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Abstract
This thesis is a compilation of theoretical and computational work in condensed mat-
ter physics related to three topics in structure development. First, I study photonic
crystals composed of polaritonic media, focusing on the unique features of the band
structures and Bloch states in dispersive media with and without losses. I discuss
three novel localization phenomena in these structures: node switching, flux expul-
sion, and negative effective permeability. Second, I examine the importance of surface
interfaces to melting using density functional theory. I demonstrate that single-layer
coatings of Gallium Arsenide on Germanium and vice versa have a huge impact on
the substrate melting temperature, causing superheating and induced melting, respec-
tively. Finally, I develop reaction-diffusion and stochastic models of the Min-protein
oscillations in bacteria that reproduce all main experimental observations. These
models explain the origin of instability that ultimately causes dynamic pattern for-
mal;ion and have successfully been used to predict nucleotide binding rates in E. coli.
In round cells, I provide evidence that oscillations can be used as a general mechanism
for protein targeting and detecting the cell's geometry.
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Figure 0-1: The magnetic field intensity of a Bloch state of an infinite polaritonic
photonic crystal of the unit cell shown. The geometry of the polaritonic medium
(LiTaO 3) is chosen to localize the field inside the structure when the frequency is
near a Mie resonance. (see Chapters 2-4)
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6-1 Model MinD1,E cycle driven by ATP hydrolysis. (1) Cytoplasmic
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Chapter 1

Introduction

Philip Anderson condensed condensed matter physics with the phrase "more is dif-

ferent". This comment is derived from the observation that as the size of a system

grows, new levels of organization can arise, which often give a much simpler picture

of the underlying physical properties that govern the system. At least in relation to

the topics in this thesis, I would say instead "more is more interesting". By adding

new components to or combining well-understood physical systems, the result is en-

tirely new phenomena that are often suprising but more easily understood than the

input components. I will investigate the various forms of electromagnetic radiation

localization achieved in periodic dielectric structures when vibrational modes are in-

troduced, the effect on the solid-liquid phase transition when the surface interface

is interchanged, and the generation of spatiotemporal dynamic motion through com-

bined reaction and diffusion of biomolecules.

For the most part, we have approached the problems in this thesis from an ab

initio perspective. That is to say, only the minimal set of information such as the ge-

ometry and material composition is used to calculate the electromagnetic, electronic,

or dynamic properties of the system. While the lack of assumptions relative to a more

empirical approach adds to the computational complexity, the solution that results

often provides a more fundamental description of the physics.

A large portion of problems in condensed matter rely on the interplay between

theory and computation to provide insight into physical processes. The challenge,
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therefore, is to choose a system size for the problem at hand which is at once tractable

and informative. As technology has advanced rapidly in recent decades, it has become

feasible - indeed necessary - to quickly balance our concept of what questions are

answerable in a reasonable timeframe. A considerable part of this thesis has consisted

of efforts to design and implement software that can efficiently provide answers and

adapt to the ever-increasing availability of new computing resources.

The aforementioned research topics contained in this thesis are tied together more

in spirit than in form. From polaritonic photonic crystals, to the electronic structure

of melting, to biological pattern formation, the story of the development of structure

is built from simple elements. In this introduction, I will describe the building blocks

that have formed the foundation for this work. In Section 1.1, I discuss the properties

of the polariton excitation - a coupled light and sound wave. These properties in

the background of a periodic dielectric structure are the focus of Chapters 2-4. In

Section 1.2, I discuss experiments that have motivated the study of changes in melting

temperature due to modifications in the surface interface, leading to the ab-initio

simulations in Chapter 5 at semiconductor interfaces that reveal superheating or

induced melting. Finally, in Section 1.3, I discuss the experimental evidence for spatial

oscillations in the Min protein system, which are modelled in different geometries in

Chapters 6-8.

1.1 Optical phenomena in polaritonic photonic crys-

tals

A photonic crystal is a periodic array of dielectric materials (see Fig. 1-1) [41]. In the

same way that electrons are guided by scattering from the underlying atomic crystal,

the flow of electromagnetic readiation can be controlled by a photonic crystal. For

most technological applications of photonic crystals, the wavelength scale of interest

is microns and higher. At this macroscopic length scale, it is the classical Maxwell's

equations rather than quantum mechanics and quantum electrodynamics which hold
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periodic in periodic in periodic in
one direction two directions three directions

Figure 1-1: Periodic arrays of dielectric materials (photonic crystals) in one dimen-
sion, two dimensions, and three dimensions. The different colors represent materials
with different dielectric functions. (originally published in Ref. [41])

sway.

An operator equation similar to the Schrbdinger equation can be derived from

Maxwell's equations. The solutions in an infinitely periodic system are Bloch waves,

and the dispersion can be described by a band structure of the form w,(k) [41].

The band structure can exhibit, for suitable choices of geometry and materials, a

photonic band gap in which the propagation of light is forbidden [97, 42]. The search

for systems with a complete band gap across all wave vectors has been a subject

of intensive research. By creating defects inside the photonic crystal, it is possible

to achieve a wide array of remarkable optical phenomena, including waveguide and

cavity localization [43, 23, 21].

The atomic character of the materials can also be important for introducing fre-

quency dispersion into the dielectric function. In particular, some polar materials

have transverse-optical phonon modes that couple strongly to electromagnetic radia-

tion to produce polariton excitations [3]. This interaction results in a band gap (the

polariton gap) above the phonon resonance, even in a bulk system without periodicity,

where light is forbidden to propagate [46].

The poiaritonic dielectric function essentially splits into two primary frequency
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regimes of interest. Below the phonon resonance, the index of refraction is large and

grows with increasing frequency, which tends to concentrate light into the material.

Directly above the phonon resonance, the dielectric function is large and negative, so

the material has a strong metallic character and will reflect light. A key feature of two-

dimensional (and higher-dimensional) photonic crystals is the existence of propagating

states even when one of the materials is metallic. It is these high-index and metallic

regimes within which much of our analysis will focus in polaritonic photonic crystals,

which are formed when at least one of the dielectric materials in a photonic crystal

is replaced by a polaritonic medium.

In a polaritonic photonic crystal, the interplay between the polariton gap and

the photonic band gap of the periodic crystal creates new optical phenomena which

are the focus of Chapters 2-4. In Chapter 2, we analyze the key features of one-

and two-dimensional crystals for a variety of materials and lattice sizes. The Bloch

states exhibit new localization phenomena stemming from both the high index con-

trast and the dispersion of the polaritonic dielectric function. In two dimensions,

intraband transitions below the phonon resonancec result in continuous shifts in the

nodal pattern of the light, which is localized inside the polariton material. Interband

transitions across the phonon resonance result in wholesale flux expulstion into the

air region due to the metallicity of the polariton gap.

To compare our theoretical predictions with potential experiments designed to

observe these phenomena, we focus on the band structure and field-localization effects

in a two-dimensional crystal composed of a common polaritonic medium, lithium

tantalate (LiTaO3) 14]. This material has a very large index of refraction at both

low and high frequencies - an important criterion for achieving the node switching

and flux expulsion localization phenomena. However, lithium tantalate also has non-

negligible losses around the phonon frequency due to absorption [78]. These losses are

manifested in the band structure by an imaginary wave vector or frequency component

in each Bloch state.

In Chapter 3, we ask how strongly losses affect the dispersion relation and the

field localization effects inside a polaritonic photonic crystal. We approach the more
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general problem of calculating the band structure of a photonic crystal composed of

lossy materials by utilizing two different computational approaches. The time-domain

approach uses a periodic excitation that consequently has real wave vector, while the

frequency-domain approach uses a constant-frequency plane-wave input. Although

the distinction between these methods is purely cosmetic for lossless systems, we

demonstrate that the band structures generated by these two methods can be very

different, especially in systems with strong localization properties. We reconcile these

differences and provide analytic criteria for instances in which the time-domain and

frequency-domain band structures do overlap. We also demonstrate specifically in

Chapter 3 that losses in the LiTaO3 polaritonic photonic crystal in Chapter 2 do not

prevent observation of the node-switching and flux-expulsion behaviors.

Although absorption losses are obviously detrimental to the propagation of light,

recent theoretical [95, 67] and experimental studies [66, 86, 88, 79] have shown that

a lossy photonic crystal structure can behave as an effective bulk medium with novel

properties. These so-called metamaterials can exhibit negative effective permittiv-

ity [67] and/or permeability [63] - properties which have not been observed in bulk

materials. The result when both are negative is several reversed electromagnetic-

wave properties including negative refraction [79]. In Chapter 4, we demonstrate

that negative effective permeability can be achieved in the photonic band gaps of a

two-dimensional polaritonic photonic crystal slab, and that the wavelength interval

over which this occurs increases with increasing dissipation. We discuss the origin of

this effect and show that the potential operating wavelength range can extend from

two to hundreds of microns through the use of different polaritonic materials.

1.2 Molecular dynamics of melting in semiconduc-

tors

Melting is the transition from a solid to a liquid phase. It is a typical example of a

common physical phenomenon that is at once easy to identify, and difficult to under-
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stand [94, 7, 13, 12, 8, 9]. Theoretical investigations of the causes and properties of the

melting transition have, to a large degree, followed one of two paths investigating: (i)

the thermodynamic stability of the free energy of the liquid phase relative to the solid

phase, or (ii) instabilities in the solid that initiate the transition. The second path is

particularly intriguing from an ab initio point of view because it infers a macroscopic

change of state from microscopic defects within the solid. Comprehensive reviews of

the effects of melting on crystal structure can be found in Refs. [93, 94, 7].

Superheating, or preserving of the solid phase above the normal melting temper-

ature Tm, is at most possible for many materials only in a very small interval about

this point. This seems to indicate an inherent stability limit of the solid which is

overcome at Tm in the transition to a liquid phase. As early as 1910, Lindemann

proposed a simple criterion for the melting instability correlating Tm with a critical

value of the ratio of the vibrational amplitude to the spacing between atoms [94].

The idea that melting can be predicted from the motion of the constituent atoms has

led to many theoretical studies using molecular dynamics [90, 69, 68].

Previous work has focused on the initiation of melting from defects in the solid such

as point defects, line defects, and grain boundaries. Phillpot et al. [69] have analyzed

the propagation of the solid-liquid interface generated from a grain boundary or a free

surface in a silicon crystal using interatomic potentials. Takeuchi et al. [92] studied

melting at the (111) surface of a germanium crystal and found that on the picosecond

time scale, the first few layers of the surface will melt while the bulk remains solid

(surface melting). An understanding of the role of surfaces in the melting process

is crucial since every experimental sample has a free surface and it is very difficult

to controllably initiate and study melting from inside the bulk rather than at the

surface.

Perhaps the fact that melting starts at the surface can be used advantageously.

There are many examples of materials that differ greatly in melting temperature,

but have similar lattice constants and so can form strong interfaces. For instance,

silver and gold differ by only a single row in the periodic table, yet Tm differs by

103 K (Tm(Ag)= 1235 K, T(Au)= 1338 K [46]). Experiments by Daeges et al. [15]
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demonstrated that a silver sphere with a thin (- 10 - 20/tm) coating of gold achieved

superheating of 25 K for one minute (see Fig. 1-2). These experiments followed similar

examples of superheating behavior in quartz/cristobalite crystals surrounded by fused

silica [1] and argon bubbles in aluminum [76].

The idea of changing the free surface, thereby altering the melting behavior, using

a macroscopic coating in the same fashion as the experiments listed above has yet

to be explored theoretically due to computational intractability. Whether or not the

superheating phenomenon can be observed using only a microscopic coating (on the

order of a single atomic layer in thickness) has not been previously studied either

experimentally (due to difficulty of fabrication) or theoretically. However, this is a

problem ideally suited to molecular dynamics approaches. In terms of the choice of

interface, a textbook example of similar materials with contrasting melting points in

condensed matter physics along the same line of thought as the Au/Ag example is

the semiconductors germanium and gallium arsenide. Despite having nearly identical

lattice constants and average masses, Tm differs by over 300 K (T,(Ge)= 1211 K,

T(GaAs)= 1540 K) [46].

In Chapter 5, we study the (110) surfaces of Ge and GaAs, the natural cleavage

plane of both materials, with and without single-layer coatings of GaAs and Ge, re-

spectively. We utilize density functional theory to minimize the total electronic free

energy at each time step, replacing the many-electron Schr6dinger equation with an

equivalent set of self-consistent single-electron equations [27, 47, 65]. One component

of these equations is an unknown exchange-correlation energy functional that is often

approximated using the local density approximation. The evolution of the ionic co-

ordinates is computed from the interatomic forces using the Verlet algorithm, while

the temperature is fixed using a Nose thermostat. This ab-initio approach not only

generates the dynamic motion of the ions, but by treating the electrons quantum

mechanically also provides band structure and charge density information that can

be used to reveal the electronic signals of melting at a fundamental level.

Our simulations were performed at an intermediate temperature of 1240 K - in

between the melting points of Ge and GaAs. The effects of the minimal-thickness
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Figure 1-2: Superheating of a silver crystal using a gold coating: (a) The Ag crystal
remains stable at a temperature 25 K above its melting point when coated with Au.
(b) The composition of Ag and Au in a radial slice indicates the stability of the Ag
core. (originally pulished in Ref. [15])
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single-layer coatings are stunning. The rapid diffusive motion of the atoms on the

Ge surface are significantly slowed by the presence of the GaAs layer. Furthermore,

the layers of Ge atoms deeper in the bulk (which are completely melted without the

coating) remain solid for the duration of our run, even at a temperature 30 K above

the melting point of Ge. Despite the minimal thickness of the coating, the stabilizing

influence of the GaAs is apparent. The Ge-coated GaAs system displays the opposite

behavior. A bare GaAs surface is incredibly stable at 1240 K, but the single-layer

coating of Ge contains mobile atoms that penetrate into the surface, inducing melting

in the GaAs layer below despite being 300 K below the melting point of GaAs.

1.3 Spatial oscillations of proteins in bacteria

Until recently, the central dogma of reaction-kinetics in bacteria featured the cell

as a well-stirred reactor. That is, without the organelles which are present in cells

of higher organisms to localize products of cell function, a combination of diffusion

and high copy numbers of proteins can keep concentrations inside the cytoplasm

homogeneous. However, it was necessary to revisit and alter this picture of protein

concentration and (de)localization after the discovery of dynamic structures which

form in spatiotemporal oscillations of the Min-protein system in Escherichia coli

[16., 74, 32, 24].

E. coli is a rod-shaped bacterium, 2 to 4 microns in length, which divides approxi-

mately every 40 minutes near the mid-point of the cell with a high degree of precision

(see Fig. 1-3). The source of this precision is at least partially due to the Min proteins:

MinC, MinD. and MinE. A min- mutant which lacks the ability to produce the Min

proteins not only divides at more haphazardly-chosen locations around the mid-point,

but also divides asymmetrically near the poles, creating small, round minicells [16].

These cells lack a chromosome and hence are nonviable.

The process by which the Min proteins regulate the selection of the division site

was revealed by tagging the Min proteins with the jellyfish protein, Green Fluores-

cence Protein (GFP) [74, 32, 24]. This made it possible to image the positions of
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Figure 1-3: An Escherichia coli cell in the process of division.

the tagged molecules inside the cell using fluorescence microscopy. The surprising

discovery was made that all three of the Min proteins move from pole-to-pole in a

persistent oscillatory pattern 74, 26].

By disabling the production of one or some combination of the Min proteins, ge-

netic experiments have pinpointed the roles of each protein in driving the oscillations

and ultimately in division site selection. In isolation, MinC results in filamentous

growth when the concentration is highly overexpressed [17]. This division inhibition

is caused by MinC blocking the polymerization of the FtsZ protein [4], a necessary

step in the machinery for dividing the cell membrane [5]. At wild-type (normal) lev-

els, both MinC and MinE are cytoplasmic, except in the presence of MinD and ATP

[34, 31]. MinD binds ATP and goes to the membrane, where it recruits MinC and

MinE [31].

In iivo observations of the spatial oscillations of MinD and MinE are shown in

Fig. 1-4 [26]. In each oscillation period, the MinD population forms a polar zone of

accumulation on the membrane at one pole of the cell. It then shrinks back toward

the pole and reforms at the opposite end. Experiments with simultaneously-tagged
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(a) MinD-GFP (b) MinE-GFP

S

Figure 1-4: (a) The MinD-GFP is primarily membrane-bound, forming a polar zone
which oscillates between the left and right poles. The MinD-GFP concentration is
always low near the center of the cell. (b) MinE forms a membrane-bound "ring"
which appears near the cell center and moves toward the pole. (originally published
in Ref. [261)

MinD-GFP and MinE-GFP have shown that MinE oscillates with the same period

as MinD [101]. The MinE accumulates as a membrane-bound "ring" which reforms

near the center of cell and moves toward the pole at the medial edge of the MinD

polar zone. MinC forms complexes with MinD, but the primary role of MinC is as a

division inhibitor. The oscillations require both MinD and MinE. but not MinC [74].

The biochemical function of the oscillations is clear: the MinC/D concentration

is always much higher at the ends of the cell than in the center (cf. Fig. 1-4(a)),

establishing a preference for the center of the cell as the division site and eliminating

minicelling. 'This can also be viewed physically as a fascinating occurence of pattern

formation. Filamentous cells with lengths ranging to upwards of 40 microns can

be grown by knocking out production of FtsZ. These mutants have a "zebra-stripe"

pattern of oscillations. In the 10-micron cell in Fig. 1-5(a) [26], the MinE-GFP
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(b) MinD-GFP

Figure 1-5: (a) 10-micron cell: MinE-GFP forms a doubled pattern with two rings
that move in separate halves of the cell 180 degrees out-of-phase in oscillations similar
to Fig. 1-4(b). (b) 40-micron cell: MinD-GFP establishes a regular oscillatory pattern
with a wavelength of around 10 microns. (originally published in Refs. [26] and [74])

simultaneously accumulates in two rings which move either toward opposite poles or

inward toward the cell center. In Fig. 1-5(b) [74], the distribution of MinD-GFP in

a 40-micron cell has a distinct wave-like pattern with a characteristic wavelength of

around 10 microns.

Given the wealth of biochemical information regarding the Min proteins, we would

like to find a minimal theoretical model that contains only known interactions. In

Chapter 6. we introduce a system of reaction-diffusion equations which successfully

reproduce the observed behavior in wild-type cells and in filaments, as well as MinE

fragment mutants which have smeared protein concentrations and much slower oscil-

lation periods. One crucial difference between our model and previous attempts to

study the Min system is the requirement of a finite nucleotide exchange time of around

one second. This is the time required for a freshly hydrolyzed MinD:ADP complex
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(a) Wild-type (b) MinDNgAt~(b MinD.. .g

U- _I r~i~i~i~i~~

Figure 1-6: (a) In wild-type N. gonorrhoeae, cell division results in round, equally-
sized daughter cells. (b) Mutants without the MinDNg protein divide abnormally into
different shapes and sizes. (originally published in Ref. 91])

coming off the membrane to rebind to a new ATP molecule and become competent

for rebinding. The nucleotide exchange process is crucial to our understanding of the

origin of the length scale as a molecular clock that allows the instability to shift from

one pole to the other and establishes the oscillatory pattern in filaments. Recent

experiments have shown that the nucleotide exchange rate is around two events per

second - remarkably close to our prediction considering such rates can vary over five

orders of magnitude [55].

Many other bacteria, such as Bacillus subtilis and Neisseria gonorrhoeae, possess

homologs of the Min proteins. The loss of the MinDNg protein in round N. gonorrhoeae

results in abnormal cell division with asymmetric daughter cells (see Fig. 1-6) [91, 711.

In Chapter 7, we apply our numerical model for rod-shaped cells to spherical cells and

find that Min oscillations occur. The oscillatory pattern is slightly different, with no

signature of a MinE ring. In Chapter 7, we discuss our finding that this is a natural

consequence of the round geometry of the cell. The other key question in a cell with a
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high degree of symmetry is: How does the cell choose an axis of oscillation? We find

that in ellipsoidal cells, the oscillations spontaneously orient along the long axis of the

cell due to a preferred wavelength of instability that is greater than the dimensions

of the cell. Remarkably, these results indicate that protein oscillators may form a

general mechanism by which the cell detects and exploits its own geometry, in this

case for targeting proteins to the poles. In Chapter 8, we derive analytically how

a preferred length scale arises from any simple reaction-diffusion system and apply

these results to the mean-field model of Chapters 6 and 7.

44

_�___IC �__



Chapter 2

Phonon-Polariton Excitations in

Photonic Crystals

Segments of this chapter have previously appeared in: Huang, Bienstman, Joannopou-

los, Nelson and Fan, Phys. Rev. B 68 075209 (2003) and Huang, Bienstman,

Joannopoulos, Nelson, and Fan, Phys. Rev. Lett. 90 196402 (2003).

In recent years, the study of polar media which permit transverse phonon polariton

excitations has commanded great attention both experimentally [14] and theoretically

[3] due to the unique and well understood frequency-dependent dielectric function. In

bulk polaritonic materials, there is a frequency range (the polariton gap) in which the

propagation of electromagnetic (EM) waves is prohibited. Such a frequency range is

generally called a photonic bandgap (see Fig. 2-1). This photonic bandgap (PBG) is

unrelated to translational symmetry, unlike the PBG properties of crystals of constant

dielectric materials, known as photonic crystals. Since the groundbreaking work of

Yablanovitch [97] and John [42], the explosion of research into the design and fabrica-

tion of photonic crystals with complete PBGs [41] has inspired a wealth of potential

telecommunications applications, including waveguides, channel drop filters, and om-

nidirectional reflectors [43, 23, 21]. We will demonstrate how the substitution of

polaritonic materials into photonic crystals introduces a whole range of exciting new

physical phenomena.

At a resonance between a transverse optical phonon at frequency wT and a trans-
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verse EM wave, the phonon-photon coupling induces a radical change in the material's

optical response. At low wavevectors, a simple model with dispersionless phonons

yields the dielectric function [46]

6(g) £ (g2 _ 4 ) ' (2.1)

where ECO is the dielectric response at high frequency, and WL is related to Eoc and

WT through the well-known Lyddane-Sachs-Teller relation WTC)(OV/. Clearly, the

power of polaritonic materials lies in the opportunity to study the large epsilon and

negative epsilon regimes using the same physical structure by merely choosing the

frequency of light below WT or inside the polariton gap between WT and WL.

Various aspects of photonic band gaps and band structures of polaritonic photonic

crystals (PPCs) have been previously studied using a diverse set of theoretical tools

[83, 84, 100, 51, 85, 20]. Work by Sigalas et al. [83, 84] focused on determining

the photonic bandgaps in a two-dimensional photonic crystal slab composed of polar

materials by analyzing the transmission coefficient as a function of frequency using

the transfer matrix method. To our knowledge, the first 2D PPC band structures were

calculated by Zhang et al. [100] and followed by Kuzmiak, Maradudin and McGurn

[51]. In both works, the authors identify as the major development the presence of

flat, almost dispersionless bands below the phonon frequency WT.

