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Abstract

Fuel formulations evolve continually, and historical experience with the fuel additives tetra-
ethyl lead and methyl-tert-butyl ether (MTBE) indicates that newly proposed additives should be
screened for their potential to threaten environmental resources, before they are used widely.

A physical-chemical transport model was developed to forecast well water concentrations
and transport times for gasoline components migrating from underground fuel tank releases to
vulnerable community water supply wells. Transport calculations were parameterized using
stochastic estimates of representative fuel release volumes and hydrogeologic characteristics, and
were tailored to individual compounds based on their abundances in gasoline, gasoline-water
partition coefficients, and organic matter-water partition coefficients. With no calibration, the
screening model successfully captured the reported magnitude of MTBE contamination of at-risk
community supply wells.

To estimate gasoline-water partition coefficients for unstudied solutes, we combined linear
solvation energy relationships (LSERs) developed for pure 1:1 systems using linear solvent
strength theory and a "solvent compartment" model. In this way, existing LSERs could be
extended to treat solute partitioning from gasoline, diesel fuel, and similar mixtures into
contacting aqueous mixtures. This allowed prediction of liquid-liquid partition coefficients in a
variety of fuel-water systems for a broad range of dilute solutes. When applied to 37 polar and
nonpolar solutes partitioning between an aqueous mixture and 12 different fuel-like mixtures
(many including oxygenates), the estimated model error was a less than a factor of 2 in the
partition coefficient. This was considerably more accurate than application of Raoult's law for
the same set of systems.

An approach was developed which relates the empirical LSER solute polarity parameter,
pi_2AH, to two more fundamental quantities: a polarizability term and a computed solvent
accessible surface electrostatic term. Electrostatics computations employed dielectric field
continuum models and a density functional theory (B3LYP) or efficient Hartree-Fock
(HF/MIDI!) method for 90 polar and nonpolar organic solutes. Predicted pi_2AH values had a
correlation coefficient of 0.95 and standard deviation of 0.11 relative to empirically measured
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values. The resulting model relies on only two fitted coefficients and has the additional
advantage of potential applicability to any solute composed of C, H, N, 0, S, F, Cl, and Br.

Thesis Supervisor: Dr. Philip M. Gschwend

Title: Professor of Civil and Environmental Engineering
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Chapter 1
Introduction. Forecasting the environmental transport

of gasoline additives and resulting human exposures

1.1. Anticipating the environmental impacts of synthetic chemicals

Societies have employed chemical technology to reinvent their relationship with nature for
millennia. In the 2 0 th century, we have witnessed unprecedented growth in the volume and
variety of manufactured chemical materials. From 1930 to 2000, global production of synthetic
chemicals increased from 1 million to 400 million metric tons annually (1). In the U.S., we
generate about 28% of worldwide production value in synthetic chemicals (1) and currently track
over 75000 chemical substances in registered commercial use (2). From plastics to pesticides to
pharmaceuticals, it is difficult to overstate the perceived societal value of newly invented
chemical technologies during the last several decades. For example, in Scientific American in
1951, the widely used insecticide, p,p'-dichlorodiphenyl-trichloroethane (DDT), was compared
with steel and fuel as "one of the great world necessities" due to its record of effective malaria
eradication in endemic areas (3). Incidentally, in the same year, U.S. Food and Drug
Administration workers reported an average of 5 ppm (part-per-million) levels of DDT in the
fatty tissues of 75 randomly tested California residents - none were occupational pesticide
operators (4).

Mid-stride into this era of rapidly expanding synthetic chemical production and commerce,
severe ecological and human toxicity of many popular chemicals became apparent. In 1962,
Rachel Carson's best-seller, "Silent Spring," sparked wide controversy and initiated an important
shift in the public's attitude towards synthetic chemicals. Carson starkly reported the ecological
persistence and bioaccumulation of DDT and other pesticides, and the resulting pervasive and
nonselective deaths of insects, fish, birds, and other wildlife in heavily treated areas (5).
Following further scientific inquiry commissioned by President John Kennedy, DDT was
eventually banned from use in the U.S. In response to pressure from the public and citizens'
groups on these and related issues, President Richard Nixon created the Environmental
Protection Agency (EPA) in 1970. Similarly, the 1972 Environmental Pesticide Control Act, the
1976 Toxic Substances Control Act (TSCA), and numerous other legislative actions established
a formal programmatic framework for tracking, evaluating, and regulating the use of synthetic
compounds, based on their established or suspected ecological and human health impacts.

Meanwhile, scientists continued to uncover the environmental persistence, bioaccumulation,
and toxicity of certain commercial or industrial synthetic compounds. For example, widely used
industrial dielectric fluids known as polychlorinated biphenyls (PCBs) were found in the fat and
eggs of numerous wild English predatory birds in the 1960's (6). In areas near Saigon where the
U.S. military herbicide mixture known as Agent Orange had been sprayed, the toxic chemical
component 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was found in commercial river fish at
-500 ppt (part-per-trillion) levels (7). The presence of PCBs and TCDD in high level carnivores
strongly suggested that these compounds were bioaccumulating, i.e., distilling up the food chain
and concentrating contaminants in the fatty tissues of animals at the highest trophic levels.
Extensive evidence eventually confirmed the persistence (nondegradability) of PCBs in the
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environment (8). Similarly, several years after Agent Orange was applied, TCDD was still
detectable in human breast milk at hundreds of ppt levels in heavily sprayed areas (9,10). As
early as the 1930s, PCBs were known to have toxicity to laboratory animals and humans at low
doses, including well-documented cases of severe chloracne and liver damage suffered by
exposed Monsanto factory workers (11). Although the specific toxicity of TCDD to humans was
not well established, food contaminated with TCDD was shown to be lethal to guinea pigs (12)
at 10 ppb (part-per-billion) and cause cancers in laboratory rats at sub-ppb levels (13). Two
cohorts of TCDD-exposed U.S. industrial workers were found to have significantly increased
chloracne and cancer mortality rates relative to control groups, according to the company's own
health records (14,15). The full evidence of damage to human and ecological health associated
with exposure to these and many other synthetic compounds is far too extensive to review here.
However, such threads of investigation illustrated a pattern typical among widely used synthetic
compounds: persistence in the environment for months or years, accumulation in animal and
human tissues, and demonstrated toxic effects at low levels.

More recently, regulatory and scientific progress has enabled us to ameliorate some
environmental and health damage of the past, but not necessarily to avert future threats.
Synthetic chemicals are still distributed and used widely before adequate environmental transport
or toxicological assessments are performed. In the U.S., DDT, PCBs, Agent Orange, and other
problematic synthetic substances have been banned from use, but we continue to find that many
presently used chemicals pose ecological or human health threats. For example, in 2002 and
2003 several studies found that environmentally realistic concentrations (sub-ppm) of atrazine,
an agricultural pesticide, cause severe endocrine disruption and resulting hermaphroditism and
weakened immune response in frogs (16-18). Within the past five years, the widely used flame
retardants, polybrominated diphenylethers (PBDEs), have been reported in human breast milk at
0.2 ppb levels (19) as well as in the tissues of fish and other wildlife (20-22). Although
toxicological data on PBDEs is limited, recent studies have suggested that these compounds may
contribute to cancer, hormone disruption, or neurodevelopmental problems (23,24). Many other
such illustrative cases could be cited; synthetic chemicals are widely distributed before adequate
environmental assessments are performed. Of the 2600 substances that are currently produced or
imported in quantities greater than 1 million lbs/year in the U.S. (high production volume (HPV)
chemicals), only a few hundred have been preliminarily evaluated for toxicological and
environmental transport properties (25). Similarly, of the 75000 chemicals in registered
commercial use in the U.S. and the 100000 registered in the European Union (EU), the vast
majority are currently untested.

U.S. and EU agencies have recognized the need for data and models to forecast chemical
threats. In a 1995 assessment, the EPA Science Advisory Board concluded that "EPA's
traditional methods of identifying and solving environmental problems will not be adequate to
protect against problems that may emerge several years or decades from now. They were not
designed to determine the costs of future environmental problems or the benefits of actions taken
today to avoid them" (26). The document then recommends that "EPA should establish a strong
environmental futures capability that serves as an early-warning system for emerging
environmental problems." A more recent EPA Office of Research and Development (ORD)
Strategic Plan reaffirms the stated goal to "[s]earch for detectable early warning signals and
extrapolate them into the future" in order to anticipate future environmental issues (27). In 1998,
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collaborative efforts between the EPA, the Environmental Defense Fund (a nonprofit watchdog
group), and the Chemical Manufacturer's Association negotiated the EPA high production
volume chemical testing program, an agreement to systematically evaluate HPV chemicals in the
U.S. (28). The HPV testing program was intended to accelerate a sluggishly paced Organization
for Economic Cooperation and Development (OECD) chemical testing program, which was
founded in 1990 and had only completely evaluated about 160 chemicals regulated under TSCA
(28). In 1998, the EPA also initiated the Endocrine Disruptor Screening Program, which was
intended to evaluate practically all U.S. synthetic chemicals in commercial use for possible
endocrine disruption effects (29). More recently, the EU finalized a more ambitious and
contentious set of rules known as the Registration, Evaluation, and Authorization of Chemicals
(REACH) program, which "transfers the burden of proof for a chemical's safety from the
government to the manufacturer" (30). Continued development of such strategies will hopefully
enable us to eventually "pre-act," rather than react, to chemical threats to the environment and
human health. These efforts will require both data and forecasting models.

Since extensive testing of even a single chemical is time-consuming and expensive,
regulators need to quickly identify chemicals which are either: (a) likely to be highly toxic; or
(b) likely to expose people or the natural environment to high intake doses, as a result of their
uses and chemical properties. The 2001 REACH program white paper argues that, "[g]iven the
vast number of existing substances on the market, the European Commission proposes that first
priority is given to substances that lead to a high exposure or cause concern by their known or
suspected dangerous properties" (1). In other words, chemicals should first be ranked by the
roughly estimated severity of threat that they pose. Chemicals initially identified as "high
priority" suspects would then undergo more extensive testing on a rapid timetable. To conduct
such ranking activities, regulators need efficient methods to estimate the exposure levels of
commercial chemicals to humans and ecological endpoints. Such forecasting approaches are
commonly referred to as chemical "priority-setting" or "screening" tools (31); ideally, they
should be designed to make fast and reliable estimates for a wide range of synthetic compound
types. With such forecasts readily available, regulators and industry could strategically avoid the
severe environmental, health, and economic costs that often unintentionally result from specific
chemical applications. This thesis therefore focuses on the development of screening models
for chemical exposure-forecasting and physical property estimation. Toxicological
evaluations are a critical accompaniment to such predictive assessments, but this is beyond the
scope of the work described here.

Exposure estimates require an understanding of critical environmental transport pathways
and the complementary physical-chemical properties of the chemical of interest. Screening
models should therefore identify these routes to exposure and estimate the resulting compound
concentrations at relevant human or ecological endpoints. Multiple environmental pathways of
transport or exposure may require consideration, and stochastic approaches may be needed to
adequately evaluate a range or distribution of likely exposure outcomes. Additionally, the
expected production or use rate of a given compound may be needed to evaluate the compound
source or emission terms. Finally, in cases where physical-chemical property data for a
compound is cost-prohibitive or difficult to measure, Quantitative Structure Activity
Relationships (QSAR) or other models may be used to estimate the properties of interest.
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In this thesis, I have developed screening models and physical-chemical property estimation
methods tailored to forecasting human exposures to chemicals used in fuels, particularly
automotive gasoline. Gasoline is a highly motivating case study for environmental screening
assessment, since it is widely used in high volumes. However, the philosophy underlying these
approaches could be extended to other environmental transport problems for other chemicals.
Hopefully, such screening models will eventually contribute to a comprehensive but efficient
prioritization system for evaluating existing and new commercial synthetic chemicals.

1.2. Forecasting human exposures to chemicals in gasoline and fuel mixtures

Historical and present experience with gasoline additives such as tetra-ethyl lead (TEL) and
methyl-tert-butylether (MTBE) strongly illustrate the need for fuel component exposure
forecasting models. The use of TEL in U.S. gasolines has introduced millions of metric tons of
lead into the environment, and this has been directly linked to child lead poisoning on a national
scale (32). MTBE use has resulted in the closure of hundreds of contaminated drinking water
supplies in the U.S. over only a few years, incurring enormous environmental and economic
costs through lost water resources (33,34). Conceivably, environmental transport forecasts for
future fuel constituents could avert similar (and possibly even entirely new) mistakes in the years
ahead.

Exposures to different fuel constituents may involve different environmental transport
pathways, depending on the physical-chemical properties of the component chemicals. Jo and
Oh showed that gasoline service stations may significantly expose employees and nearby
residents to (uncombusted) volatile gasoline constituents (35). Other studies have indicated that
the emission of volatile fuel components in the lower troposphere may also cause nonnegligible
exposures to urban residents (36,37). Extensive contamination of subsurface water supplies by
fuel leaks or spills is well documented (33,38,39), and surface water supplies may also be
contaminated by recreational boating (40). Additionally, atmospheric deposition of fuel
compounds could widely contaminate surface soil and dust or water supplies (32,41).
Appreciation for these particular transport pathways has evolved from our accumulated
experience with fuel-related contamination, but these do not necessarily constitute a
comprehensive list of possible exposure routes. In order to develop robust exposure forecasts,
each of these scenarios should be considered separately, possibly in addition to others. Only two
of the scenarios - the contamination of subsurface water supplies and the pollution of urban
airsheds - are discussed in detail here.

As has been demonstrated by the use of MTBE, gasoline contamination of subsurface water
supplies is potentially widespread and environmentally costly. This problem poses a significant
challenge to gasoline design, since gasolines evolve continually and typically contain varying
concentrations of several water-soluble components. From the standpoint of chemical fate
forecasting, unresolved research questions arise; for example, can a simple model meaningfully
capture contaminant transport behaviors at thousands of differing gasoline release sites?
Conventional subsurface transport models estimate the fate of various contaminants in a
somewhat characterized geologic formation, and these approaches have been extensively
developed and tested. However, in order to prescribe policy actions for a specific chemical in
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gasoline (rather than for a specific contamination site), the screening model approach must
somehow treat the ensemble of gasoline-contaminated sites. An additional difficulty exists:
reliable approaches for estimating the gasoline-water equilibrium partitioning (i.e., the chemical
mass distribution between gasoline and water) of new gasoline components are not currently
available. The gasoline-water partition coefficient pivotally influences the extent to which an
individual gasoline chemical component is expected to dissolve from a subsurface gasoline
release into groundwater. Consequently, even an order-of-magnitude estimate of this physical-
chemical property might allow rapid determination of whether a newly proposed gasoline
amendment would be reasonably nonthreatening to subsurface water supplies. Finally, the
prevalent subsurface (bio)degradability of gasoline constituents is difficult to predict or measure
in laboratory trials. Because natural aquifers effectively act as bio-active filters which clean
subsurface waters, a highly persistent chemical might pervasively contaminate water supplies.
While additional uncertainties certainly pose challenges to effectively forecasting widespread
damage to subsurface water supplies by gasoline, these are perhaps the most salient: how to treat
an "ensemble" of gasoline contamination sites; how to estimate gasoline-water partition
coefficients of gasoline components; and how to deal with the subsurface biodegradability of
gasoline components. The first two of these will be treated in detail in subsequent chapters;
however, subsurface degradability is difficult to reliably predict for a wide range of compounds,
particularly if generality to many subsurface environments is desirable. Consequently,
estimation approaches for subsurface degradability have been left for future work.

Although the advent of MTBE has focused a good deal of attention on water contamination,
the urban atmosphere probably presents the most pervasive route of human exposure to gasoline
compounds. Kawamoto, Arey, and Gschwend recently proposed a screening model for quickly
estimating the expected order-of-magnitude urban air concentrations for gasoline additives in a
particular urban setting (37). Possibly the most challenging aspect of this approach is estimating
the emission rate of a volatilized gasoline compound to the urban airshed (either assuming that
there are no other major emission sources or else accounting for these terms). Both the estimated
emissions rate and expected subsequent environmental transport behaviors rely heavily on the
equilibrium partitioning of a gasoline constituent between the gasoline mixture and air, between
air and water, and between air and soil particles. Additionally, the compound's rates of
degradation in air, water, and soil play an important role in both calculating expected urban
airshed concentrations and assessing the eventual fate of the compound in the environment.

1.3. Relevant physical-chemical property estimation methods

Whether we are considering the fate of a gasoline constituent in subsurface water supplies or
in an urban airshed, information about its equilibrium distribution in various environmental
media is required. Measured or estimated chemical partition coefficients for gasoline-water,
soil-water, and air-water systems (and possibly others) effectively distinguish the anticipated
behaviors of one proposed gasoline additive from another. In fact, such physical-chemical
properties are typically critical for assessing and differentiating the environmental transport of
contaminants in almost any relevant context (42-45). Since measuring these properties in the
laboratory is frequently difficult or costly, reliable estimation methods are a valuable asset to
environmental exposure screening models.
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Linear Solvation Energy Relationships (LSERs) have become a widely accepted approach
for accurately estimating two-phase partition coefficients of organic compounds. LSERs were

developed through the work of Kamlet and Abraham and coworkers (46,47) and propose that a

solvation (or partitioning) free energy may be approximated as:

log K = c + rR2 +s24 +a' b + mV, (1-1)

where the parameters R2, t2 H, U 2 H 0 2 H, and Vx describe the excess molar refraction (48),

polarity/polarizability (49), hydrogen-bonding acidity (50), hydrogen-bonding basicity (51-53),
and group-contributable molecular volume (54) of the solute, respectively. The fitted
coefficients c, r, s, a, b, and m are calibrated to a specific two-phase system. This formulation is

attractive to environmental scientists because it has been shown to accurately predict partition
coefficients (K values) for a wide range of solute types in many different solvent and mixture
systems (48,55).

From the standpoint of environmental fate analysis, LSERs have two notable limitations:
first, the empirical fitting of LSER coefficients is data intensive and difficult to extrapolate to
new systems in the absence of data; second, determination of the LSER polarity/polarizability

(n2 H) and hydrogen-bonding (x2H and r2H) solute parameters is data intensive, and these
quantities have not been found to closely correlate with calculated or easily measurable
properties. Essentially, development of LSER parameters and coefficients for new solutes and
new systems is costly and time-consuming. Consequently, modeling approaches or
approximations that extend LSERs into these knowledge gaps are desirable additions to a
chemical exposure screening model "toolkit." For example, it is not clear how LSERs might
apply to fuels, since fuels are variable mixtures and would technically require a set of separately
fitted LSER coefficients for each significantly different fuel type (and therefore a new set of
measurements of each fuel formulation). Additionally, newly proposed fuel additives may not
have known (measured) LSER solute parameters; hence models to compute or estimate these
values could be useful for rapid screening assessments. Such modeling strategies have broader
implications than fuels assessment. Any chemical exposure or toxicological screening method
reliant on chemical partitioning free energy information would benefit from modeling
approaches that extrapolate existing LSERs to novel solutes and novel mixtures.

1.4. Main objective of the thesis

The preceding discussion has led us to the following questions. Given a hypothetical newly
proposed gasoline additive, could one feasibly estimate its risk to community water supply wells
and volatile exposures in urban air, before the additive is used? What physical or chemical
properties of the compound are critical for making such forecasts, and could these properties be

easily estimated in the absence of measurements? In the current work, some modeling tools are
proposed to address these problems. This hopefully lays groundwork for future efforts to
systematically identify fuel additives which would cause undesirable human or ecological
exposures via groundwater, urban air, or other pathways. Regulators and industry could
eventually optimize the results of such assessments along with other use criteria (e.g.,
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manufacturing costs and combustion properties) to strategically choose the "best" among a range
of proposed additive compounds.

1.5. Case example: is this hypothetical gasoline additive "safe"?

As an illustrative dilemma, let us suppose that n-pentyl nitrate (nPN) has been proposed by
industry chemists as an octane-enhancing (i.e., anti-knock) gasoline amendment:

0-

0-
Figure 1-1. n-pentyl nitrate (nPN)

Given no prior knowledge of this chemical's environmental behavior, and little or no physical
property information, how would one assess whether it is an acceptable amendment to fuels? At
what gasoline concentration would it pose a widespread threat to community water supply wells
due to leaking underground fuel tanks? How might it affect urban air quality via volatile
emissions? What partitioning properties are important, and could they be reliably estimated?
The methods proposed herein attempt to address such concerns, using computationally expedient
modeling tools to produce practical decision-making information. Issues relating to tailpipe
emissions or other routes of human or ecological exposure (such as impacts to surface water in
recreational boating areas) have been ignored for the moment, since these concerns lie outside
the scope of the current work. The nPN case study, detailed in chapter 5, demonstrates
application of several of the physical-chemical estimation methods and screening models.

1.6. Outline of thesis

In Chapter 2, an exposure screening model is proposed for forecasting the widespread
contamination of subsurface community water supplies by a new gasoline additive. The model
development draws on information about the typical hydrogeologic setting of community water
supply wells and the proximity and size of vicinal fuel releases to the land or subsurface
environment in the U.S. Notably, the screening model is tuned to a specific gasoline constituent
based only on its abundance in gasoline, its gasoline-water partition coefficient, and its organic
matter-water partition coefficient. In other words, it does not require a priori calibration using
field measurements or subsurface contamination data. The screening model forecasts an
expected distribution of contamination levels in the population of affected wells, and estimates
the time of subsurface transport. Based on this information, regulators or scientists may
conclude what gasoline amendment levels would pose an acceptably low level of risk to
subsurface community water supplies, and whether additional toxicological or biodegradability
information is needed (i.e., requiring further testing). This screening model was evaluated based
on comparisons to reported MTBE contamination of community supply wells in the U.S.
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Chapter 3 presents a mixing rule for LSER coefficients using Linear Solvent Strength
Theory (LSST). In other words, the LSST approximation was used to extrapolate known "pure
phase" LSER coefficients to new mixture systems. Gasoline-water two-phase mixture data from
the literature were assembled as a set of test cases. Mixing rule prediction results were compared
to measured partition coefficients for 37 solutes in 17 two-phase systems involving fuels or fuel-
like mixtures. Consequently, the LSER formulation could be applied to a range of gasoline
mixture types, allowing gasoline-water partition coefficient estimates for a new set of systems.

In Chapter 4, I describe an electrostatic model and employ molecular orbital calculations to

estimate the LSER solute polarity parameter, 2 H. I suggest that the polarity parameter is related
to two more fundamental physical quantities: a measured polarizability term and a calculated
solute-solvent electrostatic interaction term. I evaluated various possible molecular "solvent
accessible surfaces" that have been discussed in the literature. A diverse set of 90 semi-polar
and highly polar solutes containing C, H, N, 0, S, F, Cl, and Br were used to calibrate and test

the model. The proposed method allows computational estimates of T2H values for novel
(untested) solutes and will hopefully lead to further advances in the physical interpretation and
modeling of LSERs.

Chapter 5 illustrates an example exposure screening model calculation for the hypothetical
gasoline additive, nPN, as an instructive case study. The physical-chemical property estimation
methods discussed in chapters 3 and 4 were used in conjunction with previously published
modeling tools to estimate relevant partition coefficients for nPN. These physical-chemical
parameters were then supplied as inputs for the community supply well screening model
described in chapter 2 and the urban airshed exposure assessment model reported by Kawamoto,
Arey, and Gschwend (37). Taking the study a step further, it was assumed that some
toxicological information about tolerable exposure levels to nPN was given; consequently a
range of environmentally acceptable fuel amendment levels of nPN could be recommended.
These didactic exercises are only intended to illustrate the application of the physical-chemical
property estimation and environmental screening models. In real cases, other environmental
impacts, e.g., contamination of surface waters or interaction with other pollutants during
combustion, should also be considered.

A summary of conclusions, and suggested areas of future work, are discussed in Chapter 6.

In Appendix A, I report a brief investigation of hydrogen-bonding parameter calculations
using molecular orbital methods. Appendix B contains the C++ code which was used to
construct the probability density functions and conduct the Monte Carlo analysis of subsurface
transport forecasts reported in chapter 2. In Appendix C, I report an example Matlab code for
iterative calculation of fuel-water system compositions based on mass balance constraints, as
described in chapter 3. Appendix D contains the C++ and IDL (Interactive Data Language)
codes which were used to: (a) generate Gaussian98 (molecular modeling) input files, (b) analyze
and manipulate Gaussian98 output files and electron density data, (c) generate the numerical
solute electron isodensity surface grids, and (d) perform the electrostatic energy integrations
from Gaussian98 ouput which are discussed in chapter 4.
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Chapter 2
A physical-chemical screening model for anticipating widespread contamination

of community water supply wells by gasoline constituents

2.1. Introduction

2.1.1. Motivation

Less than ten years after the widely increased addition of methyl tert-butyl ether (MTBE) to
U.S. gasolines, widespread contamination of thousands of drinking water supply wells caused
enormous environmental and economic costs (1,2). Due to its abundance in gasoline, high
aqueous solubility, and slow degradation rate in aquifers, MTBE has migrated in significant
quantities from subsurface gasoline releases to many municipal and private water wells across
the U.S. in only a few years (3). Although the U.S. Environmental Protection Agency (EPA)
mandated oxygenated fuel use in many regions in 1990 (4), some investigators had used
qualitative language to warn about the potential threat of MTBE to groundwater resources as
early as 1986 (5,6). Despite such early warnings and subsequent experiences with MTBE, an
approach for making an a priori quantitative evaluation of widespread water supply well
contamination from underground fuel tank (UFT) related releases or other sources has not yet
been developed. These events demonstrate the clear need for regulators and industry to pre-
evaluate all future gasoline additives and/or adjust gasoline composition for the corresponding
potential to contaminate subsurface water supplies.

Extensive surveys of U.S. water supplies over the last decade have consistently reported a
high incidence of community supply well contamination at levels of -1 to 20 Rg/L MTBE.
According to a U.S. EPA collection of -reports, in high oxygenate use areas, 5 to 15% of
community drinking water supply wells had MTBE concentrations of >0.1 pg/L, and about 1%
had MTBE concentrations in the range of 5 to 20 pg/L or higher (7). In a more systematic
national sampling program of 579 community supply wells by the U.S. Geological Survey
(USGS), the survey sample was designed to reflect a random national distribution of well sizes
and population density, finding 5.4% of wells to have >0.2 pg/L MTBE concentrations, all less
than 20 gg/L (8). In a study of the northeastern states, where oxygenate use is more common,
workers used a similarly "stratified" sampling strategy and found 7.8% of community supply
wells to have MTBE levels of 1.0 pg/L (9). MTBE concentrations as high as 610 pg/L were
reported in Santa Monica community supply wells as a result of contamination from nearby
leaking underground fuel tanks (LUFTs) (10). MTBE contamination of public or private
drinking water wells appears to result largely from UFT and local homeowner fuel releases or
refueling spills (2). It is worth noting that non-point source transport of MTBE from the
atmosphere to shallow groundwater in urban areas has also been suggested as a contributor to
pervasive contamination of drinking water supplies at sub-pg/L concentrations (11-13).

A useful assessment for identifying which gasoline compounds could cause widespread
contamination of water supplies must incorporate chemical property information relating to
subsurface transport. In principle, any component of gasoline might contaminate drinking water
resources as a result of transfer from released gasoline to groundwater, followed by advective
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(groundwater flow) transport to a public or private well. In practice, most gasoline constituents
are sparingly soluble in water, highly sorptive to aquifer solids and therefore retarded with
respect to groundwater flow, or substantially biodegraded in the subsurface before migration to
drinking water wells. Therefore, to make an upper-bound estimate of the threat posed by
gasoline components to water supply wells, one could use a transport model that neglects
biodegradation but utilizes information on equilibrium distributions of the contaminants between
phases: primarily water, gasoline, air, and aquifer solids (14,15). The corresponding chemical
properties are partition coefficients, K12, which quantify the chemical's equilibrium mass
distribution between two phases:

K = oncentration of solute in phase 1 (2-1)
concentration of solute in phase 2

The partition coefficients relevant to subsurface transport of gasoline constituents therefore
include the gasoline-water partition coefficient (Kgw), the air-water partition coefficient (Kaw),
and the organic matter-water partition coefficient (Kom).

In a regulatory context, gasolines are conventionally viewed as mixtures of nonpolar
hydrocarbons and any added oxygenates (4,16-19). However, closer scrutiny reveals that
gasolines contain a suite of polar constituents at levels between ten to hundreds of part-per-
million (ppm, Table 2-1). These compounds are either present in the original petroleum, are
byproducts of refining processes, or are intentionally added in order to improve engine
performance, clean and lubricate valves, increase octane number, improve emissions quality,
preserve fuels during storage, or perform other functions (20). Such compounds could threaten
drinking water resources widely if they are sufficiently mobile in the subsurface. As with
MTBE, it is useful to consider whether the contamination risk posed by these compounds could
be anticipated a priori, in other words, independently of existing contamination data. An
analogous screening method for estimating urban air contamination levels by volatile gasoline
constituents such as MTBE was proposed recently (21).

2.1.2. Objective

The goal of this study was to develop and test a method for evaluating the plausibility of
significant contamination of community supply wells (CSWs) resulting from the use of current
or future gasoline additives. For this purpose, I chose to make the conservative assumptions that
(a) gasoline constituents were not (bio)degraded in the subsurface, and that (b) gasoline
constituents did not influence each other during subsurface transport, i.e., through cosolvent
effects or competitive biochemical oxygen demand. If reasonable, such a screening model
would allow regulators and industrial researchers developing fuels to easily and quickly identify
proposed constituents which are likely to cause CSW contamination, given their chemical
partitioning properties, before they are introduced to gasoline on a wide scale. This screening
model result would specifically identify those compounds which should be rigorously tested in
the more difficult areas of toxicity, subsurface degradability, and interactions with other fuel
constituents during transport.
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Table 2-1. The abundance, physical-chemical properties, and transport model predictions of 24
polar and nonpolar compounds found in gasoline

gasoline
solute

methyl tert-butyl ether (MTBE)
ethyl tert-butyl ether (ETBE)
di-iso-propyl ether (DIPE)
tert-amyl methyl ether (TAME)
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ethanol
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1000001
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2,6-dimethylaniline

phenol
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3,4-dimethylphenol
2,6-dimethylphenol

N,N'-disalicylidene-
1,2-diaminopropane

thiophene
benzothiophene
di-sec-butyl-p-phenylenediamine
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10 0.01
70 0.003

200 6x1O8

"-" indicates that this data is not applicable. a acidity constant. gasoline-water partition coefficient, molar basis.
C octanol-water partition coefficient, molar basis. literature values were taken from the ClogP database or calculated
using the ClogP fragment method where literature values were unavailable (N,N'-disalicylidene- 1,2-
diaminopropane and di-sec-butyl-p-phenylenediamine) (22-24). d organic matter-water partition coefficient [I/kg],
estimated using published LFERs with K., (15). e (2). f corresponds to ~10% vol/vol. g corresponds to 1%
vol/vol, as imposed by current legislation. h (25). '(26). i (20). k (27). ' (28). calculated using SPARC (29,30).
" (31). * calculated using UNIFAC (32). P (33). q calculated from AQUAFAC (34) estimation of the aqueous
activity coefficients and UNIFAC estimation of the gasoline activity coefficient, with 10% MTBE. ' (35). S (36).

2.2. Model development

2.2.1. Modeling scope and variability analysis

Conventional transport models are designed to treat site-specific contamination problems.
This differs from the goal of the screening approach, which seeks to evaluate the hazard
associated with a particular product used in typical situations. Thus, the question is: how can a
transport model capture the threat posed by a contaminant at literally thousands of subsurface
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sites? Since the specific hydrogeologic and contamination conditions of these sites are not

individually known, it is impossible to model each case of contamination for at-risk CSWs and

then aggregate the results. Instead, it may be useful to focus attention on a subset of the at-risk
sites that are representative of a significant portion of affected sites. The screening calculations
here use the assumption that judiciously chosen parameters can reflect a typical at-risk site and

thereby adequately describe representative contamination scenarios for screening purposes. If
the model predicts CSW concentrations that are significantly lower than a safe threshold value,
then the compound should be considered unlikely to cause a widespread contamination problem
for the set of drinking water sources considered here. However, if the model predicts CSW
concentrations which are near or above an unacceptable value, then this constituent should be
considered a potential widespread contaminant. In this eventuality, degradability and/or toxicity
tests should be performed before the chemical is added to gasoline.

Appraisal of model input parameter variability was used to estimate the uncertainty of
predicted contaminant levels in CSWs, which revealed the model's precision and usefulness.
Input parameter probability distributions were assumed to be log normal and/or were calibrated
directly from literature data. Using uniform sampling Monte Carlo simulation (37), a large
number (106) of stochastic realizations were used to evaluate the variability of transport model

predictions, assuming that the input parameters were statistically uncorrelated. Consequently,
the screening model was mainly used to produce two types of information: the predicted severity
of a typical contamination event for an at-risk CSW (i.e., contaminant concentration in the well,
or time until the onset of contamination); and an estimate of uncertainty around this expectation
value.

Only three model parameters were compound-specific: the gasoline-water partition
coefficient (Kgw); the organic matter-water partition coefficient (Kom); and compound
concentration in gasoline (Cg) (Table 2-1). Where appropriate, compound acidity constant (pKa)
values were additionally determined in order to assess whether ionic species might have a
significant impact on phase partitioning processes. The model was intentionally designed so that
minimal additional information is required to tailor the model to the behavior of a novel gasoline
constituent.

In this chapter, available data on MTBE contamination of CSWs were used to evaluate
screening model predictions, since MTBE is known to be poorly degradable in many subsurface
environments. Domestic wells were excluded from the set of sites under consideration because it
is more difficult to make generalizations about their hydrogeologic environment. I believe that

this does not undermine the usefulness of model results, since CSWs account for -85% of
groundwater-derived drinking water in the U.S. (38) and since CSWs appear to have been
affected as severely as domestic wells in most cases (7). Additionally, the model does not
consider contamination of CSWs resulting from atmospheric deposition. Finally, it should be
noted that surface water sources have been affected by MTBE at least as much as or more
severely than subsurface drinking water supplies in the U.S. (8,39), and the assessment proposed
here does not address risks to surface water resources.
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2.2.2. Conceptual transport model

The transport model was used to calculate: contaminant gasoline-water transfer; advective
transport via groundwater flow; sorption to aquifer organic matter (retardation); longitudinal
dispersion; and finally, dilution in the CSW. A simplified conceptual model of transport of the
gasoline constituent from a release site to a CSW is first briefly presented, as three sequential
steps, in order to guide the reader. A mathematical development of the transport concepts and an
evaluation of the model assumptions are presented in the subsequent sections. First, a gasoline
constituent was assumed to leach out of the gasoline non-aqueous phase liquid (NAPL) pool into
passing groundwater, creating an "initial" plume condition. Dissolution equilibrium was
assumed at the water-NAPL interface. The rate of contaminant flux from the NAPL to the
groundwater, and therefore the initial length of the plume, was considered limited by the access
of passing groundwater to the NAPL pool and the gasoline-water equilibrium partition
coefficient of the constituent. Highly water-soluble components (such as MTBE) would leach
out of the NAPL quickly and create a relatively short initial plume(e.g., (40,41)). In this case,
the eventual final length of the calculated MTBE plume depended almost entirely on transport-
related longitudinal dispersion and was influenced very little by the plume initial condition.
Conversely, a less water-soluble contaminant such as toluene would dissolve slowly into passing
groundwater, resulting in a lengthy "steady-state" plume which would not experience as much
subsequent longitudinal mixing. In other words, the effective flux of the constituent from the
NAPL into the groundwater (presented mathematically as the initial length of the plume)
reflected a contribution to longitudinal dilution of the plume, and this eventually influenced the
calculated rate at which the plume was transported into the CSW. Second, the calculated initial
plume was assumed to migrate towards the well influenced by advection (rate of groundwater
flow) and retardation (sorption to sediments), and the plume would additionally lengthen during
transport via longitudinal dispersion, as depicted in Figure 2-1. Dispersion in the transverse
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residual plume

saturated solute slug
zone 4a

Figure 2-1. Depiction of a solute plume of length -4a1 migrating from a
gasoline release site to a CSW; the vertical scale is exaggerated to show detail
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directions was considered unimportant since the entire plume was assumed to lie within the
capture zone of the well. Consequently, the chemical flux into the well would be effectively
decreased by dispersion only in the longitudinal coordinate, i.e., lengthening of the plume.
Finally, the calculated plume arrived at and was drawn into a shallow CSW. The concentration
of the constituent in the CSW water was thus determined by: (1) the final length of the plume
when it arrived at the well (the result of both its initial length and dispersion-induced
lengthening); (2) the rate at which the plume was fed into the well via ambient groundwater
advection; and (3) the pumping rate of the well, which would effectively dilute the plume with
the rest of the water in the capture zone.

2.2.3. Hydrogeologic setting

Before the screening model mathematical framework was developed, the appropriate scale
and physical context of a gasoline component threat to a representative at-risk CSW were
evaluated. First I considered hydrogeologic characteristics of CSW sites. While both
consolidated and unconsolidated materials may contain productive aquifers (42), the large
majority of CSWs in the U.S. are located in unconsolidated sand and/or gravel aquifers. Only a
small fraction of wells are drilled into crystalline aquifers (43). Inspection of the geographic
distribution of major productive aquifers throughout the coterminous U.S. (44) revealed that,
while unconsolidated and consolidated aquifer regions appear roughly equally prevalent on an
area basis, unconsolidated aquifers must serve by far the larger portion of the population which
relies on groundwater. Productive unconsolidated aquifers predominate in the most populous
regions, including most of the Atlantic seaboard and Gulf coastal plains, south Florida, much of
the central plains (Ogallala aquifer) region, and most of the southwest alluvial basins and Pacific
coast, as well as other areas. Additionally, even in areas that contain predominantly consolidated
aquifers, the alluvial systems of river basins are probably relied upon heavily for community
water supplies, due to their high yields. Using data collected across the U.S. in 23 different
states during the early 1970's (45), 51% of public water supplies (27 out of 53 surveyed) had
both screen depths of less than 85 m and were located in unconsolidated materials (sand or
gravel). Separately, state agencies and other investigators have reported that significant portions
of CSWs in several states (IL, NJ, MA, RI, MD, MT, and TX) or major regions therein draw
directly from unconfined systems, ranging from -30% to "virtually all" of them (46-51). In a
more recent USGS nationwide survey of 575 CSW system managers, the large majority of
communities reported CSW emplacement in unconsolidated lithology (63% consolidated, 7%
unconsolidated, 29% uncertain), in unconfined aquifers (71% unconfined, 5% confined, 24%
uncertain), and at shallow depths (well intake depth less than 76 m in 78% of cases) (8). Based
on these studies, I assumed an unconfined, shallow, sand and gravel hydrogeologic system

(Table 2-2) with a porosity (0) of 0.25 (52). It is critical to note that many CSWs draw from
deep or confined aquifers and consequently the screening model is not designed to represent such
low-risk sites. Likewise, some communities may drill into fractured (e.g., karst) or otherwise
highly conductive systems and thereby suffer increased risks. Nonetheless, for screening
components of fuels, the consideration of unconfined, shallow, unconsolidated aquifers seemed
to be appropriate for widespread protection of subsurface water supplies. CSW pumping rates

(Qweii) also required consideration, since both the size of the capture zone and dilution rate of the
plume as it is drawn into well both depend on well pumping rate. Grady's recent nationwide
survey of 575 CSW systems revealed that CSW pumping rates follow a skewed distribution,
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Table 2-2. Summary of model field transport parameters

field parameter
aquifer lithology
aquifer porosity
aquifer fraction organic matter
water table depth
aquifer saturated depth
well pumping rate

distance from LUFT to CSW

NAPL volume
NAPL saturation

NAPL lens thickness
longitudinal dispersivity
ambient groundwater velocity
longitudinal dispersivity

symbol

fom
d
H
Qwell

Vg
S9

h9
a,10
v.
ax

expected value
unconsol. sand, gravel
0.25
0.003
7 m
25 m
2200 m3/d (400 gpm)

L,, 1400 m

1.65 m3 (440 gal)
0.35

0.2 m
0.002 in
0.4 m/d
20 m

stochastic simulation statistics
Ma sb constraintsC

-5.8 0.6 fom > 10-4

7.7 (m3/d) 1.0 Qwe > 20 gpm
Qwei < 5000 gpm

generated from datad L, > 300 m
L, < 5000 m

0.5 (in 3 ) 2.0 Vg > 10 gal
-1.0 0.2 Sg > 0.05

S9 < 0.95
-1.6 (m) 0.2 h9 > 0.05 m
-6.0 (in)
-0.9 (m/d)
3.0 (m)

0.9
0.5
0.5

vx> 0.01 m/d
ax > 2 m
ax < 10% of Lx

aquifer solids density PS 2.5 kg/L - - -
ground water temperature T 15 0C - - -
ground water ionic strength I 1 mM - - -
ground water pH pH 7 - - -

indicates that a value or symbol was not assigned here. a stochastic mean of the log transformed parameter,
assuming a log normal distribution. b standard deviation of the log transformed parameter, assuming a log normal
distribution. For example, S = 2.3 indicates a standard deviation which corresponds to a factor of 10 in the non-
transformed parameter. C constraints on the parameter values for stochastic simulations, so that unrealistically
extreme or uninteresting parameter realizations are left out of the analysis. d stochastic estimates of CSW-LUFT
separation distances were generated using equation 2-2, based on the LUFT density data of Johnson et al. (2) (not
assumed log normal).

with 57% of wells having pumping rates of less than 70 gal/min and a significant number of
wells being much larger systems (8). Based on this data and our own interviews with CSW
managers (Table 2-3), a ln(Qwei) mean of 7.7 (units of m3/day, corresponding to Qwel - 400
gal/min) and standard deviation of 1.0 were assumed.

