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ABSTRACT

Molecular surveys have revealed that microbial communities are extraordinarily diverse.
Yet, two important questions remain unanswered: how many bacterial types co-exist, and
do such types form phylogenetically discrete units of potential ecological relevance? This
thesis explores these questions by investigating bacterial diversity in two complex marine
communities (coastal bacterioplankton and sediment sulfate-reducing bacteria) by (i)
comprehensive analysis of large 16S rRNA clone libraries, and (ii) refinement and
application of parametric diversity estimators. Identification and correction of sequence
artifacts demonstrated their potentially significant contribution to diversity estimates.
Still, hundreds of unique rRNA sequences (ribotypes) were detected in the corrected
libraries, and extrapolation to community diversity with commonly used non-parametric
diversity estimators suggested at least thousands of co-existing ribotypes in the two
communities. However, close inspection revealed that the non-parametric estimators
likely lead to underestimation of ribotype diversity in the clone libraries. Thus, an
improved parametric method was developed and shown to closely fit the data. The
extrapolated total ribotype diversity in the sample by the improved method was up to one
order of magnitude higher than estimated with common non-parametric approaches.
Most significantly, the compensation for artifacts and improved estimation revealed that
the vast majority of ribotypes fall into microdiverse clusters containing <1% sequence
divergence. It is proposed that the observed microdiverse clusters form important units
of differentiation in microbial communities. They are hypothesized to arise by selective
sweeps and contain high diversity because competitive mechanisms are too weak to
purge diversity from within them.

Thesis Advisor: Martin F. Polz
Title: Associate Professor of Civil and Environmental Engineering, M.I.T.
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INTRODUCTION

We are only beginning to understand the extent of microbial diversity and principles

controlling the distribution and abundance of microorganisms in natural environments.

Although cultivation-independent techniques have revealed that microbial communities

are extraordinarily diverse (Pace, 1997; Hugenholz et al., 1998), the number of co-

existing bacterial types in a natural microbial community and whether these are organized

into some natural units of differentiation remain unknown.

Most microbes defy cultivation by standard methods. Therefore, the only reliable

way to estimate microbial diversity is by using sequence data from genes obtained

directly from environmental samples. The rRNA gene has been adopted as the most

commonly used tool to determine evolutionary relationships and diversity (Woese, 1987;

Pace, 1997). Most commonly, this is done by the extraction of environmental DNA,

polymerase chain reaction (PCR) amplification of target genes, clone library construction

from amplified gene fragments, and gene sequencing (Head et al., 1998).

The development of molecular methods has provided a powerful tool for the study

of microbial diversity. In 1998, GenBank contained only approximately 8,500 16S rRNA

sequences, a majority of which belonged to cultured prokaryotes (Rappe and Giovannoni,

2003). Within a period of six years, this number has grown to over 183,000 entries. Most

of the recently added sequences are from environmental clones derived from sediments

and aquatic environments. It has been observed that a high number of these are closely

related, but not identical to the sequences already deposited in GenBank, suggesting that

these closely related sequences may form discrete groups (Rappe and Giovannoni, 2003)

Microdiverse sequences have been observed in rRNA genes retrieved from

various environments (Field et al., 1997; Garcia-Martinez and Rodriguez-Valera, 2000;

10



Casamayor et al., 2002). Although the nucleotide divergence observed in these cloned

sequences could be explained by evolution, it remains unclear how much of this variation

stems from experimental errors and small-scale variation in sequences among rRNA

operons. Since the contribution of experimental errors to diversity is difficult to

establish, most studies have clustered sequences into 95-99% sequence similarity groups

(Hughes et al., 2001; Martin, 2002; Torsvik et al., 2002). However, in order to elucidate

relationships and diversity at finer scales of sequence divergence, methods that minimize

and account for contribution of sequence artifacts need to be developed. The

development of such methods is addressed in this thesis.

Microbial diversity estimates

Statistical methods hold promise for describing the diversity of a given environment,

wherein the observed sequence diversity is extrapolated to that of a sampled clone library

or environment (Moyer et al., 1998; Dunbar et al., 1999; Hughes et al., 200 1). Typically,

the diversity of microorganisms is assessed using sequence data from genes obtained

directly from the environment. The diversity of ribotypes or clusters in a clone library is

then estimated using statistical approaches (Dunbar et al., 1999; Hughes et al., 2001;

Stach et al., 2003). These methods were only recently introduced to microbial ecology

(Hughes et al., 2001) and the critical evaluation of their accuracy has remained a

challenge because molecular surveys have not produced large enough data sets.

Most of the statistical methods were developed for estimating macroorganismal

diversity and these fall into two general categories: (i) parametric methods, where the

abundance distribution of taxa is assumed to have a specified parametric form, and (ii)

non-parametric methods, where no abundance distribution model is assumed (May, 1975;

Colwell and Coddington, 1994; Krebs, 1999). In microbial ecology, the most commonly

11



applied richness estimator is the non-parametric Chaol estimator (Chao, 1984, 1987;

Hughes et al., 2001; Bohannan and Hughes, 2003). It has been noted that the Chaol

estimator gives biased (low) estimates of diversity, especially for very heterogeneous

communities (Mao and Lindsay, 2001; Bohannan and Hughes, 2003). Thus, other

approaches such as parametric analyses, although computationally more demanding,

should be considered in microbial diversity analyses. Especially for large data sets,

parametric methods, rather than non-parametric alternatives, would be expected to more

accurately estimate the diversity of highly diverse communities. The application of both

parametric and non-parametric methods to large microbial data sets is evaluated in this

thesis.

Goals of this thesis

This thesis addresses two important questions: (i) How many distinct types of bacteria

co-exist in a microbial community, and (ii) do these types form discrete phylogenetic

clusters of potential ecological significance? These questions were explored by

comprehensively sampling two large clone libraries obtained from two complex marine

communities (coastal bacterioplankton and sediment sulfate-reducing bacteria) by (i)

removal of sequence artifacts generated by library construction techniques that may

confound accurate diversity estimation, (ii) detailed phylogenetic analysis of large 16S

rRNA clone libraries, and (iii) refinement and application of parametric diversity

estimators.

One objective of this thesis was to explore the genetic diversity and fine-scale

phylogenetic structure of two complex microbial communities. We chose to sample

communities from two environments displaying extremes in structural difference: mixed

coastal ocean and highly structured salt-marsh sediment (Chapter 2 and 3). Therefore,
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one may expect that the underlying community composition of the two communities

would be different. For example, it may be hypothesized that the efficient mixing in the

pelagic environment may allow for more efficient selective sweeps within the

community. These would serve to purge diversity leading to a more simple overall

community composition. Since sediment communities are highly diverse (Ravenschlag et

al., 1998; Whitman et al., 1998) we focused on investigating one metabolic guild -

sulfate-reducing bacteria (SRB). However, for the coastal ocean sample we investigated

the entire bacterioplankton community.

Large libraries based on amplified 16S rRNA gene fragments were constructed

from both communities, and were corrected for chimeric sequences and amplification

errors to allow phylogenetic interpretation at all levels of sequence divergence. The

corrected set of sequences was used to estimate total diversity and patterns of

relationships by grouping sequences into similarity clusters (100%, 99%, 98% etc).

Large clone libraries were used to critically evaluate the existing statistical

approaches in microbial ecology and to develop new ones. We observed that the most

commonly applied diversity estimator, Chao 1, significantly underestimated diversity of

the complex bacterioplankton library. This was established by evaluating the Chao 1

using simulated communities whose species abundances were based on the dataset

presented in Chapter 3. Thus, we modified parametric estimators to better account for the

way microbial communities are sampled. The modified parametric estimator was applied

to the bacterioplankton library and simulated communities, and compared to the

commonly used diversity estimator Chaol (Chapter 4). The modified parametric

approach may ultimately provide more reliable estimates of microbial diversity.

13



References

1. Bohannan, B.J.M., and Hughes, J. (2003) New approaches to analyzing microbial
biodiversity data. Current Opinion in Microbiology 6: 282-287.

2. Casamayor, E.O., Pedros-Alio, C., Muyzer, G., and Amann, R. (2002)
Microheterogeneity in 16S ribosomal DNA-defined bacterial populations from a
stratified planktonic environment is related to temporal changes and to ecological
adaptations. Applied and Environmental Microbiology 68: 1706-1714.

3. Chao, A. (1984) Nonparametric-Estimation of the Number of Classes in a Population.
Scandinavian Journal of Statistics 11: 265-270.

4. Chao, A. (1987) Estimating the population size for capture-recapture data with
unequal catchability. Biometrics 43: 783-791.

5. Colwell, R.K., and Coddington, J.A. (1994) Estimating Terrestrial Biodiversity
through Extrapolation. Philosophical Transactions of the Royal Society of London
Series B-Biological Sciences 345: 101-118.

6. Dunbar, J., Takala, S., Barns, S.M., Davis, J.A., and Kuske, C.R. (1999) Levels of
bacterial community diversity in four arid soils compared by cultivation and 16S
rRNA gene cloning. Applied and Environmental Microbiology 65: 1662-1669.

7. Field, K.G., Gordon, D., Wright, T., Rappe, M., Urbach, E., Vergin, K., and
Giovannoni, S.J. (1997) Diversity and depth-specific distribution of SAR 1I
cluster rRNA genes from marine planktonic bacteria. Appl. Environ. Microbiol.
63: 63-70.

8. Garcia-Martinez, J., and Rodriguez-Valera, F. (2000) Microdiversity of uncultured
marine prokaryotes: the SAR 1I cluster and the marine Archaea of Group I.
Molecular Ecology 9: 935-948.

9. Head, I.M., Saunders, J.R., and Pickup, R.W. (1998) Microbial evolution, diversity,
and ecology: A decade of ribosomal RNA analysis of uncultivated
microorganisms. Microbial Ecology 35: 1-21.

10. Hugenholz, P., Goebel, B.M., and Pace, N.R. (1998) Impact of culture-independent
studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol.
180: 4765-4774.

14



11. Hughes, J.B., Hellmann, J.J., Ricketts, T.H., and Bohannan, B.J.M. (2001) Counting
the uncountable: statistical approaches to estimating microbial diversity. Appl.
Environ. Microbiol. 67: 4399-4406.

12. Krebs, C.J. (1999) Ecological methodology. Menlo Park, CA: Benjamin/Cummings.

13. Mao, C.M., and Lindsay, B.G. (200 1) Moment-based nonparametric estimators for
the number of classes in a population. In. University Park: The Pennsylvania State
University, pp. 1-44.

14. Martin, A.P. (2002) Phylogenetic approaches for describing and comparing the
diversity of microbial communities. Appl. Environ. Microbiol. 68: 3673-3682.

15. May, R.M. (1975) Patterns of species abundance and diversity. In Ecology and
evolution of communities. Cody, M.L., and Diamond, J.M. (eds). Cambridge,
Massachusetts, and London, England: The Belknap Press of Harvard University
Press, pp. 81-120.

16. Moyer, C.L., Tiedje, J.M., Dobbs, F.C., and Karl, D.M. (1998) Diversity of deep-sea
hydrothermal vent Archaea from Loihi seamount, Hawaii. Deep-Sea Research
Part Ii-Topical Studies in Oceanography 45: 303-317.

17. Pace, N.R. (1997) A molecular view of microbial diversity and the biosphere. Science
276: 734-740.

18. Rappe, M.S., and Giovannoni, S.J. (2003) The uncultured microbial majority. Annual
Review of Microbiology 57: 369-394.

19. Ravenschlag, K., Sahm, K., Pernthaler, J., and Amann, R. (1998) High bacterial
diversity in permanetnly cold marine sediments. Appl. Environ. Microbiol. 65:
3982-3989.

20. Stach, J.E.M., Maldonado, L.A., Masson, D.G., Ward, A.C., Goodfellow, M., and
Bull, A.T. (2003) Statistical approaches for estimating actinobacterial diversity in
marine sediments. Applied and Environmental Microbiology 69: 6189-6200.

21. Torsvik, V., Ovrea's, L., and Thingstad, T.F. (2002) Prokaryotic diversity --
magnitude, dynamics, and controlling factors. Science 296: 1064-1066.

15



22. Whitman, W.B., Coleman, D.C., and Wiebe, W.J. (1998) Prokaryotes: The unseen
majority. Proceedings of the National Academy of Sciences of the United States of
America 95: 6578-6583.

23. Woese, C.R. (1987) Bacterial evolution. Microb. Rev. 51: 221-271.

16



CHAPTER Two

High overall diversity and dominance of microdiverse relationships in salt
marsh sulphate-reducing bacteria

Vanja Klepac-Ceraj, Michele Bahr, Byron C. Crump, Andreas P. Teske,
John E. Hobbie and Martin F. Polz

Reprinted by permission from Environmental Microbiology
Copyright 2004 Blackwell Publishing Ltd

2004 Klepac-Ceraj, V., M. Bahr, B. C. Crump, A. P. Teske, J. E. Hobbie & M. F. Polz.
High Overall Diversity and Dominance of Microdiverse Relationships in Salt Marsh
Sulphate-Reducing Bacteria. Env. Microbiol. 6:686-698.

17



18



Environmental Microbiology (2004) 6(7), 686-698

High overall diversity and dominance of microdiverse
relationships in salt marsh sulphate-reducing bacteria

Vanja Klepac-Ceraj,' Michele Bahr,2 Byron C. Crump,2t

Andreas P. Teske, 1 John E. Hobble2 and
Martin F. Polz'*
'Department of Civil and Environmental Engineering,
Massachusetts Institute of Technology, Bldg 48-421, 77
Massachusetts Ave., Cambridge, MA 02139, USA.
2 The Ecosystems Center, Marine Biological Laboratories,
and 3Biology Department, Woods Hole Oceanographic
institution, Woods Hole, MA 02543, USA.

Summary

The blogeochemistry of North Atlantic salt marshes
is characterized by the Interplay between the marsh
grass Spartina and sulphate-reducing bacteria (SRB),
which mineralize the diverse carbon substrates pro-
vided by the plants. It was hypothesized that SRB
populations display high diversity within the sedi-
ment as a result of the rich spatial and chemical
structuring provided by Spartina roots. A 2000-
member 16S rRNA gene library, prepared with delta-
proteobacterial SRB-selective primers, was analysed
for diversity patterns and phylogenetic relationships.
Sequence clustering detected 348 16S rRNA
sequence types (ribotypes) related to delta-
proteobacterial SRB, and it was estimated that a total
of 623 ribotypes were present in the library. Similarity
clustering showed that a 46% of these sequences fell
into groups with <1% divergence; thus, microhetero-
geneity accounts for a large portion of the observable
genetic diversity. Phylogenetic comparison revealed
that sequences most frequently recovered were
associated with the Desulfobacteriaceae and Des-
uifobulbaceae families. Sequences from the Des-
uifovibrionaceae family were also observed, but were
infrequent. Over 80% of the delta-proteobacterial
ribotypes clustered with cultured representatives of
Desulfosarcina, Desulfococcus and Desulfobacterlum
genera, suggesting that complete oxidizers with high
substrate versatility dominate. The large-scale

Received 28 August, 2003; revised 5 January, 2004; accepted 9
January, 2004. 'For correspondence. E-mail mpolz@mit.edu; Tel.
(+1) 617 253 7128; Fax (+1) 617 258 8850. Present addresses: tHorn
Point Laboratory, University of Maryland, Cambridge, MD, USA.
*Department of Marine Sciences, University of North Carolina,
Chapel Hill, NC. USA.

0 2004 Blackwell Publishing Ltd

approach demonstrates the co-existence of numer-
ous SRB-iike sequences and reveals an unexpected
amount of microdiversity.

Introduction

Salt marshes are among the most productive environ-
ments, with primary production rates ranging from 460 to
3700 g cm- 2 year' (Gallagher et al., 1980; Wiegert and
Pomeroy, 1981). Formation and persistence of marshes
is determined by the growth of marsh grasses because
their dense stands can trap and stabilize sediment in the
face of the erosive power of tides and waves. Along the
Atlantic coast of the United States, marshes are domi-
nated by the smooth cord grasses Spartina alterniflora
and S. patens, which permeate the sediment with a com-
plex rhizome system and reach high production and turn-
over rates. Some of the plant-derived organic matter is
exported to coastal waters (Teal, 1962; Howes and Goe-
hringer, 1994), but a large portion remains within marsh
sediments where it is decomposed by fermentation and
anaerobic respiration. Sulphate reduction, mediated by
sulphate-reducing bacteria (SRB), is typically the prevail-
ing carbon mineralization process in marine anoxic sedi-
ments and exceeds respiration using other electron
acceptors, including oxygen, nitrate and metal oxides (Jor-
gensen, 1982; Canfield etal., 1993). Although in some
marsh sediments, iron(Ill) has been suggested to be
important to respiration (Canfield and Des Marais, 1993;
Joye etal., 1996; Lowe et al., 2000), sulphate reduction
usually accounts for 67-80% of all respiration processes
(Howarth and Teal, 1979; Howarth and Giblin, 1983;
Howarth and Hobbie, 1985).