Kuzmiak et al. postulate an explanation for these bands as coupling to the local-

ized cavity modes of an isolated rod. We show that this proposition is indeed correct,

by providing a fundamental model applicable in D, 2D, or 3D for photonic crystal

properties in the large E regime that quantitatively explains the locations of the PPC

bands below WT. In doing so, we demonstrate how the coupling can occur in totally

different manners for the TE and TM modes depending on the location of wT relative

to the bands of a metallodielectric crystal, with the polaritonic material replaced by

a perfect metal. In some cases, the crystal will manifest an anticrossing behavior of

the TE bands (H out of plane) that has not been previously observed (due to the

choice for wTa/27rc, where a is the PPC lattice spacing, of either 0.5 or 1.0 in the two
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other works [100, 51]).

In addition, we provide a description of the bands directly above WT, a metallic

regime that has not been previously investigated. The presence of TE and/or TM

bands which converge to WT is again regulated by the positon of WT relative to the

bands of the metallodielectric crystal. The situations when bands exist arbitrarily

close to WT both above and below lead to the introduction of a unique flux expulsion

phenomenon, where light can be transferred completely in and out of the polaritonic

material into the interstitial photonic crystal medium as w sweeps across WT in an

extremely small interval.

The paucity of previous PPC calculations is perhaps due to computational obsta-

cles in traditional time-domain and plane-wave method (PWM) codes that crop up

near the poles and zeroes of c at WT and WL, respectively. However, it is precisely these

frequency ranges, where the materials divert from normal optical behavior, which we

have found to be of particular interest. To overcome these difficulties, we employ a

technique based on vectorial eigenmode expansion, discussed in section 2.1, which is

ideally suited for frequency-dependent dielectrics and is accurate over an extremely

large range of E.

In section 2.2, we provide a comprehensive description of the band structures of

iD PPCs. We introduce our model for the flat bands below WT, and demonstrate the

excellent agreement with our numerical results. We also characterize the bands inside

the polariton gap at F, and demonstrate that for certain values of WT, WL, and c,

there can be a characteristic frequency where the entire crystal becomes transparent.

In addition, the simplicity of the D crystal allows us to provide an analytic solution

for the wavevector of the bands at WL where (w) goes to zero.

In section 2.3, we adapt our model of the flat bands below WT to a 2D square

lattice of polaritonic rods, and demonstrate the difference in behavior between TE

and TM polarizations. The metallic bands directly above WT appear, and we explain

how the band structure in these two regions can be simply tuned by varying WT, in

particular to exhibit flux expulsion.

In section 2.3.5, we extend our results to a two-dimensional photonic crystal com-
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Figure 2-2: Unit cell in a periodic structure marked by solid outline. Note the axis
convention which will be adhered to henceforth.

posed of a polaritonic material, LiTaO 3, which is commonly used experimentally due

to its large polariton gap. Finally, in section 2.4 we discuss the effects of losses in the

polaritonic material.

2.1 Computational Method

To calculate the Bloch modes of a structure consisting of frequency-dependent mate-

rials, we use an approach based on vectorial eigenmode expansion [6]. We identify a

unit cell in the crystal oriented along a certain propagation direction (see Fig. 2-2),

and subsequently divide this cell in layers where the index-profile does not change

in the propagation direction. In each of these layers, we expand the field in the lo-

cal eigenmodes of that particular layer. The only approximation is the size of the

eigenmode basis.

Using mode matching, we can eventually derive reflection and transmission ma-

trices that completely describe the scattering behavior of the unit cell:

F = T 12 F 1 +R, 1 B9 (2.2)
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B = R 12'F 1 +T2 1 B2 (2.3)

Here, F and B are column vectors containing the expansion coefficients of the

forward and backward propagating fields, respectively, and T12, R21, etc. are explicit

functions of frequency. We then impose Bloch boundary conditions:

F 2 = e-ikaF1 (2.4)

B2 = e-ika B (2.5)

Equations 2.2 and 2.4 can be recast as a generalized eigenvalue problem, which

can be solved for each frequency, where I is the unit matrix and q = e-ika:

T12 R21 F1 I = l =q I 0 F
0 I qB1 R12 T21 qBj

In contrast to other approaches which compute the eigenvectors of the transfer

matrix [57, 62], no matrix inversions are required in our approach and therefore the

method is numerically more stable. We also want to point out that in ID, this method

is equivalent to the well-known transfer matrix method (TMM).

Since the independent variable in these calculations is frequency rather than wave

vector, it is trivial to account for material dispersion. Moreover, it is possible to

increase the frequency resolution locally, an advantage over time domain simulations

where a frequency grid of increased resolution is implemented through a global in-

crease in the number of time steps. This flexibility is exceedingly important for

polaritonic materials, since there are rapid changes in the dielectric function over

very small frequency intervals near WT.

These techniques were implemented in our generic photonic simulation tool CAMFR,

which is freely available from http://carnfr.sourceforge.net.

A further restriction on time-domain and PWM calculations involving frequency-

dependent dielectric functions is the necessity for a self-consistency loop when solving
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for the bands. In addition to the increased computational time, we have found the

self-consistency step to introduce serious numerical instabilities in certain ranges,

particularly where is very small. Kuzmiak et al. [52] also mention the danger

of missing zeroes in the determinant of the matrix of expansion coefficients in the

plane wave expansion if the increment in frequency is too small. For the specific case

of a polariton dielectric function, it is possible to recast the solutions to Maxwell's

equations as a generalized eigenvalue equation using the plane wave method to avoid

the self-consistency loop [51], but for general frequency-dependent dielectric functions

this simplification is impossible.

2.2 1D Polaritonic Photonic Crystal

We first examine the band structure of a D photonic crystal with propagation in

the jx direction. The modes are TEM in this case, with both E and H parallel to

the interface. For definiteness, we consider the polariton material CsI, with WT =

12 x 1012 rad/s, WL = 16 x 1012 rad/s, and cE = 3.0 [46]. With a lattice constant of

a = 6m, the polariton gap occurs between the normalized frequencies WT = 0.24

and WL = 0.32 (in units of 2rc/a). For the most part, we will use air as the ambient

material between polaritonic layers (6ambient = 1). The dielectric function and band

structure are shown in Fig. 2-3.

There are three interesting features of Fig. 2-3(b) that are immediately apparent:

(i) the flat bands below WT, (ii) the modes existing inside the polariton gap below WL,

and (iii) the portion of the band around the frequency w = 0.3533 where = 1 and

the band intersects the line w = ck. One important question is whether our choice of

polariton parameters {WT, WL, Eoo} holds any importance. In D, the location of the

polariton gap has little effect, but a different picture will emerge in 2D.

We will study (i) by examining the modes of photonic crystals in the large index

contrast limit. Our understanding of (ii) will come from an analytic solution of

the wavevector at WL given by the TMM, and (iii) is a simple by-product of the

transparency of the crystal at a particular frequency.
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Figure 2-3: (a) Polariton dielectric function of CsI with wT = 0.24, WL = 0.32, and
Eoo = 3.0. (b) Band structure of a D photonic crystal composed of CsI and air, with
d = a/2. Note the flat bands below wT, the penetration of the phonon-like part of
the band near WL into the polariton gap, and the transparency point (represented by
the open circle) where = 1 and the band intersects the line w = ck.
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2.2.1 Large n Slab Modes

As previously mentioned, other authors [100, 51] have observed the flat band phe-

nomenon in PPCs below WT. However, what is missing is a theory to describe both

qualitatively why the dispersion is so small, and quantitatively where these bands

occur. We will provide an answer to both of these issues in detail for a ID PPC

with a mind toward facilitating our future discussion in 2D. Directly below WT, the

polariton material has a large index of refraction, and so in order to understand the

flat bands in this frequency range, we initially ignore the frequency dependence of the

material and consider a slab with fixed, large n. As n - o, the reflectivity normal

to an air interface may be shown to behave as

e tn-l 2

Hence, there are localized modes within the dielectric of the form

mrc
,,m = sin (wmx), with frequencies w,m =

nd

We note that these are of course only true localized modes in the limit n - oc;

for finite n, the leakage of the fields into the air region allows for coupling between

adjacent slabs and introduces frequency dispersion.

If we now assume a frequency-dependent dielectric function, the slab resonances

also become frequency-dependent. We can solve the equation m = wm(m) =

m-c/d c- to obtain

^2 1 (2 + Q2 )2 - 4mT) (2.6)

where Qm = mn7rc/dv/C.

In the limit of extremely localized fields, we expect the bands of the D polaritonic

photonic crystal to follow a simple tight-binding model with a Hamiltonian

Hpm = Com(Pm + T (m+l + pm-l ),
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m W(7r/2a) im E(&m)
2 0.2362 0.235900 71.88
3 0.238256 0.238194 158.6
4 0.239008 0.238988 280.1
5 0.239361 0.239353 436.4
6 0.239555 0.239551 627.3
7 0.239672 0.239670 853.0
8 0.239749 0.239748 1113
9 0.239801 0.239801 1408

10 0.239839 0.239839 1738
11 0.239867 0.239867 2103

Table 2.1: Comparison of the band frequencies at k = 7r/2a to Ljm from equation 2.6
for a D crystal of CsI in air with dl = d2 = a/2. In the last column is the value of E
at w = -m.

and bands of the form w(k) = J- +T cos(ka/7r). The Hamiltonian has been linearized

to obtain eigenvalues w rather than the standard w2 by expanding in the small nearest-

neighbor coupling integral T. Similar tight-binding models of photonic crystals have

shown excellent agreement when the dielectric material has large E [54].

In table 2.1, we compare the frequencies at k = 7r/2a to Wm and find excellent

agreement, to within 0.1% for all m > 1. This clearly indicates that the localized

mode model works beautifully and allows for the precise determination of not only

the location of every band below WT but also, as we will examine more closely in 2D,

the shape of the highly localized fields inside the polariton material.

2.2.2 Defect-Like States in the Polariton Gap

We now turn our attention to the other side of the polariton gap. In Fig. 2-3(b), we

see that in the range EC [0.2997, WL] there are states inside the polariton gap, where

E(w) < 0. There is a simple interpretation of these modes. In the crystal, the slabs

of air can be treated like defects in an otherwise homogeneous polariton material,

drawing the states near k = 0 around L down into the gap. This is the opposite

of the normal effect of air defects in a photonic crystal; the air becomes the higher

index material when is near JL.
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Figure 2-4: The dependence of the wavevector k at w = L on WL, according to
equation 2.7. The black dot refers to the value of WL used to calculate the band
shown in the inset intersecting WL = 0.32 at k = ir/2a for a 1D crystal of CsI in air.
Note that for 0.527 < wL < 0.854, there is a band entirely within the gap.

At WL = WL, the wavevector is given analytically by the TMM as

WLdl WLd2 . Ldl 1
k(wcL) = arccos cos - 2 sin d . (2.7)

c 2 c

This wavevector is plotted in Fig. 2-4. Note that for 0.527 < WL < 0.854 there is a

band in the polariton gap that extends throughout the Brillouin Zone.

For the bands inside the polariton gap, we can characterize the decay rate of the

field strength inside the polariton material of a mode of frequency wo at k = 0 by

/iE c(o), which we plot in Fig. 2-5 as a function of Eo, for various values of WT and

WL. We see that the decay rate increases with increasing WT or WL, and asymptotes

as a function of oo.
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Figure 2-5: The rate of decay of the field strength inside the polariton material of a
mode of freqency w0 at k = 0, given by: / (wo)lk=O, as a function of cE. The black
lines are for WT = 0.32(27rc/a) and red are for T = 0.48(27rc/a). From bottom to top,
the successive curves of each color are for WL from T+0.0 4 (27rc/a) to wT+O.2(27rc/a)
in increments of 0.04(27rc/a).
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2.2.3 Crystal Transparency

The crystal becomes transparent to light at a frequency of wt = 0.3533 in Fig. 2-3(b),

where E = 1 and the band intersects the line w = ck. In general, (w) = ambient

when

2 2 1 2 -Eo-mambient 2 2.
S(A-ie L -ambient ) - WT- (2.8)E, - Ebient E, - Eambient

Note that when the slabs are in air, wt > WL. However, the point of transparency

will be below WT when Eambient > E and w2 > W 2(Eo-/ambient). This provides a

unique tuneability to a polaritonic system, since the transition to transparency can

occur in a region of either rapidly or slowly varying index. In addition, note that

there is no WT when E, < Eambient < o-

2.3 2D Photonic Crystals

We will use our understanding of D crystals from the previous section to infer much

of the relevant behavior in 2D. However, the existence of bands in a metallodielectric

crystal will add rich, new phenomena and control possibilities that open the door for

many exciting applications.

The band structure calculations of Zhang et al. [100] use exclusively a polariton

gap between [0.5, 1.0], while those of Kuzmiak et al. use [1, 1.08]. However, we will

demonstrate that it is impossible to describe all of the complex elements of the band

structures of 2D PPCs using a single choice of dielectric function parameters.

The two-dimensional polaritonic photonic crystal that we will examine consists of

square rods of side 2r in air, with 2r/a = 0.25, along the direction F to X.

2.3.1 Large n Cavities

We can understand the physics of a polaritonic crystal in two dimensions at frequen-

cies below WT by first considering the modes of a square cavity in air with k = 0 along

the rod. As n - o, the reflectivity goes to 1 at all angles away from Brewster's an-
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gle. To see how well this picture works for finite n, we compare the resonances of the

square cavity to the metallic waveguide modes with frequencies

Wim 2 r (12 + M2) /2 (2.9)

where the modes with I = 0 or m = 0 are excluded from consideration since the

fields should go to zero at the boundary. It is important to note, as in D, that

there is are no true modes of the isolated rod with out-of-plane k = 0, but rather

pseudomodes that become exact only in the limit of infinite n. Keeping this is mind,

we will nevertheless refer to them as resonance modes, or resonance frequencies, since

the true PPC states will retain the characteristics of these pseudomodes at finite n.

In Fig. 2-6, we plot the cavity resonance modes for a square rod with n = 20 for

both TE and TM polarizations and compare them to the model frequencies Wlm. The

correspondence was made by examining the field pattern inside the rod to determine

the nodal pattern; the TE modes show slightly better agreement with the frequencies

Wlm 

We have used square rods because of the simple, analytic solution given in Eq. (2.9)

for the metallic waveguide modes confined to the plane with zero out-of-plane wave-

vector component. We infer that in a general 2D large n photonic crystal, the band

structure are governed primarily by the resonances of a single rod, whose frequencies

are determined by the rod's geometry, where the periodicity of the crystal will only

introduce slight dispersion.

2.3.2 2D Band Structure

In this section, we use the insight gathered in section 2.3.1 to understand the band

structure of a 2D PPC in the high index region. In Fig. 2-7, we show the band

structure for the polaritonic material TlC1 with WT = 12 x 101 2rad/s, WL = 30 x

101 2 rad/s, and co = 5.1 [461 (in normalized units, WT = 0.4 and WL = 1 for a =

10Am).

The most striking feature is that the TE and TM bands exhibit very different be-
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Figure 2-6: Resonance frequencies of a square cavity with n = 20 compared with the
metallic waveguide frequencies Wi, shown as black horizontal lines in the center. TE
modes are shown in red, TM in blue. The arrows indicate association between modes
with fields of the same nodal structure.
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WT = 0.4, WL = 1.0, and E, = 5.1. The TE bands are in red in (a), TM in blue in
(b). Note the three different frequency spacings for the intervals [0, 0.32], [0.32,0.4]
(shaded in gray), and [0.4,1.5]. The primary photonic band gap in the TM modes is
indicated by purple shading.
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Figure 2-8: Group velocity in units of 2c as a function of frequency of the TM bands
displayed in Fig. 2-7 in a 2D T1Cl PPC.

havior. As expected, the TM bands closely resemble the D bands predicted by our

simple tight-binding model since the E field is continuous everywhere. We demon-

strate the low amount of dispersion by plotting the group velocity as a function of w

for all of the TM bands below wT in Fig. 2-8.

However, the TE bands are roughly linear, except near particular frequencies

(which we identify as resonances of a single rod) where they rapidly flatten. Let

us examine this behavior more closely. The frequency-dependent resonances solving

Wim = 7rc/2rJi ) are

^j2 1 (12 + Q2 / + 2 - 2(2.10)

where Qlm = rc(12 + m 2)1/2 /2r/-. In Fig. 2-9, these frequencies are overlayed upon

the TE bands near WT, to show the close agreement. The largest gap at the band

edges in the TlC1 crystal is relatively small (1.6%), occuring at the midgap frequency

Wmid = 0.3175.
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Figure 2-9: Matching of the frequency-dependent metallic waveguide resonance fre-
quencies Wlm from equation 2.10 to the 2D crystal band structure of TlCl rods in air
with 2r/a = 0.25. The resonance frequencies are displayed as horizontal black, dotted
lines; the lowest TE band of the metallodielectric crystal is shown as a dashed red
line.
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Why the difference between TE and TM modes? The answer lies in a comparison

to the bands of a metallodielectric crystal with the same geometry of square metal

rods, shown in Fig. 2-10. We point out one major difference between polarizations:

the lowest TE band goes to zero frequency at Gamma, while the lowest TM band has

a frequency w(F) = 0.409. In addition, there is a gap at X in the TE bands between

0.458 and 0.517, while the lowest TM band has frequency w(X) = 0.546.

It is clear from Fig. 2-9 that the lowest TE-polarized metallodielectric band in-

creases in frequency from F to X in precisely the same fashion as the linear regions

of the TE bands of the PPC. Thus, we interpret this observation as the anticrossing

interaction of the highly localized resonance modes of the polaritonic rods with the

modes of the metallodielectric crystal with the field completely removed from the

rods, which is possible due to the small but finite leakage of the resonance modes out

of the rods. In agreement with this simple characterization, the field near the band

edges resembles the resonance mode of the rod closest in frequency.

The implications of this phenomenon on the importance of the location of the

polariton gap are significant. There is a frequency cutoff Wmetal = 0.458, the max-

imum frequency of lowest TE band of the metallodielectric crystal between and

X. Below Wmetal, all of the bands of the PPC are fiat near r and X as a result of

anticrossing between the metallodielectric TE mode and a particular rod resonance.

Along a single band, the nodal surface of the field in the rod changes to match the

two different resonance modes at F and X.

However, a drastic change in the band characterization occurs when WT > Wmetal.

In Fig. 2-11, we plot the TE bands for an SiC crystal with WT = 1.49 x 1014/s,

WL = 1.79 x 1014/s, and oE, = 6.7 [46] (in normalized frequency units, for a =

1.0,um, WT = 0.5 and WL = 0.60067). For this set of parameters, Lll = 0.474, and

consequently we observe dramatically different behavior from all of the TE bands

in the T1Cl crystal with WT = 0.4. Now all of the bands below WT, aside from the

lowest, are very flat, much like the TM bands, representing a single resonance mode

with slight dispersion resulting from interrod coupling of the weak fields outside the

rods. In this case, the gaps are larger, reaching as high as 3.5% around wo = 0.452 in
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Figure 2-10: Band structure of a 2D crystal of square, metallic rods (in black) in air
with 2r/a = 0.25. TE bands are in red, TM in blue. Note the frequencies at the
band edges of the first TE and TM bands.
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Figure 2-11: Matching of the cavity modes &im from equation 2.10 to the 2D crystal
band structure of SiC rods in air with 2r/a = 0.25. Note the distinctions from
Fig. 2-9, due to the placement of WT above Wmetal.

Fig. 2-11.

Returning to Fig. 2-9, we observe that there seems to be no interaction with the

(2, 2) resonance mode near &'22. The fact that no anticrossing occurs for this and any

of the modes (21, 2m) with even indices is a direct result of the common symmetry

of these modes. From Fig. 2-12, it is clear that the Hz component of the lowest

metallodielectric crystal TE mode has even symmetry in the plane with respect to

reflection about the line parallel to the x axis crossing through the center of the cell.

For any mode with even indices, Hz is odd, so the overlap integral is zero. This

symmetry argument explains why none of the bands formed through anticrossing will
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Figure 2-12: The Re[Hz] field pattern for the metallodielectric crystal TE mode at
frequency 0.3 (27rc/a). Note the even symmetry in the plane with respect to reflection
about the x axis. In this and all future field plots, blue indicates negative and red
positive, with zero in white.

have field patterns resembling the (21, 2m) modes inside the rod, or resembling the

one out of the two degenerate modes with frequency C;21,2m+l with odd symmetry.

However, the question remains as to what happens to the modes of a single rod

with odd symmetry in Hz once periodic boundary conditions are imposed. We expect

that the same description that was used for the TM bands will apply: a flat band

should be formed near the frequency Camn whose dispersion is a result only of weak

interrod coupling between nearby cells. Due to the greater localization of the modes

with TE polarization, the dispersion is extremely small. The fact that there is no

band near 5;22 in Fig. 2-9 is simply a result of the frequency grid spacing being chosen

too large. In Fig. 2-13, we observe that the band is in fact present and has a width

on the order of 6 x 10- 7 .

For the case of degenerate modes of frequency 5;21,2m+1, we show in Fig. 2-14, using
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Figure 2-13: The (2, 2) localized resonance mode of the polariton rod, showing no
anticrossing interaction. The Hz field pattern inside the rod is overlayed to show the
odd symmetry with respect reflection about the x axis. Note the frequency interval
in the inset, demonstrating the extremely small band width of 6 x 10-7 .
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Figure 2-14: The contrast between the interactions of the (4, 1) and (1, 4) modes with
the lowest metallodielectric TE mode. The Re[H] field patterns inside the polariton
rod are overlayed. Note the anticrossing with the mode of even symmetry across the
x-axis, and the dispersionless band with band width 8 x 10- 7 for the mode of odd
symmetry.

the (4, 1) and (1, 4) modes as an example, that the even symmetry mode exhibits the

anticrossing phenomenon, while there is a flat band corresponding to the mode of

odd symmetry. Again, the band width in this case is extremely small, on the order

of 10-6.

2.3.3 Node Switching

There are several interesting metallic waveguide mode pairs connected by a single TE-

polarized PPC band, such as (1, m) = (4, 1) and (3, 3), where the separation between

the two frequencies c&lm in the PPC is extremely small (0.0007(2rc/a) for the T1Cl

crystal parameters in section 2.3.2). Along this band, the nodal structure inside the

rod is forced to continuously change from one pattern to another, as shown in Fig. 2-

15. This phenomenon provides an unprecedented capability for a state localized in
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the rod to change its coupling behavior over a very small frequency range. In terms

of the practical impact of this phenomenon on potential applications, the fact that

some of these mode pairs, e.g. (4,1)-(3,3) and (3,4)-(5,1), can be found at frequencies

reasonably far away from the region near WT, where losses can become very large,

bodes well for future research.

2.3.4 The metallic regime

We now switch gears, to the other side of the discontinuity of £(w) at ST. Above ULT,

£(w) is very negative, so we expect the polaritonic rods to behave as metals and expel

nearly all of the field. Therefore, the possibility of finding bands in the region close to

OT is governed by the existence of bands in the metallodielectric crystal in Fig. 2-10

at these frequencies. The positions of the gaps in both the TE and TM-polarized

bands will mark exactly where polariton excitations are prohibited in the photonic

crystal.

