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Overview

"The discovery of regulator and operator genes, and of repressive regulation of

the activity of structural genes, reveals that the genome contains not only a

series of blue-prints, but a coordinated program of protein synthesis and the

means for controlling its execution"

Jacob and Monod, 1961

The ability of a cell to respond to its environment is based on exquisite

control of gene expression, protein synthesis, and enzymatic activity. The simple

step of initiating transcription of genes from DNA into RNA is a carefully

choreographed process, involving hundred of proteins. The RNA polymerase

holoenzyme, associated general transcription factors, transcriptional activators

and repressors, chromatin modifiers and remodelers, kinases, phosphatases,

import and export proteins are all components of this coordinated program. Of

particular interest is how all this machinery is controlled to regulate the

expression of an individual gene. Transcriptional activators and repressors seem

to provide the requisite specificity by binding to only a select set of DNA

sequences. Combinatorial interactions of these gene-specific factors with other

transcription factors, the chromatin modifying enzymes which control access of

the basic transcriptional machinery to the DNA template, and various

components of the initiation apparatus, determine which genes are transcribed in

response to a particular stimulus. Therefore, this introduction will focus on the

regulation of transcription at the level of these gene-specific transcription factors.
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One of the keys to establishing this gene-specific regulation of

transcription is that the transcription factors themselves must be responsive to

varied environmental conditions. Without such changes that affect the DNA

binding or protein-protein interaction abilities of transcription factors, all gene

expression would necessarily be constitutive. Transcription factors have been

shown to be regulated in many different ways including modification of the

transcription factor protein, changes in the amount of protein present in the

nucleus, and sequestration from the DNA.

Initial studies of transcription factors and their modifications focused on

the function of a few regulators at the promoters of single genes or reporter

constructs. With the sequencing of the yeast genome and advent of microarray

technology, however, it is now possible to study the regulation of gene

expression globally. Beyond gene expression, microarray technologies have

been adapted to study the direct effects of transcription factors by finding the

promoters to which the factors are bound in vivo. These data, in combination

with additional information such as sequence conservation between species, are

leading to a much deeper understanding of global mechanisms for controlling the

cellular program, as suggested by Jacob and Monod in 1961.

This introduction will focus, in two sections, on the regulation of gene

expression in Saccharomyces cerevisiae at the level of transcriptional activators.

First, I will discuss the components involved in transcription and activation of

expression, how those components are controlled by interactions with the gene-

specific transcription factors, and how the activities of the transcription factors
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themselves are modulated. Following that, I will focus on new microarray

technologies available for the study of transcriptional regulation and how use of

these technologies has impacted our knowledge of the regulatory network of the

cell. Later chapters will discuss methods for analyzing the data obtained from

microarray experiments as well as my contributions to the data analysis arena,

followed by examples of how these analyses have been used to further our

understanding of transcriptional regulation in Saccharomyces cerevisiae.

Transcriptional machinery components

The current understanding of transcription regulation is that gene-specific

transcription factors, activators and repressors, control the expression of

individual genes or sets of genes. This regulation is based upon the specificity

provided by two distinct domains in the transcription factor protein. The

archetypal transcription factor consists of a DNA-binding domain, which contacts

the specific DNA sequence, and an activation ( or repression) domain that

recruits specific pieces of the basal transcription machinery (Ptashne 1988). The

crystal structures of a number of these domains have been solved. Activation

domains tend to be highly unstructured (Donaldson and Capone 1992; Van Hoy

et al. 1993; Schmitz et al. 1994; Cho et al. 1996), and make contacts with other

proteins in a manner that depends on general properties of the activation domain

rather than specific protein-protein contacts. For example, the strength of the

interaction between Gal4 and the basal transcriptional machinery depends on the

length of the acidic region of the activation domain as opposed to depending on
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specific amino acids (Wu et aL. 1996). Crystal structures of many transcription

factor DNA-binding domains complexed with DNA have also been solved,

including those for the most well-studied activators Gcn4, Gal4 and Hsfl

(Ellenberger et a. 1992; Marmorstein et al. 1992; Harrison et a. 1994). In

contrast to the activation domains, the DNA binding domains are highly

structured and make conserved contacts with specific DNA sequences. These

sequences vary from 4 to approximately 17 base pairs in length, with some

degeneracy allowed (Maniatis et al. 1975; Pelham 1982; Stormo 2000; Bulyk et

al. 2001). Because of the relatively short length of these recognition sequences,

they are found throughout the genome. A four base pair site will arise about

every 256 base pairs by random chance. The Gal4 binding site occurs 236 times

in the S. cerevisiae genome, of which 186 instances are positioned within open

reading frames. However, these sites appear to affect transcription only when

located within promoters (Li and Johnston 2001; Topalidou and Thireos 2003).

This is likely because of the additional elements such as the TATA-box that are

contained in promoters, that help to stabilize the binding interaction between the

transcription factor and DNA (Lee and Struhl 1995; Vashee and Kodadek 1995).

A typical promoter in yeast consists of three elements: the upstream

activating sequences (UAS), at which these transcription factors bind, the TATA-

box (consensus sequence TATAAA), which nucleates the assembly of the

apparatus that actually performs the transcription, and the initiator element (Inr),

where gene transcription begins. A promoter can also contain operator
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sequences, bound by transcriptional repressors, which act to turn off gene

expression.

For the most part, these promoters are not readily accessible to the

transcriptional machinery in the cell. Most cellular DNA is contained in

chromatin, an ordered structure consisting of repeats of approximately 146 base

pairs of DNA wrapped around a complex comprised of histone proteins, into a

structure called a nucleosome. The nucleosomes serve to package DNA into a

small volume, and also to repress transcription of genes. In vitro, the basal

transcriptional machinery is able to bind to and transcribe DNA in the absence of

transcription factors, but in vivo this machinery is unable to overcome the

repression by chromatin. TATA-binding protein (TBP), for example, is unable to

bind to a TATA-box wrapped in a nucleosome (Workman and Roeder 1987;

Imbalzano et al. 1994). The transcriptional activators direct a series of additional

enzymes to modify and remodel the chromatin to allow access to the DNA

template by the transcriptional machinery.

The protein components of this transcriptional machinery (Struhl 1995;

Ptashne and Gann 1997; Kornberg 1998; Martinez 2002; Roeder 2003; Hahn

2004) have been discovered and characterized through a series of biochemical

studies. The machinery that transcribes DNA to RNA is the 12 subunit RNA

polymerase II complex (Bushnell and Kornberg 2003). Tethering of polymerase

subunits to DNA by attaching a DNA binding domain results in synthesis of the

complementary messenger RNA molecule (Barberis et al. 1995; Farrell et al.

1996). However, without the physical attachment of the polymerase to DNA,
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other factors are required for transcription to take place. These are termed

General Transcription Factors (GTFs), and provide many of the accessory

functions necessary for the initiation of transcription. GTFs and polymerase

alone are sufficient to transcribe DNA to RNA in vitro (Sayre et al. 1992) but in

vivo gene-specific transcription factors are generally required to recruit both the

enzymes to open the chromatin structure and the GTFs and polymerase.

Additionally, a form of the polymerase called the holoenzyme is also required for

activated transcription (Kelleher et al. 1990; Kim et al. 1994; Koleske and Young

1994). This consists of RNA polymerase II and another complex of

approximately 20 proteins called Mediator (Kim et al. 1994).

The recruitment of these complexes by activators begins the assembly of

a large group of proteins, called the pre-initiation complex (PIC). The assembly

of the PIC is well understood in vitro, however, whether the same model is

followed in vivo is not known. In vitro this assembly begins with a GTF called

TATA-binding protein (TBP). TBP binds to the TATA box in the promoter with a

defined orientation, establishing the direction in which transcription will occur

(Struhl 1995). Other GTFs that are components of the PIC include TFIIB and

TFIIF, which recruit the polymerase. These three complexes select the start site

of transcription based on their contacts with the Initiator element in the promoter

DNA (Kornberg 1998; Ziegler et al. 2003; Bushnell et al. 2004). Additional GTFs

involved in the initiation super complex include TFIIE, which appears to be

involved promoter melting, clearance, and recruitment of TFIIH (Goodrich and

Tjian 1994; Lommel et al. 2000; Sakurai and Fukasawa 2000), and TFIIH itself.
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TFIIH comprises two enzymatic functions: a DNA helicase, which opens the

DNA at the promoter (Goodrich and Tjian 1994), and a kinase, for

phosphorylating the C-terminal domain (CTD) of the large subunit of RNA

polymerase (Feaver et al. 1991; Sakurai and Fukasawa 1998). After this

complex is assembled, gene transcription begins. The transcriptional activator

and some components of the PIC remain at the promoter to form a scaffold for

reinitiation of transcription, while the polymerase traverses the DNA being

transcribed (Zawel et al. 1995; Yudkovsky et al. 2000).

Model for transcriptional activation

As just mentioned, gene specific transcription factors are used by the cell

to recruit most of the apparatus needed to activate gene transcription. In

general, the first barrier to transcription that must be overcome is the packaging

of DNA into chromatin. A few different models for how the changes in chromatin

that allow gene transcription can occur have been described (Morse 2003). First,

some promoters, which tend to be constitutively transcribed, do not complex with

histones. This can be due either to constraints based on sequence, or binding of

general regulatory factors such as Rebl (Workman and Buchman 1993;

Angermayr and Bandlow 2003; Morse 2003). Poly(dA:dT) sequences near a

promoter are another mechanism by which nucleosome formation can be

discouraged (lyer and Struhl 1995).

In cases where the promoter is found in chromatin, activators can bind

and destabilize the interaction between DNA and histones. For example, the
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activator Gal4 has been demonstrated to bind to DNA contained in nucleosomes.

That binding alone seems to be sufficient to destabilize the DNA-histone

interaction, as the activation domain is not necessary for the destabilization

(Workman and Kingston 1992; Axelrod et al. 1993; Morse 2003). In fact, some

activators have been demonstrated to have a higher affinity for DNA complexed

with nucleosomes than for naked DNA, perhaps because the bending of the DNA

around the histones exposes the binding sequence (Cirillo and Zaret 1999).

The chromatin structure is dynamic rather than static, with stretches of

DNA being transiently exposed. This can allow for binding of sequence specific

proteins to DNA packaged in nucleosomes. Restriction enzyme sites were

engineered into the ends and middle of a 150bp DNA molecule that was known

to form a positioned nucleosome. The equilibrium constants for binding of the

restriction enzymes to each restriction site were calculated by comparing the rate

of cleavage in the nucleosomal DNA versus free DNA. Contrary to previous

theory, binding and cleavage was seen even at the DNA positioned in the middle

of the nucleosome, indicating that the DNA does occasionally separate from the

histone proteins for long enough to allow for binding of another protein (Polach

and Widom 1995). This also can explain the cooperativity of binding of

transcription factors to nucleosomal DNA even when the factors do not contact

one another (Adams and Workman 1995). The binding of one activator to the

nucleosome exposes the site to which the second factor binds, significantly

reducing the free energy required for binding of the second factor (Polach and

Widom 1996).
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Another way in which activators can interfere with the nucleosomal

structure is illustrated by the binding of the transcription factor Pho4 to the PH05

promoter (Venter et al. 1994; Svaren and Horz 1997). Pho4 binds to a UAS that

is located in the free DNA region between two nucleosomes. This binding event

disrupts the adjacent nucleosome, allowing Pho4 binding to a second UAS which

was previously complexed in the nucleosome and inaccessible. This model was

confirmed in two ways. First, mutation of the free UAS so that Pho4 could no

longer bind blocked the nucleosome remodeling (Svaren et al. 1994). Second,

removal of the activation domain of Pho4 also interfered with the restructuring at

the promoter (Svaren et al. 1994). Unlike the situation with Gal4 where the

binding of the factor to the DNA is sufficient to remodel the chromatin, in this

case the activation domain is required for the remodeling.

Finally, the binding of transcriptional activators to promoters can open

chromatin structure through recruitment of additional proteins. Activators have

been demonstrated to recruit various general transcription factors that can

stabilize the interaction of the transcription factor with DNA by tilting the energy

equilibrium. For example, Gal4 binding is enhanced in the presence of a TATA

site, indicating that recruitment of TBP and its subsequent binding to DNA can

stabilize the Gal4 - DNA interaction (Vashee and Kodadek 1995). Other proteins

that can be recruited by the transcription factors are chromatin modifiers and

remodelers. One group of these enzymes, Histone Acetyl-Tranferases (HATs)

acetylates the N-terminal tails of the histone proteins (Allfrey et al. 1964), which
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is hypothesized to destabilize chromatin by disrupting nucleosome - nucleosome

interactions (Bannister and Miska 2000; Narlikar et al. 2002).

The other class of complexes recruited by transcription factors consists of

ATP dependent chromatin remodeling enzymes, which function to either slide

histones along DNA to expose different stretches (Meersseman et al. 1992;

Whitehouse et a. 1999; Narlikar et al. 2002), or to change the conformation of

the histones to expose the DNA in situ (Lorch et al. 1998; Jaskelioff et al. 2000;

Schnitzler et al. 2001). Interactions of the activation domain of transcription

factors with at least three subunits of the yeast SWI/SNF complex, one of the

complexes effecting chromatin remodeling, has been demonstrated (Neely et al.

1999; Neely et al. 2002).

Based on studies of how these various chromatin remodeling or modifying

factors are recruited at two different promoters, PHO8 and HO, it appears that

the order in which these events occur is promoter dependent (Cosma 2002;

Neely and Workman 2002). Acetylation of the histones at the PHO8 promoter

was measured in strains containing either a deletion or mutation of the catalytic

subunit of the SWI/SNF chromatin remodeling complex, so that no remodeling

could occur. Hyperacetylation of histones at the promoter region was observed

in these strains, in contrast to the wild type strain, where acetylation at the

promoter was somewhat lower than before activation of the gene. No

hyperacetylation was found in a strain deleted for the HAT Gcn5, or in a strain

with no Pho4. Therefore, the model for activation of transcription at this promoter

is that Pho4 binds to its cognate sequence and recruits the Gcn5 containing
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SAGA complex, which then acetylates the histones in the nucleosomes at the

promoter. This acetylation leads to recruitment of SWI/SNF, which remodels the

chromatin, with acetylation lost during the remodeling (Reinke et al. 2001). A

subsequent study of the PHO5 promoter found a similar order of events, but with

complete loss of the histones. This might explain the loss of acetylation due to

SWI/SNF at the PHO8 promoter also (Reinke and Horz 2003).

The order of recruitment of these complexes was also studied at the HO

promoter (Cosma et al. 1999). In this case, an epitope tag was added to the

transcription factors or remodeling complex subunits thought to be involved.

Chromatin immunoprecipitation was performed at various times throughout the

cell cycle to detect the presence or absence of each tagged factor. The

interdependence of the events was assessed by using deletion mutants of the

various factors. At this promoter the model consists of the initial step of binding

of the transcription factor Swi5, followed by Swi5 dependent recruitment of the

SWI/SNF chromatin remodeling complex. Subsequent recruitment of SAGA to

acetylate the histones is dependent upon the prior presence of SWI/SNF. Only

after each of these events has occurred can the transcription factor complex SBF

bind to the HO promoter and recruit the transcription apparatus. Finally, this

entire chain of events is obviated when the transcription factor Ash1 is expressed

- Ash1 binds to Swi5 and prevents interactions with the SWI/SNF complex.

Subsequent to the recruitment of activators and the release of repressive

chromatin structures, the transcription initiation apparatus must be recruited.

This is another step that takes place through interactions with the transcription
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factors. In vitro interactions between activators and many components of the

basal machinery have been demonstrated: TFIIA (Kobayashi et al. 1995), TFIIB

(Lin et al. 1991), TFIID, comprised of TBP (Stringer et al. 1990) and TAFs (Tjian

and Maniatis 1994), TFIIF (Joliot et al. 1995), TFIIH (Xiao et al. 1994) and the

Rpb5 subunit of RNA polymerase II (Lin et al. 1997). As mentioned earlier,

artificial recruitment of many of these factors has also been shown to activate

transcription in vivo, close to the levels seen with wild type transcription factor /

basal machinery interactions. For example, a fusion of TBP to the LexA DNA

binding domain activates transcription from a LexA promoter (Chatterjee and

Struhl 1995; Ryan et al. 2000). Using fusions of a DNA binding domain and TBP

with leucine zippers to promote dimerization and thus artificially recruit TBP to

the promoter also causes activation of transcription (Klages and Strubin 1995).

This artificial recruitment does not, however, circumvent the requirement for the

prior opening of chromatin. A TBP-Gal4 fusion is unable to activate transcription

from a promoter complexed with histones, in contrast to the normal activation

from a less constrained promoter (Ryan et al. 2000). Artificial tethering of TAFs

associated with TBP in TFIID, as well as artificial recruitment of TFIIB also

activate transcription (Gonzalez-Couto et al. 1997).

In vivo, interactions between TFIIA and TBP are required for activation of

genes regulated by Gcn4, Acel or Gal4 (Stargell and Struhl 1995). A mutant

TBP unable to interact with TFIIA was also incapable of activating transcription

from promoters regulated by these three activators. This implies that TFIIA is the

GTF recruited by these activators, which then recruits the remainder of the
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transcription machinery. It is possible that this recruitment is mediated by other

cofactors - in human cells a positive cofactor PC4 was required for an interaction

between the activator VP16 and TFIIA to take place (Ge et al. 1994). Direct

interactions of activation domains with TBP have also been demonstrated in vivo.

Using a construct where the single cysteine in the activation domain of the

human transcription factor E2F-1 was derivatized with maleimide-4-

benzophenone, photocrosslinking demonstrated a specific interaction between

this activator and TBP (Emili and Ingles 1995). Finally, TFIIB is also a bona fide

target of transcriptional activators. A mutant TFIIB with a serine to proline

substitution is unable to activate PH05 transcription under conditions of

phosphate starvation, although the basal level of transcription is unaffected.

GST pull down experiments demonstrated an inability of the activator Pho4 to

interact with this TFIIB S53P mutant. A similar defect in interaction, and thus in

transcription, was seen with the transcription factor Adrl (Wu and Hampsey

1 999).

Regulation of transcription factor activity

In order that genes be expressed only when needed by the cell, the

transcription factors themselves must be regulated. To effect all the

transcriptional programs that are required by the cell upon various stimuli or

environmental changes, a large number of mechanisms are used to control the

transcription factors. These include modulation of the amount of a transcription

factor present in the cell, covalent modification by phosphorylation, ubiquitination,

19
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or acetylation, direct repression by protein-protein interactions, indirect

repression by competition for general transcription factors or chromatin modifiers,

competition for binding sites within the DNA sequence, binding of a small

molecule substrate, and alterations in subcellular protein localization (Struhl

1995; Reece and Platt 1997; Sharrocks 2000; Tansey 2001). These

mechanisms have been studied in detail for a few canonical activators, as

described below.

The most obvious way for a cell to regulate transcription factors is through

controlling the amount of the factor present in the cell. This can be achieved

through increasing or decreasing the amount of transcription of the gene, through

the half-life of the mRNA, through the rate of protein synthesis, and finally

through the control of protein degradation. Examples of transcription factors

controlled in these varied ways include the the cell cycle factors Swi4, Swi5, and

Ace2, as well as the amino acid biosynthesis master regulator, Gcn4 (Struhl

1995). The transcription of the cell cycle factors seems to be controlled by serial

binding of transcriptional activators to the promoters of activators turned on later

in the cycle (Simon et al. 2001). Swi4, for example, is activated by Swi6 at the

M/G1 transition, and later shut down by Mcml in combination with Yox1 and

Yhpl (Breeden and Mikesell 1991; Foster et al. 1993; Mclnerny et al. 1997;

Pramila et al. 2002).

The concentration of Gcn4 in the cell is controlled by numerous

mechanisms, one of which is alteration in the rate of translation. The eukaryotic

translation initiation factor 2 (elF-2) is phosphorylated upon amino acid

20
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starvation, leading to an increase in the amount of Gcn4 protein synthesized.

