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ABSTRACT

An analytical and computational framework is presented that has been developed
for the performance analysis of arbitrary queueing networks with multiple heterogeneous
servers and multiple customer classes, where customers have the flexibility of being
processed by more than one server and servers possess the capability of processing more
than one customer class. Jobs of a given class may arrive according to an independent
Poisson process to a facility consisting of multiple heterogeneous servers. The service
time for the processing of any given job class at any given server is assumed to be
exponentially distributed with a mean that could vary by job class as well by server.
Significantly, we do not impose any restriction on the set of job classes that can be
processed by any given server. Assuming finite work-in-process capacity in terms of the
number of jobs already in the system, we allow for multiple stages of processing in the
queueing system.

In order to motivate the research, we first identify the different forms of flexibility
in such queueing systems that are relevant to managers given their importance as design
factors and control policies for higher performance. Next, we present an analytical
framework whose goal is to capture for performance analysis, the relative impact of the
different forms of flexibility so identified. Third, we demonstrate the usefulness of the
modeling framework through a simple but illuminative numerical analysis of single-stage
queuing systems that in turn shows the significance of these flexibility mechanisms to the
performance measures of interest to system managers.

In terms of insights from the modeling efforts, we first show that when evaluated
within this framework, control policies such as job-routing and job-selection rules have a
relatively limited impact on throughput and overall utilization measures when compared
to strategic flexibility design parameters such as the assignment of long-term job
responsibilities to servers. However, we show that this influence on performance is
significant enough that various flexibility design alternatives are better compared after
taking into account the control policy that will be used to operate the system.
Furthermore, and motivated by the recent interest in revenue management techniques for
operational systems, we show that such operational control policies can have
disproportionate influence on revenue and cost measures of performance; this fact further
underscores the importance of having such models, measures, and analytical tools to
examine various system design alternatives for improving performance.
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1 Introduction and Literature Review

In this thesis we consider the representation, modeling and analysis of flexiblility in

queueing systems. We study systems with heterogeneous servers and multiple customer

or job classes where each job class has the flexibility of being processed by more than

one server and servers in turn possess the capability of processing more than one job

class. Customer or job classes can vary in demand rate and routing flexibility. Servers can

vary in service rates and service flexibility. The dynamic assignment of a job to servers is

determined by a server selection rule, that can be job class-specific, and the selection of

the next customer to serve is determined by a queue selection rule, that can be server-

specific. Further, a job upon completion of service can either leave the system, or can

return for processing as a different job class with different processing requirements than

before. An example of such a queueing system is shown in Figure 1 that consists of four

job classes P,,P 2,P 3, andP4, and five serversR ,,...,R5 with service times that are

exponentially distributed with means 1 /u,,...,1/ u5 respectively. Job classes Pi and P2

arrive according to a Poisson process with mean rates 2, and 22 respectively. Each job

class has a pre-specified set of servers that are capable of processing jobs of that class and

in the figure these sets are defined by the arcs connecting the queue representing jobs of a

particular class to the servers. Jobs that are processed at servers R2 , R4, and R5 leave the

system immediately. On the other hand jobs that are processed at servers R. and R3 return

to the system as job classes P3 and P4 respectively. Jobs of any class that do not find an

available server to begin processing wait in their designated queues with capacities

defined as bl,..., b5. Finally, we may assume that arriving jobs are balked from the

system if their designated buffer or queue is already at capacity; whereas if jobs that wish

to return for processing as a different class find the buffer or queue for that class at

capacity, they maintain their current identity and request repeat processing.
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l-p3
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Figure 1 - An example of a flexible queueing system

Queueing systems, similar to the one just described are found in manufacturing

systems (Buzacott and Shanthikumar, 1992), telecommunication networks (Ross, 1995),

and service operations (Hall, 1991). It is interesting to note that one source of complexity

as well as convenience in such systems is the process flexibility that is defined for each

job class. In manufacturing systems, there is often flexibility in routing demand for

different product or job classes to one or more functionally equivalent pieces of

equipment, each with different processing characteristics such as speed, cost or quality of

processing. In fact, such process flexibility is also observed in manufacturing supply

chains where different plants or facilities are tooled for different sets of products in

keeping with strategic supply chain performance measures and objectives (Jordan and

Graves, 1995). One can observe qualitatively similar considerations in the management

of service operations, where for example call centers are staffed by operators with

varying skills who are capable of handling some or all of the call types (Koole and

Mandelbaumn, 2002) (Whitt, 2002). The layout and design of telecommunication

networks similarly involves decisions of flexibility, but in a different sense, where the

objective is to retain greater routing flexibility for managing requests for data transfer
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between any two nodes in the network using multiple link paths between the nodes (Ross,

1991).

In this research, we provide a modeling framework for the analysis of general

queueing systems or networks with an arbitrary number of server and job types and

arbitrary process flexibility. We consider a varied set of control policies that includes

strict priority schemes for job routing to the servers and for queue selection, and for

demonstration purposes a dynamic policy in the form of the longest queue first policy. In

fact we see the analysis of and search for effective dynamic control policies as a

promising line of research that could be motivated by this work. The queue capacity may

be specific to a job class or in the form of a global bound on the total number of

customers in the system. To our knowledge, this work is the first to provide such a state

representation and the accompanying compact description of the dynamics of such

queueing systems with general customer and server flexibility and with heterogeneous

servers.

It is to be noted at the outset that our models are applicable only to systems with

finite queue or buffer capacity, where this has obvious implications for the size of state

space to represent the operation of queueing system. While our modeling representation

and framework might result in computational hurdles that inhibit the ready application of

these models to real world or industrial settings, the motivation for this research is

different. For this work, we are motivated by a need to highlight the critical performance

measures and objectives that are of potential interest to system managers, along with the

need to outline the key design parameters and control policies or levers that allow system

managers to improve along such performance measures.

To illustrate the usefulness of our models, we carry out a numerical study of

single-stage queueing systems that are a special case of the general multi-stage systems

that we describe here. Specifically we examine the inter-relationships between

throughput as a performance measure for such systems with finite queue capacity, the

process flexibility of the system as defined by the assignment of customer and job classes

to servers, and such system parameters as heterogeneity among the servers and the

customer classes and the loading levels. As has been shown previously, we show that

higher flexibility does not always improve throughput (Gurumurthi and Benjaafar, 2004)
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(Hopp, Tekin, and van Oyen, 2001). In this research, we go further to try and show that

effective control policies for an arbitrary queueing system could be devised based on the

process flexibility of the system, the available capacity to the various job classes based on

their assigned servers, and the loading levels for the servers based on the specific job

classes that are assigned to them. More significantly, we try to show indirectly that the

problem of determining appropriate levels of process flexibility for the queueing system

requires an understanding of the impact of control policies that will be used for the

system. In other words flexibility configurations that work well for one type of control

policy can lead to inferior performance for the same queueing system when operating

under a different control policy. Therefore, control policies have a certain measure of

influence on the performance of such queueing systems and given that their impact on

performance is not yet well understood, we need to explicitly account for the influence of

control policies in order to determine the desirability of certain process flexibility

configurations over others.

This leads to a discussion of the reasons behind the importance of process

flexibility decisions to system managers.

1. There are both strategic (long term) as well as short term implications from

decisions concerning flexibility. The long term implications arise out of the fact

that often times designing additional process flexibility is an expensive, time-

taking, and potentially disruptive process that requires system managers to

approach the task as an investment decision for the firm (Fine and Freund, 1993).

The short term implications, which are also highlighted by this current work,

include the need for altering control policies to suit the new process flexibility

configurations, as well as the system performance that results from the fit between

the control policies and the flexibility configuration.

2. Measuring performance accurately for queueing systems with arbitrary process

flexibility configurations operating under commonly used control policies, is not

in general a task that is easy to accomplish for system managers. Apart from the

computational or analytical challenges that the literature in queueing theory

attempts to address, there is also the issue of developing operational models to
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resemble the real-life queueing system, at a suitable level of abstraction in order

to measure performance.

3. Given that measuring performance is a not an easy task, and given that there

could be costs associated with increased flexibility, determining efficient process

flexibility configurations (that requires in turn an optimization approach) is also

therefore a difficult task for system managers. All the same, it might be important

for system managers to notice that decisions involving flexibility of servers and

the design of control policies are an aspect of their work that requires careful

attention and consideration.

4. Finally, the problem of determining efficient process flexibility configurations is

compounded by the fact that at different levels of abstraction in the model of the

system, the results may not be consistent, and may indeed present contradictions.

For example, at a level of abstraction where control policies are not considered as

a factor, an optimal matching between overall system supply (capacity) with

demand from different customers may point to the feasibility of a particular

process flexibility configuration. However, when we consider explicitly the

influence of control policies, and when we evaluate the different flexibility

alternatives within the subset of control policies, we might arrive at different

conclusions.

The remainder of this thesis is organized as follows. In section 2, we provide a

brief discussion of the various forms of flexibility that could be of interest to system

managers given our view of them as strategic or tactical design factors and operational

control mechanisms or policies that have a direct bearing on system performance. In

Section 3, we present our model and present some of the basic performance measures that

are captured by our model. In Section 4, we discuss briefly numerical results and several

insights from a computational analysis of single-stage queueing systems that are a special

case of the multi-stage model presented in section 3. In section 5, we summarize our

results and offer some concluding comments, and in Section 6 we present the the list of

references used for this work. Finally, Appendices Al and A2 contain up-to-date versions

of computer code that has been written in order to perform the numerical analysis.
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2 Flexibility Mechanisms for Queueing Systems

In this section, we outline the various forms of flexibility that are available as

mechanisms for performance improvement to system managers in a variety of contexts

including manufacturing and service operations. We classify these flexibility mechanisms

as being strategic, tactical or operational in their timing and implications from a planning

and execution viewpoint. However, given the broad nature of the discussion without

reliance on a specific operational context, there could be some cross-over in terms of how

flexibility mechanisms for a particular context, say for example health-care operations

involving medical equipment, fit into such taxonomy. Consider for a base system, the

single stage queueing system described in Figure 2.

Al

2

23

4

Ai: arrival rate of customer P,
,ui: service rate of server R,

bi: buffer size for customer Pi

Figure 2 - An example of a single-stage flexible queueing system
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2.1 Strategic Flexibility Mechanisms

If in the system shown in Figure 2, the demand arising from any job class is

considered as exogenous and the arrival process as independent of the system, we can

observe that strategic process flexibility is the result of two considerations that are part of

the same decision process. Firstly, we have the problem of allocating the demand from

the various job classes to the servers; since however in the example shown, the queues

are organized by job class, and more specifically not by server, the problem of demand

allocation in this framework is the same as the problem of cross training or tooling of the

servers for the various job classes. The resulting configuration of job classes that are

assigned to one or more servers is what we refer to as process flexibility in the system.

From a planning standpoint, these decisions are often strategic in nature, since

investments made in cross-training and tooling may be of a long-term nature in their

payoffs to system managers. Figure 3 illustrates the concept of strategic process

flexibility in the single-stage system under consideration in this section.

Flexibility for
en n or - I?

i: arrival rate of customer P, 'rr' Vr 115

/i: service rate of server Ri

b,: buffer size for customer P,

Figure 3 - Strategic flexibility: demand allocation and cross-training (tooling)
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Secondly we can also extend the scope of strategic flexibility mechanisms to include the

determination of whether additional servers are required in the system. For strategic

design, the literature can be grouped around two central questions: (1) how many servers

should we have, and (2) how much flexibility should each server have, and therefore how

much routing flexibility should we provide to each customer class. Issues pertaining to

questions 1 and 2 are also generally referred to as capacity allocation. For a review of

important applications that involve such strategic decisions, we refer to Kleinrock (1976)

and Buzacott and Shanthikumar (1992). For a similar review that specializes on call

center operations, we refer to Gans et al. (2003) and Whitt (2002). In supply chain

settings, Jordan and Graves (1995) discuss strategic flexibility within the framework of

supply chain decisions that have long term implications, such as cross-tooling of plants

for various product lines.

2.2 Tactical Flexibility Mechanisms

If in the system shown in Figure 2, the capacity that is allocated to each server

were a decision variable, and if the demand for the various job classes and the process

flexibility were fixed, then the capacity allocation decision can be viewed as a tactical

flexibility mechanism that is available to system managers. In the literature, one typically

finds that these questions are posed together with questions on how many servers one

should have for meeting the exogenous demand arising from various job classes. We

view the capacity allocation decision as presenting three different flexibility mechanisms

to system managers: (i) the allocation of capacity proportional to demand assigned to the

servers (ii) the incremental allocation of additional capacity to a server, or the

augmentation of service capacity, and (iii) the fractional allocation of fixed system

capacity through a re-distribution of the system capacity amongst the servers. Figures 4

and 5 illustrate these capacity allocation schemes for the base example we consider in this

section. From a system design view-point the critical parameters that define tactical

flexibility mechanisms are denoted by a in the case of proportional allocation, s in the

case of fractional allocation, and e in the case of incremental allocation of capacity to the

servers. These decisions are termed as tactical, if only for the reason that they are

presented in our work as being conditional on the demand allocation and on the process

12



flexibility decisions; in practice, we find that tactical flexibility involves decisions that

can be reversed and / or altered in the near term, without disruption to the system.

exibility in capacity
)r Server R4

e (+e 

A= a(?2+ 4)

i,: arrival rate of customer Pi Proportional caDacitv
,u: service rate of server R, for Server R5
bi: buffer size for customer Pi

Figure 4 - Tactical flexibility: capacity allocation, proportional and incremental

A2

A1+/A2+ P3+ 4+ 15=1

23

4

2i: arrival rate of customer Pi
,u,: service rate of server Ri
b,: buffer size for customer Pi
N,: queue size for customer P,

Tactical flexibility in re-
distributing limited system capacity
across servers RI: R5

Figure 5 - Tactical flexibility: fractional allocation of capacity
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Another form of tactical flexibility that is available to system managers is the

physical or logical reorganization of the queues or buffers in the system that serves the

purpose of risk pooling in the case of finite buffer capacities. Instead of maintaining

separate buffers of finite capacity for each job class, where possible the jobs are held

while waiting in single buffers of the same overall capacity as was available previously.

Figure 6 illustrates this mechanism; while the concept is simple, in reality this may

involve a physical reorganization of flows in the operations facilities, and as such we

have classified this as a tactical measure.

Syste

A2

A3

A4

A: arrival rate of customer P, Proportional capacity
/,: service rate of server R, for Server R
b: system-wide buffer size

Figure 6 - Tactical flexibility: pooling of buffers

2.3 Operational Flexibility Mechanisms

Our definition of operational flexibility mechanisms is based on the dynamic view

of the queueing system. Mechanisms that are a response to the state of the queueing

system at a given point in time are classified as being operational in their nature. As such

they represent the response to current conditions in the operational facility such as the

number of jobs that are in a given buffer, or whether a particular server is busy, idle, or if

14
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there is an interruption in service for various reasons. The literature has also viewed such

response mechanisms as being tactical in nature, but once again, we emphasize that apart

from semantics, our understanding and representation of such mechanisms is similar in

nature to that found in the literature. One prevalent flexibility mechanism in response to

workload levels at the various buffers is the allocation of capacity to servers that is

proportional to the workload in the queue; this concept is illustrated in Figure 7. An

excellent example of literature that illustrates this concept is to be found in Graves (1986)

P/= Ca(R+ X2)

,a4 +e

-i= .+ N
/5= 2+ 4)

,2: arrival rate of customer P,
/,: service rate of server R, Operational flexibility in setting
b,: buffer size for customer P, capacity (proportional to workload)
N,: queue size for customer P, for server R 4

Figure 7 - Operational flexibility: capacity allocation proportional to workload

Finally, an important class of operational flexibility mechanisms is available to

system managers in the form of dynamic job sequencing and job routing policies in such

queueing systems. In other words, based on the current state of the system defined in

terms of state of the servers, and in terms of the workload in each buffer; system

managers can and indeed avail of the flexibility in routing an incoming job to a server

from the pool of available servers; or in selecting from the set of jobs in queue from

various classes, one particular job to process at a server that has become available. In this

research, we refer to the combination of job selection and job routing policies as a control

15
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policy for the queueing system. A visualization of control policies as operational

flexibility mechanisms is provided in figures 8a and 8b.

2

23

4

,: arrival rate of customer Pi
/u,: service rate of server Ri
b,: buffer size for customer P,

N,: queue size for customer P,

/-,= a(Xk+ 2 )

/.3+C

p3= N2 + N4)

Sequencing Policy:

P 4 > P1 > P2

Figure 8a - Operational flexibility: dynamic sequencing policy (1)

2

24

2,: arrival rate of customer P,
,u,: service rate of server R,
b,: buffer size for customer Pi

N,: queue size for customer P,

/3= a(X1+ X2 )

/3+e

3= A(N2+ N4)

Sequencing Policy:

P2 > P1 > P4

Figure 8b - Operational flexibility: dynamic sequencing policy (2)
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One of the goals of this research is to demonstrate the significance of operational

control policies on the performance of the queueing system; indeed as we demonstrate in

the numerical analysis section operational flexibility can have very much the same levels

of influence on performance as strategic or tactical flexibility mechanisms. Further, our

research on this subject over the past few years seems to point to the need for the design

of flexibility in the strategic, tactical and operational sense to be addressed in an

integrated fashion. In other words, the choice of control policy may influence the design

of cross-training programs, and conversely, a good choice of control policy appears to be

conditional on the process flexibility configuration and the tactical capacity management

mechanisms in place.

2.4 Guidelines for the Design of Flexibility Mechanisms

The goal of this research is to arrive at a set of guidelines that will (i) help system

managers understand the relative and specific importance of flexibility mechanisms just

described, to performance measures of relevance to their individual operational settings,

(ii) demonstrate that there could be multiple performance criteria, metrics or objectives

that could be applied to these systems that could result in different design choices, and

(iii) develop insight on the trade-offs that eventually occur in the selection of appropriate

flexibility mechanisms from the set of alternatives in front of managers, when we apply

the different metrics to evaluate the set of design alternatives. It is important to note here

that the performance and behavior of such arbitrary queueing systems is not in general

easy to characterize from the point of view of system managers. We also recognize the

combinatorial nature of the search space of design alternatives, and hence we are

motivated to first develop additional insight into the behavior of these systems in general,

rather than delving first into algorithms for determining efficient process flexibility

configurations, or optimal control policies. At the same time, an algorithmic approach to

the design of such queueing systems could be a fruitful line of research, in our opinion,

and we refer again to this issue in section 5.

These considerations have resulted in the modeling framework that we present in

the subsequent section. This modeling framework is capable of capturing explicitly the

17



effect of many of the flexibility mechanisms that we describe here on the performance of

such queueing systems. Where some mechanisms have not been explicitly shown or

discussed, it will become apparent to the reader that minor extensions of our modeling

framework can address some of those shortcomings. Figure 9 summarizes the flexibility

mechanisms we have previously discussed in a single stage setting, for the operation of a

multi-stage queueing system. Figure 9 can also be used as a reference to understand the

motivation for and the details involved in developing a modeling framework for the

performance analysis of such systems.

2,: arrival rate of customer P,
,u,: service rate of server Ri

b,: buffer size for stage P,

egic Flexibility
ss-training, or cross-tooling across
;es, and also across products

:al Flexibility
pacity allocation schemes
ffer design for various stages
atic priority schemes for

I I: I .

sequencing ana scneaulng

·Operational Flexibility
--dynamic capacity allocation schemes
--dynamic sequencing and scheduling

Figure 9 - Flexibility mechanisms for multi-stage queueing systems
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3 A Markov Modeling Framework for Queueing
Systems

Consider a queueing system, X, consisting of m servers and n job classes. Jobs of

class i (i = 1, ... , n) arrive to the system according to an independent Poisson process

with rate i,. Processing times for job class i at serverj (j = 1, ... , m) are exponentially

distributed and i.i.d. with mean 1/y. Each server is capable of processing one or more

job classes and each job class can be processed by one or more servers. Let M ={R1,

R2 ,... Rm} be the set of servers in the system and P ={PI, P2,... Pn} be the set of job

classes.

The initial feasible job-server assignments are denoted by an n x m routing matrix A =

[a], where

{1,
aj= 0,

if part P, can be processed by server Rj;

otherwise.