In Fig. 2-16(a), we plot the magnetic field component Hz of the TE band at the

frequency w = 0.44, where (w) = -65.2, for the same TlC1 PPC in section 2.3.2

with CT = 0.4, L = 1.0. We observe in Fig. 2-16(b) that there is no TM band at

WT, as we would expect since the lowest frequency metallodielectric TM mode is at

w(F) = 0.409 (see Fig. 2-10).

In Fig. 2-17, we plot the electric field component E, at the frequency w = 0.523

in a 2D square PPC of SiC rods. There is now no TE band at LOT, since the phonon

frequency is now within the TM gap [0.458, 0.517]. Deviations from metallic behavior

are slight for the entire band, even at = 0.523 near the band edge. Previous

metallodielectric crystal band structure calculations by Kuzmiak, Maradudin and

Pincemin [52] using the frequency-dependent dielectric function

2

emetal =- 1 2'

where wp is the plasmon frequency of the metal, have displayed similar behavior to

that in Fig. 2-10 for frequencies below wp where EIj is less than around 10, thus we are
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Figure 2-15: Node switching: (a) The 6th TE band connecting the (4,1) cavity mode
to the (3,3) cavity mode of a 2D PPC with square rods of TIC1, 2r/a = 0.25, with
selected frequencies indicated by the numbered arrows. (b) The real part of Hz inside
the rod at the frequencies indicated in (a) between 0.38779 and 0.38845.
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Figure 2-16: Metallic behavior in the TE bands: (a) The first TE band above WT in
a 2D T1CI PPC in solid red, with the corresponding portion of the lowest TE band
in a metallodielectric crystal in dashed red. The open circle contains the portion of
the PPC band at frequency w = 0.44, for which the real part of the magnetic field
component Hz is plotted in a single supercell in (b), with the rod outline in black.
The wavevector axis begins not at F but at 0.87r/a.
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Figure 2-17: (a) The first TM band above JT in a 2D SiC PPC in solid blue, with
the corresponding portion of the lowest TM band in a metallodielectric crystal in
dashed blue. The open circle contains the portion of the PPC band at frequency
w = 0.523, for which the real part of the electric field component Ez is plotted in a
single supercell in (b), with the rod outline in black. The wavevector axis begins not
at r but at r/2a.

clearly well within the regime regularly considered as a metallic at w = 0.523 since

6(w)= -24.

These observations lead us to the introduction of the phenomenon of flux expulsion

in PPCs, where small changes in w near the interface between the metallic and dielec-

tric photonic bandgap regimes can induce enormous variations in the topology of the

field pattern. We demonstrate this phenomenon in Fig. 2-18. Using other geometries

and/or other materials to surround the polaritonic medium (in particular, nonlinear

materials), this tool should be extremely useful as a switch to shift light in and out

of different physical regions of the crystal. In the following section, we will examine

more closely the effect of losses, and we will find that for some polaritonic media,

losses are restricted to a sufficiently small area around WT that practical utilization

of flux expulsion should be possible.
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Figure 2-18: Flux expulsion: (a) The band directly above wJT and a flat band just
below WT in a 2D PPC of T1Cl rods with 2r/a = 0.25. The Bloch states with
k = 0.43(27r/a) at the frequencies w = 0.3916 and w = 0.403 are marked by arrows.
(b) The field pattern of the real part of Hz at w = 0.3916, where E = 649. (c) The
field pattern of the real part of Hz at w = 0.403, where E = -1773. Note the extreme
contrast between the localization of the field inside the rod in (b) and the complete
flux expulsion in (c).
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Figure 2-19: Band structure of a 2D polaritonic photonic crystal with square sym-
metry of square LiTaO3 rods in air with s/a = 0.25, T = 0.4(27rc/a), L =

0.703(21rc/a), and E = 13.4. The TE (H out of plane) bands are in red in (a),
TM (E out of plane) in blue in (b). Note the three different frequency spacings for
the intervals [0, 0.31] (2rc/a), [0.31, 0.4](2rc/a) (shaded in gray), and [0.4, 1.0](2irc/a).
The primary photonic band gap in the TM modes is indicated by purple shading. The
TE(TM) bands of a metallodielectric crystal obtained by replacing LiTaO 3 by a per-
fect metal are given by the red(blue) dashed lines.

2.3.5 2D LiTaO3 PPC

In Fig. 2-19, we plot the band structure from F to X of a 2D photonic crystal of

square rods with side s (s/a = 0.25) in a square lattice. The rods are taken to

be LiTaO3, a typical polaritonic material with a large polariton gap from WT =

26.7 THz to WL = 46.9 THz, and Eo = 13.4. We set a = 4.5/im so that WT =

0.4(27rc/a) and WL = 0.703(27rc/a). We overlay with dashed lines the band structure

for the metallodielectric crystal obtained by replacing LiTaO3 with a perfect metal.

In addition, we highlight the most important sections: directly above and below WT.

Note the existence of flat bands in both polarizations in the high index region

below WT, as observed in earlier work [100, 51]. As before, we find that these bands

correspond extremely closely to localized resonance modes [54] in isolated rods with

74

Polariton gap

l~~~~~ N

:m Im i
A ; ; . * ># R.<:

- TM : : (b)

AT\

- ====t

---



slight dispersion about a frequency given (to within less than 1% error in most cases)

by the following analytic expression:

= (W2 + Q - \/(wL + Q) 2 -4Q2m ) (2.11)

where Qjm = irC(12 + m 2 )1/ 2 /S fe.

Consider one of the several resonance pairs (1, m), (', m') with a very small fre-

quency separation that are connected by a TE band through this interaction, such

as w233 - 41 = 0.0007(27rc/a). Along this band, the nodal structure of the field in-

side the rod, perpendicular to the plane, is forced to continuously mutate from one

pattern to another, as shown in Fig. 2-20. This node switching phenomenon provides

an unprecedented capability to drastically alter the coupling behavior of a localized

state over a very small frequency range.

In our calculation with WT = 0.4(27rc/a), WT is outside the TE metallodielectric

bandgap from [0.458,0.517](27rc/a) and inside the TM bandgap [0,0.409](2rc/a).

Correspondingly, we see in Fig. 2-19 that there is a TE PPC band that intersects

WT, at k = 0.432r/a, but no TM PPC band directly above WT; the lowest frequency

TM-polarized state above AT is at k = F, w = 0.415(2rc/a).

It is clear from our discussion of how flux can be isolated to either of the two

opposite physical regions of the crystal that small changes in w can induce enormous

variations in the field profiles due to the rapid change in . In Fig. 2-21(a), we

explore an interband transition at fixed wavevector from below LT to a frequency

inside the polariton gap. The light is transferred almost completely from inside the

rod at w = 0.3916(2irc/a) (Fig. 2-21(b)) to the ambient region at w = 0.403(27rc/a)

(Fig. 2-21(c)). With a wide range of options in terms of crystal geometries and

ambient materials, the utility of this flux expulsion is manifest. For example, using

a nonlinear material as the surrounding medium, this phenomenon could be utilized

as a switch to shift light in and out of different physical regions of the crystal.

In order to incorporate losses in the polaritonic material, we use the well-known
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Figure 2-20: Node switching: (a) The TE band connecting the (4,1) cavity mode
to the (3,3) cavity mode of a 2D PPC with square rods of LiTaO3, s/a = 0.25,
with selected frequencies indicated by the numbered arrows. (b) The real part of
Hz inside the rods at the frequencies indicated in (a) between 0.3871(2rc/a) and
0.38775(2-rc/a).
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Figure 2-21: Flux expulsion: (a) The band directly above WT and a flat band just
below WT in a 2D PPC of LiTaO3 rods with s/a = 0.25 with the frequencies w =
0.3916(27rc/a) and w = 0.403(27rc/a) marked by black dots. The wavevector at both
of these frequencies is 0.43(2r/a). (b) The field pattern of the real part of H at
w = 0.3916(2w-c/a), where = 649. (c) The field pattern of the real part of Hz
at w = 0.403(2zrc/a), where £ = -1773. Note the extreme contrast between the
localization of the field inside the rod in (b) and the complete flux expulsion in (c).
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model for the dielectric function [46]

( + W2 _ iWr (2.12)

where F represents the width of the absorption peak in Im[E(w)]. Sigalas et al. imple-

mented equation 2.12 in transmission calculations to determine the photonic bandgaps

in a PPC [84]. Along the ordinary axis of the LiTaO 3 crystal, = 0.94 THz =

0.013(27rc/a). Although we have focused on instances of optical phenomena very

close to WT, these effects will also occur well away from WT. The second TE band in

the PPC exhibits a transition from the clj to the C'21 localized rod state, ending at

the frequency 0.36(21rc/a). Moreover, the TE band ending at WT inside the polariton

gap extends to above 0.44(27rc/a). Therefore, the node switching and flux expulsion

phenomena can be realized with states removed from WT by at least 3r. Hence, the

perturbations to these states due to losses are negligible, allowing for their experi-

mental observation in a physical crystal. Key to this argument are the large value of

E0 = 41.4 and the small ratio F/wT = 0.032.

2.3.6 Other phenomena

We have chosen to focus on the large n and metallic limits, because the new physics

in 2D versus 1D occurs in these frequency ranges. However, the other two phenomena

mentioned in section 2.2 are still relevant: the transparency condition is unchanged,

and there are bands either close to or intersecting WL. In particular, although no

analytic solution is known to exist for the wavevector at WL, we find that k(WL) is

independent of WT, as was the case in D.

2.4 Losses

In sections 2.2 and 2.3, we provided a comprehensive analysis of the band structures

of photonic crystals in D and 2D composed of lossless polariton materials with a

wide range of phonon frequencies and dielectric limits. As in Sec. 2.3.5, the model to
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correct for losses is the dielectric function

6(W) 1 + _ - W ) (2.13)

where the magnitude of the losses is represented by F. Shown in Fig. 2-22 are the

real and imaginary parts of the dielectric function for LiTaO3, using the parameters

given by Schall et al. [78]: WT = 26.7 x 1012rad/s, WL = 46.9 x 10"2 rad/s, F =

0.94 x 1012rad/s and co = 13.4 along the ordinary axis of the atomic crystal.

Although losses will clearly become important near WT, at frequencies separated

from WT by more than F the dielectric function is mostly unchanged and the effects

of losses should be minimal. For the LiTaO 3 parameters given above, with a lattice

constant of a = 4.5/tm, the second TE band of the lossless crystal will exhibit a

transition from the Acl = 0.293(2rc/a) to the w1 2 = 0.331(27rc/a) localized rod state.

In this range, the real part of the dielectric function is qualitatively equivalent to the

lossless case, and deviations never exceed 3.2%. Moreover, the TE band ending at

WT inside the polariton gap closely follows the lowest TE band of the metallodieletric

crystal, as in Fig. 2-16, which terminates at 0.458(27rc/a). The PPC states can thus be

chosen to lie well within the region of large negative dielectric and yet be sufficiently

removed from WT to minimize the effects of losses.

Therefore, the node switching and flux expulsion phenomena can be realized with

states subject to little perturbation due to their removal from WT by at least 2.5F.

Key to this analysis involving LiTaO 3 are the large value of 6o = 13.4 and the small

ratio F/IWT = 0.032, and other materials with similar properties should also result in

practical experimental utility. Indeed, we have verified these conclusions in Chapter

3 with more extensive calculations including losses in our model PPC system with

LiTaO 3 rods.
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Figure 2-22: The real and imaginary part of the polariton dielectric function for
LiTaO3 with c = 13.4 and a = 4.5,lm, leading to normalized frequencies WT =

0.3628, WL = 0.6372, and F = 0.0128.
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2.5 Conclusion

The ability to study many different optical response regimes using the same physical

PPC structure is an extremely powerful tool. We have presented models for all of the

relevant frequency domains of a polaritonic material: the high-index region below WT,

the metallic region above CoT, and the low-index region near COL. In previous works

[100, 51], the authors have noted the presence of flat, dispersionless bands near oT.

We verify these conclusions and provide a quantitative description for the origin of

these bands related to the localized resonance modes of a high-index slab (D) or rod

(2D). The success of this model is shown to be excellent for a D slab PPC of CsI in

air.

In a 2D square lattice of T1Cl rods, a distinction between TE and TM polariza-

tions is immediately apparent. Anticrossing behavior in the TE modes, contrasted

against the flat TM bands reminiscent of the D PPC band structure, is explained by

the interaction of the lowest metallodielectric TE band with the localized resonances

of a single rod. We demonstrate that this conclusion is correct using a crystal of

SiC rods with a larger value of OT inside the metallodielectric TE bandgap to elimi-

nate the anticrossing interactions. This property provides the unique opportunity to

continuously vary the coupling behavior of a TE band over a very small frequency

range, since the nodal structure of the field inside the polariton rod matches different

resonances of the isolated rod at F and at X.

A further use of the 2D metallodielectric band structure is for predicting the

presence of PPC bands directly above CT in the metallic regime. The locations of

the TE and TM metallodielectric bandgaps play the deciding role in determining if

and where the PPC bands occur. By exploiting the adjacency of the large index and

metallic regimes, it is possible to realize flux expulsion, effecting enormous changes

in the location of the electromagnetic energy over a small frequency range.

In the region near COL, important points to note are the penetration of the phonon-

like band of the bulk polaritonic material near F into the polariton gap due to the air

acting as a defect layer, inducing a nonzero wavevector at OL that we have determined
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analytically in 1D. In addition, there is a characteristic frequency where the crystal

becomes transparent. We have calculated conditions under which this point is above

or below the polariton gap.

For practical applications, the effects of losses in the polaritonic medium are at a

maximum near WT. However, using LiTaO 3 as an example material, we found that the

high index and metallic regimes overlap with frequency ranges where the imaginary

part of E is relatively small. Therefore, all of these phenomena should be readily

accessible experimentally.

We note that it is remarkable that we have been able to observe all of the above

phenomena using a single geometric structure. For wavevectors between F and K,

the continuous variation of the dielectric profile as a function of distance along the

propagation direction introduces the need for a discretization approximation to the

physical structure as well as a significant increase in computational resources. We

have performed preliminary calculations to verify that our conclusions regarding the

shape and position of the bands that leads to the node switching and flux expulsion

phenomena apply conceptually without any major modifications. The ability to vary

the size of the rods and the translational symmetry group of the crystal should provide

a further level of tuneability to make it easier to isolate many of the effects described

in this work.

In addition, our research has provided compelling support for the inclusion of

the vectorial eigenmode expansion method in the set of techniques such as layer

KKR [60] and the multiple multipole method [61], suitable for not only polaritonic

systems but any material with a frequency-dependent optical response. We have

determined the eigenmode basis to be well converged at 40 for all frequency regimes

of the PPC. In both accuracy and efficiency, this technique surpasses the traditional

time-domain and plane-wave method techniques. It provides the means to tackle

further problems involving polaritonic photonic crystals, including dissipative systems

and more complicated crystal structures. Indeed, the complex wavevector solutions

for the eigenmode problem in the case of lossy materials are readily available, and

only numerical problems related to the stability of the modefinder when losses are

82

�_



introduced have prevented a full band structure calculation of a lossy PPC at this

time. With further research, the nascent field of phonon-polariton excitations in

photonic crystals promises to bring more exciting new phenomena and developments.
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Chapter 3

The Nature of Lossy Bloch States

in Polaritonic Photonic Crystals

Segments of this chapter have previously appeared in: Huang, Lidorikis, Jiang, Joannopou-

los, Nelson, Bienstman, and Fan, Phys. Rev. B 69 195111 (2004).

Recent advances [35, 36] in the study of photonic crystals composed of materials

which exhibit phonon-polariton excitations have revealed a variety of optical phe-

nomena that are intimately related to the interplay between the strongly dispersive

nature of these polar media and the structural dispersion of the crystal. These fea-

tures involve (i) small frequency variations in bands with large regions of low group

velocity that produce a polarization-dependent restructuring of the nodes in the field

pattern (node switching) and (ii) transitions across the polariton gap boundary at the

frequency WT that induce flux expulsion to and from the polariton material and the

surrounding ambient dielectric. Previous polaritonic photonic crystal (PPC) band

structure simulations [100, 51, 85, 20, 35, 36] have incorporated the polariton ma-

terial as a lossless frequency-dependent dielectric. However, the node switching and

flux expulsion phenomena are tied directly to the strong frequency-dependence of the

dielectric function near WT, where losses are expected to be greatest.

A simple model for the dielectric function of a polaritonic material with losses is
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Figure 3-1: The polariton dielectric function for LiTaO3 with Eoo = 13.4 and a =
4.5,um, leading to normalized frequencies WT = 0.4, WL = 0.703 and y = 0.014.
The real part, e1, is in black and the imaginary part, 2, is in red. Note the excellent
agreement between the exact value from Eq. 3.1 used in frequency-domain simulations
(solid line) and approximate value derived from time-domain simulations with a = 160
grid points using Eq. 3.5 (circular symbols).
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[46]

(W)= l° (i +Sj_2L -_ i ) '(3.1)
where the magnitude of the losses is characterized by the width -y of the absorption

peak in the imaginary part of . Previous considerations of the effects of losses

in a PPC have been limited. Sigalas et al. implemented Eq. 3.1 in transmission

calculations to determine the photonic bandgaps in a PPC [84]. However, these

simulations relied on a stepwise approximation to the dielectric function that disrupts

the location of the flat bands near WT, which we have previously shown are sensitive to

the rapid changes in dielectric function [35, 36]. Several authors have also investigated

the relationship between spatial and temporal decay in dissipative systems [48, 64].

The states of a periodic system where (r) is complex are in general Bloch states

with complex k and w. Two subspaces of the total set of solutions are bcI = {(k, w):

w E R} and )k = {(k, w): k E R}. The states with real frequency (s) are accessible

computationally using frequency-domain methods, such as the vectorial eigenmode

expansion technique described in Sec. 3.1, while the states with real wave vector

(Dk) can be obtained using a frequency-dependent time-domain method, which we

introduce in Sec. 3.2. These two methods solve fundamentally different problems. If

the frequency is assumed to be real, the resulting wave decays in space, while the time-

domain approach studies a real-wave vector excitation that decays away in time. The

solutions are identical only when is real. Throughout the remainder of this work,

we will refer to the results of frequency-domain simulations as real-w states/band

structures and the results of time-domain simulations as real-k states/band structures.

However, it is important to note that frequency-domain methods can compute states

with complex w as well.

In Sec. 3.3, we show that under certain conditions, the imaginary component of

the wave vector of a real-w state is related to the imaginary frequency component

of a real-k state through a factor of the group velocity. In Sec. 3.4, we analytically

solve for real-w and real-k states of a one-dimensional polaritonic photonic crystal.

We compare the band structure diagrams generated by the two methods, whose axes
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are Re[k] and Re[w]. The real-k states sufficiently removed from WT have frequencies

whose real parts are relatively unperturbed from the corresponding states of a lossless

crystal, and the real-w states that have wave vectors whose real parts are not close to

the edge of the Brillouin zone closely agree with the position of the real-k states on

the band structure diagram. We find that these subsets of b% and O2k provide an ideal

example of the aforementioned correspondence between the imaginary components of

frequency and wave vector. However, the real-w and real-k states with Re[k] near

the edge of the Brillouin zone reveal few similarities, which can be attributed to the

small group velocity at the band edges of the lossless crystal.

In Sec. 3.5, we find that the difference between the real w and real k states

in the band structure of a two-dimensional PPC is much more striking. As in the

ID crystal, the real-k band structure is qualitatively similar to the lossless crystal,

which we have previously discovered exhibits the node switching and flux expulsion

phenomena in the TE polarized bands for the given geometry [35]. As the width of

the absorption loss peak increases, the real-w bands begin to resemble the lowest band

of the metallodielectric crystal that is obtained by replacing the polariton rod with

a perfect metal. This is manifested by a folding back of the bands before they reach

the Brillouin zone edge. This feature again occurs in frequency regimes associated

with low group velocity in the lossless crystal.

Finally, in section 3.6, we analyze the reflection and transmission of a plane-wave

off of a slab consisting of 5 periods of the 2D PPC structure studied in Sec. 3.5. We

find that such a source will excite real-w states which exhibit the node switching and

flux expulsion phenomena at relevant levels of loss, but the localization of the field

is lower than for the corresponding real-k states. The reflection/transmission mea-

surements in a computational experiment using the time-domain method agree with

those using the frequency-domain method, as expected since the source excitation

is the same in each. The reflectivity spectrum reveals the presence of pseudogaps:

frequency ranges where the transmission drops but the reflectivity remains much less

than 1. We attribute these features to the high loss states in the real-w band structure

that exist in the intervals representing the band gaps of the real-k band structure.
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3.1 Frequency-domain method

Our previous studies of PPC band structures utilized a computational technique based

on the vectorial eigenmode expansion [36, 6, 35]. This generic frequency-domain

photonic simulation tool CAMFR (Refs. [6] and [44]) can efficiently and accurately

compute the Bloch states of a system with frequency-dependent dielectrics by dividing

the unit cell into layers where the index profile does not change in the propagation

direction. In each of these layers, we expand the field in the local eigenmodes of that

particular layer. The only approximation is the size of the eigenmode basis, which

we have determined to be well converged at 40.

Using mode matching, we derive frequency-dependent reflection and transmission

matrices that completely describe the scattering behavior of the unit cell:

F 2 = T 12 F1 +R 2 1 B 2 (3.2)

B 1 = R 12 F 1 +T 21 B 2 (3.3)

Here, F and B are column vectors containing the expansion coefficients of the for-

ward and backward propagating fields, respectively. We then impose Bloch boundary

conditions, and recast Eqs. 3.2 and 3.3 as a generalized eigenvalue problem, which

can be solved for each frequency:

T ] [ ] = I 0 [Fl

0 I qB1 R12 T21 qBj

where I is the unit matrix and q = e- i ka. Since the independent variable in these

simulations is frequency, it is trivial to account for any frequency-dependent dielectric

response.
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3.2 Time-domain method

In a periodic time-domain approach, we solve the time-dependent Maxwell equations:

aH &E &P
V x E=-u, V x H = e-+ a +-t

9t H at ±9

where the electric polarization density P describes a forced oscillation at the phonon

frequency WT with damping y: [40, 50]

d2P dP 2 2
dt2 + Y + P = (W - WT E. (3.4)

Assuming a harmonic time dependence e- i t for both E and P, Eq. 3.4 results

in an effective dielectric function E = 1l + i 2 that matches precisely with Eq. 3.1:

= [1 + (wL - ) ( W W )

(WT- W2)2 + Wy2

(W -w ) WY
2 X (W4 - W2) 2+ w22

A Bloch state is generated with real wave vector using a periodic source that produces

a propagating wave which decays in time. We note that due to losses, it is neces-

sary to perform several simulations, each with sources based around different center

frequencies spread throughout the frequency range of interest in the band structure.

