
Global Dynamic Optimization

by

Adam Benjamin Singer

Submitted to the Department of Chemical Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Chemical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOJ

September 2004

.SACHUSETrS INSTnUJTE
OF TECHNOLOGY

JUN 1 6 2004

LIBRARIES

'AkiHlVES,

() Massachusetts Institute of Technology 2004. All rights reserved.

/1, A A
Author ..

Department of Chemical Engineering
June 10, 2004

Certified by
Paul I. Barton

Associate Professor of Chemical Engineering
Thesis Supervisor

Accepted by -

Daniel Blankschtein
Professor of Chemical Engineering

Chairman, Committee for Graduate Students

MAS

Y
I I I

I_ �____II_

Global Dynamic Optimization

by

Adam Benjamin Singer

Submitted to the Department of Chemical Engineering
on June 10, 2004, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Chemical Engineering

Abstract

My thesis focuses on global optimization of nonconvex integral objective functions
subject to parameter dependent ordinary differential equations. In particular, effi-
cient, deterministic algorithms are developed for solving problems with both linear
and nonlinear dynamics embedded. The techniques utilized for each problem classifi-
cation are unified by an underlying composition principle transferring the nonconvex-
ity of the embedded dynamics into the integral objective function. This composition,.
in conjunction with control parameterization, effectively transforms the problem into
a finite dimensional optimization problem where the objective function is given implic-
itly via the solution of a dynamic system. A standard branch-and-bound algorithm is
employed to converge to the global solution by systematically eliminating portions of
the feasible space by solving an upper bounding problem and convex lower bounding
problem at each node. The novel contributions of this work lie in the derivation and
solution of these convex lower bounding relaxations.

Separate algorithms exist for deriving convex relaxations for problems with linear
dynamic systems embedded and problems with nonlinear dynamic systems embedded.
However, the two techniques are unified by the method for relaxing the integral in
the objective function. I show that integrating a pointwise in time convex relaxation
of the original integrand yields a convex underestimator for the integral. Separate
composition techniques, however, are required to derive relaxations for the integrand
depending upon the nature of the embedded dynamics; each case is addressed sepa-
rately.

For problems with embedded linear dynamic systems, the nonconvex integrand is
relaxed pointwise in time on a set composed of the Cartesian product between the
parameter bounds and the state bounds. Furthermore, I show that the solution of the
differential equations is affine in the parameters. Because the feasible set is convex
pointwise in time, the standard result that a convex function composed with an affine
function remains convex yields the desired result that the integrand is convex under
composition. Additionally, methods are developed using interval arithmetic to derive
the exact state bounds for the solution of a linear dynamic system. Given a nonzero
tolerance, the method is rigorously shown to converge to the global solution in a

3

finite time. An implementation is developed, and via a collection of case studies, the
technique is shown to be very efficient in computing the global solutions.

For problems with embedded nonlinear dynamic systems, the analysis requires a
more sophisticated composition technique attributed to McCormick. McCormick's
composition technique provides a method for computing a convex underestimator for
the integrand given an arbitrary nonlinear dynamic system provided that convex un-
derestimators and concave overestimators can be given for the states. Because the
states are known only implicitly via the solution of the nonlinear differential equa-
tions, deriving these convex underestimators and concave overestimators is a highly
nontrivial task. Based on standard optimization results, outer approximation, the
affine solution to linear dynamic systems, and differential inequalities, I present a
novel method for constructing convex underestimators and concave overestimators
for arbitrary nonlinear dynamic systems. Additionally, a method is derived to com-
pute state bounds for nonquasimonotone ordinary differential equations. Given a
nonzero tolerance, the relaxation method is proven to yield finite convergence to the
global solution within a branch-and-bound framework. A detailed implementation for
solving problems with nonlinear dynamic systems embedded is described. The imple-
mentation includes a compiler that automatically applies the theory and generates a
Fortran residual file defining the upper and lower bounding problems. This residual
file is utilized in conjunction with a discontinuity locking numerical differential equa-
tion solver, a local optimizer, and a custom branch-and-bound code to solve globally
dynamic optimization problems with embedded nonlinear ordinary differential equa-
tions. To enable the comparison of the efficiency of the algorithm, several literature
case studies are examined. A detailed analysis of a chemical engineering case study
is performed to illustrate the utility of the algorithm for solving realistic problems.

Thesis Supervisor: Paul I. Barton
Title: Associate Professor of Chemical Engineering

4

Acknowledgments

I have always posited that the primary advantage of studying at MIT is neither the

faculty nor the resources. No, I believe the primary advantage of studying at MIT is

the high quality of one's coworkers. Not only did I learn a great deal from any number

of countless conversations in the office, but it has also been my pleasure to work with

the very talented students, postdocs, and research associates who have surrounded

me for the past four and a half years. I am grateful that I have been afforded this

small space to thank some people individually. I'd like to start by thanking Dr. John

Tolsma for software support and, in particular, for support with the tools required for

the implementation of the linear theory. I know I have teased John mercilessly about

his software, but I hope he realizes that I have a great deal of respect for the work

he has performed. While discussing software, I'd like to thank Jerry Clabaugh who

was always available to answer general computer questions, especially those questions

concerning the C programming language. I'd like to thank Dr. Edward Gatzke for

some of the initial work he performed and code he shared concerning his branch-and-

bound implementation. I'd like to thank Dr. David Collins with whom I bounced

around many ideas on many occasions. Sometimes I feel David and I spent more

time together fixing lab computers than doing research. I'd like to thank Dr. Binita

Bhattacharjee for her assistance when we TAed 10.551 together. I think performing

that duty together likely made the experience less painful for both of us. I'd like to

thank Cha Kun Lee for daily discussions ranging anywhere from work related things to

the NBA playoffs, and just about everything in between. I'd like to thank Alexander

Mitsos for finally discovering the correct avenue to pursue to convince the department

to buy us modern office chairs to replace the office chairs inherited from the Pilgrims.

I'd like to thank Dr. Benoit Chachuat for our many conversations concerning both

the nonlinear theory and it's implementation. I'd like to thank James Taylor for

experimental data and assistance with the problems in Chapter 9. Finally, I'd like to

thank all the other members of our research group I didn't mention by name and the

research group as a whole simply for putting up with me for the last four and half

5

years.

The above list of people represent the individuals I wish to thank mostly for their

professional assistance. However, completing a thesis involves much more than merely

academics. First and foremost, I would like to thank my parents, Marc and Ellen,

who have always been present to guide and advise me both personally and profession-

ally. Without them, this thesis would not have existed, for on many occasions, their

foresight into the benefits of this degree and their constant encouragement alone kept

me from quitting out of annoyance. Next, I'd like to thank my friends in the student

office, Suzanne Easterly, Jennifer Shedd, Annie Fowler, and Mary Keith. I think it

was beyond their job description to listen to my incessant complaining. Last, but not

least, I'd like to thank Sharron McKinney, who taught me a great deal about both

life and love. At a time in my life full of questions, she helped me find answers within

myself. I am more appreciative of the lessons I learned from her than of any I have

ever learned in the hallowed halls of this institute.

6

__

Contents

1 Introduction 15

1.1 Motivation and Literature Review 16

1.2 Structural Outline of the Thesis. 25

2 Problem Statement and Solution Strategy 27

2.1 Problem Statement and Existence of a Minimum 28

2.2 Solution Strategy. 31

3 Relaxation of an Integral and the Affine Solution of a Linear System 35

3.1 Convex Relaxations for an Integral 35

3.2 The Affine Solution of Linear Systems 41

4 Relaxation Theory for Problems with Linear Dynamics Embedded 45

4.1 Affine Composition with a Convex Function 46

4.2 Computing State Bounds for Linear Dynamic Systems 48

4.3 Linear Dynamic Relaxations and Branch-and-Bound Convergence . . 53

5 Implementation for Problems with Linear Dynamics Embedded 61

5.1 The Three Subproblems: Upper Bound, Lower Bound, and State Bounds 61

5.1.1 Computing an Upper Bound 62

5.1.2 Computing State Bounds 63

5.1.3 Lower Bounding Problem 65

5.1.4 Intersection of State Bounds and Intersection with State Bounds 66

5.2 Dynamic Extensions to Standard Convex Relaxation Techniques . . . 70

7

5.2.1

5.2.2

5.2.3

5.3 Case

5.3.1

5.3.2

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

Use of McCormick's Underestimators

Use of aBB Underestimators

Convex Relaxation of Bilinear Terms

Studies
Small Numerical Example

Dynamic Extension to McCormick's Example Problem

Dynamic Extension to the Himmelblau Function

Dynamic Extension to the Six-hump Camelback Problem . .

Optimization of a Generalized Twice-Differentiable Function

Dynamic Himmelblau Function Revisited

Scaling of the Algorithm

6 Relaxation Theory for Problems with Nonlinear Dynamics Embed-

ded

6.1 State Bounds for Nonquasimonotone Differential Equations

6.2 McCormick Composition and Relaxing the Integral Objective Function

6.3 Nonlinear Dynamic Relaxations and Branch-and-Bound Convergence

70

73

75

77

79

80

83

87

90

91

93

97

98

115

127

7 Implementation for Problems with Embedded Nonlinear Dynamics131

7.1 Branch-and-Bound 132

7.2 Local Optimization 133

7.3 Function Evaluation 133

7.3.1 Upper Bounding Problem 134

7.3.2 Lower Bounding Problem 135

7.3.3 Discontinuity Locking in CVODES 136

7.3.4 Event Chattering 142

7.3.5 Exploiting Affine Structure 143

7.4 Residual Evaluation 145

7.4.1

7.4.2

7.4.3

A Domain Specific, Declarative Minilanguage .

Parse Trees and Symbolic Manipulation .

An Inheritance Hierarchy

147

151

153

8

7.4.4

7.4.5

7.4.6

7.4.7

7.4.8

7.4.9

7.4.10

7.4.11

An Implementation of State Bounds 154

Convex and Concave Relaxations of the RHS 155

RHS Linearizations 156

Constructing c and C 158

Reducing the Number of Discontinuities 159

The Mechanism of Locking the Model 159

The Mechanism for Preventing Chattering 161

Limitations of the Current Compiler and the Next Generation 162

8 Case Studies for Literature Problems with Nonlinear Dynamics

8.1 First-Order Irreversible Series Reaction

8.2 First-Order Reversible Series Reaction .

8.3 Catalytic Cracking of Gas Oil

8.4 Singular Control.

8.5 Oil Shale Pyrolysis .

8.6 PFR Catalyst Blending

163

164

166

168

169

172

173

9 Chemical Engineering Case Study: Direct Measurement of the Fast,

Reversible Reaction of Cyclohexadienyl Radicals with Oxygen in

Nonpolar Solvents

9.1 The Proposed Mechanism

9.2 Scaling of the Model

9.3 The Accuracy of the Objective Function

9.4 The Presence of Local Minima

9.5 Global Optimization Results

10 Necessary and Sufficient Conditions for

Infinite Dimensional Space

10.1 Convexity

10.2 Convex Underestimators

177

... 180

... 182

... 184

... 186

... 188

Convex Relaxations in an

195

... 196

... 197

9

10.3 Necessary and Sufficient Conditions for Constrained Variational Prob-

lems 200

11 Conclusions and Future Work 205

A LibBandB User's Manual and API 211

A.1 Introduction 211

A.2 Organization of the Code. 213

A.3 Application Program Interface 215

A.3.1 Function BandB 215

A.3.2 Upper and Lower Bounding Functions 216

A.3.3 Output Functions 218

A.4 The Options File 218

B YACC grammar for GDOC 225

C Experimental Data for Chapter 9 233

C.1 Experimental data at T = 273 K 234

C.2 Experimental data at T = 298 K 238

C.3 Experimental data at T = 323 K 242

10

- --- ---- -

List of Figures

3-1 Geometric notion of a convex set 36

3-2 Geometric notion of a convex function 37

3-3 Partially convex integrand from Example 3.6 39

3-4 Convex integral from Example 3.6 40

4-1 Incorrect bounds for Example 4.11 52

4-2 Correct bounds for Example 4.11 53

4-3 Objective function and relaxation for Example 4.15 at the root node . 59

4-4 Objective function and relaxation for Example 4.15 after the first bi-

section 59

5-1 Comparison of bilinear relaxation techniques: a) McCormick convex

envelope b) aBB 77

5-2 Dynamic extension to McCormick's example problem at the root node:

a) Objective function and McCormick's underestimator. b) Objective

function and aBB underestimator 81

5-3 Dynamic extension to the Himmelblau function at the root node: a)

Objective function and McCormick underestimator. b) Objective func-

tion and aBB underestimator. 84

5-4 Dynamic extension to the six-hump camelback function at the root

node: a) Objective function. b) Objective function and derived un-

derestimator. c) Objective function and aBB underestimator 88

5-5 State bounds for Problem 5.7 with xl(t) for pi = 2.5 and P2 = -0.75 89

5-6 State bounds for Problem 5.7 with 2 (t) for p, = 2.5 and P2 = -0.75 90

11

5-7 Objective function for Problem 5.8 91

5-8 Piecewise constant control profile for Problem 5.9 94

5-9 Piecewise linear control profile for Problem 5.9 95

6-1 Upper bound for species B from Example 6.11 without utilizing a priori

information 108

6-2 Bounds for species B from Example 6.11 utilizing a priori information 110

6-3 Bounds for species B from Example 6.11 utilizing a priori information

and bounds truncation 111

6-4 Bounds for species B from Example 6.11 utilizing a priori information

and bounds truncation along with ten randomly generated interior tra-

jectories 112

6-5 Bounds for species B from Example 6.11 utilizing the reaction invariant 115

6-6 Convex underestimator and concave overestimator for Example 6.18.

a) (k*, x*) = (kL xmd) b) (k*,x*)= (kU, xmd) 128

7-1 Parse tree for Equation 7.1 151

7-2 Partial derivative of f with respect to x1 for the parse tree in Figure 7-1158

8-1 Objective function and convex relaxation for the problem in Section 8.1 166

8-2 Reactor configuration and kinetics for the PFR catalyst blending problem173

8-3 Objective function for the PFR catalyst blending problem 175

9-1 Optimized Model and Experimental Data for T = 273 K 190

9-2 Optimized Model and Experimental Data for T = 298 K 191

9-3 Optimized Model and Experimental Data for T = 323 K 192

9-4 Optimized Model and Experimental Data for T = 323 K with equilib-

rium values computed at 298 K 193

12

List of Tables

results for Problem

results for Problem

results for Problem

results for Problem

results for Problem

results for Problem

results for Problem

5.4
5.5
5.6
5.7
5.8
5.9.

5.10

Results for catalytic cracking of gas oil problem

Results for singular control problem in original formulation

Results for singular control problem in quadrature variable reformulation.

Results for oil shale pyrolysis problem.

Results for the PFR catalyst blending problem

9.1 Proposed Kinetic Mechanism

9.2 Multistart Results for Problem 9.1 for data at 273 K

9.3 Multistart Results for Problem 9.1 for data at 298 K

9.4 Multistart Results for Problem 9.1 for data at 323 K

9.5 Global Optimization Results for Problem 9.1 utilizing the first scaling

method.

9.6 Global Optimization Results for Problem 9.1 utilizing the second scal-

ing method

9.7 Global Optimization Results for Problem 9.1 without scaling

80

83

86

89

91

93

95

169

171

171

173

174

180

186

187

187

189

189

189

13

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

Numerical

5.1

5.2

5.3

5.4

5.5

5.6

5.7

8.1

8.2

8.3

8.4

8.5

14

- - ____

Chapter 1

Introduction

The objective of this thesis is to develop efficient, deterministic algorithms for globally

solving nonconvex optimization problems with an integral objective function subject

to ordinary differential equations (ODEs). While the work was originally targeted

at infinite dimensional variational problems, the main emphasis of this thesis con-

cerns solving finite dimensional optimization problems containing parameter depen-

dent ODEs. Because the problems addressed in this thesis contain finite dimensional

degrees of freedom, a standard branch-and-bound algorithm was employed for con-

verging sequences of rigorous upper and lower bounds to the global solution of the

problem. In fact, the crux of the thesis itself is the efficient computation of convex

relaxations for dynamic problems. During the course of my research, two seemingly

distinct algorithms were developed: one for problems containing linear dynamic sys-

tems and one for problems containing nonlinear dynamic systems. However, both

algorithms are unified by their approach to relaxing integral objective functions via

pointwise in time relaxations of an integrand and their utilization of affine relaxations

for the solutions of parameter dependent ODEs. Only after constructing both algo-

rithms separately did I realize that the linear approach can be viewed as a true subset

of the nonlinear approach.

In addition to developing efficient algorithms, I was also interested in developing

efficient implementations of these algorithms, and I believe that overall, more research

time was devoted to implementation than theory. Three generations of branch-and-

15

bound have been implemented and a discontinuity locking implementation for a stiff

integration routine was written. Two complete implementations of the relaxation

theory have been developed (one linear and one nonlinear), while a third generation

based on algorithmic differentiation techniques is forthcoming. Despite four years

of work on the subject, I believe I have merely scratched the surface; hopefully, I

have completed enough work to allow and to inspire future generations of researchers

to continue studying global dynamic optimization. Already, this work has been ex-

tended to encompass hybrid systems and mixed-integer dynamic optimization. New

work is beginning in the optimization of differential-algebraic equations and partial

differential equations. The remainder of this chapter motivates the research topic,

reviews prior art, and outlines the structure of the thesis.

1.1 Motivation and Literature Review

Strong economic incentives exist for conducting chemical and biological process oper-

ations in the most efficient manner possible, particularly in the commodities sectors.

With globalization of the world economy, these incentives will become even greater in

the future. Moreover, an increasingly demand driven and competitive global economy

is motivating many chemical and biological products to be manufactured in campaign

continuous processes. These are flexible, continuous processes that produce a variety

of different but related products or grades of product. Each individual product is

made during a short, demand driven campaign, and then a changeover occurs to a

new product or grade; this cycle continues repeatedly. One example includes polymer

processes where many different molecular weight grades are produced in a single plant.

Another example is in fertilizer processes, where many different N/K/P mixes are de-

manded by the market on a fluctuating basis. Campaign continuous processes may

spend up to 50% of their total operating time in transitions between steady-states;

thus, the performance of the process during these transients becomes as crucial as

the steady-state performance. Therefore, consideration of operability and transient

issues simultaneously with steady-state issues must be thoroughly addressed in order

16

__ __

to achieve the most economic overall process design.

Another particularly important aspect of the study of process operations is the

relevance to environmental concerns. Most of the environmental impact of any contin-

uous process is typically created during major transients, including off specification

product, high energy consumption, byproducts from suboptimal reactor operating

conditions, etc. This derives from the fact that steady-state design has become such

a refined art that processes producing large quantities of waste at steady-state have

become economically not viable. Process safety is another area in which process tran-

sients play a crucial role. A much wider variety of hazardous situations can develop

in a plant that experiences frequent transients and constant changeovers; thus, much

more careful and thorough attention must be paid to mitigating these hazards.

A majority of chemical and biological products are manufactured in processes that

are operated in an inherently transient manner rather than at some nominal steady-

state. Examples include batch processes, semi-continuous processes, and periodic

process that operate at a cyclic steady-state. The design of inherently transient

systems is, in essence, an exercise in optimal process operation. The batch mode of

operation is the preferred method of manufacturing in the synthetic pharmaceutical,

biotechnology, specialty polymers, electronic materials, and specialty agrochemicals

industries. Moreover, much speculation presently exists that product design will

emerge as the new paradigm of chemical engineering, and the related new chemical

products will all be manufactured via batch processes. All of these considerations

motivate research on design procedures for optimizing the performance of inherently

transient manufacturing systems.

The mathematical framework in this thesis is designed to tackle problems in pro-

cess operations for which a detailed, typically nonlinear, differential equation model

is employed to describe the transient behavior of the physical system. Often, one is

interested in determining input profiles or parameters for a dynamic model for the

purpose of optimizing the operation of a system over some period of time according

to a specified performance metric. Such problems are referred to as dynamic opti-

mization problems or open-loop optimal control problems. Examples include deter-

17

mination of optimal operating profiles for batch unit operations [75], determination

of optimal plant-wide recipes for batch processes [23], fitting of chemical reaction

kinetics parameters to data [17], determination of optimal changeover policies [33],

determination of catalyst blend profiles for PFRs [57], optimal drug scheduling for

cancer chemotherapy [62], process safety analysis [1], optimization of chemical vapor

deposition processes [74], etc.

One of the primary distinctions between optimizing a dynamic system and opti-

mizing a steady-state system is that the degrees of freedom in a dynamic system lie in

an infinite dimensional space while the degrees of freedom in a standard optimization

problem lie in a finite dimensional space. For this reason, the methods employed for

solving standard optimization problems cannot be immediately applied to dynamic

systems; rather extensions of standard techniques must be employed. The techniques

utilized for solving dynamic problems fall under two broad frameworks: variational

methods and discretization methods. The sequel addresses these two methods sepa-

rately expounding upon the virtues and deficiencies of each. I note, however, that the

main thrust of this thesis lies in solving dynamic optimization problems via partial

discretization.

The first technique, the variational approach, encompasses the classical methods

of the calculus of variations and many of the modern methods of optimal control.

These methods approach the problem in the original infinite dimensional space and

attempt to determine stationary functions via the solution of the Euler-Lagrange

equations. The variational approach for solving dynamic optimization problems is

extremely attractive because by addressing the optimization problem in the infinite

dimensional space, the problem can be solved in its original form without any mathe-

matical transformations. Hence, the solution is guaranteed to be a rigorous solution to

the original problem. Despite this benefit, the variational approach has several major

drawbacks. Inherently, the Euler-Lagrange equations are difficult to solve numerically

because they amount to solving two point boundary value problems. Complicating

this issue is the addition of Lagrangian inequality constraints on the state and control

variables, an omnipresent artifact of practical optimal control problems. Many efforts

18

have been made to address the solution of variational problems subject to bounded

states beginning with the work of Valentine [92]. Among many other authors, de-

termining necessary conditions for variational problems with inequality constrained

state variables has been addressed by Dreyfus [27], Berkovitz [16], Chang [22], Speyer

and Bryson [82], and Jacobson and Lele [50, 51]. Despite significant advances in iden-

tifying necessary and sufficient conditions for bounded problems, control constraints

cause almost as many numerical difficulties as unbounded problems. Additionally, as

noted, most of the work concerning variational problems with inequality constrained

state variables has been restricted to determining necessary conditions for yielding

stationary functions. However, any global optimization scheme requires that optimal-

ity conditions be both necessary and sufficient because the set of solutions satisfying

only necessary conditions is actually a superset of the set containing all minimizing

functions. In fact, not only does satisfying a necessary condition not yield the global

minimum, the satisfaction of this condition does not guarantee even that a local

minimum has been found. Unfortunately, the necessary and sufficient conditions are

known only to match identically for the special cases of unconstrained and control

constrained convex problems.

In addition to the variational approach for solving dynamic optimization prob-

lems, another approach exists based on discretization. While discretization has the

disadvantage that it is only an approximation of the infinite dimensional problem,

it possesses the tremendous advantage that it transforms the original infinite dimen-

sional problem into a problem lying at least partially in a finite space; therefore,

the problem can often be solved by standard nonlinear programming methods. Dis-

cretization can be subdivided into two broad classifications known as simultaneous

and sequential. The simultaneous method is a complete discretization of both state

and control variables, often achieved via collocation [90, 69]. While completely trans-

forming a dynamic system into a system of algebraic equations eliminates the problem

of optimizing in an infinite dimensional space, simultaneous discretization has the un-

fortunate side effect of generating a multitude of additional variables yielding large,

unwieldy nonlinear programs (NLPs) that are often impractical to solve numerically.

19

Sequential discretization is usually achieved via control parameterization [18, 85], in

which the control variable profiles are approximated by a series of basis functions in

terms of a finite set of real parameters. These parameters then become the decision

variables in a dynamic embedded NLP. Function evaluations are provided to this

NLP via numerical solution of a fully determined initial value problem (IVP), which

is given by fixing the control profiles. This method has the advantages of yielding a

relatively small NLP and exploiting the robustness and efficiency of modem IVP and

sensitivity solvers [60, 32].

For a number of years, researchers have known that dynamic optimization prob-

lems encountered in chemical engineering applications exhibit multiple local minima

almost pathologically [12, 59, 57]. This property, which can be attributed to noncon-

vexity of the functions participating in most chemical engineering models, implies that

standard local optimization methods will often yield suboptimal solutions to prob-

lems. Suboptimality can have direct economic, safety, and environmental impacts if a

suboptimal operating policy is implemented on a real process. The classical approach

to nonconvex variational problems is to reformulate them so that they are convex and

then apply the relevant necessary and sufficient Euler-Lagrange conditions [89]. How-

ever, only a very few small problems are accessible to such analysis. This deficiency

has motivated researchers to develop global optimization algorithms for nonconvex

dynamic optimization problems. Of particular interest are deterministic global opti-

mization algorithms, or those methods that rigorously prove finite convergence of the

algorithm to global optimality. The usage of these algorithms therefore guarantees

the optimal operating policy has been found for the considered formulation.

A great deal of research has been devoted to the application of stochastic op-

timization algorithms to overcome convergence only to local minima. In chemical

engineering, this body of research has been dominated by Banga and coworkers (e.g.,

[12, 20]) and Luus and coworkers (e.g., [59, 57]). While these methods often perform

better than those mentioned above, they are typically very computationally expen-

sive, and they typically have difficulty with highly constrained problems because they

tend not to converge to solutions at which multiple constraints are active. Most im-

20

portantly, however, even the best stochastic search method cannot guarantee locating

the global solution in a finite number of iterations.

Galperin and Zheng [39] have developed a method for globally optimizing optimal

control problems via a measure theory approach. Their contribution to dynamic

optimization is based upon their previous work [38] in which they propose a global

algorithm for solving nonlinear observation and identification problems. This method

requires determining the Lebesgue measure of level sets of the objective function.

While this technique theoretically guarantees determination of a global minimum,

implementation for large problems is impractical due to the sampling required for

generating level sets.

As previously discussed, one of the most important industrial applications of dy-

namic simulation and optimization is to model changeover operations in chemical

processes. Often, the chemicals produced during changeovers are unsuitable for mar-

ket. Therefore, a very important dynamic optimization problem consists of deter-

mining the control procedure that minimizes the time required to switch from one

operating condition to another. Canon et al. [191 have examined this problem and

have outlined a solution technique for problems obeying a special structure. For final

time minimization of a linear time-invariant system with piecewise constant controls

subject to endpoint constraints, they have shown that via a time discretization ap-

proach, the problem can be reformulated as a sequence of linear programs. Because

linear programs are inherently convex, their method achieves a global solution for the

reformulated problem.

Many modern, general methods for deterministic global optimization in Euclidean

spaces rely on the notion of a convex relaxation for a nonconvex function [65]. As the

name implies, a convex relaxation is a convex function that underestimates a non-

convex function on the set of interest. The highest possible convex underestimator is

termed the convex envelope of the nonconvex function [31]. Because convex underes-

timating problems can be solved to guaranteed global optimality with local solution

techniques, they are employed to generate rigorous lower bounds on nonconvex prob-

lems. For this reason, convex underestimators are ideally suited as the relaxations

21

required by a deterministic branch-and-bound algorithm for solving nonconvex NLPs

[65, 31, 49]. Floudas and co-workers have demonstrated that a convex underestima-

tor can be constructed for any twice continuously differentiable nonconvex function

via a shift of the diagonal elements of the Hessian matrix of the nonconvex function

[61]. The shift parameter, a, is utilized in conjunction with a branch-and-bound algo-

rithm for the global solution of NLPs; this NLP solution technique has been termed

aBB. In later work, Floudas et al. demonstrated a method by which rigorous values

for a may be computed via interval analysis [5, 4], provided the functional form of

the optimization problem is known explicitly as an elementary function and can be

manipulated symbolically.

Building upon the aBB framework, Esposito and Floudas [30, 29] describe what is

probably the first practical algorithm for deterministic global optimization of dynamic

systems. Subject to mild assumptions, they have shown that an NLP with a dynamic

embedded system (potentially derived from the control parameterization of a dynamic

optimization problem) is twice continuously differentiable; hence, similarly to aBB,

a shift parameter for the Hessian can be found to yield a convex underestimator for

any nonconvex terms. This shift parameter, denoted 3, is used in conjunction with a

branch-and-bound algorithm to solve a dynamic embedded NLP; this technique has

been termed /BB. As previously discussed, the rigorous calculation of a Hessian shift

parameter requires the explicit functional form of the function to be relaxed. However,

in a dynamic embedded problem, the functional dependence of the objective function

and constraints on the control parameters is rarely known explicitly. Rather, the

functional dependence is implied computationally by the numerical integration of

the embedded dynamic system. Hence, except in analytically tractable problems, the

interval analysis methods for generating rigorous / parameters are not applicable. To

circumvent this problem, several heuristic methods have been proposed to compute /3.

Unfortunately, all of the proposed methods rely either on arbitrary selection of or on

sampling to determine estimates of the true Hessian matrix. Not only is this method of

calculating /3 not rigorous, in fact, these methods cannot even provide guarantees that

the derived underestimator is convex over the entire region of interest. Furthermore,

22

__

in order to generate a reasonable value for 3, the Hessian matrix requires a relatively

large number of sampled points. Because the size of a uniform sample space grows

exponentially with the number of decision variables, practical implementation of /3BB

becomes intractable rather quickly.

Papamichail and Adjiman [71] have presented the first truly rigorous deterministic

global optimization algorithm for problems with ODEs embedded. As with OBB, a

branch-and-bound algorithm is considered. The uniqueness of the approach is in its

rigorous construction of a convex relaxation. Rather than attempt to convexify every

term in the objective and constraint functionals with state variables participating,

their method substitutes a new real valued decision variable for each state at a fixed

time. This reformulation relegates any nonconvexity arising from the state variables

to equality constraints with both the new variables and the state variables appearing

explicitly. This new equality constraint is then relaxed by deriving a convex lower

bounding inequality and a concave upper bounding inequality. Any other noncon-

vexities in the resulting transformed lower bounding problem are also relaxed via

standard convexification techniques. However, because a state variable's functional

dependence on the optimization parameters is only known indirectly via the solution

of a system of differential equations, two techniques based on differential inequalities

are presented for rigorously bounding these solutions. The first technique utilizes

differential inequalities to provide constant (relative to the embedded parameters)

bounds on the states. Analogous to the ,BB approach, the second technique utilizes

an a shift parameter and an overpowering quadratic term to convexify or concavify

a state while retaining a functional dependence on the embedded parameter. The a

parameter is determined rigorously by a combination of interval arithmetic techniques

and the simultaneous solution of second order sensitivity equations. This method is

computationally expensive, particularly if the number of optimization parameters and

constraints grows large, because the computation of second order sensitivities grows

quadratically in the number of optimization parameters. Moreover, the method is

applicable only to objective functionals and constraints involving the state variables

at fixed time points.

23

In recent years, there has been growing interest in problems in process design and

operations that can be formulated as dynamic optimization problems coupled with

integer decisions; these problems are known as mixed-integer dynamic optimization

(MIDO) problems [7, 8]. Binary or integer decision variables are often introduced

in an optimization formulation to represent the inclusion or exclusion of elements

in design, discontinuities in the model, and temporal sequencing decisions. If the

underlying model is dynamic, such a formulation yields a MIDO problem. Examples

thus far reported in the literature include the synthesis of integrated batch processes

[7, 8], the interaction of design and control and operations [66, 67, 80], kinetic model

reduction [73, 9], and the design of batch distillation columns [81]. Similarly, problems

in safety verification have been formulated as a mixed-integer optimization problem

with a linear, discrete time model [26]; use of a more realistic nonlinear, continuous

time model would directly yield a MIDO formulation. One should note that the use of

a deterministic global optimization scheme is absolutely vital here, for formal safety

verification requires a rigorous proof that the formulated safety property is satisfied

by the model.

In addition to the recent interest in MIDO problems, there has also been growing

interest in the optimization of dynamic systems containing discontinuities (events);

these problems are termed hybrid discrete/continuous systems. As an example, these

formulations can be used to design major process transients such as start-up and

shut-down procedures [36, 14]. The most interesting class of problems is that in

which the sequence of discontinuities along the optimal trajectory can vary with

parameters in the decision space, and the optimal sequence of events is sought; such

optimization problems have been shown to be nonsmooth [36, 37]. This suggests

a MIDO formulation for hybrid discrete/continuous dynamic optimization in which

binary variables are introduced to represent the different sequences of events that can

occur [14]. Recently, it has been proposed to address the optimal design of campaign

continuous processes via a combination of MIDO and hybrid dynamic optimization

formulations [13].

Standard algorithms for general mixed-integer nonlinear optimization in Euclidean

24

spaces assume that the participating functions are convex [42, 28, 34]. It is well

known that if such an algorithm is applied to problems in which the participating

functions are nonconvex, the algorithm converges to arbitrary suboptimal solutions

[55, 78, 11]. Convergence to such arbitrary suboptimal solutions is far worse than

convergence to a local minimum because the algorithms add constraints during the

solution process that arbitrarily exclude portions of the search space. These obser-

vations extend identically to MIDO problems [7, 8]; however, this has not stopped

several authors from applying these unsuitable algorithms to MIDO problems indis-

criminately [66, 67, 80, 81], although one wonders about the utility of the answers

found. Deterministic global optimization is really the only valid method to solve

both mixed-integer optimization and MIDO problems. In recent years, a number of

general deterministic global optimization algorithms have emerged for the solution of

mixed-integer nonlinear programs and integer nonlinear programs in which the par-

ticipating functions are nonconvex [78, 3, 53, 54, 52]. In particular, the algorithms

developed in [52] are easily extensible to MIDO problems provided that the gradients

of the objective function and constraints can be computed and provided that the

global dynamic optimization subproblem can be solved for fixed integer realization.

1.2 Structural Outline of the Thesis

As previously stated, the objective of this thesis is to develop efficient algorithms for

solving nonconvex dynamic optimization problems to guaranteed global optimality.

The thesis begins by stating the general mathematical formulation of the problem

and introducing the basic notation used throughout the thesis. As part of the math-

ematical formulation, a solution to the problem is shown to exist, and the general

outline of the solution strategy is introduced. The next chapter introduces the fea-

tures common to solving problems with embedded linear dynamics and problems

with embedded nonlinear dynamics. In particular, a general convexity result for an

integral objective function and the affine nature of the solution to a system of linear

differential equations are introduced. The subsequent chapters address problems with

25

linear dynamics and problems with nonlinear dynamics separately. For each problem

type, one chapter is devoted to the problem specific theory and another chapter is

devoted to the implementation of the theory. For linear problems, the theory includes

the composition result of affine functions with convex functions and the exact state

bounds for linear dynamic systems. In the chapter concerning the implementation of

the linear theory, special considerations are given to exploiting the unique properties

of numerically solving linear problems, and several small example problems are con-

sidered. Building upon the concepts developed in the linear theory, the theory for

solving problems with embedded nonlinear dynamics is presented. In particular, the

nonlinear theory focuses on bounding nonquasimonotone systems, constructing linear

convex and concave relaxations for the solution of a system of nonlinear ODEs, and

McCormick's composition theorem as a technique for relaxing the integrand. The

chapter concerning the implementation of the nonlinear theory primarily emphasizes

the automatic generation of convex relaxations for dynamic problems. Additionally,

consideration is given to some of the unique requirements of integrating the auto-

matically generated relaxations. Following the implementation chapter, several small

example problems are considered to demonstrate the utility of the implementation.

The next chapter in the thesis addresses the application of the theory and implemen-

tation to a practical chemical engineering case study. Next, the preliminary results

obtained concerning variational problems are briefly examined. The thesis is con-

cluded with a discussion of the outstanding issues related to the efficient solution of

global dynamic optimization problems and potential future directions for research.

26

Chapter 2

Problem Statement and Solution

Strategy

In this chapter, the general mathematical form of the problem addressed in this thesis

is stated, and the existence of a minimum is proven. Additionally, the general solution

strategy for solving the central problem of the thesis is introduced. Throughout the

thesis, bold, lowercase letters are utilized for vectors, and bold uppercase letters are

utilized for matrices. The symbol p is used to represent parameters, x is used to

represent states, and t is used to represent the independent variable often referred to

as time. P represents a nonempty, compact, convex subset of the Euclidean space RIP

that contains the parameter, and X is used to represent some subset of the Euclidean

space Rn z such that x(t, p) E X V (t, p) E (to, tf] x P. The symbol X is restricted

for a time dependent superset (possibly with equality) of X that represents the state

bounds, usually as computed via the solution of a bounding system of differential

equations. Additionally, lowercase letters are used to represent integrands, and their

corresponding capital letters represent the integrals associated with those integrands.

An underlined variable in any equation means that the variable is fixed while all other

variables in the equation are allowed to vary.

27

2.1 Problem Statement and Existence of a Mini-

mum

The objective of this thesis is to compute a global minimum of Problem 2.4 defined

below. To ensure a clear understanding of the difference between a local minimum

and a global minimum, the following definition is introduced:

Definition 2.1. Let f be a function f : P -, R. f(p*) is a local minimum value of

f at p* E P if for e > 0, there exists a neighborhood N.(p*) such that

f(p*) < f(p) (2.1)

for all p E N(p*) n P. f(p*) is a global minimum value of f at p* E P if Equation

2.1 holds for all p E P.

I now define a special classification of discontinuities that are permissible in the

general problem formulation.

Definition 2.2. Let Z C d and f: [to, tfl x Z -- R is an integrable function. f is

said to have a finite number of stationary simple discontinuities in t if the following

conditions hold:

1. For each t fixed in [to, tf], f(t, z) is continuous on Z.

2. For each z fixed in Z, f(t, z) possesses at most a finite number of simple dis-

continuities. Additionally, f(t, z) must be defined at any point of discontinuity.

Remark 2.3. I note that the above definition immediately implies the following:

For all z fixed in Z, discontinuities may only occur on the fixed partition P : to <

t < ... < t < t,+ = tf (i.e., the partition may not vary with z). This type of

discontinuity typically arises from the control parameterization of optimal control

problems with fixed intervals of support for the basis functions.

The general problem is now stated as follows:

28

Problem 2.4.

tf
min J(p) = b(x(tf, p),) + t(t, x(t,p), p) dt

subject to

gi(x(tf, p), p) + hi(t, x(t, p), p) dt < O, i = 1, ..., nc
to

x = f(t, x, p)

x(to, p) = xo(P)

where p E P; 0 is a continuous mapping : X x P -+ R; t is a Lebesgue integrable

mapping e: (to, t1] x X x P -* R; fi is a Lipschitz continuous mapping fi : (to, tf] x

X x P R, i = 1,..., n; x is a continuous mapping x: P -- Rnw, i = 1,..., n,

g is a continuous mapping gi: X x P - R; and h is a Lebesgue integrable mapping

hi: (to, tf] x X x P - R. nc is the number of point and/or isoperimetric constraints.

Furthermore, the functions , h are only permitted a finite number of stationary

simple discontinuities in t. Additionally, f may be relaxed to contain a finite number

of stationary simple discontinuities provided Lipschitz continuity is preserved between

the points of discontinuity.

Remark 2.5. This problem formulation represents any problem possessing parameter

dependent ODEs. This formulation arises in solving, for example, parameter estima-

tion problems, control parameterizations of optimal control problems, and continuous

relaxations of mixed-integer dynamic optimization problems. Trivially, the problem

formulation may be extended to any finite number of point and integral terms on a

fixed partition. Each term may be relaxed individually, and the sum of these relax-

ations is a relaxation for the sum of the nonconvex terms. Additionally, the problem

formulation may be extended to handle varying time problems by fixing the final time

and scaling the differential equations by an optimization variable. Similarly, optimal

control problems with time varying intervals may be reformulated by scaling in each

control interval.

29

Before proving the existence of a minimum to Problem 2.4, several additional

comments should be made. First, the integrands in Problem 2.4 are permitted to be

Lebesgue integral. Typically, only Riemann integrable functions are studied in this

thesis; however, this restriction is not necessary for the development of the theory

and is thus not asserted. Second, the problem formulation only explicitly considers

inequality constraints. Of course, equality constraints are immediately handled within

this formulation, for any equality can be written as a set of two inequalities. Finally,

in addressing Problem 2.4, I speak of a solution to the differential equations defined

in Problem 2.4 in the sense of Caratheodory [24]. That is, a solution is considered

admissible if the differential equations are satisfied almost everywhere.

The existence of a minimum of Problem 2.4 is now proven in two steps. In the

first step, the objective function for the problem is shown to be continuous, and in the

second step, Weierstrass's Theorem is asserted to prove the existence of a minimum.

Proposition 2.6. Consider the integral L(p) in the objective function defined in

Problem 2.4. Then, L(p) is continuous on P.

Proof. By hypothesis, the discontinuities allowed in £ and f are restricted to a finite

number of stationary simple discontinuities in t. Let there be n such discontinuities

each found at points t = ti and write L(p) as follows:

ptI rti

L(p) = I (t, x(t, p), p)dt +...+ (t, x(t, p),p) dt +...+

ft+=t (t, x(tp), p) d (2.2)

Choose any integral t, 1 (t, x(t, p), p) dt from the right hand side of Equation 2.2.

By construction, e is at most discontinuous at its endpoints (in time). Extend i to be

continuous over its respective domain and consider the equivalent integral with the

extended function. The equivalence is established because the integrands are equal

almost everywhere. Because x is continuous on the compact set [ti-1, ti] x P, the set

X (assuming construction as a mapping of the solution of the differential equations on

P) is also compact. Hence, £ is continuous on the compact set [ti_l, ti] x X x P, and by

30

trivial extension of Theorem 26.1 [64], the integral is continuous over P. The integral

was chosen arbitrarily, implying any integral from Equation 2.2 is continuous. Hence,

L(p) is comprised of the sum of continuous functions and is therefore continuous.

Corollary 2.7. Assume that the feasible space of Problem 2.4 is nonempty. Then,

there exists a minimum to Problem 2.4.

Proof. Because 0 is continuous by hypothesis, by the above proposition, J = b + L

as defined in Problem 2.4 is a continuous mapping from a nonempty compact set into

R. Therefore, by Theorem 4.16 [77], the existence of a minimum to Problem 2.4 is

guaranteed.

2.2 Solution Strategy

Having demonstrated the existence of a minimum of Problem 2.4, the remainder of

this thesis is devoted to deriving efficient algorithms and implementations for comput-

ing this minimum. As defined, the degrees of freedom for Problem 2.4 lie completely

in a Euclidean space; the dynamic variables appearing in the problem can be treated

simply as intermediate variables appearing in compositions. At this level of abstrac-

tion, the optimization problem can be solved in the original Euclidean space via

standard techniques provided that both function evaluations and gradients are avail-

able from the dynamic system. Indeed, this is the general solution strategy applied

to solving Problem 2.4, and the standard Euclidean optimization technique employed

is the branch-and-bound algorithm.