Marsh grasses and SRB appear to maintain a complex
relationship, which displays elements of both antagonism
and dependence. On the one hand, sulphide, the end-
product of sulphate reduction, may have negative effects
on the plant because of its toxicity, and oxygen leaking
into the sediment from the aerenchyma may inhibit sul-
phate reduction. On the other hand, sulphate reduction
rates can be tightly correlated to marsh grass production.
For example, a fivefold increase in sulphate reduction
rates has been observed during the above-ground elon-
gation of the tall form of S. alterniflora in a New England
marsh. Between early June and August, Spartina roots
grow rapidly and leak large amounts of exudates, which
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serve as substrates for SRB growth (Hines etal., 1989;
1999). This is consistent with the observation that
sulphate-reducing activity follows seasonal patterns of
vegetational changes (Currin etal., 1995) and that rRNA
abundance of the SRB genera Desu/fonema, Desulfococ-
cus and Desulfosarcina peaks during the early summer
root growth of Spartina (Rooney-Varga et al., 1998; Hines
et a., 1999). Thus, it is likely that the SRB community is
tightly coupled to marsh grass activity and that seasonal
and spatial differentiation of root activity has a strong
influence on the diversity of niche spaces available to
SRB.

Spartina plants provide a large variety of potential car-
bon sources to the SRB community, yet the extent to
which these different compounds are used by diverse
types of SRB is only beginning to be understood. Roots
directly exude simple fatty acids and alcohols, such as
malate, ethanol (Mendelssohn etal., 1981) and acetate
(Hines et a., 1994). These may be important substrates
for SRB, which may take them up directly from the plant
as suggested by an increase in SRB populations associ-
ated with the rhizosphere during the growth season
(Hines etaL., 1999). However, the quantitative impor-
tance of plant exudates within the total sediment commu-
nity remains unknown, and acetate, which is regarded as
one of the central metabolites in anaerobic communities,
was found to support only about 10% of sulphate reduc-
tion in marsh sediments (Howarth, 1993). This points to
the importance of other plant-derived substrates released
during the decay of Spartina litter and includes complex
carbohydrates (Opsahl and Benner, 1999), phenolics and
humic acids (Wilson et a., 1986). Recent isolation of
SRB capable of degrading diverse and previously unsus-
pected compounds has suggested that they are metabo-
lized by SRB in the environment. For example, SRB
capable of utilization of long-chain fatty acids and alco-
hols, glycolate (Friedrich and Schink, 1995), hydrocar-
bons (Aeckersberg et a!., 1991) and aromatic
compounds (Beller and Spormann, 1997; Phelps et al.,
1998; Galushko etaL., 1999; Harms etal., 1999) have
been described. High metabolic versatility is found par-
ticularly in the genera Desulfosarcina, Desulfococcus and
Desulfobacterium (Widdel and Bak, 1992), and it is thus
hypothesized that these play an important role in the
marsh.

Among the major phylogenetic groups of SRB, delta-
proteobacterial SRB have been shown to be important in
salt marsh sediments by both culture-dependent and
independent studies. For example, using rRNA-targeted,
quantitative oligonucleotide hybridization, Desulfovibrio,
Desulfobacteriaceae and Desulfobulbus accounted for
a 30% of Bacteria rRNA, and Desulfobacteriaceae alone
accounted for a 20%, probably making it the dominant
group in the marsh sediment (Devereux et al., 1996). The

Delta-proteobacterial SRB diversity in marsh sediments 687

metabolic, physiological and phylogenetic diversity of
delta-proteobacterial SRB has been studied extensively,
and it appears that a number of metabolic properties are
confined to specific phylogenetic groups. Indeed, the
traditional classification of SRB into complete and incom-
plete oxidizers has largely been confirmed by rRNA-
based phylogeny. Complete oxidizers, capable of acetate
mineralization, are mainly represented by the genera
Desulfobacter, Desulfobacterium, Desulfosarcina and
Desulfococcus, whereas incomplete oxidizers, which oxi-
dize carbon substrates to acetate, are mainly represented
by Desulfovibrio and Desulfobulbus. The links between
physiology and phylogeny of the delta-proteobacterial
SRB enable some prediction of community properties,
based on quantitative 16S rRNA hybridization and some
sequence surveys (Devereux and Stahl, 1993; Loy et al.,
2002).

Here, we investigated the 16S rRNA diversity of the
delta-proteobacterial SRB community associated with the
sediments of a New England S. alterniflora salt marsh
(Fig. 1). We hypothesize that the plant rhizomes structure
the environment into numerous microniches, which are
reflected in high overall diversity of the SRB community.
Furthermore, we explored the question of whether the
high substrate diversity created by the plant is reflected in
the presence of phylogenetic groups of metabolically dif-
ferentiated SRB. For example, it may be expected that
complete oxidizers dominate the SRB community,
because of their broad substrate spectra. Our approach
is based on a large-scale survey of a 16S rRNA gene
library generated using a polymerase chain reaction
(PCR) primer set specific for delta-proteobacterial
sequences. The library was constructed from monthly

4' a

Fig. 1. Location of the sampling site (arrow) in the Plum Island salt
marsh, MA, USA.

i 2004 Blackwell Publishing Ltd, Environmental Microbiology, 6, 686-698
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688 V Klepac-Ceraj et al.

samples collected over an entire growth cycle of the
marsh grass S. alterniflora and was analysed by diversity
estimators and phylogenetic methods.

Results

Clone library analysis

Approximately 47% of the =1650 positive 16S rRNA gene
sequences obtained from the 2000-member clone library
were associated with the delta-proteobacterial subclass.
Non-delta-proteobacterial sequences related to epsilon-
Proteobacteria, Firmicutes and Cytophaga/Flexibacter
were also amplified because of the broad specificity of
primer 385F, which was designed to cover all known SRB
groups within delta-Proteobacteria. A large majority of the
774 delta-proteobacterial sequences clearly fell within
previously identified SRB families: Desulfobacteriaceae,
Desulfobulbaceae and Desulfovibrionaceae. The only
exceptions were eight sequences for which the associa-
tion with other delta-proteobacterial groups Bdellovibrio,
Syntrophobacter and Geobacter/Pelobacter was ambigu-
ous, i.e. the sequences were less than 85% similar to
these groups. These sequences were included in further
analysis of delta-proteobacterial SRB relationships
because of their close relationship to the SRB. Further-

'more, the Geobacter/Pelobacter group harbours repre-
sentatives capable of sulphur reduction and are thus
ecologically related to SRB (Lonergan etal., 1996). A

-second library skewed towards Gram-positive bacteria
was constructed; however, despite sequencing of 1000
.clones, no sequence related to SRBs was detected (data
not shown).

The delta-proteobacterial sequences were subjected
to a detailed evaluation of Taq errors and chimera forma-
tion. A large fraction of the sequences displayed a very
high similarity to each other, a phenomenon potentially
caused by base misincorporation during amplification. It
was thus decided to conduct a detailed estimation of the
potential contribution of Taq error to sequence diversity.
This was done by fitting nucleotide positions of amplified
sequences to 16S rRNA secondary structure models
(Cannone et al., 2002). We considered that there was a
base misincorporation if nucleotide changes occurred in
positions that (i) are >98% conserved in the entire bac-
terial 16S rRNA secondary structure data set; and (ii)
lead to non-canonical basepairing in stem structures and
were absent in closely related sequences. The first of
these rules is expected to lead to a slight overestimation
of Taq error while the second is likely to result in under-
estimation. However, the determined Taq error rate
agreed remarkably well with theoretically predicted rates
based on reported values of Taq misincorporation rates
of 2 x 105 nucleotides per cycle (Tindall and Kunkel,

1988). The rate based on the above rationale was
1.7 x 10-5 and 2.5 x 10-5 nucleotides per cycle for
regions analysed with rules (i) and (ii) respectively.
The data were also checked for putative chimeras by
the RDP CHIMERACHECK (Maidak et al., 1999) and the
CHIMERABUSTER algorithm, which was newly developed
specifically to analyse clone libraries with high coverage.
This identified 32 sequences deemed likely chimeras by
one of the chimera identification methods. Based on
these analyses, an additional, corrected data set of
delta-proteobacterial sequences was created in which
putative Taq errors were corrected and from which puta-
tive chimeras were removed.

Overall features of the sequences

Both the original and the corrected data set indicated that
very high numbers of delta-proteobacterial SRB
sequences co-existed in the marsh sediment samples. In
the corrected data set, a total of 348 ribotypes (groups of
identical sequences) were identified. This is = 23% lower
than in the uncorrected data set primarily because of the
removal of putative Taq errors and chimeras. Rarefaction
analysis and the Chao-1 non-parametric diversity estima-
tor were applied to both data sets to estimate how com-
pletely the library had been sampled and to extrapolate to
total sequence diversity (Hughes et al., 2001). Rarefac-
tion, which plots the number of clones screened versus
the number of ribotypes detected, showed that neither
data set reached an asymptote, indicating that the diver-
sity in the clone library is even higher (Fig. 2). This was
confirmed by the Chao-1 estimator, which computed 623
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ribotypes for the total sequence diversity in the clone
library.

Further analysis suggested that the initial observation
of close relationships among large numbers of sequences
is preserved even after correction of putative Taq errors,
but that deep phylogenetic lineages were well sampled.
Rarefaction analysis of the corrected data set, using 100%
and 99% sequence identity to define taxonomic units,
indicated that a 46% of the sequences fell into clusters in
which members differed by <1% nucleotide difference
(Fig. 2). At 99% identity, only 200 sequence groups were
detected, and Chao-1 yielded an estimate of 332 groups.
Decreasing the sequence identity cut-off to 98% and 97%
produced 168 and 127 sequence types respectively. The
total sequence diversity based on Chao-1 was 261 for the
98% group and 191 for the 97% identity groups.

Phylogeny of delta-proteobacteria/ SRB-like sequences

The delta-proteobacterial SRB-like community clustered
into three large and several smaller clades based on the
distance and parsimony analysis using one representative
sequence of each 98% similarity group (Fig. 3). Over 80%
were associated with the family Desulfobacteriaceae
(Desulfosarcina, Desulfobacterium, Desulfococcus and
Desulfonema) (Fig. 3), suggesting that complete oxidizers
with high substrate versatility dominate. Clades I, I and V
fell into the Desulfobacteriaceae (Fig. 3). Clade I,
described in detail below, was by far the largest containing
a 55% of the total sequences (424). Clade 11, although
phylogenetically diverse, comprised only about 15% of
sequences (113) and represented the third largest cluster.
Closely related sequences in clade II were environmental
clones recovered from benzene-degrading enrichments
(Phelps et a., 1998), hydrocarbon seeps (AF 54102) and
wetlands (AY216442). The only cultured representative
was Desulfobacterium anilinii (Fig, 3). Clade Ill repre-
sented 17% of the sequences and fell into the incomplete-
oxidizing Desulfobulbaceae. Cultured relatives were
members of the genera Desulforhopalus, Desulfofustis,
Desu/focapsa and Desulfotalea, but none closely matched
the sequences recovered from the marsh sediment
(Fig. 3). For example, one of the two largest 98% consen-
sus groups of sequences (17 members) is only 93% sim-
ilar to its closest cultured relative Desulfocapsa sp. La4.1
(AF228119). Members of the Desulfovibrio genus are
assigned to clade IV and are only represented by 10
sequences. Eight Desulfovibrio sequences were 99% sim-
ilar to Desulfovibrio BG-6, isolated from salt marsh sedi-
ments in New Hampshire (Rooney-Varga eta., 1998).
Finally, at least two small, deep branching clades (Fig. 3,
clades V and VI), containing 10 and 19 sequences, rep-
resent novel lineages with no published sequence match-
ing with >90% similarity.
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Clade I contained the three largest monophyletic sub-
clades, which all had >96% sequence identity. Two are
shown in detail in Fig. 4 to illustrate relationships among
closely related sequences. The largest subclade, IA (125
clones), fell within the Desulfosarcinales and displayed
>96% similarity to two Desulfosarcina variabilis strains
and to a Desulfobacterium cetonicum strain (Fig. 4A).
Some sequences had <1% nucleotide difference from
clones recovered from geographically disparate environ-
ments. Most notably, the most abundant ribotype with 42
sequences (a 6% of total delta-proteobacterial clones)
was only 2 bases different from clone SB 4.53 obtained
from Antarctic shallow-marine sediments (Purdy et a/,
2003) (Fig. 4A). The second subclade, IB (Fig. 4B), con-
tained 71 sequences closely related to cloned sequences
from permanently cold marine sediments (Sva0081)
(Ravenschlag et a., 1998) and an oligochaete endosym-
biont (Olavius algarvensis sulphate-reducing endosym-
biont) (Dubilier et a., 2001). The third subclade (IC; not
shown in detail) contained 57 sequences closely related
to uncultured SRB (95% similar to the clone Eel-3G12)
from anoxic methane-oxidizing consortia recovered from
continental shelf sediments (Orphan etal., 2001). Sub-
clades lB and IC had Desulfobacterium indolicum and
Desulfonema magnum as the only distantly related cul-
tured relatives (<93% similar) respectively. A number of
sequences that fell into clade I but were not associated
with any of the large subclades were closely related to
strains isolated on crude oil extracts and aromatic hydro-
carbons, in particular strain NaphS2 (Galushko et aL.,
1999). These sequences also matched clones SB10 and
SB29 recovered from a benzene-mineralizing consortium
(Phelps et al., 1998) (Fig. 4).

Discussion

Large-scale analysis of delta-proteobacterial 16S rRNA
genes revealed surprising structural features of the micro-
bial community within the marsh sediments. Although it
was hypothesized that the marsh grass Spartina subdi-
vides the sediment into a large number of microenviron-
ments, the extremely high diversity of co-existing SRB-like
sequences was unexpected. Our, to date unprecedented,
sampling effort of this phylogenetically defined group com-
prised 1650 sequences, of which a 47% were identified
as delta-proteobacterial SRB-like sequences. Nonethe-
less, only a 55% of the total delta-proteobacterial SRB-
like sequence diversity was captured, comprising 623
ribotypes based on the Chao-1 diversity estimator. Most
of this diversity resulted from almost 50% of the ribotypes
displaying <1% nucleotide difference from each other.
Deeper lineages were well sampled, and additional
sequencing effort would not have yielded a significant
number of new types. Comparison with published
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sequences suggests that deep phylogenetic relationships
of delta-proteobacterial SRB are beginning to be well
sampled as no novel lineages with <90% identity to known
SRB were detected. Approximately 80% of the sequences
were associated with lineages of metabolically versatile
Desulfobacteriaceae. Thus, the data suggest that diverse
carbon substrates produced by marsh plants, or released
during plant decay, have a strong effect on structuring the
community, but the data also pose questions about the
ecological significance of the observed microdiversity.

The surprising observation in the initial data set that
over 50% of the sequences fell into 1% consensus groups
was confirmed overall by detailed evaluation of potential
sources of error. The amplification protocol was designed
to minimize PCR artifacts that may cause small-scale
sequence divergence. The genes were amplified to mini-
mize PCR bias (Polz and Cavanaugh, 1998) and errors
(Thompson etal., 2002). Chimeras, analysed by two
methods CHIMERA CHECK and CHIMERABUSTER, were
determined to be relatively insignificant. However, 1%
divergent sequences remain nearly impossible to evalu-
ate. Nonetheless, the 32 chimeras identified among
sequences with a 1% similarity cut-off represent such a
small number that, even if one allows for a significant
increase in chimera formation among near-identical
sequences, the effect on overall diversity estimates would
be small. The evaluation of Taq errors suggested that only
~ 23% of the initially observed diversity resulted from Taq
error. This indicates that, indeed, a large number of
microdiverse delta-proteobacterial sequences co-exist in
the marsh sediments.