We define a set of servers Qi associated with each job class Pi, such that this job class can

be processed by any of the servers in Qi:

Qi ={Ri(l), Ri(2 ) ..., Ri(m,)},

where i(k) denotes the index of the h server assigned to job class Pi. We let

I Qi = Y' , ar denote the cardinality of the set Qi. Similarly, we define T to be the set of

job classes that can be processed by server Rj such that:

Ti = P(1) Pj(2) -... Pj(nj)} 

where j(k) denotes the index of the k h job class assigned to server Rj and I T I= a is

the cardinality of set T7.

The operation of the job-shop like queuing network is described as follows. Jobs of

class i (i = 1, ... , n), upon arrival to the system, seek a server from set Q, for service. If

all of the servers from the set Q, are busy, then the job of class i is placed in its assigned

queue. However if there are one or more servers from the set Qj that are available, the

job is then serviced by one of the servers. Upon completion of service, this job is then

19
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transformed with probability tk (k=l,..., n) into a job class k (i), and with probability

1- Et,k, leaves the system. The resulting n x n matrix of transition probabilities
k=l n;kei

between job classes is denoted by O. In this framework, while we do not discount the

possibility of valid transitions of a job to its own class (in an attempt to model rework),

we allow a return for processing within the same class if at the time of transition between

job classes, the buffer or WIP for the target job class k is already at capacity and therefore

if the inter-class transition were unsuccessful. In such an event, the conditional

probability for a job returning to its class given that a target job class buffer Bk is at

capacity is also tik. However using only the matrixO, it is also possible in the general

case to characterize the distribution of the number of stages traversed before a job of

class i returns to this class, assuming only a sequence of successful class transitions.

Therefore, we can define the queueing network as being closed reentrant, if the Markov

Chain defined by transition probabilities is recurrent. If the Markov Chain defined by

0 is transient with non-zero (< 1) probability of recurrence to class i, then we will term

the network as being open reentrant. Finally, if jobs of class i never return to the same

class, then we define the system as being a serial or tandem queuing network.

In addition to specifying feasible job-server assignments, the analysis of the queueing

system requires the specification of a control policy. The control policy is applied at each

decision epoch. Decision epochs are triggered by either the arrival of a job or the

completion of service by a server. When ajob arrives and finds multiple idle servers, the

control policy specifies which server is selected. Similarly, when a server completes

service and finds jobs of more than one class in the queue, the control policy specifies

which job is selected next for service. Hence a control policy is defined by a server

selection rule and a job selection rule.

In this framework, we consider static server selection rules, where server preferences

can be specified in terms of a priority scheme for each job class. For each job class and

for each server, we associate a priority a(P, Rj) E {1, 2, ... m}, which, for notational

compactness, we shall heretofore denote as ai, where priority is higher for lower values

of a. If there is competition between two or more idle servers for a job of class Pi, the

job is assigned to the server with the lower value of a. Special cases of the priority

20



scheme include the strict priority (SP) rule where ai • aik for all values of i,j and k (such

thatj • k; a-=aik= l) and the random routing (RR) rule where aij = aik for all values of i, j,

and k (such that a=aik=l). In all cases, ties are broken arbitrarily.

For job selection, we consider a dynamic rule under which a server, upon becoming

available, always selects a job from the class with the longest queue from the set of

feasible job classes. Among jobs from the same class, jobs are served on a first in first out

(FIFO) basis. We term this rule the longest queue first (LQF) rule. We also consider

static job selection rules, where jobs are selected based on a priority scheme. Specifically,

for each job class and for each server, we associate a priority y(Pi, Ri) E { 1, 2, ... n}, or

more simply yj. Upon becoming idle, a server R, selects a job from the class with the

lowest value of yi. Within each class, jobs are again ordered on a first in first out (FIFO)

basis. Special cases of priority schemes include the strict priority (SP) rule where yij y 

for all values of i, j and k (such that j • k; ai =akl 1) and the random service (RS) rule

where y = ykj for all values of i,j, and k (such that ai=akl 1).

Although static, fixed priority rules allow us to represent a rich set of control policies,

including those that take into account differences in processing rate and in flexibility

among servers, and demand rates and routing flexibility among jobs. For example, in a

single-stage queueing system, jobs may assign priorities to servers based on their

processing speed (e.g., always select the fastest available server). Alternatively, jobs may

assign servers priorities based on their flexibility (e.g., always select the least flexible

available server). Similarly, servers may associate priorities to jobs based on their

demand rate or their routing flexibility. For instance, jobs are assigned priorities based on

their arrival rate (e.g., always select the job with the highest arrival rate) or alternatively

based on their flexibility (e.g., select the job with the fewest feasible number of servers).

In the more general multi-stage queueing network, we can assign priorities to the jobs

based on the expected amount of work remaining to be performed on the job. For

example, a job that is in queue at the final stage of processing could be assigned greater

priority than a job class that represents an intermediate stage in the system. In other

situations, we could assign greater priority to a job class that represents the stage

bottleneck in the system.
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In this thesis, we are concerned with the analysis of systems with finite queue

capacity. We can define queue capacity in one of two ways. We may specify a global

bound b on the maximum number of jobs in the network, regardless of class, that can be

allowed in the system. A job is admitted as long as the number of jobs in the network is

less than or equal to b; conversely arriving jobs, regardless of their class, are balked when

the number in system equals b. Alternatively, we can define a maximum number

denoted by bi for each job class, where bi > 1 for i=1,..., n; jobs of class i, when seen

either as new arrivals to the system or as inter-class transitions, are only admitted as long

as the number of class i jobs already in the network is less than or equal to bi.

3.1 The State Space
The state of the flexible queueing network can be described completely by specifying

(i) the number of jobs in queue for each job class, (ii) the state of every server in the set

M, and (iii) for a multi-stage network, if a server is busy, the identity of the job class

being processed by the server at any instant in time. Since we do not model server

failures, there are therefore I Tj 1+1 possible states for serverj. The state of the system

can be described using a vector N _ (nl, n2, ... nn+m), where ni is the number of jobs of

class i for 1 < i < n and ni is the state of server i for n+l < i < n+m. We denote the state

space generated by such a representation as S1. Although this state space representation

could be used, it requires evaluating a large number of states even for small values of n

and m. Therefore as a principle, we seek to minimize the number of distinct states that are

used to describe the operation of the queueing network. The state representation and the

subsequent description of model dynamics, shares similarities with that of Sheikhzadeh et

al. (1998), who first demonstrated this approach for specific single-stage queueing

systems, and that of Gurumurthi and Benjaafar (2004) who generalized this approach to

depict arbitrarily defined single-stage queueing systems. Our state representation attempts

to model general queueing networks with potentially multiple stages of processing. This

requires marginally greater effort in the description of the state space, and hence for

clarity of presentation, we represent the state space of the queuing network X using the

state space of a queuing network X that exhibits identical behavior and has the same
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operational characteristics as the original network, but that offers simplified

representation and implementation.

The structural transformation from a given networkX to its auxiliary network X is

obtained primarily by having, for every server Rj in X, ITj I servers in X where the

service of the Ith of these I T I servers is restricted to the th job class in the setTj with

processing rate PT {I}j. We use notation sKj for this group of servers in X to signify that

the group was formed from server Rj inX; this additional notation is used later in the

operational analysis. The kth server in Ki is associated with a singleton

setT(k) = {7, (k)}; therefore in order to simplify the notation, we simply denote the job

class associated with any server Rj asTj, and update a corresponding routing matrix A

as a,j =1 Once the servers have been defined thus, we can create the set

M = I , ... ,R , where m = I Tj I, and maintain the relations between servers in X
j=1

by defining a set Kr for each server r as follows:

Kr 3 Rk if {Rk, Rr } E Kj for any j E M, k E M. Similarly, for every job class P, in X,

we have a distinct job class Pi in X with arrival rate 2,, but with a set of allowable

servers Qi that consists of all servers Rr, such thatPi = Tr (in other terms ai,, = 1). The

creation of set P = tl,..., P } completes the transformation of networkX into its

auxiliary X.

Next we manipulate the ordering of the sets M and P so that every state variable

refers to either: (i) the number in queue for a job class i (q,), (ii) the state of a server r (Sr

= 0, 1), or (iii) the sum of the two, qi + Sr, for a pair job i-server r. Such an ordering can

be achieved in the following fashion. The queueing network X is viewed as a bipartite

undirected graph, G(V, E), where V is the set of vertices and E is the set of edges. The

vertices of the graph X can be partitioned into two disjoint subsets, a set Vl that

corresponds to the set of job classes, and a set V2 that corresponds to the set of servers.

The edges of the graph connect the vertices in the set of job classes to the vertices in the
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set of servers, where an edge er between job class i and server r exists only if air = 1. On

the other hand, note that the graph is disconnected since the sub-graph Xi corresponding

to each job class and its allowable servers is now disjoint from X \ Xi, where X \ X is

the set of all vertices and edges not in Xi. We cannot however analyze the operation of

X, independently of X \ X, given the relation set that determines whether any two

servers in X can be in service simultaneously. Before we present our state space

representation scheme, we need the following two definitions and lemma.

Definition 1: A subgraph of G(V, E) in which every vertex has a degree of at most one

(i.e., every vertex has at most one edge) is called a matching. The problem offinding

such a sub-graph is also sometimes called matching.

Definition 2: A maximum matching (or a matching of maximum cardinality) of graph

G(V, E), is a matching Gx(V, Ex) such that IEx 2 EyI for any other matching Gy(V, Ey),

where IExl and IEyl refer to the cardinality of the set of edges Ex and Ey respectively.

Lemma 1: Consider an undirected bipartite graph G(V, E) whose vertices can be

partitioned into two disjoint sets V with n vertices and V2 with m vertices. Then, there

exists a graph Gx(V, Ex) that has the following properties:

1. Gx(V, Ex) is a sub-graph of G(V, E),

2. Gx(V, Ex) is a maximum matching of G(V, E), and

3. G(V, Ex) has ex edges, where 1 < ex < min(m, n) and m + n - 2ex unmatched vertices.

4. There is at most one vertex in any group defined by relation K (0= 1,..., m ) that has

degree 1.

A proof of Lemma 1 is left as a simple exercise to the reader. Readily available

algorithms for the implied constrained bipartite matching problem include the maximum

flow algorithms discussed in Ahuja et al. (1993). The constrained maximum matching

yields a sub-graph with ex jobs and ex servers with each job connected to one server by an

edge. Without loss of generality, we rename this set of jobs and servers so that a job that

has been renamed Pi is connected to a server that has been renamedRi. Then we

associate with this job-server pair a state variable ni, where ni = s + qi. The maximum

matching also yields I unmatched vertices ( = m + n - 2e, ). If n > ex, we rename these
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job classes P+l,...,P, and associate with each a state variable ni where ni = qi.

Similarly, if m > ex, the unmatched servers are renamed Pe,,,,...,P, and we associate

with each a state variable ni = si. The set of allowable servers Q, for each class i of jobs,

and the network flow matrix0, are also updated to reflect the renaming of job classes

and servers. This process results in a state vector N = (ni, nl, ..., nq), where q =

I=m+n-ex and

qi + s if 1 < i < e,

n= qi if e, <i<n and n>ex, and (2)

si ifn<i<m and m >e,

We denote the resulting state space of X as S2 . The process of generating the state vector

N is illustrated in Figure 2 for an example system with 3 job classes and 3 servers. Our

representation scheme reduces the number of state variables from (m + n) to

(m + n - e, ) and therefore leads to a reduction in the number of states that are needed to

describe X . At this time, we do not know of any other representation that allows us to

describe the operation of X with a fewer number of distinct states.

3.2 Performance Evaluation
In this section, we develop models for the performance evaluation of flexible

queueing networks. Our first task is to determine the probability of occurrence of each

system state for the different control policies under consideration. From these

probabilities, we show how to obtain various performance measures of interest. We

model our system as a continuous time Markov chain (CTMC) with state vectors N = (nl,

n2, ..., nq), and n, is as defined in section 1.1. Our Markov chain experiences system

transitions from its current state through either a single job arrival or a single job

departure. The unique limiting probabilities of system states can be obtained from the

balance equations of the Markov chain by equating the rate at which the system enters a

state with the rate at which it leaves it (Ross, 1995). This relationship results in a set of

linear equations that can be solved using a general-purpose linear equation solver.
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Figure 10 - An example to illustrate constrained maximal matching

Extending the approach in Sheikhzadeh et al (1998), we define for each state

vector N = (nl, n2, ..., nq) three sets of states, type a, type d, and type a-d depending

respectively on whether a new service request (for e.g. an arrival of a job into a queue), a

service completion (e.g. a departure of a job from a class), or a combination of a service

completion and a service request causes the system to move to state N. We denote these

sets of states as Na , Nd, and Na-d respectively. Elements of Na are state vectors Nia such

that nia =ni -1 and all other state variables having the same value as in N, while elements
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of Nd are state vectors Nid such that nid =ni+l with all other state variables having the

same value as in N. Elements of NV-d however, are state vectors Nija-d such that nia =ni -1,

exactly one other state variable has na =n+ I with all other state variables having the

same value as in N; except when i=j, in which case Nija potentially includes state N itself.

Thus, states Nia (Nid) witness new arrivals to (net departures from) the queueing network.

On the other hand, the states Nija-d witness a transfer between job classes, or even

potentially a one-step recurrence to the same class.

We define d(x) as a function that returns 1 if x 2 1, and 0 otherwise. We also define:

1, ifl<i<n,and

. i otherwise,

2. i1, if (l i <n)or(n<i<mandm>ex)
o0, otherwise, and

3. ui =

b- ( atl) n, + E (a,,)n ), if w, =1 and b, < b,

bi - n, + 6(atr)nr , if w, = 0 and b < b,
r= l

bi -sinr), if w, =0andb, =b,

0, otherwise.

The variable v is used to indicate if a state variable ni includes the queue size of a job

class i. Similarly, the variable co, is used to indicate if a state variable ni includes the state

of a server i. Finally, for each job class a variable ui is used to determine the slack for the

state variable ni, and represents the remaining WIP capacity in the system for the

associated job class. Recall that we had defined the parameter bi in §3.1, so the

condition b, < b can be used to evaluate whether we are using global network bounds or

the alternative class-wise bounds on WIP.

Whenever the system is in state N, it is straightforward to show that it leaves this state

as a result of a service completion with rate ,q co,6(ni),A and as a result of an external

arrival with rate - _ (u)vA2. If we use r, rid, and r d to denote the rates at which

the system enters state N from Nia, Nid, and Nija-d respectively; and if we use notation
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p(N), p(Nia), p(Nid) and p(Nija-d) to denote the steady state probabilities of those states,

we can then write the Markov chain balance equation as follows:

q ,o)w(nj),u + 6(u,)vA, 1p(N) 
(3)

r2 p(Ni) + r(N p (N) + d) V N E S2.
Ni ENN' ,eNd NNd EN

The set of linear equations in (3) along with the normalizing equation Es p(N) = 1 form

a set of IS21 simultaneous equations, which can be solved to determine the unique steady

state probabilities, p(N), N E S2 . The uniqueness of the steady state probabilities follows

from the (reasonable) assumption that the matrix 0 is well-defined. When the matrix P

is well-defined, then the CTMC defined on state space S2 is (i) irreducible and positive

recurrent, since any two states in S2 can communicate with each other through a

sequence of one-step transitions (ii) aperiodic, since a CTMC cannot be periodic, (iii) has

a finite number of states (by construction), and (iv) ergodic, since property (iii) assures us

of the existence of an unique vector of steady state probabilities. However, in order to

solve for p(N), we need to first define the sets of entering states {Nia, Nid, Nija-d} and

subsequently determine the associated rates {ri , d rijad }. There are two types of

constraints that define whether a state can be included in one of the sets NA, Nd and Na-a .

The first constraint deals with feasibility. Depending on the routing matrix, the network

flow matrix 40, and the control policies, there are certain states that can never occur. The

second restriction stems from the requirement that it should be possible to go from a

member of .N, Nd or NA-d to N by a one-step transition as a result of a single service

request, a single service completion, or a combination of both.

3.2.1 The sets Nia and Nid

The system can move into state N from Nia, only if ni = ni-I and all other state

variables have exactly the same values as in N. That is,

na = n, -1 and nk = nkv kki. (4)

The state Nia exists only when one of the following mutually exclusive conditions holds:
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n2 l-(w, ,n)), u >1 and S( n)=l, 1Vl E , Vi= 1,, > 0; ()
keKi ,ki kEKI

( = 0 and n < C (1-s( ,n], k Ki E = 1; Ai > 0. (6)
keK, T eK~kITk)kEKi IEKk,I#Tk

Condition (5) follows from the fact that we do not allow a queue to form while a feasible

server is idle. It states that for the queue represented by n a to increase by 1, any server r

that is directly capable of processing jobs of class i must be busy, or at the least must be

out of contention for service, given that the network transformation from X to X

disqualifies server r from service if any one of its related servers from set Kr is busy.

Condition (6) applies to a state variable n a (and state Nia) that represents an idle server in

position to accept a service request in the form of a new arrival to the network to move

into state N. Such a state Nia is possible only if the server represented by variable ni is

idle and is still in contention for service, which event in turn occurs only if there are no

jobs in the queue that can be processed on any server related to i (including server i itself)

and if all of these related servers are idle. Note that the job class i must allow new

arrivals from outside the network (i.e. A, > 0 ) for conditions (5) and (6) to hold, since

otherwise this job class represents an intermediate process stage, and therefore by

definition state Nia cannot exist.

Similarly, the network can move into state N from a state Nid only if n, = ni+l and

all other state variables maintain the same values as in N. That is:

nfd = ni + 1 and nkd = nk , V k i . (7)

The state Nid exists only when one of the following mutually exclusive conditions holds:

(ak;,ti "(8)nkeKi,kvi /IKTk ,IT Tk j=l

n> >l+ o~1-9( nk andk knka)=i = 1; andt, <1 (9)
krKi,k~i krK, j=l

29



Condition (8) follows from the fact that a departure would cause nd to decrease from 1

to 0 if there are no other jobs present in queue that can be serviced at server i. Note

however, that a departure from a state variable ndis possible, only if the server

associated with this variable were the only busy server in setK,, and this is exactly what

constraint i5( ink,)= 0 implies. Condition (9), on the other hand, concerns a state
k=K ,kfi

variable n (and state Nid) representing a queue that could experience a unit depletion

through a service completion at one of the servers associated with that queue; this service

completion results in a job departing from the network as opposed to a job transition to

another class. Such a state Nid is therefore possible only if the queue represented by

variable ni is non-empty, which event in turn occurs only if there are no servers in the

network that are idle or if even idle, in contention (given the constraint that only one

server in any set K, be busy at any instant) to service a job in the queue of class i. Note

again that in order for Nid to exist, there must be a positive probability of the departure of

the job of class i from the network as a result of this one-step transition, and this is what

n

is dictated by the constraint E tlij < 1 .
j=l

3.2.2 The set Nija-d

The system can move into state N from Nija-d, only if ni = nl-1, n a = nj+l and all

other state variables have exactly the same values as in N, except when i=j when the

system experiences a self-transition. That is,

na--d =nl dnd =nkVk# i, k j; i j, or
(10)

nk = nk V k if i = j .