Branch-and-bound algorithms for global optimization of nonlinear programming

problems first appeared in the literature in the late 1960s with the work of Falk and

Soland [31] and mid 1970s with the work of McCormick [65]. The objective of a

branch-and-bound algorithm is to generate a sequence of rigorous upper bounds for

the optimization problem and a sequence of rigorous lower bounds for the optimization

31

problem such that the two sequences eventually converge to a global minimum for the

problem. By the term "rigorous bounds," I mean that the upper bound is theoretically

guaranteed to exceed the global minimum of the problem at hand and the lower bound

is theoretically guaranteed to be less than the global minimum. In general, any feasible

point for the problem may be considered to yield an upper bound, for by its definition,

the global minimum value of a problem is less than or equal to the objective function

value of every other feasible point. Typically, however, local solution of the upper

bounding problem is relatively inexpensive. Therefore, a local solution of the upper

bounding problem is taken as the upper bound. Computing a rigorous lower bound

is a much more difficult task and is, in fact, the primary focus of this thesis. In

solving Problem 2.4, the lower bound is always taken as the minimum value of a

convex relaxation. An underestimating relaxation of a function is any function that

is pointwise less than the original function, while an overestimating relaxation of a

function is any function that is pointwise greater than the original function. Often, the

term relaxation is used without a modifier. Whether the function is underestimating

or overestimating is then implied by context. As a general rule, convex relaxations are

always underestimators, and concave relaxations are always overestimators. Convex

functions, which I explore in much greater detail in subsequent chapters, have the

special property that a local solution is guaranteed to be a global solution to the

convex problem. Therefore, by minimizing a convex relaxation, a rigorous lower

bound is obtained by construction. After obtaining both upper and lower bounds,

the two bounds are compared. If the lower bound is within some finite, positive

tolerance of the upper bound, then the algorithm terminates, and the upper bound

is the estimate for the global minimum value (within the tolerance).

Unfortunately, termination at the root node rarely occurs, and branching is re-

quired to generate a sequence of converging upper and lower bounds. Branching is an

exhaustive search procedure in which the parameter space is partitioned (usually a

split in one coordinate direction of a hyperrectangle); the bounding procedure is then

repeated in each new child node of the branch-and-bound tree. By construction, the

convex relaxations become tighter as the search space is partitioned and approach the

32

objective function pointwise as the search space approaches degeneracy. That is, as

the parameter space is branched, the solution to the convex relaxation in each child

node increases relative to the solution of the convex relaxation in the parent node.

After an infinite amount of branching, the search space reduces to a degenerate point,

and the value of the objective function and the convex relaxation are equal at this

degenerate point. During successive bounding steps, if the solution to a node's convex

relaxation is greater than the current best upper bound (the incumbent solution) then

this node is removed from the search space, for clearly this node cannot contain a

global minimum of the problem. This process of deleting regions of the search space

is referred to as fathoming. In this manner, successively branching and bounding

the space leads to a sequence of upper bounds and a sequence of lower bounds that

converge to each other (and hence the global minimum value) after infinite branch-

ing and bounding steps. Obviously, a practical algorithm must converge in a finite

amount of time. Fortunately, infinite convergence of a branch-and-bound algorithm

immediately implies that the algorithm converges to the global minimum within an e

tolerance in finite time. I return to the topic of branch-and-bound convergence after

the construction of the convex relaxations.

33

34

Chapter 3

Relaxation of an Integral and the

Affine Solution of a Linear System

In this chapter, I examine two topics that are precursors to developing convex relax-

ations for Problem 2.4. Although seemingly disjoint topics, relaxing an integral and

the affine solution of a linear system are presented together because they are common

prerequisites to the relaxation approaches for both problems with embedded linear

dynamic systems and problems with embedded nonlinear dynamic systems.

3.1 Convex Relaxations for an Integral

Until now, the term convexity has been used without rigorous definition; this inten-

tional oversight is now corrected. The definitions for convex set and convex function

are introduced below. Both concepts have geometric interpretations; thus, pictures

are included for each topic to assist in visualizing the definitions.

Definition 3.1 (Convex Set). Let P be a subset of RnP. P is convex if

Ap + (1-)P 2 EP, Vp1,P2 EP, E [0,1].

The above definition for a convex set is typically referred to as the geometric

definition of convexity, for the definition implies that if a line segment joining any

35

two points of a set also lies wholly within the set, then the set is convex. If any part

of this line segment lies outside the set, then the set is nonconvex. Figure 3-1 below

illustrates this concept.

Figure 3-1: Geometric notion of a convex set

Convex Set Nonconvex Set

Having defined a convex set, a convex function is now defined. The geometric

definition of convexity (for functions) is employed thereby separating the definition

of a convex function from a function's differentiability.

Definition 3.2 (Convex Function). Let f : P - R, where P is a nonempty,

convex subset of Rnp. The function f is said to be convex on P if

f(Apo + (1 - A)pl) < Af(po) + (1 - A)f(pl)

for each po, P E P and for each A E (0, 1).

Remark 3.3. A function f(p) is concave if -f(p) is convex.

The geometric interpretation of Definition 3.2 is that if any line segment joining

two points on the function lies on or above the function for all points in between, then

the function is convex. If any portion of this line segment lies below the function,

then the function is nonconvex. Figure 3-2 below illustrates the geometric definition

36

I_ _·�

of a convex function. Convex functions are of tantamount importance to developing

global optimization routines because any minimum of a convex function is global.

Computationally, this implies that a rigorous lower bound for a function may be

obtained simply by minimizing locally a convex relaxation of the function. This result

concerning the minimization of convex functions is a classical result of optimization

theory and is not proven here.

Figure 3-2: Geometric notion of a convex function

Af(Po) + (1 - A)f(pl)

f() f(p)

f(Apo + (1 - A)p)
Convex Function Nonconvex Function

The primary objective of this section is to provide a technique for constructing

a convex relaxation of an integral. By the monotonicity property of the integral, if

integrand u(t, p) underestimates integrand (t, p), then the function U(p) underesti-

mates the function L(p). Furthermore, Definition 3.2 implies that a partially convex

integrand implies a convex integral. The term partially convex refers to any func-

tion which is convex for each fixed t E (to, tf]. Combining integral monotonicity and

the definition of convexity, I am then able to prove that if a partially convex function

u(t, p) underestimates £(t, p), then U(p) is a convex relaxation for L(p). The analysis

begins by proving the monotonicity of a parameter dependent integral.

Lemma 3.4 (Integral Monotonicity). Let p E P, t E (to, t1], and el, 2 : (to, tf] X

37

P -* R such that e1, e2 are integrable. If

V (t, p) (to, tf] x P

then

Ll(p) = J l(t, p) dt < e2 (t, p) dt = L2(p)

Proof. Theorem 6.12b in [77] holds V p E P.

VpEP.

I now prove that a partially convex integrand implies a partially convex integral.

Theorem 3.5 (Integral Convexity). Let P E P, t E (to, tf], and e: (to, tf]x P -+ R

be Lebesgue integrable. If £(t, p) is convex on P for each fixed t_ (to, tf], then

L(p) = Jt (t, p) dt

is convex on P.

Proof. By hypothesis, £(t, p) is convex on P V t_ E (to, tf]. Therefore, given A E (0, 1),

I have

£(t, Ap + (1 - A)po) < At(t, p) + (1 - A)e(t, po) V (t,p), (t,po) E (to, tf] X P.

By Lemma 3.4, the above equation implies

tf tf tf
£(t, Ap + (1 - A)po) dt <| Ae(t, p) dt + (1 - A)(t, Po) dt

which by inspection equals

L(Ap + (1 - A)po) < AL(p) + (1 - A)L(po)

Vp, po E P,

V P, Po E P.

By Definition 3.2, L(p) is convex on P.

O

38

tl (t, P) < 4 (t, P)

An interesting implication of requiring only partial convexity of the integrand in

Theorem 3.5 is that even if an integrand is nonconvex on (to, tf] x P, its integral is

still convex. The following example illustrates this principle.

Example 3.6. Consider p E [0, 3] and the following integral:

J(p) = -sin(pt) dt.

The integrand is nonconvex on [0, 1] x [0, 3]; however, the integrand is partially convex

on [0,3] for each fixed t E [0, 1]. By Theorem 3.5, J(p) is convex on [0,3]. Figure 3-3

below depicts the partially convex integrand, while Figure 3-4 illustrates the convex

integral.

Figure 3-3: Partially convex integrand from Example 3.6

0

co4

Corollary 3.7 (Integral Relaxation). Let p E P, t E (to, tf], and u, l: (to, tf] X

P -- R be Lebesgue integrable. If u(t, p) is convex on P V t (to, tf] and

u(t, p) < e(t, p) V (t,p) (to, tf] x P,

39

Figure 3-4: Convex integral from Example 3.6

U

-0.1

m -0.2

0
) -0.3

-0.4

-0.5

-0.6

-0.7

no-. O
0 0.5 1 1.5 2 2.5 3

p

then U(p) is convex on P and U(p) < L(p), where

U(p) = Jt u(t, p) dt.

Proof. The proof is immediately evident from Lemma 3.4 and Theorem 3.5. [

Remark 3.8. An analogous result applies for concave overestimators.

Corollary 3.7 enables one to calculate a convex underestimator for an integral by

integrating a relaxation of the integrand, provided this relaxation is convex on P for

each fixed t E (to, t fl]. Because a continuous set contains an uncountable number of

points, computing an underestimator at each fixed t E (to, tf] is clearly impossible

numerically. Obviously, in order to solve problems practically, numerical integration

methods are required; fixed time quantities are simply computed at each integration

time step.

As presented, Theorem 3.5, and consequently Corollary 3.7, apply to integrands

for which partial convexity is known on the parameter space P. If the functional

dependence on p for an integrand were explicit, computing a convex relaxation for

40

·

this integrand would follow directly from standard techniques. However, Problem 2.4

contains an integrand that may have implicit dependence on parameters via compo-

sition with the state variables. Therefore, in order to apply Corollary 3.7 to Problem

2.4, a method for determining convexity of composite functions must first be intro-

duced. This topic is addressed separately for problems with embedded linear dynamic

systems in Chapter 4 and for problems with embedded nonlinear dynamic systems in

Chapter 6.

3.2 The Affine Solution of Linear Systems

The second fundamental theoretical building block of this thesis is the affine solution

of a system of linear time varying ordinary differential equations. The general form

of a linear dynamic system is given by the following:

x = A(t)x + B(t)p + r(t) (3.1a)

Eox(to) + Efx(tf) = Bicp + ric (3.1b)

where A(t) is continuous on (to,tf], and B(t) and r(t) are piecewise continuous on

(to, tf]. While this problem formulation allows for a general boundary condition, a

more familiar initial value formulation is achieved if Eo = I and Ef = 0, where I

is the identity matrix and 0 is the zero matrix. Unless otherwise noted, I use the

term linear dynamic system to mean either the boundary condition formulation or

the initial condition formulation; the distinction is obvious from the context.

According to Theorem 6.1 in [10], a solution to the embedded linear boundary

value problem (for continuous B) exists and is unique provided the matrix Q =

Eo + Efb(tf, to) is nonsingular, where 4I(tf, to) is the transition matrix, which is

defined by the solution of the following differential equation:

d(t t) = A(t)'(t, to)
dt

41

with l(to, to) = I. Because the differential equations can always be reformulated as a

finite collection of differentiable linear systems, the aforementioned statement implies

that the solution in the sense of Carath6odory also exists provided x is defined at the

corners. I am interested only in those problems for which a solution to the embedded

dynamic system exists and is unique; therefore, Q is assumed to be nonsingular

throughout. Having established existence and uniqueness of x(t, p), I now address

the functional form of the solution. From linear systems theory (see [94] for an

introduction), the following provides a general solution to Equation 3.1:

x(t, p) = (t, to)x(to, p) + J P(t, r)B(r)p dT + t ((t, r)r(r) dr. (3.2)

Solving for the boundary condition and substituting the initial condition into Equa-

tion 3.2 results in

x(t, p)= {P(t, to)(Eo + Ef(tf, to)) [C - Ef I (tf, T)B(T) d] +

· (t, T)B(T) dTJp+ (t, to)(Eo+ Ef¢I(tf, to))- [d-El] X i(tf, r)r0() d- +

Although the above equation defining the solution to Equation 3tr(.1 is wieldy at

Although the above equation defining the solution to Equation 3.1 is unwieldy at

best, the equation possesses the following structural form:

x(t, p) = M(t)p + n(t), (3.3)

where M and n reduce to real valued matrices for fixed time. The importance of the

above result is that for each fixed t E (to, tf], Equation 3.3 is affine in the parameter

p. Trivially from Definition 3.2, an affine equation is both convex and concave. Equa-

tion 3.3 represents one of the few general statements that can be made concerning

convexity or concavity for the solution of a differential equation based upon the struc-

ture of the differential equation itself. For optimization problems with linear dynamic

42

systems embedded, the affine nature of the solution of a linear dynamic system leads

directly to a composition result for convexifying an integrand. Additionally, Equa-

tion 3.3 permits the relatively efficient numerical computation of exact state bounds

for a system of parameter dependent linear differential equations. For optimization

problems with nonlinear dynamic systems embedded, Equation 3.3 leads directly to a

technique where the solution of a system of nonlinear ODEs is relaxed by the solution

of a system of bounding linear ODEs. These relaxations are then directly utilized

in a composition technique to convexify an integrand. The utility of Equation 3.3 is

described in much greater detail in the subsequent chapters pertaining to the solution

of Problem 2.4 subject to both linear and nonlinear embedded dynamic systems.

43

44

Chapter 4

Relaxation Theory for Problems

with Linear Dynamics Embedded

In this chapter, I consider the solution of Problem 2.4 subject to a parameter depen-

dent linear differential equation. The restricted linear problem is stated below.

Problem 4.1.

min J(p) = O(x(tf,p),*(tf,p),p) + (t,x(t,p),x(t,p),p) dt

subject to

= A(t)x + B(t)p + r(t)

Eox(to) + Efx(tf) = BIcp + ric

where p E P; is a continuous mapping q$: Xx x x P - R; e is a Lebesgue

integrable mapping e: (to, tf] x X x x P -I R; A(t) is continuous, and B(t) and

r(t) are piecewise continuous. The function e is only permitted a finite number of

stationary discontinuities in t. The set X is defined as an enclosure of the right hand

sides of the differential equations.

Remark 4.2. For simplicity, isoperimetric and point constraints have not been in-

cluded explicitly in the formulation. Trivially, given a relaxation strategy for the

objective function, these constraints are immediately handled by the same technique.

45

Furthermore, the reader should note that Problem 4.1 is not a direct restriction of

Problem 2.4, for Problem 4.1 permits the derivative of the state variables directly in

the objective function. The function 0 may be dependent on the state variables at

any finite number of fixed time points in addition to the final time.

In order to solve Problem 4.1, three distinct steps must be performed. First,

the objective function must be relaxed. The point term in the objective function is

relaxed via standard techniques, and the integral term is relaxed via Corollary 3.7.

As noted in the previous chapter, in order to apply Corollary 3.7, a composition

technique must be applied to the integrand. Thus, relaxing the objective function

for Problem 4.1 effectively reduces to providing a composition technique for relax-

ing an integrand defined implicitly by an embedded linear dynamic system. Second,

bounds must be computed for the solution of the linear dynamic system. As will be

seen shortly, the necessity for state bounds is a direct consequence of the composi-

tion technique required for relaxing the integrand. Finally, I show that the derived

relaxation technique leads to a convergent branch-and-bound algorithm for solving

Problem 4.1.

4.1 Affine Composition with a Convex Function

From Corollary 3.7, in order to relax an integral, a partially convex relaxation is

required for its integrand. From Problem 4.1, the integrand in the objective function

is defined as a composition of the state variables and the derivatives of the state

variables. By treating the domain of the integrand as a Euclidean subset (to, tf] x

Xx x P, a relaxation for the integrand can be generated via standard techniques.

However, as stated, Corollary 3.7 requires partial convexity of the integrand on the set

P. From Equation 3.3, the solution to the embedded linear dynamic system is known

to be affine. The following proposition, which states that the composition u[x(p)] is

convex on P if u(.) is convex on X and x(p) is affine, is therefore introduced.

Proposition 4.3. Let X be a convex subset of Rn,' P be a convex subset of Rn,

u : X R be a function convex on X, and x: P R n be an aine function

46

of the form x(p) = Mp + n, where range(x) c X. Then, the composite function

u o x: P --* R is a convex function on P.

Proof. Given A E (0, 1), by Definition 3.2, I have

u(Ax + (1 -)xo) < Au(x) + (1 - X)u(xo) V x, xo E X.

However, by hypothesis, range(x) C X. Therefore, I have

u[Ax(p) + (1 - A)x(po)] < Au[x(p)] + (1 - A)u[(x(po)] V p, Po E P,

where the change of sets is evident from the definition of the mapping x. I now

perform the following algebraic operations:

u[Ax(p) + (1 - A)x(po)] = u[A(Mp + n) + (l - A)(Mpo + n)]

= u[M + n + Mpo - AMpo - An + n]

= u[M(Ap + (1 - A)po) + n]

= u[x(Ap+(1-A)po)] Vp, poP.

Therefore,

u[x(Ap + (1 - A)po)] < Au[x(p)] + (1 - A)u[x(po)] V P, Po E P,

which by definition shows that u[x(p)] is convex on P.

Remark 4.4. The proposition applies to i as well, for * may be written as

= (AM+B)p+ An+r.

In order to utilize Proposition 4.3 to derive a convex relaxation for Problem 4.1, a

partially convex underestimator for (t, x(t, p), c(t, p),p) must be derived on the set

X(t) x X(t) x P for each fixed t E (to, tf]. Given bounds sets X(t) and X(t), deriving

47

a partially convex relaxation for follows from standard techniques. However, no

method has yet been described for computing the sets X(t) and C(t). This omission

is now rectified.

4.2 Computing State Bounds for Linear Dynamic

Systems

For linear dynamic systems, interval analysis may be employed to compute the exact

bounds for both x and x. The following two propositions formalize the technique.

The notation [z] is shorthand notation used to represent an interval extension of the

variable z where the interval itself is given by [zL, zU]. The reader unfamiliar with

interval analysis is referred to the book by Moore [68] as an introduction to interval

arithmetic.

Proposition 4.5. Consider the following set of differential equations and boundary

conditions:
x = A(t)x + B(t)p + r(t)

Eox(to) + Efx(tf) = BICP + rc.

If p E P = [pL, pU], then the exact state bounds for the solution of the differential

equations are given pointwise in time as the natural interval extension (on P) of

Equation 3.3:

[x](t, [p]) = M(t)[p] + n(t). (4.1)

Proof. The functional form of the solution of the differential equation is given by

Equation 3.3. For any fixed t E (to, tf],

x(t, p) = M(t)p + n(t), (4.2)

where M(t) and n(t) are constants for each fixed t. The interval extension of Equation

4.2 is taken to yield

[x](t, [p]) = M(t)[p] + n(t). (4.3)

48

I note that since Equation 4.2 is a rational function (as defined by Moore [68, pp.

19-21]), Equation 4.3 is simply the natural interval extension of Equation 4.2 (i.e.,

Equation 4.3 is identically Equation 4.2 with the variables replaced by intervals and

the algebraic operations replaced by interval arithmetic operations). Thus, because

Equation 4.3 above is a rational interval function and a natural interval extension of

x(t, p), by Corollary 3.1 in [68],

range (x(t, [p])) C [x](t, [p]). (4.4)

Furthermore, because [x](t, [p]) is a natural interval extension of a rational function

in which each variable occurs only once and to the first power, Equation 4.4 holds

with equality. Because t was fixed arbitrarily for any t E (to, tf], Equation 4.4 holds

pointwise with equality for all t E (to, tf].

Proposition 4.6. For the differential equations defined in Proposition 4.5 above, the

bounds for *(t, p) are given pointwise in time by the following interval equation:

[i](t, [p]) = (A(t)M(t) + B(t))[p] + A(t)n(t) + r(t). (4.5)

Proof. The functional form of the solution to the differential equation is given by

Equation 3.3. For any fixed t E (to, tf], I substitute Equation 3.3 into the differential

equations to yield

x = A(t)(M(t)p + n(t)) + B(t_)p + r(t).

The above equation must be factored to yield

*(t, p) = (A(t)M(t) + B(t))p + A(t)n(t) + r(t).

49

The interval extension of the above equation is taken to yield

[x](t, [p]) = (A(t)M(t) + B(t))[p] + A(t)n(t) + r(t). (4.6)

By an identical argument as in the proof of Proposition 4.5, I now have that Equation

4.6 is a natural interval extension of a rational function in which each variable occurs

only once and to the first power. Thus,

range (* (t, [p])) = [*](t, [p]).

Because t was fixed arbitrarily for any t E (to, tf], the above equation holds pointwise

for all t E (to, tf].

[

Several important comments need to be made concerning the state bounds. First,

as illustrated by the two propositions, the bounds depend only upon the differential

equations and the bounds on p. Thus, the bounds are completely independent of the

convex relaxation technique chosen for the optimization problem. Second, because the

bounds compute the exact range of the interval equations, the bounds generate the

tightest possible envelope on the solution of the differential equations that does not

exclude any solution trajectory for any p E P. Finally, the state bounds are at least

piecewise continuous with only a finite number of stationary simple discontinuities

in t. This fact preserves the piecewise continuity of the objective function for the

convex underestimating problem and hence guarantees by Corollary 2.7 that the

convex relaxation attains its minimum value over P. The continuity of the state

bounds is formalized by the following corollary:

Corollary 4.7. The bounds xL(t) and xU(t) as determined from Proposition 4.5 are

continuous on (to, tf].

Proof. The proof follows immediately from Equation 3.2, Proposition 4.5, and interval

arithmetic.

50

____._.

Remark 4.8. By a similar argument, the bounds on (t, p) as determined from

Proposition 4.6 are piecewise continuous with stationary simple discontinuities only

in t.

Because Propositions 4.5 and 4.6 only defined pointwise in time sets, the following

notation is introduced to define time varying bounding sets.

Definition 4.9.

X(t) = {x(t, p) I p P, t fixed E [to, tf]}

X(t) = {xr(t, p) I p E P, t fixed E [to, tf]}

X= U X(t)
tE[to,tf]

X= U X(t).
_tE[to,tf]

Remark 4.10. It is clear that X C X and X C 9X. Additionally, from Theorems

3.1, 3.4, 3.5 in [76]; Equation 3.3; and the above definitions, it is evident that the set

X(t) x X(t) x P is convex for all t E [to, tf].

An example is now presented to illustrate the nuances of analytically calculat-

ing the exact state bounds for a linear dynamic system. A numerical technique for

computing the exact state bounds is given in the following chapter.

Example 4.11. Consider the following system of linear differential equations:

i 1 = X2

X2 =-X1

x1(0) = 0, 2 (0) = p

pE [-1,1].

The analytical solution to the above differential equations is

xl(t,p) = psin(t) and x2(t,p) =pcos(t). (4.7)

51

Because the solutions for xl and x2 are analogous, the reminder of this example is

restricted to a discussion of the bounds for xl. A naive approach to calculating the

tightest bounds would be to set z = xl (t, pL) and x = xl(t, pu). This yields the

incorrect results in Figure 4-1. The correct approach to finding the tightest bounds

Figure 4-1: Incorrect bounds for Example 4.11

1

0.5

o

o0
c3

Cf
-0.5

-1
0 1 2 3 4 5 6

t

for xl is to construct the natural interval extensions of xl. For any fixed t E (to, tf],

the natural interval extension of Equation 4.7 is

[xi] = [-1, 1] sin(t).

From interval arithmetic, the tightest bounds are now found pointwise in time by the

following formulae:

4x(t) = min{-1 sin(t), 1 sin(t)} and xx'(t) = max{-1 sin(t), 1 sin(t)} V t E (to, tf].

A plot of the correct state bounds for xl is shown in Figure 4-2.

52

-

Figure 4-2: Correct bounds for Example 4.11

1

0.5
rn

7o0
M o

-0.5
-0.5

_1

0 1 2 3 4 5 6

t

4.3 Linear Dynamic Relaxations and Branch-and-

Bound Convergence

In this section, I combine the results of the previous sections into one theorem for

relaxing Problem 4.1 and show that the derived relaxations lead to a convergent

branch-and-bound algorithm. A trivial example is then examined to demonstrate

the application of the relaxation theorem for an analytically tractable problem. A

numerical implementation of the linear theory is presented in the following chapter.

The following theorem provides a method for relaxing Problem 4.1:

Theorem 4.12. Consider

L(p)= IOt(t, x(t, p), (t, p), p) dt

subject to

* = A(t)x + B(t)p + r(t)

Eox(to) + Efx(tf) = BIcp + ric.

53

Let X = X and X = . If

u(t, x(t, p), (t, p), p) < (t, x(t, p), (t, p), p) V (t, p) E (to, tf] x P

and if u(t, x(t, p), *(t, p), p) is convex on X(t) x X(t) x P for each fixed t E (to, tf],

then

U(p) = u(t, x(t, p), k(t, p), p) dt

is convex on P and U(p) < L(p). That is, U(p) is a convex relaxation for L(p) on

P.

Proof. That U(p) < L(p) is trivial from integral monotonicity (Lemma 3.4). The

convexity of U(p) is established by applying Proposition 4.3 in Corollary 3.7.

In order to justify the use of convex relaxations constructed via Theorem 4.12, I

must show that these relaxations lead to a convergent branch-and-bound algorithm. A

branch-and-bound algorithm is said to be at least infinitely convergent if the selection

operation is bound improving and the bounding operation is consistent (Theorem IV.3

[48]). Additionally, convergence requires the ability to delete relaxed partitions for

which the intersection of this partition and the feasible space is empty. By definition, a

selection operation is bound improving if at least after a finite number of steps, at least

one partition element where the actual lower bound is attained is selected for further

partitioning (Definition IV.6 [48]). By Definition IV.4 [48], a bounding operation is

consistent if, at every step, any unfathomed partition element can be further refined,

and if any infinite sequence of nested partitions has the property that the lower bound

in any partition converges to the upper bound of this same partition. In other words,

not only must every unfathomed partition be refineable, but as any infinite sequence

of nested partitions approaches its limit set, its lower bound must converge to the

upper bound. In global NLP branch-and-bound algorithms, fathoming of a partition

occurs only when its lower bound is greater than the current best upper bound (or

within an e tolerance). Therefore, partitions containing the global minimum are

54

II �_

fathomed only at termination. By construction, the branching strategy employed is

exhaustive. In an exhaustive search, such as bisecting the variable satisfying

arg min pu- pi ,

by the finite dimensionality of the problem, every unfathomed partition is selected for

further partitioning after a finite number of steps. Thus, the retention of partitions

on which the global minimum is attained and the utilization of an exhaustive search

together imply a bound improving selection operation. Furthermore, because P is a

subset of a Euclidean space, by the Archimedean property of the real numbers, any

unfathomed partition can always be refined (by bisection on a coordinate axis, for

example); therefore, the first criterion of a consistent bounding operation is trivially

satisfied. However, it is not immediately obvious whether or not the integral under-

estimators obey the second property for consistent bounding. Proving convergence of

a branch-and-bound algorithm for solving Problem 4.1 reduces to proving that any

infinite sequence of nested partitions has the property that the lower bound in any

partition converges to the upper bound of this same partition, where in this case,

the lower bounds are defined by Theorem 4.12. Equivalently, convergence follows if

the lower bound in any partition converges pointwise to the objective function in this

same partition as the Euclidean norm of the partition approaches zero (the interval

approaches degeneracy). The proof of this statement requires the assumption that

the relaxation for the integrand of U(p) itself possesses a consistent bounding opera-

tion with monotonic pointwise convergence. This assumption is justified because the

convex underestimators utilized in standard optimization problems possess the prop-

erty that as the interval decreases, the convex underestimators become higher with

monotonic pointwise convergence (see [65] or [61] for examples). That the relaxations

derived via Theorem 4.12 possess a consistent bound operation is now proven.

Theorem 4.13. Consider the function L(p) and convex underestimator U(p) as

defined by Theorem 4.12. If the interval in any partition approaches degeneracy, then

U(p) in this partition converges pointwise to L(p) in this same partition.

55

Proof. Choose any partition and any fixed t E (to, tf]. Let [pL, pU] be the bounds

of the partition and let [xL(t),xU(t)] and [L(t),xU(t)] denote the state bounds as

defined by Proposition 4.5 and Proposition 4.6 respectively. From Equations 4.1

and 4.5, as the interval [pL, pU] approaches the degenerate value of p*, the inter-

vals [xL(t), xU(t)] and [L(t), kU(t)] respectively approach implied degenerate values

denoted x*(t) and x*(t). From Theorem 4.12, the integrand underestimator u is

convex on the subset X(t) x (t) x P V t E (to, tf] and hence is generated in the

partition by the intervals [pL,pU], [XL(t),XU(t)], and [L(t),*U(t)]. Suppose that

at each step i, the interval [pL, pU]i is bisected (or reduced in some other manner)

such that as i - oo, [pL, pU]i -- p*, which in turn implies [xL(t),xU(t)]i -- x*()

and [L(t), *U(t)] . ** (t) (the reduction is possible because exhaustive branching is

assumed). By construction, I have the following sequence:

ui T f as i -oo for t E [to, tf],

where the convergence arises because the bounds on u are all approaching degeneracy

and the underestimator u is assumed to posses a consistent bounding operation with

monotonic convergence to . Because t was fixed arbitrarily, the convergence is true

for all t E (to, tf]. By the monotone convergence theorem (Theorem 1, Section 2.3 in

[2]),
I. tf

L(p*) = l i= ui dt = U(p*).

Because the partition was arbitrarily chosen, the convergence is applicable to any

partition.

Remark 4.14. Strictly speaking, the monotone convergence theorem only applies

to positive sequences. Of course, if u is not positive over all of (to,tf], then u can

be divided into u+ and u_, and the integral can be written as the difference of

integrals possessing only positive integrands. The monotone convergence theorem is

then applied piecewise. Additionally, the monotone convergence theorem is applicable

to measurable functions and the Lebesgue integral. Of course, this poses no difficulty

56

because Riemann integrability implies Lebesgue integrability.

Until now, I have avoided discussing the requirement that any relaxed partitions

for which the intersection of this partition and the feasible space is empty must be

deleted. In general, deletion by certainty is a reasonably difficult task for general

nonconvex problems. For most of the problems considered in this thesis, deletion

by certainty is trivial because the problems are constrained only by bounds on the

parameters. The relaxed partitions in the branch-and-bound algorithm are always

subsets of P; therefore, the intersection of any relaxed partition and the feasible

space is always nonempty. For problems containing point or isoperimetric constraints,

because partitions are always relaxed by convex relaxations, Theorem 4.13, combined

with exhaustive partitioning, implies that deletion by infeasibility is certain in the

limit. This is obvious, for in the limit, the relaxed partition converges to the feasible

space.

Having now proven the convergence of a branch-and-bound algorithm for finding

a global minimum of Problem 4.1, this chapter is concluded with a small example

illustrating the basics of solving Problem 4.1. A very simple example problem with

an analytical solution was chosen to emphasize the convexity theory and state bound-

ing techniques. Moreover, this low dimensional example problem permits graphical

visualization of the solution and hence immediate verification of the results. A numer-

ical implementation is discussed in the following chapter, and this implementation is

applied to problems more complicated than that considered in Example 4.15 below.

Example 4.15. Consider the following nonconvex integral:

min L(p) = - 2 dt
pE[-4,4] 0o

subject to

Lb = -2x +p

x(0) = 1.

In order to construct a convex underestimator, the integrand is considered as a func-

tion on a Euclidean space. Since the integrand is a univariate concave function, its

57

convex envelope is the secant connecting the two end points. Utilizing Theorem 4.12

yields the following convex underestimator for L(p):

U(p) = I (_(XU)2 + (XL) 2)(X - xL)/(_ L)/(_ (L)2 dt. (4.8)

In order to complete the convex underestimator, the state bounds are needed. The

following equation is the solution of the embedded differential equation:

x(t,p) = [1/2 - exp(-2t)/2]p + exp(-2t).

The natural interval extension of the above equation is constructed generating the

following two implied state bounds equations:

XL(t) = [1/2 - exp(-2t)/2]pL + exp(-2t)

xU(t) = [1/2-exp(-2t)/2]pU + exp(-2t).

Upon substitution into Equation 4.8, the following convex underestimator for the

objective function L(p) is derived for the root node:

U(p) = f (exp(-4t) - exp(-2t))p 8 e(-2t))p + 8 exp(-2t) - 5 exp(-4t) - 4 dt.

Figure 4-3 below depicts the objective function with its convex underestimator. In this

case, the underestimator is the convex envelope. From Figure 4-3, one observes that

two minima occur, a local minimum at p = -4 and the global minimum at p = +4.

Starting a local optimizer at p < p finds the local minimum, and branching is

required in order to find the global minimum. The subset P is bisected, and the

process of convex relaxation is applied to each partition yielding the results found in

Figure 4-4. From Figure 4-4, one clearly sees that the left region is fathomed and the

global minimum P = -2.516 is found at p = +4.

58

Figure 4-3: Objective function and relaxation for Example 4.15 at the root node

-4 -3 -2 -1 0 1 2 3 4

p

Figure 4-4: Objective function and relaxation for Example 4.15 after the first bisection

-4 -3 -2 -1 0 1 2 3

p

59

O 0

r -0.5

*- -1
Ce

-1.5

Q0 -2.5
la

ZO 0

r -0.5

* -1

oi, -1.5

-2

.) -2.5

0 4

60

.___ __ _·

Chapter 5

Implementation for Problems with

Linear Dynamics Embedded

In this chapter, I examine the numerical aspects of globally solving Problem 4.1 intro-

duced in the previous chapter. In particular, this chapter discusses numerical solution

of the upper bounding problem, the lower bounding problem, and computation of the

state bounds as defined by Proposition 4.5. To demonstrate the feasibility of the

implementation, several numerical case studies are examined.

5.1 The Three Subproblems: Upper Bound, Lower

Bound, and State Bounds

As previously stated, the optimization algorithm utilized to calculate the global min-

imum of Problem 4.1 is based upon branch-and-bound concepts for determining the

global minimum of standard optimization problems. Essentially, three subproblems

exist: deriving and solving locally an upper bounding problem on each partition of

P, deriving and solving locally a convex relaxation on each partition of P, and com-

puting state bounds for the linear dynamics on each partition of P. For Problem 4.1,

because the branch-and-bound procedure is performed on P, a subset of a Euclidean

space, standard techniques are utilized for branching the set. For most practical

61

optimization problems (and those considered here), the set P is an np-dimensional

hyperrectangle. The heuristic for selecting on which variable in any partition is se-

lected for branching is the coordinate with the largest difference between its current

upper and lower bound (arg max Ipu- pl); the branching itself is performed by

bisecting the chosen coordinate. This branching scheme is shown to be exhaustive

in [48]. A best first search (lowest lower bound on the objective function) criterion

is utilized for node selection; this is obviously bound improving. A large number of

heuristics have been developed to accelerate the performance of branch-and-bound

algorithms (e.g., see [78, 79]). These techniques could be used to improve the com-

putational statistics reported in this chapter. However, I have deliberately kept my

branch-and-bound implementation simple in order to facilitate reproduction of and

comparison to my results. I now examine the three subproblems in detail. To simplify

the notation, unless specifically required, subscripts on variables will not be used to

denote partitions; inclusion into a partition is implied by context.

5.1.1 Computing an Upper Bound

In any branch-and-bound algorithm, several techniques exist for determining the up-

per bound on the minimum value in any particular partition. Because I only seek

a value guaranteed to be greater than or equal to the global minimum value in a

partition, by definition, the objective function value at any feasible point satisfies the

upper bounding criterion. However, I have chosen to satisfy the upper bounding cri-

terion by solving for a local minimum; the optimization is performed by NPSOL [43].

For each fixed p chosen by the optimizer, a numerical value for the objective function

and its gradient must be provided. Although the optimization itself is performed on

a Euclidean space, the computations of the objective function and its gradient are

nontrivial tasks due to the embedding of the dynamic system. From Problem 4.1, the

objective function is rewritten as the following system of equations:

J(p) = b(x(tf, p), :(tf, p), p) + Zfbp(tf, p) (5.1a)

62

ubp = (t, X(t,), k(t,),)

Z bp(0) = 0. (5.1c)

Clearly, upon integration of iu, the original objective function is recovered. There-

fore, the above system of equations is coupled with the original embedded linear

dynamic system and numerically integrated in order to calculate the objective func-

tion. The gradient of J(p) is found by differentiating Equation 5.1a and application

of the chain rule, where az$b/p is merely the sensitivity of zbp to the parameters

p at the final time. The numerical integration code chosen for this task was DSL48S

[32], a numeric component of DAEPACK [88, 87]. DSL48S was chosen because of its

ability to compute efficiently dynamic sensitivities in parallel to numerical integra-

tion. Since DSL48S was designed for large, sparse, stiff systems, it incurs significant

overhead for the small examples considered here. However, using DSL48S allows the

implementation to easily scale to large, sparse dynamic systems.

5.1.2 Computing State Bounds

In order to compute a convex relaxation for Problem 4.1, state bounds must first be

computed because Theorem 4.12 requires convexification of the integrand on the set

X(t) x X(t) x P for each fixed t E (to, tf]. Because the state bounds can be computed

independently of the lower bound, one could compute them once at each node and

store the values for successive lower bounding function calls. For simplicity, however,

the state bounds are computed in parallel with the convex relaxation. As described

in the previous chapter, Equation 4.1 is utilized to compute X and Equation 4.5 is

utilized to compute X. Both equations are computed pointwise in time via natural in-

terval arithmetic from a combination of the original linear differential system and the

affine solution quantities M(t) and n(t) as defined by Equation 3.3. Therefore, com-

puting the state bounds effectively reduces to computing M(t) and n(t). The reader

is reminded that pointwise in time computations are performed at each integration

step.

From Equations 3.2 and 3.3, the following equations are extracted defining M(t)

63

(5.1b)

and n(t):

M(t)= e(tto)(Eo+Ef(tfto))- [C-Elf | (tf,)B(r) dr] + 4(t,-)B(,) d
(5.2)

n(t) = ~,(t, to)(Eo + Ef(tf, to))- Ed-f J 4(tf, r)r(r) d7- + (t,)r(r) d.

(5.3)

Differential equations for M(t) and n(t) can be derived by several different methods.

As previously discussed, M(t) and n(t) are both defined from Equation 3.3, which is

the affine form of the solution of the embedded linear dynamic system. By inspection,

M(t) = x/8p, the sensitivity of the state equations with respect to the optimization

parameters. From the embedded linear dynamic system, the system of equations is

differentiated with respect to p to yield

d ax = A(t) + B(t).

The substitution M(t) = Aox/9p and the interchange of differentiation operators

yields the desired result. The boundary condition is found by differentiating the

boundary condition for the embedded linear dynamic system:

EoM(to) + EfM(tf) = Bzc.

n(t) is found from the following problem:

= A(t)n + r(t)

Eon(to) + Efn(tf) = r.

That the solution to the above differential equation matches the formula given for

n(t) in Equation 5.3 is easily verifiable by integration.

Having derived differential equations defining M and n, I now address the practical

computation of the state bounds. As previously stated, theoretically, Equations 4.1

and 4.5 are calculated at every fixed time in the interval (to0 , tf]. However, because

64

this interval is a connected subset of R, there are an uncountable number of fixed

points t. Therefore, for the purposes of numerically integrating the lower bounding

system, fixed t calculations are performed at each integration step. Thus, at each

integration step, in order to implement interval arithmetic, Equations 4.1 and 4.5 are

rewritten as follows for i = 1,..., ,:

np

x~(t) = ni(t) + E min{Mi(t)p , Mij(t)p } (5.4a)
j=l
np

xU(t) = ni(t) + Emax{Mi(t)p , Mij(t)pq} (5.4b)
j=1
n2 np

Lb(t) = ri() + EAijnj + min(Mj(t)p ,M-()pq} (5.4c)
j=1 j=l
n,, np

U = ri(+ A + max{(M.(t)pL, M(t)p } (5.4d)
j=1 j=1

where M* AM + B. By definition, the lower bound, pL, is always less than or

equal to the upper bound, pu. Therefore, the minimum and maximum operators in

the above equations only select different functions when Mij(t) or M~.(t) have zero

crossings during an integration step. While this phenomena does not occur with every

differential system, its presence creates difficulties, for it generates state dependent

discontinuities in the integration of the convex lower bounding problem. For this

reason, DSL48E [87], the differential-algebraic numerical integration component of

DAEPACK capable of handling events, is utilized for computing the state bounds.

5.1.3 Lower Bounding Problem

Now that a method has been elucidated for computing the state bounds, I address

computing a lower bound for Problem 4.1. Similar to the upper bounding problem,

the lower bounding problem is a local optimization of an integral objective function

subject to an embedded linear dynamic system. For the global optimization algo-

rithm, the lower bounding problem is always chosen to be a convex relaxation of the

original problem. Theorem 4.12 prescribes the method used to derive a convex under-

65

estimator for Problem 4.1, a method which is based upon convexifying the integrand

of the objective function pointwise in time. Because the lower bounding problem is

convex by construction, by Theorem 3.4.2 in [15], a minimum found via a local opti-

mization routine is a global minimum on the respective partition. Therefore, NPSOL

is again chosen as the optimization routine. As with the upper bounding problem,

the integral is replaced by a differential equation:

U(p) = 1p (X(tf,), (tf, P), P) + Zl(tf, P)

zlbp = U(t, P, X(t, P),XU(t),XL(t),* (t, p), U(t), XL(t))

Zlb(O) = 0.

As before, the gradient for the objective function of the lower bounding problem is

found by differentiating U(p), and the appropriate sensitivity equations are employed

in order to yield this result. Clearly from differentiation, M is the sensitivity of x with

respect to p. Because M is explicitly calculated in parallel with computing the state

bounds, an additional integration for calculating the sensitivity is unnecessary. The

fact that the corrector matrix employed in the numerical integration of the embedded

linear dynamic system is the same as that for computing the columns of M and n can

be exploited via a staggered corrector scheme [32] to improve greatly the efficiency of

the lower bounding problem. This, however, is not currently implemented.

5.1.4 Intersection of State Bounds and Intersection with State

Bounds

Two of the more interesting numerical phenomena that arise in the algorithm for

globally solving Problem 4.1 are the intersection of the state bounds and the inter-

section of a state solution trajectory with the state bounds. In a typical Euclidean

optimization problem, the phenomenon of decision variable bounds intersection does

not arise, for intersecting bounds indicate the search set for that variable has been

reduced to degeneracy, immediately implying the solution for that variable at the

particular node because no other feasible points would exist (this is the infinite con-

66

vergence solution with an exhaustive branching strategy). The other phenomenon

that causes difficulty is the intersection of a state solution trajectory with a state

bound. Of course, in Euclidean optimization, the analogous situation occurs quite

frequently and poses no difficulty. In fact, for the extreme case of linear programming,

the optimal point always lies at an active constraint. In dynamic optimization, the

intersection of state bounds and the intersection of a state solution trajectory with a

state bound occur quite frequently, and their occurrences potentially create havoc in

the numerical integration of the lower bounding problem. The intersection of state

bounds is addressed first.

At first glance, the intersection of state bounds would seem to imply the degen-

eracy of the set. However, because the state bounds are functions of time, their

intersection may occur at a finite number of points in time even when the measure of

the set is greater than zero. This situation arises when the solution of the embedded

linear system contains a point in time whose value is independent of the embedded

parameters. More commonly though, the situation arises when the initial conditions

to the linear system are parameter independent causing the upper and lower bounds

of the state variables to intersect at the initial time. Often, the equations defining

convex relaxations contain the difference of the state bounds in the denominator (for

example, the convex relaxation of a univariate concave function). Provided the in-

tersection of the state bounds occurs only at a finite number of points in time, the

collection of these occurrences form a set of measure zero, and integration theory per-

mits the integration of a function containing these removable point discontinuities.