Given finite grid spacing, (w) = n(w)2 can be derived from the electric fields at

two points separated by a distance x12 using the relation

i E2 (W)
n(w) = log (3.5)

2rwx1 2 El(w) ('

A comparison between the approximate results of Eq. 3.5 applied to a bulk real-k

simulation with a = 160 grid points and the exact value from Eq. 3.1 used in real-w

simulations is given in Fig. 3-1.
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3.3 Relationship between real w and real k states

We now consider the general problem of comparing real-frequency and real-wave

vector states in lossy systems. A general Bloch state is a solution to the master

equation f(k, w) = 0 of the form (kl + ik 2, W1 + i 2). Consider a point (ko, w0) with

k 0 , wo E . Then,

Of o,f(k, ) = f(ko, wo) + (k - ko) f+ (w -w) o2 [(k - ko), ( -wo)],
k ko,wo ko,wo

(3.6)

where 0 2(x, y) refers to terms of second-order in x and/or y. Assuming they exist,

we consider two solutions of the master equation, (k0, wo + Awl +z iAz2) and (ko +

Ak1 + iAk 2, wo), with Aw 1,2, Akl,2 E R. Ignoring second order terms in Eq. 3.6,

af
-f(ko,wo) = (Akl + iAk 2) a

-f(ko,wo) = (Al + iA 2) o
awk

Therefore,
Ow af of _ aw + iAw2 (37)(3.7)
ak ko Ok ko,w o Akl + ik 2

Eq. 3.7 states that if the real-w and real-k band structures coincide at a particular

(k, ,wo) E (Awl, Akl P 0), then the imaginary components Ak 2 and Aw2 are

related by a factor of the group velocity:

AW 2 = Ak 2 A - k2vg. (3.8)
ko ,wo

This also demonstrates that the group velocity as defined by Eq. 3.7 is purely real

at (k0o, o) in this system. We note that this argument implicitly assumes that losses

are small (n2 < n) so that the perturbations to k and w are small compared with

(ko, wo). These results are independent of the dimensionality of the photonic crystal;

however, the validity of Eq. 3.8 ultimately rests on the applicability of the assumption

Awl = Ak = 0. The factor of vg can be understood by comparing the nature of
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the real-k and real-w states. A real-k state has fields with no spatial decay and

is unaffected by the group velocity, unlike real-w states with complex k that decay

spatially and hence will be affected more strongly by the lossy polariton material

when vg is small.

Previous work [64, 48] has argued that the relationship in Eq. 3.8 holds for small

losses. In particular, Krohkin and Halevi (KH) follow a similar analysis using Taylor

expansion of the master equation, but with less generality. In order to arrive at

Eq. 3.8, KH implicitly assume that a pair of Bloch states exists with /wl = Akl = 0.

In the following section, we will demonstrate that in a D PPC, this condition holds

for the lowest few bands, except very close to the band edges.

However, in a bulk system where k = nw/c, it is easy to show that Eq. 3.8 does not

hold, even for small losses. A solution of the form (ko0 + ik 2, wo) satisfies ko = nlwo0 /

and Ak2 = n2W0/c. Therefore,

Ak 2 = ko n2 (3.9)
ni (wo)

The only solution of the form (ko,wo + Awl + iw 2 ) is

Awl = - ck +cko (3.10)

2
2 +

Aw2 = -cko 2 (3.11)

If we can assume that n(wo) X n(wo + Awl1 + iAw 2 ) (as would be the case, e.g. in

a frequency-independent dielectric material) we can combine Eqs. 3.9 and 3.11:

2 = -cAk 2 = Ak2Re , (3.12)

since 9wl/ak = c/n. This result holds even for large Ak 2 and Aw 2. We see that

because Awl in Eq. 3.10 is no longer zero, it is only the real part of the group velocity

which transforms between Ak2 and Aw2. We note that this conclusion comes from the

natural pairing of states with the same real wave vector component and comparing
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the shift in frequency. A similar analysis assuming Awl = 0 produces

AW2 = cAk 2 /ni. (3.13)

The difference between Eqs. 3.12 and 3.13 stems from the fact that when it is impos-

sible to simultaneously choose Akl = 0 and Awl = 0, there is no logical pairing of

real-k and real-w states for which to apply Eq. 3.8. We will present a more striking

example of this situation in a 2D PPC in Sec. 3.5.

3.4 1D crystals

The one-dimensional PPC problem is useful because it is analytically solvable. We

consider a system of air and LiTaO 3, a material with a large polariton gap from

WT = 26.7 THz to WL = 46.9 THz, cE = 13.4, and y = 0.94 THz. We set a = 4.5um

so that WT = 0.4(27rc/a), WL = 0.703(2irc/a), and ? = 0.014(27rc/a). The slabs have

width dl = d2 = a/2. The Bloch states are given by solutions of

cos(ka) = cos wdi cos n(w)wd2 + n () 2 sin sin, (3.14)
Kc 2 b cm 2w cn(w) cn 

which is solvable through inversion for k if w is given and through Newton's method for

w if k is given. We note that although Eq. 3.14 is generally referred to in the context

of a frequency-domain problem, it is in fact a general solution to the arbitrary 1D

Bloch boundary value problem for a plane wave with complex k and/or w. We plot

the real component of the solutions assuming either real frequency or real wave vector

in Fig. 3-2(a). To stress the low "group velocity" of the higher bands, the inverse

I/v 9 = (dw/dRe[k]) -l obtained from the real-w solutions is shown in Fig. 3-2(b).

Near the band edges, the two methods produce differing results. When k is real,

there are gaps where no Bloch solution exists whose frequency has a real component

within these frequency ranges. However, the band structure for real w is a continuous

line, with a solution lying somewhere within the Brillouin zone for all W.

Nevertheless, the real-k and real-w bands show excellent agreement in the middle
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Figure 3-2: Lossy one-dimensional PPC structures: (a) Comparison of band structure
calculations for the 1D lossy LiTaO3 PPC shown in the inset using frequency-domain
and time-domain approaches. The solid pink line is the real part of the wave vector
solution assuming real frequency in equation 3.14, while the purple circular symbols
are the real part of the frequency solution assuming real wave vector. Note the
presence of frequency gaps only when k is purely real, and coincidence of the two
methods in the middle of the Brillouin zone. (b) The inverse of the "group velocity"
defined by vj 1 = (dw/dRe[k])-1 as calculated from the real-w simulation.

of the Brillouin zone. Therefore, we can choose states such that Aw 1l - 0 and Akl 0

simultaneously, and the coinciding states (k0o + ik 2, wo0) and (ko,wo + i 2) should

be related by a factor of the group velocity. In Fig. 3-3, we compare the values of

Im[w] and Im[k]vg as functions of Re[w]. Equation 3.8 holds extremely well through

the first few bands, showing disagreement only close to T when the terms of second

order in Ak2 in Eq. 3.6 can no longer be ignored and the two band structures cease to

coincide. As w increases, the group velocity becomes much smaller than c, [36] and

so the imaginary wave vector component from real-c calculations is several orders of

magnitude larger than the imaginary frequency component from real-k calculations.

As is the case for lossless crystals [36], the frequencies of the bands of the D PPC

at the midpoint of the Brillouin zone show excellent agreement with the resonance

frequencies given by solutions to

ij = j7rc/dnll(ij) ) (3.15)

where d is the width of the polariton slab(rod). Note that unlike the lossless crystal,
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Figure 3-3: Comparison of the imaginary components of the band structure calcula-
tions in Fig. 3-2. In purple circular symbols is the imaginary part of the frequency
when the wave vector is assumed to be real, while the pink line is the imaginary part
of the wave vector when the frequency is assumed to be real, rescaled by the quantity
'vg. Note the agreement in the first three bands, simultaneous with the coincidence of
the band structure diagrams as described in Sec. 3.3.
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m w(w/2a) W(j cj)

1 0.1667 0.1478 45.81+0.4882i
2 0.2622 0.2564 60.84+1.817i
3 0.3194 0.3179 88.95+5.737i
4 0.3498 0.3498 130.4+15.31i
5 0.3664 0.3671 183.7+34.88i
6 0.3761 0.3775 247.8+71.21i
7 0.3822 0.3843 318.2+134.0i
8 0.3863 0.3893 386.5+242.2i
9 N/A 0.3943 408.5+484.5i

Table 3.1: Comparison of the band frequencies at k = 7r/2a to j from equation 3.15
for a ID PPC of LiTaO3 slabs in air with dl = d2 = a/2. In the last column is the
value of £ at w = Jcj. The resonance at s does not have a corresponding band in the
PPC.

there are only a finite number of solutions to Eq. 3.15 with real w since (w) no

longer blows up at WT. We list these frequencies, as well as the value of the dielectric

function at cj, in Table 3.1.

3.5 2D crystals

We can apply the insights from Secs. 3.3 and 3.4 to the band structures of a two-

dimensional polaritonic photonic crystal, computed using either the frequency-domain

or time-domain method. We consider a 2D photonic crystal of square rods in air with

sides of length s (s/a = 0.25) in a square lattice. The rods are taken to be LiTaO3,

with a = 4.5,um so that WT = 0.4(27rc/a), WL = 0.703(27rc/a) and y = 0.014(27rc/a).

In Fig. 3-4, we plot the band structure from F-X-M-F computed using the time-

domain method from Sec. 3.2. We overlay with dashed lines the band structure

for the metallodielectric crystal obtained by replacing LiTaO3 with a perfect metal.

Similar to a lossless crystal [35, 36], both the TE and TM bands are relatively flat

in most frequency regions below WT, where they resemble rod-localized resonance

modes. We again note the finite number of bands, related to the finite maximum

in E introduced by the absorption peak. The TE bands also display an anticrossing

interaction related to the existence of Bloch states of the geometrically equivalent
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Figure 3-4: Band structure of a square 2D PPC of square LiTaO3 rods in air with
sides of length s/a = 0.25, WT = 0.4(27rc/a), WL = 0.703(27rc/a), Eo = 13.4 and
y = 0.014(27rc/a) along the edge of the irreducible Brillouin zone from F to X to
M to r, calculated using frequency-dependent time-domain simulations. The TE (H
out-of-plane) bands are in red in (a), TM (E out-of-plane) in blue in (b). At distances
greater than ?y away from WT, this band structure shows little difference qualitatively
from that of the crystal of lossless polaritonic material (y = 0) [35]. The TE(TM)
bands of a metallodielectric crystal obtained by replacing LiTaO 3 by a perfect metal
are given by the red(blue) dashed lines.

metallodielectric crystal. There is very little perturbation from the band structure

of the lossless crystal for the bands shown. This is because the frequency is always

many factors of y away from WT, where 2 << El. In this regime, the shape of l1(w),

and hence the spatial modulation of the Bloch state, are virtually unchanged.

Like the lossless crystal, PPC states of TE polarization exist with real component

of frequency both below and above WT, even at frequencies very close to WT. This

allows for the realization of the node switching phenomenon through a variety of field

profiles and the flux expulsion phenomenon over a frequency range down to a few y.

We note that as the dielectric function makes a rapid transition from high-index to

metallic around WT, the TE band inside the polariton gap appears discontinuously as

in the lossless crystal [36]. In addition, for frequencies within 0- ? of WT, the polariton

material is too lossy to observe any states on the same time scales that were used to
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Figure 3-5: Magnetic field profiles (HI) of the TE-polarized states at three represen-
tative points on the band structure diagram in Fig. 3-4. (a) (w = 0.3(27rc/a), k = F)
and (b) (w = 0.355(27rc/a), k = X) show the field localization at the band edges of
the second band. (c) (w = 0.44(2rc/a), k = 0.475(27r/a)) shows the metallic profile
above WT.

generate the rest of the band structure diagram. The two experimental phenomena

that were previously introduced in a lossless crystal [35] can easily be realized in

the lossy crystal. In Fig. 3-5(a-b), we demonstrate node switching through the high

localization of the fields at the edges of the second TE-polarized band, which connects

the TE 1, 1 rod-localized state to the TE1 ,2 state. In Fig. 3-5(c), we verify the existence

of states above WT by showing a state with fields that are essentially expelled from

the polaritonic region.

We found in Sec. 3.4 that the real-W band structure of the D PPC differed

from the real-k band structure near the band edges, where the group velocity is

smallest. An additional feature is introduced in two-dimensional PPCs that further

distinguishes the real-w and real-k states in the regions of low group velocity. The

existence of a lossless band (Im[k] = 0) in the metallodielectric crystal in the frequency

range below WT introduces the possibility that light can choose to circumvent the lossy

polariton rods and concentrate flux in the ambient region. The PPC reveals precisely

this tendency in the real-c band structure in Fig. 3-6, where we plot the TE-polarized

state at each real frequency with the lowest imaginary wave vector component for

the same crystal structure used in Fig. 3-4. We vary the absorption peak width y

between 0.0001(2irc/a) and 0.01(2irc/a) and concentrate on the locations of the first

three photonic band gaps in the real-k band structure. The bands are obtained by
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selecting the Bloch wave vector at each frequency with the smallest absolute value of

Im[k].

As /y increases to - 0.01(27rc/a), the band structure takes on a strikingly different

character. In particular, the anticrossing interaction with the localized rod states that

produced the flat band regions in the lossless crystal becomes greatly reduced, and

the bands fold back and connect within the regions marked in purple shading that

correspond to the bandgaps of the real-k simulations. This surprising band back-

bending, with two superluminal points of infinite group velocity in each band gap,

has also been observed in constant dielectric simulations with complex [63] and at

surface plasmon resonances [2]. The superluminal behavior can be attributed to the

remnants of the photonic band gaps [89], and is found only in frequency ranges where

the imaginary component of the wave vector is prohibitively large. In the context

of Sec. 3.3, it is clear that in a 2D crystal the assumption of the existence of states

with Akl, Awl - 0 and Ak 2, Aw2 small breaks down entirely, and Eq. 3.8 is no longer

relevant. We expect that if corresponding states around k = F and k = X with real

frequency were to exist in the real-w band structure, they would exhibit prohibitively

high losses, due to the low group velocity of the corresponding bands of the lossless

crystal near the resonance frequencies.

We have also marked the locations of the rod resonance frequencies ill = 0.311(27rc/a),

5j21 = 0.359(2rc/a), and w31 = 0.380(2rc/a) solving Jij = Vif2 7j2rc/snl, which all

lie within the band gap regions (22 = 0.374(27rc/a) does not interact with the met-

allodielectric band due to symmetry considerations [36]). The only other resonance

mode of this system with real frequency is :J32 = 0.386(27rc/a).

We associate the features of the y - 0.01(2wrc/a) real-w band structure with the

tendency of the light to prefer the metallodielectric configuration with the flux pre-

dominantly expelled from the polariton region. We find a different situation entirely

when studying the TM-polarized bands of the LiTaO3 crystal. Because WT is below

the lower edge of the fundamental TM band gap of the metallodielectric crystal, the

bands plotted in Fig. 3-7 with y = 0.014(2irc/a) appear similar qualitatively to those

of the 1D crystal since the metallodielectric bands play no role.
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Figure 3-6: Band structure from r to X of the same crystal as in Fig. 3-4 calculated
using real-w simulations, with the loss parameter y varied from 0.0001(27rc/a) to
0.01(27rc/a). As y increases to 0.01(2irc/a), the first bands clearly fail to extend
to the edges of the Brillouin zone. Instead, the band structure begins to mimic
the lowest TE-polarized metallodielectric band, shown as a dashed solid line. The
imaginary component of wave vector (not shown) increases sharply in the gaplike
regions marked in purple.
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Figure 3-7: TM bands of the 2D LiTaO 3 crystal with y = 0.014(27rc/a) from a real-w
simulation. Note the similarities in appearance of the first few bands to the bands of
the 1D PPC in Fig. 3-2(a). The bands are flat, except near the band edges. Moreover,
despite the fact that the bands extend from k = r to k = X, there are no band gaps.
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Figure 3-8: Real (solid) and imaginary (dashed) wave vector components from a
real-w simulation of the TE bands of a crystal of square SiC rods with s/a = 0.25,
Eoo = 6.7, T = 0.5(27rc/a), WL = 0.6(27rc/a) and y = 0.01(27rc/a). Note that the
modes remain close to the edge of the Brillouin zone at frequencies near WT, unlike
the lossless crystal which has flat bands extending from F to X.
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As further evidence of the influence of the metallodielectric crystal states, we can

shift the resonance frequencies into the TE band gap of the metallodielectric crystal

by shifting WT through a change in a. In Fig. 3-8, we plot the TE bands of a 2D

PPC of SiC rods with s/a = 0.25, = 6.7, WT = 0.5(2rc/a), WL = 0.6(27rc/a) and

y = 0.01(27rc/a) (a purely speculative amount of loss for this material). The lowest

resonance frequency Lall is now inside the band gap of the metallodielectric crystal

(cf. Fig. 3-4(a)). Due to the lack of an anticrossing interaction, the bands of the

lossless crystal are very flat in the middle of the Brillouin zone. It is now modes

with real component of k away from the edges of the Brillouin zone that would

have prohibitively large imaginary component due to the low group velocity in the

lossless crystal near these frequencies. The result is that instead of the flat band near

w = 0.473(2wrc/a) that extends from r to X in the lossless crystal, the states with

lowest loss occur only near the wave vector k = X. This effect can also be observed in

the behavior of the TM states near WT in Fig. 3-7, which are clustered around k = rF.

3.6 Relevance to experimental measurements

The question of experimental accessibility arises for the two classes of states discussed

above. A previous experiment using the coherent microwave transient spectroscopy

(COMITS) technique excited particular Bloch states of a 2D crystal using a plane

wave source [75]. Since the frequency is conserved in the transmission of a plane wave

through a slab structure, we expect that only the real-w states will be excited in this

type of experiment if it involves a system with losses.

To simulate the results of a COMITS experiment which probes the node switching

and field expulsion phenomena, we use CAMFR to examine the field profile of the

real-w mode excited in a slab of five periods of the LiTaO 3 crystal structure from Sec.

3.5 by a plane wave at frequencies similar to those studied in Fig. 3-5. At frequencies

below WT, we expect that relatively few periods are necessary to generate the highly

localized states of the system near the resonance frequencies. In Fig. 3-9(a-b), we

demonstrate node switching at frequencies near the TE1,1 and TE1,2 resonances using
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two different values of y: fYl = 0.001(2rc/a) and 72 = 0.014(27rc/a). We compare

the actual level of loss (y2) to a smaller value y7 in order to study the intermediate

changes in the fields between a physical LiTaO3 crystal with losses and the lossless

crystals previously examined [35]. As y increases, the rod localization of the field

clearly decreases as the frequency approaches WT and the field configuration becomes

more metallic. In Fig. 3-9(c), we demonstrate flux expulsion from the polariton

rod using an incident wave with w > WT. The states of the infinite crystal at the

frequencies of interest are identified on a band structure in Fig. 3-9(d). Above WT,

the band structure is virtually unaffected by the amount of loss, since most of the

field is removed from the polariton region.

In order to observe the propagating states with real wave vector that are generated

in a real-k band structure calculation, it may be necessary to mimic the periodic source

conditions of our simulations. This could be possible by coupling to a state in o2k

through a grating on the surface of the photonic crystal. These states decay relatively

slowly, even near the band edges where the full-width at half maximum is at most

50% greater than the states in the middle of the Brillouin zone. If these modes can be

excited, the node switching and flux expulsion phenomena can be observed at higher

levels of loss with more field localization than is possible using real-w states.

We mention that the frequency regimes without states in the real-k band struc-

ture are not true band gaps, because they lack the high reflectivity characteristic of a

lossless photonic band gap [84]. In fact, any crystal with absorptive materials cannot

produce the perfect interference of reflected waves through Bragg scattering that is

considered to produce a normal gap in a lossless crystal. In Fig. 3-10, we compare

the reflection and transmission of a plane wave off of the same 5-layer slab struc-

ture studied in Fig. 3-9 at frequencies near the gap-like regions (pseudogaps) using

both the time-domain and frequency-domain methods. As expected, they show good

agreement since the simulations are reproducing the same computational experiment.

From the perspective of the real-w band structure, this drop in transmission without a

correspondingly high reflectivity can be attributed to coupling to the high-loss real-w

states that exist within the pseudogap regions. Figure 3-10 demonstrates that the
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Figure 3-9: Magnetic field profiles (IHI) of TE-polarized modes excited in a slab of
5 periods of a 2D LiTaO 3 crystal by a plane-wave for two different absorption peak
widths: (i) y = 0.001(27rc/a) and (ii) 0.014(27rc/a). (a) w = 0.312(2rc/a) and (b)
w = 0.356(27rc/a) show the field localized inside the rod at wave vectors near the
edges of the Brillouin zone and represent the node switching phenomenon. Note that
the rod localization of the fields for becomes steadily worse as 'y increases due to the
increasing preference for a metalliclike configuration. In (a)-(ii), the reduction in rod
localization is very slight since w is far away from WT; the change in field profile is
due to the fact that the wave vector is shifted by 0.2257r/a. (c) The field profile at
w = 0.44(2rc/a) is highly metallic, and in combination with the states in (b) verifies
the existence of the flux expulsion phenomenon. (d) The states of the infinite crystal
corresponding to the modes in (a-c) identified on a real-w band structure diagram by
black dots.
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maximum value of the reflectivity in the pseudogap regions clearly decreases as the

frequency approaches the absorption peak at WT = 0.4 and the magnitude of Im[k]

within the pseudogaps increases.

3.7 Conclusion

In conclusion, we have extended our investigations of the novel optical phenomena in

PPCs to lossy crystals, and presented a formalism for understanding the two classes

of states, b: (real frequency) and k (real wave vector). In a 1D PPC, we have found

that due to the coincidence of the real-w and real-k band structures, the time decay

represented by the imaginary frequency component of the real-k states is related to

the spatial decay represented by the imaginary wave vector component of the real-w

state with the same real wave vector and frequency components through a factor of

the group velocity.

However, as the width of the absorption peak increases, the real-m band structure

of a 2D PPC consisting of square LiTaO3 rods diverges from the real-k band structure,

which is relatively unperturbed from previous simulations for a lossless crystal [35],

as the absorption peak width y increases. Any states near the edges of the Brillouin

zone could only exist with extremely high spatial decay rates, which we associate

with the low group velocity. Instead, the states with lowest loss are are metalliclike

with high localization in the surrounding ambient dielectric region, exhibited in the

band structure by a folding of the bands before they reach F or X. As ?y reaches the

experimentally measured value for LiTaO3, the entire real-w band structure below WT

closely resembles that of a metallodielectric crystal with the polariton rods replaced

by a perfect metal.

Our analysis applies equally well to the broader class of periodic structures con-

taining any lossy materials, not only polaritonic media. Ultimately, we conclude

that both computational techniques used in this work provide accurate and efficient

means to solve for two distinct classes of states. The variables which effect the simi-

larities between these two sets extends beyond simply the absorption peak width oy,
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Figure 3-10: Reflectivity and transmission off five layers of a 2D square PPC of
square LiTaO3 rods with y = 0.001(27rc/a). The reflectivity is shown in red, the
transmission in green. Real-w simulations with 40 eigenmodes are shown with circular
symbols, real-k simulations with a = 160 grid points are shown with solid lines. Note
the pseudogap regions near the center frequencies of 0.309(27rc/a) and 0.357(27rc/a),
where the transmission shows a marked decrease. The reflectivity in these frequency
ranges is much lower than 1, and in fact displays no noticeable features near the
second pseudogap for 1 = 0.014 (not shown). The small shift ( 0.5%) between the
two data sets is due to the fact that the results of time-domain simulations converge
from below as a function of the grid resolution, while the resuls of frequency-domain
simulations converge from above as a function of the number of eigenmodes.
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but rather also depends strongly on the geometry of the structure. In this light, the

distinction between real-k and real-w states must also be considered in experiments

when attempting to reproduce theoretical predictions in lossy systems.
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Chapter 4

Negative Effective Permeability in

Polaritonic Photonic Crystals

Segments of this chapter will appear in the July 26, 2004 issue of Applied Physics

Letters.