Sequence microdiversity, described previously in clone
libraries (Ferris and Ward, 1997; Field etaL., 1997;
Amann, 2000; Garcia-Martinez and Rodriguez-Valera,
2000; Casamayor etal., 2002; Ferris et aL., 2003), has
been ignored in recent estimates of microbial diversity
because of the assumption that, in addition to Taq error,
small-scale variation in sequences among rRNA operons
is responsible for this pattern (Hughes et al., 2001; Curtis
et al., 2002; Torsvik et a., 2002). Indeed, bacteria can
harbour up to 15 rRNA operons (Rainey et al., 1996), and
16S rRNA sequences commonly differ among operons,
but differences are typically <1% (Klappenbach etaL.,
2001). Although interoperon variation may be responsible
for a considerable fraction of microdiversity in clone librar-
ies, several lines of evidence suggest that microdiversity
is a feature of co-existing bacterial strains. We recently

Fig. 4. Phylogenetic relationships among two dominant subclades.
Identical sequences were removed from the analysis, and their num-
ber is shown at the terminal nodes. Trees were constructed by neigh-
bour joining using the Jukes-Cantor correction; bootstrap values are
based on 100 replicates and are shown for branches with >50%
support. Subclade IA (A); subclade IB (B).
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conducted a detailed examination of 16S rRNA diver-
gence within 78 published whole bacterial genomes with
multiple operons (Acinas et a)., 2004). These genomes
contained a total of 397 operons but only 220 different
sequences, showing that a large portion of the operons
harbour identical sequences. If these genomes were
treated as a microbial community, 16S rRNA cloning and
sequencing would only result in roughly threefold overes-
timation of strain diversity. However, this estimate neglects
genomes with single rRNA operons. Taking these into
account, overestimation is closer to 2. Furthermore,
association of 16S rRNA microvariation with different co-
existing cells has been documented by in situ hybri-
dization (Amann, 2000). Finally, physiologically distinct
bacterial strains with identical16S rRNA have been
isolated from the same environment (Sass et al., 1998).
These considerations suggest that a portion of the
observed microdiversity in the delta-proteobacterial
sequences may be caused by closely related co-existing
strains.

To what extent the observed microdiversity represents
ecologically differentiated populations is difficult to ascer-
tain at this point. On the one hand, such variation may
represent ecologically undifferentiated populations that
have simply arisen by accumulation of mutations during
clonal diversification. On the other hand, several lines of
evidence suggest that at least some of the 16S rRNA
microdiversity represents populations occupying differen-
tiated niche spaces. The rRNAs are slowly evolving genes,
and it has been hypothesized that protein-coding genes
show evidence of selective sweeps based on adaptive
mutations before variation would be seen at the 16S rRNA
level (Palys et al., 1997). Furthermore, isolates with iden-
tical 16S rRNA need not be metabolically or physiologically
identical (Fox et al., 1992). This has been confirmed by
comparison of genome sequences of closely related
organisms, which show quite extensive differences in gene
arrangement, number and sequence (Alm et a., 1999;
Welch et al., 2002; Ivanova et al., 2003; Read et a., 2003).
That genomic variation in strains with identical 16S rRNA
sequences can co-exist in the same environment has been
demonstrated by two environmental genomics studies
(Schleper et a., 1997; Beja et a., 2002) and by isolation
of SRB strains displaying some physiological differences
from the same sample (Sass et al., 1998). Thus, it appears
likely that microdiversity among salt marsh delta-Proteo-
bacteria indicates some level of ecological adaptation and
shows the need for more detailed studies.

Despite high microdiversity, the sequences fell into well-
delineated phylogenetic groups. For some of these
groups, inference of likely biogeochemical functions is
possible. Over two-thirds of the delta-proteobacterial
clones were most similar to representatives of the genera
Desulfosarcina and Desulfobacterium, suggesting that

complete oxidizers with high substrate versatility dominate
the marsh sediments For example, Desulfosarcina vari-
abi/is, which was associated with the largest single sub-
clade (Fig. 4A), has metabolic capabilities that are well
matched to carbon substrates such as acetate, lactate
and ethanol exuded by Spartina roots. This is corrobo-
rated by previous detection of Desulfosarcina-like organ-
isms by quantitative slot-blot hybridization of rRNA
extracted from Spartina rhizosphere (Rooney-Varga et al.,
1997). Furthermore, plants and decomposing plant litter
release hydrocarbons and aromatics, which can also be
used directly by D. variabi/is-like organisms such as
strains oXyS1 and mXyS1 (Harms et a., 1999). The utili-
zation of the complex substrates such as plant phenolics
and flavonoids may be an overall important property of the
salt marsh SRB community

SRB diversity based on 16S rRNA sequences corre-
lated with a recent exploration of diversity in dissimilatory
sulphite reductase (dsr) genes conducted on exactly the
same sediment samples (M. Bahr etal., unpublished).
Both 16S rRNA and dsr clone libraries were dominated
by sequences associated with the family Desulfobacteri-
aceae. In addition, in both libraries, incomplete-oxidizing
Desulfobulbus and Desulforhopalus genera were
detected. Moreover, both studies also failed to detect
members of the completely oxidizing but nutritionally
restricted genus Desulfobacter (Widdel and Bak, 1992).
This suggests that Desulfobacter, which almost exclu-
sively uses acetate as an energy source (Widdel and Bak,
1992), may be at a competitive disadvantage in the rhizo-
sphere where diverse carbon substrates predominate and
acetate has been found to support only a 10% of SRB
activity (Howarth, 1993). The Desulfovibrio and Desulfof-
rigus/Desulfotalea groups, which were at low abundance
in the 16S rRNA gene library, were not detected in the
smaller, dsr library (M. Bahr et al., unpublished).

Other molecular diversity studies have detected both
differences and similarities in SRB-like community com-
position. Desulfobacteriaceae dominate SRB communi-
ties in other salt marsh sediments based on cloning and
quantitative hybridization studies (Devereux etaL., 1996;
Rooney-Varga eta, 1997). Desulfosarcina and Des-
ulfonema have been detected in marine sediments
(Llobet-Brossa etal., 2002; Purdy eta., 2003), microbial
mats (Risatti etal., 1994; Teske eta., 1998; Minz eta.,
1999) and hydrocarbon seeps (Orphan etal., 2001).
Desulfobacterium-like sequences dominated the delta-
proteobacterial portion of 16S rRNA clone libraries from
the hydrocarbon-rich hydrothermal sediments of the
Guaymas Basin (Dhillon et al., 2003). The genus Desulfo-
bacterium is nutritionally versatile, as are the genera Des-
ulfosarcina and Desulfococcus (Widdel and Bak, 1992),
and they may thrive in habitats with a similarly diverse
substrate spectrum. However, groups that were not abun-
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dant in the Spartina marsh library can be important in
other environments. Cultivation surveys often result in a
predominance of Desulfovibrio strains, for example in
water columns (Teske et al., 1996) and in freshwater lake
sediments (Sass et al., 1998). Although cultivation bias
favours quickly growing and robust Desulfovibrio strains,
some molecular surveys also indicate a significant abun-
dance of incompletely oxidizing sulphate reducers in
some environments (Trimmer et al., 1997; Llobet-Brossa
et al., 2002).

This study represents, to our knowledge, the most
extensive sampling of a specific metabolic guild within a
microbial community so far. The large-scale approach
yielded several surprising results, which pose important
questions for future research. The clone library demon-
strated the co-existence of a high diversity of SRB organ-
isms with similar overall metabolism and revealed high
amounts of microdiversity. One of the most important
questions will be to determine at what level of genetic
differentiation these co-existing organisms are ecologi-
cally differentiated. This may be approached by a combi-
nation of targeted isolation of closely related organisms
followed by extensive physiological and population biolog-
ical studies. In addition, new techniques, which allow
simultaneous detection of metabolic activity and molecu-
lar identification of microorganisms (Boschker et al., 1998;
Ouverney and Fuhrman, 1999; Radajewski et a., 2000;
Adamczyk et al., 2003; Polz et al., 2003), may provide
insights into niche differentiation among both closely and
distantly related organisms. A further challenge will be to
determine what specific environmental factors select for
the presence of one SRB group over another. For exam-
ple, this study showed, in agreement with previous inves-
tigations, a clear dominance of Desulfosarcina-like
sequences. It will be important to carry out comparative
environmental studies, perhaps combined with genomics,
to elucidate relevant factors that govern the distribution of
microorganisms among different types of environments.

Experimental procedures

Study site and sampling

Samples were collected monthly from March to October 1998
from the bulk sediment of a monotypic stand of the tall form
(2 m) of the marsh grass Spartina alterniflora at the mouth
of the Rowley River in Plum Island Sound salt marsh (north-
eastern Massachusetts) (Fig. 1). The creekside sampling site
had a continuous and dense cover of S. alterniflora, and the
sediments showed no evidence of macrofaunal activity. The
mean tidal range was 2.6 m, and the site was flooded during
high tide although it stayed = 1 m above water level during
low tide. Salinity was measured in a small tidal pool near the
site and was between 20%. and 34% during the sampling
period. Triplicate cores (5 cm diameter) were taken within a
few metres of each other at mid-tide, immediately cooled to
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40C and transported to the laboratory. The top 4 cm of each
core was collected using a sterile scalpel, pooled, placed in
sterile 50 ml polypropylene tubes and stored frozen until fur-
ther processing.

DNA extraction and purification

DNA was extracted by a modified version of the bead beating
extraction protocol (Lin and Stahl, 1995). One gram of sam-
ple was combined with 0.5 g of sterilized 0.1-mm-diameter
zirconium-silica beads (BioSpec Products) with 500 pl of
equilibrated phenol (pH 7.0) and 35 pl of 1Ox buffer (500 mM
sodium acetate and 100 mM EDTA buffer, pH 7.0), vortexed
for =20 s and homogenized four times for 30 s in a reciprocal
shaker (Mini-bead beater; BioSpec Products) with intermit-
tent cooling on ice. The sample was then incubated for
10 min at 600C, homogenized for an additional 30 s and
centrifuged at 10 000 r.p.m. at 40C for 10 min to pellet the
beads and separate the phases. The supernatant was trans-
ferred to a clean 2 ml tube. The remaining beads were
amended with 100 pl of 1x buffer, subjected to additional
homogenization for 30 s, and the supernatant was collected
after centrifugation for 10 min. Both supernatants were com-
bined and recentrifuged at 14 000 r.p.m. at 4*C for 10 min to
separate the remaining phenol. The upper aqueous phase
was transferred to a clean tube and extracted twice with an
equal volume of buffer-equilibrated phenol (pH 7.0), followed
by additional extractions with an equal volume of phenol-
chloroform and chloroform respectively. Nucleic acid was pre-
cipitated overnight at -200C after the addition of ammonium
acetate (2.5 M final concentration), MgC 2 (2 mM final con-
centration) and 0.7 volumes of isopropanol. Nucleic acids
were recovered by 10 min centrifugation at 14 000 r.p.m.,
followed by washing twice with 1 ml of 80% ethanol and
resuspension in 100 pl of milliQ water. RNA was removed
from a subsample of 30 pl by incubation at 370C for 30 min
with 20 U of RNase I (NE BioLabs). Final purification was
performed using a Qiagen spin column PCR purification kit
according to the manufacturer's instructions.

16S rRNA gene amplification, cloning and sequencing

The delta-proteobacterial SRB species-specific primer 385F
was developed by combination of previously published SRB-
specific oligonucleotide hybridization probes (Amann, 1995;
Rabus et al., 1996), and was used in combination with the
bacterial primer 1492R for PCR amplification of 16S rRNA
(Table 1). Each of the six monthly samples was amplified in
10 replicate reactions to minimize stochastic PCR bias (Polz
and Cavanaugh, 1998). Each 20 pi reaction contained
0.2 mM each dNTP, 2 mM MgC 2 , 0.1 pM each primer, 1 pl
of template DNA (5-10 ng), 1x PCR buffer and 0.1 U of Taq
polymerase (Invitrogen) and was carried out in a Robocycler
(Stratagene) using the following conditions: initial denatur-
ation at 940C for 3 min, followed by 15 cycles of denaturation
at 94*C for 1 min, primer annealing at 500C for 1 min, elon-
gation at 72*C for 2 min with a final extension step at 72'C
for 5 min. The amplification was carried out for only 15 cycles
to decrease PCR bias (Polz and Cavanaugh, 1998) and the
formation of Taq error and chimeric sequences (Qiu et al.,
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Table 1. 16S rRNA gene-targeted primers.

Primer Used in: Sequence Specificity Reference

385F" PCR amplification CTG ACG CAG CRA CGC CG Most delta-proteobacterial SRB Amann (1995); Rabus etaL. (1996)
907R Sequencing CCG TCA ATT CMT TTR AGT TT Most Bacteria Lane (1991)
1492R' PCR amplification TAC GGY TAC CTT GTT AYG ACT T Most Bacteria and Archaea Lane (1991); Vergin et al. (1998)

a. 16S rRNA positions; E. coli numbering.
b. Designed from the commonly used 385 and 385b SRB probes by combining all degeneracies.
c. Modified according to information provided by Vergin et al. (1998) by incorporating a degeneracy (T/C) at position 1508 (E. coli numbering).

2001). The replicates of PCR amplifications were combined,
precipitated using a OlAquick PCR purification kit (Qiagen),
resuspended in 40 pl of milliQ water and purified additionally
using the QlAquick gel extraction kit (Qiagen). The combined
products were reamplified with five additional PCR cycles to
minimize the formation of heteroduplex molecules (Thomp-
son et al., 2002) and purified using a QlAquick gel extraction
kit. Subsequently, all 6 month samples were combined in
equal amounts of DNA and used for cloning.

Four microlitres of the combined PCR products (final con-
centration 9.5 pg ml-1) were ligated into PCR 2.1-TOPO vec-
tor and transformed into One Shot TOP10 chemically
competent Escherichia coli cells (Invitrogen). Cells contain-
ing plasmid inserts were selected by growing on LB agar
plates (Difco) in the presence of ampicillin and Xgal accord-
ing to the manufacturer's specifications (Invitrogen). White
colonies were transferred to 96-well deep blocks containing
in each well 1.2 ml of Super Broth (32 g of tryptone, 20 g of
Bacto yeast extract, 5 g of NaCl per litre) and ampicillin
150 mg 1'). After overnight growth at 370C with shaking at
250 r.p.m., cells were harvested by centrifugation at
2800 r.p~m. for 8 min at 40C, and plasmids were extracted
using the RevPrep OrbitTM workstation. Purified plasmids
'served as templates for partial 16S rRNA sequence determi-
nation using the bacterial primer 907R (Table 1) and the
BigDye Termination kit version 3.0 (Applied Biosystems).
Completed reactions were run on a 96-capillary 3730xA DNA
analyser (Applied Biosystems).

Sequence analysis

The SEQUENCHER software package (Gene Codes) was used
to remove vector and primer sequence and to check each
sequence visually for ambiguities not scored by the auto-
mated sequence analysis program. Subsequently,
sequences affiliated with the delta-proteobacterial subclass
were identified by BLASTN (Altschul et al., 1990) and prelimi-
nary phylogenetic tree construction using the neighbour-
joining method within the ARB sequence analysis package
(Ludwig et al., 2004). These putative delta-proteobacterial
sequences were kept for further analysis and subjected to a
robust screening to score potential PCR-induced errors. First,
putative Taq errors were identified by mapping each
sequence manually to a secondary structure model of Des-
ulfovibrio desulphuricans 16S rRNA (Cannone et al., 2002).
A sequence position was scored as a Taq error if (i) the
nucleotide differed from universally conserved positions in
the >98% consensus sequence assembled for all bacterial
16S rRNAs (Cannone etal., 2002) or (ii) a non-canonical

basepairing occurred in a stem region of the secondary struc-
ture and was absent in other closely related sequences.
Secondly, sequences were tested for indication of chimera
formation during the amplification. Initially, CHIMERACHECK
implemented in the RDP (Maidak et al., 2001) was used.
However, for a large number of the sequences, it was difficult
to conclude with high probability that they had originated from
distinct parental sequences because no sufficiently close
relatives were present in the RDP. Thus, the CHIMERABUSTER

analysis tool (http://web.mit.edu/polz/seqtools/chimera.html)
was developed. Briefly, the rationale for CHIMERABUSTER is
derived from the fact that chimeras are combinations of
sequences present in the sample and that well-sampled
clone libraries should have a high incidence of co-occurrence
of chimeras and their parental sequences. The program CHI-
MERABUSTER uses the two highly variable regions at each end
of the molecule as in silico probes with adjustable specificity
cut-offs. The program flags all sequences in which each
probe matches two or more distinct sequences with >1%
sequence difference. Thus, three sequences are identified,
of which two are parental and one the potential chimera. Of
these three, the sequence with the lowest incidence in the
clone library was identified as more likely to be chimeric
because chimeras form at later stages in the amplification
when the parental sequences are already abundant. These
putative chimeras, in addition to those identified by
CHIMERA_-CHECK, were excluded from the data set for phylo-
genetic analysis.

To determine how well the clone library was sampled at
different sequence similarity levels, the sequences were first
grouped into 100%, 99%, 98% and 97% similarity groups and
rarefied. A clustering tool, which uses the nearest neighbour
approach, adds a sequence to a cluster if there is at least
one sequence that is within the similarity threshold set for the
clustering (http://web.mit.edu/polz/seqtools/clusters.html).
Rarefaction was carried through the Rarefaction Calculator
(http://www2.biology.ualberta.ca/jbrzusto/rarefact.php). To
estimate the total number of similarity clusters in the clone
library at the different cut-offs, the Chao-1 non-parametric
species richness estimator was calculated (Chao, 1987;
Hughes etal., 2001).

