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ABSTRACT

Multicellular organisms possess natural gene-regulatory pathways that employ small RNAs to
negatively regulate gene expression. In nematodes, the small temporal RNAs (stRNAs), lin-4
and let-7, negatively regulate genes important in specifying developmental timing. A gene-
silencing pathway present in plants, fungi and animals called RNA interference, involves the
conversion of long double-stranded RNA into short interfering RNAs, which can serve to
negatively regulate endogenous genes or suppress the replication of viruses and transposons.

To investigate how wide a role small RNAs play in regulating gene expression in animals, we
developed a RNA cloning procedure and first applied it to the cloning of small RNAs from the
nematode, Caenorhabditis elegans. In addition to cloning lin-4 and let-7 sequences, our study
revealed a large number of conserved and highly expressed small RNAs with features
reminiscent of stRNAs. Because not all of these small RNAs were expressed in temporal
fashion, we and others have referred to this novel class of tiny RNAs as microRNAs.

We completed an extensive census of microRNA (miRNA) genes in C.elegans by cloning and
bioinformatics searches to lay the groundwork for future functional studies. Our census marked
the detection of nearly 90 C.elegans miRNAs, estimated an upper-bound of about 120 miRNA
genes in C.elegans, and detailed the conservation and clustering of miRNA sequences. We also
determined the high molecular abundance of several miRNAs in C.elegans and Hela cells.

In an effort to understand the reason for the high molecular abundance of miRNAs, we
constructed an inducible miRNA-expressing cell line to measure the stability of animal miRNAs.
Time course measurements suggested a long (>24 hours) half-life for two well-conserved
miRNAs. These cells lines may also be useful for other functional studies, such as validation of
putative mRNA target genes.

Thesis supervisor: David P. Bartel
Title: Professor of Biology
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microRNAs: Nuggets of RNA Reveal a Goldmine of Biology

Although microRNAs (miRNAs) remained hidden in the "genomic dirt" of intergenic

regions and introns for more than 25 years after the first mutants were isolated [1, 2], they now

represent a treasure trove of new biology. Not only are these small RNAs found in many

branches of multi-cellular organisms, they also exert an extraordinary level of control on gene

expression, and have refreshed our appreciation of RNA's functional diversity in eukaryotes.

While the importance of miRNAs in development is undisputed, establishing the integral roles of

each miRNA remains a challenge.

Progress in miRNA research has been rapid and dramatic. The catalog of miRNAs in

diverse organisms has swelled in recent years (Figure 1). Before 2001, only two miRNA genes

were known, but quickly the discovery of other miRNAs surged as cloning and computational

methods homed in on small RNA genes. Identification and prediction of target mRNAs

regulated by miRNAs have recently seen similar increases. I will survey how genetic,

biochemical, and genomic approaches have uncovered this rich repository of gene riboregulators,

and review our expanding knowledge about the biogenesis and function of miRNAs.

A Tale of Worm Mutants

The current flood of miRNA knowledge began with research performed in Victor

Ambros's lab and Gary Ruvkun's lab who were interested in the problem of heterochrony - the

proper ordering and timing of developmental processes. What drove their research was a set of

Caenorhabditis elegans mutants with various defects in the manner by which the cells should

divide and differentiate according to their programmed lineage fates [3]. Of these lineage-

defective, or lin mutants, two became a focus of study in determining how heterochronic genes
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interact - lin-4 and lin-14. While the lin-4 loss-of-function (LOF) mutant contained somatic

cells that reiterated early larval divisions and whose maturity was retarded, the lin-14 LOF

mutants instead displayed cells that precociously differentiate [4]. Cloning and characterization

of lin-14 by the Ruvkun lab indicated that proper division of those certain somatic cells

depended on a downregulation of LIN-14 during development [5, 6]. The intriguing connection

between lin-4 and lin-14 was first hinted by three observations: (1) lin-4 LOF mutants showed

similar phenotypes to the lin-14 gain-of-function (GOF) mutants which failed to downregulate

LIN-14; (2) accumulation of LIN-14 was also seen in the lin-4 mutant; and (3) lin-14 LOF

mutants in a lin-4 LOF background partially suppressed the lin-4 heterochronic defects [7-10].

After the lin-14 gene was cloned, the gene was found to encode a protein that appeared

localized to the nucleus and was temporally regulated [5, 6]. Characterization of the lin-14 GOF

mutants revealed lesions in the 3' untranslated region (UTR) of the lin-14 mRNA which

suggested sequence elements that might be acted upon by the lin-4 gene to negatively regulate

LIN-14 levels [7-9, 11]. Although one might have expected that lin-4 could be an RNA-binding

protein, such notions were dispelled when the Ambros lab cloned a -700 nt genomic fragment

capable of rescuing the lin-4 mutant, and which could not encode a significant protein product

[12]. So, the Ambros lab turned their attention to the transcript encoded by the lin-4 locus, and

found that lin-4 actually encoded two small non-coding RNAs, a -60 nt RNA capable of folding

into a foldback structure, and a -22 nt RNA thought to derive from the longer RNA (Figure 2).

Developmental Northern blots indicated that lin-4 RNA expression was temporally regulated,

because it was detected only after the late larval stage 1 (L1), which coincided with a drop in

LIN-14 levels [8, 12]. Thanks to active communication between the Ambros and Ruvkun labs,

an illuminating molecular connection was proposed for lin-4 and lin-14 - the sequence of lin-4
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could base-pair to sites in lin-14 that matched exactly the locations of the deregulating genetic

lesions. Although the base pairing interactions contained bulges and mismatches, both the lin-4

RNA and the binding sites of the lin-14 3'UTR were conserved in the related nematode, C.

briggsae. Furthermore, this interaction caused LIN-14 levels to be repressed while RNA levels

remained unchanged, indicating a mechanism of translational repression. Together, these

observations put forth an unprecedented model of gene regulation in nematodes.

The lin-4 - lin-14 story was compelling yet very peculiar, because neither lin-4 homologs

nor analogous regulatory examples had been seen in other animals. Although another

heterochronic gene, lin-28, was later discovered to be a second target of regulation by lin-4, this

example was also isolated to the study of C. elegans [13]. Not until the year 2000 did additional

studies in heterochronic genes by the Ruvkun lab broaden the appeal of RNAs like lin-4. While

the previous studies examined early larval development in worms, the Ruvkun lab reinvestigated

heterochronic genes specifying the later larval stages. They employed a screen that isolated

mutants defective in the proper developmental timing of adult nematode structures, such as

longitudinal cuticle structures, and pin-pointed developmental roles for genes like let-7, lin-41,

lin-42 and daf-12 [14]. The previous insights of the lin-4 RNA and its ability to repress target

heterochronic genes evidently proved valuable in guiding the subsequent cloning and functional

assignment of let-7. In a case of d6ja vu, the Ruvkun lab showed that let-7 was also a non-

coding -22-nt RNA that could negatively regulate the translation of its target mRNA, lin-41, by

base-pairing to conserved sites in the lin-41 3' UTR (Figure 2) [14]. A larger -60-nt precursor

RNA capable of forming a foldback structure was also detected for let-7, and it was temporally

expressed only after the late L3 stage [14].
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The complex gene orchestration needed to properly time worm development was now

clarified by the key genetic switches of lin-4 and let-7 (Figure 2). In this pathway, the L1 to L2

transition and the L3 to LA transition could be triggered by the expression of the lin-4 and let-7

RNAs, respectively. This resulted in reductions in LIN-14 and LIN-41 levels, and genes

affected downstream of lin-14 and lin-41 could subsequently adjust for cells to decide their

proper developmental fate. The importance of this elegant regulatory pathway is evident from

the conservation of these genes and the mode of regulation amongst other nematodes, and

defects in pathway components result in serious phenotypic abnormalities, such as bursting

vulva, sterility, and lethality [10, 14].

Nematodes are interesting and peculiar creatures for a number of reasons, but could they

also be the only animal with small regulatory RNAs? Previous database searches had failed to

reveal homologs for lin-4, however, the Ruvkun lab's query on dipteran and mammalian

genomes suggested the presence of homologs for let-7. To test their hypothesis, the Ruvkun lab

and a team of collaborators assembled and assayed an impressive array of RNA samples from

various phyla in the animal kingdom. Some samples lacked any detectable let-7 RNA signal,

but surprisingly all bilateral animals were confirmed for let-7 expression. Furthermore, let-7 was

detected only in late stages of flies; and in human tissues, its signal was absent from bone

marrow, which consists of mostly of undifferentiated cells [15]. These results lead the Ruvkun

lab to propose that let-7 temporal regulation and developmental timing function might also be

broadly conserved amongst animals. By coining the term 'small temporal RNAs' (stRNAs) for

lin-4 and let-7, the Ruvkun lab anticipated other small endogenous RNAs were out there, waiting

to be found.
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Panning Transcriptomes for Small RNAs

In addition to the breakthrough in detecting let-7 across animals, two other lines of

research pointed to a universe of small endogenous RNAs waiting to be uncovered: RNA

interference (RNAi) and RNA genomics (RNomics). RNAi was born out of early research on

post-transcriptional gene silencing (PTGS), whereby a natural process conserved from plants to

animals seemed to be silencing the expression of endogenous and artificial genes at the RNA

level (for a review see [16]). Seminal work by Fire and Mello indicated that PTGS might be

triggered by long double-stranded RNA (dsRNA), and with RNA playing a central role, the new

term RNA interference (RNAi) was coined for the silencing phenomenon [17, 18]. Soon after,

experiments by Hamilton and Baulcombe suggested that small RNA species between 20-25 nt

were being generated in the course of PTGS [17, 18], while work in Drosophila extracts showed

that these small RNAs derived from the dsRNA [19]. The enzyme thought to initiate RNAi was

an RNase III called Dicer, which dices long dsRNA into small -22 nt RNAs [20]. These short

RNAs generated by Dicer were called small interfering RNAs (siRNAs) because they specify the

interference of expression of a target mRNA by base pairing to the mRNA and guiding the

cleavage and degradation of that mRNA [21]. The siRNAs exert their function by associating

into an assembly of proteins to form the RNA-Induced Silencing Complex, or the RISC, which

contains an endoribonuclease [22]. Suspecting more than coincidence in the similar lengths of

siRNAs and stRNAs, several labs showed that Dicer generated mature stRNAs, because a mutant

worm lacking Dicer accumulated stRNA foldback precursors and exhibited pleiotropic defects

similar to lin-4 and let-7 defects [23-26]. These observations lead to the hypothesis that

additional Dicer substrates might be expressed endogenously in plants and animals.
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Meanwhile, RNomics approaches being applied to eukaryotes and prokaryotes indicated

a plethora of small (<300 nt) RNAs that could be detected at high levels [27, 28]. Computational

screens and immunoprecipitation experiments indicated that eukaryotes like yeast and even

archaeabacteria contained many novel non-coding RNAs that represented new classes of small

nucleolar RNAs (snoRNAs), known to have roles in modifying and regulating ribosomal RNAs

through base-pairing interactions [29, 30]. Likewise, a functional genomics effort uncovered a

host of small non-coding RNAs in prokaryotes, which were later shown to have roles in

regulating the expression of other bacterial genes, either through antisense mechanisms or

association with protein factors to affect translation or transcription termination [28, 31]. An

unbiased purification and cloning of small RNAs from mouse brain also identified many highly-

expressed non-coding RNAs that appeared to correspond to additional snoRNAs [32]. Work in

RNAi and stRNAs hinted at additional endogenous small RNAs, but previous investigation in

mouse brain only cloned RNAs >50 nt long. Could cloning of even smaller RNAs from other

organisms be informative or would it be doomed to sifting through many small degradation

intermediates of longer RNAs?

The first sign that RNA cloning would be informative came from endeavors by the

Tuschl lab to directionally clone siRNAs produced from exogenous dsRNA added to Drosophila

embryo lysates [21]. Not only did the Tuschl lab recover siRNAs, but they also obtained clones

that differed from degradation products of structural RNAs (i.e. tRNA and rRNA) or mRNAs.

Some of these alternative clones instead matched retrotransposon sequences, suggesting that

RNAi, known to play a role in suppressing transposon hopping, was indeed generating small

RNAs of -22nt from endogenous double-stranded transcripts from mobile elements [21]. The

Tuschl lab continued to clone small RNAs from Drosophila as well as HeLa cells, while the
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Ambros lab and Bartel lab (Chapter 1 of this thesis) directionally cloned small RNAs from

C.elegans. Although our cloning techniques all differed, all three labs converged on the

discovery of a preponderance of endogenous small -22nt RNAs in animals [33-35]. Two small

RNAs were discovered by all three groups, while the Tuschl and Bartel groups managed to clone

let-7 sequences, indicating the efforts had at least identified an important positive control.

Developmental Northern blots confirmed the expression of small -22-nt long RNAs in worms,

flies and human cells, but unlike the small temporal RNA let-7, several of the small RNAs,

including the two commonly discovered by all three groups, seemed to be expressed throughout

worm and fly development. So, a new classification was created - the term "microRNAs"

(miRNAs) was coined for this extensive class of -22 nt noncoding RNAs that appeared to be

processed from short endogenous stem-loop precursors resembling those of lin-4 and let-7.

Thanks to the nearly-complete worm, fly and human genomes, mapping and

characterizing these miRNA clones could be easily accomplished, and several features could be

defined for this class of small RNA genes. First, a segment of nearby genomic sequence and the

miRNA sequence could be folded by RNA-folding algorithms into foldback structures

reminiscent of the foldback structures of the lin-4 and let-7 precursors (Figure 3). Indeed,

Northern blots could confirm the presence of several miRNA precursors [33-35], and the dcr-1

mutant defective in Dicer seemed to accumulate the miRNA precursor [35]. Second, discrete

single loci could be matched to the great majority of the miRNAs, as opposed to repeat elements

like transposons seen earlier for siRNAs cloned by the Tuschl lab. Third, the miRNA loci often

sit far away from annotated genes, often in intergenic expanses, or at closest within the introns of

protein-coding genes. Those miRNA genes in isolated intergenic regions might represent

independent transcription units, while many miRNAs within introns are likely expressed from
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the host gene. Some miRNAs even appeared to cluster together, with only a few nt separating

each stem loop, suggesting multiple miRNAs could be transcribed from operon-like units (Figure

3C) [33, 34]. Fourth, the miRNA genes were surprisingly conserved in related species, and

moderately conserved amongst animals - the vast majority of C.elegans miRNAs had detectable

homologs in C.briggsae, and miR-1, miR-2, and miR-34 shared the distinction with let-7 RNA

as being nearly perfectly conserved between worms, flies and humans (Figure 3A). Fifth, the

mature miRNA seemed to predominantly derive from just one side of the foldback precursor,

either from the 5' or 3' side of the foldback, although one small RNA clone had been obtained

from the other side of miR-56 (that less abundant RNA was named miR-56*) [34]. Such

characteristics described above later become important in defining whether future candidate

small RNAs could be assigned as miRNAs.

These initial miRNA cloning efforts did not nearly approach saturation, and left much

room for further miRNA gene discovery. Large scale small RNA cloning projects were

eventually completed for the invertebrates, C. elegans and D. melanogaster [36-38]. Meanwhile,

cloning efforts were significantly expanded in vertebrates, with one focus directed at specific

tissues in mice [39, 40], while another effort examined miRNAs in early development stages of

zebrafish [41]. Multiple groups cloned many miRNAs from various mammalian samples,

ranging from immortal cell lines, to mouse embryonic stem cells, to cancer tissue samples, and to

bone marrow [39, 42-45]. Some mammalian miRNAs have been identified from purified

protein complexes. For example, an RNA cloning study of a -15S ribonucleoprotein (RNP)

complex containing Gemin3, Gemin4 and eIF2C2 yielded a surprising number of novel miRNAs

and implicated an miRNP in which miRNAs exert their biological function [46]. Following

earlier observations that lin-4 fractionated with polysomes on sucrose gradients [47], polysomes
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from mammalian neurons were isolated and subjected to small RNA cloning, further enlarging

the list of animal miRNAs identified by molecular means [48]. Recently, a few miRNAs have

even been found in a mammalian virus [49]. Five new miRNAs from Epstein-Barr virus (EBV)

were discovered by RNA cloning, and Northern blots not only confirmed their expression but

also indicated that cell lines in different latency stages of EBV infection can exhibit differential

expression of the viral-specific miRNAs [49].

Animals are clearly rich repositories of miRNAs, but could other multi-cellular

organisms harbor such genes? The RNAi phenomenon had been clearly observed in plants, fungi

and even protozoans, and Dicer homologs were also evident in Arabidopsis thaliana,

Neurospora crassa, and Schizosaccaromyces pombe, suggesting that small RNAs might reach

deep into ancient eukaryotic lineages [20]. Naturally, RNA cloning efforts were extended to

plants, fungi and trypanosomes, and many endogenous small RNAs could be identified as unique

from degradation products of structural and messenger RNAs [50-56]. However, only

endogenous siRNAs derived from retrotransposons or genomic repeat elements could be

discerned from RNA cloning in T.brucei and S.pombe, respectively. Nevertheless, miRNAs

could be identified in plants, although a few features are distinct from those commonly observed

in animal miRNAs. The plant miRNAs were similar to animal miRNAs in that (1) they were

highly expressed 20-22nt single-stranded RNAs often detectable on Northern blots, (2) they were

well conserved among different plant species (although not conserved with any animal

miRNAs), (3) they were derived from one strand of a hairpin precursor structure, and (4) their

processing was dependent on an RNase III enzyme, DCL1, the plant Dicer homolog [51, 55].

However, plant miRNAs deviate from animals in that the precursors of plant miRNAs have not

been detected on Northern blots, and sometimes required much longer stretches of genomic
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sequence (>150 bp vs. 80 bp in animal miRNAs) to form a foldback structure that could be a

suitable DCL1 substrate [51] (Figure 3B). Additionally, some plant miRNAs match multiple

loci, where some matches appear to represent the original miRNA gene, but other matches

corresponded to the antisense sequence of a protein coding gene, hinting at antisense recognition

of mRNA targets by plant miRNAs [50, 51]. This feature would later bear upon fruitful efforts to

find additional plant miRNA targets [57].

Mining Genome Databases for More miRNAs

Conservation of RNAi from animals to protozoa indicates an ancient role for small RNAs

carrying out gene silencing processes, with some researchers postulating that RNAi serves as an

innate immune response against RNA viruses, transposons, or other aberrant gene expression

[58, 59]. However, the existence of miRNAs seems restricted to plants and animals, suggesting

that miRNAs might have emerged with the advent of multi-cellular life. Given the lack of

sequence conservation between any plant and animal miRNA sequence, the miRNA genes might

have emerged independently after the split between animal and plant lineages. However, within

each respective lineage, miRNA sequences have been quite well conserved, suggesting that

miRNA sequences are retained due to important, conserved target interactions. This

conservation of miRNA sequence and striking conservation in precursor structure within the

respective animal and plant lineages provided a means to computationally mine genomes for new

miRNA candidates. Bioinformatic methods could test our understanding of miRNA features, and

might readily identify new miRNA genes in a fashion unbiased by miRNA molecular abundance

or cloning efficiency. Although a handful of new candidate miRNAs were identified by standard
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BLAST searches for homologs of cloned miRNAs, several groups have employed more

sophisticated algorithms to identify broader sets of novel candidate animal miRNAs.

The two most sensitive algorithms available for finding miRNA genes are MirSeeker,

which was applied against fly genomes, and MirScan, which has been applied against nematode

and vertebrate genomes. In MirSeeker, aligned foldback structures between D.melanogaster and

D.pseudoobscura were scored against the pattern of sequence divergence being higher in the

loops rather than in the arms of the stem loop to identify positive candidates. MirSeeker could

capture 75% of the previously cloned and conserved Drosophila miRNAs and allowed for the

validation of 48 additional miRNAs [60]. MirScan, on the other hand, used a list of aligned stem

loops loosely conserved between two or more genomes, and assigns scores based on structural

and sequence similarities between the candidate and a set of previously known C.elegans

miRNAs stemloops. When applied to foldback sequences conserved between C.elegans and

C.briggsae, MirScan captured 93% of previously cloned C.elegans miRNAs that possessed

C.briggsae homologs, and suggested 35 new miRNAs that were validated by cloning, Northern

blots or PCR amplification [36]. MirScan has also been applied to finding new human miRNAs

that are conserved in mouse and fish, yielding 188 vertebrate miRNAs that stand out in a natural

peak from other candidate foldback structures [41]. The strengths of MirSeeker and MirScan are

their sensitivity and specificity, which enables firm estimates on the upper bounds of miRNA

genes - about -1% the number of the protein coding genes in invertebrate genomes (120 genes

in worms, 110 genes in flies) [36, 60]. About the same percentage of the human genes appear to

be miRNAs, although for firm estimates on the total miRNA genes, the verdict is still out and

awaits the sequencing of additional vertebrate genomes and the development of a second

generation of miRNA gene finding programs [61, 62].
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Other computational efforts have been applied to predicting C.elegans miRNAs [38, 63].

Although these efforts had modest abilities in pinpointing previously cloned miRNAs, some new

miRNAs were identified, but many of the remaining candidates await verification.

Computational searches for miRNA genes are not limited to animals. A newly-developed

algorithm, called MirCheck, looks for foldback structures in Arabidopsis and Oryza genomes,

and then scans them for conserved 21-mer sequences that could represent a novel miRNA [64].

It also checks for homologous matches between conserved 21-mer sequences and the antisense

of annotated genes which could represent potential novel miRNA targets. In total, MirCheck has

uncovered 23 new Arabidopsis miRNA loci represented within 7 new families [64].

With so many labs prospecting for possible miRNAs, a set of guidelines and a sequence

repository were eventually established to aid researchers in evaluating candidate sequences and

to facilitate proper nomenclature of miRNAs. Some of the critical criteria for classifying

miRNAs have included specific, detectable expression, phylogenetic conservation, derivation

from a foldback precursor, and processing by an RNase III enzyme [65]. Additionally, a

distinction in origins was spelled out for miRNAs versus siRNAs - miRNAs arise generally from

endogenous gene units encoding transcripts with short fold-back structures, while groups of

siRNAs derive from long dsRNA precursors from viral genes, transposons, and other aberrant

genes. These criteria became vital in differentiating miRNAs from other small RNAs that may

represent endogenous siRNAs or other less characterized small RNAs like tncRNAs [38, 53].

The vast majority of miRNA genes have been named numerically by the order in which they

were discovered, with highly similar miRNAs sometimes sharing the same number followed

with a letter or number suffix. A clearinghouse for miRNA sequences has been established at
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the Rfam databases of RNA families to catalog a non-redundant list of existing miRNAs and to

assign unique names to newly discovered miRNAs [66].

How Do Cells Make miRNAs?

In the eukaryotic cell, transcription is often a highly regulated process, and generally,

transcribed RNA species must be processed into their mature, functional state. So when

miRNAs appeared on the scene, it was natural to wonder what transcriptional and maturation

processes would be involved for this new class of RNAs. Developmental and tissue-panel

Northern blots as well as RNA cloning had illuminated the temporal expression and spatial

specificity seen for many miRNAs, which argued for active transcriptional control of these small

RNA genes [33-35, 39, 40]. As of yet, though, no definitive promoters or biochemical

determinations have established the RNA polymerase responsible for transcribing miRNAs,

although a repressive DNA element and a protein factor has been implicated in the temporal

control of let-7 expression in C.elegans [67]. Two other studies also indicate the temporal

regulation of let-7 expression in Drosophila may be mediated by an ecdysone hormonal signal

which is known to affect the transcription of many genes [68, 69]. It is possible that miRNAs

might be transcribed by RNA Pol III, which generally transcribes shorter RNAs like tRNAs and

some spliceosomal RNAs, because the -60-70 nt size of the foldback precursors is similar to

tRNA lengths. However, there is mounting evidence to indicate that miRNA precursors

themselves derive from longer transcripts that would be predominantly transcribed by RNA Pol

II. This evidence includes observations that miRNA sequences could be mapped to large cDNAs

in EST databases [33, 70], multiple miRNAs can cluster within a region akin to an operon [33,
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34], miRNAs mapped to introns often reside on the transcribed strand of the host gene [36, 37,

60], and RT-PCR can detect long transcripts encompassing the fold-back precursor [37, 71].

Experimental proof that miRNAs could derive from longer transcripts was demonstrated

with mammalian cell extracts that showed primary transcripts containing a single miRNA or a

cluster of miRNAs could be processed into -70 nt RNAs (putative foldback precursors), for

which this product was then competent for further processing into -22 nt RNAs (presumably the

mature miRNA) [71]. These long primary transcripts were dubbed pri-miRNAs, which appear to

be processed in the nucleus [71]. The factor responsible for pri-miRNA processing in animals is

Drosha, an evolutionarily-conserved, nuclear-localized RNAse III, which trims away the

flanking sequences from the precursor miRNA (pre-miRNA) and leaves behind a 3' two-nt

overhang, a signature of RNase III enzymes (Figure 4, Step A2) [72]. Drosha cleavage can

define the 5' end of mature miRNAs that derive from the 5' arm of the pre-miRNA, suggesting

that Dicer need only cleave the portion of the pre-miRNA proximal to the loop.

How does the pre-miRNA that is generated in the nucleus by Drosha flow into the

cytoplasm for further processing by Dicer? Although passive diffusion might be an option,

several labs suspected an active process for pre-miRNA transport, given that other non-coding

RNAs like tRNAs are actively exported to the cytoplasm by protein machinery [73]. Three labs

independently demonstrated that Exportin-5 (Exp5), a RanGTP-dependent transport protein, was

functionally different from other nuclear export receptors, in that its primary role was to

transport pre-miRNAs across the nuclear membrane (Figure 4, Step A3) [74-76]. Genetic

evidence further supporting Exp5 as the primary nuclear transporter of miRNAs was seen in an

Arabidopsis mutant defective in the HASTY gene, a homolog of Exp5, which displays
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pleiotropic developmental defects similar to other plant mutants where miRNA production is

compromised (Figure 4, Step P4) [77].

Although plants and animals may share similarity in protein factors for miRNA nuclear

export, there is a notable difference in pre-miRNA formation. Animals require a nuclear and a

cytoplasmic RNase III to cleave the different ends of the pre-miRNA, while in plants, only

DICER-LIKE-1 (DCL1), one of the four Dicer-like RNase III enzymes in plants, has a

demonstrated role in processing miRNAs [51, 55, 78]. Given that DCL1 is primarily nuclear

localized in plants, it is likely that DCL1 supplies both cleavage events on a pre-miRNA, perhaps

so efficiently that fold-back precursors do not get a chance to accumulate (Figure 4, Step P2 and

P3) [51, 61]. Alternatively, animal pre-miRNA might tend to accumulate because RNase III

cleavage events are partitioned, and because transport of pre-miRNAs across the nucleus is

relatively slow [79]. Since animals utilize two different RNase III enzymes to cut the different

ends of pre-miRNAs, this may explain how the boundaries of the mature miRNA are defined,

but the exact sequence and/or structural determinants specifying the register of Drosha or Dicer

cleavage is still unclear [72, 80]. Perhaps equally puzzling are the recent reports indicating that

while worms and humans have only one identifiable Dicer enzyme, flies have two Dicers;

Drosophila DCR-1 processes miRNA, while DCR-2 forms siRNAs [81, 82]. Despite these

unresolved questions, our clearer understanding of miRNA biogenesis has allowed researchers to

use either Pol II or Pol III promoters to robustly express miRNAs at will now in many cells [44,

79, 80]; and this technique in turn will lead to better expression systems for small hairpin RNAs

used in functional RNAi genomic studies [83].
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RISC and miRNAs, Some Assembly (and Unwinding) Required

In both plants and animals, Dicer processes long dsRNA into siRNAs, for which both

sense and antisense small RNAs are generated. This presented a quandary as to why only one

strand of a pre-miRNA accumulates as the dominant miRNA sequence. Despite the presence of

bulges in the pre-miRNA stem, several miRNA* clones obtained from extensive miRNA cloning

studies could be matched to the dominant miRNA to form duplexes with two nt 3' overhangs, a

signature of siRNA duplexes, suggesting that Dicer processes pre-miRNAs like a perfectly

complementary duplex [36, 51]. This conundrum of asymmetric miRNA accumulation was

finally explained in recent work by two groups that demonstrated a single strand of an siRNA

duplex could often be more effective at initiating RNAi than the opposite strand of the duplex

[84, 85]. These groups noticed that the 5' end of the more effective siRNA strongly correlated

with the duplex end with the lower relative thermodynamic base-pairing energy [84, 85]. When

this observation was extended to duplexes of miRNAs and miRNA*'s from flies, the elegant rule

proposed above predicted the correct accumulation of the miRNA strand in the majority of cases.

For miRNA duplexes where the unwinding energy of either duplex end was similar, it was

shown that the miRNA* also accumulates appreciably [37, 84]. So, a model was proposed

where a RNA helicase samples and selects the weaker duplex end for unwinding and loading of

one siRNA or one miRNA strand over the other into the RISC or miRNP, respectively, and it is

presumed the non-incorporated strand is degraded quickly (Figure 4, Step 5) [84, 85]. In the

natural role for RNAi in silencing RNA viruses and transposons, multiple siRNAs are generated,

and it is hard to imagine why the RNAi response would depend on strand selectivity, therefore

the siRNA/miRNA helicase with strand bias might have evolved to ensure more efficient and
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specific assembly of miRNAs, where maximizing the levels and specificity of miRNAs is

important for miRNA function.

What are the steady-state levels of miRNAs in the cell? Quantitative Northern analysis

has provided some estimates of miRNA levels in nematode and Hela cells, and the most

abundant miRNAs in C.elegans, miR-2 and miR-58, accumulate to -50 thousand copies per

average cell, while lin-4 and let-7 RNAs are present in 3-5 thousand copies per average cell [36];

the measurement of let-7 and other miRNAs in worms could be higher since let-7 has been

postulated to have cell-specific expression [67]. In Hela cells, let-7 is expressed at about one

thousand copies per cell, but other tissue-specific miRNAs assayed in human tissues may exceed

100 thousand copies per cell [79]. The molecular abundance of miRNAs are much higher than

most mRNAs, and even rivals the abundant levels of "house-keeping" RNAs like U6 RNA of the

spliceosome (-50 - 100 thousand copies per cell). Thus, miRNAs and their associated proteins

represent one of the most abundant RNPs in the cell. Why do animal miRNAs accumulate to

such high levels? Only miniscule amounts of siRNA are needed to prompt gene silencing,

because the mode of RNA cleavage by RISC is catalytic [17, 86]. However, miRNAs like lin-4

and let-7 do not appear to mediate significant mRNA turnover, and bind to target sites with

imperfect complementarity, suggesting that high cellular concentrations might be important for

target interaction or function in repressing translation, which is supported by experiments that

use siRNAs to mimic and examine the miRNA target interaction [87, 88]. Other models have

further proposed miRNAs might have many mRNA targets, so high miRNA levels might be

needed to effectively suppress multiple target mRNAs [89].

Comparing and contrasting siRNAs and miRNAs has revealed insights not only in the

biogenesis of small regulatory RNAs, but also in their maturation. While origins of miRNAs and
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siRNAs are clearly different, their biogenesis undoubtedly intersects because Dicer and an

unidentified helicase handle both siRNAs and miRNAs. Several reports have extended this

theme implicating that the miRNP shares the same biological activity and core components as

the RISC, namely the ability to cleave a target mRNA. Around the time plant miRNAs and

predicted plant mRNA targets were reported by the Bartel lab [51, 57], the Carrington lab

detected and mapped the in vivo sites of cleavage of several Scarecrow-Like (SCL) mRNAs,

which correspond to a conserved site antisense to miR171 [90]. The cleavage sites on the SCL

mRNAs were primarily at the 10th nt opposite from the 5' end of the miRNA, which is a pattern

characteristic of RNA cleavage by siRNA-programmed RISC [21, 90, 91]. Meanwhile, the

Zamore lab demonstrated that an artificial mRNA containing a perfect complementary site for

let-7 could be efficiently cleaved by endogenous Drosophila and human let-7 [92].

Furthermore, they showed that immunoprecipitations of the miRNP (containing eiF2C2, Gemin3

and Gemin4) contained cleavage activity for the let-7 perfect complementary site. This notion

of common protein complexes for miRNAs and siRNAs has been reinforced by detection of

miRNAs in the RISC [93-96]. Given the evidence that the miRNP is probably the same as

RISC, only the term RISC will be discussed henceforth.

Although some RISC factors have been determined in Hela and C.elegans extracts, the

majority of factors have been examined in Drosophila. The list of protein factors known to be in

Drosophila RISC include Ago2, VIG, Tudor-SN, Aubergine, FXR, Dcr-2, and R2D2 [93-98],

and several additional bands on protein gels from RISC purifications remain unidentified. One

particularly elusive but highly sought-after RISC factor is the putative Slicer enzyme which

mediates the endonucleolytic cleavage on the mRNA. Recent reports argue that Slicer is not the

factor Tudor-SN, a micrococcal nuclease homolog, because metal co-factor requirements and the
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presence of a phosphate on the 5' end of the 3' cleavage product are inconsistent with the activity

of a micrococcal nuclease [99, 100]. An additional complexity of dissecting RISC is that various

isoforms probably exist in organisms, reflected in part by the various different sizes of RISC

purified from different labs [22, 46, 98, 101, 102]. Purification of siRNA-containing RNPs from

trypanosomes and biochemical fractionation of miRNAs from worms and mammalian cells

strongly suggest that RISC is associated with ribosomes and polyribosomes in the course of its

action to cleave mRNA or when mediating translation repression [47, 48, 54, 103]. Thus, factors

involved in the translation machinery, and even membrane-associated factors, like eIF2C1 (also

known as GERp95), will likely contribute to diversity of RISC isoforms [102]. Tissue-specific

isoforms of RISC might also exist, given that a putative helicase, Armitage, is preferentially

expressed in Drosophila ovaries and is important for RISC assembly [97, 104].

Even though a clearer model of miRNA biogenesis and maturation is emerging (Figure

4), several steps in the miRNA pathway remain unresolved. For example, the actions of the

numerous Paz and Piwi Domain (PPD) proteins are still mysterious [105]. This class of proteins

includes the founding members, Piwi, Argonaute, and Zwille/Pinhead, for which the PAZ protein

domain is named after, and is a deeply conserved but enigmatic class with important roles in

eukaryotic development and stem cell regulation [106]. PPD proteins are known to act in the

RNAi and miRNA pathway, but the roles of these proteins are sometimes exclusive. For

example, in C.elegans the depletion of alg-1 and alg-2 by dsRNA treatment causes severe

developmental defects due to perturbations of miRNA function in RISC, however, the RNA

silencing machinery using siRNAs appears unaffected in the alg-l/alg-2 depleted worms [23].

Conversely, mutant worms defective in rde-1 are unable to perform RNAi, yet have no effect on

production or function of miRNAs [23, 107]. In plants, different Argonaute (Ago) genes also
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seem to have different roles - Agol is necessary for proper accumulation and function of

miRNAs and -211-nt siRNAs [108-110], while Ago4 utilizes -24-nt siRNAs to stimulate DNA

and histone methylation [111]. Where the PPD proteins act and how they fit into the miRNA

pathway is unclear, but one PPD protein, Ago-2 in Drosophila, appears to be at the center of

small RNA pathways, because it interacts with Dicer-1 and Dicer-2, is associated with both

siRNAs and miRNAs, and copurifies with RISC activity [93-96, 98].