Sediment organic matter content is known to have a significant influence on sorption and
retardation of organic contaminants in the subsurface (15). Consequently an aquifer material
organic matter (fom) abundance of 0.3% was considered representative, since sand and gravel
aquifers commonly contain relatively low levels of organic material, and this is also the risk-
conservative choice for screening calculations (Table 2-2). In stochastic simulations, a ln(fom)
mean of -5.8 (corresponding to fom - 0.003) and standard deviation of 0.6 were assumed.

Since transport in an unconfined sand and gravel aquifer could be comfortably established,
ambient uniform flow of groundwater towards the well was assumed. In a review of field-study
data, the median ambient groundwater velocity was 0.7 m/day in coarse-grained sand and/or
gravel aquifers in the U.S. and Europe (n=16) (53). However, these observations were likely
biased towards relatively high rates of groundwater flow, implying that more usual ambient
groundwater velocities in sand and gravel aquifers are lower than 0.7 m/day (54). For example,
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the reported groundwater velocity on Cape Cod in a sand and gravel aquifer with relatively high
recharge (-0.50 m/yr) was about 0.4 m/day (55). Tracer tests at the Borden site, a fine-grained
sand aquifer, revealed an average groundwater velocity of about 0.09 m/day (56). Based on
these considerations and the desire to remain risk-conservative in the screening assessment, a
representative ambient groundwater velocity was chosen to be 0.4 m/day, with a typical range of
0.1 to 1 m/day reflected in the stochastic simulation statistics (Table 2-2). This groundwater
velocity estimate did not include the drawdown effect of well pumping, which was accounted for
separately as described in Section 2.6.

Using data describing the locations of reported LUFTs and 26000 CSWs in 31 states,
Johnson et al. (2) estimated the distribution of CSW population as a function of LUFT density in
the vicinity of the CSW. For stochastic simulations, the LUFT density histogram generated by
Johnson et al. was used to construct an estimated cumulative frequency distribution, as shown in
Figure 2-2. For a randomly selected realization of local LUFT density, the distance between the
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Figure 2-2. Estimated cumulative frequency distribution of LUFT density in the
vicinity of CSWs, based on the histogram analysis provided by Johnson et al. (2000)
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CSW and the nearest up-gradient LUFT was therefore determined as:

L ~ (area in which one LUFT will be found) _ 1 (PLulFs (2-2)
x 2 (capture zone width) 2 QixJ

where PLUFrs is the (stochastic) local density of LUFTs [#/m2], H is the saturated depth of the
aquifer (assumed 25 m), and Qwei/(Vx,$HR) is the capture zone width, assuming a uniform ambient
flow field. The distance estimate in equation 2-2 assumes that the orientation of the capture zone
is uncorrelated with LUFT density, which is likely to be biased for communities where wellhead
protection efforts have guided the positioning of CSWs. Nevertheless, this distance estimate was
considered adequate for screening purposes. For Monte Carlo simulations, a minimum Lx value
of 300 m was imposed in order to avoid the spurious consideration of very close CSW-LUFT
proximities. Additionally, in most populated regions, typical aquifer recharge (0.2 to 0.5 m/yr)
will prevent the CSW capture zone from reaching more than a few km up-gradient under the
conditions presented here. Consequently, a maximum Lx value of 5000 m was additionally
imposed in stochastic simulations, since CSW contamination resulting from larger transport
distances was considered unnecessarily unusual. Using these assumptions, the median stochastic
Lx realization was about 1400 m and this value was considered representative for screening
purposes.

The calculated kilometer-scale transport of contaminants to CSWs with screen depths of only
tens of meters below the water table has an important modeling ramification. It has been shown
that, except in systems of very low permeability, one may reasonably reduce unconfined
3-dimensional hydrology to a "flattened" 2-dimensional problem as long as the processes of
interest involve a lateral scale which is at least a factor of 2 or 3 greater than the vertical scale
(57). Since the screening model's lateral transport distances and capture zone lengths are
generally an order of magnitude larger than the aquifer saturated thickness, the exact
specifications of the well screen were therefore considered unimportant for the modeling
presented here.

To assess whether the physical context established above was reasonable (Table 2-2), I
obtained the specific data on the CSWs of eight communities distributed around the U.S. (Table
2-3). Three of the communities were located in geographical areas predominated by
consolidated aquifer material (Chillicothe, OH; Idaho Falls, ID; Brush, CO), but they had drilled
their community water supply wells in unconsolidated alluvial areas. In six out of the eight
cases, distances between CSWs and nearby UFTs were less than 1400 m. Reported CSW
pumping rates ranged from 200 to 5000 gal/min, but clustered around 400 to 700 gal/min. In
five of eight communities studied, well screening depths (dscreen) were relatively shallow (<130
m), suggesting vulnerability to contamination from UFT releases. The eight reported fom values
ranged from undetectable to 0.05, with a median value of 0.0015. Thus, these reports generally
support the previously developed expectation that a significant fraction of sites across the U.S.
reflect a CSW-to-LUFT separation scale (Lx) of about 1000-2000 m and CSW emplacement in
shallow, unconfined, sand and gravel aquifers. The Chillicothe CSW site (Figure 2-3) provides a
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Table 2-3. Summary of hydrogeologic and well data for eight randomly selected U.S.
communities

location aquifer material L, [mla O_ [gpm1 de [mljjf 2  references

Forestdale, MA sand/gravel < 200 200-350 10-18 0.0003 (58,59)
Guymon, OK silt/sand/clay 300-700 80-900 130 0-0.01 (60,61)
Columbus, MS sand/gravel < 200 1400 300 0.0006 (62,63)
Chillicothe, OH sand/gravel 700-900 900 20-30 0.002 (64,65)
Brush, CO sand -5000 600-1400 30-40 0.001 (66,67)
College Station, TX sand > 5000 200 1000 0-0.05 (68,69)
Idaho Falls, ID sand < 800 1000-5000 160 0.01 (70,71)
Toms River, NJ sand/gravel 500 200-2000 30-70 0.0004 (72,73)
a distance from the CSW to the nearest known UFT, based on surveys of commercial service station
locations. b CSW pumping rate. C approximate well screen depth. d aquifer material fraction of organic
matter as measured at a regional location.

compelling illustrative example of the proposed model hydrogeologic context: underground fuel
tanks lie within 0.5 to 1 km in almost any general direction, and the shallow wells are emplaced
in a sand and gravel aquifer (Table 2-3). Actual contamination events or UFT releases were not
investigated or reviewed in any of the communities listed here, and the reported results are not
intended to imply any negligence or specific mismanagement on the part of planners in these
areas.

2.2.4. NAPL release characteristics and contaminant plume initial conditions

Once the hydrologic setting and transport scale of CSW contamination by a gasoline release
had been established, plume initial conditions were evaluated. First, I investigated gasoline
release volumes (Vg). Inspection of several U.S. National Response Center (NRC) fuel release
incident reports (74) revealed that terrestrial gasoline releases are frequently related to UFT
refilling spills or tank/pipe leaks. A random survey of 50 NRC reports (1999-2003) of
uncontained gasoline releases to land or soil environments, in which release volume estimates
were recorded and were at least 10 gallons in size, was conducted. This sample of release
reports reasonably matched a log normal distribution with a mean ln(Vg) value of 0.5 (units of
ln m3, corresponding to Vg ~ 1.65 m 3 or 440 gal) and a ln(Vg) standard deviation of 2.0 (Figure
2-4). The largest release in the randomly selected set was 16800 gal, although much larger
recorded releases can be found in the database (up to ~10 5+ gal, based on our inspection).
Nevertheless these estimates may be biased to low volumes, since reporting favors recognition of
sudden release incidents. Many releases may be better described as slow leakages into the
environment over long time frames (possibly years). Such cases do not need to be excluded
from the scope of the screening model, since they can be treated as a series of smaller releases.

Based on these considerations, a screening model release volume of 400 gal was assumed
representative (Table 2-2).

Once released into the environment, the gasoline NAPL was assumed to percolate through
the vadose zone and spread into a resting "pancake," or pooled lens, on the water table (Figure
2-5). The fraction of void space occupied by NAPL within the lens, referred to as the NAPL
saturation (Sg), was assumed to average -0.35 and could easily range from 0.2 to 0.5, based on a
literature compilation of measured field residual saturation data for gasoline (75). The residual
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Figure 2-3. Map of the Chillicothe, OH, CSW site area, indicating the relative
locations of CSWs (shaded stars) and service stations (shaded rectangles)

saturation data reflect a lower bound estimate of NAPL saturation at the water table. This is a
risk conservative choice for screening purposes, and subsequent analysis (section 3.2) will show
that forecasted community supply well contamination levels are relatively insensitive to the Sg
value. The average height of the resting NAPL lens (hg) was assumed to be 0.20 m. If the
NAPL pool spreads in a circular fashion, then Vg = hgitr2Sgg, and given a lens height of 0.2 m,
NAPL saturation of 0.35, porosity of 0.25, and gasoline release volume of 1.65 m (440 gal), the
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Figure 2-4. Cumulative frequency distribution of 50 reported uncontained gasoline releases to
soil or subsurface environments based on National Response Center data (1999-2003), shown

together with a suggested log normal distribution curve having M = 0.5 (m3) and S = 2.0

corresponding lens radius would be r = 5.5 m.

Volatilization of gasoline components into the vadose zone and subsequent escape at the
surface were considered, since this process might affect the contaminant's ability to impact a
CSW. The rate of contaminant flux, (dM/dt)oiat, from the NAPL via vertical diffusion through
pore gas (air) in the vadose zone was estimated as (15):
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Figure 2-5. Conceptualization of the NAPL lens and contaminated groundwater as it
flows beneath the pooled gasoline NAPL; the vertical scale is exaggerated to show detail
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where Mi is the mass of the contaminant in the NAPL release, Da is the diffusion coefficient of
the contaminant in air, i,a is the fraction of contaminant mass in the vadose material gaseous (air)
phase (15), T is the aquifer material tortuosity (assumed 1.5), dCa(z)/dz is the vertical vapor
concentration gradient of the contaminant as it diffuses from the NAPL through vadose air to the
land surface [kg/M4], 4, , and 3 are the air, water, and solids volume fractions of the vadose
material, respectively (I assumed A - 0.2, #, - 0.1, and A ~ 0.7), Ag is the area of the NAPL
lens (plan view) [m 2], dw is the distance from the NAPL pool at the water table to the land
surface (taken as -5 m for a shallow source), Cg is the abundance of the contaminant in gasoline
[kg/m3], Kga, Kaw, and Kom are the gasoline-air partition coefficient (dimensionless), air-water
partition coefficient (dimensionless), and organic matter-water partition coefficient [IJkg] of the
contaminant, respectively, fom is the vadose solids mass fraction of organic matter (assumed
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0.003), and ps is the vadose mineral solids density (assumed 2.5 kg/L). In order to evaluate the
importance of volatilization relative to other loss mechanisms, I calculated the hypothetical fuel
component loss rates due to diffusive escape to the surface for three volatile NAPL components:
ethanol, MTBE, and ethylbenzene. Assuming Kga ~ Kgw/Kaw, I estimated
Kga,ethanol . 0.015/0.00020 = 75, Kga,MTBE =16/0.026 = 615, and Kga,ethylbenz 2200/0.34 = 6500
(Kg, data from Table 2-1, Kaw data from (12,31)). Usin correlations with molecular weight
(76), I estimated Da,ethanol = 11 m /day, Da,MTBE =0.7 m /day, and Da,ethylbenz = 0.7 m2/day.
Taking these parameters and Kom predictions from Table 2-1, I estimated initial volatilization
rate constants (kvoiat = -Mi-1(dMi/dt)voat) of kvolat,ethanol 2x 10-6 day', kvolat,MTBE~ 2x 10-5 day-,
and kvolat,ethylbenz~ 2x10-6 day-. As is shown later in this section, these estimated rates of volatile
escape are much smaller than the mass leaving rate due to groundwater flushing, for water-
soluble gasoline components (e.g., oxygenates or BTEX, using equation 2-9). To the extent that
this approximation is incorrect in some cases, volatilization was considered unlikely to change
the contaminant mass available for groundwater contamination by more than a factor of 2. This
uncertainty is small compared to our imprecise knowledge of subsurface gasoline release
volumes; consequently gasoline volatilization was not included in the screening model.

Groundwater which could physically access the pooled gasoline was assumed to chemically
equilibrate with the NAPL where the two fluids were in immediate contact, thereby creating an
underlying plume of saturated water (Figure 2-5). This is a very reasonable assumption.
Seagren and coworkers have used dimensional analysis to show that local equilibrium may be
safely assumed when the product of the modified Sherwood number (Sh' = LNAPL ki/Dz) and
Stanton number (ki/vx) is greater than 400 (77). Assuming a groundwater pore water velocity of
vx = 0.4 m/d, a vertical dispersion coefficient of Dz = vxa,10 = 0.0008 m 2/d, a mass transfer
coefficient of k, = 1 m/d (considered a reasonable value for an aquifer setting (77)), and NAPL
pool length of LNAPL ~ 10 m, the calculated Sh'St ~ 30000 >> 400. Thus the Sherwood-Stanton
product would have to decrease by two orders of magnitude before conditions resulted in non-
equilibrium mass transfer of gasoline components to passing groundwater. The depth of the
groundwater equilibrated with the NAPL when it leaves the NAPL lense, ht(y), was estimated
from the characteristic length of Fickian dispersion-induced vertical mixing (78,79):

h (y)= c(z)= 2az,7LNAPL

where az,10 is the vertical aquifer dispersivity on a ten-meter scale [m] and is assumed constant,
and LNAPL(y) is the length of the NAPL pool [m]. Inspection of a review of literature vertical
dispersivity data (53) suggested that az,10 ~ 0.002 m was reasonable for a sand and gravel system,
with a typical range of 0.0005 to 0.01 m reflected in the stochastic simulation statistics (Table
2-2). This results in a maximum ht(y) value of about 0.2 m.

From Figure 2-5 it is clear that if one could calculate the transverse area of the exiting plume,
At, then the rate of mass loss of gasoline constituents leaving with passing groundwater could be
estimated. If the gasoline NAPL spreads in an approximately circular fashion, the longitudinal

length of NAPL to which the passing groundwater is exposed varies as LNAPL(y) = 2r- y2

where r is the radius of the NAPL pool. Consequently the transverse cross-sectional area of
contamination leaving the NAPL pool could be found by integrating the depth of the plume as it
leaves the NAPL over the width of the plume:
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At = h, (y)dy = 2alOL NAPL J 0  
2 _y2 dy (2-5)
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Since At is a symmetric function over -r to r, the integral limits can be simplified:

r r

A = 2 2a 102 r2 _ 2 dy =4 a Jr 2 _y2 dy (2-6)
0 0

Equation 2-6 is a well-behaved function which can be numerically integrated with nominal error.
In this work, the midpoint numerical integration method was used with N = 1000 intervals (80).
An arbitrary fitting function was found (correlation coefficient = 1.000) which relates the
computed value of At [m 2 ] to the NAPL pool radius, r [m]:

At = 3.5r a ,0  (2-7)

Using the conditions suggested here for a 400 gal release (r = 5.5 m, az,10 = 0.002 m), I calculated
At = 2.0 m2 .

The mass leaving rate of any compound from the NAPL pool was estimated as:

(dM, -A =QACVter (2-8)
dt flushing A er =aC e(

where QA refers to the flux of groundwater through area At at the NAPL edge [m 3/day], and
Cate, is the aqueous contaminant concentration of the groundwater plume leaving the NAPL
spill. Since contaminated water under the NAPL lense was assumed equilibrated with gasoline,
Crae, = Cg/Kgw and therefore:

dM~i _ - At#VVXCg - -A#VXMi_ (2-9)
dt )flushing K gw KgwV

Using the suggested parameters in Tables 2-2 and 2-1 and taking At = 2.0 m2 , the initial rate
constants of flushing (kflushing = -Mi-'(dM/dtflushing)) for three water-soluble fuel components
were: kflushing,ethanol = 8 day 1 , kflushing,MTBE = 8x103 day~ , and kflushing,ethylbenz = 6xi0-5 day-'. These
mass leaving rates were compared to estimated loss rates due to volatilization (see the example
calculations following equation 2-3). In all three cases, the ratio of kflushing to kvolat showed that
mass loss to groundwater was the dominant process by at least an order of magnitude:
(kflushing/kvolat)ethanol = lX106, (kflushing/kvolat)MTBE = 5x10 2 , and (kflushingkvoat)ethybenz = 3x10'. This
confirmed our assumption that volatilization could be neglected, for the purposes of screening
CSW contamination by water-soluble gasoline constituents.

In order to integrate equation 2-9 and solve for Mi(t), it was assumed that the NAPL volume
does not change significantly as gasoline components are leached away from the release site.
This is a reasonable screening model approximation for current gasolines: highly soluble
components are fractionally abundant (20-40% v/v, including oxygenate and light aromatic
constituents), and the assumption of constant NAPL volume may therefore reflect an error of
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order ~ (1-AVg)- 1 in dMi/dt (a factor of 1.2 to 1.7). This is much smaller than the uncertainty due
to variability in fuel release volumes. For hypothetical fuel mixtures which contain mostly

(50%-75%) soluble components of interest, one could choose to explicitly treat changes in

NAPL volume. Integration of equation 2-9 for Mi(t) gives a first-order decay expression:

M 1 (0)= expr t0X (2-10)
M i0KgW V

where Mi,o is the total original mass of the contaminant in the gasoline. The amount of time

required to deplete the gasoline of 80% of the compound (i.e., two to three half-lives), excluding

a weak plume tail, is therefore:

KgwV ln(5) (2-11)
depletion A#v

Calculating tdepletion allowed estimation of the initial length of the concentrated plume as it

leaches away from the NAPL site. The initial plume length is important information because it

reflects the extent of longitudinal dilution of the plume, and this will eventually affect the

contaminant concentration in the CSW. Highly water-soluble components such as MTBE

dissolved rapidly into groundwater, creating a short, concentrated plume. Conversely, less

soluble components such as toluene leached slowly out of the NAPL, generating a long dilute

plume. The initial length of the plume, approximated as a slug of uniform concentration, is then:

v t depletion KgWV9 ln(5)
x,initial R RAt( 

1

where R is the retardation factor of contaminant. The retardation factor reflects the decreased

velocity of the contaminant as it is advected through the subsurface, due to sorption to aquifer

organic matter (81):

R- v =+ f MKomPs(1-0) (2-13)
v contaminant

where fom is the aquifer material mass fraction of organic matter, Kom is the organic matter-water

partition coefficient (L/kg), and ps is the aquifer mineral solids density (kg/L).

2.2.5. Dispersion of the contaminant plume and dilution in the CSW

Once the initial plume length was estimated, transport-induced dispersion was expected to

cause further dilution. Taking the plume to be a slug of uniform concentration as it leaves the

NAPL site, its variance, Cx, initial 2, could be related to the 2"n moment of its length, (lx,initial) 2 / 12.
Using the assumption of Fickian dispersion (82), the final longitudinal variance of the plume

could be described by summing its initial variance and the dispersion-induced variance:

12..2 2 +0 2 x,iutal +2a L (2-14)
x,final x,initial x,dispersion 12 X 
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where a, is the subsurface longitudinal dispersivity. The final estimated length of the transported
plume (expressed as 4 plume standard deviations) when it reaches the CSW was therefore:

x,final x,final =4 n""5i + 2aLx (2-15)
12

Literature data were consulted to estimate ax. In a review of field studies (53), the median
measured longitudinal dispersivity was 20 m (n=7) in sand and gravel systems having field
transport scales of 500 to 2000 m. From these data and subsurface dispersivities used by the
U.S. Environmental Protection Agency Composite Model for Landfills (EPACML) (82), a
transport model longitudinal dispersivity of 20 m was considered representative. In stochastic
simulations, a mean ln(ax) value of 3.0 and standard deviation of 0.5 (Table 2-2) were assumed.

Having derived an estimate of the plume's length when it arrives at the CSW, the rate of
contaminant flux into the CSW could be estimated directly as:

plume mass (plume velocity) = r 0.8M1 0  (2-16)
dt )intwell plume length) x final R

I remind the reader that the "0.8" coefficient to Mj,O reflects the choice of mass depletion lifetime
in the discussion following equation 2-10. Equation 2-16 implies that the capture zone of the
CSW contains the entire plume in addition to dilution water. This is a realistic expectation. For
an aquifer having a saturated depth (H) of 25 m, the calculated CSW capture zone width would
be Qwell/(vx#H) ~ 900 m. Conversely, the lateral spread of the plume may be of order -100 m
when it reaches the CSW, as calculated from a transverse dispersivity value of 1 m (53).
Consequently, explicit consideration of transverse dispersion was not included in the model. The
CSW concentration was estimated from the flux of contaminant into the well and the dilution
resulting from pumping additional (uncontaminated) surrounding water:

dt (2-17)
( dt ) into well (-7

well
Q well

Equation 2-17 could be formulated in terms of measurable parameters (Tables 2-1, 2-2) by
combining it with equations 2-16, 2-15, 2-12, and 2-7, and recognizing that Vg = hg nr2Sgo and
MiO = CgVg. Thus, Cwei was estimated as:

0.2 vxCVg
RQ,, 11Cel ~. (2-18)

K__ 2 V I (hgSg)2 + 2a L
R # ag X
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where the contaminant retardation factor, R, is described by equation 2-13. The first term in the
denominator of equation 2-18 describes dilution of the plume resulting from leaching out of the
NAPL spill, whereas the second term in the denominator describes dilution of the plume related
to dispersion during transport. Using the transport parameters suggested here (Table 2-2), the
second term (transport-induced dispersion) will dominate and the first term can probably be
ignored for contaminants having a Kg/R << 150; i.e., highly water-soluble contaminants such as
ethanol. Conversely, for contaminants with a Kg/R >>150 (i.e., sparingly soluble contaminants
such as ethylbenzene), the first term (the plume initial condition) will dominate and the second
term can probably be ignored.

I briefly point out that log Kgw measurement error could be incorporated into the uncertainty
analysis, without the need for stochastic simulations. Assuming that log Kgw and log Cwei

variability were both normally distributed, the Kgw contribution to uncertainty in Cweii forecasts
could be estimated from the propagated error of equation 2-18, as derived in chapter 5:

(K2 1 " )21 (-9

gw Clolg K alogC well G R 0 2 (2-h9)
Giogc. K L gog alog Kgw = log Kgw + 20aaLx xazdo K gw V (h gS g 2 ' (

Using reported C logKg, estimates (31,33) and equation 2-19, calculated gc1. (Kgw values were

( 0.05)x(-9x10-9) = + 5x10 0- for ethanol; (± 0.09)x(-0.008) = ± 7x10 4 for MTBE; and
( 0.06)x(-0.8) = + 0.05 for ethylbenzene. Kgw error therefore did not significantly affect Cweu

forecast variability, relative to other model parameters (section 3.2). In future applications of the
model for other solutes, however, it may become necessary to explicitly include this term in the
variability analysis.

2.2.6. Estimated contaminant time of arrival at the CSW

The estimated time of subsurface contaminant transport to the CSW was calculated from:
(a) advection of the contaminant plume due to ambient groundwater flow; (b) retardation of
plume advancement due to sorption on aquifer solids; (c) longitudinal dispersion, which
effectively accelerates the plume front; and (d) the pumping action of the CSW, which
accelerates groundwater velocity in the drawdown area surrounding the well. For a conservative
(unretarded) solute, the expected time of plume arrival at the CSW (tar) could be formulated as
the time required for plume advection plus (acceleration) corrections for dispersion of the plume
front and CSW drawdown:

conservative = tadvection - At w2-20)
arr arr dispersion well action

Atdispersion was related to the characteristic length of longitudinal dispersion at the plume front,
and Atwell action was estimated from the analytical expression for groundwater travel time to a
steady state pumping well in a uniform flow field with homogeneous hydraulic conductivity
(83), so that:
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onservative L _(,ispersio - a(2-21)tn C X Pdnis+persioniserio (2-21)

where = Qwenl/(27u#H) and (x,dispersion = 2axLx . Correcting the calculated conservative
transport velocity for plume retardation, the plume travel time was estimated as:

Rp v - 2a~ (222

tan. - Lx - 2axLx ln 1+ vx(L aL (2-22)
v, y 1 ,p

where the contaminant retardation factor, R, is described by equation 2-13.

2.2.7. Corrections for temperature, salinity, and acid-base chemistry

Using a sand and gravel hydrogeologic context, other aquifer properties relevant to
partitioning and transport such as groundwater temperature, ionic strength, and pH were
considered (Table 2-2). A nationwide survey of 100 sites in the U.S. revealed that groundwater
usually reflects local annual mean temperatures, millimolar ionic strengths, and pHs. suited to
quartzitic (pH 5 to 7) to carbonate (pH 7 to 9) aquifer solids (45). Consequently, I chose
screening solution conditions to be 15'C, 1 mM ionic strength, and pH of 7. The groundwater
temperature (15 0C) and ionic strength (1 mM) do not differ enough from conditions in which
physical chemical properties are usually measured (i.e., 20-25'C and zero ionic strength) to
warrant adjustments to the partition coefficients used for screening purposes. However, gasoline
components with acidity constant (pKa) values near groundwater pH may significantly ionize,
resulting in either (a) enhanced transport due to greater aqueous solubility of charged species or
(b) retarded transport due to ion-exchange with aquifer solid exchange sites. In the hypothetical
case where a contaminant has been identified as a serious potential threat to CSWs and ion-
exchange could clearly play a role, it may be advisable to include this effect. However since ion-
exchange was generally expected to decrease contaminant risk to water resources, I opted not to
include it in the screening model for sake of simplicity. Conversely, including acid-base
chemistry corrections to the estimated gasoline-water partition coefficient was considered both a
risk-conservative decision and a reasonably straightforward calculation. Potentially ionizable
gasoline solutes were assumed to partition between the NAPL phase (phase 1; gasoline) and
groundwater (phase 2) at chemical equilibrium as described by an "effective" partition
coefficient (Kgw, eff):

Kgw,eff = f K = 1 +1 0 (pHpKa)Kgw (2-23)

The correction factor, fneutral, reflects the fraction of solute present as the nonionic species in the
aqueous phase. The adjusted partition coefficient (Kgw, eff) was therefore defined to reflect mass
distribution of the ionic plus nonionic solute in water versus the nonionic solute in the organic
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phase. This formulation of Kgw, eff therefore assumed that the ionic species does not appreciably
partition into the less polar phase (gasoline), again yielding a risk-conservative result. In

equation 2-23 the sign of the term, (pH-pKa), is positive if the pKa corresponds to cases in which
the neutral species acts as a proton-donor, and it is negative if the pKa corresponds to situations
in which the neutral species acts as a proton-acceptor. For the most of the gasoline additives

examined here, solute proton transfer could be ignored because 1 0 (pH-pKa) << 1 and the term

fneutrai collapsed to unity.

2.3. Results

2.3.1. Model evaluation using MTBE data

The screening model formulation and parameterization was evaluated by comparing the
model's predictions to reported MTBE contamination of CSWs. Since MTBE is believed to
degrade slowly in most aquifers, neglecting biodegradation should not severely bias the
screening model results. Using the deterministic parameterization (i.e., average or median
parameter values), the model predicted a MTBE front arrival time of 7 years and CSW

concentration of almost 20 gg/L for MTBE (Table 2-1, Figure 2-6). Expected model precision
was evaluated using stochastic variation of model parameters with Monte Carlo simulations.
Stochastic simulations produced a normal distribution of ln(Cwei) predictions with a mean

M = 2.9 for MTBE, corresponding to Cweii = eM = 20 ptg/L. The stochastic ln(Cwei) standard

deviation was S = 2.1, corresponding to an eM:s range of 2 jtg/L to 150 [tg/L. In other words, a

typically predicted Cwel value for MTBE was -20 pg/L and could easily vary by an order of
magnitude in either direction. By comparison, various CSW surveys in high oxygenate use areas

have found 8% of CSWs contaminated by MTBE at >1 pg/L levels, -1% of CSWs contaminated

by MTBE at >5 pg/L levels, and zero to -0.4% of CSWs contaminated by MTBE at >20 gg/L
levels, respectively (7,9). Since MTBE has only been widely used since about 1990, the
screening model appears to have correctly captured the "rapid CSW response" and the order-of-

magnitude MTBE concentrations for many at-risk CSWs (-20 gg/L in oxygenate high-use
areas). Stochastic variability forecasts were also realistic. For example, while survey statistics

suggest that hundreds of CSWs may have been contaminated at ~10 pg/L levels in the U.S., to

our best knowledge, the most severe case recorded in the literature was only at 610 gg/L (a Santa
Monica CSW (10)). Stochastic analysis of the screening model gave satisfactory agreement with

this observation, predicting that Cwell values greater than e = 1200 tg/L should be unusual.

Interpretation of predicted sub-gg/L CSW contamination was confounded by the fact that
atmospheric deposition probably contributes to MTBE contamination of groundwater at sub-

pg/L levels in many urban areas (11-13). Consequently it was difficult to relate the stochastic
modeling forecast with observed incidences of low-level CSW contamination by MTBE. Had
these screening results been available in the 1980s, they might have been used to trigger further
study of MTBE degradability and toxicity before regulators and industry decided to utilize the
additive in large quantities. However, here I conclude that the model formulation and parameter
estimates appear to capture what history has shown to be the final result.
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Figure 2-6. Predicted CSW concentration and front arrival time for 24 gasoline constituents.
Expected variability is depicted for a few example compounds as ±es (one log normal

standard deviation), based on Monte Carlo estimates

2.3.2. Interpretation and sensitivity analysis of model predictions

To demonstrate use of the screening model, the expected CSW concentrations and plume
front arrival times of 24 gasoline constituents were calculated using equations 2-18 and 2-22
(Table 2-1, Figure 2-6). Solutes predicted in CSWs at substantial concentrations (Cwei - 1 gg/L
or more) were considered most likely to threaten municipal groundwater supplies in the absence
of degradation processes. Monte Carlo simulations showed that an individual Cwell realization
could easily vary by an order of magnitude (x7 to x8.5) from the expected value given by the
deterministic model. Decision making analysis should take this breadth of the Cweii distribution
into account. For example, the expected CSW concentration of almost 20 pg/L for MTBE fell
on the U.S. EPA advisory drinking water limit of 20 ppb, and the predicted concentration of 1
ppb for benzene was near the federal maximum drinking water threshold of 5 ppb. If such
calculations had been pre-use forecasts, they would clearly indicate that work should be done to
verify the prevalent and rapid degradability of MTBE and benzene in the subsurface before these
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compounds are allowed in gasoline. Conversely, the predicted 5 ppb well concentration for
toluene falls far below its federal drinking water limit of 1 ppm, even neglecting biodegradation.
Naphthalene and ethylbenzene also fell into this category (Cweii - 0.5 ppb for naphthalene and -1
ppb for ethylbenzene). Since the EPA-recommended long-term consumption threshold for
naphthalene is 20 ppb and the ethylbenzene federal drinking water limit is 400 ppb, the screening
model suggests these gasoline components would not deserve priority attention. Rulings for the
permissible drinking water concentrations of DIPE, TAME, ETBE, methanol and ethanol have
not yet been made by the EPA. But if there is concern for any of these compounds at CSW
levels below -200 ppb (expected Cweiix10), then the screening model output suggests that work
is needed to confirm their prevalent degradability belowground before they are used in gasoline.
Compounds that were expected to be at lower concentrations in CSWs (e.g., Cwei << 1 ppb)
might be considered as generally unlikely to create a widespread threat to drinking water
supplies. Ultimately, however, toxicological expertise should be used to rigorously determine
acceptable Cweii levels for each case.

Expected plume arrival times at CSWs (ta,) calculated using equation 2-22 varied from 6 to
more than 200 years for the set of gasoline constituents considered here (Table 2-1). However,
model parameter variability analysis suggested that arrival time estimates were highly uncertain
(Table 2-4, Figure 2-6). Stochastic simulations suggested that the arrival times for individual
CSWs may be only 1-2 years for relatively water-soluble gasoline constituents (e.g.,
oxygenates), and as short as -10 years for some hydrophobic compounds which were retarded in
the subsurface (e.g., ethylbenzene). From a decision making standpoint, I therefore suggest that
pre-evaluations of gasoline constituents should generally verify subsurface degradability on a
months-to-years time frame, depending on their predicted time of arrival at CSWs.

Table 2-4. Variability of Cweii and tan for MTBE and ethylbenzene
as related to stochastic transport parameters

MTBE ethylbenzene
stochastic Cweli tan Cwei t

parameter S es S es S es S es

All parameters 2.14 8.5 1.23 3.6 1.92 6.8 1.37 4.0
Vg 1.86 6.4 - - 1.52 4.6 - -

Qwell 0.97 2.6 0.25 1.3 0.83 2.3 0.25 1.3
L, 0.38 1.5 1.08 2.9 0.08 1.1 1.08 2.9
V, 0.50 1.6 0.39 1.5 0.43 1.5 0.39 1.5
a, 0.25 1.3 0.07 1.1 0.06 1.1 0.07 1.1
fo 0.11 1.1 0.11 1.1 0.18 1.2 0.51 1.7
S9 0.00 1.0 - - 0.11 1.1 - -
hg 0.00 1.0 - - 0.11 1.1 - -

azo 0.01 1.0 - - 0.31 1.4 - -

S indicates the estimated log normal standard deviation of the Cweii or t,

distribution resulting from fluctuations in the indicated stochastic field

parameter or set thereof. es therefore expresses the multiple of Cwell or t,, which

corresponds to one standard deviation of its log normal distribution. For
example, ethylbenzene has an expected value Cwei ~ 0.9 ug/L and a 1 standard
deviation range around this value of (e-1. 92)0.9 = 0.1 pg/L to (e'.92)0.9 = 6.1 pg/L
for the case where all field parameters were treated as stochastic.
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Additional analysis revealed that gasoline release volume, CSW pumping rate, and ambient
groundwater velocity explained most of the variability of stochastic Cweii realizations for a given
gasoline constituent (Table 2-4). These three terms (Vg, Qweii, and vx) were expected to control
the uncertainty of Cweii predictions, since they are linear with respect to Cwe in equation 2-18
(whereas all other stochastic parameters are sub-linear in relation to Cwell) and since they are all
highly variable (Table 2-2). Subsurface parameters Lx and ax accounted for second-order
uncertainty in Cwel predictions for relatively water-soluble compounds such as MTBE (Table
2-4), since these terms control the plume dilution of compounds with low Kgw values (as
described in Section 2.5). Conversely, for less water-soluble compounds such as ethylbenzene,
second-order Cweii variability was linked to azo and fom, that is, parameters that controlled the
initial condition and subsurface retardation of a hydrophobic plume.

Sensitivity analysis results showed that CSWs serving small populations, or even small,
private wells, appear likely to suffer higher contaminant concentrations due to their lower
pumping rates and reduced plume dilution. It is important to bear in mind, however, that the
smaller capture zones of small CSWs or private wells make it less likely they will encompass the
entire contaminant plume. As a result of these conflicting factors, the predicted result for a
smaller-flow well is unclear. This highlights the fact that the general screening treatment
developed here does not necessarily directly apply to domestic wells.

2.3.3. Predicted behavior of BTEX and oxygenates

The screening model results were only partly consistent with reported behavior of BTEX
(benzene, toluene, ethylbenzene, and xylenes) in field studies. Both benzene (1 ppb) and toluene
(5 ppb) were estimated to appear in CSW water on a relatively short time frame (-10 years or
less). The field parameter choices used here estimated a retardation factor of R ~ 1.6 for
benzene, which is comparable to observed retardation factors of 1.2 to 1.3 for benzene in field
studies (41,84). Hence, since these aromatic hydrocarbons have always been gasoline
components, the screening model suggests that they should be already seen widely in CSWs.
However, field surveys indicate that far fewer CSWs are contaminated by benzene or toluene
than by MTBE (2,44). However, this disparity is not surprising, since several investigations
have shown that BTEX components are biodegradable in many circumstances (85-88). I
emphasize that degradation processes were not considered in the screening model, so these
BTEX observations could not be captured. Presumably screening results like those for BTEX
would be followed by additional work incorporating the degradability of these compounds, and
corresponding decreased estimates of risk would be found.

The oxygenates ETBE, DIPE, TAME, ethanol, and methanol were predicted to behave
similarly to MTBE in the subsurface. Like MTBE, they were predicted to partition preferentially
from gasoline to water and migrate quickly (essentially unretarded) through aquifer sediments.
Thus, in the absence of biodegradation processes, it is clear that these compounds would create a
similar magnitude of CSW contamination as MTBE, depending on the extent and quantity of
their use. As common natural products, methanol and ethanol would likely degrade quickly in
the subsurface, and this expectation is consistent with observations (89,90). However, these
alcohols may also need to be viewed as substantial sources of biochemical oxygen demand in the
saturated zone. Thus, their inclusion in gasoline should inspire study of their ability to
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substantially change subsurface chemical properties and secondarily affect the transport of other
solutes, such as benzene, whose biodegradability under anoxic conditions is far from certain
(91). An ethanol-rich plume traveling away from a gasoline release site could quickly create an
anaerobic wake through which other anaerobically persistent solutes may follow and
substantially contaminate water supplies (89,92). The transport screening model results show
that benzene could contaminate wells at levels (1 ppb) near the federal drinking water standard
(5 ppb) within a few years, in the absence of subsurface biodegradation. Therefore, adding
ethanol or methanol to fuels could severely upset this balance and conceivably result in benzene
contamination of drinking water on a costly national scale.

2.3.4. The influence of acid-base chemistry on transport predictions

It should also be noted that some gasoline constituents with acid/base moieties (pKas in Table
2-1) can significantly ionize under normal aquifer conditions (pH ~ 5 to 9). If a contaminant is
partly ionized in groundwater, it may have an enhanced effective equilibrium aqueous
concentration, since the ionic species will not appreciably partition into fuel (equation 2-23).
The screening model did not address the potential effects of solute ion exchange reactions with
aquifer solids. For example, using a cation-exchange sorption model described elsewhere (15), I
estimated that the solids-water partition coefficient of di-sec-butyl-p-phenylenediamine may be
substantially increased in subsurface materials with representative cation exchange capacities
(CEC - 0.01 mol/kg) and groundwater ionic strengths ([Na+] - 1 mM). Since transport model
calculations already suggested that di-sec-butyl-p-phenylenediamine poses little risk to CSWs,
ion exchange calculations did not change the fundamental conclusions of the assessment.
However, this illustrates the fact that assessments of other (future) fuel constituents may need to
account for ion exchange and other sorptive mechanisms.