Phylogenetic analyses were carried out in PAUP*, version
4.0b10 (Swofford, 1993). For determination of the relation-
ship of deeply divergent groups, a data set containing a
single representative from each 98% identity cluster was
assembled. Relationships were determined using the
neighbour-joining method with Jukes-Cantor correction and
checked for consistency using parsimony. The most variable
regions (E. coli positions 452-463 and 849-850) were
excluded from phylogenetic analyses of single representative
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sequences of each 98% identity cluster. For the analyses of
sequences within 100% identity clusters, no length variation
was observed, and all sequence positions were included. For
each analysis, the robustness was tested by bootstrap
resampling with the minimum evolution method with 100
replicates.

Nucleotide sequence data

The sequences of the cloned 16S rRNA SRB-like genes were
deposited in GenBank under accession numbers AY374653-
AY374982.
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Erratum Chapter 2

Page 23 "Finally, at least two small, deep branching clades (Fig. 3, clades V and VI),
containing 10 and 19 sequences, ..." should read "Finally, at least two small, deep
branching clades (Fig. 3, clades V and VI), containing 20 and 10 sequences, ..."

Page 24, Fig. 3: "Desulfovibrio mediterraneus" exported from ARB package where it
was incorrectly referenced. It should read "Desulfobulbus mediterraneus."
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Although molecular data have revealed the vast scope of
microbial diversity', two fundamental questions remain unan-
swered even for well-defined natural microbial communities:
how many bacterial types co-exist, and are such types naturally
organized into phylogenetically discrete units of potential eco-
logical significance? It has been argued that without such infor-
mation, the environmental function, population biology and
biogeography of microorganisms cannot be rigorously explored2 .
Here we address these questions by comprehensive sampling of
two large 16S ribosomal RNA clone libraries from a coastal
bacterioplankton community. We show that compensation for
artefacts generated by common library construction techniques
reveals fine-scale patterns of community composition. At least
516 ribotypes (unique rRNA sequences) were detected in the
sample and, by statistical extrapolation, at least 1,633 co-existing
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ribotypes in the sampled population. More than 50% of the
ribotypes fall into discrete clusters containing less than 1%
sequence divergence. This pattern cannot be accounted for by
interoperon variation, indicating a large predominance of closely
related taxa in this community. We propose that such micro-
diverse clusters arise by selective sweeps and persist because
competitive mechanisms are too weak to purge diversity from
within them.

Traditional species concepts have largely been concessions to the
need to identify bacteria reproducibly, but none adequately describe
natural units of microbial diversity-. It has recently been proposed
that natural taxa are distinct groups of strains that arise by periodic
selection-a process of continuing, selectionally neutral, diversifica-
tion punctuated by adaptive mutations leading to selective sweeps.
The latter events purge all sequence variants except those associated
with the genome carrying the adaptive mutation". One of the
attractive features of this concept is that it should be applicable to
molecular surveys of microbial diversity because taxa would be
identifiable in phylogenetic trees as distinct clusters of closely
related sequences'. Moreover, such clusters should be detectable
independently of the gene used to construct these trees as long as the
accumulation of variation is commensurate with the occurrence of
sweeps5. However, this theory has not been applied to broad-scale
studies of bacterial diversity in the environment. Over the past 20
years, diversity studies have primarily been based on analyses of 16S
rRNA clone libraries but it has remained uncertain to what extent
fine-scale patterns of variation are due to sequence artefacts, to
heterogeneity among paralogous operons or to the co-existence of
similar but differentiated taxa'. Furthermore, it has not been
explored whether naturally defined units of differentiation emerge
from recently released shotgun sequence data from the Sargasso
Sea'.

We deduced that the discovery of ecologically significant patterns
of relationships between co-existing ribotypes requires, first, an
examination of clone libraries large enough to elucidate relation-
ships at all levels of differentiation, and second, methods that
minimize and account for the contribution of sequence artefacts
and paralogous variation to diversity estimates. We sequenced
about 1,000 clones from each of two polymerase chain reaction
(PCR)-derived 16S rRNA libraries constructed from the same
coastal bacterioplankton sample. The first library employed com-
mon (standard) amplification protocols. For the second, a modified
protocol was designed to minimize artefacts and to identify Taq
errors and chimaeric molecules through extensive sequence analyses
(see Methods). This approach allowed the most comprehensive
analysis of any single gene from co-occurring populations so far,
even in view of the recently released Sargasso Sea study, which in
aggregate sampled a similar number of rRNA genes but from several
locations, dates and diverse biogeochemical conditions'. Our over-
all rationale was to achieve high coverage of rRNA genes from a
single community while estimating and compensating for the
influence of artefacts on ribotype diversity, potentially revealing
emergent patterns.

Comparison of the two libraries showed that changes to the
amplification protocol alone decreased the incidence of unique
sequences from 76% (692 of 909) in the standard to 61% (686 of
1,131) in the modified library. Correction for chimaeras and Taq
error lowered the percentage to 48% (516 of 1,067) unique
sequences (Fig. la), demonstrating a potentially significant contri-
bution of PCR-induced artefacts to (micro)diversity estimates.
Consequently, these corrections yield a significantly lower estimate
of total ribotype diversity for the sampled community when
compared with the unmodified standard library (1,633 versus
3,881) with the use of the Chao- I estimator'. A novel estimator
(N-r/Nm.a) (ref. 2) yielded a similar value of 2,236 sequences for the
corrected data set. This good agreement, combined with the low
incidence of chimaeras and the observation that corrections account
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for most expected Taq errors (see Methods), provides confidence in

the corrected estimate of ribotype diversity.
A vast and previously unrecognized predominance of micro-

diverse ribotypes was revealed by further analysis of relationships.
More than half of the observed sequences in the modified library fell

into clusters sharing it least 99% sequence consensus (Fig. la). This

result is still more marked when the Chao-I diversity estimator is

applied to the data, indicating that more than two-thirds of
ribotypes might be members of 99% sequence clusters in the

sampled bacterioplankton. Defining such 99% clusters, rather
than unique ribotypes, as operational taxonomic units (OTUs)
decreases diversity estimates from 1,633 to 520 OTUs, a decline of
about 70%. However, further clustering into 98% and 97% con-
sensus groups decreases the number of OTUs by only 3% (507
OTUs) and 11% (450 OTUs), respectively (Fig. La). In fact, a

remarkably consistent exponential decline was observed in the
number of OTUs as cluster cut-off values were decreased from
99% to 75% (Fig. 1b). In stark contrast, the number of OTUs greatly
exceeds this exponential trend for values above 99% (Fig. 1b). An

essentially identical relationship emerged from a phylogenetic
(maximum-likelihood) analysis, in which the accumulation of
lineages per arbitrary time unit was inferred under a molecular
clock model' (data not shown). This exponential accumulation of

clusters or lineages is expected if the creation and removal of taxa are
on average constant over time'. The sharp discontinuity observed
above 99% similarity therefore suggests increased diversification or
decreased removal of diversity within microdiverse clusters.

The overall predominance of extremely closely related ribotypes
also emerges from phylogenetic analyses as large clusters of closely
related taxa (Fig. 2, and Supplementary Information). These are
typically well separated from other clusters, as indicated by a
comparison of average within-cluster and between-cluster sequence
divergence (data not shown)'. The most sequence-rich micro-
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Figure 1 Compositional pattern of the coastal bacterioplankton sample. a, Rarefaction
curves of the number of OTUs in a 16S rRNA library constructed with standard (crosses,
100% sequence similarity cluster) and modified (diamonds, 100% sequence similarity
clusters; squares, 99%; triangles, 98%; circles, 97%) amplification protocols. Standard
deviations fall within the symbols and are not shown. b, Number of OTUs plotted against
changing degrees of cutoffs in 0.5% increments for grouping of sequences into similarity
clusters.
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diverse clusters are formed within the Pelagibacter (SAR 1I) group
of the alpha-Proteobacteria (Fig. 2) but all highly represented
lineages contain such clusters, including the gamma-Proteobacteria
and the Bacteriodetes group (Supplementary Information). Never-
theless, microdiverse clusters are not uniformly distributed between
lineages in the modified clone library. For example, the Cytophaga
group contains more deeply divergent lineages and fewer micro-
diverse clusters than the Pelagibacter group (Supplementary Infor-
mation). However, such differences might be due to incomplete
sampling because rarefaction (Fig. la) suggests that deeper branch-
ing lineages in this library are well sampled and that additional
sequencing should therefore primarily reveal microdiverse
ribotypes.

To what extent can the observed ribotype microdiversity be
explained by variation among paralogous operons within single
genomes'? We have recently explored this question by an analysis of
97 available complete bacterial genomes'. These contain, because of
multiple non-identical operons, a total of 242 different 16S rRNA
sequences9 ; that is, the number of ribotypes exceeds the number of
genomes about 2.5-fold. Remarkably, interoperon sequence differ-
ence remains within about 1% among these genomes. Only five
genomes deviate from this rule, four of which were thermophilic
bacteria all with a single operon with higher sequence divergence'.
Therefore, if one accepts that the distribution of operons among
free-living bacteria is similar to that of the 97 sequenced genomes, a
conservative correction factor of about 2.5 (ref. 9) can be applied to
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Figure 2 Phylogenetic distance relationships between the coastal bacterioplankton based
on partial 16S rRNA sequencing. a, Summary of groups represented in the sample, in

which each number denotes a phylogenetic cluster of sequences (for identification key
see Supplementary Information). b, Relationships between Pelagibacter(SAR1 1) clusters
represented by one sequence of each 99% similarity cluster. Numbers associated with
nodes represent bootstrap values. c, Examples of microdiverse relationships between
SAR1 1 ribotypes. Scale bars, 0.1 (a), 0.05 (b) and 0.01 (c) substitutions per site. Arrows
connecting trees point to expanded nodes.
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the estimated number of sequences (1,113) in the 99% similarity
group to yield a revised estimate of at least 446 closely related
genomes co-existing in the sample. However, this is probably an
overcorrection because opportunistic bacteria with multiple oper-
ons are thought to predominate in culture collections and among
sequenced genomes'"0 . Moreover, Pelagibacter ubique HTCCL062,
which is identical in sequence to clones within the largest SARI 1
99% similarity clusters, seems to contain a single rRNA operon
(S. J. Giovannoni, personal communication). Given that operon
numbers vary little between closely related bacteria' it is unlikely
that the observed SARI 1 microdiversity can be explained by operon
differences. Finally, shotgun sequencing of Sargasso Sea prokaryotes
revealed a total of about 1,400 rRNA and about 600 RecA
sequences. The latter is a single-copy gene in all currently published
genomes. Their frequency in the sample therefore provides an
independent and almost identical estimate of 2.3 rRNA operons
per genome. Thus, we conclude that, even after conservative
correction, genomes denoted by microdiverse ribotypes represent
by far the dominant fraction of bacterial diversity in this coastal
bacterioplankton sample.

The observed pattern raises the question: what level of similarity
should be expected between genomes carrying microvariant ribo-
types? Comparative genomics has shown that genomes can be
divided into stable and variable sets of genes, termed the core and
flexible/auxiliary genome, respectively'"'. The latter arises primar-
ily by means of phage and transposon-mediated lateral gene transfer
and comprises between 1% and 18% of genes" but possibly as much
as 60% (ref. 13). The core genome, in contrast, is a stable com-
plement of genes that includes rRNA and housekeeping genes. This
core reflects the overall evolutionary history of the lineage because
little lateral gene transfer is detectable"''". Microdiverse ribotype
dusters should therefore also be apparent in comparisons of other
housekeeping genes, possibly more so because of the higher substi-
tution rates typical of protein coding genes5 .

Do microdiverse sequences denote co-existing, ecologically dif-
ferentiated genomes? Among free-living bacteria of very similar
ribotypes, correlation of genomic variation with ecological par-
ameters has been demonstrated convincingly in only a single case
involving two strains of Prochlorococcus", but these would not fall
within a single microdiverse cluster as defined here. In contrast, no
evidence of functional differentiation was detected in several
environmental BAC clones with microdiverse 16S rRNA, despite
considerable polymorphisms in protein-coding genes'-6"'. This is
consistent with recently advanced theories for the interpretation of
microdiverse sequence cluste'rs. It has been shown5 that clustering of
housekeeping genes, resulting from periodic selection, predicts
ecologically differentiated strains within cultivated bacterial taxa.
If microdiverse ribotype clusters in the environment arise by the
same mechanism' their very existence implies that intracluster
competition is too weak to sweep members from within their
ranks. However, this does not require that these genomes are
functionally identical. Subdifferentiation within the flexible genome
might provide increased fitness under episodic or spatially confined
environmental conditions, but not sufficient growth advantage to
sweep competing microdiverse genomes". Furthermore, ecological
factors might decrease effective competition. Particularly, predation
has been suggested to promote the coexistence of diverse lineages by
'killing the winner' of competitive events'". Finally, recombination
might be important in delineating and preserving genetic diversity
among members of clusters by allowing sweeps of adaptive alleles
without removing selectionally neutral variation 9 .

The above considerations lead us to suggest that microdiverse
ribotype clusters are important units of differentiation in natural
bacterial communities. Indeed, such clusters might be widespread.
We have recently detected numerous microdiverse ribotypes in salt-
marsh sulphate-reducing bacteria", and ribotype clusters have
previously been tentatively suggested for some open-ocean
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microbial groups'. To determine whether microdiverse ribotype
clusters described here represent ecotypes-that is, ecologically
cohesive populations-will require a detailed comparison of their
encompassed genomic variation. Indeed, high-throughput sequen-
cing' and cultivation" provide the means for rigorous testing of the
hypothesized ecological importance of ribotype clusters. Most
importantly, such inquiries challenge us to re-examine concepts
of microbial diversity and invigorate the search for ecologically and
evolutionarily defined species concepts. 0

Methods
Study site and sampling
A 2.2-litre water sample was collected on 6 October 2001 from the marine end of the Plum
Island Sound estuary (northeastern Massachusetts), and bacterioplankton was
concentrated on a 0.22-tim filter (Supor; Gelman), which was stored at -80C until DNA
extraction. Measured water parameters were as follows: temperature 16 *C, pH 8.0.
prokaryotic cell numbers 0.99 x 0I- ,dissolved organic carbon 0.4 mgC ,-

chlorophyll a 5.94 sg 1F'.

DNA extraction and clone library construction
Cells on filters were lysed and nucleic acids were extracted with d modified version of a
bead-beating method" followed by treatment with RNase I and purification on Qiagen
DNA purification spin columns. Two 16S rRNA clone libraries were constructed from the
same sample to estimate the total coexisting sequence diversity and the effect of PCR-
induced artefacts. For both, the bacteria-specific primers 27F and 1492R as modified in ref.
22 were used. Each PCR reaction contained genomic DNA equivalent to 4.9 X 100 cells.
Ten replicate reactions were combined and gel-purified, and the same amount of
amplicons were cloned with the PCR 2.1-TOPO kit (Invitrogen). The PCR amplification
for the first (standard) library used 35 cycles mimicking commonly used protocols
(typically between 30 and 40 cycles). The second (modified) library was constructed to
minimize the accumulation of the three known PCR artefacts (Taq errors, chimaeras and
heteroduplex molecules)". In brief, the sample was amplified for 15 cycles followed by a 3-
cycle 'reconditioning step', which eliminated heteroduplex molecules" and decreased the
incidence of Taq errors and chimaeras. Purified plasmids served as templates for partial
16S rRNA sequence determination with the bacterial primer 27F (ref. 20).

Sequence analysis
Sequences (position 68 to 805, E coli numbering) from the corrected library were further
analysed for evidence of PCR artefacts. About 3% of the sequences were removed as
putative chimaeras on the basis of identification by a combination of the three
bioinformatics tools ChimeraCheck", Bellerophon" and ChimeraBuster". Taq errors
were identified by manual reconstruction of 16S rRNA secondary structures as pioneered
in ref. 26 and detailed in ref. 20. In brief, the method scores as Taq errors sequence changes
that violate either the sequence-conservation rule (nucleotides that are different in
positions more than 98% conserved in all bacterial sequences) or the secondary-structure-
conservation rule (apparent changes resulting in mismatches in stem structures that are
not detected in related sequences). The Taq error rate determined from these rules was
3.3 x 10 5 per nucleotide per duplication, which agrees remarkably well with the
experimentally determined value of 2 x 10-5 per nucleotide per duplication for the Taq
polymerase used". Further confidence that the large majority of Taq errors are captured is
lent by several simple considerations. First, inspection of alignments showed the
remaining variation clustered in regions known to be highly variable, which is inconsistent
with the expected random distribution of Taq errors. Second, separate quantification of
Taq error rate for positions failing under the conservation and the secondary structure rule
previously gave highly similar rates of 1.7 X 10 

5
and 2.5 x 10-, respectively". Third,

after 18 cycles, the inferred Taq error rate would lead to a misincorporation of bases at a
rate of 3.6 X 10-4 per nucleotide. Because about 100 base pairs of sequence reads were
obtained, this would translate into an average ofO.3 errors per sequence. This is close to the
fraction of sequences (0.26; I1 of 686) removed from the modified library owing to
identification of Taq errors. Last, potentially undetectable Taq errors by the secondary
structure rule are those that change one allowed base pairing into another (for example, A-
U to G-U). Although this can happen in two-thirds of all positions in rRNA, only 30% of
the time will random replacement of one nucleotide by another due to Taq error result in
another allowed base pairing. Therefore, at worst 20% (0.67 X 0.3) of Taq errors are
missed but since only about 64% of the nucleotide positions fell under the secondary-
structure rule this number translates into about 13%. Considering the probable incidence
of errors per sequence based on a Taq error rate of 2 x 10 5the calculation again results in
an estimated 4% of sequences (0.13 x 0.3) that carry errors missed by the applied
corrections.