Another important but unresolved question in miRNA biogenesis and maturation are the

various protein factors that contribute to miRNA accumulation or stability. In plants, a dsRNA

binding protein, HYL1, is required for miRNA accumulation but is not necessary for RNAi [112,

113], and yet the animal homologs, R2D2 in flies and RDE-4 in worms do not affect miRNA

levels but instead are thought to mediate the transfer and loading of siRNAs from Dicer to the

RISC [81, 114]. The mechanism of action for these proteins is unclear, and animal homologs

specific for miRNAs has not been identified, but perhaps these proteins add an additional level of

diversity in RISC assembly pathways. An additional factor in plants, HEN 1, appears to affect

miRNA steady-state levels, thus eliciting developmental defects, but has only been characterized

genetically and not extensively enough to establish its role in the pathway [55, 115]. Plant viral

proteins like p19, p21 and HC-Pro suppress RNAi (and thus allow the virus to evade the antiviral

defense and replicate), but can also perturb miRNA function and levels [116-118]; and recent

evidence that p19 and p21 can bind miRNA duplexes suggest they act downstream of Dicer

processing [119, 120]. A fourth plant viral protein, p69, also appears to upregulate miRNA

accumulation and function, but only partially blocks the RNAi pathway [121]. Determining

where these viral proteins act might reveal additional steps in the miRNA pathway. Termination

of the miRNA pathway, namely the degradation of miRNAs, also has not been defined, although
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the recent isolation of a siRNA-specific RNase, ERI-1, and studies of miRNA stability in

mammalian cells could lend some insight to this subject [79, 122].

The Search for miRNA Function (and Targets)

A key to understanding the function of each miRNA relies on knowing which target

mRNAs can be regulated by a miRNA, and this, in turn, can depend on understanding the

biochemical mechanism of target interaction and the regulatory effect of miRNA binding. If

there is near perfect complementarity between the miRNA and the mRNA, mRNA cleavage can

ensue, and RNA levels may diminish (Figure 5A) [90, 92, 123, 124]. In plants, many target

mRNAs can be predicted to base-pair extensively to miRNAs, suggesting that cleavage is a

dominant mechanism of action [57, 64]. Cleavage of these plant targets by miRNAs has been

verified experimentally and in vivo, and interestingly, the majority of these targets are

transcription factors [57, 64, 70, 90, 113, 117, 123, 125, 126]. This lends to the hypothesis that

plant cells use miRNAs to downregulate transcription factor messages, and thus alter the

transcriptome towards states that promote cell differentiation [57, 61]. Very few mRNAs outside

of plants, however, are known to be targeted by this cleavage mechanism because extensive

complementarity with an miRNA is rarely detected; two notable exceptions being HOXB8

cleavage by miR-196 and BALF5 cleavage by miR-BART2 [49, 124].

For genetically identified miRNA targets in animals, a bulged interaction with

mismatches between the miRNA and the mRNA is more commonly seen, which severely

impairs mRNA cleavage, and instead inhibits productive translation of the mRNA (Figure 2 and

Figure 5B) [8, 12-14, 127-131]. This mode of translation inhibition does not appear to be

restricted to miRNAs, because transfection of siRNAs that base-pair imperfectly to an mRNA
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site (thus mimicking a miRNA interaction) can also downregulate protein expression [87, 132,

133]. The biochemical mechanism of RISC-mediated translational repression is still quite

obscure: a few hints are that repression may occur after translation initiation and that RISC

associates with polyribosomes [47, 48, 103, 134]. There is also experimental data indicating that

binding of the 5' portion of the miRNA sequence to the mRNA is a critical determinant for

translational repression, but a strong interaction at the 3' portion of the miRNA may compensate

for weaker interactions at the 5' end of the miRNA [133]. Another recent study also suggests that

the size and configuration of the internal mismatch bulge of the miRNA binding site might be

important for target recognition [135].

Even before the sequence determinants of miRNA-mRNA interaction were examined

experimentally, the importance of the 5' portion of the miRNA for target recognition had already

been recognized. Sequence gazing and testing of computationally predicted targets indicated

that conserved sites in the 3' UTR of Drosophila genes known to be downregulated post-

transcriptionally during development showed uncanny base-pairing with the 5' portion of a

subset of fly miRNAs [136, 137]. Amongst families of highly related miRNAs, the conservation

has almost always been observed in the 5' portions of the miRNA sequence, supporting the

hypothesis that miRNA families together may be regulating a common class of mRNA targets

[36-38, 61, 130, 136]. This interaction between the first 2-8 bases of the miRNA sequence and

the target site has been referred to as the 'seed' interaction [138], such that RISC might be

envisioned to scan target sites with this 7-bp recognition sequence in the miRNA, and after

"seeding" the initial target recognition, additional interactions within the 3' end of the miRNA

stabilizes RISC for gene-silencing action (Figure 5B). Predictions that enforce the requirement

for a conserved 'seed' interaction exhibit substantial specificity [138], and the 'seed' interaction
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might also explain off-target silencing of genes from siRNA transfection experiments, because

many of these off-targets profiled from array experiments share sequence elements that base pair

to the 5' portion of the siRNA [139].

While a number of computational efforts have predicted many targets for animal

miRNAs [135, 137, 138, 140, 141], assessing the validity of these targets necessitates some

caution until a conclusive assay confirms miRNA-dependent downregulation. Some of this

caution stems from whether the methods require conservation of the 3' UTR sites amongst

different animal genomes, and whether the correct methodology was chosen for shuffling control

sequences to match dinucleotide biases in animal genomes [61, 138]. Three studies have

employed different reporter techniques to lend experimental support to these target predictions.

Stark and colleagues used a transgenic fly sensor that fuses entire 3' UTR sequences from

predicted fly targets to a fluorescent protein construct; this reporter construct is co-injected with

a miRNA-expressing construct, and cell clones in the imaginal discs diminish in fluorescence

when the expressed miRNA downregulates sensor expression [128, 137]. Because the algorithm

by Lewis and colleagues predicts with most confidence targets that contain at least two miRNA

binding sites, only the segment of the 3' UTR that is flanked by two sites was fused to a

luciferase reporter, which was then assayed in mammalian cells expressing or transfected with

miRNA sequences [138]. Finally, Kiriakidou and colleagues report a variant of the cell-based

luciferase assay, whereby only a single site, or a miRNA Response Element (MRE), is

incorporated into the 3' UTR of the luciferase construct [135]. Six Drosophila targets exhibited

regulation by two fly miRNAs (the total number of targets tested is not clear) [137], 11 out of 15

mammalian targets with two miRNA sites also indicated miRNA-dependent downregulation

[138], and 10 mammalian targets with single MREs that conform to the "proper" interior bulge
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interaction appear to be downregulated by an miRNA, although 11 other target MREs that

display significant base-pairing to miRNAs but do not conform to "binding rules" fail to be

downregulated [135].

The list of animal miRNA targets that are supported by these reporter assays (see Table 1,

entries marked with a t) is still very small compared to the number of targets predicted, but this

list can highlight a potential breadth of function amongst predicted animal targets and inform the

range of regulation imparted by miRNAs. While the majority of predicted plant miRNA targets

serve as transcription factors, the predicted animal targets are not concentrated in a particular

ontology class, and have functions ranging from transcription regulation to signal transduction to

basic metabolism [135, 137, 138, 140, 141]. For those targets whose luciferase reporter

expression could be reduced by an miRNA, the level of regulation ranged between 2-5 fold in

repression for a single MRE [135], while two-site 3' UTR segments exhibited a range of 1.6-21

fold repression (the average repression is 7.6 fold) [138]. Multiple synthetic miRNA imperfect

complementary sites (>4x) inserted into reporter gene UTRs can also cause -4 fold repression of

the reporter by an miRNA in mammalian cells [80, 132, 142]. These levels of reporter gene

silencing in mammalian cells are comparable to downregulation of LIN-14 by lin-4 RNA in the

nematode: a reporter gene with the LIN-14 3'UTR (which contains six lin-4 complementary

sites) can be repressed 20 fold relative to a control 3' UTR reporter gene [8, 143]. Interestingly,

the temporal regulation of LIN-14 protein in wild-type worms is a 10 fold decrease, but in

mutants lacking lin-4 RNA or lin-4 binding sites in lin-14, LIN-14 is still temporally

downregulated modestly, hinting that additional factors are in play to downregulate LIN-14 in

the worm [8]. Since let-7 sites in the lin-14 3' UTR have been proposed [14], and translation

repression appears cooperative in combinations of multiple bulged interaction sites to siRNAs
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mimicking miRNA action [87, 133], it is easy to imagine multiple miRNAs acting

combinatorially upon a given mRNA's 3' UTR (Figure 5B).

The number and breadth of predicted mammalian targets, the range in repression levels

observed in nature and for reporter gene assays, and the notion of combinatorial regulation by

multiple miRNAs on single mRNAs has prompted the micromanager hypothesis for interpreting

the roles of miRNAs in metazoan gene regulation [89]. One aspect of this complex hypothesis is

that targets might be "tuned" to various levels of protein expression by miRNAs, depending on

the mechanism of repression and the number of miRNAs acting combinatorially upon a target.

Target regulation by miRNAs could be envisioned to yield different gradients of gene

expression, such that an RNA gradient could be initiated by a miRNA that cleaves its target

(Figure 5A), or a target could be tuned by multiple miRNAs to generate a gradual gradient

(Figure 5B). In Drosophila embryogenesis, spatial and temporal regulation of mRNAs and

proteins is vital; translational control of mRNAs is a common theme; and gradients of protein

and mRNA are set between the axes of the embryo [144]. Recent evidence suggesting that

miRNAs might regulate oskar, a gene that is important for proper fly embryogenesis [104], could

hint that many other genes known to be expressed in a temporal or spatial gradient could be

regulated post-transcriptionally by miRNAs (Figure 5B). Since the C.elegans homolog of

hunchback, hbl-1, appears to be regulated by miRNAs [130, 131], it is tempting to speculate that

miRNAs might also influence the establishment of the hunchback protein gradient in the

Drosophila embryo. While the micromanager hypothesis is thought-provoking, it remains to be

tested experimentally.

Despite advances in target prediction and testing of targets, verifying the biological

validity of these targets lags behind the pace of gene finding efforts and progress in
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understanding miRNA biogenesis. Table 1 catalogs the extent of miRNAs with experimentally

tested target mRNAs, though one should keep in mind that targets assessed by reporter gene

assays can only suggest but not confirm the miRNA's biological role. Of the 100 miRNAs in

C.elegans, only 3 miRNAs in C.elegans have ascribed biological functions - lin-4, let-7, and Isy-

6. A similar dearth of functional assignments for miRNAs persists in Drosophila and mammals.

Only 3 of the 78 known Drosophila miRNAs have verified biological function (bantam,mir-

7,and mir-14), and amongst the >200 known mammalian miRNAs, only 3 miRNAs (mir-196,

mir-181, and mir-BART2) have in vivo evidence indicating the miRNA's function (a report on

miR-23's regulation of mammalian Hes-1 was retracted [145, 146]). Clearly, it is still early days

in determining the roles of miRNAs in metazoans.

In plants, however, the proportion of functionally assigned miRNAs is significantly

higher. Of the 92 known Arabidopsis miRNAs representing 22 families, all but a few have

assignable functions as negative regulators of transcription factor genes and other genes involved

in development. The greater success of miRNA functional assignment in plants can be attributed

to: (1) the conservation of the extensive complementarity of the miRNA target site, which

significantly improves the signal-to-noise ratio and confidence in predictions [57, 64, 147]; (2)

the existence of GOF mutants in target genes where the lesion maps to the miRNA target site

[57, 148, 149]; (3) cleavage products from targets can be detected in vivo by Northern blots [90,

117, 126, 150]; and (4) the target cleavage sites mapped in vivo by 5' rapid amplification of

cDNA ends (RACE) fits the specificity of Slicer cleavage - 10 bases downstream from the 5' end

of the miRNA [64, 70, 90, 113, 117, 126, 147, 150]. While the majority of predicted plant

targets are transcription factors, newly identified targets have widened the ontology to include

laccases, superoxide dismutases, and ATP sulfurylases [64]. The attributes of plant targets would
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suggest mRNA cleavage is the dominant mode of regulation by plant miRNAs, however miR-

172 instead inhibits productive translation of its target, AP2, leaving open the possibility that

bulged interactions commonly seen with animal miRNAs might also operate in plants [70, 125].

If so, the current lists of plant targets might also be far from complete, but expanding the list of

plant targets will have to await the refinement of prediction algorithms for animal miRNAs.

miRNA Function In Vivo: A Return to Mutants

Compared to functional genomics efforts on miRNAs, the classical genetics performed in

this "modern" age have actually been the most informative on the function of a select few animal

and plant miRNAs. Indeed, it was classical genetic methods that revealed the developmental

roles of lin-4 and let-7, and more recent genetics have added hbl-1/lin-57, another heterochronic

gene, as a second target of let-7 [130, 131] . The power of genetics recently uncovered a novel

miRNA in C.elegans, lsy-6, that had not been previously reported by cloning and computational

efforts [129]. Two sensory neurons in C.elegans, although symmetric in their location, are

functionally distinct because they express different olfactory receptors [151]. A genetic screen

of worms defective in this functional asymmetry identified genes that operate in a network to

specify selective expression of the olfactory receptors [152]. While chipping away at this

regulatory network, Johnston and Hobert proposed that lsy-6 (a lateral symmetry mutant,

pronounced "lousy") could negatively regulate cog-i, which in turn negatively regulates other

genes downstream [129]. Through transgenic rescue experiments, they whittled the sy-6 locus

down to a miRNA-expressing fragment, and the sequence they guessed for the mature lsy-6

RNA could base-pair to a conserved element in the cog-1 3' UTR, an interaction that was

subsequently confirmed genetically. Although lsy-6 is the third example of nematode miRNAs
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regulating genes post-transcriptionally, the demonstration of this miRNA in specifying neuronal

asymmetry impressively expands the influence of miRNAs beyond heterochronic development.

MicroRNA mutants in Drosophila were finally exposed when the bantam locus was

discovered to encode a miRNA. The mutant was isolated in an enhancer-P element screen and

was initially characterized as a regulator of growth and cell size, because deletion of bantam

reduces the size of larvae and causes pupa lethality [153]. The lack of any protein-coding genes

in the vicinity of mapped bantam mutations led Brennecke and colleagues to explore the

possibility of a miRNA gene, and determination of bantam's sequence prompted a computational

search that identified hid, an apoptosis gene, as a candidate target for bantam regulation [128].

The Cohen lab's fluorescent protein sensor, discussed earlier, indicated widespread in vivo

expression of bantam, and also demonstrated that the hid 3' UTR could be directly controlled by

bantam. Reduction of endogenous Hid by bantam in genetic crosses further proved the

interaction between the two genes and suggests that bantam's role could be an oncogene that

promotes cell growth by repressing apoptosis [128]. The revelation that P-element mutants at

miRNA genes can elicit a phenotype is prompting many fly labs to reinvestigate their stocks, and

a second example to emerge from this revelation is mir-14. Although direct targets for miR-14

have not been confirmed, mir-14 was found to genetically repress cell death caused by other

apoptotic genes [154]. Interestingly, the deletion of mir-14 does not cause lethality like the

bantam deletion, but instead causes an accumulation of fat droplets in the fly head [154].

Sometimes, the function of animal miRNAs has been revealed simply from ectopic

expression by transgenes. Over-expression of mir-7 in flies causes notched wings with vein

defects and proliferation of bristles, which are similar to defects seen in other Drosophila

mutants of the Notch signaling pathway [137]. Three mammalian miRNAs, mir-181, mir-142s
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and mir-223, are upregulated in hematopoeitic cells that begin to display markers of

differentiation compared to undifferentiated progenitor cells [44]. By overexpressing these three

miRNAs separately in progenitor cells in vitro, Chen and colleagues observed the population of

cells shifting towards expressing a B-cell marker with a mir-181 transgene, or a shift towards

expressing a T-cell marker with mir-142s and mir-223 transgenes. When progenitor cells

overexpressing mir-181 were transplanted into lethally irradiated mice, a preference for B-cell

formation was also observed, confirming mir-181's role in modulating B-cell differentiation [44].

Targets for mir-181, mir-142s, and mir-223 remain to be identified or confirmed, but in vivo

targets have been confirmed for two other miRNAs, mir-196 in mice and mir-BART2 from

EBV. Using 5' RACE, cleavage sites were mapped for miR-196--directed cleavage of Hox-B8

mRNA, an important master regulatory gene in development [124], and for mir-BART2-directed

cleavage of EBV-BALF5, the viral DNA polymerase [49]. Mapping of these cleavage targets is

certainly compelling, but the functional consequence of perturbing these miRNAs or the site of

regulation in the targets remains to be examined.

Long before miRNAs were even known in plants, DCL1 mutants had been identified

multiple times in screens for defects in female reproductive development or floral patterning (for

review see [155]); while mutants in the Agol and Pinhead/Zwille genes had been known to

affect various aspects of general plant architecture [156-158]. Now that plant miRNA targets

have been identified, studies of these targets highlight specific defects previously seen amongst

the pleiotropic defects of the DCL, Ago, and Zwille mutants. For example, defects in proper leaf

patterning could be explained by the recent re-evaluation of the PHABULOSA (PHB) and

PHAVOLUTA (PHV) mutants, which are dominant GOF alleles in homeodomain zinc-finger

(HD-ZIP) transcription factors. The initial hypothesis for how these alleles distorted leaf
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structures from their normal polarized patterns presumed that point mutations in the START

domain of these proteins were somehow constitutively activating the protein through a single

amino-acid change [148], but computational predictions suggested instead that the point

mutations were disrupting an interaction with MIR165 and MIR166 [57]. In vitro analysis in

wheat-germ lysates of RNA targets bearing wild type or mutant PHV sequences supported the

hypothesis of loss of miR-165/166 regulation [123]. Lesions that change the miRNA binding site

but not the protein code of REVOLUTA, another HD-ZIP protein, appeared to exert similar

defects as PHV, thus increasing the support for MIR165/166 function in leaf patterning [149].

Recently, miR-165 has been suggested to accumulate asymmetrically in plant structures [110],

and a maize gene, rolled leaf] is also a likely target of regulation by miR-165 [159]. The depth

of functional conservation of MIR166 has also been suggested to extend even into the most

ancient of plants [147].

The first plant mutant in a miRNA locus was actually discovered based on a

misclassification of a serrated leaf morphology defect in the jawD mutant. Reexamination of

jawD pointed to crinkly and unevenly shaped leaves akin to defects from snapdragon mutants in

the CINCINNATA gene, a member of the TCP transcription factor family [150]. When

microarray analysis of jawD indicated some but not all TCP mRNAs were being downregulated,

Palatnik and colleagues deduced that the downregulated genes were being affected by a very

small sequence element shared by both TCP mRNAs and the jawD locus. This element turned

out to be a new miRNA, mir-JAW, which was highly expressed in leaves and was overexpressed

in the jawD mutant. Additional evidence was presented for TCP mRNAs being cleaved by miR-

JAW, and for the rescue of jawD defects by overexpressing TCP. The highly similar miR-159

was also shown to regulate the transcription factor MYB33, which also affects leaf morphology
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[150]. When plants were transformed with TCP and MYB transgenes resistant to miRNA

regulation, growth was stunted and cotyledon leaves sometimes fused, which harks back to

defects similarly observed in DCL mutants [150, 155].

The second plant miRNA mutant to be reported was a line that overexpressed miR172a-2

(this mutant is also called eat-D) [70]. The MIR172a-2 mutant precociously flowered with

deformities, and resembled LOF alleles of APETALA2 (AP2), a floral homeotic gene. A perfect

binding site for miR172 was found in the AP2 transcript, and was conserved amongst AP2

homologs like toel, an activation tagged mutant that flowered late instead of early. AP2 and

TOE1 cleavage products and decreased levels of AP2 protein in the mutant overexpressing

miR172 confirmed the model that miR172 was silencing AP2 family genes to trigger proper

floral development by removing the floral suppression activity of AP2 genes [70]. An

independent reverse genetics approach with MIR172-resistant AP2 transgenes also supported

this model [125]. Perhaps the most intriguing result to come from both studies was that AP2

RNA levels were unaffected by the overexpression of miR172, indicating that despite the

extensive complementarity between miR172 and AP2, inhibition of productive translation was

the dominant mechanism for gene silencing instead of mRNA cleavage [70, 125].

Evoking the philosophical overtones of the Ying and Yang, MIR162 and MIR168 can

negatively regulate DCL1 and AGO1, respectively, which in turn would reduce miR162 and

miR168 levels [57, 109, 113, 126, 160]. The consequences for elevated DCL1 levels is not

known, but elevated AGO1 levels clearly cause reduced fertility and pleiotropic defects

overlapping with null mutants of dcl, henl, and hyll [109]. Fully deconvolving the feedback

loops of MIR162 and MIR168 regulation will be complicated given that their targets also

modulate the levels of other plant miRNAs. The importance of these feedback loops can be
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appreciated in light of jawD and the MIR1 72a2 mutant, where elevated miRNA levels can

impose serious developmental defects. Alternatively, the consequences of jawD and the

MIRI 72a2 mutant are the result of ectopic expression of miRNAs in cells that would normally

not contain these miRNAs. Although evidence for negative feedback regulation in the animal

miRNA pathway has not yet been observed, it remains a viable possibility since overexpression

of bantam and mir-14 is detrimental to fly development.

An inevitable goal for plant and animal miRNA labs would be to learn the phenotypic

consequence of perturbing many more miRNAs in vivo. Hunting for mutants is challenging,

since no simple set of phenotypes can be pinned upon miRNAs as a class, many miRNA

sequences are coded by multiple loci, and highly similar miRNAs in gene families can also be

functionally redundant. Rather than be at the mercy of serendipitous breakthroughs like lin-4,

let-7, and other miRNA mutants, however, labs have initiated efforts to knock-out miRNA genes

in animals. However, recent reports suggest a short cut over genetic mutants might be achieved

with 2'-O-methyl RNA (2OMe) oligos directed antisense to the miRNA sequence. Not only can

2OMe oligos interrupt RISC activity in Drosophila lysate and in tissue culture [161, 162], but it

can also phenocopy heterochronic defects when directed against let-7 in worms [161]. Although

2OMe technology cannot rival the rigor of a genetic lesion, it could greatly inform geneticists on

what defects to focus on when hunting for miRNA mutants, just as how genomic RNAi has

revolutionized functional genomics.

Summary

The field of miRNAs began from the study of two mutant worms, lin-4 and let-7, that

revealed an elegant form of gene regulation by the action of small, endogenous RNAs. Since the
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unveiling of numerous miRNAs in animals and plants, several examples illustrating the

biological importance of miRNA regulation have emerged. Although much of this introduction

expounds on work external of this thesis, the cloning of miRNAs has helped to catalyze these

subsequent advances in miRNA biology

The stRNA worm mutants and the observation that siRNA function in many eukaryotes

provided us the hunch that Dicer products might exist in plants and animals for the purpose of

regulating endogenous genes. The first chapter of this thesis reports our initial foray into cloning

and characterizing small endogenous RNAs from C.elegans. I devised a RNA cloning strategy

that exploits the molecular features of Dicer products (namely a small RNA with a 5' phosphate

and a 3' hydroxyl) to efficiently build cDNA libraries with minimal RNA breakdown products.

We examined the sequence characteristics, genomic locations, phylogenetic distribution, and

expression patterns of these RNA clones, and concluded that they represent an abundant class of

endogenously expressed, tiny RNAs with probable regulatory roles. Together with labs that

simultaneously published similar discoveries, we named this new class of RNAs the microRNAs.

To expand our census of the miRNAs in C.elegans, I describe in the second chapter a lab

collaborative effort to identify the majority of remaining miRNA genes through large scale RNA

cloning and computational methods. A list of almost 90 miRNA genes were confirmed in

C.elegans and several groups of miRNAs were shown to have interesting developmental

expression patterns as well as significant conservation to mammalian miRNAs.

We also determined the molecular abundance of miRNAs in C.elegans and Hela cells.

The high molecular abundance of miRNAs beckoned the analysis of miRNA stability. In

the third chapter, Hela cell lines with inducible expression of a miRNA were constructed. By

monitoring miRNA levels either in the decay phase of halted transcription or at half-maximal
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steady state from induction, we hoped to determine the half-life of two model miRNAs, mir-1

and mir-124. Although some features of these inducible lines remain to be characterized and

improved, a lower estimate of miRNA stability is presented. The study suggests a long half-life

for miRNAs in animals, which could partially explain the high steady-state levels.

Together, these studies characterize many of the molecular characteristics of animal

miRNAs, as well as catalog most of the miRNA genes in the nematode, C.elegans.

Determination of miRNA gene features has been and will continue to be critical for future efforts

to find miRNAs in other genomes. The expression data, abundance levels, and stability

measurements provided in this thesis will also prove valuable in functional studies that begin to

address the fundamental roles of miRNA activity in organisms.
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Table 1. MicroRNAs with experimental data informing of their biological function. (Adapted from [61] and updated
with recently identified miRNAs/target genes)

miRNA Target Gene(s) Biological Role of miRNA/Target Gene(s) t Refs

Nematodes
lin-4 RNA*
let-7 RNA*
lsy-6 RNA*

Insects
bantam RNA*
miR-2 family

miR-7*

miR-14*

Mammals
miR-1

miR-19a
miR-23a

miR-26a
miR-34

miR-101

miR-130
miR-142s
miR-181*
miR-223
miR-196

let-7 RNA
family

miR-15
miR-16
miR-23
miR-24
miR-103-1
miR-141
miR-145
miR-199b

Ce lin-14 §; Ce lin-28§
Ce lin-41 §;Ce hbl-l§
Ce cog- §

Dm hid §
Dm grimt; Dm reapert;
Dm sicklet
Dm HLHm3t; Dm hairyt;
Dm m4t
unknown

Hs G6PDt; Hs BDNFt

Hs PTENt
Hs SDF-It; Hs BRN-3bt

Hs SMAD-I t
Hs Deltal; Hs Notchlt

Hs ENX-l t; Hs N-MYCt

Hs MCSFt
unknown
unknown
unknown
Mm HOXB8§; Mm HOXC8t;
Mm HOXD8t; Mm HOXA7t
Hs LIN-28t; Hs SMCILlt

Hs DMTFl t
Hs CGI-38t
Hs FLJ21308t
Hs MAPK14t
Hs FBXWIBt
Hs CLOCKt
Hs FLJ13158t
Hs LAMC2t

Timing of early larval developmental transitions
Timing of late larval developmental transitions
Left/right asymmetry of chemoreceptor expression

Apoptosis and growth control during development
Promotes apoptosis

Interprets Notch-mediated decisions in neuronal
development
Promotes apoptosis and regulates fat metabolism

Oxidative Stress Response; Growth factor and
neuronal development
Tumor suppression
Growth and localization of hematopoietic progenitor
cells; neuronal development
Regulates TGF-dependent gene expression
Activates Notch during cell-fate decision; modulate
cell-fate decisions during development
Proliferation of hematopoeitic cells and other gene
regulation; cell differentiation and proliferation
Mononuclear phagocytic lineage regulation
Hematopoietic differentiation
Hematopoietic differentiation
Hematopoietic differentiation
Master regulation of early body pattering and
development
Function in mammals unknown, but see above
homlogs; linked to maintenance of chromosome
structure.
Transcriptional regulation in response to cyclin D
Putative signal transduction role in the brain
Unknown
Signal transduction
Regulation of ubiquitination by F-box proteins
Regulation of circadian rhythms
Unknown
Basement membrane component

Plants
miR156/157 At SPL2 family txn factors§

miR159 At MYB33 family txn factors §
miR-JAW* At TCP4 family txn factors §
miR160 At ARFI O and ARFI7 family txn

factors§
miR167 At ARF8 and ARF6 txn factors§
miR161 At PPR gene AtlgO6580
miR162 At DCLI§
miR 168* At AGO1 §
miR164 At CUC1 and CUC2 family txn

factors§
miR165/166 At REV family txn factors §;

Zm RLDI family txn factors §

Floral meristem identity

Leaf development
Leaf development and embryonic patterning
Auxin response and development

Auxin response and development
Unknown
miRNA biogenesis
miRNA biogenesis and RISC function
Shoot apical meristem formation and organ separation

Axial meristem initiation and leaf polarity
specification

[8, 12, 13]
[14,127]
[129]

[128]
[136,137]

[136, 137]

[137, 154]

[138]

[138]
[138]

[138]
[138]

[138]

[138]

[44]
[44]
[44]
[124]

[135, 163]

[135]
[135]
[135]
[135]
[135]
[135]
[135]
[135]

[50,51, 57,90,
113]
[55, 57, 150]
[150]
[57,117]

[55,57, 117]
[113]
[126, 160]
[57,109,113]

[57, 117]

[57,110,123,
149,159]
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Table 1. (continued)
miRNA Target Gene(s) Biological Role of miRNA/Target Gene(s) t Refs

Plants (continued)
miR 169 At CBF-HAP2 Unknown [57]
miR170/171 At SCL-6-111, -IV family txn Root radial patterning [50, 51, 57,

factors§ 90]
miR172* At AP2 family txn factors § Flower development and timing transition to flowering [55, 70, 117,

125]
miR393 At TIRI family F-box proteins§; Regulation of ubiquitination; unknown transcription [64]

At3g23690§ factor
miR394 Atlg27340§ Regulation of ubqiquitination by F-box protein [64]
miR395 At APS family ATP sulfuryases§ Adaptation to soil sulfur content [64]
miR396 At GRL family txn factors§ Growth regulation [64]
miR397 At2g29130§; At2g38080§; Oxidation reactions in metabolism [64]

At5g60020§
miR398 At CSD1§, CSD2§; Free radical metabolism; Electron transport [64]

At3g15640§

Viruses
miR-BART2 EBV BALF5§ Regulation of viral DNA replication [49]

Abbreviations: Caenorhabditis elegans, Ce; Drosophila melanogaster, Dm; human, Hs; mouse, Mm; Arabidopsis
thaliana, At; Zea maize, Zm; Epstein-Barr virus, EBV; transcription factors, txn factors.
$ semicolons indicate the separate roles of each listed target, in respective order, otherwise a single role applies to
all target genes listed; * phenotype in an organism with either a mutant miRNA or from transgene overexpression;
§ genetically or in vivo verified targets; t predicted targets supported by 3' UTR-reporter assays. Plant miRNAs
listed include all members within the gene family.
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Figure Legends

Figure 1. Rapid and Recent Progress in the miRNA Field. (A) miRNA genes, and (B) miRNAs
targets discovered in the last decade. *Counts in 2004 are as of May 30, 2004.

Figure 2. Orchestration of Molecular Events in the C.elegans Heterochronic Pathway by lin-4
and let-7. A developmental time line from embryo (E) through the larval stages 1-4 (L1-L4) to
adult (A) is detailed from top to bottom. Towards the L1 to L2 transition, the precursor RNA for
lin-4 is expressed. The red colored bases in the precursor structure represent the single-stranded,
mature lin-4 RNA that is formed by Dicer processing. The mature lin-4 RNA base-pairs to the 3'
UTR (straight portion of the wavy transcript) of target mRNAs to inhibit productive formation of
LIN-14 and LIN-28. A similar mechanism for let-7 occurs at the L3 to L4 transition. A complex
flux of gene product levels, reflected in the bar graphs on the right, imparts the necessary cues
for proper development.

Figure 3. Sequences and Secondary Structures of Representative miRNAs and pre-miRNAs.
(A) Conservation of sequence and secondary structure of mir-1 RNAs in animals, and (B)
MIR164 in plants. (C) The mir-35 -41 cluster in C.elegans. The mature miRNA sequence is
colored in red. Abbreviations: C. elegans, Ce; C. briggsae, Cb; D. melanogaster, Dm; H.
sapiens, Hs; A. thaliana, At; O. sativa, Os.

Figure 4. MicroRNA biogenesis in Animals and Plants. Figure is adapted and modified from
[61], and details on the pathway are elaborated in the text. Steps A1-A6 describe animal specific
processing events; steps P1-P4 illustrate plant-specific processing events, and Step 5 is a
maturation step functionally shared in both animals and plants. Red strand denotes the
predominant miRNA, blue strand is the miRNA*, hashed strands represent degraded miRNA;
and monophosphates (P) marks the 5' end of each miRNA strand. Brackets signify possible
transient plant pre-miRNA intermediates that have not yet been detected.

Figure 5. Modes of miRNA-Target Regulation. This figure uses adaptations from [89]. (A)
miRNA targets can be regulated to form a sharp gradient of expression, possibly by catalytic
miRNA cleavage of the mRNA. (B) Gradual gradients of protein expression can be established
by multiple miRNAs that act via moderate translational repression, where each successive
miRNA contributes to increasing levels of gene silencing.
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An Abundant Class of Tiny RNAs with Probable

Regulatory Roles in Caenorhabditis elegans
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The work presented in this chapter was a collaborative effort between me, Lee

Lim, and Earl Weinstein. Specifically, Lee Lim performed various bioinformatics

analyses, including determinations of miRNA sequence compositions, phylogenetic

analyses of miRNA homologs in C.briggsae, and automated predictions of miRNA

precursor secondary structures. Earl Weinstein assisted in automating the analysis of

clone sequences. I performed all of the other experiments.
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Two small temporal RNAs (stRNAs), lin-4 and let-7, control developmental timing

in Caenorhabditis elegans. We find that these two regulatory RNAs are members of

a large class of 21-24-nucleotide non-coding RNAs, called microRNAs (miRNAs).

We report on 55 novel miRNAs in C. elegans. The miRNAs have diverse expression

patterns during development: a let-7 paralog is temporally co-expressed with let-7;

miRNAs encoded in a single genomic cluster are co-expressed during

embryogenesis; still other miRNAs are expressed constitutively throughout

development. Potential orthologs of several novel miRNA genes were identified in

Drosophila and human genomes. The abundance of these tiny RNAs, their

expression patterns, and their evolutionary conservation imply that, as a class,

miRNAs have broad regulatory functions in animals.

Two types of short RNAs, both about 21-25 nt in length, serve as guide RNAs to

direct posttranscriptional regulatory machinery to specific mRNA targets. Small

temporal RNAs (stRNAs) control developmental timing in Caenorhabditis elegans (1-3).

They pair to sites within the 3'-untranslated region (3' UTR) of target mRNAs, causing

translational repression of these mRNAs, thereby triggering the transition to the next

developmental stage (1-5). Small interfering RNAs (siRNAs), which direct mRNA

cleavage during RNA interference (RNAi) and related processes, are the other type of

short regulatory RNAs (6-12). Both stRNAs and siRNAs are generated by processes

requiring Dicer, a multidomain protein with tandem RNAse III domains (13-15). Dicer
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cleaves within the double-stranded portion of precursor molecules to yield the 21-25 nt

guide RNAs.

lin-4 and let-7 have been the only two stRNAs identified, and so the extent to

which this type of small non-coding RNA normally regulates eukaryotic gene expression

is only beginning to be understood (1-5). RNAi-related processes protect against viruses

or mobile genetic elements, yet these processes are known to normally regulate only one

other mRNA, that of Drosophila Stellate (16-20). To investigate whether RNAs

resembling stRNAs or siRNAs might be playing a more general role in gene regulation,

we isolated and cloned endogenous C. elegans RNAs that have the expected features of

Dicer products. Tuschl and colleagues showed that such a strategy is feasible when they

fortuitously cloned endogenous Drosophila RNAs while cloning siRNAs processed from

exogenous dsRNA in an embryo lysate (12). Furthermore, other efforts focusing on

longer RNAs have recently uncovered many novel non-coding RNAs (21, 22).

Dicer products, such as stRNAs and siRNAs, can be distinguished from most

other oligonucleotides that might be present in C. elegans by three criteria: a length of

about 22 nt, a 5'-terminal monophosphate, and a 3'-terminal hydroxyl group (12, 13, 15).

Accordingly, a procedure was developed for isolating and cloning C. elegans RNAs with

these features (23). Of the clones sequenced, 330 matched C. elegans genomic sequence,

including 10 representing lin-4 RNA and one representing let-7 RNA. Another 182

corresponded to E. coli genomic sequence. E. coli RNA clones were expected because

the worms were cultured with E. coli as the primary food source.

Three hundred of the 330 C. elegans clones have the potential to pair with nearby

genomic sequence to form fold-back structures resembling those thought to be needed for
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Dicer processing of lin-4 and let-7 stRNAs (Fig. 1) (24). These 300 clones with

predicted fold-backs represent 54 unique sequences: lin-4, let-7, and 52 other RNAs

(Table 1). Thus, lin-4 and let-7 RNAs appear to be members of a larger class of non-

coding RNAs that are about 20-24 nt in length and processed from fold-back structures.

