ps <= start;
-- else

cpld2_ps <= cpld2_ns;



-- end if;
end if;

end process;

-- State Machine
process (cpld2_ps, md~strt ,mddone)
begin

case cpld2_ps is

when start =>
--control
if mdstrt = '1' then

cpld2_ns <= loadcounters;
else

cpld2_ns <= start;
end if;
-- signals
md_begin <= '0';
mdrdy <= '1';

when load-counters =>
--control
cpld2_ns <= motiondetection;
--signals
mdbegin <= '1';
md-rdy <= '1';

when motion_detection =>
--control
if mddone = '1' then

cpld2_ns <= start;
else

cpld2_ns <= motiondetection;
end if;
--signals
md.begin <= '0';
mdrdy <= '0';

when others =>
--control
cpld2_ns <= start;
-- signals
mdbegin <= '0';
mdrdy <= '0';

end case;
end process;

-- * MDRDY goes low during motion detection

--MOTION DETECTION

-- DETECTION PARAMETERS
-- * Can be hardwired or programmable
-- * Column and Row counts 9 bits each

--col.max <= "111111111"; -- determined by bin size
--rowinax <= "111111111"; -- determined by bin size
--shift-amt <= "11"; -- sets learning coefficient

-- COUNTERS
-- * Row counter and Column counter
-- * Started by mdstart signal
-- * incremented by nextpix control signal from state machine

-- COLUMN
process(clk)
begin

if rising-edge(clk) then
if col-reset = '1' then

col-count <= "000000000";
elsif nextpix = '1' then

col-count <= col-count + 1;
end if;

end if;
end process;

col-reset <= mdbegin or col-limit;

col_limit <= not ((col_count(0) xor
l_max(l)) or

(col-count(2) xor
_max(3)) or

(col-count(4) xor
_.max(5)) or

(col-count(6) xor
_max(7)) or

(col-count(8) xor

-- INTERCONNECT BUS
--------------------------------------------------------------------------------

--------------------------------------------------------------------------------
------------------------
-- MOTION DETECTION
--------------------------------------------------------------------------------
------------------------

--CPLD 1 INTERFACE

-- * MDSTRT is input from CPLD 1
-- * MDRDY is output to CPLD 1
-- * MDRDY is high when waiting to start, MDSTRT sets high to start, wi

th row and
-- column bin count on the bus.

-- ROW
process(clk)
begin

if risingedge(clk) then
if rowreset = '1' then

row_count <= "000000001";
elsif row_inc = '1' then

rowcount <= rowcount + 1;
end if;

end if;
end process;

row_reset <= mdbegin;

row_inc <= col-limit and (not row-limit);

row_limit <= not ((rowcount(0) xor rowmax(0)) or (rowcount(l) xor ro
wjnax(1)) or

(rowcount(2) xor rowjnax(2)) or (rowcount(3) xor r

colmax(0)) or (col-count(l) xor co

col_max(2)) or (col-count(3) xor col

col-max(4)) or (col-count(5) xor col

col_max(6)) or (col-count(7) xor col

col.max(8)));



owmax(3)) or 
next-state <= statel2;

(rowcount(4) xor row-jmax(4)) or (rowcount(5) xor r control <= "001100010001010010";

owmax(5)) or 
when state12 =>

(rowcount(6) xor row_max(6)) or (row._count(7) xor r next-state <= statel3;

ow-max(7)) or control <= "000001100000001010";

(row-count(8) xor row.max(8))); when state13 =>
nextstate <= statel4;

md~done <= rowlimit and col-limit; control <= "000100000000000000";
when state14 =>

mdaddr <= memsel&row_count&col_count; next-state <= statel5;
control <= "000000001000000100";

--STATE MACHINE
-- * State Machine to Control Motion Detection

--STATE REGISTER
process(clk)

begin
if risingedge(clk) then

present-state <= nextstate;
end if;

end process;