The corrected set of sequences was used to estimate total diversity in the
bacterioplankton community and patterns of relationships. An algorithm was
developed" to group sequences into percentage similarity clusters (100%, 99%, 98%, and
so on). This formed the basis for statistical extrapolation of total sequence diversity with
the Chao-I (ref. 7) and NT/NMx (ref. 2) estimators. Accumulation of lineages through
time was calculated with GENIE" from a non-optimized tree inferred by maximum
likelihood with the molecular clock assumption enforced'. Identification of phylogenetic
affiliation of the sequences was performed with the neighbour-joining method
implemented in ARB" and followed by an analysis of more restricted groups of sequences
by using distance and parsimony methods in PAUP* (ref 29).
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Euthycarcinoids are one of the most enigmatic arthropod groups,
having been assigned to nearly all major clades of Artbropoda.
Recent work has endorsed closest relationships with crustaceans'
or a myriapod-hexapod assemblage2, a basal position in the
Euarthropoda, or a placement in the Hexapoda or hexapod
stem group". Euthycarcinoids are known from 13 species ranging
in age from Late Ordovician or Early Silurian to Middle Triassic,
all in freshwater or brackish water environments'. Here we
describe a euthycarcinoid from marine strata in Argentina dating
from the latest Cambrian period, extending the group's record
back as much as 50 million years. Despite its antiquity and
marine occurrence, the Cambrian species demonstrates that
morphological details were conserved in the transition to fresh
water. Trackways in the same unit as the euthycarcinoid
strengthen arguments that similar traces of subaerial origin
from Cambro-Ordovician rocks were made by euthycarcinoids"8.
Large mandibles in euthycarcinoids'"' are confirmed by the
Cambrian species. A morphology-based phylogeny resolves
euthycarcinoids as stem-group Mandibulata, sister to the Myr-
iapoda and Crustacea plus Hexapoda.

Mandibulata Snodgrass, 1938
Euthycarcinoidea Gall and Grauvogel, 1964

Euthycarciniformes Starobogatov, 1988
Apankura gen. nov.

Etymology. Apankura (Quechua), meaning crab.
Type species. Apankura machu gen. et sp. nov.
Diagnosis. Euthycarciniform with large mandibles that occupy
most of the space beneath the posterior cephalic tergite; anterior
two pairs of pre-abdominal limbs smaller than the posterior nine
pairs; limbs markedly taper distally, composed of about ten podo-
meres, distal podomeres are shorter, large setae are absent; at least
six post-abdominal segments; post-abdominal tergites are each
about 2.5-times wider than they are long.

Apankura machu sp. nov.
Etymology. Genus as above; machu (Quechua), meaning
grandfather.
Holotype. Museo de Geologia, Mineralogia y Paleontologia, Uni-
versidad Nacional de Jujuy (JUY-P 24; Fig. 1).
Locality and horizon. Bed of Rio Huasamayo, Garganta del Diablo,
near Tilcara, Jujuy Province, Argentina. The holotype (the only
known specimen) is in greenish-grey mudstone from the
Casa Colorada Member, Santa Rosita Formation. The trilobites
Neoparabolina frequens argentina and Plicatolina scalpta on the
same slab indicate a latest Cambrian age (lower part of Neopar-
abolina frequens argentina zone)'", Green shales of the Casa Color-
ada Member represent lower offshore deposition in an open marine
facies".
Diagnosis. As for genus.

The holotype is 38 mm long, including the head, pre-abdomen
and six segments of the post-abdomen. The maximum width of the
pre-abdominal tergites is 16 mm. As in other euthycarcinoids"2, the
head is composed of a short anterior tergite and a longer, wider
posterior tergite. The latter is trapezoidal, with gently curved lateral
margins. The antenna is uniramous, with at least nine short articles.
Large, well-defined spheroidal processes" are at the lateral margin
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Key to cluster numbers from Figure 2a.

Numbers in parentheses represent ribotypes and sequences associated with each cluster,

respectively. 1, Vibrionales (33/40); 2, Pseudoalteromonas/Shewanella (12/14); 3,

Uncultured Gammal (UGAMMA1) (9/9); 4, Uncultured Gamma2 (UGAMMA2) (8/12);

5, Methylomonas/Methylomicrobium (8/24); 6, Uncultured Gamma3

(UGAMMA3)/Symbionts (13/20); 7, Uncultured Gamma4 (UGAMMA4) (20/51); 8,

Uncultured Gamma5 (UGAMMA5) (13/33); 9, Cyclocasticus/Symbionts (20/33); 10,

Methylophylaceae (Beta Proteobacteria) (17/29); 11, Comamonadaceae (Beta

Proteobacteria) (7/7); 12, Uncultured ActinomycetesI (UACTINO1) (12/45); 13,

Cryobacterium (8/11); 14, Uncultured Verrucomicrobiales (7/10); 15, Planctomyces

(6/7); 16, Fusibacter (Clostridiales) (2/2); 17, Bacteriovorax (Delta Proteobacteria) (8/8);

18, Arcobacter (Epsilon Proteobacteria) (8/11); 19, SARsurface group (Alpha

Proteobacteria) (43/129); 20, SAR deep group (Alpha Proteobacteria) (17/25); 21,

Uncultured Alphal (UALPHA1) (2/5); 22, Roseobacter/Roseovarius (29/87); 23,

Uncultured Alpha2 (UALPHA2) (8/10); 24, Uncultured Alpha3 (UALPHA3) (1/1); 25,

Uncultured Alpha4 (UALPHA4) (18/28); 26, Uncultured Alpha5 (UALPHA5) (3/3); 27,

Uncultured Alpha6 (UALPHA6) (6/9); 28, Unknown1 group (UNK1) (5/17); 29,

Unknown2 group UNK2 (3/4); 30, Uncultured CFBI group (UCFB1) (10/13); 31,

Uncultured CFB2 group (UCFB2) (7/22); 32, Uncultured CFB3 group (UCFB3) (5/5);

33, Uncultured CFB4 group (UCFB4) (4/5); 34, Cytophagalesl (13/55); 35, Polaribacter

(5/8); 36, Uncultured CFB5 group (UCFB5) (28/56); 37, Uncultured CFB6 group
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16S rRNA gene sequences (ribotypes) retrieved from the Plum Island bacterioplankton

sample and representative reference sequences.
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PI_4a5a
Pt_4zld

PI_4al0b
Vibrio sp. Ex25
Pt_4f1d
Pi_4j1h

Pl_4mlg
PI_4a6e
PI 4s4g

PI_4s1(h
Vibio sp NAP4

PIRT7 (2)
Pt_4b8a

Pt4j9c
PI_4allb

P) 4d9d (2)
Pt_4h2f
PC4jlOa

PIRT260 (3)
V nereis
P1_4fld
PL d2

Listonella anguillarum serovar 01
Pt_412h
Pt_4tib

Pt_4a9e
Pt_4b7h

Pt_4b4b
Pt_4q4f

Vibno sp.LT21
Pl_4j8b

PI_4c3a
PI_4f9c
Vibrio sp. clone 3d7
PIRT167 (2)
PI 4b5e

Pt_4jlc
P_4s9b (2)

PI 4ellh
Pt 4t12a
Pt 4z7h

PIjlOb

PIRT158 (2)
PI_4e7e (2)

Pt_4f81
PI_4t3d
Ateromonas sp. KT1101
PI_4r3d
Pi_4gl1a

Pl4m12h~l_4g2g
Pt_4hla

PI_4a4e
PI4r8d

Pl4s5d
PI_4h3g
PI_4g11c

P1_4zIOd
PI_4b9h
PI_4r9b

Pt_4f6d
PI_4d11d

Pt_4z10a
PI_4t6h

Unidentified gamma proteobactena OM60
PIRT139 (3)
PI_4r1Ob

PIRT273 (5)
P!_4j5b

Pt_4m3d
PI 4c5b

Pt_4s2a
PI 4p1Oa )

PIRT312 (6)
P_4p4h
PI RT335 (11)

PI_4m12d
Pi 4s7g
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PI_4k4g
PI_4d5b CD

PI_4a8f 0)
PI_4p12c
PI_4a6d

PI_4rI0f
PI RT96 (3)
PI_4z6d
Uncultured marine bacterium ZD0405
Bathymodiolus septemdierumthioa

PI_RT245 (6)
PI 4d1Ig
PI_4hlf

PI_4bl1c
P1_4h5d

PI_4t4h
P_4f7f (2)
PIRT153 (4)
PFRT196 (4)
PfRT239 (5)
PIRT296 (4)
Uncuttured proteobacterium EBAC31AO8
PI_4q8h
PIRT223 (4)

Pt_4t9g
PI_RT135 (2)

P1_4b8g
PlRT8 (2)
PI_4s11c
PI_4sla

PI_4d8c
Pt_RT298 (11)

P1_4z2d
Pl_RT131 (3)
Uncultured gamma proteobacterium MB12DO3
PI_4t9c
PIRT297 (3)

PIRT330 (14)
P1_RT200 (4)

Uncultured proteobacterium OCS5
Pt 4z7f
U-ncultured proteobacterium EBAC27G05

Pl_4j2f
Uncultured gamma proteobacterium KTcl112
P_RT299 (8)
PJ-4j6h
P-_PT72 (2)

-PlRT74 (2)
PI_4g2h
Pl_4t2b
PI_4t8d

~Pl_4mIb
P1_4m4a

Pl_4m4h
PI_4r4a

PI_RT134 (3)
PI_4s5b
PI_4z2f
PI_4a4d
PIRT249 (7)

Pt_4m8g
PI_4z2c

PI_4d4f
P1_4hlOg

PL_4dllh
PI_RT101 (2)
PI_RT191 (2)
PIRT117 (2)
Cycloclasticus spirillensus
PI_4pl1d

PI_4h8c (2)
PI_4j7f

Pl_4r3b
Pt_4d8h
PI_4h9d

Pt_4z6g (2)
PI_4t11c

F1~ Pt 4Pt1h
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PI 4t6a

PI RT126 (4)
PLRT65 (4)

P1_4bI1h (2)
PI_4e2e CW
Uncultured marine bacterium ZD020 CD
Unidentified beta proteobacterium OM43

Pt_4s6g
Pt IRT99 (2)
PI_4f4a
PI_4gl2d
Pt_4s9g

Pt_4t8h
Pt_4e6c 0

PIRT319 (5) CD
Pt_4alOh -_

Pt_4z5a
Pt_4b1ld

Pt_4h2h

_4p1 2e
Pl_4p12a
PI_4qIf
Pt_4r8c
Pt_4d6d

Pl_4g6a
Pt_4a4b
PI 4d9f
Pt 4d7c
Pt_4a8c
Pt_4m2c
PIRT344 (43)
Uncultured alpha proteobacterium Arctic95A- 12
Pt_4z9c
Uncultured alpha proteobacterium MB11B07
Pt_4q4b
Pelagibacter ubique strain HTCC1062
PI_4r4d
PL_4h6g
PIRT224 (3)
Pt_4f1e
PIRT277 (5)
PIRT149 (2)

PL-4g5c
PI_4g7e

Pl_4s8f
P 229 (2)
PI_4f4c
P_4b2a (3)
PI_4t10d
PL_4f6f
PI_4z3g
Uncultured proteobacterium EBAC40EO9
PIRT284 (9)
Pt_4hld
PIRT281 (6)
PL4z4d
PIRT339 (18)
Uncultured alpha proteobacterium MB11FOl
Pt_4h7b
Pt_4d9e

PI_4z5d
P_4d3g
PIRT170 (2)
PI4k2g
Pt_4z6a
PI_4alc
P_4t7f
Pl_4p11g
P_4p4f
Pt_4b9b
Unidentified alpha proteobacterium OCS12

P)_4g9h
Pt_4h7e
PI 4zlle
PI-RT59 (4)

SAR407
SAR1

SAR11
SAR193

PI 4d6e (2)
PtRT324 (7)
PtI 4d2h
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Uncultured alpha proteobacterium Arclic96A-20
PI_4j3c
PI_4hlOh
Pl_4p8c

PIRT210 (2)
PI4j11b -1
PI 4a3a -T

P_4d7f
P1_4d4c TJ

PI_4gl2g 
P1_4q11f

SAR211
Pl_4qi2c C
P7 4s4c

PI 4c2a
P,_4z1c CD
SAR241

SAR203
PI 4tIh

PL F4z10f (4)
PI_4f7b
PIRT68 (2)
P_4b5h
Pl_4p3f

PI_4fl1f
P1_4m12g
PT 4r9d

P1_412!

P1_RT264 (3)
Pl_4s1b
PI_4a9t
Pl4j1lh

PIRT 169 (2)
PIRT98 (3)
PT 4z3h
Roseobacter sp.
Pl_4p10h
Pl_4j6d

PI_4p6g
Pl_4j9e
PI_4z1b
PIRT290 (6)
Pt_4d12b
PL_4s8g

fPl_RT343 (45)
PI_4d7g
PlRT140 (2)
PI_4c9h
Uncultured Roseobacter NAC11-3

Pl 4z8c
Uncultured Roseobacter sp.clone Arcticl6A-1

P1_4m3h
Pt_RT240 (3)

Alpha proteobacterium MBIC3923
PI_4d2e

Pl_4f7g
PI_4b7a
PI_4f9e
P1_RT58 (2)

PI_4h8g
PI 4a7a
PIRT63 (2)

PI_4b9a
PlI4h7g
P1_4s3e

Pt_4p4c
PIRT182 (3)
PT_4j5e (3)
Pl_RT241 (3)

P_4m10e

Pl_4j4g
Pt_4j7d
Pl_4g7d

PI_4b3a
PLRT125 (2)
P1_4f4e
Pl_4tlg

Pt 4f4d
PtRT288 (4)
P_4c1Oa
P14g5d

0, _4q2e
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PI 4b3e
PI_4tle
PI 4cl2c

Pt_4b3b
Pt_4s12d
PI_4j3f

PIRT307 (4)
PI_4ml0b

Pt_4z9d
PI 4b4c
PIRT336 (13)

Uncultured delta proteobacternum Arctic96A-24
PI_4r2f

PI 4e3e (2)

PLI 4 4f d

PI_4b6e 
I4l

CD
PI_4g4h

Geobacter sulfurreducens
PI_4t8g Tm
PI_4h3e

PI_4011d =
Pl 4e8g 0
PI 4b12f :
Pl._4j2c ~

PI 4q12d
PI_4c7e qC 0

PI 4di0b Cr
PI 4z7d 0

Arcobacter sp.KT0913 0

PI4c12dCD
Unidentified bacterium clone N81-k

PI_4112e
PI_4z10e
PlRT201 (2)

PIRT225 (2)
Uncultured eubacterium CHA3437

Uncultured epsilon proteobacterium MERTZ_0CM_367
PI_4t 12b (2)

PI_4t0Of (2)
PtRT220 (2)

PI_4zle
PIRT12 (2)
PI_4z6b
PI_4tlOh
Pl_4q7h

PI_4z3f
PIRT56 (2)
PIRT340 (32) 0
P14a11f
Uncultured actinomycete OCS155
Unidentified firmicute OM1

Uncultured actinobacterium MB11C06
P l4mlld 0)
Pl_4m11PL_4m4g CD

Pt_4b5g __
Pi_4c4d

PLRT160 (2)
Pl_RT97 (2)
PI_4a8d
Pt_4d1Of

P1_4b7e
Uncultured bacterium clone BA4

Pt_4s11d
PRT184 (2)
PI_4p6e

Pt_4r11b
PI_4r1b

Pl_4j8g
Pl_4ald
P_4q3b (3)
PI_4s11h

PtRT192 (2)
PI_4m2e
Pt_4clOh
Pt_4m7b

Pt 4d7b (2)
PIRT275 (3)
Pt_4s3d

SPL4al2g
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Cytophaga sp. strain JTB244

PI_4gl2c
P 14s2d

Pl_4b5d
PI 4m3e
E --t_4f4b

Pt_4g8d
PI4b2h

PI_4j12f (2)
Pt_4slle

PIL4j2a
Pl_4j7b
Cellulophaga sp. ACEM20

Pt_4a3g
PI_4tlOc

P1_4f7d
PIRT205 (14)
PtRT267 (3)