We and the two other groups with concurrent reports refer to this class of tiny RNAs as

microRNAs, abbreviated miRNAs, with individual miRNAs and their genes designated

miR-# and mir-#, respectively (25, 26).

We propose that most of the miRNAs are expressed from independent

transcription units, previously unidentified because they do not contain an open reading

frame (ORF) or other features required by current gene-recognition algorithms. No

miRNAs matched a transcript validated by an annotated C. elegans expressed-sequence

tag (EST), and most were at least 1 kb from the nearest annotated sequences (Table 1).

Even the miRNA genes near predicted coding regions or within predicted introns are

probably expressed separately from the annotated genes: If most miRNAs were

expressed from the same primary transcript as the predicted protein, their orientation

would be predominantly the same as the predicted mRNA, but no such bias in orientation

was observed (Table 1). Likewise, other types of RNA genes located within C. elegans

intronic regions are usually expressed from independent transcription units (27).

Whereas both lin-4 and let-7 RNAs reside on the 5' arm of their fold-back

structures (1, 3), only about a quarter of the other miRNAs lie on the 5' arm of their

proposed fold-back structures, as exemplified by miR-84 (Table 1; Fig. 1A). All the

others reside on the 3' arm, as exemplified by miR-1 (Table 1; Fig. B). This implies

that the stable product of Dicer processing can reside on either arm of the precursor and

66



that features of the miRNA or its precursor, other than the loop connecting the two arms,

must determine which side of the fold-back contains the stable product.

When compared to the RNA fragments cloned from E. coli, the miRNAs had

unique length and sequence features (Fig. 2). The E. coli fragments had a broad length

distribution, ranging from 15 to 29, which reflects the size-selection limits imposed

during the cloning procedure (23). In contrast, the miRNAs had a much tighter length

distribution, centering on 21-24 nt, coincident with the known specificity of Dicer

processing (Fig 2A). The miRNA sequence composition preferences were most striking

at the 5' end, where there was a strong preference for U and against G at the first position

and then a deficiency of Us at positions 2-4 (Fig. 2B). miRNAs were also generally

deficient in C, except at position 4. These composition preferences were not present in

the clones representing E. coli RNA fragments.

The expression of 20 cloned miRNAs was examined, and all but two (miR-41 and

miR-68) were readily detected on Northern blots (Fig. 3). For these 18 miRNAs with

detectable expression, the dominant form was the mature 20-24 nt fragment(s), though

for most, a longer species was also detected at the mobility expected for the fold-back

precursor RNA. Fold-back precursors for lin-4 and let-7 have also been observed,

particularly at the stage in development when the stRNA is first expressed (1, 14, 15).

Because the miRNAs resemble stRNAs, their temporal expression was examined.

RNA from wild-type embryos, the four larval stages (LI-LA), and young adults was

probed. RNA from glp-4 (bn2) young adults, which are severely depleted in germ cells

(28), was also probed because miRNAs might have critical functions in the germ line, as

suggested by the finding that worms deficient in Dicer have germ line defects and are
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sterile (14, 29). Many miRNAs have intriguing expression patterns during development

(Fig. 3). For example, the expression of miR-84, an miRNA with 77% sequence identity

to let-7 RNA, was found to be indistinguishable from that of let-7 (Fig. 3). Thus, it is

tempting to speculate that miR-84 is an stRNA that works in concert with let-7 RNA to

control the larval-to-adult transition, an idea supported by the identification of plausible

binding sites for miR-84 in the 3' UTRs of appropriate heterochronic genes (30).

Nearly all of the miRNAs appear to have orthologs in other species, as would be

expected if they had evolutionarily conserved regulatory roles. About 85% percent of the

novel miRNAs had recognizable homologs in the available C. briggsae genomic

sequence, which at the time of our analysis included about 90% of the C. briggsae

genome (Table 1). Over 40% of the miRNAs appeared to be identical in C. briggsae, as

is seen lin-4 and let-7 RNAs, (1, 3). Those miRNAs not absolutely conserved between C.

briggsae and C. elegans might still have important functions, but might have more

readily co-varied with their target sites because, for instance, they might have fewer

target sites. It is noteworthy that when the sequence of the miRNA differs from that of its

homologs, there is usually a compensatory change in the other arm of the fold-back to

maintain pairing, providing phylogenetic evidence for the existence and importance of

the fold-back secondary structures. let-7, but not lin-4, has discernable homologs in more

distantly related organisms, including Drosophila and human (31). At least seven other

miRNA genes (mir-1, mir-2, mir-34, mir-60, mir-72, mir-79, and mir-84) appear to be

conserved in Drosophila, and most of these (mir-1, mir-34, mir-60, mir-72, and mir-84)

appear to be also conserved in human (24). The most highly conserved novel miRNA,
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miR-1, is expressed throughout C. elegans development (Fig. 3) and so is unlikely to

control developmental timing but might instead control tissue-specific events.

The distribution of miRNA genes within the C. elegans genome is not random

(Table 1). For example, clones for six miRNA paralogs clustered within an 800-bp

fragment of chromosome II (Table 1). Computer folding readily identified the fold-back

structures for the six cloned miRNAs of this cluster, and predicted the existence of a

seventh paralog, miR-39 (Fig. 1D). Northern analysis confirmed the presence and

expression of miR-39 (Fig. 3). The homologous cluster in C. briggsae appears to have

eight related miRNAs. Some of the miRNAs in the C. elegans cluster are more similar to

each other than to those of the C. briggsae cluster, and vice versa, indicating that the size

of the cluster has been quite dynamic over a short evolutionary interval, with expansion

and perhaps also contraction since the divergence of these two species.

Northern analysis of the miRNAs of the mir-35-41 cluster showed that these

miRNAs are highly expressed in the embryo and in young adults (with eggs), but not at

other developmental stages (Fig. 3). For the six detectable miRNAs of this cluster,

longer species with mobilities expected for the respective fold-back RNAs also appear to

be expressed in the germ line, as indicated by the observation that L4 animals, which

have developing gonads but not embryos, express these longer RNAs, whereas germ line-

deficient adults do not (Fig. 3) (30).

The close proximity of the miRNA genes within the mir-35-41 cluster (Fig. 1D)

suggests that they are all transcribed and processed from a single precursor RNA, an idea

supported by the coordinate expression of these genes (Fig. 3). This operon-like

organization and expression brings to mind several potential models for miRNA action.
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For example, each miRNA of the operon might target a different member of a gene

family for translational repression. At the other extreme, they all might converge on the

same target, just as lin-4 and let-7 RNAs potentially converge on the 3' UTR of lin-14

(3).

Another four clusters were identified among the sequenced miRNA clones (Table

1). Whereas the clones from one cluster were not homologous to clones from other

clusters, the clones within each cluster were usually related to each other, as seen with the

mir-35-41 cluster. The last miRNA of the mir-42-44 cluster is also represented by a

second gene, mir-45, which is not part of the cluster. This second gene appears to enable

more constitutive expression of the miRNA (miR-44/45) as compared to the first two

genes of the mir-42-44 cluster, which are expressed predominantly in the embryo (Fig.

3).

Dicer processing of stRNAs differs from that of siRNAs in its asymmetry: RNA

from only one arm of the fold-back precursor accumulates, while the remainder of the

precursor quickly degrades (15). This asymmetry extends to nearly all the miRNAs. For

the 35 miRNAs yielding more than one clone, in only one case, miR-56, were RNAs

cloned from both arms of a hairpin (Fig. 1C, Table 1). The functional miRNA appears to

be miR-56 and not miR-56*, as indicated by analysis of sequence conservation between

C. elegans and C. briggsae orthologs, analogy to the other constituents of the mir-54-56

cluster, and Northern blots detecting RNA from only the 3' arm of the fold-back (30).

We were surprised to find that few, if any, of the cloned RNAs had the features of

siRNAs. No C. elegans clones matched the antisense of annotated coding regions. Of

the 30 C. elegans clones not classified as miRNAs, 15 matched fragments of known RNA
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genes, such as tRNA and ribosomal RNA. Of the remaining 15 clones, the best candidate

for a natural siRNA is GGAAAACGGGUUGAAAGGGA. It was the only C. elegans

clone perfectly complementary to an annotated EST, hybridizing to the 3' UTR of gene

ZK418.9, a possible RNA-binding protein. Even if this and a few other clones do

represent authentic siRNAs, they would still be greatly outnumbered by the 300 clones

representing 54 different miRNAs. Our cloning protocol is not expected to preferentially

exclude siRNAs; it was similar to the protocol that efficiently cloned exogenous siRNAs

from Drosophila extracts (12). Instead, we propose that the preponderance of miRNAs

among our clones indicates that in healthy, growing cultures of C. elegans, regulation by

miRNAs normally plays a more dominant role than does regulation by siRNAs.

Irrespective of the relative importance of miRNAs and siRNAs in the normal

regulation of endogenous genes, our results show that small RNA genes, of the type

exemplified by lin-4 and let-7, are more abundant in C. elegans than previously

appreciated. Results from a parallel effort that directly cloned small RNAs from

Drosophila and HeLa cells demonstrates that the same is true in other animals (25), a

conclusion further supported by the orthologs to the C. elegans miRNAs that we

identified through database searching. Many of the miRNAs that we identified are

represented by only a single clone (Table 1), suggesting that our sequencing has not

reached saturation and that there are over a hundred miRNA genes in C. elegans.

We presume that there is a reason for the expression and evolutionary

conservation of these small non-coding RNAs. Our favored hypothesis is that these

novel miRNAs, together with lin-4 and let-7 RNAs, constitute an important and abundant

class of riboregulators, pairing to specific sites within mRNAs to direct the
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posttranscriptional regulation of these genes (32). The abundance and diverse expression

patterns of miRNA genes implies that they function in a variety of regulatory pathways,

in addition to their known role in the temporal control of developmental events.
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Table 1. miRNAs cloned from C. elegans. 300 RNA clones represented 54 different

miRNAs. Also included are miR-39, miR-65, and miR-69, three miRNAs predicted

based on homology and/or proximity to cloned miRNAs. miR-39 and miR-69 have been

validated by Northern analysis (Fig. 3), whereas miR-65 is not sufficiently divergent to

be readily distinguished by Northern analysis. All C. elegans sequence analysis relied on

WormBase, release WS45 (33). Some miRNAs were represented by clones of different

lengths, due to heterogeneity at the miRNA 3'-terminus. The observed lengths are

indicated, as is the sequence of the most abundant length. Comparison to C. briggsae

shotgun sequencing traces revealed miRNA orthologs with 100% sequence identity

(+++) and potential orthologs with >90% (++) and >75% (+) sequence identity (24, 34).

Five miRNA genomic clusters are indicated with square brackets. Naming of miRNAs

was coordinated with the Tuschl and Ambros groups (25, 26).
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miRNA Sequence Length ¢

UCCCUGAGAC
UGAGGUAGUA
UGGAAUGUAA
UAUCACAGCC
AGGCAGUGUG

UCACCGGGUG
UCACCGGGUG
UCACCGGGUG
UCACCGGGAG
UCACCGGGUG
UCACCGGGUG
UCACCGGGUG

CACCGGGUUA
UAUCACAGUU

CUCAAGUGUG A
GGUUGUAUAG UU
AGAAGUAUGU A
AGCUWUGAUG UGC
GUUAGCUGGU UG

GAAACUAGCA GU
AAAAUUCGCA UG
AACACUUGCA GU
AAAAACUGGA GU
UAAAUCAGCU UG
UACAUCAGCU AA
AAAAAUCACC UA

ACAUCUACAG
UACUUGCUGU CGC

UGACUAGAGA CACAUUCAGC U

UGUCAUGGAG
UGUCAUGGAG
UGAGGUAGGC
AAGCACCACG
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UGGCGGAUCC
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UCGAAUCGUU
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UAAUACGUCG
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UGGCAAGAUG
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UUCGUUGUUG
UUCAUCAgGC
UGGAGGCCUG
AUAAAGCUAG
UGAGAUCAUU
UGAGAUCAUC
UGAGAUCAUC
UAGCACCAUA
UGAGGUAGUA
UACAAAGUAU
UAAGUGAAUG

UCGCUCUCUU
GCGCUCUCUU
UCAGUAGAUG
AGAAGCUGCA
GGUAUUCUUG
UCCUAUCCAU
UAUGUUUCCG
UUUGUUUCCG

CUUCAUAAUC
AGUUCUGCU
GUUUCCGCUG
AUITUUGGGUU

AUCGAGCUGU
CAGUACGGCA
UAUCAGGAUG
AUUTUCUAGU
CGUUACUCAU
UCUAGCUUAC
AAGCGAGUUG

AAGCGUUACC
AAGCGUAACC
AUUAGGGAUG

CUAGAAAGAG
AAAAGUGUAG
AAAAGUGUAG
UUGGUGUUUC
GGGUAGUGA
UUGGCAUAGC

UAGGCAGUUC
UGGCAGUCUA

CAACCGGCUU
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A
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C
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21
22
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22-23
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22
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24
23
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22
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+++
+++
+++
+++
+++

+

+

++
++
++
+
+

+++
+++
+++

++

++
+

+++
+++..++

++

++++++
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Fold-ba
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5'
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3'
3'
5'
3'
3'
3'
3'
3'
3'
3'
3'
3'
3'
3'
3'
3'
5'
3'
5'
5'
5'
5'
3'
3'
3'
5'
5'
3'
3'
3'
3'
3'
3'
5'
5'
5'
3'
3'
3'
3'
5'
3'
3'
3'

3'
3'
3'
3'
3'
3'
3'
3'
3'
5'
3'
5'

ack Chromosome and distance to nearest gene

II
X
I 3.7 kb from start of T09B4.3, antisense
1 0.6 kb from start of M04C9.6b
X 2.1 kb from end of Y41G9A.4, antisense
II 1.3 kb from end of F54D5.12, antisense
II 1.2 kb from end of F54D5.12, antisense
II 1.1 kb from end of F54D5.12, antisense
II 1.0 kb from end of F54D5.12, antisense
II 0.8 kb from end of F54D5.12, antisense
II 0.7 kb from end of F54D5.12, antisense
II 0.6 kb from end of F54D5.12, antisense
II 1.2 kb from end of ZK930.2, antisense
II 1.1 kb from end of ZK930.2, antisense
II 1.0 kb from end of ZK930.2, antisense
II 0.7 kb from end of K12D12.1, antisense
III 3.0 kb from end of ZK525.1, antisense
X 1.8 kb from end of K02B9.2, antisense
V 6.1 kb from start of Y49A3A.4
X 2.7kb from end of F19C6.1, antisense
I in intron of Y71G12B.lla
IV 0.4 kb from end of F36H1.6, antisense
IV 4.6 kb from end of Y37A1B.6, antisense
IV 1.9 kb from end of F36H1.6, antisenseE 5.5 kb from end of F09A5.2, antisense
X 5.3 kb from end of F09A5.2, antisense
X 5.2 kb from end of F09A5.2, antisense
X 5.2 kb from end of F09A5.2, antisense
II 0.9 kb from start of AF187012-1.T09A5
IV in intron of Y67D8A.1
IV 1.8 kb from start of B0035.1a, antisense
II 1.5 kb from end of C32D5.5
V 0.4 kb from end of F55A11.3, antisense
X in intron of T07C5.1
X 1.7 kb from start of C16H3.2, antisense
III 0.25 kb from start of Y48G9A.1
III 0.10 kb from start of Y48G9A.1
III in coding sequence of Y48G9A.1
III 4.4 kb from end of EGAP1.1
IV 3.3 kb from start of YS5H4A.22
IV 0.6 kb from start of Y41D4B.21, antisense
V in intron of T10H9.5
I 7.8 kb from start of M04C9.6b
II 0.21 kb from end of F53G2.4, antisenseE 2.9 kb from start of T24D8.6, antisense
X 3.2 kb from start of T24D8.6, antisense
X 3.5 kb from start of F47G3.3
III 3.0 kb from start of C44B1 1.3, antisense
II1 1.5 kb from start of T21B4.9, antisense
IV 2.0 kb from start of Y40H7A.3, antisense
I 2.3 kb from end of C12C8.2
III 4.7 kb from end of F44E2.2, antisense
X in intron of T07D1.2, antisense
X 0.11 kb from start of T07D1.2
IV 5.0 kb from start of C06A6.2
X 0.8 kb from end of B0395.1, antisense
II in intron of F49E12.8, antisense
III in intron of Y56A3A.7
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Figure Legends

Fig. 1. Fold-back secondary structures involving miRNAs (red) and their flanking

sequences (black), as predicted computationally using RNAfold (35). (A) miR-84, an

miRNA with similarity to let-7 RNA. (B) miR-1, an miRNA highly conserved in

evolution. (C) miR-56 and miR-56*, the only two miRNAs cloned from both sides of the

same fold-back. (D) The mir-35-41 cluster.

Fig. 2. Unique sequence features of the miRNAs. (A) Length distribution of the clones

representing E. coli RNA fragments (white bars) and C. elegans miRNAs (black bars).

(B) Sequence composition of the unique clones representing C. elegans miRNAs and E.

coli RNA fragments. To avoid over-representation from groups of related miRNAs in

this analysis, each set of paralogs was represented by its consensus sequence.

Fig. 3. Expression of novel miRNAs and let-7 RNA during C. elegans development.

Northern blots probe total RNA from mixed-stage worms (Mixed), worms staged as

indicated, and glp-4 (bn2) adult worms (24). Specificity controls ruled out cross-

hybridization among probes for miRNAs from the mir-35-41 cluster (24). Other blots

indicate that, miR-46/47, miR-56, miR-64/65, miR-66, and miR-80 are expressed

constitutively throughout development (30).
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The MicroRNAs of Caenorhabditis elegans
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The work presented in this chapter was a collaborative effort amongst several

members in the Bartel and Burge lab. Specifically, Lee Lim executed the computational

identification of miRNA genes, performed the phylogenetic analysis of miRNA homologs

in C.briggsae, and completed the Northern blots testing the presence of candidate miRNA

genes. Earl Weinstein carried out the large scale cloning experiments, analyzed the

sequence data, and assisted in the Northern analysis of new miRNAs. Aliaa Abdelhakim

improved the clone sequence analysis and assisted with Northern analysis. Soraya Yekta

developed and applied the PCR method for validating rare miRNAs from cDNA libraries

that I had generated. Matthew Rhoades determined miRNA abundance in HeLa cells by

performing quantitative Northerns.

My contribution to this effort has been completing the developmental Northern

analysis of the majority of C.elegans miRNAs (Figure 4), and determining miRNA

abundance in nematode cells by quantitative Northerns (Figure 5). I cultured all the

various nematode samples and extracted nematode RNAs used throughout the work, and I

assisted in RNA cloning procedures and sequence analysis.
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MicroRNAs (miRNAs) are an abundant class of tiny RNAs thought to regulate the

expression of protein-coding genes in plants and animals. Here we describe a computational

procedure to identify miRNA genes conserved in more than one genome. Applying this

program, known as MiRscan, together with molecular identification and validation methods,

we have identified most of the miRNA genes in the nematode Caenorhabditis elegans. The

total number of validated miRNA genes stands at 88 with no more than 35 genes remaining to

be detected or validated. These 88 miRNA genes represent 48 gene families; 46 of these

families (comprising 86 of the 88 genes) are conserved in C. briggsae, and 22 families are

conserved in humans. More than a third of the worm miRNAs, including newly identified

members of the lin-4 and let-7 gene families, are differentially expressed during larval

development, suggesting a role for these miRNAs in mediating larval developmental

transitions. Most are present at very high steady-state levels-over 1000 molecules per cell,

with some exceeding 50,000 molecules per cell. Our census of the worm miRNAs and their

expression patterns helps define this class of noncoding RNAs, lays the groundwork for

functional studies, and provides the tools for more comprehensive analyses of miRNA genes

in other species.

Introduction

Noncoding RNAs (ncRNAs) of about 22 nucleotides (nt) in length are increasingly recognized as

playing important roles in regulating gene expression in animals, plants, and fungi. The first such

tiny regulatory RNA to be identified was the lin-4 RNA, which controls the timing of C. elegans

larval development (Lee et al. 1993; Wightman et al. 1993). This 21-nt RNA pairs to sites within

the 3' untranslated region (UTR) of target mRNAs, specifying the translational repression of these

mRNAs and triggering the transition to the next developmental stage (Lee et al. 1993; Wightman et

al. 1993; Ha et al. 1996; Moss et al. 1997; Olsen and Ambros 1999). A second tiny riboregulator,

let-7 RNA, is expressed later in development, and appears to act in a similar manner to trigger the

transition to late-larval and adult stages (Reinhart et al. 2000; Slack et al. 2000). The lin-4 and let-7
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RNAs are sometimes called small temporal RNAs (stRNAs) because of their important roles in

regulating the timing of larval development (Pasquinelli et al. 2000). The lin-4 and let-7 stRNAs

are now recognized as the founding members of a large class of -22-nt noncoding RNAs termed

microRNAs (miRNAs), which resemble stRNAs but do not necessarily control developmental

timing (Lagos-Quintana et al. 2001; Lau et al. 2001; Lee and Ambros 2001).

Understanding the biogenesis and function of miRNAs has been greatly facilitated by

analogy and contrast to another class of tiny ncRNAs known as small interfering RNAs (siRNAs),

first identified because of their roles in mediating RNA interference (RNAi) in animals and

posttranscriptional gene silencing in plants (Hamilton and Baulcombe 1999; Hammond et al. 2000;

Parrish et al. 2000; Zamore et al. 2000; Elbashir et al. 2001a; Klahre et al. 2002). During RNAi,

long double-stranded RNA (either a bimolecular duplex or an extended hairpin) is processed by

Dicer, an RNAse III enzyme, into many siRNAs that serve as guide RNAs to specify the

destruction of the corresponding mRNA (Hammond et al. 2000; Zamore et al. 2000; Bernstein et al.

2001; Elbashir et al. 2001a). Although these siRNAs are initially short double-stranded species

with 5' phosphates and 2-nt 3' overhangs characteristic of RNAse III cleavage products, they

eventually become incorporated as single-stranded RNAs into a ribonucleoprotein complex, known

as the RNA-induced silencing complex (RISC) (Hammond et al. 2000; Elbashir et al. 2001a;

Elbashir et al. 2001b; Nykiken et al. 2001; Martinez et al. 2002; Schwarz et al. 2002). The RISC

identifies target messages based on perfect (or nearly perfect) antisense complementarity between

the siRNA and the mRNA, and then the endonuclease of the RISC cleaves the mRNA at a site near

the middle of the siRNA complementarity (Elbashir et al. 2001a; Elbashir et al. 2001b). Similar

pathways have been proposed for gene silencing in plants and fungi, with siRNAs targeting mRNA

for cleavage during posttranscriptional gene silencing and heterochromatic siRNAs targeting

chromatin for histone methylation, triggering heterochromatin formation and consequent

transcriptional gene silencing (Hamilton and Baulcombe 1999; Vance and Vaucheret 2001; Hall et
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al. 2002; Hamilton et al. 2002; Pickford et al. 2002; Reinhart and Bartel 2002; Volpe et al. 2002;

Zilberman et al. 2003).

MicroRNAs have many chemical and functional similarities to the siRNAs. Like siRNAs

they are processed by Dicer, and so they are the same length and possess the same 5'-phosphate and

3'-hydroxyl termini as siRNAs (Grishok et al. 2001; Hutvdgner et al. 2001; Ketting et al. 2001; Lau

et al. 2001; Park et al. 2002; Reinhart et al. 2002). They are also incorporated within a

ribonucleoprotein complex, known as the miRNP, which is similar, if not identical to the RISC

(Caudy et al. 2002; Hutvdgner and Zamore 2002; Ishizuka et al. 2002; Martinez et al. 2002;

Mourelatos et al. 2002). In fact, many plant miRNAs match their predicted mRNA targets with

near-perfect antisense complementarity, as if they were functioning as siRNAs within a RISC

complex (Rhoades et al. 2002), and the plant miR171 and miR165/166 have been shown to specify

cleavage of their mRNA targets (Llave et al. 2002b; Tang et al. 2003). The C. elegans and

Drosophila miRNAs do not have as pronounced a tendency to pair with their targets with near

perfect complementarity (Rhoades et al. 2002). Nonetheless, some might still direct cleavage of

their targets, as suggested by the observation that miRNAs and siRNAs with 3-4 mismatches with

their targets can still direct cleavage in plant and animal lysates (Tang et al. 2003). Furthermore,

the let-7 miRNA is present within a complex that can cleave an artificial RNA target when such a

target is perfectly complementary to the miRNA (Hutvdgner and Zamore 2002). The known

biological targets of lin-4 and let-7 RNAs have several mismatches within the central region of the

miRNA complementary sites, perhaps explaining why in these particular cases the miRNAs specify

translational repression rather than mRNA cleavage during C. elegans larval development (Lee et

al. 1993; Wightman et al. 1993; Ha et al. 1996; Moss et al. 1997; Olsen and Ambros 1999; Reinhart

et al. 2000; Slack et al. 2000; Hutvigner and Zamore 2002).

Regulatory targets for most animal miRNAs have not yet been identified. Prediction of

plant miRNA targets has led to the proposal that many plant miRNAs function to clear from

differentiating cells mRNAs encoding key transcription factors, thereby facilitating plant
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development and organogenesis (Rhoades et al. 2002). Confident computational prediction of

animal miRNA targets has relied on experimental evidence to first narrow the number of candidate

mRNAs (Lai 2002). Nonetheless, as seen for the plant miRNAs, the sequences of the animal

miRNAs are generally highly conserved in evolution. For example, 91 of the 107 miRNAs cloned

from mammals are detected in the pufferfish (Fugu rubripes) genome, implying that they have

important functions preserved during vertebrate evolution (Lim et al. 2003).

The first step in a systematic approach to identifying the biological roles of miRNAs is to

find the miRNA genes themselves. Because gene-prediction programs had not been developed to

identify miRNAs in genomic sequence, miRNA gene identification has been primarily achieved by

cloning the small RNAs from size-fractionated RNA samples, sometimes specifically enriching in

miRNAs by first immunoprecipitating the miRNP complex, or by using a cloning protocol specific

for the 5' phosphate and 3' hydroxyl found on Dicer products (Lagos-Quintana et al. 2001; Lau et

al. 2001; Lee and Ambros 2001; Lagos-Quintana et al. 2002; Llave et al. 2002a; Mourelatos et al.

2002; Park et al. 2002; Reinhart et al. 2002; Lagos-Quintana et al. 2003). Once small RNAs have

been cloned, the challenge is to differentiate the authentic miRNAs from other RNAs present in the

cell, particularly from endogenous siRNAs. Because both miRNAs and siRNAs are Dicer products

and both can act to specify mRNA cleavage, miRNAs cannot be differentiated based on their

chemical composition or their functional properties. However, miRNAs can be distinguished from

siRNAs based on their biogenesis and evolutionary conservation: i) they are 20- to 24-nt RNAs

that derive from endogenous transcripts that can form local RNA hairpin structures; ii) these

hairpins are processed such that a single miRNA molecule ultimately accumulates from one arm of

each hairpin precursor molecule; iii) the sequences of the mature miRNAs and their hairpin

precursors are usually evolutionarily conserved; and iv) the miRNA genomic loci are distinct from

and usually distant from those of other types of recognized genes, although a few are found within

predicted introns but not necessarily in the same orientation as the introns. Endogenous siRNAs

differ in that i) they derive from extended dsRNA, ii) each dsRNA precursor gives rise to numerous

87



different siRNAs iii) they generally display less sequence conservation, and iv) they often perfectly

correspond to the sequences of known or predicted mRNAs, transposons, or regions of

heterochromatic DNA (Aravin et al. 2001; Djikeng et al. 2001; Elbashir et al. 2001a; Lau et al.

2001; Llave et al. 2002a; Mochizuki et al. 2002; Reinhart and Bartel 2002; Reinhart et al. 2002).

Regarding this fourth criterion, miRNAs can also perfectly correspond to sequences of their mRNA

targets, but when they do, they still derive from loci distinct from those of their mRNA targets

(Llave et al. 2002a; Llave et al. 2002b; Reinhart et al. 2002). Because miRNAs are primarily

distinguished based on their biogenesis and evolutionary conservation, the current norms for

identification and validation of miRNA genes include experimental evidence for endogenous

expression of the miRNA, coupled with evidence of a hairpin precursor, preferably one that is

evolutionarily conserved (Ambros et al. 2003).

Some miRNAs might be difficult to isolate by cloning, due to their low abundance or to

biases in cloning procedures. Thus, computational identification of miRNAs from genomic

sequences would provide a valuable complement to cloning. Recent advances have been made in

the computational identification of ncRNA genes through comparative genomics, and complex

algorithms have been developed to identify ncRNAs in general (Argaman et al. 2001; Rivas et al.

2001; Wassarman et al. 2001), as well as specific ncRNA families such as tRNAs and snoRNAs

(Lowe and Eddy 1997; Lowe and Eddy 1999).

Here we describe a computational procedure to identify miRNA genes. Using this

procedure, together with extensive sequencing of clones (3423 miRNA clones were sequenced), we

have detected 30 additional miRNA genes, including previously unrecognized lin-4 and let-7

homologs. Extrapolation of the computational analysis indicates that miRNA gene identification in

C. elegans is now approaching saturation, and that no more than 120 miRNA genes are present in

this species. We also identify those genes with intriguing expression patterns during larval

development and conditions of nutrient stress, and we show that most miRNAs are expressed at

very high levels, with some present in as many copies per cell as the highly abundant U6 snRNA.
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This extensive census of worm miRNAs and their expression patterns establishes the general

properties of this gene class and provides resources and tools for studies of miRNA function in

nematodes and other organisms.

Results

Computational prediction of C. elegans miRNA genes

We developed a computational tool to specifically identify miRNAs that are conserved in two

genomes and have the features characteristic of known miRNAs. To identify miRNAs in

nematodes, the C. elegans genome was first scanned for hairpin structures whose sequences were

conserved in C. briggsae. About 36,000 hairpins were found that satisfied minimum requirements

for hairpin structure and sequence conservation. This procedure cast a sufficiently wide net to

capture 50 of the 53 miRNAs previously reported to be conserved in the two species (Lau et al.

2001; Lee and Ambros 2001). These 50 published miRNA genes served as a training set for the

development of a program called MiRscan, which was then used to assign scores to each of the

36,000 hairpins, evaluating them based on their similarity to the training set with respect to the

following features: base pairing of the miRNA portion of the fold-back, base pairing of the rest of

the fold-back, stringent sequence conservation in the 5' half of the miRNA, slightly less stringent

sequence conservation in the 3' half of the miRNA, sequence biases in the first five bases of the

miRNA (especially a U at the first position), a tendency towards having symmetric rather than

asymmetric internal loops and bulges in the miRNA region, and the presence of 2-9 consensus base

pairs between the miRNA and the terminal loop region, with a preference for 4-6 bp (Fig. 1A).

The distribution of MiRscan scores for the -36,000 hairpins illustrated the ability of

MiRscan to discern the 50 miRNA genes of the training set, which fell mostly in the high-scoring

tail of the distribution (Fig. 2). Of the features evaluated by MiRscan, base pairing potential and

sequence conservation played primary roles in distinguishing known miRNAs (Fig. 1B). Some of

the other conserved hairpins also scored highly; 35 had scores exceeding 13.9, the median score of

89



the 58 known miRNAs (Fig. 2B). These 35 hairpins were carried forward as the top miRNA

candidates predicted by MiRscan.

Molecular identification of miRNA genes

Our initial cloning and sequencing of small RNAs from mixed-stage C. elegans had identified 300

clones that represented 54 unique miRNA sequences (Lau et al. 2001). For the present study, this

approach for identifying miRNAs was scaled-up about 10 fold. In an effort to identify miRNAs not

normally expressed in mixed-stage logarithmically growing hermaphrodite worms, RNA was also

cloned from populations of him-8 worms, starved L1, and dauer worms. The him-8 population was

about 40% males, whereas the normal (N2) population was nearly all hermaphrodites (Broverman

and Meneely 1994). Starved L1 and dauer worms are arrested in development at larval stages L1

and L3 respectively, with dauer worms having undergone morphological changes that enhance

survival following desiccation or other harsh conditions.

As before, some clones matched E. coli, the food source of the worms, others corresponded

to fragments of annotated C. elegans RNAs. Nevertheless, 3423 clones were classified as miRNA

clones (Table 1). Most of these represented the 58 miRNA genes previously identified in C.

elegans (Lau et al. 2001; Lee and Ambros 2001). For example, lin-4 was represented by 125

clones, let-7 by 17 clones, and mir-52 by 404 clones (Table 1). The remaining miRNA clones

represented 23 newly identified miRNA loci.

In total, 80 loci were represented by cloned miRNAs (Table 1). Of these, 77 had the

classical features of C. elegans miRNA genes, in that they had the potential to encode stereotypic

hairpin precursor molecules with the 20- to 25-nt cloned RNAs properly positioned within an arm

of the hairpin so as to be excised during Dicer processing, and their expression was manifested as a

detectable Northern signal in the 20- to 25-nt range. Three other loci, mir-41, mir-249, and mir-

229, were also included. The mir-41 and mir-249 RNAs were not detected on Northern blots but

were still classified as miRNAs because these RNAs and their predicted hairpin precursors appear

to be conserved in C. briggsae.
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The mir-229 locus was also classified as a miRNA gene, even though it appears to derive

from an unusual fold-back precursor. Its precursor appears to be larger than normal, possibly

because of an extra 35-nt stem-loop protruding from the 3' arm of the precursor stem-loop

(Supplementary Figure 1). Nonetheless, miR-229 was detectable as a -25- to 26-nt species on

Northern blots, and accumulation of its presumed precursor increased in the dcr-l mutant,

suggesting that Dicer processes this precursor despite the unusual predicted secondary structure

(Supplementary Figure 1). Furthermore, mir-229 is only 400 bp upstream of a previously

recognized miRNA gene cluster including mir-64, mir-65, and mir-66. miR-229 also has

significant sequence identity with the miRNAs of this cluster. We provisionally classified mir-229

as a miRNA and a member of this C. elegans cluster. Greater confidence would be warranted if its

unusual precursor structure were conserved in another species. A weakly homologous cluster of

two potential miRNAs was found in C. briggsae, but neither of the predicted C. briggsae homologs

appeared to have an unusual precursor resembling that of miR-229.

Validation of computationally predicted miRNAs

Of the 23 newly cloned miRNAs, 20 received MiRscan scores, and these scores are indicated in

yellow in Figure 2B. The other three were not scored because orthologous sequences in C. briggsae

were not identified. A Mann-Whitney test showed that the distribution of scores for these recently

cloned miRNAs was not significantly different from that of the previously cloned miRNAs.

Because the recently cloned miRNAs were not known during the development of MiRscan, their

high scores gave added assurance that MiRscan was not over-fitting its training set. Ten of the 23

newly cloned miRNAs were among the set of 35 high-scoring miRNA gene candidates and served

to validate these ten candidates.

The remaining 25 candidate miRNAs that had not been cloned were tested by Northern

blots. RNA from dcr-l worms was included on the blots to enhance detection of precursor

hairpins. Dicer-dependent processing of -70-nt precursors was detected for six candidates, and

-22-nt miRNAs were detected for miR-250, miR-251, and miR-252 (as shown for miR-250 and
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miR-255, Fig. 2C). Despite prolonged exposure times and enrichment for small RNA by size

fractionation, the Northern signals were generally weak, perhaps explaining why these miRNAs

were missed in the current set of 3423 sequenced miRNA clones.

To investigate whether these miRNAs eventually would have been identified after further

cloning and sequencing of our cDNA library of small RNA sequences, a PCR assay was used to

detect the presence of these miRNAs in the library. Using a primer specific to the 3' segment of the

predicted miRNA, together with a second primer corresponding to the adapter sequence attached to

the 5' terminus of all the small RNAs, the 5' segment of the miRNA was amplified, cloned, and

sequenced. This procedure validated five of the six predicted miRNAs for which at least a

precursor could be detected on Northerns, including two of the candidates (miR-253 and miR-254)

for which a mature -22-nt RNA was not detected on Northern blots. In addition, it identified the 5'

terminus of these five miRNAs, which is difficult to achieve with confidence when using only

bioinformatics and hybridization.