4.1 Introduction

Recent interest in metamaterials, periodic structures of conducting elements with bulk

effective electromagnetic scattering properties, has been fueled by the demonstration

of a split-ring resonator (SRR) composite with negative effective magnetic permeabil-

ity () [66]. In combination with an array of metallic wires with negative effective

permittivity eff [67], a system with negative eff behaves as a left-handed material

with negative refractive index [86, 88], resulting in several reversed electromagnetic-

wave properties [95] including negative refraction [79].

An alternate approach to constructing metamaterials is to use dielectric elements:

O'Brien and Pendry [63] have shown that a 2D square photonic crystal of circular

ferroelectric rods have a resonance in Ieff in the millimeter wavelength range where

E is extremely large ( 200 + 5i). It is of interest to identify other materials with

high linear response characteristics that could produce the same magnetic resonance

effect in other wavelength ranges. We will demonstrate that a negative effective
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permeability can be obtained in a large wavelength range of 2m to 10OCm in

a simple 2D photonic crystal system using a variety of common phonon-polariton

materials.

4.2 Effective indices in metamaterials

The system we will consider is shown in Fig. 4-1. We approximate a semi-infinite

slab with 210 periods of a photonic crystal structure with square polariton rods of side

length s and a lattice constant a, terminated on either side by air. We have chosen

square rather than circular rods to simplify fabrication. Using the frequency-domain

vectorial eigenmode expansion code CAMFR [6], we calculate the reflected field Er

in the air region for a given incident field Ei at the boundary defined by the plane

at a distance a/2 from the center of the first column of rods. The ratio of Er to Ei

at the boundary may be thought of as the reflectivity from a bulk effective medium

with permittivity eff and permeability ueff. The effective indices of this medium can

be determined from the complex reflectivity r using [63]

1 +r neff
Zeff - ' 6 ef Zeff /e neffZeff, (4.1)

where neff = ck/w(k) is determined from the complex band structure.

A simple model for the dielectric function of a polaritonic material with losses is

[46]

E(W) = 1 - i 2 = Eoo 1 + W.2 _ 2 (4.2)

where the magnitude of dissipation is characterized by the width y of the absorption

peak in the imaginary part of s. The real part of the index of refraction n = V/W)

can become large below WT, the location of the phonon resonance, leading to Mie

resonances for sufficiently small y [54, 35, 36, 37]. For y = 0, the Mie resonances of

a square polaritonic rod occur at [35, 36]

2 1 (2 + Q2 _ (Lw2 + Q 2 C2' (4)
Wim 2WL 1M VL 1M) 1~m T 43
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Figure 4-1: The reflected waves generated by a slab structure composed of 210 layers
of a two-dimensional square photonic crystal structure with square rods of a given
polariton material may be thought of as coming from the interface with a bulk effective
medium. The effective magnetic properties have ,Leff < 0 in certain frequency regimes.

where Qlm = 7rc(12 +m 2)1/2 /s /. These localized modes couple to the bands derived

from the metallodielectric (MD) crystal created by replacing the polariton material

with a perfect metal. Whenever the Mie resonances lie outside the bandgaps of

the MD crystal, a band shape that exhibits backbending [2] (see Fig. 4-2(a)) in low-

transmission pseudogap regions is produced, similar to the band shape of for constant

dielectric structure proposed by O'Brien and Pendry [63].

4.3 Results

For LiTaO3, a polaritonic material which is extensively used experimentally [78, 14],

WT = 26.7 THz, WL = 46.9 THz, and Eoo = 13.4. The low-frequency dielectric limit

has a relatively high value of o = E,,co2/c = 41.4, a key factor in observing Mie

resonance behavior in the presence of dissipation. To our knowledge, it is the only

material for which the loss parameter ?y has been accurately measured: y = 0.94

THz [78]. In order for the effective medium approximation to be valid, the operating

wavelength must be much larger than the lattice constant [87]. This condition is easily

satisfied by choosing a much smaller than 2 rc/wT, since all of the Mie resonances lie
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Figure 4-2: Band structure and effective indices in the LiTaO3 polaritonic photonic
crystal shown in Fig. 4-1 with a = 0.87,Lm and s = 0.89a. Note the backbending
shape of the band in (a) and the resonant shape in (b) E,ff and (c) leff. The yellow
shaded region in (a) indicates the approximate position of the pseudogap in the infinite
photonic crystal. The gray shaded region in (c) indicates the frequency interval where
/eff < 0.

below WT. For the TE polarization, it will therefore always be the case that the

resonances ci,m overlap with the lowest band of the MD crystal [36].

In Fig. 4-2, we compute the band structure and effective permittivity and perme-

ability for a 1024-layer slab with a = 0.87/um and s = 0.89a at frequencies inside the

pseudogap region near ll = 0.071(27rc/a). We find that there is a resonant shape in

Jeff and pIeff, with /,eff < 0 over a frequency range I1 of width Acw = 1.18 THz. This

corresponds to a wavelength range AA = 0.6b/m around the wavelength A0 = 12.5,um,

where /eff is minimized.

We have chosen s and a to minimize A0, while maintaining at least a single fre-

quency where A/eff = -1. The Mie resonances are localized, thus their frequencies

scale only with s, not a. As s -+ 0, L]1 -- WT, which would result in the ultimate

minimization of A0 were it not for the large losses in this frequency regime. Therefore,

we choose a rod size s large enough that &1l is reasonably far away from the phonon

absorption peak. Changing a has a small effect on the band structure: as a decreases,
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the mode wave vector k becomes more lossy. Thus, we reduce a until losses are too

large to permit Peff = -1 anywhere within the first pseudogap. We then tune s to

achieve the smallest possible A0.

The operating wavelength A0 of this polaritonic photonic crystal medium lies in

a completely different part of the electromagnetic spectrum from the microwave-

frequency ferroelectric system studied by O'Brien and Pendry [63]. In addition, other

polaritonic media can be used in place of LiTaO 3 to create an effective medium with

negative Peff in other wavelength ranges of interest. All that is required for resonant

/Leff is a combination of a large value of 1 and a small lossy component 2 at all.

The maximum in El occurs at the frequency wm = /J-a&T', where

2 - 1max = + 1L Ti (4.4)

For the LitaO3 crystal in Fig. 4-2, m
ax = 416. However, at that point the material

is far too lossy to exhibit much field penetration. At the first Mie resonance, the real

component 1 = 109 is large, while the imaginary component 2 = 9.3 is not yet

high enough to prohibit localized modes in the polariton rod. In Fig. 4-3, we plot

the maximal value of 1 for 27 different polaritonic materials. Because experimental

values of the loss factor are not available for most of these materials, we show results

for y W= T/30 and a = wT/300. Clearly, T1Br, TlC1, and LiTaO3 are (the only) ideal

candidates if y = wT/30. However, since E max changes roughly linearly with 1/y, a

reduction in y by an order of magnitude transforms the other materials into viable

options to realize negative [eff. Of these, the most interesting is SiC, which has the

largest WT = 149 THz.

In Table 4.1, we list the (s, a) combinations which minimizes A0 for several po-

laritonic media (TlBr, TlC1, LiTaO3 and SiC) with phonon frequencies ranging from

8.1 THz to 149 THz [46]. Since absorption peak width estimates are not available,

we have assumed that y = WT/30 for T1Cl and T1Br, as in LiTaO 3. Due to their high

dielectric response characteristics at low frequency, the effective permeability exhibits

a resonance at the respective ll11 with similar characteristics to the LiTaO3 structure.
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Figure 4-3: Maximal value of 1l from Eq. 4.4 for 27 different polaritonic materials.
With an assumed loss of y = T/30 (blue circles, left axis), the only viable media
to realize negative effective permeability are T1Br, T1C1, and LiTaO 3. However, with
y = WT/300 (red squares, right axis), every material is a reasonable option.
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material CT Co Eo a s/a Ao A 
TlBr 8.1 29.8 5.4 3.22 0.88 41.4 1.9
T1C1 12 31.9 5.1 2.05 0.90 27.9 1.3

LiTaO 3 26.7 41.4 13.4 0.87 0.89 12.5 0.6
SiC 149 9.6 6.7 0.15 0.88 2.04 0.01

Table 4.1: A comparison of minimal operating wavelengths for negative effective
permeability in 2D square photonic crystals composed of square rods of various po-
laritonic materials. The phonon frequency cT is given in terahertz, while the lattice
constant a and wavelengths A0 and AA are given in microns. The loss factor is
assumed to be wT/30 for TlBr and TlC1 and wT/300 for SiC. A0 ranges from 2 to 41
microns, and in each case A0 is much larger than the lattice constant a.

We demonstrate that for a material like SiC, which has a much smaller Co, a eff

resonance with ,Ueff < -1 results if y is as small as WT/300.

4.4 Discussion

Since the polaritonic Mie resonance is localized, the resonant Peff is not dependent on

the symmetry of the lattice. Indeed, we have found ,ff < 0 near cill for a triangular

lattice of square rods with the same size as those used in Fig. 4-2. In addition,

the frequency dispersion of e(w) has little effect on the eff resonance; similar results

are obtained using constant = (Wll). The important quantities are the size and

shape of the polariton rod, which determine the frequency of the Mie resonances.

We note that by changing s and a, we can easily vary A0 by a factor of - 2 - 3.

Therefore, operating wavelengths in the range 2 to - 100 microns are attainable with

different structures using only the four polaritonic materials in Table 4.1. However,

it is important to note that some ambiguity in the effective indices arises from the

freedom of choice in the placement of the air/effective medium interface [87]. Any

inconsistencies can be minimized by using a lattice constant only slightly larger than

the rod size.

The characteristic back-bending band shape near &11 also occurs at higher-order

Mie resonances, but the strength of the peff resonance is greatly reduced. This is a

property not solely due to the decrease in the ratio E1/E2 as w approaches WT; a similar
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reduction occurs in constant dielectric structures. If we consider a system like the one

in Fig. 4-1, with s = 0.8a and a fixed = e + 5i, a resonance with negative iPeff near

the frequency d;31 does not occur unless e1 > 116. In contrast, negative permeability

is found near CAll for E1 > 60 and the minimum value of Re[/eff] for e1 = 116 is -2.9.

In summary, we have shown that two-dimensional polaritonic photonic crystals

can act as metamaterials with negative effective permeability due to their high-index

behavior below the phonon resonance. In addition, we have demonstrated that the

frequency range of resonant eff behavior can be predicted by studying the locations

of the Mie resonances and the corresponding magnitude of c. Furthermore, we have

shown that a variety of polaritonic media may be useful to achieve negative perme-

ability over a wide range of operating wavelengths from 2 to -100 microns. Since

the operating wavelength is primarily a function only of the shape and size of the

polariton rod, it is likely that similar resonant eff behavior can be obtained in three-

dimensional polaritonic photonic crystals. Finally, the metallic behavior ( < 0) of

polariton materials above WT suggests it may be possible to construct left-handed ma-

terials with eff < 0 and ,eff < 0 simultaneously using a hybrid structures of multiple

polariton elements [82].
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Chapter 5

Microscopic Properties of Melting

at the Surface of Semiconductors

Segments of this chapter have been submitted for publication in Phys. Rev. Lett.

5.1 Introduction

Melting is the phase transition from a solid phase to a liquid phase. An all too familiar

example is the melting of ice to water. However, a complete understanding of this

complicated phenomenon has not yet been achieved [94, 7, 13, 12, 8, 9]. Nevertheless,

among all the complexities, there are several unifying principles governing all melting

behaviors. It has long been understood that melting usually initiates from defects

within the otherwise perfectly periodic crystal [8]. They can be defects inside the

bulk such as point defects, line defects and grain boundaries [12, 7, 69, 68]. They can

also be free surfaces [9], where the crystal abruptly stops. The role of free surfaces in

initiating melting has been studied both from an experimental point of view [1, 11, 15]

and from theoretical investigations [68, 92]. Surface melting is the stage where the

bulk material still exists in the solid phase, while the surface of the material, due to

its lower coordination, has already started the phase transition into liquid.

It was shown experimentally by Daeges and coworkers that thin (macroscopic)

coatings of a different material can change the melting behavior of the substrate. In

117



Ref. [15], they described an experiment where a Ag crystal coated with a -, 10 - 20

micron-thick layer of Au achieved superheating of 25 K for one minute. By replacing

the Ag-air interface with a Ag-Au interface, the core Ag material does not melt.

Similar superheating behavior has also been observed in quartz/cristobalite crystals

surrounded by fused silica [1] and Ar bubbles in Al [76]. Qualitatively, this can be

explained by the following argument. The surface is known to play an important role

in initiating melting. If the surface of a lower melting point material is coated with

a higher melting point material, then even at a temperature higher than the lower

melting point, the core material will not melt since its surface is maintained in a solid

phase by the coating.

To investigate the role played by the interface in the melting transition, we ask

whether such superheating phenomena are possible when the coating is a minimal

perturbation to the underlying surface. We will study the (110) surface of GaAs,

which is the natural cleavage plane of GaAs, and the corresponding surface of Ge.

With the only significant difference being their covalent or ionic bonding nature, a

single monolayer of GaAs on Ge or vice versa can be considered a textbook example of

how a coating could alter the melting behavior of a substrate. Although Ge and GaAs

have almost identical lattice constants and average masses, the melting temperature

of GaAs is higher than that of Ge by over 300 K. So what might happen if Ge and

GaAs coexist at a temperature in between their melting points? We approach the

problem by looking at the microscopic behavior of melting at the surface. In doing

so, we hope to shed light on how one may control or alter the behavior of materials

near the melting point, which could have implications for high-temperature materials

applications.

The different melting points of the two materials is intriguing. Ge melts at

Tm(Ge) = 1211 K, while GaAs remains solid until Tm(GaAs) = 1540 K [45]. The two

systems have almost identical lattice constants. Considering that Ga, Ge, and As are

three consecutive elements in the periodic table, the ion masses are very similar, and

in fact the average mass is nearly identical in Ge and GaAs. Thus, the largest differ-

ence between the two bulk materials is the bonding character. The tetrahedral bonds
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in Ge are fully covalent, while those in GaAs have some amount of ionic character.

Surprisingly, the formation enthalpy for Ge is 264 kJ/mol, more than 25% larger

than that of GaAs at 210 kJ/mol. Thus, it takes less energy to "pull" a GaAs crystal

apart than it takes to do the same to a Ge crystal. Yet, Ge melts at a temperature

300 K lower than what is necessary to melt GaAs. That is to say, it is easier to change

Ge from solid to liquid than GaAs, but it is easier to change GaAs all the way to gas

than it is for Ge.

On the (110) surface, another prominent difference between the two systems exists.

The top layer GaAs dimers buckle in such a way that As atom moves away from the

surface and its dangling bond is completely filled, while the Ga atom sinks into the

surface with an empty dangling bond. The choice of the buckling in this case is

determined by the bond energy difference between the dangling bonds of the surface

Ga and As atoms. For the Ge surface, however, the two dangling bonds of the Ge

dimer atoms are degenerate. The buckling involves a spontaneous symmetry breaking.

The energy difference of the resulting bonds are smaller than that of GaAs. Therefore,

the Ge surface band gap is smaller and is easier to metallize, which we will suggest

could be a prelude to melting.

In Sec. 5.2, we describe the ab-initio density functional technique used to study the

electronic structure of a surface at finite temperature. In Sec. 5.3, we demonstrate that

a coating of GaAs only a single-monolayer in thickness can cause superheating in a Ge

crystal. We also demonstrate how the band structure and charge density information

provides new information about the timing and mechanisms of the melting transition.

In Sec. 5.4, we demonstrate that a single-monolayer coating of Ge can induce

melting in a GaAs crystal at a temperature in between their melting points. In

Sec. 5.5, we suggest that melting is induced by the penetration of surface atoms

that have broken bonds with the rest of the surface layer into the bulk. Finally, in

Sec. 5.6, we discuss potential sources of error and unanswered questions about melting

at interfaces.
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5.2 Computational details

The simulations in this work utilize a molecular dynamics approach based on pseu-

dopotential density functional theory energy minimization intended to provide an

accurate description of the Ga and As atoms.

5.2.1 Density functional molecular dynamics

The time evolution of the system is determined according to the Born-Oppenheimer

approximation, separating the ion degrees of freedom from the electron degrees of

freedom. At each time step, the ion locations are fed into the electronic calculations,

where density functional theory is used to minimize the total electronic free energy.

The forces on the ions are then calculated and the ions moved using classical molecular

dynamics.

The positions of the ions are updated using the Verlet Algorithm, which uses a

standard discretization of Newton's equation:

a2x(t) dt 2

m at) = F(t) = xi+ = 2xi - xi_ + -Fi. (5.1)
,9t2 m

The temperature is maintained using a Nose thermostat approach, whereby the ve-

locities are rescaled after each step to restore a fixed total kinetic energy. In this, our

study follows the same spirit as an earlier work done by Tosatti and coworkers [92],

which used the same method to study the melting of the Ge(111) surface.

There have been previous studies of melting with empirical potentials [69]. For

example, for Si melting there exist high quality three-body potentials such as those

from Stillinger and Weber, which could reproduce a wide variety of physical properties

[90]. These studies usually can access a much longer time scale than corresponding

quantum mechanical studies, because of the lower computational requirement of em-

pirical potentials. However, for heteropolar materials such as GaAs, a high quality

empirical potential which works well around the melting temperature has not yet

been produced. In addition, the quantum mechanical treatment of the electrons also
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has the added benefit that it allows us to obtain the electronic band structure and

the charge density information, in addition to ion trajectories.

5.2.2 Supercells

The computational supercells that we consider are composed of four free 3 x 3 layers

(18 atoms/layer) of either Ge or GaAs, capped by a frozen layer terminated with

Hydrogen atoms. The frozen layer is placed at z = 0. To eliminate interactions

between the top (surface) layer and the Hydrogen layer in the cell above, the supercells

are separated by - 15a.u. of vacuum [92]. In Sec. 5.3, we will compare the melting

dynamics of the bare Ge(110) surface in Fig. 5-1(a) and the GaAs monolayer-coated

surface [Ge(110)+GaAs] in Fig. 5-1(b). In Sec. 5.4, we will compare the melting

dynamics of the bare GaAs(110) surface in Fig. 5-1(c) and the Ge monolayer-coated

surface [GaAs(110)+Ge] in Fig. 5-1(d). Simulations were performed using the freely-

available plane-wave density-functional code DFT++ [39]. Unless otherwise noted,

we have used a cutoff energy of 5 hartrees and 200 bands in the electronic iterations,

and a time step of dt = 16fs for the ionic motion. Due to the large size of the

supercell, it is only necessary to compute the density at the wavevector k = F. This

has allowed us to study time scales of up to - 12ps, more than enough to compare

melting behaviors in these surface structures.

5.3 Superheating a Germanium surface

We first compare the dynamics of a Ge surface at 1240 K to a similar structure

where the top layer of Ge has been replaced by a GaAs monolayer. Due to the

difference in melting temperatures, we expect that for T > 1211K and T < 1540K,

a bare Ge surface will go into a liquid phase rather quickly, while atoms on a GaAs

surface should have very slight diffusion. Can a microscopic, single-monolayer coating

produce a significant change in the state of the surface and/or bulk? Similar to the

gold-on-silver experiments of Daeges et al. [15], the GaAs-on-Ge arrangement could

lead to a better resistance to melting because of the "tough surface character" of the
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Figure 5-1: Computational supercells: (a) the (110) surface of Ge [Ge(110)]; (b) the
Ge(110) surface with a single-monolayer coating of GaAs [Ge(l10)+GaAs]; (c) the
(110) surface of GaAs [GaAs(110)]; and (d) the GaAs(110) surface with a single-
monolayer coating of Ge [GaAs(l10)+Ge]. Ge atoms are shown in green, Ga in blue,
Ar in red, and H in white.
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Figure 5-2: Ion trajectories of the atoms on a Ge(110) surface at 1240 K, with (bot-
tom) and without (top) a single-monolayer coating of GaAs, as they appear looking
down the (110) direction. Ga trajectories are shown in blue, Ar in red, and Ge in
green. The black diamonds (Ga), ovals (Ar), and rectangles (Ge) mark the initial
positions of the atoms at t = 0. Note the decrease in diffusive motion of the Ge atoms
in the presence of a GaAs monolayer coating.

GaAs layer.

5.3.1 Ion trajectories

In Fig. 5-2, we plot the trajectories of the ions in each layer projected onto the (x, y)

plane over a 10ps period, starting with an equilibrium T = 0 configuration. While

there are still bond-breaking events in the GaAs monolayer and the two Ge layers

below, it is clear that the motion of the Ge ions in the second, third, and fourth layers

is dramatically slowed by the presence of the GaAs coating. Furthermore, the fourth

layer appears to be more or less in the ideal crystal positions; that is, completely

solid. We will show shortly that this is not an effect of the frozen layer below.
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Figure 5-3: Mean-square displacement (R2 ) averaged over the atoms within each of
the top four layers of a Ge(110) surface at 1240K (a) without and (b) with a monolayer
coating of GaAs.

A clear signal that distinguishes a melted liquid from an amophous solid is the

existence of normal diffusive motion characterized by a linear increase in the mean-

square displacement (AR 2 ) as time progresses [92]. In the surface systems we have

considered, the motion is primarily in planes normal to the surface, so we consider

AR 2 = AX 2 + Ay2 (5.2)

and ignore the motion in the z-direction. In Fig. 5-3, we plot (R2) for the atoms in

each layer of the Ge(110) surface, with and without a GaAs-monolayer coating. All

four free layers of the Ge(110) surface appear liquid. In the GaAs-coated system,

the GaAs monolayer and the first two underlying Ge layers have melted, but the

mean-square displacement is roughly constant for the still-solid fourth layer whose

atoms are essentially vibrating about their initial positions. Thus, we conclude that

29 degrees of superheating in the fourth layer (and the remainder of the bulk) can

be achieved with a single-monolayer coating of GaAs. This surface melting state is

similar to the state observed on the Ge(111) surface by Tosatti and coworkers [92]

and represents a significant change from the rapid melting of the homogeneous Ge

surface.

The diffusion constant Dj for the atoms in a liquid layer j can be obtained from
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T (K) Ge(11O) surface Ge(110)+GaAs surface
D Ge D Ge D Ge D Ge DGaAs DGe D Ge D Ge

1240 80 120 120 10 70 50 30 N/A
1270 90 80 120 10 130 80 40 2

1540 800 800 400 100 100 100 200 60

Table 5.1: Diffusion constant averaged over layer. Columns 2-5 correspond to the
free layers of a Ge(110) surface, while columns 6-9 correspond to the layers of a
Ge(110)+GaAs surface. All quantities are given in units of 10- 6cm 2/s.

a fit to the equation

(AR2)j (t) = 4Djt (5.3)

(see Table 5.1). The factor of 4, rather than 6, in Eq. 5.3 is due to the fact that the

diffusive motion is primarily two-dimensional, as previuosly discussed. The diffusion

constant of the Ge atoms in the second layer, D2, is reduced by a factor of 2.4 by the

GaAs coating, while D3 is reduced by a factor of 4.