Mutation of the phosphorylated elF-2 serine to an alanine ablates this increase in

Gcn4. Conversely, a serine to aspartate mutation to mimic phosphorylation

derepresses Gcn4 regardless of the amino acid content of the growth media

(Dever et al. 1992). This regulation of Gcn4 occurs through small open reading

frames occurring upstream of the start of the major exon, called uORFs

(Hinnebusch 1984; Hinnebusch 1994). Ribosomes initiate translation at the first

uORF. In the presence of unphosphorylated elF-2 the ribosomes that continue

scanning downstream of uORF1 are able to re-initiate translation of the

downstream uORFs, particularly uORF4, which then blocks initiation at the Gcn4

coding region. The phosphorylated elF-2 is unable to re-initiate as quickly.

Therefore it cannot translate uORF4, but rather starts translation of Gcn4. Yap1

and Yap2 are also regulated through uORFs (Vilela et al. 1998). The Yap1

uORF is comparable to the Gcn4 uORF1, allowing leaky re-initiation of

translation as the ribosomes scan through the mRNA. In contrast, the uORFs in

the Yap2 leader sequence post a strong block to translation of the Yap2 ORF like

the Gcn4 uORF4, and also mediate accelerated decay of the mRNA. How stress

conditions increase synthesis of the Yap regulators when needed has not yet

been described, but it seems likely that these uORFs will be involved, as they are

for Gcn4.

Regulation of transcription factors by phosphorylation seems to be one of

the most common mechanisms by which activity is controlled, based upon the

number of factors that show alterations in phosphorylation state (Yeast Proteome
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Database, (Costanzo et al. 2000; Csank et aL. 2002)). This is because a change

in phosphorylation state, as well as potentially modifying the DNA-binding

properties of a transcription factor or activity of its activation domain, can also be

the signal for regulation by another mechanism, such as nuclear exclusion or

protein degradation.

The DNA-binding ability of the transcriptional repressor Rgtl, involved in

regulation of glucose transporters, is modulated by the its phosphorylation state,

which is dependent on the carbohydrate source in the growth medium (Kim et al.

2003; Mosley et al. 2003). In high glucose conditions, Rgtl is

hyperphosphorylated and unable to bind to DNA, and the hexose transport genes

regulated by Rgt1 are expressed. On the other hand, in low glucose conditions

the phosphates are removed and DNA binding and repression of the hexose

transporters takes place. The observation was strengthened by assays showing

that removal of the serine residues that undergo phosphorylation induces

constitutive DNA binding and repression of the transporters. Other transcription

factors that are regulated in this manner include Crtl, involved in DNA damage

response (Huang et al. 1998), and Mac1, which regulates intracellular copper

levels (Heredia et a. 2001).

Regulation of the level of activity of transcriptional activation domains by

phosphorylation has been proposed to occur by altering the protein-protein

contacts the activation domain is able to participate in. In one example, Pho4 is

unable to bind to its partner Pho2 when a particular serine in the Pho4 activation

domain is phosphorylated (Komeili and O'Shea 1999). Phosphorylation of Pho2
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likewise inhibits the Pho4 - Pho2 interaction (Liu et al. 2000). The interaction

between cell cycle regulators Fkh2 and Nddl is similarly affected by activation

domain phosphorylation, altering the ability to Fkh2 activate gene expression

(Darieva et al. 2003). Phosphorylation of activation domains has also been

postulated to help with interactions of transcription factors with the general

transcription machinery by increasing the negative charge / acidity of the

activation domain (Struhl 1995), but no clear examples of this mechanism for

alteration in activation function have been found.

Phosphorylation of transcription factors also affects interactions with

nuclear import and export proteins. Pho4 contains five phosphorylation sites,

one of which, as mentioned above, affects its interaction with Pho2.

Phosphorylation at two of the remaining four sites is required for interaction with

Msn5, the P-importin family member that exports Pho4 from the nucleus.

Dephosphorylation at yet another site is required for interaction with Psel, the p-

importin that imports Pho4 (Komeili and O'Shea 1999). The subcellular

localization of transcription factors is almost always signaled by a change in

phosphorylation state - other examples include Msn2/4, Gat1, Gln3 (Beck and

Hall 1999), Skol (Pascual-Ahuir et al. 2001) and cell cycle factors Ace2 and

Swi5 (Nasmyth et al. 1990; Moll et al. 1991; O'Conallain et al. 1999), to name just

a few.

Gal4 provides an example of a transcription factor regulated by direct

repression through additional proteins. This transcription factor provides a switch

highly sensitive to the carbohydrate source available to the cell. In media where
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glucose is present, GAL genes are transcriptionally inert, repressed by Migl

(Nehlin et al. 1991). Under non-inducing, non-repressing conditions, such as

growth in glycerol, Gal4 is expressed and binds in a complex with Gal80 to the

promoters containing its cognate sequence (Leuther and Johnston 1992). GaI80

is thought to block access of the transcriptional machinery to the Gal4 activation

domain. When the cell is grown in galactose, Gal3 binds to Gal80, likely inducing

a conformational change that exposes the Gal4 activation domain, thus allowing

the recruitment of TBP and TFIID, and activated transcription of the GAL genes

(Suzuki-Fujimoto et al. 1996; Wu et al. 1996)

Regulation through the presence or absence of a small molecule was the

first model described for regulation of a transcription factor in bacteria (Jacob and

Monod 1961). Sensing of cellular conditions through binding of an intermediate

in a biosynthetic pathway or binding of another small molecule to a transcription

factor provides a sensitive mechanism for the cell to regulate gene transcription

based on extracellular conditions. One example of the effects of small molecules

is the regulation of DNA binding of Acel and Mac1 by copper ions. This allows

the cell to tightly regulate the amount of copper and other metal ions available

(Furst and Hamer 1989; Heredia et al. 2001). As the amount of heavy metal in

the cell decreases, these factors can bind to DNA, activating transcription of

heavy metal transporters. This increases the intracellular concentration of these

ions, restoring the required balance. Another transcription factor regulated

similarly is Leu3, which is regulated by the presence of a-lsopropylmalate, one of

the intermediates in the biosynthesis of leucine (Sze et al. 1992). If the
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intermediate is present, Leu3 binds to the promoters of leucine synthesis genes

but is transcriptionally inactive. As the levels of intermediate drop, the

conformation of the activation domain changes such that components of the

general transcription machinery are recruited (Sze et al. 1992). A final example

of regulation through binding of a small molecule is' illustrated by the interaction

of the regulator Hap1 with heme. In the absence of heme Hap1 forms a high

molecular weight complex and is sequestered from DNA through interactions

with other proteins like Hsp90O, showing yet another possible mechanism of

regulation of regulators (Zhang and Guarente 1994; Zhang et al. 1998). The

activation domain of Hap1 is also regulated by the presence of heme, through a

heme responsive domain (Zhang and Guarente 1995). In this case, binding of

heme seems to block the binding site for an additional repressive protein,

perhaps Hsp90O (Zhang et al. 1998).

Changes that activate transcription factors to begin recruitment of the

transcriptional machinery must be reversible in order that transcription be shut

down when the stimuls is no longer present. An elegant model for how this is

accomplished has been described (Chi et al. 2001; Tansey 2001; Ansari et al.

2002). Srb10O, a component of the RNA polymerase II holoenzyme

phosphorylates the transcription factor Gcn4 as the activator and holoenzyme

make contacts at the promoter. This phosphorylation then leads to ubiquitination

of the marked Gcn4 molecule, which is then degraded by the 26S proteasome.

Similarly, Msn2 is phosphorylated by Srb10O during their interaction at the

promoter, leading to the subsequent export of Msn2 from the nucleus. Using the
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time during which the transcriptional machinery is contacting the transcription

factor to mark that factor for subsequent removal from the cell ensures that

activation of a gene does not outlive the need for the gene product. Ste12 is also

regulated in this manner (Nelson et al. 2003), and Gal4 and Sip4 are likewise

phosphorylated by SrblO, although in these cases the phosphorylation is

associated with activation of the transcription factors rather than degradation or

removal (Sadowski et al. 1996; Hirst et al. 1999; Vincent et al. 2001).

Microarray technologies and the analysis of transcription

Many of the experiments used to elucidate the mechanisms and ideas

described so far were performed on the level of a single gene. In vitro assays

were used to determine the components necessary for transcription, and how

different complexes were interacting with one another. In vivo, reporter

constructs were used to test activation at a single promoter, or expression levels

of individual genes were tested using Northern or Western blots. However, since

the S. cerevisiae genome was fully sequenced (Goffeau et al. 1996), new

technologies have been developed that enable us to ask similar questions, on a

genome-wide scale.

The first technology to be developed was analysis of the mRNA

expression level of essentially all S. cerevisiae genes using DNA microarrays

(Schena et al. 1995; Shalon et al. 1996). These microarrays consist of cDNAs

corresponding to each gene printed in spots on glass slides, or oligonucleotides

synthesized in situ or printed on slides (Pease et al. 1994; Lipshutz et al. 1995).
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Total RNA or purified mRNA is used as a template for reverse transcription with

nucleotides conjugated to a fluorescent moiety, and the resulting labeled DNA is

hybridized to the array. Genes of interest are found by scanning the array with a

laser, using software to find spots and quantitate the level of fluorescence in

each spot, and performing statistical manipulationsiand tests (Bowtell 1999;

Holloway et al. 2002)

This technology has been used to gain many insights into the global

transcriptional regulation in the cell. Initial experiments were focused on the

changes in gene expression during a cellular process, or following an

environmental perturbation. For example, some of the earliest studies used

various methods to synchronize yeast cells in the cell cycle, then examined the

transcriptional readout as the cells progressed through the cycle (Cho et aL.

1998; Spellman et al. 1998). In another series of experiments, effects of various

environmental stresses on the cell, including changes in pH, high salt

concentration, oxidative and osmotic stress, and nutrient deprivation were

examined (Gasch et a. 2000; Causton et al. 2001). These results highlighted the

global changes in gene expression effected by transcription factors. In another

landmark study, the effects on gene expression of over three hundred

perturbations, including knockouts of selected genes such as transcription

factors, were profiled (Hughes et aL. 2000b). In these experiments, as well as

others performed with transcription factor knockouts, a surprisingly small number

of the genes with changes in expression contain a recognizable DNA binding site

for the particular transcription factor being studied. This highlights the extent of
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secondary effects that occur based on the regulation of additional transcription

factors, as well as other proteins involved in transcriptional regulation. Large

surveys like these are complemented by hundreds of experiments in which

microarrays have been used to elucidate components of individual pathways and

understand the transcriptional regulation of those pathways (Ogawa et al. 2000;

Natarajan et al. 2001; Agarwal et al. 2003; Schuller et al. 2004).

Aside from studying the downstream effects of transcriptional regulation,

microarrays have also been used to analyze the cellular requirements for

components of the general transcriptional apparatus. In a seminal study, the

function of subunits of each of the main complexes involved in transcriptional

initiation was abolished either through a knockout, a point mutation, or a

temperature sensitive mutation (Holstege et al. 1998). The genome-wide

requirement for each complex was then assessed. Many of the observations

made about the function of these complexes at individual genes were confirmed

and extended. For example, because of the equivalent requirement for RNA

polymerase II and the Srb4 component of the Srb/Mediator complex at almost

every gene, previous assertions about the in vivo requirement for the

holoenzyme rather than just the polymerase were confirmed (Holstege et al.

1998). The kinase subunit of the GTF TFIIH was also required at almost every

gene, giving added credence to the hypothesis that phosphorylation of RNA

polymerase is required for transcriptional initiation to proceed to elongation. The

genome-wide nature of these experiments also enables conclusions about

transcriptional regulation that cannot be drawn from studies at a single gene.
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Micoarray analysis of mutants of essential subunits of the chromatin remodeler

Swi/Snf showed that nucleosome perturbations were localized to individual

genes rather than chromosomal domains (Sudarsanam et al. 2000).

A technique that brings together the direct study of the targets of

transcriptional components with DNA microarrays is variously termed

"Chromatin-immunoprecipitation on a Chip", "ChIP-Chip", and "Genome-wide

location analysis" (Ren et al. 2000; lyer et al. 2001). When these experiments

are performed in yeast, typically an epitope tag is introduced into the genomic

locus of the protein of interest (Knop et al. 1999). The cells containing the

epitope tagged factor are grown under a relevant condition, proteins are

crosslinked to DNA using formaldehyde, and sonicated to shear chromatin. The

cellular extract is then subjected to immunoprecipitation using an antibody to the

epitope tag. Alternatively, an antibody raised directly against the protein can be

used. This immunoprecipitation selectively purifies the factor of interest, along

with any DNA to which it may be binding. The DNA is then amplified in the

presence of fluorescently labeled nucleotides, genomic DNA from the same

strain is labeled with a different fluorophore, and the two samples are hybridized

to a microarray containing yeast intergenic regions. Statistical analyses (Hughes

et al. 2000b; Lee et a/. 2002) are used to assign a significance of enrichment to

each spot, and spots with a high significance are likely to be bound by the protein

of interest.

Genome-wide location analysis has led to a better understanding of the

transcriptional regulation underlying the yeast cell cycle. The promoters bound
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by the complexes SBF, consisting of Swi4 and Swi6, and MBF, comprising Mbpl

and Swi6, were examined in one study (yer et aL 2001). Approximately 200

novel targets for these factors were found, and the genes downstream of these

promoters were enriched for the functions that take place during the G1 phase of

the cell cycle, when these factors are active. Sixteen of the promoters to which

SBF and MBF were binding putatively regulate transcription factors. Genome-

wide location analysis was performed on nine of these additional transcription

factors, and these were found to bind to a number of genes performing additional

functions necessary for the G1 phase (Horak et al. 2002). This idea of

transcription factor cascades was delineated in another study, where the nine

known cell cycle transcription factors were profiled (Simon et al. 2001). The

transcriptional regulation of the entire cell cycle was shown to be cyclical, with

transcription factors from each stage regulating the transcription of regulators

from the next stage, as well as other signaling molecules that stimulate and shut

down the activation function of these regulators. Additional transcriptional

regulators regulating the cell cycle, as well as an increased number of genes

regulated by the cell cycle transcription factors were found by using an algorithm

to combine expression and location data (Lee et aL. 2002; Bar-Joseph et al.

2003).

In an approach highly complementary to location analysis, binding of

transcription factors and other sequence specific DNA binding proteins to

microarrays has been used to analyze the specificity of that binding. Initial

studies demonstrated sequence specific binding and cutting by restriction
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enzymes on DNA immobilized on an array (Bulyk et al. 1999). Subsequently, the

sequence specificities of a number of zinc finger mutants were assessed (Bulyk

et al. 2001). The second zinc finger of a three finger mouse transcription factor

was mutagenized, and displayed on a phage. Binding of this protein to

oligonucleotides containing all 64 variants of the second finger's binding sites

was tested. Interestingly, different mutants showed varying levels of selectivity:

some mutants were only able to bind to one or two of the sixty four

oligonucleotides, while others were able to bind to almost all of the

oligonucleotide variants. Finally, tagged transcription factors were bound directly

to arrays containing most yeast intergenic regions to find all sequences to which

DNA binding by the factors was possible (Mukherjee et al. 2004). A direct

comparison with location data for the same factors (Lee et al. 2002) showed that

while there was significant overlap in the intergenic regions bound for two out of

three factors, there were intergenic regions that were bound only in one of the

two assays (Mukherjee et al. 2004). Promoters at which these differences were

seen could be used to study the different determinants of binding in the in vitro

versus in vivo situations.

Each of these sources of microarray data has been used computationally

to attempt to determine the actual sequence specificity of the gene-specific

transcription factors. Prior to the advent of the microarray technologies, the

sequence motifs to which a few factors bound had been painstakingly identified.

The first motifs were defined in the bacterium E. coli by searching for patterns by

eye: the sequence to which the lambda repressor binds (Maniatis et al. 1975),
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and the -10 promoter element (Pribnow 1975). In S. cerevisiae, the consensus

motif for the transcription factor Hsfl was one of the first to be identified (Pelham

1982). The DNA sequence necessary for upregulation of the heat shock protein

Hsp70 by Hsfl was narrowed down to a 20 base pair stretch by deletion

analysis, then a palindromic sequence within this region was also found

upstream of several other genes regulated by Hsfl. It was quickly realized that

unlike restriction enzymes, the sequence specificity of transcription factors was

much less stringent (Pribnow 1975). This led to the use of Position Weight

Matrices (PWMs) to account for the variable affinity of transcription factor

proteins for variations in their binding sites (Stormo 2000).

Microarray data were initially used to find consensus sequences or PWMs

by clustering genes with similar expression patterns then searching for sequence

motifs, based on the assumption that the similar expression patterns were

effected by the same regulators (DeRisi et al. 1997; Brazma et al. 1998; Roth et

al. 1998; Spellman et al. 1998; van Helden et al. 1998). Since then, many other

methods have been developed or used to take advantage of these data, using

varied statistical sampling to determine sensitivity and specificity. These include

expectation-maximization (EM) (Lawrence and Reilly 1990; Spellman et al.

1998), and Gibbs sampling (Hughes et al. 2000a; Liu et al. 2001). The inclusion

of additional data sources, such as location data, has been used to further

narrow the set of input sequences to raise the signal to noise ratio of the site

specific sequence within the background random DNA (Ren et al. 2000; lyer et

al. 2001; Simon et al. 2001; Lee et al. 2002; Liu et al. 2002; Zeitlinger et al. 2003;
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Harbison et al. 2004). The sequencing of multiple similar species has added an

additional constraint, making motif finding easier with the assumption that the

nucleotides important for transcription factor binding will be more conserved

between species than nucleotides without constraint on mutation (Cliften et al.

2003; Kellis et al. 2003; Harbison et al. 2004).

The knowledge of the sequence specificity of transcription factors allows

prediction of genes regulated by the factor, and provides an important

component of any network model of the cell. While large leaps in the ability to do

this have been achieved over the past decade as described above, we are still

far from a complete understanding of the phenomenon. For example,

transcriptional activators seem to bind to and regulate genes where no sequence

motif for the factor can be found (Lieb et al. 2001; Lee et al. 2002). Conversely,

there are hundreds of copies of factor specific motifs throughout the genome,

many of which are not bound by the site's cognate transcription factor (Lieb et a/.

2001; Harbison et al. 2004). And for a large percentage of additional genes, no

site specific regulator can be found (Harbison et a/. 2004).

The holy grail in the study of transcriptional regulation is to determine the

complete network of interactions that drives gene expression in the living cell.

Each of the microarray technologies described provides information towards

attaining this goal. Expression analysis provides a functional readout of the

results of the transcriptional regulation, but with expression data one cannot

deconvolute direct effects of transcription factor binding from indirect effects.

Location analysis complements the expression data by providing the information
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about which genes are likely to be the direct targets of a transcription factor. This

method has also been used to examine the regulation of transcription at other

levels. Histone density (D. Pokholok, unpublished data), chromatin modifications

(Kurdistani et al. 2002; Ng et al. 2002; Robyr et al. 2002; Wang et al. 2002; Ng et

al. 2003), and the promoters at which other components of the complete

transcription apparatus are acting ((Odom et aL. 2004), D. Pokholok, unpublished

data) have all been assayed using location analysis. Binding of transcription

factors directly to arrays, particularly arrays containing intergenic regions, allows

determination of every possible genomic sequence to which a particular factor

can bind. The derived sequence specificity of these factors based on these data

will also play a part in the construction of a complete network model, along with

additional high throughput data sources. The in vivo subcellular localization of

most yeast proteins (Huh et al. 2003), systematic analysis of synthetic lethality

between genes (Tong et al. 2004), and high-throughput analysis of protein

complexes using mass spectrometry (Krogan et al. 2004) all provide a wealth of

additional data towards the goal.