Combining the cloning and expression data, 16 of the 35 computationally identified

candidates were validated (ten from cloning, five from Northerns plus the PCR assay, and one from

Northerns only, which validated the precursor but did not identify the mature miRNA). Of the

remaining 19 candidates, four could be readily classified as false positives. They appear to be non-

annotated larger ncRNA genes, in that probes designed to hybridize to these candidates hybridized

instead to high-molecular weight species that remained constant in the samples from dcr-I worms.

The remaining 15 new candidates with high MiRscan scores but without any Northern signal might

also be false positives, or they might be authentic miRNAs that are expressed at low levels or in

only very specific cell types or circumstances. Considering the extreme case in which all the non-

validated candidates are false positives, the minimum specificity of MiRscan for the C. elegans/C.

briggsae analysis can be calculated as (29 + 16)/(29 + 35), or 0.70, at a sensitivity level that detects

half of the 58 previously known miRNAs. A summary of the miRNA genes newly identified by

validating computational candidates (16 genes) or by cloning alone (13 genes) is shown in Table 2;
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and predicted stem-loop precursors are shown in the supplemental on-line information. Table 2

also includes one additional gene, mir-239b, which was identified based on its homology to mir-

239a and its MiRscan score of 13.6.

Evolutionary conservation of miRNAs

The 88 C. elegans miRNA genes identified to this point were grouped into 48 families, each

comprising 1-8 genes (data not shown). Within families, sequence identity either spanned the

length of the miRNAs, or it was predominantly at their 5' terminus. All but two of these families

extended to the miRNAs of C. briggsae. The two families without recognizable C. briggsae

orthologs each comprised a single miRNA (miR-78 and miR-243). Thus, nearly all (>97%) of the

C. elegans miRNAs identified had apparent homologs in C. briggsae, and all but 6 six of these C.

elegans miRNAs (miR-72, miR-63, miR-64, miR-66, miR-229, and miR-247) had retained at least

75% sequence identity to a C. briggsae ortholog. Of the 48 C. elegans miRNA families, 22 also

had representatives among the known human miRNA genes (Fig. 3). In that these 22 families

included 33 C. elegans genes, it appears that at least a third (33/88) of the C. elegans genes have

homologs in humans and other vertebrates.

Developmental expression of miRNAs

The expression of 62 miRNAs during larval development was examined and compiled together

with previously reported expression profiles (Lau et al. 2001) to yield a comprehensive data set for

the 88 C. elegans miRNAs (Fig. 4). RNA from wild-type embryos, the four larval stages (L1

through L4), and young adults was probed, as was RNA from glp-4 (bn2) young adults, which are

severely depleted in germ cells (Beanan and Strome 1992). Nearly two thirds of the miRNAs

appeared to have constitutive expression during larval development (Fig. 4A). These miRNAs

might still have differential expression during embryogenesis, or they might have tissue-specific

expression, as has been observed for miRNAs of larger organisms in which tissues and organs can
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be more readily dissected and examined (Lee and Ambros 2001; Lagos-Quintana et al. 2002; Llave

et al. 2002a; Park et al. 2002; Reinhart et al. 2002).

Over a third of the miRNAs had expression patterns that changed during larval

development (Fig. 4B and C), and there were examples of miRNA expression initiating at each of

the four larval stages (Fig. 4B). Expression profiles for miR-48 and miR-241 (which are within 2

kb of each other in the C. elegans genome) were similar to those previously reported for let-7 RNA

and miR-84 (Reinhart et al. 2000; Lau et al. 2001) (Fig. 4B). In fact, these four miRNAs appear to

be paralogs, with all four miRNAs sharing the same first eight residues (Fig. 3). Another newly

identified miRNA, miR-237, is a paralog of the other canonical stRNA, lin-4 RNA (Fig. 3),

although miR-237 exhibited an expression pattern distinct from lin-4 RNA (Fig. 4E). The existence

of these paralogs, as well as other families of miRNAs with expression initiating at the different

stages of larval development, supports the idea that lin-4 and let-7 miRNAs are not the only

stRNAs with important roles in the C. elegans heterochronic pathway.

Expression usually remained constant once it initiated, as has been seen for lin-4 and let-7

miRNA expression (Fig. 4A and B). Exceptions to this trend included the miRNAs of the mir-35-

mir-41 cluster, which were expressed transiently during embryogenesis (Lau et al. 2001), miR-247,

which was expressed transiently in larval stage 3 (and dauer), and miR-248, which was most highly

expressed in dauer (Fig. 4C and D). miR-234 was expressed in all stages, but expression was

highest in both L1 worms (which had been starved shortly before harvest to synchronize the worm

developmental staging) and dauer worms, suggesting that this miRNA might be induced as a

consequence of nutrient stress.

Molecular Abundance of miRNAs

The very high cloning frequency of certain miRNAs (e.g. miR-52, represented by more than 400

clones) raised the question as to the molecular abundance of these and other miRNA species. In

addition, there was the question of whether the actual molecular abundance of miRNAs in

nematodes was proportionally reflected in the numbers of clones sequenced. To address these
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questions, quantitative Northerns were used to examine the molecular abundance of 12

representative miRNAs, picked so as to span the range of frequently and rarely cloned sequences

and differing 3' and 5' terminal residues (Fig. 5).

To determine the molecular abundance of these 12 miRNAs in the adult worm soma, the

hybridization signals for RNA from a known number of glp-4 young adult worms were compared

to standard curves from chemically synthesized miRNAs (Hutvigner and Zamore 2002) (Fig. 5).

Accounting for RNA extraction yields and dividing the number of miRNA molecules per worm by

the total number of cells in the worms, yielded averages of up to 50,000 molecules per cell, with the

most abundant miRNAs as plentiful as the U6 snRNA of the spliceosome (Fig. 5C). These are

much higher numbers than those for the typical worm mRNAs, estimated to average about 100

molecules per cell for the 5000 most highly expressed genes in the cell. (This estimate was

calculated based on our yield of 20 pg total RNA per worm cell, assuming that the 5000 most

highly expressed genes have mRNAs averaging 2 Kb in length and represent 3 percent of the total

RNA in an adult worm; it was consistent with estimates based on hybridization kinetics of mRNAs

from mouse tissues (Hastie and Bishop 1976)). Perhaps high concentrations of miRNAs are needed

to saturate the relevant complementary sites within the target mRNAs, which might be recognized

with low affinity because of the non-canonical pairs or bulges that appear to be characteristic of the

animal miRNA-target interactions.

Because these numbers represent molecular abundance averaged over all the cells of the

worm, including cells that might not be expressing the miRNA, there are likely to be some cells that

express even more molecules of the miRNA. To examine the abundance in a single cell type, HeLa

RNA was probed for representative human miRNAs, yielding a similar range of molecular

abundance (Fig. 5C). The high number of miRNA molecules in human cells only increases the

mystery as to why miRNAs had gone undetected for so long, which raises the question of whether

other classes of highly expressed ncRNAs might yet remain to be discovered. A recent large-scale
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analysis of full-length cDNAs from mouse indicates the possible existence of hundreds or

thousands of expressed ncRNAs in vertebrates (Okazaki et al. 2002).

To address the extent to which the actual molecular abundance of miRNAs in nematodes is

proportionally reflected in the numbers of clones sequenced, the abundance of the miRNA within

the mixed-stage RNA preparation was compared to the number of clones generated from that

preparation (Fig. 5D). The strong positive correlation observed between the molecular abundance

and the number of times the miRNAs were cloned indicated that systematic biases in the cloning

procedure were not major. At most, these miRNAs were over- or under-represented 5-fold in the

sequenced set relative to their actual abundance as measured by quantitative Northerns. We cannot

rule out the possibility that certain miRNAs not yet cloned might be refractory to our cloning

procedure, e.g. because of a propensity to form secondary structures that preclude adaptor ligation

reactions. Nonetheless, on the whole, the cloning frequencies can be used to approximate the

molecular abundance of the miRNAs, and we have no reason to suspect that the set of miRNAs

identified by cloning differs in any substantive way, other than an overall higher steady-state

expression level, from the complete set of C. elegans miRNAs.

Other endogenous -22-nt RNAs of C. elegans

Of the 4078 C. elegans clones, a large majority represented authentic miRNAs (3423 clones, Table

1). The next most abundant class represented degradation fragments of larger ncRNAs, such as

tRNA and rRNA (447 clones) and introns (18 clones). The remaining clones represented potential

Dicer products that were not classified as miRNAs. Some corresponded to sense (18 clones) or

antisense (23 clones) fragments of known or predicted mRNAs and might represent endogenous

siRNAs. Others (143 clones) corresponded to regions of the genome not thought to be transcribed;

these might represent another type of endogenous siRNAs, known as heterochromatic siRNAs

(Reinhart and Bartel 2002). The possible roles of the potential siRNAs and heterochromatic

siRNAs in regulating gene expression are still under investigation. The remaining clones were
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difficult to classify because they matched more than one locus, and their loci were of different types

(6 clones).

A fourth class of potential Dicer products (38 clones, representing 14 loci) corresponded to

miRNA precursors but derived from the opposite arm of the hairpin than the more abundantly

expressed miRNA, as has been reported previously for miR-56 in C. elegans, miR156d and miR169

in plants, and several vertebrate miRNAs (Lau et al. 2001; Lagos-Quintana et al. 2002; Mourelatos

et al. 2002; Reinhart et al. 2002; Lagos-Quintana et al. 2003). Our current data adds another 13

examples of this phenomenon (Fig. 6). In all of our cases, the -22-nt RNA from one arm of the

fold-back was cloned much more frequently than that from the other and was far more readily

detected on Northern blots. We designated the less frequently cloned RNA as the miRNA-star

(miRNA*) fragment (Lau et al. 2001).

Discussion

We have developed a computational procedure for identifying miRNA genes conserved in two

genomes. Using this procedure, together with extensive sequencing of clones from libraries of

small RNAs, we have now identified 87 miRNA genes in C. elegans (Tables 1 and 2). Together

with mir-88 (Lee and Ambros 2001; Lagos-Quintana et al. 2002; Llave et al. 2002a; Park et al.

2002; Reinhart et al. 2002), which we have not yet cloned nor found computationally, the number

of validated C. elegans genes stands at 88. More than a third of these genes have human homologs

(Fig. 3), and a similar fraction, including previously unrecognized lin-4 and let-7 paralogs, are

differentially expressed during larval development (Fig. 4). Most miRNAs accumulated to very

high steady-state levels, with some at least as plentiful as the U6 snRNA (Fig. 5). Below, we

discuss some implications of these results with regard to some of the defining features of miRNA

genes in animals, the processing of miRNA precursors, and the number of miRNA genes remaining

to be identified.

MiRscan accuracy and the defining features of miRNAs
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As calculated in the Results section, the specificity of MiRscan was > 0.70 at a sensitivity that

detects half the previously known C. elegans miRNAs, when starting from an assembled C. elegans

genome and C. briggsae shotgun reads. This accuracy was sufficient to identify new genes and

obtain an upper bound on the total number of miRNA genes in the worm genome (described later).

However, it was not sufficient to reliably identify all the conserved miRNA genes in C. elegans.

The accuracy of MiRscan appears to be at least as high as that of general methods to identify

ncRNA genes in bacteria (Argaman et al. 2001; Rivas et al. 2001; Wassarman et al. 2001), but is

lower than that of algorithms designed to identify protein-coding genes or specialized programs that

predict tRNAs and snoRNAs (Lowe and Eddy 1997; Burge and Karlin 1998; Lowe and Eddy

1999). The relative difficulty in identifying miRNAs can be explained by the low information

content inherent in their small size and lack of strong primary sequence motifs. The performance of

MiRscan will improve with a more complete and assembled C. briggsae genome. We anticipate

that using only those sequences conserved in a syntenic alignment of the two genomes would

capture fewer of the background sequences, enabling the authentic miRNAs to be more readily

distinguished from the false positives.

Improvement would also come from bringing in a third nematode genome, particularly a

genome more divergent than those of C. elegans and C. briggsae. The advantage of such an

additional genome is illustrated by our application of MiRscan to the identification of vertebrate

miRNAs using three genomes. The version of MiRscan described here, which had been trained on

the set of 50 miRNAs conserved in worms, was applied to the assembled human genome, shotgun

reads of the mouse genome, and the assembled pufferfish (Fugu) genome (Lim et al. 2003). This

analysis had a specificity of > 0.71 at a sensitivity that detected three quarters of the previously

known vertebrate miRNAs. The accuracy of the vertebrate analysis was therefore substantially

improved over that of the C. elegans/C. briggsae analysis, even though the vertebrate genomes are

4-30 times larger than those of C. elegans and C. briggsae, and are expected to have a

correspondingly higher number of background sequences. This improved performance can be
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attributed to using three genomes, and also to the evolutionary distance between the mammalian

and fish genomes, which are distant enough to reduce the number of fortuitously high scoring

sequences, yet close enough to retain most of the known miRNAs.

Other improvements in the computational identification of miRNAs will come with the

definition of additional sequence and structural features that specify which sequences are

transcribed, processed into miRNAs, and loaded into the miRNP. With the exception of sequence

conservation, the features that MiRscan currently uses to identify miRNAs (Fig. 1A) are among

those that the cell also uses to specify the biogenesis of miRNAs and miRNPs. The utility of these

parameters for MiRscan (Fig. 1B) is a function of both the degree to which these features are

correctly modeled (or have already been utilized to restrict the number of miRNA candidates; see

Fig. B legend) and their relative importance in vivo. Clearly, much of what defines a miRNA in

vivo remains to be determined. Sequence elements currently unavailable for MiRscan include

transcriptional promoter and termination signals. Additional sequence and structural features

important for processing of the primary transcript and the hairpin precursors also remain to be

identified (Lee et al. 2002).

MicroRNA biogenesis

The presence of miRNA* species, observed now for 14 of the C. elegans miRNAs ((Lau et al.

2001); Fig 6), provides evidence for the idea that Dicer processing of miRNA precursors resembles

that of siRNA precursors (Hutvigner and Zamore 2002; Reinhart et al. 2002). We suspect that,

with more extensive sequencing of clones, miRNA* sequences will be found for a majority of the

miRNA precursors, a notion supported by the identification of additional miRNA* sequences using

our PCR assay (data not shown). As observed for both MIR156d and MIR169 in plants (Reinhart et

al. 2002), the miRNA:miRNA* segments are typically presented within the predicted precursor,

paired to each other with 2-nt 3' overhangs (Fig. 6)-a structure analogous to that of a classical

siRNA duplex. This is precisely the structure that would be expected if both the miRNA and the

miRNA* were excised from the same precursor molecule, and the miRNA* fragments were
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transient side-products of productive Dicer processing. An alternative model for miRNA

biogenesis and miRNA* formation, which we do not favor but cannot rule out, is that the Dicer

complex normally excises a -22-nt RNA from only one side of a miRNA precursor but it

sometimes binds the precursors in the wrong orientation and excises the wrong side. In an extreme

version of the favored model, the production of the miRNA* would be required for miRNA

processing and miRNP assembly; in a less extreme version, miRNA* production would be an

optional, off-pathway phenomenon. The idea that -22-nt RNAs might be generally excised from

both sides of the same precursor stem-loop brings up the question of why the miRNAs and

miRNA*s are present at such differing levels. With the exception of miR-34* (sequenced 17 times)

none of the miRNA*s is represented by more than 3 sequenced clones. Perhaps the miRNAs are

stabilized relative to their miRNA* fragments because they preferentially enter the miRNP/RISC

complex. Alternatively, both the miRNA and the miRNA* might enter the complex, but the

miRNA might be stabilized by interactions with its targets.

Five of the newly identified miRNAs are within annotated introns, all five in the same

orientation as the predicted mRNAs. When considered together with the previously identified

miRNAs found within annotated introns (Lau et al. 2001), 10 of 12 known C. elegans miRNAs

predicted to be in introns are in the same orientation as the predicted mRNAs. This bias in

orientation, also reported recently for mammalian miRNAs (Lagos-Quintana et al. 2003), suggests

that some of these miRNAs are not transcribed from their own promoters but instead derive from

the excised pre-mRNA introns (as are many snoRNAs), and it is easy to imagine regulatory

scenarios in which the coordinate expression of a miRNA with an mRNA would be desirable.

The number of miRNA genes in C. elegans and other animals

In addition to providing a set of candidate miRNAs, MiRscan scoring provides a means to estimate

the total number of miRNA genes in C. elegans. A total of 64 loci have greater than the median

score of the 58 initially reported C. elegans miRNAs (Fig. 2B). Note that this set of 58 miRNAs

includes not only the 50 conserved miRNAs of the training set but also all eight of the previously
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reported miRNAs that were not in our set of 36,000 potential stem-loops, usually because they

lacked easily recognizable C. briggsae orthologs. Thus, the estimate calculated below takes into

account the poorly conserved miRNAs without MiRscan scores. Four of the 64 high-scoring loci

are known to be false positives. Thus, the upper bound on the number of miRNA genes in C.

elegans would be 2 x (64 - 4), or 120. This upper bound of -120 genes remained stable when

extrapolating from points other than the median, ranging from the top 25th to 55th percentiles. For

this estimate, we made the assumption that the set of all C. elegans miRNAs has a distribution of

MiRscan scores similar to the distribution of initially reported miRNAs. Such an assumption might

be called into question, particularly when considering that the initially reported miRNAs served as a

training set for the development of MiRscan (even though the scores of the training-set loci have

been jackknifed to prevent over-fitting). However, this assumption is supported by two

observations. First, the set of newly cloned miRNAs did indeed have a distribution of scores

indistinguishable from that of the training set of previously reported miRNAs (Fig. 2B). Second,

there is no correlation between the number of times that a miRNA has been cloned and its MiRscan

score (Fig. 7). The absence of a correlation between cloning frequency and MiRscan score lessens

our concern that miRNAs that are difficult to clone, including those still not present in our set of

3423 sequenced clones, might represent a population of miRNAs that are refractory to

computational analysis as well.

This estimate of 120 genes is an upper bound and would decrease if additional high-scoring

candidates were shown to be false positives. The extreme scenario, in which all are false positives,

places the lower bound of miRNA genes near the number of validated genes, adding perhaps

another five genes to account for the low-scoring counterparts of the five computational candidates

validated only by Northerns and PCR, yielding a lower bound on the number of C. elegans

miRNAs of -93.

Our count of 105 + 15 miRNA genes in C. elegans might underestimate the true count if

there are miRNAs with unusual fold-back precursors that were cloned but dismissed as endogenous
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siRNAs or degradation fragments. To investigate this possibility, we examined the expression of

each small RNA that was cloned more than once but did not appear to derive from a canonical

miRNA precursor as predicted by RNAfold. Because most (72/88) of the authentic miRNAs

identified to date were represented by multiple clones (Table 1), this analysis should uncover most

of the miRNAs coming from non-conventional precursors. This broader analysis detected only a

single additional miRNA, miR-229. All of the other sequences that we cloned more than once were

minor degradation fragments or processing byproducts of larger ncRNAs (e.g. the 5' leader

sequence of a tRNA). Thus, the number of miRNAs that derive from non-conventional precursors

is not sufficient to significantly influence the miRNA gene count.

The estimated number of miRNA genes represents between 0.5 and 1 percent of the genes

identified in the C. elegans genome, a fraction similar to that seen for other very large gene families

with presumed regulatory roles, such as those encoding nuclear hormone receptors (270 predicted

genes), C2H2 Zinc-finger proteins (157 predicted genes), and homeodomain proteins (93 predicted

genes) (Chervitz et al. 1998; C.elegans Sequencing Consortium 1998). Extending our analysis to

vertebrate genomes revealed that 230 ± 30 of the human genes are miRNAs, also nearly 1 percent

of the genes in the genome (Lim et al. 2003). The miRNA genes are also among the most abundant

of the ncRNA gene families in humans, comparable in number to the genes encoding rRNAs (-650-

900 genes), tRNAs (-500 genes), snRNAs (-100 genes), and snoRNAs (-100-200 genes) (Lander

et al. 2001). For rRNAs, tRNAs and snRNAs, the hundreds of gene copies in the human genome

represent only relatively few distinct genes, probably fewer than 100 distinct genes for all three

classes combined. For the miRNAs and snoRNAs, there are many more distinct genes, and each is

present in only one or a few copies.

Unlike the other large ncRNA gene families and many of the transcription-factor gene

families, there is no indication that miRNAs are present in single-celled organisms such as yeast. A

pilot attempt to clone miRNAs from Schizosaccharomyces pombe did not detect any miRNAs

(Reinhart and Bartel 2002), and there is no evidence that the proteins (such as Dicer) needed for
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miRNA accumulation in plants and animals are present in Saccharomyces cerevisiae. Given the

known roles of miRNAs in C. elegans development (Lee et al. 1993; Wightman et al. 1993;

Reinhart et al. 2000) and the very probable roles of miRNAs in plant development (Rhoades et al.

2002), it is tempting to speculate that the substantial expansion of miRNA genes in animals (and the

apparent loss of miRNA genes in yeast) is related to their importance in specifying cell

differentiation and developmental patterning, and that the extra layer of gene regulation afforded by

miRNAs was crucial for the emergence of multicellular body plans. The identification of most of

the worm miRNAs and the quantitation of the number of genes remaining to be found are important

steps towards understanding the evolution of this intriguing class of genes and placing them within

the gene regulatory circuitry of these and other animals.
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Materials and Methods

Computational identification of stem-loops

Potential miRNA stem-loops were located by sliding a 110-nt window along both strands of the C.

elegans genome (Wormbase Release 45, www.wormbase.org) and folding the window with the

secondary structure-prediction program RNAfold (Hofacker et al. 1994) to identify predicted stem-

loop structures with a minimum of 25 base pairs and a folding free energy of at least 25 kcal/mol

(AGfolding < -25 kcal/mol). Sequences that matched repetitive elements were discarded, as were those

with skewed base compositions not observed in known miRNA stem-loops and those which

overlapped with annotated coding regions. Stem-loops that had fewer base pairs than overlapping

stem-loops were also culled. C. briggsae sequences with at least loose sequence similarity to the

remaining C. elegans sequences were identified among C. briggsae shotgun sequencing reads

(November 2001 download from www.ncbi.nlm.nih.gov/Traces) using WU-BLAST with default

parameters and a non-stringent cutoff of E < 1.8 (Gish, W., blast.wustl.edu). These C. briggsae

sequences were folded with RNAfold to ensure that they met the minimal requirements for a hairpin

structure as described above. This procedure yielded about 40,000 pairs of potential miRNA

hairpins. For each pair of potential miRNA hairpins, a consensus C. elegans/briggsae structure was

generated using the alidot and pfrali utilities from the Vienna RNA package (Hofacker et al. 1998;

Hofacker and Stadler 1999). To create RNA consensus structures, alidot and pfrali combine a Clustal

alignment (Thompson et al. 1994) of a pair of sequences with either the minimum free energy

structures of these sequences (alidot) derived using the Zuker algorithm (Zuker 1994) or the base

pairing probability matrices of these sequences (pfrali) derived using the McCaskill algorithm

(McCaskill 1990).

MiRscan

Of the -40,000 pairs of hairpins, 35,697 had the minimal conservation and base pairing needed to

receive a MiRscan score. Among this set were 50 of the 53 previously published miRNAs that were

reported to be conserved between C. elegans and C. briggsae (Lau et al. 2001; Lee and Ambros
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2001). [miR-53 is included as a previously reported conserved miRNA because it is nearly identical

to miR-52, which has a highly conserved C. briggsae ortholog (Lau et al. 2001; Lee and Ambros

2001). The three conserved genes missing from the -36,000 pairs of hairpins were mir-56, mir-75,

and mir-88. The reverse complements of mir-75 and mir-88 were later observed among the -36,000

hairpins and given scores (Table 1).] The MiRscan program was developed to discriminate these 50

known miRNA hairpins from background sequences in the set of -36,000 hairpins. For a given 21-nt

miRNA candidate, MiRscan makes use of the seven features derived from the consensus hairpin

structure illustrated in Figure 1A: xl, "miRNA base pairing", the sum of the base-pairing probabilities

for pairs involving the 21-nt candidate miRNA; x2, "extension of base pairing", the sum of the base-

pairing probabilities of the pairs predicted to lie outside the 21-nt candidate miRNA but within the

same helix; X3, "5' conservation", the number of bases conserved between C. elegans and C.

briggsae within the first 10 bases of the miRNA candidate; x4, "3' conservation", the number of

conserved bases within the last 11 bases of the miRNA candidate; x5, "bulge symmetry", the number

of bulged or mismatched bases in the candidate miRNA minus the number of bulged or mismatched

bases in the corresponding segment on the other arm of the stem-loop; x6, "distance from loop", the

number of basepairs between the loop of the stemloop and the closest end of the candidate; x7, "initial

pentamer", the specific bases at the first 5 positions at the candidate 5' terminus.

For a given feature i with value xi, MiRscan assigns a log-odds score si(x i )= log2 f'(x ),

where f (xi) is an estimate of the frequency of feature value xi in miRNAs derived from the training

set of 50 known miRNAs, and gi(xi) is an estimate of the frequency of feature value xi among the

background set of -36,000 hairpin pairs. The overall score assigned to a candidate miRNA is simply

the sum of the log-odds scores for the 7 features: S = si (xi). To score a given hairpin, MiRscan
i=1..7

slides a 21 nucleotide window representing the candidate miRNA along each arm of the hairpin,

assigns a score to each window, and then assigns the hairpin the score of its highest-scoring window.
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In order to be evaluated, a window was required to be 2-9 consensus base pairs away from the

terminal loop.

For features xl, x3, x4, X5 , and x6, f and gi were obtained by smoothing the empirical

frequency distributions from the training and background sets, respectively, using the R statistical

package (http://lib.stat.cmu.edu/R/CRAN) with a triangular kernel. Because xl and x2 are not

independent of each other, the relative contribution of x2 was decreased by computingf2 and g2

separately subject to the conditions xl > 9 and xl < 9, in order to account for this dependence. For x7,

a weight matrix model (WMM) was generated for the five positions at the miRNA 5' terminus. The

background WMM, g7, was set equal to the base composition of the background sequence set. The

miRNA WMM, f7, was derived from the position-specific base frequencies of the 50 training set

sequences, using standard unit pseudocounts, and normalizing for the contributions of related

miRNAs.

Because both strands of the C. elegans genome were analyzed, both a hairpin sequence and

its reverse complement were sometimes included in the set of -36,000 stem-loops. For representation

in Figure 2, in such cases both sequences were considered as a single locus that received the score of

the higher scoring hairpin. Also, to prevent overscoring of the 50 known miRNA loci within the

training set, each known miRNA locus was assigned a jackknife score calculated using a training set

consisting of the other 49 miRNAs.

RNA cloning and bioinformatic analyses

Small RNAs were cloned as described previously (Lau et al. 2001), using the protocol available on

the web (http://web.wi.mit.edu/bartel/pub/). Sequencing was performed by Agencourt Bioscience.

Sequences of known C. elegans tRNA and rRNA were removed, and the remaining clones were

clustered based on the location of their match to the C. elegans genome (C.elegans Sequencing

Consortium 1998), downloaded from WormBase (www.wormbase.org). Genomic loci not previously

reported to encode miRNAs were examined using the RNA-folding program RNAfold (Hofacker et

al. 1994). Two sequences were folded for each locus: one included 15 nt upstream and 60 nt
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downstream of the most frequently cloned sequence from that locus; the other included 60 nt

upstream and 15 nt downstream. Sequences for which the most stable predicted folding resembled

the stem-loop precursors of previously validated miRNAs were carried forward as candidate miRNA

loci. Sequences without classical stem-loop precursors were also analyzed further (see Discussion),

but only one, miR-229, was classified as a miRNA. The clones classified as representing potential

fragments of mRNAs (20 clones) and potential antisense fragments of mRNAs (23 clones)

corresponded to predicted ORFs (as annotated in GenBank) or probable UTR segments (100 bp

upstream or 200 bp downstream of the predicted ORF).

Northerns

Expression of candidate miRNA loci was examined using Northern blots and radiolabeled DNA

probes (Lau et al. 2001). To maintain hybridization specificity without varying hybridization or

washing conditions, the length of probes for different sequences was adjusted so that the predicted

melting temperatures of the miRNA-probe duplexes did not exceed 60°C (Sugimoto et al. 1995).

Probes not corresponding to the entire miRNA sequence were designed to hybridize to the 3' region

of the miRNA, which is most divergent among related miRNA sequences.

PCR validation

A PCR assay was performed to detect the sequences of predicted miRNAs within a cDNA library

constructed from 18- to 26-nt RNAs expressed in mixed-stage worms. This library, the same as that

used for cloning (Lau et al. 2001), consisted of PCR-amplified DNA that comprised the 18- to 26-nt

sequences flanked by 3'- and 5'-adaptor sequences. For each miRNA candidate, a primer specific to

the predicted 3' terminus of the candidate and a primer corresponding to the 5'-adaptor sequence

common to all members of the library (ATCGTAGGCACCTGAAA) were used at concentrations of

1.0 ArM and 0.1 .M respectively (100 Il PCR reaction containing 5 l of a 400-fold dilution of the

PCR reaction previously used to amplify all members of the cDNA library). The specific primer was

added after the initial denaturation incubation had reached 80°C. Following 20 PCR cycles, the
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reaction was diluted 20 fold into a fresh PCR reaction for another 20 cycles. PCR products were

cloned and sequenced to both identify the 5' terminus of the miRNA and ensure that the amplified

product was not a primer-dimer or other amplification artifact. Specific primers for the reactions that

successfully detected candidate miRNAs were ACCATGCCAACAGTTG (miR-250),

TAAGAGCGGCACCACTAC (miR-251), TACCTGCGGCACTACTAC (miR-252),

GTCAGTGTTAGTGAGG (miR-253), TACAGTCGGAAAGATTTG (miR-254), and

GTGGAAATCTATGCTTC (miR-254*).

Quantitative Northerns

MicroRNA standards (purchased from Dharmacon) were diluted to appropriate concentrations in the

presence of 1.0 g/zl carrier RNA in the form of either E. coli tRNA or HeLa cell total RNA.

Northern analysis was performed (Lau et al. 2001), loading 30 jig of RNA per lane, in the format

shown for miR-66 (Fig. 5A). Signals were quantitated using phosphorimaging, standard curves

(linear through at least three orders of magnitude, including the region of interpolation) were

constructed, and absolute amounts of miRNAs per sample were determined, as illustrated for miR-66

(Fig. 5B). The average number of miRNA molecules per glp-4 adult nematode was calculated using

19 ng as the average amount of total RNA extracted per worm. This number was determined as the

average of three independent extraction trials, from known numbers of synchronized, 2-day-old adult

glp-4(bn2) hermaphrodites, the same frozen worm population used for the quantitative Northern

blots. All extractions were performed as described previously (Lau et al. 2001), except during two of

the trials a radiolabeled miRNA was spiked into the preparation during worm lysis. At least 90% of

this RNA was recovered, indicating near quantitative yield. Having calculated the number of each

miRNA per worm, the average number of miRNAs per cell was calculated using 989 as number of

cells per worm. The 989 cells per worm is based on the 959 somatic nuclei of the adult

hermaphrodites plus the 30 germ nuclei of 2-day-old adult glp-4(bn2) animals (Sulston et al. 1983;

Beanan and Strome 1992). Total RNA from known numbers of HeLa cells was determined in an

analogous fashion.
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Table 1. Cloning frequency and MiRscan scores of C. elegans miRNAs. 3423 clones from

logarithmically growing mixed-stage worms and worms from the indicated stages or mutant (dauer,

starved L1, and him-8) represented 79 different miRNAs (and 80 different miRNA genes, because

the miR-44/45 miRNA appears to be encoded at two loci). Genes not represented in the set of

-36,000 stem-loops did not receive scores (NS). Note that the previously reported "miR-68" clone

is not included. This RNA was not detected on Northern blots and neither it nor its predicted

precursor appears to be conserved in another species. Accordingly, it is now classified as an

endogenous siRNA. Two other C. elegans loci previously thought to encode miRNAs (mir-69 and

mir-89) also do not satisfy the current criteria for classification as miRNA genes (Ambros et al.