Numerically, of course, these discontinuities generate residual calculations evaluating

to "not a number," an unacceptable result. The solution of this dilemma is post-

poned until after the discussion of the intersection of state bounds with state solution

trajectories, for the numerical solution to both problems is identical.

The other common numerical dilemma in working with the state bounds occurs

when a candidate solution to the optimization problem causes a state variable to

intersect with the state bounds. By the construction of the state bounds in Equa-

tions 5.4a and 5.4b, clearly, a state solution intersects its bound when the candidate

67

solution for p equals a vertex of the hyperrectangle defining its bound. Typically,

the intersection is over a finite time interval rather than at individual time points.

While this construction seems theoretically harmless, this situation induces chattering

[91] due to numerical noise smaller than the integration tolerance. This phenomenon

manifests itself in identifying events in functions such as the mid function (the mid

function is paramount in computing McCormick relaxations and arises frequently). I

present below a brief sketch of event location as it pertains only to the problem at

hand. Much more will be said concerning event detection and location in Chapter 7.

I assume that the logical expressions that may cause events during the numerical

integration may be decomposed into one or more real-valued relational expressions

involving <, <, >, or >. For example, the logical expression

(x > 5) AND (y < 10 OR y > 20)

may be decomposed into three relational expressions, or logical atoms: x > 5, y < 10,

and y > 20. Rearranging these logical atoms into the form g > 0 defines discontinuity

functions (e.g., x - 5, 10 - y, and y - 20). These discontinuity functions have the

property that logical expressions may change in value when one or more of the discon-

tinuity functions cross zero. The event location algorithms described in this chapter

rely on finding zero crossings of the real-valued discontinuity functions to locate the

events [21].

Now, suppose I wish to determine the middle value of three numbers a(t), b(t), c(t)

at every time step within an integration interval, and further suppose that the switch-

ing of the mid function from one argument to the next at time t* causes an integration

event in a state equation. Determining the middle value of three numbers obviously

requires the direct comparison of the numbers. Let d = a(t) - b(t) be the discontinuity

function derived from the comparison a(t) > b(t). An integration event occurs when

d crosses 0, which clearly corresponds to equality in the direct comparison. If a and

b intersect only at a finite number of points in time, the event location algorithm is

well-behaved. However, if a and b are equal over a finite interval, chattering ensues.

68

This follows because a = b only within a given integration tolerance. Therefore,

even though a = b analytically, the discontinuity function may cross zero at every

integration step. This situation causes the event location algorithm to fail, and the

numerical integration reaches an impasse.

The simplest solution to the above two problems is merely to construct the state

bounds in a manner that eliminates the inherent difficulties. As described in the

previous chapter, Equations 5.4a and 5.4b yield the tightest possible bounds on the

solution to the embedded linear system. However, proving infinite convergence of the

branch-and-bound algorithm does not require the tightest bounds. Rather, in order

to guarantee infinite convergence of the algorithm, the only property required of the

state bounds is that any infinite sequence of nested partitions has the property that

in the limit partition, the lower bound approaches the objective function. To rectify

the inherent numerical difficulties in using the tightest possible state bounds, I write

the following convergent, yet nonintersecting bounds as a modification of the implied

state bounds:

= x- . Ipu _ p LI i = 1, ... ,n, (5.5a)

fu* = zg+ e . I pU _ pLIJ i = 1.n. (5.5b)

for some > 0 and suitable norm. Clearly, xL* and xU * rigorously bound x. Further-

more, these bounds retain the necessary properties to ensure infinite convergence of

the branch-and-bound algorithm (the necessary modification to the proof of Theorem

4.13 is trivial). An important note is that additional variables must be created in the

implementation of the modified state bounds. This allows the state event location

to be performed with the original bounds defined in Equations 5.4a and 5.4b, while

actual numerical calculations are performed using the modified state bounds defined

by Equation 5.5a and 5.5b. Obviously, for all pU ' pL, the following holds with strict

inequality:
L* i < U*

Therefore, <the two aforementioned problems ae eliminated, for the modified bounds.,

Therefore, the two aforementioned problems are eliminated, for the modified bounds

69

can never intersect, and xi can never intersect the modified bounds. The numerical

routine is well-behaved provided that the solution is obtained before the norm on

the partition approaches the integration tolerance. For notational convenience, the

modified state bounds are written without the asterisk for the remainder of this

chapter.

5.2 Dynamic Extensions to Standard Convex Re-

laxation Techniques

In order to relax Problem 4.1, convex relaxations for the integrand of the objective

function must be derived via standard techniques. Relaxing the integrand is not al-

ways a trivial task, for the integrand itself is likely to be defined as a composition

of both the states and parameters on the Euclidean set X(t) x CX(t) x P. In this

thesis, McCormick's underestimators [65] and aBB underestimators [5] are the pri-

mary techniques utilized for convex relaxation (of course, special structure is exploited

whenever possible). This section details the dynamic extension of these two convex

relaxation techniques for solving Problem 4.1.

5.2.1 Use of McCormick's Underestimators

McCormick presents a method for obtaining a convex underestimator for any non-

convex, factorable program on a Euclidean space. I restate a condensed version of

McCormick's result in Theorem 5.1 below. A brief discussion follows extending this

result to dynamic systems. The interested reader is referred to McCormick's original

paper [65] for details on this technique as it pertains to Euclidean optimization.

Theorem 5.1. Let S C Rn be a nonempty convex set. Consider the function V[v(x)]

where v: S -, R is continuous, and let S C {x I v(x) E [a, b]}. Suppose that a convex

function c(x) and a concave function C(x) satisfying

c(x) < v(x) < C(x), V x E S

70

_ __

are available. Denote a convex relaxation of V(.) on [a, b] by ev(.), denote a concave

relaxation of V(.) on [a, b] by Ev(.), let Zmin be a point at which V(.) attains its

infimum on [a, b], and let z,7, be a point at which V(.) attains its supremum on

[a, b]. If the above conditions are satisfied, then

u(x) = ev[mid {c(x), C(x), zin}]

is a convex underestimator for V[v(x)] on S, and

o(x) = Ev[mid {c(x), C(x), zm)}1

is a concave overestimator for V[v(x)] on S, where the mid function selects the middle

value of three scalars.

Proof. I prove the theorem only for u(x); the proof for o(x) is analogous. First,

the convex relaxation ev(.) is broken up into the sum of three terms: the convex

nonincreasing part, the convex nondecreasing part, and the minimum value. The

convex nonincreasing part is defined as

e'(v) = ev (min{v, zmi}) - A

and the convex nondecreasing part by

ev(v) = ev (max{v, zmin}) - A,

where A = ev(zmin). Obviously, then,

ev(v) = e(v) + e((v) + A.

Consider the chain of inequalities

V[v(x)] > ev[v(x)] = e[(x)] + eV[v(x)] + A

71

> etv[min{b, C(x)}] + ef [max{a, c(x)}] + A

= ev[min{b, C(x), Zmin}] + ev[max{a, c(x), Zmin}] - A

= ev[min{C(x), mi} + ev[maxc(x), Zmin}] - A

= ev[mid{c(x), C(x), z,in}]

The convexity of the underestimating function follows because the minimum of two

concave functions is concave, the maximum of two convex functions is convex, a

convex nonincreasing function of a. concave function is convex, and a convex nonde-

creasing function of a convex function is convex. O

Remark 5.2. In his seminal paper [65], McCormick generalized the results of The-

orem 5.1 to terms of the general form T[t(x)] + U[u(x)] V[v(x)]. Furthermore, the

paper explains how Theorem 5.1 may be applied recursively to generate a convex

underestimator for any factorable program.

McCormick notes the following two important facts concerning his convex under-

estimator u(x); these are precisely the results necessary for constructing an infinitely

convergent branch-and-bound optimization algorithm:

1. The underestimator u(x) is "tight" in the sense that as the size of [a, b] decreases,

the value of the underestimator increases. The size of an interval is understood

to represent some suitable norm such as the Euclidean norm.

2. If the interval [a, b] becomes degenerate (i.e., a = b), then u(x) = V[v(x)].

As presented, Theorem 5.1 applies to Euclidean optimization problems where the

inner function of the composition is bounded in range. Utilizing the exact state

bounds as defined by Proposition 4.5, time varying enclosures of the solution of the

differential equations for all p in a hyperrectangle P may be obtained. I label this

interval X(t) = [xL(t),xU(t)] and also make extensive use of its pointwise in time

analog X(t) = [xL(t), xU(t)] V t E (to, tf]. Because the interval X(t) (and hence X(t))

rigorously bounds the range of x(t, p) and because X(t) shrinks to degeneracy as P

72

shrinks to degeneracy, I have a range interval [a, b] satisfying Theorem 5.1 by com-

puting interval extensions for v(x) on X(t). In the case where recursion is required

to generate an underestimator for the integrand, recursive interval extensions provide

the additional range bounding sets; interval monotonicity ensures that the recursively

derived range enclosures also approach degeneracy as the parameter space approaches

degeneracy. To complete the justification for using Theorem 5.1 for dynamic prob-

lems, I must show that the composition is performed on a Euclidean space rather

than on the function space X. Clearly, for each fixed t E (to, tf], X(t) c Rn and is

therefore on a Euclidean space. Additionally, any fixed time set created by interval

extensions on X(t) is also a subset of a Euclidean space. This justifies utilizing The-

orem 5.1 in conjunction with Theorem 4.12 to derive convex relaxations for Problem

4.1.

5.2.2 Use of aBB Underestimators

The second main convexification technique utilized in this study is aBB, a relaxation

technique based on the augmentation of a nonconvex twice continuously differentiable

function by a quadratic term of sufficient magnitude to yield a resultant function

with a positive semidefinite Hessian on the set of interest. The construction of the

quadratic term ensures that the relaxation underestimates the original function. Typ-

ically, aBB convex underestimators are much "weaker" (have lower objective function

values at their minima) than the underestimators generated by McCormick's meth-

ods. Therefore, solving problems with aBB often requires more branch-and-bound

nodes and hence more computation. However, aBB has several advantages over other

convex relaxation techniques. First, the method is applicable to all twice continuously

differentiable functions provided the user can provide an interval Hessian, a process

automated by DAEPACK's interval code generation extensions. Second, the method

always provides twice continuously differentiable convex relaxations, a substantial

benefit when using standard optimization packages such as NPSOL. The implemen-

tation of BB for Problem 4.1 is described below. The interested reader is referred

to the articles by Adjiman et al. [4, 5] for details concerning the theory and imple-

73

mentation of aBB for Euclidean optimization problems and the multitude of rigorous

polynomial complexity techniques for computing the a parameter.

Given a function e(x) E C2(IRn), Adjiman et al. [5] provide the following formula

for relaxing e(x) on the restricted domain [xL, xU]:

nz

U(X) = £(x) + Zai (x - xi)(XZ - i),
i=l

where ai's are positive scalars. Furthermore, the relaxation u(x) is convex if

Hu(x) = He(x) + 2a (5.6)

is positive semidefinite on [xL, xU], where He(x) is the Hessian of e(x) and A is a

diagonal matrix whose diagonal elements are ai. The extension of acBB to Prob-

lem 4.1 is trivial. As previously stated, according to Theorem 4.12, deriving a

convex underestimator for an integral entails deriving a convex underestimator for

its integrand over the Euclidean space X(t) x X(t) x P. Clearly, for an integrand

e[x(t)] E C2 (X(t)) V t E [to, tf], the following is a convex underestimator for (x) on

X(t) at each fixed t E [to, tf]:

nz

u[x(t)] = [x(t)] + a ai(t)[x(t) - xi(t)][Xu(t) - xi(t)]
i=l

provided suitable ai(t) can be found such that Hu(x(t)) is positive semidefinite on

X(t) for each fixed time point. In order for aBB to yield the tightest possible convex

underestimator, the algorithm calculates individual ai at each integration step uti-

lizing the scaled Gerschgorin technique as described by Theorem 3.13 in [5]. Natural

interval extensions are utilized in calculating the interval extension of the Hessian of

the integrand, and a value of d = 1 is used to avoid scaling difficulties associated with

state bound intersections. The extension to integrands with functionality depending

upon the parameter or the derivative of the states is obvious.

74

5.2.3 Convex Relaxation of Bilinear Terms

Bilinear terms (terms of the form xlx 2) appear so often in optimization problems that

the convex relaxation of these terms merits a brief, yet separate discussion. In his

seminal exposition on the computability of global solutions to factorable nonconvex

programs [65], McCormick states that the convex envelope of a bilinear term is given

by the following equation:

u(x) = maxf L 2 + L L - X 2; XU 2 + Xl}X 2 - X2). (5.7)

While Equation 5.7 provides the tightest possible convex relaxation, the function is

not continuously differentiable. Because this inherent nonsmoothness upsets standard

local optimization algorithms, most authors introduce extra variables and inequality

constraints to generate an equivalent continuously differentiable optimization prob-

lem. However, the introduction of additional variables to replace state variables is

not permitted theoretically by our algorithm for solving Problem 4.1, for this addi-

tion creates optimization degrees of freedom in an infinite dimensional space. The

following example illustrates this point.

Example 5.3. Consider the objective function

min L(p) = X1x2 dt
pPP

subject to constraints of the same form as those of Problem 4.1. Rather than employ

the nonsmooth convex envelope of bilinear terms, a smooth reformulation is often

considered where a new variable w is introduced and new inequalities are added.

This yields the following convex relaxation:

U(p,) = f w dt

75

subject to the original constraints and the new constraints

w > 4L(t) + X (t) 1- (t) 2 (t)

w >X 2y(t) X 22 + X;U(t) 21- ZXU(t) . XU(t)

w E C[to, tf],

where C[to, tf] is the space of continuous functions on the interval [to, tf]. Without

introducing the new variable w, the embedded ODEs and boundary conditions allow

the elimination of x from the objective function enabling us to consider only an

optimization problem on P. Unfortunately, the newly added Lagrangian inequalities

on w do not permit the elimination of w from the convex relaxation. Hence, the

optimization problem must be considered on the space P x C[to, tf I subject to the

Lagrangian inequality constraints. Problems of this nature must be addressed by a

variational approach (see Chapter 10).

An alternative to exploiting the convex envelope of the bilinear term is to construct

an underestimator via aBB. Letting (x) = xlx 2, one can easily deduce that the

Hessian of e is constant; hence, the interval extension of the Hessian of e is degenerate.

Therefore, for dynamic systems, the values for ai are independent of both time and

the state bounds (and thus implicitly parameter bounds). The ai values are calculated

to be 1/2 yielding the following dynamic convex underestimator:

Ub[X(t)1 = X 1(t)X 2(t) + [(1 (t) - (tx))(ix (t) - (t))

+ (2() - z(t))(X2 (t) - 2(t))]/2 V t E [to, tf] (5.8)

Equation 5.8 is the preferred convex underestimator for bilinear terms appearing

in Problem 4.1 and is also used for any bilinear terms occurring in McCormick's

factorable programming decomposition. A comparison of the strength of the convex

envelope and the aBB result on the Euclidean space [-5, 5] x [-5, 5] is presented in

Figure 5-1 below.

76

___I_

Figure 5-1: Comparison of bilinear relaxation techniques: a) McCormick convex en-
velope b) aBB

-1

20'

10'

-

-10

-20-

2

-1

-2

-5

'2

-2 _ 5D

X1 Z1

5.3 Case Studies

The remainder of this chapter is dedicated to exploring the algorithm for globally

solving Problem 4.1 with numerical examples ranging from dynamic extensions to

literature problems to contrived examples designed to emphasize particular concepts.

All of the example problems in this section have been intentionally designed with a

low dimensionality for several reasons. First and foremost of these reasons is that I

wish solely to emphasize the application and feasibility of the developed algorithm

and not the existing techniques concerning Euclidean optimization, convex relaxation,

and numerical integration. In fact, despite the inevitable increase in computational

time associated with higher dimensional problems, the astute reader will recognize

that the scaling of the algorithm to higher dimensional problems is immediate and

has already been extensively addressed in the literature. That is, to increase the

dimensionality of the problem increases either the size of the parameter space or

the size of the function space. Essentially, increasing the size of the function space

amounts to requiring the numerical integration of a large-scale DAE at each function

call from the local optimizer. Since the exploitation of sparsity enables polynomial

77

~} !nfl.

algorithms for the numerical integration of systems containing hundreds of thousands

of equations, solving a problem with even several hundred state variables is a trivial

extension for any robust numerical integrator. Furthermore, because the optimization

itself is on a Euclidean space, increasing the dimensionality of the parameter space

can only illustrate the inherent weaknesses of utilizing pure branch-and-bound as a

global optimization technique. Many authors, in particular Sahinidis et al. [78, 79],

have already addressed such issues. The uniqueness of this algorithm lies in the jux-

taposition of numerical integration and global optimization with convex relaxations

of dynamic problems, not in the application of the individual techniques themselves.

Two event location approaches were employed for solving these case studies. Both

approaches rely on identifying the zero crossings of the discontinuity functions as de-

fined above. The first approach, called bisection, locates events by comparing the

sign of the discontinuity function between the current and previous time steps. If the

sign changes, then the zero crossing of the relevant discontinuity function is identified

using a bisection algorithm [70]. As described in [72], this algorithm can fail in some

cases. The second event location algorithm, called rigorous, employs the method de-

veloped by Park and Barton [72]. In this approach, new algebraic equations of the

form zi = gi are created and augmented to the original DAE, where gi is the discon-

tinuity function and zi is the new discontinuity variable. This algorithm places the

discontinuity functions under integration error control, ensuring accurate detection

of events. During integration, potential zero crossings of the discontinuity functions

are monitored using an algorithm based on interval arithmetic. This algorithm not

only guarantees the zero crossing will be identified, but also that the first, and thus

correct, crossing will be found. Once the event is identified, it is then "polished" to

avoid the phenomenon of discontinuity sticking [72]. The rigorous approach guar-

antees that the event location will be performed robustly and accurately. In most

circumstances, the rigorous approach will be only slightly more expensive than the

bisection approach. However, the problems considered here do not obey this maxim.

First, appending the relatively large number of discontinuity functions to the origi-

nal DAE significantly alters the performance of the numerical integration, resulting

78

in more integration steps and Jacobian evaluations. Second, since many of the dis-

continuity function trajectories lie very close to zero (at least initially if the initial

condition is not a function of the parameters), the cost of rigorous event detection

based on interval methods is costly. Fortunately, for the problems examined here, the

event location algorithm based on bisection performs reliably.

In order to solve dynamic optimization problems, three tolerances must be speci-

fied: the integration tolerance, the local optimization tolerance, and the branch-and-

bound global tolerance. Because the numerical integration is a subproblem of the

local optimization, the local optimization tolerance should be no tighter than the in-

tegration tolerance. For the same reason, the global optimization tolerance should be

no tighter than the local optimization tolerance. For these examples, the absolute and

relative integration tolerances were set to 10-8, the local optimization tolerance was

set to 10- 5 , the absolute tolerance for the global optimization was set to 10- 3, and

the relative tolerance for the global optimization was set to 10- 3 . All code was com-

piled with gcc 3.2, and all simulations were performed on an AMD Athlon XP2000+

processor operating at 1667 MHz running SuSE Linux kernel 2.4.

5.3.1 Small Numerical Example

I now revisit the following problem first posed in the previous chapter.

Problem 5.4.

min L(p) = x 2 dt
pE[-4,4] p)dJo

subject to

x = -2x +p

x(0) = 1.

As was demonstrated in the previous chapter, in the space of the state variable,

a convex underestimator for L is given by

u(p) = f(_(xU) + (L) 2)(x _ zL)/(XU _ XL) _ (xL)2 dt.

79

This problem was solved numerically via the developed code. The results, found in

Table 5.1, are consistent with those obtained analytically. From Table 5.1, one sees

Table 5.1: Numerical results for Problem 5.4
Relaxation [Nodes [Problem Int. calls P,i,n Obj. fcn. Time ' (s) Time b (s)

convex 3 lower 11 4.000 -2.516 0.07 0.23
envelope upper 10 I

aBB 3 1 4.000 -2.516 0.09 0.25
upper 10

'CPU time using bisection for event detection.
bCPU time using fully rigorous event detection.

that solving the problem via an aBB relaxation and solving the problem via the

convex envelope yield virtually identical statistics. This immediately follows because

a trivial analysis shows that aBB yields the convex envelope of this problem. The

miniscule increase difference in CPU time derives from the Gerschgorin calculation

to obtain a at every integration step.

5.3.2 Dynamic Extension to McCormick's Example Problem

The convex relaxation of the integrand for Problem 5.5 was first considered by Mc-

Cormick [65] as an application of his convex relaxation technique. However, Mc-

Cormick only considered optimization on Euclidean spaces; finding a convex underes-

timator for (x) = (exp(xl) + x2)2 subject to a dynamic system greatly increases the

complexity. In this example, the chosen dynamic system illustrates the applicability

of the algorithm to embedded linear systems with a forcing function. The remainder

of this subsection details the analysis necessary for practical implementation of Prob-

lem 5.5 and the numerical results from the implementation. Additionally, Problem

5.5 was also solved utilizing an aBB underestimator. Figure 5-2 below shows the

objective function with each underestimator.

Problem 5.5.
i 5L()

min L(p) = (exp(xl) + 2) dt

80

subject to

il = xl + p/10 + sin(t)
t2 = X1- 2 2 - 2P2

Xl1(0) =0, X2 (0) = 0

p E [-30, 70] x [0, 66].

Figure 5-2: Dynamic extension to McCormick's example problem at the root node:
a) Objective function and McCormick's underestimator. b) Objective function and
aBB underestimator

a) b)

-100

400

-00

-600

The first step in deriving a convex underestimator for the integrand of Problem

5.5 is identifying the composition that defines £. For this problem, the composition

is trivially written as

e= Z2

z = exp(xl) + x 2.

Following this composition, both a convex underestimating function and a concave

overestimating function must be computed for z on X(t). For this problem, the convex

underestimator on X(t) is trivially the function

c[x(t) = exp[xl(t)] + x 2 (t), V t E [0, 0.5].

That x depends on p is explicitly dropped from the notation to emphasize that

81

c(x) is a convex relaxation of z on the Euclidean space X(t) and not on the space

P. In order to derive a concave overestimator for z, I examine the two functions

Z = exp(xl) and Z2 = 2 separately. Trivially, because z2 is an affine function of

x2 , the concave overestimator for z 2 on X(t) is C2 (x2) = x2 (t). In order to derive a

concave overestimator for z, I employ the following formula from McCormick [65]:

C(x) - exp(xU) - exp(XL) xu exp(XL) - L exp(xU)] [X L x
XU - L +U x - ,

One of the complications of the dynamic system in Problem 5.5 is that the bounds

on the state variables are time varying. Utilizing the implied state bounds defined by

Equations 5.4 and 5.5, the concave overestimator for z1 on X(t) is given V t E [0, 0.5]

by

exp[xU(t)] - exp[xf(t)](t exp [X(t)] - L(t) exp[XU(t)]cl[xl(t))] = U()-L x(t) + U)XL(t)

Now, because C1 [x1 (t)] + C2 [x2 (t)] > z1 + z2 and because the sum of concave functions

remains concave, I have that

C[x(t)] = Cl[x1(t)] + C2 [x2(t)] =

exp[xu(t)] - exp[xfL(t)] (t) exp[zX(t)] - (t) exp[z(t)]
~U_) - 4 (t) + xU(t) () + X2(t)

is a valid concave overestimator for z on X(t) V t E [0, 0.5]. The next step in deriving a

convex relaxation for Problem 5.5 is to calculate z,in, the point at which e = Z2 attains

its minimum on the range of z = exp[xl(t, p)] + x2(t, p). Because the exponential

function is inclusion monotonic, I can construct a superset of the range of z by taking

the natural interval extension of z using the implied state bounds (Theorem 3.1 [68]).

Denoting this superset by Z = [zL(t), zU(t)], I can write the following function for

Zmin(t) t E [, 0.5]:
zzL(t) if zL(t) > 0

Zmin(t) = zU(t) if zU(t) < 0

0 otherwise.

82

__

Noting V t E [0, 0.5] that z2 is the convex envelope of e V z E [zL(t), zu(t)], accord-

ing to McCormick's convex relaxation technique [65], I have the following convex

underestimator for the integrand

u(t ,p) = [mid (c(x(t, p)),C(x(t, p)), min(t)}]2, V t E [0,0.5].

By Theorem 4.12,
0.5

U(p) = u(t, p) dt

is a convex underestimator for the objective function of Problem 5.5.

Using both McCormick's underestimator and aBB, Problem 5.5 was solved glob-

ally; the results of these experiments are found in Table 5.2. As expected, each re-

laxation technique yields the same solution within the specified tolerances. However,

the aBB underestimator requires more than fifty times the number of nodes to solve

the problem than McCormick's underestimator. This behavior is expected, for aBB

provides an underestimator that is much weaker than McCormick's underestimator

for this problem (see Figure 5-2).

Table 5.2: Numerical results for Problem 5.5
[Relaxation Nodes I Problem Int. calls I Pmin I Obj. fcn. Timea Time '

McCormick 9 lower 63 (14.398, 4.427) 0.0588 0.88 2.95
upper 28
lower 3292

aBB j 503 uper 1682 (14.398, 4.427) 0.0588 46.1 124.8
upper 1682

aCPU s using bisection for event detection.
bCPU s using fully rigorous event detection.

5.3.3 Dynamic Extension to the Himmelblau Function

The next example is a dynamic extension to a classical optimization problem noted

for its demonstration of multiple local minima. The objective function with its convex

underestimators is plotted in Figure 5-3 below.

83

Problem 5.6.

min L(p) = (x + 2 -11) 2 + (X1 + 2 7)2 dt

subject to

k1 = 0.1x1 + 0.2x 2 + O.lpl

2 = 0.15xl - 0.12x2 + 0.2P2

Xl(0) = 0, 2 (0) = 0

p e [-11, 10] x [-11, 10].

Figure 5-3: Dynamic extension to the Himmelblau function at the root node: a)
Objective function and McCormick underestimator. b) Objective function and aBB
underestimator.

ty U,

300 5
'00

500

500

to

300

200

0

Pi 5 P2

I again employ the methods thus far detailed to apply McCormick's Euclidean

convex relaxation techniques to construct a convex underestimator for the objective

function of Problem 5.6. I begin by identifying the composition that defines the

integrand:

e = Z2 + Z2

z = + X2- 11

z2 = :1 + 2- 7.

Because the sum of convex functions remains convex, the construction proceeds by

84

�__�I____·_··_ __^ · __· __·

simultaneously constructing convex underestimators for both zl and z2 on X(t). The

next step in the relaxation process is to find convex underestimators and concave

overestimators for zl and z2. Fortuitously, both zl and z2 are themselves convex;

therefore, my work reduces merely to finding concave overestimators. For each zi,

(i = 1,2), the function is divided into a quadratic term and an affine term. The

affine term is itself concave, and the quadratic term is overestimated by the secant

connecting the endpoints. The sum of the affine term and the secant thus provides

a concave overestimator for each zi. The concave and convex underestimators for zl

and z2 on X(t) are given by

cz[x(t)] = x(t) +z 2(t) -11

cZ2 [x(t)] = X1(t) + 2(t) - 7

Cz, [x(t)] [21(t) + x (t)](t1(t) - (t) x (t) + x2(t) - 11

Cz,[x(t)] = [X2(t) + X2(t)]2() - (t) . '(t) + X1(t) - 7,

where the applicability of each relaxation is restricted to t E [0,3]. Utilizing the

implied state bounds, I now construct supersets of the ranges of zl and z2 via the

natural interval extensions to yield the two range sets Z1 = [zL(t), zU(t)] and Z2 =

[z2L(t), z2U(t)]. As in Problem 5.5, I write functions describing zi,min for all t E [0, 3]:

z (t) if zL(t) > O

Zl,min(t) = zU(t) if zU(t) < O

0 otherwise

Z2 (t) if ZL(t) > 0

Z2,min(t) = Z2U(t) if U(t) < O0

0 otherwise.

Because z is the convex envelope of zi V zi E [ziL(t), ziU(t)] and V t E [0, 3], using

McCormick's convex relaxation technique [65], I have the following convex underes-

85

timator for the integrand:

u(t, p) = [mid {c.z(x(t, p)), Cz(x(t, p)), z,min(t)}]2

+ [mid {c, (x(t, p)), Cz2 (x(t, p)), z2,i,,(t)}]

Finally, by Theorem 4.12,

U(p) = (t, p) dt

is a convex underestimator for the objective function of Problem 5.6.

McCormick's relaxation technique and eBB were both used to solve Problem 5.6

globally; the results of these calculations are found in Table 5.3. Again, the tighter of

the two relaxation techniques, McCormick's method, solves Problem 5.6 with fewer

nodes. However, the difference in the required number of nodes between aBB and

McCormick's method is not as extreme for this problem as for Problem 5.5. This result

is expected because the aBB underestimator is somewhat tighter for this problem

relative to the tightness of the aBB underestimator for Problem 5.5. Additionally,

for this problem, aBB has a lower cost per node than McCormick's method. This

phenomena arises because the inherent smoothness of the aBB objective function

causes less events and hence less integration steps for each function call.

Table 5.3: Numerical results for Problem 5.6 aT
| Relaxation I Nodes Problem Int. calls Pmtn I Obj. fn. Time Tie

McCormick 29 lower | 19_ |(-11.0, 8.85) 220.7 4.5 11.1

cBB 1 53 g oower 173 | (-11.0, 8.85) 220.7 6.9 6.9
I__ __ upper 190

'CPU s using bisection for event detection.
bCPU s using fully rigorous event detection.

86

5.3.4 Dynamic Extension to the Six-hump Camelback Prob-

lem

The following problem is a dynamic extension to the six-hump camelback function.

In particular, this problem was chosen to exhibit the handling of an objective function

with a bilinear term. Additionally, the embedded linear dynamic system was chosen

to illustrate bounds with multiple events. Pictures of the objective function and

underestimators at the root node are found in Figure 5-4. The implied state bounds

with a candidate optimal state trajectory are found in Figures 5-5 and 5-6.

Problem 5.7.

min L(p) = 4x -2.1x4 + x/3 + xlx2 - 4x42 + 4 4 dt

subject to

X:1 = x1 + 10.9x2 + P2

X2 = -10xl - 5x2 - 3P2

xi(0) = p1/ 4 , x2 (O) = 0

p E [0, 5] x [-7, 5.5].

The integrand for the objective function of the dynamic camelback problem con-

sists of three types of terms: univariate convex (4x2, x6/3, 4x4), univariate concave

(-2.1l 4, -4x2), and bilinear (Xl X2). Because the sum of convex functions is also

convex, a convex relaxation for the integrand is obtained by individually convexifying

the nonconvex terms. The convex envelope for -2.1x 4 on X(t) is

ul(t) = -2.1[xL(t)]4 - 2.1 [[x (t)]2 ++ l (t)]2] [xl (t) + xf(t)][xi (t) - (t)],

and the convex envelope for -4x2 on X(t) is

u2(t) = 4xU(t)x2 (t) - 4[x(t) + x2 (t)]x2(t).

The convex underestimator xlx2 on X(t) is given by Equation 5.8. Therefore, by

87

Figure 5-4: Dynamic extension to the six-hump camelback function at the root node:
a) Objective function. b) Objective function and derived underestimator. c) Objec-
tive function and aBB underestimator

a)

25

20

16

10'

5

b) C)

Theorem 4.12,

U(p) = I4x 2 + ul + x61/3 + ub + u2 + 4 4 dt (5.9)

is a convex underestimator for the objective function of Problem 5.7.

The solution to Problem 5.7 for both the underestimator in Equation 5.9 and

the aBB underestimator is found in Table 5.4 below. Unlike the previous problems,

aBB takes fewer nodes to solve this problem than the underestimator derived from

special structure. At first, this result seems contradictory to the maxim that tighter

underestimators require fewer branch-and-bound nodes. In fact, the reality is that

88

___·

I

CL -

Figure 5-5: State bounds for Problem 5.7 with xi (t) for Pi = 2.5 and P2 = -0.75

3

0

'2
0

co

4-1

r
co0

co0
a)

I -2

'a

-3 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

Figure 5-4 is somewhat misleading. While the underestimator derived from special

structure is tighter than the aBB underestimator at the root node, as the parameter

bounds shrink, the aBB underestimator actually becomes tighter than the special

structure underestimator. However, one sees from Table 5.4 that despite requiring

fewer nodes, using aBB requires more time than using the special structure. This

phenomenon arises because the linear system in this problem exhibits many events.

This increase in events in turn requires more integration steps, and the expense of

calculating o values at each integration step via the scaled Gerschgorin technique

becomes prohibitive.

Table 5.4: Numerical results for Problem 5.7
Relaxation Nodes Problem Int. calls _ I Obj. fcn. Timea Time

special 131_ uwer | 819 0.000 (0.00, 0.00) 44.3 71.4
structure upper 1 457 1

| aeBB 111 | Iower 756 0.000 (0.00, 0.000) 70.9 95.7
aIi I upper 1 392 1

"CPU (s) using bisection for event detection.
bCPU (s) using fully rigorous event detection.

89

I I I I I I I I

I'\

Figure 5-6: State bounds for Problem 5.7 with x2 (t) for P, = 2.5 and P2 = -0.75

U U.2 U.4 U.t U.5 I 1.2 1.4 l.t 1.8
Time

5.3.5 Optimization of a Generalized Twice-Differentiable Func-

tion

The following problem illustrates two general principles. First, using aBB as the

relaxation technique, objective functions with arbitrarily complex, twice-differentiable

integrands can be optimized with the algorithm. Second, the optimization algorithm

presented here is applicable to linear time varying embedded dynamic systems as

well as linear time invariant embedded dynamic systems. A picture of the objective

function is found in Figure 5-7.

Problem 5.8.

min L(p) = cosx1 sin x2 + 1 /(x2 + 1) dt

such that
1l = tXl + i

x2 = - X2 + P - P2

x1(0) = , 2(0) = 0

p E [-5,6] x [-5,6].

90

__·___IICI_____IIIL_

Figure 5-7: Objective function for Problem 5.8

2

1'

0

-1

-2

6

-4

While it may be theoretically possible to derive a McCormick underestimator for

Problem 5.8, this would be a difficult challenge. For this reason, the problem is partic-

ularly suited for solution with an eBB underestimator, for this relaxation technique is

implemented automatically for any twice-continuously differentiable integrand. The

solution to Problem 5.8 is found in Table 5.5. The answer is graphically verifiable

from Figure 5-7.

Table 5.5: Numerical results for Problem 5.8
I Relaxation I Nodes Problem Int. calls I Pmi I Obj. fcn. I Timea I Timeb [

aBB 301 lower 1699 4.251 (6.00, -2.24) 41.3 41.3
upper 800

aCPU (s) using bisection for event detection.
bCPU (s) using fully rigorous event detection.

5.3.6 Dynamic Himmelblau Function Revisited

The objective of this section is to illustrate the use of the algorithm to solve an

optimal control problem via control parameterization [18]. Because the emphasis of

91

.

I

I

this problem is not on the relaxation of the integrand, I have chosen to select an

objective function for which this analysis has already been performed.

Problem 5.9.

min L(u)= (+ x2- 11)2 + (+ X2 7)2 dt

such that
1l = O. 1Xl + 2 + 8u

x2 = x1- 0.1Z2 - 8u

Xl(0) = 0, x2(0) = 0

-1 <u< < 1.

To solve Problem 5.9, two different control parameterizations were selected: a

piecewise linear control parameterization enforcing continuity between each of the

ten equally spaced time partitions and a piecewise constant control parameterization

on ten equally spaced time partitions. Letting Pi represent each time partition, for

the piecewise linear case, u is parameterized by the following equation:

10

u(t) = 1p(t) [(lot - i + 1)pi+1 + (i - 10t)pi]
i=l

such that

Pi E [-1,1], i=1,...,11

where the characteristic function is defined by

1p(t)= 1 iftEP
0 if t Pi.

Defining u(t) for the piecewise constant case is obvious. In the parameter space,

multistart local optimization has shown the objective function to exhibit at least two

local minima.

Problem 5.9 was solved using McCormick's underestimator as defined in the anal-

ysis of Problem 5.6. In order to facilitate convergence of this problem, optimality

92

__

based range reduction tests 1 and 2 from Sahinidis and Ryoo [78] were applied at

each node. Range reduction at a given node was repeated if the reduction of the

domain for any variable met or exceeded 25%. The numerical results are found in

Table 5.6 below.

Table 5.6: Numerical results for Problem 5.9
Parameterization Nodes Problem Int. calls [Obj. fcn. Timea

piecewise 3311 lower 46320
constant upper 21015

piecewise 10045 lower 122424 438 39516
linear upper 68887

'CPU (s) using bisection for event detection.

The control profiles for the piecewise constant and piecewise linear case are il-

lustrated in Figures 5-8 and 5-9 respectively. The problem was solved to a relative

tolerance of 0.01. The large number of nodes required to solve this problem derives

from the relative insensitivity of of the objective function to the control function in

the vicinity of the minimum, a common feature of optimal control problems. The

relatively high cost per node is due to each function call requiring ten separate inte-

grations, one per time partition.

5.3.7 Scaling of the Algorithm

As previously mentioned, the scaling of the algorithm is a function of both the number

of parameters and the number of states. As any optimization solver employing branch-

and-bound, the algorithm scales exponentially with the number of parameters. The

number of states simply affects the time required to compute an individual function

call; however, high quality integration codes yield polynomial scaling for increasing

numbers of states. The following problem is designed to illustrate the scaling of the

algorithm with the simultaneous increase of both the number of parameters and the

number of states. For this problem, post-processing optimality based reduce heuristics

[78] were employed to accelerate convergence of the branch-and-bound algorithm; the

problems were solved to 0.001 relative tolerance.

93

Figure 5-8:

-0.2

-0.3

-0.4I
0-0.5

-0.6

-0.7

-0.8

-0.9 -

-I -
0

control profile for Problem 5.9

0.2 0.4 0.6 0.8

Time

Problem 5.10.

pi[76]np L(p)=- (X 1 +x -11) + (Xl + X-7)2 dt

such that
x = Ax + Bp

x(O) = 0

where A is an np x np matrix given by

-1

1

0

0 0 ..
-1 0 ...

1 -1 ...

and B is an np x no matrix given by B = I.

The results from solving Problem 5.10 are found in Table 5.7 below.

94

I .~~~~

1

I

I

Piecewise constant

I ; r ;

·

Figure 5-9: Piecewise linear control profile for Problem 5.9

-0.3

-0.4

" -0.5

-0.6

o -0.7
Q

-0.8

-0.9

-1
0 0.2 0.4 0.6 0.8

Time

Table 5.7: Numerical results for Problem 5.10
np Nodes Obj. fcn. Timea
2 27 58.3 3.4
3 47 56.7 23.4
4 53 55.3 58.4
5 51 54.8 125.3
6 63 54.7 278.6
7 517 54.7 2329.9

7 b 161 54.7 1177.4

aCPU (s) using bisection for event detection.
bRoot node probing employed to accelerate convergence

95

I

96

Chapter 6

Relaxation Theory for Problems

with Nonlinear Dynamics

Embedded

This chapter begins a sequence of chapters concerning the solution of Problem 2.4 with

parameter dependent nonlinear dynamic systems embedded. As with the study of

Problem 4.1, three steps exist for solving Problems with nonlinear dynamics: relaxing

the integrand with a composition technique, generating state bounds, and proving

convergence of the branch-and-bound algorithm. As will be demonstrated shortly,

the theory for solving the nonlinear problem is substantially more complicated. The

mathematical problem formulation is stated below.

Problem 6.1.

min J(p) = O(x(tf, p), p), p + J (t, x(t, p), p) dt

subject to

x = f(t, x, p) (6.1)

X(to, p) = xo(p)

where p E P; X is a continuous mapping 0: X x P - R; is a Lebesgue integrable

mapping e: (to, tf] x X x P -- R; fi is a Lipschitz continuous mapping fi : (to, tf] x

97

X x P -- R, i = 1,..., nx; io is a continuous mapping io: P - R, i = 1,..., n.

6.1 State Bounds for Nonquasimonotone Differen-

tial Equations

Analogously to solving the linear problem, state bounds are requisite for constructing

a relaxation for the integrand in Problem 6.1. However, unlike bounding the solution

of a linear dynamic system, no generalities can be stated concerning the structure

of the solution of a system of nonlinear ordinary differential equations. Thus, the

bounding strategy cannot be based on an interval enclosure of the solution of the

embedded differential equations. Instead, the majority of research concerning the

bounding of differential equations is based upon the study of differential inequalities.

While the roots of differential inequalities may be traced to the early part of the

20th century, the book by Walter [93] provides an excellent overview of the salient

concepts. One important application of differential inequalities is computing time

varying lower and upper bounds on the solution of systems of ODEs. Essentially,

the analysis demonstrates that solving differential equations whose right hand sides

underestimate the right hand sides of the original system at all points including the

initial condition provides rigorous lower bounds for the original state variables. An

analogous result applies to constructing upper bounds. Harrison [45] extended these

results from Walter to parameter embedded ODEs. Unfortunately, except under

stringent conditions of quasimonotonicity (quasimonotonicity is defined later in this

chapter), the bounds generated via differential inequalities are typically weak and

often suffer from bounds explosion, a situation in which the solution of the bounding

differential equations tends rapidly toward infinity rendering the resulting bounds

practically useless. The term "the wrapping effect" has been coined to describe this

bounds explosion. A vast literature exists on fighting the wrapping effect as it relates

to validated solutions of differential equations. In this section, however, I focus on a

technique that employs engineering understanding of problems to generate convergent

98

__

state bounds for solving Problem 6.1.

As previously mentioned, the classical theory of differential inequalities provides a

method for computing time varying bounds on the solution of a system of differential

equations. In particular, I am interested in computing a superset of the image of the

solution of a system of ODEs on a parameter set. The traditional techniques such as

Harrison's technique depend exclusively on information obtained from the mathemat-

ical statement of the differential equations and their corresponding initial conditions.

However, differential equations of practical interest to scientists and engineers are de-

rived from physical systems for which more information is known about the behavior

of the system dynamics than the information embodied by the differential equations

alone. For example, for a system undergoing decay, the state never exceeds its initial

condition. In another example, differential equations modeling mass and heat transfer

obey conservation principles. In this section, I demonstrate how these natural bounds

and differential invariants may be applied in conjunction with differential inequali-

ties to produce tight bounds on the solution of ODEs. I make one very important

note before beginning this discussion which is that this technique is not applicable

to bounds imposed upon the system such as path constraints or bounds on a control

variable. The technique is only applicable given additional information that naturally

governs the evolution of the solution of the ODEs.

I begin by presenting a variant of a fundamental Lemma from Walter [93]:

Lemma 6.2. Suppose the vector functions w(t) and +(t) are differentiable a.e. in

(to,tfl. For some index i and fixed t (to, t, if i(t) < i(t) when V (t) < k(t_),

pi(t) = i(t) then we have precisely one of the following two cases:

(i) p < I in (to,tf]

(ii) p(to+) < O(to+) does not hold, i.e., there exists an arbitrary small t E (to, tf]

such that ,i(I) > i) for at least one index i.