--STATE ASSIGNMENTS
process(presentstate,mdbegin,md_done)
begin

case present-state is
when state0 =>

if md-begin = '1' then
nextstate <= statel;

else
next-state <= state0;

end if;
control <= "000000000000000000";

when statel =>
next-state
control <=

when state2 =>
nextstate
control <=

when state3 =>
next-state
control <=

when state4 =>
nextstate
control <=

when state5 =>
next-state
control <=

when state6 =>
next-state
control <=

when state7 =>
next-state
control <=

when state8 =>
next-state
control <=

when state9 =>
next-state
control <=

when statelO =>
next-state
control <=

when statell =>

when state15 =>
if md_done = '1' then

next-state <= state0;
else

end if;
control <=

when others =>
next-state
control <=

end case;
end process;

--CONTROL SIGNALS
upOsel <= control(17);
upOenb <= control(16);
uplsel <= control(15);
uplenb <= control(14);
upshift <= control(13);
lowsel <= control(12);
lowenb <= control(11);
lowshift <= control(10);
add <= control(9);
cupenb <= control(8);
clowenb <= control(7);
cshift <= control(6);
mdenb <= control(5);
memsel <= control (4 downto 3);
wrtreg <= control(2);
wrtenb <= control(l);
nextpix <= control(0);

<= state2;
"010000000000000000";

<= state3;
"000000000000000000";

<= state4;
"000100100000010000";

<= state5;
"000000000100000000";

<= state6;
"001100010000000000";

<= state7;
"000001100001000000";

<= state8;
"000100000000000000";

<= state9;
"000000001000000100";

<= statelO;
"000000100010011000";

<= statell;
"110000000000000000";

Kt-State <= statel;

"000000000000011011";

<= state0;
"000000000000000000";

md-we <= not (wrtenb and (not clk));
md-oe <= wrtenb;

-- COMPUTATION

-- ADDER
--instantiation
adder: ripp-add_21 port map(add,up-a,low-a,output,addcout);

upa <= upper when (upper > lower) else lower;
low_a <= lower when (upper > lower) else upper;

--MUXES
--mux upperO, make 21 bits
up0_in <= "00000"&mem-data-in when (upOsel = '0') else "00000"&compup(l

1 downto 0);
--mux upperl
uplin <= upO-out when (uplsel = '0') else lowout;
--mux lower, make 21 bits
low_in <= "00000"&memdata_in when (lowsel = '0') else output;



--REGISTERS elsif shift-amt = "01" then
--register upperO (21 bits, non-shifting) mddata <= output(13 downto 2);
process(clk) elsif shiftamt = "10" then
begin md-data <= output(14 downto 3);

if rising-edge(clk) then elsif shift-amt = "11" then
if up0enb = '1' then mddata <= output(16 downto 5);

up0_out <= up0_in;
end if;

end if;
end process;

--register upperi (21 bits, shifting)
process (clk)
begin

if rising-edge(clk) then
if uplenb = '1' then

uplout <= uplin;
elsif upshift = '1' then

if shiftamt = "00" then
upl-out

elsif shiftamt
uplout

elsif shiftamt
uplout

else

<= uplout (15
= "01" then
<= uplout (14
= "10" then
<= uplout(13

end if;
end process;

end if;
end if;

--COMPARATOR

--register on top input of comparator, shift down adder value
process (cik)
begin

downto 0)&'0';

downto 0)&"00";

downto 0)&"000";

up1_out <= uplout(l1 downto 0)&"00000";
end if;

end if;
end if;

end process;

--set output as input to adder
upper <= upl_out;

--register lower (21 bits, shifting)

process(clk)
begin

if rising-edge(clk) then
if lowenb = '1' then

low_out <= low_in;
elsif lowshift = '1' then

if shifteamt = "00" then
lowout <= lowout(15

elsif shift-amt = "01" then
lowout <= low_out(14

elsif shiftamt = "10" then
lowout <= low_out(13

else

end if;
end if;

end if;
end process;

--set output as input to adder
lower <= lowout;

if rising-edge(clk) then
if cupenb = '1' then

--if shift_.amt =
-- compup <=
--elsif shiftamt
-- compup <=
--elsif shift_Amt
-- compup <=
--elsif shift_Amt
-- compup <=

end if;
end process;

downto 0)&'0';

downto 0)&"00";

downto 0)&"000";

low-out <= low-out(11 downto 0)&"00000";

--WRITE REGISTER
process(clk)
begin

if rising-edge(clk) then
if wrtreg = '1' then

if shift-amt = "00" then
mddata <= output(12 downto 1);

end if;