2.4. Implications and needs for future work

A transport screening model was developed for the forecasting of widespread contamination
of at-risk CSWs by gasoline constituents. The model successfully captured the observed CSW
contamination levels of a persistent contaminant (MTBE) in reformulated fuel use areas in the
U.S., using only hydrogeologic data and fundamental hydrologic and chemical principles, and
without any fitting procedures. Observed variability of hydrogeologic characteristics and
gasoline release volumes across CSW sites implies that well contaminant concentrations
predicted here are order-of-magnitude estimates. Additionally, prediction results do not
accurately indicate the probable severity of unusually damaging cases that may result from large
or multiple gasoline releases, different well pumping rates, or specific hydrogeology.
Nevertheless, screening model forecasts are accurate and precise enough to be useful for policy
making guidance. The model indicated typical contamination levels that will be found in CSWs
located down gradient of UFT related releases, in the absence of degradation processes.
Therefore, the prediction of a reasonably threatening result reflects the potential for extensive
damage to water supplies on a costly scale. As shown by the MTBE case example, a calculation
which implies high CSW contamination levels in only a few years should therefore be taken very
seriously. Using the screening model, I suggest that any newly proposed gasoline additive or
change in gasoline composition (e.g., alkylate enhancement) could be reliably screened for its
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potential to contaminate CSWs, thereby informing priority setting activities and indicating the
need for further tests (e.g., for degradability or toxicity).

Gasoline release volume, CSW pumping rate, ambient groundwater velocity, and LUFf-
CSW separation distance were the most influential field parameters responsible for Cweii
variability. Further study of these field parameter distributions and/or correlation with other
parameters may improve the precision of this approach, and this would also produce insight into
additional processes or effects which may need to be considered. Incorporation of uncertainty
related to other field parameters had a secondary effect on the estimated variability of Cwei
predictions, demonstrating that these factors are less relevant to gaining an improved
understanding of the problem of widespread CSW contamination. Estimated variability in
predicted plume arrival times at CSWs was large, but it could effectively distinguish between
gasoline constituents which may arrive on a <10 year versus 10+ year time frame.
Consequently, those gasoline constituents which are predicted to contaminate at-risk CSWs at
problematic levels should have confirmed biodegradabilities on a correspondingly shorter time
frame over a wide range of subsurface conditions.

Biodegradation processes were not explicitly considered in this screening model, since these
processes are much more difficult to generalize reliably a priori for individual gasoline
constituents. However, model predictions indicated that some water-soluble, abundant gasoline
components would normally cause high level contamination except that they may be quickly
degradable under usual aquifer conditions (e.g., ethanol, methanol, toluene). Such compounds
should be considered carefully, as they may generate toxic daughter products or consume
sufficient subsurface oxygen to affect the fate of other gasoline components. For example, the
highly biodegradable additive, ethanol, has been proposed as an alternative to MTBE (93).
However, the widespread use of ethanol in fuels could create oxygen-starved subsurface zones in
which anaerobically persistent compounds, such as benzene, might remain nondegraded and
begin to cause significant CSW contamination.
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Chapter 3
Estimating partition coefficients for fuel-water systems:

extending pure phase Linear Solvation Energy Relationships to mixtures

3.1. Introduction

The discovery of nationwide contamination of subsurface drinking water sources by methyl-
tert-butyl ether (MTBE) has demonstrated that gasoline constituents can seriously threaten
thousands of community water supplies in the U.S. (1-4). Subsequent work has scrutinized the
danger posed by other less abundant gasoline components, such as phenol and aniline
derivatives, that are also polar and relatively water-soluble (5). In the wake of these activities,
the need for environmental transport modeling of existing and future fuel constituents has
become increasingly apparent (3).

Environmental fate assessment of fuel components relies heavily on fuel-water partition
coefficient (Ki,fw) values (4,6,7), defined as:

KifW - solute concentration in the fuel phase (3-1)
solute concentration in the aqueous phase

for solute i distributed between a fuel (f) phase and an aqueous (w) phase. More generally,
organic contaminant transport modeling requires information on solvation energetics in a wide
variety of environmental media. For example, nonionic organic solutes typically have
substantially different solvation energies in diverse organic phases such as wood (lignin) (8), soil
organic matter (9), sediment organic matter (9), humic acid (10), and gasoline (5). Conventional
approaches to calculating solvation behavior (UNIQUAC (11), UNIFAC (12-14)) cannot treat
mixtures having solute-solvent interactions between a broad range of heteroatomic moieties.
Traditional empirical methods (Linear Solvation Energy Relationships (15), Linear Free Energy
Relationships (16), fragment methods (17-19)) are usually selective to particular solvent systems
and require substantial parameter fitting from existing data. No single approach can estimate
solvation energetics of organic contaminants in a wide range of multicomponent environmental
mixtures. Until more generalizable solvation theories have been validated, it is useful to draw on
a suite of methods, depending on the application.

In the present work, I develop and test empirical methods which are tailored to the challenge
of estimating solute partitioning in fuel-water mixtures. This problem does not easily fall into
the scope of previous models or estimation methods. Typically, the fuel-water equilibria of
hydrocarbons are estimated assuming ideal solution conditions (Raoult's law) in the fuel mixture
(20-26). However Raoult's law is likely to be inaccurate for polar fuel constituents, since these
compounds may experience very different solution conditions in their pure liquid (ideal) phase.
Additionally, polar fuel constituents (e.g., phenols and anilines) may be especially sensitive to
the presence of other polar additives like oxygenates. Consequently it is desirable to generate a
solvation model for fuels which could be accurately applied to co-existing polar and nonpolar
fuel constituents.
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Estimation of fuel-water equilibria poses the additional challenge that fuel and oil
compositions vary widely by type. Retail and industrial fuel formulations are adjusted regionally
and seasonally, as well as in response to new regulatory requirements, engine advances, and
market influences. Liquid fuels are usually composed of mostly hydrocarbons, but they typically
include additives or processing byproducts which contain heteroatoms (i.e., 0, N, or S); such
compounds may therefore affect the solvation properties of the fuel mixture (27). Conventional
(not oxygenated) automotive retail gasolines contain C4-C alkanes (45% to 65% by mass), low
molecular weight aromatic hydrocarbons (20% to 40% by mass), and low molecular weight
olefins (5% to 15% by mass) (28). As of this writing, oxygenated gasolines in many regions are
required to contain more than 10% MTBE or ethanol by volume, and these regulations are likely
to change in the near future (29). Diesel (30) and aviation (31) fuels generally include higher
molecular weight components than gasoline and tend to be enriched in aliphatic compounds
relative to gasoline. Motor oils have yet higher average molecular weights (250 to 1000
Daltons), and they contain significant quantities of both aromatic and aliphatic components as
well as numerous additives (24). Finally, many other liquids of concern such as coal tar, a waste
product of coal gasification, contain a highly variable and unrefined mixture of large molecular
weight hydrocarbon compounds, often having substantial levels of oxygen-containing (up to
33% by mass) and sulfur-containing (up to 4% by mass) impurities (22,32). These examples of
organic liquid mixtures have varied compositions, but they all are predominantly made up of
hydrocarbons and sometimes have significant quantities of polar constituents.

3.2. Partitioning model theory for mixtures

Linear Solvation Energy Relationships (LSERs) allow accurate estimation of partition
coefficients for a wide range of organic solutes in various solvents and organic mixtures
(alog K, LSER = 0-10 to 0.25 (33-38)). The general LSER treatment relates a solute's partition
coefficient to five independent solvation parameters of that solute and five coefficients specific
to a given two-phase system, plus an intercept (c):

log K = c + rR2 + s7[ + a4 + bs? + mVx (3-2)

where Ki, pq is the partition coefficient of solute i between liquid or gas phases, p and q. The
parameters R 2, 12 H, C2H, P2H and Vx describe the excess molar refraction (15), polarity/
polarizability (39), hydrogen-bonding acidity (40), hydrogen-bonding basicity (41,42), and
group-contributable molecular volume (43), respectively, of solute i, and c, r, s, a, b, and m are
adjusted coefficients specific to the two-phase system, p-q. A key limitation to using LSERs for
assessing fuels has been the need for copious partitioning data to calibrate the LSER coefficients
for individual fuel-environmental media (e.g., water) combinations.

However, the linear solvent strength approximation (often referred to as the log-linear
cosolvency model (44)) may be used to develop a mixing rule for use of LSERs deduced for 1:1
immiscible liquids, thereby allowing straightforward construction of estimated LSERs for novel
mixtures. According to linear solvent strength theory (LSST), the solubility of solute i in a
mixture phase is given by (45):
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log Si = 1- jPj log SW + # log Si (3-3)

where Si,p is the solubility of solute i in mixture phase p; Si,w is the solubility of solute i in pure
water; Sij is the solubility of solute i in pure cosolventj in the mixture; and OP is the volume
fraction of each cosolventj in mixture p. Equation 3-3 is formulated with water as a reference
solubility because LSST has conventionally been used to model organic solutes in
aqueous/organic cosolvent mixtures, including applications in drug development (45,46), reverse
phase liquid chromatography (47,48), and environmental fate modeling (49,50). But one may
write this equation substituting any reference phase, including a gas phase, in place of water (i.e.,
Si,g for Sjw). LSST is most applicable to cases in which the mixed solvent is polar (46), making it
a simple and powerful approach for extrapolating the solubilities of a wide range of solutes in
polar cosolvent-aqueous mixtures (48,49,51). Li (52) applied LSST to common
aqueous/cosolvent binary mixtures for over 1000 solutes and found alog S, LSST ~ 0-1 to 0.4,
depending on the cosolvent. In addition to contrived (laboratory) ternary mixtures, relevant
environmental systems such as fuel-water/cosolvent and natural sorbent-water/cosolvent systems
have been characterized effectively using LSST. Several workers have used LSST to model the
partitioning of polycyclic aromatic hydrocarbon (PAH) compounds in fuel-water or similar
systems containing methanol, ethanol, isopropanol, acetonitrile, or MTBE cosolvents
(23,25,44,53,54). Fu and Luthy demonstrated that LSST accurately described soil-
water/methanol partitioning equilibria of naphthalene, naphthol, quinoline, and
3,5-dichloroaniline (50). Spurlock and Biggar verified LSST application to soil-water
partitioning of several phenylurea herbicides in the presence of methanol or dimethylsulfoxide
solvent (55). Lee and coworkers showed that LSST could explain pentachlorophenol equilibria
between soils and methanol/water, acetonitrile/water, and dimethylsulfoxide/water mixtures;
however LSST failed to fit benzoic acid sorption behaviors under similar conditions (56,57).
Hayden and coworkers recently showed that LSST could accurately explain tetrachloroethylene
partitioning between isopropanol/water or ethanol/water mixtures and an activated carbon
surface (58). Hence, I surmised that LSST may provide the basis for a simple mixing rule for
LSERs.

To extend LSERs to new 1:1 phase partitioning mixtures, I combined these models. From
equation 3-3, partitioning of solute i between two phases p and q can be described generally as
(using the subscript, g, to reflect any reference phase):

log K 1 = log Si, - log Sjq

=1- Of log Sg + log S - 1- Y, log Sg - I # log Sik
jk k

= # log I- log
i g k i,g

and setting (Sijj)/(Sj,g) = Ki, jg and (Si,W)(Si,g) = Ki,kg, one finds:
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log Kpq = log =I" - #f log Kijg - Y 4 log Kkg (3-4)

where log Ki,,jg and log Ki,kg may be related to a reference phase, g; and j and k are the solvent
components of mixtures, p and q, respectively. Employing the LSER formulation (equation 3-2),
the solvent volume-fraction additivity of log K values for mixture components therefore implies
that:

log Kipq = fp(cjg +rgR 2 +sg2 +ag2 bgf +mgVx) (3-5)

-(CkgrkgR2 +sgd + ag +b(C kg +m+V2)
k

This equation suggests that the set of system LSER coefficients ([c], [r], [s], ...) may be specified
using established pure-phase/reference-phase LSER coefficients.

Wang et al. (59) applied equation 3-5 to a set of reverse phase liquid chromatographic
systems. They investigated a broad range of solutes partitioning between a stationary saturated
C8 hydrocarbon phase and an aqueous binary phase having an eluent modifiers (cosolvent) of
methanol, acetonitrile, or tetrahydrofuran. With respect to equation 3-6, this means that
partitioning was between a stationary phase (p) and mixtures (q) of water (w) and single organic
cosolvents (z). Over a range of mixture compositions (4q), the partition coefficient could be
described using:

log K~ =(c,, + rpR 2 +±s,+tz +a,,c4 +ba,$H +m mv ) (3-6)

-(cw +IrR 2 +sz +a7aH +bf 2 +mzwVx)

where Opf 1 since the stationary phase is taken to be pure and where water was chosen as a
reference phase so that #w" log Ki,ww = 0. These workers fitted so-called "global" LSER
coefficients to all three systems with modifier concentrations of up to 50 percent by volume. In
other words, the set of twelve LSER coefficients of equation 3-6 were fitted to solute partitioning
data which reflected a range of 4 values (4 = 0.10 to 4 = 0.50) for each binary (water plus
cosolvent) system. This approach gave calculated solute partitioning free energy values as
accurate as results found for LSERs that have been derived for systems of fixed composition

(alog K, wang ~ 0.10), showing that the LSST approximation is very useful for the conditions that
Wang et al. considered.

A contrasting approach, based on a "solvent compartments" mixing rule suggested by
Schmidt et al. (5), was also developed to model the fuel phase. Schmidt et al. proposed that
partition coefficients of a solute (i) partitioning between a fuel mixture (p) and relatively pure
water phase (w) could be modeled as:

K1~p #= Kiw (3-7)
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where multiple solvent components (j) constitute the fuel phase. This approach is
mathematically equivalent to a hypothetical system in which the solute partitions between pure
water and a composite of pure solvent compartments that constitute the total fuel mixture (p),
where OP represents the volume of each fuel component (j) compartment as a fraction of the total
fuel volume. This approach was very useful for the set of systems that Schmidt et al. considered;
however it is not clear how equation 3-7 should extend to systems in which the aqueous
(reference) phase also contains abundant cosolvent(s). By switching to a gas reference phase, we
could treat the aqueous mixture (q) using LSST (similar to equation 3-4) and apply the
compartment solvent model to the fuel phase (p) only:

log K =log I#f K - q log Ki,kg (3-8)
\ j k

Employing LSERs, as before, to calculate the pure phase partition coefficients, this "combined
solvent compartment / LSST" (CSCLSST) mixing rule could therefore be expressed as:

log Kijpq = log f j1 0 (eg+rJgR 2+sjg! +a +bjg p +mv) j (3-9)
-- q (C2 gg+rgR + s gH +aO aH +b pH+mkv)

g~ kg 2 kgg
k

In cases where there is not sufficient data to fit the LSER coefficients of equations 3-5 or 3-9,
one may simply apply known pure-component LSER coefficients, and thereby estimate the
partitioning properties of solutes in mixtures. I refer to mixture Kfw values estimated in this way
as "LSST-LSER" estimates (equation 3-5) or "CSCLSST-LSER" estimates (equation 3-9). In
this paper, I evaluated the efficacy of the solvent compartment model and LSST for extending
pure phase LSER coefficients to new mixture systems. Fuel mixtures with both nonpolar and
polar constituents were used as a set of test cases. It is worth noting that previous investigators
have suggested that LSST applies best to systems in which the solute is less polar than the
solution mixture (46,52). However most systems under consideration here contain a nonpolar
(fuel) phase in which polar solutes are dissolved into moderately polar or nonpolar mixtures.
Therefore a second objective was to explore whether this potential limitation undermined the
usefulness of LSST-LSER fuel-water equilibria predictions, in comparison to other commonly
used approaches for modeling the environmental fate of organic pollutants in fuels. If
successful, this method would allow engineers and regulators to estimate the fuel-water partition
coefficients of novel fuel constituents based on existing pure phase LSERs. As a result,
LSST-LSER or CSCLSST-LSER estimates may enable the effective screening of the
environmental transport behavior of proposed fuel additives, including the potential to threaten
water (4) and urban air (60). Additionally, this investigation illuminates a general method
whereby the predictive power of previously resolved LSERs for solvent systems might be
extended to many multicomponent mixtures of environmental relevance.
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3.3. Methods

Literature compositions were collected for several fuels and fuel-like mixtures (Tables 3-1
and 3-2) and related ternary two-phase organic-water systems (Table 3-3). Individual phase
mixture compositions were converted to volume fractions, assuming AVmixing = 0. Only mixture
components which contributed greater than 0.1 vol.% to either phase were included in the
subsequent solvation modeling. In other words, solutes of less than 0.1 vol.% concentration in a
given mixture were considered too dilute to influence the overall solvation properties of that
phase. Where specific characterizations of fuels were not given, I assumed average gasoline or
diesel compositions found in surveys (28,30).

Table 3-1. Compositions of synthetic and retail fuel mixtures

index mixture type
2. synthetic gasoline (61)

2. synthetic gasoline (62)

3. retail gasolines (5)

4. isooctane-MTBE mix (5)
5. isooctane-MTBE mix (5)
6. isooctane-MTBE mix (5)
7. toluene-MTBE mix (5)
8. toluene-MTBE mix (5)
9. toluene-MTBE mix (5)
10. diesel fuel survey (30)

composition (by volume percent)
24% hexane, 32% 2,2,4-trimethylpentane, 3% benzene, 7% toluene,
24% xylenes
83.1% 2,2,4-trimethylpentane, 0.8% benzene, 5.8% toluene,
2.6% ethylbenzene, 7.7% xylenes, + variable ethanol amendment
52% aliphatic hydrocarbons, 34% aromatic hydrocarbons, 5.3% olefins, 6.5%
methyl-tert-butyl ether
95% isooctane, 5% methyl-tert-butyl ether
85% isooctane, 15% methyl-tert-butyl ether
70% isooctane, 30% methyl-tert-butyl ether
95% toluene, 5% methyl-tert-butyl ether
85% toluene, 15% methyl-tert-butyl ether
70% toluene, 30% methyl-tert-butyl ether
83% aliphatic hydrocarbons, 15.3% aromatic hydrocarbons, 1.4% olefins

Table 3-2. Estimated compositions of retail gasoline mixtures based on
survey averages (reported as mass percent) (28,63)

gasoline
component
butane
pentane
hexane
heptane
octane
2-methylpentane
2,3-dimethylbutane
2,2,4-trimethylpentane
methylcyclopentane
2,-methyl-2-butene
1-hexene
benzene
toluene
xylenes
ethylbenzene
1,2,3-trimethylbenzene
naphthalene
methyl-tert-butyl ether

conventional
mass% calc. vol.%

8.3 9.4
7.5 8.3
5.8 6.3
2.2 2.4
2.0 2.1
5.8
4.0
10.6
2.1
1.8
3.4
4.3
16.2
6.2
7.3
9.2
3.3
0.0

6.3
4.3
11.2
2.1
1.9
3.6
3.9
14.7
5.7
6.7
8.5
2.8
0.0

oxygenated
mass% calc. vol.%

7.5 8.5
6.7 7.4
5.2 5.6
2.0 2.1
1.8 1.9
5.2 5.6
3.6 3.9
9.5 10.1
1.9 1.9
1.6 1.7
3.1 3.3
3.9 3.5
14.6 13.3
5.6 5.2
6.6 6.1
8.3 7.7
3.0 2.5
10.0 9.7
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Table 3-3. Ternary mixture composition ranges (reported as mass percent) (61)

water (A) water (A) water (A) water (A) water (A)
benzene (B) toluene (B) benzene (B) benzene (B) benzene (B)
isobutanol (C) isobutanol (C) pentanol (C) hexanol (C) MTBE (C)

aqueous organic aqueous organic aqueous organic aqueous organic aqueous organic
A 91.8-99.8 0.2-19.0 91.5-99.9 0.1-17.6 97.9-99.8 0.1-11.0 99.5-99.8 0.1-7.3 95.8-100 0.1-1.4
B 0.0-0.2 0.0-99.9 0.0-0.1 0.0-99.9 0.0-0.2 0.0-99.9 0.0-0.2 0.0-99.9 0.0-0.2 3.9-99.9
C 0.0-8.2 0.0-81.0 0.0-8.5 0.0-82.4 0.0-2.1 0.0-89.0 0.0-0.5 0.0-92.7 0.0-4.2 0.0-94.7

In order to conduct LSST-LSER and CSCLSST-LSER calculations for fuel and fuel-like
mixture systems of interest, pure liquid-gas LSERs were used to describe representative
individual mixture components (i.e., the gas phase was chosen as the reference). Fitted LSER
coefficients for several pure solvent-water systems were directly available in the literature (35-
37,42,64); these coefficient values were added to water-air LSER coefficients (35) to estimate
the corresponding solvent-air LSER coefficient values (Table 3-4). Since individual solvent-
water or solvent-air LSERs were not found for all of the fuel mixture components considered
here, many components were grouped into categories as follows. Normal and branched alkanes
were grouped and treated using the alkane solvent LSER; additionally, olefins were considered
treatable using the alkane-air LSER, as long olefin was not a dominant component (less than -10
vol.%). Methylcyclopentane was treated using the cyclohexane LSER; and alkyl-substituted
aromatic hydrocarbons and naphthalene were grouped together and modeled using the toluene
LSER. Since a LSER was not available to describe MTBE-air systems, the diethylether-air
LSER was used as a substitute. Using these assumptions, enough applicable solvent-air LSERs
were drawn from the literature or estimated to represent all the major components for several
relevant fuel formulations.

Table 3-4. Solvent-air LSER coefficients estimated from
published solvent-water LSERs (35-37,42,64)

solvent systemt c r s a b v
water-air -0.99 0.58 2.55 3.81 4.84 -0.90
alkane-air -0.71 1.23 0.89 0.30 0.02 3.39
cyclohexane-air -0.87 1.39 0.82 0.04 -0.06 3.75
toluene-air -0.98 1.17 1.77 0.90 0.27 3.64
benzene-air -0.98 1.07 1.95 0.80 0.21 3.72
diethylether-air -0.53 1.15 1.51 3.79 -0.67 3.45
hexanol-air -0.95 1.05 1.40 3.90 0.78 3.35
pentanol-air -0.91 1.10 1.26 4.02 0.93 3.31
isobutanol-air -0.77 1.09 1.86 3.83 2.58 1.88
ethanol-air -0.79 0.99 1.59 4.00 1.20 3.03
alkane-water 0.29 0.65 -1.66 -3.52 -4.82 4.28
t organic solvent-air LSER coefficients shown here were not regressed directly
from data; they were estimated by adding the water-air LSER coefficients
(shown) to corresponding organic solvent-water LSER coefficients found in the
literature (not shown, except for the alkane-water coefficients).

Mixture volume fraction data were combined with estimated pure component solvent-gas LSER
coefficients to formulate liquid-liquid mixture LSER coefficients using equations 3-5 and 3-9.
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The liquid-liquid mixture LSER coefficients were then linearly combined with the
solvatochromic parameters of 37 polar and nonpolar solutes (Table 3-5) to calculate 123
synthetic and retail fuel-water partition coefficients and 156 ternary system partition coefficients
(Table 3-6).

Table 3-5. LSER solute parameters and hypothetical pure liquid vapor
pressures (16,35,37,65)

solute
water
aniline
p-toluidine
o-toluidine
2,6-dimethylaniline
phenol
p-cresol
o-cresol
3,4-dimethylphenol
2,6-dimethylphenol
3,4,5-trimethylphenol
2,4,6-trimethylphenol
methanol
ethanol
isopropanol
tert-butanol
isobutanol
n-pentanol
n-hexanol
methyl-tert-butyl ether
ethylacetate
thiophene
benzo[b]thiophene
benzene
toluene
ethylbenzene
n-propylbenzene,
m-xylene
o-xylene
p-xylene
1,2,3-trimethylbenzene
4-ethyltoluene
naphthalene
1-methylnaphthalene
2-methylnaphthalene
acenaphthene
fluorene
phenanthrene
anthracene
fluoranthene
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n.a. not applicable. a log P*L value estimated using (66). b 10g P'L value taken from (67).

R9
0.000
0.955
0.923
0.966
0.972
0.805
0.820
0.840
0.830
0.860
0.830
0.860
0.278
0.246
0.212
0.180
0.219
0.219
0.210
0.024
0.106
0.687
1.323
0.610
0.601
0.613
0.604
0.623
0.663
0.613
0.728
0.630
1.340
1.344
1.304
1.604
1.588
2.055
2.290
2.377

!,H

0.45
0.96
0.95
0.92
0.89
0.89
0.87
0.86
0.86
0.79
0.88
0.79
0.44
0.42
0.36
0.30
0.39
0.42
0.42
0.19
0.62
0.56
0.88
0.52
0.52
0.51
0.50
0.52
0.56
0.52
0.61
0.51
0.92
0.90
0.88
1.05
1.06
1.29
1.34
1.55

HX H o

0.82 0.35
0.26 0.41
0.23 0.45
0.23 0.45
0.20 0.46
0.60 0.30
0.57 0.31
0.52 0.30
0.56 0.39
0.39 0.39
0.55 0.44
0.37 0.44
0.43 0.47
0.37 0.48
0.33 0.56
0.31 0.60
0.37 0.48
0.37 0.48
0.37 0.48
0.00 0.45
0.00 0.45
0.00 0.15
0.00 0.20
0.00 0.14
0.00 0.14
0.00 0.15
0.00 0.15
0.00 0.16
0.00 0.16
0.00 0.16
0.00 0.19
0.00 0.18
0.00 0.20
0.00 0.20
0.00 0.20
0.00 0.20
0.00 0.20
0.00 0.26
0.00 0.26
0.00 0.20

0.6
0.167
0.816
0.957
0.957
1.098
0.775
0.916
0.916
1.057
1.057
1.198
1.198
0.308
0.449
0.590
0.731
0.872
0.872
1.013
0.872
0.747
0.641
1.010
0.716
0.857
0.998
1.139
0.998
0.998
0.998
1.139
1.139
1.085
1.226
1.226
1.259
1.357
1.454
1.454
1.585

log P , [barl
-1.50
-3.08
-1.76
-3.45
-3.70
-3.14
-3.59
-3.20
-4.06
-3.26
-4.02a
-4.02a
-0.76
-1.09
-1.21
-1.25
n.a.
n.a.
n.a.
-0.49
-0.90
-0.96
-2.79'
-0.90
-1.43
-1.91
-2.35
-1.96
-2.05
-1.93
-2.70
-2.40
-3.33
-4.08
-3.95a
-4.67
-4.75
-5.36
-5.35
-7.15a



There were two exceptions to this straightforward protocol. For Heerman and Powers's
synthetic fuel-water/ethanol system (62), the aqueous phase was set to their reported
ethanol/water composition. But since the system composition depended on the calculated
Kethanol,fw values, ethanol concentrations in the synthetic fuel phase were iteratively varied until
0 ethanol values and Kethanol,fw values were self-consistent using equation 3-5 or equation 3-9. This
generated an estimated ethanol partition coefficient which could be evaluated against measured
values. In the case of the fuel/MTBE-water mixture data of Schmidt et al. (5), MTBE mixture
concentrations were reported in terms of initial fuel levels rather than measured post-
equilibration solution concentrations in either phase. For this set, an overall system mass balance
of MTBE was therefore constrained while, simultaneously, MTBE concentrations in both phases
were determined via iterative calculation of #f MTBE, 7wMTBE, and KMTBE,fw until equation 3-5 (or
equation 3-9) achieved self-consistency.

3.4. Results and discussion

Three categories of fuel-water systems were separately considered. First, I report results for
which the fuel phase has multiple components, but the aqueous phase is relatively pure. Second,
I consider systems in which the fuel phase is a nonpolar mixture and the aqueous phase includes
substantial ethanol. Finally, I describe results for a few ternary systems in which polar and
nonpolar solvent components are significantly abundant in both the aqueous and organic phase.

3.4.1. Partitioning of polar and nonpolar compounds between synthetic or retail fuels and water

In both simulated and realistic fuel-water systems, both LSST-LSER and CSCLSST-LSER
predicted partitioning of 88 polar and nonpolar solutes were within a factor of 2 to 3 of measured
Kfw values, despite simplifications (e.g., assuming alkene solvent behaved like alkane solvent)
and without the aid of any fitting procedures (Figures 3-A and 3-B; Table 3-6). Reported or
estimated experimental uncertainty in partition coefficient measurements was significantly
lower, ranging from 0.05 to 0.12 in the log Kfw (5,20,61,62). Both models predicted partitioning
of nonpolar solutes better than polar solutes, on average (Yiog K - 0.2 for nonpolar solutes using
either model). Using the LSST-LSER model, estimated partition coefficients of phenols and
methyl-substituted phenols were the most inaccurate (aiog K = 0.61), especially in systems
containing MTBE. Across all other solute families under consideration (i.e., not phenols),
including nonpolar aromatic hydrocarbons, anilines, aliphatic alcohols, methyl-tert-butyl ether,
ethylacetate, thiophenes, and water, the LSST-LSER approach gave predictions that were almost
as good as predictions for the nonpolar solute set alone (alog K = 0.23). Errors of the
CSCLSST-LSER model did not appear to strongly relate to solute polarity or trends in solute-
solvent hydrogen-bonding interactions; the largest errors were for phenol solutes in
isooctane/MTBE-water systems (alog K = 0.48).

Failure of the LSST approximation for polar solutes in the organic phase could largely
explain LSST-LSER deviations. In this set of systems, major fuel components are sufficiently
hydrophobic that the solvation properties of the aqueous phase were likely to be unaffected by
the presence of fuel phase constituents. The most abundant aqueous phase organic component
was MTBE in system 6, Table 3-1, having aqueous phase concentrations as high as 0.067 M
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Figure 3-1A. Predicted Kf, values of polar and nonpolar compounds in simulated
and retail fuel-water systems using the LSST-LSER model (equation 3-5)

(#WMTBE = 0.008) in this case. Since LSERs can model pure water-air partitioning accurately

(aiog K = 0.15 (35)), I inferred that model error for these systems was primarily related to
treatment of the organic phase. Additionally, consistent trends were detectable in model

residuals. The LSST-LSER standard error for phenol log Kfw predictions was aiog K = 0.45 in 5%
MTBE mixtures, aiog K = 0.63 in 15% MTBE mixtures, and aiog K = 0.68 in 30% MTBE mixtures
(N = 10 for all three cases); thus the bias of phenol Kfw predictions systematically increased with
increasing MTBE content in the organic phase, other considerations held equal. Additionally,
across predictions for all solutes, a significant correlation (r2 = 0.60) was found between model

residuals and solute u 2 H (hydrogen-bond donating parameter) values. Since LSST becomes less
accurate in cases where solute polarity exceeds that of the solvent, I surmised that strong
hydrogen-bond solute-solvent interactions (e.g., phenol-MTBE complexes) in the organic phase
were primarily responsible for LSST-LSER deviations.

I separately modeled the organic phase as an ideal solution (Raoult's law) to assess whether
LSST-LSER and CSCLSST-LSER estimates could meaningfully capture organic phase mixture
solvation of both nonpolar and polar solutes. Raoult's law (the ideal solution assumption) is
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Figure 3-1B. Predicted Kf, values of polar and nonpolar compounds in simulated
and retail fuel-water systems using the CSCLSST-LSER model (equation 3-9)

frequently used to model nonpolar solutes in fuels and related mixtures (20-26). LSST-LSER
computed partition coefficients were therefore compared to those using Raoult's law for the
nonpolar (fuel) phase. In this case, the fuel-gas partition coefficient may be expressed as
(16,68):

Kifg = RT (3-10)
Vf PL,

where R is the molar gas constant, T is temperature, Vf is the molar volume of the fuel phase, and
P Li is the (hypothetical) liquid vapor pressure of solute i. Raoult's law would be inappropriate
for modeling the aqueous phase, since nonpolar organic solutes are known to experience
significant nonideality in aqueous conditions (69). Applying Raoult's law to the fuel phase, but
continuing to use LSST to treat the aqueous phase, the fuel-gas subsystem of equation 3-5 could
be substituted with equation 3-10, so that:

logKjf = log RT - q(c +rg R 2 +sEk H + akga2 + b 0 H +mkgVx) (3-11)
L L,i k
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Figure 3 C. Predicted Kf values of polar and nonpolar compounds in simulated
and retail fuel-water systems assuming Raoult's law (ideality) in the fuel phase

where the solvent components, k, constitute the mixture in the aqueous phase, q. Equation 3-11
accurately predicted fuel-water partitioning of a wide range of nonpolar hydrocarbon and

thiophene compounds (Figure 3-1C), in agreement with previous findings (20,21,24,25).
However, predictions were highly unreliable for polar solutes, since nonideal solvation typically
occurs in cases where the solute and solution differ significantly in polarity and/or hydrogen-

bonding capabilities (68). Hence these results were consistent with my expectation that Raoult's
law is an inadequate model for describing the behavior of polar solutes in fuels.

Additional calculations were conducted to test whether the CSCLSST-LSER and
LSST-LSER models could effectively distinguish between solvation in real fuel mixtures and
solvation controlled only by London dispersion interactions with alkanes. Across 7 out of 8
solute families, fuel-water partitioning calculations using the alkane-water LSER (Table 3-1,
(37)) gave significantly poorer predictions (Figure 3-1D) than the CSCLSST-LSER or
LSST-LSER approach. Using the alkane-water LSER, solvation of polar solutes in the organic

phase, particularly for phenols and anilines, was underpredicted by one to two orders of
magnitude in the partition coefficient, Kfw. Additionally, alkane-water LSER predictions of
nonpolar solute partitioning between gasolines or diesel fuel and water was significantly biased
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Figure 3-1D. Predicted Kf, values of polar and nonpolar compounds in simulated
and retail fuel-water systems using the alkane-water LSER of Abraham et al. (37)

low compared to CSCLSST-LSER or LSST-LSER predictions. The alkane-water LSER biases
found for both polar solutes and non-hydrogen bonding solutes demonstrated that, to an
important extent, both CSCLSST-LSERs and LSST-LSERs captured the increased solvency of
the fuel phase resulting from the presence of both aromatic hydrocarbons and MTBE.

3.4.2. Partitioning of aromatic hydrocarbons and ethanol in synthetic fuel-water/ethanol
mixtures

Synthetic fuel-water systems containing 5 to 50 vol.% ethanol in the aqueous phase (62)
reflect a more typical application of LSST, in which LSST is used to extrapolate the solubility of
solutes in water modified with a miscible organic cosolvent (51). The partitioning behavior of
nonpolar aromatic solutes and a polar solute, ethanol, were predicted using the LSST-LSER
model (ayog K = 0.17; Figure 3-2A; Table 3-6) and the CSCLSST-LSER approach (alog K = 0.19;
Figure 3-2B; Table 3-6). These results confirm previous applications of LSST to the cosolvent
effect on solute partitioning in fuel-water systems (25,53,54). In addition, fuel-water/ethanol
mixture calculations showed that both the CSCLSST-LSER and LSST-LSER approach could
treat mixtures in the organic phase, consistent with results discussed in the previous section.
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Figure 3-2A. Predicted Kf, values of BTEX and ethanol in synthetic
fuel systems with ethanol amendments using the LSST-LSER model
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Figure 3-2B. Predicted Kf, values of BTEX and ethanol in synthetic
fuel systems with ethanol amendments using the CSCLSST-LSER model

Table 3-6. Predicted and experimental partition coefficient
compounds in various fuel-water systems (molar units)

values of polar and nonpolar

solute
methyl-tert-butylether
methyl-tert-butylether
methyl-tert-butylether
ethylacetate
water
methanol
methanol
ethanol
ethanol
ethanol
ethanol
ethanol
ethanol
ethanol

Kfw meas.
17
15.5
15.5
5.9
0.0003
0.005
0.011
0.022
0.008
0.008
0.008
0.009
0.01
0.02

eqn 3-5 eqn 3-9 fuel system
Kj red. K1 plred. (table-type)
44
50
49
3.7
0.000082
0.0029
0.0039
0.017
0.014
0.014
0.014
0.015
0.015
0.015

46
52
51
4.6
0.00012
0.0036
0.0047
0.021
0.017
0.017
0.018
0.021
0.024
0.028

experiment
1-1
2-conv.
2-oxyg.
1-1
1-1
1-1
2-cony.
1-1
1-2
1-2
1-2
1-2
1-2
1-2

(5% aq. ethanol)a
(10% aq. ethanol)a
(20% aq. ethanol)a
(30% aq. ethanol)a
(40% aq. ethanol)a

(61)
(20)
(20)
(61)
(61)
(61)
(61)
(61)
(62)
(62)
(62)
(62)
(62)
(62)
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ethanol 0.02 0.015 0.033 1-2 (50% aq. ethanol)a (62)
isopropanol 0.06 0.047 0.057 1-1 (61)
tert-butanol 0.14 0.17 0.20 1-1 (61)
aniline 3.1 2.4 4.7 1-3 (5)
aniline 0.71 0.96 1.8 1-4 (5)
aniline 1.1 1.3 3.6 1-5 (5)
aniline 2.0 2.0 6.4 1-6 (5)
p-toluidine 12 7.7 15 1-3 (5)
p-toluidine 2.5 3.1 4.9 1-4 (5)
p-toluidine 3.4 4.0 9.4 1-5 (5)
p-toluidine 5.2 6.1 16 1-6 (5)
o-toluidine 12 9.0 17 1-3 (5)
2,6-dimethylaniline 39 45 82 1-3 (5)
phenol 3.2 0.47 3.8 1-3 (5)
phenol 0.65 0.17 2.6 1-4 (5)
phenol 2.2 0.29 7.6 1-5 (5)
phenol 5.4 0.69 15 1-6 (5)
phenol 3.8 1.8 3.8 1-7 (5)
phenol 8.3 2.5 8.3 1-8 (5)
phenol 16 4.0 15 1-9 (5)
p-cresol 9.3 2.3 15 1-3 (5)
p-cresol 2.1 0.82 10 1-4 (5)
p-cresol 6.2 1.4 29 1-5 (5)
p-cresol 17 3.2 58 1-6 (5)
p-cresol 12 9.0 16 1-7 (5)
p-cresol 28 12 34 1-8 (5)
p-cresol 50 19 60 1-9 (5)
o-cresol 14 3.9 20 1-3 (5)
o-cresol 3.5 1.4 13 1-4 (5)
o-cresol 11 2.4 35 1-5 (5)
o-cresol 26 5.1 70 1-6 (5)
o-cresol 18 14 23 1-7 (5)
o-cresol 33 19 43 1-8 (5)
o-cresol 71 28 74 1-9 (5)
3,4-dimethylphenol 22 4.5 26 1-3 (5)
3,4-dimethylphenol 6.0 1.5 16 1-4 (5)
3,4-dimethylphenol 17 2.6 46 1-5 (5)
3,4-dimethylphenol 44 5.7 90 1-6 (5)
3,4-dimethylphenol 33 18 29 1-7 (5)
3,4-dimethylphenol 73 24 56 1-8 (5)
3,4-dimethylphenol 120 36 96 1-9 (5)
2,6-dimethylphenol 44 6.7 32 1-3 (5)
2,6-dimethylphenol 15 2.4 20 1-4 (5)
2,6-dimethylphenol 31 4.0 56 1-5 (5)
2,6-dimethylphenol 62 8.5 110 1-6 (5)
2,6-dimethylphenol 76 25 38 1-7 (5)
2,6-dimethylphenol 92 32 70 1-8 (5)
2,6-dimethylphenol 180 47 120 1-9 (5)
3,4,5-trimethylphenol 53 11 57 1-3 (5)
2,4,6-trimethylphenol 120 53 130 1-3 (5)
thiophene 110 99 110 1-3 (5)
thiophene 74 70 72 1-4 (5)
thiophene 99 76 83 1-5 (5)
thiophene 89 86 98 1-6 (5)
benzo[b]thiophene 1700 2300 3200 1-3 (5)
benzene 230 190 200 1-2 (62)
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benzene
benzene
benzene
benzene
benzene
benzene
benzene
benzene
benzene
toluene
toluene
toluene
toluene
toluene
toluene
toluene
toluene
toluene
toluene
m-xylene
m-xylene
m-xylene
m-xylene
m-xylene
m-xylene
m-xylene
m-xylene
m-xylene
o-xylene
o-xylene
ethylbenzene
ethylbenzene
ethylbenzene
ethylbenzene
ethylbenzene
ethylbenzene
ethylbenzene
ethylbenzene
ethylbenzene
n-propylbenzene
1,2,3-trimethylbenzene
naphthalene
1-methylnaphthalene
2-methylnaphthalene
acenaphthene
fluorene
phenanthrene
anthracene
fluoranthene

210
170
160
99
51
25
150
350
350
710
640
610
470
200
87
32
480
1250
1250
2300
2300
2300
1400
670
180
64
4350
4350
3630
3630
2300
2300
2000
1300
580
230
64
4500
4500
18500
13800
1180, 4400,4800
23000, 20000
26000
34000
30000
49000
190000
200000

150
120
78
49
30
18
190
280
280
760
580
440
250
140
76
41
750
1200
1200
2600
1900
1400
700
350
170
82
4100
4100
3900
3900
2900
2100
1500
780
390
190
90
4600
4600
20000
11000
2800
12000
12000
15000
37000
44000
53000
210000

160
130
83
52
32
19
200
300
310
830
630
480
270
150
82
44
810
1300
1300
2800
2100
1500
770
390
190
90
4600
4700
4500
4600
3200
2300
1700
860
430
210
98
5200
5300
23000
14000
3800
17000
17000
23000
60000
94000
120000
600000

1-2 (5% aq. ethanol)a
1-2 (10% aq. ethanol)a
1-2 (20% aq. ethanol)a
1-2 (30% aq. ethanol)a
1-2 (40% aq. ethanol)a
1-2 (50% aq. ethanol)a
1-10
2-conv.
2-oxyg.
1-2
1-2 (5% aq. ethanol)a
1-2 (10% aq. ethanol)a
1-2 (20% aq. ethanol)a
1-2 (30% aq. ethanol)a
1-2 (40% aq. ethanol)a
1-2 (50% aq. ethanol)a
1-10
2-conv.
2-oxyg.
1-2
1-2 (5% aq. ethanol)a
1-2 (10% aq. ethanol)a
1-2 (20% aq. ethanol)a
1-2 (30% aq. ethanol)a
1-2 (40% aq. ethanol)a
1-2 (50% aq. ethanol)a
2-conv.
2-oxyg.
2-conv.
2-oxyg.
1-2
1-2 (5% aq. ethanol)a
1-2 (10% aq. ethanol)a
1-2 (20% aq. ethanol)a
1-2 (30% aq. ethanol)a
1-2 (40% aq. ethanol)a
1-2 (50% aq. ethanol)a
2-conv.
2-oxyg.
2-conv., 2-oxyg.
2-conv., 2-oxyg.
1-10
1-10
1-10
1-10
1-10
1-10
1-10
1-10
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(62)
(62)
(62)
(62)
(62)
(62)
(20)
(20)
(20)
(62)
(62)
(62)
(62)
(62)
(62)
(62)
(20)
(20)
(20)
(62)
(62)
(62)
(62)
(62)
(62)
(62)
(20)
(20)
(20)
(20)
(62)
(62)
(62)
(62)
(62)
(62)
(62)
(20)
(20)
(20)
(20)
(20,21,70)
(21,70)
(21)
(21)
(21)
(21)
(21)
(21)

a amendment resulting in this level of ethanol measured in the aqueous phase at equilibrium, by volume.