Proof. The proof is divided into two cases. In the first case, I assume the comparison

on the derivative is strict (i.e. i(t) < i(t)). Assume that neither (i) nor (ii) holds.

99

From (ii), this implies that 'p(to+) < b(to+), and consequently there exists some

i E (to, tf] such that p < b for to < t < t. Because I have also assumed the contrary

of Hypothesis (i), it must follow that there exists some point t E (to, tf], t > such

that Vp(t) < + (t) and o t(t) = Oi(t) for at least one index i. Therefore, for this i, the

following inequality holds:

it- OiW> t - O to < t < tt-t t-t
(the denominator is negative). By passing to the limit t - t, I have Oi > i at t, which

contradicts the assumption of the first case. I now address the second case for which

I assume that equality holds in the derivative comparison (i.e. i(t) = i (t)). Before

beginning the argument, I remind the reader that 'p and / are uniquely determined

by the solution of their respective differential equations, and I need not consider the

possibility of these functions being multiply defined for a given t E (to, tf]. Now,

consider the existence of some first point t E (to, tf] to the right or left of t. If cp > ib

or 'pi # ?pi at t then I need not consider to further for the hypotheses of the lemma

no longer hold. Therefore, I assume p < and i = ?bi at t. If Oi > bi, then the

hypotheses of the lemma again do not hold and I need not consider t further. If

0i < i, then the first case holds, and I have already proven the lemma for this case.

If Sbi = ~i at t, then another t E (to, tf] must exist immediately to the right or left

of t. The procedure is repeated until a t* E (to, tf] for which Oi < ,i is found. If

no such point is obtainable in (to, tf] where the hypotheses of the lemma hold with

S0i = i, then (i) holds trivially with equality for index i. [

Remark 6.3. Clearly, a symmetric result for > holds.

I wish to extend Lemma 6.2 to a method for bounding the solution of Equation

6.1 given prior knowledge of a set X(t, p) that is known independently to contain

the solution of Equation 6.1. The derivation is performed in several steps. First,

I present an extension of Walter's fundamental result concerning the construction

of superfunctions and subfunctions given the set X(t, p). From this fundamental

theorem, two corollaries are constructed. The first corollary extends the result to

100

differential equations with embedded parameters and yields a parameter dependent

solution for which the inequality holds pointwise in the parameter. A second corollary

follows that illustrates a method for constructing a solution valid for all parameter

values in a given set. This second corollary yields the desired result which bounds

the image of the solution to a parameter embedded ODE on a subset of a Euclidean

space.

Theorem 6.4. Let x(t) be a solution of

x = f(t, x), x(to) = xo (6.2)

in (to, t] and further suppose that x(t) E X(t), where (t) is known independently

from the solution of Equation 6.2. For i = 1,..., n,, if

(i) Vi(to) < i(to) < Wi(to)

and if V v(t),w(t) G(t)

(ii) i = gi(t, v, w) < inf fi(t, z)
zEX(t)nG(t)

zi=vi(t)

(iii) i = hi(t, v, w) > sup fi(t, z)
ZEX(t)nG(t)

zi=wi(t)

where G(t) = z I v(t) < z < w(t)}, then

v(t) < x(t) < w(t) V t E (to, tf].

Proof. Either equality holds throughout and the theorem is trivially satisfied or Hy-

pothesis (i), (ii), and (iii) guarantee that if there exists some t E (to,tf] such that

v(t) x(t) w(t), vi(t) = xi(t) = wi(t) for some index i, I have

vi = gi(t, v, w) _inf fi(t, z) < fi(t, x) = i
zx(t)nG(t)

zi=vi(t)
wti = hi(t, v,w) > sup fi(t, z) > fi(t,x) = i,

zE=(t)nG(t)
zi=wi(t)

101

where the last inequality in each equation above holds because I have already es-

tablished x(t) E G(t), and x(t) E X(t) by hypothesis. I have now established the

hypothesis of Lemma 6.2 and therefore know that either 6.2.(i) or 6.2.(ii) holds.

However, (i) is inconsistent with 6.2.(ii). Cl

The following corollary extends Theorem 6.4 to pointwise in p bounds for Equation

6.1. While not needed for bounding the solution of a parameter dependent differential

equation, Corollary 6.5 is needed directly for proving the results on convex bounding

in the subsequent section.

Corollary 6.5. Let x(t, p) be a solution of Equation 6.1 and let x(t, p) E X(t, p) for

each p E P, where X(t, p) is known independently from the solution of Equation 6.1.

If for i = 1,..., n and for each p P

(i) vi(to, p) < xi(to,) < wi(to, p)

and if V v(t, p), w(t, p) E G(t, p)

(ii) i = gi(t, Y, w, p) < _ inf fi(t, z, p)
zEI(t,p)nG(t,p)

zi=vi (t,p)

(iii) i = hi(t, v, w, p) > sup fi(t, z, p),
zeX(t,p)nG(t,p)

zi=wi(t,p)

where G(t, p) = {z I v(t, p) < z < w(t, p)}, then for each fixed p E P,

v(t, p) < x(t, p) < w(t, p) V t (to, tf].

Proof. Theorem 6.4 holds for any fixed p E P. O

The following corollary is the fundamental result for bounding the image of a

parameter embedded differential equation on the parameter set P. The resulting

bounding equations are not necessarily exact. That is, the derived bounding set may

actually be a superset of the true image of the solution on P.

102

Corollary 6.6. Let x(t, p) be a solution of Equation 6.1 and let x(t, p) E X(t, p) for

each p E P, where X(t, p) is known independently from the solution of Equation 6.1.

Furthermore, let X(t) be defined pointwise in time by

X(t) = [inf X(t, q), sup X(t, q)].
qEP qEP

Iffor i = 1,...,Inx,

(i) vi(to) < inf i (to, q)
- qEP

(i) wi (to) > sup xi(to, q)
qEP

and if V v(t),w(t) E G(t)

(iii) Mi = g(t, v, w) < inf fi(t, z, q)
zEX(t)nG(t), qEP

zi=Vi(t)

(iv) bi = hi(t, v, w) > sup fi(t, z, q),
zEX(t)nG(t), qEP

z=wi(t)

then

v(t) < x(t, p) < w(t) V (t, p) E (to, tf] P.

Proof. The proof is a trivial extension of the proof of Theorem 6.4. a

Remark 6.7. Because the functions v and w from the above corollary bound x(t, p)

for all values of p E P, when used in the above context, these state bounds are labeled

xL and xU , respectively. Pointwise in time, the interval [xL(t), xU(t)] is labeled as

X(t) for each fixed t E (to, tf].

From inspection of Corollary 6.6, the most difficult aspect of applying the corollary

appears to be bounding the solutions of the parametric optimization problems defining

the right hand sides of the bounding differential equations. While computing the exact

solution to the optimization problem would yield the tightest bounds possible from

this method, actually solving the optimization problems at each integration step in a

numerical integration would be a prohibitively expensive task. Instead, the solution

of the optimization problem on the right hand side of the differential equation is

103

bounded by interval arithmetic [68] pointwise in time. To apply interval arithmetic,

the set X(t) n G(t) must be representable as an interval pointwise in time. For some

fixed t E (to, tf], let X(t) = [L(_), RU(t)], then, pointwise in time, the set X(t) n G(t)

is given by

[max{~f (t), x (t) , min{e (t), xU (t)] x... x [max{y (t), x (t)}, min{T (t), xU (t)].

I note that given inclusion monotonic interval functions [68] for the right hand sides

of the differential equations, the bounds approach the original function when the

parameter space approaches degeneracy. Therefore, satisfying the right hand side of

the bounding differential inequalities is a relatively straightforward task.

Another interesting aspect of formulating the bounding differential inequalities

as constrained optimization problems is that these optimization problems may have

no feasible point. Assume that such an infeasibility occurs in the bounding problem

for the ith variable. Such infeasibilities usually arise from the equality constraint on

the ith variable. This situation immediately implies that the ith bound lies outside

the set X(t). In this case, any finite value for the right hand side of the differential

equation is valid, for any finite instantaneous rate of change in the ith bounding

variable ensures that the bound remains outside X(t). In practice, when employing

interval techniques, the interval computation provides a finite value for the right

hand side of the differential equation regardless of the feasibility of the optimization

problem.

In some special cases, the optimization problems of Corollary 6.6 are trivially

satisfied by the structure of the right hand sides of Equation 6.1. In particular, vast

simplifications can be applied under certain monotonicity assumptions. The concepts

of monotonicity and quasimonotonicity are now defined (see also Walter [93]).

Definition 6.8. An n-vector function f(t, z) is monotone increasing in z if for i =

1,.. ., n, f(t, z) is monotone increasing in each of the variables z with zk (k j)

fixed for all zk allowable in the domain of definition of f. A vector function f(t, z)

is quasimonotone increasing in z if for i = 1,..., n, fi(t, z) is monotone increasing

104

in each of the variables zj (j i) with zk (k Z j) fixed for all zk allowable in the

domain of definition of f. Analogous definitions hold for monotone decreasing and

quasimonotone decreasing.

If the function fi in Corollary 6.5 is monotone in several variables, then the hy-

potheses 6.5.(ii) and 6.5.(iii) can be greatly sharpened because this additional infor-

mation simplifies the optimization of fi. Let xL(t, p) be a lower bounding trajectory

of the set T(t, p), and let xU (t, p) be analogously defined. Furthermore, assume that

fi is monotone increasing [monotone decreasing] in zj (j / i) (note that monotonicity

in p is not required for fixed p). Then from Corollary 6.5, Hypothesis (ii), I know

that with respect to the zj direction (j / i), the minimum of fi over X(t, p) n G(t, p)

occurs at z = max{vj(t,p),'(t,p)} [zj = min{wj(t,p),jU(t,p)]. Similarly, for

Corollary 6.5, Hypothesis (ii), I know that with respect to the zj direction (j i),

the maximum of fi over X(t,p) n G(t,p) occurs at zj = min{wj(t,p),j'(t,p)}

[zj = max{vj(t, p), f(t, p)}]. If the function f is quasimonotone increasing or quasi-

monotone decreasing in all variables zj, j f i, the above results reduce to the following

theorem.

Theorem 6.9. Let X(t,p) be defined as in Corollary 6.5 (where if X(t,p) is not

representable as an interval, we assume an interval superset) and let

vma = maxvj,YL} and wjmin = min{wj,'}.

If the function f(t, z, p) is quasimonotone increasing in z and if for i = 1, ... , n

(i) v(to, p) < X(to, p) < W(to, p)

(ii) i = gi(t, v, p) < fi(t, vi, v,¢Z," p) in (to, tf]

(iii) i = hi(t, w, p) > fi(t, wi, w , p) in (to, tf

then for each fixed p E P,

v(t,p) < x(t,p) < w(t, p) in (to, tf].

105

Proof. The monotonicity assumption on fi implies that inf fi(t, z, p) is at-
zex(t,p)nG(t,p)

zi=vi(t,p)

tained at v = (vi, v,'); gi is less than this infimum by construction. An analogous

result holds for hi and the supremum of f i. The result immediately follows from an

application of Corollary 6.5. O

Remark 6.10. An analogous result holds for a quasimonotone decreasing function.

Similar simplifications also hold for Corollary 6.6 under quasimonotonicity assump-

tions.

The theorem concerning bounding quasimonotone differential equations concludes

the theoretical presentation of deriving state bounds for Problem 6.1. A fully worked

example is now presented to illustrate the application of the state bounding results. In

particular, construction of state bounds for a nonquasimonotone system via Corollary

6.6 is emphasized.

Example 6.11. Consider the following bimolecular, reversible chemical reaction:

A+B C

with forward rate constant kf and reverse rate constant kI. Given a bounding set

[kfL, kfU] x [kL, ku] for the rate constants, I wish to compute bounds for the concentra-

tions of the three chemical species over a specified time interval given the following

differential equations describing the evolution of the species concentrations:

±A = -kfXAXB + krXc

·i;B = -kfXAXB + krXC

Sc = kfXAXB - kXC

ZA(O) = AO, XB(0) = BO, XC(O) = ZCo.

Without loss of generality, I will assume that XBo > XAO.

In order to compute state bounds for Example 6.11, a tradeoff exists between the

ease of computing bounds and the quality of the computed bounds. For this example,

106

- _· ___

several different approaches to applying Corollary 6.6 are demonstrated. The bounds

are first derived without employing a priori information concerning the behavior of

the states using Harrison's Theorem [45]. This analysis yields the following differential

equations:

A -max{min{kxA, kLfL, min{kxA, kf- A max {kf ,

k- X-}X, max{k i XA k }XB,f AXB, f AX A)XB

+ min{k xc, k x k xc, k xc} (6.3a)
:k~~ = -max(min(f~, L v L k k k L maxk, L k

fA= -max{min{kf XA, kf XAX B,, kfA,
kUxL kUxU}xL} + min{kr4, krX , kX, kX} (6.3b)

f A fLB 1Ulr LC r C C ,63

XC = Amin{min{k, } A k A x , min{k x, k X k xL,

In x nx max, kLXL U kUxL kU U IXL, maxfk LX k Af AX k, kf A f As , kfXA,kyXA}Xg, maX{kxf , kx ax, k, kX }4 max{kxf4, kf'XA,
kfX A , kyXAU}X} - max{krLXc, krUxL} (6.3c)

Au = -min{min{kx, xU X, min{k xU, kxu}, max{kLXAX,

k-- ax}, max{k x, kxxA}x}

+max{kLxc, kLXC, krUxc, krUxc) (6.3d)
:- -min{min{k'xC, 1 U kL k maxk, L A

.B = -minminkll ~ Xl kf XA, ki XAL, kfXAXf XkLXL kfAX,

kUXLA, kU XA}x} + max{k~Lx, kc X, kkXc L, kUXU (6.3e)

* = max{min{kxLX kf A' k kx }Xg minxk LXL kLXAU, kuXALX
C I A kx f A fAif A f A f A,

kxA}xB, max{kxfLX, kLfA k L kxU }XL, max{kfx, XL kf xf A B f 7 Al kf XA, f

ku XA, kXA}xB} - min{k LX, kxU} (6.3f)

subject to the initial conditions

XA(O) = XA(O) = XAo, B(o) = XB(O) = XB, xC(o) = Xg(O) = Xco

Despite their unwieldy appearance, because the right hand sides of the above dif-

ferential equations are Lipschitz continuous, numerically integrating the differential

107

equations is not difficult. In order to compute a numerical solution, the following

values are assigned to the constants:

k = 100, k = 500, k = 0.001, k = 0.01, A0 = 1, = 1 .5, XCO = 0.5

where the units for concentration are mol/L, the units for the forward rate constant

are L/(mol-min), and the units for the reverse rate constant are min-l. The time

interval of interest is set to 1.5 minutes. A plot of the upper bound for species B

is shown in Figure 6-1 below. Clearly, from the figure, the bounding method is not

acceptable. From physical considerations, I know that the upper bound should not

exceed the sum of initial concentrations of species B and C in the system. However,

because the system is not quasimonotone, the upper bound for species B explodes (in

fact, the upper bound for the concentration of all species explodes). For Figure 6-1,

the integration was terminated when the bound exceeded 103.

Figure 6-1: Upper bound for species B from Example 6.11 without utilizing a priori
information

8oow1000

800

600

m400

Q
C;

O 2000
n

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time (min)

In order to correct the bounds explosion, Corollary 6.6 is now applied to the

system in Example 6.11 utilizing the a priori information from considering species

108

mole balances on the system. Given the assumption that XBO is greater than XAO,

from the kinetics of Example 6.11, the following inequalities hold:

0 < XA(t) < XAO + xCO

XBO - XAO < XB(t) < XBO + XCo

0 < c(t) < xAo + co.

Corollary 6.6 may now be implemented by several different methods; three meth-

ods are presented here. The first method is a trivial extension of applying inter-

val arithmetic. Recalling that the optimization is now performed over the intersec-

tion of the physical and differential bounds, by setting X(t) = [L(t), -U(t)] and

G(t) = [xL(t), xU(t)], the right hand side can be represented as an optimization over

the set

X(t) n G(t) = [max(x (t), (t)}inx(t), A(t)}] x ...

x [maxz{x(t),L(t)},min{x(t), -c(t)}]. (6 4)

Therefore, much tighter bounds are achieved by simply assigning the following values

· L := max{o, }

U := min{XAo + Xc, A}

XL := max{xB - XA, X

xBU := min{XBO + XCO, XB}

4L := max{0, }

c : min{XAO +Xc, XUc

into the right hand sides of Equation 6.3. The resulting bounds for species B together

with the natural bounds are shown in Figure 6-2. There are several important features

to note in these new bounds. First and foremost, the bounds no longer explode

109

because when the right hand sides of the differential equations exceed a limit (dictated

by the interval arithmetic), the right hand side of the differential equation becomes a

constant thus bounding the slope of the state. Second, the bounds are smooth. This

phenomenon occurs because the right hand sides of the differential equations are

continuous assuring the everywhere existence of the derivatives of the states. Finally,

while the upper bound is an improvement over the natural bound, the lower bound

is still not at least as good as the natural bounds on the system.

Figure 6-2: Bounds for species B from Example 6.11 utilizing a priori information

I I I I I I [

2

- - natural bounds

-smooth bounds
1.5

. 1

0 0.50

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Time(min)

The second application of Corollary 6.6 alleviates the problem that the integrated

state bounds exceed the a priori bounds at the expense of smoothness of the resulting

bounds and ease of numerical integration. In the discussion following Corollary 6.6,

the case where the optimization problem becomes infeasible was discussed. In addition

to optimizing over the constraint set X(t) n G(t), I must also remember that I am

subject to the equality constraint zi = vi(t) for the lower bounding problems and

Zi = wi(t) for the upper bounding problems. However, because of the constraint set

X(t), the equality zi = vi(t) is impossible to satisfy when xin(t) < 4/(t), and the

equality zi = wi(t) is impossible to satisfy when xU(t) > iu(t). In this situation,

110

--

I am free to choose any finite number for the right hand side of the differential

equation. The obvious choice for this number is zero, for this forces the integrated

bound to equal the natural bound. For the upper bound, choosing a positive number

yields a bound looser than the natural bound and choosing a negative number causes

chattering in the numerical integrator. Therefore, for i = 1, . .., n., very tight bounds

can be obtained via Corollary 6.6 by defining the right hand sides of the ODEs to

equal the differential equations derived via interval analysis if x, zU E X(t) and

letting i = u = otherwise. For Example 6.11, the lower bound for species B from

this analysis and the lower bound as previously computed via the interval arithmetic

approach to Corollary 6.6 are shown for comparison in Figure 6-3 below.

Figure 6-3: Bounds for species B from Example 6.11 utilizing a priori information
and bounds truncation

2.5

2

* 1.5

1

.o
0 0.5
O
Q

0

0 0.005 0.01 0.015 0.02

Time (min)
0.025

Figure 6-4 illustrates the upper and lower bounds as generated by the second

method along with ten interior trajectories derived from random values for kf and kr.

In the third method of bounding the differential equations, I incorporate an in-

variant in the differential equation defining the system. From an extent of reaction

111

- smooth bound
- nonsmooth bound

- I I I

I I I 1
I l

I

Figure 6-4: Bounds for species B from Example 6.11 utilizing a priori information
and bounds truncation along with ten randomly generated interior trajectories

0.02 0.04 0.06

Time
0.08

(min)
0.1 0.12 0.14

analysis, the following equality may be derived for this system:

ZA + XB + 2xC = XAO + XBO + 2xCO. (6.5)

Corollary 6.6 is now applied where the natural bounding set X(t) is defined by the

intersection of the plane in Equation 6.5 and X(t) as defined by Equation 6.4. Effec-

tively, for each bounding differential equation, Equation 6.5 is utilized to eliminate one

variable from the optimization problem defining the right hand side of the bounding

differential equation. The selection of which variables are eliminated in each opti-

mization problem is not unique. Theoretically, the addition of this invariant creates

more constrained optimization problems, and the infimum [supremum] of these new

optimization problems are at least no worse than the infimum [supremum] of the op-

timization problems derived without the invariant. In practice, however, because the

optimization problems are estimated using interval arithmetic, the quality of the state

bound is very dependent on the quality of the interval arithmetic methods employed

for bounding the right hand sides of the differential equations. Both elimination of

112

1.6

1.4

1.2

1

0.8

0.6

0.4

o

0
.-I

0
U

I I I I I I

- lower bound
-upper bound

- - interior trajectories

I

A \\\

,,l\\\ \\\\\
11\\\\ _

I nd [__
!\\\\

0

variables and distinct factorization strategies can lead to vastly different outcomes,

and these different outcomes sometimes lead to worse state bounds than not including

the invariant at all.

For this example, the invariant was used to eliminate xc from the optimization

problems defining tL, U, , u, B and XB from the equations defining kC, . The

resulting differential equations are given by

XA =- -max{min{kf , kxA} max{x, 0.5}, min{kfx, kuxfA} min{xB, 2},

max{(kzX, kxXA} max({4, 0.5}, max{kfLxL, kXA} min{XB, 2}} +

min{kL(1.75 - 0.5xA - max(0.5 max{xL, 0.5}, 0.5min{xu, 2}}),

k(1.75 - 0.5xL - min{0.5 max({x, O.5}, 0.5 min({x, 2}}),

kU(1.75 - 0.5Xi - max{0.5 max{xL, 0.5}, 0.5 min{xs, 2}}),

kU(1.75- 0.5xL- min{0.5 max{xL, 0.5}, 0.5 min{xu, 2}})}

kB = -max{min{kf max{xL, 0}, k min{xA, 1.5}, k max{xl, 0},

kf min{xu, 1.5}}X, max{k max{xl, 0}, k min{x, 1.5}, k max{xl, 0},

k7 min{xAU, 1.5}}xB} + min{kL{ 1.75 - max{0.5 max{xl, 0}, 0.5 min{x 1.5}}

-0.5xL}, kL (1.75 - min{0.5 max{xL, 0}, 0.5 min{xU, 1.5}}- 0.5XL),

kU(1.75 - max{(0.5 max({x, 0}, 0.5 minxu, 1.5}} - 0.5xL), k{U(1.75

- min{0.5 max{xa, 0}, 0.5 min{xu, 1.5}} - 0.Sx)}

XLC = min{(3.5 - min{xU, 1.5} -2xL) min{k max{x, 0}, k min{xU, 1.5},

k7 max{XX, 0}, k min{x, 1.5}}, (3.5 - max{X, 0} - 2x) ·

min{kf max{X,, 0}, kf min{xu, 1.5}, k max{xL, 0}, ky min{xz, 1.5}},

(3.5 - min{x u, 1.5} - 2xL) max{kfL max{X, 0)}, kf min{x u , 1.5},

k7 max{xA, 0}, k min{xU, 1.5}})), (3.5 - max{xz, O} - 2) .

max{k max{(X, 0}, kfLmin{xAU , 1.5}, kf max{x, 0), kfumin{xu, 1.5}}} -

maxl{kr4, krxC}

A = -min{min{kLfXA, kxu} max{xL, 0.5}, min{kXfU, kxu} minf{ , 2),

113

max{kxA, kxA} max{xB, 0.5}, max{k , kx} min{x,, 2}} +

max kL (1.75 - 0.5xr - max{0.5 max{L, 0.5}, 0.5 min{xu, 2}}),

kL(1.75 - 0.5sx - min(0.5 max{XL, 0.5}, 0.5 min{xr , 2}}),

k'(1.75 - 0.5xu - max(0.5max(zL, 0.5}, 0.5 min{xU, 2}}))),

krU(1.75 - 0.5x - min(0.5 max{(x, 0.5}, 0.5 min{xU, 2}})}

-min{min{kf max{~, 0}, k I{xA 1.5), k max{x, 0},

kf min{(x, 1.5}})), max{(k max({, 0}, kf min{xA 1.5, kf max(x, 0},

kf min{ax, 1.5}}x) } + max{k L(1.75 - max{0.5 max{L, 0)}, 0.5 min{zx, 1.5}}

-0.5xU), kL(1.75 - min(0.5 max{xL, 0}, }0.5 min{xA, 1.5}} - 0.5x), kU)1.75

- max{0.5 max{xL, 0)}, 0.5 min{xU, 1.5}} - 0.5xu),

kU(1.75 - min{0.5max{zX, 0}, 0.5 min{(zU, 1.5}} - 0.5x)}

.t = max{(3.5 - min{zx, 1.5} - 2xu) min{kf max{xz, 0}, k' min{xu, 1.5},

kf max{xL, 0), kf min{xu, 1.5))}}, (3.5 - max{xL, 0) - 2xu).

nin{k max({I, 0}, kL min{x;, 1.5}, kfUmax{XA, 0, }, kmin{x, 1.5},

max{kf max{xL, 0}, kL min{xU, 1.5}, kf max{xl, 01, kU(3.5 - min{xAU, 1.5}

-2xg) min{xU, 1.5}, (3.5 - max{x, 0} - 2x) max{kL max{(x, 0),

kL minx, 1.5}, k MaXX 0}, k min{fx, 1.5, kma{- min{{x'X , 1.5}}-}.

The marginal improvement of utilizing the reaction invariant is illustrated for the

upper bound of species B in Figure 6-5 below. Even for this simple example problem,

different factorizations of the objective function prior to applying interval arithmetic

can lead to bounds worse than those computed without the invariant.

114

Figure 6-5: Bounds for species B from Example 6.11 utilizing the reaction invariant

1.3

1.48

" 1.46

- 1.440
1.42

. 1.4

' 1.38

M 1.36

0 1.34
0

U 1.32

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (min)

6.2 McCormick Composition and Relaxing the In-

tegral Objective Function

As described in Chapter 3, generating a convex relaxation for Problem 6.1 requires

generating a convex relaxation for the integrand of the objective function. From

Corollary 3.7, the convex relaxation for the integrand is required on the set (to, tf] x P

for each fixed t E (to, tf]. In Chapter 4, the affine nature of the solution of a system

of linear differential equations was utilized to prove the composition result that a par-

tially convex integrand on X(t) x X(t) x P composed with a linear system was partially

convex on P. This result immediately implied Corollary 4.12, a direct method for

the construction of a convex relaxation for Problem 4.1. However, because no general

statement can be made concerning the solution of the embedded nonlinear dynamic

system of Problem 6.1, an alternative composition technique must be employed; this

technique, attributed to McCormick [65], was first introduced as Theorem 5.1 in the

previous chapter.

In Chapter 5, Theorem 5.1 was utilized to construct convex relaxations on X(t) x

115

I I I I I I I

- without invariant
-- - with invariant

…

I . . .~~7- 7 -

C

X(t) x P for a composite integrand; the composition of the state variables with the

parameters via the solution to the embedded linear dynamic system was addressed

via Proposition 4.3. This strategy was employed because exploiting the affine nature

of the solution of the linear system enabled an elegant method for handling the state

composition. For nonlinear dynamic systems, the affine solution of linear systems

cannot be directly applied to the solution of the differential equations. However,

McCormick's composition technique is directly applicable to relaxing the solution

of the embedded nonlinear differential equations provided that both a convex and

concave relaxation for x(t, p) are known. To emphasize its utilization to relax the

solution of the nonlinear differential equations, McCormick's theorem is rewritten

below using notation consistent with the dynamic system. The extension to dynamic

systems is immediate following the same arguments as those following Theorem 5.1.

Theorem 6.12. Let P C R"np be convex. Consider the function V[x(t,p)] where

x: P -* R is continuous, and let [a, b] be a set containing the image of x(t, p) on P

such that [a, b] approaches degeneracy as P approaches degeneracy. Suppose that a

convex function c(t, p) and a concave function C(t, p) satisfying

c(t, p) < v(t, p) < C(t, p), V p E P

are available. Denote a convex relaxation of V(-) on [a, b] by ev(.), denote a concave

relaxation of V(-) on [a, b] by Ev(.), let Zmin be a point at which V(-) attains its

infimum on [a, b], and let Zmax be a point at which V(.) attains its supremum on

[a, b]. If the above conditions are satisfied, then

u(t, p) = ev[mid {c(t, p), C(t, p), Zmin (t)}]

is a convex underestimator for V[x(t, p)] on P, and

o(t, p) = Ev[mid {c(t, p), C(t, p), Zmax(t)}]

is a concave overestimatorfor V[x(p)] on P, where the mid function selects the middle

116

value of three scalars.

Proof. See Theorem 5.1 0

Remark 6.13. For embedded linear differential systems, Theorem 6.12 reduces to

Proposition 4.3. This follows because ev and Ev reduce to the identify function,

and since c(t, p) = C(t, p) = x(t, p) = M(t)p + n(t), the mid function reduces to

x(t, p). Therefore, relaxing Problem 6.1 exactly reduces to solving Problem 4.1 when

Equation 6.1 is restricted to a linear system (if the construction of state bounds is

considered an independent task).

Clearly, the difficulty in applying Theorem 6.12 to Problem 6.1 is that obtaining

ci (t, p) and Ci(t, p) for any given state xi(t, p) is not obvious given that no general

information is available concerning the structure of the solution of Equation 6.1. Be-

fore demonstrating a method for obtaining c(t, p) and C(t, p) for general nonlinear

differential equations, an example is presented that demonstrates utilizing Theorem

6.12 for directly relaxing an integral. An analytically tractable differential equation

was chosen to emphasize the utilization of the theorem; numerical examples are con-

sidered in the following chapter.

Example 6.14. Consider the optimization problem

min L(p)= -[x(t,p)] 2 dt
pE[-3,3] 0

such that
x = px

x(O) = -1.

This example develops a convex relaxation for L(p) at the root node. The ana-

lytical solution of the differential equation is

x(t, p) = - exp (pt), (6.6)

117

and this allows me to compute explicitly the objective function:

L [)=-1 if p=O

[1 - exp (2p)] /(2p) otherwise.

Because the objective function is nonconvex, a global optimization technique is

warranted; hence, a convex relaxation at the root node is required. From Corollary

3.7, I know that to generate a convex underestimator for the integral requires a

convex underestimator for the integrand. First, the composition for the integrand is

identified. In this case, I trivially have

e(z) = -Z"

where z = x(t,p) is given by the solution of the differential equation (in this case

given explicitly by Equation 6.6). From Theorem 6.12, a convex underestimator for

the integrand is given pointwise in time by

u(t,p) = e (mid {c(t,p), C(t,p), mn()}) V t E [0, 1].

Therefore, I must identify e(.), compute X(t) and zmin(t), and derive functions c(t,p)

and C(t, p). Because t is always positive, for any fixed t E [0, 1], x(t,p) is monotoni-

cally decreasing. This fact enables me to trivially calculate X(t) by interval extensions

to yield

X(t) = [-exp(pUt), - exp(pLt)] = [-exp(3t), - exp(-3t)].

For each t E [0, 1], is concave on Z = X(t); therefore, e(z) is simply the secant given

by

e(t, z) = [(t) + ZL(t)] [XL(t) - z] - [L(t)] v t E [0, 1].

Because [XU(t) + zL(t)] < 0 V t [0, 1], I know that zmin(t) = L(t) V t E [0, 1].

To complete the analysis, I must derive the convex underestimator c(t,p) and the

concave overestimator C(t, p). The second partial derivative of Equation 6.6 with

118

respect to p is less than or equal to zero for all (t, p) E [0, 1] x P; thus, the function

is always concave. Trivially, I have

C(t, p) = - exp(pt_) V t E [0,1]

c(t,p) = [exp(pLt) - exp(pUt)](p -pL)/(pU pL) - exp(pLt) tE [0,1].

Combining, the pointwise in time underestimator for the integrand is given by

U(t,p) = [U(t) + L(t)] [L(t) - mid {c(t,p), C(t,p), Zmi(t)}]- [xL(t]2 VtE [0,1].

By Corollary 3.7, a relaxation for the integral is given by

U(p) = U(t,p) dt.

The remainder of this section is devoted to deriving c and C, the convex and

concave relaxations for the solution of the embedded nonlinear differential system. I

begin by defining a notation for the pointwise in time linearization of a function at a

reference trajectory.

Definition 6.15. Let £f (t,x,p)x.(t)p. be a linearization of f(t,x,p) at (x*(t),p*).

The linearization is given for i = 1,.. ., n, by the following:

jfi(t,x,p)lx.(t)* = f(t,x*(t),p*) + i
j=l x*(t),P*

(xj- - (t))

(pj - pj*) (6.7)

The following theorem is utilized for constructing convex underestimators and

concave overestimators for the solution of a parameter dependent ODE.

Theorem 6.16. Consider Differential Equation 6.1 and the set X(t) as defined in

119

and

+ np afi

j=1 x*(t),P*

Remark 6.7. Let P be convex. For i = 1,..., nx and each fixed t E (to, tf], let

ui(t, x, p) be a convex underestimator for fi on X(t) x P and let oi(t, x, p) be a concave

overestimator for fi on X(t) x P. For i = 1,.. ., n., consider the differential equations

= c(t, c C, p) = Ee(tp) ,z e (t , p) Ix(t,p*
zi=Ci(t)

Ci = gc,i(t,c,C,P) = sup Lo (t)l P (t) *
zEe(t,p)
zj=Ci(t)

for some reference trajectory (x*(t), p*) E X(t) x P (differentiability of ui and o is

assumed along the reference trajectory for fixed t E (to, tf]) with initial conditions

c(to) < x(to, p) < C(to) V p E P, (6.8)

where e(t, p) = {z I c(t, p) < z < C(t, p)}. Then for each fixed t E (to, tf], c(t, p) is

a convex underestimator for x(t, p) on P and C(t, p) is a concave overestimator for

x(t, p) on P.

Proof. Because for each fixed t E (to, tf , ui(t, x, p) is a convex underestimator for fi

on X(t) x P, the linearization Li (t, z, p) Ix*(t),p* validly supports fi on X(t) x P from

below. Analogously, Lo, (t, z, p) x*(t) p* supports fi on X(t) x P from above. For each

fixed t E (to, tf] and all (z, p) E X(t) x P, the pointwise inequalities

,Ui(tz, p)lx*,P < ui(t,zp) < fi(t,z,p)

Loi(t-zp)lx.()p. >_ oi(t,,p) >fi(t_,zP)

axe therefore established for i = 1,... , nx, which immediately imply

= inf Zu(tzp (t)* inf f(,(t, , p) (6.9a)
f, ~GEe~(t, Plx(p) P -- EX(t)ne(t,p)
zi=i(t) Zi=ci(t)

C = sup oi(t,z,P)lx*(t),p* > sup fi(t,z,p) (6.9b)
zEe(t,p) zE(t)ne(t,p)
Zi=C (t) zi=Ci(t)

for i = 1,..., n,. I note that the infimum [supremum] over (t,p) is less [greater]

120

than the infimum [supremum] over X(t) n e(t, p), for the infimum [supremum] over

a larger set cannot increase the tightness of the bound. Given Initial Condition 6.8

and Equations 6.9a and 6.9b, the hypotheses of Corollary 6.5 are satisfied, and we

have that for each p E P,

c(t, p) < x(t, p) < C(t, p)

in (to,tf]. Because £,i(tz,p)x*(t)p. and £i(t, z, P) x(t)Op are both affine in z for

fixed t E (to, tf], the infimum and supremum are attained at the vertices of the set

e(t, p) (zi = ci(t)) and are respectively given by

= inf Ui (t,,P)X*(t),p. = i (t, x* (t), P*) + Oui
zEe(t,p) OiX*
zi=ci(t) X* (t),p ,

(Ci - (t))

+E min Oui C.,,
ii i I ax* (t),p

&i t x* (t),p* x* (t),p*(X),p

j=1l api x*(t),P'
(Pj - p) (6.10)

and

Ci = sup (t,z,p) x(t),p = oi(t,x*(t),p*) + i (Ci- x(t))
z8e(t,p) xOt,*=i xi x* (t),p*
zi=C(t)

+ Xmax* ()
i , a~i Ci -- i X*(t)

x*(t),P* x(t),P

(Pj - Pj*) (6.11)
j=1 i x*(t),

121

for i = 1,... , n,. By construction, c < C. Therefore,

m{ , ___ J |O c if aUi/Xj1x*(t),p > 0
min a C3, = Ou,*M

aXj X (t)p XU(t) 1,P1 'a Cj otherwise
-xJ x (t),p*

(6.12)

and

max { o , c , oi}
ax x*(t),p* oxj x*(t),p

cj if 8Oi/azjlx*(t),p < 0

Cj otherwise.

(6.13)

Thus, Equations 6.10 and 6.11 reduce to linear differential equations with a finite num-

ber of discontinuities fixed in time in the coefficient matrix multiplying the states.

The assumption that the number of discontinuities is finite is valid for it is not unrea-

sonable to assume that ui(t, x, p) and oi(t, x, p) are chosen such that their derivatives

do not switch sign infinitely in a finite interval. That the discontinuities are fixed

in time is clear because the discontinuities are defined by functions of the reference

trajectories and are hence independent of the parameter. The solution to such a

system of differential equations has been shown to be affine in p for fixed time in

[56]; therefore, c(t, p) and C(t, p) are both concave and convex on P for each fixed

t E (to, tf].-

Remark 6.17. If the initial condition depends on p, then co and Co may also depend

on p provided they are both affine in p and underestimate and overestimate x(to, p)

for each p E P, respectively. This condition can also be met via a linearization on a

convex/concave outer approximation of the initial condition.

Following Corollary 6.5, a simplification was presented for bounding differential

equations possessing at least a mixed monotone property. In an analogous fashion,

monotonicity in z also simplifies the construction of c(t, p) and C(t, p). However,

in this case, the monotonicity of the linearizations rather than the original functions

122

must be examined. Clearly, from Equation 6.7, only the coefficients multiplying the

linearization of the state variables affect the monotonicity of the system. Essentially,

the monotonicity of the linearizations is defined by the Jacobian with respect to the

state of the relaxation of the right hand side of the Differential Equation 6.1. If the

off-diagonal elements of the Jacobian are positive, the linearization is quasimonotone

increasing with respect to a fixed p. If the off-diagonal elements of the Jacobian are

negative, the linearization is quasimonotone decreasing. Thus, if some monotonicity

properties of the linearization are known, i.e., the sign of the partial derivative is

known, then the min of Equation 6.12 and the max of Equation 6.13 are known

a priori. When the linearization is known to be either quasimonotone increasing or

quasimonotone decreasing in zj for j 6 i, all of the minimums and maximums defining

the right hand sides of Equations 6.10 and 6.11 are removed in the obvious manner.

An illustrative example demonstrating the application of Theorem 6.16 for con-

structing pointwise in time convex underestimators and concave overestimators for

the solution of a differential equation is now presented. To emphasize the construction

of the convex and concave relaxations rather than the state bounding mechanism, a

system for which the state bounds are trivially computed was chosen.

Example 6.18. Consider the following first order, irreversible series reactions:

A BC.

Given the bounding set K = [kL, kU], I wish to compute pointwise in time convex

underestimators and pointwise in time concave overestimators on K for the concen-

trations of species A and B. The differential equations modeling the system are given

by

iA = -klxA

XB = klxA - k2xB

XA(0) = XAO, XB(0) = XBO.

In order to apply Theorem 6.16 to Example 6.18, I must first identify convex

123

underestimators and concave overestimators on the set [xL, xU] x K for the right

hand sides of the differential equations. A detailed analysis of the derivation of the

set [xL, xU] is not given, for I assume that this set is constructed via Corollary 6.6 in

an analogous fashion to Example 6.11. From McCormick [65], the convex envelope

of the bilinear term yz on [yL, yU] x [zL, ZU] is. given by

u(y, z) = max{yLz + zLy - yLzL, yUz + zUy - yUzU},

and the concave envelope is given by

o(y, z) = min{yUz + zLy - yUzL yLz + zUy - yLzU}.

From the above formulae, ui(t, x(t), k) and oi(t, x(t), k) for Example 6.18 are given

pointwise in time by

UA(, X(t), k) =

UB(t,x(t),k) =

oA(t, x(t), k) =

OB(t, x(t), k) =

- min{Xza(t)kl + kUxA() - xL(t)k, kxA(t) + AU(t)kl - kfxU(t)}

max{AxU(t)kl + kUXA(t) - kUxAU(t), xCL(t)kl + kLfA(t) - kLfxL(t)}

-min{X((t)k 2 + k2 zB (t) - k(t)k2, k B (t) + 2s (t)k - kB(t)

- max{x~(t)ki + k~UA(t) - k1UUl(t), :XL(t)kl + kLfA(t) - kfLXL(t)}

min{x((t)kl + kUXA(t) - L(t)ku, kXA(t) + ZA(t)kl - kAU(t)}

-max{X((t)k2 + kUXB(t) - kux(t), z(t)k 2 + k2XZB(t - k Z(t)}.

Selecting the abstract reference trajectory (x* (t), k*), the following pointwise in time

linearizations are derived from Equation 6.15:

LUA(t_,z,k)x.(k. = UA(tx*(),k) + a (A - x(t)) + (k - k*)

LrUB(t,z,k)x.(.k. = UB(t,x(t),k*) + a 2 (ZA - X(t)) +P2 (ZB - X(t))

+1 (k 1 - k*) + 1 (k 2 - k)

124

- -~~~~~~~~~~~~~~~~~_ __

oA (t, z, k)lx*(t),k* = OA(t, x*(t), k*) + 3 (A - x(t)) + 3 (k1 - k;)

,,oB (t, z, k) Ix*(),k = OB(t, x*(t), k*) + Y4 (ZA - XA(t)) + 34 (ZB -X (t))

+62 (kl - k) + y2 (k2 - k)

where

(a,, p1) =

(a2, 1) =

(32, 1) =

(a3, 33) =

(a4, 62) =

(P4, 7Y2) =

(-ku, -xf(t)) if xL(t)k~ + kux(t) - xL(t)kU <

k xL (t) + xAU(t)k* - kxA(t)

(-kfL, -xA(t)) otherwise

(kU, xU(t)) if xu(t)k; + kUx.(t) - kx(t) >

xL(t)k + k LX(t)- kLx (t)

(kL, xfi(t)) otherwise

(-ku, -xL(t)) if ZX(t)k2 + kux4j(t) - L(t)kU <

(-kL,-x (t)) otherwise

kxA(t)k; + kIx(t) -kfx(t)

(-kf, -x (t)) otherwise

(-ku, (t)) if x(t)k + kuxa(t) - (_x(t)t <

x L(t) + AU(t) - kLXAU(t)

(k, xA(t)) otherwise

(-kUC,- X(t)) if X (t) + k2;Ux(t) - ku((t) >

-k, X(LB(t) 2*+ u2(t)r- ksLX(t)

(-k L, X-(t)) otherwise.

The final step in deriving the differential equations defining the pointwise in time

125

convex and concave bounds is to perform the optimization on the right hand sides

thus constructing the differential equations themselves. I therefore have

CA= inf £UA(tz,k)x*(t), k.
ZA=CA(t)

CB = infe £B (tz,k)lx(t),k
ZB=CB(t)

CA = sup £OA,(t,z,k)l*(t),k*
,Ee

ZA=CA(t)

CB= sup ZoB(t z,k) x*(t),k*
ZEC

ZB=CB (t)

= uA(t,x*(t), k*) + al (cA - x(t)) + 3 (kl - k;)

= UB(t, x*(t), k*) + min{a2cA, a2CA} - a2X(t)

+2 (CB - xI*(t)) + 1 (k - kl) + Yl (k - k2*)

= oA(t, x*(t), k*) + a3 (CA - x(t)) + 33 (kl - k*)

= oB(t, x*(t), k*) + max{a4cA, a4CA} - aO4 (t)

+ 34 (CB- xB*(t)) + 62 (kl - k) +2 (k2 - k2*)

and initial conditions

CA(O) CA() = CAO, CB(O) = CB() = XBO.