"11" then
output(16 downto
= "10" then
output(14 downto
= "01" then
output(13 downto
= "00" then
output(12 downto

-- end if;
compup <= output(11 downto 0);

5) ;

3);

2);

1);

--register on bottom input of comparator
process(clk)
begin

if rising-edge(clk) then
if clowenb = '1' then

complow <= merndatain(10 downto 7)&"11111111";-
-"00"&thresh&'0';

end if;
end if;

end process;

--comparator
mot <= '1' when (compup > complow) else '0';

process(nextpix,clk)
begin

if rising-edge(clk) then
if mdbegin = '1' then

mot-cnt <= "000";
elsif mot-cnt = "111" then

mot-cnt <= mot-cnt;
elsif nextpix = '1' then

if mot = '1' then
mot-cnt <= mot-cnt + 1;

else
mot-cnt <= mot-cnt;

end if;
else

motcnt <= motcnt;
end if;

end if;



end process;

motion <= mot;

process (clk)
begin

if risingedge(clk) then
if md_begin = '1' then

motreg <= '0';
else

mot-reg <= mot-cnt(0) and mot-cnt(l) and motcnt

(2);
end if;

end if;
end process;

-- MEMORY INTERFACE

mem.we <= mdwe;
menoe <= md-oe;
mentaddr <= mdaddr;

sram-oe <= memnoe;
sram-we <= memnwe;

mem-data-out <= mot&"00000000000" when (memsel = "01") else mddata;
memndata_in <= srarktdata_in;
sram_dataout <= menmdataout;

sramuaddr <= memaddr;

end;





library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;
use IEEE.STDLOGICUNSIGNED.ALL;

-- Uncomnent the following lines to use the declarations that are
-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents .all;

entity ripp.add_20 is
Port (add in stdlogic;

a in std_logicvector(23 downto 0);
b : in stdlogicvector(23 downto 0);
sum out stdlogicvector(23 downto 0);
cout out std.logic);

end rippadd_20;

architecture Behavioral of ripp-add_20 is

component full_adder
port (func,ci in std_logic;

a,b in stdlogic;
sum, co : out std~logic);

end component;

signal c : std_logicvector(23 downto 1);
signal nadd: stdlogic;

begin

nadd <= (not add);

uO: full-adder port
ul: full-adder port
u2: full-adder port
u3: full-adder port
u4: full_adder port
u5: full_adder port
u6: full_adder port
u7: full-adder port
u8: full adder port
u9: full-adder port
ulO: fulladder port
ull: full_adder port
u12: fulladder port
u13: full-adder port
u14: full_adder port
u15: full_adder port
u16: full_adder port
u17: fulladder port
u18: full_adder port
u19: full-adder port
--WAS TO u19
u20: full-adder port
u21: full-adder port
u22: full-adder port
u23: full-adder port

nap (add, nadd,a(0) ,b(0) ,sum(O) ,c(l));
nap(add,c(l) ,a(l) ,b(l) ,sum(l) ,c(2));
nap (add,c(2) ,a(2) ,b(2) ,sum(2) ,c(3));
nap(add,c(3) ,a(3) ,b(3) ,sum(3) ,c(4));
nap (add,c(4) ,a(4) ,b(4) ,sum(4) ,c(5));
nap(add,c(5) ,a(5) ,b(5) ,sum(5) ,c(6));
nap(add,c(6) ,a(6) ,b(6) ,sum(6) ,c(7));
nap(add,c(7) ,a(7) ,b(7) ,sum(7) ,c(8));
nap(add,c(8) ,a(8) ,b(8) ,sum(8) ,c(9));
nap(add,c(9) ,a(9) ,b(9) ,sum(9) ,c(10));
map (add, c (10)
map (add, c (11)
map(add,c(12)
map(add,c(13)
map(add,c(14)
map(add,c(15)
map (add, c (16)
map(add,c(17)
map (add, c (18)
map (add, c (19)

map (add, c (2 0)
map (add, c (21)
map (add, c (2 2)
map (add, c (23)

, a (10 ) , b (10 )
,a(l0) ,b(11)
,a(12) ,b(12)
, a (13) , b (13)
,a(14) ,b(14)
,a(15) ,b(15)
,a(16) ,b(16)
,a(17) ,b(17)
,a(18) ,b(18)
,a(19) ,b(19)