PI_4s5a (2)
PI_4zlla
P1_RT295 (16)

Unidentified bacterium DNA isolate HOS12
P_RT331 (11)

Pt_4z4g
Pt_4b12b (2)

PI 4j12e
PI_4t12e

Pt 4zllh
Pt_RT278 (4)
Pt_4q12b

Pl4j4c
PI 4d4h

Polaribacter sp. SWO19
PI_4d5d

Pi_4gllf
Pt_4cle

PIRT247 (3)
Pt_4t1e

PIRT321 (11)

Uncultured Cytophagales bacterium Arctic97A-14

PI_4a11h
P_4p6a

PI RT306 (4)
P _4e9c
Pt_RT132 

(3)

PI_4elle
Pt_4t2a
PI-4p7h
PI_4bl1f

PI_RT22 (4)
PI_RT282 (5)
Pt_RT221 (2)
PI_4j9b
PI_4c5a

PI_4m4c
PIRT79 (3)

PI_4e6a (2)
Pt_4plf

P1_4c6g
Pt_4a8b

Pt_4d5g
Pt_4d9a
P1_RT333 (8)
Pt_4b6c
PI 4a4c
P1~4s12a

Plt4r12g
PI_4elc
Pt_4f12e
PLRT213 (2)

PI-RT311 (4)
PI_4zl2b
PI RT302 (6)
Uncultured marine bacterium ZDO40
PI 4a4g
PI RT50 (2)

PI RT285 (4)
PI 4~6h CO

Pl_4p2c
Pt_4g8h C

IPI PTIA1 091%
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PtRT179 (2)
PI_4a7e

PIRT252 (13)
P1_4h8a
PL_4h9g
PFRT130 (3)
Unidentified bacterium DNA isolate HOS19

PI_4m8h
Pt_4s6a

Pl_4d12f
Uncultured CF8 group bacterium NL-136
Pt_4jlOh
PI_4q11g

PI 4fla
Pt 4j3e

PI 4b6g
PI_4m5c
PI_4ml1g
Pt 4s1f
PIRT146 (2)

PI_4j6b
PIRT27 (4)
Pt_4m12f
Pt_4m8b
PIRT25 (3)

PI_4b1f
Pl_4hIc (3)

Pt_4m5a
Pt_4d5c

Pt_4r8h
__ Pt_4h4d

Pt_4t6f
Pt_4elOg
PI_4p6d
P1_4s6b

PI_4a2d
PIt4e5g
Pt 4z9e
P1_4z6c (2)

Pt_4fl(g
PI_4h2b
Pt_4j9a
Pt 216 (2)

Pl_4t8a
Pl_4gl2h
PIt4qlOf

Pl_4t3b
Pt 4clOd
PI_4p7b
Pt_4b12a

Pi_4q7d
PI_4t7c
PTRT157 (2)
Pt_4hlle

PI_4el0a
PI_R T175 (2)

Pt_4bl2g
Pt_4g6h

PI_4z8g
Cytophaga fermentans

PI_4a2f
Pt_4s7e
Pi_4t2e

Pi_4a8e
Pt_4r7e

PIRT116 (2)
Pt_4a5c
Pil4j5a

PI 4z12e
Pt4a5f
PIRT39 (6)
Pt_4d 1f
PI_4b7g (2)

PI_4h7h
PI4p5d
PI4pl1f

Pt_4h5e
Pl_4z4a

PI_RT1O4 (7)
PI 4g12e

Pt_4m7d
PI 4r5a
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CHAPTER FOUR

Estimating the diversity of bacterial communities

To be submitted with Daniele Veneziano and Martin F. Polz as co-authors.
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Abstract

Reliable estimates of diversity are a prerequisite for many studies of community

assembly, environmental function, and biogeography. However, for microorganisms,

diversity assessments have only recently become possible through the advancement of

molecular techniques and application of statistical methods generally developed for

estimating diversity of macroorganisms. Currently, the most commonly used diversity

estimator in microbial ecology is Chao 1, however, theoretical studies have suggested it

underestimates the diversity of complex microbial communities. This is confirmed by our

analysis of a large dataset of 16S rRNA sequences derived from a single microbial

sample. Here, we consider existing parametric approaches, as these should perform better

for very diverse communities. We modify them to better account for the specific way

microbial communities are sampled. The number of taxa and other model parameters are

estimated using maximum likelihood (ML). Of the tested distributions for abundances of

bacterial types, the lognormal distribution, which is commonly used for microbial

communities, results in the best fit to our data. The number of taxa estimated using our

parametric approach and the lognormal distribution is one order of magnitude higher than

the value given by the Chaol estimator. Through simulation, we show that the difference

is due to bias of the latter estimator and that the diversity within a complex marine

microbial community is considerably higher than previously observed.
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Introduction

Prokaryotes are by far the most abundant and diverse organisms. Their global abundance

is estimated to be 4-6 x 1030 cells (Whitman et al., 1998) and molecular surveys have

revealed an astounding microbial diversity that was previously undetected by culture-

dependent methods (Head et al., 1998; Hugenholz et al., 1998; Rappe and Giovannoni,

2003). However, the quantification of microbial diversity has remained a technical

challenge because molecular surveys have not produced data sets large enough to

critically evaluate statistical methods that were only recently introduced to microbial

ecology (Hughes et al., 2001).

As most bacteria remain unculturable, the most accurate way to estimate

microbial diversity is to use sequence data from genes obtained directly from

environmental samples. This involves extraction of environmental DNA, polymerase

chain reaction (PCR) amplification of target genes (most commonly ribosomal 16S rRNA

genes), clone library construction from amplified gene fragments, and gene sequencing

(Head et al., 1998). Typically, sequences are clustered into unique rRNA sequences

(ribotypes) or clusters of ribotypes based on 1-5% sequence divergence (Martin, 2002).

The diversity of ribotypes or clusters in a clone library is then estimated using statistical

approaches (Dunbar et al., 1999; Hughes et al., 2001; Stach et al., 2003).

The many existing methods for estimating organismal diversity fall into two

general categories: (i) parametric methods, where the abundance distribution of taxa is

assumed to have a specified parametric form, and (ii) non-parametric methods, where no

abundance distribution model is assumed (May, 1975; Colwell and Coddington, 1994;
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Krebs, 1999). In microbial ecology, the most commonly applied richness estimator is the

non-parametric Chaol estimator (Hughes et al., 2001; Bohannan and Hughes, 2003). It

calculates diversity of organisms based on the number of taxa represented in the sample

by one individual (singletons) and two individuals (doubletons) (Chao, 1984, 1987).

Since the Chaol estimator depends only on the number of singletons and doubletons, it is

very simple to use. However, it has been noted that the Chaol estimator gives biased

(low) estimates of diversity, especially for very heterogeneous communities (Mao and

Lindsay, 2001; Bohannan and Hughes, 2003).

Parametric analysis has only rarely been used to estimate microbial diversity. A

major reason is that parametric methods are computationally more demanding than non-

parametric alternatives. In addition, it has been argued that the need to assume an

underlying abundance distribution of taxa in a clone library is disadvantageous because

existing data sets are not large enough to support the choice of a particular abundance

model (Bohannan and Hughes, 2003). However, if a distribution of abundances can be

chosen based on theoretical or empirical observations, parametric models should estimate

the diversity more accurately than non-parametric approaches.

In this paper we show that for complex microbial communities the commonly

used Chaol estimator is highly biased and severely underestimates diversity. Since our

data set is the largest derived from a single environmental sample to date (sample size =

1,033 16S rRNA sequences), we consider as an alternative, various parametric

maximum-likelihood estimators to better account for the way microbial communities are

sampled. We compare the modified parametric estimators with existing ones and the
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Chaol estimator, and evaluate the performance of different estimators by sampling from

the bacterioplankton data set and simulated communities.

Modification of a parametric model and ML formulation

Here we consider (i) the formulation of parametric abundance models and sampling

methods appropriate for microbial communities, and (ii) estimation of the model

parameters using maximum likelihood. We first describe abundance distribution models

for taxa in the population and the sample. This is necessary because, the distribution of

taxon abundance in the sample depends on the distribution of taxon abundance in the

population and the sampling procedure used. Second, we provide a detailed description of

the maximum likelihood formulation. Lastly, we evaluate how well different parametric

models fit the data and compare the results with diversity estimates obtained by non-

parametric approaches.

Distribution of taxon abundances in a population

Clone libraries constructed from complex natural environments are typically highly

heterogeneous, being comprised of a few dominant and many rare taxa (Dunbar et al.,

1999; Stach et al., 2003; Acinas et al., 2004a; Venter and al., 2004). In nature,

abundances vary significantly from taxon to taxon and can be represented by a random

variable with a particular distribution form. Lognormal and gamma distributions have

been widely used for highly heterogeneous communities of macroorganisms and are

54



reviewed below (Fisher et al., 1943; Preston, 1948; Kempton and Taylor, 1974; May,

1975).

The lognormal distribution has probability density function:

--(In r-py

q(r) e [1]
ror/v2z

where ln(r) is normally distributed with mean value y and variance a2 .

It has been argued that the abundances of microbial taxa should be lognormally

distributed (Curtis et al., 2002). For example, May (1975) proposed that the highly

dynamic and random growth, such as that commonly observed for microorganisms in

natural communities, should lead to a lognormal distribution of taxa. Furthermore,

multiple biotic and abiotic interactions, such as nutrient composition and availability,

light, temperature, and competition, should also lead to such a distribution (May, 1975).

Another commonly used abundance model is the gamma distribution, with

density:

q(r)= r"'e R, [2]
f(a)

where F(a) is the gamma function, a>0 is a shape parameter, and p>0 is a scale

parameter. The variable r in Eq. [2] has mean value ap3 and variance a38 (Engen and

Lande, 1996; Diserud and Engen, 2000).

There are two special cases of the gamma distribution, which have been proposed

for highly heterogeneous communities: the broken stick distribution (MacArthur, 1957)

and the logarithmic distribution (Fisher et al., 1943). When the shape parameter a
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equals one, the gamma distribution is exponential (Plotkin and Muller-Landau, 2002),

which is a continuous version of MacArthur's broken stick model (Cohen, 1968).

MacArthur's broken stick distribution is to be expected when there is a fixed amount of

some governing resource that ecologically homogeneous taxa divide up among

themselves in an independent way (May, 1975). When a -> 0, the gamma distribution

becomes a logseries distribution (Plotkin and Muller-Landau, 2002), which is a

continuous version of Fisher's logarithmic (logseries) model (Fisher et al., 1943).

Fisher's logarithmic model is appropriate for taxa that compete for a single resource, as

in the broken stick model, but ecologically homogeneous taxa divide up the resource in

some dependent fashion (May, 1975).

Distribution of taxon abundances in a sample and ML parameter estimation

The number of individuals of a given taxon observed in a sample is a random variable

whose distribution depends on the total abundance of that taxon in the sampled

community, the sample size, and the method of sampling. Given the abundances of the

taxa in the community, the corresponding abundances in the sample are typically

assumed to have independent Poisson distributions (Preston, 1948; Bulmer, 1974). While

often not exact, the independent Poisson assumption leads to relatively simple analysis

and gives a good approximation to more accurate, but more complex sampling

distributions.

Sampling methods for macroorganisms are generally different from those for

microorganisms. There are two main methods of sampling: exhaustive or complete (in
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time or space) and random with fixed size (number of sampled individuals). Plants and

insects are typically sampled exhaustively inside quadrats and from traps, respectively.

In this kind of sampling, the total sample size is not known a priori as everything within

a given space or time volume is collected. In contrast, clone libraries are often sampled

using a fixed sample size. As we shall see, main difference between the two sampling

strategies is in the mean value of the sample abundances.

Compound Poisson model for exhaustive sampling

We first describe the maximum-likelihood formulation for exhaustive sampling and then

show how the formulation is modified when the sample size is controlled.

A likelihood method for exhaustive independent Poisson sampling was recently

described by Mao and Lindsay (2001). This model applies when the space-time

distributions of individuals belonging to different taxa are independent Poisson variables

and sampling is exhaustive inside a certain region. Let N be the unknown total number of

taxa to be estimated and denoted by m, the sample abundance for taxon i with possible

values 0, 1, 2, ... The number of taxa with sample abundance mi=m is denoted by nm.

Hence I nm = N. In this case, that n,, n2 , ... , are observed but no is not, and that
rn-1

nn = n, where n is the total number of taxa observed in the sample. In the exhaustive

sampling model, the m,' s are taken to be Poisson random variables with mean values X,

i= 1,...N. The mean values X are proportional to the population abundances and are

treated as independent random variables with the same probability distributions (usually
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lognormal or gamma) with Q( X). Given Q, the probability f(mIQ) that a generic taxon i

has sample abundance mr = rn is:

f(m I Q)= fIXe-dQ(A). [3]

In this case f(mIQ) does not depend on the number of taxa in the community, N.

The likelihood function of (N,Q) has the form:

l(N,Q I{nm}) cc f (no = N - n,{n,,m > 0} IN,Q)=

= N! f(0\ Q)N-n f(M nQ), [4]
(N - n)!Hnm! m=

pn=1

N !
The factor N in eqn [4] is a multinomial coefficient, which gives the number

(N - n)!Hnm!
m=1

of ways in which sample abundances mi, i = 1,...,N can be ordered. The likelihood

function in eqn [4] can be factored into a binomial probability for the number of distinct

taxa observed in the sample (n) and a multinomial probability for the observed frequency

counts {nm,,m > 0} given n. These two factors are

N!
f(n I N,Q) = N f(0 I Q)N-n [1 _ f n( 1 Q)]f [5]

n!(N - n)!

and

f ({ n,,> 0}1N,Q,n)= n! 'n [6]
On,!, I- f (0 1 Q,n)
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n!
respectively. Note that, in the likelihood function, the factor 1 in eqn [6] may be

omitted.

The probabilities in eqn [6] do not depend on the total number of taxa in the

community N. However, the distribution Q appears in both likelihood components, and

thus inference of Q must be based on the entire likelihood function (eqn [4]).

Compound Poisson model for fixed sample size

Since clone libraries contain a finite number of individuals and are sampled without

replacement, for given population abundances M,, M2 ,..., MN, the abundances m, M 2 ,.

MN, in a sample of fixed size s have hypergeometric distribution. However, because of the

large number of individuals in each taxon, the hypergeometric distribution may be

replaced with a multinomial distribution, which describes sampling with replacement or

sampling from an infinite number of individuals. Furthermore, if the sample size s is

large, the multinomial distribution of the mi's may be approximated with an independent

M. s
Poisson distribution with the same mean values . = Mi s=R.- where R,=K isIN ' N M

j-1

- N
the relative abundance of taxon i in the population and M= N 3Mj. In the Poisson

j=1

approximation, the sample size is not fixed but is a random variable with Poisson

distribution and mean value equal to the actual sample sizes. The coefficient of variation

is 1 /4 and is therefore small for sample sizes of the order of 1,000 individuals, used
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here to characterize microbial diversity. If the Mi's are independent and identically

distributed, the R's are also identically distributed, but are dependent. For simplicity, we

assume that the R's are also independent with some distribution Q, inherited from the

distribution of the abundance Mi.

Under the above modeling assumptions and approximations, the probability that a

taxon is observed m times is given by:

SM aO srmSS

f(m IN,Q)=-f( eNdQ(r) )'[7
M! 0

Notice that, contrary to the exhaustive sampling,f(m) now depends not only on Q but

also on N. In this case, the likelihood function for N and Q is given by:

l(N,Q I{ n,}) = N! f(O IN,Q)N-n llf(m I N,Q)""' [8]
(N -n)! n, ! ,=1

m=1

The likelihood function may be factored in analogy with eqns [5] and [6]. To

N!
avoid calculation of the binomial coefficient N in eqn. [6] one can approximate

n!(N - n)!

the binomial probability off(nIN,Q) with the density at n of the normal distribution

having the same mean and variance

E[n IN,Q]= N[1- f(0 I N,Q)]

Var[n IN,Q]= Nf(0 1N,Q)[1- f(0 1N,Q)]

This gives:

l(N,Q I{nm}) oc f(no = N - n,{n,m >O} IN,Q)= f (n IN,Q) x f ({nmm >0}1 N,Q,n)=

I - (n-N[-f(1N,Q)])
2  n

{Nf (0 1N,Q)[1 - f(0 1NQ)J}~ 2 e 2Nf(OIN,Q)[1-f(OIN,Q)IX( f(m IN,Q) -
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Eqn. [10] is similar to the likelihood explained by Bulmer (1974). However,

Bulmer's formulation does not contain the first likelihood term f(n IN,Q). Bulmer

(1974) stated that the first part of the distribution is unnecessary, since no, the number of

taxa not represented in the sample, is unknown. A comparison of the likelihood functions

and the associated ML estimates of N and a will be made later in this chapter.