My contributions to this work

When I started my graduate studies, I was interested in doing both

experimental and computational work. At that time, microarray analysis of gene

expression was in full swing, opening exciting avenues to explore many aspects

of biology. The number of experiments using expression microarrays was

exploding, and the technique of genome-wide location analysis was being
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developed for publication in Ren et al. 2000. Both of these experimental

approaches generate vast amounts of data, but in 1999 computational support

and analytical methods were in their infancy and still required development and

refinement. I joined the Young lab because their studies with microarrays

afforded me the opportunity to work both at the bench and on the computer.

My initial contribution to the lab came in the computational arena, when I

set up a public website for Itamar Simon's paper on the cell-cycle. This website

was among the first to make data from genome-wide studies publicly available

and searchable. Through this open approach, I set up a forum to not only share

our data, but also to address the need to standardize microarray data and the

analytical approaches in this burgeoning field.

My first summer, I started performing location analysis experiments with

the aim of elucidating networks of interactions between transcription factors. I

was interested in several fundamental metabolic systems; my first experiments

were performed with factors involved in glucose metabolism, Rgtl, Mthl and

Migl and I followed up by investigating factors from the nitrogen and phosphate

metabolic pathways. These experiments yielded a wealth of data which led me

to believe that the approach which would most benefit the yeast community

consisted of profiling as many factors as possible. I decided to work as a team

with several other investigators in the Young lab, synergizing our efforts to

perform hundreds of chips worth of location-analysis experiments.

I also focused on improving the analysis of the data we were acquiring.

This analysis occurred on two levels: basic analysis for each experiment to
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determine which intergenic regions were bound by the profiled transcription

factor, and then meta-analyses to gain a deeper understanding of the overall

biology. The framework of the analysis for each experiment had been laid out in

Ren et al. (2001), based on an error model described for gene expression data in

Hughes TR et al. (2000). I expanded significantly on this model. I put in place a

series of templates for use by researchers for analyzing individual experiments,

making them as versatile and user-friendly as possible. In addition, I wrote

scripts to perform batch analyses for making comparisons between data sets, a

key step to integrate data from different experiments and expand comparative

analyses. I also took advantage of the large number of data sets that we had

generated to help with noise reduction (see discussion in chapter 2). Another of

my computational contributions consisted of a number of meta-analyses, which

ranged from determining various statistics about the data in general to

collaborating with Tony Lee to determine the definitions of the network motifs.

Based on these analyses, I developed computational tools such as a series of

scripts for finding network motifs. The results from the genome-wide location

analysis, interpreted using the tools I developed, was published (Lee, Rinaldi,

Robert et al. 2002), and is included in chapter 3.

I next extended our results, by addressing one of the weaknesses of our

approach. Looking at transcription under a single condition, in most cases the

rich medium Yeast extract - Peptone - Dextrose, affords a snapshot of the cell's

function. It does not, however, help to understand the most important role of the

cellular machinery in the life cycle of that cell: adapting to changes. Cells
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constantly need to adjust the amount of metabolic enzymes based on the

available nutrients, to respond to cellular damage caused by external forces, and

to remove toxic elements from the cell. The work we published in Lee et al. did

not investigate cellular adaptation. We were able to find transcription factors

interacting with the promoters of only approximately 30% of the genome.

Additionally, although we did use expression data from conditions in which the

external environment was manipulated, without the matching binding data it was

difficult to assess which promoter-transcription factor interactions were leading to

productive regulation. We described regulatory network motifs based on the

binding data in rich media, but could not determine which of the motifs were

essential to transcription of the genes involved, as opposed to those that might

be used in another condition. To remedy this, location analysis under 12

additional conditions on a number of factors was performed. I focused mainly on

the experiments in hydrogen peroxide, and performed the data analysis for the

>400 experiments we had accumulated. These data and analyses were

published (Harbison et al. 2004) and are included in chapter 4.

In order to further improve the analysis of microarray data, I collaborated

with Ron Dror and Jon Murnick on a project that originated in the "Computational

Functional Genomics" course taught by Rick Young, David Gifford and Tommi

Jaakkola. We were concerned with the practice that was common at the time of

"flooring" Affymetrix intensity results to an arbitrary small number, and of

averaging repeated measurements without regard for their reliability. Instead, we

devised a noise model to incorporate both additive and multiplicative noise
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introduced throughout the experiments, and used a Bayesian estimation method

to provide a principled way of dealing with negative results, combining repeated

measurements, and determining differentially expressed genes. This work was

published as Dror et al. 2003. 1 also took part in the development of the Genetic

RegulAtory Modules algorithm, performing the large scale analysis of location

data that was required, collecting and curating over 500 expression data sets

from publicly available sources, and participating in a series of discussions during

the development. This work was published (Bar-Joseph et al. 2003), and can be

found in Appendix A.

Through my research and reading I have come to understand many of the

nuances involved in the various steps necessary for thorough analysis of

genome-wide data. My experience with both bench work and computational

analysis has allowed me a well-rounded view of the field of genomics. I have

included, in Chapter 2 of this thesis, many of my findings and observations in this

arena.
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Chapter 2

Microarray Data Analysis for Biological Insight
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Overview

The link between the projects I have undertaken while a member of the

Young Lab is analysis of the enormous amount of microarray data we have

generated. Both expression and location experiments are complicated by a

multitude of factors, not the least of which are the scale of the data and

inconsistencies in experimental performance. The analysis process needs to

account for all of these issues. There are two levels at which analysis occurs:

technically, in manipulating the data to remove bias based on those experimental

inconsistencies and determining which genes are expressed or enriched, and

biologically, in assessing the implications of these results.

In the technical phase of the analysis, normalization is used to

mathematically remove many of the sources of noise present in the data. I will

discuss the methods available for normalization and the optimal choices for

removing bias. The second technical issue is assessing the quality of the data. I

will discuss some current suggestions for metrics for spot quality, as well as

offering an initial statistic for determining the overall array quality. One other key

technical question is which method to use to determine differentially expressed or

enriched genes. I will describe many of the algorithms available for this purpose,

as well as adjustments that I made to the Rosetta error model to account for

some chromatin immunoprecipitation specific issues.

The second level of analysis is in interpreting the data for biological

understanding. One of the common approaches to this is to assess the

significance of the overlap between one expression or location dataset and
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annotations, categories, or other datasets. I will describe some of the techniques

for performing these comparisons, as well as a novel method I developed.

Another area in which I have made contributions is in determining which

regulators and genes are involved in minimal regulatory motifs. Finally, I will

cover various approaches to visualizing these microarray data and analyses to

improve our ability to make biological discoveries.

Introduction

Just as the 1980's heralded the coming of age of molecular biology, with

cloning, sequencing and mutagenizing genes becoming commonplace, the

1990's saw the beginning of the genomic revolution. Coming on the heels of the

first complete sequences of bacterial (Fleischmann et al. 1995) and eukaryotic

genomes (Goffeau et al. 1996), microarray technology enabled researchers for

the first time to examine the expression of every gene in a population of cells.

This meant that for the first time scientists were able to see the full spectrum of

changes occurring during normal cell growth and division (Cho et al. 1998; Chu

et al. 1998; Spellman et al. 1998), brought on by alteration of a cell's environment

(DeRisi et al. 1997; Gasch et al. 2000; Causton et al. 2001), or caused by

perturbation of the normal genetic complement (Hughes et al. 2000). These

microarray data were used both to assign tentative functions to previously

unannotated genes, as well as defining cohorts of similarly expressed genes

defining each of the cellular responses.
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In a typical expression experiment, cDNA is reverse transcribed from

messenger RNA in the cell type of interest, labeled with a fluorophore and

hybridized to an appropriate microarray. Data are collected, analyzed, and the

differentially expressed genes discovered and investigated for biological

relevance. Another technology being widely used is location analysis. In these

experiments, proteins and DNA are crosslinked and an immunoprecipitation is

performed using an antibody to the transcription factor of interest.

Immunoprecipitated DNA is labeled with a fluorophore, then hybridized. Data

collection and analysis are performed similarly to an expression experiment.

Despite the seeming simplicity of these processes, each stage of the experiment

requires that a series of non-trivial choices be made that can drastically affect the

outcome. These options involve everything from the type of microarray to use to

which labeling method to employ. Once the experiment has been physically

completed and the raw data are in hand, a new series of decisions about each

step of the analysis process begins.

Removal of noise and systematic bias from the data through normalization

is the first component of the analysis. This should be followed by assessment of

the quality of the data, both for individual spots and for whole arrays. At this

point, a statistical model can be used to determine which spots in the test

sample(s) are different from the control. Then, the biological analysis begins.

Comparisons are made with other expression data, with annotations, and with

additional genome-wide data such as protein-protein interactions or subcellular

localization data. Various visualization tools are used for reducing the data to a
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space where intuition becomes more feasible. Finally, biological conclusions can

be drawn.

Normalization

In order to use data from microarrays effectively, it is important to be able

to compare between samples at many levels. First, in two-color arrays, one must

be able to make reliable comparisons between the control and the test channel.

Unequal amounts of RNA as starting material could cause biases, as could the

preferential incorporation of one fluorophore over the other, as well as differential

response of the fluorophores to the laser. At a higher level, comparison across

arrays is almost more important, allowing meta-analysis such as how the

expression of a gene changes throughout a timecourse (Cho et al. 1998;

Spellman et al. 1998; Cho et al. 2001), or construction of a regulatory network

(Ideker et al. 2001; Tegner et a/. 2003). Finally, the ability to compare results

across different studies could allow for discovery of inter-relations between

pathways and modules that are not assessed in single experimental series.

While it was recognized in the early microarray experiments that some

degree of consistency was necessary between channels or arrays in order to

make valid comparisons, the approaches used were highly subjective, if they

were even discussed. In the first reports of genome-wide expression analysis

experiments, normalization was performed at the scanning stage, by adjusting

the scan power to obtain a ratio as close to 1.0 as possible in spots containing

total genomic DNA (DeRisi et al. 1997). In another study, normalization was
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mentioned as using spiked-in controls, but no specifics were given (Holstege et

al. 1998). Others did not report any normalization step in the data processing at

all (Cho et al. 1998; Spellman et al. 1998).

Subsequently, biologists have begun to understand the importance of both

using and reporting statistical methods for analysis. The most straightforward

method for normalization involves computing a single constant by which to

multiply one channel on an array in order to account for gross differences.

Various approaches to this achieve the same ends: normalizing so that total,

mean or median intensity in the two channels or across chips are the same, or

using the same operation on a subset of spots, such as control spots. While

these methods have been widely used (Richmond et al. 1999; Ren et al. 2000;

Natarajan et al. 2001; Newton et al. 2001; Dasgupta et al. 2002; Lee et al. 2002b;

Moqtaderi and Struhl 2004) and are effective in eliminating gross differences

between channels or arrays, they definitely do not remove all bias introduced to

this point (Schuchhardt et al. 2000; Yang et al. 2002a; Yang et al. 2002b). In

particular, there is an intensity dependent bias, and can be spatial array effects,

that are not removed by global normalization. Figure 1 shows how median

normalization does not correct for localized or regional spatial anomalies, or for

intensity dependent bias.

Based on these intensity dependent effects, a normalization procedure

based on a locally weighted linear regression (lowess) method (Cleveland 1979)

has been adapted for use with microarrays and is rapidly becoming the standard
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Figure 1: Methods for Normalization
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Figure 1: Methods for Normalization

In each panel, four methods of normalization are compared. Unnormalized data

are shown, with an M-A scatter plot with the log of the sum of intensities on the x

axis plotted against the log of the ratio of intensities on the y axis. The red line

indicates the intensity dependent bias. A spatial representation of the ratios is

shown on a virtual chip. Finally, the unnormalized data are plotted on an R-G

scatter plot, with the log of the control intensity on the x axis versus the log of the

immunoprecipitated DNA on the y axis. The M-A and spatial representations are

show for each of the additional three normalization methods, median, lowess and

spatial lowess. A) Normalization of a chip with a small spatial anomaly. B)

Normalization of a chip with a regional anomaly, an intensity gradient down the

chip.
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for normalization (Finkelstein et al. 2002; Quackenbush 2002; Leung and

Cavalieri 2003). The lowess procedure determines the dependency of the log

ratio on the log of the intensity, and subtracts this function from each observed

log ratio (Yang et aL. 2002a; Yang et aL. 2002b; Smyth and Speed 2003; Wilson

et aL. 2003). This procedure can also be modified to normalize the group of spots

printed by each individual print tip separately. This can correct for defects during

the printing process that might be pin specific (Yang et al. 2002b). The removal

of intensity dependent bias is illustrated in Figure 1. This figure shows, however,

that the lowess normalization still cannot correct for regional anomalies that

might be due to uneven hybridization. A spatial normalization filter following

lowess normalization has been suggested to correct for these biases (Wilson et

aL. 2003). This could prove to be an important addition to any normalization

procedure, as ANOVA tests on arrays produced for the Arabidopsis Functional

Genomics Consortium indicated that approximately 20% of arrays have

significant spatial effects, explaining more than 10% of the variance in log ratios

(Finkelstein et aL. 2002). This spatial smoothing is accomplished by computing

the median log ratio, for each spot, of the surrounding spots in some grid size:

from 3x3 to 7x7. The data are then rescaled by dividing by the median absolute

deviation (Wilson et aL. 2003). This method removes both the intensity

dependent bias and spatial anomalies, as shown in Figure 1.

One issue with all of these normalization methods is that each makes the

assumption that only a small proportion of spots are differentially affected

between the two channels or samples. This is usually true in the case of
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perturbations of single genes, or in immunoprecipitated DNA from a single gene-

specific transcription factor. However, serious environmental perturbations or

immunoprecipitations from general transcription factors, or 'boutique' arrays

designed to capture a specific gene set, can significantly deviate from this in

practice. In these cases it is imperative to use normalization based upon a

selected set of probes rather than the entire array. Housekeeping genes have

been suggested as controls under certain circumstances, although these are not

as consistently expressed as had been imagined (Savonet et al. 1997; Lee et al.

2002a). For experiments like location analysis, the use of DNA sequences found

within long ORFs, or DNA from regions of the genome with low gene density,

"desert regions", has been suggested. However, as with the housekeeping

genes, there is no guarantee that a particular factor is not binding to any one of

these regions. Exogenous controls added during one or more steps of the

experiment are likely to be the most reliable set of data to which to normalize in

such cases.

Just because arrays are normalized within channels, or one array to

another, does not mean that an entire set of arrays is comparable. There are still

likely to be differences between arrays, based mostly upon different amounts of

RNA used as starting material, but also because of differential labeling of

samples or differential scanning. Two methods have been proposed to correct

for these between slide errors. First, a Singular Value Decomposition (SVD),

also called Principle Components Analysis (PCA) approach has been suggested

(Alter et al. 2000). In this algorithm, the data undergo a linear transformation so
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that the expression ratios for each gene are based upon a sum of biologically

relevant expression patterns. In re-analyzing data from the yeast cell cycle

(Spellman et al. 1998), the most predominant pattern found was determined to

be noise based. Other patterns included sinusoid waves with peaks at different

times, as would be expected from the cell cycle with genes peaking at various

cell cycle stages (Alter et al. 2000). The noise pattern was subtracted from each

array to normalize the expression values. Problems with this method include its

requirement for no missing data, as well as unclear assignment of the biological

function of each of the determined patterns. The second method of

normalization between arrays normalizes for different levels of variation on

different slides by scaling each array to have the same median absolute

deviation (Yang et al. 2002b). This assumes that variation should be the same

across slides, which is not necessarily the case, for example, in a series of

expression measurements after a perturbation over time. So, while these

methods may be an improvement over no between slide normalization, it is clear

that more work is required in this area.

Quality Control

There are many steps in a microarray experiment during which things can

go awry. Poor purification of the initial starting material, contamination of

reagents or samples, loss of pellets, leaky or uneven hybridization are just some

of the problems that can arise. However, even if one of these issues has

occurred, it is often without knowledge of the researcher, and does not prevent
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obtaining labeled material to hybridize to an array or the subsequent data

analysis. Datasets affected by one of these difficulties should be discarded as

they are likely to be irreproducible and to give spurious results. Especially as the

use of microarrays becomes more high-throughput, this means that there must

be some qualitative, or preferably quantitative, measure of array data quality.

As with every other aspect of microarray technology, quality has to be

assessed on different levels. The first check occurs at the level of individual

spots. During initial analysis of the scanned image, spots that are missing, have

an aberrant shape or contain an artifact, can be flagged as 'bad' and discarded

from further analysis. This is performed automatically by spot-finding programs

to some extent, but frequently requires manual curation. Another quality

standard that has been proposed is to use a secondary stain to assess the

amount of DNA physically present in a spot, and discard those spots where no

signal is present. Some stains that have been used include Sybr Green I for

dsDNA arrays (Mukherjee et al. 2004), Sybr Green II for ssDNA arrays (Battaglia

et al. 2000), DAPI (Finkelstein et al. 2002), or spiking a fluorophore labeled dNTP

into the printing reaction (Shearstone et al. 2002).

A composite spot quality score based on a quantitative assessment of five

common problems with microarray spots has recently been proposed (Wang et

al. 2001; Wang et al. 2003). This score incorporates the size of the spots, their

signal to noise ratio, variability in the local background of the spot, the absolute

intensity of the background, and whether the spot is saturated or not. On arrays

containing replicated spots, there is a high correlation between a good quality
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score and low variability between replicates. The same is seen when duplicate

chips are tested, and the high quality spots are significantly more consistent

between different image processing programs than are the low quality spots.

Possible uses for this spot quality score are to remove spots with a score below

some threshold from further analysis (Wang et al. 2001; Wang et al. 2003), or to

use the score to weight each spot in the analysis, such as normalization (Smyth

and Speed 2003).

Some attention has been paid recently to quality control for microarrays at

the level of the entire array. Various researchers have advocated examinations

of visual representations of data to determine chip quality. M-A scatter plots

graph the log ratio of each spot versus the log of the sum of intensities in the two

channels (Dudoit et al. 2000; Tseng et al. 2001; Yang et al. 2002a; Yang et al.

2002b; Petri et al. 2004). This is similar to the more traditional scatter plots

where the log intensity in one channel is plotted against the log intensity in the

other channel, but the M-A plots can make significant effects more obvious.

Spatial representation of the intensities on a virtual array can also be used as a

quality check, as it can reveal hybridization or other spatial artifacts (Petri et al.

2004). Examples of each of these displays are shown in Figure 1. Each of these

methods requires the researcher to make a determination about whether an

array is acceptable based on individual inspection of these displays. In order to

remove the variability introduced by this subjective measure, a quantitative metric

is essential. One such metric that has been proposed offhand is to examine the

distribution of coefficients of variation for multiple spots corresponding to the
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same gene in a given slide, or for single spots across replicated arrays (Tseng et

al. 2001). Again, however, there is no empirical measure for determining

whether a slide should be used or not, just the subjectivity of the researcher.

I have developed a quality control statistic for genome-wide location

analysis experiments, similar to the spot quality score proposed by Wang et al.

(2001). It does incorporate some elements that are specific to chromatin

immunoprecipitation versus traditional gene expression microarrays, but could

easily be adapted to the latter. The quality statistic is based upon a number of

metrics that have been chosen to incorporate various aspects of both raw and

normalized microarray data. Examples of chips that would be discarded due to

each of these metrics are shown in Figure 2. The first metric incorporates a

simple count of the number of spots with low intensity or missing data in each

channel, and the difference between the two channels, as well as the median

and maximum intensity in each channel (Figure 2A). Additional metrics include

the distribution of the intensities in the control channel (Figure 2B), the standard

deviation of the log ratios (Figure 2C), and the number of spots with a significant

p-value (<0.001) versus the number with a non-significant p-value (>0.999)

(Figure 2D).

The first two metrics are appropriate for all microarray experiments. A

large number of spots with low signal intensity generally indicates a poor labeling

reaction. It is also important that there not be a much greater number of spots

with low intensity in one channel than the other. Both of these mean that a high

percentage of the spots will not yield meaningful data, confounding interpretation
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of the results. The median and maximum intensity in each channel indicate

whether a large proportion of measurements are towards the low end of the

scale, regardless of how many spots fall below the intensity threshold, although

the two are related. In general results obtained from low intensity spots are less

reliable (Wang et al. 2001), so the lower the median and maximum intensity, the

less reliable the results. The second metric compares the distribution of

intensities in the control channel with the average distribution across all chips. A

distribution for an individual chip that is significantly different from the average is

indicative of problems during the experiment (Figure 2B).