3.4.3. Partitioning of benzene/alcohol-water, toluene/alcohol-water, and benzene/MTBE-water
systems

In ternary systems containing either benzene or toluene, water, and a C4 to C6 aliphatic
alcohol (Table 3-3; Figure 3-3A; Figure 3-3B), partitioning of all three components (including
water) was calculated to within a factor of 2 to 4 of observed Kfw values using the LSST-LSER
approach (Glog K= 0.41 overall). The CSCLSST-LSER model gave more accurate estimates for
organic system components (Giog K = 0.25) but predicted water partitioning poorly (Giog K = 0.76).
The aliphatic alcohols partitioned primarily into the organic phase in all of the systems studied
(i.e., Kfw > 1 for these solutes). Both CSCLSST-LSER and LSST-LSER-calculated Kfw values
for aromatic hydrocarbons were consistently biased low: as the abundance of aliphatic alcohol
was increased, solvation in the organic phase was more favorable for the water and aromatic
hydrocarbon solutes than was indicated by either model. Additionally, the LSST-LSER
approach usually underpredicted water Kfw values, whereas the CSCLSST-LSER model
consistently overpredicted Kfw for water. By comparison, in benzene/MBTE-water systems, the
LSST-LSER model accurately calculated the partitioning of all three components over the entire

10

0 water-benzene-isobutanol
0 water-toluene-isobutanol
A water-benzene-pentanol (toluene,LU 2 _ water-benzene-hexanol

0* water-benzene-MTBE (MTBE) . S benzene

(solute type) (
C. (hexanol)

(isobutanol) A A
0.41 00 (pentanol)

10 N =156
100

- -factor of 2
deviation in the K

102 * (water)

0

10~4 102 100 102 10
measured K

Figure 3-3A. Calculated Kf, values for ternary benzene/toluene-aliphatic alcohol-water mixtures
and benzene-MTBE-water mixtures using the LSST-LSER model. Symbols indicate type of

system; parenthetical labels indicate type of solute (e.g., Kfw values of the water solute in water-
benzene-pentanol mixture systems are shown as "A" points near the "(water)" label)
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Figure 3-3B. Calculated Kf, values for ternary benzene/toluene-aliphatic alcohol-water
mixtures and benzene-MTBE-water mixtures using the CSCLSST-LSER model

range of compositions considered (aiog K = 0.18). In agreement with previously discussed results,
LSST-LSERs could make meaningful partitioning predictions (a1og K - 0.4) of both polar and
nonpolar solutes, given prior knowledge of the ternary system compositions.

However if mixture composition information was not provided to set the volume fractions
needed in the LSST-LSER or CSCLSST-LSER estimates for ternary systems, computed results
were considerably worse. Iterative calculation of equation 3-5 or 3-9 for # and Kfw values to
self-consistency under mass conservation constraints produced only order-of-magnitude
accuracy for Kfw predictions of ternary mixture components (cyiog K = 0.98 for LSST-LSER
estimates, data not shown). Both approaches made inadequate predictions using mass
conservation calculations for these ternary systems because the organic phase was typically
composed of a high water content (5 to 20 vol.%). Moderate errors in the calculated water
content of the organic phase propagated to considerable changes in the mixture LSER
coefficients. This in turn led to exponentially magnified errors in predictions of both water
partitioning and that of other components. I therefore expect either the CSCLSST-LSER or
LSST-LSER model to make inaccurate composition predictions for systems in which highly
polar compounds (e.g., water) are significant constituents of the organic phase.

73



3.4.4. Synthesis of results

Applicability of the LSST-LSER and CSCLSST-LSER approaches rests on the conditions
that: (a) LSERs are an adequate model for characterizing solute partitioning in mixture systems;
(b) LSST is a reliable mixing rule for the aqueous phase; (c) LSST and the solvent compartment
model are reliable mixing rules for the organic phase; and (d) the mixture solvation properties
can be accurately extrapolated from dilute solute conditions. Of these three assumptions, the
first was considered unlikely to contribute dominantly to model failure, since the accuracy of
LSER-predicted solvation energies is about ylog K, LSER = 0.16 for a wide range of solvents and
mixtures. Model error related specifically to the LSST or CSCLSST mixing rule assumption
could be estimated using first-order error propagation analysis (71), assuming that uncertainties
associated with the LSER model, Kfw measurements, and the LSST mixing rule were
uncorrelated. Kfw measurement errors were considered aiog K, meas~ 0.08 for the studies
considered here. Given 0 iog K = 0.4 overall for LSST-LSER estimates, the LSST mixing rule
error was thus estimated to be Cylog K, LSST = 0.3 (which includes inaccuracy due to extrapolation
from infinite dilution conditions). This is comparable to the previous results of Li (52), in which
the LSST approximation was shown to have standard deviations ranging from 0.1 to 0.4 log K
units for binary mixtures (depending on the type of cosolvent). For the systems studied by Li,
LSST tended to perform best when the mixture was dominated by one solvent (#~ 0.80 or more)
and when the solute was less polar than the mixture (52). CSCLSST-LSER model error was also

Glog K = 0.4 over all data considered in this study, so the CSCLSST mixing rule error was
estimated to also be CYCSCLSST =0.3 using the analysis described above.

The results shown here suggest that both the CSCLSST-LSER and LSST-LSER approaches
captured the effect of most polar and aromatic cosolvent amendments, relative to an alkane
solvent. However, we concluded that the likelihood of hydrogen-bonding solutes to be solvated
by complementary solvent components in the nonpolar phase was usually underpredicted by
LSST and overpredicted by the solvent compartment model. For example, LSST-LSER Kfw
predictions were generally biased low for hydrogen-bond donors such as phenol and water in
synthetic fuel-water systems, whereas CSCLSST-LSER predictions were usually biased high for
these solutes. Consequently I proposed a logarithmic average of these two models, defined as:

log(Kfw,HSCLSST -LSER) = lg(Kfw,CSCLSST-LSER + - log(Kfw,LSST-LSER (3-12)

which I refer to as the "half solvent compartment / LSST-LSER" model. When applied to all
systems discussed in this work, equation 3-12 calculated Kfw values with an overall standard
deviation of a1og K = 0.26 (Figure 3-4). This was a considerable improvement over either the
CSCLSST-LSER or LSST-LSER model, primarily due to cancellation of errors for polar solutes.

A fuel-water mixtures partitioning model which can be applied to wide range of
environmental solutes is needed. Although Raoult's law is commonly applied for estimating
solute partitioning into environmental mixtures, it is inadequate when the solute structure implies
hydrogen-bond donation and components of the mixture can serve as hydrogen-bond acceptors.
The LSST-LSER and CSCLSST-LSER approaches do not calculate solute partitioning behavior
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Figure 3-4. HSCLSST-LSER calculated Kfw values for all systems

in mixtures as accurately as LSERs derived from original data. Additionally, the systems
considered here do not to reflect a rigorous evaluation of these models for organic and aqueous
mixtures in general. However, this work suggests that equations 3-5, 3-9, and 3-12 are suited for
common fuel mixtures, and the results may inspire evaluation of these approaches for other
environmentally relevant media. Once a mixture LSER for a fuel-water system has been
estimated, solvation energies for a broad set of solutes may be estimated. This is not true of
other conventional approaches such as UNIFAC (12-14), which frequently lack the interaction
parameters necessary to estimate the behaviors of solutes in fuel mixtures (63).

3.5. Conclusions

Without any additional fitting, several pure-phase LSERs were combined using linear solvent
strength theory and the solvent compartment model to estial t Ati ioning of 37 different
solutes between various fuel or fuel-like mixtures and an aqueous phase. Previous research
suggests that LSERs can accurately model partitioning in many organic mixtures (33,34,38,59).
The challenge, then, lies in finding a general method to estimate the best LSER coefficients for
such mixtures, in the absence of the copious data required for a conventional regression analysis.
In this study, the linear solvent strength approximation and solvent compartment model were
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used to generalize the application of pure-phase LSER coefficients to a range of mixtures. The
resulting model predictive standard errors for solutes in synthetic and realistic fuel systems
composed of nonpolar hydrocarbons and MTBE or alcohols were estimated to be -0.4 in the
log K, using either approach. Noticing that these model descriptions of the fuel phase had
systematic and opposite errors, I proposed a logarithmic average of the two approaches (equation
3-12). The resulting empirical average gave considerably improved Kf, estimates, having a
standard deviation of 0.26 in the log K across the entire set of polar and nonpolar solute
partitioning data reviewed here (N = 279). This level of accuracy is suitable for many
applications in environmental fate analysis of organic pollutants.
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Chapter 4
Use of electrostatic computations to estimate
the empirical solute polarity parameter, 7 H

4.1. Introduction

4.1.1. Motivation

The development of Linear Solvation Energy Relationships (LSERs) has contributed
significant insight into the physical chemical processes governing solute-solvent interactions
(1). Additionally, LSERs have been shown to accurately predict solvation free energies for
a wide range of dilute solutes across different solvent environments (2, 3). Consequently,
LSERs have potential applicability in diverse separation sciences, environmental
toxicological screening, environmental engineering, and pharmacology, among others.
Despite these successes, the determination of most LSER parameter values remains
essentially empirical. In particular, the solute polarity scales require a considerable amount
of experimental data to fit (4, 5), and they continue to elude satisfactory correlations with
more fundamental quantities. To date, the most extensively developed empirical solute
polarity parameter is that of Abraham and co-workers, 7r2. The main aim of this work was
to develop a competitive method for estimating 7r2 values using molecular orbital
calculations, which would in turn lead to accurate solvation energy estimates for unstudied
solutes in many liquid-liquid and liquid-gas systems. Additionally, such an investigation
could shed light on the physical origins of this highly empirical free energy parameter.

A physical understanding of 7r H must be placed in context of the development of LSERs.
The LSER equation formulated by Abraham and co-workers is (2):

log P = mV +rR 2 + sgr' + aEa +'bE +c (4-1)

where P is a partitioning property of a solute between two bulk phases of interest, and m,
r, s, a, b, and c are fitted coefficients, characteristic to a given two-phase system. V is a
group contributable solute volume which accounts for both the solvent cavitation energy
and part of the solute-solvent London dispersion interaction (which increases with solute
size) (6). R 2 is the "excess molar refraction" of a solute, i.e., the measured molar refraction
minus that of a hypothetical alkane of identical volume (2). The rR2 term is intended to
capture solute-solvent interactions which involve an induced dipole (polarization) on the
solute beyond what is accounted for by the mV, term. R 2 and V, are therefore
independently derived and clearly physically interpretable, unlike the remaining solute
parameters in equation 4-1. EaH and E 2H refer to the total hydrogen bond donating and
hydrogen bond accepting capacities of the solute, respectively. Finally, the
polarity/polarizability parameter, is believed to reflect the interactions associated with
both induced and stable polarity on the solute. Physical explanation of Ea , E and r 1

relies on the assumed linear separability of the underlying processes that they are intended
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to represent. To the extent that this assumption is invalid, the LSER parameters must

reflect some blending of processes and may nevertheless give mathematically convenient

results. Hence, in order to understand what is known about the 7rH scale, I first examine

its evolution among concurrently developed LSER parameters.

4.1.2. The original development of 7wH

The parameters Ea, E3', and wr' represent "updated" parameters from a previous set

of solvatochromic trial descriptors, H (7), OH (8), and -r* (4). These parameters have

previously been related to solvation properties by fitting the coefficients of the equation:

logP=llogL6 +rR2 +sr*+ac +b/ +c (4-2)

where L16 is the air-hexadecane partition coefficient (9). The development of these original

parameters must be briefly reviewed in order to understand the basis of 7r2. The hydrogen

bonding parameters, a2 and '1, were linear free energy scales of 1:1 hydrogen-bond

complexation equilibrium constants in tetrachloromethane solvent. Conversely, the original

polarity/polarizability parameter of Kamlet and coworkers, 7r*, was a scale of

solvent-induced spectral (frequency) shifts of the electronic transitions (p -+ r* and 7r -+

7r*) of characteristic solutes which were not believed to engage in significant

hydrogen-bonding with the selected solvents (1, 4, 10). Although r* was used as a solute

descriptor, it actually reflected a solvent property: a measure of a solvent's ability to alter

the spectral transition of a characteristic set of solutes. With these assumptions, s values

could be calibrated as two-phase system coefficients, taking 7r* to be a solute parameter.

Subsequently, Abraham et al. drew on these developments by proposing a LSER of gas

chromatography retention times for several hundred solutes on 75 non-hydrogen-bond

donating stationary phases (so that b = 0) using:

log V = llog Ll 6 + rR2 + s7r* + aa c (4-3)

where V 0 is a retention capacity (5). This resulted in a set of stationary phase fitted

coefficients (1, r, s, a, and c) obtained via multiple linear regression. These workers then

kept the stationary phase coefficients fixed and used the same set of data to reverse fit the

polarity/polarizability and solute hydrogen-bond donating scales, thereby producing an

updated set of solute parameters, 7r H and E0f (the 1 log L16 and rR2 terms were first

subtracted from the dependent variable). Having determined 7r H and EaH, values for E H

were similarly obtained, as follows. After using 32 as a trial descriptor to parameterize 16

water-organic solvent system LSER coefficients, these coefficients were fixed in order to

isolate E 32H in a reverse fit, with the contributions of other terms first subtracted out of

the dependent variable (11).

Abraham and coworkers rationalized these reverse fit updates of the hydrogen bonding

and polarity/polarizability descriptors as a way of "correcting" 1:1 complex solute

parameters to reflect a more realistic set of interactions of the solute with multiple solvent

molecules. It is difficult to assess what physical meaning may have been inserted into the
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parameters as a result of the updating procedure. In particular, the Ece and E/3 H scales
typically differed little, if at all, from the trial descriptors, a2 and 02, for most solutes.
Nevertheless, this paved the way for characterizing new solutes, since 7r, EaH, and E/3
values could subsequently be fitted via reverse regression from a large set of retention data
in gas or liquid chromatography systems which had established system coefficients (i.e., r,
s, a, b, m, and c values) (12).

4.1.3. Previous correlations of the polarity parameters with other descriptors

In light of its somewhat complicated history, one may suspect that 7r H is strongly related
to both solute polarizability and solute charge density on the solvent accessible surface
(hereafter referred to as "SAS"). Further, recognizing that Abraham and co-workers
specifically attempted to separate the hydrogen-bonding and polarity contributions to

AG8 e, irH may still reflect some unclear amount of mixing or interference with the
hydrogen-bonding terms. Several workers have previously attempted to correlate the
polarity scales 7r* and 7r H with theoretically conceived or calculated quantites. Brink et al.
observed that "local charge separation" on the SAS of a solute may more accurately
describe the solute's ability to create electrostatic interactions than do its dipole or
multipole moments (13, 14). For example, some symmetric molecules (e.g., carbon dioxide,
para-dinitrobenzene) have net zero dipole moments, but they exhibit significant charge
separation at the SAS which can interact with surrounding solvent molecules. Brink et al.
found a limited correlation between the lr* scale and a calculated parameter, H, defined as
the area-normalized summation of local charge separation on an operationally designated
SAS of the solute. Other workers have investigated correlations between 7r* or Hr1 and
area-normalized summations of solute SAS charge or its square (15), measured and
calculated dipole moments (16), and various related quantities including summed atomic
charges, calculated HOMO-LUMO energy gaps, and topological indices (17,18). Still other
investigators have proposed mixing computed and empirically derived solute descriptors to
generate revised LSERs (19, 20). Most successfully, group contribution approaches have
also been applied to the problem of estimating 7rF. Platts et al. developed a comprehensive
group contribution method consisting of 81 functional fragments for predicting ir 1 (r2

0.92 and o- = 0.16 for the regression set) (21). Abraham additionally showed that for
several families of aromatic compounds, 7r H can be accurately estimated from a regression
including both solute dipole moment and empirically fitted group-contribution parameters
(12). Such group-additivity estimation methods are practical and useful, as long as the
group values are available. However a more fundamentally based approach might allow
estimates of rT2 in cases where functional group values exhibit poor additivity or have not
yet been defined. It should finally be noted that Weckwerth et al. initiated the development
of a separate LSER system based on reference solutes, which they contended may provide
"purer" solute descriptors (22). From the accomplishments of these groups, I concluded
that the Debye and Keesom-type contributions to 7r H may be related to electrostatic
properties at the solute SAS. Since 7r2 exhibits reasonable functional additivity, I
hypothesized that a correlation which relies on SAS area-aggregated, rather than
area-normalized, charge descriptors was appropriate. Additionally, because 7r2 is partly
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rooted in dispersion interactions (4, 12), I considered it useful to separate out a partial

dependence of 7r2 on solute polarizability (measured directly using the index of refraction).

Based on these considerations, the goals of this work were: (1) to relate r H with a

computed solute electrostatic component and the solute excess polarizability scale, R 2 ; and

(2) to attempt to rationalize the contributions of these more fundamental quantities to the

srj solvation free energy term of a LSER. I therefore present a methodology for

calculating an appropriate solute electrostatic descriptor. I then discuss the extent to

which the computed electrostatic term and R 2 can explain 7r H for a diverse set of solutes.

Finally, I compare these results to some other approaches which have been previously

suggested for calculating 7r2 or 7r

4.2. Method

4.2.1. Development of a computed electrostatic descriptor

Any plausible computational estimate of 7r H should, at the very least, incorporate the

simplifying assumptions inherent in the LSER formulation. Most notably, LSERs
presuppose that the physical processes governing the solute and the solvent are

mathematically separable. For example, a 1ry value is considered a constant property of

the solute, regardless of the solvent. All information about the solvent relating to 7r2 is
reflected by the LSER multiplying coefficient, s. This approximation implies that a

computed analogue of r2 should be linear with respect to any solvent properties that may

enter the calculation; in fact it would be difficult to justify otherwise. Fortunately, classical

electrostatic theory offers such an approach.

In classical electrostatics, the interaction energy, AUe, between a solute, 1, and the

surrounding solvent medium, s, can be described as (23):

Aue = - f i(r)p,(r)dr (4-4)
2 allspace

where p,(r) corresponds to the charge density of the solvent and 01(r) is the solute

electrostatic potential at any point, r, in infinitesimal volume, d-r. In order to facilitate the

evaluation of AUe, it is frequently assumed that a meaningful solute-solvent boundary may

be reliably defined (although this is a disputed concept (24)). In this case, equation 4-4 is

recast as an integral over so-called "virtual" surface charges at the SAS of the solute, o-,(r),
which reflect the solvent's electrostatic interaction with the solute (25):

AUe = - j ,(r)o-,(r)dA (4-5)
2 ' AS

Solvent charge density at the solute-solvent boundary (the SAS) may be approximated by

treating the solvent as a continuous linear dielectric medium (25). In other words, o,(r)
"mirrors" the electrostatic field of the solute with a proportional field damped by the
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solvent dielectric constant, ES. Consequently, the solvent charge at the solute surface may
be related to the normal component of the solute electrostatic field, Ej,,(r), at the
solute-solvent boundary as (23):

o )= (r) I) Ei,,(r) (4-6)

where Es is a constant scalar if the dielectric medium is assumed homogeneous and
isotropic. The validity of linear solvent response for nonionic organic solvents has been
evaluated in various Monte Carlo and molecular dynamics simulations (26-29). These
studies suggest that the linear solvent response approximation is most accurate when
solute polarity exceeds that of the solvent. Linear solvent response may nevertheless
provide useful estimates of electrostatic effects for both semipolar and polar solutes, since
larger relative errors in AUe are tolerable in cases where electrostatic effects make a smaller
contribution to the total solvation partial free energy. The linear response approximation
additionally implies that the electrostatic component of the partial free energy of solvation
is given by the solute-solvent interaction energy (26). Combining equations 4-5 and 4-6,

A Ue= - - 1eo 1(r)E1,(r) dA [kcal/mol] (4-7)e es 1 )ISiAS

AU, can be expressed directly in terms of the solute properties, 01(r) and Ei,"(r). This
computed electrostatic scale therefore suits the separability assumption of the
corresponding LSER term, r. The computational realization of AU, could be carried out
in a few different ways, depending on what further assumptions are used (as described in
the subsequent section).

The 7rH parameter is believed to include both electrostatic effects and some solute
polarization information; therefore I proposed that a linear combination of the measured
solute excess polarizability and the computed electrostatic energy may explain 7r4, to first
order:

2fit = ApR 2 + AeAUe (4-8)

where AP and Ae are characteristic coefficients, optimized via multiple linear regression
using literature (measured) R 2 and 7rH values and computed AU, values to produce 71H,

values for 90 organic solutes.

4.2.2. Molecular orbital computations of AUe

All solute geometry optimizations and electrostatic energy computations were performed
using Gaussian98 (30), with "tight" SCF (self-consistent field) convergence criteria for the
wavefunction computation. 90 solutes were optimized to an energetically minimized nuclear
geometry using both (1) the hybrid HF-DFT method B3LYP (31) with the 6-31G(d,p)
basis set and (2) the HF method using the smaller MIDI! basis set (32). The popular
B3LYP method was chosen because it has been found to predict geometries, energetics,
and electrostatic interactions more accurately than some other DFT and ab initio methods
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(33, 34), and the MIDI! basis set was employed because it has been optimized specifically
for charge-property calculations. Since the role of 7r2 is most prominent in the presence of
strongly polar solvents, all geometry optimizations utilized a dielectric continuum field

corresponding to aqueous solution (E, = 78.3) using the Polarizable Continuum Model
(PCM (35, 36)). At B3LYP/6-31G(d,p) or HF/MIDI! optimized solute geometries, several
single point electrostatic energy calculations were performed, using SAS virtual solvent
charges, u- (r), of either the Polarizable Continuum Model or the Self-Consistent Isodensity
Polarizable Continuum Model (again assuming e, = 78.3). In single point computations,
equation 4-7 was integrated over either a fixed-atomic radii surface (AUg) or a solute
electron isodensity surface (AUe), described as follows (Table 4-1).

AU' [kcal/mol] values were computed in the presence of a PCM-computed solvent
charges, using both the B3LYP/6-311G(2df,2p) and HF/MIDI! methods. The Polarizable
Continuum Model (PCM) (35, 36) is a widely used solvation model which approximates
a- (r) as a set of discrete charges at the SASB, where SASB is defined as the outer surface
carved by Bondi atomic radii (37) multiplied by 1.2. The SASB charges act to stabilize and
distend the solute wavefunction. The PCM also incorporates the polarization response of
SASB charges to each other (i.e., "self-polarization" of the surface charges) and includes
E1 (r) corrections for SASB curvature. Using these approximations, the PCM
self-consistently calculates SASB charges, polarizes the solute electronic wavefunction in
response, and (optionally) relaxes the solute geometry (36) in the dielectric bath. Notably,
the PCM and most related models do not include corrections for solute-solvent
hydrogen-bonding effects. Since continuum solvation models were designed for prediction
of solvation energies in a variety of systems, neglect of hydrogen-bonding has usually been
considered a shortcoming of the approach (38). However, predictions of the 1r parameter
may be well suited by the continuum model approximations, since 7r2 was intentionally
designed to be independent of hydrogen-bonding effects.

It was desirable to evaluate the electrostatic energy at an electron isodensity SAS (thus
denoted AU,), to allow comparisons with electrostatics computed using the fixed atomic
radii surface (SASB). AU' was calculated in the presence of SCIPCM or IPCM solvent
charges, using the HF/MIDI! method as follows. The solute wavefunction was first relaxed
in a dielectric bath using the Self-Consistent Isodensity Polarizable Continuum Model
(SCIPCM (39)). For cases in which the SCIPCM did not converge (10 out of 90 solutes),
the Isodensity Polarizable Continuum Model (IPCM) (39) was applied. The SCIPCM and

IPCM formulations of solute-dielectric field interactions are similar to that of the PCM as

described previously; however the SCIPCM and IPCM place virtual solvent charges at a

solute electron isodensity surface of 0.0004 ej/bohr3 (SASF). The SASF may be more
favorable than the conventional SASB, because an isodensity surface reflects the extent of

solvent access to the solute expected from electron cloud repulsions between molecules.
Since the location of the SASF is itself a function of calculated SASF charges (unlike the

fixed SASB), the SASF charges are incorporated into the solute Hamiltonian potential
expression and the wavefunction is iteratively calculated until the charge updates converge.
The IPCM computes SASF charges in between SCF convergence cycles, whereas the
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Table 4-1. Methods used to compute the solute electrostatic
descriptor (AU, in kcal/mol; EV,2 in kcal A/mol)

electrostatic solvent single point SAS used for
descriptor charges' method equation 4-7
" U PCM B3LYP/6-311G(2df,2p) 1.2 Bondi radii
" Ug PCM HF/MIDI! 1.2 Bondi radii

" UJe SCIPCM HF/MIDI! 0.0004 e-/bohr3

AUe' PCM B3LYP/6-311G(2df,2p) 0.0004 e-/bohr3

"Ue PCM HF/MIDI! 0.0004 e-/bohr3

AU4 PCM HF/MIDI! 0.0001 e-/bohr3

EVs SCIPCM HF/MIDI! 0.0004 e/bohr3

EV 2  PCM B3LYP/6-311G(2df,2p) 0.0004 e-/bohr3

E PCM HF/MIDI! 0.0004 e/bohr3

2 PCM HF/MIDI! 0.0001 e/bohr3

a Using e, = 78.3.

SCIPCM embeds SASF charge computations directly into the SCF procedure. Although
the SCIPCM or IPCM may provide a more realistic SAS than the PCM, there are practical
disadvantages to their use. The SCIPCM and IPCM are more computationally expensive
than the PCM (35) and they are less numerically stable than the PCM (24). The resulting
solute wavefunction was used to generate a fine grid discretized electron density (output
with the Gaussian98 "cube" keyword). An isodensity 0.0004 e-/bohr3 surface (SAS,) was
numerically interpolated from the calculated grid of the electron density. The resulting
surface had uniform 0.04 A2 resolution, corresponding to about 1700 surface elements for a
single molecule of water. Subsequently, solute E1 (r) and q1 (r) values were found at the
SAS, element centers. The E 1 (r) and 0 1(r) values reflected only the solute wavefunction.
In other words, the computed field and potential values at the SAS, elements did not
include the field and potential contribution of the SCIPCM or IPCM charges, although the
solute wavefunction had been optimized in the SCIPCM or IPCM dielectric environment.
The outward normal vector at each SAS, element was approximated using the locations of
several adjacent SAS, element centers. Computed SAS, normal vectors were then
combined with E1 (r) values to arrive at E 1,,(r) estimates. AU, could subsequently be
numerically integrated over the SAS, of each solute. Since the SCIPCM and IPCM were
computationally expensive, it was desirable to also apply the PCM prior to integration of
AU, in a new set of calculations using both the B3LYP/6-311G(2df,2p) and HF/MIDI!
methods (Table 4-1). In other words, since application of the dielectric continuum was a
separate step from integration of AU/, it was possible to use the PCM to optimize the
solute wavefunction in an aqueous dielectric (E, = 78.3) and subsequently integrate
equation 4-7 at the SAS,. Finally, in an additional set of calculations, AU was integrated
over a fine-grid 0.0001 e-/bohr3 SAS, in order to test the sensitivity of results to the
isodensity surface location. HF/MIDI! was used for most of the sets of AU/ calculations
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because it was computationally expensive to use the SCIPCM or IPCM together with the
B3LYP/6-311G(2df,2p) method for the largest solutes. Since SAS, curvature corrections
were not made for E1,,(r) estimates, the numerical integration of AUf was additionally
evaluated using several levels of SAS, resolution with water as a test solute.

As outlined above, computation of E 1,,(r) required numerical evaluation of the normal
electrostatic field component at the solute SAS, for a large number of points. This
procedure added complexity to the method and may be susceptible to errors; hence it was
desirable to generate a more tractable form of the integral in equation 4-7. As a
simplification, integration over the normal solute field was thus assumed proportional to
integration over the solute potential at the solute SAS,:

#i(r)E1,s(r) dA = - J 1(r) dA oc - 2 A (r) dA (4-9)
isASi iSASi _d (r I SASI1

where El,n(r) is given by d# 1(r)/dn(r) (the gradient of the solute electrostatic potential
along the SAS normal vector, n(r)), and dq(r)/dn(r) is assumed proportional to 0 1(r).
Equation 4-9 was evaluated by comparison of calculated Ei,n(r) and #1(r) values at 9000
randomly selected SAS, points on the set of studied solutes (100 SAS, points on each
solute). The validity of equation 4-9 is further discussed in the Results section. Equation
4-9 led to a new electrostatic scale proportional to AU' which could now be defined (from
equation 4-7) as:

EV2 -- - 1 o I (r) dA [kcal A/mol] (4-10)
2 c JSAS1

In a new set of calculations, the validity of equation 4-9 was additionally judged by the
observed correlation of EV,2 with AU,, for 90 solutes. Finally, regressions of equation 4-8
were also evaluated using EV 2 as a substitute for AUe (Table 4-1).

It is important to note that computed AUe values did not include the computed change
in solute energy caused by polarization of the solute wavefunction in the dielectric field. It
was considered advantageous to exclude PCM or SCIPCM/IPCM-induced solute
polarization energies and independently fit the solute polarizability contribution (R 2) in
equation 4-8 for at least two reasons: first, the PCM and SCIPCM/IPCM-calculated solute
polarization energies did not correlate well with the measured polarizability scale. Second,
the precise origin and magnitude of the solute polarizability contribution to 7r2H is unclear,
since the LSER formulation already incorporates a R 2 component in empirical fits of
solvation data (as discussed in the Introduction). Investigators wishing to reproduce the
computational method described herein should note that, by default, the PCM-computed
AG 01 , includes an estimated solvent cavitation energy term, an estimated solute-solvent
dispersion-repulsion interaction energy term, a dielectric field-induced solute polarization
energy term, and finally AU . These first three terms were not included in the analysis I
conducted. Similarly, the default SCIPCM and IPCM-computed AG 01' output implicitly
includes a solute polarization energy associated with the dielectric charges. Consequently, I
decided to use the calculated electronic population to define an electron isodensity surface
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for explicit integration of equation 4-7 (as described previously), in order to provide a more
direct estimate of AU.

4.2.3. Gas phase dipole moment computations

As a validation of the computational accuracy of the molecular orbital computation
methods for charge distribution properties, gas phase dipole moments were computed and
compared to literature data. The B3LYP/6-31G(d,p) and HF/MIDI! approaches were used
to optimize the geometry of 45 solutes from the set of 90 considered for this study, in
vacuo. The B3LYP/6-311G(2df,2p) and HF/MIDI! methods were then used to compute
the dipole moments of these solutes (also in vacuo) for comparison with measured gas
phase dipole moments (40).

4.2.4. Selection of ir H data

I selected published 7r H values (41, 42) which represented a range of solute types.
N-alkanes were included as reference compounds, since Abraham set rke = 0. A range
of small to moderately sized aliphatic compounds (1 to 11 heavy atoms), often containing
multiple moieties, composed the first subset of the list. A few homologous series were
included to evaluate the extension of nonpolar chains. Aromatic compounds composed the
second subset (ranging from 4 to 16 heavy atoms), some of which contained N, S, or 0 as
ring members. Multiple moieties and some flexible chain substituents characterized many
of the aromatic compounds. In both aliphatic and aromatic sets, a range of semipolar (e.g.,
olefin, amino, halogen) to highly polar (e.g., sulfone, sulfoxide, amide, nitro) groups were
tested. Additionally, in some cases single or multiple electron-withdrawing groups (such as
halogens) were proximate to polar groups, inducing especially electron-deficient protons

(e.g., 3-bromophenol and 2,2,2-trifluoroethanol). This range of compounds was considered
a robust test of model applicability to small and moderately sized organic compounds
containing C, H, N, 0, S, F, Cl, and Br (only one compound containing P was included in
the set).

4.3. Results and discussion

4.3.1. Computation of gas phase dipole moments

It was desirable to evaluate the reliability of the HF/MIDI! and B3LYP/6-311G(2df,2p)
methods against an independently measurable molecular charge distribution property.
Reported gas phase dipole moments (43) compared favorably to those calculated in vacuo
using both methods, finding r2 = 0.96, oA = 0.25 for HF/MIDI! computations (Figure 4-1)
and r 2 = 0.975, a, = 0.19 for B3LYP/6-311G(2df,2p) computations (not shown) with 45
compounds among the set of 90 considered in this work. It was reasonable to assume that
fits of equation 4-8 would reflect this limitation in accuracy; that is, I did not expect to
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Figure 4-1. HF/MIDI! computed in vacuo dipole moments for 45 compounds

generate a 7r2 model of significantly better predictive quality than that found for gas phase

dipole moment calculations.

4.3.2. 7rH regressions

Regressions using 90 solutes (Table 4-2) showed that the combination of the computed

solute electrostatics term and measured solute polarizability scale fit 7rH with considerable

accuracy (Table 4-3). HF/MIDI! electrostatic energies computed at the 0.0004 e-/bohr3

SAS, in the presence of a SCIPCM/IPCM dielectric produced the best correlation with 7r'

values (Table 4-2):

7r = 0.49R 2 - 0.116A U, (4-11)

r2 = 0.95, o, = 0.12
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Table 4-2. Regression results for equation 4-11;
comparison of calculated and literature 7rH values
(AU, in [kcal/mol])

cale. meas.
Solute R 2  -AUj 7rH 7r2
propane 0.000 0.17 0.02 0.00
pentane 0.000 0.22 0.03 0.00
cyclohexane 0.305 0.20 0.17 0.10
1-hexene 0.078 0.77 0.13 0.08
propyne 0.183 2.05 0.33 0.25
1-butyne 0.178 2.02 0.32 0.23
fluoromethane 0.066 3.00 0.38 0.35
1-fluorobutane 0.017 2.74 0.33 0.35
1-fluoropentane 0.002 2.79 0.33 0.35
tetrafluoromethane -0.280 0.71 -0.05 -0.20
hexafluorosulfide -0.600 0.29 -0.26 -0.20
chloroethane 0.227 2.54 0.41 0.40
1-chlorobutane 0.210 2.53 0.40 0.40
1-chlorooctane 0.191 2.43 0.38 0.40
carbon tetrachloride 0.458 0.45 0.28 0.38
trichloroethane 0.499 3.77 0.68 0.68
hexachloroethane 0.680 0.61 0.40 0.22
bromoethane 0.366 2.51 0.47 0.40
1-bromobutane 0.360 2.50 0.47 0.40
1-bromooctane 0.339 2.69 0.48 0.40
dibromomethane 0.714 2.87 0.68 0.67
tribromomethane 0.974 2.27 0.74 0.68
diethylether 0.041 1.78 0.23 0.25
dipropylether 0.008 1.87 0.22 0.25
tetrahydrofuran 0.289 2.44 0.42 0.52
carbon monoxide 0.000 0.62 0.07 0.00
carbon dioxide 0.150 2.80 0.40 0.42
carbon disulfide 0.877 0.24 0.46 0.21
dioxygen 0.000 0.06 0.01 0.00
nitrous oxide 0.068 1.89 0.25 0.35
ethylamine 0.236 2.76 0.44 0.35
propylamine 0.225 3.03 0.46 0.35
butylamine 0.224 3.05 0.46 0.35
water 0.000 6.23 0.72 0.45
methanol 0.278 4.24 0.63 0.44
ethanol 0.246 3.90 0.57 0.42
1-propanol 0.236 3.91 0.57 0.42
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isopropanol 0.212 3.84 0.55 0.36
1-decanol 0.191 4.15 0.58 0.42
acetone 0.179 5.07 0.68 0.70
butanone 0.166 4.50 0.60 0.70
propanal 0.196 4.23 0.59 0.65
acetonitrile 0.237 6.37 0.86 0.90
propionitrile 0.162 6.01 0.78 0.90
nitromethane 0.313 7.39 1.01 0.95
nitroethane 0.270 6.86 0.93 0.95
nitropropane 0.242 6.62 0.89 0.95
ethylacetate 0.106 4.43 0.57 0.62
acetic acid 0.265 6.57 0.89 0.65
2,2,2-trifluoroethanol 0.015 6.60 0.82 0.60
enflurane -0.230 4.91 0.46 0.40
isoflurane -0.240 5.86 0.56 0.50
trimethylphosphate 0.113 10.69 1.30 1.10
propionamide 0.440 8.53 1.21 1.30
N-methylformamide 0.405 9.09 1.25 1.30
dimethylsulfone 0.590 13.09 1.81 1.70
N,N-dimethylacetamide 0.363 6.91 0.98 1.33
N,N-dimethylformamide 0.367 7.47 1.05 1.31
dimethylsulfoxide 0.522 10.16 1.44 1.74
benzene 0.610 1.60 0.48 0.52
toluene 0.601 1.55 0.47 0.52
ethylbenzene 0.613 1.57 0.48 0.51
naphthalene 1.340 2.37 0.93 0.92
phenanthrene 2.055 3.15 1.37 1.29
pyrene 2.808 3.43 1.77 1.71
chlorobenzene 0.718 2.46 0.64 0.65
1,2,4-trichlorobenzene 0.980 2.98 0.82 0.81
1,2-dibromobenzene 1.190 3.02 0.93 0.96
aniline 0.955 4.24 0.96 0.96
N-methylaniline 0.948 3.38 0.86 0.90
N,N-dimethylaniline 0.957 2.60 0.77 0.84
phenol 0.805 5.36 1.02 0.89
m-cresol 0.820 5.15 1.00 0.87
benzylalcohol 0.803 4.54 0.92 0.87
benzaldehyde 0.820 5.18 1.00 1.00
benzonitrile 0.742 6.21 1.08 1.11
thiophene 0.687 2.03 0.57 0.56
benzothiophene 1.323 2.70 0.96 0.88
thiazole 0.800 4.09 0.87 0.80
pyrazole 0.620 6.57 1.07 1.00
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benzophenone 1.447 5.25 1.32 1.50
4-cyanophenol 0.940 10.61 1.69 1.55
diethylphthalate 0.729 7.72 1.25 1.40
benzotrifluoride 0.225 3.00 0.46 0.48
3-bromophenol 1.060 6.17 1.24 1.15
benzamide 0.990 8.75 1.50 1.50
benzenesulfonamide 1.130 6.68 1.33 1.55
methylphenylsulfone 1.080 11.48 1.86 1.85
diphenylsulfone 1.570 10.46 1.98 2.15
methylphenylsulfoxide 1.080 9.27 1.61 1.85

Using the HF/MIDI! method, 7r 1 jt was relatively insensitive to changes in the dielectric
field method (PCM versus SCIPCM/IPCM) or location of the SAS, (0.0004 versus 0.0001
e~/bohr 3). This indicated that AU/ is probably a robust and physically meaningful
parameter for 7r2. By comparison, rji values calculated from electrostatic energies at the
120% Bondi radii solute SAS (AU ) showed considerably weaker agreement with 7r

(r 2 < 0.80 and o, > 0.20; Table 4-3). This suggested that an SAS based on electron
isodensity, rather than the 120% Bondi radii SAS, is an appropriate physical surface for 7r2.