In order to compute a numerical solution for Example 6.18, the following numerical

values were assigned

XAO = 1, BO = , (k1, k2) E [5, 10]2, t E [0, 1],

where concentration is in mol/L, the rate constants are given in min-l, and time

is given in minutes. The final step is the determination of a reference trajectory.

Obviously, an uncountable number of reference trajectories exist, each one potentially

generating different convex and concave bounding functions. In general, three rules

should be obeyed in the selection of the reference trajectory. First, the state reference

trajectory must be independent of the parameter, for if it is not, no guarantee exists for

126

the convexity or concavity of the resulting integrated functions. Second, the reference

trajectories must be chosen such that they lie within the state and parameter bounds

for all time. This statement is obvious since the reference trajectories are the points

at which the convex and concave relaxations of the right hand sides of the differential

equations are linearized; selecting a reference trajectory outside the range of validity

of the relaxations is not valid. Finally, the reference trajectories, if possible, should

be chosen such that they do not upset the numerical integrator. For bilinear terms,

the right hand side convex and concave relaxations are defined by the maximum and

the minimum of two functions respectively. If the midpoint of the states, defined as

Xmid(t) = (xL(t) + xU(t))/ 2 ,

and the midpoint of the parameters are selected as the reference trajectory, then the

derivatives of the relaxations for the bilinear terms do not exist. Effectively, this

reference trajectory corresponds to the intersection of the two planes defining the

relaxations. In principle, this problem is trivially remedied by arbitrarily selecting

either the right or left hand derivative, for either choice yields a valid linearization.

However, if instead, the residual routine for the numerical integration is defined with

if statements as in the above analysis, chattering ensues and the integration fails. A

remedy for this situation is addressed in detail in Chapter 7. For this example, I

have chosen to present results from two different reference trajectories. Figure 6-6

illustrates the convex and concave bounds on the concentration of species B at t = 0.5

minutes.

6.3 Nonlinear Dynamic Relaxations and Branch-

and-Bound Convergence

In this section, I combine the results of the previous two sections to illustrate that com-

bining Corollary 3.7, Corollary 6.6, and Theorem 6.12 leads to a convergent branch-

and-bound algorithm. As was discussed in Chapter 4, the branch-and-bound algo-

127

Figure 6-6: Convex underestimator and concave overestimator for Example 6.18. a)
(k*, x*) = (kL, xmid) b) (k*, x*) = (kU, xmid)

a) b)

0

rithm possesses infinite convergence provided that the selection operation is bound

improving, the bounding operation is consistent, and any node for which deletion by

infeasibility is certain in the limit is fathomed (Theorem IV.3 [48]). Furthermore, I

argued that the branch-and-bound algorithm was bound improving by the least lower

bound heuristic and proving the bounding operation consistent reduced to proving

that as the parameter space approaches degeneracy, the integral relaxation approaches

the objective function pointwise. Given that the Euclidean space P is always refine-

able, the following theorem proves that the techniques established in this chapter lead

to a consistent bounding operation for relaxing Problem 6.1 and hence an infinitely

convergent branch-and-bound algorithm.

Theorem 6.19. Consider the optimization problem given by

min L(p) = f(t,x(t,p),p) dt

subject to

x = f(t, x, p)

x(to, p) = xo(p)

and the relaxation U(p) defined by Corollary 3.7. Let the integrand u(t, p) be defined

128

I · · ___ ____· ·�_

by Theorem 6.12, let c(t,p) and C(t,p) be defined by Theorem 6.16, and let the

state bounds be defined by Corollary 6.6. If the interval in any partition approaches

degeneracy, then the lower bound in this partition (U(p)) converges pointwise to the

objective function value (L(p)) in this same partition.

Proof. Choose any partition and any fixed t E (to, tf] and let [pL, pU] be the bounds

on the parameter in this partition. From Corollary 6.6, as the interval [pL, pU] ap-

proaches the degenerate value pd, the interval [xL (t), xU(t)] approaches the degenerate

value of xd(t). To be valid, the convex underestimator ui and the concave overestima-

tor oi from Theorem 6.16 must themselves possess a consistent bounding operation

and hence as X(t) x P shrinks to degeneracy, ui fi and oi fi for i = 1,. . ., n. The

right hand sides of the equations defining Ci and Ci are linearizations on ui and oi re-

spectively. Since ui and oi are each approaching fi, choosing (x*(t), p*) = (xd(t), pd),

I have that gc,i(c, C, p) fi(x, p) and gc,i(c, C, p) fi(x, p) since the linearization

approaches the value of the function it approximates at the point of linearization.

Now, suppose that at each step k, the interval [pL,pU]i is bisected (or reduced in

some other manner) such that as k -- oo, [pL, pU]k -- pd (the reduction is possible

because the subdivision rule is exhaustive). By construction, I have the following

sequence:

ukT e as k- oo for t E [to, tf],

where the convergence arises because the McCormick underestimator u possesses a

consistent bounding operation (with monotonic convergence) as [pL, pU] approaches

degeneracy. Because t was fixed arbitrarily, the convergence is true for all t E [to, tfl].

By the monotone convergence theorem (Theorem 1, §2.3 [2]),

L(pd) = edt = lim Uk dt = U(p).
k-- oo

Because the partition was arbitrarily chosen, the convergence is applicable to any

partition.

129

Proving the convergence of the branch-and-bound algorithm completes the devel-

opment of the theory for optimizing Problem 6.1. The next three chapters address

the implementation of the theory developed in this chapter and the application of the

theory to solving numerical case studies.

130

__·

Chapter 7

Implementation for Problems with

Embedded Nonlinear Dynamics

In this chapter, I examine in detail the implementation I have developed for solving

Problem 6.1. Because solving Problem 6.1 for all but the most trivial of problems is

extremely computationally expensive, a great emphasis was placed on efficiency. For

this reason, the entire program was developed in compiled, low level, systems pro-

gramming languages (Fortran, C, and C++) as opposed to higher level, interpreted

programming languages (e.g., Matlab, Java). When available, publicly available li-

braries were utilized, with preference given to libraries distributed with source code;

the remainder of the code derives from custom designed and written source. The

development platform was SuSE Linux 9.0 with kernel 2.4.21; gcc version 3.3.1 was

utilized for compiling Fortran, C, and C++ source.

To promote code transparency, maintainability, and reuse, the numerical imple-

mentation is divided into four orthogonal software modules: branch-and-bound, local

optimization, function evaluation, and ODE residual evaluation. The program com-

bining these four distinct modules for solving Problem 6.1 has been termed the Global

Dynamic Optimization Collection (GDOC). Branch-and-bound was performed utiliz-

ing libBandB, a fully functional branch-and-bound library I wrote for performing pure

branch-and-bound and branch-and-bound with heuristics. Although I designed this

module specifically for solving global dynamic optimization problems, the branch-

131

and-bound algorithm is by no means a new contribution. Therefore, the algorithm

is not discussed here, and the reader is referred to Appendix A for the user's manual

and application program interface (API) for libBandB. As with the linear implemen-

tation, the local optimization was performed exclusively with NPSOL [43]; a wrapper

to NPSOL is distributed as part of libBandB. Numerical integration and sensitiv-

ity analysis were performed with CVODES [47], a dense, stiff ODE integration tool.

However, CVODES does not explicitly handle integration events; thus, a discontinuity

locking extension was written for CVODES. The final component of the numerical im-

plementation is the ODE residual evaluator. The residual evaluator was implemented

as a compiler that accepts problem input in a customized input language and outputs

Fortran residual evaluation routines to be directly utilized with the discontinuity lock-

ing version of CVODES. The residual evaluator is responsible for implementing the

theory developed in Chapter 6 for solving Problem 6.1. The remainder of this chapter

is devoted to describing each component of GDOC in detail. The main emphasis is

placed on the discussion of the numerical integration extensions to CVODES and the

implementation of the nonlinear theory in the ODE residual evaluator.

7.1 Branch-and-Bound

At the inception of this project, I was unaware of any publicly available branch-and-

bound libraries providing source code. Therefore, a custom branch-and-bound library,

libBandB, was written in C++. The current version of the code is Version 3.2; the

user's manual and API for this library are found in Appendix A. Because libBandB

was designed to be an efficient, open source solution for implementing branch-and-

bound rather than just a prototyping tool for implementing the nonlinear theory, the

library provides several run-time configurable user options and heuristics to acceler-

ate the convergence of the branch-and-bound algorithm. These heuristics represent

the work of many researchers, in particular Sahinidis et al., and the theoretical de-

tails of these heuristics are described thoroughly in [83]. However, unless otherwise

noted, for comparison purposes, the case studies examined in this dissertation were

132

performed without using any branch-and-bound convergence heuristics. The method

for selecting the next node on which to branch was always to select the node in the

branch-and-bound tree with the least lower bound. At each node, the variable satis-

fying arg max pu -pLI was selected for branching, and the branching was performed

by bisection. The tolerances to which each problem was solved are unique to the

individual problems and are noted in the chapters detailing the case studies.

7.2 Local Optimization

As with the linear implementation, local optimization of the original problem is uti-

lized to provide upper bounds at each node, and local optimization of a convex

relaxation is utilized to provide lower bounds at each node. In general, the most

computationally expensive aspect to solving Problem 6.1 is the repeated numerical

integrations required to provide both objective function values and gradients for the

optimization. Thus, a sequential quadratic programming routine was chosen in or-

der to limit the number of integration calls required to perform the optimization.

Because most of the case studies examined in this thesis are small, dense problems,

NPSOL version 5.0 [43] was utilized. NPSOL's optimization tolerance was always set

at least two orders of magnitude smaller than the branch-and-bound tolerance and at

least two orders of magnitude greater than the integration tolerance for each specific

problem.

7.3 Function Evaluation

Conceptually, solving Problem 6.1 is identical to solving Problem 4.1. That is, I am

confronted with the task of generating sequences of rigorous upper and lower bounds

defined by differential equations. A branch-and-bound algorithm is then utilized

to converge these two sequences. This section explains the numerical techniques em-

ployed to compute function and gradient evaluations for the upper and lower bounding

problems.

133

7.3.1 Upper Bounding Problem

As previously stated, the upper bounding problem is defined as a local optimization

of Problem 6.1 with the integral reformulated as an additional quadrature variable.

I drop the q term from the objective function for the remainder of the discussion, for

I assume that this steady-state term is handled trivially via standard methods. A

function evaluation for the upper bounding problem is given by

J(p) = Zubp(tf, p)

where ZUbp(tf, p) is computed by numerically by solving the following system of ODEs:

iubp = (t,x(t,p),p)

Zbp(O) = 0

* = f(t, x, p)

x(to, p) = xo(P).

The gradient of J(p) is computed via a sensitivity calculation with the staggered

corrector [32] option of CVODES, where the right hand sides (RHS) of the sensitivity

equations are computed via the CVODES finite differencing option. Theoretically,

CVODES is capable of integrating any system of differential equations with Lipschitz

continuous right hand sides. Except for the optimal control problems with piecewise

constant control profiles, the upper bounding problems considered in this thesis all

possess Lipschitz continuous RHS, and the integration proceeds smoothly. For op-

timal control problems, however, integration is explicitly reset at each discretization

point, and the problem is numerically treated as a succession of Lipschitz continuous

RHS differential equations. For problems truly possessing inherent discontinuities

in the RHS of the differential equations, a discontinuity locking approach, as is em-

ployed for solving the lower bounding problem, may be applied to the upper bounding

problem.

134

7.3.2 Lower Bounding Problem

In addition to the upper bounding problem, in order to solve Problem 6.1, I must

solve a convex relaxation of the original optimization problem; the derivation of the

convex relaxation is defined in the previous chapter. Again, the integral objective

function is reformulated as a quadrature variable, and the lower bounding problem is

given by

J(p) = Zlbp(tf, p)

where ZLbp(tf, p) is computed numerically by solving the following system of ODEs:

hbp = (t, xL(t), x (t), c(t, p), C(t, p), p)

ZLbp(O) = 0

L = gL (t, xL, x,p)

XL (to, p) = X

kU = gvU (t,XL,xU,p)

xU(to, p) = XoU

c = gc(t,xL,xU,c,C,p)

c(to, p) = co(p)

C = gC (t, xL, x, c, C, p)

C(to, p) - Co(p),

where the subscript on g symbolizes an index, not a partial derivative. Strictly

speaking, a lower bound can be generated without the original differential equations.

As with the upper bounding problem, the gradient of J(p) is computed via a

sensitivity calculation with the staggered corrector option of CVODES, where the

right hand sides of the sensitivity equations are again computed via the CVODES

finite differencing option. Numerical integration of the lower bounding problem is

substantially more complicated because the RHS of the differential equations are, by

construction, rarely Lipschitz continuous. The discontinuities in the RHS arise from

135

taking the partial derivatives of nonsmooth RHS convex and concave relaxations (in

particular, from bilinear terms or relaxations requiring a mid function). For this

reason, a discontinuity locking approach to numerical integration is employed.

7.3.3 Discontinuity Locking in CVODES

In this subsection, I discuss the higher level aspects of discontinuity locking that

are performed in the integration routine itself, namely, event detection and event

location. Here, I assume that both locked and unlocked residual evaluations are

available to CVODES as necessary; the construction of locked and unlocked residual

code is detailed below in Section 7.4. Rather than present examples in an arbitrary

pseudocode, examples are presented in Fortran 77 and C++. The examples are

relatively simple, however, and explicit knowledge of the language semantics should

not be necessary to understand the examples.

Discontinuity locked integration and rigorous state event detection and location

for arbitrary ODEs or differential-algebraic equations (DAEs) is a nontrivial task.

The discussion here is not meant to provide a generalized method for state event

location. Rather, the extensions to CVODES that I consider are specific to event

location as it applies to numerically solving a lower bounding problem as constructed

by the methods outline in Chapter 6. Park and Barton [72] provide an excellent

overview of several different methods for state event location for DAEs and discuss a

technique for rigorous state event location based on interval methods.

In numerical integration, an integration event occurs when some logical condi-

tion changes (i.e., which clause of a conditional statement in a program is executed

changes), and the triggering of this logical condition alters the form of the RHS of

the differential equations. I note that the events considered in this thesis are never

conjunctive or disjunctive. That is, the logical expressions contain only one condi-

tional and do not contain either an AND or an OR. If the RHS of the ODEs remain

Lipschitz continuous through an event, then the error correction mechanism of the

numerical integrator adjusts the integration stepsize to compensate for the change in

the ODEs. However, if the RHS does not remain at least Lipschitz continuous, then

136

the numerical integrator often fails. Provided that the number of events that occurs

is finite, if the location of the events can be accurately determined, then the system of

differential equations can be integrated normally as a sequence of discontinuity locked

differential equations that are at least Lipschitz continuous between the integration

events. A discontinuity locked model is a realization of the original differential equa-

tions with all the conditional elements of the model (those parts of equations defined

conditionally by the particular state of a logical operation) fixed in one particular

clause. Each discontinuity locked realization is called a mode of the model. In any

given mode, no conditionals exist, and the RHS of the ODEs are Lipschitz contin-

uous by construction. The flipping of a logical condition between integration steps

must then be detected, the event located, and the residual equations locked into a

new mode corresponding to the appropriate realization of the model based on the

new logical conditions. The integration routine is then reinitialized at the event, and

integration resumes in the new discontinuity locked mode. Therefore, the numerical

integrator itself must be capable of detecting events, locating events, and locking the

residual routine into the appropriate mode.

Two classifications of events can occur: explicit time events and state events.

Explicit time events are those events whose logical condition depends explicitly on

the integration time. For example,

Example 7.1.

c An example of an explicit time event in Fortran 77

if(t .ge. dO) then

i mode 1

else

! mode 2

end if

From the code snippet above, one sees that detection and location of explicit time

137

events is quite trivial. After CVODES has taken an integration step, if the current

time, t, exceeds the event time, te, then an event has occurred. The current time is

reset to t = t + e for some > 0, CVODES interpolation mechanism is utilized to

reset the states at t (state continuity is always assumed over integration events), the

residual routine is locked into the new mode, and integration resumes normally. tc

is set to te + E rather than t to avoid sticking at an event. That is, the integration

resumes slightly after the event time to avoid repeatedly triggering the same event.

An appropriate value for is left as an implementation detail.

The second classification of integration events, state events, are significantly more

difficult to handle than explicit time events. As their name implies, state events are

events whose logical condition depends upon the current state of the system. Unlike

explicit time events, the timing of a state event is not known a priori. For example,

Example 7.2.

c An example of a state event in Fortran 77

if(x(1) .ge. x(2)) then

! mode 1

else

! mode 2

end if

Because the location of a state event is not known at the outset of an integration,

techniques must be developed to determine if an event has occurred between two

integration mesh points, and if an event has occurred, locating its first occurrence.

Further complicating the situation, in the general case, the timing of an event may

even be parameter dependent, potentially causing jumps in the sensitivities at state

events [37]. Fortunately, for the convex relaxations developed in Chapter 6, the

proof of Theorem 6.16 demonstrates that parameter dependent state events do not

occur for the lower bounding problem. Combined with state continuity at the events,

138

___ ___.

parameter independence of state event location is sufficient to establish that jumps

in the sensitivity variables do not occur [37].

In addressing state events, researchers have typically taken two different ap-

proaches. In the first approach, the state dependent logical conditions are refor-

mulated as new algebraic equations and appended to the system of ODEs or DAEs.

Consider the logical condition of Example 7.2. The condition triggering the state

event can be reformulated as a discontinuity function, d = x(1) - x(2), and clearly,

an event occurs when d(t) = 0. In general, a discontinuity function may be a func-

tion of time, states, state derivatives, algebraic variables, or parameters. After each

integration step, an event detection routine determines if a zero crossing of the dis-

continuity function occurred during the step. If a zero crossing has occurred, then the

event is located. For an integration method such as BDF [41], the interpolating poly-

nomials approximating the state and algebraic variables between integration steps

are available. Therefore, after completing an integration step, a polynomial approx-

imation for d(t) is reconstructed, and root finding methods are employed to locate

the zero crossing. If multiple zero crossings occur, the earliest is sought. Elaborate

techniques have been developed [72] to ensure rigorously proper event detection and

location. Once the event's location has been determined, the event is "polished" to

a time te + E (i.e., reinitialized at te + E), the model is locked into the new mode,

and integration resumes. The proper mode is determined by evaluation of an un-

locked model to determine the active mode at the reinitialization time. An unlocked

model evaluation, as opposed to a locked model evaluation, performs a residual eval-

uation without locking the conditionals into one of the integration modes. For DAEs,

polishing is slightly more difficult than for ODEs because a consistent initialization

calculation must be performed at the event. This method of state event location

and detection has both advantages and disadvantages. One advantage is that the

event location can be performed rigorously with the discontinuity equations them-

selves placed under error control. For typical engineering problems, the number of

states vastly exceeds the number of discontinuity functions, and the method has been

shown to be relatively cheap [72]. Unfortunately, Problem 6.1 tends to produce many

139

more discontinuities than states, and the cost of integrating the larger system be-

comes noticeable. Moreover, this method transforms ODEs with discontinuities into

DAEs. CVODES cannot integrate DAEs; thus, a method for handling discontinuities

without conversion to DAEs is preferred.

The second method for addressing state events does not require the addition of

extra discontinuity functions. Instead, the state conditions are utilized directly. This

method of event handling is attributed to Pantelides [70]. After each step in the

locked integration, an unlocked residual evaluation is performed. If an event has

occurred over the last integration step, then the mode resulting from the unlocked

residual evaluation differs from the mode of the locked residual evaluation. That is,

at least one of the logical conditions has changed over the last integration step. The

location of the event is then computed via a bisection algorithm, the event is polished,

and integration resumes in the new locked mode. This method of event location is

not completely rigorous; however, the method is both efficient and satisfactory for

the task at hand. The following example addresses event location and detection via

bisection.

Example 7.3. Suppose, a system of differential equations possesses nDisc discon-

tinuity functions, and for each discontinuity function, the associated condition of

the RHS of the ODEs is representable by an integer (the details of this are dis-

cussed in Section 7.4). For each locked integration, I maintain an integer array,

int lockedMode [nDisc], storing the current mode and another integer array,

int unlockedMode EnDisc, containing the mode as determined by an unlocked eval-

uation. Furthermore, assume that an unlocked residual evaluation assigns the appro-

priate mode to the unlockedMode array. The following simplified C++ code enables

event detection within this scheme (here, which discontinuity function triggers an

event is unimportant):

bool eventoccurred(int *lockedMode, int *unlockedMode){

for(int i = O; i < nDisc; i++){

if(lockedMode[i] != unlockedMode[i]) return true;

140

}

return false;

}

Thus, an event is detected when the integration mode changes between integration

steps. For efficiency, the function returns as soon as an event is detected in any of the

discontinuity functions. The following simplified C++ subroutine locates the event

via bisection. Here, I have assumed that the function unlockedmodel (double, int*)

returns the integration mode for the unlocked model at the specified time. Further-

more, I assume that int nDisc and int tMidMode nDisc] are globally accessible

without concern for memory allocation. In the actual implementation,

double event_time(double, double, int*) is a member function, and nDisc and

tMidMode are class members; memory management is handled by the class constructor

and destructor.

double event_time(double tLeft, double tRight, int *tLeftMode){

if(tRight < tLeft + tol) return tRight;

double tMid = (tLeft+tRight)*0.5;

unlockedmodel(tMid, tMidMode);

if(event_occurred(tLeftMode, tMidMode)) {

// event occurs between tLeft and tMid

return event_time(tLeft, tMid, tLeftMode);

}

else{

// event occurs between tMid and tRight

for(int i = 0; i < nDisc; i++){

tLeftMode[i] = tMidMode[i];

return event_time(tMid, tRight, tLeftMode);

}

141

On first entry into function event_time, the integrator has already detected that an

event has occurred between tLeft and tRight. The array tLeftMode holds the inte-

gration mode at tLeft. The algorithm terminates if tRight is less than tLeft + tol,

where tol is the E ensuring the integrator does not stick at the event. The function

then computes the midpoint time and determines the integration mode at the mid-

point. The function then computes if the event occurred between tLeft and tMid or

between tMid and tRight. The function is called recursively until the location of the

event is determined.

7.3.4 Event Chattering

The above methods for detecting and locating events are equipped to locate events

where the discontinuity function equals zero only at a finite number of points. Un-

fortunately, the lower bounding problem often possesses discontinuity functions equal

to zero over an interval of nonzero measure. For infinite precision calculations, no

problems would arise, for the logical condition would always consistently choose one

of the integration modes. For a finite precision machine, however, the discontinuity

function is only zero within the integration tolerance. Therefore, at each successive

integration step, the discontinuity function is computed as d(t) = 0 6, where > 0

is the absolute integration tolerance. Every time the sign of d(t) changes, an event

is triggered, and the integrator is forced to detect and locate the event. Integration

then resumes at te + , and the same event is triggered again as soon as the sign

of d(t) changes again. The integrator can never take a step larger than , and the

RHS of the differential equations may be arbitrarily locked into different modes at

each integration step. Effectively, because of this chattering, the integration becomes

numerically intractable.

For engineering problems possessing discontinuities deriving directly from the

physics of the system, chattering may be more than just a numerical dilemma, for

accurately modeling the physics of the system may demand selecting a specific in-

tegration mode. In solving Problem 6.1, however, the discontinuities in the lower

bounding problem arise from the purely mathematical construct of deriving a convex

142

relaxation. By construction (Theorem 6.16), the RHS of the equations defining c and

C are linearizations of the convex and concave relaxations, ui and oi respectively,

of the RHS of the state differential equations. If fi(t, x, p) possesses bilinear terms

or univariate intrinsics such as the exponential function, then the functions ui and

oi will possibly contain max, min, and mid functions. The linearizations defining

the RHS of c and C will therefore involve derivatives of these nonsmooth functions.

Depending upon the choice of reference trajectory, the logical conditions defining the

partial derivatives of the max, min, and mid functions may cause chattering. Without

loss of generality, I assume that I have the function u = max{hl, h2} deriving from

the convex relaxation of a bilinear function f. Both hi and h2 are themselves valid

linear relaxations for f. Chattering ensues if the chosen reference trajectory implies

that h, = h2 (this is the intersection of the two planes). Because h1 and h2 are both

valid, to prevent chattering, the integrator is simply locked into one mode selecting

either hi or h2. Which of the two modes is selected is arbitrary, but care must be

taken to ensure that the selection is consistent over all occurrences of u. For the mid

function, the equality of any two of the arguments implies that the middle value is

either of these two equal arguments. Again, the selection is arbitrary provided con-

sistency is maintained. Numerically, the integrator detects chattering when the same

event is triggered on several successive integration steps in a small time interval. This

method of preventing chattering is admittedly a heuristic. However, the heuristic is

completely valid theoretically.

7.3.5 Exploiting Affine Structure

As previously mentioned, numerically solving the ODEs is the most computationally

expensive aspect of solving Problem 6.1. Clearly, integrating the lower bounding

problem is more expensive than integrating the upper bounding problem, for the

lower bounding problem is both four times larger than the upper bounding problem (in

number of state equations) and requires discontinuity locking. Each major iteration

in the optimization routine requires an integration call because the lower bound is

parameter dependent. However, for problems only requiring the objective function at

143

fixed time points (i.e., the objective function does not contain an integral), the affine

structure of c and C may be exploited to reduce the number of required integrations.

In order to compute the lower bound at a fixed time t, I must be able to compute

X(t), c(t, p), and C(t, p). By definition, the state bounds are parameter independent;

therefore, they need not be recomputed for each major iteration of the optimizer.

Furthermore, because c and C are both affine, they have the following structure (see

Chapter 3):

c(t, p) = Mc(t)p + n(t)

C(t, p) = Mc(t)p + nc(t).

Thus, by integrating once and subsequently storing the state bounds, MC(t), Mc(t),

n(t), and nc(t), c(t,p) and C(t,p) can be computed via linear algebra instead

of numerical integration on future major iterations of the optimizer at a particular

node. The computation of M(t) and Mc(t) is effectively free, for they are simply

the parametric sensitivities, which are already computed for the calculation of the

gradient of the lower bound. The values n.(t) and nc(t) can be computed either

by augmenting the original system with an additional set of differential equations or

via linear algebra. The error in c(t, p) and C(t, p) introduced by the linear algebra

calculation is negligible if the problem is scaled such that pv - pL is order one or less

for i = 1,...,rnp.

An interesting aspect of exploiting the affine nature of the relaxations for solving

the lower bounding problem is that this technique also enables one to compute an

upper bound for the problem without performing any integration. From Theorem

6.12, once c(t, p) and C(t, p) have been computed, the only additional information

required for constructing a concave overestimator for a state composition is determin-

ing zr. A rigorous upper bound could then be computed by maximizing the concave

overestimator for the objective function, and I note simply that the upper bound con-

verges to the objective function value in an analogous manner to the convergence of

the lower bound to the objective function. Furthermore, because the state relaxations

144

are affine, depending on the structure of the objective function, Problem 6.1 may be

completely reducible to solving a sequence of converging upper and lower bounding

linear programs requiring only one integration per branch-and-bound node. However,

because solving the original problem locally is relatively inexpensive computationally,

periodically solving the original problem locally provides a better incumbent by which

to fathom in the branch-and-bound algorithm hence accelerating the convergence of

the algorithm.

7.4 Residual Evaluation

The residual evaluation is the most important implementation aspect of solving Prob-

lem 6.1, for the residual evaluation defines the construction of the upper bound, the

state bounds, and the lower bound to the problem. Because the upper bound is ob-

tained as a local optimization, the residual for the upper bound is trivially defined by

the integrand (remembering that the integral has been reformulated as a quadrature

variable) and the RHS of the embedded nonlinear differential equations. The con-

struction of the residual for the lower bounding problem, however, is a much more

difficult task, for differential equations must be derived defining xL, xU , c, C, and

Zlbp as discussed theoretically in the previous chapter. One method for constructing

the lower bounding differential equations is to derive analytically the necessary in-

formation and code the residual routine manually. However, the application of the

theory discussed in Chapter 6 is both tedious and error-prone for all but the simplest

problems thus making manual derivation of the lower bounding problem infeasible.

Fortunately, the theory lends itself naturally to automation.

Two different approaches are viable for automating the theory required for relaxing

Problem 6.1: operator overloading and code generation. In the operator overloading

approach, the implementer defines class objects for which the standard operators

of arithmetic and assignment are overloaded via special language facilities in order

to perform various mathematical operations. The compiler is then responsible for

applying the appropriate operations based on the runtime type identification (RTTI)

145

of the objects (class instantiations) participating in the equations. The following

example illustrates C++ operator overloading for interval addition.

Example 7.4. Let the following be the definition of a very simple class for interval

arithmetic:

class Interval{

public:

inline Interval(double, double);

inline Interval(Interval&);

Interval& operator+(Interval&);

double zL, zU;

};

Assume that suitable constructors Interval(double, double) and

Interval(Interval&) have been implemented. operator+ is given by

Interval& Interval::operator+(Interval &rhs) {

xL = xL + rhs.xL;

xU = xU + rhs.xU;

return *this;

}

By overloading operator+ for the Interval class, the compiler interprets the symbol

"+" to behave like interval addition when it identifies both operands of "+" to be

Interval objects at runtime. The following program creates three Intervals x, y, and z

and assigns z the result of the overloaded addition of Intervals x and y. At program

completion, z.xL = 1.0 and z.xU = 11.0.

int main(int argc, char **argv){

Interval x(-1.0, 4.0);

Interval y(2.0, 7.0);

Interval z = x + y;

return 0;

146

------- �111�--1. -- ·

}

Of course, all of the arithmetic operators could be overloaded to create a more com-

plete Interval class.

For simple classes where arithmetic operations make intuitive sense, like the Inter-

val class defined above, operator overloading is an invaluable tool for data abstraction.

Unfortunately, the C++ language permits terrible abuses of operator overloading.

Essentially, any operator may be overloaded to do whatever the programmer wishes,

provided the overloaded operator matches the function prototype allowed by the lan-

guage. For extremely complex operations that one would not naturally associate with

a single given operator, operator overloading can lead to extremely obfuscated code

maintainable by the original author at best. Furthermore, while operator overloading

permits a high degree of data abstraction, this abstraction does not come without

a price. First, for a small operation count, the RTTI overhead is unnoticeable. For

millions upon millions of operations, as is required to solve Problem 6.1, the RTTI

overhead can become appreciable. Second, each overloaded operation requires a func-

tion call rather than a primitive machine instruction. Third, the overhead of using a

language implementing operator overloading is more expensive than simply writing

the lower bounding equations in a simple language such as Fortran. Finally, symbolic

manipulation of equations is extremely difficult, if not impossible, with an operator

overloaded approach; therefore, discontinuity locking cannot be performed. For these

reasons, a code generation technique was chosen for GDOC.

7.4.1 A Domain Specific, Declarative Minilanguage

One of the main differences between an operator overloaded approach and a code

generation approach is the method of input. In an operator overloaded approach,

the user writes the model in the compiled language that implements the overload-

ing. In a code generation approach, the user writes the input in a customized input

language, usually in an input file. The file is then scanned and parsed into internal

data structures, symbolic manipulation is performed on the data structures, and the

147

output is written in a compiled language. The input to GDOC is a small input file

in a customized input language, and the output of GDOC is the upper and lower

bounding problems written in Fortran 77.

My intent in this subsection is not to explain compiler theory or computer lan-

guage grammar; the interested reader is referred to [6] for an introduction to these

topics. Instead, this subsection focuses on the particulars of the language, and briefly,

the method utilized to scan and parse the input file. The input file is divided into five

required input sections and three optional input sections. The required inputs are

declaration, parameter values, equation, reference, and initial. In the declaration sec-

tion, the state variables, the parameter variables, constant variables, and integration

time are all defined. In the parameter values section, the bounds on the parameters

are set, and an initial guess for the root node is given. In the equation section, the dy-

namics of the problem are defined by semicolon terminated equations. The reference

section defines the reference trajectory for the problem in terms of the state variable

and parameter bounds. Finally, the initial section defines the initial conditions for

the state variables. The three optional sections are constant values, natural bounds,

and integrand. The constant values section simply defines any numerical constants

declared for the problem. The natural bounds section defines the set X as defined in

Chapter 6. The integrand section defines an integrand for problems with integral ob-

jective functions. Example 7.5 below illustrates the input language; the input file in

the example is the actual input file utilized for solving the problem defined in Section

8.3.

Example 7.5.

Input file for catalytic cracking problem

The '#' symbol represents comments

This section declares the state and its size, the parameter and its,

size, and the integration time.

DECLARATION

state: x(1:2)

148

parameter: p(1:3)

time: [0,0.95]

END

This section defines the parameter ranges and an initial guess for

the root node.

PARAMETER VALUES

p(1)=0: [0,20]

p(2)=4: [0,20]

p(3)=7: [0,20]

END

This section defines the dynamic system. The '$' symbol represents

the time derivative.

EQUATION

$x(1)=-(p(i)+p(3))*x(1) 2;

$x(2)=p(1)*x(1)^2-p(2)*x(2);

END

This section defines the reference trajectory.

REFERENCE

xRef (1)=(xL(1) +xU(1))*0. 5;

xRef(2)=(xL(2)+xU(2)) *0.5;

pRef(1)=(pL(1)+pU(1))*0.5;

pRef(2)=(pL(2)+pU(2))*0.5;

pRef(3)=(pL(3)+pU(3))*0.5;

END

This section defines the initial condition for the state.

INITIAL

149

x(1)=1;

x(2)=0;

END

This problem does not contain an integral objective function. If the

objective function were an integral, the objective function would

be defined here.

#INTEGRAND

integrand here

#END

This section defines the natural bounds. This section does not require

nx equations. If only one bound is known, the symbol '--' may be used.

For example, x(1):[--,1] is a valid input.

NATURAL BOUNDS

x(l): [0,1]

x(2): [0,1]

END

The input language also permits the declaration of symbolic constants and a corre-

sponding section defining numerical values for these constants.

Rather than write a custom lexical analyzer and parser, the programs lex and yacc

[63] (or rather their open source counterparts flex and bison) were utilized for this

task. Lex is a scanner generator built on the concepts of regular expressions. The

function of the scanner is to read the input file and generate tokens that the parser

can utilize and recognize as a language grammar. Yacc is an LALR (look ahead

left right) parser generator utilized for parsing a context free grammar (see [6]). A

yacc generated parser accepts a tokenized input from lex, recognizes the grammar

of the input language, and executes semantic routines to convert the input file into

usable internal data structures. The yacc grammar is included in Appendix B. The

GDOC compiler stores equations as parse trees; the symbolic operations necessary

150

I__

to implement the relaxation theory from Chapter 6 are all performed on these parse

trees and are explained in the following subsection.

7.4.2 Parse Trees and Symbolic Manipulation

Although parse trees can be implemented for many different kinds of language state-

ments, GDOC utilizes parse trees exclusively to store and symbolically manipulate

equations. In this context, a parse tree for an equation is a binary tree representa-

tion that stores each token of an equation at a distinct node. The following example

demonstrates the construction of a parse tree from a differential equation.

Example 7.6. Consider the following equation:

± = (p + xi) exp(xlx 2). (7.1)

The parse tree for this equation is illustrated in Figure 7-1. The # symbol represents

the presence of a unary function, in this case, the exponential function.

Figure 7-1: Parse tree for Equation 7.1

x ~ *

+ #

Pi xl exp *

X1 X2

In general, mathematical operations on parse trees are performed by recursively

walking the binary tree and performing various operations at each node. Three differ-

ent methods for walking a binary tree are implemented in GDOC: preorder traversal,

inorder traversal, and postorder traversal. In a preorder traversal, an operation is

performed at a node before walking either branch of the tree. In an inorder traversal,

151

an operation is performed at a node after walking the left branch of the tree but

before walking the right branch of the tree. In a postorder traversal, the operation

at a node is performed after walking both directions of the tree. The following code

example illustrates these three methods for walking a binary tree.

Example 7.7. Consider the following binary tree class, where left = right = NULL

for leaf nodes:

class BinaryTree{

public:

inline BinaryTree(BinaryTree *left, BinaryTree *right);

void do_somethingatnode();

BinaryTree *left;

BinaryTree *right;

};

The following function implements a preorder tree traversal:

void preordertraversal(BinaryTree *node)

if(node != NULL){

node->dosomethingatnode();

node->preordertraversal(node->left);

node->preordertraversal(node->right);

}

return;

The following function implements an inorder tree traversal:

void preordertraversal(BinaryTree *node){

if(node != NULL){

node->preorder_traversal(node->left);

node->dosomethingatnode();

node->preorder_traversal(node->right);

152

}

return;

}

The following function implements a postorder tree traversal:

void preorder_traversal(BinaryTree *node){

if(node != NULL){

node->preordertraversal(node->left);

node->preorder_traversal(node->right);

node->do_something_at_node();

}

return;

Of course, operating on a binary tree may not be quite as simple as stated above,

for the dosomething_atnode() member function may alter the state of the tree,

or the tree walk itself may not be merely a void function. The following subsections

illustrate how parse trees are utilized to construct convex relaxations for Problem 6.1.

7.4.3 An Inheritance Hierarchy

The actual design of parse trees in GDOC is polymorphic in nature. Essentially, the

base class for the parse tree implements the binary tree structure and the ability

to walk the tree. The nodes themselves represent derived classes from the Bina-

ryTree class. For example, Variables, Numbers, Operators, and Functions all rep-

resent different derived classes from the BinaryTree class. A further level of spe-

cialization yields Addition, Subtraction, Multiplication, etc. as derived classes of

Operators; the complete implementation has several levels of derived classes. In

this manner, the required mathematical operations on the binary trees (i.e., the func-

tion dosomething_at_node ()) can be implemented polymorphically through C++'s

virtual function mechanism. This design promotes data abstraction and code trans-

parency. The algorithms necessary for constructing convex relaxations for Problem

153

6.1 are implemented at the parse tree level, while the details of the implementation for

each derived class are delegated to the derived class member functions. The following

subsections explain the basic concepts underlying the implementation of the theory

presented in Chapter 6; the actual implementation is substantially more sophisticated

than the below presentation.

7.4.4 An Implementation of State Bounds

In GDOC, the state bounds are computed via Corollary 6.6. As stated in the dis-

cussion following Corollary 6.6, the parametric optimization problems defining the

state bounding differential equations are overestimated utilizing interval arithmetic.

Because interval arithmetic requires both upper and lower bounds simultaneously,

the state bounding function computes both in parallel. The parse tree is walked in

a postorder traversal, and at each node, dosomethingatnode() is responsible for

creating both the upper and lower bound for the current node. In any valid equation

parse tree, the leaf nodes are either numbers, parameters, or state variables. For a

number, both its upper and lower bounds are simply copies of the number. Given a

parameter p, its bounds are simply given by new parameters pL and pU. Computing

state bounds for variables is slightly more complex. First, from Corollary 6.6, in the

ith equation, the zi = ax constraint is active for the lower bounding differential equa-

tion, and the zi = xv constraint is active for the upper bounding differential equation.

Therefore, the variable xi is treated as a constant rather than an interval. For the

remaining state variables xj (j i), the lower bound is given by max{x, }, and

the upper bound is given by min{xV, y}. The set X from which and 2V are

derived is defined by the user in the input file. Each interior node of the parse tree is

either a unary function or a binary operation. For a unary function, the lower bound

is found by applying interval rules for the function. For example, the function exp(p)

is represented by the following parse tree:

exp p

154

Because the bounds are generated by a postorder traversal, when operating on the

node containing #, the left and right child nodes have already been bounded (obvi-

ously, no operation is necessary at the left node). Because exp is a monotone function,

the bounds generated at # are

N} = exp(RL) = exp(pL) and N = exp(R') = exp(pU)

where R# represents the pointer to the right child node of node N# (analogously, I use

L# to represent the pointer to the left child node of node N#). For binary operations,

the rules for interval arithmetic are applied. For example, given the following parse

tree:

/A
22 P

the bounds for N_ are given by the standard rules of interval subtraction:

NL = LL _ R = X2 -pU and N = RU - LL = U _ pL

In this manner, Corollary 6.6 is satisfied recursively, and the residuals of the state

bounding differential equations are symbolically generated.

7.4.5 Convex and Concave Relaxations of the RHS

The first step in applying Theorem 6.16 to derive differential equations defining c

and C is to derive convex and concave relaxations for f on the set X(t) x P pointwise

in time. The set P is available directly from the branch-and-bound routine, and the

set X(t) is obtained from solving the differential equations defining the state bounds.

Theorem 6.12 is applied recursively in order to derive convex and concave relaxations

for each fi (i = 1,.. ., ni). In general, applying Theorem 6.12 first requires recursively

factoring fi into sums and products of nested univariate compositions. By inspec-

tion, however, a parse tree representation of a function is a recursive factorization of

the function. Each leaf node represents the innermost composition variables of the

155

factorization. Each parent node is then itself a univariate composition, the sum of

composition variables, or the product of composition variables (or can trivially be

reformulated as such). These univariate compositions, sums, or products are then in

turn interpreted as composition variables, and the procedure recursively repeats until

reaching the root node of the parse tree. Given that a parse tree representation is

equivalent to a factorization of the equation, Equation 7 in [65] can be applied to the

parse tree in a postorder traversal analogously to applying Corollary 6.6 as discussed

above for deriving the residuals of the state bounding differential equations. I note

only that at the leaf nodes, c(x) = C(x) = x for state variables and c(p) = C(p) = p

for parameters.

One of the more complicated aspects of applying Equation 7 in [65] is that the

functional form of the bilinear relaxation depends on the sign of the bounds. Unlike in

the operator overloaded approach, relaxations are computed symbolically at compile

time rather than numerically at runtime. However, the sign of the bounds is unknown

until runtime. Therefore, special conditional variables must be utilized in this context.

Furthermore, because the sign of the bounds may change as a function of time, these

conditional variables must be discontinuity locked.

7.4.6 RHS Linearizations

In order to apply Theorem 6.16, linearizations of the convex and concave relaxation

parse trees must be generated at a given reference trajectory. Generating lineariza-

tions can be broken into two tasks. The first task is computing the partial derivative

of a parse tree, and the second task is the operation of substituting the reference

trajectory. Variable substitution is trivially performed via any walk of the parse

tree where do_somethingat_node () is a polymorphic, comparison member function.

Therefore, numerically implementing linearizations effectively reduces to symbolically

computing the partial derivatives of a parse tree.

Taking the partial derivative of a parse tree is simply an application of the chain

rule applied to a binary tree walked via a postorder traversal. Suppose I am taking

the partial derivative of the function u(x, p) with respect to variable zi. As previously

156

stated, the leaf nodes are either numbers, parameters, or state variables. In taking

derivatives, no distinction is made between state variables and parameters, and I

consider both to be variables in this context. When the leaf node is a number, the

partial derivative is zero. For a variable, the following formula is applied:

axj 11 if j=i

xi l otherwise

For the interior nodes of the parse tree, the chain rule is applied. For example,

suppose the interior node of parse tree were multiplication. Then, for N,, the partial

derivative with respect to variable xi would be given by

AN, AL, OR,N = L'*' + L, a
19xi axi dzix

Because the derivative operation is performed recursively via a postorder tree traver-

sal, both aL,/xi and R,/(9xi are already available when taking the partial deriva-

tive of N,. The following example examines taking the derivative of a relatively simple

function.