Considering the i j case first, the state NUa-d exists only when one of the following

mutually exclusive conditions holds:
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ni _ (-( l nk )' 8(s nk )= I, ) , Q i =1;

(11)
a-d =1, ( "nka )= n-Tk .- l( - ) E , Vk E Kj, cj = 1; and

keKj,k.j IKk ,I Tk ;

(t 0 -T > 0,and 2 1)r ( = O, th > , andT = i;h i;h E { 1,2 ,,n} )

kEKi ,kKi kcK,

ad lc;-6( nka-a), and }( nk -d )=1l , j = 1; a nd (12)kKi,kj, keKr

>U -0, >) or(tT,,i > O; k E K,; r E Q;u i 2)or(Uh-d = Ot, h > O, and Tk = i;k E Kr; r E Q;h i;h E { 1,2,..., n})

(Zn a - d 1 d n' ,•k<o Ki o,K 1;
kEK, KIE Kk ,Tk 

n ·kK a-d n a-d 0 , na-dj ( a- nk ) = 01,n-T < w (-( 6(Zn k; VQ v = (13)
kKj ,kKj IEKk ,EK Tk

(t7L. > 0, and Ua-d > 1) or

(u ad =O, t h >0, andTj = T;h Ti; h E {1,2,...,n })

58(E nk {6) a nd O. s e CT, Iandntten a1-i( to ) n Vk Ki coi = 1;
kEKi o e e m a p iKT ,l*Tk 

nof l s + o; - nk, and ( Yfn a )= 1, Vr E Q, v = l; (14)
kEKi,kj kEK,

(tTT > O;k E K,;r E Q Ua-d > 1)or

(Uh- a = 0, tih > 0, and Tk =Ti;k Kr;r E Q;h Ti;h E 1,2,...,n})

Conditions (11)-(14) have been derived by enforcing as a pair the essence of conditions

{5, 8, 5,9}, 6,8} and {6,9} respectively, with the only additional constraint being that

in order for Na-d to exist, there must be a positive probability of the departure of the job

of classj to class i, as defined by the network flow matrix . Note also that in all of these

conditions we account for the fact that certain inter-class transitions may not be allowed

because of the bounds specified on the WIP for each job class. Condition (11) follows
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from the fact that in order for a net transfer of one job to occur from the busy server

represented by n-d to the queue represented by n -d , any server r that is directly capable

of processing jobs of class i must be busy, or at the least must be out of contention for

service. At the same time there cannot be a job of any other class present in queue that

can be serviced at server j or any of its related servers in set K i . Note again that a

decrement in state variable n-d is possible, only if the server associated with this

variable were the only busy one in setKji , and this is exactly what

constraint 5( nkad) = 0implies. Condition (12) states that in order for a net transfer
ksKj ,k*j

of one job to occur from a non-empty queue represented by n ad (one of whose

associated servers completes service at the moment of the transfer) to the queue

represented by n -d, any server r that is directly capable of processing jobs of class i

must be busy, or at the least must be out of contention for service, while at the same time

there are no servers in the network that are idle or if idle, in contention to service a job in

the queue of class j. Condition (13) concerns the idle server that is represented by

variable n a-'d and that accepts a service request generated by the service completion at

one of the servers represented by nd . Such a job transfer is possible only if the server

represented by variable n -d is idle and is still in contention for service which event in

turn occurs only if there are no jobs in the queue that can be processed on server i or any

of its related servers; further a service completion at serverj can decrement nad only if

there no other jobs present in queue that can be serviced at serverj or its related servers,

and if this server were the only busy one in set K,. Finally condition (14) states that in

order for a net transfer of one job to occur from a non-empty queue represented by n - d

(one of whose associated servers completes service at the event of the transfer) to the idle

server represented by nd, there can be no job in the queue that can be serviced by

server i ; all of the related servers of server i must also be idle. Further there can be no

server in the network that is idle (or if idle, even in contention) to service a job in the

queue of classj.
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Considering the i = j case next, a transition from state N to itself as a result of

the combination of a service completion by the server represented by n, and a service

request at the queue or server represented by n, can occur, if the following conditions

hold:

ni =1,S( Enk)=O, n- < ol-d( Zn)VkK,K co, = 1;and t >0or
kK,,k;i IK ,T k T (15)

(uhd =O, t ,,h > O,and ;h Ti;h E {1,2,...,n})

nŽ >1 + 1 - 6( En, )) and 5( nk ) = 1, r E Qe, wo = Vi = 1; t,i > Oor (16)
k=K i ,k i kEK r

(u- d = th > 0, and Tk = i;k K;r E Qj;h • i;h E {1,2,...,n})

In stating these conditions we also account for the fact that certain inter-class transitions

may not be allowed because of the bounds specified on the WIP for each job class.

3.2.3 Transition rates r, rid, and ria-.

In this section, we show how the transition rates for the control policies we consider

can be determined. Recall that we define control policies in terms of a server and job

selection rule combination.

The SP-LQF Policy

Under the SP-LQF policy, servers are selected based on a strict priority scheme and

jobs are selected from the class with the longest queue. When condition (5) holds, a

transition from N' to N clearly occurs with rate:

ra =y A (17)

On the other hand, when condition (6) holds, the transition rate depends on the routing

priorities. First note that for n to increase from zero to one, we need an arrival from a

job class T . Although necessary, this condition is not sufficient since an arrival of a job

of class Ti may not be routed to server i unless server i has the highest priority among

those available to process job T . This means that the following condition
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aTi < aT j E QT; s.t. a( En )=o
kcK,

must be satisfied. Since the arrival rate of jobs of class Ti is , the transition rate r is

given by:

where

I, ifa-, 1- ( L nk) _ a Ta,,andr(aT ) { i, kEK, j ,, Vt QT; and(

0, otherwise.

Putting it all together, we have:

ar ,if condition (5) holds;

lyZ r(a ), if condition (6) holds.

Similarly, we can derive the transition rates Nid to N. If condition (8) holds, then we

clearly haverdi = i(1- ti r ) When condition (9) holds, the transition rate depends on

the relative size of the queues. There can be a transition from Nid to N if the queue for

job class i has one of the longest queues for any of the servers in the set Q,. In other

words, for a server r in the set Q, to select queue i, queue i must be one of the longest

queues in the set {Tj: j E Kr}, the set of feasible job classes for server r or its related

servers Kr . We denote by Br the number of jobs that have the longest queue in the set

{Tj: j E Kr}. When Br > 1, queue i is selected by server r with probability 1/ Br. Thus,

the transition rate can be written as:

i (l - ti. r ),if condition (8) holds;

rd = (19)r(i)

z Z=B ,if condition (9) holds.
r~2, Br
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where Br is the number of job classes that have the longest queue in the set {Tj: j E Kr};

and er(i) =l if the queue of job class i is one of the Br longest queues in the set

{T : j Krl}, and 0 otherwise.

Finally, we can derive the transition rates Ni a-d to N. If condition (11) holds, then

we clearly have d = ,itiJ . If condition (12) holds, then the transition rate depends on

the relative size of the queues. There can be a transition from Nia-d to N if the queue for

job class j has one of the longest queues for any of the servers in the set Q . In other

words, for a server r in the set Qj to select queue j, queue j must be one of the longest

queues in the set {T : E Kr}, the set of feasible job classes for server r or its related

servers Kr . We denote by Br the number of jobs that have the longest queue in the set

{Tj: f E Kr} . When Br > 1, queue i is selected by server r with probability 1/ Br. Hence

the transition rate = r , where Br is the number of job classes that have
resj Br

the longest queue in the set {Tf: f E Kr}; and r(j) = 1 if the queue of job class i is one

of the Br longest queues in the set {Tf: f E Kr}, and 0 otherwise. On the other hand,

when condition (13) holds, the transition rate depends on the routing priorities. First note

that for nd to increase from zero to one, we need a completion of from job class T at

serverj that is transformed into a job of classTi. Although necessary, this condition is

not sufficient since a transfer of a job to class T may not be routed to server i unless

server i has the highest priority among those available to process job Ti. This means that

the following condition

aT, <aT,, Vt E QT;s.t. 6(n-d) = 0
keK,

must be satisfied. Since the transfer rate of jobs of class Tto class Ti is itji,, the

transition rate r,) - d is given by:

ra-d
i = 4jtji(CT,),
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where

1y(,) = ifa, ,,, - t E QT; and

0, otherwise.

When condition (14) holds, then the transition rate depends on the relative size of

the queues as well as the routing priorities in the network. There can be a transition from

Nia-d to N if the queue for job classj has one of the longest queues for any of the servers

in the setQj. In other words, for a server r in the set Qj to select queuej, queuej must be

one of the longest queues in the set{Tf : E Kr}, the set of feasible job classes for server

r or its related servers Kr. We again denote by Br the number of jobs that have the longest

queue in the set {TJ: f E Kr}) and set r(j) = 1 if the queue of job class i is one of the Br

longest queues in the set {Tf /E Kr}, and 0 otherwise. Hence we conclude that the

transfer to class T, occurs at the rate E t'rtrer ( ) However, the transfer of a job at this
rCoj Br

rate to class Ti may not result in the job being routed to server i unless server i has the

highest priority among those available to process jobT,. This means that the following

condition

aT, < T t E QTe; s.t. ( n k ) = 
kEK,

must be satisfied. Hence the transition rate ra-d for condition (14) is given by:

r-d = (aT.i ) Zr I,
rEQ, Br

where

,) = ifa 1 - ( n)) < aT,, Vt E QT; and
r ia) = (20)

0, otherwise.

Thus, the transition rate can be written as:
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a-d

= /iti,, if condition ( 11) holds;

r= E rt'e (J), if condition (12) holds;

(21)
= itjty(aj i) , if condition (13) holds;

= (a)T,) 'rtrrJ) ' if condition (14) holds.
rQj Br

We still have to determine the rates at which the network experiences a self-

transition, when in state N, as a result of a combination of a service completion and a

service request. When condition (15) holds in the case of a valid return of a job to the

same class, the rate at which a service completion occurs is simply A, and therefore the

rate at which the job is transferred to class Ti is utiT . However for n to increase again

from zero to one, we need this job that has returned to class Ti to be routed to server i, so

as to effect a self-transition; this event occurs when

server i has the highest priority among those available to process job Ti. This means that

the condition a,, <aT Vte QT; s.t. ( Zn k d) =O must be satisfied. Since the
keK,

transfer rate of jobs of class Tj to class T is ut , the transition rate r - d is given by:

r = AitiTY(aT,i),),
(22)

where y(aT,) is given by Equation (20). When we further account for inter-class

transitions that are invalidated as a result of WIP capacity bounds, we add the transition

rates derived for conditions (11) and (13) for the same control policies to compute the

effective transition rate when condition (15) applies.

When condition (16) holds in the case of a valid return of a job to the same class,

the transition rate depends on the relative size of the queues. There can be a transition

from Nia-d to N if the queue for job class j has one of the longest queues for any of the

servers in the set Qj . In other words, for a server r in the set Q to select queue j, queuej
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must be one of the longest queues in the set {Tf: f Kr}, the set of feasible job classes

for server r or its related servers Kr . We again denote by Br the number of jobs that have

the longest queue in the set {T : f Kr} and set r(j) = 1 if the queue of job class i is

one of the Br longest queues in the set {T'f : E Kr}, and 0 otherwise. Hence we

conclude that the transfer to class Ti, and hence the self-transition through a combination

of a service completion and service request occurs at the rate r, = rtr'ier(i) . When
rEQj Br

we further account for inter-class transitions that are invalidated as a result of WIP

capacity bounds, we add the transition rates derived for conditions (12) and (14) for the

same control policies to compute the effective transition rate for when condition (16)

applies.

The RR-LQF Policy

The sets of entering states are the same for this queue selection policy as in the SP-

LQF control policy. Only the transition rates differ. When condition (5) holds, a

transition from NI to N clearly occurs with rate:

ri( = . (23)

On the other hand, when condition (6) holds, the transition rate depends on the routing

priorities. First note that for na to increase from zero to one, we need an arrival from a

job class Ti. Although necessary, this condition is not sufficient since an arrival of a job

of class Ti may be routed with equal probability to any of the servers that are idle and are

in contention to service the job. The rate r is therefore given by:

2-
ra (1- ( nkna)) (24)

Puing it all together, Kwe have:

Putting it all together, we have:

38



) holds;

,if condition (6) holds. (25)

The transition rates Nid to N are the same as described for the SP-LQF control policy,

in Equation (19). The transition rates Nla-d to N however have to be derived separately

for this control policy. If condition (11) holds, then we clearly haver - a = itji If

condition (12) holds, then following the LQF queue selection policy, we have the same

transition rate as described for the SP-LQF policy: ra =) where Br is the
rEcj Br

number of job classes that have the longest queue in the set {T : f E Kr}; and r(i) = 1

if the queue of job class i is one of the Br longest queues in the set {Tf : f E Kr}, and 0

otherwise. When condition (13) holds, the transition rate depends on the random routing

principle. Note that for n-d to increase from zero to one, we need a completion of

service for job classTj at server j that is transformed into a job of classT,. Although

necessary, this condition is not sufficient since a transfer of a job to class T, may only be

1
routed to server i with probability , where the denominator

JEQrj kK,

represents the number of servers that are idle and in contention to service the job of class

Ti at the moment of transfer. Hence the transition rate when condition (13) holds is given

by r = When condition (14) holds, then the transition rate depends

L, ' (1 -(nka-d )
on the relative size of the queues as well as the random routing principle. Proceeding iK,

on the relative size of the queues as well as the random routing principle. Proceeding in
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the same fashion as in the SP-LQF control policy, we obtain that

a-d = 1 EIrtr, r(j)

L, ( 1 _ i( Ea-d)) rEQ Br
keK,

We can similarly determine the rates at which the network experiences a self-

transition, when in state N, as a result of a combination of a service completion and a

service request. When condition (15) holds, the rate at which a service completion occurs

is simply u,, and therefore the rate at which the job is transferred to class T is it, T.

However for n, to increase again from zero to one, we need this job that has returned to

class Ti to be routed to server i, so as to effect a self-transition; this event occurs with

probability that is the inverse of the number of servers idle and in contention to service a

job of class Ti. Hence again the transition rate is given by: r =

E, - 5( nk)
tEQVi kEK,

Finally, when condition (16) applies, the rate at which a service completion occurs,

depleting the queue for class i, is written using the LQF policy as I /irtrr(J) where
rEQ Br

Br is the number of job classes that have the longest queue in the set {Tf : f E Kr}; and

Er(j) =1 if the queue of job class i is one of the Br longest queues in the set

{T : f E K,.}, and 0 otherwise. Since the queue i gets replenished by this new service

request at the same rate, we have the required transition rate: r = 'rtr,(I) 
rEQO Br

The RR-SP Policy

The rate r for the RR-SP policy is the same as in the RR-LQF policy. The rate rid is

given as follows; when condition (8) holds, a transition from Nd to N clearly occurs with

rate: rid =Au1 - ti r . However, when condition (9) applies, the transition rate depends
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on the strict priority scheme. First note that for n to decrease by one, we need a

departure from a server that belongs to the setQ,. Although necessary, this condition is

not sufficient since a service completion at server r from the set Q, may not decrease n,

by one, unless the job class i has the highest priority among all the job classes in queue

that can be routed to the servers in the set K r . This means that the following condition

must be satisfied:

Y ,r < T, Vr E Q;Vt E K, s.t. n >2-c5( n dk);V =
keKK,,k•t

Since the departure rate from server r is r(l - trr,o the transition rate rid is given by:

r reOi z =1rd = lr(i,r) ltr, z))
where

0(yi) = l '(if Yi,/1- 2-( - 3nk )l-, < VrEQi;VtEKr;v-1 (26)

0, otherwise.

The transition rates N ia-d to N are also derived as follows. If condition (11) holds,

then we clearly have r0d =puitiJ. If condition (12) holds, then following the SP queue

selection policy, we have the same rate of depletion of a job at queue i as was derived for

the expression rd. Hence we have a net transition rate: rd = ;(yr(Y)trJ), where
reQj

9
(Yi,r) is defined in Equation (26). When condition (13) holds, the transition rate depends

on the random routing principle. Note that for na-d to increase from zero to one, we need

a completion of service for job class Tj at serverj that is then transformed into a service

request of class Ti . Although necessary, this condition is not sufficient since a transfer of
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1a inh to las T mv nnlv h roulted tn server i with nrnhhilitv

E 1 - L nk )
tEQ i kK,

where the denominator represents the number of servers that are idle and in contention to

service the job of class Tiat the moment of transfer. Hence the transition rate when

condition (13) holds is given by rT = dujtjT . When condition (14) holds, then

tQk kcK,

the transition rate r depends on the SP queue selection policies as well as on the

random routing principle. Proceeding in similar fashion as in the SP-LQF and the RR-

Z (UrO(,, r)t,,i)
LQF policies, we obtain that ra-d = Q'

1Q2 kEK, k

We then determine the rates at which the network experiences a self-transition, when

in state N, as a result of a combination of a service completion and a service request.

When condition (15) holds, the rate at which a service completion and a service request

both occur at server i, is given by r, = . This is derived in the same

'Eei 1- 6(I nk))
tt Q-i kFK,

manner as for the RR-SP policy. Further, when we account for inter-class transitions that

are invalidated as a result of WIP capacity bounds, we add the transition rates derived for

conditions (11) and (13) for the same control policies to compute the effective transition

rate. However, when condition (16) applies for the case of a valid return of a job to its

same class after completion of service, the rate at which a service completion occurs,

depleting the queue for class i, is written using the SP policy as (urO(Yi,r)). Since the
reQi

queue i gets replenished by this new service request at the same rate, we have the

required transition rate: (UrO((y,r)tr,). Again, when we account for inter-class
reQi

transitions that are invalidated as a result of WIP capacity bounds, we add the transition
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rates derived for conditions (12) and (14) for the same control policies to compute the

effective transition rate.

The SP-SP Policy

The rate ria for the SP-SP is the same as in the SP-LQF policy, while the rate rid is the

same as in the RR-SP policy. The transition rates Nia-d to N are derived as follows. If

condition (11) holds, then we clearly haver,-d =ujtj i . If condition (12) holds, then

following the SP queue selection policy, we have the same rate of depletion of a job at

queue i as was derived for the expression. Hence we have a net transition rate:

ra-d = (urO(yr.,)t,), where (y,,)is defined in Equation (26). When condition (13)
reQj

holds, the transition rate depends on the SP routing policy. Note that for nI-d to increase

from zero to one, we need a completion of service for job class Tj at server j that is

transformed into a job of class T. Although necessary, this condition is not sufficient

since a transfer of a job to class Ti may not be routed to server i unless server i has the

highest priority among those available to process job Ti. This means that the following

condition

aT, <aT,' t E QT; s.t. 6(Z na-d) 0
keK,

must be satisfied. Since the transfer rate of jobs of class Tjto class Ti isajtj, the

transition rate rj' - d is given by:

red = ujtjir(aTi),

wherey(aT) is as defined in Equation (20). When condition (14) holds, then the

transition rate r i -ddepends on the SP queue selection policies as well as on the SP

routing policies. Proceeding in similar fashion as in the derivation in previously shown

policies, we obtain thatrjad=y(a-,)~ (urQ(r,r)trT). We then turn to the task of

determining the rates at which the network experiences a self-transition, when in state N,
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as a result of a combination of a service completion and a service request. When

condition (15) holds, the rate at which a service completion and a service request both

occur at server i, is given by r = itiiY(aT;i) . When we account for inter-class transitions

that are invalidated as a result of WIP capacity bounds, we add the transition rates

derived for conditions (11) and (13) for the same control policies to compute the effective

transition rate. Finally, when condition (16) applies, the rate at which a service

completion occurs, depleting the queue for class i, is written using the SP policy

asC (ur(y,r)). Since the queue i gets replenished by this new service request at the
reQi

same rate, we have the required transition rate: (Cr(Yi, r)trJ). Once again, when we
reQi

account for inter-class transitions that are invalidated as a result of WIP capacity bounds,

we add the transition rates derived for conditions (12) and (14) for the same control

policies to compute the effective transition rate.

The transition rates for the remaining policies, namely SP-RS and RR-RS, can be

determined in a similar fashion. The details are omitted.

3.3 Performance Measures
From p(N), we can obtain the marginal probability p(ni) associated with the state

variable n,. Our primary measure of performance is throughput for each job class i which

can be obtained as follows:

rP = (1- p( nj --bj)) (27)
JEQ,

from which, we can then obtain the overall network throughput as:

n

'r, Zrp. (28)
i=l

We can also derive expressions for throughput due to each serverj as:

= j(1 - p( n == 0)). (29)Tr GKP (29)

Several other measures of expected performance can be obtained as well, including the

expected queue size for each job class, average utilization of each server, and expected
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total WIP in the network. Significantly, using this framework, it is possible to obtain the

variance of the throughput of job class, or each server in the network. Finally, variances

of WIP levels in the network for each job class can also be obtained using the evaluation

scheme described in the previous section.
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4 Numerical Examples and Insights on Single-Stage
Systems

4.1 Evaluation of flexibility mechanisms on throughput measures

Specialization Chaining (K=2) Total flexibility (K=5)

Figure 11 - Effect of Increasing Flexibility in a Queueing System

To illustrate the application of our models with a small example, consider a basic

queueing system of the type shown in Figure 11. Consider also for a moment, that it is

only throughput that is a performance measure of interest to us. Let 2, denote the arrival

rate of each customer (i = 1, ... , n), where the arrivals are assumed to follow the Poisson

process. Similarly, letuj denote the processing rate of each server ( = 1, ... , m), where

the processing time for each server is an exponentially distributed random variable with

meanl/,uj. Finally, let a denote the binary variable (0/1) that indicates whether

customer i can be processed at serverj. In addition to specifying feasible customer-server

assignments, the analysis of the example flexible queueing system requires the

specification of a control policy. The control policy is applied at each decision epoch.