In all regressions of equation 4-8 (Table 4-3), the measured excess polarizability and
computed electrostatics term contributed about 1/3 and 2/3 of the rjit scale, respectively,
showing that both of these terms are important components of r 1. This indicated that
while stable charge density at the solute surface generally dominates the 7r H term, solute
polarizability also contributes significantly. These results lend substantial credibility to the
contention that Abraham and coworkers have indeed isolated a LSER term which
quantitatively reflects mainly polarity and polarizability character of the solute.

A data-withholding test of each variant of equation 4-8 was additionally conducted in
order to evaluate its robustness for novel compounds not included in the regression set, as
follows. In a new set of regressions, each Tpred values were calculated based on fitted
coefficients derived from the remaining 89 solutes. This generated 1r2 estimates which were
independent of the regression procedures. All regressions and parameter statistics were
calculated using singular value decomposition (44). Data-withholding tests suggested that
the expected uncertainty of gred values for solutes outside of the regression sets were
similar to regression statistics (Table 4-3).

Regression outliers for equation 4-8 using either of the computed AU' or AUe1 terms
showed systematic bias. The most egregious r overestimates were generally strong
hydrogen-bond donors (e.g., water, acetic acid, 2,2,2-trifluoroethanol). Conversely,
underestimated irH outliers were consistently composed of non-acidic strong hydrogen-bond
acceptors with highly electronegative moieties (e.g., N,N-dimethylformamide,
N,N-dimethylacetamide, dimethylsulfoxide). This pattern of model prediction error could
result from hydrogen-bonding interference during the development of 7r 1 parameter values
from data. As discussed in the Introduction, Abraham et al.'s development of r 1 involved
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Table 4-3. Regression statistics for equation 4-8 using 90 solutes (AU, in kcal/mol; EV,2 in kcal A/mol)

equation 4-8 regression regression data-withholding
dielectric SAS used for best fit coefficients statistics test statistics

"\Ue model' methodb electrostatics' A t o±\ (weight) A, t a, (weight) rc2 o r2 U.

" Ue PCM B3LYP 1.2 Bondi rad. 0.45 ± 0.22 (33%) -0.099 ± 0.039 (67%) 0.72 0.27 0.71 0.28
" U/ PCM MIDI! 1.2 Bondi rad. 0.45 ± 0.22 (31%) -0.113 ± 0.042 (69%) 0.79 0.23 0.77 0.24

A Ue SCIPCM MIDI! 0.0004 a.u. 0.49 ± 0.20 (33%) -0.116 ± 0.039 (67%) 0.95 0.12 0.94 0.12

" UeI PCM B3LYP 0.0004 a.u. 0.45 ± 0.21 (31%) -0.138 ± 0.046 (69%) 0.93 0.13 0.92 0.14
" Ue' PCM MIDI! 0.0004 a.u. 0.49 ± 0.20 (33%) -0.118 ± 0.040 (67%) 0.93 0.13 0.93 0.14

" U/ PCM MIDI! 0.0001 a.u. 0.50 ± 0.20 (34%) -0.170 ± 0.056 (66%) 0.94 0.12 0.94 0.12

EV 2  SCIPCM MIDI! 0.0004 a.u. 0.47 ± 0.20 (32%) -0.092 ± 0.030 (68%) 0.96 0.10 0.95 0.11
EV 2  PCM B3LYP 0.0004 a.u. 0.44 ± 0.21 (31%) -0.098 ± 0.033 (69%) 0.93 0.14 0.92 0.15
EV 2  PCM MIDI! 0.0004 a.u. 0.46 ± 0.20 (31%) -0.095 t 0.031 (69%) 0.95 0.11 0.94 0.12
E Vs2  PCM MIDI! 0.0001 a.u. 0.48 ± 0.20 (33%) -0.116 ± 0.038 (67%) 0.95 0.11 0.95 0.11
a Using e, = 78.3. b Indicates either a B3LYP/6-311G(2df,2p) or HF/MIDI! single point wavefunction computation.
'1 a.u. = 1 e-/bohr 3 for an isodensity SAS.



reverse fits which simultaneously updated both Ea H and 7r H values from trial descriptors.

It is difficult to ascertain that these earlier investigations successfully removed all of the
Debye and Keesom contributions to Ea4. Or, particularly for highly polar solutes, blending
of some of the E32

1 character into 7rH values may have occurred, even assuming that these
contributions to the solvation free energy are linearly separable. Additionally, I suspected
that failure of the computational methods to evaluate properly surface potential on some
highly charged moieties might explain some bias and error in ir H regressions. However, a

comparison of HF/MIDI! calculated dipole moment residuals with 7r residuals from

equation 4-11 showed no correlation at all (r 2 = 0.03). Additionally, the accuracy of gas

phase dipole moment computations did not correlate with solute polarity (Figure 4-1).
Consequently, I concluded that the computational methods were not responsible for the
observed 7rH error bias towards highly charged or hydrogen-bonding moieties.

The best 7r2 regression overall was found with the HF/MIDI! computed EV 2

electrostatic descriptor:

H V2
rfrjit =0.47R2 - 0.092E (4-12)

r = 0.96, U- = 0.10

employing the SCIPCM/IPCM at the 0.0004 e-/bohr' SAS, (Figure 4-2). In fact,
substitution of the computed Ei,,(r) by the 01(r) in SAS, integrals (equation 4-9)
produced consistently improved correlations between the electrostatic descriptor and 7r H

(using HF/MIDI!, Table 4-3). This surprising result could be explained as a cancelling of
errors between equations 4-9 and 4-11. Using the HF/MIDI! method with the
SCIPCM/IPCM at the 0.0004 e~/bohr 3 SAS,, it was found that:

EV 2fi = (1.29 A)AU' [kcal A/mol] (4-13)

r2 = 0.976, o = 0.50 kcal A/mol

(Figure 4-3). Solutes which had the most overestimated EV 2 values in this correlation were
strong hydrogen-bonding donors (e.g., water, acetic acid), whereas strong hydrogen-bond
acceptors (e.g., diphenylsulfone) were underestimated. The outlier bias of equation 4-13
therefore mirrors the outlier bias found for equation 4-11 using the HF/MIDI! method,
creating offsetting errors. This explains how EV,2 was apparently the most successful
electrostatic variable for predicting 7r2 values for the set of solutes considered here.

4.3.3. On correlating solute electric field with electric potential at the SAS

It would be reasonable to conclude that since equation 4-13 produces a good correlation,
it is additionally the case that E 1,n(r) correlates well with #1(r) locally at the SAS,.
However, testing a set of 9000 points along the HF/MIDI! SCIPCM/IPCM-computed
0.0004 e-/bohr3 SAS, on the 90 solute set (100 points on each solute surface), it was found
that:
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#1,ft(r) = (-0.94 A)Ei,,,(r) [volts} (4-14)

r2 = 0.83

An apparent incongruity arises here: equation 4-13 suggests that #1(r) is a robust

substitute for El,,(r) in the SAS, electrostatic energy integral, but in equation 4-14,

El,,(r) is only a roughly accurate (r 2 = 0.83) explanatory variable for #1(r) at local points

on the SAS,. This contradiction could be explained in the following way: for a collection of

SAS, points on an individual solute, the slope of the correlation between 01(r) and El,,(r)
was usually found to be close to that for equation 4-14. However, if an individual solute

surface gave a 01(r) versus E1,,(r) slope that differed from equation 4-14, this deviation

usually corresponded to the solute residual in equation 4-13 (a positive correlation of

r2 = 0.43 for the solutes having a significant electrostatic term, i.e., AU,, > 0.3 kcal/mol).
Consequently, I concluded that the scatter in the relationship of 01(r) versus E1,"(r)
usually counterbalanced in the SAS integral for individual solutes; this scatter did not
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Figure 4-3. Correlation between AU/ and EV 2 for 90 solutes using the
HF/MIDI! method with SCIPCM/IPCM at the 0.0004 e~/bohr3 SAS,

effectively propagate to equation 4-13 except for solute cases in which the slope of 0 1(r)
versus E 1 ,,(r) differed significantly from equation 4-14. For completeness it is worth noting
that there should be an additional term included in equation 4-14 which corresponds to the
average 0 1 (r) over the solute SAS, (f #1(r)dA does not sum to zero, as does f El,,(r)dA
by Gauss' Law). The #1 term was neglected since it was small and estimated to contribute
to only about 3% of the deviation of equation 4-14. In summary, for a solute surface #1(r)
versus E 1 ,,(r) slope which deviates from equation 4-14, one may usually expect a EV
deviation of the same sign in equation 4-13.

4.3.4. Comparison to alternative models

I compared the results of equations 4-11 and 4-12 to previous correlations that have been
developed for r* or r, using the set of compounds considered here. Lewis suggested a
correlation of 7r* with calculated dipole moments plus an intercept, finding a reasonable fit
for 14 solutes (r 2 = 0.91) (16). Lamarche et al. suggested 7r' fits with linear combinations
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of solute dipole moment, polarizability, and other quantities such as calculated atomic

charges and HOMO-LUMO gap, finding correlations ranging from r 2 = 0.76 to r 2 = 0.85
for a set of 58 solutes. In this vein, I used the efficient HF/MIDI! method with a PCM

dielectric field (E, = 78.3) to compute solute dipole moments, finding a correlation with 7r

for the 90 solutes considered here:

7rji = 0.59R 2 + 0. 17pcaic (4-15)

r 2 = 0.85, a 7, = 0.19

where the dipole moment is expressed in Debyes. A similar regression of r2 with alc

which corresponds to the pairwise free energy of interaction between freely rotating dipoles

(45), yielded a comparable fit. Although convenient to compute, these regressions are

biased against symmetric molecules, since such solutes may exhibit substantial

solvent-accessible charge separation not reflected in their dipole moments (e.g., carbon

dioxide, benzene). It is worth noting that although the solute dipole moment is commonly
relied upon as an indicator of solute polarity in solvent environments, higher multipoles

contribute significantly to the solute-solvent interaction energy. In fact, the marginal

contributions of higher multipoles may be slowly convergent, and they may still be

significant well beyond the 20th term in the multipole expansion (24). Recognizing this

deficiency of the dipole moment as an electrostatic descriptor, Brink et al. developed H, an

area-normalized summation of absolute elecrostatic surface potential (13):

AJ -- - 11(r) - &1 IdA (4-16)
A s'AS

and an area-normalized summation of squared electrostatic surface potential, which they

termed U2 (14). Brink et al. found a limited correlation between 7r* and H plus a

polarizability parameter plus an intercept (statistics were not given). Zou et al. recently

improved this 7r* correlation by including a 2 as an additional term (r 2 = 0.93 for 50
solutes) (15). Using HF/MIDI! calculations with the SCIPCM/IPCM dielectric field and a
0.0004 e-/bohr3 solute isosurface, I found the following correlation for 7r2 using the solute

set presented here:

7r fit= 0.55R 2 + 1.02H (4-17)

r2 = 0.80 and o, = 0.23

where 11 is given in volts. Adding a crot term to the equation 4-17 regression undermined

the statistical interpretability of the parameters and improved the fit little (r 2 = 0.84).

Floating a constant failed to improve the correlation. The disparity in goodness of fit found

between equation 4-17 and equation 4-11 is consistent with the notion that 7r' reflects

area-aggregated, rather than area-normalized, charge density on the solute surface.
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4.4. Conclusions

A method has been developed to estimate the polarity/polarizability parameter, 7rH, for
new solutes. This empirical parameter has been purported to capture solute electrostatic
contributions to the solvation free energy, with minimal interference from solute-solvent
hydrogen-bonding interactions. Nevertheless, r has conventionally eluded reliable
correlations with more fundamental quantities. Moreover, its ambiguous physical origin has
been presumed to reflect a conserved solute property over a wide range of solvent
environments. Despite its complicated inception, 7r H appears to be accurately explained by
two solute properties: a polarizability term and a computed solvent accessible surface
electrostatic term. This result supports Abraham et al.'s contention that solute-solvent
interaction free energies are mostly separable into solute-solvent hydrogen-bonding, solvent
cavitation, solute polarization, and solute-solvent electrostatic interactions, to a substantial
extent. Additionally, correlations found between 7r H and electrostatic descriptors
consistently indicate that a solute electron isodensity surface is a better basis for
electrostatic computations than a Bondi fixed atomic radii surface. Results here show that
r2 is not very sensitive to the choice of isodensity surface in the 0.0001 to 0.0004 e-/bohr'

range, additionally corroborating the robustness of this particular type of surface. This
directed the development of a model for 7r2; however it may additionally inform the
ongoing debate over what type of solvent accessible surface is most appropriate for
continuum solvation free energy computations more generally.

For practical applications of 7rH estimation, I recommend equation 4-12, which has an
estimated 2r standard error of about 0.11; i.e, using the efficient HF/MIDI! method for
computation of EV 2 at a 0.0004 e-/bohr' SAS, in the presence of a SCIPCM or IPCM
dielectric field with E, = 78.3. However in (not unusual) cases where SCIPCM or IPCM
may be computationally expensive or poorly convergent, similar results may be obtained
by using PCM to generate the dielectric field, followed by computation of EV 2 or ZU at
the 0.0004 or 0.0001 e-/bohr 3 SAS,. Unlike previous group contribution approaches, the
model could be practically applied to any moderately small (< 20 non-hydrogen atoms)
molecule containing C, H, N, 0, S, F, Cl, and Br.

The uncertainty in predicted AG,,,, values propagated from error in 7r2Hred calculations
depends on the magnitude of the LSER coefficient, s, in equation 4-1. The s term indicates
the change in electrostatic interaction that the solute will experience in going between the
two solvation environments, as defined by AG,01,. The largest documented s value is
probably that for air-water partitioning, where s = 2.55 (42). In this limiting case one may
therefore expect a typical log P error of ~ sa, = 2.55 x 0.11 = 0.28, or a factor of 1.9 in
the partition coefficient, as a result of the uncertainty in the 7r2 model proposed here.

HF/MIDI! and B3LYP/6-311G(2df,2p) molecular orbital computations of gas phase
dipole moments compared favorably to measurement data with correlation coefficients of
0.96 and 0.975, respectively. Given this performance for charge distribution estimates of
small and medium sized molecules, I do not expect significantly better results for
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prediction of the electrostatic variable in rH r. In addition to molecular orbital model
limitations, the largest source of error in 72,pred values is probably contamination by
solute-solvent hydrogen-bonding interactions inherent in the original development of solute
7H values. This small amount of blending of 7r H with other physical processes probably
also reflects the extent to which the LSER assumption of linearly separable physical
processes is simply inappropriate.

In future work, extension and validation of the model using a wider range of elements,
such as Si, P, and I (to which the MIDI! basis set has been extended (46)) would contribute
added insight and utility to this investigation. Additionally, development of general LSER
approaches which rely on more physically transparent parameters such as computed
electrostatics descriptors may offer incisive insights. Such studies could more deeply
evaluate the assumptions and limitations of the LSER approximation, thereby leading to a
better understanding of these highly successful but preponderantly empirical models.
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Chapter 5
Illustrative environmental transport calculations

for the hypothetical gasoline additive, n-pentyl nitrate

5.1. Introduction

Preceding chapters have described methods that could be used to either forecast chemical
environmental fate or estimate environmentally relevant chemical thermodynamic properties. In
realistic applications, however, several modeling tools would probably be applied in tandem. It
is illuminating to consider combined environmental fate forecasts for a "novel" compound, based
on physical properties which are unknown and therefore must be estimated. In the following
chapter, a set of example calculations has been assembled, in order to: (a) demonstrate how the
previously described modeling tools would be applied to a new compound; (b) identify gaps in
information that arise; (c) assess propagation of uncertainty through the linked models; and
(d) discuss the ultimate utility and limitations of the entire analysis to decision-makers.

As an illustrative case study, I will presume that n-pentyl nitrate (nPN) has been proposed by
industry scientists as a novel octane-enhancing gasoline additive:

0

0-

Figure 5-1. n-pentyl nitrate (nPN)

Available physical-chemical data of nPN in the scientific literature were limited (Table 5-1).
Several properties of nPN relevant to atmospheric fate have been measured: i.e., reaction rates
with light and hydroxyl radical; air-water partition coefficient. But properties pertaining to nPN
in fuel mixtures, such as the gasoline-water partition coefficient or volatility in gasoline
(gasoline-air partition coefficient) were not found, and properties relevant to nPN transport in the
subsurface (organic matter-water partition coefficient) were not found. Additionally, the

Table 5-1. Known physical-chemical properties of nPN

Excess molar refraction (1) 0.15
Boiling point at 1 atm (2) 157 C
Liquid vapor pressure at 25 C (2) 6.7x10-3 atm
Air-water partition coefficient at 25 0C (2) 0.07 (dimensionless)
Tropospheric photodissociation ratea (3) 0.17 day'
Hydroxyl radical reaction rate constant (4) 3.3x10- cm3 molecule- s-1
a Clemitshaw and co-workers measured quantum yields and photodissociation rates of nPN over a
range of light wavelengths, and then used these data to extrapolate diurnally averaged rates of nPN
dissociation due to exposure to sunlight at 400 N latitude in the lower troposphere during July.
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literature search revealed no toxicity data. Given the limited information about this compound,
how would one assess its behavior in the environment resulting from use in gasolines? We
would like to determine whether it is an environmentally acceptable amendment to gasoline, and
at what levels, based on physically meaningful forecasts. In order to assess whether significant
human exposures to nPN could result from its use in gasoline, two relevant environmental
transport scenarios will be considered. First, I will examine the likely threat that this compound
would pose to subsurface community water supplies, assuming that it is not rapidly degradable in
the subsurface. Second, I will forecast the urban air quality consequences of volatile emissions
of nPN from automobiles in a typical U.S. airshed (Boston, MA). Much of the physical property
data required for such forecasts are not included in Table 5-1; hence these parameters will be
estimated (partly) using tools developed in the thesis.

Although federal agencies have not (to my knowledge) set any exposure limits for nPN, I
hypothetically supposed that toxicological assessments suggest an average human nPN dose of
52 ptg/day to be safe, regardless of the route of exposure. Hence one could conjecture the
following exposure thresholds: 51 ppb in drinking water, assuming a daily drinking water intake
of 2 L; and <100 ng/m 3 in ambient urban air, assuming a daily air intake of 20 m3 (5). I
emphasize that these presumed human toxicity thresholds are purely fictitious; they are
suggested only for didactic purposes, in order to provide a target of "acceptable" chemical
exposure levels for the example calculations shown here. However, this supposition highlights
an important data need: in order for exposure assessment models to give meaningful results, we
require some kind of outside information about what exposure levels would be tolerable.

When several models are successively linked, their respective errors add together, and this
may attribute to significant uncertainties in the final desired forecast or analysis. In order to
track parameter uncertainties through the calculations presented here, first order error-
propagation analysis was applied (6), described briefly as follows. It was always assumed that
model parameters (or in some cases, the log-transformed parameters) had errors which were
normally distributed and uncorrelated with the error distributions of other parameters. Under
these conditions, the propagated variances of the dependent variable (model prediction) relating
to each uncertain independent variable (model parameter) were superpositionable, or additive
(7). Each model parameter's contribution to the uncertainty of the dependent variable was
approximated using the first Taylor series term of the dependent variable variance with respect to
the variance of the model parameter. Consequently, the summed contributions of model input
parameters to the model prediction uncertainty could be described as (7):

CY (x, x21,..= (xl Y2 + (X2 Y2 2 +...a ) 2(5-1)Y t\X21 a a2 X3

where y is the model predicted variable, x1, x2, and x 3 are the model input parameters, and ao is
the variance of parameter i. In this way, parameter uncertainties could be added and propagated
through the linked estimation models - the terms "uncertainty" or "error" as used in this chapter
always refers to ±a (one standard deviation) of the input parameter or predicted variable of
interest.
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5.2. Physical property estimation I: LSER solute parameters of nPN

Experimentally determined LSER solute parameters were not available for nPN. However,
they could be estimated using the AbsolvTM (1), which employs the fragment contribution
method of Platts et al. (8). Separately, the solute polarity parameter, n2 H, could be estimated with
the approach described in Chapter 4. Integration of equation 4-10 along an HF/MIDI!-computed
0.0004 e-/bohr 3 isosurface in the presence of a SCIPCM dielectric gave IVS2= 8.24 kcal A/mol
for nPN. The measured R2 was 0.15 (1); hence, application of equation 4-12 gave a T2H estimate
of:

H = 0.47R 2 +0.0921V 2 0.11 =0.47x0.15 +-0.092x8.24 ±0.11 = 0.83 ±0.11 (5-2)

which agreed with the it 2H and R2 predictions of the fragment method of Platts et al. (Table 5-2).

Table 5-2. LSER solute parameter estimates and uncertainties for nPN

solute parameter AbsolvTM prediction Equation 5-2
R2 0.22 ±0.09

72H 0.83 ±0.19 0.83±0.11t2 H

U2 H 0.00

$2H 0.39 ±0.15
Vx 1.046a

a The solute term V, is defined as a fragment-contributable quantity (9), hence
uncertainty estimates do not apply.

5.3. Physical property estimation 11: the gasoline-water partitioning of nPN

Given the LSER solute parameters (Table 5-2), one could estimate hypothetical gasoline-
water partition coefficients (Kgw) of nPN using the LSER mixing rule described in Chapter 3.
Let us suppose that nPN has been proposed as an amendment to the conventional gasoline
reported in Table 3-2, at possible nPN addition rates ranging from <0.01 vol% to 25 vol%.

First, the case of a dilute (< 0.01 vol%) nPN amendment to the gasoline was considered. It
was assumed that the gasoline was equilibrated with a contacting aqueous phase; that negligible
water entered the gasoline phase; and that organic components in the aqueous phase were at
insufficient concentrations to affect the aqueous solvent properties. In this case, equation 3-5
could be applied directly to the gasoline-water system, using the solvent component substitutions
described in Chapter 3 and the corresponding LSER coefficients (Table 3-4), resulting in the
following gasoline-water LSER:

logK, = -0.171+0.625R2 -1.283 x - 3.272ac -4.715pH + 4.393Vx ±0.4 (5-3)

The reader is reminded that the water-air LSER coefficients in Table 3-4 could be subtracted
from a set of solvent-air LSER coefficients, to give the corresponding solvent-water LSER
coefficients. I applied the ab initio t2H estimate (equation 5-2) and other AbsolvTM-predicted
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LSER solute parameters (Table 5-2) to equation 5-3 and propagated the uncertainty of the solute
parameter predictions together with the estimated LSST-LSER uncertainty. Thus I estimated:

log Kgw, nPN = 2.00 ±0.85 (5-4)

for the dilute nPN-amendment case. The uncertainty of this log Kgw estimate is dominated by
error of the 2H prediction and error of the LSST-LSER method. This highlights the need for
improved approaches to estimate LSER solute parameters and continuing work on mixtures
modeling.

Next, increased nPN additions to gasoline were considered. With higher amendment rates,
nPN becomes an important solvent component and thereby contributes additional uncertainty to
the log Kg, estimate. According to the LSST-LSER mixing rule, the LSER coefficients for nPN
solvent are needed in order to solve equation 3-5 for gasolines containing significant
concentrations of the additive. Since LSER coefficients describing nPN solvent were not
available, I bounded the problem by considering two limiting cases. A "nonpolar solvent"
limiting case was defined by the alkane-air LSER coefficients (Table 5-3). Based on inspection
of other organic solvent LSER coefficients (Table 3-4), a "polar solvent" limiting case was also
described, using the alkane-air LSER with modifications to coefficients s (+1.0), a (+5.0), and b
(+1.0). nPN exhibits electrostatic surface potential comparable to that of an alkyl alcohol, has an
excess polarizability similar to that of cyclohexane, and is not a hydrogen-bond donor;
consequently these LSER solvent coefficient estimates were considered 95% confidence limits.

Table 5-3. Two suggested bounding cases of LSER solvent coefficients for nPN

c r s a b m
nonpolar -0.71 1.23 0.89 0.30 0.02 3.39
polar -0.71 1.23 1.89 5.30 1.02 3.39

Fuel mixtures having abundant nPN additions might be sufficiently polar to cause significant
mixing between the aqueous phase and the gasoline phase, so the assumption of constant system
composition was relaxed for these cases. In order to solve these mixture systems, components of
the gasoline and aqueous phase were allowed to exchange between the two phases by iterative
calculation of $ig, $jw, and Kgw,i for each component i, until these parameters were self-consistent
in successive iterations, according to the LSST mixing rule (equation 3-5). Consistent with
equation 3-5, a gas (air) phase was taken to be the reference phase. The organic phase was
assumed equilibrated with a much smaller volume water, so that dissolution of gasoline
components into the aqueous phase did not significantly diminish their abundance in the organic
phase; this was considered an appropriate approximation near the gasoline-water interface of a
subsurface release. Specifically, the procedure was:

Step 1 (a) Assume pure aqueous phase ($,w = 1; $j = 0 for all i # w).
(b) Assume gasoline composition as conventional (Table 3-2) + nPN amendment.
(c) Go to step 2.

Step 2 (a) Calculate Kgw,i for all gasoline and aqueous components using equation 3-5, based
on the system composition (Oiw and $ig values) of the previous step.
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(b) If this is the first iteration of the procedure, go to step 3.
(c) Otherwise, check to see if the relative change in Kgw,i value for any system

component i exceeded 10~9 during this update step. If yes, then go to step 3; if no,
then the system is considered equilibrated (end of calculation).

Step 3 (a) Compute new $jw values of each organic (non-water) component resulting from
transfer of gasoline components into the aqueous phase, based on the organic
phase composition ($ig values) and Kgw,i values of step 2.

(b) Update the water content of the aqueous phase to account for the added gasoline
components: $,w = 1 -joi4 w for all i # w.

(c) Compute a new water concentration in the organic phase ($wg value) using the
gasoline-water partition coefficient for water (Kgw,,) given in step 2 and the $,"
value calculated in step 3(b).

(d) Update the concentration of each organic phase component to account for the
water that has been added to the organic phase; $i /(n$=o g ).

(e) Go to step 2.

where convergence was defined by step 2(c). For nPN amendments of up to 25 vol%, the LSST-
LSER model predicted negligible amounts of water in the gasoline phase, using either set of the
bounding nPN solvent LSER coefficients in Table 5-3. The uncertainties generated by the lack
of good nPN LSER coefficients (Table 5-4) were tolerable - although the solvent properties of
nPN were highly uncertain (Table 5-3), this did not significantly affect the total estimated
uncertainty of log Kgw calculations. In this analysis, the uncertainty of predicted log Kgw values
was dominated by the uncertainty in the b0 2 H term of equation 5-3 (bxac = -4.72x(±0. 15)

± 0.7) and the anticipated error of the LSST-LSER mixing rule (YLSST ~±0.4).

Table 5-4. Estimated nPN gasoline-water partition coefficient
values at varying gasoline amendment rates

nPN additiona calc. log Kgw,nPN nPN solvency errorb total uncertaintyc
infinite dilution 2.00 0.00 ± 0.85
0.01 vol% 2.00 -0.00 ± 0.85
0.05 vol% 2.00 -0.00 0.85
0.2 vol% 2.00 -0.00 0.85
1 vol% 2.00 -0.00 0.85
5 vol% 2.02 + 0.02 0.85
25 vol% 2.08 +0.11 0.86

a The nPN concentration in gasoline. b The estimated uncertainty of the calculated log Kgw,npN propagated from the
assumption that the Table 5-3 limiting cases describe a 95% confidence interval of nPN solvent LSER coefficients.
c The total estimated log Kgw,nPN uncertainty, including propagated solute parameter prediction error (Table 5-2),
LSST-LSER error (-0.4), and nPN solvency error.

5.4. Physical property estimation III: organic matter-water partitioning of nPN

The organic matter-water partition coefficient (log Kom) of nPN provides instrumental
information about its subsurface transport behavior. The log Kom could be readily estimated
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from a log Kow linear free energy relationship (LFER), consequently I first estimated the latter
property for nPN. Applying the log Kow LSER (10):

log Kw = 0.088+0.562R2 -1.054a H +0.034aH -3.460Ip +3.814V +0.12 (5-5)

and using the estimated solute parameters for nPN, I found:

log KOWN = 2.0 ±0.6 (5-6)

Similar to the case of the log Kgw,nPN estimate, the uncertainty of the log Kow,nPN estimate was
dominated by error in the bI 2H term. The log Kow,nPN estimate did not compare very favorably to
the measured log Kow value of its structurally related isomer, isopentyl nitrate (log Kow = 2.84
(11) for the structure (CH3)2CHCH2CH 2ONO 2). This suggests that the error of the predicted log
Kow,nPN may be greater than that given in equation 5-6. Taking the equation 5-6 log KOw,nPN

estimate, a log Kom-log Kow LFER (12) for polar solutes was employed:

log Kom = 0.59logKw + 0.78 ± 0.2 (5-7)

Consequently:

log Kom,nPN = 1.9 ± 0.4 (5-8)

5.5. Impact of nPN on subsurface community water supplies

Having established estimates of the gasoline-water and organic matter-water partitioning
behavior of nPN, we are in a position to consider the behavior of this compound in the
subsurface. The physical-chemical community supply well screening model (chapter 2) was
applied to nPN, using the Kom,nPN estimate of equation 5-8, the nPN gasoline concentrations and
Kgw,nPN estimates given in Table 5-4, and the hydrogeologic parameters of Table 2-2. I thereby
forecasted water concentrations ranging from 2 to 40 ppb in vulnerable community supply wells,
expected to occur within less than a decade (Table 5-5).

Table 5-5. Expected community supply well contamination levels and arrival times
as forecasted by the physical-chemical well screening model (equations 2-18, 2-22)

nPN addition Cweii forecast [ppb] tan-ival forecast [yrs]

0.01 vol% 0.02 6
0.05 vol% 0.1 6
0.2 vol% 0.4 6
1 vol% 2 6
5 vol% 10 6
25 vol% 44 6
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Before interpreting these forecasts, let us first address their expected uncertainty. In chapter
2, variability in the model hydrogeologic parameters was shown to result in an uncertainty
ranging from ± 0.83 to ± 0.93 in the log Cwe estimate, for ethylbenzene and MTBE, respectively
(I will assume aiogc i (hydrogeol.) = ± 0.90 for nPN). It would be additionally informative to

evaluate the contribution of Kgw,nPN to uncertainty in the community supply well screening model
forecast. I assumed that ln Kgw uncertainty is normally distributed and that ln Cwen variability is
normally distributed (which is supported by the analysis in chapter 2). In this case, the
propagation of ln Kgw uncertainty in the ln Cweii forecast could be approximated vis-a-vis
equation 5-1:

na In Cwlfc ln K \ w= a5
lI( a ln K" (5-9)

From equation 2-18, we can express the derivative in equation 5-9 in
parameters, as:

terms of measurable input

alnCwe, _ a ln
aln Kw aln Kw

0.2vxCgVg

RQwe"

~I

2 Vg )' yh3,2 (hgSg+ 
2a.L

0 a z,10

Expanding the log-transformed term of equation 5-10, it was found that:

alnCwell a Fn 0.2vxCgVg

a in Kw a ln Kw RQwell

1 K___2(V_In 0.1
2 R 0

Invoking the right-hand-side substitution Kgw2 = exp(2 In Kgw), equation 5-11
analytically with little difficulty, giving:

alnCwell 1 (2)
a In K 2

01( gw 7Vg I (hgSg)3
0. 1 R ) K(hS) 2

R 0 az'1

2

.1(Kgw) (Vr (hgSg)2 +2aXLR ) ) azb)

which was simplified to the final expression:
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was solved
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alnCwel _ -1 (5-13)
a ln Kw 2

1+20a L a 0< (h Sr 2X Z1 Kg V 9 9g

Using equations 5-9 and 5-13 and the previously estimated uncertainties of log Kgw,nPN
(Table 5-4), the contribution of Kgw,nPN to the Cweii forecast variability was estimated
(Table 5-6). The cumulative model forecast variability was not found to be substantially
increased by uncertainty in the log KgW,nPN . I did not explicitly analyze the influence of Kom,nPN

uncertainty on the variability of Cwe1 forecasts. Inspection of equation 2-18 reveals that Cwel is a
considerably weaker function of Kom than of Kgw; hence the Kom,nPN was not expected to affect
the Cwe forecast variability in an important way.

Table 5-6. Estimated uncertainty of forecasted community supply well nPN
contamination levels as related to hydrogeologic parameters and the Kgw parameter

nPN errora in a ln C e log Kgw-induced hydrogeologic log Cwe [ppb]d
addition log Kgw a ln Kgw errorb in log Cwei errorc in log Cweii + total errore

0.01 Vol% ± 0.85 -0.28 ± 0.24 0.9 -1.70 0.93
0.05 vol% ± 0.85 -0.28 ± 0.24 0.9 -1.0 0.93
0.2 vol% ± 0.85 -0.28 ± 0.24 ± 0.9 -0.40 0.93
1 vol% ± 0.85 -0.28 ± 0.24 ± 0.9 0.30 0.93
5 vol% ± 0.85 -0.30 ± 0.26 ± 0.9 1.00 0.94
25 vol% ± 0.86 -0.36 ± 0.31 ± 0.9 1.64 0.95
Standard error estimates from Table 5-4. b Standard error of log Cweii resulting from Kgw variability, calculated

using equations 5-9 and 5-13. c Standard error of log Cw,11 resulting from hydrogeologic parameter variability (Table
2-2). d Forecasted log Cei averages (Table 5-5). e Combined standard error of log Cweii resulting from
hydrogeologic variability plus Kgw uncertainty (equation 5-1).

Based on the drinking water exposure criteria that I supposed in section 5-1 (an nPN drinking
water limit of 1 ppb), most of the suggested gasoline formulations fail to adequately protect
community water supply resources (Table 5-6). Unless nPN is shown to be rapidly and
prevalently biodegradable in subsurface environments, the transport forecasts described here
suggest that gasoline formulations amended with >0.05 vol% nPN could threaten many
community water supplies in high-use areas. If additional work demonstrated that nPN persists
in typical subsurface environments for years, a strict nPN amendment limit of 0.05 vol% should
be considered and potential health impacts of nPN exposure should be rigorously investigated.

5.6. Impact of nPN volatile emissions on urban air quality

In addition to contamination of subsurface water supplies, nPN could affect urban airsheds
due to volatile losses from automobiles. I conducted a screening estimate of nPN levels in the
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Boston primary metropolitan area, assuming a 0.05 vol% nPN amendment to gasoline (based on
the restriction set by the previous calculation). Based on the work of Kawamoto, Arey, and
Gschwend (13), it was proposed that, for screening purposes, the urban air concentration of a
volatile gasoline additive could be conservatively estimated as:

NPN emission rate Ca dVa

Csteady state Vair Vair dt (5-14)air 1 dV *O}+
a'r + k OH,nPN I. OH} + k photo,nPN

Vair dt O~P

where Vair is the volume of the lower troposphere mixed layer of the Boston, Massachusetts,
primary metropolitan area (5x1012 M3), assuming a mixing height of 1000 m, dVair/dt is the
atmospheric flushing rate due to wind (4x1013 m3/day), assuming an average wind speed of
3.5 m/sec, Cair,in is the upwind boundary concentration of nPN in the atmosphere (assumed zero),
kOH,nPN is the rate of reaction of hydroxyl radical (-OH) with nPN (estimated as 4.6x 10-2
cm 3/molec/sec at 298 'K using the fragment contribution of Kwok and Atkinson (14), in
reasonable agreement with the reported value of 3.3x10- cm3/molec/sec in Table 5-1), {O H}is
an estimate of the diurnally averaged concentration of hydroxyl radical in the lower troposphere
during the summer months (-2x10 6 molec/cm 3), and kphoto is the photolytic dissociation rate in
the lower troposphere (0.17 day-; Table 5-1). Based on the chemical of nPN, it may also be
advisable to consider the possibility of hydrolysis in the atmosphere, however neither data nor
computation methods were readily found to estimate the hydrolysis rate constant(s).

Precipitation was not expected to significantly contribute to nPN removal from the Boston
urban airshed. Heavy summer rain in Boston may amount to accumulation of a few cm during a
day. If I assumed that a 5 cm rainfall was completely saturated with nPN scavenged from the
lower mixing layer of the troposphere (i.e., the layer between ground level and about -1000 m
height), then the mass ratio of nPN in the atmosphere relative to that in the rainfall could be
estimated as Ra, = Kaw,nPN*Vair/Vwater = 0.07*1000/0.05 = 1400. Since Ra/w >> 1, this
calculation indicates that rainfall would not significantly affect the atmospheric reservoir of nPN.