Example 7.8. Consider the function

f(x,p) = (p + x) exp(Xlx2)

with parse tree given in Figure 7-1. The above methodology is applied to taking

the partial derivative of f with respect to xl. The resulting parse tree of the partial

derivative is found in Figure 7-2. Of course, in the actual implementation, terms

such as 1 * x2 and xl * 0 are reduced to x2 and 0 respectively. These reductions are

performed recursively such that after the derivative operation, the resulting parse tree

does not contain any redundant mathematical operations

Due to the inherent nonsmoothness of McCormick's relaxations, many of the func-

tions for which the derivative is required are nonsmooth. For nonsmooth functions,

157

Figure 7-2: Partial derivative of f with respect to xl for the parse tree in Figure 7-1

f.l+

* e

+ *

P x1 + #

* * exp *

1 2 X1 0 1 2X2

A
0 1 exp *

X1 X2

the derivative is divided into cases. For example, the partial derivative of the term

f(x) = max{u(x), v(x)} with respect to xl is given by

af(x) au(x)/axl if u(x) > v(x)

v(x)/x 1l otherwise

These discontinuous derivative terms are discontinuity locked.

7.4.7 Constructing c and C

Once methods have been established both for generating relaxations and for taking

partial derivatives of these relaxations, applying Theorem 6.16 is a relatively triv-

ial task. First, convex and concave relaxations for the RHS of each function fi are

generated. Given the user defined reference trajectory, a new parse tree is generated

by applying Equation 6.7 to generate the RHS for the equations defining c and C.

Because the parametric optimization problems defining the RHS of these differen-

tial equations are linear programs, the infimum and supremum are replaced by the

solution of the linear programs as is illustrated in the proof of Theorem 6.16. This

completes the construction of differential equations defining c and C.

158

7.4.8 Reducing the Number of Discontinuities

In order to compute the residual evaluation in the most efficient possible manner, the

number of discontinuities in the system should be reduced to a minimum. Discontinu-

ities arise due to two separate phenomena: generating convex and concave relaxations

and taking derivatives of nonsmooth functions. Very frequently, discontinuities are

generated that have identical logical conditions but different execution clauses. In

particular, this situation arises because by Equation 6.7, the derivative of the same

nonsmooth relaxation is taken several times with respect to different variables. Each

time the derivative of a max, min, or mid function is taken, the logical conditions

are duplicated. Rather than repeatedly evaluating and locking identical logical ex-

pressions, the execution clauses of discontinuities with identical logical expressions

are symbolically combined before the residual code is generated. Additionally, any

completely redundant discontinuity variables are eliminated at this time.

7.4.9 The Mechanism of Locking the Model

In order to implement discontinuity locking, two different approaches exist. In the

first approach, only one residual evaluation routine exists, and this routine is re-

sponsible for returning both locked and unlocked model evaluations. In the second

implementation, separate subroutines are provided for locked and unlocked residual

evaluations. For the present implementation, I have chosen the latter approach. Al-

though this method duplicates source code, the runtime efficiency of the code is faster

because only the necessary information for a either a locked or unlocked model is com-

puted. As alluded to in the discussion of discontinuity locking in CVODES, locking

is implemented by an integer array, where each entry in the array represents one of

the modes of the discontinuity function. In the unlocked evaluation, the lock array is

an output, and the conditional statement evaluated is the original logical expression;

the result of selecting a logical branch is simply to set the appropriate mode in the

lock array. In a locked model evaluation, the locked array is an input containing

the locked integration mode; the conditional for evaluating which logical branch of

159

a discontinuity function is evaluated is based solely on the lock array. The following

example illustrates the locking of a discontinuity variable.

Example 7.9. Suppose discontinuity number seven is generated from the partial

derivative with respect to p of the following equation fragment:

u = max{xLp + pUx - XLpU, Up + pLx - xUpL}.

The following code excerpt would be from the unlocked model:

c discontinuity function 7 (unlocked model)

c locks code into appropriate clause

if(xL*pref+pU*xref-xL*pU .ge. xU*pref+pL*xref-xU*pL) then

lockArray(7) = 0

else

lockArray(7) = 1

end if

The corresponding code fragment in the locked model would be

c discontinuity function 7 (locked model)

c executes the appropriate clause to correctly evaluate the

c partial derivative

if(lockArray(7) .eq. 0)

tempVar(7) = xL

else

tempVar(7) = xU

end if

I note that utilizing an integer array for the locking as opposed to a logical array

is necessary in order to handle discontinuities with more than two logical branches.

This situation arises from taking the derivative of a mid function.

160

7.4.10 The Mechanism for Preventing Chattering

As previously discussed, detecting chattering is a task assigned to the discontinuity

handling component of the integrator. When the integrator detects chattering, the

model is arbitrarily locked into one of the modes causing the chattering. However,

once chattering is detected, the event should no longer be detected at successive

integration steps. Naively, one might simply ignore any events occurring on a dis-

continuity known to be chattering. However, this ignores the possibility that the

chattering might eventually cease and a real event might occur in the future for this

discontinuity function. Therefore, in the unlocked model, a quantity an order of

magnitude larger than the integration tolerance is added to one side of the logical

condition when chattering is detected. Essentially, after chattering has been detected,

the unlocked model is tricked into reporting no event occurring because the two sides

of the logical argument will no longer be equal. However, if a real event occurs in the

future, the unlocked model still detects this fact, the event is located, and the chatter

locking mechanism is reset. In practice, one side of each conditional is augmented by

the addition of an element of a chatter locking array of double precision variables.

Under normal operating conditions, this chatter locking factor is set identically to

zero. If chattering is detected, this value is set to a value an order of magnitude

larger than the integration tolerance. The following example illustrates the chatter

locking mechanism for the same discontinuity variable described above in Example

7.9.

Example 7.10. Consider the discontinuity variable as defined above in Example 7.9.

The following code fragment for the unlocked model implements chatter locking.

c discontinuity variable 7 (unlocked model)

if(xL*pref+pU*xref-xL*pU .ge. xU*pref+pL*xref-xU*pL

& + chatterLock(7)) then

lockArray(7) = 0

else

lockArray(7) =

161

end if

As previously stated, under normal operation, chatterLock(7) is set identically to

O.OdO. After chattering has been detected, chatterLock(7) is set equal to 10*iTol.

7.4.11 Limitations of the Current Compiler and the Next

Generation

For simple to moderately difficult problems, the compiler described in this chapter

performs adequately for generating residual routines to relax Problem 6.1; for prob-

lems with symbolically complex differential equations, a limitation of the method

quickly emerges. Taking derivatives or deriving relaxations of individual equations

via parse trees generates reasonably efficient code. However, when these operations

must be repeated recursively several times on symbolically complex equations, the

complexity of the generated code grows exponentially because common subexpres-

sions are not exploited. Instead, identical subexpressions are repeated at each oc-

currence in a given binary tree, and identical subexpressions are repeated between

different equations. In some instances, applying Theorem 6.16 has generated over one

hundred lines of fully dense Fortran code for the relaxation of a single equation, and

for very small input files, hundreds of thousands of total lines of Fortran have been

generated! Clearly, an alternative technique is sought.

The explosion of operation count in utilizing binary parse trees to perform sym-

bolic mathematics is not unique to applying Theorem 6.16. Fortunately, the problem

has been largely addressed by algorithmic differentiation [44] and similar techniques

for automatically generating convex relaxations [40]. In these two techniques, sym-

bolic manipulations of the equations are performed via computational graphs. The

methods exploit common subexpressions and provide theoretical upper bounds for

the complexity of the generated code as a function of the complexity of the original

equations. A second generation compiler implementing algorithmic differentiation

techniques is currently in progress.

162

_··___

Chapter 8

Case Studies for Literature

Problems with Nonlinear

Dynamics

In this chapter, I apply the theory developed in Chapter 6 and the implementation

developed in Chapter 7 to solve global optimization problems with nonlinear dynamics

embedded that have appeared in the literature. Unless otherwise noted, no branch-

and-bound heuristics are utilized to accelerate convergence. For point constrained

problems, the linear structure of the convex relaxation is always exploited, and the

lower bounding integration is only performed for the first optimization function call

at a given node. The computations were all performed on an AMD Athlon XP2000+

operating at 1667 MHz, and all code was compiled with gcc 3.3.1.

One of the most challenging aspects of solving Problem 6.1 globally is the pres-

ence of nonquasimonotone differential equations in the embedded dynamics. As pre-

viously stated, applying standard techniques for generating state bounds ([45] and

[93]) to nonquasimonotone differential equations leads to bounds that rapidly ex-

plode on short time scales (e.g., Example 6.11). That is, on typical time scales of

interest, the state bounds generated by standard techniques exponentially approach

infinity. Because generating convex relaxations for Problem 6.1 requires bounds on

the states, state bounds approaching infinity lead to convex relaxations approaching

163

negative infinity. Although one can prove that even these exploding state bounds for

nonquasimonotone systems approach degeneracy as the bounds on P approach degen-

eracy, the numerical implementation for solving Problem 6.1 requires finite bounds

at all branch-and-bound nodes.

As has been thoroughly discussed in Chapter 6, given a natural bounding set X,

Corollary 6.6 is utilized to ensure that the state bounds do not explode. In Chapter

7, I discussed the implementation of Corollary 6.6 in GDOC. A brief explanation

of the application of Corollary 6.6 for the case studies in this chapter is provided

here to enable the reproducibility of the results in this chapter in an implementation

independent fashion.

In general, solving the parametric optimization problems defining the right hand

sides of the state bounding differential equations is prohibitively expensive. Instead,

the solution to the optimization problems is relaxed via interval extensions of the right

hand sides of the differential equations. For the lower [upper] bounding differential

equation i, the equality constraint zi = xL [zi = x V] is enforced. For all other state

variables j 0 i, natural interval arithmetic is applied, where the bounds for variable

j are given pointwise in time by

Xj(t) n Xj(t) = [max{(t), 4(t)}, min{n((t), (t)}] V t E (to, tf].

Additionally, the derivative of the state bound is set to zero when the state bound

exceeds its natural bound. Therefore, by construction, X C X. The set X is defined

for each of the case studies for which this technique is utilized. Finally, the notation

x* represents the reference trajectory for variable x; the reference trajectories for both

states and parameters are given for each problem.

8.1 First-Order Irreversible Series Reaction

The first example is a simple parameter estimation problem first proposed by Tjoa

and Biegler [86]. As with all parameter estimation problems, the objective is to

164

__

minimize the error between "experimental" data and the prediction of the model.

For this problem, the kinetics are given by

A B k2-C,

and the data were taken from [35]. The problem is mathematically formulated below.

10 2

min E(_i _ Xi)2

subject to

=k -kl
dt

d(O) = (1,0)

k [0, 10]2

(k*, x*(t)) = (kL, xL(t)) V t E (t, tf].

GDOC was used to solve this problem to a global minimum within an absolute

branch-and-bound tolerance of 10-4 . GDOC terminated in 0.036 CPU seconds with

an objective function value of 1.22x10-6 at the point (5.0, 1.0), but the absolute

value of the objective function at termination should be viewed with some skepticism

considering the tolerance of the branch-and-bound code. Because the data in [35]

differs from the exact prediction of the model only by roundoff error, the global

minimum to this problem is effectively zero (within the propagation of the roundoff

error) since the model exactly fits the data. Furthermore, although the problem is

nonconvex, the objective function possesses only one local minimum. By construction,

our algorithm guarantees that the convex relaxation for this problem is nonnegative.

As expected, utilizing a local solution for the upper bound, the problem trivially

solved at the root node. A picture of the objective function and its convex relaxation

are found in Figure 8-1.

165

Figure 8-1: Objective function and convex relaxation for the problem in Section 8.1

9

-o
e-©o

0

U

8.2 First-Order Reversible Series Reaction

The second example problem presented, also attributed to Tjoa and Biegler [87],

extends the first example by allowing reversibility of the kinetic equation:

A B C.
k2 k4

The data for this problem were also obtained from [35]. Aside from simply possessing

more degrees of freedom, solving the problem with reversible kinetics is slightly more

difficult than solving the problem with irreversible kinetics because the dynamics are

nonquasimonotone. However, this difficulty is overcome by utilizing Corollary 6.6 to

generate state bounds. The problem is mathematically stated as

20 3

mmin (,i- Pi)

/=1 i=l

subject to

x = -kll + k2l2

166

x2 = kl:l -(k2 + k3)&2 + k43

x3 = k3x2 - k4&3

x(0) = (1,0, O)

X= [, 1]3

k E [0, 10]2 x [10, 50]2

(k*, x*()) = (kL, XL(t)) V t E (t0,tf].

For this problem, the state bounds are given by the following system of differen-

tial equations. Note that the hats have been dropped from the state variables for

notational convenience and that the sets

= U:1 1 X [3, T]

and

K = [k, k] x [kL, kjU] x [k L, k3U] x [k4L, k4U]

are utilized for clarity instead of the numerical values given in the problem statement.

= min{k2 max(x{, , k min{xz,x, kumaxf{, 2}, min{x, 2 }}-

max{kfXf, k Lx}k, z,1

el = min{kfmax{xf,f}, kfmin{x[',W}, k~umax{xf, f}, k min{x[, }}-

maxf{kLX, k2UI} - max{k3LX, k3i X } +

min{k4L max{z ,X , }, k4 min{xu,3, }, k4 max{zL, L}, k4 min{x3, 3 }}

x = min{ k max{4,, kxLmin{xU,, kmax{, x l}, k min{xk, },2 }

max{k4 x, k 4 3}

i = max{x,max2}, }, k min{x,Y'}, kmax{4,2} k min{xz, x }} -

167

min{kLxU, kufxu}

u = max{kl max{xf,]}, kf min{x, }, ku max{xL, f}, k' min{x, }}

-min{kx'u, kUU} - min{kkru, k'x }

+ max {4 mla ,, ,, k4Lminx, -U, kUmax(xL }, , k4Umin{s, 2}}

u = max{k max({x',}, kmaxinx,, , kmin(x,)}-

min{k LXU, kUXU}

As with the previous problem, using a branch-and-bound tolerance of 10-4 , this

problem also solved at the root node because the literature data for this problem also

contains no error. GDOC terminated in 0.044 CPU s with an objective function

value of 7.69 x 10-5 at the point (4.00, 2.00, 40.0, 20.0).

8.3 Catalytic Cracking of Gas Oil

The following problem is another parameter estimation problem attributed to Tjoa

and Biegler [86]. The problem is stated as

20 2

min .t (l ,i-si)
p=1 i=l

subject to

X1 = -(kl

X2 = kl -k 2 B2

k(0) = (1, O)

X= [, 1]2

k E [0, 20]2

(k*, x*) = (kmid, Xmid(t)) v t e (to, tf]

168

Unlike the previous two problems, the fitted data for this problem at the global

minimum do not exactly fit the "experimental" data. Because the objective function

value at termination for this problem is close to zero, I believe that solving the problem

to an absolute error tolerance is the most sensible approach. Table 8.1 presents the

results for solving this problem.

Table 8.1: Results for catalytic cracking of gas oil problem.

objective function
2.66 x 10- 3

2.66 x 10- 3

2.66 x 10-3
2.66 x 10- 3

location
(12.2, 7.98, 2.22)
(12.2, 7.98, 2.22)
(12.2, 7.98, 2.22)
(12.2, 7.98, 2.22)

CPU s
0.18
5.78

12.23
19.40

nodes absolute tolerance
1 10 - 2

83 10- 3

189 10 - 4

295 10- 5

8.4 Singular Control

The next problem I examine is the singular control problem originally formulated in

[58]. The problem is given by

min x2 + + 0.0005(2 + 16t - 8 -0.1 3u 2)2 dt

subject to

Xl = X2

-2 = - 3U+16t-8

Xz =

xo = (0,-1, -)

t E (0, 1] -4 < u(t) < 10

(p*,x*(t)) = (pU, xU(t)) V t E (to,tf1,

where the variable p in the reference trajectory derives from a piecewise constant con-

trol parameterization. Because this problem does not derive from a physical system,

169

no natural bounding set exists. Studying the singular control problem enables me to

examine a very important tradeoff in implementing a solution strategy for problems

with integral objective functions. The theoretical presentation of the algorithm has

emphasized relaxing Problem 6.1 utilizing Corollary 3.7 to relax the integral directly.

As previously stated, in applying Corollary 3.7, the relaxation for the integrand must

be constructed for each fixed t E (to, t fl. Under this requirement, the affine nature of

the relaxations c(t, p) and C(t, p) cannot be exploited, and an integration must be

performed for each major iteration of the optimizer. Trivially, however, the singular

control problem can be reformulated as

min Z(tf)
u(t)

subject to

X = X2

2 = -x231u+16t-8

i3 = U

= x 2 + 0.0005(2 + 16t -8- 00.13u2 2

z(O) = 0

xo = (0,-1,-v)

t E (0, 1] -4 < u(t) < 10

(p*,x*(t)) = (pU, U(t)) t (to, tfI

where the integrand has simply been replaced by a quadrature variable; this trans-

formation is quite common in the literature. Now, the affine nature of the state

relaxations can be exploited, for I only need relaxations at a fixed time. The problem

was solved by GDOC in both the original formulation and the quadrature variable

reformulation; the results are presented in Table 8.2 and Table 8.3 below. For each

formulation, the problem was solved to an absolute tolerance of 10-3 with piecewise

constant control profiles on equally spaced meshes with a varying number of time

170:~~~~~~~~~~~~~~~~~~~~~~..

intervals. Additionally, each problem was solved with and without post-processing,

Lagrangian reduce heuristics [78].

Table 8.2: Results for singular

No. time intervals obj. fcn.
1 0.497

1 0.497

2 0.277
2 0.277
3 0.146 (8.

3 0.146 (8.

control problem in original formulation.

location CPU s nodes heuristics
(4.07) 2.0 21 no
(4.07) 1.8 15 yes

(5.57, -4.00) 26.5 89 no
(5.57, -4.00) 22.5 47 yes
05, -1.85, 6.09) 814.3 1225 no
05, -1.85, 6.09) 540.3 489 yes

Table 8.3: Results for singular control problem in quadrature variable reformulation.

No. time intervals obj. fcn.
1 0.497

1 0.497

2 0.277
2 0.277
3 0.146
3 0.146

location
(4.07)
(4.07)

(5.57, -4.00)
(5.57, -4.00)

(8.05, -1.85, 6.09)
(8.05, -1.85, 6.09)

As expected, the number of nodes required to solve the integral formulation is

less than the number of nodes required to solve the quadrature formulation. This

is a common feature for problems with nonlinear dynamics, particularly in cases

where the integrand is highly nonlinear, for adding additional nonlinearity in the

dynamics decreases the tightness of the state bounds and the tightness of the state

relaxations. For the problem considered, the CPU time required for solution is also

less for the integral formulation than for the quadrature formulation. However, one

quickly notes that the cost per node for the quadrature formulation is smaller than

the cost per node for the integral formulation; furthermore, the relative cost per node

for the quadrature formulation decreases with the increasing number of parameters

because the cost of the integration increases slightly with an increasing number of

parameters. Thus, this tradeoff must be considered individually for each problem. In

171

CPU s
5.2
3.4
55.1
28.8

1929.0
816.3

nodes
33
15

193
49

3931
789

heuristics
no
yes
no
yes
no
yes

general though, I expect that an integral formulation will almost always outperform

a quadrature reformulation, especially for small problems or problems with highly

nonlinear integrands.

8.5 Oil Shale Pyrolysis

The next problem examined is a fixed final time formulation of the Oil Shale Pyrolysis

problem originally posed in [58]. The problem is stated below.

min-X2(tf)
u(t)

1 = -(klxl + k3 XlX2 + k4 Ix2 + k5sxI 2)

2 = klxl - k2 2 + k3sXx2

ki aexp [-b/R] i 1 ...

x(to) = (1, 0)

X = [0,1]2

t E (0,1] 0 < u(t) < 1

(p x*(t)) = (pU, xU(t)) V t E (to, tf]

where the variable p in the reference trajectory derives from a piecewise constant

control parameterization, and the values for ai and bi/R are defined in [35]. This

problem was solved within an absolute error of 10- 3 for a piecewise constant control

profile. The problem was solved with both one and two equally spaced time intervals.

The results are found in Table 8.4 below.

From the relative change in the objective function between using a one stage and

two stage constant profile, I conclude that increasing the number of control stages

beyond two is unnecessary. Furthermore, this problem clearly demonstrates the worst

case exponential complexity of the branch-and-bound algorithm. This problem does

not converge rapidly because the state bounds tighten very slowly with the branching

172

_ __·__

Table 8.4: Results for oil shale pyrolysis problem.

No. time intervals objective function location CPU s nodes heuristics
1 -0.348 (0.231) 27.3 127 no
1 -0.348 (0.231) 26.2 115 yes
2 -0.351 (0.431, 0.00) 1720.7 5807 no
2 -0.351 (0.431, 0.00) 1597.3 4933 yes

in the parameter space. This in turn implies weaker

slower overall convergence.

state relaxations and hence

8.6 PFR Catalyst Blending

The final problem is a plug flow reactor catalyst blending problem. A plug flow

reactor is divided into two regions of equal length, and each region is loaded with a

different volume blend (ai, i = 1, 2) of two catalysts. The reactor configuration and

chemical kinetics [25] are shown in Figure 8-2.

Figure 8-2: Reactor configuration and kinetics for the PFR catalyst blending problem

PFR Kiiietics

R1 R3
A-- I - P

R2l RI

W1 W2

= 0 1 = 25 1 = 50

The objective of the optimization is to maximize the profit of operating the reactor

given a simple profit function that accounts for the sale of product P and the disposal

of wastes W1 and W2. The problem is mathematically stated as

max xp(50) - 0.1w 1 (50) - O.l1w2 (50)
Ctl, 2

173

. . .

subject to

5A = -[akl + (1 - a)k2 + CYak + (1 - a)k22]xA

±w1 = [k2 + (1 -)k22]XA

kI = [akl + (1 - a)k2]xA - [ak' + (1 - a)k2 + ak~4 + (1 - a)k42]x

tW2 = [k4 + (1 - a)k]x

tp = gk3 + (1 -)32]

XA(0) = 1000

XW, (0) = xw 2 (0) = XI(0) = (0) = 0

aa= 1 0<1<25

a2 25<1<50

where k) is the kinetic rate constant for catalyst i in reaction j and x represents

species concentration. The objective function is pictured in Figure 8-3.

Although the objective function appears nonsmooth from Figure 8-3, this illusion

is merely an effect of the scaling of the picture; the objective function is smooth.

Additionally, one observes from the figure that the problem has two local maxima,

and operating at the global maximum corresponds to roughly a 12.5% greater profit

margin than operating at the local maximum. GDOC was utilized to solve the

PFR catalyst blending problem to within 10- 3 relative branch-and-bound error. The

results found in Table 8.5 below are for a reference trajectory of x*(t) = xL(t) and

a* = L.

Table 8.5: Results for the PFR catalyst blending problem
objective function location CPU s nodes heuristics

823 (1, 0) 66.94 813 no
823 (1, 0) 29.44 191 yes

174

Figure 8-3: Objective function for the PFR catalyst blending problem

175

176

_I ___·I �___

Chapter 9

Chemical Engineering Case Study:

Direct Measurement of the Fast,

Reversible Reaction of

Cyclohexadienyl Radicals with

Oxygen in Nonpolar Solvents

In postulating a new kinetic mechanism, one must always validate the accuracy of

the hypothesis against experimental data. In general, the kinetic model is expressed

mathematically as a system of nonlinear, parameter dependent differential equations,

where the embedded parameters represent chemically significant quantities such as ki-

netic rate constants, pre-exponential factors, or activation energies. Validation of the

proposed mechanism is performed by estimating parameter values that yield model

predictions consistent with experimentally collected data. Although the methodology

is simplistic, the practicality is difficult, for determining the best parameter estimates

is a highly nontrivial task. Typically, quantum chemistry, thermodynamics, or some

other physical insight leads to estimates accurate within a few orders of magnitude.

From these order of magnitude estimates, many researchers employ a trial-and-error

177

simulation approach to validation in which the researcher refines his or her choice

of parameter values by repeatedly simulating the kinetic model and comparing these

predictions to experimental data. While this method may provide the researcher in-

sight into the physical behavior of the model, this technique provides absolutely no

mathematical method for quantifying the goodness of fit of the model to the data;

therefore, deterministic methods for estimating kinetic parameters are sought.

A vast improvement over trial-and-error methods for estimating kinetic parameter

values is to employ deterministic optimization techniques. Typically, the objective

of the optimization problem is to minimize the sum of squared errors (or a weighted

variant) between the model prediction and the experimental data at many predefined

points over the time horizon of the experiment. Historically, gradient descent opti-

mization methods have been employed, in conjunction with numerical integration, to

solve the optimization problem. Unfortunately, even trivial kinetic mechanisms yield

nonlinear differential equations, which subsequently imply a nonconvex optimization

problem. The dilemma associated with nonconvex optimization problems is that these

problems can possess multiple local minima (sometimes pathologically), and gradient

descent optimization methods cannot distinguish between local and global minima.

That is, because kinetic parameter estimation problems are nonconvex, at termination

of an optimization routine, the kinetic parameter values obtained may not represent

the best possible fit of the model to the data. While repeating the optimization from a

different initial guess may identify estimates with improved objective function value,

no theoretical result exists to assure the researcher that restarting the optimization

from another initial guess will not improve his or her solution even further. Hence,

the process repeats ad infinitum.

At this point, one might inquire why a local optimum to a problem is insufficient.

First, although a local solution might empirically fit the data reasonably well, because

other minima may exist, other researchers may experience difficulty in reproducing

the results, even utilizing the same experimental data. In particular, if a second

researcher obtains a better solution, one may question the conclusions drawn by the

original researchers. Second, because a local solution may not fit the experimental

178

· _ ____.__

data well at all, the researcher may abandon the model feeling that the experimental

data invalidates the mechanism. Quite possibly, however, the mechanism fits the

data quite well at the global solution. An example of this phenomena is exhibited

later in this paper. Finally, knowing that the optimum obtained may only be local,

a researcher may cling to an incorrect mechanism that truly has been invalidated by

comparison to experimental data because he or she believes that a better solution is

likely to exist. Essentially, by not guaranteeing a global solution to an optimization

problem, the conclusions that can be drawn simply remain subjective interpretations

of the mathematical results.

In this chapter, I examine the application of the theory developed in Chapter

6 and the implementation developed in Chapter 7 to a parameter estimation prob-

lem taken from a research problem of current interest to several colleagues at MIT.

Their research focuses on studying the liquid phase reaction of resonantly stabilized

cyclohexadienyl radicals with molecular oxygen to form two isomeric cyclohexadi-

enylperoxyl radicals; this reaction is important early in flame ignition. Because of its

importance, this reaction has been studied in both the liquid and the gas phase. In

the gas phase, the reaction is unusually slow for radical reactions with oxygen, while

in the liquid phase, the reaction is diffusion limited. In their research, Taylor et al.

[?] have experimentally measured the absorption bands of the cyclohexadienyl radical

at 316 nm to infer the rate constant for the reaction of interest. Their findings indi-

cate that the rate constant measured in the liquid phase is two orders of magnitude

greater than the rate constant in the gas phase as measured by other researchers.

Rather than propose distinct mechanisms for the liquid and gas phases, Taylor et al.

[?] have proposed an equilibrium mechanism consistent in both phases that explains

the discrepancy between the overall reaction rates in each phase. They have justified

their mechanism by estimating intermediate rate constants via quantum mechanical

calculations. The objective of their study is to validate the proposed mechanism ex-

perimentally. Parameter estimation from time series concentration data is utilized to

compute the rate constants of the intermediate reactions in the proposed mechanism.

These experimentally obtained values can then be compared to those obtained via

179

the quantum mechanical calculations. In this chapter, I mainly concentrate on the

mathematical aspects of their problem. The interested reader is referred to the pa-

per by Taylor et al. [?] for details concerning the chemistry of the reaction and the

experimental setup.

9.1 The Proposed Mechanism

Table 9.1 below describes the kinetic mechanism proposed by Taylor et al. Bounds

on the rate constants based on physical insight are given for each elementary step.

Reaction 1 and Reaction 5 are well-studied, and the values for their rate constants

are considered constant and are given by literature values.

Table 9.1: Proposed Kinetic Mechanism
No. Reactions k298 (M-l'As- 1 or s-1)
1 (CH3)3CO. + 1,4C6H8 - C6H7 .+(CH3)3COH 5.3 x 101
2f C6H7+0 2 - p-C 6H 700- [10', 1.2 x 103]
2, p-C 6 H7 00 - O2+C6H7 [10- 3, 2 x 10-1]
3f C6H7- + 02 - o-C6H 700. [101, 1.2 x 103]
3r o-C6H700-. * O2+C6H7' [10- 3,2 x 10- 1]

4 o-C 6H 7 00 C6 H6 + HO2 [10-3, 4 x 101]
5 2 C6H7- > products 1.2 x 103

In their experiments, the concentration of C6H7. was measured. The objective

of the optimization is to minimize the least square error between the experimentally

measured concentration and the concentration of C6H 7. as predicted by differential

equations describing the evolution of the concentrations of the species; the differential

equations are derived from the proposed mechanism given in Table 9.1. The following

substitutions are introduced for notational convenience:

C6H7' X A

(CH3)3CO. = Z

1,4C6H8 X Y

o-C6H700- < B

CsH6 < C

p-C6H70 0 D.

180

^1113111�11 __

Differential equations for the concentrations of the relevant species are given from

elementary kinetics:

XA = klxzxy - xo2 (k2f + k3f)XA + k2rXD + k3,XB - k5x (9.la)

xZ = -kxzxy (9.lb)

ky = -klxzxy (9.1c)

cXD = k2fxAxo2 - k2,XD (9.ld)

ZB = k3x02XA-- (k3, + k4)xB. (9.le)

In the experiment, the initial concentration of (CH3)3CO. is given by Xz,o, the

initial concentration of 1,4C6H8 is given by Xy,0, and all other initial concentrations

are taken as zero. Experimentally, the concentration of oxygen is in large excess;

therefore, this concentration is treated as a constant and is not modeled by a dif-

ferential equation. Rather than model the equilibrium reactions with independent

forward and reverse rate constants, k2, and k3s are eliminated from the mechanism

by employing equilibrium constants and the following equilibrium relations:

k2, = k2f /K 2

k3, = k3f K3

Although the values for the equilibrium constants are not known exactly, they are

treated as fixed, known parameters for the optimization problem. The base model

utilized in the optimization therefore contains five state variables and three degrees

of freedom.

To complete the model of the system, I must mathematically formulate the ob-

jective function. As previously stated, the objective function is to minimize the sum

of square errors between the measured concentration of C6H7. and the concentration

of C6H7. as predicted by the model. Experimentally, however, the absorbance of the

radical is measured, and the concentration must be inferred from the Beer-Lambert

Law. Moreover, a correction factor must be added to account for the absorbance at

181

the same wavelength for o-C6H700 and p-C6H 700.. The following equation relates

the concentration to the absorbance:

I = 2100XA + 200(XB + XD),

where I is the absorbance. Because absorbance is the measured quantity in this

experiment, the objective function is formulated in terms of absorbance to yield:

N

J(k) = -(IE,-_IM,i)2,

i=l

where E,i is the absorbance measured from the experiment at the time corresponding

to measurement i, IM,i is the absorbance as computed from the model at the time

corresponding to measurement i, and N is the number of measurements.

9.2 Scaling of the Model

In general, reaction kinetics parameter estimation problems are known to have severe

scaling issues and are frequently very difficult to solve even as local optimization

problems. In the current formulation, the optimization problem is not numerically

stable for several reasons. First, the magnitude of the parameters is very large relative

to the magnitude of the objective function. As a rough approximation, the objective

function has an optimum on the order of 5 x 10- 2 , while the first two parameters

are bounded above by the order of 103. Typically, problems on these scales tend

to be difficult to optimize because large changes in the parameters only effect small

changes in the objective function value. Second, the difference between the upper and

the lower bounds on the parameters is several orders of magnitude. The convergence

of the branch-and-bound algorithm depends upon shrinking the parameter space to

degeneracy (e.g., via bisection). Because the range of the parameters is logarithmic,

by not scaling, bisection converges disproportionately quickly for larger parameter

values. Finally, as discussed in Chapter 7, in order to exploit the affine structure of the

182

· ·_·

relaxations, the upper bound for the parameters should be around order one. If not,

numerical error from linear algebra calculations possibly causes numerical instability

in the evaluation of the convex relaxation. Therefore, the following exponential scaling

is introduced

ki = In(ki), i = 2f,3f,4. (9.2)

A natural logarithmic scaling factor, as opposed to a base 10 logarithmic scaling

factor, is selected simply because the current implementation of GDOC supports

relaxing functions of the form f(z) = exp(z) but not functions of the form f(z) = 10z.

The final formulation of the optimization problem is given by the following:

Problem 9.1.

N

min J(k') = [IE,i - 2100XA,i - 200(x,i + XD,i)]2
i=l

subject to

XA = klxzxy - [exp(kf) + exp(k3,f)]XAXo 2 + XD exp(kf,)/K 2 + XB exp(k3f)/K 3 - k5x2

kz = -klxzxy

,Cy = -klxzxy

XD = exp(k)Axo 2 - XDexp(k 2f)/K2

B = exp(k3f)Xo 2XA - [exp(k3f)/K 3 + exp(k4)]xB

xz(0) = Xz,o, y(O) = XyO, A(O) = XB(0) = XD(0) = , t E [0, tN]

2.303 = ln(k L) < k, < ln(k[U) = 7.090

2.303 = ln(k L) < ki3 < ln(k3) = 7.090

-6.908 = ln(kL) < k1 < ln(kU) = 3.689

K1 = 46 exp(6500/T -18), K3 = 2K2 , k1 = 53, k5 = 1200

where XZ,, Xy, 0, X0 2, tN, and IE,i (i = 1, .. , N) are all data set dependent, and T is

given in Kelvin. In this chapter, I consider three different data sets from experiments

conducted at three different temperatures. The experimental data for the problems

in the chapter are located in Appendix C.

183

The implementation of the scaling can be performed by several different tech-

niques; here, I consider two methods. In the first technique, the problem is imple-

mented exactly as it is presented above in Problem 9.1. In particular, this formulation

implies that the exponential term appears explicitly in the RHS dynamics. Because

the quality of the state relaxations depends indirectly on the quality of u and o,

the ODE RHS underestimators and overestimators, tighter RHS relaxations yield

tighter state relaxations. By introducing the exponential into the RHS of the ODEs,

I have weakened the relaxations involving bilinear and trilinear terms. Therefore,

a scaling method for which the optimization is performed in the scaled space but

the symbolic analysis of relaxing the dynamics in the unscaled space is preferred.

The second method of implementing the scaling accomplishes this task. For both

the branch-and-bound and the local optimizations of the problem, the parameters

are considered in the scaled space. However, at each function call in the local op-

timization, the parameter space is transformed by applying the inverse of Equation

9.2. That is, the current values of the parameters and their bounds are transformed

back to their original unscaled values, and the numerical integration is performed in

the original unscaled space. Therefore, the differential equations are relaxed in the

original space, and tighter relaxations for their RHS are obtained because exponential

terms no longer appear in the RHS of the ODEs. Of course, the objective function

value returned to the optimizer is not affected by this method of scaling. However,

the ith component of the gradient must be multiplied by exp(k'), i = 2f, 3f, 4.

9.3 The Accuracy of the Objective Function

For the cases studies considered previous to this chapter, the selection of the conver-

gence tolerance was rather arbitrary since the data did not derive from experimental

measurement. For the problems in this chapter, however, the precision to which the

objective function is known is limited by the precision of the experimental data. If the

data were assumed to be exact to machine precision, a multistart analysis indicates

the problems possess hundreds of local minima. This is clearly nonsense, for many

184

of the local minima first differ in objective value after the fourth or fifth decimal

place. Because the data are not this precise, these local minima cannot be considered

distinguishable. Data from another experiment performed under the same conditions

would likely yield different local minima. Therefore, an order of magnitude estimate

of the error propagated into the objective function by the experimental uncertainty

must be computed in order to determine the precision to which the objective function

is known. A tolerance based on this analysis will be utilized to distinguish distinct

local minima in a multistart analysis and will be utilized as the convergence criterion

for the global optimization routine.

Although the model itself contains uncertain parameters, I consider the model to

be exact relative to error propagation. Any error introduced due to the uncertainty

of the model parameters is interpreted as a flaw of the model and not as uncertainty

in the measurements. Additionally, because the model predictions are derived from

the numerical solution of an ODE, the predicted concentrations are subject to cal-

culational error. Because I can set the integration tolerance arbitrarily small (to

within machine precision), I assume that the experimental error dominates the com-

putational error in the calculation of the residual (the difference in the model and

experimental data). Therefore, I completely ignore the error introduced from the

numerical solution of the ODEs. The preceeding arguments justify considering the

following reduced equation to compute the propagation of the error into the objective

function:
N

J = 57(,,i - Mi),
i=l

where IE,i is subject to the experimental error :AI and IM,i is considered to be exact.

From statistics, the following equation yields an order of magnitude estimate of the

propagated uncertainty in J:

N 2AiNvrJ-AJ = 2AI ZIE,i- IM,i Vi NV

2(5 x 10-5)(103)5 x 10-2 7 x 10 - 4 .

185

Therefore, 10-3 is chosen as the absolute tolerance for the branch-and-bound algo-

rithm.

9.4 The Presence of Local Minima

Before solving the optimization problems, a multistart algorithm was applied to

demonstrate the existence of local minima for the problems. For each problem, a

local optimization was performed starting from one thousand random initial guesses.

The random initial guesses were derived from the following equation:

Pi = p + ri(p - pIL), i = 1,...,3

where ri is a random, nonnegative, double precision number uniformly distributed

over the interval [0.0,1.0]; ri was generated by the standard C library function drand48().

In order to consider a local minimum unique, its objective function had to differ in

value by more than 10- 3 from any other previously located local minimum. The

results are found below in Tables 9.2, 9.3, and 9.4.

Table 9.2: Multistart Results for Problem 9.1 for data at 273 K

J k. k, k4 frequency
0.1829 2.445 6.890 1.463 1
0.1786 2.352 6.835 3.592 2
0.1253 7.090 2.539 -6.313 2
0.0933 2.632 7.090 -6.706 8
0.0923 2.714 7.090 -5.766 4
0.0832 5.103 7.059 -6.561 2
0.0805 6.091 6.786 -6.441 113
0.0793 5.904 6.867 -5.024 11
0.0778 5.884 6.874 -4.410 2
0.0642 2.486 7.090 -1.845 4
0.0631 3.293 7.090 -1.848 14
0.0615 4.017 7.090 -1.872 3
0.0599 6.348 6.588 -1.207 421
0.0584 6.727 5.983 1.941 414
Total CPU time (s): 104.34

186

___·

Table 9.3: Multistart Results for

J k'f k31 k4 frequency

0.1311 5.872 6.569 -6.455 119
0.1300 5.867 6.571 -5.773 19
0.1290 5.858 6.576 -5.396 3
0.0422 3.269 6.931 -1.167 112
0.0406 4.887 6.798 -1.171 70
0.0391 6.282 6.018 1.934 678
Total CPU time (s): 75.35

Table 9.4: Multistart Results for Problem 9.1 for data at 323 K

J k'f k. k4 frequency
2.0386 6.029 6.746 -6.867 13
2.0371 6.016 6.735 -6.639 19
2.0358 6.024 6.732 -6.469 8
0.0598 6.254 6.554 1.963 374
0.0588 6.155 6.724 1.193 18
0.0573 5.852 6.955 0.679 569
Total CPU time (s): 95.38

From the multistart results, several important pieces of information concerning

Problem 9.1 are immediately evident. First and foremost, for each data set, distinct

local minima occur, and a global optimization method is certainly warranted. Second,

the optimization is reasonably insensitive to k. For example, in Table 9.3, for the

minima located near 0.13, the location of these three minima differ by no more than

0.02 in each of k and k. However, the location of these minima differ by more

than 1 in k4. Finally, because the objective value for several of the local minima with

parameter values very near each other differ by only slightly more than 10- 3 , these

minima are probably not actually distinct. This empirically validates the choice for

the branch-and-bound tolerance. The error estimate obtained in the previous section

was only an order of magnitude estimate and is probably a little smaller than the

actual experimental error propagated into the objective function. In selecting a toler-

ance slightly smaller than the true error, I am likely to identify spurious local minima;

however, I am unlikely to converge to a minimum that is not truly global. That is,

187

Problem 9.1 for data at 298 K

the tolerance is set tightly enough that I am confident that the minimum obtained

by GDOC is the global minimum within the precision of the objective function.

9.5 Global Optimization Results

GDOC was utilized to solve Problem 9.1 for the data sets generated at 273 K, 298 K,

and 323 K. The computer utilized was an AMD Athlon XP2000+ operating at 1667

MHz, and all code was compiled with gcc 3.3.1. As previously discussed, the abso-

lute branch-and-bound tolerance was set to 0.001 (no relative tolerance was applied).

Because the magnitude of the concentrations is quite small, 10-1 ° was utilized for the

absolute integration tolerance. The tolerance for NPSOL was set to 10-5 . The least

reduced axis rule was utilized to select the next branching variable, and branching

was performed by the incumbent rule. By the incumbent rule, the branching location

is selected as the location of the incumbent if the incumbent location is in the current

partition. If the incumbent location is not in the current partition, then bisection is

applied. This branching strategy was selected to balance the effects of branching on

a logarithmically scaled parameter space. Post-processing Lagrangian reduce heuris-

tics were utilized at each node to accelerate convergence. That is, the bounds were

updated by Tests 1 and 2 in [78], and the domain reduction step was repeated (up to

a maximum of 10 repeats) if the previous bounds reduction step improved any bound

by at least 10%.

Table 9.5 below contains the results for optimizing Problem 9.1 for the first scaling

method, Table 9.6 below contains the results for optimizing Problem 9.1 for the sec-

ond scaling method, and Table 9.7 below contains the results for optimizing Problem

9.1 without scaling. In each table, results are included for the experiment at all tem-

peratures. Of course, all of the scaling methods result in the same objective function

value. However, the location of this value varies slightly. As previously discussed,

this behavior is expected, for I have already established that many false local min-

ima occur below the absolute tolerance threshold. As expected, the second scaling

method substantially outperforms the first scaling method. This performance differ-

188

- - _·_

ence in the required number of nodes arises because the RHS relaxations, and hence

the state relaxations, are tighter for the second scaling method. The performance

difference in time per node arises because the relaxed differential system without the

exponential term is easier to integrate. For this example, the unscaled system outper-

forms the second scaling method at all three temperatures. The differential systems

for both of these methods are identical, and the performance difference is attributed

to taking different paths through the branch-and-bound tree derived from branching

on different sets. As previously stated, however, whether or not scaling improves the

numerical results is very problem dependent. Because not scaling possibly introduces

numerical instability, scaling is still generally recommended.