Decision epochs are triggered by either the arrival of a customer or the completion of

service by a server. When a customer arrives and finds multiple idle servers, the control
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policy specifies which server is selected. Similarly, when a server completes service and

finds more than one customer in the queue, the control policy specifies which customer is

selected next for service. Hence a control policy is defined by a server selection rule and

a customer selection rule.

Consider for the control of the example queueing system, the following four policies.

Under the first policy, policy C1, servers and customer classes are assigned priorities

based on their flexibility. The server with the least flexibility is assigned highest priority

and the same for customers. Flexibility is measured by the number of customers a server

can process or the number of servers to which a customer can be assigned. Under the

second policy, policy C2, servers are assigned priorities based on the ratio of the sum of

arrival rates of all customers that can be assigned to a server to the server's processing

rate. Each server j ( = 1, ... , m) is assigned a priority based on the ratio

y l ajA2 /,j with lower ratios corresponding to higher priorities. Similarly, customers

are assigned priorities based on the ratio of a customer's arrival rate to the sum of the

processing rates of servers to which the customer can be assigned. That is, each customer

i (i = 1, ... , n) is assigned a priority based on the ratioi / = au/i , with higher ratios

corresponding to higher priorities. Hence, policy C2 gives priority to servers with the

least potential load and to customers with the least potential available capacity. Under the

third policy, policy C3, servers (customers) are assigned priorities based on their service

(arrival) rates with higher rates corresponding to higher priorities. The fourth policy, C4,

customers choose a server at random from the pool of available servers, and similarly

servers choose for processing a customer from the queue in random fashion, but in

keeping with the process flexibilities.

Recall now that we consider a system with five customer classes and five servers. We

consider 21 flexibility configuration scenarios. We start with a dedicated scenario in

which each customer can be routed to only one server and each server can process only

one customer (scenario 1). In scenarios 2-6, we increase flexibility by adding one link at

a time between customers and servers until we reach a chained configuration (i.e., in

scenario 2 customer 1 can be assigned to servers 1 or 2, in scenario 3, customer 1 can be

assigned to servers 1 or 2 and customer 2 can be assigned to servers 2 or 3, etc). In

47



scenarios 7-21, we further increase the flexibility one customer at a time and one link at a

time starting with customer 1 until each customer has full flexibility (e.g., in scenario 7,

customer 1 can be assigned to either servers 1, 2 or 3, in scenario 8, it can be assigned to

either servers 1, 2, 3 or 4, etc). Scenario 21 corresponds to a system with full flexibility

where any customer can be routed to any server and any server can process any customer.

We consider five levels of system loading, L1 = 0.6, L 2 = 0.9, L 3 = 1.2, L4 = 1.5, and

L5 = 1.8, where L = En /I m aj for i = 1, ..., 5. We also consider four levels of

demand and service rate heterogeneity, Hi, H2, H3, and H4. For level Hi, /A = 0.1 and

,u =uj +0.45 for = 2 ,..., 5, and 25 =0.lxL,, and A =A+, +0.45xL for i= 2, ..., 5.

For heterogeneity level H2, we assign equal processing rates and services rates to all the

customers and all the servers. For level H3, we invert the assignments in level Hi, by

settingu 5 = 0.1 and u, = Uj+, + 0.45; j = 1...4, and by letting A = 0.1 x L, ;

2 = ,_ + 0.45 x L for i = 2, ... , 5. For level H4, the demand rates are the same as in HI

and the service rates are the same as in H3 .

The effect of the different control policies for the different flexibility configurations

and heterogeneity levels is illustrated in Figures 12-14 (the results are shown for systems

with buffer or queue capacity levels bi = 3 for i = 1,..., 5, but are qualitatively similar for

other buffer values). As we can see, from Figures 12 and 13, policy C2 dominates the

other policies suggesting that an optimal policy would take into account both the

flexibility of servers and customers as well as the capacity available to the customers

relative to their demand rates. The results also suggest that when there is significant

heterogeneity in demand and service rates, assigning priorities based on these rates could

be more helpful than assigning priorities based on flexibility (see Figure 12). Figure 13

illustrates how higher flexibility under a sub-optimal policy, such as C3 or C4, could lead

to lower throughput (this effect is observed even when there is symmetry in demand and

service rates).

Figures 12 and 13 also illustrate how the effect of increasing flexibility could be

different depending on the heterogeneity in demand and service rates. In particular,

flexibility is useful when it is associated with either the fastest servers or the customers

with the greatest demand (this explains the observed jumps in throughput with one step
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increases in flexibility). The results also show that while there could be value to

choosing a good control policy, well designed process flexibility configurations can have

more influence on performance than control policies alone. In other terms, an increase in

flexibility, if it is carefully designed and effected, can lead to significantly larger

improvements in throughput than can be achieved by improving control policies alone.

Finally, we note that the effect of flexibility configuration is highly conditional on the

heterogeneity in demand and service rates. For the same number of links between

customers and servers (and for the same total system capacity and demand), throughput

can vary widely depending on how capacity (demand rates) is distributed among the

servers (customers). This is illustrated in Figure 4 where the percentage difference in

throughput between systems with heterogeneity type HI and systems with heterogeneity

type H3 is shown for different levels of flexibility and different levels of loading. We

observe that an increase in flexibility can switch the ordering of the two systems in either

direction, so that an increase in flexibility can determine the usefulness of a particular

distribution or allocation of capacity and demand rates, over another allocation scheme.

This provides further support for the assertion that when possible, the design of flexibility

mechanisms at the strategic, tactical and operational levels must be conducted in an

integrated fashion.
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4.2 Evaluation of flexibility mechanisms on revenue-based measures

In this sub-section, we illustrate the importance of operational control policies to

system managers who measure the performance of their system not only by throughput or

utilization criteria, but also by revenue and cost considerations. In particular, we examine

for varying assumptions on the service cost structures and revenue profiles for the various

job classes, the performance of commonly used cost and revenue based control policies

as compared to control policies of the type shown in section 4.1 that do not explicitly

capture the revenue or cost considerations. The setting for the numerical analysis is still

the same system as shown in Figure 11. The only difference is that we allow for

heterogeneity in not only the arrival rates for job classes, and service rates for the

different servers, but also in the unit costs of processing at the different servers and the

unit revenues resulting from the arrival of jobs of different classes into the system. Table

1 shows the cost and revenue profiles that we consider for servers and the job classes.
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Code Revenue Profile of Customers Cost Profile of Servers
VI Uniform Linear in Service Rate
V2 Uniform Quadratic in Service Rate
V3 Linear in inverse of arrival rate Linear in Rate
V4 Linear in inverse of arrival rate Quadratic in Service Rate
V5 Quadratic in inverse of arrival rate Linear in Rate
V6 Quadratic in inverse of arrival rate Quadratic in Service Rate
V7 Uniform Linear in Flexibility
V8 Uniform Linear in Flexibility and in Service Rate
V9 Linear in inverse of arrival rate Linear in Flexibility
V 0o Quadratic in inverse of arrival rate Linear in Flexibility
V1 1 Linear in inverse of arrival rate Linear in Flexibility and in Service Rate
V12 Quadratic in inverse of arrival rate Linear in Flexibility and in Service Rate

Table 1 - Revenue and cost profiles considered for the numerical analysis

Essentially, we repeat the numerical experiment shown in section 4.1 but with some

changes in parameter values, and for a broader set of control policies. We consider only

11 flexibility configuration scenarios. We start with the chaining process flexibility

scenario in which each customer can be routed to its two adjacent servers to obtain the

third configuration (denoted as K=2) shown in Figure 11. In scenarios 2-11, we increase

flexibility by adding one link at a time between customers and servers so that we progress

towards higher orders of process flexibility (e.g., in scenario 2, customer 1 can be

assigned to either servers 1, 2 or 3, in scenario 3, it can be assigned to either servers 1, 2,

3 or 4, etc). We consider four levels of system loading, L1 = 0.5, L2 = 0.75, L 3 = 1.0, and

L5=1.25 where L, = E /,'j1 =lj for i = 1, ... , 5. We again consider four levels of

demand and service rate heterogeneity, H1, H2, H3, and H4. For level HI, u, = 0.1 and

,u =uj,_ +0.45 forj = 2,..., 5, and 5 =0.1x L,, and A =A 1,, +0.45 xL, for i= 2, ... , 5.

For heterogeneity level H2, we assign equal processing rates and services rates to all the

customers and all the servers. For level H3, we invert the assignments in level Hi, by

settingu 5 = 0.1 and ui = j+, + 0.45; j = 1...4, and by letting, = O. x L,;

2 = A_, + 0.45 x L for i = 2, ... , 5. For level H4, the demand rates are the same as in HI

and the service rates are the same as in H3. Finally, we consider the 12 levels of revenue
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and cost related heterogeneity among customers and servers respectively that are shown

in Table 1.

Consider now for the control of the example queueing system described, the

following 15 control policies. Under the first policy, policy C, servers are assigned

priorities based on the ratio of the sum of arrival rates of all customers that can be

assigned to a server to the server's processing rate. Each serverj ( = 1, ... , m) is assigned

a priority based on the ratio E 1aj=/, /j with lower ratios corresponding to higher

priorities. Similarly, customers are assigned priorities based on the ratio of a customer's

arrival rate to the sum of the processing rates of servers to which the customer can be

assigned. That is, each customer i (i = 1, ..., n) is assigned a priority based on the ratio

/ E'l aj,'ij , with higher ratios corresponding to higher priorities. Hence, policy C 1

gives priority to servers with the least potential load and to customers with the least

potential available capacity. Under the second policy, policy C2, servers (customers) are

assigned priorities based on their service (arrival) rates with higher rates corresponding to

higher priorities. In the third policy C3, customers choose a server at random from the

pool of available servers, and similarly servers choose for processing a customer from the

queue in random fashion, but in keeping with the process flexibilities. For policies C4 to

Cl5, we simply assign higher priorities to less expensive resources, and higher priorities

to higher revenue customers, where the unit costs and unit revenues are derived according

the cost and revenue profile schemes described in Table 1.

Briefly, we describe how we assign unit costs to servers and unit revenues to

customers based on the profiles defined in Table 1. Firstly, for uniform rates, we simply

assume that the unit costs and revenues for servers and customers alike are equal to 1.

Unit costs that are linear in service rates are normalized and set equal tocj = Pi

since we can ensure by doing so that the ratio of unit costs between any two servers is

preserved in accordance with the linear relationship of cost with service rates. Using

2

similar logic, unit costs that are quadratic are set equal to Similarly unit

ET, i

53



revenues say for customer P, when linear in the inverse of arrival rates are normalized

and set equal to r-, unit revenues for customer P2 when linear in the inverse of
En l rn

arrival rates are normalized and set equal to n4 and so on in a cyclical fashion. Costs

Ei=l En
-_=1 a4.Fa

for a serverj that are linear in process flexibility are computed as .Finally

Cjml Ci=l aili

costs for a server j that are linear in process flexibility as well as in service rate are

Z( En aA2, computed as ( ]'i i ' '
Next, we develop a mechanism for the comparison of revenue and cost-based control

policies with policies that are based on throughput considerations alone. Firstly the

revenue performance of any system is computed simply as , i - . Secondly, the

Z C 1 i
relative revenue performance index of a control policy Ck; k=4... 15 is computed as

T = min k k ly}, . This measure of revenue performance indicates how well a
/1 /2 /2

revenue or cost-based control policy has performed for a system, over the closest

performing control policy that is designed based only on throughput and capacity

considerations. Figures 15 to 25 then describe the relative performance of revenue-based

control policies for various settings of system parameters. Clearly lower ratios (<1.0) for

T imply that revenue or cost based control policies are inefficient for the specific system

scenarios under consideration. Higher ratios on the other hand imply that simple control

policies based on revenue and cost considerations are relatively effective for the

particular system. Based on such definitions and numerical analysis, we make the

following brief observations regarding the design flexibility for revenue or cost based

measures.

1. Simplistic revenue or cost based control policies can be either beneficial or

can result in inferior revenue performance relative to demand or capacity
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based control policies for the systems considered. The interesting observation

for system managers however is that well designed control policies that are

based on throughput and capacity management considerations and that work

well for the process flexibility configurations and capacity allocation scheme

in place, can in fact lead to superior performance on revenue based measures.

This observation is supported by figures 18 through 20, where for a wide

range of system parameter settings, the values of T, the relative performance

index, were consistently lower than 1.0.

2. The effect of revenue or cost based control policies can change with the

loading conditions. In some systems, as the load increases the positive impact

of revenue or cost based control policies diminishes rapidly; this is observed

in particular in Figure 17. In other systems the positive impact of revenue or

cost based measures increases with the loading levels, whereas in some other

cases one does not observe any change at all. While this accounts for all

possible forms of relationships, a deeper analysis of the results does seem to

indicate that revenue based control policies work well in lower loading

conditions (or at lower utilization levels) where overall throughput is not

influenced by control policies to a significant extent. When the throughput

performance measures are invariant under different control policies, a

redistribution of utilization levels and customer balking rates through

carefully constructed revenue based policies can indeed improve revenue

performance. On the other hand, it is also true that at higher loading levels the

throughput performance of the system could be impaired by revenue based

control policies, especially when the control policy offers a poor fit with the

process flexibility configuration. In such situations, overall revenue measures

are also inferior with revenue based control policies.

3. Heterogeneity levels in our experiments represent the different ways system

managers can distribute or allocate capacity among the servers. Figure 23

demonstrates the relative significance of tactical flexibility mechanisms

involving allocation or redistribution of capacity among servers on revenue

performance. While the parameter settings have been chosen to emphasize the
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differences between different capacity allocation schemes (in Figure 23 for

example, one can obtain a two-fold improvement in revenue performance by

allocating capacity differently to the servers), it is important to note the

independent influence of this design factor on system performance.

4. Process flexibility has come to be understood as a mechanism for increasing

overall system capacity through the sharing of demand from multiple job

classes across servers, and has been shown to be particularly useful in cases of

high variability in demand and service rate. The effect, therefore, of increasing

process flexibility on the performance of revenue based control measures,

should be in spirit, similar to the effect of decreasing the loading on the

system. Where it is possible to discern the impact of revenue based control

policies, for example in Figure 21, we see that an increase in process

flexibility can lead to lowering of system utilization levels, which in turn

offers system managers with the opportunity to deploy revenue based control

policies.

5. Overall, the results again confirm the need to design flexibility mechanisms in

the form of strategic process flexibility, tactical capacity allocation schemes

and operational level control policies in an integrated fashion. The impact of

these design factors on the revenue performance of the system are shown to be

of some significance; this in turn warrants system managers to employ more

careful analysis of decisions involving such design factors, and their impact

on revenue performance.
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Figure 15 - The performance of revenue / cost based control policies for varying loads
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Figure 16 -- The performance of revenue / cost based control policies for varying loads
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Figure 17 - The performance of revenue / cost based control policies for varying loads
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Figure 19 -Performance of revenue based control policies for varying process flexibilities
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Figure 20 -Performance of revenue based control policies for varying process flexibilities
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Figure 21 -Performance of revenue based control policies for varying process flexibilities
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levels (Scenario 11)
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Performance of Revenue Based Strict Control Policies
Medium Load L2

-00.8 * 1-1.2
*0.8-1

0.6-0.8

.6 Indexed Performance 00.4-0.6
*0.2-0.4
*0-0.2

Revenue I Cos

Heterogeneity

Figure 23 -Performance of revenue based control policies for Scenario 11
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5 Conclusions and Future Work

In this thesis, we presented a framework for the representation, modeling and analysis

of flexible queueing systems. The analytical model allows for the analysis of general

system configurations with an arbitrary number of job classes and servers, arbitrary

process flexibilities, heterogeneity in demand and service rates, and a wide range of

control policies. The models are generic and can be used to analyze flexible queueing

systems in a variety of applications even with the computational challenges that arise out

of the level of detail in the analysis. In particular, for the purpose of comparing process

flexibility configurations based on throughput measures, and the accompanying decisions

on capacity allocation and control policies, these models could prove useful for

developing insight through the analysis of relatively smaller scale models. Furthermore,

our characterization of the probability distribution of system states and the transition

probability between these states offers the opportunity to formulate optimal control

problems (e.g., using the framework of a Markov decision process).

From a broader perspective, our study serves to highlight for the benefit of system

managers the critical design factors that govern system performance along a number of

performance dimensions including revenue and cost based measures. From an analytical

perspective, our model can be extended in a variety of ways. This includes relaxing the

assumptions of Poisson demand and exponential processing times and allowing service

times to vary by customer and server. It would then be useful to examine the impact of

demand and service variability on different system configurations and different control

policies. In many applications, such as manufacturing, the processing of multiple

customers on the same servers is accompanied by losses in efficiencies due to switchover

times or costs. It would be worthwhile to extend the models to account for these loss

factors. Finally, from an algorithmic perspective, it could prove worthwhile to explore

better state representations, and also solution techniques that solve for the performance of

such job-shop like queueing systems, and going beyond allow for a computationally

efficient evaluation of alternative flexibility mechanisms that can lead to improved

performance.
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Appendix Al: Computer Code for Single Stage Analysis

//SP_SP.cpp:Definestheentrypointfortheconsoleapplication.
ii

#include<stdlib.h>
#include<iostream.h>
#include<fstream.h>
#include<string.h>
#include<stdio.h>
#include<math.h>

intmain(intargc,char*argv[])
(//O
charnames[25 ;
strcpy(names,"M"'I;
ifstreaminFlexFile(names,ios:: in);

if(!inFlexFile)
(Ill
cerr<:"Filecouldnotbeopened\n";
exit( I );
}l/l
floatFlexdata;
floattesta[25][25],indicator[ 10];

inta I ,a2;
al=0;
a2=0;

intcnt=0;
intcntl=0;
introws= 100;
intcols= 100;
while(inFlexFi le>>Flexdata)
(I//
testa[a I][a2]=Flexdata;
cnt=cnt; I;
if(cnt==2)
//112

rows=testa[0][0];
cols=testa[0][ 1];

a2=a2+ 1;
if(a2===cols)
11/2

al=al+l;
a2=0;
}//2
}11/
intm,ij,z,l l;
m=rows- I;
intQ2[10][ 0],T[I 0][10],R [ 10 ],C[10];
floatlarn[ I O],mu[ 10];

for(i=O;i<=m- I ;i++)
(1//
lam[i]=testa[i+ I ][m];
mu[i]=testa[i I][m+ 1];
R[i]=testa[i+ I ][m+2];
for(j=O;j<=m-I ;j++)
(112
Q2[il]j]=testa[i+ I ]i];

}//2
C[i]=testa[0][i+3];
cout<<"CustomerPriority"<<i<<"="<<C[i]<<endl;
}/II

for(i=0;i<=m- 1 ;i++)
//l

for =O;j<=m- 1 j++)
(//2
if(Q2[j][i]==l)
(//3
T[i][j]=Q2lj][i];
//13

else
(1/3
(ll3T[i][j]=:;
}//113

}//2
}1//

intp,b;
p=rows- I;
b=testa[0][2];

intst_sp_size;
st_sp_size=pow((b+ I ),m);

intstat_mat[100000][9];
intstat flag[ 100000];

//FirstCol umnofstate matrixistheindexintothestatespace
for(i:0;i<=st_sp_size- I ;i++)
{(/I

stat_mat[i][0]=1;
stat_mat[i][ I ]=i+ I;
stat_flag[i]=0;
//

//Al Itheotherelementsinthematrix
intk=-1l;
intcycle,n,l;
for(i=2;i<=m+ I ;i++)
{(/I
1=0;
while(l<=stsp_size- 1)
{//112
k=k+l;
cycle=pow((b+ 1 ),(m+ I-i));
if(k>b)
{//3
k=0;

n=l;
while(n<=cycle)
(113
n=n+l;
stat mat[l][i]=k;
1=1+ 1;
}113

}/112
}111
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for(i=0;i<=st_sp_size- I i++)
l//I

for(k=2;k<=m+ 1 ;k++)
{(//2
if(stat_mat[i][0]!=())
(//3
if(stat_mat[i][k]=0)
{//4
for(l=0;1<=m