The contrast between the diffusive motion of the top three layers of the Ge(110)+GaAs

surface and the near-fixed positions of the atoms in the fourth layer prompts the ques-

tion of whether this is an artifact due to the finite thickness of the slab and the fact

that the bottom layer of Ge atoms is frozen in our simulation. To check if the atoms

in the fourth layer are restricted in their motion because of their bonds with the

fixed layer, we examine the total kinetic energies of each layer, converted to effective

temperatures using the relation

KE 1 2 3
KEj - ivi2 2kBTj, (5.4)

where vi is the velocity of atom i in each layer j.

In Fig. 5-4, we observe that the effective temperatures Tj quickly reach equilibrium

around the target of 1240 K. Thus, we conclude that although the fourth layer has far

less mean-square-deviation, these atoms have significant kinetic energy on par with

the other layers. These atoms are moving vigorously despite the frozen layer below,

they are simply not diffusing as much as those in the layers above.
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Figure 5-4: The kinetic energy of the Ge(llO)+GaAs surface at 1240 K (orange line),
averaged over the atoms in each layer and converted to an effective temperature.
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Figure 5-5: The band energies of the (a) Ge(110) and (b) Ge(110)+GaAs surfaces at
1240 K. Valence bands are in red and conduction bands in green.

5.3.2 Electronic signals of melting

Phillpot et al. use the magnitude of the structure factor in each layer to pinpoint

the progression of melting from a defect in a crystalline system [68]. In addition, our

ab-initio density functional calculations provide other information that can be used

to pinpoint the time that the melting transition occurs. In Fig. 5-5, we plot the band

energies at the F-point for the Ge(110) and Ge(110)+GaAs surfaces. In Fig. 5-6, we

plot the band gap energy difference, Aw, between the highest conduction band and

the lowest valence band for the same structures. It is clear that the Ge(110) band

gap disappears (w[Ge] <- O.1eV) very quickly since the temperature is 29 degrees

above the melting point. However, the band gap for the Ge(110)+GaAs surface

slowly collapses over the first 6 picoseconds. This correlates with the reduction of

diffusive motion of the Ge atoms in the two layers below the GaAs monolayer coating

in Fig. 5-3. We note that the calculated band gap is smaller than expected due to

the local density approximation and the existence of surface states.

To take a closer look at the electronic mechanism what initiates the collapse of

the band gap, we study the charge distribution of the Ge(110)+GaAs system during

the time period up to t = 6 ps. Shown in Fig. 5-7 is the electron charge density in

slices through planes of maximum average density perpendicular to the x and z axes

before the run starts and after 4 and 6 ps. The time t = 4 ps is chosen because this
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Figure 5-6: The bandgap energy in eV for the Ge(110) and Ge(110)+GaAs surfaces
at 1240 K. Notice the collapse of the Ge(110)+GaAs bandgap at t 6000fs (orange
line), signifying a change in character from semiconducting to metallic.
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(b) t = 4 ps

Figure 5-7: Slices of the charge density of the Ge(110)+GaAs surface at (a) t = 0 ps,
(b) t = 4 fs, and (c) t = 6 ps. The top row of panels shows the view looking down the
surface in planes z = 1.8, 5.1, 8.4, 11.6, 14.9 a.u. The bottom row of panels shows the
side view looking down the x-axis in planes x = 0.5,4.2, 7.9, 11.6, 15.3, 19 a.u. The
planes are chosen by maximum average density. The color scheme is indicated on the
right with maximum density in red and zero density in white.

marks the approximate beginning of the linearity of (R 2) (see Fig. 5-3). There are

little changes to the bottom free layer, so we focus on the top three layers. Comparing

Figs. 5-7(a) and (b), many of the atoms in the first(second) layers have reduced their

coordination number from 3(4) to either 1 or 2. After 6 ps, close to the point of band

gap collapse, many bonds are broken throughout the top three layers. In addition,

the electrons are more spread out, which would explain the metallic behavior of the

system.

Intuitively, the level of superheating that can be achieved will decrease with in-

creasing temperature, until eventually the GaAs monolayer-coating ceases to provide

sufficient resistance against the melting of the bulk. Where and how this transition

occurs cannot be quantitatively addressed by our simulations due to the finite height

of our supercell, but we have studied the Ge(110) and Ge(110)+GaAs surfaces at

two other temperatures to get a rough idea of the deterioration of the coating perfor-

mance. In Table 5.1, we list the diffusion constants for each layer at T = 1240, 1270,
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and 1540 K, the experimental melting point of GaAs. There are several sources of

error (see Discussion in Sec. 5.6) that are increasingly important as T is increased.

Nevertheless, our simulations show that when T reaches 1270 K, the third Ge layer

beneath the GaAs coating begins to melt, and by the GaAs melting temperature of

1540 K, all Ge layers are thorougly mixed in a liquid form, albeit with a noticeable

reduction in diffusion constant compared to the bare Ge(110) surface. Ultimately, to

study the superheating phenomenon at higher temperatures will require adding more

free-moving layers to the bulk.

5.4 Induced melting in a Gallium Arsenide surface

Given that the behavior of the Ge surface is so strongly regulated by the presence of a

GaAs coating, we next ask what effect a single-monolayer coating of Ge will have on a

GaAs surface. It is clear from Figs. 5-2 and 5-3 that a Ge surface will melt at 1240 K,

but we expect that a GaAs surface would remain solid 300 degrees below its melting

point. We might expect the coated surface to behave in one of the following three

ways: (i) the Ge coating will form a liquid monolayer on top of a solid GaAs bulk, (ii)

the stable GaAs bulk will stabilize the Ge monolayer, or (iii) the Ge monolayer will

become disordered and induce melting in the underlying GaAs surface. In Fig. 5-8,

we compare the trajectories of the ions in each layer of a GaAs surface to the system

where the top layer has been replaced by Ge atoms. We find that the ion dynamics

are dominated by the character of the top layer, even more strongly than the Ge(110)

surfaces in Sec. 5.3. Unsurprisingly, the bare GaAs surface exhibits very little motion

in any layer. This is in stark contrast to the coated GaAs(ll0)+Ge surface where

both the Ge atoms and the underlying layer of GaAs are highly diffusive.

As in Sec. 5.3, we use the mean-square displacement, band structure, and charge

density to study the details of the melting process. In Fig. 5-9, we plot the average

displacement of the atoms in the top two layers of each system. As expected, we find

a constant (R 2) for each layer of the bare GaAs(110) surface, signifying nondiffusive

motion and a solid structure. However, (R 2) is linear in time for the top two layers of
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Figure 5-8: Ion trajectories of the top two layers of a GaAs surface at 1240 K, with
(bottom) and without (top) a single-monolayer coating of Ge, as they appear looking
down the (110) direction. Color scheme is the same as in Fig. 5-2. Note how the Ge
monolayer induces melting in the underlying layer of the GaAs crystal.
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Layer DGaAs(110) DGaAs(110)+Ge

1 (GaAs/Ge) N/A 40
2 (GaAs) N/A 10

Table 5.2: Diffusion constant averaged over layer for the top two layers of the
GaAs(110) and GaAs(110)+Ge surfaces. All values are given in units of 10- 6 cm2/s.
The third and fourth layers of the GaAs(110)+Ge surface and all layers of the
GaAs(110) surface have a constant, rather than linear, (R2) vs. t relationship.

0.0
0 2 4 6 8

Time (ps)
0 0

Time (ps)

Figure 5-9: Mean-square displacement (R2) averaged over the atoms within
the top four layers of a GaAs(110) surface at 1240K (a) without and (b)
monolayer coating of Ge. Note the large difference in scales between (a) and

each of
with a
(b).

the Ge-coated surface, with significant diffusion constants (see Table 5.2). The third

and fourth layers in each system remain solid up to t = 10ps. This state of induced

surface melting 300 degrees below the melting point of GaAs is remarkable.

We plot the -point band energies for the GaAs(110) and GaAs(110)+Ge surfaces

in Fig. 5-10 and the band gap energy in Fig. 5-11. The band gap is greatly reduced by

the presence of a Ge-monolayer coating and shows signs of a slow collapse, although

it does not consistently remain below 0.1 eV as was found for the band gaps of the

Ge(110) surfaces after 10ps in Sec. 5.3. This is probably a reflection of the stability

of the third and fourth layers.
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Figure 5-10: The band energies of the (a)
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Figure 5-11: The bandgap energy in eV for the GaAs(110) and GaAs(110)+Ge sur-
faces at 1240 K. Notice that neither bandgap is completely collapsed on the 10ps time
scale.
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5.5 Penetration mechanism

Given that melting appears to progress from the surface inwards, we investigate the

role of bond-breaking and penetration of surface atoms into the bulk in the propaga-

tion of the liquid-solid interface. The diffusive motion of the Ga and As atoms in the

second layer is precipitated by bond-breaking events on the top Ge monolayer and

the subsequent penetration of several Ge atoms into the GaAs surface. In Fig. 5-12,

the charge density through planes of maximum average density perpendicular to the

x (bottom) and z (top) axes is shown at times t = 0, 4, 8 ps. The top view shows

the reduction in coordination number as bonds are broken and the electron density

is smeared out. The side view indicates that the top two rows are becoming progres-

sively disordered, while the third layer is relatively fixed in both position and density

localization. For the purposes of studying the melting process, the Ge monolayer and

the first GaAs layer may be considered the only free-moving atoms of any significance.

In this system, only two atomic layers thick, we can isolate more easily the possible

initiation mechanisms of melting.

In Fig. 5-13, we plot the z-component of the ionic coordinates of the four Ge

atoms that penetrate past the initial position of the underlying plane of GaAs at

z = 11.25a.u. during the 10ps run. By t = 4 ps, atoms A and B have broken away

from the coating, and by t = 8 ps, atoms C and D have also made their way into

the bulk. In Fig. 5-14, we plot the positions of these four atoms and the second-layer

Ga and As atoms as colored shapes as they appear looking up from inside the bulk,

where larger-sized shapes have penetrated farther into the bulk (decreasing z). The

GaAs layer becomes more and more disordered as additional Ge atoms penetrate and

interfere with the bonding structure.

This is clearly connected with the liquid dynamics of the second layer, and this

penetration mechanism is likely also the cause of melting in other structures, though it

is easiest to pin down in the coated GaAs structure due to the complete lack of melting

in the bare GaAs structure. Furthermore, it explains why the GaAs monolayer-

coating slows or stops the melting in the Ge layers of the Ge(110)+GaAs surface.
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(a) t = 0 ps (b) t = 4 ps (C) t = 8 ps

z

Figure 5-12: Slices of the charge density of the Ge(110)+GaAs surface at (a) t = 0
ps, (b) t = 4 fs, and (c) t = 6 ps. The top row of panels shows the view looking down
the surface in planes z = 1.5, 4.4, 7.3, 10.2.13.1 a.u. The bottom row of panels shows
the side view looking down the x-axis in planes x = 0.5, 4.3, 8.1, 11.8, 15.6, 19.4 a.u.
The planes are chosen by maximum average density.

The fourth layer of Ge atoms sees little intrusion from foreign surface atoms and

consequently remains solid. In fact, none of the atoms in the upper three layers

penetrate within 2 a.u. of the initial plane of the fourth layer atoms. The increase in

the magnitude of vibrations and resulting melting from penetration of surface atoms

can also be understood within the context of the Lindemann Criterion.

5.6 Discussion

Although pseudopotential and finite-size errors cannot be ignored, the conclusions

in this work are drawn from comparisons between similar structures that display

very different molecular dynamics. The results in this work are subject to several

possible sources of error that are easily identified but inevitable due to limitations on

computational resources. To test whether these sources have any qualitative effect,

we chose to examine the system with perhaps the most interesting dynamics, the Ge-

monolayer coating on a GaAs surface, for any changes to our conclusion of induced
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Figure 5-13: z-component of the ionic coordinates of the four Ge atoms in the surface
monolayer coating a GaAs(110) crystal that penetrate past the plane marked in purple
of the initial locations of the underlying layer of Ga and As atoms. The orange lines
mark the times when atoms A, B, C, and D cross the plane z = 11.25a.u.
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Figure 5-14: (x, y) positions of the Ga (diamonds) and As (ovals) atoms in the layer
below the Ge coating of the GaAs(110)+Ge surface, as well as the Ge (rectangles)
atoms A, B, C, and D marked in Fig. 5-13. In (a) [t = 4 ps], atom B has penetrated
into the second layer (z - 11.25 a.u.) and disrupted the nearby covalent Ga-As in
one row. In (b) [t = 8 ps], all four atoms have penetrated into the second layer and
the distortion is widespread. The size of each atom is proportional to its penetration
distance into the crystal (largest object is at z 10a.u., smallest is at z m 16a.u.
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surface melting.

An increase in the cutoff energy from 5 hartrees to 8 hartrees has little qualitative

effect on the dynamics in Figs. 5-8 and 5-9. The diffusion constant D2 remains

10 x 10-6cm 2 /s. A reduction in the time step to 8 fs also had little effect on the

surface melting (D 2 -+ 9 x 10-6cm 2/s). In addition, the finite size of each layer is

likely to be most important along the direction with the most diffusion, the y-axis

in Figs. 5-2 and 5-8. Doubling the lattice constant a from 32 to 64 a.u. did not

appreciably affect the dynamics (D2 -+ 8 x 10-6cm 2 /s).

The setup of our structures also possesses an intrinsic source of error, namely

the frozen layer with terminating H atoms at the bottom surface. When the surface

melts, the propagation of the liquid-solid interface quickly hits this artificial immo-

bile bulk. Including additional layers (thereby increasing the supercell size in the

z-direction) and replacing the immobility of the atoms with an average diffusivity or

a continuum model will certainly have a quantitative effect on the diffusion, and it

may be possible to extend our results to more precise predictions about the electronic

properties of the melting transition very close to the melting point. However, the

qualitative conclusions based on our simulations have been apparent from the dy-

namics of four free layers. In particular, it is clear from Fig. 5-3(a) that the frozen

layer in the Ge(110) structure does not constrain or prevent melting in the atoms of

the fourth layer above. Finally, we have assumed vacuum conditions in the volume

above the surface, since it is likely that foreign atoms and molecules such as H20 will

desorb at high temperatures. We have performed simulations which predict the rapid

desorption of H atoms from the surface at 1240 K. Thus, there is compelling evidence

that a simple monolayer is sufficient to dramatically alter the melting behavior of a

semiconductor surface.

To study the events which lead to melting in the dynamics of individual layers

require a more accurate description of the electron density and a series of runs to

test for the effects of thermal fluctuations. The free surface is the simplest defect to

study, but larger supercells will also enable an analysis of the role of bulk defects in the

melting process. Phillpot et al. have investigated the initiation of melting at internal
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defects such as grain boundaries and dislocations. With further studies, we hope to

answer whether the electronic structure of grain-boundary and dislocation-induced

melting undergoes a similar transformation to the free surface. In addition, the

enhancement of superheating by increasing the coating thickness and the degradation

at higher temperatures require further simulations to improve the accuracy and reduce

stochastic noise.

In conclusion, we have provided evidence that the key feature that determines the

melting behavior of a crystal is the composition of the surface. Using the electronic

structure and ion trajectories, we have described methods to identify the transition

to a liquid state, and suggested the mechanism by which the melting occurs. We have

demonstrated that it may be possible to achieve superheating in a Ge crystal coated

with GaAs, a novel concept in semiconductors. In addition, we have shown that a

Ge-monolayer coating can induce melting in an otherwise stable GaAs solid. There is

every reason to think that these phenomena can also be observed at other interfaces

between materials with different melting points. The ability to ultimately control the

melting point of semiconductor heterostructures promises to be of great assistance in

the design of high-temperature materials.
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Chapter 6

Dynamic Structures in Escherichia

coli: Spontaneous Formation of

MinE Rings and MinD Polar Zones

Segments of this chapter previously appeared in: Huang, Meir, and Wingreen, Proc.

Nat. Acad. Sci. USA 100 12724-12728 (2003).

In E. coli, two systems are known to regulate the placement of the division site,

nucleoid occlusion [96, 99] and the Min proteins [16]. Both systems interfere with the

formation of a ring of FtsZ protein that is believed to define the division site. The

three Min proteins, MinC, D, and E, are required to prevent minicelling [16] asym-

metric cell divisions which produce one small daughter cell, lacking a chromosome and

hence nonviable. In contrast, overexpression of MinC results in filamentous growth

[17], by inhibiting polymerization of FtsZ on the cell membrane [4], a necessary first

step in cell division [5]. MinC is recruited to the membrane by MinD [34], which

is only membrane-associated in its ATP bound form (MinD:ATP) [31]. Like MinC,

MinE is naturally cytoplasmic and is recruited to the membrane by MinD:ATP [31].

In vivo observations of GFP fusions in living cells reveal spatial oscillations of the

three Min proteins [74, 32, 24]. In each oscillation period, the cell's entire complement

of MinD accumulates in the cell membrane in a "polar zone" at one end of the cell.

This polar zone then shrinks toward the end of the cell, as a new accumulation forms
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at the opposite pole. MinC follows the same pattern as MinD, and the two proteins

form complexes on the membrane. In contrast, MinE forms a ring at the boundary

of the MinD polar zone with some MinE dispersed throughout the polar zone. The

MinE ring moves toward the end of the cell as the MinD polar zone shrinks. The

oscillation period is approximately proportional to the amount of MinD and inversely

proportional to the amount of MinE in the cell, with a minimum period of roughly

30 seconds [74]. Both MinD and MinE, but not MinC, are required for oscillations

[74].

The average spatial distribution of the Min proteins naturally prevents minicelling

without blocking normal cell division. The polar zones of MinD and MinC are be-

lieved to block FtsZ ring formation at the ends of the cell. At the same time, the

concentrations of MinD and MinC remain low near the center of the cell, so an FtsZ

ring can form there to establish the site of cell division.

Several models have been put forward to account for Min protein oscillations.

All of these models successfully generate oscillations, but none can be meaningfully

compared to in vivo observations. The model of Meinhardt and de Boer (MdB) [58]

requires newly synthesized protein to form both the MinD polar zones and MinE ring,

since the proteins disappear (degraded?) from the simulation upon dissociation from

the membrane. However, Min oscillations have been observed to persist for at least

45 minutes after protein synthesis was blocked, demonstrating Min-protein stability.

Furthermore, in order to obtain a MinE ring, the MdB model assumes ad hoc that

MinE attaches preferentially to an intermediate concentration of MinD.

The model of Howard, Rutenberg, and de Vet (HRdV) [30] only produces oscil-

lations if MinE is driven onto the membrane by cytoplasmic MinD, despite evidence

that MinE is recruited to the membrane by membrane-associated MinD [31]. More-

over, the oscillations in the HRdV model have the opposite dependence of frequency

on MinD concentration than is observed, and MinD forms a medial band which moves

toward the end of the cell, contrary to the experimental observation that MinD forms

directly as a polar zone. The model of Kruse [49] avoids ad hoc assumptions and

produces a MinD polar zone by a MinD-concentration dependent slowing of MinD
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diffusion on the membrane - a natural assumption in light of recent experimental

evidence for MinD polymer formation [31]. However, the Kruse model requires unre-

alistically rapid membrane diffusion of MinD and fails to produce a MinE ring without

ad hoc modification.

6.1 A model using only reported in vitro molecu-

lar interactions leads to oscillations

Here we show that a model including only the reported in vitro interactions of MinD

and MinE can fully account for the Min oscillations, including formation of compact

MinD polar zones and a MinE ring. The specific interactions are shown schematically

in Fig. 1.The oscillations are driven by a cycle in which MinD:ATP first associates with

the membrane, preferentially where other MinD:ATP is located. MinE then attaches

to the MinD:ATP, activates ATP hydrolysis, and MinE and MinD:ADP re-enter the

cytoplasm in a 1:1 ratio. Evidence for this cycle comes from in vitro experiments

by Lutkenhaus and colleagues [31]. In particular, MinD bound to ATP reshapes

spherical phospholipid vesicles into tubes by forming helical polymers, demonstrating

self-association of membrane-bound MinD:ATP. Moreover, MinE co-sediments with

MinD in the membrane, and activates hydrolysis and disassembly of MinD polymers

[31]. Recent in vivo experiments by Rothfield and colleagues [81] also indicate for-

mation of MinD polymers on the membrane.

6.2 Reaction-diffusion equations

The equations describing the time evolution of MinD and MinE concentrations in a

cylindrical cell (see schematic of reaction cycle in Fig. 1) are:

OPD:ADP - ADP-*ATPa oV2po:ADP --D PD:ADP + 6(r - R)UdePde (6.1)at
a)PDATP V 2 ADP--ATP

at = D PDATP + CD PDADP
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Q-c a-El

Figure 6-1: Model MinD1,E cycle driven by ATP hydrolysis. (1) Cytoplasmic
MinD:ATP complex attaches to the membrane, preferentially where other MinD:ATP
is bound. (2) MinE in the cytoplasm attaches to a membrane-associated MinD:ATP
complex. (3) MinE activates ATP hydrolysis by MinD, breaking apart the complex,
and releasing (a) phosphate, (b) MinE, and (c) MinD:ADP, into the cytoplasm. (4)
MinD:ADP is converted back into MinD:ATP by nucleotide exchange. In wild-type
cells, MinE is likely active as a homodimer [70].
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-J(r - R) [D + dD(pd + Pde)l PD:ATP (6.2)
&PE

at = DEV2 PE + 6(r - R)UdePde - 6(r - R)UEPdPE (6.3)at
&pd

= -7EPdPE(R) + [D + UdD(Pd + Pde)] PD:ATP(R) (6.4)Ot

aP = -adepde + UEpdpE(R) (6.5)

where PDADP, PD:ATP, PE are the concentrations in the cytoplasm of MinD:ADP

complexes, MinD:ATP complexes, and MinE, and Pd, Pde are the concentrations on

the membrane of MinD:ATP complexes and MinE:MinD:ATP complexes. We have

verified that introducing an intermediate free cytoplasmic MinD species, thereby con-

verting the single rate constant aDADP ATP into two sequential decay rates, does not

introduce any significant changes.