Table 9.5: Global Optimization Results for Problem 9.1 utilizing the first scaling
method

T (K) J k2f nodes t (CPU s)
273
298
323

0.058 ± 0.001
0.039 ± 0.001
0.057 t 0.001

6.718
6.270
5.857

Table 9.6: Global Optimization
method

T (K) J k2f
273 0.058 t 0.001 6.720
298 0.039 ± 0.001 6.272
323 0.057 ± 0.001 5.856

5.977 2.711
5.997 3.198
6.949 0.691

617
555
7107

Results for Problem 9.1 utilizing the second scaling

k3, k4 nodes

5.976 2.592 177
5.998 3.025 233
6.951 0.686 5833

Table 9.7: Global Optimization Results for Problem 9.1 without scaling

0.058 i 0.001
0.039 ± 0.001
0.057 ± 0.001

828
531
354

k3 f
394
403
1040

13.5
19.2
1.99

nodes t (CPU s)
157 11.45
75 6.14

4967 286.75

To validate the fit generated via the parameters obtained via global optimization,

the model with the globally optimal parameters was plotted with the experimental

189

209.37
169.74

2333.63

t (CPU s)
12.04
14.24

338.26

T (K)
273
298
323

k.1 1
-3 f k4

i k2f M4

data (the plots derive from the data in Table 9.5). For comparison, at 273 K, the

local minimum with objective value of 0.0805 is plotted with the global solution. At

298 K, the local minimum with objective value of 0.1311 is plotted with the global

solution. These graphs are pictured below in Figures 9-1, 9-2, and 9-3.

Figure 9-1: Optimized Model and Experimental Data for T = 273 K

0.3

0.25

.15"I

. 0.1

0
0.05

fl
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (s)

From Figures 9-1 and 9-2, one sees that except for at very early times, the models

fitted by global optimization almost perfectly fit the data. Numerically, the reason

that the models do not fit the data as well at the peaks is because relatively few data

points were taken at very early times. Therefore, the objective function is dominated

by the data taken at later times. In order to correct this problem, the objective

function could be reformulated as

N
min J(k') = E wi[IE,i - 2100XA,i - 200(xB,i + XD,i)],

where wi is a correction factor to give more weight to data collected at earlier times

and less weight to data collected at later times. From discussions with James Taylor,

due to the very small time scale of the experiment, the first data points are subject

to substantially more experimental error than the later data points. Goodness of fit

190

__ ___

Figure 9-2: Optimized Model and Experimental Data for T = 298 K

0.3

0.25

. 0.2

M 0.15

C;

-'- 0.1

0
0.05

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (Us)

at short times is considered less important than goodness of fit for the duration of

the species decay. Experimentally, the deviations of the model from the experimental

data at short times was expected and is deemed acceptable. Mr. Taylor suggested

not repeating the optimization with a weighting factor.

The numerical analysis of this problem demonstrates one of the most important

reasons for utilizing global optimization for kinetic parameter estimation problems.

Figures 9-1 and 9-2 each display the results of a local minimum along with the global

minimum. If an experimentalist were to draw conclusions from these figures based

solely on the local minima, one would likely conclude incorrectly that the model

demonstrated systematic error relative to the experimental data. From the global

minimum at each temperature, this conclusion is shown to be invalid, and I know

that the model indeed fits the data well. Conversely, however, from Figure 9-3,

because the minimum in the figure is global, I know that the discrepancy between

the model and the data is not due to a local minimum. That is, I know a systematic

error truly exists for this model. To investigate a possible cause of this discrepancy,

the global optimization trial was repeated with the equilibrium calculated at 298

191

--

Figure 9-3: Optimized Model and Experimental Data for T = 323 K

0.3

0.25

.-> 0.2

n0.05N.00 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (s)

K; the result is illustrated below in Figure 9-4. From the figure, one sees that the

fit of the model to the experimental data is similar to the fits observed from the

trials performed at 273 K and 298 K. This analysis indicates that a problem may

exist in the correlation utilized to compute the equilibrium constant as a function of

temperature. From discussions with Mr. Taylor, this result is not unexpected, for

the error in the physical constants in the equilibrium correlation is large. However,

the global optimization results indicate that reexamining the calculations utilized to

derive the equilibrium correlation may be warranted.

192

_ __ __ __· -

Figure 9-4: Optimized Model and Experimenta Datl D for T = 323 K with equilibrium

,ol,,~ mcomnuted at 298 K

0.3

0.25

. 0.2
c2

C~ 0.11

._O.O04

0.(

.5

U
0 0.5 1 . Time

Time (s)

193

194

_ ·_·_ · _____ -

Chapter 10

Necessary and Sufficient

Conditions for Convex Relaxations

in an Infinite Dimensional Space

Until now, I have only considered optimization problems with parameter dependent

differential equations where the optimization has been performed in a finite dimen-

sional, Euclidean space. In this chapter, I now consider an objective functional that

maps an infinite dimensional function space to a real value. Of particular interest

are integral functionals on linear spaces of functions. Integral functionals are func-

tionals that map a linear space of functions to a real value via a definite integral.

Thus, rather than seeking parameter values that minimize the objective function, I

am seeking a function that minimizes the objective function. Variational problems

are much more difficult to solve than their finite dimensional analogs, both numeri-

cally and theoretically. Numerically, the necessary and sufficient conditions equate to

solving two point boundary value problems rather than solving for KKT conditions

constrained by parameter dependent ordinary differential equations. Theoretically,

I am aware of no method for applying branch-and-bound in an infinite dimensional

decision space. Thus, the methods developed in this chapter only provide a rigorous

technique for constructing a lower bound on a variational problem.

195

10.1 Convexity

At the root of developing convex underestimators for variational problems is the

notion of convexity for real valued functions on Rd. For the purposes of this chapter,

only continuously differentiable functions are considered. This restriction implies the

existence of the gradient of the function and permits convexity to be defined in the

following manner.

Definition 10.1. The real valued function f is convex on D C Rd if it has continuous

partial derivatives on D and satisfies the inequality

f(x) > f(xo) + Vf(xo) -(x- x), V x, x E D

Moreover, f is strictly convex on D when the above inequality holds at each xo E D

with equality if and only if x = x.

Remark 10.2. An equivalent definition for convexity on D c Rd is

f(x + v) -f(x) > Vf(x) v, V v E Rd for which x, x + v E D.

Moreover, when v is taken as an arbitrary vector, 6f(x; v) = Vf (x) v, where 6f(x; v)

is the Gateaux variation, or directional derivative, of f.

The purpose of expressing convexity as in the above remark is merely to illustrate

a direct analogy between convexity in an Euclidean space Rd and convexity in a linear

space of functions X, the definition of which is given below.

Definition 10.3. A functional J on a set) C X is said to be [strictly] convex on D

provided that when x and x + v E)D then eJ(x; v) is defined and J(x + v) - J(x) >

JJ(x; v) [with equality if and only if v=O, where (0 is the unique vector such that

cO=Ox=O, VxeX, cE].

Convexity is an important notion in conventional optimization schemes because

convexity implies that any stationary point found is a global minimum (the unique

196

·· _ ·__..

global minimum for strict convexity). As expected, an analogous result exists for the

minimization of convex functionals, as stated in the following proposition.

Proposition 10.4. If J is [strictly] convex on 2) C X then each Xo E 2) for which

cJ(xo; v) = , V o + v E 2) minimizes J on 2) [uniquely].

The proof of Proposition 10.4 is immediately evident from Definition 10.3 and

is thus omitted. The interested reader is referred to Troutman [89, pp. 54-55] for

the details of the proof. Note that the above Proposition illustrates the fundamental

principle that minimization of convex functionals occurs for the function that makes

the Gateaux variation equal to zero.

The following defines convexity of functions on a subset S c R3. Specifically,

functions of this form comprise the class of functions from which the integrands of

functionals will be selected. Note that underlined variables are held fixed in the

inequality hence only requiring the partial derivatives of f of the remaining variables.

Definition 10.5. f(t, x, ±) is said to be [strongly] convex on a set S C R3 if f =

f(t, x, 5;) and its partial derivatives f and f are defined and continuous on this set

and satisfy the inequality:

f(t, x + v, ± +) - f(t, x,) fL(t, x, ±)v + f(t, x, ±)i,

V (t,x,) and (t,x+v, +) E S

[with equality at (t, x, i) only if v = 0 or = 0].

10.2 Convex Underestimators

The existence of tight convex underestimators for real functions of special form such

as univariate concave, bilinear, and trilinear functions has long been established in the

field of optimization. Adjiman et al. [5] have developed a method for deriving con-

vex underestimators for twice continuously differentiable real functions. This section

develops a rigorous analytical method for extending these known theories of convex

197

relaxations for real functions to variational problems. At the heart of this analysis

is the following fundamental theorem, which links convexity and relaxation of real

functions to convexity and relaxation of integral functionals. The astute reader will

recognize that this is simply the variational analog of Corollary 3.7.

Theorem 10.6. Let the functionals

b f(t,

F(x) = f (t, x(t), (t)) dt
ab

and G(x) = g(t, x(t),t(t)) dt

be defined on the set

D = {x E C'[a, b]; (x(t), (t)) E D c R2 }.

If g(t, x, di) is convex on [a, b] x D in the sense of Definition 10.5 and

g(t, x,) < f(t,zx,), V fixed t E [a, b] and x(t), i(t) E D

then G(x) is convex on D and G(x) < F(x). That is, if g(t, x, z) is a convex under-

estimator for f(t, x,) on [a, b] x D, then G(x) is a convex underestimator for F(x)

on D.

Proof. When x, x + v E D, then Definition 10.5 shows that at each t E (a, b), the

convexity of g yields

g(t, x + v, ± + i) - g(t, x, :) > g,(t, x, i)v + g,(t, 2,)i.

The above equation is integrated to yield

g(t, x(t) + v(t),(t) + (t)) - g(t, zx(t), (t)) dt >

jbg(t, x(t),(t))v(t) + g(t,x (t), (t))(t) dt.

198

�_

However, this is equivalent to

G(x + v) - G(x) > JG(x; v),

which by Definition 10.3 shows that G(x) is convex. It remains to show that G(x) <

F(x), but this is evident from integral monotonicity because, by assumption, I have

that g(t, x, x) < f(t, x, x), V fixed t E [a, b], and x(t), x(t) E D. a

Remark 10.7. This theorem enables any known method for convex underestimation

of real functions to be harnessed in the convex underestimation of integral functionals.

At this point, a short example is in order to demonstrate the construction of a

convex underestimator for an integral functional.

Example 10.8. Suppose I wish to minimize the following functional (with respect

to x(t)):

F(x) = J [(t)]2- [X(t)]2 dt

on the set

D = x(t) E C[0, 1]: (0) = xO, x(1) = x, 0 < x(t) < 1 t E [0,1]}).

Clearly, F(x) is nonconvex; therefore, a convex underestimator will be derived by

finding a convex underestimator for the integrand. The following formula [5] is ap-

propriate for underestimating the integrand. Note that i2 is already convex. Since

the sum of convex functions is still convex, only the nonconvex term, -x 2 needs to

be convexified. That x and x are functions of t has been dropped to emphasize that

for convexification, x and x are treated as elements of R rather than as elements of

Cn[0, 1] (where n = 1 for x(t) and n = 0 for ±(t)). In the following formula, xL and

xu respectively represent the lower and upper bounds on x.

f(XL)+ f (XU) L) L =f()) () = (O)+) (-) = -.
XU - L 1- 0

199

Hence, a valid convex underestimator, denoted as G(x), for this function is

G(x) = [(t)] - x(t) dt

Theorem 10.6 provides a method for constructing a convex underestimating inte-

gral functional by constructing a convex underestimator for the integrand. However,

Theorem 10.6 does not address the problem of determining a minimum for this con-

vex underestimator. At first glance, Proposition 10.4 appears to offer a method by

which to solve the underestimating integral; however, Proposition 10.4 is applicable

only to unconstrained variational problems. The generation of convex underestima-

tors requires constraints on the nonconvex variables [5], as illustrated by Example

10.8. Necessary and sufficient conditions for optimizing these constrained variational

problems are discussed in the following section.

10.3 Necessary and Sufficient Conditions for Con-

strained Variational Problems

Many algorithms designed for solving variational problems focus exclusively on sat-

isfying necessary conditions for optimality. For variational problems, this technique

is synonymous with finding stationary functions, or those functions which satisfy the

Euler-Lagrange equations. The downfall of this approach is that stationarity does

not necessarily even imply local minimality. However, using the convexity inherent to

the underestimators, a complementary sufficiency condition has been discovered thus

guaranteeing that any function satisfying the Euler-Lagrange equation is a minimum

[a unique minimum under strong convexity]. For this discussion, existence conditions

are not discussed. Rather, it is assumed that a feasible minimum for the problem

exists.

The sufficiency condition is developed in two stages. First, a lemma is presented

that illustrates a method for transforming a constrained problem into an uncon-

strained problem, the minimum of which implies the minimum of the original con-

200

____ __I

strained problem. Second, the optimality condition for a constrained, convex vari-

ational problem is stated. Note that the hat symbol is used to denote piecewise

continuity or piecewise continuous differentiability.

Lemma 10.9. Suppose f = f(t,x(t),± (t)) and 3 = 3(t,x(t),.i(t)) are continuous

on [a,b] x R2 and there exists a function (t) E C[a,b], for which xo minimizes

F() f (t,x(t),4(t)) dt on C Cl[a, b] where f def f + 4. Then xo minimizes

F(x) f f(t, x(t), ±(t)) dt on D under the following constraints:

. 3(t, (t), (t)) < O, t E (a, b)

2. A(t) > , t E (a, b)

3. A(t)O(t, xo(t), ±o(t))- 0

Proof. If x E), the following will be true by the definition of a minimum:

F(x) > F(xo)

F(x) +)(t)4(t,x(t),x'(t)) dt > F(xo) + (t)(t, xo(t), o(t)) dt

F(x)- F(xo) > j (3(t)§(t, xo(t),x`(t)) - i(t)§(t,x(t),x'(t))) dt

By Constraint 3,

F(x)- F(xo) > - (5(t)§(t,x(t),x'(t))) dt.

Due to the nonnegativity of A(t), Constraint 1 may be multiplied by A(t) without

altering the sign of the inequality

(t)3(t, x(t), '(t))< O .

It immediately follows that

F(x) > F(xo).

201

Remark 10.10. Although the product A(t)§(t, x(t), x(t)) may only be piecewise con-

tinuous, this poses no difficulty to integration provided there exist only finitely many

points of discontinuity (cf. Rudin [77]).

The chapter concludes with the following Theorem stating the conditions of op-

timality for minimizing a bounded convex functional. Only sufficiency for the opti-

mality condition is proven; the reader is directed to Hestenes [46] for the proof of

necessity.

Theorem 10.11. For a domain D of R2 suppose that f(t, x(t), ±(t)) E Cl([a, b] x D)

is convex, and we wish to minimize

F(l) = j f (t (t), (t)) dt

on

- = {(t) E Cl[a, b]: x(a) = al,,(b) = b},

subject to the inequality constraint

g(t, (t)) < O, t E (a, b),

where g(t, x) is also convex. For any So E D satisfying the inequality, the following

conditions are necessary and sufficient to guarantee a minimum: There exists a A(t) E

C[a, b] such that A(t) > 0 and A(t)g(t, xo) O. Additionally, for all intervals excluding

corner points the following equation must be satisfied:

d ft(t,l o(t), (t)) - f(t, o(t),. (t) = (t)g,(t, o(t)).

At any corner point c, the following condition must hold:

fA(c-, lo(c-), i~(c-)) - f(c+, o(c+), 'O(C+)) = kg.(t, o(t))

for a constant k (for necessity, k < 0 and for sufficiency, k = 0). Currently, a small

202

__ ··_

gap exists between the necessary and sufficient conditions.

Proof of sufficiency. First, construct the functional

F(x) = f(t, (t), '(t) + A(t)g(t, x(t)) dt on).

Lemma 10.9 above establishes that a minimizing solution to PF(5) will also be a

minimizing solution for F(l) under the given inequality constraint. Therefore, it

will be sufficient to demonstrate that o(t) minimizes F(1). By hypothesis, we have

E l [a, b], and we also have the following condition of stationarity at non-corner

points: dt))

Moreover, by assumption, we also have

f(t, o(t), o(t) = f(t, o(t), 5o(t) + (t)g(t, 5),

which is convex at non-corner points. Additionally by hypothesis, o satisfies the

stated corner condition at any corner point. Therefore, by Theorem 7.12 in Troutman,

50 provides a minimum for F and hence F. [

I note that the differential equation defining optimality is the first Euler-Lagrange

equation for the modified function F(!). For a detailed discussion of stationarity,

the reader is referred to Troutman [89]. Corner conditions for constrained variational

problems are discussed in detail in both Troutman [89] and Hestenes [46]. Addition-

ally, while the above theorem is stated only for one constraint, it should be obvious

that the same theorem can trivially be extended to multiple constraints provided the

constraints are nonintersecting. This follows because the minimum s 0(t) cannot exist

at multiple distinct points simultaneously. Thus, when 0O(t) lies on one constraint,

the multiplier for any other constraint is simply 0.

203

204

I·_I·· · _ __

Chapter 11

Conclusions and Future Work

The objective of this dissertation was to expound a technique for efficiently solving

to global optimality problems with an integral objective function subject to ordinary

differential equations. In particular, the main emphasis of the thesis was placed on

efficiently solving Problem 2.4, a formulation restricting the decision space to finite

dimension. Building on an existing framework for global optimization of steady-state

problems, a branch-and-bound algorithm was employed for rigorously guaranteeing

termination at global optimality. Because the optimization was always performed

in a finite dimensional parameter space, no modifications of the standard branch-

and-bound algorithm were required, and the theoretical emphasis of solving Problem

2.4 became generating rigorous bounds for the problem. Local optimization was

systematically utilized to generate upper bounds. Analogously to generating lower

bounds for steady-state problems, a method for generating convex relaxations for

dynamic problems was developed.

In Chapter 3, two principles were developed that guided the remainder of the

theoretical developments in the thesis. First, a general method for relaxing an integral

was presented. The result stated was that an integrand, u(t, p), convex on P for each

fixed t E (to, tf] implies an integral, U(p), convex on P. By integral monotonicity,

this immediately implied that a partially convex relaxation of an integrand implies a

convex relaxation for an integral. In dynamic optimization problems, the objective

function is never a simple function of p and t. Instead, the objective function is

205

defined via compositions with state variables defined only by differential equations.

Typically, p appears embedded within the differential equations, and the compositions

are defined implicitly via the numerical solution of the ODEs. Therefore, in order

to apply the integral relaxation result, techniques were required which addressed the

convexity of composite functions. The second important theoretical development

presented in Chapter 3 was the affine nature of the solution to a system of linear

differential equations. In general, very little can be stated concerning the convexity

of the solution of a system of ODEs from mere structural knowledge of the differential

equations themselves. The exception to this rule is linear differential equations. For

a system of linear differential equations, the solution of the differential equations for

fixed t E (to, tf is affine in the parameter. By definition, an affine function is both

convex and concave. This structural information provided a technique to address the

difficulty imposed by the composition of the objective function with the solution of

the parameter dependent differential equations.

In general, to apply Corollary 3.7 to relax an integral, two issues must be ad-

dressed: convex composition with the solution to the ODEs and deriving state bounds.

In order to generate the tightest possible relaxations, special structure should always

be exploited whenever it is available. Following this maxim, the development of con-

vex relaxations for Problem 2.4 led to separate techniques for problems with linear

ODEs and problems with nonlinear ODEs. Several chapters were devoted to each

topic. For linear problems, the composition issue was addressed by the standard

result that the composition of an affine function and a convex function remains con-

vex. Exact state bounds were derived for both the states and the derivatives of the

states via interval arithmetic techniques and the affine solution to a system of linear

ODEs. Implementation issues were discussed, and in particular, the construction of

exact state bounds was emphasized. Utilizing the developed implementation, several

problems were numerically solved. For nonlinear problems, both the theoretical and

computational issues required more sophisticated methods. McCormick's relaxation

technique provided a method for handling the nonconvex composition of the state

variables in the objective function. However, in order to utilize McCormick's relax-

206

�-----�111�11 _

ation technique, convex and concave relaxations for the numerical solution of the

ODEs had to be derived. This led to a theory for deriving rigorous linear relaxations

of the solutions of ODEs based on knowledge only of the right hand sides of the

differential equations. Additionally, in order to successfully apply McCormick's re-

laxation technique, a technique was derived to bound nonquasimonotone differential

equations. The technique was based on coupling physical insight into the behavior of

differential equations with the theory of differential inequalities. Because application

of the nonlinear theory was substantially more difficult than application of the lin-

ear theory, a separate implementation was developed for solving nonlinear problems.

The unique features of the implementation included a specialized language for the

problem statement, a compiler to apply the theory and generate residual files for the

integrator, and an event location and detection wrapper for the CVODES numerical

ODE solver. By exploiting the special affine structure of the convex relaxations, the

implementation was shown to be computationally inexpensive. Several literature case

studies were examined, and an entire chapter was devoted to studying a parameter

estimation problem taken from a research lab at MIT. The thesis concluded with a

short chapter describing a variational approach to solving Problem 2.4.

Although a substantial amount of work has already been completed, a substan-

tial amount of work still remains. The bulk of the outstanding issues all lie within

the scope of solving the nonlinear problem. In particular, I believe that four issues

require additional research. First, although Corollary 6.6 addresses constructing non-

exploding state bounds for nonquasimonotone differential equations, the method often

yields relatively slow convergence. Additionally, the technique is very limited by the

quality of the natural bounds. Because the tightness of the generated relaxations is

coupled to the quality of the state bounds, any improvements in the bounding proce-

dure could yield profound effects on the overall convergence of the branch-and-bound

algorithm. Second, no systematic method currently exists for selecting an optimal ref-

erence trajectory to satisfy Theorem 6.16. In general, any reference trajectory yields a

convergent state relaxation. However, for some problems, the choice of reference tra-

jectory can lead to solving a sizeable number of additional branch-and-bound nodes.

207

The selection of an optimal reference trajectory can be formulated as an optimization

problem. However, the optimization problem is itself a nonconvex dynamic optimiza-

tion problem, and determining the optimal reference trajectory problem is potentially

more difficult than solving the original problem. An alternative to selecting an op-

timal reference trajectory is simply to include simultaneously relaxations generated

from multiple reference trajectories. Third, although the branch-and-bound algorithm

has worst case exponential complexity, heuristics need to be developed to accelerate

the expected running time of the branch-and-bound algorithm. Because Problem

2.4 is an optimization problem in a finite dimensional space, many of the heuristics

currently employed for solving nondynamic problems can be directly applied. Unfor-

tunately, many standard branch-and-bound heuristics cannot be immediately applied

because the functions defining the problem are known only implicitly via the numer-

ical solution of the ODEs. However, I believe that domain specific heuristics can be

developed that exploit the dynamic structure of Problem 2.4 to accelerate the overall

convergence to a global minimum. Finally, as mentioned in the concluding remarks

of Chapter 7, the current implementation for solving nonlinear problems is somewhat

limited by the complexity of the code generated by the compiler. This problem is

currently being addressed by the development of a second generation compiler that

implements algorithmic differentiation techniques in applying the nonlinear theory.

The limitations of the current theory outlined in the previous paragraph only begin

to discuss future areas in which to continue research into global dynamic optimization.

Already, substantial work has begun on applying the theory and implementation I

have developed for solving Problem 2.4 to solving optimization problems with hybrid

systems and to solving mixed-integer dynamic optimization problems. Additionally,

the field is completely open to extend this work to problems with differential algebraic

equations and to problems with partial differential equations. As these theories ma-

ture, practitioners will certainly wish to apply these techniques to industrially-sized

problems, and this will almost certainly open entirely new endeavors into scaling the

results to large systems. Therefore, while this chapter concludes the research in my

doctoral thesis, I believe enough outstanding issues exist for this chapter to represent

208

�

the beginning of many theses yet to come.

209

210

I_· 1__1 ·_

Appendix A

LibBandB User's Manual and API

A.1 Introduction

LibBandB is a callable library written in C++ containing the branch-and-bound com-

ponent of a global optimization algorithm (the user must provide upper and lower

bounding information him/herself). The code itself is a derivative work from the

global NLP solver written by Dr. Edward P. Gatzke in his postdoctoral appointment

at MIT in the academic year 2000-2001. This original code, itself a component of

KABAGE, was written in a combination of C and Fortran. In early 2001, I sim-

ply modified Ed's code to suit my purposes for solving global dynamic optimization

problems and libBandB v. 1.0 was born (although at the time, it was only one

source file called bandb.c). At the end of 2001, I completely rewrote large portions

of bandb.c and added very simple heuristics to the branch-and-bound algorithm (v.

2.0). Eventually, the code, while functional, became a complete mess and needed

a complete rewrite from scratch. Additionally, I felt the code would benefit greatly

(at least in organization) from an object oriented design; thus, in November 2002,

I began designing and writing libBandB v. 3.0. Version 3.1 added many heuristics

and user options not yet implemented in 3.0. Version 3.2 placed the entire library in

the libBandB namespace and added fathoming based on feasibility of the upper and

lower bounding problems.

There are certainly other branch-and-bound options available in the community

211

(pretty good ones at that such as BARON from which this code does indeed draw

some inspiration), so why did I choose to write my own? Well; I had several reasons.

First, our research group did not have any other branch-and-bound software for linux

available at the time I began this project. Second, I enjoy writing code and used

version 2 as an introduction to writing in C and version 3 as an introduction to

writing in C++ (and no, for those of you who know me personally and are wondering,

there will never be a Perl version). Finally, of the software currently available, to

the best of my knowledge, none are available with source. Personally, I feel that

academic work, particularly that funded by taxpayer dollars, should not be designed

for commercialization. Specifically though, I fervently believe that academics should

openly share their knowledge to help promote scientific work simply for the sake

of science. Closed source software and research group "trade secrets" seem very

counterintuitive to the ideals of academia and leave other researchers wasting time

reinventing the wheel (not to mention the unreproducibility of published work). I

also think that if someone wants to use a piece of code in academic work, he/she

should know exactly what the code is doing. Plus, I have been frustrated to no

end trying to use software that does not work properly (e.g. seg faults) with no

recourse to fix the errors myself. Of course, anyone using someone else's work ought

naturally to properly acknowledge the original author **cough, cough**. Therefore,

my intention is that this code should NEVER be distributed without source. I am

not particularly concerned with what MIT may choose to do with licensing fees and

such provided the source is always included. All that said, while anyone is free to

make whatever modifications they like to the code, I absolutely will NOT fix bugs in

source code modified by someone other than myself. I will, however, fix legitimate

bugs myself and entertain any comments about improving the code or adding new

features (although this does not mean that I will necessarily accept and incorporate

every feature suggested).

This document is strictly a user's manual. To this end, I will explain the organiza-

tion of the code and how to use the code. I do not intend to explain branch-and-bound

algorithms, reduce heuristics, global optimization, or any other such notions in this

212

manual. Instead, the interested reader is referred to the articles and books at the end

of the document for further reading on theoretical topics.

A.2 Organization of the Code

As previously stated, the code itself is written in C++. However, one can easily use

the code with only a working knowledge of C (or maybe even Fortran). More or less,

the library may be called with no knowledge of C++ beyond the C subset. In fact,

given suitable wrappers accommodating the C linkage style, the library could itself

be directly called from C or Fortran. The only compiler on which the code has been

tested is gcc in linux (version 3.2 and higher). However, the library should compile

with any ANSI compliant C++ compiler. Because of its use of namespaces, I am

uncertain if it will compile properly with older versions of gcc. With the -Wall flag,

the code should compile without any compiler warnings. If this is not the case and a

compiler older than gcc 3.2 is being used, I recommend a compiler upgrade.

The code itself is divided into two directories. libBandB contains the files belong-

ing to the library proper, while wrappers contains a wrapper illustrating the calling of

libBandB and a wrapper illustrating a call to the optimizer NPSOL. The optimization

wrapper is written for dual use for computing both the upper and lower bounding

problems; the user may wish to provide separate routines for each. Due to licensing,

NPSOL itself cannot be shipped with libBandB. In order to build the library itself,

one should type 'make' in the libBandB directory. In order to build the wrappers

and include them into the library, the user should type 'make insert' in either the

libBandB directory or the wrappers directory. The components of each directory are

now examined in more detail; the interface for individual function calls is explained

in Section A.3.

As previously stated, the main components of libBandB are found in the lib-

BandB directory. The files comprising the library are auxiliary.cc, Node.cc, Op-

tions.cc, BandB.cc, and their associated header files. The file auxiliary.cc contains

the built-in functions used for output handling; this includes clioutput and the not

213

yet implemented guioutput. A third option, useroutput, may be provided by the

user if a custom output routine is desired. The file options.cc contains the member

functions for the Options class required in order to scan and parse the options file.

The options are made available to the user by declaring

extern class Options UserOpts;

in the libBandB namespace and including the Options.h header file. The options can

then be accessed via the public member functions defined in the Options.h header

file. Node.cc contains the internal workings of each node in the branch-and-bound

tree. Nodes are created through a class inheritance. RootNode and RegularNode

are both derived classes from the base class Node; however, polymorphism is not

implemented in this library. The definition of the Node class is found in the header

file Node.h. BandB.cc contains the data structures, memory management, timing

utilities, and initialization procedures (initializing static class members, reading the

options file, etc.). BandB.cc stores the nodes in memory in a minimum heap data

structure implemented via a vector container built using the C++ standard template

library (STL). This provides an efficient mechanism for selecting the next node by

the lowest lower bound. Because of the modular design, a different data structure

could be chosen for node storage (maybe a linked list) without changing the inner

workings of the nodes themselves. BandB.h contains the definition of some global

variables and functions used throughout the entire library.

The wrapper directory contains two files: main.cc and npsolWrapper.cc. main.cc

is simply an example of a main program that calls the branch-and-bound function

BandB with the default argument of "options.bnb" as the options file (more about

this in the Application Program Interface Section). The npsolWrapper.cc file contains

a wrapper for computing the upper and lower bounding arguments with NPSOL for

an unconstrained optimization problem. Additionally, several supporting functions

are also provided. The user should note the use of statically declared pointers to dy-

namically allocated memory. Because the optimizer is likely called many times in the

branch-and-bound routine, this prevents the overhead of allocating and deallocating

214

memory unnecessarily. If for some reason the size of the problem is changed within

the execution of the user's program, the size of the memory should be declared to

be the largest necessary or simply reallocated with the problem size at each function

call. A return value of false from any of the solvers causes the program to exit with

a user defined fatal error.

A.3 Application Program Interface

In order to use libBandB, the user must be able to call the branch-and-bound solver

and provide upper and lower bounds for the branch-and-bound solver. Optionally,

the user may wish to provide his/her own output routine. These three topics are

discussed below. Remember, the entire library is contained within the libBandB

namespace. For notational convenience, the libBandB:: prefix has been dropped

from the declarations in the API, but appear appropriately in the sample code. The

user must remember to use the namespace appropriately.

A.3.1 Function BandB

The function BandB is the main function responsible for controlling the branch-and-

bound solver. The function prototype is given by

double BandB(const int np, double *lowerBounds, double *upperBounds,

double *initialPoint,

const string inputFileName = "options.bnb")

Input: np: the number of parameters in the optimization problem

lowerBounds: array of size np containing the lower bounds on the

parameters

upperBounds: array of size np containing the upper bounds on the

parameters

initialPoint: array of size np containing the initial guess for the

upper bounding problem

215

inputFileName: optional string providing the name of the options file-if

this argument is not provided, the default name of

options.bnb is used

Output: initialPoint: (pointer to an) array of size np containing the point at

which the global solution is obtained

Return Value: Global optimum

A.3.2 Upper and Lower Bounding Functions

The following functions must be provided by the user for computing the upper and

lower bounds at each node. The user is given the choice of three different routines:

solver, solver2, solver3. Which solver is used for the upper and lower problems is

determined at run time via the options file. This permits flexibility to use different

optimizers to solve problems without the need for recompiling. If only one function

is ever employed, the others must be provided as dummy routines for linking pur-

poses. The wrappers directory provides file npsolWrapper.cc that provides a wrapper

for NPSOL for unconstrained problems. The prototype for the optimizers is given

below where X=1,2,3. Note that the parenthetical expressions next to the integer

return types are enumerated types that can be used instead of the integer value. The

enumeration is defined in BandB.h.

int solverX(const int np, const int probe, const int probeVar,

const int problemType, double *lowerBounds,

double *upperBounds, double *parameters, double *objf,

double *lagrangeMultipliers)

Input: np: the number of parameters in the optimization

problem

probe: -1 if probing lower bound, +1 if probing upper

bound, 0 if probing not active

216

__ _.

probeVar:

problemType:

lowerBounds:

upperBounds:

parameters:

parameters:

objf:

lagrangeMultipliers:

Return Value: -3 (FATAL):

O (FAILURE)

1 (FEASIBLE)

2 (INFEASIBLE)

if probing active, index of the variable being

probed

O for lower bounding problem, +1 for upper

bounding problem

array of size np containing current lower

bounds

array of size np containing current upper

bounds

array of size np containing guess for the

optimizer

array of size np containing point at

which minimum occurred

value of the objective function at minimum

lagrange multipliers (does not need to be set

if not using optimality based reduce heuristics)

Positive for a variable at a lower bound and

negative for a variable at an upper bound.

User defined failure. Program terminates.

The user defines that the optimizer has failed.

For the upper bounding problem, the node is

retained without updating the

incumbent. For the lower bounding problem,

this is considered an error, and the

program terminates.

User defines that the optimizer has performed

normally.

User defines that the node is infeasible; the

217

Output:

node is fathomed.

A.3.3 Output Functions

The program provides output functions clioutput and guLoutput (gui not yet im-

plemented) and the option for the user to write his/her own output routine in the

user defined function useroutput. The output routine is chosen at run time via

the options file. If BandB.h is included in the user's file, then the output function

can be accessed via a function pointer (*BandBoutput). Additionally, intermediate

output may be compiled out of the program by setting the preprocessor flag SUP-

PRESS-OUTPUT in BandB.h and recompiling the entire library. The prototype is

given below (guiLoutput and useroutput have the same prototype).

void clioutput(const int code, const string &outputMessage)

Input: code: integer code-defined by an enumeration in

BandB.h

outputMessage contains a string output message to be

displayed

A.4 The Options File

By default, the options file for which BandB looks is options.bnb in the directory from

which the program was executed; however, the user may change this via the optional

fifth argument to BandB. Additionally, the program may be executed without an

options file in which case all variables will be set to their default values. The options

file possesses the following format:

keyword: option

Whitespace is ignored, and the file is case insensitive except for the name of the output

file. The # symbol denotes a comment line; any remarks following a # until the end

of the line are ignored. The order of the options is irrelevant, but only one option

218

may be set per line. The options are set at run time, and the options file is read only

once immediately after BandB is called. The options themselves are contained in a

global Options class object. By including the Options.h header file and declaring

extern class Options UserOpts;

in the libBandB namespace, the user can access the options via the public member

functions of the Options class. The options are now examined in more detail.

absolute tolerance default: 0.001

relative tolerance default: 0.001

Both an absolute and relative tolerance are always active as fathoming criterion. A

node is retained if both of the following tests are true:

L < U-ea

and

L <U- U

where L is the lower bound in a node and U is the current incumbent value. The

following member functions return the absolute and relative tolerances respectively.

UserOpts.absTol()

UserOpts.relTol()

optimizer tolerance default: 1 x 10- 5

This is a value that the user may wish to set for use in the optimizer routines. BandB

does not use this value (solver3 in npsolWrapper.cc uses this value). It is returned to

the user with the member function

UserOpts.optimizer_tolerance()

219

lower optimizer

upper optimizer default: solver1

The options for each of these are solverl, solver2, and solver3. The member functions

return a pointer to a function.

UserOpts.plowersolver()

UserOpts.puppersolver()

npsol function precision default: 1 x 10- 8

This is a value specifically used for solver3 in npsolWrapper.cc. The user can use this

for any double precision value he/she desires.

UserOpts.npsol_functionprecision()

domain reduce default: false

maximum reduce loops default: 3

reReduce percent default: 0.25

reduce round precision default: 4

The above four options all pertain to post-processing optimality based domain reduc-

tion. The first option simply turns domain reduction on and off. The second option

specifies how many times domain reduction will be performed at a given node. By

specifying 0, domain reduction is performed only after the initial solving of the lower

bounding problem. By specifying a number greater than 0, domain reduction may

"loop" and repeat the calculation of the lower bounding problem and domain reduc-

tion steps up to the specified maximum. Domain reduction, at least with 0 maximum

loops, is highly recommended because it is very effective and relatively cheap. The

reReduce percent is the percentage reduction on any individual variable required to

enter a reduction loop. The reduce round precision is the number of decimal places to

220

__ _

default: solverl

which quantities are rounded in the domain reduction step. This should be set con-

servatively based on the optimality tolerance so that not too much of the optimization

space is removed by domain reduction.

UserOpts.domainReduce()

UserOpts.maxReduceLoops()

UserOpts.reReducePercent()

UserOpts. rndPrec ()

violation scale factor one default: 1.0

violation scale factor two default: 0.0

violation scale factor three default: 0.0

violation scale factor four default: 0.0

ignore bounds violation default: false

bounds tolerance default: 1 x 10- 5

relative bounds tolerance default: 0.0

relative bounds style default: root

Which variable is selected for branching next is computed based on a compound

violation computed by the following formula:

branchVar = argmax a, (ubd[i] d[i]) + 2 ubdi - bd[i]l + a3 PU - PLI
(bdr[i - bd,[i])I i u i] }

(IPU-PI '-+&4 k..ubdr[i] - bdi],J

where ai is the ith violation scale factor, ubdli] is the ith upper bound at the current

node, ubd,[i] is the ith upper bound at the root node, Ibd[i] is the ith lower bound

at the current node, Ibdr[i] is the ith lower bound at the root node, pu[i] is the ith

parameter value at the location of the upper bound for the current node, and pL[i]

is the ith parameter value at the location of the lower bound for the current node.

221

By default, if the parameter value for the lower bound is at one of its bounds, this

variable will not be selected for branching. However, this violation can be ignored by

setting the ignore bounds violation option to true. Finally, for fine tuning, the user

can control how close to the bound is considered at the bound. This is controlled

by both the bounds tolerance option and the relative bounds tolerance option. The

relative option may be set to be relative to the bounds at the root node or the current

node. This option is useful for preventing too much branching on one parameter or

never branching on a given parameter.

UserOpts.scaleOne()

UserOpts.scaleTwo()

UserOpts.scaleThree()

UserOpts.scaleFour()

UserOpts.ignoreBoundsViolation()

UserOpts.bdsTol()

UserOpts.relBdsTol()

UserOpts.relBdsStyle()

branch location default: bisection

bisection limit default: 10

Once the branch variable is chosen, the branching location must be set. The options

are bisection, incumbent, and omega. Bisection sets the branch location as the mid

point of the current bounds. Incumbent sets the branch location to the location of

the incumbent if it is inside the current bounds else defaults to bisection. Omega sets

the branch location to the location of the solution of the lower bounding problem. For

either incumbent or omega branching, to ensure finiteness of the algorithm, the search

must be exhaustive. Therefore, every once in a while, bisection must be employed

for the branching location. This is controlled by the bisection limit option. That is,

bisection is employed every X times branching occurs, where X is the value set by the

bisection limit option.

222

_ _____·__

UserOpts.branchLocation()

UserOpts.bisectionLimit()

root node probing default: false

This option turns root node probing on and off. Root node probing probes at all np

variables.

UserOpts.rootNodeProbing()

color default: true

This option turns color on and off for the default clioutput routine.

UserOpts.color()

output file default: no output file

By default, output is not directed to a file. By including this option, output will be

directed to the file given by the user. The file name is case sensitive.

UserOpts.outputToFile()

UserOpts.outputFileName()

suppress terminal output default: false

This option suppresses the terminal output (except fatal errors) from the clioutput

routine.

UserOpts.suppressOutput()

output routine default: cli_output

This option sets the output routine to either clioutput or useroutput. guioutput is

also reserved; however, no gui is currently implemented.

extern pBandBoutput BandB_output;

223

224

__

Appendix B

YACC grammar for GDOC

/* header information */

%}

%union{

int ival;

double dval;

char *pcval;

char cval;

class ptNode *ptNode;

}

%token PARAMETER

%token STATE

%token SINE

%token COSINE

%token EXPONENTIAL

%token INTEGRAND

%token NAT_LOG

%token LOG10

%token SQUARE_ROOT

%token ARRHENIUS

225

%token END

%token DECLARATION

*token EQUATION

%/token INITIALCONDITION

%token TIME

%token REFERENCE

%token VALUES

%token BOUNDS

%token CONSTANT

%token CONSTANT_VALUES

%token <dval> DOUBLE

Ytoken <ival> INTEGER

%token <pcval> NAME

/* ptNode is the base class for the parse trees */

%type <ptNode> Name

%type <ptNode> DeclareVar

%type <ival> Subscript

%type <ptNode> Number

%type <ptNode> Variable

%type <ptNode> LHS

%type <ptNode> Expression

%type <ptNode> SimpleEquation

%type <ptNode> Function

%left '+' '-'

Y.nonassoc UMINUS

%left '*' '/'

%right '^'

%%

ValidFile : TdeclareSection TvalueSection TeqnSection TrefSection

TinitSection

226

__

I TdeclareSection TvalueSection TeqnSection TrefSection

TinitSection OptionalSection

OptionalSection

OptionalUnit

TintegrandSection

TdeclareSection

DeclareSection

DeclareUnit

DeclareConstant

DeclareTime

DeclareVariable

DeclareParameter

OptionalUnit

OptionalUnit OptionalSection

TboundsSection

TconstantSection

TintegrandSection

INTEGRAND Expression ';' END

DECLARATION DeclareSection END

DeclareUnit

DeclareUnit DeclareSection

DeclareVariable

DeclareParameter

DeclareTime

DeclareConstant

CONSTANT ':' DeclareVar

TIME ':' TimeRange

STATE ':' DeclareVar

PARAMETER ':' DeclareVar

227

I

I

I

;

DeclareVar

TvalueSection

ValueSection

Tvalue

TconstantSection

ConstantSection

Cvalue

TboundsSection

BoundsSection

Bvalue

TimeRange

VarRange

BRange

Name VarRange

VALUES ValueSection END

Tvalue

ValueSection Tvalue

SimpleEquation ':' '[' Expression ',' Expression ']'

CONSTANTVALUES ConstantSection END

Cvalue

ConstantSection Cvalue

SimpleEquation ';'

BOUNDS BoundsSection END

Bvalue

BoundsSection Bvalue

Variable ':' BRange

'(' NumRange

'[' NumRange

'(' IntRange

'[' IntRange

3)1

'1

'E' NumRange ']'

228

I· _�

RRange

LRange

NumRange

IntRange

TeqnSection

EqnSection

Teqn

TrefSection

RefSection

Tref

TinitSection

InitSection

'[' LRange ''

P[' RRange ']'

'-' '-' ',' Expression

Expression ',' '-' '-'

Expression ',' Expression

INTEGER ':' INTEGER

EQUATION EqnSection END

Teqn

EqnSection Teqn

SimpleEquation ';'

REFERENCE RefSection END

Tref

RefSection Tref

SimpleEquation ';'

INITIAL_CONDITION InitSection END

Tinit

InitSection Tinit

229

: SimpleEquation ';'

SimpleEquation

LHS

Expression

Function

Number

: LHS '=' Expression

: Variable

I '$' Variable

: Expression '+' Expression

Expression '-' Expression

Expression '*' Expression

Expression '/' Expression

Expression '^' Expression

I '+' Expression %prec UMINUS

'-' Expression %prec UMINUS

Function '(' Expression ')'

I'(' Expression ')'

Number

Variable

: SINE

COSINE

EXPONENTIAL

NATLOG

LOGlO

SQUAREROOT

ARRHENIUS

: DOUBLE

I INTEGER

230

Tinit

: Name

I Name Subscript

: NAME

Subscript : '(' INTEGER ')'

/* Semantic routines and error handling */

231

Variable

Name

%%

232

- -~~~~~~_ ___ _·_

Appendix C

Experimental Data for Chapter 9

Appendix C contains the experimental data for the problems presented in Chapter 9.