In order to calculate the emission rate of nPN to the Boston primary metropolitan area, an
estimate of nPN gasoline-air partitioning was needed. The gasoline-air partition coefficient of
nPN could be estimated by adding the gasoline-water partitioning LSER for nPN (equation 5-3)
with the water-air partitioning LSER (15), assuming Kga,nPN = Kgw,nPN*Kwa,nPN. This
approximation was considered reasonable, since the LSST-LSER model did not predict much
entrainment of water into the gasoline phase, for the gasoline composition reflected by equation
5-3. Using the nPN solute parameters in Table 5-1, the water-air partition coefficient LSER was
used (15):

logKwa = -0.994+0.577R 2 +2.5497E +3.813a4 +4.841fpH -0.869V, 0. 15 (5-15)

giving a predicted log Kwa,nPN = 1.9 ± 0.8. This was consistent with the measured log Kwa,nPN
value of 1.15 (Table 5-1). As with the Kgw,nPN estimate, the Kwa,nPN prediction uncertainty largely
owed to the significant contribution of the b$ 2 H term of equation 5-15 (bxro, = 4.84x(±O.15)
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± 0.7). The gasoline-air LSER was therefore estimated as:

logKga = -0.171+0.625R2 -1.283g H -3.272 H -4.715p H + 4.393V, ± 0.4

-0.994+0.577R2 +2.549 H H3.813aH H4.841PH -0.869V, ±0.15

logKga =-1.16+1.21R2 +1.27RtH +0.54ac +0.13H + 3.49V, ± 0.43 (5-16)

This resulted in a calculated gasoline-air partition coefficient of:

log KganPN =3.86 ±0.50 (5-17)

using the Absolvm -predicted parameters (Table 5-1), and:

log Kga,nPN =3.86± 0.47 (5-18)

using the ab initio t 2H estimate (equation 5-2) with the remaining Absolv -predicted
parameters. The LSST-LSER approximation was the largest source of uncertainty in log Kga,nPN

estimates. The estimated error of the log Kga,nPN predictions were considerably smaller than that

of the log Kgw,nPN prediction: this was largely because $2H, a highly uncertain solute parameter, is

critical to the log Kgw,nPN estimate (equation 5-3), but D2H is an insignificant parameter in the log
Kga,nPN estimate (equation 5-16). The partial pressure of nPN in gasoline vapor implied by the
gasoline-air partition coefficient, at 298 "K is given by:

PNPN YNPN,g XNPN,gPNPN

X NPN,g RT (5-19)

Kga Vg

where ynPN,g is the activity coefficient of nPN in the gasoline mixture (using the pure nPN liquid
reference state), XnPN,g is the mole fraction of nPN in gasoline, p nPN is the pure liquid vapor
pressure of nPN at 298 'K [atm], R is the molar gas constant (0.08206 L atm mol 'K-1), T is
temperature [*K], and Vg is intensive (molar) volume of the gasoline [L mol-1]. The molar
volume of gasoline was related to the mole fractions and molar volumes of the gasoline
constituents, assuming that the partial molar volume of mixing was negligible:

Vg = X;Vi(5-20)

The gasoline composition was, as before, taken to be the conventional gasoline described in
Table 3-2, plus an nPN amendment of 0.05 vol%, resulting in a calculated Vg = 0.12 LJmol.
Using this composition, the partial pressure of nPN was calculated using equation 5-19, and the
partial pressures of all other gasoline components were computed using UNIFAC-calculated
activity coefficients for the unamended base gasoline (16) (i.e., it was assumed that the presence
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of nPN did not significantly change the nonideality coefficients of other gasoline components).
The nPN mass fraction in the gasoline vapor at 298 'K could then be estimated as:

FvaP P nPN MnPN
;PN =pmP (5-21)

im

where mi is the molar mass of gasoline component i, and the denominator represents a sum of
weighted partial pressures for all gasoline components. Using these approximations, the total
vapor pressure of the gasoline mixture was found to be 0.49 atm, and nPN was estimated to
compose 50 ±30 ppm (by mass) of the gasoline vapor. The FvapPN uncertainty estimate was based
only on the propagated uncertainty of the log Kga,nPN. The automobile volatile emission rate of
nPN into the Boston primary metropolitan area airshed could thus be estimated (13) as:
(86 g gasoline vapor/day/vehicle)x(5x10- g nPN/g gasoline vapor)x(2.8x106 vehicles)=
12 kg nPN/day.

Applying the source function estimate and the previously suggested transport parameters to
equation 5-14, the steady state nPN concentration on a typical summer day in Boston was
forecast to be:

C stYeady state = 0.2 ± 0.2 ng/m 3  (5-22)

where the uncertainty estimate accounts for the variability in the emission rate and the estimated
variability of the diurnally averaged physical parameters during a four-day experiment in Boston
during September of 2000 (13). In the event that an inversion layer prevented significant
movement of the lower troposphere air mass over the urban area, air flushing might be
negligible, and the new steady state concentration of nPN (in which the only removal process is
reaction with -OH) was estimated to be an order of magnitude higher in concentration:

C taystate 3
Cairy (no wind)= 2± 2ng/m3  (5-23)

If such conditions are additionally exacerbated by unusually low -OH and light levels (e.g., due
to dense cloud cover), nPN concentration forecasts would be even higher.

Although variable conditions create widely ranging forecasts of nPN concentration in the
Boston urban atmosphere, these levels are still two orders of magnitude below air concentrations
which are (hypothetically) expected to result in potentially unhealthy exposures (>100 ng/m3).
These screening assessments ignored many other factors, for example: other mechanisms of
transport such as nPN air-water exchange into surface waters or precipitation, diurnal variability
of traffic, other sources of nPN in the atmosphere (17), and possibly increased gasoline
volatilization rates associated with higher ambient temperatures (I have assumed T = 25 *C here).
However, these effects were not expected to change forecasted nPN diurnal average levels in
urban air by more than an order of magnitude.
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5.7. Conclusions and recommendations

In this chapter, I used the nPN case study to: illustrate the usefulness and limitations of
forecasting models designed to screen the environmental impacts of proposed gasoline additives;
highlight information needs; and identify major sources of uncertainty in such approaches. In
order to conduct a meaningful forecasting assessment, some information about health effects of
nPN was required, i.e., preliminary acceptable levels of human exposure to nPN in water and air.
Several sources of error or uncertainty produced challenges to the thread of analysis, and these
illuminate areas for future improvements to the approaches. First, LSER parameters were not
available for nPN. The Absolvm and ab initio methods were used to estimate a set of nPN
LSER solute parameters, and uncertainty in the 2 H parameter subsequently produced significant
uncertainty in the predicted log Kgw,nPN. The other major origin of uncertainty in log Kgw,nIPN

predictions was the error of the LSST-LSER approach. As a result, use of the n 2H estimate given
by equation 5-2 did not significantly improve the uncertainty of the log Kgw,nPN estimate - other
sources of error simply dominated the Kgw,nPN prediction. Although measured LSER solvent
coefficients of nPN were not available, consideration of bounding cases suggested that this
information gap was unlikely to cause significant (additional) inaccuracies in log Kgw,nPN

predictions. However, the reader is reminded that LSST-LSERs may be inaccurate for gasoline
mixtures which are radically different (i.e., not composed mostly of aromatic and aliphatic
hydrocarbon components), particularly if pure phase LSER coefficients of the major components
are not available. For log Kga,nPN estimates, the LSST-LSER approximation was the major
source of uncertainty. It is worth considering whether better log Kgw,nPN and log Kga,nPN estimates
could have been made using UNIQUAC (18) or UNIFAC (16): unfortunately, the solute-solvent
interaction parameters needed for the nitrate (-ON0 2) functionality are not currently available for
these methods. This highlights the motivation for the methods described in Chapters 2 and 3,
which are designed to handle a broad set of solute-solvent interactions that may not be treatable
using more traditional approaches such as UNIFAC or UNIQUAC. In spite of the significant
uncertainties of log Kgw,nPN and log Kga,nPN estimates, the expected variability of Cweii and Cair
forecasts were dominated by other (physical) parameter variabilities. These order-of-magnitude
environmental concentration forecasts then generated the basis for useful comparisons with
(probably equally uncertain) exposure limits. Consequently, decision-making criteria were
attainable in the face of substantial uncertainties.

It should be emphasized that these screening model results suggest that, at 0.05 vol%
addition levels to gasoline, nPN would be an acceptable additive in terms of contamination of
community subsurface water supplies and nonpoint-source contamination of the Boston urban
airshed (given the arbitrary air and water exposure thresholds that have been chosen). The work
outlined here reflects only a subset of the preliminary studies that should be performed for nPN,
among many other additives that might be hypothetically considered. Other similar screening
models should be developed to: address potential nPN exposures of service station workers;
consider nPN impacts on surface water supplies; evaluate the effects of nPN on wildlife and its
tendency to bioaccumulate in biota, particularly if it is persistent; and so forth. Emphasis has
been placed on developing computationally streamlined forecasting approaches which estimate
order-of-magnitude outcomes. If, among many considered gasoline additives, such screening
evaluations prioritize nPN as a highly likely candidate, additional work should be done before
nPN is actually added to gasolines: e.g., to extensively study the potential health effects of
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exposure to nPN; to understand its interaction with urban atmospheric contaminants (including
reaction daughter products); and to evaluate its degradability in a wide set of environmental
compartments (e.g., in the troposphere, in the subsurface, in surface waters, and in humans and
other biota), among other environmental and health considerations.
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Chapter 6
Summary and conclusions

The goal of this work was to develop practical models for anticipating the environmental
impacts of synthetic organic chemicals. First, the scope of the problem was emphasized -
decision makers need tools which will enable them to prioritize the health and environmental
testing of currently used commercial chemicals. Likewise, approaches to pre-evaluate newly
proposed substances could focus industrial research resources towards those chemicals which are
likely to be environmentally benign, thereby reaping cost avoidance benefits both monetarily and
environmentally.

Gasoline mixtures provided a motivating case study, since quantitative strategies to anticipate
widespread gasoline contamination of urban air and subsurface water resources have not been
systematically developed. In response to these challenges, I developed and tested methods
designed to: (a) forecast environmental threats posed by newly proposed gasoline additives; and
(b) estimate environmentally relevant physical chemical properties of such compounds, in the
event that these properties are not previously determined.

In chapter 2, a model to forecast the widespread contamination of community subsurface
water supplies by new gasoline additives was presented. Conventional subsurface contamination
models have been largely developed to address the needs of local site assessments; consequently
they are tailored to specific site conditions rather than to specific fuel formulations. It was
therefore necessary to develop an approach which accounted for variability in hydrogeologic and
gasoline contamination conditions at sites near community water supply wells. As a result of the
model development, it was found that some hydrogeologic conditions are widely generalizable at
many or most community supply wells in the U.S.: unconsolidated and coarse grained aquifer
material, low sediment organic matter content, and shallow, unconfined saturated zones.
Consequently, I concluded that a representative physical regime with stochastic hydrologic and
gasoline release parameters could effectively capture the contamination risks borne by
vulnerable community supply wells. The forecasting model correctly predicted the range of
methyl-tert-butyl ether (MTBE) contamination levels (- 1 to 100 ppb) observed in the set of
most severely affected U.S. community supply wells (about 8% of community supply wells in
sub-regions where MTBE is widely used).

The community supply well contamination forecasting model showed that other oxygenates
would behave similarly to MTBE, contaminating many wells at high concentrations (tens of ppb)
within a short period of time (a few years). Additionally, model calculations suggested that
benzene could widely contaminate drinking water supplies at levels near or exceeding drinking
water standards (5 ppb) if benzene was not biodegradable in the subsurface. This is a timely
forecasting result, because a degradable oxygenate additive such as ethanol could rapidly
consume dissolved oxygen down-gradient of the gasoline release. As a result of ethanol addition
to fuels, benzene (which is typically aerobically degraded) could experience prolonged
persistence in the subsurface, thereby creating a new threat of widespread water supply
contamination.
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In chapter 3, mixing rules for linear solvation energy relationships (LSERs) were used to
estimate the fuel-water partition coefficients of fuel solutes. Conventional LSERs are generally
fitted for solute partitioning between two relatively pure liquid phases. Consequently, it was not
clear how one would extrapolate existing LSERs to mixture systems such as fuels. Linear
solvent strength theory (LSST) and a solvent compartment model were used to generate mixture
system predictions of solute partitioning between various aqueous phase mixtures and fuels.
Without any fitting, both LSST and solvent compartment model extension of LSERs resulted in
accurate predictions of gasoline-water partition coefficients of both polar and nonpolar solute
(standard error - 0.4 log K) for systems in which the gasoline phase remained relatively
uncontaminated by water (a few vol% or less). This was much more accurate than using
Raoult's law to model the fuel phase for the same set of systems. Raoult's law has traditionally
been used to describe fuel-water partitioning of nonpolar chemicals of environmental concern,
but this approach fails for polar solutes in fuels. The LSST-LSER or CSCLSST-LSER estimation
methods could be used to treat both polar and nonpolar solutes in future fuel formulations which
resemble the systems considered here. The expected resulting errors (- 0.4 log K) were
considered tolerable for the purposes of environmental fate assessments, and the logarithmic
average of these two models (which I dubbed HSCLSST-LSER) gave considerably improved
predictions (- 0.26 log K ), due to a systematic offsetting of errors.

In chapter 4, a method was proposed for calculating the LSER solute polarity/polarizability
parameter, 7[H. Of the five solute parameters that have been developed by Abraham and co-

workers for use in LSERs (1), a H is the least physically interpretable. Additionally, the current

fragment contribution estimation method (2) for RH is not very accurate (standard error of 0.19

in the unitless R H scale), and it cannot treat solutes having previously unstudied moieties. Using
molecular orbital computational methods, I developed a computed electrostatic interaction scale
which, when combined with a polarizability parameter, R2 , correlates closely with a H for 90
solutes (r2= 0.93 to 0.96, depending on the parameterization of the method). Correlations
suggested that about 1/3 of RH variability could be explained by solute polarizability, and about

2/3 of iR variability could be related to electrostatic potential at the solute surface.
Additionally, calculations suggested that electron density may be a better indicator of solvent
accessibility to the solute than is the traditional fixed-atomic radii van der Waals surface
proposed by Bondi (3). The resulting model appeared to predict R H values for new solutes with

a standard error of 0.11 or 0.12 in the unitless RH scale - much more accurately than the

fragment contribution method. As a result of these efforts, 7r values can be estimated for new
chemicals which have not been previously studied, as long as these compounds are small to
moderately sized (less than -30 heavy atoms), nonionic, and composed of C, H, N, 0, S, F, Cl,
or Br.

In chapter 5, I conducted example calculations to illustrate combined application of the
models for a hypothetical uncharacterized gasoline additive, n-pentyl nitrate (nPN). Molecular
orbital calculations and fragment contributions were used to estimate the LSER solute
parameters for nPN. Estimated uncertainty in the subsequently predicted gasoline-water
partition for nPN (a standard error of about 0.85 in the log Kg,) was mostly due to error in the
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B2 H LSER parameter estimate and the LSST mixing rule approximation. The organic matter-
water partition coefficient of nPN was estimated with acceptable error (an estimated standard
error of 0.4 in the log Kom). By using the community supply well contamination screening model
to evaluate fuel formulations with different nPN amendment levels, it was found that fuel
mixtures of only 0.5 vol% nPN are expected to widely contaminate community supply wells at
drinking water threshold concentrations (fictitiously assumed - 1 ppb). Therefore it was
determined that, unless nPN is shown to be prevalently and rapidly degradable in the subsurface,
nPN should not be added to gasoline in amounts exceeding 0.05 vol%. Additional modeling was
conducted to forecast the expected volatile emission rate of nPN from automobiles and the
resulting impact on urban airsheds. At a 0.05 vol% amendment rate, nPN was expected to
typically contaminate urban air in the Boston metropolitan airshed at < 1 ng/m 3, which was well
within (fictitiously presumed) acceptable exposure thresholds.

These investigations demonstrated that while significant uncertainties may enter modeling
calculations (e.g., 0.85 standard error in the log Kgw of nPN), environmental exposure forecasts
nevertheless provide very useful decision making criteria. Realistically forecasted exposure
outcomes exhibit order-of-magnitude variability as a reflection of physical variability in the
environment. Additionally, other factors could change or diminish risks not accounted for here -
e.g., other industrial or natural sources of nPN could exacerbate urban air concentrations, or
degradation daughter products could pose unforeseen threats. Consequently such preliminary
modeling does not substitute for rigorous environmental risk assessment. However, screening
model predictions provide a rational and quantitative basis to calibrate the risks associated with
commercial chemical use and to direct the further study of compounds that would most likely
threaten air and water supplies. Similar efficient approaches should be developed to estimate the
chemical exposures of service station workers, consider the impacts of proposed gasoline
additives to surface water supplies, and evaluate large scale transport and long term persistence
of proposed gasoline additives in soils and biota of the natural environment. A suite of well-
designed screening models would enable future industry and regulatory decision makers to
rapidly, effectively identify fuel additives which are likely to be benign to the environment and
human health. As a consequence, severe environmental and societal costs associated with the
use of such fuel additives as tetra-ethyl lead and MTBE might be avoided in the future.
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Appendix A
Estimation of hydrogen-bond complex energies using
ab initio computational methods: current strategies

A.1. Introduction

As described in the main thesis, linear solvation energy relationships (LSERs) are powerful tools
for environmental fate modeling, as long as contaminant solute parameters are available or
estimable. The LSER solute parameters Vx and R2 can be estimated using group contribution
methods (1,2), and a method to estimate the LSER solute t2 H parameter was developed in chapter 4.
Consequently, methods to accurately estimate the only remaining LSER solute parameters, c 2H and

2H, would valuably extend LSERs to novel solutes. As discussed in chapter 4, the a2H and P 2H
parameters were developed directly from measured 1:1 hydrogen-bond (H-bond) complexation free
energies using linear free energy relationships. Consequently, in Appendix A I examine the
feasibility of predicting H-bond complex energies, which might then be used to extrapolate estimates
of u 2 H and 02 H. We will find that computing H-bonding interactions between molecules either in
solution or a gas phase poses a current research challenge.

Following Abraham and coworkers (3), a 1:1 H-bond complexation reaction in
tetrachloromethane solvent was defined as:

AH+B H >AH:B (A-1)

where AH:B is a complex of the H-bond donor, AH, and the H-bond acceptor, B. The Gibbs free
energy of the H-bond complexation reaction, AG"H, was defined as:

AG H = l(H= - [AH:BP (A-2)

S-RTn\K -RTln[AH][B])

where R is the molar gas constant (J mol-1 K-1), T is temperature in Kelvins, and [AH:B], [AH], and
[B] are the H-bonded complex and monomeric species liquid phase concentrations (mol/L), and KH
is the complexation equilibrium constant. By devising linear free energy relationships (LFERs)
between sets of measured log KH values, Abraham and coworkers constructed an empirical solute H-
bond acidity parameter, z2H (3). In LSERs, the C2H scale effectively describes solute-solvent H-
bonding contributions to gas-liquid partitioning free energies for a wide set of nonionic H-bond
donor solutes in a range of solvent media (4). Consequently, computational approaches to predict
KH values for untested H-bond donors with a reference H-bond acceptor would allow C2 H estimates
to be made for novel solutes; and this would significantly aid efforts to model the environmental fate
of unstudied compounds.

Quantitative predictions of H-bond complexation energies are partly difficult because
electrostatics, electron exchange, and electron correlation all contribute importantly to the weak
electronic binding of the complex (5). In particular, correct treatment of electron correlation effects
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is computationally expensive (6), and currently available methods might not predict such weak
intermolecular interactions (i.e., 5 to -30 kJ/mol for nonionic solutes in tetrachloromethane solvent
(3)) with very good accuracy unless one resorts to prohibitively expensive levels of theory. For
example, computed atomization energies of small molecules had errors of order -9 kJ/mol using the
B3LYP/6-31 1+G(3df,2p) method or -5 kJ/mol using G2 theory with the same test set (7). Similarly,
typical errors in computed proton affinities of a test set of small molecules were -5 kJ/mol using
either B3LYP/6-311 +G(3df,2p) or G2 theory (6). By comparison, accurate prediction of nonionic
H-bond complexation energies would require standard errors of 1-2 kJ/mol.

In addition to the computationally challenging panoply of electronic effects, rotational and
vibrational mode energy corrections may be important. The vibrational energetic changes associated
with H-bond complexation may be several kJ/mol (8-10). Additionally, non-negligible
anharmonicity in the H-bond modes generally needs to be considered (5,8,11,12). Molecular
rotational and vibrational partition functions are difficult to estimate for (liquid phase) solvated
species, so modeling these aspects of the problem may be nontrivial.

Finally, a computational artifact known as basis set superposition error (BSSE) may require
consideration. BSSE arises from artificial refinement of the wavefunction estimate in regions where
molecular orbital basis functions of the two-molecule complex overlap. Depending on the method
and basis set size, BSSE can easily lead to several kJ/mol inaccuracies in H-bond complexation
calculations (5). A standard correction to BSSE is the counterpoise method (6), which usually
increases the required computational effort several-fold. Consequently, if high level methods are
employed to model the H-bond complex, the counterpoise approach constitutes an expensive
correction.

My objective was to develop computational estimates of KH for nonionic complexes in
tetrachloromethane solvent. Using calculated H-bond equilibrium constants for a set of proton donor

species to a small reference proton acceptor, one might generate a LFER to extrapolate a2H values
for novel (proton donor) solutes. In the interest of illuminating research needs which could focus
future efforts, I have presented a set of illustrative test calculations which are practically
implementable for small to medium-sized nonionic molecules (i.e., up to -20 heavy atoms).

A.2. Theoretical considerations

Following Ben-Naim and Marcus (13), the chemical potential, pjs, of a solvated nonionic solute,
i, in liquid, s, can be described as:

i = Ag 0 1v(i,s)+ kTlnpi + kTlnA' - kTnqi (A-3)

where Ags50 v(i,s) is the Gibbs free energy of transferring the solute from a fixed position in vacuum
to a fixed position in the liquid phase, p is the number of the solute molecules per unit volume, Ai is
the de Broglie wavelength of the solute, and qi is the internal partition function of the solute in
vacuo. The kTln qi free energy term therefore relates the electronic, vibrational, and rotational
energy contributions of the solute molecule in an ideal gas. It was assumed that the vibrational and
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rotational states of the solute did not change significantly upon placement in solution; consequently
rotational and vibrational energies were treated using gas phase approximations.

Recall that the Gibbs free energy (equation A-2) for a 1:1 complexation reaction in carbon
tetrachloride solvent was:

AgH = -kT In PAH:B (A-4)
YPAH PB J

where NA AgH = AG H . Employing equation A-4 with the chemical potential expression (equation

A-3) results in an equilibrium formula for AgH in terms of the energy differences of more
fundamental processes:

AgH = (Agsov (AH : B,s)- Ag,1 ,(AH,s)- Ags0 ,(B,s))+
M SO (AH s A SON(A-5)

(kTln AHB-kTnAH -kTlnA3)-(kTlnqAB -AHBnq

Each of these energy terms will be considered in turn. The de Broglie wavelength is given by the
usual expression (14):

A rh2 i (A-6)

( 2mikTyr)

where h is Planck's constant, and mi is the mass of the solute. The solute internal partition function
can be expressed in terms of electronic, vibrational, and rotational partition functions, which are
assumed separable:

qj= qielecqivibqrOt (A-7)

The electronic partition function was assumed to reflect only the energy of the ground state (Fe):

Co

qielec = ( )e kT (A-8)

where K2(E) is the ground state degeneracy (14). The vibrational partition function expression
assumed that nuclear motion could be treated as independent harmonic oscillations (14):

hu1i

1,vi 71 hu (A-9)
1-e kT

where the vj represents a vibrational mode, and the zero-point energy correction is implicitly
included. The harmonic oscillator approximation was highly suspect, since hydrogen-bonded
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complexes are known to exhibit significant anharmonicity. The rotational partition function was
treated using the classical expression (14):

q Irot = KalbICfj2 J 87T2kT 2 (A-10)
G~o 2 h 2

where Ia, 1b, and I represent the moments of inertia of the solute molecule along the three principle
axes, and asym is the rotational symmetry number of the molecule.

These modeling approximations (equations A-6 to A-10) allowed electronic, vibrational,
rotational, translational, and solvation energetic effects to be practically computed and applied to the
Ag H term (equation A-5).

A.3. Computational approach

Twelve hydrogen-bond donor solutes which exhibit a range of hydrogen-bonding strengths and
moiety types were selected. Dimethylsulfoxide (DMSO) was chosen as a reference hydrogen-bond
acceptor, since it is a strong hydrogen-bond base of relatively small size. Computation of
AH:DMSO complex binding energies should generate a better signal to error result than complexes
using weaker bases that could have been chosen (e.g., water). Since DMSO is also reasonably small,
it added affordable computational overhead to wavefunction calculations of the hydrogen-bonded
complex. Measured AH:DMSO hydrogen-bond complexation energies were estimated from the
linear free energy relationship between solute c2H values and log KH for DMSO devised by Abraham
et al. (3):

log K'DMSO = 5.748aA -1.098 (A-li)

where log K H is a general solute hydrogen-bond donor scale, and had an estimated error of 0.096 in

the log KH soSO values (or 0.55 kJ/mol in the AGrxn) for the set of data (n = 51) which these workers

considered. Agrxn values were computed for each hydrogen-bond acid complexed with DMSO in
tetrachloromethane solvent by application of equation A-5; the relevant energy and partition function
terms were evaluated as follows.

All wavefunction and partition function calculations were performed with Gaussian98 (15) using
"tight" SCF (self-consistent field) convergence criteria. Solute reactant and complex nuclear
geometries were optimized to a low energy structure using the hybrid density functional theory
approach, B3LYP/6-31+G(d,p). Frequency calculations were also conducted at this level of theory
in order to verify that a stable structure had been found, and to calculate solute frequencies,
rotational energy, and translational energy. Single point calculations at these fixed conformations
were conducted using B3LYP/6-31 1++G(2df,2pd), in the presence of a PCM (16) dielectric field
with dielectric constant = 2.23 (corresponding to the measured dielectric constant of carbon
tetrachloride solvent (17)). Although they added significant computational overhead, diffuse basis
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functions were considered necessary to capture the long range electronic interactions of the
hydrogen bond (6). PCM-computed solvation energies were considered a suitable estimate of
Agso0I(solute, carbon tetrachloride), since carbon tetrachloride is a nonpolar and non-hydrogen-
bonding solvent (18,19). BSSE corrections were not employed due to time constraints; however this
effect is diminished for large basis sets (6). For example, Zhou and coworkers found BSSE
corrections of 1 to 4 kJ/mol using B3LYP with the 6-31++G(2d,2p) or larger basis sets for
hydrogen-bonding systems (20,21).

A.4. Results and conclusions

Computed AH:DMSO complexation AGrxn values overestimated measured values by an average
of +25 ± 9 kJ/mol for the solute set (Table A-1), that is, computed energies did not predict that
complexation is a very favorable process. Additionally, the correlation between computed and
measured AGrxn values was poor (r2 = 0.61). Not only the magnitude, but also the ordering of AGrxn
magnitudes for different solutes was incorrectly predicted. For example, cyanic acid was predicted
to have the most favorable complexation energy with DMSO, but it ranks as only the 8th lowest
measured AGrxn out of the set of 12 H-bond donor solutes. The binding energy, defined as:

AEin = -RT In qAH-Belec (A-12)
q AHelec qB,elec

r (o,AH{:B)= -RTln n (oB + (o,AH:B - o,AH o,B
\ Fo,AH \ (o,B )

was a better indicator of measured AGrxn values (correlation r2 = 0.76). This correlation might result
from the fact that inclusion of temperature corrections may invite significant errors due to
anharmonic effects. AGtherm values, which reflected the net vibrational, translational, and rotational
free energy changes associated with formation of the complex:

AG termn = -RT In q AH:B,vibqAH:B,trans qAH:B,rot (A-13)
q AH,vib q AHtrans q AH,rot q B,vib q B,trans q B,rot

consistently reflected an energetic cost (AGtherm > 0). The change in solvation energy on
complexation, defined as:

AAG SON = AG SON (AH : B,s)- AG SON (AH,s)- AG SON (B, s) (A-14)

was significant and positive (+3 to 13 kJ/mol) for all complexes under consideration. This was an
unexpected result, since complex formation should decrease the size of the required solvent cavity,
which is energetically favorable.

Future work would probably benefit from explicit treatment of anharmonicity energies and BSSE
corrections. Huang and MacKerrell suggest that these corrections, together with theoretical
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Table A-1. Measured and calculated AH:DMSO
complexation energies for 12 test solutes (kJ/mol)

measureda calculatedb
H-bond donating solute AG, AG,. 4 AEhind AAG .1,_AGthernl.AG.vib- AGraniAGrot

propyl hydrosulfide 6.3 25.4 -10.8 7.9 28.3 -31.5 42.3 20.0
thiophenol 4.0 25.0 -17.3 8.2 34.1 -28.2 42.9 21.9
dichloromethane 2.0 31.7 -19.8 12.1 39.4 -20.3 42.5 19.7
aniline -2.3 33.1 -21.1 13.4 40.8 -21.3 42.6 21.9
ethanol -4.6 22.7 -33.4 10.7 45.4 -12.0 41.2 18.7
water -5.2 18.1 -34.9 6.8 46.2 1.5 38.7 8.5
ammonia -7.8 29.8 -17.4 6.4 40.8 -5.8 38.5 10.5
cyanic acid -12.1 -7.7 -56.2 2.9 45.6 -7.7 41.1 14.7
phenol -13.4 14.2 -40.6 11.2 43.7 -18.4 42.7 21.8
thiocyanic acid -18.3 14.1 -38.2 8.6 43.7 -12.4 41.8 16.8
4-nitrophenol -20.6 1.1 -49.1 8.1 42.1 -21.4 43.2 22.8
2,2,2-trifluoroacetic acid -24.9 -6.8 -62.6 9.3 46.6 -16.1 43.0 22.2
a "Measured" AG,, values were found using equation A-2, based on log KH values given by equation A-11.
b Calculated AGan and other listed (calculated) quantities were determined using equations A-5, A-12, A-13,
and A-14.

treatment of electron correlation effects, could result in gas phase hydrogen bond complexation
energy estimates of 4 kJ/mol accuracy (5). Based on the Xromising results of this previous work, it
is reasonable to expect that accurate calculation of log K values for nonionic solutes in organic
solvents (for which there is a larger body of accurate validation data) could be developed.
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Appendix B
Monte Carlo simulation C++ code used for the

stochastic subsurface transport calculations

The main program code montecarlo.c and ancillary codes (included files) are given here. Note
that the model.c and lustmodule.c must be compiled together with montecarlo.c in order to
create a viable executable. Otherwise, standard libraries have been used and the coding is fairly
simple. The montecarlo.c program is designed for flexibility and could be readily adapted to
stochastic analysis of other models having different stochastic properties.

Required input data files are as follows:
LUSTs.dat lists the LUFF pdf (probability distribution function) data corresponding to Figure

2-2.
parmjvar.dat lists the type of sampling distribution associated with each stochastic

parameter:
flag1

flag2
flag3

where each flagi corresponds to a stochastic parameter, i, and is designated as either:
constant (0), uniform (1), normal (2), lognormal (3), exponential (4), or a designed separate
module (5+)

parms.dat lists the properties of each stochastic variable on a line, as:
p1 M1  Si
p2 M 2  S2
p3  M 3  S3

The interpretation of pi, Mi, and Si depend on the corresponding parmvar.dat flag for each
parameter:
If flagi = 0, then gi = constant value of i, and Mi and Si are not used.
If flagi = 1, then p4- is not used, Mi is the cdf (cumulative distribution function) floor, and Si is
the cdf ceiling.
If flagi = 2, then gi is not used, Mi = mean of i, Si = standard deviation of i.
If flagi = 3, then gi is not used, Mi = log normal mean of i, Si = log normal std deviation of i.
If flagi = 4, then pi is not used, Mi = exp lambda parameter, and Si is not used.
If flagi = 5+, then pi, Mi, and Si are tailored to whatever the designed module takes.
The reason I have included the pi parameter (which is not used for stochastic cases) is that
this allows the user to quickly switch an interesting parameter from "constant" to
"stochastic", or vice versa, by simply adjusting the corresponding parmvar.dat flag.

Output files include the following:
modelcompletecdf.out is the raw cdf of the model output (e.g., predicted Cweii value), having

a total length = Nsamples.
model _cdf.out is a smoothed cdf of the model output, having length = Nout.
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model _pdf.out is a smoothed pdf of the model output, having length = Nout.
parminvedfs.out is a computed table of inverse cdfs corresponding to the set of stochastic

parameters as designated by parms.dat and parmvar.dat. Once this table has been
generated for a given set of parameters at the resolution set by Ncdf, it does not need to be
recomputed in subsequent runs using the same parameters. Computational generation of the
table is slow, but once the table has been created, subsequent sampling calculations are a
fairly efficient table look-up procedure. The user may also examine the parminvcdfs.out file
to check whether stochastic input parameter distributions are being correctly generated.

montecarlo.c
// Straight Monte Carlo. Input a function called MODEL and systematically
// vary PARMS, each having a pdf of one of the types listed. All that is
// needed to consider a new pdf is a file or function mapping a uniform cdf
/ to the inverse cdf of interest, for 10000 points (0.00005 to 0.99995) of
/ the uniform cdf to 4 significant figures.

#include <iostream>
#include <iomanip>
#include <string>
#include <cstdlib> / for srando fn
#include <math.h>
#include <time.h> // for time() fn
#include <fstream> // file io
#include "model.h" // output model function file
#include "lustmodule.h" // add module to estimate LUST density inv cdf from data
#define PI 3.14159265

using namespace std;

void READCDF(string, int, double *);
int COUNTNPARMS(string);
void READPARMS(string, int, double **);
void READPARMTRANS(string, int, int *);
void WRITEPARMICDF(string, double **, int, int);
double ERF(double);
double DERFDX(double);
double INVERF(double, double);
void CDF2PDF(int, int, double *, double **, double **);
void QUICKSORT(int, int, double *);
int PARTITION(int, int, double *);
void SWAP(double *, double *);
void TRISMOOTH(int, double *);
void CALC_DERIVATIVES(int, int, double *, double **, double **);
void CALCLOGDERIVATIVES(int, int, double *, double **, double **);
void WRITE_DF(string, int, double *);
void WRITE_DF(string, int, double **);

int maino
{
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int Nsamples = 1000000; // number of samples to be drawn, always divisible by 1 E2
int Ncdf = 10000; / resolution of individual parameter cdfs, always < 1 E6
int Nout = 200; / resolution of output pdf
int Nchunk = Nsamples/1 0; // size of double vector "chunks" written to output
int Nprintjfreq = Nchunk; // frequency of on-screen sampling reports

int timestart = time(0);

string outputfile = "model_completecdf.out"; // model whole cdf results
string outputfile2 = "modelcdf.out"; / model smoothed cdf results
string outputfile3 = "model-pdf.out"; // model smoothed pdf results
int Nparms = 0;
string parmfile = "parms.dat"; // mu, sigma vals for each parm
string parmvarfile = "parm-var.dat"; // vector of integer switches

// indicating whether parms are constant (0), uniform (1), normal (2),nm
// lognormal (3), or exponential (4), or designed separate module (5+)

string parmicdffile = "parminvcdfs.out"; // matrix of cdf vectors for parms

Nparms = COUNTNPARMS(parmfile);
cout << "\nFound " << Nparms << " parameters."