2003) and were not considered during the course of this study. One previously reported gene, mir-

88, was not represented in our set of sequenced clones, but is detected on Northern blots as a -22 nt

RNA (V. Ambros, personal communication) and thus satisfies the current criteria for classification

as an miRNA gene.
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MiR- Number of sequenced clones
miRNA scan Mixed Dauer Starved him-8 Total

Score

let-7 RNA

lin-4 RNA

miR-1

miR-2

miR-34

miR-35

miR-36

miR-37

miR-38

miR-39

miR-40

miR-41

miR-42

miR-43

miR-44/45

miR-46

miR-47

miR-48

miR-49

miR-50

miR-51

miR-52

miR-53

miR-54

miR-55

miR-56

miR-57

miR-58

miR-59

miR-60

miR-61

miR-62

miR-63

miR-64

miR-65

miR-66

miR-67

miR-70

miR-71

miR-72

miR-73

miR-74

miR-75

13.8

15.8

14.7

6.2

14.1

14.4

14.6

9.6

8.9

9.5

15.4

12.0

9.5

17.5

16.6/17

11.3

16.5

12.0

13.1

14.6

12.0

11.6

12.4

9.4

13.8

NS

12.1

17.5

18.5

14.1

13.7

15.1

NS

NS

7.4

NS

16.8

11.6

17.9

NS

11.3

17.9

12.6

stage

15

48

43

138

13

23

21

8

10

11

12

2

10

8

.4 22

14

19

52

1

10

16

287

20

49

47

40

31

181

1

20

8

4

7

11

22

68

3

11

53

49

13

35

14

L1

0 0

46 4

17 7

46 20

25 5

0 1

0 1

0 1

0 1

0 0

0 4

0 0

4 3

1 9

3 3

11 9

7 4

1 0

0 1

16 5

5 2

70 18

6 1

40 9

32 16

16 9

11 8

51 27

0 0

6 3

5 1

4 6

1 0

4 8

7 3

25 6

0 0

8 3

72 23

22 10

7 1

12 6

3 2

2 17

27 125

9 76

9 213

9 52

2 26

5 27

2 11

0 11

1 12

2 18

0 2

1 18

0 18

4 32

3 37

5 35

8 61

1 3

1 32

2 25

29 404

4 31

13 111

15 110

6 71

3 53

31 290

0 1

7 36

3 17

0 14

1 9

3 26

2 34

7 106

0 3

6 28

22 170

9 90

1 22

7 60

2 21

miR-76

miR-77

miR-78

miR-79

miR-80

miR-81

miR-82

miR-83

miR-84

miR-85

miR-86

miR-87

miR-88

miR-90

miR-124

miR-228

miR-229

miR-230

miR-231

miR-232

miR-233

miR-234

miR-235

miR-236

miR-237

miR-238

miR-239a

miR-239b

miR-240

miR-241

miR-242

miR-243

miR-244

miR-245

miR-246

miR-247

miR-248

miR-249

miR-250

miR-251

miR-252

miR-253

miR-254

miR-255

14.9

14.2

NS

14.2

17.1

18.8

16.3

15.2

-3.3

17.5

16.3

16.7

-7.9

14.0

15.7

17.5

NS

16.8

14.1

13.8

16.4

14.3

1.9

16.8

11.9

14.0

12.7

13.6

12.5

14.9

9.9

NS

13.4

13.8

12.8

NS

14.6

13.7

18.4

15.5

17.7

16.9

15.7

16.4

Total clones

1 2 6 3 12

17 3 0 2 22

5 1 1 0 7

14 3 3 3 23

121 27 20 17 185

32 24 6 12 74

36 12 6 11 65

12 12 2 8 34

12 2 1 4 19

10 0 0 12 22

46 57 30 17 150

1 0 0 0 1

0

5 37 14 9 65

7 16 7 5 35

1 13 8 3 25

2 1 0 0 3

0 0 0 1 1

1 2 0 0 3

4 7 2 1 14

1 8 4 0 13

0 0 1 0 1

5 21 1 8 35

3 6 2 1 12

3 0 0 0 3

0 4 1 0 5

4 0 0 1 5

0

0 0 0 1 1

7 0 0 3 10

0 0 1 1 2

1 0 1 0 2

0 2 5 0 7

0 1 0 0 1

0 0 0 1 1

0 2 0 0 2

0 2 0 0 2

0 2 1 0 3

0

0

0

0

0

0

1821 851 363 388 3423
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Table 2. Newly identified C. elegans miRNA genes. For predicted stem-loop precursors, see the

supplemental on-line material available at www.genesdev.org. Genes were identified and

validated as indicated in the ID method column: MS, candidate gene had high MiRscan score

(Table 1); C, miRNA was cloned and sequenced (Table 1); N, expression of the mature miRNA

was detectable on Northern blots; D, the miRNA stem-loop precursor was detected on Northern

blots and enriched in RNA from dcr-1 animals, but the mature miRNA was not detected; PCR,

targeted PCR amplification and sequencing detected the miRNA in a library of C. elegans small

RNAs; H, the locus was closely homologous to that of a validated miRNA. For the miRNAs

cloned and sequenced, some miRNAs were represented by clones of different lengths, due to

heterogeneity at the miRNA 3' terminus. The observed range in length is indicated, and the

sequence of the most abundant length is shown. For the RNAs that have not been cloned, the 5'

terminus was determined by the PCR assay, but the 3' terminus was not determined. For mir-

250, mir-251, and mir-252, the length of the miRNA sequence shown was inferred from the

Northern blots; for other miRNAs not cloned, the length was not determined (n.d.). For mir-254,

the PCR assay detected -22-nt RNAs from both sides of the fold-back, representing both the

miRNA and the miRNA*. Their relative positions within the precursor suggest that the RNA

from the 5' arm is 22 nt and the RNA from the 3' arm is 23 nt. The RNA from the 3' arm was

chosen as the miRNA because of its similarity to the human miR-19 gene family. The miR-255

gene is known only as the precursor, a conserved stem-loop with Dicer-dependent processing (Fig

2b). Comparison to C. briggsae shotgun traces from the C. briggsae Sequencing Consortium

(obtained from www.ncbi.nlm.nih.gov) revealed miRNA orthologs with 100% sequence identity

(+++) and potential orthologs with >90% (++) and >75% (+) sequence identity. To indicate the

genomic loci of the genes, the chromosome (Chr.), distance to nearest annotated gene, and the

orientation relative to that gene, sense (s) or antisense (as) are specified.
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miRNA ID method miRNA sequence

UAAGGCACGCGGUGAAUGCCA

AAUGGCACUGCAUGAAUUCACGG

AAUGACACUGGUUAUCUUUUCCAUCG

GUAUUAGUUGUGCGACCAGGAGA

UAAGCUCGUGAUCAACAGGCAGAA

UAAAUGCAUCUUAACUGCGGUGA

UUGAGCAAUGCGCAUGUGCGGGA

UUAUUGCUCGAGAAUACCCUU

UAUUGCACUCUCCCCGGCCUGA

UAAUACUGUCAGGUAAUGACGCU

UCCCUGAGAAUUCUCGAACAGCUU

UUUGUACUCCGAUGCCAUUCAGA

UUUGUACUACACAUAGGUACUGG

UUUGUACUACACAAAAGUACUGG

UACUGGCCCCCAAAUCUUCGCU

UGAGGUAGGUGCGAGAAAUGA

UUGCGUAGGCCUUUGCUUCGA

CGGUACGAUCGCGGCGGGAUAUC

UCUUUGGUUGUACAAAGUGGUAUG

AUUGGUCCCCUCCAAGUAGCUC

UUACAUGUTJUCGGGUAGGAGCU

UGACUAGAGCCUAUUCUCUUCUU

UACACGUGCACGGAUAACGCUCA

UCACAGGACUUUUGAGCGUUGC

UCACAGUCAACUGUUGGCAUGG

UUAAGUAGUGGUGCCGCUCUUAUU

UAAGUAGUAGUGCCGCAGGUAAC

CACACCUCACUAACACUGACC

UGCAAAUCUUUCGCGACUGUAGG

miRNA C. briggsae
length (nt) homology

21 +++

21-24 +++

25-27 -

23 ++

23-24 ++

23-24 +++

19-23 +++

21 +++

22 +

21-25 +++

23-24 +

21-23 ++

22-23 ++

n.d. ++

22 ++

21 ++

21 ++

22-23

23-25 +++

22 +++

22 ++

22-23 -

23 ++

22-23 ++

-22 ++

-24 +++

-23 +++

n.d. ++

n.d. ++

n.d.

back arm
3'

5'

5'

3'

3'

3'

3'

3'

3'

3'

5'

3'

5'

5'

3'

5'

5'

3'

5'

3'

3'

3'

3'

3'

3'

5'

5'

5'

3'

IV

IV

III

X

III

IV

X

II

I

IIX

III

X

X

X

V

IV

IV

I

I

IV

X

X

X

V

X

II

V

X

within intron of

0.2 kb downstream of

0.4 kb upstream of

0.4 kb downstream of

10.4 kb upstream of

1.1 kb downstream of

within intron of

1.5 kb downstream of

0.6 kb upstream of

0.3 kb downstream of

3.4 kb upstream of

2.0 kb upstream of

6.0 kb upstream of

7.0 kb upstream of

1.7 kb upstream of

1.8 kb upstream of

0.9 kb downstream of

1.0 kb upstream of
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Figure Legends

Figure 1. Criteria used by MiRscan to identify miRNA genes among aligned segments of two

genomes. (A) The seven components of the MiRscan score for mir-232 of C. elegansiC.

briggsae. These components are annotated in the context of the MiRscan prediction for mir-232,

with the residues of the predicted miRNA circled in pink, which match the residues of the

validated miRNA (Table 2), circled in green. In parenthesis are the scores for each component,

which were added together to give the total score of 13.9. MiRscan predictions are visualized

within the consensus C. elegansiC. briggsae secondary structure, as generated using ClustalW

(Thompson et al. 1994) and Alidot (Hofacker and Stadler 1999). Shown is the C. elegans

sequence with residues colored to indicate conserved sequence and pairing potential. Residues

conserved in C. briggsae are red; residues that vary while maintaining their predicted paired or

unpaired state are blue (with variant residues that maintain pairing also circled in black); residues

that maintain neither sequence nor pairing are in gray. (B) Estimated relative importance of each

MiRscan criterion. Estimates were based on the relative entropy between the training set of 50

previously identified nematode miRNAs and the background set of -36,000 potential stem-loops.

Because pairing and conservation were used to identify the potential stem-loops, the total

contributions of these types of criteria for distinguishing miRNA genes from non-protein-coding

genomic sequence were underestimated. Likewise, the total contribution of the distance from the

loop was underestimated because only those candidates 9-2 bp from the loop were evaluated.

Figure 2. Computational identification of miRNA genes. (A) The distribution of MiRscan

scores for 35,697 C. elegans sequences that potentially form stem-loops and have loose

conservation in C. briggsae. Note that the Y-axis is discontinuous so that the scores of the 50

previously reported miRNA genes that served as the training set for MiRscan can be more readily

seen (red). Scores for these 50 genes were jackknifed to prevent inflation of their values because

of their presence in the training set. (B) An expanded view of the high-scoring tail of the

120



distribution. This view captures 49 of the 50 genes of the training set (red). The median score of

the 58 previously reported miRNA loci that satisfy the current criteria for designation as miRNA

genes (Ambros et al. 2003) is 13.9 (green arrow). Note that this median score was the midpoint

between the scores of the 29 h and the 30 highest scoring loci of the 50-member training set; i.e.,

it was designated the median score after including the eight previously reported miRNA genes

that were not in the training set because they were lost during the identification of conserved

hairpins, usually because they lacked sufficient C. briggsae homology. Scores of genes validated

by cloning are indicated (yellow), as are scores of 6 genes that have not yet been cloned but were

verified by Northern analysis (purple). (C) Examples of miRNA genes identified by MiRscan

with the Northern blots that served to validate them. Stem-loops were annotated as in Fig. 1A,

except the DNA rather than RNA sequence is depicted. The Northern blots show analysis of

RNA from either wild-type (N2) or dcr-1 worms, isolated using either our standard protocol

(Std.) or with an additional polyethylene glycol precipitation step to enrich for small RNAs

(Enr.). Homozygous worms of the dcr-1 population have reduced Dicer activity, increasing the

level of miRNA precursors (e.g., miR-250-L and miR-255-L), which facilitated the validation of

miRNA loci, especially those for which the mature miRNA was not detected (e.g., miR-255).

The miR-250 stem-loop shown received a MiRscan score of 14.7. The mir-250 reverse

complement received an even greater score of 18.4, but was not detected by Northern analysis.

Thus, the predicted mir-250 gene was assigned the score of the higher scoring, though incorrect,

alternative stem-loop (Table 1, Fig. 2B).

Figure 3. Alignments of C. elegans and human miRNA sequences that can be grouped together

in families. Human miRNAs (Hs) are those identified in human cells (Lagos-Quintana et al.

2001; Mourelatos et al. 2002) or are orthologs of miRNAs identified in other vertebrates (Lagos-

Quintana et al. 2002; Lagos-Quintana et al. 2003; Lim et al. 2003).
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Figure 4. Expression of C. elegans miRNAs during larval development. Total RNA was

analyzed from mixed-stage N2 worms (M), embryos (E), larval stages (L1, L2, L3, L4), adults

(A), glp-4(bn2) adults (G), N2 dauers (D), mixed-stage him-8(e1489) worms (H), and N2

starvation-arrested L1 larvae (sL1). Intense signals are represented as black rectangles, and faint

signals are represented as gray rectangles. Of the 87 C. elegans miRNAs identified, six could not

be detected on developmental Northerns (miR-41, miR-78, miR-249, miR-253, miR-254, and

miR-255). (A) miRNAs constitutively expressed throughout nematode development. (B)

stRNAs, lin-4 and let-7, and similarly expressed miRNAs, which commence expression during

larval development and remain expressed through adulthood. (C) miRNAs with discontinuous

developmental expression patterns. (D) Northern analysis of miRNAs with enhanced expression

in the dauer stage, as marked by the arrow. To control for loading, the blot used for both miR-

234 and miR-248 and the blot used for miR-247 were re-probed for the U6 snRNA (U6).

Quantitation with a phosphorimager showed that the lane-to-lane variation in U6 signal was as

great as three-fold. Normalizing to the U6 signal, the miR-248 signal was four-fold greater in

dauer than in most other stages, except for glp-4 adults, where it was two-fold greater, while the

miR-234 signal was highest in dauer and L1, with a signal in these stages about two-fold greater

than the average of the other stages. (E) Northern analysis of the lin-4 RNA and its paralog, mir-

237.

Figure 5. Quantitative analysis of miRNA expression. (A) Northern blot used to quantify the

abundance of miR-66. RNA prepared from the wild-type (N2) mixed-stage worms used in

cloning and from glp-4(bn2) young adult worms were run in duplicate with a concentration

course of synthetic miRNA standard. The signal from the standard did not change when total

RNA from HeLa cells replaced E. coli tRNA as the RNA carrier, showing that the presence of

other miRNAs did not influence membrane immobilization of the miRNA or hybridization of the

probe. (B) Standard curve from quantitation of miR-66 concentration course. The best fit to the
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data is a line represented by the equation y = 3.3x°0 96 (R2 = 0.99). Interpolation of the average

signal in the glp-4 lanes indicates that the glp-4 samples contain 240 pg of miR-66 (dashed lines).

(C) Molecular abundance of miRNAs and U6 snRNA. Amounts of the indicated RNA species in

the glp-4 samples were determined as shown in panels A and B. The average number of

molecules per cell was then calculated considering the number of animals/cells used to prepare

the sample and the yield of a radiolabeled miRNA spiked into the preparation at an early stage of

RNA preparation. Analogous experiments were performed to determine the amounts of the

indicted human miRNAs in HeLa RNA samples. (D) Correlation between miRNA molecular

abundance and cloning frequency. The number of molecules in the mixed-stage RNA samples

were determined as described for the glp-4 samples and then plotted as a function of the number

of times the miRNAs were cloned from this mixed-stage population (Table 1). The line is best fit

to the data and is represented by the equation y = 0.32x (R2=0.78).

Figure 6. miRNA (red) and miRNA* (blue) sequences within the context of their predicted fold-

back precursors. The number of sequenced clones is shown in parentheses. Colored residues are

those for the most frequently cloned species. There was 3' heterogeneity among the sequenced

clones for some miRNA*s and most miRNAs. Heterogeneity at the 5' terminus was not seen

among the sequenced clones for the miRNA*s and was rare among those for the miRNAs; when

it occurred it was not observed for more than one of the many clones representing each miRNA.

Figure 7. Plot illustrating the absence of a correlation between the MiRscan score of a cloned

miRNA and the number of times that miRNA was cloned and sequenced. Ten of 80 cloned loci

of Table 2 were not scored (left panel) because potential homologs of these genes were not

identified among the available C. briggsae sequencing reads.
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MicroRNA Stability Determined In an Inducible Cell Line
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ABSTRACT: MicroRNAs are abundantly expressed, -22 nt long non-coding RNAs with known

and potential regulatory functions. The molecular abundance of microRNAs (miRNAs) in the

animal cell is very high: the number of molecules of some individual miRNAs equals the

number of molecules of the U6 snRNA of the spliceosome. What accounts for the high

molecular abundance of miRNAs: ample transcription or prolonged stability? To provide

reagents for addressing this and other questions, we generated stable, inducible cell lines

allowing for induction or repression of miRNA expression upon doxycycline (Dox) addition,

with induction and repression levels exceeding 10 fold. We measured the decay and induction

kinetics of the well-conserved and tissue-specific miRNAs, miR-1 and miR-124, and propose

that miRNA half lives are at least 24 hours and could possibly be much longer. The high

stability of miRNAs observed in this study suggests that miRNA (and siRNA) clearance is most

dependent on dilution of the miRNA, either by cell death or cell division, and that active

processes would be required to achieve a more rapid diminution of miRNA function.
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Abbreviations: bp, base pair; Dox, doxycycline; miRNA, microRNA; PCR, polymerase chain

reaction; Tet, tetracycline; tTA, tetracycline Transcriptional Activator; rtTA, reverse tetracycline

Transcriptional Activator,
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INTRODUCTION

The details of microRNA biogenesis, function, and mechanism have recently expanded in

rapid fashion. The downstream products and intermediates of miRNA gene transcription have

been elucidated, and several novel protein factors and their mechanisms of action have recently

been identified (for review, see [1]). miRNA biogenesis proceeds in several discreet steps.

Although miRNA transcriptional regulation is unclear, evidence suggests that miRNAs are

transcribed as long primary transcripts >100-nt long, which subsequently are processed by the

nuclear RNAse III, Drosha, into -60-nt hairpin-like precursor miRNAs (pre-miRNAs) [2-5].

These hairpin precursors are then transported into the cytoplasm by a well-conserved export

pathway involving Exportin-5 and Ran-GTP [6-8]. Once in the cytoplasm, pre-miRNAs are

recognized and cleaved by a cytoplasmic RNase III, Dicer, to yield -19-nt long duplexes with

additional 2-nt, 3' overhangs [9-12]. Finally, an unidentified helicase discriminates and chooses

the energetically weaker end of the miRNA duplex for unwinding, and thus directs the

asymmetrical loading of a single, mature miRNA strand into the microRNA ribonucleoprotein

(miRNP) complex [13, 14].

The exact function of the miRNA within the miRNP is currently thought to only involve

the guiding of the miRNP to target mRNAs by complementarity between the miRNA and the 3'

untranslated region of the mRNA, for example with lin-4 RNA - lin-14 mRNA and let-7 RNA -

lin-41 mRNA [15-19]. When the miRNP interacts with the target mRNA, it can prompt either

inhibition of productive translation or mRNA cleavage to downregulate protein expression.

What is classically observed for downregulation of small temporal RNA targets, lin-14 and lin-

41 is negligible destabilization of the mRNA [16, 18], but little else is known about the

mechanism other than association of the miRNP with polyribosomes, suggesting that the
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silencing event occurs after translation initiation [20-22]. The second activity seen recently for

miRNP-mRNA interactions is mRNA degradation caused by cleavage of the mRNA within the

complementary site, at a position that is 10-base pairs away from the 5' end of the miRNA [23-

28]. Although the manner by which the miRNP decides between these two activities is not

completely understood, the degree of complementarity between the miRNA and the target

mRNA appears to contribute importantly - near-complete complementarity appears necessary

for mRNA cleavage activity, while the translational repression activity can tolerate more

mismatches and bulges in the interaction [23, 29-31 ].

The biogenesis and mechanistic functions of miRNAs share many similarities with small

interfering RNAs (siRNAs) of the RNA interference (RNAi) pathway. Despite differences in

their genomic origins and primary transcript structure, both miRNAs and siRNAs transiently

exist as 19-nt duplexes with 2-nt 3' overhangs, as a result of processing from Dicer-like

endonucleases, and either miRNA or siRNA duplexes are unwound asymmetrically by perhaps

the same helicase [9-14, 32]. The RNA-induced silencing complex (RISC) is known to utilize

siRNAs for target mRNA recognition and cleavage, a hallmark of RNAi [33-35]. Biochemical

and immunoprecipitation purifications of RISC has demonstrated the association of miRNAs,

while reciprocal experiments with immunoprecipitated miRNPs have demonstrated RISC

activity, indicating functional redundancy and factors intimately shared between the miRNA

pathway and the RNAi pathway [23, 36, 37]. Although evidence points to convergence and

intersection between miRNA and siRNA pathways, distinctions are clearly noted in different

Dicer endonucleases playing different roles in miRNA or siRNA processing [38-40].

While our understanding of miRNA biogenesis and function has progressed, less is

known about miRNA metabolism and stability. Interest in the stability of miRNAs arose from
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our determinations of the high molecular abundance miRNAs in animal cells. In the nematode,

Caenorhabditis elegans, the steady-state number of molecules of particular miRNAs range from

-1,000 to >50,000, and similar quantities are seen for miRNAs in HeLa cells [12]. Numerous

miRNAs have been cloned from nematode and HeLa cells (>80 in nematodes, >40 in HeLa

cells)[41-44]. Thus, miRNPs represent one of the more abundant ribonucleoprotein complexes

in the cell. Two models could explain this high molecular abundance: (1) miRNAs and miRNPs

might be rapidly and constantly synthesized at very high levels to accommodate fast RNA

turnover, or (2) miRNPs are very stable, so moderate yet constant miRNA/miRNP synthesis

results in high steady-state levels.

To distinguish between these two models, we determined the stability of two well-

conserved animal miRNAs in HeLa cells. By placing miRNA expression under inducible

regulation, we could examine the kinetics of miRNA decay and induction by monitoring miRNA

levels directly after Dox addition, and from our analysis we estimate a lower limit of miRNA

stability. We also present data on the minimal rate of pre-miRNA turnover.

RESULTS

Inducible and Repressible Expression of miRNAs in HeLa Cells

Classical methods for studying RNA turnover have utilized chemical agents that globally

shut off transcription, but pleiotropic damages to other cellular processes often confound

interpretation of the results. A non-biased and contemporary method to determine RNA

turnover rates is to place the gene under inducible regulation by an induction agent that exerts

little effect on other cellular processes [45]. We established an inducible expression system for

miRNAs in a HeLa cell line, choosing HeLa cells as our model system because of its ease in
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handling and its well-characterization of endogenous miRNA levels [12, 43]. Two model

miRNAs were chosen for this study, human mir-ld and mir-124a, because the primary, mature

sequences of these two miRNAs are well-conserved in other animals, and both are not expressed

in HeLa cells [43]. The Tetracycline (Tet) Inducible System was employed to regulate

expression of these miRNAs because the Tet system is well validated for inducible expression in

mammalian cells [46].

To facilitate robust expression of the mature miRNA, we designed expression constructs

using -500-bp long genomic fragments which have been shown to provide the appropriate

primary transcript (pri-miRNA) needed for Drosha processing and other miRNA processing

steps [2-5]. Expression plasmids were then stably transfected into HeLa cells that already

contained the chimeric transcriptional activator VP16 - Tet repressor or VP16 - reverse Tet

repressor, creating cells that would responsively transcribe or stop transcription of a pri-miRNA

upon addition of Dox, respectively (Figure 1). A miRNA Invader® Assay was employed to

screen and isolate desired clones, and generally 1 out of 24 screened clones exhibited adequate

induction or repression of miRNA expression. Four cell line clones were chosen for further

characterization, and each is named according to the miRNA it expresses and the mode of

regulation (Tet-On cells turn on miRNA expression upon Dox addition, while Tet-Off cells turn

off miRNA expression upon Dox addition): mir-ldON (line C2), mir-ldFF (line Al), mir-

124aON (line A2), and mir-124a PFF (line Al). Initial and subsequent Northern blot analysis of

total RNA from these cells revealed mature miRNAs with the same heterogeneity pattern as

endogenous miR-ld and miR-124 from tissues and other cell lines, suggesting that the

expression constructs are recapitulating endogenous expression of these miRNA genes [20, 22,

47].
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An 8-day time course was carried out to evaluate the range of miRNA induction and

repression and to assess the consistency of the basal rate of un-induced miRNA expression.

Constant amounts of total RNA from time points either treated with Dox or mock-treated were

analyzed by Northern analysis and miRNA levels were quantified and normalized against U6

snRNA levels (Figures 2 and 3). Both mir-ldON and mir-124aN cells exhibited progressive

increases in miRNA expression after Dox addition, although miRNA levels dropped at the 192-

hour time point, making it difficult to determine the final steady-state level (Figures 2A and 3A).

At and prior to the 192-hour time point the Tet-On cells did reach maximal confluence, which

might have affected miRNA transcription and final expression levels. Although there is leaky

basal expression of miRNA in both mir-ldON and mir-124aN cells during mock treatment, this

level remains quite low, and at maximal miRNA expression in the Dox-treated cells there is a

21-fold and 14-fold induction level over the average mock baseline in mir-ldN and mir-124aON

cells, respectively.

Tet-Off cells expressing miR-ld or miR-124a were cultured for 1 week without Dox to

allow for steady-state expression to be reached, and then were treated with Dox to shut off

miRNA transcription for the 8-day time course. By comparing the presence of miR-ld and miR-

124a precursor signal in the mock-treated cells to the complete lack of pre-miRNA signal in the

Dox-treated cells (Figure 2B and 3B), we conclude that miRNA transcription is tightly shut off,

with any remaining hairpin precursor is either degraded or driven towards processing into mature

miRNA. The basal expression of miR-ld and miR-124a remained high during all mock-

treatments, while decay in miRNA signal is quite obvious in cells treated with Dox. Comparing

the average baseline miRNA expression of mock-treated cells to miRNA levels in cells after 48

hours of Dox treatment indicate a 6-fold and 12-fold reduction in the mir-ld° FF and mir-124a°FF
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cells, respectively. This implied a relatively long half-life for the mature miRNA, and given the

doubling rates of the actively dividing HeLa cells, we conclude the apparent decay seen in this

time course was predominantly reflecting dilution of the miRNA upon cell divisions (data not

shown).

An Upper Limit for the Rate of Precursor Disappearance

To further characterize the responsiveness of the Tet-Inducible System in controlling

miRNA expression, we conducted shorter time courses with the Tet-Off cells. While mature

miRNA levels remained essentially constant through 12 hours, we observed a sharp decrease in

signal for the miR-ld precursor (pre-miR-ld) and the miR-124a precursor (pre-miR-124a) 3

hours after Dox addition (Figure 4A). In fact, disappearance of pre-miR-124a can be observed

40 minutes after Dox addition (Figure 4B), indicating that transport of Dox into the cell and

exertion of changes in tTA action on transcription occurs on a fast time scale compared to the

time scale for investigating miRNA stability (>12 hours). Other investigators using the Tet-

Inducible System in HeLa cells for studying RNA turnover have successfully controlled

transcription for determining RNA half-lives under 10 minutes [48]. Although precursor decay

by processes unrelated to miRNA biogenesis cannot be ruled out, this short time course does

suggest that nucleus-to-cytoplasmic transport and precursor processing by Dicer occurs in a

time-frame of under 40 minutes.

Measurement of miRNA Decay

Analyzing the data from the 8-day time courses of miR-ld° FF and miR-124a° FF cells by

correcting for the rate of cell division suggested that miRNA stability was significantly longer
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than the doubling rate of HeLa cells, which we measured to be 19-21 hours (data not shown).

The 8-day time course measurements of miR-124a° FF cells displayed the closest fit to pseudo-

first order decay, so we modeled the effect of different cell doubling rates against the measured

miR-124a levels. Because the result of these calculations is highly dependent on the doubling

rate, we modeled the decay kinetics using a range of cell doubling rates. Even a conservative

estimate of a 24 hour cell doubling rate yielded a miRNA half life of greater than 100 hours,

supporting the notion that miRNAs are very stable molecules.

A limitation of loading a constant amount of RNA on a standard RNA Northern blot is

the -16 fold miRNA signal dilution after 4 days, resulting in signals barely detectable above the

background of the exposure. In an attempt to overcome the signal dilution from cell division, we

modified the time course and Northern procedure so that all accumulated total RNA from cell

divisions could be loaded in a single lane on the gel (see Materials and Methods). Several

independent trials of 4-day time courses using the modified harvesting and Northern procedure

were conducted on miR-ld° FF and miR-124a° FF cells, and the direct miRNA signal was

quantitated and plotted (Figure 5). The decay rates were determined separately for each trial by

fitting single-exponential decay (Figure 5B and 5C and Table 1). The variability in the

calculated half-lives between trials reflects the inability to normalize miRNA signal against an

internal control, despite attempts to equalize RNA loading and transfer. Nevertheless, all

calculated half lives were longer than 24 hours, further supporting the claim that miRNAs are

stable.
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Slow Kinetics of Steady-State miRNA Induction

Kinetic theory of eukaryotic gene expression states that RNA stability ultimately dictates

both the rate of decay and rate of accumulation, so that the half life of RNA decay would also

equal the half-maximal time point of steady-state RNA expression after induction of

transcription [49, 50]. To see if miRNA stability could be assessed from a system of miRNA

induction, we investigated miR-ld and miR-124a expression levels in Tet-On cells constantly

cultured at sub-confluent levels and induced with Dox. We observed robust but surprisingly

slow accumulation of miRNA levels, normalized to U6 snRNA levels (Figure 6). While two

trials indicate a possible steady state at 96 hours (TC-III in Figure 6B and 6E), the other four

trials seem to suggest continuing increases in miRNA levels beyond 96 hours. Inspection of

early time points also suggests a -24 hour lag in miRNA accumulation rate after Dox induction

(Figure 6B and 6E).

Since miRNA transcription is driven by the potent VP16 transcriptional activator (rtTA)

in this inducible system, we expected that maximal transcription rates of miRNA expression

would be approached quickly and robustly, as it appears so for inducing luciferase expression

[46]. However, examination of the induction of the precursor revealed a complication in these

experiments. Pre-miRNA signals were generally more difficult to quantitate over background,

but in most cases it appeared that pre-miRNA levels had not reached steady-state expression

even at the 96 hour time point (Figure 6C and 6F). This observation seemingly appears

inconsistent with the observed decay or processing rate of precursors (Figure 4), however others

utilizing the Tet-On system have observed that inducible expression of GFP does not reach

steady state after 96 hours [51], and the transcription rate of other mRNAs under inducible

control appear to fluctuate and increase during the 24 hour period after Dox addition [52]. One
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proposed explanation is that the rtTA is unstable without Dox, thus some time is needed to

accumulate enough rtTA in order to then stimulate expression from the stable expression cassette

which is likely a multi-copy, illegitimate integrant [53]. Fluctuating amounts of rtTA, apparently

independent of Dox concentration, could likely cause fluctuating induction rates, which would

explain the difficulty in reaching steady state as well as explain the initial lag in accumulation of

miRNA. Future time course trials that extend time points while maintaining subconfluent growth

will be needed to reveal the induction kinetics in a clearer fashion.

DISCUSSION

We demonstrate inducible expression of miRNAs in mammalian cells, and we illustrate

the utility of this system for investigating questions of miRNA biology. The level of miRNA

expression is robust, and this may facilitate our determination of miRNA half-life and

accumulation rate. The results presented here have implications for understanding miRNA

metabolism, and may additionally relate to the pharmacokinetics of siRNAs used in cell culture.

Characterization of Cells as Toolsfor Studying miRNA Biology

Misexpression of some miRNAs in plants and animals have resulted in gross phenotypic

changes [54-58]. Our inducible miRNA cell lines constitute a misexpression of two miRNAs not

usually found in HeLa cells, but visual inspection of cells in the induced and uninduced states

after several weeks did not indicate any overt differences (data not shown). We attempted to

confirm the functionality of the expressed miRNAs by testing luciferase reporter genes with a 3'

UTR that contain a perfectly complementary site for mir-1 or for mir-124 [59]. Despite repeated

attempts, no significant repression in luciferase activity could be differentiated between induced
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or uninduced states. Cells were cultured for at least a week either with or without Dox to insure

maximal expression or suppression of miRNAs.

An explanation for the failure of luciferase reporter gene silencing in these cell lines

could be that they are not pure clonal populations, either because ring cloning did not effectively

select single clones or miRNA-expression is being lost in a subpopulation of cells due to the

multi-component nature of the Tet Inducible System. To test if a subclone of cells could be

culled for homogenous expression of the miRNA, limiting dilution experiments were conducted,

and subclones were screened for repression of the luciferase reporter. Despite repeated attempts,

we have not yet successfully refined these cell lines into homogenous populations functional for

reporter gene expression (data not shown). Epigenetic instability has been proposed as a

mechanism for other occurrences where Tet Inducible lines become heterogeneous [60], but the

construction of the miRNA-expressing cell lines followed the suggestions on avoiding this

technical difficulty. A possible remedy towards selecting homogenous miRNA-expressing cell

lines would be to insert into the population an engineered negative selection marker, like

thymidine kinase (TK), which would contain the miRNA binding site. Upon addition of

ganciclovir, cells that fail to express the miRNA and allow for TK expression will die from

toxicity of TK reacting with ganciclovir, while miRNA-expressing cells will be positively

selected.

Despite the heterogeneity of these cell lines, the fact that miRNAs accumulate with

proper heterogeneity patterns lends support to the functionality of these miRNAs expressed in

the cells. We can also assume that the miRNA-expressing population in these cell lines must not

be less than 10% of the entire population based on results from measuring number of miRNA-

expressing subclones from limiting dilution experiments (data not shown). Furthermore, we
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believe the miRNA expression levels are not saturating in these cells, because we measured

some of the miRNA levels against molecular standards, and we calculate an average maximal

abundance of 4,200 miRNA molecules per cell (data not shown). Even if actual numbers of

miRNA molecules per cell were higher (an order of magnitude), they would still be within the

range of other miRNAs expressed in animals [12]. Thus, we assume that the half lives we

observe for these two miRNAs are likely to be physiologically relevant.

These inducible cell lines might offer an opportunity to examine other aspects of miRNA

biology. For example, the kinetic framework of miRNA biogenesis in vivo could be further

elucidated by determining the ratio of pri-miRNA to pre-miRNA during a time course of Dox

induction to reveal the processing rates of Drosha. The expression of miR-1 and miR-124 in

these cells presents an additional system for validating potential predicted mRNA targets for

gene downregulation, as has been demonstrated previously [59]. The simple mode of miRNA

inducibility coupled with the biochemical tractability of these cell lines should also provide a

platform for mechanistic studies in the translational repression of target mRNAs.

Implications of a Long miRNA Half-life

The stability of miRNAs would explain the high steady-state levels in cells. The

corollary of this conclusion is that the transcription rate of miRNAs is not so radically higher

than of typical mRNAs, which is consistent with hypotheses that miRNA transcription is driven

by RNA Polymerase II, although the possibility of RNA Polymerase III transcription remains

open [2-5]. The half life of >24 hours seen for miRNAs is rather long when compared to the

average 8-hour half lives of most mammalian mRNAs [50]. However, other stable RNAs have

also been observed, such as rRNA and the globin mRNA in erythrocytes, which have half lives
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greater than 60 hours [61]. The encasement of miRNAs in proteins of the miRNP likely protects

the single-stranded miRNA from cytoplasmic nucleases. Accordingly, the miRNP, and not

necessarily the miRNA itself, appears extremely stable because observations in Drosophila

lysate of siRNAs in the RISC indicate near irreversible association between siRNA and RISC,

while exogenous single-stranded siRNAs are rapidly degraded in both Drosophila and HeLa cell

lysates within 2 minutes and 20 minutes, respectively [34, 62, 63].

There is much promise in utilizing siRNAs as therapeutic agents to knock down genes

implicated in a disease pathway or as a prophylactic against virus infection [64]. The half lives

of siRNAs in cells could yield insight into their pharmacokinetics. One kinetic analysis of

reporter gene silencing by transfected siRNAs reported a functional stability curve for

transfected siRNAs in the rapidly dividing HeLa cell, with downregulation of reporter gene

levels persisting to 6 days after siRNA transfection [63]. A second kinetic analysis on two

different siRNAs transfected into quiescent cells suggests the detection and activity of some

siRNAs can persist over 20 days [65]. Both studies suggest long lasting effects of RNAi in

transfection experiments, however, the question of in vivo siRNA stability still remains open

because nucleic acid metabolism in lipid-based transfection experiments are poorly

characterized, and amounts of siRNAs submitted to each cell may begin in such excess that

physiological siRNA stabilities might be distorted. Our data indicating half lives for miRNAs

exceeding 24 hours suggest that siRNAs loaded within the RISC also possess such long half

lives. Because our data indicate the long physiological stability of miRNAs, we would predict

that the predominant means of miRNA and siRNA clearance is by cell division. In the kinetic

study by Song and colleagues, the siRNA directed at an endogenous mRNA persisted, while the

second siRNA targeting a viral gene not usually expressed in mammalian cells disappeared more
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rapidly, implying that presence of a target mRNA stabilized the first siRNA [65]. If this

hypothesis holds true, then perhaps in HeLa cells there may be "inadvertent" target mRNAs that

might account for stabilizing miR-1 and miR-124 regardless of the fact that these miRNAs are

not normally expressed in these cells.

A recent genetic screen in C.elegans uncovered the evolutionarily conserved RNase, eri-

1, which degrades siRNAs and dampens the sensitivity of certain cells to RNAi [66]. Mutants

lacking the RNase show enhanced sensitivity to RNAi of neuronal genes and an enduring

accumulation of injected siRNAs, while in-vitro translated worm and human eri-i exhibit in

vitro siRNase activity [66]. The capacity for eri-i mutants to preserve siRNA accumulation

intriguingly suggests that ERI-1 may be actively stimulating the turnover of siRNAs and perhaps

miRNAs. However, in vitro experiments showing no RNase activity of ERI-1 on single-stranded

siRNAs and our data indicating a long half life for miRNAs suggests that ERI-1 does not

actively turn over siRNAs or miRNAs already incorporated into RISC/miRNP, but ERI-1 might

degrade siRNA duplexes and miRNA/miRNA* duplexes that remain unincorporated into

silencing complexes (Figure 7). Determining the presence and scope of activity of endogenous

HeLa eri-1 might lend further support to our proposed model.

Why should miRNAs and the miRNP be so stable in nature? Stability facilitates the

miRNAs' molecular abundance, and this abundance may be necessary because the predominant

mechanism of gene silencing for miRNAs in animals is to inhibit productive translation. While

mRNA cleavage by miRNAs is catalytic, translational repression probably involves

stoichiometric binding to the mRNA [29, 30]. Conservation of miRNA stability might be

questioned in invertebrates, where animal development is considerably faster, and where

temporally regulated miRNAs do show complete turnover within 24 hours in the developing
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Drosophila embryo [67]. However, the different model systems have informed each other quite

well with regards to miRNAs, so such pronounced reductions seen in the Drosophila embryo

might reflect quick dilution of miRNAs during rapid cell division or cell death during early

animal development.