Next, we specialize the present formulation for the cases when Q is a lognormal

or a gamma distribution.

fAmIN,Q) for Poisson-lognormal model

Suppose that the relative abundances Ri's have lognormal distribution. Specifically, lnR,

has normal distribution with variance c 2 and mean I -or, so that E[R]=1. Then R
2

has probability density function:

-(In r+-)

q(r) e 20

r,7r

and eqn. [7] becomes:

-(On r-1.C

f(m IN,Q)= Sf( r)'el eN0 r.[2
M! N r2e[12]
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f(rlN.0) for Poisson-Gamma model

Suppose now that the relative abundances R's have gamma(a,pR) distribution with unit

mean value and variance ul. Since this distribution has mean value apR and variance

a23, it follows thatIi 1aPRR

PR aFR [13]
PR = R

It also follows that the mean

distribution and parameters

[1 1
PR 'R

SR S 2
P = PR =N N

sample abundances j = R- are iid with gamma(a,f3)
N

[14]

In this case, the compound Poisson-gamma distribution in eqn [7] is a negative binomial

distribution (Fisher et al., 1943). Specifically,

f (m VVa )=(a+m-1 # )m( a"

R~ a~i) -I + f+I [15]

S
where# = PR - , and

N

a+m-

a-i
1 F(a+m)

F(a)m!

a+m-1

m
a+m-2

x x
M -i
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Results

Analysis of a large microbial data set and validation of the modified parametric ML

estimators

We apply the diversity estimates derived above to the largest available 16S rRNA clone

library from a single microbial sample (Acinas et al., 2004b). The library was constructed

from a complex marine bacterioplankton community collected on 6 October 2001 from

the marine end of the Parker River Estuary, MA. The sample consists of 1,033 16S

rRNA gene sequences. Among these, 516 are unique rRNA sequences (ribotypes) and

approximately 50% of these sequences occurred only once in the sample. The observed

values of ribotype abundances are given in Table 1. Construction of the 16S rRNA

library, corrections for sequence artifacts, and a detailed phylogenetic analysis of this

bacterioplankton data set is described elsewhere (see chapter 3).

The maximum likelihood of the bacterioplankton data set applying the Poisson-

lognormal model estimated 25,000 ribotypes with the standard deviation of the taxa log-

abundances of 2.7. The likelihood for our Poisson-lognormal model, eqn [8], is shown in

Figure IA as a function of number of distinct taxa in the library, N, and the standard

deviation of the taxa log-abundances, c. This likelihood is the product of two terms,

which are given by eqns [6] and [5] and plotted separately in Figures 1 B and 1 C,

respectively. Figure lB corresponds to Bulmer's (1974) likelihood formulation and

ignores the fact that (N-n) taxa were not observed in the sample. This likelihood

component constrains well the total number of taxa N, but is less informative on (ojN).

This can be seen from the separation of the contour lines in the vertical direction (Fig.
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iB). The second component, eqn [5] and Figure IC, is also important: it provides little

additional constraint on N, but imposes a clear relation between a and N. Thus, both

components are necessary to describe maximum-likelihood formulation for random

sampling with fixed number of sampled individuals.

The bias and variance of ML estimators in our likelihood formulation of N and a

and the ML estimators in Bulmer's formulation were evaluated using simulated

communities and samples. We simulated 10 communities with N and a set to 25,000 and

2.7, which are the ML estimates obtained assuming the lognormal distribution (Fig. 1 A).

From each simulated community, 10 samples of 1,033 individuals were drawn at random,

as in the original bacterioplankton data set. For each sample, the ML estimates using eqn

[6] (Bulmer's likelihood formulations) and eqn [10] (our likelihood formulation) were

obtained (Fig. ID). The average value and the standard deviation of the estimates of the

10 populations obtained for both parametric ML estimators are shown in Figure ID. The

average values of N and u of 100 ML estimates were 23,061 2.47x10 8(1 ) and

2.56±0.041(102) for our likelihood, and 29,301±4.60x10 8(1o 2 ) and 2.69±0.075(12) for

Bulmer's likelihood, respectively. Thus, the variances were smaller for the our

likelihood. Even the average variance of N and a of the 10 population variances is lower

for our likelihood (1.32x 108 and 0.024) than for the Bulmer's likelihood formulation

(2.8 1x 108 and 0.052). Thus, although the two functions are comparable, the modified

likelihood results in lower uncertainty of the maximum likelihood estimate of N and a.

The bias and variance was also evaluated for the Chaol estimator using the same

simulated communities and samples as with the parametric ML estimators (Fig 1 D). For
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each sample, the Chao 1 estimates were obtained, averaged and compared with the values

obtained by ML for the bacterioplankton sample (Fig. ID). The average of the 10 Chaol

values obtained from simulated lognormal communities equals 1673 ±133(l &) ribotypes.

Thus, the Chaol values are more than 5 standard deviations away from the mean of the

MLE for the bacterioplankton data and simulated communities. Overall, this suggests

that the ribotype abundances in the library are well explained by the lognormal

distribution and that the Chaol significantly underestimates this diversity.

To validate the lognormal abundance model, we compared the empirical expected

rarefaction curve with the theoretical mean curve for the lognormal model and the

gamma model using the modified parametric ML approach. The Poisson-lognormal

model (Fig. 1 A) has the best fit to our data set for N equals 25,000 ribotypes and a of the

lognormal distribution equals 2.7 (ML value equals -561.86). The ±1 standard deviation

(a) away from the MLE mean ranges from (N=13,500, ln(a)=2.4) to (N=49,000,

ln(a)=2.9). For the Poisson-gamma model (Fig. 2) the MLE is 5.91x10' ribotypes and

the ln(u) equals nine (ML value > -630). The ±lo ranges from (N=1.36x 105, ln(u)=2.9)

to some unbounded value of N. Using the underlying distribution (lognormal or gamma)

and the corresponding MLE value, one can generate a rarefaction curve by calculating the

observed taxa in the sample given the sample size. Comparing such rarefaction curves to

a rarefaction curve of the data as well as the ML values, we determined that the

lognormal abundance model fits the clone library data most closely (Fig. 3A).

Poisson-gamma model fits the ribotype data more poorly than the Poisson-

lognormal model. The MLE for the Poisson-gamma model (Fig. 2) gives a very large
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number of ribotypes, >10", which exceeds the number of individuals present in the

sample and therefore is not believable. Interestingly, with essentially equal confidence

(within one a away from the mean of the MLE), N can have values between 10' and >10"

N
(Fig 2.). These estimates lie on the ridge defined by the N =constant, where N is the

total number of taxa in a sampled community and a2 is the variance of the gamma

distribution. However, the Poisson-gamma fits the rarefaction curve badly (Fig. 3A), and

thus, we can discount these results. The two special cases of the Poisson-gamma

distributions, Fisher's logarithmic (Fisher et al., 1943) and MacArthur's broken stick

(MacArthur, 1957) distributions, fit the rarefaction curve even more poorly (Fig. 3A).

A comparison of the Chao] and Curtis estimators to the Poisson-lognormal model

The best estimate of the number of ribotypes in the library using the Poisson-lognormal

model (25,000 ribotypes) is over one order of magnitude higher than the value of 1,633

obtained by applying the Chaol estimator (Chao, 1984, 1987). We fixed the value of the

total number of ribotypes to the Chaol value of 1,633 and under this constraint

determined the most likely value of the associated standard deviation of the lognorrnal

distribution (a). Using the lognormal distribution and the corresponding MLE value, we

generated a rarefaction curve for the Chaol by calculating the observed taxa in the

sample given the sample size. The expected rarefaction curve for the Chaol for the

lognormal community is given in the Figure 3A. The shape of the Chao 1 rarefaction

curve is more concave down compared to the shape of the ribotype accumulation curve
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because it has a lower asymptote (Fig. 3A). Also, in Figure 3A, we show the fit to the

rarefaction curve of another estimator, recently developed by Curtis et al. (Curtis et al.,

2002), which is a parametric estimator based on the lognormal distribution. This

estimator uses only the highest observed abundance and the total number of individuals

in a sampled population. It resulted in an estimate of 2,236 ribotypes for our data set.

This value is still an order of magnitude lower that that of the ML value. Although the

Curtis estimator uses an underlying distribution (lognormal), it may suffer from the same

problem as the Chaol. Since both of these estimators use only partial information from

the sample, this may suggest one reason for the unreliable estimates.

Analysis of clustered data

The MLE values and comparison of the fits for the Poisson-lognormal and the Poisson-

gamma models were also obtained for the data set after clustering ribotypes into groups

of sequences that were 97% identical, i.e. 97% similarity groups. Using the Poisson-

lognormal model, the number of 97% similarity groups is estimated to be about 1,500

taxa. The standard deviation of log-abundance distribution is estimated to be 2.7.

Although the Poisson-lognormal model resulted in the best fit also for this data set, the fit

to the 97% rarefaction curve is not as tight as that to the 100% (ribotype) rarefaction

curve (Figs. 3A and 3B).
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Effect of sample size

The sample size of 1,033 is larger than commonly used in microbial community analysis.

It is thus of interest to investigate whether the ML estimator for the Poisson-lognormal

model performs adequately for smaller sample sizes. Thus, we randomly chose 500

sequences from the actual sample. This resulted in similar maximum likelihood

estimates of around 25,000 ribotypes, but displayed higher uncertainty due to smaller

sample size (data not shown).

We were further interested in how sensitive the Chaol estimators are to sample

size and for what sample sizes the Chaol estimators eventually become unbiased. For

this purpose, we sampled the same simulated community, with sample sizes ranging from

25 to 7.5x 106 individuals. Two Chaol estimators were applied (Fig. 4): the commonly-

used uncorrected (Chao, 1984) and the bias corrected (Colwell, 1997). Since bias-

corrected Chao 1 estimator has been rarely used, we used the uncorrected Chao I estimator

in all of our other analyses. The formulas for the two estimators are given in the legend

of Figure 4. Although both estimators significantly underestimate diversity for sample

sizes smaller that 10' individuals, the bias-corrected Chaol estimate gives higher

estimates than the uncorrected Chaol for sample sizes smaller than 10' individuals (Fig.

4). However, for sample sizes larger than 10', the uncorrected Chaol gives higher

estimates than the bias-corrected Chaol (Fig. 4), thus displaying less bias than the bias-

corrected Chaol. Surprisingly, only for the largest sample sizes (>106) the Chaol

estimates the sample size within the same order of magnitude. Therefore, especially for
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the small sample size, both versions of the Chao I estimator, uncorrected or bias-

corrected, greatly underestimate the ribotype diversity of diverse clone libraries.
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Discussion

Estimating diversity is a basic task in ecology, yet for microbial communities it has

remained elusive. Non-parametric estimators (e.g., Chao 1) have started to be used to

evaluate microbial diversity because of reported low bias (Hughes et al., 2001; Hill et al.,

2003; Kemp and Aller, 2004). However, we have observed from simulated communities

whose species abundances were based on our data that the Chaol is usually negatively

biased. Although Mao and Lindsay (2002) have shown that Chaol is generally biased for

heterogeneous communities, the extent of under-estimation has been overlooked. To

obtain more accurate estimates of microbial diversity, we have turned to parametric

models. Given our large sample, parametric models have the advantage over non-

parametric models, that the underlying distribution of taxa abundances can be inferred

from the sample and this information can be used to more accurately estimate the total

number of taxa. Specifically, we have used a parametric approach based on maximum

likelihood, which consists of (i) a distribution model of the abundances of taxa in a

community, and (ii) a sampling model appropriate for microbial communities.

We have concentrated our investigations on two commonly used abundance

distribution models: the lognormal (Preston, 1948) and the gamma distribution (Fisher et

al., 1943). It has been suggested that abundances of taxa in microbial communities are

lognormally distributed (Dunbar et al., 1999; Curtis et al., 2002). Our data set is indeed

best described by the Poisson-lognormal distribution, suggesting that the lognormal

distribution is the underlying distribution of the sampled clone library (Fig. 3A).

Compared to the Poisson-lognormal, the Poisson-gamma distributions have resulted in
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inferior fit (Fig. 3A). We have tested the gamma model because of its suggested good fit

to heterogeneous communities (Kempton and Taylor, 1974). Two special cases of the

Poisson-gamma, Fisher's logarithmic (Fisher et al., 1943) and MacArthur's broken stick

(MacArthur, 1957), may be viewed as distributions characteristic of relatively simple

communities whose dynamics are dominated by a single factor (May, 1975). Fisher's

logarithmic model has been criticized because fitting the log-series distribution presumes

an infinite pool of species available for sampling (Kempton and Taylor, 1974). It is

unlikely that complex microbial communities are governed by a single factor, so Fisher's

and MacArthur's models are likely inappropriate for modeling abundances of taxa and in

turn, for estimating diversity from a sample. Thus, based on our results and theoretical

grounds, we can confidently discount the gamma-based distributions for complex

microbial communities.

We tested the sensitivity of the estimates from the Poisson-lognormal diversity

model relative to (i) sub-sampling of simulated communities, and (ii) sub-sampling of the

actual bacterioplankton data. The results from the simulated populations were

comparable to those observed for the bacterioplankton library data set, falling within two

standard deviations from the mean of the maximum likelihood estimate for the data (Fig.

4). Similar values of -25,000 ribotypes were obtained for random sub-sampling of 500

individuals from the bacterioplankton data set, but yielded higher uncertainty (data not

shown). Therefore, the tests of reproducibility suggest that our model keeps performing

adequately for the smaller sample size.
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Based on our findings, the bias of the Chaol estimator for diverse data sets is

much higher than previously recorded. The extent of bias associated with diverse libraries

was measured using the Chaol estimator for samples ranging from 50 to 7.5 x 10'

individuals randomly sampled from simulated communities (Fig. 4). Bias by a factor

smaller than one order of magnitude was observed only for very large sample sizes (>106)

and only for the commonly-used uncorrected Chaol estimator (Chao, 1984, 1987).

Furthermore, we showed that the bias-corrected Chaol does not correct for the biased

(low) estimates of the diversity. Although the Chaol has been cited as giving a lower

bound estimate for heterogeneous environments (Mao and Lindsay, 2001; Bohannan and

Hughes, 2003) and a small sample size (Kemp and Aller, 2004), we find it 5 standard

deviations away from the mean of the MLE of lognormal distribution (Fig. ID).

Furthermore, the Chaol estimates of the number of ribotypes for the sample size of 1,033

are narrowly distributed around a mean of 1,673, with the largest standard deviation of

only 133 (Fig. ID). By contrast, the ML estimates were essentially unbiased with a

variance consistent with the curvature of the likelihood function. In actuality, the non-

parametric methods should give a higher uncertainty than parametric methods because

they are not constrained by the assumed underlying distribution of taxon abundances.

However, the variance of Chaol is surprisingly small and as such is a very misleading

measure of uncertainty (Fig. ID).

We observed that the Poisson-lognormal model results in a tighter fit to the 100%

rarefaction curve (Fig. IA) in comparison to the 97% rarefaction curve (Fig. IB). It is

possible that the ribotype and cluster data may contain two different underlying
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distributions and that these result in the differential fit between the two data sets. Lunn et

al. (2004) pointed out that differences in the underlying abundance distribution of taxa

may be a function of a chosen taxonomic resolution, e.g. species versus genera.

However, closer inspection of the data set is required before we can determine whether

the difference of the underlying distributions is indeed due to taxonomic resolution.

Although distribution of ribotypes in the bacterioplankton clone library was best

described with the Poisson-lognormal model, it does not necessarily mean that lognormal

is the only distribution available to explain the given data set. From the abundance data

we only have the information on the upper portion of the underlying distribution. Thus,

we can only provide a good fit for this portion of the curve. While some distributions can

be rejected with authority (i.e. gamma distributions), the data could be fitted equally well

with the power-law distribution. However, this has not yet been tested with the present

bacterioplankton library. The data of the bacterioplankton sample in Figures 3C and 3D

are plotted together with the power trend line as well as a sample taken from a simulated

lognormal community. Indeed, from the observations of the data alone, one cannot

conclude which distribution (power-law or lognormal) would produce a better fit (Figs.

3C and 3D). However, the power-law model is likely to produce a similar order of

magnitude estimate as the lognormal model.

Independent of the statistical approaches used to estimate diversity, an important

question remains: to what extent can the diversity observed for a given clone library be

extrapolated to a sampled microbial community? The construction of the libraries

themselves and PCR amplification may introduce artifacts and biases, which may alter
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the estimated diversity and abundance distribution (Suzuki and Giovannoni, 1996; Polz

and Cavanaugh, 1998; Speksnijder et al., 2001; Thompson et al., 2002). The

bacterioplankton data set was corrected for PCR artifacts such as Taq errors, chimeras

and heteroduplexes and it can be reasonably assumed that no additional taxa were added

to the libraries. However, it is likely that universal primers used in the PCR failed to

amplify some organisms from the sampled community. It has been shown that a number

of 16S rRNA primers previously thought to be universally conserved are in fact not

conserved (Vergin et al., 1998; Daims et al., 1999). Therefore, the estimates for the

library should be regarded as minimum diversity estimates for the sampled environment.