The other metrics are more specific for chromatin immunoprecipitation

experiments, and have only been examined for gene-specific transcription factors

with a small percentage of enriched spots. The expectation in a location analysis

experiment performed in a cell containing no antibody target is that the

distribution of DNA species in the immunoprecipitated sample will be the same

as the distribution in the genomic control. This is due to non-specific binding of

the DNA to the beads and antibody. Therefore, the histogram of log-ratios for

each spot should have a low standard deviation. In practice, we find this to be

true for a majority of experiments. However, when the experiment fails for any

number of reasons, including a low amount of starting material, poor DNA

cleanup, or low quality linker incorporated prior to ligation mediated PCR (LM-

PCR), the result is a much higher standard deviation than expected. Finally, we

expect enrichment (p < 0.001) to occur only in the immunoprecipitated channel.
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Figure 2:
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Figure 2: Components of the Quality Metric

R-G scatter plots with the log of the median normalized control intensity on the x

axis versus the log of the median normalized immunoprecipitated DNA on the y

axis are shown to illustrate the components of the quality metric.

A) Large number of low intensity spots, low overall intensity.

B) In these plots, the average log control intensity of each spot over >1000 chips

is plotted on the x axis. The log control intensity for each spot on individual chips

is plotted on the y axis. The chip on the left has an atypical distribution, as seen

by the cluster of spots on the left side of the plot, and the low density and

banding of the remaining group of spots, indicating a large number of missing

spots. The chip on the right has a typical distribution that clusters more tightly

around the 1:1 line.

C) A chip with ratios with a high standard deviation.

D) A chip with significantly more high p-value (p > 0.999, in red) spots than low

p-value (p < 0.001, in green) spots.
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If the enrichment seen is due to experimental error, however, there are also

correspondingly more spots on the other tail of the distribution (p > 0.999), so the

difference between the two is used as the final metric (Figure 2D).

Each of these metrics is computed for each individual array, and averaged

across all arrays. The quality score for each array is computed as the weighted

sum of the differences from this average, if the difference indicates poor array

quality. That is, no value is added to the array score if it is better than average,

only if it is worse. The weights are determined so that components of the score

that are at different orders of magnitude (for example the average number of low

intensity spots is in the hundreds, whereas the standard deviation of the log

ratios is less than one) have equal weight in computation of the array score.

The final stage at which quality control is necessary is to ensure that the

data from arrays that are intended to be replicates are in fact concordant. One

approach to this is to determine the coefficient of variation (CV, standard

deviation divided by mean) for each spot across multiple replicated slides. A

high variance in a plot of this CV versus intensity can indicate a poor slide, or

poor replication between slides (Tseng et al. 2001). Another method is to

examine the correlation between pairs of replicated slides (Yang et al. 2002a; Yu

and Wolfinger 2004).

Determining differential expression

Once the data have been normalized and determined to be of acceptable

quality, the next step is to determine which genes are expressed differently
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between samples. The naive method is to select a fold change ratio cutoff, then

consider any gene with a larger increase or decrease in expression as

differentially expressed. This heuristic is still in common use, but has some

serious drawbacks. First, it has been well documented that expression changes

at low intensity are much less reliable than those at high intensity (Tusher et al.

2001; Wang et al. 2001; Yang et al. 2002a), but this method does not account for

that. Second, some genes are inherently more variable in expression than

others, which can lead to a high rate of false positives (Hughes et al. 2000;

Tusher et al. 2001). For other genes that are expressed at a much more

constant level, a small amount of change in an experiment could be extremely

significant, but missed by using a simple fold-change criterion.

A burgeoning literature in this field has proposed many statistics for

quantifying differential expression and significance thereof. There are three

major problems with this literature: most of it is incomprehensible to the typical

biologist who could benefit from using these analyses, tools for performing the

analysis are not provided in a user-friendly form, and there is generally no

comparison of the results with those of other methods. Standards have been

developed for the reporting of microarray experimental data, and are now largely

in place (Ball et al. 2002). Similarly, the community interested in the analysis of

these data must develop principles for assessing each new method, and should

perform these tests on a common data set(s). The leukemia dataset from Golub

et al. (1999) seems to be becoming one such data set. A standardization of the

reported results would also be useful. Two authors have recently performed
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comparative studies of selected analysis methods using the leukemia data (Pan

2002; Broberg 2003), but as they report different statistics, it is difficult to

compare between the two.

Despite the difficulties in comparing individual methods to decide which is

optimum for a given analysis, some consensus has emerged as to the properties

of different techniques. First of all, statisticians uniformly agree that the use of a

straightforward fold-change criterion for selecting differentially expressed genes

is a poor metric. Because this method does not take into account the variability

of expression for each gene, nor the intensity of the measurements the fold

change is based on, the fold-change cutoff leads to an unacceptable rate of both

false positives and false negatives (Ideker et al. 2000; Baldi and Long 2001;

Tusher et aL. 2001; Wang and Ethier 2004). A conventional t-test, also widely

used, is a poor metric as well, because it assumes many more replicates than

are typically performed in a microarray experiment, as well as assuming that the

data are normally distributed, which is not the case (Baldi and Long 2001; Pan

2002; Broberg 2003; Wang and Ethier 2004).

Beyond that consensus, a de facto standard for analysis of microarray

data does seem to have emerged, Significance Analysis of Microarrays (SAM)

(Tusher et al. 2001). In this method, each gene is assigned a score based on its

change in expression relative to its standard deviation. A significance threshold

is then set, based on permutations of the data, to allow the researcher to choose

an acceptable level of false positives within the list of genes passing the

threshold. This technique makes three major advances over the more simplistic
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measures discussed above. First, the use of an empirical calculation of the false

discovery rate rather than making assumptions about the distribution of the data

for determining significance. Second, the incorporation of a gene-specific metric

to account for differences in variance between mRNA species. Finally, a

regularizing parameter is used to remove the dependence of variance on

intensity, thus making inferences at lower intensities more sound. More recently,

a proposal has been made to improve this analysis by modifying the test statistic,

but it remains to be seen whether the improvement is significant enough to

warrant general use (Broberg 2003).

There is one drawback with SAM - because it relies on replicated data

both to calculate the metric for differential expression and to assess the

significance of this difference, it cannot be used on a single chip level. This

weakness is not present in the other most commonly used method for assessing

differential expression, an error model developed originally for use with ink-jet

synthesized expression arrays (Hughes et al. 2000). Like SAM, this algorithm

improves over the basic analyses in that the larger variability at low intensities is

incorporated into the model. The test statistic incorporates a measure of the

background variance, as well as normalizing the statistic by intensity so that it

becomes intensity independent. However, it does assume normality of the data

in order to calculate a probability. This is the error model we adopted for use

with genome-wide location analysis.

It is important, with whatever statistical method is chosen for analysis of

differential expression, to keep the underlying biology in mind. For example,
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after performing location analysis on approximately fifty different transcription

factors in rich media conditions, we began to notice that there were some

intergenic regions to which our model was assigning a high probability of being

bound in every experiment. That these intergenic regions were truly bound by

this many proteins seemed highly unlikely given the physical characteristics of

the DNA and proteins - there simply isn't enough physical space to allow for the

binding of all of these factors.

It seemed likely that this binding was an experimental artifact. In order to

test this hypothesis, we performed a chromatin immunoprecipitation in wild type

cells, containing no epitope tag. These immunoprecipitations were performed as

per the standard operating procedure in one case, in another, a different antibody

and type of beads was used. Not surprisingly, in the immunoprecipitation using

the standard antibody and beads, the same set of intergenic regions found in

most experiments was assigned a high probability of being enriched. On the

other hand, using the different antibody and beads this set of intergenic regions

showed no enrichment, implying that the large amount of enrichment we were

seeing was an artifact.

This led me to the add a bias correction step in the data analysis algorithm

for location analysis. For each new version of analysis results, the average log

ratio for each intergenic region is computed across all chips. A histogram of

these results is shown in Figure 3A. There is a much larger proportion of spots

with an enriched ratio than would be expected. To remove this bias from the

results, the log ratio for each intergenic region on each chip is adjusted to bring
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the average log ratio for that intergenic region across all chips to zero. This is

achieved by adjusting the intensity values in the immunoprecipitated channel, as

that is the channel in which the bias is introduced. Figure 3B illustrates the

effects of this bias removal. For the Gall promoter the bias is minimal. The

average log ratio is approximately zero (average ratio of 1), and the majority of

enrichment occurs in experiments where Gal4 is the tagged factor, as expected.

This is in contrast to the YJR044C promoter, where enrichment is seen in almost

every experiment prior to bias removal. Note that unlike the Gall promoter, there

is no separation of "enriched" spots from non-enriched. The bias removal brings

the average log ratio to zero, and removes much of the "enrichment".

Determining biological meaning - comparison with other data sets

The ultimate goal of performing microarray experiments is to gain a

deeper biological understanding of the phenomenon being studied. This can

occur in some cases by using microarrays as a screen to find genes implicated in

a particular process. For example, microarrays were used to compare the

efficiency of transformation of cells containing deletions of all non-essential

genes with linearized versus circular plasmids, to find genes involved in the non-

homologous end joining pathway (Ooi et al. 2001). However, in most cases the

true power of microarray data is exploited by comparison of one dataset with

another, or with other genome-wide information.

One technique that has been used to leverage the information in

microarray data is clustering, or grouping together, of gene expression profiles
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Figure 3: Bias reduction
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Figure 3: Bias Reduction

A) A histogram of the average log base 10 ratio for each spot across > 1000

chips. The inset shows a blowup of the histogram for log ratios > 0.25. Average

log ratios greater than zero indicate enrichment. Note that the tail on the

enriched side is heavier than the tail on the non-enriched (left) side.

B) R-G scatter plots and ratio histograms for individual promoters across > 1000

chips. In each R-G plot the control intensity for the selected spot (x-axis) is

plotted against the immunoprecipitated DNA intensity for that spot on each chip

(y-axis). The GAL1 promoter is an unbiased spot, the average log ratio is close

to zero, and enriched chips are separated from non-enriched chips. GAL1 is

known to be regulated by Gal4, so spots corresponding to chips where Gal4 was

the tagged factor are marked in red. Other highly enriched spots correspond to

tagged factors Migl and Mthl, also known to regulate galactose synthesis.

YJR044C is a highly biased promoter, with a log ratio greater than zero in almost

every experiment, and no separation between spot populations, indicating a low

likelihood of enrichment. The bias reduction reduces the average log ratio to 0.
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generated through perturbations. This is based on the hypothesis that genes

involved in the same function will have similar effects on gene expression when

deleted. Likewise, extracellular perturbations such as application of a drug or

other small molecule that affect a particular pathway will cause analogous

changes. Clustering of such expression profiles has been used to annotate

previously uncharacterized genes (Hughes et al. 2000; Wu et al. 2002), to find

targets of drugs (Hughes et al. 2000; Parsons et al. 2004), and to find novel

genes involved in peroxisome biogenesis (Smith et al. 2002).

Comparison amongst various types of genome-wide data has been

particularly productive for determining functional significance of microarray

results. Genes in common between expression data and the binding of gene-

specific transcription factors (Ren et al. 2000; Bar-Joseph et al. 2003) indicate

likely transcriptional regulation. The overlap between genes whose upstream

region contains a particular sequence motif and expression data can correlate

that motif with gene functions (Kellis et al. 2003). Overlaps with location data can

indicate which transcription factor is binding to the selected sequence motif.

Comparison of genes or sequences culled from any of these types of

experiments with functional annotation based on literature curation has been

widely used to determine pathways or functions affected (Robinson et al. 2002;

Doniger et al. 2003) These comparisons are performed by selecting genes from

one dataset that meet a particular threshold, then counting the number of genes

in common with the comparison gene set. A probability is calculated using the

hypergeometric distribution or its binomial approximation. The categories with
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the most significant enrichment are taken as likely to inform on the biological

function of the set of genes being tested, and in many cases have been validated

experimentally as such.

The biggest drawback to this approach is the use of a fixed cutoff in

selection of one or both gene sets being examined' A novel algorithm called

"Gene Set Enrichment Analysis" (GSEA) which avoids this shortcoming has been

proposed (Mootha et al. 2003). The expression profiles of muscle tissue from

both diabetic patients and normal controls were obtained. After correcting for

multiple testing, there were no genes which met the threshold for significance.

Instead, each gene was ranked based on the average difference in expression

between the patients and controls, and an enrichment score for

overrepresentation of genes in a particular category or biological pathway was

computed. Significance of the enrichment was assessed by comparison with

permuted data. In this study, the functional class with the highest enrichment

score was genes involved in oxidative phosphorylation. Examination of the

genes so classified showed a highly significant decrease in expression of

approximately 20% across this set of genes (Mootha et al 2003). Thus by using

a rank ordering of genes for comparison with functional annotations, the problem

of selection of an appropriate significance threshold for a single gene was

avoided.

Despite the improvement that GSEA makes over the previously used

heuristics, it does face the same problem in that the gene sets must be static.

The groups of genes culled from literature annotation, containing particular
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sequence motifs, or clusters of expression data meet this criterion, but genes

selected as highly differentially expressed in other microarray studies do not.

Another case where the use of a significance cutoff can prove problematic is in

comparison of location data for different factors. Determining the overlap of

binding between factors can be used to decide if the factors are functioning at the

same promoters (Zeitlinger et al. 2003). Particularly if one or both factors are

more general, the use of a significance cutoff for binding can mask detection of a

true overlap, or the extent of an overlap.

I have developed a simple algorithm and statistic for overcoming these

obstacles. Rather than comparing a fixed number of genes or intergenic regions

from each dataset, a sliding comparison is performed. Similar to GSEA, genes in

each dataset are first ranked by significance. Then, for the top N genes the

number of genes in common between the two datasets is plotted, with N varying

from 1 to the size of the dataset. The area under the curve is used as the test

statistic. Significance is computed based on the number of higher test statistics

seen when testing the overlap with other data. This test statistic could be

improved - an enrichment score computed as in GSEA would probably be more

sensitive (Mootha et aL 2003).

The differences between computing overlaps between static, thresholded

sets of genes and the sliding overlap method are highlighted in Figure 4. The

first comparison, Figure 4A, is between the binding of each of four factors in rich

media versus peroxide. Using the static method, overlaps between the two

conditions are significant for three of the four factors, Hsfl, Rebl, and Yap4. The
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Figure 4: Overlaps Between Datasets

Two methods of assessing overlaps between datasets. The static method,

where genes are selected for comparison if they pass a threshold, in this case a

p-value <0.001. The overlaps between selected genes are counted, and a

probability computed using the hypergeometric test. These overlaps are shown

using Venn diagrams, where the size of the circle or overlap is proportional to the

number of genes. In the sliding overlap method, genes in one dataset are

ranked in order of enrichment (or expression). For each N, the number of the top

N ranked genes in that dataset found in the top N ranked genes of the

comparison dataset is counted, and this overlap is plotted from 1 to N. An

overlap probability is computed by comparing with randomized data.

A) Comparison between binding of factors in rich media with peroxide. The

factors chosen for comparison were Rebl, Msn2, Yap4 and Hsfl. A separate

Venn diagram with associated p-value is shown for each factor for the static

overlap method. Using this tool, significant overlaps are seen for Yap4, Hsfl and

Rebl. No overlap is found for Msn2 in rich media versus peroxide. The Yap4

and Hsfl overlaps are equally significant according to the hypergeometric test,

with a slightly less significant overlap for Rebl. For the sliding overlap technique,

a line showing the extent of the overlap is graphed for each factor, Rebl (green),

Msn2 (red), Yap4 (blue) and Hsfl (magenta). The black dotted line indicates the

maximum possible overlap. In contrast to the results seen with the static overlap

method, Rebl has the highest overlap between the YPD and peroxide
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conditions, followed by Yap4 and Hsfl. In agreement with the static method,

minimal overlap is seen with Msn2.

B) Comparison between binding of Yap7 and four hyperoxia regulators in

peroxide - Msn2 (green), Skn7 (red), Yap1 (blue) and Msn4 (magenta).

Significant overlaps are computed for each factor compared with Yap7 with the

static method. Yap1 has the highest overlap, followed by Msn4. Again, this is

contrasted with the results from the sliding overlap technique, where the only

significant overlap is between Yap7 and Yap1, and the overlaps with the other

three factors are equivalent.
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overlap is most significant for Hsfl, followed by Rebl and Yap4. On the other

hand, the sliding overlap method makes it clear that the binding of Rebl is

actually the most similar between the two conditions, followed by Yap4 then

Hsfl. In Figure 4B, comparisons are made between binding of regulators in the

same condition, hyperoxia, to determine whether any of the regulators might be

functioning at the same promoters. The binding of Yap7 is compared with the

binding of the four master regulators of the hyperoxic stress response. With the

static method, despite only small overlaps between Yap7 and Msn2, Msn4 and

Skn7, all overlaps are assigned a reasonably significant p-value. The overlap

between Yap7 and Yap1 is most significant, followed by the overlap of Yap7 with

Msn4. However, the sliding overlap method shows that only the overlap between

Yap7 and Yap1 is significant, and that the overlaps with the other three factors

are almost identical. This illustrates how use of a fixed cutoff can introduce

artifacts into the analysis.

Determining biological meaning - network motifs

One way that the overlaps between the sets of genes bound by

transcription factors have been used is to find factors that might be binding as a

complex, or cooperatively regulating genes in some other way. Groups of

regulators jointly regulating expression of groups of genes has been termed a

"multi-input motif' (Lee et al. 2002b), or "dense overlapping regulon" (Shen-Orr et

al. 2002). This is one example of a network motif, patterns of regulation that

occur more frequently than expected by chance (Milo et al. 2002; Shen-Orr et al.
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2002). Other network motifs include autoregulation, feedforward loops, single-

input motifs, multi-component loops, and regulator chains (Lee et al. 2002b).

Individual network motifs for a small subset of regulators have been defined on a

gene by gene basis, but until genome-wide location analysis was used to profile

most regulators, enumeration of the possible network motifs used by the cell

globally was not feasible.

I developed a set of algorithms for finding all of the network motifs present

in the genome-wide binding data. These motifs are not definitive, but instead

designed to provide hypotheses for further testing. As with other analyses we

performed with these location data, we used a fixed p value threshold of 0.001 to

minimize the number of false positives, but this does mean that we are probably

not capturing all network motifs. The methods for discovering the motifs ranged

from the trivial determination of the autoregulatory motifs, the set of regulators

found to be binding to their own promoters, to the complexities of finding the

multi-component loops and regulator chains.

Single-input motifs consisted of simply listing the genes bound by each

regulator. Multi-input motifs were found by testing each gene (see schematic in

Figure 5A), first to determine if it was bound by multiple regulators, then to find

out if the pattern of bound regulators had already been cataloged. If the

regulatory pattern was novel, the remaining genes were searched to find any

additional instances of the pattern. This reduced computational time significantly

over testing each possible regulatory pattern. To obtain the list of feedforward

loops, any additional regulators bound by a given factor were found, followed by
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Figure 5: Algorithms to Find Network Motifs
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Figure 5: Algorithms to Find Network Motifs

For these schematics, the promoter for a given gene is labeled with capital

letters. The pattern of regulators binding to a promoter is indicated by circles,

which are filled if the regulator is binding, or empty if the regulator is not binding.

The promoter or regulator being examined is boxed in red. In the motif

schematics, regulator proteins are denoted by circles, the promoters to which

they are binding are denoted by rectangles. A binding interaction is shown by an

arrow point from the regulator to the promoter to which it binds. This figure

shows schematics for how network motifs were found as follows:

A) Multi-Input Motifs. The list of genes is scanned through, one by one. The

pattern of regulators binding to the current gene is found. If that pattern has not

already been used, all other genes that are bound by the same pattern of

regulators are added to the motif.