The cell radius is R = 0.5/pm, and results are given for cells of length L = 4/pm and

10m. The delta functions, (r - R), represent local exchange of proteins between

membrane and cytoplasm; additional delta functions, (z) and 6(z - L), are imple-

mented for the end caps of the cylinder. The total concentrations of MinD and MinE

are 1000/pm and 350/pum, respectively (assuming MinE is active as a homodimer,

this implies 700 monomers/pm) [80]. The diffusion constants are

DD = DE = 2.5,Pm2/s,

as measured for the cytoplasmic diffusion of a maltose binding protein in the E. coli

cytoplasm [19], and the reaction rates are

aADP- ATP = 1/s, cD = 0.025,um/s, UdD = 0.0015/,m3/s, rde = 0.7/s, E = 0.093/m 3 /s,

unless otherwise indicated. We discretize and solve Eqs. 6.1-6.5 on a three-dimensional

lattice in cylindrical coordinates, with grid spacing dr = dz = 0.05pm.
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6.3 Periodic oscillations with MinD polar zones

and a MinE ring

The results of numerical integration in time of our model equations (cf. Fig. 1) for a

4 /um cylindrical cell are shown in Fig. 2. Periodic oscillations which are independent

of initial conditions occur for a wide range of parameters. The oscillations have

the same spatial character as those observed in experiment, including the formation

and shrinkage of the MinD polar zones and the appearance of a MinE ring. These

structures form spontaneously without special targets for MinD at the cell ends,

without MinE-MinE interactions, and with no new protein synthesis. MinD:ATP

and MinE dwell in one half of the cell membrane during a period of polar zone

compaction, before a brief cytoplasmic burst results in rapid reformation of a new

MinD polar zone and MinE ring at the opposite end of the cell. The bottom row

of panels in Fig. 2 shows the time-averaged concentrations of MinD and MinE. The

minimum for membrane-bound MinD:ATP occurs at the center of the cell.

The basic mechanism of the oscillations is that a typical MinD, once released

from the membrane, diffuses farther in the cytoplasm than does a typical MinE before

reattaching to the membrane. The delay before MinD becomes competent to reattach

to the membrane stems from its need to release ADP and rebind ATP. This allows

the formation of a new polar zone of MinD:ATP, while MinE progressively hydrolyzes

the old polar zone.

But why does MinD:ATP accumulate at the far pole rather than reattaching

uniformly throughout the cell? The reason is that MinD:ATP in the cytoplasm sticks

rapidly to the old polar zone from which it was released. Indeed, a MinD protein

typically recycles - 4 times through the old polar zone in each half cycle, before

finally lodging in the new polar zone. Each such recycling of MinD requires the

hydrolysis of one molecule of ATP. The "stickiness" of the old polar zone creates a

distribution of MinD:ATP in the cytoplasm that is peaked at the opposite end of

the cell (Fig. 3). Thus MinD:ATP accumulates in a new polar zone, with a profile

sharpened by the tendency of MinD:ATP in the membrane to self-associate [31].
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Figure 6-2: Time slices in 5s increments of one complete MinD,E oscillation in a
4 m cell. To mimic experimental observations of GFP fluorescence, we show two-
dimensional projections of the concentrations of MinD (A) and MinE (B) inside
a three-dimensional cylindrical cell, with the concentrations assumed rotationally
symmetric about the axis of the cylinder. In (A), the MinD polar zone shrinks
toward the end of the cell, and reforms at the opposite pole. In (B), MinE forms a
ring near the boundary of the MinD polar zone. Except during brief cytoplasmic-
burst phases (15s, 35s) both MinD and MinE are primarily membrane-bound. (C)
shows the membrane-associated concentrations, MinD:ATP in blue and MinE in red.
The vertical dashed lines and gray shading indicate the caps of the cylindrical cell
membrane. The final row shows the time average of each quantity over a complete
cycle.
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Figure 6-3: Concentration of ATP-bound MinD (MinD:ATP) in the cytoplasm cor-
responding to time t = 5s in Fig. 2. The distribution is peaked at the opposite end
of the cell from the existing MinD:ATP polar zone, indicated by the peak of the
dashed curve, leading to the accumulation of MinD:ATP in a new polar zone. Inset -
waiting-time distribution for recovery of MinD:ATP, assuming a nucleotide-exchange
rate 1/ = TADP- *ATP of 1/s.
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Proper formation of the new MinD:ATP polar zone requires that MinD have time

to diffuse throughout the cytoplasm before rebinding ATP. The nucleotide exchange

rate we use, DADP-ATP = 1/s, is well within the observed range, which is known

to span more than five orders-of-magnitude for guanine nucleotide exchange [53]. If

the exchange rate is too large, cytoplasmic MinD:ATP reappears mainly near the old

polar zone, eliminating the peaked distribution of cytoplasmic MinD:ATP (Fig. 3)

which is responsible for the formation of a new polar zone. The delay of MinD:ATP

recovery due to nucleotide exchange has been ignored in previous models.

Once MinE completes the hydrolysis of the old polar zone, it begins to diffuse

through the cytoplasm. Since MinE sticks rapidly to available MinD:ATP in the

membrane, most of the MinE attaches to the edge of the new MinD:ATP polar zone.

This is the origin of the MinE ring. The subsequent movement of the MinE ring

toward the end of the cell reflects release from the membrane, diffusion, and reat-

tachment of individual MinE molecules (or homodimers). Since the diffusion length

of MinE before reattaching is generally smaller than the - Im transverse dimension

of the cell, it is important to model the oscillations in a fully three-dimensional cell,

rather than in a one-dimensional approximation as employed in the MdB, HRdV, and

Kruse models. We neglect membrane diffusion as too slow to affect the dynamics of

the oscillations.

6.4 Oscillation period depends linearly on the ra-

tio of MinD to MinE concentration

Figure 4 shows the period of oscillation for a range of protein concentrations. Consis-

tent with experiment [74], the oscillation period is proportional to the total amount

of MinD and inversely proportional to the total amount of MinE in the cell. The

period is simply determined by the rate at which the MinE ring hydrolyzes the polar

zone of MinD:ATP. This period increases almost linearly with the amount of MinD

in the cell, and decreases inversely with both the amount of MinE and the hydroly-
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350/tm, respectively [80]. Isoperiod curves are shown in steps from 40s to 150s.

sis rate de. We chose de = 0.7/s to match the observed wild-type period of 40

seconds [74]. Varying the total amounts of MinD and MinE in the cell, we find a

minimum oscillation period of 33s, also consistent with experiment [74]. Increasing

the amount of MinE beyond this limit forces a majority of the MinD into the cyto-

plasm and eliminates oscillations. In contrast, decreasing the concentration of MinE

results in slower and slower oscillations with no apparent limit, consistent with in

vivo observations [74].
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Figure 6-5: Time slices in 12.5s increments of one complete MinD,E oscillation in
a 10 ,um cell. (A),(B),(C) show the same quantities as in Fig. 2. The zebra-
striped oscillation pattern now includes two half-wavelengths. The system exhibits
two separate MinE rings and an alternation between two MinD polar zones and a
central MinD tube. The final row shows the time average of each quantity over a
complete cycle.

6.5 Filamentous cells have "doubled" oscillation

patterns

A critical test of the model is the striking behavior of Min oscillations in long cells.

Filamentous cells can be obtained using temperature-sensitive FtsZ mutants, which

cannot undergo cell division at the non-permissive temperature. For cells longer

than 10/m the number of wavelengths of Min oscillations present in the cell in-

creases; zebra-striped cells with as many as 8 half-wavelengths have been observed

[74]. Figure 5 shows the oscillation pattern obtained from our model for a 10 ,/m

cell. Consistent with experimental observations, the oscillation pattern "doubles" -

the oscillatory dynamics in each half of the cell mimics the dynamics of the normal

4 /,m cell in Fig. 2. We find that this doubled oscillation pattern is stable for a

three-dimensional cell, but collapses back to an undoubled pattern (Fig. 2) in the

one-dimensional approximation. In addition, a nucleotide exchange rate of roughly

1/s or slower is necessary for stability of the doubled oscillation pattern. The bottom

row of panels in Fig. 5 shows the time-averaged concentrations of MinD and MinE.

The minima for membrane-bound MinD:ATP occur at 1/4 and 3/4 of the cell length,

as observed by Gullbrand and Nordstr6m for FtsZ ring placement in long cells [25].

Oscillations in a 20 m cell closely correspond to a "doubled" 10 m cell (not shown).
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6.6 MinE "mutants": slow oscillations and no MinE

ring formation

Another striking experimental observation is that cells with the wild-type MinE'-"8

protein replaced by the fragment MinE 1-5 3 display oscillations with a period of

roughly 10 minutes with no detectable MinE ring, and with diffuse MinD polar zones

[77]. Recent experiments with MinE mutants have correlated a weak or absent MinE

ring with extended MinD polar zones and an increased minicelling probability [80].

Within our model, the oscillation period varies inversely with the hydrolysis rate

Ode, and ring formation depends on the attachment probability of MinE to available

MinD:ATP in the membrane. In Fig. 6 we show oscillations of MinD and MinE with

a reduced hydrolysis rate, Ode = 0.07/s which slows the oscillations, and a reduced

MinE attachment coefficient E = 0.047/um/s. With this value of UE, the MinE ring

fails to form because MinE diffuses well into the new polar zone before reattaching to

MinD:ATP (increasing the MinE diffusion constant has a similar effect). Importantly,

this invasion of the MinD:ATP polar zone by MinE results in less accumulation of

MinD:ATP and a more diffuse MinD:ATP polar zone, similar to experimental obser-

vations.

6.7 Discussion

Some aspects of Min protein oscillations are not captured by our minimal model. For

example, the MinE ring is occasionally observed to reverse direction or "stutter" [80],

likely reflecting the persistent presence of helical accumulations of MinD [81]. While

the model cannot predict the fine structure of MinD polymerization [81], neverthe-

less, the agreement between model and experiment is close enough to indicate some

fundamental properties of the real Min system. The model oscillations represent a

limit cycle, that is, the same oscillation develops from any set of initial conditions.

Moreover, the pattern of oscillation, particularly the formation of compact polar zones

of MinD:ATP capped by a ring of MinE, is insensitive to fluctuations in the amounts
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of MinD and MinE. A linear-stability analysis around the uniform solution yields

instability only for half-wavelengths greater than 2 um. This minimum wavelength

guarantees that oscillations can only develop in the cell's long dimension. Interest-

ingly, the period of oscillations is sensitive to protein number fluctuations (Fig. 4),

but periods of up to - 120s [74] appear to yield a normal division phenotype.

Recent observations suggest a general role for protein oscillators in chromosome

and plasmid partitioning [98, 18]. Nevertheless, it remains an open question why

bacteria employ such oscillators. The Gram-positive bacterium Bacillus subtilis em-

ploys homologs to MinC and MinD to prevent minicelling. However, these proteins

form static polar zones in B. subtilis. (B. subtilis also undergoes highly asymmetric

cell division during sporulation.) In the absence of Min proteins in E. coli, nucleoid

occlusion results in division sites either near the cell ends, resulting in minicelling, or

medially, resulting in essentially normal divisions, but with considerably less division

accuracy than in wild type [99]. In anucleate cells without nucleoid occlusion but

with Min proteins, medial FtsZ ring placement is favored, but again with less accu-

racy than in wild type [99]. It is unknown whether Min protein oscillations alone can

be sufficient for accurate FtsZ ring placement, or whether cooperation, and possibly

direct interaction, between the Min system and nucleoid occlusion is required. In

B. subtilis, the non-oscillatory MinCD homologs are not required for medial division

accuracy [59]. One possible advantage of an oscillator for determining the cell center

is that in each half cycle essentially the same amount of MinD protein accumulates

in each polar zone. Thus, the time-averaged minimum of MinD, and hence the min-

imum of the division-site blocker MinC, will occur at the cell center independent of

protein number fluctuations. Furthermore, recent indications [33] that MinC and

MinE may competitively bind to MinD and that MinD forms dimers in the cyto-

plasm may enhance the FtsZ ring placement accuracy of the Min oscillator. Finally,

the observation of FtsZ ring formation at the 1/4 and 3/4 points in long cells [25]

very likely reflects the doubling of the Min-oscillation pattern. The multi-wavelength

Min oscillations in long cells may play a role in proper fragmentation and reduce the

likelihood of internal minicelling during recovery from filamentous growth induced by
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Chapter 7

Min-Protein Oscillations in Round

Cells

Segments of this chapter have been submitted for publication in Physical Biology.

7.1 Introduction

In the rod-shaped bacterium Escherichia coli, the proteins MinC, MinD, and MinE

are observed to oscillate from pole to pole [16, 74, 32, 24] every -20 seconds [74]. Both

MinD and MinE are required for oscillations [74]; MinC is not required, but is observed

to oscillate because it forms complexes with MinD on the membrane [34]. MinD is an

ATPase which associates to the membrane and forms helical polymers [81] there in

its ATP-bound form (MinD:ATP) [31]. MinE is recruited to the membrane by MinD,

where it activates hydrolysis of MinD:ATP resulting in dissociation of MinD from the

membrane [31]. The oscillations concentrate MinCD complexes near the poles of the

cell, where MinC blocks formation of a ring of FtsZ protein [4]. Formation of this FtsZ

ring is required to initiate septum formation and cell division [5], so the net effect of

the Min oscillations is to block cell divisions near the poles (minicelling). Placement

of the FtsZ ring is also regulated by nucleoid occlusion [96, 99], a mechanism which

blocks FtsZ ring formation in the vicinity of a nucleoid.

Homologs of the Min proteins have also been identified in round cells. In the
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coccus Neisseria gonorrhoeae, loss of MinDNg results in abnormal cell division and

morphology, and decreased cell viability [91]. MinDNg and MinENg from N. gonor-

rhoeae were observed to oscillate when expressed in E. coli lacking its own MinD and

MinE [71]. To date, there has been no direct observation of Min-protein oscillations

in N. gonorrhoeae because of resolution limits associated with the small size of the

bacteria, typically around 0.5/tm in radius. [91]. However, in round E. coli cells, re-

sulting from disruption of the rodA gene, both native MinD [10] and MinDNg from N.

gonorrhoeae [71] have been observed to oscillate. Interestingly, while oscillations in

wild-type E. coli display a ring of MinE protein, no MinE ring is observed in the round

rodA cells. Taken together, the close homology of the E. coli and N. gonorrhoeae Min

proteins, the complementation experiments, and the Min oscillations in round E. coli

cells suggest that the Min proteins also form an oscillator in N. gonorrhoeae [71].

Here we demonstrate that a numerical model for Min-protein oscillations in rod-

shaped cells [38] also leads to oscillations in round cells. The model is shown schemat-

ically in Fig. 1, and involves only in vitro observed interactions of MinD and MinE

[31, 74]. In contrast to earlier modeling attempts [30, 58, 49], the model in Ref. [38]

is fully three dimensional, so that extension to round cells is straightforward. The

oscillations are driven by a cycle in which MinD:ATP binds to the membrane, pref-

erentially at locations of high preexisting concentrations of MinD:ATP. MinE then

attaches to the membrane-bound MinD:ATP, activates ATP hydrolysis, and MinE

and MinD:ADP reenter the cytoplasm. In the cytoplasm, MinD:ADP undergoes nu-

cleotide exchange to MinD:ATP to become competent to rebind the membrane.

7.2 Reaction-Diffusion Equations

The equations describing the time evolution of MinD and MinE concentrations in a

spherical cell of radius R (see schematic of reaction cycle in Fig. 1) are:

0At = DDV2 D:ADP - ADP-D ATP pDADP + (r - R)'dePde (7.1)

aPD:ATP 2 ADP-*ATP
at = D PDATP + D PDADP
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Figure 7-1: Model MinD,E cycle driven by ATP hydrolysis. (1) Cytoplasmic
MinD:ATP complex attaches to the membrane, preferentially where other MinD:ATPis bound. (2) MinE in the cytoplasm attaches to a membrane-associated 

MinD:ATP
complex. (3) MinE activates ATP hydrolysis by MinD, breaking apart the complex,
and releasing (a) MinD:ADP, (b) MinE, and (c) phosphate into the cytoplasm. (4)
MinD:ADP is converted back to MinD:ATP by nucleotide exchange. In wild-typecells, MinE is likely active as a homodimer [70].
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-6(r - R) [D + O(dD(Pd + Pde)] PD:ATP (7.2)
&PE

Pt = DEV 2p E + 6(r - R)dede - 6(r - R)aEPdPE (7.3)

aPd --dePde + [U7D + U(dD(Pd + Pde)] PD:ATP(R) (7.4)at

Pde = -adede + aEPdPE(R) (7.5)at

where PD:ADP, PD:ATP, PE are the concentrations in the cytoplasm of MinD:ADP

complexes, MinD:ATP complexes, and MinE, and Pd, Pde are the concentrations on

the membrane of MinD:ATP and MinE:MinD:ATP complexes. Simulations with

an intermediate free MinD species in the cytoplasm, thereby converting the single

rate constant aDADPATP into two separate decay rates, do not show any significant

differences.

The delta functions, (r - R), represent local exchange of proteins between mem-

brane and cytoplasm. The total concentrations of MinD and MinE are 1250//zm3

and 450/pm 3 , respectively (assuming MinE is active as a homodimer, this implies

900 MinE monomers/um 3 ) [80]. The diffusion constants are

DD = DE = 2.5/um2/s,

as measured for the cytoplasmic diffusion of a maltose binding protein in the E. coli

cytoplasm [19], and the reaction rates are

DA D P = 1/s, D = 0.025/s, CdD = 0.0015pum/s, ode = 0.595/s, OE = 0.2945/zm/s.

We have modified the MinE binding and hydrolysis rates from Ref. [38] to induce

oscillations in cells of radius R - 0.6jtm or larger. These parameters also produce

oscillations in rod-shaped cells of length 4m and radius 0.5[tm. We discretize and

solve Eqs. 7.1-7.5 on a three-dimensional lattice in spherical coordinates, with grid

spacing dr = 0.03p1m, dO = do = r/20.
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7.3 Min-Protein Oscillations with No MinE Ring

The results of numerical integration in time of the model equations (cf. Fig. 1 and

Eqs. 7.1-7.5) for a spherical cell with radius R = 0.6,um are shown in Fig. 2. In

the spherical cell, independent of initial conditions, an oscillation develops which is

rotationally symmetric about a "north-south" axis. The choice of oscillation axis

does depend on initial conditions. The oscillation cycle has a period of 47s. As

in cylindrical cells [38], zones of MinD:ATP grow from and shrink to the poles of

the cell. However, in contrast to cylindrical cells, there is a notable absence of a

MinE ring; rather, the MinE spreads throughout the entire MinD polar zone. The

bottom row of panels in Fig. 2 shows the quantities in columns (a-c) averaged over

one complete oscillation. The minimum for membrane-bound MinD:ATP occurs at

the equator, indicating the most likely division site due to lower concentrations of the

FtsZ ring-inhibitor MinC.

The basic mechanism for these oscillations is that a typical MinD, once released

from the membrane, diffuses farther in the cytoplasm than a typical MinE before

reattaching to the membrane. This allows formation of a new zone of MinD:ATP

at the opposite pole, while MinE is at work progressively hydrolyzing the old polar

zone. Growth of the new polar zone mirrors a gradient of MinD:ATP in the cyto-

plasm caused by the stickiness of the old polar zone [38]. The delay for nucleotide

exchange allows MinD:ATP to diffuse away from the old polar zone and is essential

to establishment of the cytoplasmic gradient. The absence of a MinE ring can be

understood as purely an effect of geometry, as shown in Fig. 7-3. In either a round or

a rod-shaped cell, a MinE that escapes the MinD:ATP zone at one pole of the cell is

likely to rebind where it first contacts the opposite polar zone. In a round cell, this

first contact is essentially equally likely to occur anywhere in the new polar zone. In

a rod-shaped cell, however, the first contact is likely to occur near the medial edge of

the new polar zone, resulting in a MinE ring as shown in Fig. 7-3(b).

Periodic oscillations occur for a wide range of model parameters. The period

can be increased without limit by reducing the hydrolysis rate Se. Increasing a,
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Figure 7-2: Time slices in 8s increments of one complete MinD,E oscillation in a
spherical cell with radius R = 0.6,um. To mimic experimental observations of GFP
fluorescence, we show two-dimensional projections onto the x-z plane (where the
solution is rotationally symmetric about the z axis) of the concentrations of (a)
MinD and (b) MinE. In (a), the MinD polar zone shrinks toward the south pole,
and reforms at the north pole. In (b), the MinE also forms a polar zone which
lags behind the MinD distribution. Note the absence of a MinE ring. Except during
brief cytoplasmic-burst phases (8s, 32s for MinD) both MinD and MinE are primarily
membrane bound. (c) shows the membrane-associated concentrations as a function
of polar angle 0, MinD:ATP in blue and MinE in red.
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Figure 7-3: Geometric explanation for the absence of a MinE ring in round cells. (a)
A MinE released from one pole of a round cell is approximately equally likely to bind
anywhere within the new MinD zone at the opposite pole. (b) A MinE released from
one pole of a rod-shaped cell is more likely to contact and bind to the nearest part
of the new MinD polar zone. In rod-shaped cells, the result is a MinE "ring" an
accumulation of MinE near the medial edge of the new polar zone.

reduces the period down to a minimum of 43s, beyond which point most of the MinD

is cytoplasmic and there are no oscillations. Oscillations also occur for a range of

protein concentration with the period proportional to the ratio [MinD]/(oe[MinE])

[38], reflecting the time required for MinE to hydrolize a MinD:ATP polar zone.

7.4 Oscillations in Nearly Round Cells

Real cells are not perfectly round. In nearly round rodA mutants of E. coli, Min-

protein oscillations were almost always observed to orient along the long axis [10].

Within our model, do the Min oscillations automatically select the long axis of a

nearly round cell? In Fig. 7-4, we show the results of numerical integration in time

of Eqs. 7.1-7.5 for an ellipsoidal cell with semi-major axis of length R1 = 0.63,um

and semi-minor axes of length R 2 = 0.60um, starting from a random distribution of

proteins. All diffusion constants, rate constants, and mean volume concentrations are

the same as for the spherical cell in Fig. 2. Within a few oscillation periods, a stable

oscillation is established precisely along the long axis of the ellipsoidal cell with a

period of 49s.
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Figure 7-4: Time slices in 8s increments of one complete MinD,E oscillation in an
ellipsoidal cell with semi-major axis of length R1 = 0.63gm and semi-minor axes of
length R 2 = 0.60/gm. The quantities shown in (a), (b), and (c) are the same as in Fig.
7-2. Starting from a random initial distribution of proteins, pole-to-pole oscillations
along the long axis become established within 3 oscillation periods.
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7.5 Minimum Radius for Oscillations

We find that spherical cells below a minimum radius of Rmin = 0.56,um do not support

oscillations. The non-oscillating solution of Eqs. 7.1-7.5 is spherically symmetric

and has uniform concentrations of MinE and total MinD in the cytoplasm, which

lacks sources or sinks of these proteins. However, the concentrations of the two

species MinD:ADP and MinD:ATP can individually vary in the radial direction due

to local exchange with the membrane. To analyze stability, we solve for the static

concentrations: pi(r) where i E S =D : ADP, D : ATP, E, d, de}, and then perturb

about this static solution:

Pi (r) pi (r) [ + Pi(cos 0)], (7.6)

where Pt is the Ith Legendre polynomial, which is an eigenmode of the angular part

of the diffusion equation in spherical coordinates with eigenvalue v = 1(1 + 1)/r2 . In

practice, we define the cytoplasmic densities on a grid of size n, = R/dr:

P0(r) ) (7i7)
(Pi)j=1

The perturbations in Eq. 7.6 evolve in time according to

Pi = Po(r) [1 + eAt P (cos )] , (7.8)

where the exponent A A1 + iA2, is an eigenvalue of the matrix H - D. The

Hessian matrix H is

H = [ (P/ ] ,
)j (7.9)

where i,k run over species in S and j, I = 1 if i,k E {d,e} and j,l = 1,..., n,

otherwise. The diffusion matrix is

D = [Di,j], (7.10)
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where Dij -_ ijDi and Di is the diffusion constant of species pi. Any mode with

instability exponent A1 > 0 represents an unstable (growing) perturbation about the

static solution, and indicates that the solution of Eqs. 7.1-7.5 is oscillatory.