-
1 ;+-)

I//5
if((Q2[1][k-2]

= =1 I )&&(stat_mat[i][1+2]>1 ))
{//116
statmat[i][0]=0;
(//6
(1/5
)1/4
}//3
}//112
}//

intreal size;
real_size=0;
for(i=0;i<=st_sp_size- 1 ;i++)
{//1
i f(statmat[i][0]! =0)real_size=real_size+ I
}//1

floatcount[29],temp[29],eps[29],beta[29],gam[29];
intflag,o,stat_indxa,stat_indxd,pow_val,flag l;
longpnter[ 100000];
floatrow_sum[ I00000];
for(j=Oj<st_sp_sizej++)
(1//2
row_sumU]=0.0;
}//112

for(i=0;i<29;i++)
{//l
count[i]=0.0;
temp[i]=-0.0;
eps[i]=0.0;
beta[i]=0.0;
gaml i]=O.0;
}//I

strcpy(names,"LPFile.lp");
ofstreamoutLPFile(names,ios: :out);
if(!outLPFile)
{//1
cerr<<"Filecouldnotbeopened\n";
exit( 1);
}//
strcpy(names,"Stat mat");
ofstreamoutStat_mat(names,ios: out);
if(!outStat mat)

cerr<<"Filecouldnotbeopened\n";
exit( I);

outLPFile<<"\\ProblemName:LPTest\n";
outLPFile<<" Maximize\n";
outLPFile<<"obj: I .O\n";
outLPFile<<" SubjectTo\n";
floattran_val,sum col;
tran_val=0.0;
introwi,coli;
intcol_cnt;

col_cnt=0;
for(i=0;i<=st_sp_size- I ;i++)
(//I
if(stat_mat[i][0] !=0)
{//112
sum_col=0.0;
col_cnt=0;
outLPFile<<"c"<<i<<":";
for(k=0;k<=m-1 ;k++)

temp[k]=0;
temp[k+m]=0;
(//3
for(k=0;k<=m- 1 ;k++)
//3

temp[k]=stat_mat[i][k+2]- 1;
temp[k+m]=stat_mat[i][k+2]+ I;
//113

for(k=0;k<=m- I ;k++)
(113

stat_indxa=st sp_size- I;
stat_indxd=st sp_size-1 ;
for(l=0;1<=m- 1 ;1++)
(//4
if(l!=k)
{//5
pow_val=pow((b+ I ),(m-l- 1));
stat_indxa=stat_indxa-((b-stat_mat[i][1+2])*pow_val);
stat_indxd=stat_indxd-((b-stat_mat[i][+ 2] )*pow val);
}1/5
else
(I/5
pow val=pow((b+ I ),(m-l- I));
stat_indxa=stat_indxa-((b-temp[k])*pow_val);
stat_indxd=statindxd-((b-temp[k+m])*pow val);
(115
}//4
if(temp[k]==0)
(//4
tran_val=0.0;
flag=0;
for(l=0;1<=m- ;I++)
(115
if((T[k][]==l )&&(statatmat[i][1+2]>I))
{//116
flag= l;
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if(flag=0)
{//5
if(stat_mat[stat_indxa[0] !=0)
{//116
for(l=0;1<10;l++)
{//7
indicator[l]= .0;

for(l=0;1<=m- 1 ;I++)
{//7
if((stat mat[i][l+2]==0))
(//8
for(l11=0;11<=m- ;11++)
[//9
if((Q2[ 1][]==I )&&(Q2[111 I ][k]==I ))

if(R[I]<R[k])
//I I

indicator[I ]=0.0;
//11 1

if((R[I]==R[k])&&(indicator[l I ]>0.0))
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if(l!=k)
(/1/12
indicator[l I ]=indicator[l I ]+ 1.0;
}2//
//112

}//10
(//9
(//8
(//7
for(l=0;l<=m- I ;l++)//forallcustomerss
{(//17
if((Q2[ll][k]== I )&&(indicator[l]==l .0))

tran val==tranval+ lam[l];

if((Q2[l][k]==l )&&(indicator[l]> 1.0))

tran_val=-tran val+ ( lam[l]/indicator[l]);

}117(//7
if(tran_val>0.0)

if(stat_flag[stat_indxa]==O)

statflag[stat indxa]=1;
outStat mat<<stat indxa<<"\t";
for(z=0;z<=m- I ;z-+)

outStat_mat<<stat_ mat[stat_indxa][z+2]<<"\t";

outStat mat<<endl;

if(col__cnt==0)
1//8
outLPFile<<tran_v al<<"x"<<stat_indxa;

sum col:=sum_col+tran_val;
row sum[stat_indxa]=row_sum[stat_indxa]+tran_val;
tran val==O.O;
col cnt=col_cnt+ 1;
(//8
else
(1/8
outL PF i le<<'+'<<tranval<<"x"<<statindxa;
row sum[stat__indxa]=row_sum[stat indxa]+tran_val;
tran_val==O.O;
col_cnt=col_cnt+ l;
(//8
)1/7
}//6
}//5
}I//4

elseif((temp[k]<b)&&(temp[k]>O))
I/4
tran_val==O.O;
flag=0;
//Component4
if(flag==0)
//Component5
(1/5
if(stat_flag[stat_indxa]==O)

stat_flag[stat_indxa]= 1;
outStat_mat<<stat indxa<<"\t";

for(z:=0;z<=m- I ;z++)

outStat_mat<<statmat [stat_indxa][z+2]<<"\t";
J

outStat mat<<endl;

tran_val=lam[k];
//Component5
if(col_cnt==0)
(//7
outLPFile<<tran_val<<"x"<<stat_indxa;
row_sum[stat_indxa]=row_sum[stat indxa]+tranval;
sum col=sum col+tran val;
tran_val=O.O;
col_cnt=col_cnt+ ;
}//7
else

outLPFile<<'+'<<tranval<<"x"<<stat_indxa;
sum col=sum col+tran_val;
rowsum[statindxa]=row_sum[stat indxa]+tranval;
tran_val=O.0;
col cnt=col cnt+ 1;

}115}//5
11/4

//ArrivalstatesandratestoNhavebeendefined.
//Nowwedefinethedeparturestatesandrates
if(temp[k+m]==l)
(1/4
tran_val=0.O;
flag=0;
//Component6
if(flag=0)
//Component7
(//S

(//6
tran_val=mu[k];
//Component7
if(stat_flag[stat indxd]==0)

stat flag[stat indxd]= I;
outStatmat<<stat_indxd<<"\t";
for(z=O;z<=m- I;z++)
{
outStat_mat<<stat_mat[stat_indxd][z+2]<<"\t";

outStat_mat<<endl;

if(col_cnt==0)

outLPFile<<tran val<<"x"<<stat indxd;
sum_col=sum col+tran_val;
rowsum[stat indxd]=row sum[stat_indxd]+tran_val;
tran_val=O.O;
col cnt=colcnt+ 1;
}//7
else

outLPFile<<'+'<<tran_val<<"x"<<stat_indxd;
sum_col=sum_col+tran_val;
row_sum[stati ndxd]=row sum[stat_indxd]+tranval;
tran val=O.O;
col_cnt=col_cnt+ I;
}//7
}//6

}1/4

//Component8
elseif((temp[k+m]<=b)&&(temp[k+m]>=2))
tranval=O/4
tranval=0.0;
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flag=O;
if(stat_mat[stat_indxd] [0] !=0)
(//16

for(l=0;1l' 10;14-+)

indicator[l]= I .0;

for(l==0;l<=m- 1;1+ )
(//7
if((stat_mat[i]Il+2]>O))
(//8
for(l =O;ll<=m-l;ll+ +)
(1/9
if(stat_mat[i][ll+2]>1)
t//10
if((Q2[l 1 [1]==1)&&(Q2[k][l]==l ))
(I//ll I
if(C[ I ]<C[k])
(//1112
indicator[l]=0.0;
}//12
if((C[I I ]==C[k])&&(lI !=k))
(1/12
if(indicator[l]>0.0)
(//13
indicator[l]=indicator[l]+ 1.0;
}//13
}1112//12

}//9(ll1
//118

(//7
for(l=0;<=m- I;1+-)
(//7
if((Q2[k][l]== I )&&(indicator[l]== 1.0))

if(stat_mat[i][l+2]>0)

tran_val=tran_val+ mu[ll];

if((Q2 [k][l]==1 )&&(indicator[l]>I .0))

if(stat_mat[i][l+2]->0)

tran_val=tranval+-mu[l]/indicator[l];

if(tran_val>0.O)

if(stat_flag[stat indxd]==O)

stat_flag[stat_indxd]
=

1;
outStat_mat<<statindxd<<"\t";
for(z=O;z<=m- I ;z-+)

outStatmat<<stat mat[stat_mat[statindxd][z+2]<<"\t";

outStat_mat<<-endl;

if(col_cnt==0)
(11/7
outLPFile<<tran_ al<<"x"<<statindxd;
sum_col=sum col+tran_val;
row sum[stat _indxd]=row_sum[stat_indxd]+tran_val;
tran val=0.0;
col cnt=col_cnt+ 1;

}//7
else
{//7
outLPFile<<'+'<<tranval<<" x"<<stat indxd;
sum col=sum_col+tran val;
row_sum[stat_indxd]=row sum[stat_indxd]+tranval;
tran_val=O.O;
col cnt=colcnt+l;
}//7

}//6
1//4
}//3
pnter[i]=outLPFile.tellp();
outLPFile<<'-'<<<""<<"x"<<i<<"=O.O" <<endl;
if(stat_flag[i]==0)

stat_flag[i]=1;
outStat_mat<<i<<"\t";
for(z=O;z<=m- I ;z++)

outStatmat<<stat_mat[i][z+2]<<"\t";
}
outStat_mat<<endl;

(/12
}/I

outLPFile<<"c"<<st_sp_size<<":";
intreal_cnt,l cnt;
real_cnt=0;
I_cnt=0;
for(i=O;i<=st_sp_size- I i++)

(/12
if(real_cnt!=0)
//3

i f(real_cnt==real_size- )
(1/4
outLPFile<<"+x"<<i<<"=1.O"<<endl;
outLPFile<<"End";
}//4
elseif(l_cnt== 1 0)

outLPFile<<"+x"<<i<endl;
I_cnt=0;

else
(//4
outLPFile<<"+x"<<i;
I cnt=l cnt+l;
}1/4
}//3
else
(//3
outLPFile<<"x"<<i;
I cnt=lcnt+lI;
(//3
real cnt=real_cnt+ I;
)//2

for(i=O;i<=st_sp_size- 1 ;i++)
{

if(stat_mat[i][O] !=0)
{(1/2

outLPFile.seekp(pnter[i]+ 1);
outLPFile<<row_sum[i];

}
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returnO;
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Appendix A2: Computer Code for Multi-Stage Analysis
#include <stdio.h>
#include <math.h>
#include <time.h>
#include <stdlib.h>-

int main( )
{l

//integer variable declarations

int i, j, c l, c2, ok, row_indx, col_indx, M_row, M_col,
read_cnt, test_cnt, check_int, flag, k, k_bar;

int m,z,ll1, num_cus, num_res, wip_policy;
int Q[50][50], T[50][50], Bsize[50], Respri[50][50],

Cuspri[50][501;
int rt_policy, seq__policy;
int num aux res;
int num unm _cus;
int num st var;
int no_arr_flag, no_dep_flag;

//double variable declarations

double M[15][151;
double Mu[50][50], Phi[50][50];
double Lam[50];

//File variable declarations

FILE *fpr, *fprr, *Stat_mat,*tran, *sparse, *problem_size,
*phi, *mu, *cuspri, *respri, *buffer, *lam ,*stat_test,
*control;
FILE *nxt_sparse, *colstr, *rownd, *vals, *size_info;

//Other (time variable declarations)

clock t start, end;

system("cp M /tmp/");
system("cp Mu /tmp/");
system("cp Lam tmp/");
system("cp Buffer /tmp/");
system("cp Control /tmp/");
system("cp Phi /tmp/");
system("cp Respri /tmp/");
system("cp Cuspri /tmp/");

fpr=fopen ("/tmp/M","r");
Stat_mat=fopen ("/tmp/Stat_mat","w"`);
problem_size=fopen ("/tmp/size info", "w");

test_cnt=0;

for (ro\y_indx=0;row_indx<M_row; row indx++)

for (col_indx=0; col_indx<M_col; col_indx++)

M[row_indx][col_indx]=0.0;

fscanf(fpr, "/lf', &M[0][0]);
fscanf(fpr, "%lf", &M[O][]);

fscanf(fpr, "%If', &M[0][2]);
M_row-M[O][0];
M_col=M[0][ 1];
wip_policy=M[0][2];// if wip_policy==l we have a local

bound on wip, otherwise a global bound.
readcnt= 1;
for (row indx=O; row_indx<M_row; row indx++)

(1/2
for (col_indx=0; col_indx<M_col; col_indx++)

if (read_cnt==l)

printf("%f", M[][0]);
printf("No. of rows=%d\t",M_row);
read_cnt++;

else if(read_cnt==2)

printf("%f", M[row_indx][col_indx]);
printf("No. ofcols=%d\t",M_col);
read_cnt++;

else if(read cnt==3)

printf("%f", M[row indx][col_indx]);
printf("WIP Policy=%d\t",wip_policy);
read_cnt++;

else

fscanf(fpr, "%lf', &M[row indx][col_indx]);
printf("%f ", M[row indx][col_indx]);
read_cnt++;

printf("\n");
//12

/* Defining Q, T, lam, mu, C and R*/
num_aux_res=0;
m=M_row- 1;
num_cus=M_row- 1;
num_res=M_col;

phi=fopen ("/tmp/Phi","r");
mu=fopen ("/tmp/Mu","r");
cuspri=fopen ("/tmp/Cuspri","r");
respri=fopen ("/tmp/Respri", "r");
buffer=fopen ("/tmp/Buffer", "r");
control=fopen ("/tmp/Control", "r");
lam=fopen ("/tmp/Lam", "r");
stat_test=fopen ("/tmp/stat_test", "w");

read_cnt= I;
test_cnt=0;

for (row indx=0;row_indx<50; row indx++)
{//2
for (col_indx=0; col_indx<50; col_indx++)

Mu[row indxj[col_indx]=0.0;
Cuspri [col_indx] [row_indx]=0;

Respri[rowindx][col_indx]=0;

for (colindx=0; col_indx<50;col_indx++)

Phi [row_indx][col_indx]=0.0;
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Bsize[row_indx]=O;
Lam[row_indx]=O;

}//112

for (row_ indx=O; rowindx<num_cus; row indx++)
(1/2
for (col_indx=O; col_indx<num_res; col_indx++)

fscanf(mu, "%lf', &Mu[row_indxl[col_indx]);
fscanf(respri, "%d", &Respri[row_indx][col_indx]);
fscanf(cuspri, "%d", &Cuspri[col_indx] [row_indx]);

for (col_indx=O; col_indx<num cus; col indx++)

fscanf(phi, "%olf, &Phi[row_indx] [col_indx]);

fscanf(bufler, "%d", &Bsize[row indx]);
fscanf(lam, "%lf', &Lam[row indx]);
//12

fscanf(control, "%d", &rtpolicy);
fscanf(control, "%d",&seqpolicy);
fclose(fpr);
fclose(mu);
fclose(respri);
fclose(cuspri);
fclose(phi);
fclose(buffer);
fclose(lam);
fclose(control);

printf("Mu Matrix\n");
for (row_indx=0;row_indx<num_cus; row indx++)

for (col_indx=O; col_indx<num_res; col_indx++)

printf("%lf\t", Mu[row_indx][col_indx]);

printf("\n");

printf("Respri Matrix\n");
for (row_indx=O;row_indx<num_cus; row_indx++)

for (col_indx=O; col_indx<num_res; col_indx++)

printf("%d\t", Respri[row_indx][col_indx]);

printf("\n");

printf("CusPri Matrix\n");
for (row_indx=O;rowindx<num_cus; row indx++)

for (col_indx=O; col_indx<numres; colindx++)

printf("%d\t", Cuspri[col_indx][row indx]);

printf("\n");

printf("Phi Matrix\n");
for (row_indx=O;row indx<num_cus; row indx++)

for (col_indx=0; col_indx<num_cus; colindx++)

printft'%lft", Phi[row indx][col_indx]);

printf("\n");

printf("Buffer Matrix\n");
for (row_indx=O;rowindx<num_cus; row_indx++)

printf("%d\n", Bsize[row indx]);

printf("Lam matrix\n");

for (row_indx=O; row_indx<num_cus; row_indx++)

printf("%lf\n", Lam[row indx]);

11 All structural parameter inputs have been read

//Transforming variables and the network.
int* cusres match;
cus res match=(int *) calloc (num_res, sizeof(int));
for (i=O0; i<numres; i++)

cusres match[i]=0;

num_unm_cus=0;

for (i=0; i<num_cus; i++)
(112
flag=O;
for (j=0; j<num_res; j++)

if((M[i+1 ][j]==l )&&(cus_res_match[j]==O)&&(flag=O))

flag=1;
cus_res_match[j]=1;

if(flag==0)

num _unm_cus++;

}112
printf("Num of Unassigned Customers=%d\n",

num_unm_cus);

for (i=0; i<numres; i++)
(1//2
for (j=0; j<num_cus; j++)

if(M[j+ I ][i]=l)

num aux_res++;

num_st_var=numauxres+num_unm_ cus;

//creating aux matrices, AM, AQ, APhi, AMu, ARespri,
ACuspri, ALam, AB;

start=clock();

int **AQ, *AQ_temp, **ARespri, *ARespri_temp,
**ACuspri, *ACuspri_temp, *cus_st_var_ind,
*aux_res_cus_stvar ind, *num_cus_sys,
* num_max_st_var inresgrp;
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int *AB, *cardQ, *cardQT, *res_grp_id, *res_grp_flag,
stat_var, *ui, *vi, *omega, *bi, *cus_id, *res_grp_bsy_flag,
*res_grp_excl_bsy _flag;
int st_spsize, st sp_width;

double *AMu, *ALam, **APhi, *APhi_temp,
*APhirowsum, *LQF;

AQ_temp=(int *) calloc (num_st_var*num_st_var, sizeof
(int));
AQ=(int **) calloc (num_st_var, sizeof(int *));

ARespri_temp=(int *) calloc (num_st_var*num_st_var,
sizeof(int));
ARespri=(int **) calloc (num_st_var, sizeof(int *));

ACuspri_temp=(int *) calloc (num_st_var*num_st_var,
sizeof (int));
ACuspri=(int **) calloc (num_st_var, sizeof(int *));

AB=(int *) calloc (num st_var, sizeof(int));

ACuspri=(int **) calloc (num_st_var, sizeof(int *));

AMu=(double *) calloc (num aux res, sizeof(double));

APhi_temp=(double *) calloc (num_st_var*num_st_var,
sizeof (double));
APhi=(double **) calloc (num st var, sizeof(double *));

APhi_row sum=(double *) calloc (num st_var,
sizeof(double *));

ALam=(double *') calloc (num stvar, sizeof(double));

cardQT=(int *) calloc (num res, sizeof(int));

res_grp_id=(int *) calloc (num aux_res, sizeof(int));

res_grp_flag=(int *) calloc (num_res, sizeof(int));

cardQ=(int *) calloc (numcus, sizeof(int));

vi=(int *) calloc (num st var, sizeof(int));

ui=(int *) calloc (2*num_st var, sizeof(int));

omega =(int *) calloc (st_sp_size, sizeof(int));

bi=(int *) calloc (num st var, sizeof(int));

cus id=(int *) calloc (num_st_var, sizeof(int));

cus st_var_ind= (int *) calloc (num_cus, sizeof(int));

aux_res_cus__st_varind= (int *) calloc (num_st_var,
sizeof(int));

res_grp_bsy_flag=(int *) calloc (2*num_res, sizeof(int));

res_grp_excl_bsy_flag=(int *) calloc (2*num_st_var,
sizeof(int));