B) Feedforward Loops. Each regulator is examined to find promoters to which it

binds that could regulate additional regulators. All genes that are bound by both

regulators are added to the motif.

C) Multi-component Loops and Regulator Chains. This is a recursive algorithm,

where the list of regulators bound by the factor being examined is obtained. The

list of regulator bound by each of those downstream regulators is then found, and

so on. The motif terminates when a downstream regulator does not bind to any

additional regulators, leading to a Regulator Chain, or the downstream regulator

binds to a regulator earlier in the series, leading to a Multi-Component Loop.
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the group of genes bound by these two regulators (Figure 5B). Since multi-

component loops and regulator chains are similar in that they consist of multiple

sequential regulator-regulator promoter interactions, they were found using a

single recursive algorithm (Figure 5C). In each loop of the recursion, one more

regulator was added onto a loop or chain, until a regulator earlier in the sequence

was repeated (loop), or no further regulators were bound by the terminal factor

(chain). After the final list of loops and chains was determined, any motif that

was a subset of another motif was removed. Some improvements that could be

made to these methods include incorporating additional sources of data such as

sequence motifs, conservation and expression information in order to relax the p-

value threshold used.

While the biological effects of the motifs we discovered have yet to be

demonstrated, network motifs discovered using traditional biological experiments

have been shown to effect particular patterns of transcriptional regulation.

Positive autoregulatory events increase the amount of a transcription factor

available to regulate expression of additional genes upon a specific change in

environment. Transcription of Pdr3, a regulator involved in response to various

drugs, is initially stimulated by binding of Pdrl followed by autoregulation

(Delahodde et al. 1995). These two regulators are also involved in a feedforward

loop: Pdrl binds to and activates Pdr3, and the two activators together regulate

expression of a number of transporters, including Pdr5, Pdrl, Pdrl Pdr15, Snq2 and

Yorl (Decottignies et al. 1994; Decottignies et al. 1995; Wolfger et al. 1997;

Decottignies et al. 1998). Examples of multi-input motifs abound; in the
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regulation of response to various stresses, Hsfl and Msn2/4 coordinate the

response of some genes (Treger et al. 1998; Amoros and Estruch 2001), while

Skn7 and Hsfl regulate others (Raitt et al. 2000).

Determining biological meaning - data visualization

Comparing microarray data with annotations or other data sets can yield

biological discovery in terms of which pathways might be regulated by a

particular perturbation, or which regulators might be causing those changes, for

example. However, it can be very easy to miss key discoveries because of the

size of the data sets and our inherent inability to cope with that much information.

Methods for visualizing the data have proved invaluable in spotting global trends.

The first type of visualization used was developed for viewing the results

of clustering analyses. In this depiction, now commonly called a 'heat map',

ratios that indicate an increase in expression are colored in red, those indicating

a decrease are colored green, and the intensity of the color is proportional to the

magnitude of the change (Eisen et al. 1998; Wen et al. 1998). The data are

clustered using one of a number of metrics, then displayed. Patterns of changes

that might be missed just by examination of the numerical data are now clearly

obvious. In analyzing the response of yeast cells to varying stress conditions

(Gasch et al. 2000; Causton et al. 2001), for example, the fact that there is a

common response to all the stresses becomes obvious when the data are

clustered and visualized in this manner. Besides being effective with expression

data, this method of visualizing data can aid discoveries with other technologies
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as well. A heat map of clustered location data for the cell cycle regulators shows

the waves of regulation over time (Simon et al. 2001). Heat maps of location

data for the binding of 106 yeast transcription factors to promoters shows pairs

and groups of regulators that are functioning together, as well as the sets of

genes being regulated (Lee et al. 2002b).

Another useful way of displaying both expression and location data is by

chromosomal location. Genes that are changing in expression, or that are bound

by a transcription factor are colored on a depiction of each chromosome.

Visualizing changes in expression upon depletion of histone H4 in this manner

led to the insight that histones do not seems to be generally repressive to gene

expression except at the 20kb most proximal to telomeres (Wyrick et al. 1999).

This contrasted strikingly with the pattern seen upon deletion of the silencing

proteins, Sir2, 3 and 4, where the repressive effect did not spread nearly as far.

In another instance, the chromosomal coloring was used to illustrate the gene-

specificity of Swi/Snf dependent remodeling (Sudarsanam et al. 2000). An open

question had been whether this chromatin remodeling complex was altering the

nuclesome structure of entire chromatin domains, or whether the changes were

localized to individual promoters. Visualization of the expression changes

occurring in Swi/Snf mutants showed no clustering of changes by chromosomal

location, indicating that the remodeling action of Swi/Snf occurs on a very limited

basis. Microarrays for genome-wide location analysis are constantly being

improved; the latest generations include tiled promoter regions. Similar
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representations of these tiled regions could assist in discovering the global

positions at which general regulatory factors or chromatin modifiers are acting.

Other displays of genome-scale data are often used, but more to illustrate

discoveries than to make them. Venn diagrams of overlaps between data sets or

between data sets and annotations are frequently used to give a visual sense of

the scale of the overlap. Scatter plots of intensities or ratios for a single

experiment can show the effectiveness of the normalization and analysis

methods; scatter plots comparing different experiments illustrate the extent of

differences between the two data sets. Graphs of clustered expression profiles,

for example, illustrated the changes seen in the profile over time or through

experiments.

Because we are much better able to process the amount of information

generated in a microarray experiment visually rather than by examining numbers,

it behooves the community to develop even more methods by which biological

discoveries can be made. With so many novel genome-wide data sets of which

to take advantage, methods that can distill these into clear representations will

greatly assist in helping to use these data to make global discoveries rather than

serving in the same way as gene by gene approaches have for the past century.
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Summary

We have determined how most of the transcriptional regulators encoded in

the eukaryote Saccharomyces cerevisiae associate with genes across the

genome in living cells. Just as maps of metabolic networks describe the potential

pathways that may be used by a cell to accomplish, metabolic processes, this

network of regulator-gene interactions describes potential pathways yeast cells

can use to regulate global gene expression programs. We use this information to

identify network motifs, the simplest units of network architecture, and

demonstrate that an automated process can use motifs to assemble a

transcriptional regulatory network structure. Our results reveal that eukaryotic

cellular functions are highly connected through networks of transcriptional

regulators that regulate other transcriptional regulators.

Introduction

Genome sequences specify the gene expression programs that produce

living cells, but how the cell controls global gene expression programs is far from

understood. Each cell is the product of specific gene expression programs

involving regulated transcription of thousands of genes. These transcriptional

programs are modified as cells progress through the cell cycle, in response to

changes in environment, and during organismal development (DeRisi et al. 1997;

Cho et al. 1998; Spellman et al. 1998; Gasch et al. 2000; Causton et al. 2001).

Gene expression programs depend on recognition of specific promoter

sequences by transcriptional regulatory proteins (Lee and Young 2000; Garvie
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and Wolberger 2001; Orphanides and Reinberg 2002; Ptashne and Gann 2002).

Because these regulatory proteins recruit and regulate chromatin modifying

complexes and components of the transcription apparatus, knowledge of the

sites bound by all the transcriptional regulators encoded in a genome can provide

the information necessary to nucleate models for transcriptional regulatory

networks. With the availability of complete genome sequences and development

of a method for genome-wide binding analysis (also known as genome-wide

location analysis), investigators can identify the set of target genes bound in vivo

by each of the transcriptional regulators that are encoded in a cell's genome.

This approach has been used to identify the genomic sites bound by nearly a

dozen regulators of transcription (Ren et al. 2000; lyer et al. 2001; Lieb et al.

2001; Simon et al. 2001) and several regulators of DNA synthesis (Wyrick et al.

2001) in yeast.

Experimental Design

We have used genome-wide location analysis to investigate how yeast

transcriptional regulators bind to promoter sequences across the genome (Fig.

1A). All 141 transcription factors listed in the Yeast Proteome Database

(Costanzo et al. 2000) and reported to have DNA-binding and transcriptional

activity were selected for study. Yeast strains were constructed so that each of

the transcription factors contained a myc epitope tag. To increase the likelihood

that tagged factors were expressed at physiologic levels, we introduced epitope

tag coding sequences into the genomic sequences encoding the COOH terminus
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A. Systematic Genome-wide Location Analysis of Regulators B. Influence of P-value Cutoff

Regulator Tag
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with a tagged
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by regulator in vivo
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35,345 interactions

p-value 0.01
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Figure 1. Systematic genome-wide location analysis for yeast transcription

regulators.

(A) Methodology. Yeast transcriptional regulators were tagged by introducing the

coding sequence for a c-myc epitope tag into the normal genomic locus for each

regulator. Of the yeast strains constructed in this fashion, 106 contained a single

epitope-tagged regulator whose expression could be detected in rich growth

conditions. Chromatin immunoprecipitation (ChlIP) was performed on each of

these 106 strains. Promoter regions enriched through the ChIP procedure were

identified by hybridization to microarrays containing a genome-wide set of yeast

promoter regions.

(B) Effect of p-value threshold. The sum of all regulator-promoter region

interactions is displayed as a function of varying p-value thresholds applied to the

entire location dataset for the 106 regulators. More stringent p-values reduce the

number of interactions reported, but decrease the likelihood of false positive

results.
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of each regulator as described (Knop et al. 1999). We confirmed appropriate

insertion of the tag and expression of the tagged protein by polymerase chain

reaction and immunoblot analysis. Introduction of an epitope tag might be

expected to affect the function of some transcriptional regulators; for 17 of the

141 factors, we were not able to obtain viable tagged cells, despite three

attempts to tag each regulator. Not all the transcriptional regulators were

expected to be expressed at detectable levels when yeast cells were grown in

rich medium, but immunoblot analysis showed that 106 of the 124 tagged

regulator proteins could be detected under these conditions.

We performed a genome-wide location analysis experiment (Ren et al.

2000) for each of the 106 yeast strains that expressed epitope-tagged

regulators.' Each tagged strain was grown in three independent cultures in rich

medium (yeast extract, peptone, dextrose). Genome-wide location data were

subjected to quality control filters and normalized, and the ratio of

immunoprecipitated to control DNA was determined for each array spot. We

calculated a confidence value (P value) for each spot from each array by using

an error model (Hughes et al. 2000). The data for each of the three samples in

an experiment were combined by a weighted average method (Hughes et al.

2000); each ratio was weighted by P value and then averaged. Final P values for

these combined ratios were then calculated.2

Given the properties of the biological system studied here (cell

populations, DNA-binding factors capable of binding to both specific and non-

Additional information is available at the authors' Web site:
http://web.wi.mit.edu/young/regulator network. See supporting data on Science online.
2 lbid.
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specific sequences) and the expectation of noise in microarray-based data, it

was important to use error models to obtain a probabilistic assessment of

regulator location data. The total number of protein-DNA interactions in the

location analysis dataset, using a range of P value thresholds, is shown in Fig.

1 B. We selected specific P value thresholds to facilitate discussion of a subset of

the data at a high confidence level, but note that this artificially imposes a "bound

or not bound" binary decision for each protein-DNA interaction.

We will generally describe results obtained at a P value threshold of 0.001

because our analysis indicates that this threshold maximizes inclusion of

legitimate regulator-DNA interactions and minimizes false positives. Various

experimental and analytical methods indicate that the frequency of false positives

in the genome-wide location data at the 0.001 threshold is 6% to 10%. 3 For

example, conventional, gene-specific chromatin immunoprecipitation

experiments have confirmed 93 of 99 binding interactions (involving 29 different

regulators) that were identified by location analysis data at a threshold P value of

0.001. Use of a high-confidence threshold should underestimate the regulator-

DNA interactions that actually occur in these cells. We estimate that about one-

third of the actual regulator-DNA interactions in cells are not reported at the

0.001 threshold. 4
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Regulator Density

We observed nearly 4000 interactions between regulators and promoter

regions at a P value threshold of 0.001. The promoter regions of 2343 of 6270

yeast genes (37%) were bound by one or more of the 106 transcriptional

regulators in yeast cells grown in rich medium. Many yeast promoters were

bound by multiple transcriptional regulators (Fig. 2A), a feature previously

associated with gene regulation in higher eukaryotes (Lemon and Tjian 2000;

Merika and Thanos 2001), suggesting that yeast genes are also frequently

regulated through combinations of regulators. More than one-third of the

promoter regions that are bound by regulators were bound by two or more

regulators (P value threshold = 0.001), and, relative to the expected distribution

from randomized data, a disproportionately high number of promoter regions

were bound by four or more regulators. Because of the stringency of the P value

threshold, we expect that this represents an underestimate of regulator density.

The number of different promoter regions bound by each regulator in cells

grown in rich medium ranged from 0 to 181 (P value threshold = 0.001), with an

average of 38 promoter regions per regulator (Fig. 2B). The regulator Abfl bound

the largest number (181) of promoter regions. Regulators that should be active

under growth conditions other than yeast extract, peptone and dextrose were

typically found, as expected, to bind the smallest number of promoter regions.

For example, Thi2, which activates transcription of thiamine biosynthesis genes

under conditions of thiamine starvation (Kawasaki et al. 1990; Nishimura et al.

1992), was among the regulators that bound the smallest number (3) of
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Figure 2
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Figure 2. Genome-wide distribution of transcriptional regulators.

(A) A plot of the number of regulators bound per promoter region. The

distribution for the actual location data (red circles) is shown alongside the

distribution expected from the same set of p-values randomly assigned among

regulators and intergenic regions (white circles). At a p-value threshold of 0.001,

significantly more intergenic regions bind 4 or more regulators than expected by

chance.

(B) Distribution of the number of promoter regions bound per regulator.
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promoters. Identification of a set of promoter regions that are bound by specific

regulators allowed us to predict sequence motifs that are bound by these

regulators. 5

Network Motifs

The simplest units of commonly used transcriptional regulatory network

architecture, or network motifs, provide specific regulatory capacities such as

positive and negative feedback loops. We used the genome-wide location data

to identify six regulatory network motifs: autoregulation, multi-component loops,

feedforward loops, single input, multi-input and regulator chains (Fig. 3). These

motifs suggest models for regulatory mechanisms that can be tested.

Descriptions of the algorithms used to identify motifs and a complete compilation

of motifs can be obtained at http://web.wi.mit.edu/young/regulator_network.

An autoregulation motif consists of a regulator that binds to the promoter

region of its own gene. We identified 10 autoregulation motifs with genome-wide

location data for the 106 regulators (P value threshold = 0.001), which suggests

that about 10% of yeast genes encoding regulators are autoregulated. This

percentage does not change substantially at less stringent P value thresholds. In

contrast, studies of Escherichia coli genetic regulatory networks indicate that

most (52% to 74%) prokaryotic genes encoding transcriptional regulators are

autoregulated (Thieffry et al. 1998; Shen-Orr et al. 2002).

Autoregulation is thought to provide several selective growth advantages,

including reduced response time to environmental stimuli, decreased biosynthetic

5 Ibid.
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Figure 3

Examples of Network Motifs in the Yeast Regulatory Network
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Figure 3. Examples of network motifs in the yeast regulatory network.

Regulators are represented by blue circles, and gene promoters are represented

by red rectangles. Binding of a regulator to a promoter is indicated by a solid

arrow. Genes encoding regulators are linked to their respective regulators by

dashed arrows. For example, in the autoregulation motif, the Ste12 protein binds

to the STE12 gene, which is transcribed and translated into Ste12 protein.

These network motifs were uncovered by searching binding data with various

algorithms. For details on the algorithms used, and a full list of motifs found, see

http://web.wi.mit.edu/young/regulator_network.
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cost of regulation, and increased stability of gene expression (McAdams and

Arkin 1997; Thieffry et al. 1998; Becskei and Serrano 2000; Guelzim et al. 2002;

Shen-Orr et al. 2002). For example, upon exposure to mating pheromone, the

concentrations of the pheromone-responsive Ste12 transcriptional regulator

rapidly increase because Ste12 binds to and up-regulates its own gene (Dolan

and Fields 1990; Ren et al. 2000) (Fig. 3). The consequent increase in Ste12

protein leads to the binding of other genes required for the mating process (Ren

et al. 2000).

A multi-component loop motif consists of a regulatory circuit whose

closure involves two or more factors (Fig. 3). We observed three multi-

component loop motifs in the location data for 106 regulators (P value threshold

= 0.001). The closed-loop structure provides the capacity for feedback control

and offers the potential to produce bistable systems that can switch between two

alternative states (Ferrell 2002). The multi-component loop motif has yet to be

identified in bacterial genetic networks (Thieffry et al. 1998; Shen-Orr et al.

2002).

Feedforward loop motifs contain a regulator that controls a second

regulator, and have the additional feature that both regulators bind a common

target gene (Fig. 3). The regulator location data reveal that feedforward loop

architecture has been highly favored during the evolution of transcriptional

regulatory networks in yeast. We found that 39 regulators are involved in 49

feedforward loops potentially controlling 240 genes in the yeast network (about

10% of genes that are bound in the genome-wide location dataset).
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In principle, a feedforward loop can provide several features to a

regulatory circuit. The feedforward loop may act as a switch that is designed to

be sensitive to sustained rather than transient inputs (Shen-Orr et al. 2002).

Feedforward loops have the potential to provide temporal control of a process

because expression of the ultimate target gene may depend on the accumulation

of adequate levels of the master and secondary regulators. Feedforward loops

may provide a form of multistep ultrasensitivity (Goldbeter and Koshland 1984)

as small changes in the level or activity of the master regulator at the top of the

loop might be amplified at the ultimate target gene because of the combined

action of the master regulator and a second regulator that is under the control of

the master regulator.

Single-input motifs contain a single regulator that binds a set of genes

under a specific condition. Single-input motifs are potentially useful for

coordinating a discrete unit of biological function such as a set of genes that code

for the subunits of a biosynthetic apparatus or enzymes of a metabolic pathway.

For example, several genes of the leucine biosynthetic pathway are controlled by

the Leu3 transcriptional regulator (Fig. 3).

Multi-input motifs consist of a set of regulators that bind together to a set

of genes. We found 295 combinations of two or more regulators that could bind

to a common set of promoter regions. This motif offers the potential for

coordination of gene expression across a wide variety of growth conditions. For

example, each of the regulators bound to a set of genes can be responsible for

regulating those genes in response to a unique input. In this manner, two
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different regulators responding to two different inputs would allow coordinate

expression of the set of genes under these two different conditions.

Regulator chain motifs consist of chains of three or more regulators in

which one regulator binds the promoter for a second regulator, the second binds

the promoter for a third regulator, and so forth (Fig. 3). This network motif is

observed frequently in the location data for yeast regulators; we found 188

regulator chain motifs, which varied in size from 3 to 10 regulators. The chain

represents the simplest circuit logic for ordering transcriptional events in a

temporal sequence. The most straightforward form of this appears in the

regulatory circuit of the cell cycle where regulators functioning at one stage of the

cell cycle regulate the expression of factors required for entry into the next stage

of the cell cycle (Simon et al. 2001).

The regulatory motifs described above suggest models for gene regulatory

mechanisms whose predictions can be tested with experimental data. One

regulatory motif that caught our attention involved ribosomal protein genes;

ribosomes are important protein biosynthetic machines, but transcriptional

regulation of ribosomal protein genes is not well understood. Fhll, a protein

whose function was not previously known, forms a single-input regulatory motif

consisting of essentially all ribosomal protein genes, but little else. No other

regulator studied here exhibited this behavior. This predicts that loss of Fhll1

function should have a profound effect on ribosome biosynthesis if no other

regulators are capable of taking its place. Indeed, a mutation in Fhll causes

severe defects in ribosome biosynthesis (Hermann-Le Denmat et al. 1994), an
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observation that was difficult to interpret previously in the absence of the

genome-wide location data. Many ribosomal protein genes are also components

of a multi-input motif involving Fhll1 and additional regulators (Fig. 3), which

suggests that expression of these genes may be coordinated by multiple

regulators under various growth conditions. This model and others suggested by

regulatory motifs can be addressed with future experiments.