In Fig. 7-5(a), we plot the period of full nonlinear oscillations and in Fig. 7-5(b)

the growth-rate exponent A1 for the most unstable perturbation ( cos O) from our

linear-stability analysis. Both panels indicate a minimum radius for oscillations of

Rmin = 0.56/m.

7.6 Discussion

Min-protein oscillations in rod-shaped E. coli cells block cell division at the poles,

thereby preventing minicelling. The Min system may also contribute to the accuracy

of cell division. Wild-type E. coli forms an FtsZ ring at the cell center with an

accuracy better than ±1% of cell length, and this accuracy is lost in min- mutants

[99]. An alternative view is that this loss of accuracy may simply reflect the onset

of minicelling, rather than indicating a direct role for the Min system in division

accuracy [56]. Division site placement in E. coli is regulated both by the Min-protein

system and by nucleoid occlusion. [96] Certainly, in rod-shaped cells, Min oscillations

and division accuracy, possibly based on nucleoid occlusion, could be independent,

with both relying on the obvious long axis of the cell.

In round cells (cocci) such as N. gonorrheoea there is no obvious long axis. Nev-

ertheless, cocci divide accurately along an equitorial plane into two daughter cells.

If the Min proteins oscillate in N. gonorrhoeae, as experiments [91, 71, 10] and our

numerical results suggest, then for the Min system to perform its usual function of

blocking polar divisions requires that the poles and equator of the cell be consis-

tently defined. This point is made in the cartoon in Fig. 7-6, with the schematic

nucleoid segregation representing the full machinery of accurate cell division. The

requirement for consistency between poles (MinCD accumulation zones) and equa-

tor (division plane) suggests that Min oscillations and division accuracy are directly

coupled in N. gonorrhoeae, and hints that Min plays a similar direct role in the divi-
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sion process in E. coli. Experiments in round E. coli mutants [10] indicate that Min

oscillations can pick out the long axis in slightly asymmetric cells. Our numerical

simulations in ellipsoidal cells support this conclusion, and it is tempting to speculate

that for cell division in N. gonorrhoeae, the Min oscillations actually define the poles

and equator of the cell.

The ability of the Min oscillations to select the long axis of an ellipsoidal cell

reflects the length dependence of the oscillatory instability. As shown in Fig. 7-5(b),

the instability exponent Al increases with radius. Therefore, in asymmetric cells the

oscillation pattern with the longest wavelength will become established. In the case

of an ellipsoidal cell, the longest wavelength pattern corresponds to oscillations along

the long axis of the cell. In both ellipsoidal and rod-shaped cells, a protein oscillator

which prefers long wavelengths can provide a general mechanism for polar targeting

of proteins.

In the most spherical of their round rodA mutant E. coli cells, Corbin et al. [10]

observed rapid reorientation of Min oscillations of the MinDNg proteins. Ramirez-

Arcos et al. [71] also observed uncoordinated oscillations in large rodA E. coli cells,

but saw consistent pole-to-pole oscillations in smaller rodA cells. One possibility, sug-

gested by our numerical results, is that the disorganized oscillation patterns observed

in large cells reflects the instability of higher-order oscillation modes. Specifically,

we found that larger cells, with radii R > 0.85/tm, can support a symmetric oscilla-

tory solution where the MinD distribution alternates between two polar distributions

and an equatorial accumulation. Indeed, in our simulations we observe disorganized

oscillations for cells with radii larger than 1.5/um.

In large real cells, the existence of multiple instabilities is likely to amplify the

effect of fluctuations. The specific movement of the MinD "pole" in large rodA E. coli

cells is likely a consequence of these fluctuations, i. e. the first significant accumulation

of MinD away from the old pole becomes the new pole. This nucleation effect is

beyond the scope of our current mean-field model for Min oscillations. Even for rod-

shaped cells, it remains an open question how fluctuations affect the stability and

character of Min oscillations. The recent observation by Shih et al. [81] that MinD
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Figure 7-6: Schematic of pre-division round cell. (a) The alignment of the Min
oscillations and nucleoid segregation ensures proper formation of the FtsZ ring. (b)
Misalignment of the axial direction of the Min oscillations and the equator defined
by the segregated nucleoids prohibits FtsZ-ring formation.

169

(a) Proper alignment

Min
oscillations

(b) Misalignment

Min
oscillations



accumulates in helical polymers which remain present even at the "empty" pole may

help explain why fluctuations do not lead to uncoordinated oscillations in wild-type

cells.
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Chapter 8

Pattern formation within

Escherichia coli: diffusion,

membrane attachment, and

self-interaction of MinD molecules

Segments of this chapter have been submitted for publication in Physical Review Let-

ters.

8.1 Introduction

Understanding how proteins are directed to specific locations within the cell is one

of the key challenges of cellular biology. At the basic level, targeting of proteins

to subcellular locations is governed by physical processes. A striking example is the

system of Min proteins, which functions as an internal spatial oscillator in E. coli,

and is necessary for accurate cell division [99]. The properties and interactions of

the three Min proteins, MinC, D, and E, have been revealed by recent experiments

[16, 17, 4, 5, 34, 31, 74, 32, 24, 81]. MinD is an ATPase - a protein which binds and

hydrolyzes the nucleotide ATP to ADP. In its ATP-bound form, MinD associates with

the inner membrane of the cell [31, 74], where it recruits cytoplasmic MinC [34] and
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MinE [31] onto the membrane. Once on the membrane, MinE activates hydrolysis

of ATP by MinD which results in MinD dissociating from the membrane. MinE and

MinD together produce a spatial oscillator with a period of 40 seconds [31, 74, 32,

24]. In each oscillation period, the majority of MinD molecules accumulate at one end

of the cell forming a "polar zone". The MinD polar zone then shrinks toward the end

of the cell and a new MinD polar zone forms at the opposite pole. MinE is observed

to form a ring at the medial edge of the MinD polar zone [72]. The MinE ring moves

along with the polar zone edge as the MinD polar zone shrinks toward the end of

the cell. The dynamics of MinC follows that of MinD [73]. Complexes of MinC and

MinD on the membrane block the formation of a ring of FtsZ protein [4], a necessary

first step in determining the site of cell division [5]. The spatial oscillations of MinD

and MinC from pole to pole thus ensure that an FtsZ ring does not form near the

poles, so that cell division can only occur near midcell. Recently, several numerical

models have been proposed to explain the oscillatory behavior [30, 58, 49, 29, 35]

One of the key emergent properties of the Min oscillations is the length scale

for formation of a new MinD attachment zone. In filamentous cells (i.e. cells that

grow but do not divide), several MinD zones are observed in a striped pattern with

a characteristic length separating MinD attachment zones [74, 26]. In this work, we

study the processes giving rise to new MinD attachment zones in the cell. Using a

simple model, we demonstrate analytically that the length separating MinD zones

depends on (i) the cytoplasmic diffusion coefficient and the nucleotide-exchange rate

of MinD, and (ii) the rate of attachment of ATP-bound MinD to the membrane.

8.2 Model

Our D model is abstracted from the 3D numerical model of Ref. [35], which is

based on measured properties of MinD and MinE and which reproduces the observed

pattern in filamentous cells. Other models have also accounted for the oscillations

of the Min proteins [58, 30, 49], including the striped pattern seen in filamentous

cells. We begin by considering a fully formed "old" polar zone of ATP-bound MinD
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(MinD:ATP) in one half of the cell. MinE activates the ATPase activity of MinD,

giving rise to a source of cytoplasmic MinD:ADP. Subsequently, there are two stages

leading up to reattachment of MinD to the membrane: (i) diffusion of each MinD:ADP

until nucleotide exchange transforms it into MinD:ATP, and (ii) continued diffusion

of the MinD:ATP until it attaches to the membrane (see inset to Fig. 8-1). The

attachment rate of MinD:ATP increases with the local concentration of membrane-

bound MinD due to polymerization; thus the old polar zone is much stickier than the

bare membrane [35]. We approximate this situation by assuming that the old polar

zone is infinitely sticky for cytoplasmic MinD:ATP. Our aim is to derive analytically

the density of attachment p(x) of MinD:ATP outside the old polar zone, in order to

obtain the length scale of the new MinD attachment zone.

8.3 Filamentous cell, single source

We approximate a long, filamentous cell as an infinite ID line. The old polar zone of

MinD occupies x < 0, and bare membrane occupies x > 0 (see inset to Fig. 8-1). To

model the effect of the MinE ring at the edge of the MinD polar zone, we consider

that MinD:ADP dissociates from the membrane only at x = 0. After stage (i)

diffusion of MinD:ADP until nucleotide exchange - the probability density of each

MinD:ATP is

Pl(x) = j PD(x t)QI(t)dt, (8.1)

where Ql (t) is the waiting-time distribution for single-step nucleotide exchange with

average waiting time T1 ,

Ql(t) = -e -t/ (8.2)
1

and PD(xlt) is the distribution following diffusion in D for time t with diffusion

coefficient D,

PD(x t) = / exp - (8.3)"4irDt 4Dt)(8.3)
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Substituting Eqs. 8.2 and 8.3 into Eq. 8.1 yields the initial distribution of MinD:ATP

in the cytoplasm

Pi(x) = 2 exp --x ) (8.4)

During stage (ii) - diffusion of MinD:ATP until membrane attachment - we ini-

tially assume that the region of the old polar zone (x < 0) is infinitely sticky for

MinD:ATP. Hence, if a MinD:ATP diffuses into x < 0, it will immediately reattach

and become part of the old polar zone. Thus only those MinD:ATP molecules formed

at x > 0 which never cross the origin in the course of cytoplasmic diffusion will at-

tach to form the new zone. Given an initial position x0 > 0 of a MinD:ATP, the

probability that it diffuses to some x > 0 after time t is PD(X - xolt). We define the

probability that a MinD:ATP diffuses to some x > 0 after time t without crossing

x = 0 by P2 (x, xolt). The probability distribution P2(x, xolt) can be calculated using

the continuum version of the Reflection Principle [22],

P2 (x, X01t) = PD(X - xolt) - PD(X + Xolt). (8.5)

The attachment density p(x) for the bare membrane at x > 0 can now be obtained

from

p(x) = j dxO o dtP2 (x, Xo t)P1(xo)Q2 (t), (8.6)

where Q2 (t) = (1/T2) exp(-t/r 2 ) is the distribution of waiting times for membrane

attachment with average waiting time r2 . Integrating over t and xo in Eq. 8.6, we

obtain (for T1 Z T2 )

p(x) = VD__Tj - (e Z/T-e / (8.7)

where the total probability of attachment to the bare membrane at x > 0 is

Ptot = 2( 7 )v (8.8)

In the limit T2 -- 0, where the membrane is everywhere perfectly sticky for MinD:ATP,
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Eq. 8.8 gives Ptot = 1/2, as required by symmetry. In the opposite limit, 72 > 71,

where sticking of MinD:ATP to the bare membrane at x > 0 is slow, only a small

fraction, ptot = Ti/4T 2 , attach to the bare membrane.

The mean distance for attachment to the bare membrane is given by

Pjtot p(x)dx= (XPT+ PT2), (8.9)

precisely the sum of the independent diffusion lengths for processes with time scales

rl and r2. Another relevant length scale to characterize the new MinD:ATP zone is

the position of the maximum in p(x), which occurs at

Xma 2(P/ log (-) (8.10)2(,/72 - ) 71

We expect that polymerization of MinD:ATP on the membrane leads to an enhace-

ment of the peak in the attachment density.

Note that for T1 = T2 - 7, we have

p(x) = xe-x/D/4T 4 DT. (8.11)

In this case, the average attachment distance is (x) = 2PT and the maximum occurs

at max = /-/2.

In Fig. 8-1, we plot the normalized MinD:ATP attachment density p(x)/ptot from

Eq. 8.7. At large distances, the profile decays exponentially as expected for a diffusive

process (see Eq. 8.4). However, for a simple diffusive process we expect the profile

to have a maximum at the source position i.e. at x = 0. In contrast, we find that

the probability of attachment is zero at the edge of the old polar zone at x = 0.

This "zero boundary condition" follows from the infinite stickiness of the old polar

zone for MinD:ATP. Any MinD:ATP which forms near the old polar zone has a high

probability of crossing into x < 0 and immediately reattaching as part of the old

polar zone. Only those MinD:ATP which form sufficiently far from the old polar

zone are likely to reattach as part of the new MinD:ATP attachment zone. The two
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Figure 8-1: Normalized attachment density p(x)/ptot from Eq. 8.7 for different av-
erage attachment waiting times 2 from 0.1s to 10s, with the diffusion coefficient
D = 2.5,um2/s and average nucleotide-exchange waiting time '-1 = Is taken from
Ref. [35] (r = 2/1). Inset - cartoon of attachment processes. The solid blue line
shows a MinD:ADP which diffuses to the position x0 before undergoing nucleotide
exchange. The resulting MinD:ATP then continues to diffuse until it attaches to the
bare membrane at x, without ever crossing the edge of the old polar-zone at x = 0.
In contrast, the dashed blue line shows a MinD:ADP which undergoes nucleotide
exchange at the position x, where it immediately reattaches to the membrane in the
old polar zone.
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competing effects, the zero boundary condition at x = 0 and the exponential decay

due to diffusion as indicated in Eq. 8.4, set the length scale for the formation of

the new MinD:ATP attachment zone. In the model from Ref. [35], the time scale

for sticking to a bare membrane is -T2 - 10s, giving Xmax = 2.7/,m. This length

scale agrees qualitatively with half the center-to-center distance ( 3m) between

neighboring MinD attachment zones as observed in Ref. [74].

8.4 Filamentous cell, distributed source

In the preceding analysis, to model the effect of the ring of MinE protein, the polar-

zone edge at x = 0 was taken to be the only source of MinD:ADP. However, in

experiments some MinE is observed throughout the MinD polar zone [72, 81], sug-

gesting that cytoplasmic MinD:ADP is released throughout the old polar zone as well.

What effect, if any, does this have on the length scale for formation of the new MinD

attachment zone? Instead of assuming a single source for MinD:ADP at x = 0, we

now consider a source with distribution w(xs), xs < 0. This distributed source of

MinD:ADP modifies Eq. 8.1:

PI(x) - j dtL dxw (x,)PD (x - xIt) QI(t), (8.12)

where x describes the position of the MinD:ADP when it leaves the membrane.

Integrating over t, we find for x > 0,

rP(x) = 2VT
1

-x / (J dx~ w(xT)ez/| (8.13)

Comparing to Eq. 8.4, we see that a distributed source of MinD:ATP simply reduces

Pl(x) by the constant factor in square brackets. Therefore, the attachment density

is the same as in Eq. 8.7, with Ptot reduced by the constant factor in square brackets.

This leaves both (x) and Xmax unchanged, so the length scale for formation of the

new MinD attachment zone is unchanged.
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Figure 8-2: Normalized attachment density f(z)/T 2 from Eq. 8.19 for different binding
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8.5 Finite polar zone attachment probability

Another assumption in our analysis so far is that the old MinD polar zone is infinitely

sticky. How is the reattachment profile altered by relaxing this approximation to bet-

ter reflect a realistic cell? We now consider the case where the attachment probability

to the old polar zone is finite and characterized by a mean attachment time T 3 . To

address this case, we introduce the quantities pc(X, t) and p,(z, t) denoting the den-

sity of cytoplasmic and membrane bound MinD:ATP, respectively, as a function of

time. Our previous expression for the membrane attachment density p(x) (Eq. 8.7) is

then equivalent to pm(x, t -- oc) for the case T3 = 0 and x > 0. To avoid the difficult

analytical task of integrating over all random walks in the cell, we instead utilize a

Green's function approach.

Our system can now be described by the following set of reaction-diffusion equa-
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where

7(X) = T2 x>O (8.16)
73 X < 0

We are interested in p,(x, t - o) for x > 0 which, from integrating Eq. 8.15, is

given by f p(x, t)dt f(x)/T2. Similarly we set pm(x, t -- o) - f(x)/73 for

x < 0. Then f(x) so defined satisfies the equation

d2 f 1
pc(x, O)=D Dx 2 - f(x)

dx~ T()
(8.17)

Note that pc(x, 0) is the initial distribution of cytoplasmic MinD:ATP which is given

by Eq. 8.4. We can now readily solve Eq. 8.17 for f(x) in the regions x < 0 and x > 0

subject to the boundary conditions that f(x) vanishes at ioc and pm(x = O-,t 
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oc) = pm(x = 0+, t - oc), and the normalization condition on p,

X fn)Wdx = 1. (8.18)

The new attachment profile in the presence of a finite binding rate in the new

polar zone is

p(x) fx) 72 2 (I T- e) 2 ( X/

2(T2 v/± + 2T2)3 + 7172 3- TT3ex/- ) (8.19)

(V71 + /r3)(-/ + 73)

In Fig. 8-2, we plot p(x) for T2 = 3s and three values of T3: Os, 0.5s, and 3s. For

T3 = Os, we again generate the infinite-stickiness profile in Eq. 8.7. For T3 = T2 = 3s,

the profile is symmetric about x = 0, as expected since all binding rates are uniform.

For T3 = 0.5s, the profile lies somewhere in between, with a maximum located at 1m

- closer to the old polar zone than the value Xeff 2 =3 = 2 m from Eq. 8.10 - and a

nonzero density at x = 0, since some of the MinD:ATP proteins now penetrate into

x < 0 and still escape into the new polar zone to bind. The maximum occurs at

:max - V/g T/T172 TT-Tllog 2 73) 72) (8.20)
,\/2 - /T 272/E + 272r3 - T173 + 71-2

which is less than Xma, (see Eq. 8.10) for all nonzero T3. A second quantity of interest

is the ratio of densities at the polar zone edge and the peak, r = f(O)/f(max). This

is a measure of the strength of selection for the new polar zone site.

In Fig. 8-3, we plot (a) Xmax and (b) f(O)lf(Xmax) for T2 E [OS, 3s] and r3 E [Os, Is],

3 < -T2. Except for very small T3, ?max is a function only of the ratio -2/T3. The ratio

r is >- 0.5 for practically all values of (2, T3, demonstrating that the localization of

the peak is significantly reduced by a finite binding rate.

There are several extensions to our approach which we feel would yield further

insight into the processes involved. It would be interesting to consider the effect of

low copy number of the MinD proteins as has been done in recent work by Howard
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et al. [29]. It would also be interesting to consider if geometry can play a role in the

process by altering attachment probabilities as has been proposed in the case of B.

subtilis [28].

In summary, we have studied the processes that give rise to the length scale

observed in cellular MinD attachment zones. Our analysis indicates that this length

scale is an emergent property of the system which depends primarily on: (i) the rate

of nucleotide exchange, (ii) the rate of membrane attachment and (iii) the diffusion

constant for MinD. It is important to note that these are biochemical properties

of MinD which can be fine tuned by evolution. Our analysis suggests that these

parameters are tuned to block minicelling at the cell poles and at the same time

to permit cell division at the center. Finally, we note that the Min system serves to

illustrate the physical processes which underlie subcellular protein localization. While

MinD is "targeted" to the cell poles, the mechanism is not based on recruitment by

a biological target, but rather on a dynamical instability in the system.
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Chapter 9

Final thoughts

The potential scope of future research in all areas of this thesis remains wide open.

In Chapters 2-4, a relatively complete understanding of the band structure and field

patterns of infinite two-dimensional polaritonic photonic crystals has been presented.

A crucial feature is the large range of dispersion in polaritonic media, which provides

a unique opportunity to explore extreme index contrasts and metallodielectric behav-

ior in the same structure. The node switching and flux expulsion localization effects

discussed in Chapters 2 and 3 suggest the possibility of exploring the behavior of non-

linear materials by sensitively controlling the electromagnetic intensity in particular

regions of the crystal. It may also be possible to modify the polaritonic photonic crys-

tal with negative effective permeability discussed in Chapter 4, by using a combination

of polaritonic media or extending the crystal to three dimensions, thereby creating

an effective left-handed material with negative permittivity that exhibits negative

refraction. In addition, simulations involving three-dimensional crystals will help to

connect theory with experiment, and may uncover novel localization phenomena.

The high degree of accuracy of the ab-initio approach used in Chapter 5 has al-

lowed us to probe the electronic properties of the melting transition. We focused on

melting from free surfaces and demonstrated the superheating and induced melting

effects of single-layer coatings. There is also significant evidence that bulk semicon-

ductors can melt from internal defects such as grain boundaries and dislocations [68].

The surface melting density functional simulations were the most computationally

183



exhausting tasks in this thesis, and as such they stand to benefit the most from in-

creases in computational resources. Once larger supercell sizes are more tractable,

comparisons between the melting mechanisms for different defects could be made us-

ing density functional molecular dynamics. Whether or not charge density disruption

and the collapse of the band gap are universal signatures of melting is an open ques-

tion whose answer will shed light on the fundamental nature of the phase transition

from solid to liquid.

The reaction-diffusion model for Min-protein oscillations laid out in Chapters 6-

8 has successfully reproduced most known phenomena in rod-shaped cells, and the

predicted nucleotide exchange rate in E. coli cells has recently been verified to a high

degree of accuracy. The stabilization of oscillations along the long axis in nearly

round cells has important biological implications for the general role of oscillations

for targeting and segregation in bacteria. Four primary questions about the Min-

protein system remain unanswered at present. Recent experiments have shown that

the MinD:ATP polymerizes into a helical pattern [81]. Such a detailed structure is

unlikely to be reproduced by any of the existing mean-field models in Refs. [30,

58, 49] and Chapter 1-3. The low copy numbers of the Min proteins also suggest

that extending the stochastic simulations in Chapter 8 to the full oscillatory cycle

including MinE hydrolysis is crucial if we are to explain fluctuation effects such as

the stuttering of the MinE ring [26, 29, 28]. Furthermore, the incredible accuracy

of the division site selection in E. coli is still a mystery. Finally, other division-site

selection regulatory mechanisms in organisms such as Bacillus subtilis could lead to

a more general picture of the evolutionary development of complex spatial dynamics

and targeted localization in bacterial protein networks.

Every answer to a question posed in this thesis has led to a Lernean proliferation

of more complex unknowns. Nonetheless this work represents an important step

towards a more complete understanding of the fundamental physical properties of the

systems under review. For these, we have demonstrated that the existing theoretical

and computational tools are flexible enough to be used both practically and efficiently

to make verifiable predictions in the future. With advances in technology, the gap
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between the complexity of simulations and experiment promises to shrink, revealing

the bright road ahead for modelling of the development of structure in physics.
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