<< "\n\nSetting up input parameter inverse cumulative"
<< " distribution functions...";

double **pstat; /H parm statistics
pstat = new double*[Nparms];
int *v; // parm switch values (0-3)
v = new int[Nparms];
for (int i = 0; i < Nparms; i++)
{
v[i] = 0;
pstat[i] = new double[3];
for (int j = 0; j < 3; j++)
pstat[i]j] = 0.0;

}

READPARMS(parmfile, Nparms, pstat);
READPARMTRANS(parmvarfile, Nparms,

double **parmicdf;
parmicdf = new double*[Nparms];
for (int i = 0; i < Nparms; i++)
{
cout << "\nCreating parameter" << i+1 <<
parmicdf[i] = new double[Ncdf];
for (int j = 0; j < Ncdf; j++)

parmicdf[i][] = 0.0;
if (v[i] == 0)
{
for (int j = 0; j < Ncdf; j++)

parmicdf[i]U] = pstat[i][0];
I
else if (v[i] == 1)

// 1st column, mu; 2nd column, sigma

// assign parm values
v); // assign switches, "transmission"

// create parm inv cdf matrix

// rows, parm type

"inverse cdf.";

// columns, inv cdf value
// (initialize icdfs for safety)
// const parm case

// always take mean val

// uniform distribution case
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for (int j = 0; j < Ncdf; j++)
parmicdf[i][] = pstat[i][1] + ((j+0.5)/Ncdf)*(pstat[i][2] - pstat[i][1]);

}
else
{

if (v[i] == 2) // normal distribution case

for (int j = 0; j < Ncdf; j++)
parmicdf[i][j] = pstat[i][1] + sqrt(2.0)*pstat[i][2]*INVERF(2.0*(j+0.5)/Ncdf - 1.0, 0.5);

}
else
{

if (v[i] == 3) / log normal distribution case

for (int j = 0; j < Ncdf; j++)
{

parmicdf[i][] = exp(pstat[i][1] + sqrt(2.0)*pstat[i][2]*INVERF(2.0*(j+0.5)/Ncdf - 1.0, 0.5));
}

}
else
{

if (v[i] == 4) // exponential distribution case

for (int j = 0; j < Ncdf; j++)
parmicdf[i][j] = - (pstat[i][1 ])*log(1.0 - (j+0.5)/Ncdf);

}
else if (v[i] == 5) // "designed module" case
{

LUSTMODULE(parmicdf, i, Ncdf);
}
else
{
cerr << "\nERROR. Parameter switch " <i << " in file"

<< parmvarfile.c-stro << " is invalid.\nExiting.\n\n";
exit(1);

}

cout << "\nDone.";

cout << "\n\nWriting parameter inverse cdf values to file "
<< parmicdffile.c-stro <<

WRITEPARMICDF(parmicdffile, parmicdf, Nparms, Ncdf);

int *MCunipdf;
MCunipdf = new int[Ncdf];
for (int i = 0; i < Ncdf; i++)

MCunipdf[i] = 0;
double **MCparmpdf;
MCparmpdf = new double*[Nparms];
for (int i = 0; i < Nparms; i++)
{

MCparmpdf[i] = new double[Ncdf];
for (int j = 0; j < Ncdf; j++)

MCparmpdf[i][j] = 0.0;
I

// MC uniform pdf,
// arranged as bins of the cdf

// MC parm pdf arranged as bins
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double *MCoutcdf;
MCoutcdf = new double[Nchunk];
for (int i = 0; i < Nchunk; i++)

MCoutcdf[i] = 0.0;
double *modelparms;
modelparms = new double[Nparms];
for (int i = 0; i < Nparms; i++)

modelparms[i] = 0.0;

// MC output cdf vector

// MODEL input vector

cout << "\n\nSampling random configurations..";
srand(time(0)); // seed the rand fn
for (int i = 0; i < Nsamples; i++) // Monte Carlo simulation start
{

mnt sample = 0;

if (i%Nprintjfreq == Nprintjfreq-1)
cout << "\nNow drawing sample"

int j = i%Nchunk;

for (int k = 0; k < Nparms; k++)
{

while (v[k] == 0)

<< i+1 << ".";

// counter from [0 to Nchunk-1]

// skip over "uniform distribution" cases

if (k >= Nparms)
break;

// generate an integer [0 to Ncdf-1] but note that RANDMAX = 32767,
// so if Ncdf - 10000 or more, must split into "big" and "small" parts:

sample = (Ncdf/1 00)*(rando%1 00) + rando%(Ncdf/1 00);
modelparms[k] = parmicdf[k][sample];

// PARM SPECIAL CONDITIONS FROM TABLE 2-2
if (k == 0) // Vf

while (modelparms[k] < 0.0379) / if less than 10 gal
{ / then resample
sample = (Ncdf/1 00)*(rando%1 00) + rando%(Ncdf/1 00);
modelparms[k] = parmicdf[k][sample];

}
if (k == 1) // Qwell

while (modelparms[k] > 27000.0 11 modelparms[k] < 108.0)
{ / if > 5000 gal/min or
sample = (Ncdf/100)*(rando%100) + rando%(Ncdf/100);
modelparms[k] = parmicdf[k][sample]; / < 20 gal/min, resample

}
if (k == 2) / v

while (modelparms[k] < 0.01) / if less than 0.01 m/day
{ // then resample
sample = (Ncdf/1 00)*(rando%1 00) + rando%(Ncdf/1 00);
modelparms[k] = parmicdf[k][sample];

}
if (k ==3) / fom

while (modelparms[k] < 0.0001) / if less than 0.0001
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{ // then resample
sample = (Ncdf/1 00)*(rando%1 00) + rando%(Ncdf/1 00);
modelparms[k] = parmicdf[k][sample];

I
if (k == 4) / S

while (modelparms[k] < 0.05 11 modelparms[k] > 0.95) // if less than
{ //0.05 or greater than 0.95, resample

sample = (Ncdf/1 00)*(rando%1 00) + rando%(Ncdf/1 00);
modelparms[k] = parmicdf[k][sample];

I
if (k == 5) / h

while (modelparms[k] < 0.05) / if less than 0.05 m
{ // then resample

sample = (Ncdf/1 00)*(rando%1 00) + rando%(Ncdf/1 00);
modelparms[k] = parmicdf[k][sample];

I
if (k == 7) / LUST density

while (5000.0 <
(1 000000.0*PI*25.0*modelparms[2]*0.25)/(2.0*modelparms[7]*modelparms[1]) || 300.0>
(1000000.0*P 1*25.0*modelparms[2]*0.25)/(2.0*modelparms[7]*modelparms[1I))

// if Lx < 300 m or Lx > 5000
{ / then resample

sample = (Ncdf/1 00)*(rando%1 00) + rando%(Ncdf/1 00);
modelparms[k] = parmicdf[k][sample]; // assumes H = 25 m, phi = 0.25

}
if (k == 8) / ax

while (modelparms[k] >
0.10*(1000000.0*PI*25.0*modelparms[2]*0.25)/(2.0*modelparms[7]*modelparms[1])
modelparms[k] < 2.0) / if greater

{ / than 10% of Lx or less than 2 m,
sample = (Ncdf/1 00)*(rando%1 00) + rando%(Ncdf/1 00); ! then resample
modelparms[k] = parmicdf[k][sample];

}
}

for (int k = 0; k < Nparms; k++)
if (v[k] == 0)

modelparms[k] = parmicdf[k][0]; // assign uniform distribution cases

MCoutcdf[j] = MODEL(modelparms); / run MODEL fn
if (j == Nchunk-1)
{
ofstream outfile;
if (j == i)

outfile.open(outputfile.c-stro, ios::out); // writing first set
else

outfile.open(outputfile.c-stro, ios::app); // subsequent sets
if (!outfile)
{

cerr << "\nFile "' << outputfile.c-str() << "' could not be opened."
<< "\nExiting.\n\n";
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}
exit(1);

outfile.precision(5);
outfile.setf(ios::showpoint);
for (int k = 0; k < Nchunk; k++)

outfile << MCoutcdf[k] << endl;
outfile.closeo;
for (nt k = 0; k < Nchunk; k++)

MCoutcdf[k] = 0.0;
}

// reinitialize for safety

I
cout << "\nDone.";
cout << "\n\nSorting model output and writing to files"

<< outputfile2 << " and " << outputfile3 <<

for (int i = 0; i < Nparms; i++)
{
delete
delete
delete

[] pstat[i];
[]parmicdf[i];
[]MCparmpdf[i];

}
delete [] v;
delete [] MCunipdf;
delete [] MCoutcdf;
delete [] modelparms;

double *modelcdf;
modelcdf = new double[Nsamples];
for (int i = 0; i < Nsamples; i++)

modelcdf[i] = 0.0;

double **redmodelcdf;
redmodelcdf = new double*[2];
double **redmodelpdf;
redmodelpdf = new double*[2];
for (int i = 0; i < 2; i++)
{
redmodelcdf[i] = new double[Nout];
redmodelpdf[i] = new double[Nout];
for (int j = 0; j < Nout; j++)
{
redmodelcdf[i][j] = 0.0;
red_modelpdf[i][j] = 0.0;

}

cout << "\n";
READCDF(outputfile, Nsamples, modelcdf); //

// MC entire output cdf vector

/ reduced (smoothed) output cdf vector

// reduced (smoothed) output pdf vector

now read in entire model cdf

// sort entire model output cdf and convert to reduced cdf and reduced pdf
CDF2PDF(Nsamples, Nout, modelcdf, redmodelcdf, redmodelpdf);
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WRITEDF(outputfile, Nsamples, modelcdf);
WRITEDF(outputfile2, Nout, red_modelcdf);
WRITEDF(outputfile3, Nout, red-modelpdf);
cout << "Done.";

// write sorted model cdf
// write smoothed model cdf
// write smoothed model pdf

delete [] modelcdf;
for (intl = 0; i < 2; i++)
{
delete [] redmodelcdf[i];
delete [] redmodelpdf[i];

}

int timeend = time(0);
cout.precision(3);
cout << "\n\nTotal run time =<" timeend-timestart << " seconds

<< staticcast<double>(timeend-timestart)/60.0 << " minutes =
<< staticcast<double>(timeend-timestart)/3600.0 << " hours.\n";

cout << "\a\a\a"; // sound system bell "Done!"

return 0;

I

void READCDF(string filename, int N, double *df)
{

ifstream infile(filename.c-stro, ios::in);
if (!infile)
{
cerr << "\nWhere is file "' << filename.cstrO << "'? "

<< "I can't find it.\nExiting.\n\n";
exit(1);

}
for (int i = 0; i < N; i++)
{

infile >> df[i};
if (infile.fail() != 0)
{
cout << "infile.fail() =
exit(1);

i
}
infile.close();

}

// check failbit of infile

"<< infile.fail() << " at point " << i << endl;

int COUNTNPARMS(string filename)
{

int N = 0;
ifstream infile(filename.c stro, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << filename.c str() << "'?? "

<< "I can't find it.\nExiting.\n\n";
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exit(1);
}
string dummy;
while (infile >> dummy)

N++;
return staticcast<int>(static cast<float>(N)/3);

}

void READPARMS(string filename, int N, double **parms)
{

ifstream infile(filename.c stro, ios::in);
if (!infile)
{
cerr << "\nWhere is file ' << filename.c strO <<"'??"

<< "I can't find it.\nExiting.\n\n";
exit(1);

}
for (int i = 0; i < N; i++)
{

infile >> parms[i][O];
infile >> parms[i][1];
infile parms[i][2];

}
}

void READPARMTRANS(string filename, int N, int *trans)
{

ifstream infile(filename.c stro, ios::in);
if (!infile)
{
cerr << "\nWhere is file "' << filename.c-strO << "'?? "

<< "I can't find it.\nExiting.\n\n";
exit(1);

}
for (int i = 0; i < N; i++)

infile >> trans[i];
}

void WRITEPARMICDF(string filename, double **cdf, int Nparms, int N)
{
ofstream outfile(filename.c-stro, ios::out);
if (!outfile)
{
cerr << "\nFile "' << filename.c-stro << "' could not be opened."

<< "\nExiting.\n\n";
exit(1);

}
outfile.precision(4);
outfile.setf(ios::showpoint);
for (int j = 0; j < N; j++)
{

139



for (nt i = 0; i < Nparms; i++)
outfile << setw(12) << cdf[i][j];

outfile << endl;
}
outfile.closeo;

}

double ERF(double x) // "erf": error function (integral of gaussian)
{

int n = 0;
double logfactn = 0.0;
double value = 0.0;
int seriesprecision = 30; // default for most cases
double sign = fabs(x)/x;
x = fabs(x);
if (x > 3.0/sqrt(2.0))

series-precision = 50;
/ first term of series has factorial(O) = 1
value = pow(-1.0,n)*pow(x,2.0*n+1.0)/((exp(logfact-n))*(2.0*n+1 .0));
for (n = 1; n < series_precision; n++)
{

logfact-n += log(static cast<double>(n)); // factorial(n)
value += pow(-1.0,n)*exp((2.0*n+1.0)*log(x) - logfact-n - log(2.0*n+1.0));

}

value *= sign*(2.0/sqrt(PI));
assert(value < 1.0);
return value;

}

double DERFDX(double x) // d(erf(x))/dx
{ return exp(-pow(x,2.0))*2.0/sqrt(PI);}

double INVERF(double var, double xO) / find inverse erf, using Newton's method
{

double dmin = 0.0; // min allowable derivative of erf, typically dmin = 0
double tol = 1.OE-9;
double delx = 2.0*tol;
int err = 0; II set to "false"
while (!(err) && fabs(delx) > tol)

if (fabs(DERFDX(xO)) > dmin)
{
delx = (ERF(xO) - var)/DERFDX(xO);
xO = xO - delx;

}
else err = 1;

assert(err == 0);
return xO;

}

void CDF2PDF(int N, int Nout, double *bigcdf, double **cdf, double **pdf)
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{
QUICKSORT(O, N-1, bigcdf);
// TRISMOOTH(N, bigcdf); // optionally, first smooth total cdf using a triangular window
CALCLOGDERIVATIVES(N, Nout, bigcdf, cdf, pdf); // pdf output in log space
TRISMOOTH(Nout, pdf[O]); // optionally smooth pdf using a triangular window

}

void QUICKSORT(int L, int R, double *s) // efficient sort algorithm, ~ N*log(N)
{

int part;
if (R <= L)

return;
part = PARTITION(L, R, s);
QUICKSORT(L, part-1, s);
QUICKSORT(part+1, R, s);

}

int PARTITION(int L, int R, double *s)
{

int i, j;
double value;
i = L-1;
j= R;
value =s[R];
for(;;)
{
while (s[++i] < value);
while (s[--j] > value);
if (i >= j)
break;

SWAP(s+i, s+j);
}
SWAP(s+i, s+R);
return i;

}

void SWAP(double *a, double *b)
{
double temp = *a;
*a= *b;
*b temp;

}

void TRISMOOTH(int N, double *dist)
{
double temp[3];
temp[2] = dist[O];
temp[1] = dist[1];
for (int i = 2; i < N-3; i++)
{

temp[O] = dist[i];

// scan L to R for larger element
// scan R to L for larger element
// if pointers have crossed, end scans

// exchange out of place elements

// place pivot element
// return pivot index

// triangular window smoother
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dist[i] = (temp[2] + 2.0*temp[1] + 3.0*dist[i] + 2.0*dist[i+1] + dist[i+2])/9.0;
temp[2] = temp[1];
temp[1] = temp[0];

}
}

void CALCDERIVATIVES(int N, int Nout, double *bigcdf, double **cdf, double **pdf)
{
// use the midpoint approximation to reduce bigcdf (assume well-behaved fns)
double del = 1.0/staticcast<double>(N); // delta y
int window = static_cast<int>(N/(2*Nout)); // window is deriv smoother
// double span = bigcdf[N-1] - bigcdf[0]; / range of cdf x values
for (int i = 0; i < Nout; i++)
{
double numer = 0;
double denom = 0;
double avgcdfval = 0;
for (int j = (2*i)*window; j < (2*i+2)*window; j++) // find "average

avgcdfval += bigcdfU]/(2.0*window); // center" of window
for (int j = (2*i)*window; j < (2*i+2)*window; j++) / regress from avg
{ I/ center of window

numer += (del*static cast<double>( - (2*i+1)*window))*(bigcdfoj] - avgcdfval);
denom += pow((bigcdfoj] - avgcdfval),2.0);

I
cdf[0][i] = avgcdfval;
cdf[1][i] = staticcast<double>((i+0.5)/static cast<double>(Nout));
pdf[0][i] = avgcdfval;
pdf[1][i] = numer/denom; / slope

}
/ for (int i = 0; i < N; i++) HI optional pdf normalization
II pdf[i] = pcf[i]*span/static cast<double>(N);

}

void CALCLOGDERIVATIVES(int N, int Nout, double *bigcdf, double **cdf, double **pdf)
{
I/ one may generate an output pdf as derivative of ln(x) rather than of x directly.
// otherwise this function is identical to CALCDERIVATIVES(.
double del = 1.0/staticcast<double>(N); // delta y
int window = static_cast<int>(N/(2*Nout)); // deriv smoother
for (nt i = 0; i < Nout; i++)
{
double numer = 0;
double denom = 0;
double avgcdfval = 0;
for (int j = (2*i)*window; j < (2*i+2)*window; j++) // find "average
avgcdfval += log(bigcdf[j])/(2.0*window); // center" of window

for (int j = (2*i)*window; j < (2*i+2)*window; j++) // regress from avg
{ // center of window

numer += (del*static_cast<double>(j - (2*i+1)*window))*(log(bigcdfj]) - avgcdfval);
denom += pow((log(bigcdf[j]) - avgcdfval),2.0);

}
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cdf[O][i] = exp(avgcdfval);
cdf[1][i] = (static cast<double>(i)+0.5)/staticcast<double>(Nout);
pdf[O][i] = exp(avgcdfval);
pdf[1][i] = numer/denom; // from Fatih's notes: slope

}
}

void WRITEDF(string filename, int N, double *df)
{
ofstream outfile(filename.c-stro, ios::out);
if (!outfile)
{
cerr << "\nFile '" << filename.cstrO < "' could not be opened."

<< "\nExiting.\n\n";
exit(1);

}
outfile. precision(5);
outfile.setf(ios::showpoint);
for (int i = 0; i < N; i++)

outfile << df[i] << endl;
outfile.closeo;

}

void WRITEDF(string filename, int N, double **df) // overloaded method
{

ofstream outfile(filename.c-stro, ios::out);
if (!outfile)
{
cerr << "\nFile "' << filename.c-strO << "' could not be opened."

<< "\nExiting.\n\n";
exit(1);

I
outfile.precision(4);
outfile.setf(ios::showpoint);
for (int i = 0; i < N; i++)
outfile << df[0][i] << setw(12) << df[1][i] << endl;

outfile.closeo;
}

lustmodule.h
void LUSTMODULE(double **, int, int);
void READLUSTDATA(std::string, double **, int);

lustmodule.c
// Specialized module to generate the LUST density cdf for parminvcdfs.dat
#include <math.h>
#include <fstream>
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#include <iostream>
#include <string>
#include "lustmodule.h"

using namespace std;

void LUSTMODULE(double **parmicdf, int col, int Ncdf)
{

int Nlustdat = 50;
double **ustdat;
lustdat = new double*[21;
for (int i = 0; i < 2; i++)
{

lustdat[i] = new double[Nlus-
for (int j = 0; j < Nlustdat; j+-

lustdat[i][] = 0.0;

// MC parm pdf arranged as bins

}
string lustfile = "LUSTs.dat";
READLUSTDATA(lustfile, lustdat, Nlustdat);

double *datacdf;
double totlust = 0;
datacdf = new double[Nlustdat];
for (int i = 0; i < Nlustdat; i++)
{
datacdf[i] = 0.0;
totlust += lustdat[1][i];

}
datacdf [0] = 0.5*lustdat[1 ][0]/totlust;
for (int i = 1; i < Nlustdat; i++)
datacdf[i] = datacdf[i-1] + 0.5*(Iustdat[1][i] + lustdat[1][i-1])/totlust;

// datacdf[i] = datacdf[i-1] + Iustdat[1][i]/totlust;
/ for (int i = 0; i < Nlustdat; i++)
// cout << datacdf[i] << endl;

double P = 0;
for (nt i = 0; i < Ncdf; i++)
{

P = staticcast<double>(static cast<double>(i)/Ncdf);
int j = 0;
while (P > datacdfU] && j < Nlustdat)

if (j == 0) // special case
parmicdf[col][i] = 0;

else
parmicdf[col][i] = staticcast<double>(-1) + (P - datacdfj-1])/(datacdfoj] - datacdf -1]);

}

for (int i= 0; i < 2; i++)
delete [] lustdat;

delete [] datacdf;
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void READLUSTDATA(string filename, double **data, int N)
{

ifstream infile(filename.c stro, ios::in);
if (!infile)
{

cerr << "\nWhere did you stick "' << filename.cstro < "' you bozo??
<< "I can't find it.\nExiting.\n\n";

exit(1);
}
for (int j = 0; j < N; j++)
for (nt i = 0; i < 2; i++)

infile >> data[i][j];
infile.closeo;

}

model.h
double MODEL(double *);

model.c
#include <iostream>
#include <math.h>
#define PI 3.14159265

using namespace std;

double MODEL(double *p)
{

double
double
double

Kfw = 16.0;
Kom = 8.1;
Cf = 7.5E7;

double rho = 2.5;
double phi = 0.25;
double H = 25.0;
/ return p[0];

// 16.0 MTBE, 2200 ebz, 3.2 phenol, 1700 bzthio
// 8.1 MTBE, 290 ebz, 22 phenol, 500 bzthio
// ug/L, 7.5E7 MTBE, 5.48E7 ebz,
/ 1.1 3E5 phenol, 2.25E5 bzthio

// aquifer saturated depth, m
// toggle to monitor parameter distribution

double w = p[1]/(H*p[2]*phi); / capture zone width, m

double Lx = (1000000.0*P)/(2.0*p[7]*w);
// return Lx;

double R = 1.0 + p[3]*Kom*rho*(1 - phi)/phi;
double term1 = pow(log(5.0)*Kfw/(12.0*R),2.0)*pow(p[4]*p[5]*PI,1.5)*sqrt(p[0]/phi)/p[6];
double term2 = 2.0*p[8]*Lx;
double Cwell = Cf*p[0]*p[2]/((p[1]*5.0*R)*sqrt(term1 + term2));
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// double beta = 2.0*Pl*phi*p[2]*H/(p[1 ]);
// double Tarr = (R/p[2])*(Lx - sqrt(2.0*p[8]*Lx) - log(1 .0 + beta*(Lx - sqrt(2.0*p[8]*Lx)))/beta);

if (Cwell != Cwell) / test for NaN
{
cerr << "\nCwell = NaN!" << endl << "Exiting.\n";
for (int k = 0; k < 9; k++)

cout << "p[" << k << "] = " << p[k] << endl;
cout << "Lx =" < Lx << endl;
cout << "w =" << w << endl;
cout << "term1 = " << term1 << endl;
cout << "term2 = " << term2 << endl;
exit(1);

}

return Cwell;
// return Tarr;

LUSTs.dat
0 16980
1 2700
2 1400
3 1000
4 630
5 500
6 480
7 315
8 280
9 200
10 190
11 166
12 126
13 140
14 112
15 91
16 59
17 56
18 59
19 59
20 44
21 45
22 34
23 45
24 32
25 30
26 23
27 24
28 18
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29 11
30 16
31 16
32 13
33 13
34 8
35 17
36 8
37 3
38 11
39 6
40 6
41 3
42 5
43 6
44 3
45 5
46 2
47 2
48 2
49 6

parm var.dat
3
3
3
3
3
3
3
5
3

parms.dat
1.65 0.5 2.0
2208 7.7 1.0
0.4 -0.9 0.5
0.003 -5.8 0.6
0.35 -1.05 0.2
0.20 -1.6 0.2
0.002 -6.0 0.9
1.0 0.0 0.0
20 3.0 0.5
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Appendix C
Self-consistent LSST-LSER calculations for MTBE in

fuel-water systems using mass balance constraints; Matlab code

The following Matlab script, LSSTLSER.m, iteratively calculates MTBE Kf, values in a fuel-
water system, based on mass balance constraints. Required input files include:
prop.dat, a data matrix of solvent property information,
coeff.dat, a data matrix of solvent LSER liquid-air coefficients, and
solparms.dat, a data matrix of solute LSER parameters.
These files are also given below.

LSSTLSER.m
% LSST-LSER calculations for gasoline

clear
warning off MATLAB:colon:operandsNotRealScalar

% McGowan-based volume fractions if given vol/vol percent mixture
% data (based on pure-phase component densities). Density data taken
% from CRC handbook (1996).
load prop.dat;

% mixture and solute component property lists
load coeff.dat
load solparms.dat

% pure-phase component density based volume fraction data (using prop index):
Fvd = [ ...
0 0 0 0.24 0 0 0 0 0.32 0.10 0 0 0.03 0.07 0.24 0 0 0 0 0; ... % synth gas <6>
0 0 0 0 0 0 0 0 0.52 0 0 0.053 0.019 0.343 0 0 0 0 0.065 0; ... % gas RON98 <9>
0 0 0 0 0 0 0 0 0.95 0 0 0 0 0 0 0 0 0 0.05 0; ... % isooctane-MTBE <9>
0 0 0 0 0 0 0 0 0.85 0 0 0 0 0 0 0 0 0 0.15 0; ... % isooctane-MTBE <9>
0 0 0 0 0 0 0 0 0.70 0 0 0 0 0 0 0 0 0 0.30 0; ... % isooctane-MTBE <9>
0 0 0 0 0 0 0 0 0 0 0 0 0 0.95 0 0 0 0 0.05 0; ... % toluene-MTBE <9>
0 0 0 0 0 0 0 0 0 0 0 0 0 0.85 0 0 0 0 0.15 0; ... % toluene-MTBE <9>
0 0 0 0 0 0 0 0 0 0 0 0 0 0.70 0 0 0 0 0.30 0; ... % toluene-MTBE <9>
00000000000001 000000; ... % pure toluene <9>
0 0 0 0 0 0 0 0 0.833 0 0 0.014 0 0.153 0 0 0 0 0 0; ... % retail diesel <11>
I';

% pure-phase component mass fraction data:

Fmd = [ ...
0 0.083 0.075 0.058 0.022 0.020 0.058 0.040 0.106 0.021 0.018 0.034 0.043 0.162 0.062...
0.073 0.092 0.033 0 0; ... % conventional syngas <7>
0 0.075 0.067 0.052 0.020 0.018 0.052 0.036 0.095 0.019 0.016 0.031 0.039 0.146 0.056 ...
0.066 0.083 0.030 0.100 0; ... % oxygenated syngas <7>
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0000000000000000001 0; ... % pure MTBE <10>
000000001 00000000000; ... % pure alkane (hypthetical)
]' ;

% mixture weight formulations written as McGowan volume fractions of
% solvent components, NOT as density-based volume fractions.

for i = 1:size(Fvd,2)
Fv(:,i) = [Fvd(:,i).*prop(:,3).*prop(:,4)./prop(:,2)]/sum(Fvd(:,i).*prop(:,3).*prop(:,4)./prop(:,2));

end

for i = (size(Fvd,2)+1):(size(Fvd,2)+size(Fmd,2))
Fv(:,i) =[Fmd(:,i-size(Fvd,2)).*prop(:,4)./prop(:,2)]/sum(Fmd(:,i-size(Fvd,2)).*prop(:,4)./prop(:,2));

end

Nmix = size(Fv,2);

% SUBSTITUTE PURE SOLVENTS
aromFcomp1 1 = 0; % "olefinic" McGowan volume fraction of component 11
aromFcomp12 = 0; % "olefinic" McGowan volume fraction of component 12
deeFcompl 9 = 1; % ether McGowan volume fraction of component 19

for i = 1:Nmix
Falk(i,:) = sum(Fv(2:9,i)) + (1-aromFcomp11)*Fv(11,i) + (1-aromFcomp12)*Fv(12,i) +...

(1 -deeFcompl 9)*Fv(1 9,i);
Fcyc(i,:) = Fv(10,i);
Fbenz(i,:) = Fv(13,i);
Ftol(i,:) = sum(Fv(1 4:18,i)) + aromFcompi 1 *Fv( 1,i) + aromFcomp1 2*Fv(1 2,i);
Fdee(i,:) deeFcompl9*Fv(19,i);
Feth(i,:) Fv(20,i);

end

for i = 1:Nmix
Fmix(i,:) = Falk(i).*coeff(2,:) + Fcyc(i)*coeff(3,:) + Fbenz(i)*coeff(4,:) + Ftol(i)*coeff(5,:) +
Fdee(i)*coeff (6,:) + Feth(i)*coeff(8,:);
end

% --------------------------------------------------
% ITERATIVELY CALCULATE MTBE PARTITIONING BETWEEN AQUEOUS PHASE AND
% FUEL, MAINTAINING MASS BALANCE AND ASSUMING Vf = Vw (as in Schmidt, 2002).
% (COMMENT OUT THIS SECTION TO ASSUME NEGLIGIBLE PRESENCE OF MTBE IN
% WATER)

% setup parms
Fdee_f = Fdee; % Fdee is actually init MTBE vol frac in fuel phase
Fdeew = zeros(Nmix,1); % initial MTBE frac in aqueous phase is zero

for i = 1:Nmix
Vw old(i) = 1; % init vol of water phase (units are not important)
Vfold(i) = 1; % init vol of fuel phas
VwnotMTBE(i) = (1 - Fdeew(i))*Vw_od(i); % const values for each mixture
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Vf_notMTBE(i) = (1 - Fdeejf(i))*Vf-old(i); % const values for each mixture
KfwMTBE-old(i) = 1OAsum(Fmix(i,:).*solparms(17,:)); % calc init MTBE Kfw

end

% iteratively move MTBE into water phase
% first iteration requires particular settings to avoid div by zero
for i = 1:Nmix
Fdee f(i) = Fdee f(i)*(1 - Vw old(i)/(Vw old(i) + Vf-old(i)*KfwMTBE-old(i)));
Fdee_w(i) = Fdee-f(i)/KfwMTBE-old(i);

Vf(i) = VfnotMTBE(i)/(1 - Fdeejf(i));
Vw(i) = VwnotMTBE(i)/(1 - Fdeew(i));

Ffuel(i,:) = (Falk(i).*coeff(2,:) + Fcyc(i)*coeff(3,:) + Fbenz(i)*coeff(4,:) + Ftol(i)*coeff(5,:) +
Fdee!f(i)*coeff (6,:) + Feth(i)*coeff (8,:))Nf(i);
Fwater(i,:) = Fdee-w(i)*coeff(6,:)./Vw(i);
Fmix(i,:) = Ffuel(i,:) - Fwater(i,:);

KfwMTBE(i) = 1OAsum(Fmix(i,:).*solparms(17,:)); % calc init MTBE Kfw
end

iterations = ones(Nmix,1);
tolerance = ones(Nmix,1);
for i = 1:Nmix
while (tolerance(i) > 1 E-9)
iterations(i) = iterations(i) + 1;

Fdeef(i) = Fdeejf(i)*(1 - Vw(i)/(Vw(i) + Vf(i)*KfwMTBE(i)) + Vw-old(i)/(Vw-old(i) +
Vf-old(i)*KfwMTBE-old(i))); % calc new Fdeef variable

Fdee_w(i) = Fdeejf(i)/KfwMTBE(i);

Vf old(i) = Vf(i); % update "old" Vf variable
Vwold(i) = Vw(i);
Vf(i) = VfnotMTBE(i)/(1 - Fdeejf(i)); % calc new Vf variable
Vw(i) = VwnotMTBE(i)/(1 - Fdeew(i));

Ffuel(i,:) = (Falk(i).*coeff(2,:) + Fcyc(i)*coeff(3,:) + Fbenz(i)*coeff(4,:) + Ftol(i)*coeff(5,:) +
Fdeejf(i)*coeff (6,:) + Feth(i)*coeff(8,:)).Nf(i);
Fwater(i,:) = Fdee-w(i)*coeff(6,:)Nw(i);
Fmix(i,:) = Ffuel(i,:) - Fwater(i,:); % calc new Fmix variable

KfwMTBE old(i) = KfwMTBE(i); % update old Kfw variable
Kfw_MTBE(i) = 1OAsum(Fmix(i,:).*solparms(17,:)); % calc new MTBE Kfw

tolerance(i) = abs(Vw(i)/(Vw(i) + Vf(i)*KfwMTBE(i)) - Vw-old(i)/(Vw-old(i) +...
Vf-old(i)*KfwMTBE-old(i)));
end

end

% Gvntssyeco oiiscauaeaoi-----------------------------------------------
% Given these system compositions, calculate gasoline-water partition coefficients for
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% many other solutes

Kgas2 = [ ... % data LSERpredicted
3E-4 10.Asum(solparms(1,:).*Fmix(1,:)); ... % water, synth gas <6>
5.9 10.Asum(solparms(1 8,:).*Fmix(1,:)); ... % ethylacetate, synth gas <6>
17 10.Asum(solparms(1 7,:).*Fmix(1,:)); ... % MTBE, synth gas <6>
15.5 10.Asum(solparms(17,:).*Fmix(1 1,:)); ... % MTBE, conv ret gas <10>
15.5 10.Asum(solparms(17,:).*Fmix(12,:)); ... % MTBE, oxyg ret gas <10>
0.005 10.Asum(solparms(13,:).*Fmix(1,:)); ... % methanol, synth gas <6>
0.011 10.Asum(solparms(13,:).*Fmix(1 1,:)); ... % methanol, retail conv gas <6>
0.022 10.Asum(solparms(14,:).*Fmix(1,:)); ... % ethanol, synth gas <6>
0.06 10.Asum(solparms(15,:).*Fmix(1,:)); ... % isopropanol, synth gas <6>
0.14 10.Asum(solparms(16,:).*Fmix(1,:)); ... % tert-butanol, synth gas <6>
3.1 10.Asum(solparms(2,:).*Fmix(2,:)); ... % aniline, retail gas <9>
12 10.Asum(solparms(3,:).*Fmix(2,:)); ... % p-toluidine, retail gas <9>
12 10.Asum(solparms(4,:).*Fmix(2,:)); ... % o-toluidine, retail gas <9>
39 10.Asum(solparms(5,:).*Fmix(2,:)); ... % 2,6-dimethylaniline, retail gas <9>
0.71 10.Asum(solparms(2,:).*Fmix(3,:)); ... % aniline, isooct-MTBE5 <9>
2.5 10.Asum(solparms(3,:).*Fmix(3,:)); ... % p-toluidine, isooct-MTBE5 <9>
1.1 10.Asum(solparms(2,:).*Fmix(4,:)); ... % aniline, isooct-MTBE15 <9>
3.4 10.Asum(solparms(3,:).*Fmix(4,:)); ... % p-toluidine, isooct-MTBE1 5 <9>
2.0 10.Asum(solparms(2,:).*Fmix(5,:)); ... % aniline, isooct-MTBE30 <9>
5.2 10.Asum(solparms(3,:).*Fmix(5,:)); ... % p-toluidine, isooct-MTBE30 <9>
3.2 10.Asum(solparms(6,:).*Fmix(2,:)); ... % phenol, retail gas <9>
9.3 10.Asum(solparms(7,:).*Fmix(2,:)); ... % p-cresol, retail gas <9>
14 10.Asum(solparms(8,:).*Fmix(2,:)); ... % o-cresol, retail gas <9>
22 10.Asum(solparms(9,:).*Fmix(2,:)); ... % 3,4-dimethylphenol, retail gas <9>
44 10.Asum(solparms(1 0,:).*Fmix(2,:)); ... % 2,6-dimethylphenol, retail gas <9>
53 10.Asum(solparms( 1,:).*Fmix(2,:)); ... % 3,4,5-trimethylphenol, ret gas <9>
120 10.Asum(solparms(1 2,:).*Fmix(2,:)); ... % 2,4,6-trimethylphenol, retgas <9>
0.65 10.Asum(solparms(6,:).*Fmix(3,:)); ... % phenol, isooct-MTBE5 <9>
2.1 10.Asum(solparms(7,:).*Fmix(3,:)); ... % p-cresol, isooct-MTBE5 <9>
3.5 10.Asum(solparms(8,:).*Fmix(3,:)); ... % o-cresol, isooct-MTBE5 <9>
6.0 10.Asum(solparms(9,:).*Fmix(3,:)); ... % 3,4-dimethylphenol, isoO-MTBE5 <9>
15 10.Asum(solparms(1 0,:).*Fmix(3,:)); ... % 2,6-dimethylphenol, isoO-MTBE5 <9>
2.2 10.Asum(solparms(6,:).*Fmix(4,:)); ... % phenol, isooct-MTBE15 <9>
6.2 10.Asum(solparms(7,:).*Fmix(4,:)); ... % p-cresol, isooct-MTBE15 <9>
11 10.Asum(solparms(8,:).*Fmix(4,:)); ... % o-cresol, isooct-MTBE15 <9>
17 10.Asum(solparms(9,:).*Fmix(4,:)); ... % 3,4-dimethphenol, isooct-MTBE15 <9>
31 10.Asum(solparms(1 0,:).*Fmix(4,:)); ... % 2,6-dimethphenol, isoO-MTBE1 5 <9>
5.4 10.Asum(solparms(6,:).*Fmix(5,:)); ... % phenol, isooct-MTBE30 <9>
17 10.Asum(solparms(7,:).*Fmix(5,:)); ... % p-cresol, isooct-MTBE30 <9>
26 10.Asum(solparms(8,:).*Fmix(5,:)); ... % o-cresol, isooct-MTBE30 <9>
44 10.Asum(solparms(9,:).*Fmix(5,:)); ... % 3,4-dimethphenol, isooct-MTBE30 <9>
62 10.Asum(solparms(10,:).*Fmix(5,:)); ... % 2,6-dimethphenol, isoO-MTBE30 <9>
3.8 10.Asum(solparms(6,:).*Fmix(6,:)); ... % phenol, toluene-MTBE5 <9>
12 10.Asum(solparms(7,:).*Fmix(6,:)); ... % p-cresol, toluene-MTBE5 <9>
18 10.Asum(solparms(8,:).*Fmix(6,:)); ... % o-cresol, toluene-MTBE5 <9>
33 10.Asum(solparms(9,:).*Fmix(6,:)); ... % 3,4-dimethphenol, tol-MTBE5 <9>
76 10.Asum(solparms(1 0,:).*Fmix(6,:)); ... % 2,6-dimethphenol, tol-MTBE5 <9>
8.3 10.Asum(solparms(6,:).*Fmix(7,:)); ... % phenol, toluene-MTBE15 <9>
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28 10.Asum(solparms(7,:).*Fmix(7,:)); ... % p-cresol, toluene-MTBE15 <9>
33 10.Asum(solparms(8,:).*Fmix(7,:)); ... % o-cresol, toluene-MTBE15 <9>
73 10.Asum(solparms(9,:).*Fmix(7,:)); ... % 3,4-dimethphenol, tol-MTBE15 <9>
92 10.Asum(solparms(10,:).*Fmix(7,:)); ... % 2,6-dimethphenol, tol-MTBE15 <9>
16 10.Asum(solparms(6,:).*Fmix(8,:)); ... % phenol, toluene-MTBE30 <9>
50 10.Asum(solparms(7,:).*Fmix(8,:)); ... % p-cresol, toluene-MTBE30 <9>
71 10.Asum(solparms(8,:).*Fmix(8,:)); ... % o-cresol, toluene-MTBE30 <9>
120 10.Asum(solparms(9,:).*Fmix(8,:)); ... % 3,4-dimethphenol, tol-MTBE30 <9>
180 10.Asum(solparms(1 0,:).*Fmix(8,:)); ... % 2,6-dimethphenol, tol-MTBE30 <9>
110 10.Asum(solparms(19,:).*Fmix(2,:)); ... % thiophene, retail gas <9>
1700 10.Asum(solparms(20,:).*Fmix(2,:)); ... % benzothiophene, retail gas <9>
74 10.Asum(solparms(1 9,:).*Fmix(3,:)); ... % thiophene, isooct-MTBE5 <9>
99 10.Asum(solparms(19,:).*Fmix(4,:)); ... % thiophene, isooct-MTBE15 <9>
89 10.Asum(solparms(19,:).*Fmix(5,:)); ... % thiophene, isooct-MTBE30 <9>
350 10.Asum(solparms(21,:).*Fmix(1 1,:)); ... % benzene, conv ret gas <10>
1250 10.Asum(solparms(22,:).*Fmix(1 1,:)); % toluene, conv ret gas <10>
4500 10.Asum(solparms(23,:).*Fmix(1 1,:)); % ethylbenzene, conv ret gas <10>
4350 10.Asum(solparms(25,:).*Fmix(1 1,:)); % m-xylene, conv ret gas <10>
3630 10.Asum(solparms(26,:).*Fmix(1 1,:)); ... % o-xylene, conv ret gas <10>
18500 10.Asum(solparms(24,:).*Fmix(1 1,:)); ... % n-propylbenzene, conv gas <10>
13800 10.Asum(solparms(28,:).*Fmix(1 1,:)); ... % 1 ,2,3-trimthbenz, convgas <10>
350 10.Asum(solparms(21,:).*Fmix(1 2,:)); ... % benzene, oxyg ret gas <10>
1250 10.Asum(solparms(22,:).*Fmix(12,:)); ... % toluene, oxyg ret gas <10>
4500 10.Asum(solparms(23,:).*Fmix(12,:)); ... % ethylbenzene, oxyg ret gas <10>
4350 10.Asum(solparms(25,:).*Fmix(12,:)); ... % m-xylene, oxyg ret gas <10>
3630 10.Asum(solparms(26,:).*Fmix(12,:)); ... % o-xylene, oxyg ret gas <10>
18500 10.Asum(solparms(24,:).*Fmix(1 2,:)); ... % n-propylbenzene, oxyg gas <10>
13800 10.Asum(solparms(28,:).*Fmix(1 2,:)); ... % 1,2,3-trimthbenz, oxygas <10>
150 10.Asum(solparms(21,:).*Fmix(1 0,:)); ... % benzene, diesel <10>
480 10.Asum(solparms(22,:).*Fmix(1 0,:)); ... % toluene, diesel <10>
1200 10.Asum(solparms(30,:).*Fmix(1 0,:)); ... % naphthalene, diesel <10>
1600 10.Asum(solparms(22,:).*Fmix(10,:)); ... % toluene, diesel <12>
4400 10.Asum(solparms(30,:).*Fmix(10,:));... % naphthalene, diesel <12>
23000 10.Asum(solparms(31,:).*Fmix(1 0,:)); ... % 1 -methnaphthalene, diesel <12>
26000 10.Asum(solparms(32,:).*Fmix(1 0,:)); ... % 2-methnaphthalene, diesel <12>
34000 10.Asum(solparms(33,:).*Fmix(1 0,:)); ... % acenaphthene, diesel <12>
30000 10.Asum(solparms(34,:).*Fmix(10,:)); ... % fluorene, diesel <12>
49000 10.Asum(solparms(35,:).*Fmix(1 0,:)); ... % phenanthrene, diesel <12>
190000 10.Asum(solparms(36,:).*Fmix(1 0,:)); ... % anthracene, diesel <12>
200000 10.Asum(solparms(37,:).*Fmix(1 0,:)); ... % fluoranthrene, diesel <12>
1;

figure
loglog(Kgas2(1,1),Kgas2(1,2),'*') % water
hold on
loglog(Kgas2(2,1),Kgas2(2,2),'+') % ethylacetate
loglog(Kgas2(3:5, 1),Kgas2(3:5,2),'x') % MTBE
loglog(Kgas2(6:10,1), Kgas2(6:10,2),'A') % aliphatic alcohols
loglog(Kgas2(11:20,1 ),Kgas2(11:20,2),'s') % anilines
loglog(Kgas2(21:57,1 ),Kgas2(21:57,2),'o') % phenols
loglog(Kgas2(58:62, 1 ),Kgas2(58:62,2),'v') % thiophenes
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loglog(Kgas2(63:88, 1), Kgas2(63:88,2),'h') % aromatic HCs

logKgas2 = loglO(Kgas2);

plot(3e-5:1 e4:1 e6,3e-5:1 e4:1 e6)
plot(3e-5:1 e4:1 e6,[3e-5:1 e4:1 e6]*2,':I)
plot(3e-5:1 e4:1 e6,[3e-5:1 e4:1 e6]/2,':')
axis([3e-5 1 e6 3e-5 1 e6])

plot(10'-4, 10A5.4, 1*1)
text(10^-3.75, 10A5.4, 'water, \sigma = 0.56')
plot(10^-4, 10A5.0, '+')
text(10^-3.75, 10A5.0, 'ethylacetate, \sigma = 0.20')
plot(10^A-4, 10^A4.6, 'x)
text(10^-3.75, 10^4.6, 'methyl-tert-butyl ether, \sigma = 0.44')
plot(10^-4, 10^4.2, 'A')

text(10^-3.75, 10^4.2, 'aliphatic alcohols, \sigma = 0.27')
plot(10^A-4, 10^3.8, 's)
text(10^-3.75, 10A3.8, 'aniline, methyl-substituted anilines, \sigma = 0.11')
plot(10^A-4, 10^3.4, 'V)
text(10^ -3.75, 10A3.4, 'phenol, methyl-substituted phenols, \sigma = 0.61')
plot(10^-4, 10A3.0, 'v')
text(10^\-3.75, 10A3.0, 'thiophene, benzothiophene, \sigma = 0.08')
plot(10^A-4, 10^A2.6, 'W)
text(10^-3.75, 1 0A2.6, 'aromatic hydrocarbons, \sigma = 0.21')
text(10A1, 10^-2.8, 'Error statistics for entire set (N = 88):')
text(1OA1, 10^-3.6, '\sigma = 0.43')
text(1Al, 1 0^-4.0, 'rA2 = 0.97')
hold off
xlabel('log KJf_w, measured')
ylabel('log K-f-w, predicted using LSST-LSERs')