The data were collected by James W. Taylor via laser flash photolysis at a wavelength

of 316 nm. The experimental setup is detailed in [84].

233

C.1 Experimental data at T = 273 K

Initial Conditions: xz.o = 1.40 x 10- 4 M, xy.o = 0.400 M, x 2 = 2.00 x 10- 3 M

t (s) I (x10 2)

0.01 13.88

0.02 22.00

0.03 23.17

0.04 24.13

0.05 25.67

0.06 26.34

0.07 26.34

0.08 25.93

0.09 25.47

0.10 24.96

0.11 24.71

0.12 24.39

0.13 23.91

0.14 23.43

0.15 22.85

0.16 22.25

0.17 21.85

0.18 21.43

0.19 21.03

0.20 20.69

0.21 20.21

0.22 19.82

0.23 19.25

0.24 18.81

0.25 18.30

0.26 17.82

0.27 17.52

t (s) I (x102)

0.28 17.05

0.29 16.57

0.30 16.18

0.31 15.85

0.32 15.43

0.33 15.08

0.34 14.84

0.35 14.36

0.36 14.14

0.37 13.67

0.38 13.38

0.39 13.03

0.40 12.78

0.41 12.52

0.42 12.24

0.43 12.07

0.44 11.86

0.45 11.72

0.46 11.45

0.47 11.13

0.48 10.89

0.49 10.59

0.50 10.37

0.51 10.07

0.52 9.948

0.53 9.848

0.54 9.762

t (s) I (x10 2)

0.55 9.640

0.56 9.466

0.57 9.308

0.58 9.117

0.59 9.144

0.60 8.896

0.61 8.786

0.62 8.450

0.63 8.217

0.64 8.145

0.65 7.787

0.66 7.760

0.67 7.682

0.68 7.619

0.69 7.423

0.70 7.327

0.71 7.175

0.72 7.071

0.73 6.923

0.74 6.687

0.75 6.624

0.76 6.541

0.77 6.508

0.78 6.291

0.79 6.118

0.80 6.045

0.81 5.973

t (s) I (x10 2)

0.82 5.953

0.83 5.784

0.84 5.761

0.85 5.797

0.86 5.707

0.87 5.712

0.88 5.551

0.89 5.410

0.90 5.210

0.91 5.196

0.92 5.100

0.93 5.076

0.94 4.949

0.95 4.945

0.96 4.913

0.97 4.813

0.98 4.685

0.99 4.579

1.00 4.470

1.01 4.453

1.02 4.377

1.03 4.293

1.04 4.201

1.05 4.187

1.06 4.095

1.07 4.172

1.08 3.976

234

17 X- j q

t (s) I (x102)

1.09 4.019

1.10 3.982

1.11 3.895

1.12 3.760

1.13 3.729

1.14 3.892

1.15 3.859

1.16 3.855

1.17 3.849

1.18 3.838

1.19 3.863

1.20 3.695

1.21 3.812

1.22 3.821

1.23 3.748

1.24 3.761

1.25 3.676

1.26 3.675

1.27 3.352

1.28 3.404

1.29 3.398

1.30 3.296

1.31 3.299

1.32 3.247

1.33 3.349

1.34 3.360

1.35 3.401

1.36 3.384

1.37 3.306

1.38 3.271

1.39 3.298

1.40 3.320

1.41 3.290

1.42 3.130

1.43 3.063

1.44 3.098

1.45 3.099

1.46 3.145

1.47 3.052

1.48 3.056

1.49 2.943

1.50 2.862

1.51 2.823

1.52 2.828

1.53 2.797

1.54 2.716

1.55 2.756

1.56 2.677

1.57 2.716

1.58 2.745

1.59 2.745

1.60 2.680

1.61 2.609

1.62 2.628

1.63 2.712

1.64 2.640

1.65 2.807

1.66 2.778

1.67 2.896

1.68 2.889

1.69 2.854

1.70 2.723

1.71 2.726

1.72 2.706

1.73 2.713

1.74 2.733

1.75 2.732

1.76 2.601

1.77 2.637

1.78 2.592

1.79 2.679

1.80 2.663

1.81 2.634

1.82 2.559

1.83 2.686

1.84 2.637

1.85 2.697

1.86 2.635

1.87 2.640

1.88 2.599

1.89 2.519

1.90 2.406

1.91 2.373

1.92 2.342

1.93 2.453

1.94 2.440

1.95 2.500

1.96 2.520

1.97 2.536

1.98 2.502

1.99 2.470

2.00 2.422

2.01 2.430

2.02 2.506

2.03 2.538

2.04 2.406

2.05 2.236

2.06 2.313

2.07 2.463

2.08 2.423

2.09 2.306

2.10 2.330

2.11 2.370

2.12 2.406

2.13 2.463

2.14 2.479

2.15 2.306

2.16 2.302

2.17 2.350

2.18 2.343

2.19 2.489

2.20 2.505

2.21 2.329

2.22 2.422

2.23 2.276

2.24 2.390

235

t () I (xi o2) t (A) I (x102) t (S) I (102)

�--�-- . --~~~~~~~---~~~~~ -�-�-�-

t (s) I (x102)

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.409

2.467

2.280

2.470

2.235

2.350

2.396

2.467

2.463

2.310

2.299

2.282

2.216

2.297

2.39 2.247

2.40

2.41

2.42

2.43

2.44

2.45

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.53

2.220

2.088

2.175

2.200

2.269

2.320

2.357

2.284

2.273

2.316

2.350

2.303

2.357

2.384

2.54 2.389

2.55 2.353

2.56 2.276

2.57 2.359

2.58 2.259

2.59 2.293

2.60 2.223

2.61 2.249

2.62 2.297

2.63 2.349

2.64 2.312

2.65 2.303

2.66 2.282

2.67 2.273

2.68 2.316

2.69 2.287

2.70 2.274

2.71 2.206

2.72 2.142

2.73 2.148

2.74 2.125

2.75 2.048

2.76 2.101

2.77 2.111

2.78 2.200

2.79 2.193

2.80 2.276

2.81 2.188

2.82 2.197

2.83

2.84

2.85

2.86

2.87

2.88

2.89

2.90

2.91

2.92

2.93

2.94

2.95

2.96

2.97

2.98

2.99

3.00

3.01

3.02

3.03

3.04

3.05

3.06

3.07

3.08

3.09

3.10

3.11

2.219

2.337

2.359

2.193

2.119

2.085

2.162

2.165

2.277

2.226

2.304

2.196

2.155

2.121

2.109

2.162

2.158

2.145

2.192

2.229

2.217

2.153

2.004

1.993

1.996

1.989

2.044

2.024

2.092

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

2.116

2.104

2.092

2.089

2.071

2.155

2.175

2.195

2.179

2.188

2.179

2.192

2.178

2.158

2.243

2.195

2.106

2.209

2.250

2.185

2.240

2.199

2.304

2.316

2.396

2.384

2.306

2.183

2.266

236

t (lus) I (x1 0' t (IL) I (x 102 t (.i) I (x102)

t (s) I(x10 2) t (s) I(x10 2) t (s) I(x10 2) t(/s) I(x102)
3.41 2.227

3.42 2.399

3.43 2.263

3.44 2.293

3.45 2.180

3.46 2.233

3.47 2.188

3.48 2.252

3.49 2.229

3.50 2.343

3.51 2.277

3.52 2.273

3.53 2.327

3.54 2.219

3.55 2.166

3.56 2.082

3.57 2.118

3.58 2.111

3.59 2.018

3.60 1.962

3.61 2.050

3.62 2.041

3.63 2.099

3.64 2.169

3.65 2.153

3.66 2.131

3.67 2.079

3.68 2.079

3.69 2.169

3.70 2.111

3.71 2.151

3.72 1.980

3.73 1.956

3.74 1.932

3.75 2.018

3.76 2.128

3.77 2.105

3.78 2.227

3.79 2.135

3.80 2.018

3.81 1.958

3.82 1.905

3.83 1.962

3.84 2.007

3.85 2.220

3.86 2.151

3.87 2.105

3.88 2.070

3.89 2.010

3.90 2.040

3.91 2.026

3.92 2.121

3.93 2.131

3.94 2.053

3.95 2.033

3.96 1.960

3.97 1.909

3.98 1.928

3.99

4.00

4.01

4.02

4.03

4.04

4.05

4.06

4.07

4.08

4.09

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

1.946

1.977

2.082

2.018

2.050

1.993

2.070

1.939

2.047

2.129

2.141

2.202

2.205

2.172

2.183

2.095

1.977

1.833

1.870

1.907

1.911

1.986

1.996

1.972

1.884

1.928

2.131

2.106

2.170

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

2.099

2.070

1.929

2.030

1.891

1.958

2.003

1.955

1.943

1.977

2.044

1.914

1.935

1.946

2.091

2.085

2.097

2.077

2.051

237

C.2 Experimental data at T = 298 K

Initial Conditions: z,o = 1.40 x 10 - 4 M, Xy,o = 0.400 M, xo2 = 1.90 x 10- 3 M

t (s) I (x102)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

14.45

21.05

22.53

23.59

22.36

21.93

23.44

24.54

25.03

24.92

24.81

24.19

23.81

23.54

23.59

23.42

23.07

22.51

22.21

21.89

21.57

21.25

21.03

20.70

20.39

19.90

19.38

t (s) I (x102)

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

0.53

0.54

19.20

18.83

18.60

18.43

18.04

17.81

17.45

17.13

16.85

16.53

16.36

16.24

15.99

15.69

15.59

15.36

15.31

15.05

14.82

14.38

14.20

13.90

13.83

13.72

13.61

13.39

13.17

t (s) I (x0l2)
0.55 12.87

0.56 12.62

0.57 12.49

0.58 12.19

0.59 12.15

0.60 11.89

0.61 11.79

0.62 11.55

0.63 11.34

0.64 11.11

0.65 11.02

0.66 11.05

0.67 11.06

0.68 10.97

0.69 10.75

0.70 10.50

0.71 10.42

0.72 10.34

0.73 10.19

0.74 9.952

0.75 9.786

0.76 9.618

0.77 9.744

0.78 9.660

0.79 9.530

0.80 9.267

0.81 9.170

t (s) I (x10 2)

0.82 9.023

0.83 8.974

0.84 8.828

0.85 8.764

0.86 8.603

0.87 8.359

0.88 8.240

0.89 8.042

0.90 8.160

0.91 8.130

0.92 8.081

0.93 7.962

0.94 7.849

0.95 7.648

0.96 7.574

0.97 7.403

0.98 7.273

0.99 7.250

1.00 7.255

1.01 7.127

1.02 7.152

1.03 6.997

1.04 7.001

1.05 6.817

1.06 6.710

1.07 6.602

1.08 6.669

238

-------- _ -�---

---'

t(its) I(x10 2) t (AS) I (xo102) t (As) I (x102) t (s) I (x 102)

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

1.31

1.32

1.33

1.34

1.35

1.36

1.37

6.643

6.573

6.495

6.438

6.488

6.444

6.415

6.273

6.269

6.134

6.154

5.989

6.073

5.961

5.865

5.767

5.729

5.834

5.868

5.769

5.693

5.671

5.580

5.586

5.473

5.414

5.448

5.479

5.532

1.38

1.39

1.40

1.41

1.42

1.43

1.44

1.45

1.46

1.47

1.48

1.49

1.50

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.60

1.61

1.62

1.63

1.64

1.65

1.66

5.400

5.351

5.176

5.115

5.031

5.039

5.058

4.958

4.903

4.910

4.859

4.907

4.957

4.995

4.872

4.795

4.673

4.592

4.568

4.573

4.578

4.651

4.618

4.548

4.444

4.366

4.354

4.409

4.467

1.67 4.399

1.68 4.321

1.69 4.194

1.70 4.333

1.71 4.343

1.72 4.361

1.73 4.301

1.74 4.288

1.75 4.242

1.76 4.178

1.77 4.078

1.78 4.047

1.79 4.107

1.80 4.020

1.81 3.993

1.82 4.049

1.83 4.044

1.84 4.121

1.85 4.206

1.86 4.192

1.87 4.171

1.88 3.950

1.89 3.938

1.90 3.854

1.91 3.880

1.92 3.921

1.93 3.897

1.94 3.847

1.95 3.792

1.96 3.699

1.97 3.800

1.98 3.641

1.99 3.736

2.00 3.651

2.01 3.668

2.02 3.690

2.03 3.644

2.04 3.639

2.05 3.536

2.06 3.648

2.07 3.639

2.08 3.854

2.09 3.811

2.10 3.804

2.11 3.708

2.12 3.717

2.13 3.543

2.14 3.540

2.15 3.543

2.16 3.659

2.17 3.697

2.18 3.645

2.19 3.581

2.20 3.426

2.21 3.440

2.22 3.399

2.23 3.332

2.24 3.370

239

t (s) I (x102)

2.54 3.347

2.55 3.270

2.56 3.085

2.57 3.233

2.58 3.147

2.59 3.217

2.60 3.119

2.61 3.042

2.62 2.965

2.63 2.912

2.64 2.896

2.65 3.040

2.66 2.944

2.67 2.952

2.68 2.962

2.69 2.985

2.70 3.175

2.71 3.262

2.72 3.200

2.73 3.101

2.74 2.849

2.75 2.831

2.76 2.803

2.77 2.848

2.78 2.905

2.79 2.887

2.80 2.955

2.81 3.057

2.82 3.105

2.83 3.049

2.84 3.092

2.85 3.110

2.86 3.007

2.87 3.003

2.88 2.749

2.89 2.917

2.90 2.882

2.91 2.915

2.92 2.950

2.93 2.941

2.94 2.843

2.95 2.805

2.96 2.763

2.97 2.830

2.98 2.893

2.99 2.855

3.00 2.825

3.01 2.836

3.02 2.992

3.03 2.914

3.04 2.967

3.05 2.944

3.06 2.813

3.07 2.900

3.08 2.872

3.09 2.803

3.10 2.810

3.11 2.809

3.12 2.891

3.13 2.973

3.14 2.896

3.15 2.852

3.16 2.903

3.17 2.791

3.18 2.891

3.19 2.797

3.20 2.776

3.21 2.722

3.22 2.821

3.23 2.757

3.24 2.807

3.25 2.652

3.26 2.618

3.27 2.591

3.28 2.613

3.29 2.725

3.30 2.612

3.31 2.667

3.32 2.733

3.33 2.734

3.34 2.703

3.35 2.721

3.36 2.700

3.37 2.706

3.38 2.676

3.39 2.558

3.40 2.540

240

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

2.41

2.42

2.43

2.44

2.45

2.46

2.47

2.48

2.49

2.50

2.51

2.52

2.53

3.367

3.376

3.429

3.362

3.362

3.405

3.327

3.383

3.270

3.317

3.291

3.327

3.315

3.431

3.344

3.297

3.277

3.202

3.085

3.096

3.024

3.075

3.232

3.187

3.224

3.256

3.205

3.274

3.373

t (S) I (x102) t (ILS) I (x 102 t (ttS) I (x 102

"� --

t (s) I(x10 2) t (s) I (xlo,) t(s) I(x102) t (s) I(x10 2)

2.540

2.561

2.637

2.588

2.551

2.606

2.688

2.734

2.752

2.821

2.659

2.767

2.749

2.799

2.734

2.698

2.745

2.628

2.689

2.689

2.707

2.794

2.700

2.727

2.685

2.649

2.763

2.760

2.920

3.70

3.71

3.72

3.73

3.74

3.75

3.76

3.77

3.78

3.79

3.80

3.81

3.82

3.83

3.84

3.85

3.86

3.87

3.88

3.89

3.90

3.91

3.92

3.93

3.94

3.95

3.96

3.97

3.98

2.763

2.713

2.624

2.616

2.645

2.622

2.728

2.595

2.637

2.594

2.646

2.722

2.709

2.624

2.576

2.583

2.633

2.622

2.651

2.701

2.624

2.628

2.537

2.625

2.566

2.518

2.402

2.563

3.99 2.601

4.00 2.504

4.01 2.640

4.02 2.612

4.03 2.512

4.04 2.435

4.05 2.449

4.06 2.359

4.07 2.418

4.08 2.447

4.09 2.522

4.10 2.464

4.11 2.424

4.12 2.365

4.13 2.349

4.14 2.494

4.15 2.519

4.16 2.500

4.17 2.377

4.18 2.463

4.19 2.365

4.20 2.377

4.21 2.378

4.22 2.467

4.23 2.381

4.24 2.390

4.25 2.371

4.26 2.455

4.27 2.574

4.28 2.458

4.29 2.515

4.30 2.411

4.31 2.512

4.32 2.344

4.33 2.423

4.34 2.429

4.35 2.502

4.36 2.540

4.37 2.613

4.38 2.557

4.39 2.546

4.40 2.552

4.41 2.568

4.42 2.607

4.43 2.507

4.44 2.506

4.45 2.350

4.46 2.442

3.41

3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57

3.58

3.59

3.60

3.61

3.62

3.63

3.64

3.65

3.66

3.67

3.68

3.69 2.519

241

C.3 Experimental data at T = 323 K

Initial Conditions: z.o = 1.40 x 10 - 4 M, y.o = 0.400 M, xo2 = 1.40 x 10- 3 M

t (s) I (x102)

0.01 94.73

0.02 2.219

0.03 2.435

0.04 2.522

0.05 2.534

0.06 2.521

0.07 2.498

0.08 2.472

0.09 2.443

0.10 2.414

0.11 2.394

0.12 2.367

0.13 2.345

0.14 2.329

0.15 2.307

0.16 2.302

0.17 2.296

0.18 2.274

0.19 2.238

0.20 2.195

0.21 2.174

0.22 2.160

0.23 2.118

0.24 2.083

0.25 2.038

0.26 2.031

0.27 2.024

t (s) I (x102)

0.28 2.004

0.29 1.992

0.30 1.971

0.31 1.942

0.32 1.903

0.33 1.874

0.34 1.836

0.35 1.829

0.36 1.831

0.37 1.807

0.38 1.796

0.39 1.765

0.40 1.731

0.41 1.711

0.42 1.704

0.43 1.686

0.44 1.673

0.45 1.646

0.46 1.640

0.47 1.620

0.48 1.612

0.49 1.597

0.50 1.587

0.51 1.554

0.52 1.548

0.53 1.537

0.54 1.519

t (s) I (x10 2)

0.55

0.56

0.57

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

1.482

1.473

1.451

1.426

1.401

1.389

1.365

1.360

1.345

1.358

1.332

1.315

1.296

1.276

1.253

1.237

1.227

1.208

1.201

1.182

1.173

1.154

1.138

1.139

1.123

1.118

1.115

t (s) I (x102)

0.82 1.100

0.83 1.090

0.84 1.073

0.85 1.065

0.86 1.057

0.87 1.048

0.88 1.042

0.89 1.025

0.90 1.012

0.91 9.935

0.92 9.994

0.93 9.972

0.94 9.879

0.95 9.840

0.96 9.656

0.97 9.639

0.98 9.421

0.99 9.406

1.00 9.273

1.01 9.112

1.02 8.973

1.03 8.802

1.04 8.793

1.05 8.873

1.06 8.717

1.07 8.740

1.08 8.668

242

__ ·

. .

`---

t (s) I (x102)

1.09 8.510

1.10 8.619

1.11 8.545

1.12 8.346

1.13 8.168

1.14 8.012

1.15 7.922

1.16 8.019

1.17 7.926

1.18 8.045

1.19 7.861

1.20 7.819

1.21 7.769

1.22 7.767

1.23 7.672

1.24 7.667

1.25 7.602

1.26 7.534

1.27 7.506

1.28 7.407

1.29 7.283

1.30 7.206

1.31 7.078

1.32 7.217

1.33 7.131

1.34 7.034

1.35 6.980

1.36 6.864

1.37 6.786

1.38 6.831

1.39 6.846

1.40 6.735

1.41 6.562

1.42 6.553

1.43 6.571

1.44 6.449

1.45 6.318

1.46 6.320

1.47 6.343

1.48 6.370

1.49 6.354

1.50 6.202

1.51 6.200

1.52 6.148

1.53 6.152

1.54 6.295

1.55 6.295

1.56 6.234

1.57 6.159

1.58 6.022

1.59 6.027

1.60 6.246

1.61 6.195

1.62 6.193

1.63 5.986

1.64 5.858

1.65 5.719

1.66 5.896

1.67

1.68

1.69

1.70

1.71

1.72

1.73

1.74

1.75

1.76

1.77

1.78

1.79

1.80

1.81

1.82

1.83

1.84

1.85

1.86

1.87

1.88

1.89

1.90

1.91

1.92

1.93

1.94

1.95

5.782

5.919

5.752

5.754

5.744

5.765

5.726

5.411

5.580

5.474

5.460

5.479

5.513

5.565

5.513

5.555

5.355

5.358

5.276

5.334

5.269

5.332

5.318

5.318

5.196

5.213

5.102

4.982

5.036

1.96 4.959

1.97 5.135

1.98 4.994

1.99 4.984

2.00 4.930

2.01 4.940

2.02 4.888

2.03 4.845

2.04 4.734

2.05 4.698

2.06 4.733

2.07 4.658

2.08 4.707

2.09 4.631

2.10 4.769

2.11 4.464

2.12 4.514

2.13 4.449

2.14 4.507

2.15 4.553

2.16 4.641

2.17 4.560

2.18 4.615

2.19 4.440

2.20 4.519

2.21 4.380

2.22 4.425

2.23 4.474

2.24 4.469

243

t (IL) I (xio2)1 t (LS) I (102) t (A) I (x 102

---- �-- -�--�-

t (s) I (x102)

2.25 4.332

2.26 4.300

2.27 4.426

2.28 4.351

2.29 4.360

2.30 4.267

2.31 4.327

2.32 4.370

2.33 4.377

2.34 4.402

2.35 4.262

2.36 4.233

2.37 4.180

2.38 4.247

2.39 4.197

2.40 4.099

2.41 3.929

2.42 3.873

2.43 3.817

2.44 3.914

2.45 3.912

2.46 3.949

2.47 4.037

2.48 4.054

2.49 4.158

2.50 4.146

2.51 4.157

2.52 4.102

2.53 4.037

2.54 3.981

2.55 3.887

2.56 3.932

2.57 3.934

2.58 3.836

2.59 3.893

2.60 3.870

2.61 3.924

2.62 3.925

2.63 3.914

2.64 3.870

2.65 3.799

2.66 3.782

2.67 3.849

2.68 3.873

2.69 3.890

2.70 3.863

2.71 3.802

2.72 3.476

2.73 3.521

2.74 3.549

2.75 3.640

2.76 3.704

2.77 3.924

2.78 3.934

2.79 3.910

2.80 3.897

2.81 3.837

2.82 3.797

2.83 3.814

2.84 3.650

2.85 3.741

2.86 3.679

2.87 3.702

2.88 3.788

2.89 3.810

2.90 3.699

2.91 3.558

2.92 3.439

2.93 3.348

2.94 3.276

2.95 3.228

2.96 3.357

2.97 3.353

2.98 3.541

2.99 3.617

3.00 3.578

3.01 3.728

3.02 3.643

3.03 3.600

3.04 3.591

3.05 3.549

3.06 3.516

3.07 3.370

3.08 3.398

3.09 3.333

3.10 3.392

3.11 3.491

3.12 3.494

3.13 3.465

3.14 3.459

3.15 3.457

3.16 3.543

3.17 3.457

3.18 3.417

3.19 3.470

3.20 3.425

3.21 3.320

3.22 3.347

3.23 3.355

3.24 3.340

3.25 3.270

3.26 3.221

3.27 3.306

3.28 3.358

3.29 3.303

3.30 3.353

3.31 3.447

3.32 3.377

3.33 3.442

3.34 3.377

3.35 3.445

3.36 3.303

3.37 3.253

3.38 3.293

3.39 3.285

3.40 3.253

244

t () I (x102) t (I-LS) I (x 102) t S) I (x 102

.

t (s) I (x102)

3.41

3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.49

3.50

3.51

3.52

3.53

3.54

3.55

3.56

3.57

3.58

3.59

3.60

3.61

3.62

3.63

3.64

3.65

3.66

3.185

3.280

3.367

3.388

3.201

3.265

3.211

3.298

3.300

3.171

3.136

3.090

3.180

3.188

3.338

3.337

3.178

3.250

3.198

3.285

3.301

3.221

3.248

3.230

3.141

3.123

3.67 3.028

3.68

3.69

3.063

3.087

3.70 3.186

3.71 3.075

3.72 3.093

3.73 2.969

3.74 3.037

3.75 3.087

3.76 2.901

3.77 2.896

3.78 2.625

3.79 2.909

3.80 2.838

3.81 2.921

3.82 2.970

3.83 2.995

3.84 2.926

3.85 2.813

3.86 2.833

3.87 2.866

3.88 2.886

3.89 2.929

3.90 2.944

3.91 2.822

3.92 2.826

3.93 2.856

3.94 2.916

3.95 2.785

3.96 2.956

3.97 2.879

3.98 2.876

3.99 2.724

4.00 2.798

4.01 2.912

4.02 2.858

4.03 2.793

4.04 2.760

4.05 2.731

4.06 2.792

4.07 2.734

4.08 2.817

4.09 2.813

4.10 2.675

4.11 2.639

4.12 2.706

4.13 2.762

4.14 2.665

4.15 2.650

4.16 2.665

4.17 2.731

4.18 2.764

4.19 2.726

4.20 2.630

4.21 2.589

4.22 2.545

4.23 2.622

4.24 2.683

4.25 2.736

4.26 2.800

4.27 2.673

245

4.28

4.29

4.30

4.31

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

2.749

2.611

2.571

2.502

2.602

2.537

2.602

2.604

2.589

2.640

2.548

2.655

2.731

2.803

2.785

2.757

2.718

2.670

2.591

t () I (Xlo,) t (P) I (x 102) t (s) I (x102)

246

Bibliography

[1] O. Abel and Wolfgang Marquardt. Scenario-integrated modeling and optimiza-

tion of dynamic systems. AIChE Journal, 46(4):803-823, 2000.

[2] Malcolm Adams and Victor Guillemin. Measure Theory and Probability.

Birkhiuser, Boston, 1996.

[3] C.S. Adjiman, I.P. Androulakis, and C.A. Floudas. Global optimization of mixed-

integer nonlinear problems. AIChE Journal, 46(9):1769-1797, 2000.

[4] C.S. Adjiman, S. Dallwig, and C.A. Floudas. A global optimization method,

aBB, for general twice-differentiable constrained NLPs - II. Implementation and

computational results. Computers and Chemical Engineering, 22(9):1159-1179,

1998.

[5] C.S. Adjiman, S. Dallwig, C.A. Floudas, and A. Neumaier. A global optimization

method, aBB, for general twice-differentiable constrained NLPs - I. Theoretical

advances. Computers and Chemical Engineering, 22(9):1137-1158, 1998.

[6] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Tech-

niques, and Tools. Addison-Wesley Publishing Company, Reading, 1986.

[7] R.J. Allgor and P.I. Barton. Mixed-integer dynamic optimization. Computers

and Chemical Engineering, 21(S):S451-S456, 1997.

[8] R.J. Allgor and P.I. Barton. Mixed-integer dynamic optimization I: Problem

formulation. Computers and Chemical Engineering, 23:567-584, 1999.

247

[9] Ioannis P. Androulakis. Kinetic mechanism reduction based on an integer pro-

gramming approach. AIChE Journal, 46(2):361-371, 2000.

[10] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations. SIAM, Philadelphia, 1998.

[11] M.J. Bagajewicz and V. Manousiouthakis. On the generalized Benders decom-

position. Computers and Chemical Engineering, 15(10):691-700, 1991.

[12] J.R. Banga and W.D. Seider. Global optimization of chemical processes using

stochastic algorithms. In C.A. Floudas and P.M. Pardalos, editors, State of the

Art in Global Optimization: Computational Methods and Applications. Kluwer

Academic Publishing, Dordrecht, The Netherlands, 1996.

[13] P.I. Barton. Hybrid systems: A powerful framework for the analysis of process

operations. In PSE Asia 2000: International Symposium on Design, Operation,

and Control of Next Generation Chemical Plants, pages 1-13, Kyoto, Japan,

2000.

[14] P.I. Barton, J.R. Banga, and S. Galan. Optimization of hybrid dis-

crete/continuous dynamic systems. Computers and Chemical Engineering,

4(9/10):2171-2182, 2000.

[15] Mokhtar S. Bazaraa, Hanif D. Sherali, and C.M. Shetty. Nonlinear Programming:

Theory and Algorithms. John Wiley & Sons, Inc., New York, second edition,

1993.

[16] Leonard D. Berkovitz. On control problems with bounded state variables. Jour-

nal of Mathematical Analysis and Applications, 5:488-498, 1962.

[17] H.G. Bock. Numerical treatment of inverse problems in chemical reaction ki-

netics. In Springer Series in Chemical Physics, pages 102-125. Springer Verlag,

1981.

248

[18] R.G. Brusch and R.H. Schappelle. Solution of highly constrained optimal control

problems using nonlinear programming. AIAA Journal, 11(2):135-136, 1973.

[19] Michael D. Canon, Jr. Clifton D. Cullum, and Elijah Polak. Theory of Optimal

Control and Mathematical Programming. McGraw-Hill, Inc., New York, 1970.

[20] E.F. Carrasco and J.R. Banga. Dynamic optimization of batch reactors using

adaptive stochastic algorithms. Industrial & Engineering Chemistry Research,

36(6):2252-2261, 1997.

[21] M. B. Carver. Efficient integration over discontinuities in ordinary differential

equation simulations. Mathematics and Computers in Simulation, XX:190-196,

1978.

[22] S.S.L. Chang. Optimal control in bounded phase space. Automatica, 1:55-67,

1962.

[23] M.S. Charalambides. Optimal Design of Integrated Batch Processes. PhD thesis,

University of London, 1996.

[24] Early A. Coddington and Norman Levinson. Theory of Ordinary Differential

Equations. McGraw-Hill, New York, 1955.

[25] K. G. Denbigh. Optimum temperature sequences in reactors. Chemical Engi-

neering Science, 8:125-132, 1958.

[26] V.D. Dimitriadis, N. Shah, and C.C. Pantelides. Modeling and safety verification

of discrete/continuous processing systems. AIChE Journal, 43(4):1041-1059,

1997.

[27] Stuart Dreyfus. Variational problems with inequality constraints. Journal of

Mathematical Analysis and Applications, 4:297-308, 1962.

[28] M.A. Duran and I.E. Grossmann. An outer approximation algorithm for a class

of mixed-integer nonlinear programs. Mathematical Programming, 36:307-339,

1986.

249

[29] William R. Esposito and Christodoulos A. Floudas. Deterministic global opti-

mization in nonlinear optimal control problems. Journal of Global Optimization,

17:97-126, 2000.

[30] William R. Esposito and Christodoulos A. Floudas. Global optimization for the

parameter estimation of differential-algebraic systems. Industrial and Engineer-

ing Chemical Research, 39:1291-1310, 2000.

[31] James E. Falk and Richard M. Soland. An algorithm for separable nonconvex

programming problems. Management Science, 15(9):550-569, 1969.

[32] W.F. Feehery, J.E. Tolsma, and P.I. Barton. Efficient sensitivity analysis of large-

scale differential-algebraic systems. Applied Numerical Mathematics, 25(1):41-

54, 1997.

[33] M. Fikar, M.A. Latifi, and Y. Creff. Optimal changeover profiles for an industrial

depropanizer. Chemical Engineering Science, 54(13):2715-2120, 1999.

[34] Roger Fletcher and Sven Leyffer. Solving mixed integer nonlinear programs by

outer approximation. Mathematical Programming, 66:327-349, 1994.

[35] Christodoulos A. Floudas, Panos M. Pardalos, Claire S. Adjiman, William R.

Esposito, Zeynep H. Gumus, Stephen T. Harding, John L. Klepeis, Clifford A.

Meyer, and Carl A. Schweiger. Handbook of Test Problems in Local and Global

Optimization. Kluwer Academic Publishers, Dordrecht, 1999.

[36] S. Galen and P.I. Barton. Dynamic optimization of hybrid systems. Computers

and Chemical Engineering, 22(S):S183-S190, 1998.

[37] S. Galan, W.F. Feehery, and P.I. Barton. Parametric sensitivity functions for

hybrid discrete/continuous systems. Applied Numerical Mathematics, 31(1):17-

48, 1999.

[38] E.A. Galperin and Q. Zheng. Nonlinear observation via global optimization

methods: Measure theory approach. Journal of Optimization Theory and Appli-

cations, 54(1):63-92, 1987.

250

· __·_

[39] Efim A. Galperin and Quan Zheng. Variation-free iterative method for global

optimal control. International Journal of Control, 50(5):1731-1743, 1989.

[40] Edward P. Gatzke, John E. Tolsma, and Paul I. Barton. Construction of con-

vex relaxations using automated code generation techniques. Optimization and

Engineering, 3:305-326, 2002.

[41] C. W. Gear. Simultaneous numerical solution of differential-algebraic equations.

IEEE Transactions on Circuit Theory, CT-18:89-95, 1971.

[42] A.M. Geoffrion. Generalized Benders decomposition. Journal of Optimization

Theory and Applications, 10(4):237, 1972.

[43] Philip E. Gill, Walter Murray, Michael A. Saunders, and Margaret H. Wright.

User's guide for NPSOL 5.0: A fortran package for nonlinear programming.

Technical report, Stanford University, July 1998.

[44] Andreas Griewank. Evaluating Derivatives: Principles and Techniques of Algo-

rithmic Differentation. SIAM, Philadelphia, 2000.

[45] G.W. Harrison. Dynamic models with uncertain parameters. In X.J.R. Avula,

editor, Proceedings of the First International Conference on Mathematical Mod-

eling, volume 1, pages 295-304, 1977.

[46] Magnus R. Hestenes. Calculus of Variations and Optimal Control Theory. John

Wiley & Sons, Inc., New York, 1983.

[47] Alan C. Hindmarsh and Radu Serban. User documentation for CVODES, an

ODE solver with sensitivity analysis capabilities. Technical report, Lawrence

Livermore National Laboratory, July 2002.

[48] Reiner Horst and Hoang Tuy. Global Optimization. Springer-Verlag, Berlin,

1993.

[49] Reiner Horst and Hoang Tuy. Global Optimization: Deterministic Approaches.

Springer, New York, third edition, 1996.

251

[50] David H. Jacobson and Milind M. Lele. A transformation technique for optimal

control problems with a state variable inequality constraint. IEEE Transactions

on Automatic Control, AC-14(5):457-464, 1969.

[51] D.H. Jacobson, M.M. Lele, and J.L. Speyer. New necessary conditions of op-

timality for control problems with state-variable inequality constraints. AIAA

Journal, 6(8):1488-1491, 1968.

[52] Padmanaban Kesavan, Russell J. Allgor, Edward P. Gatzke, and Paul I. Barton.

Outer approximation algorithms for separable nonconvex mixed-integer nonlin-

ear programs. Mathematical Programming, December 2003. In press.

[53] Padmanaban Kesavan and Paul I. Barton. Decomposition algorithms for noncon-

vex mixed-integer nonlinear programs. AIChE Symposium Series, 96(323):458-

461, 2000.

[54] Padmanaban Kesavan and Paul I. Barton. Generalized branch-and-cut frame-

work for mixed-integer nonlinear programs. Computers and Chemical Engineer-

ing, 24(2/7):1361-1366, 2000.

[55] G.R. Kocis and Ignacio E. Grossmann. A modelling and decomposition strategy

for the MINLP optimization of process flowsheets. Computers and Chemical

Engineering, 13(7):797-819, 1989.

[56] Cha Kun Lee, Adam B. Singer, and Paul I. Barton. Global optimization of linear

hybrid systems with explicit transitions. Systems & Control Letters, 51:363-375,

2004.

[57] R. Luus, J. Dittrich, and F.J. Keil. Multiplicity of solutions in the optimization of

a bifunctional catalyst blend in a tubular reactor. Canadian Journal of Chemical

Engineering, 70:780-785, 1992.

[58] Rein Luus. Optimal control by dynamic programming using systematic reduction

in grid size. International Journal of Control, 5:995-1013, 1990.

252

· __

[59] Rein Luus. Iterative Dynamic Programming. Chapman & Hall/CRC, Boca Ra-

ton, 2000.

[60] T. Maly and L.R. Petzold. Numerical methods and software for sensitivity anal-

ysis of differential-algebraic systems. Applied Numerical Mathematics, 20:57-79,

1996.

[61] C.D. Maranas and C.A. Floudas. Global minimum potential energy conforma-

tions of small molecules. Journal of Global Optimization, 4:135-170, 1994.

[62] R.B. Martin. Optimal control drug scheduling of cancer chemotherapy. Auto-

matica, 28(6):1113-1123, 1992.

[63] Tony Mason, John Levine, and Doug Brown. Lex & Yacc. O'Reilly & Associates,

Sebastopol, 2nd edition, 1992.

[64] Arthur Mattuck. Introduction To Analysis. Prentice Hall, New Jersey, 1999.

[65] Garth P. McCormick. Computability of global solutions to factorable nonconvex

programs: Part I - convex underestimating problems. Mathematical Program-

ming, 10:147-175, 1976.

[66] M. Jezri Mohideen, John D. Perkins, and Efstratios N. Pistikopoulos. Optimal

design of dynamic systems under uncertainty. AIChE Journal, 42(8):2251-2272,

1996.

[67] M.J. Mohideen, J.D. Perkins, and E.N. Pistikopoulos. Towards an efficient nu-

merical procedure for mixed integer optimal control. Computers and Chemical

Engineering, 21:S457-S462, 1997.

[68] Ramon E. Moore. Methods and Applications of Interval Analysis. SIAM,

Philadelphia, 1979.

[69] C.P. Neuman and A. Sen. A suboptimal control algorithm for constrained prob-

lems using cubic splines. Automatica, 9:601-613, 1973.

253

[70] C. C. Pantelides. SpeedUp - Recent advances in process simulation. Computers

and Chemical Engineering, 12(7):745-755, 1988.

[71] Ioannis Papamichail and Claire S. Adjiman. A rigorous global optimization

algorithm for problems with ordinary differential equations. Journal of Global

Optimization, 24:1-33, 2002.

[72] Taeshin Park and Paul I. Barton. State event location in differential algebraic

models. ACM Transactions on Modelling and Computer Simulation, 6(2):137-

165, 1996.

[73] Linda R. Petzold and Wenjie Zhu. Model reduction for chemical kinetics: An

optimization approach. AIChE Journal, 45(4):869-886, 1999.

[74] L.L. Raja, R.J. Kee, R. Serban, and Linda R. Petzold. Computational algorithm

for dynamic optimization of chemical vapor deposition processes in stagnation

flow reactors. Journal of the Electrochemical Society, 147(7):2718-2726, 2000.

[75] D.W.T. Rippin. Simulation of single and multiproduct batch chemical plants for

optimal design and operation. Computers and Chemical Engineering, 7:137-156,

1983.

[76] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, Princeton,

1970.

[77] Walter Rudin. Principles of Mathematical Analysis. McGraw-Hill, Inc., New

York, third edition, 1976.

[78] H.S. Ryoo and N.V. Sahinidis. Global optimization of nonconvex NLPs and

MINLPs with application in process design. Computers and Chemical Engineer-

ing, 19(5):551-566, 1995.

[79] R.S. Ryoo and N.V. Sahinidis. A branch-and-reduce approach to global opti-

mization. Journal of Global Optimization, 2:107-139, 1996.

254

__

[80] Carl A. Schweiger and Christodoulos A. Floudas. Interaction of design and con-

trol: Optimization with dynamic models. Optimal control: Theory, Algorithms,

and Applications, pages 1-48, 1997.

[81] M. Sharif, N. Shah, and C.C. Pantelides. On the design of multicomponent batch

distillation columns. Computers and Chemical Engineering, 22:S69-S76, 1998.

[82] Jason L. Speyer and Arthur E. Bryson Jr. Optimal programming problems with

a bounded state space. AIAA Journal, 6(8):1488-1491, 1968.

[83] Mohit Tawarmalani and Nikolaos V. Sahinidis. Convexification and Global Opti-

mization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Al-

gorithms, Software, and Applications. Kluwer Academic Publishers, Dordrecht,

2002.

[84] James W. Taylor, Gerhard Ehlker, Hans-Heinrich Carstensen, Leah Ruslen,

Robert W. Field, and William H. Green. Direct measurement of the fast, re-

versible reaction of cyclohexadienyl radicals with oxygen in nonpolar solvents.

Journal of Physical Chemistry A. In Press, 2004.

[85] James W. Taylor, Gerhard Ehlker, Hans-Heinrich Carstensen, Leah Ruslen,

Robert W. Field, and William H. Green. Direct measurement of the fast, re-

versible reaction of cyclohexadienyl radicals with oxygen in nonpolar solvents.

Submitted, 2004.

[86] K. Teo, G. Goh, and K. Wong. A Unified Computational Approach to Opti-

mal Control Problems. Pitman Monographs and Surveys in Pure and Applied

Mathematics. John Wiley & Sons, Inc., New York, 1991.

[87] I.B. Tjoa and L.T. Biegler. Simultaneous solution and optimization strategies for

parameter-estimation of differential-algebraic equation systems. Industrial and

Engineering Chemistry Research, 30(2):376-385, 1991.

255

[88] John Tolsma and Paul I. Barton. DAEPACK: An open modeling environment for

legacy models. Industrial & Engineering Chemistry Research, 39(6):1826-1839,

2000.

[89] John E. Tolsma and Paul I. Barton. DAEPACK: A symbolic and numeric library

for open modeling. http://yoric.mit.edu/daepack/daepack.html.

[90] John L. Troutman. Variational Calculus and Optimal Control: Optimization

with Elementary Convexity. Springer-Verlag, New York, second edition, 1996.

[91] T.H. Tsang, D.M. Himmelblau, and T.F. Edgar. Optimal control via collocation

and nonlinear programming. International Journal of Control, 21:763-768, 1975.

[92] V. I. Utkin. Sliding Modes in Control and Optimization. Springer-Verlag, Berlin,

1992.

[93] Frederick Albert Valentine. Contributions to the Calculus of Variations. PhD

thesis, University of Chicago, 1937.

[94] Wolfgang Walter. Differential and Integral Inequalities. Springer-Verlag, Berlin,

1970.

[95] Lotfi A. Zadeh and Charles A. Desoer. Linear System Theory: The State Space

Approach. McGraw-Hill, New York, 1963.

256