LQF= (double *) calloc (numaux_res, sizeof(int));

num_cus_sys= (int *) calloc (num_cus, sizeof(int));

num_max_st_var_in_res_grp= (int *) calloc (num_res,
sizeof(int));

int condition[25];
int r, t;

for (i=0; i<25; i++)

condition[i]=0;

printf("Got Here I\n");
end=clock();

if (ACuspri_temp==NULL II ACuspri==NULL)

printf ("error in ACuspri calloc allocation\n");

else

printf("ACuspri_calloc completed in %d%
milliseconds\n", (int) ((end-
start)* I E3/CLOCKS_PER_SEC));

//make all the single column matrices point to the beginning
of each row

for (i=0; i<num st var; i++)

AQ[i]=AQ_temp+i*num st_var;
ARespri[i]=ARespri_temp+i*num_st_var;
AMu[i]=0.0;
APhi[i]=APhi_temp+i*num_st_var;

for (i=0; i<numstvar; i++)

ACuspri[i]=ACuspri_temp+i*num_st_var;
vi[i]=0;
omega[i]=0;
ui[i]=0;
ui[i+num_st_var]=0;
APhi_rowsum[i]=0.0;

for (i=0; i<num_res;i++)

cardQT[i]=0;
res_grp_flag[i]=0;
res_grp_bsy_flag[i]=0;
res_grp_bsy_flag[i+num_res]=0;
num_max_st_var in_res_grp[i]=0;

for (i=0; i<num stvar; i++)

for (j=0; j<num_st_var;j++)

AQ[i][j=0;
APhi[i][j]=0.0;

res_grp_excl_bsy_flag[i]=0;
res_grp_excl_bsy_flag[i+num_st_var]=O0;
aux_res _cus _st_varind[i]=1000;
cus_id[i]

=
1000;

for (i=0; i<num_cus; i++)

cus stvar ind[i]=0;
num_cus_sys[i]=0;
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//All the matrices have been created and initialized by
calloc. Now we populate the matrices.

i//. Here we count the number of customers associated with
any resource, define the set of aux. servers, and redefine the
routing flexibilities.

for (i=O0; i<num aux res; i++)

omega[i]
=

I;
bi[i]=l;
LQF[i]=0.0;
res_grp_id[i]= 1000;

printf("Got Here 3\n");

// Next, we assign the customers to the servers.

int temp_int,temp_intl, unm_cus_indx, temp_count;
double temp_double, temp_double I;

unm_cus_indx=num_aux res;

int *cus assn_flag;
cus_assn_flag= (int *) calloc (num_cus, sizeof(int));

read cnt=0;

for (i=O; i<num_cus; i++)// We are trying to assign
customers to auxiliary resource

I//2
cus_assn_flag[i]=0;
//Customer i has not been assigned yet...
for (j=O; j<num_res;j++)//Looping through resources

if(M[i 1][jl===l)

cardQT[j]++;
cardQ[i]++;
cus_id[read_cnt]=i;
res_grp_id[read_cnt]=j;
if ((cus_assn_flag[i]==O)&&(res_grp_bsy_flag[j]=0))

cus_assn_flag[i] =
I;

res_grp_bsy_flag[j]= I;
vi[read_cnt]=l;
cus_st_varind[i]=read_cnt;
bi[read cnt]=bi[read_cnt]+Bsize[i];
//printf("Customer %d Assigned to Resource %d\n", i, j);
//printf("bi [%d]=%d\n", read_cnt, bi[read_cnt]);

readcnt+-;

if (cus_assn_flag[i]==0)

bi[unm cus_indx]=Bsize[i];
omega[unm_cus_indx]=0;
vi[unm_cusindx]=l;
unm_ cus indx++;
cus__id[read_cnt]==i;
cusst_var ind[i]=read_cnt;

)//2

for (i=O; i<num_cus; i++) printf("cardQ[%d]=%d\n",i,
cardQ[i]);

for (i=O; i<num_res; i++) printf("cardQT[%d]=%d\n",i,
cardQT[i]);

printf("number of state variables=%d\n", num_st_var);

// We have thus far defined the state variables and their
bounds. Next, we re-define the routing, prioroty, and
processing rate matrices.

int temp_res_id, temp_cus_id, temp_res_idl, temp_cus_idl,
temp_st varid, temp_st-var idl;

for (i=O; i<num st var; i++)
{11/2
if(vi[i]==I)

temp_cus_id=cus_id[i];
ALam[i]=Lam[temp_cus_id];
for (j=O; j<num_st_var; j++)

if(vilj]==l)

temp_int=cus_id[j];
APhi[i][j]=Phi[temp_cus_id][temp_int];
aux_res_cus_st_var indj]=j;

if (omega[j]==l)

temp_res_id=res_grp_id[j];
if

((M[temp_cus_id+ I ][temp_res_id]== I )&&(temp_cus_id==c
us_id[j]))

AQ[i][j]=I;
AMuj ]=Mu[temp_cus_id][temp res_id];
ARespri[i] [j]=Respri[temp_cus_id] [temp_res_id];
ACuspri[j][i]=Cuspri[temp_res_id][temp_cus_id];
aux_res_cus_st_var_ind[j]=i;

}//2

for (i=O;i<num_st_var; i++)

for 0j=0; j<num_st_var; j++);

APhihi_row_ sum[i]=A Phi_row_sum[i]APhi [j ];

for (i=O; i<num stvar; i++)

printf("vi[%d]=%d, omega[%d]=%d,
cus_id[%d]=%d\n",i, vi[i],i, omega[i],i,cus_id[i]);

if(omega[i]==l)

printf("res_gpr_id[%d]=%d\n",i,res_grp_id[i]);

printf("aux_rescusstvar ind[%d]=%d\n", i,aux_res_cus_st
var_ind[i]);

for (i=O;i<num_cus;i++)

printf("cus_st_var_ind[%d]=%d\n",i, cus_st_var ind[i]);

printf("All the parameters in the auxiliary network have
been defined\n");
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printf("This is the routing matrix in the auxiliary
network\n");

for (i=O; i<num st var; i++)

for (j=0-O; j<num_st var; j++)

printf("%d\t", AQ[i][j]);

printf("%lf\t", AMu[i]);
printf("%d\n",bi[i]);

//Now I am ready to define the state space.

int p,b, statindxa, stat_indxd, stat_indxad, pow_val;

p=M_row -I;
b=M[0][2];

int **stat_mat, *stat_temp;

//st_sp_size=pow((b+ I ),m);

st_sp_size= I;

for (i=O;i<num _st_var;i++)

st__sp_size=stspsize*(bi[i]+ I);

printf("State Space Size (Raw)=%d\n",st_sp_size);

st_sp_width=num_st_var+4;
start=clock();
stat_temp=(int *) calloc (st sp_size*st_sp_width, sizeof

(int));
stat mat=(int **) calloc (st_sp_size, sizeof(int *));

end=clock();

if(stat_temp==NULL II stat_mat==NULL)

printf ("error in stat_mat calloc allocation\n");

else

printf("stat_calloc completed in %d% milliseconds\n",
(int) ((end-start)* 1 E3/CLOCKS_PER_SEC));

I/make stat mat point to the beginning of each row

for (i=0; i<st__sp_size; i++)
statmat[i=stattemp+i *st_sp_width;

for (i=0;i<st_sp_size;i++)

stat_mat[i][0]= 1;
stat_mat[i][l]=i+l;
//This number represents the raw state sequence number
stat_mat[i][st_sp_width- 1 ]=0;
//this represents the real state sequence number after

removing invalid states
stat_mat[i][st_sp_width-2]=0;
//this represents flag used to prevent duplicate printing of

a state into Stat mat

//Now we have to generate the state space

int cycle,n,l,o;
for(i=0;i<numst var;i++)

k=-l;
1=0;
while (I < st_sp_size)

k=k+ 1;
cycle= I;
for (o=i+ Il; o<num st var; o++)

cycle=cycle*(bi[o]+ 1 );

if(k>bi[i])

k=0;

n= l;
while (n <= cycle)

n=n+l;
stat_mat[l][i+2]=k;
=1+ 1;

//2

//Next we have to disqualify some states.
//We eliminate the invalid states.
//I.A state is invalid if for a resource group, if any two state

variables are at a maximum.
//2.A state is invalid if there is a non-empty queue and if all

of the capable resources are idle.

int numbsy_res, num_pure_bsy_res, num_max_out_st_var;
int real_size;
realsize=0;

for (i=0;i<st_sp_size;i++)

stat_mat[i][0]=l;
for (j=0;j<num_res;j++)

num_max_st_varin_res_grp[j]=0;

for j=O;j<num_st var;j++)

res_grp_excl_bsy_flag[j]=0;

for (z=0; z<num_aux res; z++)

temp_res id=res_grp_id[z];
res_grp_bsy_flag[temp_res_id]=0;
res_grp_excl_bsy_flag[z]=0;
temp_int=0;
for (1=0; I<num_aux res; I++)

if (res_grp_id[l]==res_grp_id[z])

temp_int=temp_int+stat_mat[i][1+2];

if (temp_int>0)

res_grp_bsy_flag[temp_res_id]= ;

temp_int=temp_int-stat_mat[i][z+2];
if(temp int>0)

res_grp_excl_bsy_flag[z]= I;
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j=o;
while ((stat_mat[i][O]==1 )&&(j<num_auxres))

temp_res_id=res_grp_id[j];
if (stat_mat[i][j+2]==bi[j])

num_max_stvar_in_res_grp[temp_res_id]=num_max_st_va
r in_res_grp[temp_res_id]+1;

if (num_max_st_var_in res_grp[temp_res_id]> )

stat mat[i][O]=0;

j++;

j=0;
while ((stat_mat[i][O]==l )&&(j<num_cus))

temp_cus_id=cus _st_varind[j];
if (omega[temp_cus_id]== 1 )

if (stat_mat[i][temp_cus_id+2]>1-
res_grp_excl_bsy_flag[temp_cus_id] )

k=0,
while ((stat_mat[i][O]== )&&(k<numaux_res))

if (AQ[temp_cus_id][k]==l )

temp_res_id=res_grp_id[k];
if (res_grp_bsy_flag[temp_res_id]==O) stat mat[i][O]=0;

k++;

else if (omega[temp_cus_id]==0)

if (stat_mat[i] [temp_cus_id+2]>0)

k=0,
while ((stat_mat[i][0]==l)&&(k<num_aux res))

if (AQ[temp_cus_id][k]==l )

temp_res_id=res_grp_id[k];
if (res_grp_bsy_flag[temp_res_id]==0) stat_mat[i][0]=0;

k++;

real_size=0;
for (i=0;i<st_sp_size;i++)

if (stat_mat[i][0]== 1 )

stat__mat[i][st_sp_width- I ]=real_size;
realsize++;

printf("REAL SIZE= %d \n", real_size);

for (i=0;i<stspsize;i++)

for (j=0; j<st sp_width; j++)

fprintf(stat_test, "%d\t",stat_mat[i][j]);
ff ush(stat test);

fprintf(stat test,"\n");
fush(stat test);

fclose(stat_test);
system("cp /tmp/stattest stat_test");

int tran_size, tran_indxl, tran_indx2;
tran_size=real size+ I;
printf("tran_size=%d\n", tran_size);

double *row_sum, *bmat, *tran_mat_val,
*tran_realloc_flag3;
int *tran_row_val, *tran_col_val, tran_mem_cnt,

tran_entry_cnt, *tran_realloc_flagl, *tran_realloc_flag2;
tran_mem_cnt=50;
tran_entry_cnt=0;

start=clock();

row_sum=(double *) calloc (real_size, sizeof(double));
b_mat=(double *) calloc (real_size, sizeof(double));
tran_row _val=(int *) calloc (tran_mem_cnt, sizeof (int));
tran_col_val=(int *) calloc (tran_mem_cnt, sizeof(int));
tranmatval=(double *) calloc (tran_mem_cnt, sizeof

(double));

end=clock();

if(row sum==NULL 1 b_mat==NULL)

printf ("error in row_sum or b_mat calloc allocation\n");

else

printf("row sum and b_mat calloc completed in %d%
milliseconds\n", (int) ((end-
start)* I E3/CLOCKS_PER_SEC));

for (i=0; i<real size; i++)

row_sum[i]=0.0;
b_mat[i]=0.0;

b_mat[real_size- I ]= 1.0;

double count[ I 50],temp[ 150], beta[ 1 50],gam[ 150],
theta[ 150];

int eps[l 50];

for (i=0;i< 150;i++)
{I//
count[i]=0.0;
temp[i]=0.0;
eps[i]=0;
beta[i]=0.0;
gam[i]=0.0;

}/1
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double tran_val,sum_col, indicator[30];
tran val=0.0;
int rowi,coli;
int col_cnt;
int flagl, flag2;
col_cnt==0;
int num values;
num_values=0;
int stat indxa_flag, stat_indxd_flag, stat_indxad_flag;

for (i=O;i<st_sp_size;i++)
//2
if(stat_mat[i][0] !=0)

(113
//printf(" i%d\n",i);

fprintf(Stat_mat, "%d\t", i);
fflush(Statmat);
for (z=O;z<=st_sp_width- I ;z++)

fprintf(Stat_mat, "%d\t", stat_mat[i][z]);
fflush( Stat mat);

fprintf(Stat_mat, '\n");
fflush(Stat mat);

fclose(Statmat);

for (i=O;i<st_sp_size;i++)
{1/12
if(stat_mat[i][0] !=0)

(113

sum_col=0.0;
col cnt=0;

//First I define the Nia and Nid states and their transition
rates.

no_arr__flag=0;
no dep_flag=0;
for (k=O;k<num st var;k++)

stat_indxa=0;
stat_indxd=0;
stat_indxad=0;
stat_indxaflag= I
stat_indxdflag=l;

cycle= I;
for (l=numst var-I;l>=0;1--)

if(l!=numst var-l)

cycle=cycle*(bi[l+ I ]+ I);

if(l!=k)

statindxa=statindxa+cycle*statmat[i][1+2];
stat_indxd=stat_indxd+cycle*stat mat[i][l+2];

if(Il=k)

if (stat_mat[i]lk+2]>0)

stat_indxa=stat_indxa+cycle*(stat mat[i][k+2]- 1 );

else if(stat mat[i][k+2]==0)

stat indxa=stat_indxa+cycle*stat_mat[i] [k+2];
stat_indxa_flag=0;

if (stat_mat[i][k+2]<bi[k])

stat_indxd=stat_indxd+cycle*(stat_mat[i][k+2]+ 1);

else if (stat_mat[i][k+2]==bi[k])

stat_indxd=stat_indxd+cycle*stat_mat[i][k+2];
stat_indxd flag=0;

//Next, we have to determine which resource groups are
busy for the arrival and departure states.

for (z=0; z<num res; z++)

res_grp_bsy_flag[z]=0;
res_grp_bsy_flag[z+num_res]=0;

for (z=0; z<numaux res; z++)

temp_res_id=res_grp_id[z];
res_grp bsy_flag[temp_res_id]=0;
res_grp_bsy_flag[temp_res_id+num_res]=0;
temp int=0;
temp_intl =0;
for (=0; I<num_aux_ res; l++)

if (res_grp_id[l]==res_grp_id[z])

temp_int=temp_int+stat_mat[stat_indxa][1+2];
tempintl =temp_intl +stat_mat[stat_indxd] [1+2];

if(temp_int>O)if (temp_int>0)

res grpbsy flag[tempresid]= I;

if (temp_i nt 1 >0)

resrpbsyflag[tempres_id + num_res]= l;

temp_int=temp_int-stat_mat[statindxa][z+2];
temp_int I=temp_int -stat_mat[stat indxd][z+2];
if (temp_int>0)

res_grp_excl_bsy_flag[z]= I;

if (temp_int 1>0)

res_grp_excl_bsy_flag[z+num_st_var]=;

if(num_stvar>numauxres)

for (z=num_aux_res;z<num_st_var;z++)

res_grp_excl_bsy_flag[z]=0;
res_grp_excl_bsy_flag[z+num_st_var]=0;

for (1=0; I<num stvar; ++)
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ui[l]=O;
ui [l+num_st_var]=0;

for (1=0; I<num_st_var; ++)
{1/5
if ((vi[l]==l )&&(omega[l]==l )&&(wip p olicy==0))

if (res_grp excl bsy_flag[l]== 1 )

ui[l]=bi[l]- I -stat_mat[stat_indxa][1+2];

if (res_grp_excl_bsy_flag[l+num_st_var]
= = I)

ui [1- num_st_var] =bi [I]-stat_ mat[stat_indxd] [1+2];

if (res_grp_excl_bsy_flag[l]==0)

ui[l] =bi[l]-stat_mat[stat indxa][l+2];

if (res_grp_excl_bsy_flag[l+num_st_var]==0)

ui[l+num_st var]=bi[l]-stat_mat[stat_indxd][1+2];

else

ui[l]=bi[l]-stat_mat[stat_indxa][l+2];
ui [l+num_st_var]=bi[I-stat_mat[stat_indxd][l+2];

11/5

//Next we evaluate the indicator function gamma[k].
Reserved for arrival states.

//This indicates whether resource k (if k<num_aux_res)
can accept a customer of type Tbar k (Equation 18)

if (omega[k]==l )

temp_double= .0;
gam[k]=l.0; // Initially we assume that resource k can

accept an incoming customer of type Tbark
temp_cus_id=aux_res_cus_st_var ind[k];
for (z=0; z<num auxres; z++)

temp_res_id=res_grp_id[z];
if (res_grp_bsy_flag[temp_res_id]==0)

if (ARespri[temp_cus_id][k]>ARespri[temp_cus_id][z])

gam[k]=0.0;

else if
((ARespri [temp_cus_id] [k]=ARespri [temp_cus_id] [z])&&(
k!=z))

temp_double=temp_double+ 1.0;

if (temp_double> .0)

gam[k]=gam[k]/temp_double;

//printf("gam[] has been defined for the arrival and
departure states for variable k\n",k);

//Next, we evaluate the indicator function theta[r]

for (z=0; z<num_st var; z++)

theta[z]=1 .0;

temp_cus_id=cus_id[k];

if (vi[k]==l)
{/115
for (r=0; r<num auxres; r++)

temp_double= .0;
if(AQ[k][r]==l)

temp_res_id=res_grp_id[r];
for (t=0; t<num_aux_res; t++)

if (res_grpid[t]==res_grp id[r])

temp_cus_id=aux_res_cus_stvar_ind[t];
if

((omega[temp_cus_id]=
=

1 )&&(stat_mat[stat_indxd] [temp_c
us_id+2]> -
res_grp_excl bsy_flag[temp_cus_id+num_st_var]))

if (ACuspri[temp_cus_id][t]<ACuspri[k][r] )
{
theta[r]=0.0;

else if
((ACuspri[temp_cus_id][t]==ACuspri[k][r])&&(k!=temp_cu
sid))

temp_double=temp_double+ 1.0;

if
((omega[temp_cus_id]==O)&&(stat_mat[stat indxd] [temp_c
usid+2]>0))

if (ACuspri[temp_cus_id][t]<ACuspri[k][r])

theta[r]=0;

else if
((ACuspri[temp_cus_id][t]==ACuspri[k][r])&&(k!=tempcu
s_id))

temp_double=temp_double+ 1.0;

)

if (temp_double>l .0)

theta[r]=theta[r]/temp_double;

)}

}//s

//condition[l]=l if ALL of the candidate resource groups
for a customer are busy. Reserved for arrival states.

if(vi[k]==l)
{//5
condition[ 1]=1;
for (1=0; I<num aux res; I++)

if(AQ[k][l]==l)
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temp_res_id=res_grp_id[l];
if (res_grpbsy_flag[l]==0)

condition[l ]=0;

else if
((omega[temp cus_id]==O)&&(stat_mat[statindxa][temp_c
us_id+2]>0))

condition[3]=0;

}15

//condition[2]=l if ALL of the candidate resource groups
for a customer are busy. Reserved for departure states.

if(vi[k]==l )
{//5
condition[2]

= 1;
for (1=0; I<num auxres; 1++)

if(AQ[k][l]
=

= I)

temp_res_id==res_grp_id[l];
if (res_grp_bsy_flag[l+num_res]==O)

condition[2]=O;

I//5

//condition[O]= 1 if the queue for customer k is at zero, or
non-empty, but where all of the candidate resource groups
are busy

//In other words, an event with arrival of a customer of
this type, will cause a queue formation.

if (vi[k]== 1)
I
condition[0]=0;
if ((omega[k ==1 )&&(stat_mat[stat_indxa] [k+2]>= 1 -

res_grp_excl_bsy flag[k])&&(condition[ I]==I))

condition[0]=;

if
((omega[k]==0)&&(stat mat[stat_indxa][k+2 ]>=O)&&(cond
ition[l]== ))

condition[0]=l;

//condition[3]=1 if, for all the candidate customer classes
for each resource in the resource group for [k],

//there are no customers in queue.
//condition[3] is reserved as a flag for the arrival states.

if(omega[k]=-=l)
t//5
condition[3]=l;
for (1=0; l<num_st_var; I++)

if(res_grp_id[k]==res_grp_id[l])

temp_cus_id=aux_res_cus_st_var ind[l];
if

((omega[temp_cus_id]==I )&&(stat_mat[stat_indxa][temp_c
us_id+2]> 1 -res_grp_excl_bsy_flag[tempcus_id]))

condition[3]=);

)//5

//condition[4]=l if, for all the candidate customer classes
for each resource in the resource group for [k].