Assembling Motifs into Network Structures

We assume that regulatory network motifs form building blocks that can

be combined into larger network structures. An algorithm was developed that

explores all the genome-wide location data together with the expression data

from over 500 expression experiments to identify groups of genes that are both

coordinately bound and coordinately expressed. In brief, the algorithm begins by

defining a set of genes, G, that are bound by a set of regulators, S, with a P

value threshold of 0.001. We find a large subset of genes in G that are similarly

expressed over the entire set of expression data, and we use those genes to

establish a core expression profile. Genes are then dropped from G if their

expression profile is significantly different from this core profile. The remainder of

the genome is scanned for genes with expression profiles that are similar to the

core profile. Genes with a significant match in expression profiles are then

examined to see if the set of regulators S are bound. At this step, the probability

of a gene being bound by the set of regulators is used instead of the individual

probabilities of that gene being bound by each of the individual regulators.
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Because we are assaying the combined probability of the set of regulators being

bound, and are relying on similarity of expression patterns, we can relax the P

value for individual binding events and thus recapture information that is lost

because of the use of an arbitrary P value threshold. The process is repeated

until all combinations of genes bound by regulators have been considered.

Additional details of the algorithm are available upon request. The resulting sets

of regulators and genes are essentially multi-input motifs refined for common

expression (MIM-CE). We expect these to be robust examples of coordinate

binding and expression and therefore useful for nucleating network models.

We used the refined motifs to construct a network structure for the yeast

cell cycle by an automatic process that requires no prior knowledge of the

regulators that control transcription during the cell cycle. We selected the cell

cycle regulatory network because of the importance of this biological process, the

availability of extensive genome-wide expression data for the cell cycle (Cho et

al. 1998; Spellman et al. 1998) and the extensive literature that can be used to

explore features of a network model. Our goal was to determine whether the

computational approach would construct the regulatory logic of cell cycle from

the location and expression data without previous knowledge of the regulators

involved. We reasoned that MIM-CEs that are significantly enriched in genes

whose expression oscillates through the cell cycle (Spellman et al. 1998) would

identify the regulators that control these genes. We identified 11 regulators with

this approach. To construct the cell cycle network, we generated a new set of

115



MIM-CEs by using only the 11 regulators and the cell cycle expression data

(Spellman et al. 1998).

To produce a cell cycle transcriptional regulatory network model, we

aligned the MIM-CEs around the cell cycle on the basis of peak expression of the

genes in the group by means of an algorithm described previously (Bar-Joseph

et al. 2002) (Fig. 4). Three features of the resulting network model are notable.

First, the computational approach correctly assigned all the regulators to stages

of the cell cycle where they were shown to function in previous studies (Simon et

al. 2001). Second, two regulators that have been implicated in cell cycle control

but whose functions were ill-defined (Morgan et al. 1995; Bouquin et al. 1999; Ho

et al. 1999), could be assigned within the network on the basis of direct binding

data. Third, and most important, reconstruction of the regulatory architecture

was automatic and required no prior knowledge of the regulators that control

transcription during the cell cycle. This approach should represent a general

method for constructing other regulatory networks.

Coordination of Cellular Processes

Transcriptional regulators were often bound to genes encoding other

transcriptional regulators (Fig. 5). For example, there were many instances in

which transcriptional regulators within a functional category (for example, cell

cycle) bound to genes encoding regulators within the same category. We have

noted that cell cycle regulators bound to other cell cycle regulators (Simon et al.

2001), and this phenomenon was also apparent among transcriptional regulators
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Figure 4

A Model for the Yeast Cell Cycle Transcriptional Regulatory Network



Figure 4. Model for the yeast cell cycle transcriptional regulatory network.

A transcriptional regulatory network for the yeast cell cycle was derived from a

combination of binding and expression data as described in the text. Yeast cell

morphologies are depicted during the various stages of the cell cycle. Each blue

box represents a set of genes that are bound by a common set of regulators and

co-expressed throughout the cell cycle. The text inside each blue box identifies

the common set of regulators that bind to the set of genes represented by the

box. Each box is positioned in the cell cycle according to the time of peak

expression levels for the genes represented by the box. Regulators, represented

by ovals, are connected to the sets of genes they regulate by solid lines. The arc

associated with each regulator effectively defines the period of activity for the

regulator. Dashed lines indicate that a gene in the box encodes a regulator

found in the outer rings.
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Figure 5. Network of transcriptional regulators binding to genes encoding

other transcriptional regulators.

All 106 transcriptional regulators that were subjected to location analysis in rich

media are displayed in a circle, segregated into functional categories based on

the primary functions of their target genes (Cell Cycle in red, Development in

black, DNAIRNAIProtein Biosynthesis in tan, Environmental Response in green,

and Metabolism in blue). Lines with arrows depict binding of a regulator (0.001

p-value threshold) to the gene encoding another regulator. Circles with arrows

depict binding of a regulator to the promoter region of its own gene.
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that fall into the metabolism and environmental response categories. For

example, the metabolic regulator Gcn4 bound to promoters for PUT3 and UGA3,

genes that encode transcriptional regulators for amino acid and other metabolic

functions. The stress response activator Yap6 bound to the gene encoding the

Roxl repressor, and vice versa, suggesting positive and negative feedback

loops.

We also found that multiple transcriptional regulators within each category

were able to bind to genes encoding regulators that are responsible for control of

other cellular processes. For example, the cell cycle activators bind to genes for

transcriptional regulators that play key roles in metabolism (GAT1, GAT3, NRG1,

SFL1); environmental responses (ROX1, YAP1, ZMS1); development (ASH1,

SOK2, MOT3); and DNA, RNA and protein biosynthesis (ABF1). These

observations are likely to explain, in part, how cells coordinate transcriptional

regulation of the cell cycle with other cellular processes. These connections are

generally consistent with previous experimental information about the

relationships between cellular processes. For example, the developmental

regulator Phdl has been shown to regulate genes involved in pseudohyphal

growth during certain nutrient stress conditions; we found that Phdl also binds to

genes that are key to regulation of general stress responses (MSN4, CUP9 and

ZMS1) and metabolism (HAP4).

These observations have several important implications. The control of

most, if not all, cellular processes is characterized by networks of transcriptional

regulators that regulate other regulators. It is also evident that the effects of
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transcriptional regulator mutations on global gene expression as measured by

expression profiling (DeRisi et al. 1997; Chu et al. 1998; Jelinsky and Samson

1999; Madhani et al. 1999; Gasch et al. 2000; Hughes et al. 2000; Lopez and

Baker 2000; Lyons et al. 2000; Roberts et al. 2000; Shamji et al. 2000; Travers et

al. 2000; Causton et al. 2001; Epstein eta/. 2001; Natarajan et al. 2001; Devaux

et al. 2002) are as likely to reflect the effects of the network of regulators as they

are to identify the direct targets of a single regulator.

Significance of regulatory network information

This study identified network motifs that provide specific regulatory

capacities for yeast, revealing the regulatory strategies that were selected during

evolution for this eukaryote. These motifs can be used as building blocks to

construct large network structures through an automated approach that

combines genome-wide location and expression data in the absence of prior

knowledge of regulator functions. The network of transcriptional regulators that

control other transcriptional regulators is highly connected, suggesting that the

network substructures for cellular functions such as cell cycle and development

are themselves coordinated at a transcriptional level.

It is possible to envision mapping the regulatory networks that control

gene expression programs in considerable depth in yeast and in other living

cells. More complete understanding of transcriptional regulatory networks in

yeast will require knowledge of regulator binding sites under various growth
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conditions6 and experimental testing of models that emerge from computational

analysis of regulator binding, gene expression and other information. The

approach described here can also be used to discover transcriptional regulatory

networks in higher eukaryotes. Knowledge of these networks will be important

for understanding human health and designing new strategies to combat

disease.
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Chapter 4

Transcriptional Regulatory Code of a Eukaryotic Genome
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Summary

DNA-binding transcriptional regulators interpret the genome's regulatory code by

binding to specific sequences to induce or repress gene expression (Jacob and

Monod 1961). Comparative genomics has recently been used to identify potential

cis-regulatory sequences within the yeast genome on the basis of phylogenetic

conservation (Blanchette and Tompa 2003; Cliften et al. 2003; Kellis et al. 2003;

Wang and Stormo 2003; Pritsker et al. 2004), but this information alone does not

reveal if or when transcriptional regulators occupy these binding sites. We have

constructed an initial version of yeast's transcriptional regulatory code by

mapping the sequence elements that are bound by regulators under various

conditions and that are conserved among Saccharomyces species. The

organization of regulatory elements in promoters and the environment-dependent

use of these elements by regulators are discussed. We find that environment-

specific use of regulatory elements predicts mechanistic models for the function

of a large population of yeast's transcriptional regulators.
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We used genome-wide location analysis (Ren et al. 2000; lyer et al. 2001;

Lieb et aL. 2001; Lee et al. 2002) to determine the genomic occupancy of 203

DNA-binding transcriptional regulators in rich media conditions and, for 84 of

these regulators, in at least one of twelve other environmental conditions

(Supplementary Table 1, Supplementary Figure 1,

http://web.wi.mit.edu/young/regulatory_code). These 203 proteins are likely to

include nearly all of the DNA-binding transcriptional regulators encoded in the

yeast genome. Regulators were selected for profiling in an additional

environment if they were essential for growth in that environment or if there was

other evidence implicating them in regulation of gene expression in that

environment. The genome-wide location data identified 11,000 unique

interactions between regulators and promoter regions at high confidence (P '

0.001).

To identify the cis-regulatory sequences that likely serve as recognition

sites for transcriptional regulators, we merged information from genome-wide

location data, phylogenetically conserved sequences, and prior knowledge

(Figure 1A). We used six motif discovery methods (Bailey and Elkan 1995; Roth

et aL. 1998; Liu et al. 2002) to discover 68,279 DNA sequence motifs for the 147

regulators that bound more than ten probes (Supplementary Methods;

Supplementary Figure 2). From these motifs we derived the most likely specificity

for each regulator through clustering and stringent statistical tests. This motif

discovery process identified highly significant (P s 0.001) motifs for each of 116

regulators. We determined a single high-confidence motif for 65 of these

131



Figure 1

A

Phylogenetic
conservation data

Other published
evidence

Triplicate ChIP- ChlIP-2 ChlP-3

experiments I I. S. cerevisiae . .
S. paradoxus . .
S. mikatae ..
S. bayanus . .

.ATCGCACGTGAT...

.ATTTCACATGAT...

.ATATCACGTGAC...

.CTTGCACGTGCC...

Identification ofC ACTG bidtranscription factorC ACG h e binding site specificities
B

"Rediscovered" sequence specificities

Abfl -TCAC

Basl r&ACTC

Pho4 CACGTL

Rpn4

AQ-i

TTIGCCACc

Stel2 TGrsAAAC

"Discovered" sequence specificities

Phdl CP ' ,

Rdsl

Snt2 -G-C CTA-..c

Stb4 TC , C`A

YDR026C -TTACCCG 

Genome-wide
location data

I m



Figure 1. Discovering binding site specificities for yeast transcriptional

regulators.

A) Cis-regulatory sequences that likely serve as recognition sites for

transcriptional regulators were identified by combining information from genome-

wide location data, phylogenetically conserved sequences, and previously

published evidence, as described in Supplementary Methods. The compendium

of regulatory sequence motifs can be found in Supplementary Table 3.

B) Selected sequence specificities that were "rediscovered" and were newly

discovered are displayed. The total height of the column is proportional to the

information content of the position, and the individual letters have height

proportional to the product of their frequency and the information content

(Schneider and Stephens 1990).
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Figure 2. Drafting the yeast transcriptional regulatory map.

A) Portions of chromosomes illustrating locations of genes (grey rectangles) and

conserved DNA sequences (coloured boxes) bound in vivo by transcriptional

regulators.

B) Combining binding data and sequence conservation data. The diagram

depicts all sequences matching a motif from our compendium (top), all such

conserved sequences (middle) and all such conserved sequences bound by a

regulator (bottom).

C) Regulator binding site distribution. The red line shows the distribution of

distances from the start codon of open reading frames to binding sites in the

adjacent upstream region. The green line represents a randomized distribution.
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used to construct the map includes binding data from multiple growth

environments, the map describes transcriptional regulatory potential within the

genome. During growth in any one environment, only subsets of the binding sites

identified in the map are occupied by transcriptional regulators, as we describe in

more detail below.

Where the functions of specific transcriptional regulators were established

previously, the functions of the genes they bind in the regulatory map are highly

consistent with this prior information. For example, the amino acid biosynthetic

regulators Gcn4 and Leu3 bind to sites in the promoter of BAP2 (chromosome II),

which encodes an amino acid transporter (Figure 2A). Six well-studied cell cycle

transcriptional regulators bind to the promoter for YHP1 (chromosome IV), which

has been implicated in regulation of the G1 phase of the cell cycle. The regulator

of respiration Hap5, binds upstream of COX4 (chromosome VII), which encodes

a component of the respiratory electron transport chain. Where regulators with

established functions bind to genes of unknown function, these target genes are

newly implicated in such functional processes.

The utility of combining regulator binding data and sequence conservation

data is illustrated in Figure 2B. All sequences matching the regulator DNA

binding specificities described in this study (Supplementary Table 2) that occur

within the 884 base-pair intergenic region upstream of the gene BAP2 are shown

in the upper panel. The subset of these sequences that have been conserved in

multiple yeast species, and are thus likely candidates for regulator interactions,

are shown in the middle panel. The presence of these conserved regulatory sites
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indicates the potential for regulation via this sequence, but does not indicate

whether the site is actually bound by a regulator under some growth condition.

The incorporation of binding information (bottom panel) identifies those

conserved sequences that are utilized by regulators in cells grown under the

conditions examined.

The distribution of binding sites for transcriptional regulators reveals there

are constraints on the organization of these sites in yeast promoters (Figure 2C).

Binding sites are not uniformly distributed over the promoter regions, but rather

show a sharply peaked distribution. Very few sites are located in the region 100

base pairs (bp) upstream of protein coding sequences. This region typically

includes the transcription start site and is bound by the transcription initiation

apparatus. The vast majority (74%) of the transcriptional regulator binding sites

lie between 100 and 500 bp upstream of the protein coding sequence, far more

than would be expected at random (53%). Regions further than 500 bp contain

fewer binding sites than would be expected at random. It appears that yeast

transcriptional regulators function at short distances along the linear DNA, a

property that reduces the potential for inappropriate activation of nearby genes.

We note that specific arrangements of DNA binding site sequences occur within

promoters, and suggest that these promoter architectures provide clues to

regulatory mechanisms (Figure 3). For example, the presence of a DNA binding

site for a single regulator is the simplest promoter architecture and, as might be

expected, we found that sets of genes with this feature are often involved in a

common biological function (Supplementary Table 4). A second type of promoter
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Figure 3
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Figure 3. Yeast promoter architectures. Single regulator architecture: promoter

regions that contain one or more copies of the binding site sequence for a single

regulator. Repetitive motif architecture: promoter regions that contain multiple

copies of a binding site sequence of a regulator. Multiple regulator architecture:

promoter regions that contain one or more copies of the binding site sequences

for more than one regulator. Co-occurring regulator architecture: promoters that

contain binding site sequences for recurrent pairs of regulators. For the purposes

of illustration, not all sites are shown and scale is approximate. Additional

information can be found in Supplementary Tables 4-6.
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architecture consists of repeats of a particular binding site sequence. Repeated

binding sites have been shown to be necessary for stable binding by the

regulator Dal80 (Cunningham and Cooper 1993). This repetitive promoter

architecture can also allow for a graded transcriptional response, as has been

observed for the HIS4 gene (Donahue et al. 1983). A number of regulators,

including Dig1, Mbpl, and Swi6 show a statistically significant preference for

repetitive motifs (Supplementary Table 5). A third class of promoter contains

binding sites for multiple different regulators. This promoter arrangement implies

that the gene may be subject to combinatorial regulation, and we expect that in

many cases the various regulators can be used to execute differential responses

to varied growth conditions. Indeed, we note that many of the genes in this

category encode products that are required for multiple metabolic pathways and

are regulated in an environment-specific fashion. In the fourth type of promoter

architecture we discuss here, binding sites for specific pairs of regulators occur

more frequently within the same promoter regions than would be expected by

chance (Supplementary Table 6). This "co-occurring" motif architecture implies

that the two regulators physically interact or have shared functions at multiple

genes.

By conducting genome-wide binding experiments for some regulators

under multiple cell growth conditions, we learned that regulator binding to a

subset of the regulatory sequences is highly dependent on the environmental

conditions of the cell (Supplementary Figure 4). We observed four common

patterns of regulator binding behaviour (Figure 4, Supplementary Table 7). Prior
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Figure 4. Environment-specific utilization of the transcriptional regulatory

code. Four patterns of genome-wide binding behaviour are depicted in a graphic

representation on the left, where transcriptional regulators are represented by

coloured circles and are placed above and below a set of target

genes/promoters. The lines between the regulators and the target

genes/promoters represent binding events. Specific examples of the

environment-dependent behaviours are depicted on the right. Coloured circles

represent regulators and coloured boxes represent their DNA binding sequences

within specific promoter regions. We note that regulators may exhibit different

behaviours when different pairs of conditions are compared.
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information about the regulatory mechanisms employed by well-studied

regulators in each of the four groups suggests hypotheses to account for the

environment-dependent binding behaviour of the other regulators.

"Condition invariant" regulators bind essentially the same set of promoters (within

the limitations of noise) in two different growth environments (Figure 4). Leu3,

which is known to regulate genes involved in amino acid biosynthesis, is among

the best studied of the regulators in this group. Binding of Leu3 in vivo has been

shown to be necessary, but not sufficient for activation of Leu3-regulated genes

(Kirkpatrick and Schimmel 1995). Rather, regulatory control of these genes

requires association of a leucine metabolic precursor with Leu3 to convert it from

a negative to positive regulator. We note that other zinc cluster type regulators

that show "condition invariant" behaviour are known to be regulated in a similar

manner (Ma and Ptashne 1987; Axelrod et al. 1991). Thus, it is reasonable to

propose that the activation or repression functions of some of the other

regulators in this class will be independent of DNA binding.

"Condition enabled" regulators do not bind the genome detectably under

one condition, but bind a substantial number of promoters with a change in

environment. Msn2 is among the best-studied regulators in this class, and the

mechanisms involved in Msn2-dependent transcription provide clues to how the

other regulators in that class may operate. Msn2 is known to be excluded from

the nucleus when cells grow in the absence of stresses, but accumulates rapidly

in the nucleus when cells are subjected to stress (Beck and Hall 1999; Chi et al.

2001). This condition-enabled behaviour was also observed for the thiamine
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biosynthetic regulator Thi2, the nitrogen regulator Gat1, and the developmental

regulator Rim101. We suggest that many of these transcriptional regulators are

regulated by nuclear exclusion or by another mechanism that would cause this

extreme version of condition-specific binding.

"Condition expanded" regulators bind to a core set of target promoters

under one condition, but bind an expanded set of promoters under another

condition. Gcn4 is the best-studied of the regulators that fall into this "expanded"

class. The levels of Gcn4 are reported to increase 6-fold when yeast are

introduced into media with limiting nutrients (Albrecht et al. 1998), due largely to

increased nuclear protein stability (Kornitzer et al. 1994; Chi et al. 2001), and

under this condition we find Gcn4 binds to an expanded set of genes.

Interestingly, the probes bound when Gcn4 levels are low contain better matches

to the known Gcn4 binding site than probes that are bound exclusively at higher

protein concentrations, consistent with a simple model for specificity based on

intrinsic protein affinity and protein concentration (Supplementary Figure 5). The

expansion of binding sites by many of the regulators in this class may reflect

increased levels of the regulator available for DNA binding.