MATERIALS AND METHODS

Construction of Expression Plasmids

Genomic fragments of human mir-ld and mir-124a-1 were amplified by PCR with the following

primers: mir-ld primers: 31.24 (sequence: AAAAGGATCCGAGAGATGGATTCAGGGATGG), 30.29

(sequence: CCCCATCGATTGTCTGGTGAGCACTTCCAC); mir-124a-1 primers: 30.52 (sequence:

AAAAGGATCCCTCATTGTCTGTGTGATTGG), 30.49 (sequence: CCCCATCGATTCAGCTTCTG-

TTTCTCTCCC). Genomic fragments were cloned into the inducible plasmid pTRE-TIGHT (Clontech)

to form the plasmids pTRE-mld and pTRE-ml24a.

Construction of Inducible Cell Lines

HeLa cells that stably expressed either the chimeric VP16-Tet repressor (tTA) or the chimeric

VP16-reverse Tet repressor (rtTA) were purchased from Clontech, and are referred in the text as Tet-Off

cells (expressing tTA) and Tet-On cells (expressing rtTA). Tet-Off and Tet-On cells at 80% confluency

in a 10-cm plate were transfected with 2 jig of either pTRE-mld or pTRE-ml24a and 0.2 jig or 0. jg of a

linearized DNA fragment containing the hygromycin resistance marker (Clontech). Two days after

transfection, cells were split to multiple 6-well plates and selected for -3-weeks in media containing 300

jig/ml hygromycin (Tet-Off cells were cultured with the addition of ljig/ml Dox). Between 24-48 clones

per cell line and construct were isolated by ring cloning, and were cultured in the absence or presence of

Dox ( g/ml) for 2-3 days before assaying for miRNA expression.

Clones were screened for miRNA expression by a modified RNA Invader® Assay (Third Wave

Technologies) [68]. Cells were directly lysed in culture plates, and lysates were added to Invader® Assay
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reactions specific for detecting miR-ld and miR-124a. Fluorescent signals were detected on a Cytofluor

fluorimeter (PerSeptive Biosystems), and clones exhibiting greater than 4 fold induction or repression

were culled and propagated in 100 gg/ml G418 and 100 Ig/ml hygromycin.

Time Course Studies

All cell cultures were grown in DMEM containing L-glutamine and glucose (4.5g/L)

(MediaTech) and supplemented with 10% Tet-Approved FBS, Penicillin (10 IU/ ml), and Streptomycin

(10 gg/ml). All time courses were performed in 10-cm plates and initiated by adding Dox to the media at

lgg/ ml. The initial 8-day time courses were conducted by first plating out the night before Dox addition

about 2x106 cells for 12 hour time points, 1x106 cells for 24 hour time points, and 5x105 cells for a third

set of plates that is eventually split 1:4 every two days for the 48 hour, 96 hour, and 192 hour time points.

Cells were cultured between 70 to >95% confluence. In the 8-day long time course, Dox-treated and

mock treated plates reaching time points were subjected to direct cell lysis with Tri-Reagent (Sigma) and

total RNA extraction.

For the 12-hour and 150-minute time courses, lx106 cells in 6-well dishes were plated the night

before, and Dox was added to the media at successive time points before all samples were lysed

simultaneously with Tri-Reagent. In the 4-day time courses, x106 cells were plated per time point the

night before Dox addition. Cells were split 1:2 every day, with all splits kept for experiments with the

Tet-Off cells, while only 1 of the 2 splits were kept for experiments with the Tet-On cells. Cells were

cultured between 30-70% confluent, and were never allowed to exceed 80% confluence. The harvest

procedure for the 4-day long time course consisted of trypsinizing cells and collecting in Dox-containing

media, incubating on ice while cell number was determined, and finally centrifuging and freezing the cell

pellets. Total RNA was extracted later by Tri-Reagent lysis.

Northern Analysis

Northern blots were created and probed essentially as described in [41], where 30 gg of total

RNA was loaded per lane. The exceptions to the standard protocol are noted for the Northern blots in

148



Figure 4B and Figure 5. A riboprobe was used in probing the blot in Figure 4B in an attempt to improve

the sensitivity for miRNA precursor. In Figure 5, a 3-mm thick, 15% denaturing polyacrylamide gel that

included a 5% stacking gel layer was used to accommodate all the total RNA from cells at the later time

points of the 4-day long time course. Pilot experiments with radiolabeled small RNA markers doped with

carrier HeLa RNA indicated that up to 1 mg of total HeLa RNA could be loaded and resolved adequately

on this type of gel. A 1-hour transfer on a Semi-Dry apparatus also indicated uniform and near-complete

transfer of small RNAs from this modified gel to the membrane, while RNAs as large as or larger than

tRNA showed minor variations in transfer completeness.

The total cellular RNA yields from the 4-day time courses ranged from an average of -28 g at

t=0 hour to -280 gg at t=96 hour for experiments with the Tet-Off cells (total accumulation of dividing

cells), while the average total RNA yield per cell across all time points was 20 pg per cell, varying no

more than 2 fold from time point to time point. The inconsistency of RNA accumulation with cell

doubling rates may be due to lower extraction yields with increased cell matter that was processed in

constant amounts of extraction reagent. To ensure equal RNA loading across the lanes on the modified

denaturing gel, total cellular RNA from HeLa S3 cells was added as carrier to early time point samples to

equalize RNA loading amounts. RNA integrity and resolution were qualitatively assessed by ethidium

staining.

Luciferase Reporter Assays

Reporter assays were performed as described previously [59].
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Table 1. Calculation of miRNA half-lives. Assuming first-order decay kinetics, linear

regression exponential fits were applied to the data in Figure 5B and 5C. Only fits displaying a

negative rate constant, k, are tabulated. Half lives were calculated by the equation t' 2=-0.69/k.

mir-ld° FF line Al
trial
TC-IV
TC-V

t 2 (hours) k R2

38 -0.0179 0.61
313 -0.0075 0.20

mir-124a° FF line Al
trial
TC-II
TC-III
TC-IV
TC-V

t"2 (hours)
70
51

29
144

k

-0.0099

-0.0136
-0.024
-0.0048

R2

0.92
0.97

0.89

0.46
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FIGURE LEGENDS

Figure 1. An Inducible System for miRNA Expression. A Tet-regulable expression cassette is

stably transfected into Tet On or Tet Off cells, providing opposite forms of transcriptional

regulation upon Dox addition.

Figure 2. Inducible Expression of human miR-ld. Northern blot analysis of total RNA from 8-

day time courses are on the left, while quantitation of the signals are displayed on the right.

Closed diamonds are time points where Dox is added to media, while open squares are mock-

treated time points. Normalized counts represent miRNA signal divided by U6 snRNA signal.

(A) Examination miR-ldON (line C2). (B) Examination of miR-ld° FF (line Al).

Figure 3. Inducible Expression of human miR-124a. Annotations are essentially as described

for Figure 2. (A) Examination miR-124aN (line A2). (B) Examination of miR-124a°FF (line

Al).

Figure 4. Timescale of pre-miRNA turnover. Northern analysis of time courses extending to 12

(A) and 150 minutes (B). Because of the high background from the riboprobe used to probe the

blot in (B), the precursor signals were not quantitated.

Figure 5. Measuring miRNA decay by assaying all accumulated RNA. (A) A representative

Northern blot where all total RNA from harvested Tet-Off cells is loaded in each lane,

supplemented with carrier HeLa S3 total RNA so that each lane contains -300 gtg total RNA.
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This blot examined time courses of mir-124a° FF (line Al). No signals were detected for miR-ld

nor miR-124a in lanes with HeLa S3 total RNA alone (data not shown). (B) Single exponential

fits to measurements of miR-124a. Time course trials are labeled as TC-#. (C) Single

exponential fits to measurements of miR-ld from Northern analyses of time courses of miR-

ld° FF (line Al).

Figure 6. Measuring miRNA induction. (A) Northern blot of miR-ld from time courses of

induction with Dox of mir-ldON (line C2). (B) Quanatitation of mature miR-ld signal. (C)

Quantitation of pre-miR-ld signal. (D) Northern blot of miR-124a from time courses of

induction with Dox of mir-124aON (line A2). (E) Quanatitation of mature miR-124a signal. (F)

Quantitation of pre-miR-124a signal. Time points are hours after Dox addition. All quantitation

values were normalized against respective U6 snRNA signals. Time course trials are labeled as

TC-#.

Figure 7. A model of miRNA biogenesis and metabolism (adapted from [1]).
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Future Directions
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Despite significant progress in understanding the biogenesis and functions of microRNAs

(miRNAs), there are still many outstanding questions in the field. Topics of continuing

investigation range from miRNA gene finding efforts, to identifying more miRNA target genes,

to dissecting the biochemical mechanism of inhibiting productive translation, and to determining

the phenotypic consequences of perturbing miRNA function. Each of these lines of research

benefits from extensive headway made in the last 4 years, with some of the groundwork laid by

studies described in this thesis. However, hurdles that will be encountered in future studies will

demand creativity distinct from past studies.

The size of the miRNA gene class is quite extensive, but there is a desire to determine the

totality of miRNAs within organisms and within eukaryotic lineages. Although estimates for the

total number of miRNA genes have been placed for model invertebrates such as Caenorhabditis

elegans and Drosophila melanogaster, the numbers of confirmed miRNAs have not reached

these limits (78 confirmed out of 110 estimated D.melanogaster miRNAs, 103 confirmed out of

120 estimated C.elegans miRNAs) [1-9]. Refinements or composites of computational methods

like MirScan and MirSeeker could present additional candidates for validation, and perhaps

RNA samples from various organism growth conditions or shorter intervals during development

might better present candidate miRNAs for detection. For example, mir-247 is only detectable

on Northern blots in the L3 stage or when worms are starved and induced to develop into dauers

[8]. Alternatively, cloning of new small RNAs might be extended by the development of

subtractive hybridization methods to remove the most abundant miRNAs. The ten most

abundantly cloned miRNAs in C.elegans represent 54% of the total 3423 clones sequenced, yet

comprise only 10% of the total miRNA genes known to exist in the C.elegans genome [8].

Obtaining complete lists of miRNAs in flies and worms should bring to light interesting but rare
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miRNAs like lsy-6 [10]. Lists of vertebrate miRNAs, although extensive, are also quite

incomplete, having depended on just human, mouse, and pufferfish genomes [11, 12]. Future

analysis will surely benefit from several additional mammalian, avian and tunicate genomes that

are in later phases of completion [13-16].

Because the miRNA gene family is so large and seemingly pervasive in metazoans and

plants, the evolution of this gene class is a compelling problem to investigate. The conservation

of let-7 across bilaterian animals is astounding, but also curious is lack of let-7 detected in other

non-bilateral metazoans like cniderian and porfiran species [17]. Perhaps let-7 has diverged in

these species similarly as how lin-4 may have diverged from mir-125b in vertebrates [18]. A

few miRNAs like mir-1 and mir-124 are perfectly conserved in primary sequence like let-7

across vertebrates and invertebrates, while most other miRNAs show overall sequence similarity

but significant divergence in the 3' end of the miRNA [1, 8]. The insight that the RNA-induced

silencing complex (RISC) appears more dependent on target recognition with the "seed" evokes

the question as to what combination of targets common to vertebrates and invertebrates could be

enforcing the complete primary sequence conservation of a select few miRNAs [19-21]. In land

plants, the conservation of miRNAs like MIR166 appears to run deep into different lineages; this

conservation can be explained by the vital function of downregulating HD-Zip genes through

miR166 base-pairing extensively to and cleaving the target site [22-26]. Because so few animal

target sites approach the degree of complementarity of plant targets to miRNAs, the puzzle of

such well-conserved miRNAs in animals is particularly confounding. Although plant and animal

miRNA sequences are poorly conserved, it has been suggested that miRNAs might have arisen

during the advent of multicellularity in organisms, since single-celled organisms like

Schizosaccaromyces pombe and Trypansome brucei appear to lack miRNAs but possess siRNAs
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[27-30]. It is debatable if an organism with miRNAs that is an ancestor to plants and animals

can be defined, but if no miRNAs can be identified in other fungal species that have pseudo-

multi-cellular form, this could further argue that miRNAs convergently evolved in plants and

animals. Convergent evolution might also reconcile why the preponderance of transcription

factors in predicted plant targets is not seen in predicted animal targets [20, 25, 31-34]. Since

plants critically depend on miRNAs to downregulate specific transcription factor messages, the

convergent evolution hypothesis might assume animal cells evolved miRNAs separately to

"tune" a broader range of targets; and animals may have depended much less on diminishing

transcription factors early in the evolution of RNA silencing pathways [35]. Alternatively, our

abilities to predict and then validate true animal miRNA targets may not be sophisticated enough

to pinpoint the actual scope of targets, or perhaps the range of plant targets could potentially be

as wide as animal targets [33].

Addressing miRNA conservation and other functional questions heavily depends on

refining algorithms for predicting miRNA targets. Currently the most sensitive algorithms for

predicting animal targets simply search for multiple base-pairing elements that are conserved in

the 3' untranslated regions (UTRs) of homologous genes from multiple genomes [20, 31, 32].

Refinement might be accomplished by testing numerous candidate UTRs in reporter gene assays

in cell culture, and then reexamine the miRNA-responsive UTR-reporter constructs for motifs or

structural elements that might enhance the specificity of prediction algorithms. Structural

elements and motifs within 5' and 3' UTRs are well known to exert translational repression

effects, like the iron response elements in the 5' UTR of Ferritin mRNA, or cytoplasmic poly-

adenylation elements in the 3' UTR of cyclinB mRNA [36, 37]. The scenario of RISC

recognizing motifs in addition to seed interactions is quite possible because the Fragile-X
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protein, FMRP, is associated with RISC and miRNAs, and is known to bind RNAs with G-

quartet structures [38-40]. In addition to motif refinements, prediction algorithms could be

enhanced to find targets regulated by combinations of miRNAs. This approach is definitely

biologically relevant but potentially computationally and experimentally intensive, so the

simplest and most practical increment would be to examine combinations of two miRNAs. A

presumption by current analyses of target predictions is that regulation amongst members of a

highly-related miRNA family might be hard to distinguish since the seed pairing is the same

[20]. However, sizeable families of miRNAs are conserved in worms, flies and vertebrates,

suggesting that an exquisite specificity not well recognized by scientists is well utilized by

organisms. Perhaps current predictions originally tested against a single miRNA might be

retested against combinations of miRNAs that are members within a gene family to see if there is

some synergism imparted by the combination of the two miRNAs.

A better understanding of miRNA target recognition might provide insight into the

mechanism of miRNA inhibition of productive translation, or vice versa. Despite what is known

about RISC-directed mRNA cleavage, there is no model that best explains how the inhibition of

productive translation occurs. One has to take into account that mRNA stability is not affected,

and the expression block occurs after polysomes form on the mRNA [41-43]. Perhaps RISC

affixed to a site it cannot cleave serves as a block that might retard protein elongation rates, or

prolonged RISC interaction selectively localizes polysomes away from translation co-factors.

Perhaps translation and ribosome movement is not altered at all, and instead protein half-life is

altered, either by recruitment of a peptidase, or a translation cofactor that stimulates active

degradation of the translated protein. Addressing these speculations requires an experimental

system that is both competent in protein translation and amenable to modulation of miRNA
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levels. Drosophila embryo and Hela cell in vitro translation lysates are possible systems for

investigation [44, 45], since exogenous siRNAs can program these lysates at least for RNAi [46-

48]. The Hela cell lines with inducible miRNA expression described in this thesis, however,

could also be a potentially valuable system for investigating the mechanism of translation

repression. Biochemical purifications of a reporter mRNA specifically regulated by a mir-1 or

mir-124 site might be compared between the induced or uninduced states of miRNA expression.

This experiment could examine modifications to the reporter mRNA or perhaps lead to the

identification of factors that localize to the reporter mRNA after miRNA induction. The reporter

peptide might also be compared between miRNA expressing and non-expressing cells to see if

co-translational or post-translational modifications might be destabilizing the protein.

Substantiated by the overt defects in lin-4, let-7, bantam, jawD, and MIR172 mutants [49-

54], many labs are attempting to perturb miRNA expression or regulation in order to dissect

miRNA function regardless of whether mechanism or target genes are known. Since the

majority of miRNA genes in model organisms have been cloned or mapped, reverse genetics is a

feasible approach towards ascertaining the phenotype of miRNA loss-of-function. One such

endeavor to knock out miRNA genes in C.elegans is described in the appendix of this thesis,

where libraries of mutagenized worms are screened in high-throughput fashion to identify

deletion mutants. Analogous reverse genetics approaches are likely being applied to other

animals and plants, and hopefully phenotypes will present themselves in a fashion similar to the

obvious defects of lin-4 and let-7. However, it is possible that many phenotypes might be as

subtle as sy-6, which superficially grows and develops normally under lab conditions, but

misregulation of its target gene, cog-i, only causes a chemotaxis defect [10, 55]. The

complicated chemotaxis assays or specific GFP-tagged transgenes used to characterize lsy-6 are
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methods that are not commonly included in a simple survey of a deletion mutant. An additional

complication that genetic approaches must consider is redundancy of other miRNAs, especially

amongst family members with very similar seed sequences. Double, triple or multiple knock out

of genes may be needed to elicit a phenotype.

If phenotypes are too subtle for a general survey to reveal, expression data on miRNA

localization might focus the analysis to particular tissues or cell types. Such tissue-specific

expression for miRNAs is available in mice [18], but for other model organisms that are smaller

and more difficult to dissect, examining tissue-specific expression is not as technically feasible.

More sensitive and high-throughput methods for detecting miRNAs from small samples might

surmount some of the technical limitations, such as signal amplification from a sensitive

fluorescence based assay [56], or from a prototype microarray for miRNAs [57]. Alternatively,

reporter transgenes like the bantam sensor might potentially reveal miRNA localization in a

dynamic fashion during live animal development [31, 52], but a serious technical consideration

is determining the proper promoter that drives ubiquitous but not saturating expression of the

sensor gene. Finally, in situ hybridization techniques may become more widespread for

detecting miRNA localization, as this method shows promise in plant sections [26, 58, 59], but

the actual specificity of probes and conditions for in situ hybridization of miRNAs await rigorous

demonstration with null mutants and comparison with sensor experiments.

Two indirect but potentially illuminating approaches that could guide functional studies

would be to misexpress miRNAs or to interfere with miRNA function with antisense 2-0-methyl

RNA (2OMe) oligos. The mutants, jawD, MIR172, bantam, and mir-14, exhibit defects from

miRNA misexpression [52-54, 60], and a microrarray approach successfully identified target

genes forjawD [53]. While microarray experiments have proven well in determining plant
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miRNA targets, their utility for finding animal targets may be questionable if the dominant

mechanism for animal miRNA function does not affect mRNA levels. The ability to interfere

with RISC function through 2OMe oligos has been demonstrated recently in vitro as well as in

vivo [61, 62]. Phenotypes generated by this antisense interference method must be interpreted

with caution since miRNA genetics is still in its infancy and the toxicity or side effects of 2OMe

oligos in vivo have not been clearly determined. However, synthetic defects could be revealing

and might be more attainable with this technique because multiple 2OMe oligos directed against

a whole miRNA gene family might overcome functional redundancy.

The strong interest in miRNA function is rooted not only in the novelty of miRNA

research, but also in the potential ramifications for global gene network regulation in multi-

cellular organisms by small RNA pathways. The excitement in miRNA research is currently

strongest in academic circles, but will soon permeate into agricultural and clinical investigations

as well. Proper growth of several crop plants clearly depends on proper miRNA function [29],

and plant viruses can exert their pathogenicity through interference of miRNA pathways [63-66],

so the impact of miRNAs on agriculture is apparent. No specific human disease has yet been

definitively linked to defects in miRNA function, but hints of miRNAs tying into clinical cases

are beginning to emerge. A few studies suggest miRNA levels might be perturbed in cancer

samples [67, 68]; miRNA mutants in flies antagonize apoptosis and are hypothesized to be

oncogenes [52, 60]; the protein implicated in Fragile X mental retardation is linked to RISC

function [40, 69, 70]; and PPD proteins are linked to tumorigenesis and stem cell maintenance

[71]. Regardless of the agricultural or clinical implications of miRNAs, basic research on

miRNA will continue to reveal surprises and remind us of the macroscopic influence that

microRNAs have on eukaryotic development.

173



REFERENCES

1. Ambros, V., Lee, R.C., Lavanway, A., Williams, P.T., and Jewell, D. (2003).

MicroRNAs and Other Tiny Endogenous RNAs in C. elegans. Curr Biol 13, 807-818.

2. Aravin, A.A., Lagos-Quintana, M., Yalcin, A., Zavolan, M., Marks, D., Snyder, B.,

Gaasterland, T., Meyer, J., and Tuschl, T. (2003). The small RNA profile during

Drosophila melanogaster development. Dev Cell 5, 337-350.

3. Grad, Y., Aach, J., Hayes, G.D., Reinhart, B.J., Church, G.M., Ruvkun, G., and Kim, J.

(2003). Computational and experimental identification of C. elegans microRNAs. Mol

Cell 11, 1253-1263.

4. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001). Identification of

novel genes coding for small expressed RNAs. Science 294, 853-858.

5. Lai, E.C., Tomancak, P., Williams, R.W., and Rubin, G.M. (2003). Computational

identification of Drosophila microRNA genes. Genome Biol 4:R42, 1-20.

6. Lau, N.C., Lim, L.P., Weinstein, E.G., and Bartel, D.P. (2001). An abundant class of tiny

RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-862.

7. Lee, R.C., and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis

elegans. Science 294, 862-864.

8. Lim, L.P., Lau, N.C., Weinstein, E.G., Abdelhakim, A., Yekta, S., Rhoades, M.W.,

Burge, C.B., and Bartel, D.P. (2003a). The microRNAs of Caenorhabditis elegans.

Genes Dev 17, 991-1008.

9. Ohler, U., Yekta, S., Lim, L.P., Bartel, D.P., and Burge, C.B. (2004). Patterns of flanking

sequence conservation and a characteristic upstream motif for microRNA gene

identification. RNA, in press.

10. Johnston, R.J., and Hobert, O. (2003). A microRNA controlling left/right neuronal

asymmetry in Caenorhabditis elegans. Nature 426, 845-849.

11. Bartel, D.P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell

116, 281-297.

12. Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B., and Bartel, D.P. (2003b). Vertebrate

microRNA genes. Science 299, 1540.

174



13. Kirkness, E.F., Bafna, V., Halpern, A.L., Levy, S., Remington, K., Rusch, D.B., Delcher,

A.L., Pop, M., Wang, W., Fraser, C.M., and Venter, J.C. (2003). The dog genome: survey

sequencing and comparative analysis. Science 301, 1898-1903.

14. Holland, L.Z., and Gibson-Brown, J.J. (2003). The Ciona intestinalis genome: when the

constraints are off. Bioessays 25, 529-532.

15. Andersson, L., and Georges, M. (2004). Domestic-animal genomics: deciphering the

genetics of complex traits. Nat Rev Genet 5, 202-212.

16. Gibbs, R.A., Weinstock, G.M., Metzker, M.L., Muzny, D.M., Sodergren, E.J., Scherer,

S., Scott, G., Steffen, D., Worley, K.C., Burch, P.E., Okwuonu, G., Hines, S., Lewis, L.,

DeRamo, C., Delgado, O., Dugan-Rocha, S., Miner, G., Morgan, M., Hawes, A., Gill, R.,

et al. (2004). Genome sequence of the Brown Norway rat yields insights into mammalian

evolution. Nature 428, 493-521.

17. Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M., Maller, B.,

Srinivasan, A., Fishman, M., Hayward, D., Ball, E., Degnan, B., Muller, P., Spring, J.,

Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E., and Ruvkun, G. (2000).

Conservation across animal phylogeny of the sequence and temporal regulation of the 21

nucleotide let-7 heterochronic regulatory RNA. Nature 408, 86-89.

18. Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T.

(2002). Identification of tissue-specific microRNAs from mouse. Current Biology 12,

735-739.

19. Doench, J.G., and Sharp, P.A. (2004). Specificity of microRNA target selection in

translational repression. Genes Dev 18, 504-511.

20. Lewis, B.P., Shih, I., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003).

Prediction of mammalian microRNA targets. Cell 115, 787-798.

21. Lai, E.C. (2002). MicroRNAs are complementary to 3'UTR motifs that mediate negative

post-transcriptional regulation. Nature Genetics 30, 363-364.

22. Floyd, S.K., and Bowman, J.L. (2004). Gene regulation: ancient microRNA target

sequences in plants. Nature 428, 485-486.

23. Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F.,

and Bowman, J.L. (2003). Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP

and KANADI Genes. Curr Biol 13, 1768-1774.

175



24. McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton, M.K. (2001).

Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots.

Nature 411, 709-713.

25. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P.

(2002). Prediction of plant microRNA targets. Cell 110, 513-520.

26. Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A., and Timmermans, M.C. (2004).

microRNA-mediated repression of rolled leafl specifies maize leaf polarity. Nature 428,

84-88.

27. Reinhart, B.J., and Bartel, D.P. (2002). Small RNAs correspond to centromere

heterochromatic repeats. Science 297, 1831.

28. Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., and Bartel, D.P. (2002).

MicroRNAs in plants. Genes Dev 16, 1616-1626.

29. Bartel, B., and Bartel, D.P. (2003). MicroRNAs: At the Root of Plant Development?

Plant Physiol 132, 709-717.

30. Djikeng, A., Shi, H., Tschudi, C., and Ullu, E. (2001). RNA interference in Trypanosoma

brucei: cloning of small interfering RNAs provides evidence for retroposon-derived 24-

26-nucleotide RNAs. RNA 7, 1522-1530.

31. Stark, A., Brennecke, J., Russell, R.B., and Cohen, S.M. (2003). Identification of

Drosophila microRNA targets. PLOS Biol. 1, E60.

32. Rajewsky, N., and Socci, N.D. (2004). Computational identification of microRNA

targets. Dev Biol 267, 529-535.

33. Jones-Rhoades, M.W., and Bartel, D.P. (2004). Computational identification of plant

microRNAs and their targets. Mol Cell In Press.

34. Enright, A.J., John, B., Gaul, U., Tuschl, T., Sander, C., and Marks, D.S. (2003).

MicroRNA targets in Drosophila. Genome Biology 5, R1.

35. Bartel, D.P., and Chen, C.-Z. (2004). Micromanagers of Gene Expression: The

Potentially Widespread Influence of Metazoan MicroRNAs. Nat Rev Genet 5, 396-400.

36. Kuersten, S., and Goodwin, E.B. (2003). The power of the 3' UTR: translational control

and development. Nat Rev Genet 4, 626-637.

37. Wilkie, G.S., Dickson, K.S., and Gray, N.K. (2003). Regulation of mRNA translation by

5'- and 3'-UTR-binding factors. Trends Biochem Sci 28, 182-188.

176



38. Darnell, J.C., Jensen, K.B., Jin, P., Brown, V., Warren, S.T., and Darnell, R.B. (2001).

Fragile X mental retardation protein targets G quartet mRNAs important for neuronal

function. Cell 107, 489-499.

39. Brown, V., Jin, P., Ceman, S., Darnell, J.C., O'Donnell, W.T., Tenenbaum, S.A., Jin, X.,

Feng, Y., Wilkinson, K.D., Keene, J.D., Darnell, R.B., and Warren, S.T. (2001).

Microarray identification of FMRP-associated brain mRNAs and altered mRNA

translational profiles in fragile X syndrome. Cell 107, 477-487.

40. Jin, P., Zarnescu, D.C., Ceman, S., Nakamoto, M., Mowrey, J., Jongens, T.A., Nelson,

D.L., Moses, K., and Warren, S.T. (2004). Biochemical and genetic interaction between

the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7,

113-117.

41. Nelson, P.T., Hatzigeorgiou, A.G., and Mourelatos, Z. (2004). miRNP:mRNA

association in polyribosomes in a human neuronal cell line. RNA 10, 387-394.

42. Olsen, P.H., and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental

timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the

initiation of translation. Developmental Biology 216, 671-680.

43. Kim, J., Krichevsky, A., Grad, Y., Hayes, G.D., Kosik, K.S., Church, G.M., and Ruvkun,

G. (2004). Identification of many microRNAs that copurify with polyribosomes in

mammalian neurons. Proc Natl Acad Sci U S A 101, 360-365.

44. Bergamini, G., Preiss, T., and Hentze, M.W. (2000). Picornavirus IRESes and the

poly(A) tail jointly promote cap-independent translation in a mammalian cell-free

system. RNA 6, 1781-1790.

45. Castagnetti, S., Hentze, M.W., Ephrussi, A., and Gebauer, F. (2000). Control of oskar

mRNA translation by Bruno in a novel cell-free system from Drosophila ovaries.

Development 127, 1063-1068.

46. Tuschl, T., Zamore, P.D., Lehmann, R., Bartel, D.P., and Sharp, P.A. (1999). Targeted

mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191-3197.

47. Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P. (2000). RNAi: double-stranded

RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell

101, 25-33.

177



48. Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002). Single-

stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563-574.

49. Ambros, V. (1989). A hierarchy of regulatory genes controls a larva-to-adult

developmental switch in C. elegans. Cell 57, 49-57.

50. Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene

lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.

51. Reinhart, B.J., Slack, F.J., Basson, M., Bettinger, J.C., Pasquinelli, A.E., Rougvie, A.E.,

Horvitz, H.R., and Ruvkun, G. (2000). The 21 nucleotide let-7 RNA regulates

developmental timing in Caenorhabditis elegans. Nature 403, 901-906.

52. Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B., and Cohen, S.M. (2003). bantam

encodes a developmentally regulated microRNA that controls cell proliferation and

regulates the proapoptotic gene hid in Drosophila. Cell 113, 25-36.

53. Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., and

Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425, 257-263.

54. Aukerman, M.J., and Sakai, H. (2003). Regulation of Flowering Time and Floral Organ

Identity by a MicroRNA and Its APETALA2-Like Target Genes. Plant Cell 10, 10.

55. Hobert, O., Johnston, R.J., Jr., and Chang, S. (2002). Left-right asymmetry in the nervous

system: the Caenorhabditis elegans model. Nat Rev Neurosci 3, 629-640.

56. Allawi, H.T., Dahlberg, J.E., Olson, S., Lund, E., Olson, M., Ma, W.P., Takova, T., Neri,

B.P., and Lyamichev, V.I. (2004). Quantitation of microRNAs using a modified

Invader® assay. RNA in press.

57. Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S. (2003). A

microRNA array reveals extensive regulation of microRNAs during brain development.

RNA 9, 1274-1281.

58. Kidner, C.A., and Martienssen, R.A. (2004). Spatially restricted microRNA directs leaf

polarity through ARGONAUTE1. Nature 428, 81-84.

59. Chen, X. (2003). A MicroRNA as a Translational Repressor of APETALA2 in

Arabidopsis Flower Development. Science, Published online September 11 2003;

2010.1126/science. 1088060.

178



60. Xu, P., Vernooy, S.Y., Guo, M., and Hay, B.A. (2003). The Drosophila microRNA mir-

14 suppresses cell death and is required for normal fat metabolism. Curr Biol 13, 790-

795.

61. Hutvagner, G., Simard, M.J., Mello, C.C., and Zamore, P.D. (2004). Sequence-specific

inhibition of small RNA function. PLoS Biol 2, E98.

62. Meister, G., Landthaler, M., Dorsett, Y., and Tuschl, T. (2004). Sequence-specific

inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10, 544-550.

63. Chen, J., Li, W.X., Xie, D., Peng, J.R., and Ding, S.W. (2004). Viral Virulence Protein

Suppresses RNA Silencing-Mediated Defense but Upregulates the Role of MicroRNA in

Host Gene Expression. Plant Cell.

64. Kasschau, K.D., Xie, Z., Allen, E., Llave, C., Chapman, E.J., Krizan, K.A., and

Carrington, J.C. (2003). P1/HC-Pro, a viral suppressor of RNA silencing, interferes with

Arabidopsis development and miRNA function. Dev Cell 4, 205-217.

65. Mallory, A.C., Reinhart, B.J., Bartel, D.P., Vance, V.B., and Bowman, L.H. (2002). A

viral suppressor of RNA silencing differentially regulates the accumulation of short

interfering RNAs and microRNAs in tobacco. PNAS.

66. Papp, I., Mette, M.F., Aufsatz, W., Daxinger, L., Schauer, S.E., Ray, A., van der Winden,

J., Matzke, M., and Matzke, A.J. (2003). Evidence for nuclear processing of plant micro

RNA and short interfering RNA precursors. Plant Physiol 132, 1382-1390.

67. Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H.,

Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., and

Croce, C.M. (2002). Frequent deletions and down-regulation of micro- RNA genes

miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A

99, 15524-15529.

68. Michael, M.Z., SM, O.C., van Holst Pellekaan, N.G., Young, G.P., and James, R.J.

(2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol

Cancer Res 1, 882-891.

69. Caudy, A.A., Myers, M., Hannon, G.J., and Hammond, S.M. (2002). Fragile X-related

protein and VIG associate with the RNA interference machinery. Genes Dev 16, 2491-

2496.

179



70. Ishizuka, A., Siomi, M.C., and Siomi, H. (2002). A Drosophila fragile X protein interacts

with components of RNAi and ribosomal proteins. Genes Dev 16, 2497-2508.

71. Carmell, M.A., Xuan, Z., Zhang, M.Q., and Hannon, G.J. (2002). The Argonaute family:

tentacles that reach into RNAi, developmental control, stem cell maintenance, and

tumorigenesis. Genes Dev 16, 2733-2742.

180



REPORT

The three-dimensional architecture of the class I
ligase ribozyme

NICHOLAS H. BERGMAN, 1' 3 NELSON C. LAU,1 VALERIE LEHNERT, 2 '4 ERIC WESTHOF, 2 and
DAVID P. BARTEL'
'Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02142, USA
21nstitut de Biologie Moleculaire et Cellulaire, Unite Propre de Recherche 9002 du Centre National de la Recherche Scientifique, Universit6
Louis Pasteur, 67084 Strasbourg-Cedex, France

ABSTRACT

The class I ligase ribozyme catalyzes a Mg'-dependent RNA-ligation reaction that is chemically analogous to a single step of
RNA polymerization. Indeed, this ribozyme constitutes the catalytic domain of an accurate and general RNA polymerase
ribozyme. The ligation reaction is also very rapid in both single- and multiple-turnover contexts and thus is informative for the
study of RNA catalysis as well as RNA self-replication. Here we report the initial characterization of the three-dimensional
architecture of the ligase. When the ligase folds, several segments become protected from hydroxyl-radical cleavage, indicating
that the RNA adopts a compact tertiary structure. Ribozyme folding was largely, though not completely, Mg++ dependent, with
a Kl/2[Mg] < 1 mM, and was observed over a broad temperature range (20°C -50°C). The hydroxyl-radical mapping, together
with comparative sequence analyses and analogy to a region within 23S ribosomal RNA, were used to generate a three-
dimensional model of the ribozyme. The predictive value of the model was tested and supported by a photo-cross-linking
experiment.

Keywords: RNA structure; RNA catalysis; molecular modeling

INTRODUCTION

The class I ligase (Fig. 1A) catalyzes a reaction similar to
that of biological RNA polymerases: attack by the 3'-OH of
a small substrate RNA on a 5'-triphosphate, forming a new
3'-5' linkage with concomitant release of pyrophosphate
(Ekland et al. 1995). Comparisons between this reaction
and RNA polymerization were extended by experiments
showing that engineered derivatives of the ligase are able to
perform short primer-extension reactions (Ekland and Bar-
tel 1996). More recently, variants of the ribozyme have been
shown to catalyze template-directed polymerization of up
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to 14 nt (Johnston et al. 2001), supporting the idea that
early in the origin of life, RNA might have catalyzed its own
replication (Bartel 1999; Joyce and Orgel 1999).