//there are no customers in queue.
//While condition[4] is similar to condition[3], it reserved

as a flag for the departure states

if (omega[k]=) I

condition[4]=1;
for (1=0; I<num st var; I++)

if (res_grp_id[k]==res_grp_id[l])

temp_cus_id=aux_res_cus_st var ind[l];
if

((omega[temp_cus_id]= = 1 )&&(stat_mat[stat indxd][temp_c
us_id+2]>1-
res_grp_excl_bsy_flag[temp_cus_id+num_st var]))

condition[4]=0;

else if
((omega[temp_cus_id]==O)&&(stat_mat[stat indxd] [temp_c
us_id+2]>0))

condition[4]=0;
)

//condition[5]=l if for vi[k]=l, the queue for that
customer is already non-empty.

//In the event of a departure from this state, one of these
queued customers is a candidate for processing at

//one of the valid resource groups. Condition reserved for
departure states.

if(vi[k]==l)

condition[5]=0;
if

((condition[2]==1 )&&(omega[k]==l )&&(stat_mat[stat_indx
d][k+2]> 1 -res_grp_excl_bsy_flag[k+num_stvar]))

condition[5]
= 1;

else if
((condition[2]== I )&&(omega[k]== I )&&(stat_mat[stat_indx
d][k+2]>0))

condition[5]= 1;

//eps[r]=l if, the queue of job class r is one of the LQF[r]
longest in the set of resources r: AQ[k][r]= 1.)
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if ((vi[k]== 1 )&&(condition[5]=1 ))

for (r-O; r<num_aux res; r++)

eps[r]=0;
LQF[r]=O.O;
temp_res_id=res_grp_id[r];
if(AQ[k][r]==l)

eps[r]=l;
LQF[r]=0.0;
temp_double=l1.0:,
for (t=0; t<numaux res; t++)

if(eps[r]===l)

if (res_grp_id[t]==res_grp_id[r])

temp_cus_id=aux_res_cus_st_var ind[t];

temp int=stat mat[stat_indxd][temp_cus_id+2]+omega[temp
cus id]*res_grp_excl_bsy_flag[temp_cus_id+numst var];

temp_int I =stat_mat[stat_indxd] [k+2]+omega[k]*res_grp_ex
cl_bsy_flag[k-+num_st_var];

if (temp_int>temp_intl )

eps[r]=0;

else if ((temp_int==temp_intl )&&(k!=temp_cus_id))

temp_double=temp_double+ 1.0;

if (eps[r]==l ) LQF[r]=temp_double;

//Condition[6]=l1 if, for a given class, a departure from
the system (or network) is possible for that class

I/In other words, the customer leaves the system with
probability strictly less than 1.

if(APhi_row sum[k]<l.0)

condition[6]
=

1;

//printf("The state classification conditions have been
defined for the arrival and departure states for variable
k\n",k);

//Now we write the transition rates for the various control
policies and various state space conditions

//Define Arrival Rates first...

//Class A states
if

((stat_indxa_flag== I )&&(condition[O]= 1 )&&(ui[k]>= 1 )&
&(ALam[k]>0.0)&&(vi[k]=1 ))

tran val=0.0; I//reset this variable
if ((rtpolicy=-0)ll(rt_policy== I ))//SP Routing Policy or

Random Routing Policy

tran_val=ALam[k];

}1
}//5

else if ((omega[k]==l )&&(stat_indxa flag==l ))

temp_res_id=res_grp_id[k];
if

((res_grp_bsy_flag[temp_res_id]0)&&(condition[3] 1 )&
&(ui[k]>=l))

temp_cus_id=aux_res cus_st_var ind[k];
tran_val=0.0; //reset this variable
if(rt_policy==0)//Strict Priority Routing

tranval=ALam[temp_cus_id] *gam[k];

if(rtpolicy=l )//Random Routing

temp_double=0.0;
for (t=0; t<num_aux_res; t++)

if (AQ[temp_cus_id][t]== )

temp_res_id I =res_grp_id[t];
temp_double=temp_double+ I -

res_grp_bsy_flag[temp_res_idl ];

if (tempdouble>0.0)

tranval=ALam[temp_cus_id]/temp_double;

3}

if ((tran_val>0. 0)&&(stat_mat[stat_indxa] [0]==1 ))

tran_indx I =stat_mat[stat_indxa][st_sp width- ];
tran_indx2=stat_mat[i[st_sp_width- I];
row_sum[tran_indx I ]=row_sum[tran_indx I ]+tran_val;
check_int=real_size- I;
if (tranindx2!=check_int)

tran row val [num_values]=tran_indx2;
tran colval[num_values]=tranindxl;
tran mat_val [num_values]=tran_val;

if ((tran_realloc_flagl = realloc(tran_row_val, sizeof(int)
* (tran_mem_cnt + I))) == NULL) {
printf("ERROR: reallocl failed\n");

tranrow val = tran_realloc_flag I;

if((tran_realloc flag2 = realloc(tran_col_val, sizeof(int)
* (tran_mem_cnt + 1))) == NULL) {
printf("ERROR: realloc2 failed\n");

tran_col_val=tran_realloc_flag2;

if((tran_realloc flag3 = realloc(tran_matval,
sizeof(double) * (tran_memcnt + I ))) == NULL) {
printf("ERROR: reallocl failed\n");

tran_mat_val=tran_realloc_flag3;

tran_mem_cnt++;

numvalues++;

tran_val=O.O;

79



//Arrival Rates Have Been Defined. Now we define the
departure rates

if
((stat indxd flag= 1 )&&(stat_mat[stat_indxd] [k+2]== 1 )&&
,res_grp_excl_bsy flag[k]=0)&&(condition[4 == 1 )&&(om
ega[k]==l ))

tran val=O.0; //reset this variable
if((seq__policy=0)ll(seq_policy==2))

tranval=AMul k]*( I .0-APhi_row_sum[k]);

if
((stat_indxd_flag==I )&&(condition[5]== 1 )&&(vi[k]== 1 ))

tranval=0.0; //reset this variable
if(seq_policy==0)//Strict Priority Sequencing

for (r=0; r<num _st_var; r++)

if(AQ[k][r]==l)

tran_val=tran_val+AMu[r]*theta[r]*( 1.0-
APhi_row_sum[r]),;

if(seqpolicy==2)//LQF Policy

for (r0; r<--num_st_var; r++)

if(AQ[kJ[r]==l)

if(LQF[r]>0.0)

temp_double=eps[r];
tran_val=tran_val+AMu[r]*(l .0-

APhi_row sum[r] )*temp_double/LQF[r];

if ((tran_val>0.0)&&(stat_mat[stat_indxd] [0]==1 ))

tran_indx I =statmat[stat_indxd][st sp_width- I ];
tran_indx2=stat_mat[i][st sp_width- I ];

row_sum[tran_indx I ]=row_sum[tran_indx I ]+tran_val;

check int=real_size-I;

if (tran_indx2!=check_int)
I

tran row val[num_values]=tran_indx2;
tran col val[num_values]=tran_indxl;
tran mat val[num values]=tran_val;

if ((tran realloc_flag I = realloc(tran_row_val, sizeof(int)
* (tran mem cnt + I ))) == NULL) {
printf("ERROR: reallocl failed\n");

tran _rowval = tran_realloc_flagl;

if ((tran_realloc_flag2 = realloc(tran_col_val, sizeof(int)
* (tran mem cnt + 1))) == NULL) {
printf("ERROR: realloc2 failed\n");

tran_col_val=tran_realloc_flag2;

if ((tran_realloc_flag3 = realloc(tran_mat_val,
sizeof(double) * (tran_mem_cnt + 1))) == NULL) {
printf("ERROR: reallocl failed\n");

tran_mat_val=tran_realloc_flag3;

tran_mem_cnt++;

num_values++;
tran_val=0.0;

tran_val=0.0;

// printf("The transition rates have been defined for the
arrival and departure states only for variable k\n",k);

//Now, we look at the transitions that are caused by inter-
class exchanges of customers.

for (k bar=0; k_bar<num_st_var; k_bar++)

if (k!=k bar)

stat indxad=0;
stat_indxad_flag= l;
cycle=l;
for (l=num stvar-1;l>=0;I--)

if(l!=num st var- 1)

cycle=cycle*(bi[l+ I ]+ 1);

if ((l!=k)&&(l!=k_bar))

stat_indxad=stat_indxad+cycle*stat mat[i][l+2];

if(l==k)

if (stat_mat[i][k+2]>0)

stat indxad=stat indxad+cycle*(statmat[i][l+2]- 1);

else if (stat_mat[i][k]=0)

stat_indxad=stat_indxad+cycle*stat mat[i] [1+2];
stat_indxad flag=0;

if (l==k_bar)

if (stat_mat[i][k bar+2]<bi[k_bar])

stat_indxad=statindxad+cycle*(statmat[i][1+2]+ );

else if (stat_mat[i][k_bar+2]==bi[k_bar])

statindxad=stat_indxad+cycle*stat_mat[i][1+2];
stat indxad flag=0;

if(k==k bar)

statindxad=i;
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//Next, we have to determine which resource groups are
busy for the arrival and departure states.
for (z=0; z<numres; z++)

res_grpbsy_flag[z]=0;

for (z=0; z<num auxres; z++)

temp_res_id=res_grp_id[z];
res_grpbsy_flag[temp_res_id]=0;
temp_int=O;

for (=0; I<numaux_res; I++)

if (res_grp_id[l ]==res_grp_id[z])

temp_int=temp_int+stat_mat[stat_indxad][l+2];

if (tempint>0)

res_grp_bsy_ flag[temp_res_id]= I;

temp_int=temp_int-stat_mat[stat indxad][z+2];
if (temp_int>0)'

res_grp_excl_bsy_flag[z]= I;

if(num_st_var>num_auxres)

for (z=num_aux_res;z<num st var;z++)

res_grp_excl _bsy_flag[z]=0;

for (=0; I<num st var; I++)

ui[l]=O;

for (1=0; I<num_st_var; ++)
//i5
if((vi[l]== l)&&(omega[l]==l )&&(wippolicy==0))

if(res_grp_excl_bsy_flag[l]==l )

ui[l] =bi[l]--1 stat_mat[stat_indxad][1+2];

if (res_grp_excl_bsy_flag[l]==0)

ui[l]=bi[l]-stat mat[stat_indxad][l+2];

else

ui[l]=bi[l]-stat mat[stat_indxad][l+2];

}15

//Next we evaluate the indicator function gamma[k]
//this indicates whether resource k (if k<num aux_res) can

accept a customer of type Tbark (Equation 18)

if (omega[k]=l)

temp_double=l .0 ;

gam[k]=l.0; // Initially we assume that resource k can
accept an incoming customer of type Tbar_k

temp_cus_id=aux_res_cus_st_var ind[k];
for (z=0; z<num aux res; z++)

temp_res_id=res_grp_id[z];
if (res_grpbsy_flag[temp_res_id]==0)

if (ARespri[temp cus_id] [k]>ARespri[temp_cus_id] [z])

gam[k]=0.0;

else if
((ARespri [temp_cus_id][k]=ARespri [temp_cus_id] [z] )&&(
k!=z))

temp_double=temp_double+ 1.0;

if (temp_double> 1.0)

gam[k]=gam[k]/temp_double;

//Next, we evaluate the indicator function theta[r]

for (z=0; z<num_st_var; z++)

theta[z]=l.0;

if(vi[k]==l)
{/t5
for (r=0; r<num_aux_res; r++)

temp_double= 1.0;
if(AQ[kbar][r]==l)

temp_res_id=res_grp_id[r];
for (t=0; t<num aux res; t++)

if(res_grp_id[t]==res_grp_id[r])

temp_cus_id=aux_res_cus_st var ind[t];
if

((omega[temp_cus_id]== I )&&(stat_mat[stat_indxad] [temp_
cus_id+2]> I -res_grp_excl_bsy_flag[temp_cus_id]))

if (ACuspri[temp_cus_id][t]<ACuspri[k_bar] [r])

theta[r]=0.0;

else if
((ACuspri[temp_cus_id][t]==ACuspri[k barj[r])&&(k_bar!=
temp cus_id))

temp_double=temp_double+ 1.0;

if
((omega[temp_cus_id]==O)&&(stat_mat[stat_indxad][temp_
cus_id+2]>0))

if (ACuspri[temp_cus_id][t]<ACuspri[k_bar][r])

theta[r]=0;
]
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else if
((ACuspri[temp cus_id] [t]==ACuspri [k_bar] [r])&&(k_bar! =
temp_cus_id))

temp_ double=temp_double+ 1.0;
}

if (temp_double> 1.0)
{
theta[r]=theta[r]/temp_double;

, 1/5

//condition[l ]=1 if ALL of the candidate resource groups
for a customer [k] are busy
//Reserved for interclass transitions. Reserved for state

variable accepting a customer as a result of an inter-class
transition.

if (vi[k 1=l)
//115
condition[ 11 ]= 1;
for (1=0; l<-num aux res; I++)

if (AQ[k][l]== I)

temp_res_id=res_grp_id[l];
if (res_grp_bsy_flag[l]==0)

condition[l 1]=0;

)
115

//condition[ 12]=1 if ALL of the candidate resource groups
for a customer [k_bar] are busy
//Reserved for inter-class transitions, but for a state variable

that experiences a unit decrease as a result of a transition.
if (vi[k bar]==l)

11/5
condition[ 12]=1;
for (1=0; I<numaux res; I++)

if(AQ[k bar][l]===l)

temp_res id=res_grp_id[l];
if (res_grp bsy_flag[l]==0)

condition[I 2]=0;

//5

//condition[10]=l if the queue for customer k is at zero, or
non-empty, but where all of the candidate resource groups
are busy
//In other words, an event with arrival of a customer of this

type, will cause a queue formation.
//Reserved for inter-class transitions for state variable that

experiences unit increase, as a result of the transition.

if(vi[k]=l )

condition[ 10]=0;

if ((omega[k]== I )&&(stat_mat[stat indxadj[k+2]>= -
res_grp_excl bsy_flag[k])&&(condition[ 11 ]== 1 ))

condition[10]=l;

if
((omega[k]==O)&&(stat_mat[stat_indxad] [k+2]>=0)&&(con
dition[ 1 ]==1 ))

condition[ 10]
= 1;

//condition[13]=1 if, for all the candidate customer classes
for each resource in the resource group for [k],
//the number of customers in queue is less than 1.
//condition[ 13] is reserved as a flag for the state variable

that has a unit increase as a result of the class transition
//condition [13] is also used for the self-transition case.

if (omega[k]== 1 )
(115
condition[ 13]=1;
for (1=0; I<num st var; I++)

if (res_grpid[k]==res_grp_id[l])

temp_cus_id=aux_res_cus_st_var_ind[I];
if

((omega[temp_cus_id]== 1 )&&(stat_mat[stat_indxad][temp_
cus_id+2]> I -res_grp_excl_bsy_flag[temp_cus_id]))

condition[ 1 3]=0;

else if
((omega[temp_cus_id]==O)&&(stat_mat[stat_indxad] [temp_
cus_id+2]>0))

condition[ 1 3]=0;

}115

//condition[14]=1 if, for all the candidate customer classes
for each resource in the resource group for [k_bar],

//the number of customers in queue is less than 1.
//condition[14] is reserved as a flag for the state variable

that has a unit decrease as a result of the class transition
//condition [14] may also be used for the self-transition

case.
if(omega[k_bar]== 1 )

condition[ 14]= 1;
for (1=0; I<num st var; ++)

if (res_grp_id[k_bar]==res_grp_id[l])

temp_cus_id=aux_res_cus_st_var ind[l];
if

((omega[temp_cus_id]== 1 )&&(stat_mat[stat_indxad][temp_
cus_id+2]> I -res_grp_excl_bsy_flag[temp_cus_id]))

condition[ 14]=0;

else if
((omega[temp_cus_id]==O)&&(stat_mat[stat_indxad] [temp_
cus_id+2]>0))
{
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condition[ 14]=0;
}

//condition[l 5]=1 if for vi[k_bar]=l, the for all the
candidate resources, the queue for that customer is already
non-empty.
//In the event of a departure from this state, one of these

queued customers is a candidate for processing at
//one of the valid resource groups.

if(vi[k _bar]== I)

condition[ 1 5]=0;
if

((condition[ 12]=
= )&&(omega[k_bar]== I )&&(stat_mat[stat

_indxad] [k_bar+2)> I -res_grp_excl_bsy_flag[k_bar]))

condition[ 15]=I;

else if
((condition[ 12]== I )&&(omega[k_bar]== I )&&(statmat[stat
_indxadl[k_bar+2]>0))

condition[ 15]
=

1;

//eps[r]= I if, the queue of job class r is one of the LQF[r]
longest in the set of resources {r: AQ[k bar][r]= I. }

if((vi[k_bar]==l )&&(condition[15]==1))

for (r=O; r<num_aux_res; r++)

eps[r]=0;
LQF[r]=O.O;
temp_res_id=res grp_id[r];
if (AQjIk_bar][r]== )

eps[r]= I;
LQF[r]=O.O;
temp_double= l . 0;

for (t=O; tnumauxres; t++)

if (eps[r]==l)

if (res_grp_id[t]==res_grp_id[r])

temp_cus_id=aux_res_cus_st_var ind[t];

temp_int=stat_mat[stat_indxad][temp_cus_id+2]+omega[tem
p_cus_id]*res_grp_excl_bsy_flag[temp_cus_id];

temp_intl =statmat[stat_indxad][kbar+2]+omega[k_bar]*re
s_grp_excl bsy_flag[k bar];
if (temp_int>temp_intl )

eps[r]=0;
}

else if ((temp_intl.==temp_int I )&&(k bar!=temp_cus_id))

temp_double=temp_double+ 1.0;

if(eps[r]==l ) LQF[r]=temp_double;

//Condition[16]=l if, for a given class, a departure from the
system (or network) is possible for that class

//In other words, the customer leaves the system with
probability strictly less than 1.
if(APhi_row_sum[k_bar]<.0)

condition[ 16]= 1;

//Revision Progress as of 14/07/04 17:38 PM.

//Now we write the transition rates for the inter-class
(including self-) transitions.