"Condition altered" regulators exhibit altered preference for the set of

promoters bound in two different conditions. Ste12 is the best studied of the

regulators whose binding behaviour falls into this "altered" class. Depending on

the interactions with other regulators, the specificity of Ste12 can change and

alter its cellular function (Zeitlinger et al. 2003). For example, under filamentous

growth conditions, Ste12 interacts with Tecl, which has its own DNA-binding
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specificity (Baur et al. 1997). This condition-altered behaviour was also observed

for the transcriptional regulators Aft2, Skn7, and Ume6. We propose that the

binding specificity of many of the transcriptional regulators may be altered

through interactions with other regulators or through modifications (e.g.,

chemical) that are environment-dependent.

Substantial portions of eukaryotic genome sequence are believed to be

regulatory (Waterston et al. 2002; Cliften et al. 2003; Kellis et al. 2003), but the

DNA sequences that actually contribute to regulation of genome expression have

been ill-defined. By mapping the DNA sequences bound by specific regulators in

various environments, we identify the regulatory potential embedded in the

genome and provide a framework for modeling the mechanisms that contribute to

global gene expression. We anticipate that the approaches used here to map

regulatory sequences in yeast can also be used to map the sequences that

control genome expression in higher eukaryotes.
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Methods

Strain Information

For each of the 203 regulators, strains were generated in which a

repeated Myc epitope coding sequence was integrated into the endogenous

gene encoding the regulator. Polymerase chain reaction (PCR) constructs

containing the Myc epitope coding sequence and a selectable marker flanked by

regions of homology to either the 5' or 3' end of the targeted gene were

transformed into the W303 yeast strain Z1256 (Ren et al. 2000; Lee et al. 2002).

Genomic integration and expression of the epitope-tagged protein were

confirmed by PCR and Western blotting, respectively.

Genome wide location analysis

Genome-wide location analysis was performed as previously described

(Ren et al. 2000; Lee et al. 2002). Bound proteins were formaldehyde-

crosslinked to DNA in vivo, followed by cell lysis and sonication to shear DNA.

Crosslinked material was immunoprecipitated with an anti-myc antibody, followed

by reversal of the crosslinks to separate DNA from protein. Immunoprecipitated

DNA and DNA from an unenriched sample were amplified and differentially

fluorescently labeled by ligation-mediated PCR. These samples were hybridized

to a microarrray consisting of spotted PCR products representing the intergenic

regions of the S. cerevisiae genome. Relative intensities of spots were used as

the basis for an error model that assigns a probability score (P value) to binding
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interactions. All microarray data are available from ArrayExpress (accession

number: E-WMIT-10) as well as from the authors' web site.

Growth environments

We profiled all 203 regulators in rich medium. In addition, we profiled 84

regulators in at least one other environmental condition. The list of regulators is

given in Supplementary Table 1.

Regulator Binding Specificity

The putative specificities of regulators were identified by applying a suite

of motif discovery programs to the intergenic sequences identified by the binding

data. The resulting specificity predictions were filtered for significance using

uniform metrics and then clustered to yield representative motifs (Supplementary

Figure 2).

We used six methods to identify the specific sequences bound by

regulators: AlignACE (Roth et al. 1998), MEME (Bailey and Elkan 1995), Mdscan

(Liu et al. 2002), the method of Kellis et al. (Kellis et al. 2003) and two additional

new methods that incorporate conservation data: MEME_c and CONVERGE.

MEME_c uses the existing MEME program without change, but applies it to a

modified set of sequences in which bases that are not conserved in the sensu

stricto Saccharomyces species were replaced with the letter "N". CONVERGE is

a novel expectation-maximization (EM)-based algorithm for discovering

specificities using sequence information from multiple genomes. Rather than
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searching for sites that are identical across the sensu stricto species, as is the

case for MEME_c, CONVERGE searches for loci where all aligned sequences

are consistent with the same specificity model. See Supplementary Methods for

runtime parameters and additional details for all of these methods.

Each of the programs we used attempts to measure the significance of its

results with one or more statistical scores. However, we observed that these

programs report results with high scores even when applied to random selections

of intergenic regions. To distinguish the true motifs, we chose a set of statistical

measures that are described in the Supplementary Methods, and we converted

these scores into the empirical probability that a motif with a similar score could

be found by the same program in randomly selected sequences. To estimate

these P values, we ran each program 50 times on randomly selected sets of

sequences of various sizes. We accepted only those motifs that were judged to

be significant by these scores (P < 0.001).

Significant motifs from all programs were pooled together and clustered

using a k-medoids algorithm. Aligned motifs within each cluster were averaged

together to produce consensus motifs and filtered according to their

conservation. This procedure typically produced several distinct consensus

motifs for each regulator. To choose a single specificity for each regulator, we

compared the results with information in the TRANSFAC (Matys et al. 2003),

YPD (Hodges et al. 1999), and SCPD (Zhu and Zhang 1999) databases. When

no prior information was available, we chose the specificity with the most

significant statistical score.
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Regulatory Code

Potential binding sites were included in the map of the regulatory code if

they satisfied two criteria. First, a locus had to match the specificity model for a

regulator in the Saccharomyces cerevisiae genome and at least two other sensu

stricto cerevisiae genomes with a score > 60% of the maximum possible.

Second, the locus had to lie in an intergenic region that also contained a probe

bound by the corresponding regulator in any condition (P < 0.001). All analyses

of promoter architecture and environment-specific binding were based on this

map, and can be found in Supplementary Information.

Supplementary Methods

More detailed information concerning all the methods used in this paper

can be found in at http://web.wi.mit.edu/young/regulatory_code and in

Supplementary Information.
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Chapter 5

Conclusions: The Future of Systems Biology
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The ultimate goal of systems biology is to have a complete understanding

of all the elements that comprise a cell and how those elements interact to effect

the functions of the cell (Aggarwal and Lee 2003). We should be able to

construct a working computational model of a cell that responds to stimuli exactly

as a real cell does. This will allow us to make predictions about cellular

responses and to understand every component of that response. In the medical

field, such models will enable thorough understanding of the mechanisms behind

diseases as well as suggesting the best pathways and steps at which to interfere

to cure or alleviate illness.

The elements of a cell that we need to catalog in order to enable a

complete model include, but are not limited to, genomic elements, proteomic

elements, and the interactions between the two. We need to know what

elements are encoded by the DNA in the genome: their location, function, and

presence under varied environmental conditions. We need to catalog the

components of the proteome, their functions, modifications and different

complexes that are formed. In addition, the interactions between the genome

and proteome that control the content of the proteome must be understood and

cataloged.

Of each of these levels of knowledge required to model a cell, we currently

have the most thorough understanding of the genome and its elements.

Complete sequences of the genomes of many organisms (excluding the hard to

sequence highly repetitive regions) have been published. In addition to this

knowledge of the DNA sequence, the list of elements encoded is approaching
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completion, particularly for smaller organisms such as the yeast Saccharomyces

cerevisiae (Cliften et al. 2003; Kellis et al. 2003). One set of these elements is

comprised of the sequence of protein coding genes. Many complementary

methods have been used for finding these elements, including computational

prediction based on searching for sequence patterns that match those

associated with known genes (Burge and Karlin 1998; Katoh 2002; Yada et al.

2003). A second technique is sequencing the messenger RNA population that is

intermediate between the genome and the proteome, via Expressed Sequence

Tags (ESTs) (Williamson et al. 1995; Eckman et al. 1998). Comparison of

sequences between related organisms is also used to find protein coding genes,

based on the assumption that these genes are more likely to be conserved

across species than random DNA sequence (Morgenstern et al. 2002; Cliften et

al. 2003; Kellis et al. 2003; Taher et al. 2004). These techniques enumerate all

the elements that are present in the genome; genome-wide expression analysis

(Schena et al. 1995; Shalon et al. 1996) provides an assessment of which

elements are being utilized by the cell under particular conditions by measuring

the mRNA population, or other genomic components.

Similar methods have been used to find elements in the genome that code

for RNA molecules that are not translated into proteins (Eddy 2001). These

include tRNAs that assist in the translation of messenger RNA into proteins by

linking the RNA sequence code with the appropriate amino acids. MicroRNAs

are small RNA molecules that bind to and cause degradation of specific

messenger RNAs, thus participating in the regulation of the level of protein coded
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for by the mRNA (Lagos-Quintana et al. 2001; Lau et al. 2001; Lee and Ambros

2001). These and other types of RNA molecules, such as ribozymes, are also

found using computational predictions based on pattern recognition and cross

species comparison (Grad et al. 2003; Lai et al. 2003; Ohler et al. 2004).

In addition to these coding sequences, the genome also contains

regulatory elements. These are short sequences that serve as the points of

interaction between the genome and proteome. They include sequences that

nucleate the assembly of the general transcriptional machinery, as well as the

more specific sequences that are bound by gene-specific transcription factors.

Transcription factors can control the assembly or disassembly of the

transcriptional machinery as well as the rate of transcription, by varied affinities

for the DNA sequences as well as the recruited general transcription apparatus.

While various methods for finding these regulatory elements have been

described (Lawrence and Reilly 1990; Roth et al. 1998; Spellman et al. 1998;

Hughes et aL 2000; Liu et al. 2001), these elements have proved more elusive

than the protein and RNA coding genes. The main reason for this is that a wide

range of sequences can be bound by each transcription factor, in contrast to the

single defined sequences that codes for a protein or RNA message.

The proteome is the second level studied in systems biology. Mass

spectrometry provides an assessment of the protein complement of cells under

various conditions as well as how that complement changes as the cellular

environment is altered. Mass spec in addition to the yeast-two-hybrid system

has provided information about which proteins are present in complex with one
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another (Dziembowski and Seraphin 2004). Information about the function of

proteins has been obtained on a genome-wide scale by deletion or knockdown of

genes followed by phenotypic assessment (Winzeler et al. 1999). Deletion or

knockdown of multiple proteins in concert provides information about which

genes are acting in the same pathways (Krogan et a/. 2004; Tong et al. 2004).

Covalent linkage of small molecules to proteins can have a marked effect on

protein functionality. These modifications can also be measured by mass

spectrometry (Wilkins et al. 1999; Sickmann et al. 2001; Sickmann et al. 2002),

but this has not been accomplished on a genome-wide level to date.

Another level of knowledge necessary to model a cell is of the interactions

between the genome and the proteome. As mentioned, transcriptional regulators

bind to specific DNA sequences close to genes and recruit other proteins to

either increase or decrease transcription of the associated gene. In addition,

DNA is complexed with histone proteins into chromatin, which packages the DNA

into a small volume inside the nucleus (Allfrey et al. 1964). Various modifications

of the histone proteins, as well as modifications of the transcription factors, have

been shown to have an effect on regulation of gene synthesis (Allfrey et al. 1964;

Struhl 1995; Reece and Platt 1997; Sharrocks 2000). Chromatin

immunoprecipitation has long been used to study interactions between both

regulatory transcription factors or histones and the genome. Using microarrays

to examine the immunoprecipitates has turned this technique into another that

can assess interactions on a genome-wide scale (Ren et al. 2000; lyer et al.

2001). Computational analysis of the sequences that are reported to be bound
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by these various factors is one way in which the sequence elements involved are

discovered (Harbison et al. 2004).

At the moment, we have gathered knowledge about the pieces of a cell

that we need in order to build these cellular models, and in fact, have managed

to build models of small systems within cells (Hartemink et a/. 2001; Ideker et al.

2001; Davidson et al. 2002; Ideker 2004; Oliveri and Davidson 2004). The goal

of modeling a complete cell is still somewhat farfetched, however. The

regulatory sequences in the genome present one major challenge. As

mentioned, these sequences are hard to find because a single protein has affinity

for a range of sequences as opposed to only a single sequence. This means

that for many genes known to be bound or regulated by a given transcription

factor, we are unable to discover the particular sequence to which the protein

binds, using the high throughput analyses and experiments that are essential to

the systems biology approach. Improvements in analysis of groups of

sequences to detect motifs with higher variability than is currently possible will

assist in overcoming this limitation, as will more sensitive binding assays. The

other side of this problem is that these regulatory sequences are comprised of

only a few nucleotides and thus are found randomly throughout the genome. We

do not understand yet why these sequences are bound only in a subset of their

locations across the genome, and why even fewer of these sequences cause

changes in gene expression.

There are also aspects of the system that we do not currently measure on

a genome-wide level that could enhance our current understanding. One such
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aspect is complementary to genome-wide location analysis - a high throughput

method of measuring, at each individual promoter, which proteins are present.

For an individual promoter this could be accomplished using an oligonucleotide

column to capture proteins bound to the sequence of interest, followed by mass

spectrometry to identify those proteins. This assumes that the interactions

between proteins and DNA are sufficiently strong to survive the column washing.

Otherwise some form of crosslinking might be required. To do this in a high

throughput fashion, one could possibly create oligonucleotides containing a

barcode and linked to beads. After capturing the cognate DNA sequences from

a lysed cell, mass spectrometry on individual beads could identify the bound

proteins, and the barcode could identify the captured DNA sequence. Another

technology that would assist is a method for directly reading the transcriptional

output of the cell. Current technologies measure the RNA complement of a cell

at a given time, but one cannot deconvolute effects of differential rates of

synthesis and degradation to assess the direct effect of perturbations on

transcription. Additional technological improvements to enable measuring

changes occurring in cells in real time will enable clearer understanding of effects

of perturbations. Finally, being able to make measurements on a single cell to

avoid population effects will allow us to directly link cause and effect.

In the decade since the first eukaryotic genome was sequenced, we have

made great strides towards the goal of a computational model of a complete cell.

With some of the new technologies suggested here, as well as improvements in
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existing methods and analysis, the virtual cell should become a reality in the not

too distant future.
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Computational Discovery of Gene Modules and Regulatory Networks
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Summary

We present a new algorithm, GRAM (Genetic RegulAtory Modules), which fuses

information from genome-wide location and expression data sets to discover

regulatory networks of gene modules. A gene module is defined as a set of

genes that are both co-expressed and bound by the same set of transcription

factors. Unlike previous approaches (Eisen et al. 1998; Pilpel et al. 2001;

Berman et al. 2002; Ihmels et al. 2002; Segal et al. 2003) that have relied

primarily on functional information from expression data, the GRAM algorithm

explicitly links genes to the factors that regulate them by using DNA binding data

to incorporate direct physical evidence of regulatory interactions. We use the

GRAM algorithm to discover a genome-wide regulatory network using binding

information for 106 transcription factors in Saccharomyces cerevisiae in rich

media conditions and over 500 expression experiments. Additionally, we present

a new genome-wide location analysis data set for regulators in yeast cells treated

with rapamycin, and use the GRAM algorithm to provide biological insights in this

regulatory network.
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High-throughput biological data sources hold the promise of

revolutionizing molecular biology by providing large-scale views of genetic

regulatory networks. Many genome-wide expression data sets are now readily

available, and typical computational analyses have applied clustering algorithms

to expression data to find sets of co-expressed and potentially co-regulated

genes (Eisen et al. 1998). Recent approaches have used more sophisticated

algorithms, such as the work of Segal et al., in which they construct a

probabilistic model that uses expression data to link regulators to regulated

genes (Segal et al. 2003). Their method relies on the assumption that

expression levels of regulated genes will depend on expression levels of

regulators, which is a limitation in cases in which the expression level of the

regulator does not change appropriately (e.g., cases of post-transcriptional

modification). Other approaches have combined expression data with additional

information, such as shared DNA binding motifs or MIPS categories (Pilpel et al.

2001; Berman et al. 2002; Ihmels et al. 2002), but the use of these data sources

provides essentially only functional or indirect evidence of genetic regulatory

interactions. These methods cannot distinguish among genes that have similar

expression patterns but are under the control of different regulatory networks

(see Supplementary Notes online for further details).

Large scale, genome-wide location analysis for DNA-binding regulators

offers a second means for identifying regulatory relationships (Lee et al. 2002).

Location analysis identifies physical interactions between regulators and DNA

regions providing strong direct evidence for genetic regulation. While useful,
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binding information is also limited, as the presence of the regulator at a promoter

region indicates binding but not function: the regulator may act positively,

negatively or not at all. In addition, as with all microarray based data sources,

location analysis data contains substantial experimental noise. Since expression

and location analysis data provide complementary information, our goal was to

develop an efficient computational method for integrating these data sources.

We expected that such an algorithm could provide assignments of groups of

genes to regulators that would be both more accurate and more biologically

relevant than assignment based solely on either data source alone.

The GRAM algorithm begins by performing an efficient, exhaustive search

over all possible combinations of transcriptional regulators indicated by the DNA-

binding data with a stringent criterion for determining binding. Once a set of

genes bound by a common set of transcriptional regulators is found, the

algorithm identifies a subset of these genes with highly correlated expression,

which serves as a "seed" for a gene module. The algorithm then revisits the

binding data, and seeks to add additional genes to the module that are similarly

expressed and bound by the same set of transcriptional regulators using a

relaxed binding criteria. Our algorithm allows genes to belong to more than one

module. See the Methods section for a complete description of the GRAM

algorithm.

The GRAM algorithm was applied to genome-wide location data for 106

transcription factors and over 500 expression experiments (details on the data

used are available in Supplementary Table 1 online). One-hundred six gene
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modules were identified, containing 655 distinct genes and regulated by 68 of the

transcription factors. Figure 1 presents a visualization of these results as a graph

with edges between gene modules and regulators.

The gene modules abstraction allowed us to label regulator-module edges

in the graph to indicate whether there is significant evidence that regulators may

be functioning as activators. Since a gene module provides a link between a set

of regulators and the common expression pattern of a set of bound genes, we

can use the relationship between a regulator's expression pattern and the

common expression pattern of genes in a module to infer whether a regulator

acts as an activator. In contrast, the use of genomic location data alone only

allows us to infer the presence of regulators at promoters, but can give no

information about the type of interaction. We searched for activator relationships

by examining regulators with expression profiles that are positively correlated

with the expression profiles of genes in the corresponding modules. Positive

correlation indicates that higher levels of regulator expression correlate with

higher levels of expression of genes in the module and suggests that the

transcription factor positively regulates the expression of genes in the module.

We determined the statistical significance of the activator relationships by

computing correlation coefficients between all transcriptional regulators studied

and all gene modules and taking the 5% positive tail of the distribution of

correlation coefficients. Supplementary Table 2 online presents the eleven

activators determined using the method described above. Ten of the eleven

activators were previously identified in the literature, suggesting that this analysis
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Figure 1: Rich media gene modules network

Visualization of the transcriptional regulatory network discovered by the GRAM

algorithm as a graph with edges between gene modules and regulators shows

that there are many groups of connected gene modules/regulators involved in

similar biological processes. The network consists!of 106 modules containing

655 distinct genes regulated by 68 transcription factors. In most cases in which a

gene module is controlled by one or more regulators, there was previous

evidence suggesting that these regulators physically or functionally interact (see

Supplementary Table 3 online for details). The directed arrows point from

transcription factors to the gene modules that they regulate. Blue arrows

indicate discovered activator regulatory relationships (see Supplementary Table

2 online and the text for details). Gene modules are colored according to the

MIPS category to which a significant number of genes belong (significance test

using the hypergeometric distribution p < 0.005). Modules containing many

genes with unknown function or an insignificant number belonging to the same

MIPS category are uncolored. When the gene modules discovered by the

GRAM algorithm were compared to results generated using location data alone,

the GRAM algorithm yielded an almost three-fold increase in modules

significantly enriched for genes in the same MIPS category.

173

nlru·--··���L·IIIIYuuu�-·^rC�- ·�rl�·�,,,�,� .��.�.�-··I�LI-�_.,.�L--�)YiLL·�.yLI�LL·- . -. · -- ..... ....... rr·-·i-~-··L·-·-·· ·. '··-·--~ L ~ ,y Y Y-·i u-r· ·-- l~-r· Y



produces biologically meaningful results.

Several results obtained by analysis of the discovered gene modules

suggest that the algorithm identifies biologically relevant groupings of genes.

First, we found that gene modules generally identify groups of genes that

function in a similar biological pathway as defined by the MIPS functional

categorization (Mewes et al. 2000) (see Fig. 1 and Supplementary Table 3 online

for details). Second, we found the gene modules to be generally accurate in

assigning regulators to sets of genes whose functions are consistent with the

regulators' known roles. As an example, Gcrl is a well-characterized regulator of

glucose metabolism (Baker 1986; Holland et al. 1987); 6 of the 7 genes identified

in the Gcrl module are enzymes involved in glycolysis and gluconeogenesis.