In addition, the bias introduced due to preferential amplification of some

templates (Suzuki and Giovannoni, 1996) or due to relative abundances of multiple

rRNA operons remains an open question. These biases can potentially distort the inferred

distribution of abundances of taxa in the sampled community. However, the extent to

which they contribute to the standard deviation of the taxon log-abundances, o-, observed

for the clone library cannot be entirely resolved at this point. We do, however, know that

the ML estimator is essentially unbiased for both total number of taxa, N, and a, and that

the value of a is large for our library. This suggests that (i) the experimental bias would

have to be very large for the distribution of ribotypes in the library to be different from

the underlying distribution of the community and (ii) reducing this bias would not change

significantly N, but only result in the more accurate estimates of N.

The large diversity of -25,000 ribotypes suggested to co-exist in the coastal

bacterioplankton sample raises several questions. Firstly, how many individual genomes
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underlie the ribotype diversity? Secondly, to what extent can all these types actually be

ecologically differentiated? We have previously suggested, based on extensive analysis

of all available completely sequenced genomes, that on average the number of ribotypes

exceeds the number of genomes by -2.5 fold (Acinas et al., 2004a). Thus, correcting the

value of 25,000 ribotypes for the contribution of multiple operons, a value of 10,000

genomes is obtained. If these were ecologically differentiated, the functional diversity

within our sample would indeed be striking. We previously determined that the number

of individuals from which our clone library was constructed was ~106 bacterial cells.

Therefore, if the genomes were uniformly distributed in the sample each would only be

represented by ~100 individuals, but under the lognormal distribution, which is suggested

for this sample, most genomes would be present at a very small fraction. However, it is

highly unlikely that individual ribotypes represent functional units, because functional

units would be then composed of only a few individuals. It appears more likely that the

functional units are formed of microdiverse clusters of ribotypes, implying that the

functional diversity may be far lower than the observed ribotype diversity.

In fact, we have previously suggested that individual genomes may not actually

represent distinct functional units within the community but that such units are

represented as microdiverse ribotype clusters (Chapter 2 and 3). These clusters may arise

by selective sweeps and persist because competitive mechanisms are too weak to purge

diversity from within them (Acinas et al., 2004b). Indeed, the large diversity estimate of

ribotypes supports these previous suggestions. In addition, we observed that the Poisson-

lognormal MLE value for the 97% similarity groups data set is -1,500 taxa suggesting
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that the vast majority of the ribotype diversity (85%) is contained within 3% sequence

divergence and therefore very likely organized into microdiverse clusters.

In summary, this study reveals previously unsuspected diversity within a complex

marine bacterial community. This is evident from development and application of

parametric methods based on maximum likelihood. Using these methods, we are able,

for the first time, to constrain the value of diversity estimates and critically evaluate the

commonly applied Chaol non-parametric estimator. We are confident that the Chaol

estimator significantly underestimates diversity of complex microbial communities.

Most importantly we show that the diversity of complex microbial communities could be

much greater than previously thought.
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Table 1. Ribotype abundances observed in the bacterioplankton sample.

Abundance of
ribotypes

1
2
3
4
5
6
7
9

11
13
14
16
21
27
32
43
45

Number of
ribotypes

381
65
23
18
4
6
3
1
4
3
2
1
1
1
1
1
1
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Figure 1. Likelihood surface for the compound Poisson-Lognormal model. The

variables on the axes are the total number of taxa N and the standard deviation of the

lognormal distribution a. In all four parts of the figure, black contours represent estimates

of the parameter pair values, N and a, 1-5 standard deviations away from the mean (the

most likely estimate for the total number of types). A. Likelihood surface of the

modified Poisson-lognormal model; generated as a product of the two likelihoods shown

in B and C. B. Likelihood surface for a likelihood function obtained from the

information on sample abundances in the sample s (equivalent to the Bulmer's likelihood

function (Bulmer, 1974)). C. Likelihood surface for a likelihood function obtained from

the information on the number of types observed in the sample s. D. Likelihood surface

for the compound Poisson-Lognormal model and the most likely estimate of the total

number of types in a bacterioplankton community sample (black cross); averages of 10

samples from each of the 10 simulated communities estimated for the Poisson-lognormal

model using the modified likelihood function (red solid circles); averages of 10 samples

from each of the 10 simulated communities estimated for the Poisson-lognormal model

using the Bulmer's likelihood function (blue open circles); averages of the 10 Chaol

values of the 10 samples from the each of the 10 simulated communities (green solid

diamonds).

Figure 2. Likelihood surface for the Poisson-gamma model showing relative support for

each pair of parameter estimates of the number of types N and ln(u). Black contours (1-
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5) represent estimates of the parameter pair values, N and o, 1-5 standard deviations

away from the mean (the most likely estimate for the total number of types).

Figure 3. Lognormal and gamma distributions under the Poisson sampling fitted to data

by the method of maximum likelihood and compared to the rarefaction curve of the

actual data. A. Rarefaction curve of the bacterioplankton sample - taxa constructed from

100% sequence similarity clustering (blue solid diamonds); Poisson-lognormal

distribution (red solid circles); Chaol estimate under the Poisson-Lognormal (orange

open circles); Curtis estimate under the Poisson-Lognormal (green open circles); Poisson-

Gamma distribution (black star); and MacArthur's broken stick distribution (black cross).

B. Rarefaction curve of the bacterioplantkon sample - taxa constructed from 97%

sequence similarity clustering (blue solid diamonds); Poisson-lognormal distribution (red

solid circles); Chaol estimate under the Poisson-Lognormal (orange open circles); and

Poisson-Gamma distribution (black star). C. Probability exceedance plot of the

bacterioplantkon sample - 100% sequence similarity clustering OTUs (blue solid

diamonds) and a sample taken from a simulated lognormal community (black open

triangles); and power trendline (black solid line). D. Probability exceedance plot of the

bacterioplantkon sample - 97% sequence similarity clustering OTUs (blue solid

diamonds) and a sample taken from a simulated lognormal community (black open

triangles); and power trendline (black solid line).

83



Figure 4. Chaol estimates of the total number of different types calculated from a

simulated community of 25,000 different types and o of 2.7 using "bias-corrected" (green

open squares) and the approximate "uncorrected" formula (blue solid diamonds) as a

function of sample size. Error bars are one standard deviation and were calculated with

the variance formula derived by Chao (1987).

Bias-corrected: NChaol = Sobs + 1 1 S 2 2 ; uncorrected: NChaol = Sos + 1 .
2(S 2 +1) 2(S2 +1) 2S 2

G 3 G2
Standard deviation: a = var(NaOL) = S2 -+G 3 +=

ChI4 2 ,G=S2

Estimated population size average from 10 simulated communities calculated from

Poisson-lognormal model using maximum likelihood is shown in red solid circles. The

red lines are error bars showing one standard deviation for the Poisson-lognormal model.
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CHAPTER FIVE

Summary and Future Directions
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SUMMARY AND FUTURE DIRECTIONS

This thesis explores questions of microbial community structure in the marine

environment. Specifically, two fundamental questions are investigated: (i) how many

bacterial types co-exist, and (ii) does a phylogenetic structure exist that would suggest

units of differentiation among natural microbial communities? Bacterial diversity in two

complex marine communities (coastal bacterioplankton and sediment sulfate-reducing

bacteria) was investigated by (i) comprehensive analysis of large 16S rRNA clone

libraries, and (ii) refinement and application of parametric diversity estimators.

Several major results are presented:

" development of analysis protocols and tools to constrain artifacts that may lead to

overestimation of diversity and, more significantly, obscure patterns of community

organization (Chapters 2 and 3).

e refinement and application of statistical methods to estimate microbial diversity

(Chapter 4).

" demonstration of co-existence of previously undetected high diversity within marine

bacterial communities (Chapters 2, 3, and 4).

* identification of patterns of community organization revealing predominance of

microdiverse ribotype clusters that are hypothesized to correspond to ecologically

distinct units (Chapters 2 and 3).
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Chapter 2 explores the extent of diversity and phylogenetic structure of a bacterial

sediment community. The clone library investigated in this chapter was constructed from

16S rRNA genes of delta-proteobacterial sulfate-reducing bacteria (SRB) from salt-marsh

sediment samples. We observed unexpected high diversity of ribotypes and

predominance of microdiverse relationships among the co-existing SRB. This high

diversity is indeed surprising as the SRB overall possess very similar metabolism;

however, as detailed in Chapter 3 the actual functional units within this community may

not be individual ribotypes but microdiverse clusters of ribotypes, so that the functional

diversity within the sediment SRB may be far lower than the observed ribotype diversity.

It may be possible in the future to critically test hypotheses on structure and function

using this community as a model system. First, the SRB community was well sampled so

that it is likely that all major groups were detected. This good coverage may serve as a

foundation to develop tools for monitoring specific SRB populations in order to correlate

their growth with prevalence of specific conditions within the sediment. For example, this

may be achieved by application of DNA microarrays specifically designed to

differentiate individual ribotypes and ribotype clusters within the community. Second,

SRB communities are overall well studied and therefore an extensive dataset exists

whose comparison with the current study may reveal patterns in occurrence of specific

SRB types in different environments. For example, in the marsh sediment previously

unidentified completely oxidizing SRB dominated but other studies have also found

predominance of the same group of SRB in similar environments.
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Diversity and phylogenetic structure of a coastal bacterioplankton community was

investigated in Chapter 3. This community was chosen because it differs in its overall

ecological features from the sediment community and would therefore be a test case for

the general applicability of the findings in Chapter 2. The pelagic environment is well

mixed, while sediments are highly structured environments. Therefore, one may expect

that the underlying community composition of the two communities would be different.

For example, it may be hypothesized that the efficient mixing in the pelagic environment

may allow for more efficient selective sweeps within the community. These would serve

to purge diversity leading to a more simple overall community composition. However,

similar fine-scale phylogenetic structures were observed for the coastal community as

well. Although microdiversity has been previously suggested by analysis of specific

microbial groups in PCR-generated clone libraries (Field et al., 1997; Garcia-Martinez

and Rodriguez-Valera, 2000; Casamayor et al., 2002), it had remained unclear to what

extent microdiversity arises by PCR induced artifacts or is the result of paralogous rRNA

operons within the same genome (Suzuki and Giovannoni, 1996; Polz and Cavanaugh,

1998; Speksnijder et al., 2001; Thompson et al., 2002; Rappe and Giovannoni, 2003).

Application of PCR-based approaches on the 16S rRNA gene can potentially

affect the estimation of diversity in several ways: by (1) formation of sequence artifacts

(Taq errors, chimeras, and heteroduplexes), (2) preferential amplification of some

templates over others, which can skew sequence abundances, (3) missing some of the

sequence diversity due to the primer selection, and (4) the incidence of multiple rRNA

operons within a single genome.
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(1) We have developed methods that minimize and account for chimeras, Taq

errors and heteroduplex errors. It has been shown empirically that the methods we

employed removed all error due to heteroduplex formation (Thompson et al., 2002). The

remaining types of error cannot be detected directly and must be inferred. We have

employed the two most widely used chimera-checking programs and have written our

own software specifically designed for clone libraries that have been sampled to a high

degree (Chapter 2 and 3). Finally, we have developed methods to identify and eliminate

polymerase errors based on well-known patterns of primary and secondary structure

conservation and have provided several independent estimates of their effectiveness

(Chapter 2 and 3). It is important to note that one important component of this thesis is

the development, for the first time of a means to estimate the number of rRNA sequences

affected by TAQ errors and some guidelines on how to identify them.

(2 & 4) At this point we cannot ascertain the extent of bias resulting from the

preferential amplification of templates (Suzuki and Giovannoni, 1996) or from different

abundances of multiple rRNA operons. However, preliminary evidence suggests that this

bias may not be large. We have conducted and published a detailed investigation of

operon heterogeneity among published genomes (Acinas et al., 2004). About 40% of

genomes have 1 or 2 operons and a majority of their sequences are identical, indicating

that the number of operons per genome is highly skewed towards the lower spectrum.

Also, an extensive survey of 97 published bacterial genomes showed that a correction

factor of 0.4 can be applied to estimate diversity of genomes from unique rRNA

sequences (Acinas et al., 2004). Thus, after applying this correction, the bias stemming
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from the preferential amplification of some templates and different number of identical

operons may only distort the distribution of ribotype abundances of the sampled

community, but should not change their total number.

(3) PCR using universal primers may fail to amplify some organisms from a

sampled community. It has been shown that several 16S rRNA primers previously

thought to be universally conserved are in fact not (Vergin et al., 1998; Daims et al.,

1999). Therefore, as we cannot exclude the possibility that the primers may fail to

amplify some members of the domain Bacteria, the estimates of the diversity should be

regarded as a minimum diversity for a sampled community. This implies that the

diversity of the sampled community may be even higher than diversity reported for the

library. It is important to note that prior to the amplification of the bacterioplankton

community, we carefully evaluated the existing universal primers 27F and 1492R and

modified these to include members from the order Planctomycetales based on the

information provided by Vergin et al. (1998). The mismatch of universal primers to the

16S rRNA sequences was inferred from a survey of Planctomycetales clones recovered

from a marine fosmid library (Vergin et al., 1998). Although it is possible that these

modified primers may have a mismatch with some unknown bacterial 16S rRNA

sequences, a marine molecular survey conducted without prior PCR amplification

indicated that no novel clades of the domain Bacteria could be observed (Venter and al.,

2004). Thus, it is very likely that we detected at least the dominant members of the

bacterioplankton community.
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Overall, by (i) developing methods that minimize and account for the contribution

of sequence artifacts, (ii) accounting for variation in multiple operons within single

genomes, and (iii) improving the existing primers, we were able to reduce the difference

of the total number of ribotypes between the sampled communities and the constructed

large clone libraries.

The large size of the clone libraries enabled comparison of statistical approaches

used in estimating microbial diversity, as well as development and application of

parametric methods based on maximum likelihood (Chapter 4). With our dataset and

simulations we were able to critically evaluate the estimates obtained by the commonly

applied Chaol non-parametric estimator and the bias associated with this estimator. In

addition, we evaluated existing parametric methods as they should perform better for

diverse microbial communities, and modified them to better account for the specific way

microbial communities are sampled. The diversity estimated using the parametric

approach revealed an even higher number of co-existing microdiverse sequences, and the

estimated diversity was over one order of magnitude higher than that suggested by

common non-parametric approaches. However, when sequences were clustered into 97%

sequence similarity groups, diversity estimates increased by a much smaller factor

compared to the Chaol. This suggests that the overall pattern of predominance of

microdiverse clusters is strongly confirmed by the new analysis tools.

Overall, the compensation for artifacts and improved estimation revealed that the

vast majority of ribotypes fall into microdiverse clusters containing <1% sequence

divergence. Whether the observed ribotype clusters represent ecotypes, i.e. ecologically
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cohesive populations, will have to be determined by detailed examination of the

environmental dynamics of genomic variants. It is proposed that the observed

microdiverse clusters form important units of differentiation in microbial communities.

They are hypothesized to arise by selective sweeps and contain high diversity because

competitive mechanisms are too weak to purge diversity from within them.
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GLOSSARY

Bacterioplankton - all bacteria that passively drift in lakes and ocean

Chimera - a sequence formed from two different sequences.

Clone - a lineage of individuals produced asexually.

Cluster - a set of sequences grouped by some sequence similarity cutoff.

Diversity - the heterogeneity of a system; the variety of different types of organisms
occurring together in a biological community.

Ecological niche - the functional role of an organism within an ecosystem; the combined
description of the physical habitat, functional role, and interactions of the
microorganisms.

Guild - populations within a community, which use the same resources.

m - sample abundances (Chapter 4).

M - population abundances (Chapter 4).

n - a number of taxa in a sample (Chapter 4).

N - the total number of taxa in a population (Chapter 4).

Non-parametric diversity estimators - diversity estimators that assume no models of
distribution of taxon abundances.

OTU - operational taxonomic unit.

Parametric diversity estimators - diversity estimators that assume abundance
distribution of taxa.

Phylogeny - the line or lines, of direct descent in a given group of organisms; also the
study or the history of such relationships.

Population - the set of data from which a statistical sample is taken (Chapter 4).

Population abundance - taxon abundance in a population (Chapter 4).
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R - relative abundance of taxon (Chapter 4).

Ribotype - unique rRNA sequence.

a- standard deviation of the taxa log-abundances (Chapter 4).

s - sample size (Chapter 4).

Sample - a set of sequences from a clone library used in diversity estimates (Chapter 4).

Sample abundance - taxon abundance in a sample.

Taxon - a taxonomic category or a group.
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