//We have to write the transition rates separately for each
combination of routing-sequencing policies.
if ((k !=k_bar)&&(stat_indxad_flag== I))

{
temp_res_id=res_grp_id[k];
if((vi[k]==1 )&&(condition[10]==l )&&(ui[k]>=1))

if
((omega[k_bar]== I )&&(stat_mat[stat_indxad] [k_bar+2]== I
)&&(res_grp_excl_bsy_flag[k_bar]==)&&(condition I 4]==

I))

tran_val=0.0;//reset this variable
if

(((rt_policy==O)&&(seq_policy==2))ll((rtpolicy== I )&&(se
qpolicy==2)))

temp_cus_id=aux_res_cus_st var ind[k_bar];
tran_val=AMu[k_bar] *A Phi [temp_cus_id] [k];

if
(((rtpolicy==l )&&(seq_policy==O)){l((rt_policy==O)&&(se
q_policy==0)))

temp_cus_id=aux_res_cus_st_var ind[k_bar];
tran_val=AMu[k bar] *APhi [temp_cus_id] [k];

//Note that both if conditions above result in the same
transition rate.

else if((vi[k_bar]==l )&&(condition[l 15]==1))

tran_val=O.O; //reset this variable
if

(((rt policy==O)&&(seq_policy==2))11((rt_policy== )&&(se
qpolicy==2)))

for (r=O; r<num aux res; r++)

if(AQ[k_barJ[r]== )

if (LQF[r]>0.0)

temp_cus_id=aux_res_cus_st_var ind[r];

tran_val=tran_val+AMu[r]*APhi [temp_cus_id] [k]*eps[r]/LQ
F[r];

}
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if
(((rt_policy== I )&&(seq_policy==O))Il((rtpolicy==0O)&&(se
q_policy==O)))

for (r=O; r<numaux_res; r++)

if (AQ[k_bar][r]==l )

temp_ cus_id=aux_res_cus_st_var ind[r];
tran_ val=tran_val+AMu[r]*theta[r]*APhi[temp_cus_id][k];

else if
((omega[k]== I )&&(res_grp_bsy_flag[temp_res_id]==0)&&(
condition[I 3]== 1))

tran val=O.O
if

((omega[k_bar]== 1 )&&(stat_mat[stat indxad][k_bar+2]= = 1
)&&(res_grp_excl _bsy_flag[k_bar]==O)&&(condition [ 14]==
I))

temp_cus_idl=-aux_res_cus_stvarind[k_bar];
temp_cus id=aux_res _cus _st_varind[k];
tran val=O 0; /lreset this variable
if

(((rt_policy==O)&&(seq_policy== I ))Ll((rt_policy==O)&&(se
qpolicy==0O)))

tran_val=AMu[k_bar]*APhi[tempcusid I[temp_ cus_id]*g
am[kl;

if
(((rt_policy== I )&&(seq_policy==2))1((rt policy==l )&&(se
qpolic==0)))

tran_val=AMu[k_bar] *A Phi [temp_cus_id I ][temp_cus _id];
temp_double=0.0;
for (t=0; t<num_aux_res; t++)

temp_res_ id I =res_grpid[t];
temp_double=temp_double+AQ[temp_cus_id][t]*( I-

res_grp_bsy_flag[temp_res_id I]);

if (temp_double>O.O)

tran_val=tran_ val/temp_double;

else if ((vi[k_bar]== I )&&(condition[ 15]==1 I))

tranval=O.O; ,'/reset this variable
temp_cus_id=aux_res_cus _st_var_ind[k];
if ((rt_policy==O)&&(seqpolicy= =l ))

for (r=O; r<num_aux_res; r++)

if(AQ[k_bar][r]==l)

if(LQF[r]>O.O)

temp_cus_idl=aux_res_cus_st var ind[r];

tran val=tran val+A Mu[r]*APhi[temp_cus_id 1 ][temp_cus_i
d]*eps[r]/LQF[r];

tran_val=tran_val*gam[k];

if ((rt_policy== I )&&(seqcpolicy==2))

for (r=0; r<num_aux_res; r++)

if(AQ[k_bar][r]==l)

if(LQF[r]>O.O)

temp_cus_idl=aux_res_cus_st var_ind[r];

tran_val=tran_val+AMu[r]*APhi[temp cusi I[temp cus_i
d]*eps[r]/LQF [r];

temp_double=0.0;
for (t=O; t<num_aux res; t++)

temp_res_id I =resgrp_id[t];
temp double=temp_double+AQ[k_bar][t]*( -

res_grp_bsy_flag[temp_res_id I ]);

if (temp_double>0.0)

tran_val=tran_val/temp_double;

if((rtpolicy == l )&&(seq policy== 0O))

for (r=-O; r<num_aux res; r++)

if(AQ[k_barJ[r]== )

temp_cus_idl=aux_res_cus_st var_ind[r];

tran_val=tran_val+AMu[r]*theta[r]*APhi[temp cus_idI ][te
mp_cus_id];

temp_double=0.0;
for (t=0; t<num_aux_res; t++)

temp_res_id I =res_grp_id[t];
temp_double=temp_double+AQ[k_bar][t]*(I -

res_grp_bsy_flag[temp_res_id I ]);

if (temp_double>0.0)

tran_val=tran_val/temp_double;

if ((rt_policy==O)&&(seq_policy==0))

for (r=O; r<num_aux_res; r++)

if(AQ[k_bar][r]==l )

temp_cus_idl=aux_res_cus_st var ind[r];

tran_val=tranval+AMu[r] *theta[r] *APhi[temp cusid] [te
mp_cus_id];

tran_val=tran_val*gam[k];
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if ((tran_val>0. 0)&&(stat_mat[stat_indxad] [0]==1 ))

tran_indx I =stat_mat[stat_indxad][st_sp_width- I];
tran_indx2=stat_mat[i][stsp_width- i];
row_sum[tran_indx 1 ]=row_sum[tran_indx 1 ]+tran_val;
check_int=real_size- 1;
if (tran __indx2! =check_int)

tran_row_val[num_values]=tran_indx2;
tran_col val[num_values]=tran_indx l;
tran mat_val[num_values]=tran_val;

if ((tran_realloc_flagl = realloc(tran_row val, sizeof(int)
* (tran memcnt + I ))) == NULL) {
printf("ERROR: reallocl failed\n");

tran row_val = tran_realloc_flag l;

if ((tran_realloc_flag2 = realloc(tran_col_val, sizeof(int)
* (tran_memcnt - I))) == NULL) {
printf("ERROR: realloc2 failed\n");

tran colvalran an_reallocflag2;

if ((tran_realloc_flag3 = realloc(tran_mat_val,
sizeof(double) * (tran_mem_cnt + 1 ))) == NULL) {
printf("ERROR: reallocl failed\n");

tranmat_val=tran_realloc_flag3;

tran mem_cnt-+;

num values++;

tran val=0.0;

if(k==k bar)
{
tran val=0.0;
if

((omega[k]== I )&&(stat_mat[stat_indxad][k+2]== I )&&(res
_grp_excl_bsy_flag[k]== I )&&(condition[ 13]==1 ))

temp_cus_id=aux_res_cus_st_var ind[k];
tran_val=0.0;//reset this variable
if

(((rtpol icy==-0)&&(seqpolicy==2))1l((rtpolicy==0)&&(se
q_policy==0)))

{

tran_val=AMu[k]*APhi[temp_cus_id][temp_cus_id]*gam[k]

if
(((rtpolicy==l )&&(seq policy==2))l((rtpolicy== )&&(se
q_policy==O)))

tran__val=AMu[k_bar]*APhi[temp_cus_id][temp cus_id];
temp_double=0.0;
for (t=0; t<numauxres; t++)

temp_res_id I =res_grp_id[t];
temp_double=temp__double+AQ[temp_cus_id][t]*( -

res_grp__bsy_flag[temp_res_id]);

if (temp_double>0.0)

tran_val=tran_val/temp_double;

if((vi[k]==l )&&(condition[ 15]==1))

tran_val=0.0; //reset this variable
if

(((rtpolicy==0)&&(seq_policy==2))(l((rtpolicy== )&&(se
q_policy==2)))

for (r=0; r<num aux_res; r++)

if(AQ[k][r]==l)

if(LQF[r]>0.0)

temp_cus_idl=aux_res_cus_st var ind[r];

tran val=tran_val+AMu[r]*APhi[temp_cus_idl][k]*eps[r]/L
QF[r];

if
(((rt policy==l )&&(seqpolicy==0))ll((rt_policy==0O)&&(se
qpolicy==0)))

for (r=0; r<num aux res; r++)

if(AQ[k][r]==l)

temp_cus_id =aux_res_cus_st var_ind[r];

tran_val=tran_val+AMu[r]*theta[r]*APhi[temp_cus idI ][k];

if ((tran_val>0.0)&&(stat_mat[stat_indxad][0]== I))

tran_indx I =statmat[stat_indxad][st_sp_width- ];
tran_indx2=statmat[i][st_sp_width- I ];
row_sum[tran_indx I ]=row_sum[tran_indx I ]+tran_val;
check int=real size-I;
if (tran_indx2!=check_int)

tran_row val [num_values]=tran_indx2;
trancol_ val[num_values]=tranindxl;
tran_mat_val[num_values]=tran_val;

if((tran_realloc flagI = realloc(tran_row val, sizeof(int)
* (tran_mem_cnt + I ))) == NULL) {
printf("ERROR: reallocl failed\n");

tran_row_val = tran_realloc_flag I;

if((tran_realloc_flag2 = realloc(tran_col_val, sizeof(int)
* (tran_mem cnt + 1))) == NULL) {
printf("ERROR: realloc2 failed\n");

tran_col_val=tran_realloc_flag2;

if ((tran_realloc_flag3 = realloc(tran_mat_val,
sizeof(double) * (tran_mem_cnt + I ))) == NULL) {
printf("ERROR: reallocl failed\n");

tran_mat_val=tran_realloc_flag3;
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tran_memcnt++;

num values++;

tran val=0.0;

f

fclose(Stat_mat);

system ("cp /tmp/Stat mat Stat_mat");
printf(" Number of Values Here = %d\n", num_values);

for (i=0; i<real_size- l;i++)

tran_row_val[num_values]=i;
tran col val[num_values]=i;
tran_ mat_val[num_values]=-rowsum[i];
num_values++;
if ((tran_realloc_flagl = realloc(tran_row val, sizeof(int)

* (tranmem_ cnt + I))) == NULL) {
printf("ERROR: reallocl failed\n");

tranrow_val= tran_realloc_flagl;
if((tran_realloc_flag2 = realloc(tran_col_val, sizeof(int)

* (tran_mem_cnt + 1))) == NULL) 
printf("ERROR: realloc2 failed\n");

tran col val=tran_reallocflag2;
if((tran realloc_flag3 = realloc(tran_mat_val,

sizeof(double) * (tran_mem_cnt + 1))) == NULL) {
printf("ERROR: reallocl failed\n");

tranmat_val=tran_realloc_flag3;
tranmem_cnt++;

for (i=O; i<real_size;i++)

tran_row_ val[num_values]=real_size-I;
tran colval[num_values]=i;
tran mat val[num_values]=l 1.0;
numvalues++;

if ((tran_realloc_flag = realloc(tran_row val, sizeof(int)
* (tran_mem_cnt + I))) == NULL) {
printf("ERROR: reallocl failed\n");

tran row val = tran_realloc flagl;
if ((tran_realloc_tlag2 = realloc(tran_col_val, sizeof(int)

* (tran_mem_cnt + ))) == NULL) {
printf("ERROR: realloc2 failed\n");

tran col val=tran_realloc_flag2;
if ((tran_realloc_flag3 = realloc(tran_mat_val,

sizeof(double) * (tran_mem_cnt + 1))) == NULL) {
printf("ERROR: reallocl failed\n");

tran mat_val=tran_reallocfiag3;
tran mem_cnt++;

FILE *tran_values_file;

tran_values_file=fopen("/tmp/tran_val_file", "w");
for (i=0; i<numvalues; i++)

fprintf(tran_values_file, "%d\t %d\t %lf\n",
tranrow val[i], tran_col_val[i], tran_mat_val[i]);

fflush(tran_values file);

fclose(tranvaluesfile);
system ("cp /tmp/tran_val_file tran_val_file");

int * tran row_indx, *tran col indx, *row cnt indx,
*new_row _cnt indx, *tran_dupl_ind;
double *tran_values, *newvalues;

tranrow indx=(int *) calloc (num_values, sizeof (int));
tran col indx=(int *) calloc (num_values, sizeof(int));
tranvalues=(double *) calloc (num_values, sizeof

(double));
tran_dupl_ind = (int *) calloc (num_values, sizeof(int));
row cnt indx=(int *) calloc (realsize, sizeof(int));
new row_cnt_indx=(int *) calloc (real_size, sizeof(int));

int row_cnt, col_temp, row_temp, max_num_row_vals;
row cnt=0;
col_cnt=0;

for (i=0; i<real_ size; i++)

row cnt indx[i]=0;

int row templ, col_templ, val_templ;
for (i=0; i<numvalues; i++)

col_temp=tran_col_val[i];
row cntindx[col_temp]++;//increment the number of

rows in column number col_temp

max_num_rowvals=0;

for (i=0; i<realsize; i++)

if (row cnt_indx[i]>max_num row_vals)

max_num_rowvals=row_cnt_indx[i];//determining the
maximum depth of the transition matrix in terms of number
of non-zero rows

printf("MAX NUMBER OF ROW_VALS=%d\n",
max_numrow_vals);//max number of row values

double **sparse tran_mat, *sparse_tran_temp;
int true_num_values;

sparse_tran_temp= (double *) calloc
(2* real_size*max_num_row_vals, sizeof (double));
sparse tran_mat= (double **) calloc (realsize, sizeof

(double *));

//this matrix contains the sparse compacted version of the
transition matrix

if(sparse_tran_temp==NULL II sparse_tran_mat==NULL)

printf ("error in sparse tran_mat calloc allocation\n");

else
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printf(" sparse_l ran_mat calloc completed\n");

//Make sparse_tran mat point to the beginning of each row
in sparse_tran temp

for (i=O; i<real_size; i++)
sparse_tran_mat[i] =sparse_tran_temp+2*i *max_num_row v
als;

for (i=0i<real_size;i++)

for (j=0; j<2*max_num_row vals;j++)

sparse_tran_nat[i][j]=0.0;//initialize to avoid errors

for (i=0; i<real_size; i++)

newrow_cnt_indx[i]=0;//this index

for (i=0; i<numxalues; i++)

coltemp=tran colval[i];//the column number of the
sparse element

row_tempnew_rowcnt indx[col_temp];//the row
number of a sparse element

sparse_tran_mat[col_temp][row temp]=tran_rowval[i] ;//for
each column store the row number

sparse_tran_mat[col_temp][row temp+ I ]=tran_mat_val[i] ;//f
or each column store the value

new_row cnt indx[col_temp]=new_row_cnt_indx[col_temp
+2;//for each column store the number of entries made

true num_values-=numvalues;

for (i=0; i<real_size; i++)

if (new_row_cnt_indx[i]>0)

for (j=0; j<max_num_row vals;j++)

if
((sparse tran_mat[i] [2 *j+ I ]>0.0) )l(sparse_
<0.0))

temp_int=sparse_tran_mat[i] [2*j];
for (k=j+ I;k<-max_num_row_vals;k++)

temp_int 1 =sparse_tran_mat[i][2*k];
if

tran_mat[i][2*j+ I]

((temp_int l ==temp_int)&&((sparsetran_mat[i][2*k+ 1 ]>0.0
)11(sparse_tran_mat[i][2*k+ 1]<0.0)))
I

sparse_tran_mat[i] [2*j+ I ]=sparse_tran_mat[i][2*j+ ]+sparse
tran_mat[i][2*k+ ];
sparse_tran_ mat[i[2*k]=0.0;
sparse_tran mat[i][2*k+ I J]=0.0;
true num_values=truenum values-I;

printf("NUMBER OF VALUES=%d\n", num_values);
printf("TRUE NUMBER OF VALUES=%d\n",

true num values);

/* for (i=0; i<num values; i++)*/
/* { */
/* printf("row_indx= %d\t", tran_row indx[i]);print out
the values to check. */
/* printf("colindx= %d\t", tran_col_indx[i]); */
/* printf("tranval= %lf\t", tran_values[i]); */
/* printf("i = %d\n", i); */
/* }*/

int val_cnt;
val_cnt=0;

/* for (i=0; i<real_size; i++) */
/* { (*/
/* printf("%d\t", i); */
/* for (j=0; j<2*max_num_row_vals; j++) */
/* { */

/* printf("%lf\t", sparse_tran_mat[i][j]); */
/* val cnt++; */

/* printf("EOC\n"); */
/* ' */

/* printf("Value Count = %d\n", val_cnt); */

//Next step is create the CSC format input data for the
dgssfs routine

int *colptr, *rowind, true_num_val_cnt;
double *values;

colptr=(int *) calloc (real_size+l, sizeof (int));
rowind=(int *) calloc (num_values, sizeof(int));
values=(double *) calloc (num values, sizeof (double));

for (i=0; i<=realsize; i++)

colptr[i]=0;

for (i=0; i<num_values; i++)

values[i]=0.0;
rowind[i]=0;

int val_indx;
val_indx=0;
col_cnt=0;
row_indx=0;
truenum valcnt=0;
for (i=0; i<real_size; i++)

colptr[i]=val_indx+ I;
for (j=0; j<max_num_row vals;j++)
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if
((sparse_tran_mat[i][2*j+ 1 ]>0.0) ll(sparse_tran_mat[i][2*j+ 1 ]
<0.0))

rowind[val_indx]=sparse_tran_mat[i] [2*j ]+ 1;
values[val__indx]=sparse tran_mat[i][2*j+ 1 ];
val_indx++;
truenumvalcnt++;

true num values==true num val cnt;

colptr[real_size]=val_indx+ I;

for (i=O; i<=real_size; i++)

printlf("colptr[%d]=%d\n", i, colptr[i]);

for (i=0; i<true_num_values; i++)

printf("rowind[%d]=%d values[%d]=%lf\n", i, rowind[i],
i, values[i]);

colstr=fopen ("/tmp/colstr", "w");
rownd=fopen ("/tmp/rownd", "w");
vals=fopen ("/tmp/vals", "w");

for (i=0; i<=realsize; i++)

fprintf(colstr, "'od\n", colptr[i]);
fflush(colstr);

fclose(colstr),

for (i=0; i<true_num_values; i++)

fprintf(rownd, "%d\n", rowind[i]);
Mush(rownd);
fprintf(vals, "%lf\n", values[i]);
fflush(vals);

fclose(rownd);
fclose(vals);

system ("cp /tmp/colstr colstr");
system ("cp /tmp/rownd rownd");
system ("cp /tmp/vals vals");

fprintf(problem_size, "%d\n", real_size);
fflush(problem_size);
fprintf(problem_size, "%d\n", true_num_values);
ffl ush(problem_size);
fclose(problem_size);

system ("cp /tmp/size_info size_info");

char names[25];
strcpy(names, "fortrancall");
system(names);

FILE *P _val, *results;
double * pval;

pval=(double *) calloc (real_size, sizeof (double));

P_val=fopen ("/tmp/P_val", "r");

for (i=O; i<real_size; i++)

fscanf(P_val, "%lf", &pval[i]);
printf("%lf\n", pval[i]);

fclose(P_val);

system ("cp /tmp/P_val P_val");

double *res_thr, *cus thr;

res_thr=(double *) calloc (m+ I, sizeof (double));
cus_thr=(double *) calloc (m+l, sizeof(double));

for (i=0; i<=m; i++)

res_thr[i]=0.0;

for (i=O; i<=m; i++)

custhr[i]=0.0;

for (i=O; i<st_sp_size; i++)

if(stat_mat[i][] !=O)

for (j=2; j<st_sp_width-2; j++)

if (stat_mat[i[j]O)

row_indx=stat_mat[i][st_sp_width- I];
res_thr[j-2]=res_thr[j-2]+pval[row_indx];

if(stat_mat[i][j]=b)

row_indx=stat_mat[i][st_sp_width- ];
cus_thr[j-2]=cus_thr[j-2]+pval[row indx];

results=fopen ("/tmp/Results", "w");
/*
for (i=0; i<m; i++)

temp_double= .O-res_thr[i];
temp_double I=Mu[i];
res_thr[i]=temp_double*temp_doublel;
res_thr[m]=res_thr[m]+res thr[i];
fprintf(results, "%f\t", res_thr[i]);
fflush(results);

fprintfresults, n", resthr[m
fprintf(results, "%f\n", resthr[m]);
mush(results);

for (i=O; i<m;i++)

temp_double=l .O-cus_thr[i];
temp_double I=Lam[i];
cus_thr[i]=temp_double*temp_double l;
cus_thr[m]=cus_thr[m]+cus_thr[i];
fprintf(results, "%f\t", cus_thr[i]);
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fflush(results);

fprintf(results, "%f\n", cus_thr[m]);
fflush(results);

fclose(results);
system ("cp /tmp'Results Results");

free(pval);
free(resthr),
free(cus_thr);
free(row_sum);
free(stattemp);
free(stat mat);
free(b mat);
free(rowind),
free(colptr);
free(values);
printf("%d\n",ok);

return 0;

printf("%d\n",ok);

return 0;
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