Additionally, we found that in most cases in which a gene module is controlled by

one or more regulators, there was previous evidence suggesting that these

regulators physically or functionally interact (see Supplementary Table 4 online).

For example, gene modules identify Hap2/3/4/5, Hap4/Abfl, Ino2/lno4, Hirl/Hir2,

Mbpl/Swi6, and Swi4/Swi6 interactions. Taken together, these results provide

evidence that the GRAM algorithm identifies not only biologically related sets of

genes, but also relevant factors that are interacting to control the genes.

While genome-wide location data alone is potentially useful for deriving

transcriptional regulatory networks, a key feature of the GRAM algorithm is its

ability to compensate for technical limitations in the location data through the

integration of expression data. To determine binding events in location data, Lee

et al. (Lee et al. 2002) used a statistical model and chose a relatively stringent p-
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value threshold (.001) with the intention of reducing false positives at the

expense of false negatives. The GRAM algorithm presents a powerful alternative

to using a single p-value threshold to predict binding events, since our method

allows the p-value cutoff to be relaxed if there is sufficient supporting evidence

from expression data. As an example, consider Hap4, a well-characterized

regulator of genes involved in oxidative phosphorylation and respiration

(Forsburg and Guarente 1989). The Hap4 modules contain twenty-eight genes

that are involved in respiration and show a high degree of co-regulation over the

collected expression data sets (Fig. 2). Six of these genes (PET9, ATP16,

KGD2, QCR6, SDH1, and NDI1) would not have been identified as Hap4 targets

using the stringent .001 p-value threshold (p-values range from .0011 to .0036).

Overall, 627 out of 1560 unique regulator-gene interactions (40%) in the rich

media network discovered by the GRAM algorithm would not have been detected

using only location data and the stringent p-value cutoff.

To further verify the ability of the GRAM algorithm to improve the rate of

false negatives without contributing significantly to the rate of false positives, we

performed gene-specific chromatin-IP experiments for the factor Stbl and 36

genes. The profiled genes were picked randomly from the full set of yeast

genes, with representatives selected from four p-values ranges. In these

experiments, three additional genes were determined to be bound by Stbl that

had p-values between .01 and .001 in the genomic location experiments and had

thus been excluded with the stringent cutoff. The GRAM algorithm identified all

three genes as bound by Stbl without adding any additional genes that were not
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Figure 2: The GRAM algorithm integrates genome-wide binding and

expression data and improves on either data source alone. A) Binding data:

the GRAM algorithm can improve the quality of DNA-binding information, since it

uses expression data to avoid a strict statistical significance threshold. Shown is

DNA-binding and expression informationfor the 99 genes bound by the regulator

Hap4 with a p-value < .01 using the statistical model in Lee et a16. The blue-

white column on the left indicates binding p-values, and the horizontal yellow line

denotes the strict significance threshold of .001. As can be seen, the p-values

form a continuum and a strict threshold is unlikely to produce good results. The

blue horizontal lines on the right indicate the 28 genes that were selected for

modules by the GRAM algorithm. As can be seen, 22 (79%) have a p-value <

.001, but 6 (21 %) have p-values above this threshold. The lower portion of the

figure shows together the 28 genes selected by the GRAM algorithm, and it can

be seen that they exhibit coherent expression. Further, all the selected genes

are involved in respiration. Six of these genes (PET9, ATP16, KGD2, QCR6,

SDH1, and NDI1) would not have been identified as Hap4 targets using the

stringent .001 p-value threshold (p-values range from .0011 to .0036).

B) Expression data: the GRAM algorithm can assign different regulators to genes

with similar expression patterns that cannot be distinguished using expression

clustering methods alone. Hierarchical clustering of expression data was used to

obtain the sub-tree on the left. On the right, the regulators assigned to genes by

the GRAM algorithm are color coded. As can be seen, many genes with very

similar expression patterns are regulated by different transcription factors.
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detected in the gene-specific chromatin-IP experiments (see Supplementary

Table 5 and Methods online for full details).

We also expected that the gene modules derived by the GRAM algorithm

would improve on the biological relevance of gene groupings that could be

inferred from location data only. Since genes that participate in the same

biological pathway often have similar expression patterns, and genes in a module

share not only a common set of transcription factors but also similar expression

patterns, we expected that genes in modules would more likely be functionally

related than sets of genes identified by location data alone. Indeed, we found

that gene modules derived using the GRAM algorithm were almost three times

more likely to show enrichment for genes in the same MIPS functional category

than were sets of genes derived solely from location data.

We similarly expected that genes in modules derived by the GRAM

algorithm would be more likely to show independent evidence of co-regulation by

the regulators assigned to the module when compared to sets of genes obtained

using location data alone. One line of evidence for such an improvement would

be enrichment for specific DNA sequence motifs. We identified 34 transcriptional

regulators that bind to genes in at least one module and have well-characterized

DNA binding motifs in the TRANSFAC database (Matys et al. 2003). For each of

these 34 transcriptional regulators, we generated a list of genes in modules

bound by the regulator and a second list of genes bound by the regulator using

location data alone (stringent p-value cutoff of .001). We then computed the

percentage of genes from each list that contained the appropriate known motif in
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the upstream region of DNA. We found that in most cases, the percentage of

genes containing the correct motif was higher when modules generated using the

GRAM algorithm were used as compared to sets of genes generated from

location data alone (see Fig. 3 and Supplementary Table 6).

For the gene modules discussed above, we used a very large set of

genome-wide location and expression data, which allowed us to validate the

results of the GRAM algorithm comprehensively with searches of the prior

literature, independent chromatin-IP experiments, and analysis for enrichment for

genes in the same MIPS category and for known DNA binding motifs. The

results of this large-scale validation gave us confidence that the GRAM algorithm

would be useful in analyzing new data sources. Since biological insights are

often gained by examining responses to specialized treatments or environmental

conditions, we were interested in exploring the performance of the GRAM

algorithm on a smaller, more biologically targeted data set than the rich media

data. So, we chose to examine a transcriptional regulatory sub-network involved

in the response to Tor kinase signaling.

The Tor proteins are highly conserved and function as critical regulators in

the response to nutrient stress (Hardwick et al. 1999; Raught et al. 2001; Crespo

and Hall 2002; Jacinto and Hall 2003). Tor kinase signaling can be inhibited by

the addition of the small macrolide rapamycin, which mimics nutrient starvation

and results in a wide range of physiological responses including cytoskeleton

reorganization, decreased translation initiation, decreased ribosome biogenesis,
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Figure 3: Motif enrichment

Genes in modules discovered by the GRAM algorithm are more likely to show

independent evidence of co-regulation by the regulators assigned to the module

when compared to sets of genes obtained using genomic location analysis data

alone, as demonstrated by an enrichment for the presence of known DNA-

binding motifs. We identified 34 transcriptional regulators that bind to genes in at

least one module and have well-characterized DNA binding motifs in the

TRANSFAC database (Matys et al. 2003). For each of these 34 transcriptional

regulators, we generated a list of genes in modules bound by the regulator and a

second list of genes bound by the regulator using location analysis data alone

(stringent p-value cutoff of .001). We then computed the percentage of genes

from each list that contained the appropriate known motif in the upstream region

of DNA. In most cases, the percentage of genes containing the correct motif was

higher when modules generated using the GRAM algorithm were used versus

sets of genes generated from location analysis data alone. See Supplementary

Table 6 online for a complete list of transcription factors.
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amino acid permease regulation, and autophagy (Cardenas et aL 1999; Rep et

al. 2000; Shamji et al. 2000; Hasan et al. 2002). Expression analysis indicates

that Tor signaling also controls transcriptional regulation of metabolic pathways

involving nitrogen metabolism, glycolysis and the TCA cycle (Cardenas et al.

1999; Hardwick et al. 1999; Shamji et al. 2000).

The rapamycin response presented an ideal opportunity for applying the

GRAM algorithm to analyzing a novel transcriptional regulatory sub-network.

Previous studies suggest a specific set of regulators that are likely to function in

the transcriptional response to rapamycin (Hardwick et al. 1999; Shamji et al.

2000). Also, several publicly available genome-wide expression datasets

measuring response after rapamycin treatment are available (Hardwick et al.

1999; Shamji et al. 2000). More importantly, the fact that there is little

information about the transcriptional regulatory network involved and how this

transcriptional network may contribute to the overall response to rapamycin

treatment presented an opportunity for new biological insights.

We selected 14 transcriptional regulators that seemed likely to function in

the rapamycin response in S. cerevisiae based on evidence from the literature,

and performed genome-wide location analysis experiments (see the Methods

section and Supplementary Table 7 online for full details). We ran the GRAM

algorithm using the location data for the 14 transcription factors in rapamycin and

22 previously published expression experiments relevant to rapamycin

conditions. Thirty-nine gene modules containing 317 unique genes and

regulated by 13 transcription factors were discovered (see Fig. 4 and

182



Figure 4

ITranscription factor (TF) -TF regulates module -TF regulates TF

Module categories
*A.A. metabolism/biosynth. *Fermentation *mRNA processing
*Nitrogen/sulfur metabolism Pheromone response * Unknown
*Lipid/fatty acid metabolism Transport facilitation
*TCA cycle/respiration g Ribosome/translation



Figure 4: Rapamycin gene modules network

Analysis of the rapamycin transcriptional regulatory sub-network revealed a

number of novel biological insights, including evidence that some transcriptional

regulators may control genes involved in biological pathways different from those

generally associated with these regulators. Further, analysis of the network

suggested more complex regulatory interactions in which there is communication

among modules. Such complicated network topologies may be important for

facilitating rapid and flexible responses to changing environmental conditions.

See the text for further details. Thirty-nine modules containing 317 unique genes

and regulated by 13 transcription factors were discovered. Red arrows between

transcriptional regulators indicate that the source transcription factor binds at

least one module containing the target transcription factor. Modules are colored

according to the MIPS category to which a significant number of genes belong

(significance test using the hypergeometric distribution p < .05).
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Supplementary Table 8 online). The GRAM algorithm added 192 gene-regulator

interactions that would not have been identified with a strict p-value (.001) in the

location analysis experiments. Since genome-wide binding experiments for the

rapamycin regulatory network have not previously been performed, it was not

possible to verify these interactions comprehensively using literature searches.

As in the case for the rich media gene modules network, many features of

the rapamycin regulatory network discovered by the GRAM algorithm were

consistent with expectations from the literature. Twenty-three of the gene

modules were found to contain a significant number of genes (p-value < 0.05)

belonging to a single MIPS category. There were a total of 9 categories, all

corresponding to biological responses associated with rapamycin treatment

(Raught et al. 2001; Crespo and Hall 2002; Jacinto and Hall 2003). We also

found that in general, regulators were assigned to genes that reflect functions

described in previously published results.

In addition to identifying established regulatory interactions, analysis of the

rapamycin gene modules suggested several unexpected interactions in which

regulators typically assigned to a particular biological response also appear to

bind genes acting in different biological pathways. Below we give several

examples of such regulatory interactions. These findings suggest models of

transcriptional regulation of the rapamycin response that can be validated in

further more directed studies. A first example of an unexpected regulatory

interaction involves the factors Msn2 and Msn4, which are generally regarded as

stress response factors and have been well-studied as activators of such stress-
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related responses (Martinez-Pastor et al. 1996; Boy-Marcotte et al. 1998; Rep et

al. 2000; Hasan et al. 2002). Unexpectedly, there were five gene modules in

which Msn2 and Msn4 were bound to a significant number of genes involved in

the mating pheromone response pathway. A second example involves the

factors Rtg1 and Rtg3, which are generally thought to regulate directly genes of

the TCA cycle and indirectly contribute to nitrogen metabolism (Liao and Butow

1993; Komeili et al. 2000; Crespo et al. 2002; Schuller 2003) (products of the

TCA cycle are shunted to nitrogen metabolism pathways in low or poor nitrogen

conditions). The gene modules network suggests that Rtg regulators may

directly regulate genes involved in nitrogen metabolism.

A third example of an unexpected regulatory interaction involves Hap2, a

part of the Hap2/3/4/5 complex which has been well-characterized as a regulator

of genes involved in respiration (Pinkham and Guarente 1985; Schuller 2003).

Indeed, in the rich media gene modules network, members of the Hap complex

are unique among the 106 regulators profiled as the only regulators controlling

modules that are significantly enriched for genes involved in respiration. As

expected, Hap2 regulates a module of respiration genes under rapamycin

conditions. Unexpectedly, Hap2 was also found to regulate two modules

containing genes involved in nitrogen metabolism. There is some genetic

evidence for such cross-pathway regulation, as Hap2 was previously implicated

as a regulator of two nitrogen metabolism genes (Dang et al. 1996a; Dang et al.

1996b). Our results indicate that Hap2 participates in cross-pathway regulation

more extensively than previously reported.
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In addition to suggesting that some transcriptional regulators may control

genes involved in biological pathways different from those generally associated

with these regulators, analysis of the gene modules network suggests more

complex regulatory interactions in which there is communication among gene

modules. Such complicated network topologies may be important for facilitating

rapid and flexible responses to changing environmental conditions. As an

example, we found that several transcriptional regulators may be involved in a

feed-forward regulatory loop in which the gene encoding a regulator is bound by

another regulator and both regulators bind to a set of common genes (Lee et al.

2002; Shen-Orr et al. 2002). The regulator Gat1 has been previously identified

as a general activator of nitrogen responsive genes (Coffman et al. 1996). We

found that Gat1 is itself contained in several modules along with genes involved

in nitrogen metabolism. These gene modules are bound by the transcriptional

regulators Dal81, Dal82, Gln3 and Hap2. Interestingly, Gat1 also binds several

gene modules along with DaI81, Dal82, and Gln3 (see Fig. 4). Feed-forward

mechanisms may be important in regulatory responses (such as the response to

rapamycin) by modulating regulatory sensitivity to sustained rather than transient

inputs, providing temporal control, or amplifying the transcriptional response

(Shen-Orr et al. 2002). These findings can be validated in further directed

experimental studies.

The above analyses indicate that the GRAM algorithm can be useful for

studying transcriptional regulatory networks using genome-wide location and

expression data sources. We have made a Java implementation of the algorithm
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publicly available (see Supplementary Methods online), and believe that as new

genome-wide location data becomes increasingly available other researchers will

find the algorithm helpful. As demonstrated, the algorithm can integrate sources

of genome-wide location and expression data to help compensate for technical

limitations in the data. Further, the inferred gene modules networks can give a

clearer view of regulation than can either location or expression data sources

alone. We have found the algorithm is particularly useful for uncovering how

certain regulators may act in multiple biological pathways. Overall, the GRAM

algorithm facilitates a genome-wide approach to analysis of transcriptional

regulatory networks that can suggest specific novel regulatory models, which can

then be validated in more directed experimental studies.
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Methods

The GRAM (Genetic RegulAtory Modules) algorithm

Below we describe the operation of the algorithm. Some details are

omitted due to space constraints; see the Supplementary Methods online for

complete information as well as a Java implementation of the algorithm.

Let ei denote an expression vector and bi a vector of binding p-values for

gene i, where there are ng genes. Let B(i,t) denote the set of all transcription

factors that bind to gene i with p-value less than t, i.e., the list of indices j such

that bj < t. Let F c B(i,t) denote a subset of the transcription factors that are

bound to i. Let G(F,t) be the set of all genes i such that for any gene i E G(F,t),

F c B(i,t), i.e., genes to which all the factors in F bind with a given significance

threshold. The algorithm begins by going over all genes, and assigning each

gene i to all possible sets G(F,t1 ), where t is a high stringency binding threshold

and F ranges over all subsets of B(i,t).

For every set of transcription factors F, the genes in G(F,t) serve as

candidates for a module regulated by F. For each such set G(F,t1 ) with a

sufficient number n of genes (e.g., n > 5), the algorithm attempts to find a "core"

expression profile. That is, we are seeking a point c in expression space such

that for an expression similarity threshold Sn, the ball centered at c of radius sn

contains as many genes in G(F,ti) as possible. Denote by C(F,t1,c) the "core" set

of genes such that C(F,tl,c) c G(F,tI) and for each gene i C(F,t1,c), d(ei,c) < Sn,

where d is the Euclidian distance between two points. The threshold Sn is

determined by using all genes, and randomly sampling subsets of size n to
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determine the distribution of expression distances from a subset to all genes.

The problem of finding a point c for a set of expression vectors is non-trivial, and

cannot be optimally solved in reasonable time given the dimensionality of the

expression space (>500). Thus, we use a theoretically motivated approximation

algorithm which looks for the central point in all triplets of genes in G(F,t). See

the Supplementary Methods online for more details.

The genes in C(F,t 1,c) are used to initialize a module M(F). Conceptually,

we would like to expand this module by relaxing our criteria for binding if a gene's

expression profile is sufficiently similar to those in the "core." In order to do so,

the algorithm calculates a combined p-value pi for each gene i that belongs to the

expanded set C(F,t2,c) and does not belong to C(F,tq,c), where t2 > t. The p-

value pi is arrived at by computing independent p-values for gene i and each

transcription factor in F and then combining the p-values using the Fisher

method. A gene i from C(F,t2,c) is then included in M(F) if pi < t. This module

initialization and expansion is completed for each feasible F, starting with the

sets containing the largest number of factors and proceeding to the smallest. If

a gene is included in a module M(F), it is masked out (not considered) when

forming modules with factor subsets, M(F') where F' cF. That is, the algorithm

will seek to explain a gene's expression using the most specific regulatory

patterns. The thresholds t=.001 and t2=.01 were chosen based on experiments

reported in Lee et al. (Lee et al. 2002) that suggested very low false positive

rates for a significance threshold of .001. Further, the rate of false negatives was

190

·-�-- · ·-- · l�rr_��··-�W1Y·Y·-U··LUiCII·--Y�--� y ·.y·-IIYIYlr-·-j--L··-·L+·U·IIIYM*· ·- · W·nUU···LY·IIY--·I�·LW·YYIIWL·�·-iW·j _; L�Y·Y·j·i�l�UIUI· · ·I-IIPC�YYY



found to be relatively high for p-values between .01 and .001, but decreased

dramatically (to less than 3%) thereafter.

Strains

Epitope-tagged strains were generated as described previously (Lee et al.

2002). Briefly, regulators were tagged at the C-terminus by using homologous

recombination to insert multiple copies of the Myc epitope coding sequence into

the normal chromosomal loci of these genes. Insertion of the epitope coding

sequence was confirmed by PCR and expression of the epitope-tagged protein

was confirmed by Western blotting analysis.

Growth conditions

Strains containing epitope-tagged regulators were grown in 50 ml YPD

(yeast extract - peptone - dextrose) at 30 degrees C. Cells were grown to an

OD600 of 0.7-0.8 and rapamycin was then added to a final concentration of 100

nM. Cells were grown for 20 minutes at 30 degrees C in the presence of

rapamycin.

Genome-wide Location Analysis

Genome-wide location analysis was performed as previously described

(Lee et al. 2002). Briefly, cells containing an epitope-tagged regulator were fixed

with formaldehyde (1% final concentration) and then harvested by centrifugation.

Cells were lysed and then sonicated to shear DNA. DNA fragments representing
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chromosomal regions crosslinked to a protein of interest were enriched by

immunoprecipitation with an anti-epitope antibody. After reversal of crosslinking,

enriched DNA was purified. The ends of DNA fragments were then blunted using

T4 DNA polymerase and ligated to previously prepared linkers. The enriched

DNA was then amplified and labeled with a fluorescent dye by ligation-mediated

PCR (LM-PCR). A sample of control DNA was similarly processed and labeled

with a different fluorophore. Both IP-enriched and control DNA were then

hybridized to a single DNA microarray. For each factor, three independently

grown cell cultures were processed and scanned to generate binding information

as previously described.
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