,a (20) , b (2 0)
,a (21) , b (21)
,a (22) , b (22)
,a(23) ,b(23)

,sum(l0) ,c(ll));
,sum(ll) ,c(12));
,sum(12) ,c(13));
,sum(13) ,c(14));
,sum(14) ,c(15));
,sum(15) ,c(16));
,sum(16) ,c(17));
,sum(17) ,c(l8));
,sum(18) ,c(19));
,sum(19) ,c(20));

,sum(20) ,c(21));
,sum(21) ,c(22));
,sum(22) ,c(23));
,sum(23) ,cout);

--u20: fulladder port map(add,c(20),a(20),b(20),sum(20),cout);

end Behavioral;





library IEEE;
use IEEE.STD_LOGICl164.ALL;
use IEEE.STD_LOGICARITH.ALL;
use IEEE.STDLOGIC_UNSIGNED.ALL;

-- Uncomnent the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.

--library UNISIM;
--use UNISIM.VComponents .all;

entity ripp-add_21 is
Port (add in stdlogic;

a in stdlogicvector(16 downto 0);
b : in stdlogicvector(16 downto 0);
sum out stdlogicvector(16 downto 0);
cout out stdlogic);

end rippadd_21;

architecture Behavioral of rippadd_21 is

component fulladder
port (func,ci in std_logic;

a,b in stdlogic;
sum, co : out stdlogic);

end component;

signal c : stdlogicvector(16 downto 1);
signal nadd: stdlogic;

begin

nadd <= (not add);

uO: fulladder port map(add,nadd,a(0),b(O),sum(O),c(l));
ul: fulladder port map(add,c(l),a(l),b(l),sum(l),c(2));
u2: full_adder port map(add,c(2),a(2),b(2),sum(2),c(3));
u3: full-adder port map(add,c(3),a(3),b(3),sum(3),c(4));
u4: fulladder port map(add,c(4),a(4),b(4),sum(4),c(5));
u5: full-adder port map(add,c(5),a(5),b(5),sum(5),c(6));
u6: full_adder port map(add,c(6),a(6),b(6),sum(6),c(7));
u7: full_adder port map(add,c(7),a(7),b(7),sum(7),c(8));
u8: full_adder port map(add,c(8),a(8),b(8),sum(8),c(9));
u9: fulladder port map(add,c(9),a(9),b(9),sum(9),c(10));
ulO: full-adder port map(add,c(10),a(10),b(10),sum(10),c(ll));
ull: full-adder port map(add,c(ll),a(ll),b(ll),sum(ll),c(12));
u12: full_adder port map(add,c(12),a(12),b(12),sum(12),c(1

3
));

u13: full-adder port map(add,c(13),a(13),b(13),sum(13),c(14));
u14: full_adder port map(add,c(14),a(14),b(14),sum(14),c(15));
u15: full-adder port map(add,c(15),a(15),b(15),sum(15),c(16));
u16: full-adder port map(add,c(16),a(16),b(16),sum(16),cout);--c(1

7
));

--u17: full_adder port map(add,c(17),a(17),b(17),sum(17),c(1
8
));

--u18: full-adder port map(add,c(18),a(18),b(18),sum(18),c(19));
--u19: full_adder port map(add,c(19),a(19),b(19),sum(19),c(20));
--u20: fulladder port map(add,c(20),a(20),b(20),sum(20),cout);

end Behavioral;





library IEEE;
use IEEE.STDLOGIC_1164.ALL;
use IEEE.STDLOGICARITH.ALL;

use IEEE.STDLOGICUNSIGNED.ALL;

-- Uncomnent the following lines to use the declarations that are

-- provided for instantiating Xilinx primitive components.
--library UNISIM;
--use UNISIM.VComponents. all;

entity full-adder is
Port (func,ci : in std-logic;

a,b : in std~logic;
sum, co: out stdlogic);

end fulladder;

architecture Behavioral of full-adder is

signal bl,xl : stdlogic;

begin

bl <= b when (func = '1') else (not b);
xl <= a xor bl;
sum <= x1 xor ci;
co <= (a and bl) or (ci and xl);

end Behavioral;