Recent studies have begun to define the reaction kinetics
of the ligase, using ribozymes in both multiple- and single-
turnover formats. In a multiple-turnover format, the ribo-
zyme catalyzes ligation with a kcat greater than 2 sec- ' at pH
8.0, a rate exceeding those of other multiple-turnover ribo-
zyme-catalyzed reactions (Bergman et al. 2000). This speed
is due in large part to a very fast chemical step (kc). Studies
examining kc in a single-turnover format have shown that
this step can reach rates exceeding 10 sec - ' at pH 9.0 (N.H.
Bergman, C.C. Yen, and D.P. Bartel, in prep.). The studies
of self-ligation also showed that the majority of ligase mol-
ecules fold accurately and quickly, with a folding rate of
about 1.0 sec-', as measured by attainment of an active
structure (Glasner et al. 2002). This suggests that the alter-
native folding pathways (and accompanying misfolding)
seen in some other ribozymes (Pan and Sosnick 1997; Rus-
sell and Herschlag 1999) are less prevalent in the case of the
ligase.

Like proteinaceous RNA polymerases, the ligase has a
near absolute requirement for Mg + ions (Glasner et al.
2002). Furthermore, these protein enzymes and the ligase

RNA (2004), 10:176-184. Published by Cold Spring Harbor Laboratory Press. Copyright © 2004 RNA Society.176



Tertiary architecture of a ligase ribozyme
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FIGURE 1. Hydroxyl-radical cleavage of the Class I ligase. (A) The class I ligase. The ligase promotes the attack of the 3'-OH of the substrate
on its own 5'-co-phosphate, forming a new 3'-5' linkage with release of pyrophosphate. Paired regions are designated P1-P7. Residues protected
from hydroxyl-radical cleavage are colored red and reflect those highlighted in panel C. Residues colored blue are those for which solvent
accessibility was not measured because they were too near to the ends of the RNA. (B) Gel showing hydroxyl-radical cleavage in the presence of
different Mg++ concentrations. Background cleavage in the absence of iron is shown [(-)Fe], along with a lane showing cleavage under denaturing
conditions (60C, 0 mM Mg++). The gel was run for 90 min and used to collect data at positions 40-80. Nucleotides were identified by comparison
to a ladder generated by partial digest of radiolabeled product using RNase T1 (not shown) and alkaline hydrolysis (OH-). (C) Radioactivity
profiles of lanes from the gel in panel B. Regions of substantial protection are shaded. (D) Protection factors for nt 7-115 in the presence of 10
mM Mg+ + at 22°C. Protection factors are defined as the ratio of cleavage under denaturing conditions (0 mM Mg++ , 60°C) to cleavage under
experimental conditions. Protection factors exceeding 1.5 are labeled and colored red.

show a similar stereospecific response to sulfur substitution and prompts questions of whether the ribozyme might also
at the reactive phosphate, which is consistent with the idea share structural features with analogous protein enzymes.
that one of these essential metal ions may be bound in the To better understand the relationship between the struc-
same position relative to substrate in both catalysts (Eck- ture and function of the ligase, we have begun to charac-
stein 1985; Glasner et al. 2000). This finding leaves open the terize its tertiary structure. The solvent accessibility at each
possibility that the ligase uses the same mechanism as that position along the sugar-phosphate backbone of the ribo-
proposed for general protein-catalyzed phosphoryl transfer, zyme was measured using hydroxyl radical probing (Ce-
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lander and Cech 1990, 1991). These measurements identi-
fied portions of the RNA that are protected from cleavage
when the ligase is folded. Together with comparative se-
quence analysis, these data were used herein to model the
ribozyme in three dimensions. A photo-cross-linking ex-
periment showed that the model successfully predicted
three-dimensional proximity between ribozyme segments
that were far apart in the secondary structure. The model
provides a framework for future structural studies and sug-
gests strategies for crystallization of the ligase.

RESULTS AND DISCUSSION

Hydroxyl-radical probing

Hydroxyl radicals, generated by either chemical methods
(Tullius et al. 1987; King et al. 1993) or synchrotron radia-
tion (Sclavi et al. 1998), have been used successfully to
examine the structure of catalytic RNAs, ribosomal RNAs,
and protein-nucleic acid complexes (Tullius and Dom-
broski 1986; Latham and Cech 1989; Celander and Cech
1991; Joseph and Noller 2000). The radicals, when pro-
duced in solution with RNA, attack the ribose moieties in
the nucleic acid backbone, causing strand cleavage (Wu et
al. 1983; Hertzberg and Dervan 1984). This cleavage is in-
dependent of sequence and secondary structure, and is in-
stead dependent on the solvent accessibility of each position
in the RNA backbone (Celander and Cech 1990). In begin-
ning investigations of the tertiary structure of the ligase,
hydroxyl-radical probing was used to define portions of the
ribozyme that are internalized by tertiary structure and thus
protected from cleavage.

At 22°C and 10 mM Mg+ + , a substantial number of
nucleotides (17 out of 109 tested) became protected from
hydroxyl-radical cleavage (protection factor >1.5; Fig. 1),
indicating that the ligase assumes a
compact structure in the presence of
Mg + . The most striking protections A
were seen for nucleotides G45-C48,
which make up the most conserved part
of a joining region connecting helix P3 3.5-

with helix P4, and for nucleotides G70-
G75, which comprise the 5' arm of helix 3

P6 (Fig. 1). Interestingly, the opposite ~ 2.5

arm of this helix (C81-C83) also had o
high protection factors, implying that 4 2- 

this short helix is nestled within the
ribozyme core. In addition to these seg-
ments, several isolated nucleotides were 10 2C
protected. Nt A14 and C31 were consis- Ter

tently protected, though at a much
weaker level than segments G45-C48 or FIGURE 2. Tempei

Protection factors vG70-G75. Nt U104 was strongly pro- Protection factors 
experiments in whi(

tected, perhaps because of the structure presence of 10 mM
inherent in the junction of helices P4, in panel A in exper

P5, P6, and P7. Finally, nt C62 was strongly protected even
in the absence of Mg++ , perhaps because of local structure
in the UUCG tetraloop (Cheong et al. 1990).

Temperature and Mg+ dependence of ribozyme
tertiary structure

The fold of the ribozyme was assayed with respect to Mg++

and temperature, using the average protection factors from
segments G45-C48 and G70-G75 as a measure of the de-
gree to which molecules assumed the native tertiary struc-
ture (Fig. 2). In the presence of 10 mM Mg+ + , the ligase
showed some native structure at 100C, and was well struc-
tured in the range 20°C-40°C. The group I intron shows
significant misfolding at lower temperatures (Russell and
Herschlag 1999), and the relatively lower protection seen at
10°C might reflect a similar phenomenon. However, the
pattern of protection did not change at low temperature, so
if a misfolded form is more populated, it is not sufficiently
compact to detectably alter the protection pattern. At 50°C,
protection factors were again slightly lower, and at 60°C
most of the protection from hydroxyl-radical cleavage had
disappeared (Fig. 2A). At 60°C and in the absence of Mg++ ,
the ribozyme had no detectable tertiary structure.

When assayed at 20°C, the ligase was essentially com-
pletely folded at Mg+ + concentrations as low as 1 mM (Fig.
2B), indicating that the [Mg++] /2(folding) is below 1 mM.
(Assaying for folding with less than 1 mM Mg ++ could not
be performed with this procedure because of trace amounts
of free EDTA in probing reactions.) In comparison, the

[Mg+ +] 1/2(catalysis) is much higher (40-50 mM), suggesting
that a native structure can be achieved without Mg++ ions
bound in every catalytically useful binding site (Glasner et
al. 2002).

Interestingly, removing Mg ++ ions from the ribozyme
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Tertiary architecture of a ligase ribozyme

solution by adding EDTA did not completely denature the
ribozyme's tertiary fold. Rather, the areas protected from
cleavage when the ribozyme was folded in the presence of
Mg"* were also partially protected by simply dropping the
temperature from 60°C to 22°C in the absence of Mg + (Fig.
1C). The presence of Mg"* changed the magnitude of each
protection, but not the overall pattern of protection, sug-
gesting that similar structure was present under both con-
ditions. These data suggest that upon removal of Mg'+, the
ribozyme stays folded into near native conformations.

Three-dimensional model

It had been shown that the hairpin loops capping helices P5
and P7 were not important for catalysis and that 5 nt could

A

be removed from the J1/3 junction without substantially
impairing catalysis (Ekland and Bartel 1995). Thus, we ini-
tiated the modeling with a minimal ligase of 112 nt. Later,
the whole ligase was assembled with residues 20-24 added
in helical continuity with helix P1. Several models were
built that accommodated the stereochemical constraints
imposed by the two pseudoknots (helices P2 and P3) pres-
ent in the secondary structure. Two of these models were
consistent with the information contained in the Fe-EDTA
protection data. However, one was favored because residues
known to be crucial for activity were positioned near the
catalytic site and because its topology was more conducive
for folding (Fig. 3). In the alternative model, folding would
have been problematic because the path of J3/4 was such
that a knot would have been created with the formation of P2.
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FIGURE 3. A three-dimensional model for the class I ligase. (A) Two stereo views of the model. White spheres indicate those residues protected
from hydroxyl-radical cleavage. Residues of particular interest are highlighted with all-atom representation. These include the residues of the
proposed tandom GA pairs and residues that both were unpaired in previous representations of the ligase secondary structure (Fig. 1A) and were
invariant among 25 active variants of the ligase (Ekland and Bartel 1995), all colored the same as the proximal paired regions. Also shown in
all-atom representation are the four residues comprising the 2 bp flanking the ligation junction, colored according to the identity of the atoms.
(B) A revised secondary structure diagram of the ligase that better reflects the arrangement of helices proposed by the tertiary model. Watson-
Crick pairing is the same as in the original secondary structure (Fig. 1A), except for one additional base pair, G47:C1 11, near the catalytic site.
The color scheme reflects that of the ribbon representations in panel A. (C) Solvent accessibilities of the C4' atoms in the modeled structure, as
calculated using NACCES and a 1.4 A sphere radius with an averaging over a window of three residues. A cut-off of 10 A2 between accessibility
and nonaccessibility is indicated by a horizontal line.
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The key element in the modeling of the ligase is the
four-way junction constituted by helices P4, P5, P6, and P7.
Numerous possibilities for the arrangement of these helices
were explored. A search of the crystal structure of the 50S
ribosomal subunit revealed a four-way junction in domain
VI of the 23S rRNA of Haloarcula marismortui with simi-
larities to the ligase four-way junction (Ban et al. 2000). The
ligase junction is characterized by the presence of 2 nt be-
tween helices P5 and P6, the first one being variable and the
second one invariably an A in the 25 isolates selected from
a diverse pool of class I ligase variants (Ekland and Bartel
1995). The four-way junction in the 23S rRNA also contains
single-stranded residues between the two stacks of helices:
on one side two As and on the other side a single A (next to
a non-Watson-Crick pair). In our favored model of the
ligase (Fig. 3), the four-way junction was based on the
framework of the 23S rRNA four-way junction, in that the
helices interrupted by the two As correspond to P5 and P6
in the ligase four-way junction. That choice led to P4/P5
and P6/P7 stacks, the four-way junction being crossed so
that loops L5 and L7 are brought in the same region of
space.

The favored model is consistent with the Fe-EDTA map-
ping; these protections fit well with a calculated solvent
accessibility profile based on the model (Fig. 3C). The
model can also rationalize much of the conservation in
sequence and pairing potential previously observed among
the 25 isolates previously selected from the pool of ligase
variants (Ekland and Bartel 1995). For example, the impor-
tance of pseudoknot P3 and junction J3/4 in the formation
of the catalytic site is apparent.

It was rather natural to form an additional Watson-Crick
pair between nt G47 and C111, both invariant among the 25
isolates. To test this predicted pairing possibility, mutants
were constructed that disrupted and then restored the po-
tential for Watson-Crick pairing. The ligation rates of the
G47U mutant was 140-fold slower than the parent, and the
rate of the C1 1A mutant was 41-fold slower, but the rate
of the double mutant (G47U, C111A) was only 17-fold
slower, supporting the idea that these residues are paired.
Extending P4 with the G47:C11 pairing creates a bulged
nucleotide, C48, which was invariant among the 25 isolates.
In the model, this residue points towards the reacting G1.

The relative positioning of J3/4 with respect to the 5' end
of the molecule, which carries the reactive 5'-pppGl, sug-
gested the presence of tandem sheared GA base pairs,
G2:A46 and A3:G45, which would constitute the third pseu-
doknot in the ligase ribozyme. Residues G45 and A46 in
J3/4 are conserved among the 25 isolates previously selected
from the pool of variants (Ekland and Bartel 1995). Evi-
dence for the importance of G2 and A3 comes from studies
of an engineered variant of the ribozyme able to perform
short primer-extension reactions (Glasner et al. 2000). For
example, this ribozyme utilizes the pppGGA trinucleotide
substrate 1300 times more efficiently than the pppG single-

nucleotide substrate. G2 and A3 had been removed in the
design of this ribozyme and thus the trinucleotide substrate
restored in trans analogs of these 2 nt. The proposed G-A
tandem explains the increased activity with the trinucleotide
substrate, suggesting how G2 and G3 could position and
anchor the reactive pppG.

In J1/3, several adenine residues are invariant among the
25 previously selected isolates (Ekland and Bartel 1995).
These invariant As were modeled to make contacts in the
shallow groove with P1 (A-minor type) and cradle between
helices P1 and P3 after touching the 5' end of helix P5, with
residue C31 being the turning residue. The chosen path for
J1/3 was such that the invariant adenine A34 faces the re-
active pppG from the other side of C48.

Photo-cross-linking

The model predicts that stems P5 and P7 project outward
from the core of the ribozyme in a nearly parallel fashion,
positioning L5 next to L7. To test this prediction, we in-
vestigated whether a single 4-thiouridine (4SU) placed at
the position of one loop could produce a cross-link to the
adjacent loop. The most straightforward way to incorporate
4SU involves breaking the ribozyme into two strands of
RNA at either of the loops. Cross-linking experiments were
conducted using a ribozyme containing a break in L5 be-
cause a break in this loop leads to only a threefold drop in
activity, whereas a break in L7 leads to a sixfold drop. 4SU
was incorporated at the 3' terminus of the upstream frag-
ment (Fig. 4A), then the two-piece ribozyme was reconsti-
tuted, folded, and irraditated. Several catalytically active
cross-linked molecules were identified based on their ability
to ligate a radiolabeled substrate to themselves following
irradiation (Fig. 4B). One of these cross-links was to the
other strand of the two-piece ribozyme (Fig. 4C). This
cross-link mapped to a short segment of L7 (Fig. 4D). Thus,
molecules constrained such that the end of P5 is near to L7
retain ligation activity, as predicted by the model.

Conclusion

With the data presented here, we have been able to gain the
first view of the tertiary structure of the class I ligase. As
modeled, the structure of the ligase is quite compact, with
extensive coaxial stacking and the P1 substrate helix lying
on the four-way junction made of helices P4, P5, P6, and
P7. In a general sense, the model is similar to the X-ray
structures of several recently characterized RNAs, in that all
are based on parallel arrangements of coaxially stacked he-
lices (Cate et al. 1996; Ferre-D'Amare et al. 1998). In the
case of the ligase, these stacks seem to be held close by the
pseudoknotted secondary structure and conserved joining
regions that wrap around much of the ribozyme.
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FIGURE 4. Crosslinking analyses of the class I ligase. (A) The secondary structure of the two-piece ribozyme used for the cross-linking study.
The break in L5 facilitated insertion of a single 4SU residue (circled). The black sequence is fragment A, and the red sequence is fragment B. Stars
indicate the sites of radiolabeling on the two different strands comprising the ribozyme (black 33 p, red 32 p). Arrows mark cross-linking sites, as
mapped in panel D. (B) Separation of cross-linked ribozymes. (Lanes 1,3) The two-piece ribozyme lacks 4SU. (Lanes 2,4) The two-piece ribozyme
contains 4SU. (Lanes 1,2) The RNA was not irradiated. (Lanes 3,4) Ribozymes were irradiated for 1 h before radiolabeled substrate was added.
Lanes 3 and 4 contain about twice as much sample as lanes 1 and 2. The arrows with Roman numerals point to products that were excised and
eluted from gel slices for subsequent relabeling. (C) Relabeling of cross-linked RNAs. The lanes marked with Roman numerals correspond to the
bands in panel A. Only the RNA in lane iii was appreciably relabeled. (D) Mapping of the cross-links within an active ribozyme. (Lane 1)
Unmodified, 5'-labeled fragment B RNA (red strand in A). (Lanes 2,3) Digests of labeled fragment B RNA by RNase T1, and partial alkaline
hydrolysis, respectively. (Lane 4) The partial alkaline hydrolysis of the relabeled crosslinked RNA shown in panels B and C. Arrows mark the
residues with the most pronounced transitions in ladder intensity, indicating the sites of the cross-links within the sequence of fragment B.

Almost all of the nucleotides that were protected from
hydroxyl-radical cleavage are internalized in the modeled

strate pppGGA compared to the single substrate pppG
(Glasner et al. 2000).

tertiary structure (Fig. 3). In addition, cross-linking data Taken together, these results suggest that our view of the
places L5 and L7 close together, supporting the model's architecture of the ligase ribozyme is accurate and should be
predicted arrangement for the four-helix junction formed informative for future studies of the ligase. Indeed, the
by helices P4-P5-P6-P7. The model suggested the presence model was considered when designing the experiments that
of an additional Watson-Crick pair, G47:Clll11, which was successfully generated a polymerase ribozyme with the li-
subsequently supported experimentally. The model incor- gase core as its catalytic domain (Johnston et al. 2001). For
porates also a tandem of sheared G-A pairs that can ratio- example, the model predicted that very long primer-tem-
nalize previous data on the polymerase ribozyme showing plate duplexes (analogous to long extensions of P1) would
the dramatic effect of GA nucleotides in the extended sub- not clash with the ribozyme core. Indeed, the polymerase
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ribozyme that emerged from these experiments was able to
accommodate very long primer-template duplexes, making
it a promising starting point for the eventual demonstration
of RNA-catalyzed RNA replication.

MATERIALS AND METHODS

Ribozyme and substrate RNAs

The class I ligase ribozyme (GenBank no. U26413) was transcribed
in vitro from a plasmid template linearized with EarI as described
previously (Bergman et al. 2000). Transcripts were purified on 6%
polyacrylamide/8 M urea gels and stored in water at -20°C. The
RNA components of ligases containing breaks in either L5 or L7
were transcribed from synthetic DNA templates and purified in
10% polyacrylamide/8 M urea gels.

The ribozyme fragment with a single 4-thiouridine residue
(fragment A) was prepared as follows: a synthetic DNA template
for transcribing the 5'-terminal 52 nt (fragment Al) of fragment
A was synthesized by standard phosphoramidite chemistry, except
that 2-O-methyl phosphoramidites were used for the last two po-
sitions of the template to reduce the heterogeneity at the 3'-end of
the RNA typical of RNA transcribed in vitro (Kao et al. 1999).
Radiolabeled fragment Al RNA was prepared by adding [33 P]ot-
UTP to the transcription reaction. The 3'-terminal 11 nt of frag-
ment A (fragment A2) was purchased as an RNA oligonudeotide
(5'-GAACAUUCC-[4SU]-U, Dharmacon Research). It included a
terminal U nucleotide because 4SU-Controlled Pore Glass support
beads were not available. Fragments Al and A2 were ligated to
form fragment A as follows: fragment Al (12 iM), fragment A2
(32 FM), and a 20-nt-long DNA oligonucleotide that spans the
junction of fragments Al and A2 (24 iM) were heated to 80°C in
1 mM EDTA and 10 mM Tris-HC1 (pH 7.5) for 2 min and allowed
to cool slowly to room temperature (Moore and Sharp 1992). T4
DNA ligase buffer, 60 ,tM ATP, and 3.7 units/tL of T4 DNA ligase
(USB) were added, and the ligation reaction was incubated over-
night in the dark at room temperature. Fully ligated products were
separated in 10% polyacrylamide/8 M urea gels. Ligation efficiency
was -60%, about twice that seen when fragment A was transcribed
from a DNA template that lacked the 2'-methoxy substitutions.

The substrate for the ribozyme reaction was a synthetic RNA-
DNA hybrid (5'-aaaCCAGUC, DNA bases lowercase; Bergman et
al. 2000). It was radiolabeled using T4 polynudeotide kinase and
either [3 2 P]y-ATP or [3 3P]y-ATP (NEN). When substrate was
used for cross-linking experiments, an additional 15-min "chase"
phosphorylation reaction containing excess unlabeled ATP was
performed to ensure that nearly all substrate molecules had a
5'-phosphate. RNA concentrations were measured spectrophoto-
metrically at 260 nm, assuming an extinction coefficient that was
the sum of those for the individual nucleotides.

Ribozyme assays

Ribozyme reactions in which the parent ligase and derivatives were
compared were performed in 50 mM MES (pH 6.0), 60 mM
MgCI2 , 200 mM KC1, and 600 [tM EDTA at 22°C. In all cases, the
ribozyme was heated (80"C, 2 min, in H,20) and then cooled
(22"C, 2 min) just prior to initiation of the reaction. Ligation

reactions were initiated by addition of buffer, salts, and trace 32P-
labeled substrate. Aliquots were taken at appropriate time points
and added to 2 volumes stop solution containing 120 mM EDTA
and 8 M urea. Product and substrate were separated using 20%
polyacrylamide gels and quantified by phosphorimaging. Ligation
rates were calculated as described previously (Bergman et al.
2000).

Hydroxyl-radical probing

About 30% of the ligase molecules were not active upon initial
folding (Schmitt and Lehman 1999; Bergman et al. 2000). To avoid
probing the fold of misfolded ribozymes, ligase molecules were
incubated with radiolabeled substrate, so that those that had as-
sumed the active fold acquired the radiolabel and became visible in
our analysis. Ribozyme (1 iM final concentration) was incubated
with trace radiolabeled substrate (<100 nM final concentration) in
buffer containing 50 mM BES (pH 7.0), 10 mM MgCl2, 200 mM
KCI, and 0.1 mM EDTA. The ribozyme was heated (80°C, 2 min,
in H 2 0O) and then cooled (22"C, 2 min) just prior to initiation of
the reaction. Ligation reactions were incubated for 10 min at 22°C,
at which point the reaction was diluted 10-fold into 50 mM BES
(pH 7.0) buffer with MgCl 2 sufficient to bring the concentration of
Mg + to that indicated. When a final concentration of 0 mM
Mg"+ was desired, the RNA was diluted 10-fold into a solution
containing 50 mM BES (pH 7.0) and 5 mM EDTA.

Labeled ligation product was subjected to hydroxyl-radical
cleavage by adding to the RNA solution 0.1 volumes of a solution
containing 20 mM (NH4 )2Fe(II)(SO 4 )2 , 20 mM ascorbic acid, and
22 mM EDTA. Solutions of (NH4) 2Fe(II)(SO 4 )2 and ascorbic acid
were prepared fresh before each experiment. Cleavage reactions
were typically for 15 min at 22°C. For probing at other tempera-
tures, the RNA was also allowed to equilibrate for 15 min at the
desired temperature prior to addition of the Fe/Ascorbate/EDTA
solution. In the range of 10"C-60"C, changing temperature did not
noticeably affect the overall extent of cleavage. After addition of 2
volumes of a solution containing 8 M urea and 25 mM EDTA,
cleaved RNAs were separated in 10% polyacrylamide gels and
quantified by phosphorimaging (BAS2000, Fuji). Because a single
gel provided accurate data on only -50 nt, reactions were typically
loaded several times and electrophoresed for times ranging from
45 min to 4 h to access most portions of the ribozyme. Individual
positions were identified by comparison to partial alkaline hydro-
lysis and partial RNase T1 digestion ladders. Cleavage at each
position was normalized to allow for differences in gel loading and
cleavage efficiency (although cleavage was always done at levels in
which a very small percentage of the ligase molecules were
cleaved), and protection factors were calculated for nt 7-115. A
protection factor was defined as the amount of cleavage at position
N under denaturing conditions (60"C, 0 mM Mg+) divided by
the amount of cleavage at position N under folded or experimental
conditions (Pan 1995). The level of protection usually varied less
than 30% from day to day, and the same positions were protected
in each experiment.

Modeling of the class I ligase

Molecular modeling was performed as described previously (Wes-
thof 1993; Massire and Westhof 1998), using the programs
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MANIP with FRAGMENT. The model was refined with the re-
strained least-squares program NUCLIN-NUCLSQ. Figures were
produced using the program DRAWNA (Massire et al. 1994). The
coordinates of the modeled structure of the ribozyme have been
deposited in the Protein Data Bank and are available under acces-
sion number 1QXI (RCSB020188).

Isolation and mapping of active,
4SU-cross-linked ribozymes

The 4SU cross-linking agent was chosen because it has been used
successfully in a variety of settings (Sontheimer and Steitz 1993;
Dontsova et al. 1994; Christian and Harris 1999) and because it
generates photo-dependent cross-links without a long linker arm
(for review, see Favre et al. 1998). A 4SU was appended to the 3'
end of the upstream half of the ribozyme (fragment A), and the
phosphates were removed from the downstream half of the ribo-
zyme (fragment B; Fig. 4A). Full ribozymes were assembled by
mixing equimolar fragment A and fragment B RNAs, then heating
to 80°C in water and cooling to 220C. Reaction buffer (10 mM
MgC12, 200 mM KC, 600 [aM EDTA, and 50 mM MES at pH 7.0)
was added (bringing the ribozyme concentration to 1.2 pM), and
solutions containing split ribozymes were then placed in a mi-
crotiter plate that was cooled to 4C and irradiated with a UV
transilluminator (UVP) set at 302 nM. A polystyrene petri dish
was used to filter out wavelengths lower than 300 nM. After irra-
diation for 1 h, 33P-labeled substrate was added (200 nM final
concentration) and ribozymes were allowed to react for 1 h in the
dark at room temperature. Note that this substrate was prepared
with a final phosphorylation step using an excess of unlabeled ATP
to block the free 5'-OH of the substrate. After allowing the ligation
reaction to proceed for 1 h at 220C, 2 volumes of a stop solution
containing 8 M urea and 25 mM EDTA were added, and the RNAs
were resolved in a 10% or 12% polyacrylamide/8 M urea gel.
Control experiments were performed in parallel omitting irradia-
tion and/or the 4SU substitution.

When the 4SU-containing ribozyme mixture was analyzed fol-
lowing irradiation, five bands were detected above the major band
corresponding to the uncross-linked, reacted ribozyme (Fig. 4B,
lane 4). Quantitation of the five bands indicated that each band
contained approximately the same amount of radioactivity, and
each was less than 1% of counts corresponding to the uncross-
linked, ligated product. Two of the five bands were observed in the
control reaction in which UV irradiation was omitted (Fig. 4B,
lane 2), and the counts from these bands did not increase with
irradiation. No bands were seen in control lanes showing ribo-
zymes constructed without a 4SU residue, so it appeared that the
three slowest migrating bands contained UV- and 4SU-dependent
cross-links. All five cross-linked RNAs were excised from the gel,
eluted, and precipitated in ethanol and then used as substrates in
a kinase reaction, this time using [3 2P]-yATP instead of [33P]_
yATP. This second radiolabeling identified products that cross-
linked to the downstream RNA strand (fragment B), because only
this type of cross-link would contain a free 5'-hydroxyl for label-
ing.

Only one of the five isolated RNAs was efficiently radiolabeled
(Fig. 4C, lane iii), and this product was purified from a 6% poly-
acrylamide/8 M urea gel. Inactive, cross-linked molecules should
migrate differently in gels of different acrylamide percentages, so

changing the gel percentage between the first and second purifi-
cations allowed the active cross-linked ribozymes to be better
separated from inactive molecules. The relabeled product was then
subjected to partial alkaline hydrolysis, and this reaction was run
in a 10% polyacrylamide/8 M urea gel (Fig. 4D). The point at
which cross-linking occurred was mapped by comparison to par-
tial alkaline hydrolysis and partial RNase T1 ladders generated
from uncross-linked fragment B labeled with [3 2 P]y-ATP (Fig.
4D).
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that most animal
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individual genes
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e n o me By Nelson C. Lau and David P. Bartel

bserved on a microscope slide,
a living cell appears serene. But underneath its tranquil facade, it buzzes
with biochemical chatter. The DNA genome inside every cell of a plant
or animal contains many thousands of genes. Left to its own devices,
the transcription machinery of the cell would express
every gene in the genome at once: unwinding the DNA
double helix, transcribing each gene into single-strand-
ed messenger RNA and, finally, translating the RNA
messages into their protein forms.

No cell could function amid the resulting cacoph-
ony. So cells muzzle most genes, allowing an appro-
priate subset to be heard. In most cases, a gene's DNA
code is transcribed into messenger RNA only if a par-
ticular protein assemblage has docked onto a special
regulatory region in the gene.

Some genes, however, are so subversive that they
should never be given freedom of expression. If the
genes from mobile genetic elements were to success-
fully broadcast their RNA messages, they could jump
from spot to spot on the DNA, causing cancer or oth-
er diseases. Similarly, viruses, if allowed to express
their messages unchecked, will hijack the cell's protein
production facilities to crank out viral proteins.

Cells have ways of fighting back. For example, bi-
ologists long ago identified a system, the interferon re-
sponse, that human cells deploy when viral genes enter
a cell. This response can shut off almost all gene ex-
pression, analogous to stopping the presses. And just
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within the past several years, scientists have discovered
a more precise and-for the purposes of research and
medicine-more powerful security apparatus built into
nearly all plant and animal cells. Called RNA interfer-
ence, or RNAi, this system acts like a censor. When a
threatening gene is expressed, the RNAi machinery si-
lences it by intercepting and destroying only the of-
fender's messenger RNA, without disturbing the mes-
sages of other genes.

As biologists probe the modus operandi of this cel-
lular censor and the stimuli that spur it into action, their
fascination and excitement are growing. In principle,
scientists might be able to invent ways to direct RNA
interference to stifle genes involved in cancer, viral in-
fection or other diseases. If so, the technology could
form the basis for a new class of medicines.

Meanwhile researchers working with plants,
worms, flies and other experimental organisms have al-
ready learned how to co-opt RNAi to suppress nearly
any gene they want to study, allowing them to begin to
deduce the gene's purpose. As a research tool, RNAi
has been an immediate success, allowing hundreds of
laboratories to tackle questions that were far beyond
their reach just a few years ago.
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PURPLE PETUNIAS offered the first clues to the existence of gene censors
in plants. When extra pigment genes were inserted into normal plants
[left], the flowers that emerged ended up with areas that strangely
lacked color (center and right].

Whereas most research groups are using RNA interference
as a means to an end, some are investigating exactly how the
phenomenon works. Other labs (including our own) are un-
covering roles for the RNAi machinery in the normal growth and
development of plants, fungi and animals-humans among them.

A Strange Silence
THE FIRST HINTS of the RNAi phenomenon surfaced 13 years
ago. Richard A. Jorgensen, now at the University of Arizona,
and, independently, Joseph Mol of the Free University of Am-
sterdam inserted into purple-flowered petunias additional copies
of their native pigment gene. They were expecting the engineered
plants to grow flowers that were even more vibrantly violet. But
instead they obtained blooms having patches of white.

Jorgensen and Mol concluded that the extra copies were
somehow triggering censorship of the purple pigment genes-
including those natural to the petunias-resulting in variegated
or even albino-like flowers. This dual censorship of an inserted
gene and its native counterpart, called co-suppression, was lat-
er seen in fungi, fruit flies and other organisms.

Clues to the mystery of how genes were being silenced came
a few years later from William G. Dougherty's lab at Oregon
State University. Dougherty and his colleagues started with to-
bacco plants that had been engineered to contain within their

verview/ ", . .. ...I .. 
* Scientists have long had the ability to introduce altered

genes into experimental organisms. But only within the

past few years have they discovered a convenient and

effective way to turn off a specific gene inside a cell.

· It turns out that nearly all plant and animal cells have

internal machinery that uses unusual forms of RNA, the
genetic messenger molecule, to naturally silence

particular genes.

* This machinery has evolved both to protect cells from

hostile genes and to regulate the activity of normal genes

during growth and development. Medicines might also be

developed to exploit the RNA interference machinery to
prevent or treat diseases.
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DNA several copies of the CP (coat protein) gene from tobacco
etch virus. When these plants were exposed to the virus, some
of the plants proved immune to infection. Dougherty proposed
that this immunity arose through co-suppression. The plants ap-

parently reacted to the initial expression of their foreign CP
genes by shutting down this expression and subsequently also
blocking expression of the CP gene of the invading virus (which
needed the coat protein to produce an infection). Dougherty's
lab went on to show that the immunity did not require synthe-
sis of the coat protein by the plants; something about the RNA
transcribed from the CP gene accounted for the plants' resistance
to infection.

The group also showed that not only could plants shut off
specific genes in viruses, viruses could trigger the silencing of se-
lected genes. Some of Dougherty's plants did not suppress their
CP genes on their own and became infected by the virus, which
replicated happily in the plant cells. When the researchers later
measured the RNA being produced from the CP genes of the af-
fected plants, they saw that these messages had nearly van-
ished-infection had led to the CP genes' inactivation.

Meanwhile biologists experimenting with the nematode
Caenorhabditis elegans, a tiny, transparent worm, were puzzling
over their attempts to use "antisense" RNA to inactivate the
genes they were studying. Antisense RNA is designed to pair up
with a particular messenger RNA sequence in the same way that
two complementary strands of DNA mesh to form a double he-
lix. Each strand in DNA or RNA is a chain of nucleotides, ge-
netic building blocks represented by the letters A, C, G and ei-
ther U (in RNA) or T (in DNA). C nucleotides link up with Gs,

and As pair with Us or Ts. A strand of antisense RNA binds to
a complementary messenger RNA strand to form a double-
stranded structure that cannot be translated into a useful protein.

Over the years, antisense experiments in various organisms
have had only spotty success. In worms, injecting antisense RNAs

seemed to work. To everyone's bewilderment, however, "sense"
RNA also blocked gene expression. Sense RNA has the same se-
quence as the target messenger RNA and is therefore unable to
lock up the messenger RNA within a double helix.

The stage was now set for the eureka experiment, performed
five years ago in the labs of Andrew Z. Fire of the Carnegie In-
stitution of Washington and Craig C. Mello of the University of
Massachusetts Medical School. Fire and Mello guessed that the
previous preparations of antisense and sense RNAs that were
being injected into worms were not totally pure. Both mixtures
probably contained trace amounts of double-stranded RNA. They
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suspected that the double-stranded RNA was alerting the censors.
To test their idea, Fire, Mello and their colleagues inoculat-

ed nematodes with either single- or double-stranded RNAs that
corresponded to the gene unc-22, which is important for muscle
function. Relatively large amounts of single-stranded unc-22
RNA, whether sense or antisense, had little effect on the nema-
todes. But surprisingly few molecules of double-stranded unc-22
RNA caused the worms-and even the worms' offspring-to
twitch uncontrollably, an unmistakable sign that something had
started interfering with unc-22 gene expression. Fire and Mello
observed the same amazingly potent silencing effect on nearly
every gene they targeted, from muscle genes to fertility and via-
bility genes. They dubbed the phenomenon "RNA interference"
to convey the key role of double-stranded RNA in initiating cen-
sorship of the corresponding gene.

Investigators studying plants and fungi were also closing
in on double-stranded RNA as the trigger for silencing. They
showed that RNA strands that could fold back on themselves
to form long stretches of double-stranded RNA were potent in-
ducers of silencing. And other analyses revealed that a gene that
enables cells to convert single-stranded RNA into double-
stranded RNA was needed for co-suppression. These findings
suggested that Jorgensen and Mol's petunias recognized the ex-
tra pigment genes as unusual (through a mechanism that is still

, % - _ :FEWI

GLOWING NEMATODES proved that RNA interference operates in animals
as well as plants. When worms whose cells express a gene for a fluorescent
protein (left] were treated with double-stranded RNA correspondingto the
gene, the glow was extinguished (right].

normal and viral-and the enzyme RNAse L indiscriminately
destroys the messenger RNAs. These responses to double-
stranded RNA are considered components of the so-called in-
terferon response because they are triggered more readily after
the cells have been exposed to interferons, molecules that in-
fected cells secrete to signal danger to neighboring cells.

Unfortunately, when researchers put artificial double-strand-
ed RNAs (like those used to induce RNA interference in worms
and flies) into the cells of mature mammals, the interferon re-
sponse indiscriminately shuts down every gene in the cell. A
deeper understanding of how RNA interference works was
needed before it could be used routinely without setting off the
interferon alarms. In addition to the pioneering researchers al-

MOLECULES-

1. TWITCH UNCONTROLLABLY,. ., ,

...... TWITCH UNCONTROLLABL,
mysterious) and converted their messenger RNAs into double-
stranded RNA, which then triggered the silencing of both the
extra and native genes. The concept of a double-stranded RNA
trigger also explains why viral infection muzzled the CP genes
in Dougherty's plants. The tobacco etch virus had created dou-
ble-stranded RNA of its entire viral genome as it reproduced,
as happens with many viruses. The plant cells responded by cut-
ting off the RNA messages of all genes associated with the virus,
including the CP genes incorporated into the plant DNA.

Biologists were stunned that such a powerful and ubiquitous
system for regulating gene expression had escaped their notice
for so long. Now that the shroud had been lifted on the phe-
nomenon, scientists were anxious to analyze its mechanism of
action and put it to gainful employment.

Sicing and icing Genetfic Messages
RNA INTERFERENCE was soon observed in algae, flarworms
and fruit flies-diverse branches of the evolutionary tree.
Demonstrating RNAi within typical cells of humans and other
mammals was considerably trickier, however.

When a human cell is infected by viruses that make long dou-
ble-stranded RNAs, it can slam into lockdown mode: an enzyme
known as PKR blocks translation of all messenger RNAs-both
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ready mentioned, Thomas Tuschl of the Rockefeller University,
Phillip D. Zamore of the University of Massachusetts Medical
School, Gregory Hannon of Cold Spring Harbor Laboratory
in New York State and many others have added to our current
understanding of the RNA interference mechanism.

RNAi appears to work like this: Inside a cell, double-
stranded RNA encounters an enzyme dubbed Dicer. Using the
chemical process of hydrolysis, Dicer cleaves the long RNA into
pieces, known as short (or small) interfering RNAs, or siRNAs.
Each siRNA is about 22 nucleotides long.

Dicer cuts through both strands of the long double-strand-
ed RNA at slightly staggered positions so that each resulting
sitRNA has two overhanging nucleotides on one strand at either

NELSON C. LAU and DAVID P. BARTEL have been studying microRNAs
and other small RNAs that regulate the expression of genes. Lau is

completing a doctoral degree at the Whitehead Institute and the
Massachusetts Institute of Technology. Bartel started his research
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Harvard University. Bartel is also an associate professor at M.I.T.
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end [see box above]. The siRNA duplex is then unwound, and
one strand of the duplex is loaded into an assembly of proteins
to form the RNA-induced silencing complex (RISC).

Within the silencing complex, the siRNA molecule is posi-
tioned so that messenger RNAs can bump into it. The RISC will
encounter thousands of different messenger RNAs that are in
a typical cell at any given moment. But the siRNA of the RISC
will adhere well only to a messenger RNA that closely com-
plements its own nucleotide sequence. So, unlike the interferon
response, the silencing complex is highly selective in choosing
its target messenger RNAs.

When a matched messenger RNA finally docks onto the
siRNA, an enzyme known as Slicer cuts the captured messen-
ger RNA strand in two. The RISC then releases the two mes-
senger RNA pieces (now rendered incapable of directing pro-
tein synthesis) and moves on. The RISC itself stays intact, free
to find and cleave another messenger RNA. In this way, the
RNAi censor uses bits of the double-stranded RNA as a black-
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list to identify and mute corresponding messenger RNAs.
David C. Baulcombe and his co-workers at the Sainsbury

Laboratory in Norwich, England, were the first to spot siRNAs,
in plants. Tuschl's group later isolated them from fruit fly em-
bryos and demonstrated their role in gene silencing by synthe-
sizing artificial siRNAs and using them to direct the destruction
of messenger RNA targets. When that succeeded, Tuschl won-
dered whether these short snippets of RNA might slip under the
radar of mammalian cells without setting off the interferon re-
sponse, which generally ignores double-stranded RNAs that are
shorter than 30 nucleotide pairs. He and his co-workers put syn-
thetic siRNAs into cultured mammalian cells, and the experi-
ment went just as they expected. The target genes were silenced;
the interferon response never occurred.

Tuschl's findings rocked the biomedical community. Ge-
neticists had long been able to introduce a new gene into mam-
malian cells by, for example, using viruses to ferry the gene into
cells. But it would take labs months of labor to knock out a gene
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A CELL CAN CENSOR the expression of an individual gene inside it by
interfering with the messenger RNA (mRNA) transcribed from the

offending gene, thus preventingthe RNA from being decoded by
ribosomes into active protein, as normally happens [left panel). The
censorship machinery is triggered by small, double-stranded RNA
molecules with ragged ends. An enzyme called Dicer chemically snips

such short interfering RNAs [siRNAs] from longer double-stranded RNAs
produced by self-copying genetic sequences la) or viruses b).
Regulatory RNA sequences known as microRNA precursors (c] are also

cleaved by Dicer into this short form. And scientists can use lipid
molecules to insert artificial siRNAs into cells (d].

The RNA fragments separate into individual strands [bottom panel),
which combine with proteins to form an RNA-induced silencing complex

[RISC). The RISC then captures mRNA that complements the short RNA

sequence. If the match is essentially perfect, the captive message is

sliced into useless fragments (top row); less perfect matches elicit a

different response. For instance, they may cause the RISC to block
ribosome movements and thus halt translation of the message into

protein form bottom row).
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of interest to ascertain the gene's function. Now the dream of
easily silencing a single, selected gene in mammalian cells was
suddenly attainable. With siRNAs, almost any gene of interest
can be turned off in mammalian cell cultures-including human
cell lines-within a matter of hours. And the effect persists for
days, long enough to complete an experiment.

A Dream Tool
AS HELPFUL AS RNA interference has become to mammal bi-
ologists, it is even more useful at the moment to those who study
lower organisms. A particular bonus for those studying worms
and plants is that in these organisms the censorship effect is am-
plified and spread far from the site where the double-stranded
RNA was introduced. This systemic phenomenon has allowed
biologists to exploit RNAi in worms simply by feeding them bac-
teria engineered to make double-stranded RNA corresponding
to the gene that should be shut down.

Because RNA interference is so easy to induce and yet so
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powerful, scientists are thinking big. Now that complete ge-
nomes-all the genes in the DNA-have been sequenced for a
variety of organisms, scientists can use RNA interference to ex-
plore systematically what each gene does by turning it off. Re-
cently four groups did just that in thousands of parallel exper-
iments, each disabling a different gene of C. elegans. A similar
genome-wide study is under way in plants, and several consor-
tia are planning large RNAi studies of mammalian cells.

RNA interference is being used by pharmaceutical compa-
nies as well. Some drug designers are exploiting the effect as a
shortcut to screen all genes of a certain kind in search of promis-
ing targets for new medicines. For instance, the systematic si-
lencing of genes using RNAi could allow scientists to find a gene
that is critical for the growth of certain cancer cells but not so
important for the growth of normal cells. They could then de-
velop a drug candidate that interferes with the protein product
of this gene and then test the compound against cancer. Biotech
firms have also been founded on the bet that gene silencing by
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MICE LIGHT UP when injected with DNA containing the luciferase gene (left].
But scientists took the shine off the mice by also injecting siRNAs that match
the gene (right], thus demonstrating one way to exploit RNAi in mammals.

RNAi could itself become a viable therapy to treat cancer, viral
infections, certain dominant genetic disorders and other dis-
eases that could be controlled by preventing selected genes from
giving rise to illness-causing proteins.

Numerous reports have hinted at the promise of siRNAs for
therapy. At least six labs have temporarily stopped viruses-
HIV, polio and hepatitis C among them-from proliferating in
human cell cultures. In each case, the scientists exposed the cells
to siRNAs that prompted cells to shut down production of pro-
teins crucial to the pathogens' reproduction. More recently,
groups led by Judy Lieberman of Harvard Medical School and
Mark A. Kay of the Stanford University School of Medicine
have reported that siRNAs injected under extremely high pres-
sure into mice slowed hepatitis and rescued many of the animals
from liver disease that otherwise would have killed them.

Despite these laboratory successes, it will be years before

therapy. A novel gene that produces a particular siRNA might
be loaded into a benign virus that will then bring the gene into
the cells it infects. Beverly Davidson's group at the University
of Iowa, for example, has used a modified adenovirus to deliv-
er genes that produce siRNAs to the brain and liver of mice.
Gene therapy in humans faces technical and regulatory diffi-
culties, however.

Regardless of concerns about delivery, RNAi approaches
have generated an excitement not currently seen for antisense
and catalytic RNA techniques-other methods that, in princi-
ple, could treat disease by impeding harmful messenger RNAs.
This excitement stems in part from the realization that RNA in-
terference harnesses natural gene-censoring machinery that
evolution has perfected over time.

Why Cells Have Censors
INDEED, THE GENE-CENSORING mechanism is thought to
have emerged about a billion years ago to protect some com-
mon ancestor to plants, animals and fungi against viruses and
mobile genetic elements. Supporting this idea, the groups of
Ronald H. A. Plasterk at the Netherlands Cancer Institute and
of Herv6 Vaucheret at the French National Institute of Agri-
cultural Research have shown that modern worms rely on RNA
interference for protection against mobile genetic elements and
that plants need it as a defense against viruses.

Yet RNA interference seems to play other biological roles as
well. Mutant worms and weeds having an impaired Dicer en-
zyme or too little of it suffer from numerous developmental de-
fects and cannot reproduce. Why should a Dicer deficiency cause
animals and plants to look misshapen?

One hypothesis is that once nature developed such an effec-
tive mechanism for silencing the subversive genes in viruses and
mobile DNA sequences, it started borrowing tools from the
RNAi tool chest and using them for different purposes. Each cell
has the same set of genes-what makes them different from one
another is which genes are expressed and which ones are not.

: - STOPPED VIRUSES --

IN HUMAN CELLS
RNAi-based therapies can be used in hospitals. The most diffi-
cult challenge will probably be delivery. Although the RNAi ef-
fect can spread throughout a plant or worm, such spreading
does not seem to occur in humans and other mammals. Also,
siRNAs are very large compared with typical drugs and cannot
be taken as pills, because the digestive tract will destroy them
rather then absorb them. Researchers are testing various ways
to disseminate siRNAs to many organs and to guide them
through cells' outer membranes. But it is not yet clear whether
any of the current strategies will work.

Another approach for solving the delivery problem is gene

Most plants and animals start as a single embryonic cell that di-
vides and eventually gives rise to a multitude of cells of various
types. For this to occur, many of the genes expressed in the em-
bryonic cells need to be turned off as the organ matures. Other
genes that are off need to be turned on. When the RNAi ma-
chinery is not defending against attack, it apparently pitches in
to help silence normal cellular genes during developmental tran-
sitions needed to form disparate cell types, such as neurons and
muscle cells, or different organs, such as the brain and heart.

What then motivates the RNAi machinery to hush particu-
lar normal genes within the cell? In some cases, a cell may nat-
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Investigating the use of RNAi-based therapies
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Attempting to chemically modify siRNAs to make drugs
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Testing a catalytic RNA medicine for advanced
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With Texas-based Ambion, Cenix is creating
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human genome

Clinical trials in brain cancer patients
are expected to begin this year

Changed name from Ribozyme Pharmaceuticals
in April; recently secured $48 million
in venture capital

urally produce long double-stranded RNA specifically for this
purpose. But frequently the triggers are "microRNAs"-small
RNA fragments that resemble siRNAs but differ in origin. Where-
as siRNAs come from the same types of genes or genomic regions
that ultimately become silenced, microRNAs come from genes
whose sole mission is to produce these tiny regulatory RNAs.

The RNA molecule initially transcribed from a microRNA
gene-the microRNA precursor-folds back on itself, forming
a structure that resembles an old-fashioned hairpin. With the
help of Dicer, the middle section is chopped out of the hairpin,
and the resulting piece typically behaves very much like an
siRNA-with the important exception that it does not censor
a gene with any resemblance to the one that produced it but in-
stead censors some other gene altogether.

As with the RNAi phenomenon in general, it has taken biol-
ogists time to appreciate the potential of microRNAs for regu-
lating gene expression. Until recently, scientists knew of only two
microRNAs, called lin-4 RNA and let-7 RNA, discovered by the
groups of Victor Ambros of Dartmouth Medical School and
Gary Ruvkun of Harvard Medical School. In the past two years
we, Tuschl, Ambros and others have discovered hundreds of ad-
ditional microRNA genes in worms, flies, plants and humans.

With Christopher Burge at M.I.T., we have estimated that
humans have between 200 and 255 microRNA genes-nearly
1 percent of the total number of human genes. The microRNA
genes had escaped detection because the computer programs de-
signed to sift through the reams of genomic sequence data had
not been trained to find this unusual type of gene, whose final
product is an RNA rather than a protein.

Some microRNAs, particularly those in plants, guide the slic-
ing of their mRNA targets, as was shown by James C. Carring-
ton of Oregon State University and Zamore. We and Bonnie
Bartel of Rice University have noted that plant microRNAs take
aim primarily at genes important for development. By clearing
their messages from certain cells during development, RNAi
could help the cells mature into the correct type and form the
proper structures.
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Interestingly, the lin-4 and let-7 RNAs, first discovered in
worms because of their crucial role in pacing development, can
employ a second tactic as well. The messenger RNAs targeted
by these microRNAs are only approximately complementary to
the microRNAs, and these messages are not cleaved. Some oth-
er mechanism blocks translation of the messenger RNAs into
productive proteins.

Faced with these different silencing mechanisms, biologists
are keeping open minds about the roles of small RNAs and the
RNAi machinery. Mounting evidence indicates that siRNAs not
only capture messenger RNAs for destruction but can also direct
the silencing of DNA-in the most extreme case, by literally edit-
ing genes right out of the genome. In most cases,'however, the
silenced DNA is not destroyed; instead it is more tightly packed
so that it cannot be transcribed.

From its humble beginnings in white flowers and deformed
worms, our understanding of RNA interference has come a long
way. Almost all facets of biology, biomedicine and bioengi-
neering are being touched by RNAi, as the gene-silencing tech-
nique spreads to more labs and experimental organisms.

Still, RNAi poses many fascinating questions. What is the
span of biological processes that RNA interference, siRNAs and
microRNAs influence? How does the RNAi molecular machin-
ery operate at the level of atoms and chemical bonds? Do any
diseases result from defects in the RNAi process and in micro-
RNAs? As these questions yield to science, our understanding
of the phenomenon will gradually solidify-perhaps into a
foundation for an entirely new pillar of genetic medicine. [

RNAi: Nature Abhors a Double-Strand. Gybrgy Hutvagner and Phillip .
Zamore in Current Opinion in Genetics & Development, Vol. 12, No. 2,
pages 225-232; April 2002.
Gene Silencing in Mammals by Small Interfering RNAs. Michael T.
McManus and Phillip A. Sharp in Nature Reviews Genetics, Vol. 3,
pages ?73?-?4?; October 2002.
MicroRNAs: At the Root of Plant Development? Bonnie Bartel and David P.
Bartel in Plant Physiology, Vol. 132, No. 2; pages 709-717; June 2003.
Available at www.plantphgsiol.org/cgi/content/full/132/2/709
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Isolation and Preliminary Survey

of C.elegans miRNA Deletion Mutants
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Despite current knowledge on the gene silencing mechanism of microRNAs

(miRNAs), the biological roles of many individual miRNAs are largely undetermined. The

functions of a few animal miRNAs have been determined through classical genetic studies

of mutants where miRNA expression is perturbed, such as lin-4, let-7, lsy-6, bantam, and

Drosophila mir-14. While miRNA target predictions and validation efforts offer a means

to ascertain miRNA function, the rigorous standard is to disrupt the function of the

miRNA locus and examine the phenotypic consequence. To accelerate the isolation of

miRNA mutants, a reverse-genetic approach was applied to Caenorhabditis elegans, and

over 31 mutants in at least 35 miRNA loci have been isolated. The majority of the mutants

are viable and fertile in the homozygous state, and a preliminary phenotype scan has not

indicated overt defects. Hypothesizing that functional redundancy may be masking

deficiencies; the generation of mutants with multiple disrupted miRNA loci has been

initiated. Preliminary analysis of such multiple knock-out mutants suggests defects may be

revealed in such animals.

A few genetic screens have successful identified miRNA mutants, but the particular

phenotype targeted by each screen has been dissimilar. Screens that examined properly-timed

cell divisions identified the heterochronic miRNAs, lin-4 and let-7 [1, 2], while a screen

examining the loss of asymmetric expression of a GFP-tagged neuronal gene uncovered the sy-

6 miRNA [3]. A screen for Drosophila melanogaster larvae with abnormally large sizes allowed

for the isolation of bantam [4, 5], while D.m. mir-14 was found in a modifier screen looking for

mutations that enhance the small-eye phenotype in a transgenic fly overexpressing the Rpr gene

in the eye [6]. Because these miRNA mutants exhibit rather diverse phenotypes (evidenced by

different genetic screens that allow for isolation of the mutants), it would be difficult to direct a
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particular genetic screen to obtain mutants targeted against the miRNA gene class alone. With

the C.elegans genome practically sequenced, miRNA loci can be easily mapped, but correlation

of genetically-mapped mutants to the physical map of miRNA loci has not particularly revealed

many additional miRNA mutants.

A direct method to isolate mutants in miRNA genes is to employ reverse genetics.

Although homologous recombination techniques have not been optimized for C.elegans, the

small size, quick life-span, and simplicity in culturing allows for the generation of a library of

randomly mutagenized animals which can then be screened for the deletion of interest. Various

methods for constructing libraries of mutagenized worms have been described previously [7-10],

but because generating and screening such libraries is such an intensive effort, a C.elegans

knock-out consortium was established to streamline the process of generating mutant worms for

the scientific community. To expedite the hunt for miRNA mutants without the assistance of the

C.elegans knock-out consortium, it was decided that a library would be generated and screened

in-house, with the efforts from collaborations between me from the Bartel lab, Allison Abbot

from the Ambros lab, and Ezequiel Alvarez-Saavedra and Eric Miska from the Horvitz lab.

A library of 7x106 mutagenized genomes was constructed using a method originally

optimized by the Koelle lab [8] and enhanced in the Horvitz lab with the use of robotic liquid

handling. A conceptual diagram of the library construction process is illustrated in Figure 1.

Worms in the LA stage are first mutagenized with ethyl methanesulfonate (EMS), which usually

causes point mutations but can also induce a varying degree of deletions [11]. The mutagenized

parental worms (Po) self-fertilize to yield progeny (F1) that are synchronized after hatching by

starvation at the L1 arrest. The F1 progeny are then distributed into several microtiter dishes

with food (-20 worms per well), and allowed to self-fertilize again to yield a final distribution of
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F2 progeny. Growth and synchronization of starved F2 worms are all achieved in the microtiter

dishes placed within a humified box. Waiting for the production of F2 progeny increases the

chances that a screened deletion candidate can be represented in a heterozygous form even if the

deleted gene is lethal or sterilizes the animal. The library of starved F2 larvae are then divided in

half, where one half is processed with cryoprotectant for live freezing of worms. The other half

of the worm library is then lysed, and a half of the lysate is refined into a genomic DNA prep, for

which both are archived by freezing. The library generated in this collaboration took almost 6

months to complete with the aid of a customized Tecan Genesis Liquid Handler, and will be

referred to as the V3 (version 3) library.

Screening the library for deletions was accomplished by large scale, microtiter-well PCR

amplification of samples and then resolving the reactions by agarose electrophoresis. The

protocol for PCR screening employs a primary reaction of primers that flank a region of -1500

bp around the miRNA loci, and includes a "poison primer" that base pairs to the miRNA

precursor sequence [12] (Figure 2A). Cycling conditions are designed to favor small amplicons,

such as those derived from the desired genomic deletion, or from the extension of the poison

primer base-pairing to the wild-type template. Even though favored deletion templates will be

far outnumbered in the background of wild-type templates, the secondary PCR using nested

primers will only allow the deletion amplicon to be further amplified because most of the wild-

type amplicons have been generated from the poison primer, which lack a site for a nested

primer and are diluted in the course of setting up the secondary PCR [12]. Each PCR per well

samples at least 4000 genomes, and screens are generally conducted on >1500 wells by cycling

the reactions at 10 gL volumes in 384-well plates. When secondary PCRs are resolved on

agarose gels, a visual scan of the products sometimes indicates a deletion band (Figure 2B).
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Candidate wells are retested several times, and amplicons are sequenced to confirm a gene-

specific deletion. When a deletion amplicon has been verified, the well of live frozen worms

with the corresponding address of the detected amplicon is thawed. Individual worms are

isolated and after progeny are produced, the parents are screened by PCR for the individual

worm harboring the deleted loci.

To assess how amenable the reverse genetics approach would be in yielding deletions in

miRNAs residing in different genomic contexts, a pilot effort was initiated against 5 different

miRNA loci (Phase I, Table 1). The successful screening of deletion amplicons for each of the 5

miRNA loci convinced us to enlarge the scope of the deletion hunt to include a second phase of

various other miRNA loci targeted for screening of deletions (Phase II, Table 1). Both Phase I

and Phase II screenings were actually performed on the V2 library generated earlier in the

Horvitz lab in the similar manner that the V3 library was generated. Much of the V2 library was

exhausted in the course of screening miRNA-deleted loci of the Phase II effort. When the V3

library was completed, Phase III miRNA loci were included for continued screening and

isolation. In a combined effort of about 6 months, our group has isolated at least 31 mutants in

over 35 miRNA loci (Table 2), and additional mutants are still coming through the screening

pipeline. The size of deletions ranged from 181 bp to 1488 bp, and the average deletion size was

-600 bp. For most mutants targeting a gene cluster, the entire cluster was deleted, except in

strain MT13231, where only mir-38-41 has been deleted but mir-35-37 are still intact, and in

strain MT13016, which only deletes mir-64 but leaves mir-65 and mir-66 intact.

In the course of isolating the various mutants, we were surprised that many deletions

could be so readily homozygosed and such worms appeared normal by cursory inspection (Table

2). Only two strains, MT12944 (mir-50) and MT13011 (mir-79) could not be homozygosed.
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However, these strains have not been appreciably backcrossed against wild-type, so a closely

linked mutation outside the miRNA loci might be preventing the production of homozygous

progeny. The strain MT13443, which deletes the entire mir-35-41 cluster, had been difficult to

self-fertilize and produce progeny because of significant embryonic lethality, however later

backcrossing of this strain has alleviated the general embryonic lethality when cultured at 200 C

[13]. Overall, the majority of miRNA deletion mutants superficially appeared fertile and quite

mobile, a far contrast to the severe morphological defects seen in the heterochronic miRNA

mutants, lin-4 and let-7. For example, abnormal movement and the absence of a vulva occur in

the lin-4 mutant [2, 14, 15], late larval lethality and bursting of the vulva is seen in the let-7

mutant [1], and both lin-4 and let-7 are defective in forming a regular adult cuticle[l, 2, 14, 15].

Such defects have not yet been observed for the other miRNA mutants isolated so far.

To characterize the deletion mutants further, we applied a general battery of simple-to-

perform assays on mutant strains that had been immediately isolated from thaws and thus have

not been backcrossed against wild-type. The battery of assays examined the morphology and

development of the mutants, simple behaviors and neurophysiology, and genetic interactions

(Table 3). Although only a few hints of phenotypic abnormalities have been garnered from the

survey of the mutants, overt defects have generally not been readily detected. Overexpression

of miRNAs through transgenes does not actually require the miRNA mutants but have been

included in the tasks of phenotypic characterization for the reason that gain of function defects

might be observed that would direct the proper focus when characterizing mutants. Such

overexpression studies are on going.

Our current phenotypic survey is broad but cursory, and would have easily missed many

subtle defects that might be imparted by loss of miRNA function. For example, the 1sy-6 mutant
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who misexpresses the gcy-5 gustatory receptor in the ASEL neuron instead of the gcy-7 receptor

would otherwise visibly appear normal, except that the worm would be unable to distinguish

chloride ions from sodium ions [3, 16]. The importance of lsy-6 in nematodes is supported by

the perfect conservation of the miRNA sequence in C.briggsae [3], however even other genetic

screens for chemotaxis mutants have yet to also identify sy-6, suggesting that the defect

imparted by the Isy-6 lesion is extremely subtle and its identification might have depended on

the sophisticated fluorescent tagging of genes downstream in the regulatory network that

establishes neuronal asymmetry. If severe defects seen of lin-4 and let-7 are the exception, then

determining the phenotypes for most other nematode miRNA mutants will demand other

sophisticated measures to inform the investigation. In addition to overexpression studies,

localization of miRNA expression in particular cell types will be a key component towards

dissecting miRNA function.

An alternate rationalization of the absence of overt phenotypes in individual miRNA

mutants would be functional redundancy with other miRNAs, particularly with miRNA family

members that share sequence similarity. Fifteen families containing two or more similar

C.elegans miRNAs exist [17], and deletion mutants have been obtained from at least 12 of these

families (Figure 3A). As experimental evidence increases in support of the hypothesis that

miRNAs primarily utilize the "seed" interaction for target recognition [18-20], the idea that

similar miRNA family members can compensate for deletion of a single miRNA member is

particularly appealing. Further support for functional redundancy is indicated in preliminary

results with double mutants of mir-48, mir-84, and mir-241 deletions which exhibit several

strong developmental defects, but are otherwise normal as single deletion mutants [13]. A

counter-argument to this hypothesis, however, is that the let-7 and lin-4 single mutants exhibit
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strong defects despite the presence of clear paralogs (Figure 3A). Additionally, several other

C.elegans miRNAs that lack any other similar miRNAs have been deleted in mutants (Figure

3B), and it is particularly surprising that some of these "orphan" mutants, like mir-1 and mir-34,

are perfectly conserved between invertebrates and vertebrates, like let-7, so one might have

expected such conservation would affirm a required dependence of mir-1 and mir-34 for normal

worm development. Sorting out the genetic functions of the miRNAs in C.elegans will likely

demand long-term analyses, and may require the isolation of additional miRNA mutants and

generation of additional double and triple mutants.
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Table 1. miF

gene
PHASE I

mir-35/41
mir-42/44
mir-50
mir-52
mir-84

PHASE II
mir-1
mir-2
mir-34
mir-45
mir-48
mir-49
mir-53
mir-70
mir-71
mir-72
mir-79
mir-85
mir-87
mir-91
mir-238
mir-54/56
mir-64-66
mir-73/74
mir-124

PHASE III

mir-237
mir-248
mir-244
mir-228
mir-241 / mir-48
mir-256
mir-234
mir-247
mir-79
mir-50
mir-80 / mir-238
mir-81
mir-82
mir-239a,b
mir-61 / mir-250
mir-232
mir-229
mir-77

INA Loci Selected for Targeted Knock-out Screening
rationale

large gene cluster, interesting expression pattern
gene cluster
within an intron

far away from ORF, very abundant
close to ORF, in let-7 gene family

conserved, homologs have interesting tissue expression
conserved, abundantly expressed
conserved, putative interesting localization
sequence similarity to mir-42/44 cluster
candidate lin-58, let-7family member, temporal expression
higher expression in embryo
sequence similarity to mir-52, could also be very abundant
temporal expression like lin-4
early temporal expression
conservation beyond C.briggsae

conservation beyond C.briggsae
very late larval expression

conservation beyond C.briggsae

conservation beyond C.briggsae

low expression in embryo, high in larvae and adult
gene cluster
gene cluster
gene cluster
conserved, homologs have interesting tissue expression

lin-4 homolog, temporally regulated expression

much higher expression in dauer
mir-9 homolog, Hox cluster location
mir- 124 homolog
let-7 family member, temporal expression, only 1.8 kb away from mir-48

mir-1 homolog
starvation induced expression, homolog of Hs mir-137

interesting L3 / Dauer specific expression
additional mir-79 alleles

additional mir-50 alleles
in bantam gene family, also clustered with mir-238
in bantam gene family
in bantam gene family

gene cluster, same gene family as mir-238

gene cluster
low in embryo, high in larvae and adult
longer miRNA, with longer type of hairpin
GFP reporter expression in the out
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Table 2. Deletion mutants successfully isolated from mutagenized worm
libraries.

mir-79 n4126

strain(s)
MT12954
MT12955
MT12977
MT1 3406

MT1 3433
MT12927
MT12956

MT12944 het
MT12990

MT12945
MT12989
MT12978
MT12979
MT12968

MT12993

MT1 3015

MT13011 het
MT12494,

MT12926 (3x BC)
MT12999

MT13009 het
MT13008 het,

MT13221 homo

MT12958

MT12974

MT12983
MT12969
MT13231

MT1 3443

MT1 3372
MT12988
MT13016
MT1 3078

MT1 3292 (2xBC)

deletion
size
380
825
555
630

1488
293
571

1,000
150
800
805
738
203
343
181

960

387

791

538
615

260
514
682
536
530

1043

1150
1100

150

652
325
212

homozygosed?
yes, viable
yes, viable
yes, viable
yes, viable
yes, viable
yes, viable
yes, viable

no, possibly lethal
yes, viable
yes, viable
yes, viable
yes, viable
yes, viable
yes, viable
yes, viable
yes, viable

no, possibly
sterile

yes, viable
yes, viable
yes, viable

yes, viable
yes, viable
yes, viable
yes, viable
yes, viable
yes, viable
yes, mildly

embryonic lethal
yes, viable
yes, viable
yes, viable
yes, viable
yes, viable
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gene
mir-1
mir-1

mir-2
mir-34
mir-45
mir-48
mir-49
mir-50
mir-52
mir-52
mir-53
mir-70
mir-70
mir-71

mir-71
mir-72

allele
n4101

n4102
n4108

n4276
n4280

n4097
n4103

n4099
n4114

n4100
n4113
n4109
n4110

n4105
n4115

n4130

mir-84
mir-85
mir-87

mir-87
mir-87
mir-91

mir-238
mir-1 46

mir-35/41

mir-35/41
mir-42/44
mir-54/56
mir-64/66
mir-73/74

mir-1 24

n4037
n4117
n4124

n4123
n4104
n4107
n4112
n4106
nDf48

nDf50O

nDf49
nDf45
n4131
nDf47
n4255
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Table 3. Phenotype survey conducted on miRNA mutants
Morphology and Development

General organ formation
Percent viability
Fertility (brood size)
Dauer formation
Embryonic growth
Male tail structure
Egg laying
Pumping
General movement/speed
Intracellular stains (DAPI, lysotracker, mitotracker)
Cellular stains or immunostains (DiO, Dil, MH27 antibody)

Behavior and Neurophysiology
Nose touch response
Osmotic avoidance
Chemotaxis
Body touch response (mechano-sensation)
Defecation
Aldicarb resistance
Ivermectin resistance
Levamisole resistance

Genetics
Transgene overexpression of miRNAs
Double / triple knock-out crosses
RNAi synthetic knockdowns
Cross into col-19::GFP background (seam cell marker)
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Figure Legends

Figure 1. Diagram of the construction of a library of mutagenized worms for deletion screening.

See text for details.

Figure 2. PCR screening for miRNA deletions. (A) Schematic of the mir-84 loci and the design

of nest primers used in screening the library of mutagenized worm genomes. Three sets of

forward primers (L1, L2, L3) and reverse primers (R1, R2, R3) are selected to flank a region of

-1500 bp, while two poison primers (PR, PF) are selected based on complementarity to the

miRNA precursor sequence. The multiple sets of forward and reverse primers are tested in

various combinations to optimize on set of outside and nest primers for the actual PCR screen.

There is a nearby ORF, B0395.1, colored in green. (B) Typical results of a PCR screen, where a

deletion amplicon can be preferentially enriched for detection by agarose electrophoresis. The

wild-type amplicon is 1600 nt long, while the deletion amplicon is 800 nt long.

Figure 3. Families of C.elegans miRNAs for which deletion mutants have been isolated. (A)

Families containing two or more similar miRNA sequences. Orders in the groupings are based

on phylogenetic alignments from [17]. Sequences in red are miRNAs that have been

successfully deleted in nematode mutants. Brackets denote miRNAs that reside in a cluster, and

are often deleted together in the course of isolating the mutant. (B) "Orphan" miRNAs in

C.elegans where no other miRNA in the genome shares sequence similarity.
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Figure 2.

A

mir-84 (CEB0395)

B0395.1 L3

| IF ,,

PR PF

mir-84

I

I
2500 3000 3500

800 bp deletion

Wells

A9 B9 A10 B10 All Bll A12 B12

-1600 nt

-800 nt

212

R2

R3 R1

ma*I
I

4000

B

_



Figure 3.

A

lin-4 ..... TCCCTGAGACCTCAAGTGTG......
mir-237... TCCCTGAGATTCTCGAACAGCTT...

let-7 ..... TGAGGTA GT TA TTT.....
mir-84 ....TGAGGTATATGTATATTGTA.....
mir-241.. TGAGGTAGGTGCGAGAAATGA......
mir-48 ....TGAGGTAGGCTCAGTAGATGCGA....

mir-2 .... TATCACAGCCAGCTTTGATGTGC....
mir-43... TATCACAGTTTACTTGCTGTCGC....

mir-39... TCACCGGGTGTAAATCAGTTG .....
mir-36.. TCACCGGGTGAAAATTCGCATG .....
mir-37 ... TCACCGGGTGAACACTTGCAGT.....
mir-35...TCACCGGGTGGAACTAGCAGT ...... .
mir-42 ... .CCCGGGTTAACATCTACAG ......
mir-41... TCACCGGGTGAAAAATCACCTA .....
mir-40... TCACCGGGTGTACATCAGCTAA .....
mir-38 .. TCACCGGGAGAAAACTGGAGT .....

mir-45 ...TGACTAGAACACATTCAGCT ......
mir-44 ... .TGACTAGACACATTCAGCT.. ..
mir-61....TGACTAGAACCGTTACTCATC......
mir-247... TGACTAGAGCCTATTCTTTCTT....

mir-S50....TGATATGTCTGGTATTCTTGGGTT...
mir-62 ....TGATATGTATCTAGCTTACA .....
mir-90....TGATATGTTGTTTGAATGCCCC.....

mlr-52 ....CACCCGTACATATGTTTCCGTGCT...
mir-53.....CACCCGTACATTTGTTTCCGTGCT...
mir-54 .....TACCCGTAATCTTCATAATCCGAG...
mir-55.... TACCCGTATAAGTTTCTGCTGAG....
mir-56... .TACCCGTAATGTTTCCGCTGAG.....

mir-65 ....TATGACACTGAAGCGTAACCGAA....
mir-64... .TATGACACTGAAGCGTTACCGAA....
mir-63...TATGACACTGAAGCGAGTTGGAA...
mir-66... .CATGACACTGATTAGGGATGTGA....
mir-229.. AATGACACTGGTTATCTTTTCCATCGT

mir-72 .... AGGCAATGTTGGCATAGC.......
mir-73....TGGCAAGATGTAGGCGTTCAGT ....
mir-74....TGGCA AAATGGCAGTCTACA.. 

mir-75....TTAAAGCTACCAACCGGCTTCA.....
mir-79 ....ATAAGCTATTACCAAAGCT.....

mir-124 .... TAAGGCACGCACGCGGTGAATGCCA.....
mir-228....AATGGCACTGCATGAATTCACGG...

mir-238 .... TTTGTACTCCGATGCCATTCAGA...
mir-239a...TTTGTACTACACATAGGTACTGG...

B

mir-1 .....TGGAA TGTAAGTATTA....

mir-34....AGGCAGTGTGGTTAGCTGGTTG.....

mir-49 ....AAGCACCACGAGAAGCTGCAGA.....

mir-70 ....TAATACGTCGTTGGTGTTTCCAT....

mir-71 ....TGAAAGACATGGGTAGTGA........

mir-87....GTGAGCAAAGTTTCAGGTGT.......
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