1. Abraham et al., J Chem. Soc. Perk. Trans. 2 (1994) p. 1777-1791.
2. Abraham et al., J Chrom. A. 842 (1999) p. 79-114.
3. Abraham et al., J Phys. Org. Chem. 6 (1993) p. 660-684.
4. Pagliara et al., J Chem. Soc. Perk. Trans. 2 (1997) p. 2639-2643.
5. Abraham et al., Collect. Czech. Chem. Commun. 64 (1999) p. 1749-1760.
6. Stephenson, J Chem. Eng. Data 37 (1992) p. 80-95.
7. Arey, MS thesis (2001).
8. Heerman et al., J Cont. Hydr. 34 (1998) p. 315-341.
9. Schmidt et al., ES&T, in prep. (2002)
10. Cline et al., ES&T (1991) p. 914-920.
11. Sjogren et al., Fuel (1995) p. 983-989.
12. Yang et al., J Chem. Eng. Data (1997) p. 908-913.

prop.dat
% index molecweight density McGowanvolume
1 18.015 1.000 0.1673 %water
2 58.123 0.573 0.6722 % butane
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72.150 0.6262 0.8131
86.177 0.6548 0.9540
100.204 0.6837 1.094c,
114.231 0.6986 1.235E
86.177 0.650 0.9540
86.177 0.6616 0.9540

9114.231
10 84.161
11 70.134
1284.161
13 78.114
14 92.141
15
16
17
18
19
20

0.6877
0.7486
0.6623
0.6731
0.8765
0.8669

1.2358
0.8454
0.7701
0.9110
0.7164
0.8573

% pentane
% hexane

I % heptane
% octane

% 2-methylpentane
% 2,3-dimethylbutane
% 2,2,4-trimethylpentane
% methylcyclopentane
% 2-methyl-2-butene
% 1-hexene
% benzene
% toluene

106.167 0.8611 0.9982 % xylene
106.167 0.8670 0.9982 % ethylbenzene
120.194 0.8944 1.1391 % 1,2,3-trimethylbenzene
128.174 1.0253 1.0954 % naphthalene
88.150 0.7405 0.8718 % MTBE
46.069 0.7893 0.4491 % ethanol

coeff.dat
% c r s a b m
-0.994 0.577 2.549 3.813 4.841 -0.869 % 1 water-air <1>
0.29 0.65 -1.66 -3.52 -4.82 4.28 % 2 alkanes-water <2>
0.13 0.82 -1.73 -3.78 -4.90 4.65 % 3 cyclohexane-water <2>
0.017 0.490 -0.604 -3.013 -4.628 4.587 % 4 benzene-water <3>
0.015 0.594 -0.781 -2.918 -4.571 4.533 % 5 toluene-water <3>
0.462 0.571 -1.035 -0.024 -5.508 4.346 % 6 diethylether-water <3>
0.18 0.82 -1.50 -0.83 -5.09 4.69 % 7 di(n)butylether-water <4>
0.208 0.409 -0.959 0.186 -3.645 3.928 % 8 ethanol-water <5>
0.249 0.480 -0.639 -0.050 -2.284 2.758 % 9 isobutanol-water <3>

solparms.dat
% cvariable R2 piH alphaH betaH Vx

0.82
0.26
0.23
0.23
0.20
0.60
0.57
0.52
0.56
0.54
0.55
0.37
0.43

0.35
0.41
0.45
0.45
0.46
0.30
0.31
0.30
0.39
0.39
0.44
0.44
0.47

0.167
0.816
0.957
0.957
1.098
0.775
0.916
0.916
1.057
1.057
1.198
1.198
0.308

% 1 water
% 2 aniline
% 3 p-toluid ine

4 o-toluidine
5 2,6-dimethylaniline
6 phenol
7 p-cresol
8 o-cresol
9 3,4-dimethylphenol
10 2,6-dimethylphenol
11 3,4,5-trimethylphenol
12 2,4,6-trimethylphenol
13 methanol
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3
4
5
6
7
8

0.000
0.955
0.923
0.966
0.972
0.805
0.820
0.840
0.830
0.860
0.830
0.860
0.278

0.45
0.96
0.95
0.92
0.89
0.89
0.87
0.86
0.86
0.79
0.88
0.79
0.44



0.246
0.212
0.180
0.024
0.106
0.687
1.323
0.610
0.601
0.613
0.604
0.623
0.663
0.613
0.728
0.630
1.340
1.344
1.304
1.604
1.588
2.055
2.290
2.377

14 ethanol
15 isoprop
16 tert-but
17 MTBE

anol
anol

0.42
0.36
0.30
0.19
0.62
0.56
0.88
0.52
0.52
0.51
0.50
0.52
0.56
0.52
0.61
0.51
0.92
0.90
0.88
1.05
1.06
1.29
1.34
1.55
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0.37
0.33
0.31
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.48 0.449
0.56 0.590
0.60 0.731
0.45 0.872
0.45 0.747
0.15 0.641
0.20 1.010
0.14 0.716
0.14 0.857
0.15 0.998
0.15 1.139
0.16 0.998
0.16 0.998
0.16 0.998
0.19 1.139
0.18 1.139
0.20 1.085
0.20 1.2263
0.20 1.226
0.20 1.259
0.20 1.357
0.26 1.454
0.26 1.454
0.20 1.585

% 18 ethylacetate
% 19 thiophene
% 20 benzo[b]thiophene
% 21 benzene
% 22 toluene
% 23 ethylbenzene
% 24 n-propylbenzene
% 25 m-xylene
% 26 o-xylene
% 27 p-xylene
% 28 1,2,3-trimethylbenzen
% 29 4-ethyltoluene
% 30 naphthalene
% 31 1-methylnaphthalene

% 32 2-methylnaphthalene
% 33 acenaphthene
% 34 fluorene
% 35 phenanthrene
% 36 anthracene
% 37 fluoranthrene

E



Appendix D
C++ and IDL codes used to manipulate and

analyze Gaussian98 molecular orbital computations

Several independent programs which perform different functions are listed here. The codes are
tailored for use with Gaussian98 Revision A.6 and may not necessarily work correctly with other
versions. Gaussian98 output is designed for handling with Fortran, and these utilities would
probably have been more robust to updates in Gaussian98 output if they had been written in
Fortran. The codes perform crude exception handling. The user is encouraged to use them with
an understanding of how they perform, and modify them for his/her needs. As written here, the
programs reflect the resources that I have had at my convenient disposal while at M.I.T. (e.g.,
C++, IDL, Matlab), but other (more computationally efficient) approaches could have been taken
if other software had been available (e.g., a working "cubman" utility). I did not rely heavily on
Gaussian98 checkpoint files, except to solve occasionally difficult Gaussian98 numerical hang-
ups during geometry optimizations or self-consistent field calculations. Checkpoint files require
substantial hard disk memory, and for the large number of calculations that I performed (over
2000 calculations for 90 types of molecules), checkpoint files would have used far more disk
space than was available. However, future users are encouraged to use checkpoint files where
possible, since this greatly improves the speed of repeated single point evaluations. I have not
reviewed the syntax of Gaussian98 input - the reader should independently gain familiarity with
Gaussian98 input syntax before attempting to repeat calculations discussed here. A quick
description of the codes, and their uses, follows.

All of the C++ codes implicitly require an input file called filelist.dat, which gives a list of the
root filenames that the user wants to analyze, i.e.:

benz
h2o
toln

For example, the first entry, "benz", represents the filename root that is specific to a certain kind
of molecule, whereas the filename suffix will reflect a specific kind of input or output file. The
syntax is always: moleculename dotfiletype, e.g., the file "h2o.opt" would contain the
Gaussian98 output of a water molecular geometry optimization. The filelist.dat list therefore
allows the user to manipulate, analyze, or generate information for several different molecules at
once.

The data file comment.txt gives a list of strings with short descriptions corresponding to the
filename root, and these are generally included in Gaussian98 input as a way of aiding the user.
The syntax of comment.txt is

alk3 propane
mtbe methyltertbutylether
mtbe2 methyltertbutylether-altemate-geometric-configuration
h2o water
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where the first column is intended to be a short mnemonic used as the root string for filenames,
and the second column is a single string intended to give a little more explanation.

The file header.txt contains the Gaussian98 header instructions for a particular calculation, e.g.:
B3LYP/G-31 +G(d,p) OPT SCF=TIGHT NOSYMM TEST

By editing the header.txt file, the user can dictate the type of computation which will then be
applied to a large number of input files with a single command such as makeinputset.c.
Together, filelist.dat and header.txt allow the user to processively calculate properties for a
"fleet" of molecules, which can contribute to considerable user input time savings if the
molecule set is large.

I have used a slightly different naming convention for "jobfiles," that is, files which are used to
submit an input file of interest to Gaussian98 and indicate the name of the corresponding output
file. Jobfiles always use the syntax]j moleculename, e.g., the file "jmtbe" is a jobfile for mtbe.
Sometimes a "k" prefix has been used instead (in cases where I want to preserve two types of
jobfile for the same set of molecules at the same time).

File suffix conventions I have used include the following. Some of the listings refer to
Gaussian98 direct output (G98 refers to Gaussian98), but others simply correspond to input or
archived analysis results:
molec.inp
molec.out
molec.opt
molec.xopt
molec.sopt
molec.copt
molec.gnc
molec.xnc
molec.snc
molec.cnc
molec.gsp
molec.xsp
molec.ssp
molec.csp
molec.fsp
molec.gcub
molec.xcub
molec.scub
molec.ccub
molec.ccib
molec.sic
molec.sic 1
molec.cic
molec.cic 1
molec.fic
molec.iic

any input file for a G98 calculation
generic (unspecified) G98 job output file
gas phase G98 geometry optimization using B3LYP
gas phase G98 geometry optimization using HF/MIDI!
G98 geometry optimization in the presence of a B3LYP PCM field
G98 geometry optimization in the presence of a HF/MIDI! PCM field
saved optimized nuclear coordinates (gas phase B3LYP)
saved optimized nuclear coordinates (gas phase HF/MIDI!)
saved optimized nuclear coordinates (B3LYP with PCM)
saved optimized nuclear coordinates (HF/MIDI! with PCM)
gas phase G98 single point calculation using B3LYP
gas phase G98 single point calculation using HF/MIDI!
G98 single point calculation using B3LYP with PCM
G98 single point calculation using HF/MIDI! with PCM
G98 single point calculation using HF/MIDI! with IPCM or SCIPCM
G98 cube file, B3LYP gas phase
G98 cube file, HF/MIDI! gas phase
G98 cube file, B3LYP with PCM
G98 cube file, HF/MIDI! with PCM
G98 cube file, HF/MIDI! with IPCM or SCIPCM
saved electron isosurface coordinates at 0.0004 e /bohr3, B3LYP with PCM
saved electron isosurface coords at 0.0001 e-/bohr 3, B3LYP with PCM
saved electron isosurface coords at 0.0004 e-/bohr 3, HF/MIDI! with PCM
saved electron isosurface coords at 0.0001 e /bohr 3, HF/MIDI! with PCM
saved electron isosurface coords at 0.0004 e/bohr3 , HF/MIDI! with SCIPCM

saved electron isosurface coords at 0.0004 e~/bohr3 , HF/MIDI! with IPCM
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molec.sts saved PCM tesserae coordinates, calculated from B3LYP with PCM
molec.gfd G98 calculated field, potential at 0.0004 e/bohr3, B3LYP gas phase
molec.ifd G98 calculated field, potential at 0.0004 e-/bohr 3 , B3LYP with PCM
molec.ifdl G98 calculated field, potential at 0.0001 e-/bohr 3, B3LYP with PCM
molec.cfd G98 calculated field, potential at 0.0004 e~/bohr 3, HF/MIDI! with PCM
molec.ffd G98 calc'd field, potential at 0.0004 e/bohr3, HF/MIDI! with IPCM or SCIPCM

The uses of the different codes are as follows:
savegeomset.c takes molec.*out files as input, attempts to find a stationary point, and returns the

(cartesian) coordinates as molec.*nc files, and also generates a set of input files with these
optimized coordinates using header.txt (filelist.dat is also required). The file
savegeomset.log reports the progress of the search, and a flag notifies the user if optimized
results cannot be found for a particular molecule. A nuclear geometry file for water,
h2o.cnc, might look like:
3

0 0.000000 0.000000 -0.123148
H 0.000000 0.753468 0.492594
H 0.000000 -0.753468 0.492594

where the first line designates the total number of nuclei, and subsequent lines give the atom
types and locations (A).

makeinputset.c is an "all-purpose" code which simply generates a set of input files from the
user-designated set of molec.*nc files, applying the Gaussian98 header found in header.txt
(filelist.dat is also required).

makecubset.c modifies an existing set of molec.inp files, by appending the input instructions
necessary to generate a cube file of the appropriate dimensions to encapsulate an electron
isodensity surface of 0.0001 e/bohr3 . Specifically, the makecubset.c utility parameters tell
Gaussian98 to output a 3-dimensional grid of electron density (called a "cube file") such that
the box edges are at least r distance away from any nucleus, where r is adjusted by the user in
terms of Van der Waals radii, using the "VdW scale factor." Finally, the box has a uniform
spacing between points as set by the user. Recommended inputs are: VdW scale factor = 2.0,
and grid resolution = 0.2 A (filelist.dat is also required).

getiso.pro is an Interactive Data Language (IDL) code which takes a cube file as input, and
generates and rotates on-screen rendered electron isodensity surfaces of 0.0004 e-/bohr 3 and
0.0001 e/bohr3, and then records these vectors of isodensity vertex locations in molec.*ic
and molec.*icl files. These vertex vectors can subsequently be appended to Gaussian98
input, in order to evaluate the electrostatic field and potential at these points. getiso.pro also
overwrites the molec.*nc files from the cube files, in case the nuclei standard orientations
have changed.

intfieldset.c takes a set of Gaussian98 output files containing electrostatic field and potential
evaluations along the set of SAS (solvent accessible surface) points as input, and integrates
equation 4-7 along these points, producing an on-screen output vector of AU, and IV2 values
(in kcal/mol and kcal A/mol, respectively) readable by Matlab. This code must be compiled
with point.c (and it also requires filelist.dat).

dipoleset.c takes a set of (practically any type of) Gaussian98 output file as input, and reads the
calculated dipole moment tensors, which are then output to the screen and recorded in
dipoleset.log (the file filelist.dat is also required).
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point.h and point.c are a C++ point class.

An example sequence of calculations may be as follows:
(1) Perform a geometry optimization of a set of molecules, e.g., using the header:

MIDIX OPT SCF=TIGHT SCRF=(PCM,SOLVENT=WATER) TEST
to give output file set molec.copt.

(2) Use savegeomset.c to record the optimized nuclear positions of this molecule set in the files
called molec.cnc, generating a new set of input files (at these geometries) with the header:

MIDIX SCF=TIGHT CUBE=(DENSITY,CARDS)
SCRF=(PCM,SOLVENT=WATER) TEST

(3) Run the makecubset.c utility, which will append the input files with appropriate Gaussian98
input stream instructions for tailored cube files of appropriate dimension and uniform
resolution, for each molecule.

(4) Use Gaussian98 to perform these single point calculations, generating a set of molec.ccub
files.

(5) Run getiso.pro on each of the cube files, generating a set of molec.cic and molec.cicl files.
(6) Use makeinputset.c to generate a new set of input files having the header

MIDIX SCF=TIGHT PROP=(READ,FIELD) IOP(6/33=2)
SCRF=(PCM,SOLVENT=WATER) TEST

(7) Append each molec.inp file with a molec.cic file - this can be rapidly achieved for a large set
of files using the UNIX "foreach" command, as:

foreach f ('more filelist.dat')
my $f.inp scratch
cat scratch $f.cic > $f.inp
end

(8) Use Gaussian98 to perform these calculations, generating a set of molec.cfd files.
(9) Run intfieldset.c on the set of molec.cfd files.

savegeomset.c
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <string>
#include <fstream>
#include <math.h>

// This code saves the standard orientation geometry of a gaussian
// output file in cartesian coordinates, good for the geometry input
// of another gaussian input file.

using namespace std;

int GET_N_MOLEC(string);
void READFILENAMES(int, string, string *);
int FIND_N_POINTS(char []); / find the number of nuclei in the opt file
int FIND_N_OPTS(char []); / find number of optimizations in the opt file
void READXYZDATA(int, int, double **, int *, char [], int index);
void WRITE(char [], double **, int *, int);
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void WRITEINPUT(const char [], double **, int *, int);
void WRITEJOBFILE(const char [], string suffix);

int maino
{

int Npoints = 0;
int Nopts = 0;
int N_molec = 0;
char inputfile[1 6];
char geomfile[1 6];
char outfile[1 6];

// number of data points
// number of optimization cycles
// number of molec data files to read

string filelist = "filelist.dat"; // filename of molec name data
N_molec = GET_N_MOLEC(filelist);

string *basefiles; // vector of molec names
basefiles = new string[N-molec];
READFILENAMES(N-molec, filelist, basefiles);

string appstr;
cout << "\n\nenter gaussian output file extension, eg .xopt suffix:\n? ";
cin >> appstr;

string appstr-g;
cout << "\nenter gaussian geometry file extension,
cin >> appstr-g;

string suffix;
cout << "\nenter anticipated output file suffix:\n? ";

cin >> suffix;

for (int k = 0; k < N-molec; k++)
{
strcpy(inputfile,basefiles[k].cqstro);
strcat(inputfile,".");
strcat(inputfile,appstr.c-stro);

eg .xnc suffix:\n? ";

N-points = FIND_N_POINTS(inputfile);
N-opts = FIND_N_OPTS(inputfile);

double **xyz; // declare
xyz = new double*[N-points];
for (int i = 0; i < Npoints; i++)

xyz[i] = new double[3];

int *atoms;
atoms = new int[N-points];

for (int i = 0; i < N-points; i++)
for (int j = 0; j < 3; j++)

xyz[i][j] = 0;

dynamic mem 3d coordinate data
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READXYZDATA(N-points, N-opts, xyz, atoms, inputfile, k);

strcpy(outfile, basefiles[k].c-stro);
strcat(outfile, ".");
strcat(outfile, appstr-g.c-stro);

WRITE(outfile, xyz, atoms, Npoints);
WRITEJOBFILE(basefiles[k].c-stro, suffix);
WRITEINPUT(basefiles[k].c-stro, xyz, atoms, N-points);

cout << "\nStd orientation cartesian geometry file"
<< outfile << " produced (angstroms).\n";

cout << " ------------ ------------------------------------ \n n";

for (int i= 0; i < N-points; i++)
delete [] xyz[i]; // memory management

}

delete [] basefiles; // memory management

return 0;
}

int GET_N_MOLEC(string filelist)
{

int N = 0;
ifstream infile(filelist.cstr(, ios::in);
if (!infile)
{

cerr << "\nWhere is "' << filelist <<
<< "I can't find it.\nExiting.\n\n";

exit(1);
}

string dummy;
while (infile >> dummy)

N++;
cout << "\nN molec =" < N;
return N;

}

void READFILENAMES(int N, string filelist, string *filenames)
{

ifstream infile(filelist.cqstro, ios::in);
if (!infile)
{

cerr << "\nWhere is "' << filelist <<"'??"
<< "I can't find it.\nExiting.\n\n";

exit(1);
}
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for (int i = 0; i < N; i++)
infile >> filenames[i];

}

int FIND_N_POINTS(char data[])
{

int N = 0;
ifstream infile(data, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << data << "'?

<< "I can't find it.\n"
<< "\nExiting.\n\n";

exit(1);
}

string dummyl, dummy2;

while (infile >> dummyl)
{

if (dummyl == "-------------------------------------" && dummy2 ==
{

infile >> dummyl;
while (dummyl != "----------- ------------------------ ")
{

for (int j = 0; j < 6; j++)
{

infile >> dummyl;
}
N++;

}
break;

}
dummy2 = dummyl;

}
cout << "N =" < N << " nuclei";
return N;

}

int FIND_N_OPTS(char data[])
{

int N = 0;
ifstream infile(data, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << data << "'?!!

<< "I can't find it.\n"
<< "\nExiting.\n\n";

exit(1);
I
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string dummyl, dummy2;

while (infile >> dummyl)
{

if (dummyl == "orientation:" && dummy2 == "Input")
N++;

dummy2 = dummyl;
}
if (N > 2)
cout << endl << N-1 << " optimization cycles were found.";

else if (N == 2)
cout << "\nl optimization cycle was found.";

else if (N == 1)
cout << "\nNo optimization cycles were found.";

else
{

cerr << "\nERROR. NO STANDARD ORIENTATION TABLE FOUND.\nExiting.\n";
exit(1);
I
return N;

}

void READXYZDATA(int N-points, int N-opts, double **xyz, int *atom, char data[], int index)
{

ifstream infile(data, ios::in);
if (!infile)
{

cerr << "\nWhere is ' << data << "'?!!
<< "I can't find it.\n"
<< "\nExiting.\n\n";

exit(1);
I

string dummyl, dummy2;
int N=O;
int optflag=Q;
int messageflag=O;
int NOSYMflag=O;
int readflag=Q;

while (infile >> dummyl)
{

if (dummyl == "#" && messagef lag == 0)
{
messageflag = 1;
cout << "\nCommand line: # ";
int counter = 0;
while (infile >> dummyl)
{

if (dummyl == "NOSYM" || dummyl == "NOSYMM")
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NOSYMf lag = 1;
cout << dummyl <<"";
counter++;
if (dummyl == "TEST" 11 counter > 8)
break;

}
}

if (dummyl == "orientation:" && dummy2 == "Input")
N++;

if (dummyl == "Parameters" && dummy2 == "Optimized")
optflag=1;

if (dummyl == "orientation:" && dummy2 == "Standard" && N == Nopts)
readflag = 1;

if (dummyl == "orientation:" && dummy2 == "Input" && N == Nopts && NOSYMflag == 1)
readf lag = 1;

if (readf lag == 1)
{

while (infile >> dummyl)
{

if (dummyl == "Parameters" && dummy2 == "Optimized")
optflag=1;

if (dummyl == "-------------------------------------" && dummy2 ==

{
int i = 0;
for (i = 0; i < N-points; i++)
{

infile >> dummyl;
infile >> atom[i];
infile >> dummyl;
for (int j = 0; j < 3; j++)

infile >> xyz[i][];
}

}
dummy2 = dummyl;

}
}
dummy2 = dummyl;

}

if (optflag == 0)
cout << "\nWARNING: 'OPTIMIZED PARAMETERS' TABLE NOT FOUND.";

else
cout << "\n'Optimized Parameters' table found.";

// WRITE A SUMMARY TO THE .LOG FILE
if (index == 0)
{

ofstream Iogfile("savegeom3set.Iog", ios::out);
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if (logfile == 0)
exit(1);

if (optf lag == 0)
logfile << "File " << data << ": 'OPTIMIZED PARAMETERS' TABLE NOT FOUND.\n";

else
logfile << "File " << data << ": 'Optimized Parameters' table found.\n";

logfile << N-opts << " optimizations found.\n";
for (int i = 0; i < N-points; i++)
{
for (int j = 0; j < 3; j++)
{

if (xyz[i][j] == 0)
logfile << " " << "0.000000";

else if (xyz[i][j] < 0)
logfile << " "<< xyz[i]j];

else
logfile << " "<< xyz[i][];

}
logfile << endl;

}
logfile << " ----------------------------------------------------------------- \n\n";

}
else
{
ofstream logfile("savegeomset.log", ios::app);
if (logfile == 0)

exit(1);
if (optflag == 0)

logfile << "File " << data << ": 'OPTIMIZED PARAMETERS' TABLE NOT FOUND.\n";
else
logfile << "File " << data << ": 'Optimized Parameters' table found.\n";

logfile << N-opts << " optimizations found.\n";
for (int i = 0; i < N-points; i++)
{
for (int j = 0; j < 3; j++)
{

if (xyz[i]u] == 0)
logfile << " " << "0.000000";

else if (xyz[i][j] < 0)
logfile << " "<< xyz[i][j];

else
logfile << " "<< xyz[i][j];

}
logfile << endl;

}
logfile << " ----------------------------------------------------------------- \n\n";

}
}

void WRITE(char filename[], double **xyzdata, nt *atom, nt N)
{
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ofstream outfile(filename, ios::out);
if (outfile == 0)

exit(1);

outfile.setf(ios::f ixed);
cout.setf(ios::f ixed);
cout << endl << " " << N << endl << endl;
outfile << " " << N << endl << endl;

for (int i = 0; i < N; i++)
{
outfile << setiosflags(ios::left) << setw(6);
cout << setiosflags(ios::Ieft) << setw(6);
switch (atom[i])
{
case 1:
outfile << "H";
cout << "H";
break;

case 6:
outfile << "C";
cout << "C";
break;

case 7:
outfile << "N";
cout << "N";
break;

case 8:
outfile << "0";
cout << "0";
break;

case 9:
outfile << "F";
cout << "F";
break;

case 15:
outfile << "P";
cout << "P";
break;

case 16:
outfile << "S";
cout << "S";
break;

case 17:
outfile << "Cl";
cout << "Cl";
break;

case 35:
outfile << "Br";
cout << "Br";
break;
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case 53:
outfile << "I";
cout << "I";
break;

}
outfile.setf(ios:: right);
cout.setf(ios:: right);
outfile.precision(6);
cout.precision(6);
for (int j = 0; j < 3; j++)
{
outfile << setw(1 2) << xyzdata[i][j];
cout << setw(12) << xyzdata[i][j];

}
outfile << endl;
cout << endl;

}
}

void WRITEINPUT(const char basefile[], double **xyzdata, int *atom, int N)
{
char headertext[] = "header.txt";
char commenttext[] = "comment.txt";
char footertext[] = "footer.txt";
char Ginput[1 6];
char append[] = ".inp";
strcpy(Ginput,basefile);
strcat(Ginput,append);

ifstream infile(headertext, ios::in);
if (!infile)
{
cerr << "\nWhere the heck is "' << headertext << "'?!!

<< "I can't find it.\nA program needs data to run, you know..."
<< "\nExiting.\n\n";

exit(1);
}

ofstream outfile(Ginput, ios::out);
if (outfile == 0)

exit(1);

outfile.setf(ios::fixed);
int fourflag = 0;
string header[1 0];
for (int i = 0; i < 10; i++)
{

if (i == 4 11 i == 8)
outfile << endl;

infile >> header[i];
if (header[i] == "NEWLINE")
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{
outfile << endl;
i = 0;

I
else
outfile << header[i] << " ";

if (infile == 0)
{
fourflag = i;
break;

}
}

outfile << endl;
if (fourflag != 4 && fourflag != 8)
outfile << endl;

infile.closeo;
ifstream infile2(commenttext, ios::in);
if (!infile2)
{
cerr << "\nWhere the heck is "' << commenttext <<"'?!!

<< "I can't find it.\nA program needs data to run, you know..."
<< "\nExiting.\n\n";

exit(1);
I

string comment;
int commentf lag = 0;
while (infile2 >> comment)
{

if (comment == basefile)
{

infile2 >> comment;
commentf lag = 1;
break;

}
}
if (commentflag == 0)
{
cerr << "ERROR. Comment file needs to be updated."

<< "Input file left incomplete.\nExiting.\n";
exit(1);

I
outfile << comment << endl << endl << " 1" << endl;

for (int i = 0; i < N; i++)
{
outfile << setw(6);
switch (atom[i])
{
case 1:
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outfile << "H ";

break;
case 6:

outfile << "C ";

break;
case 7:

outfile << "N ";

break;
case 8:

outfile << "0 ";
break;

case 9:
outfile << "F ";
break;

case 15:
outfile << "P ";

break;
case 16:
outfile << "S ";

break;
case 17:
outfile << "CI ";

break;
case 35:
outfile << "Br ";

break;
case 53:
outfile << "I ";
break;

}
outfile.setf(ios:: right);
outfile.precision(6);
for (int j = 0; j < 3; j++)
outfile << setw(12) << xyzdata[i][j];

outfile << end[;
}
outfile << endl;

ifstream infile3(footertext, los::in);
if (infile3)
{

string footer[1 0];
for (int i = 0; i < 10; i++)
{

infile3 >> footer[i];
outfile << footer[i] <<" ";

}
outfile << endl << endl;
infile3.closeo;

}
cout << "\nGaussian input file '" <<Ginput << "' returned.";
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}

void WRITEJOBFILE(const char basefile[], string suffix)
{
char jobfile[] = "j";
strcat(jobfile,basefile);
ofstream outfile(jobfile, ios::out);
if (outfile == 0)

exit(1);
outfile << "#!/bin/csh" << endl << endl

<< "/usr2/g98/g98 < /usr/people/sarey/jobsDx/" << basefile
<< ".inp > /usr/people/sarey/jobsDx/" << basefile
<< "."<< suffix << endl << endl;

cout << "\nGaussian job file "' << jobfile << "' returned.";

makeinputset.c
#include <iostre
#include <ioman
#include <stdlib.
#include <string
#include <fstrea
#include <math.

//
//
//

am>
ip>
h>

>

h>

This code creates an input file + jobfile simply from the saved nuclear
geometry file (molec.snc). It is good for preserving the nuclear
orientation chosen by Gaussian in a cube calculation. Coordinates in Ang.

using namespace std;

int GET_N_MOLEC(string);
void READFILENAMES(int, string, string *);
int FIND_N_POINTS(char []); / find the number of nuclei in the opt file
void READXYZDATA(double * string *, char U);
void WRITEINPUT(const char [], double * string *, int);
void WRITEJOBFILE(const char [], char [], char);

int maino
{

int i = 0;
int N-points = 0;
int N_molec = 0;
char geomfile[1 6];
char outfile[1 6];

// counter variable
// number of data points
// number of molec data to read

string filelist = "filelist.dat"; // filename of molec name data
N_molec = GET_N_MOLEC(filelist);
string *basefiles; // vector of molec names
basefiles = new string[N-molec];
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READFILENAMES(N_molec, filelist, basefiles);

string app-nc;
cout << "enter the nuclear geometry file extension (e.g. 'gnc')\n? ";

cin >> app-nc;
string app-out;
cout << "enter the desired gaussian output file extension (e.g. 'gpot')\n? ";

cin >> app-out;
char jobf lag;
cout << "choose an output directory: is this a (b)31yp calc or a (m)idi calc\n? ";

cin >> jobf lag;

for (int k = 0; k < N_molec; k++)
{
strcpy(geomfile, basefiles[k].c-stro);
strcat(geomfile, ".");
strcat(geomfile, app-nc.c-stro);
strcpy(outfile, basefiles[k].c-stro);
strcat(outfile, ".");
strcat(outfile, app-out.c-stro);

N-points = FIND_N_POINTS(geomfile);
double **xyz; // declare dynamic mem 3d coordinate data
xyz = new double*[N-points];
for (i = 0; i < N-points; i++)
xyz[i] = new double[3];

string *atoms;
atoms = new string[N-points];
for (i = 0; i < N-points; i++)

for (int j = 0; j < 3; j++)
xyz[i][j] = 0;

READXYZDATA(xyz, atoms, geomfile);
WRITE_I NPUT(basefiles[k].c-stro, xyz, atoms, N-points);
WRITEJOBFILE(basefiles[k].c-stro, outfile, jobflag);

for (i = 0; i < N-points; i++)
delete [] xyz[i]; // memory management

delete [] atoms;
}
cout << endl;
return 0;

}

int GET_N_MOLEC(string filelist)
{

int N = 0;
ifstream infile(filelist.c-stro, ios::in);
if (!infile)
{
cerr << "\nWhere is '" <filelist <<"'?? "
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<< "I can't find it.\nExiting.\n\n";
exit(1);

}
string dummy;
while (infile >> dummy)

N++;
cout << "\nN molec =1"<< N << endl;
return N;

}

void READFILENAMES(int N, string filelist, string *filenames)
{

ifstream infile(filelist.c-stro, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << filelist << "'??"

<< "I can't find it.\nExiting.\n\n";
exit(1);

}
for (int i = 0; i < N; i++)

infile >> filenames[i];
}

int FIND_N_POINTS(char data[])
{

int N = 0;
ifstream infile(data, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << data << "'??

<< "I can't find it.\nExiting.\n\n";
exit(1);

}
infile >> N;
infile.closeo;
return N;

}

void READXYZDATA(double **xyz, string *atom, char data[])
{

ifstream infile(data, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << data <<"'??

<< "I can't find it.\nExiting.\n\n";
exit(1);

I
int Npoints = 0;
infile >> N-points;
for (int i = 0; i < N-points; i++)
{
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infile >> atom[i];
for (int j = 0; j < 3; j++)

infile >> xyz[i][];
}

}

void WRITEINPUT(const char basefile[], double **xyzdata, string *atom, int N)
{
char headertext[] = "header.txt";
char commenttext[] = "comment.txt";
char footertext[] = "footer.txt";

char Ginput[1 6];
char append[] = ".np";
strcpy(Ginput,basefile);
strcat(Ginput,append);
ifstream infile(headertext, ios::in);
if (!infile)
{
cerr << "\nWhere is file "' << headertext << "'??"

<< "\nl can't find it..."
<< "\nExitingAn\n";

exit(1);
I
ofstream outfile(Ginput, ios::out);
if (outfile == 0)

exit(1);
outfile.setf(ios::fixed);
cout.setf(ios::fixed);
string header[1 0];
int iterflag = 0;
for (int i = 0; i < 10; i++)
{

infile >> header[i];
if (infile == 0)
break;

if (header[i] == "NEWLINE")
{
outfile << endl;
i = 0;

I
else
outfile << header[i] <<" ";

if (i == 4 11 i == 8)
outfile << endl;

iterflag = i;
I
if (iterflag == 4 11 iterflag == 8)
outfile << endl;

else
outfile << endl << endl;
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infile.closeo;
ifstream infile2(commenttext, los::in);
if (!infile2)
{

cerr << "\nWhere the heck is "' << commenttext <<"'?!!
<< "I can't find it.\nExiting.\n\n";

exit(1);
}
string comment;
int commentf lag = 0;
while (infile2 >> comment)
{

if (comment == basefile)
{

infile2 >> comment;
commentflag = 1;
break;

}
}
if (commentflag == 0)
{

cerr << "ERROR. Comment file needs to be updated."
<< "Input file left incomplete.\nExiting.\n";

exit(1);
}
if (comment == "dioxygen" || comment == "oxygen")
{

outfile << comment << endl << endl << "0 3" << endl;
cout << "\nSETTING 02 MULTIPLICITY TO 3.";

}
else
outfile << comment << endl << endl << "0 1" << endl;

for (int i = 0; i < N; i++)
{
outfile.setf(ios::left);
outfile << setw(6) << atom[i].c-str(;
outfile.unsetf(ios:: left);
outfile.setf(ios::right);
outfile.precision(6);
for (int j = 0; j < 3; j++)
outfile << setw(12) << xyzdata[i][j];

outfile << endl;
outfile.unsetf(ios::right);

outfile << endl;
ifstream infile3(footertext, ios::in);
if (infile3)
{

string footer[l 0];
for (int i = 0; i < 10; i++)
{
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infile3 >> footer[i];
outfile << footer[i] <<"";

outfile << endl << endl;
infile3.closeo;

}
cout << "\nGaussian input file "' << Ginput << "' returned.";

I

void WRITEJOBFILE(const char basefile[], char outfilename[], char jflag)
{
char jobfile[] = "k";
strcat(jobfile,basefile);
ofstream outfile(jobfile, ios::out);
if (outfile == 0)

exit(1);
if (jf lag == 'b')
{
outfile

I
else if
{
outfile

<< "#!/bin/csh" << endl << endl
<< "/usr2/g98/g98 < /usr/people/sarey/jobsDx/" << basefile
<< ".inp > /usr/people/sarey/jobsDx/" << outfilename
<< endl << endl;

(jf lag == 'im')

<< "#!/bin/csh" << endl << endl
<< "/usr2/g98/g98 < /usr/people/sarey/midi/" << basefile
<< ".inp > /usr/people/sarey/midi/" << outfilename
<< endl << endl;

}
else
{

cerr << "ERROR. Incorrect job type input.\nExiting.\n";
exit(1);

}
cout << "\nGaussian job file '" <<jobfile <<

makecubset.c
#include <iostr
#include <iom
#include <strin
#include <fstre
#include <mat

"' returned.";

eam>
anip>
g>
am>
h.h>

using namespace std;

int GET_N_MOLEC(string);
void READFILENAMES(int, string, string *);
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int FINDNPTS(char []);
void READXYZDATA(double **, string *, char []);

int maino
{

int N_pts = 0;
int Nmolec = 0; // number of molec data files to read
double min[3]; / lowest xyz point
double max[3]; // highest xyz point
int Nsteps[3]; // stepsize in each dimension xyz
double stepsize = 0;
char solvf lag;
char ipcmf lag;
char geomfile[1 6];
char inputfile[1 6];

cout << "enter (g)as, (s)olvated, midi(x), or midix solvated (c) solute\n? ";
cin >> solvflag;
cout << "enter (i)pcm calculation (0.0004 e-/bohr3 assumed) or (n)ot an ipcm calculation\n? ";
cin >> ipcmflag;
double scalefactor = 0;
cout << "enter scale factor on the Van der Waals estimated radii\n? ";
cin >> scalefactor;
cout << "enter the grid resolution (step size) in angstroms\n? ";
cin >> stepsize;

string filelist = "filelist.dat"; // filename of molec name data
cout << "\nReading input file names from " << filelist << endl;
N_molec = GET_N_MOLEC(filelist);
cout << "\n\nThe following input files have been modified:\n";
string *basefiles; // vector of molec names
basefiles = new string[N-molec];
READ_FILENAMES(N-molec, filelist, basefiles);

char append1 [] = ".gnc";
if (solvflag == 's')

append1 [1] = 's';
if (solvflag == 'x')

append1 [1] = ;
if (solvflag == 'c')

append1 [1] = 'c';
char append2[] = ".inp";

for (int k = 0; k < Nmolec; k++)
{
strcpy(geomfile, basefiles[k].cstro);
strcpy(inputfile, basefiles[k].cstr());
strcat(geomfile, append1);
strcat(inputfile, append2);

N-pts = FIND_NPTS(geomfile);
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double **xyz; // declare dynamic mem 3d coordinate data
xyz = new double*[N-pts];
for (int i = 0; i < N-pts; i++)
xyz[i] = new double[3];

string *atoms;
atoms = new string[N-pts];

READXYZDATA(xyz, atoms, geomfile);

cout << inputfile << setw(15) << "N points =1"<< N-pts << endl;

// MAIN ALGORITHM

for (int i = 0; i < 3; i++)
{

min[i] = xyz[0][i];
max[i] = xyz[0][i];

}
for (nt i = 0; i < N-pts; i++)
{
double atomicradius=0;
switch (atoms[i][0])
{
case 'H':

atomicradius = 1.06;
break;

case 'C':
atomicradius = 1.53;
if (atoms[i][1] == 'I')

atomicradius = 1.75;
break;

case 'N':
atomicradius = 1.46;
break;

case 'O':
atomicradius = 1.42;
break;

case 'F':
atomicradius = 1.40;
break;

case 'S':
atomicradius = 1.80;
break;

case 'B':
atomicradius = 1.65;
if (atoms[i][1] == 'r')
atomicradius = 1.87;

break;
case 'I':

atomicradius = 2.04;
break;

// set first point

// Bondi calculated radii in angstroms
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case 'P':
atomicradius = 1.86;
break;

}

if (atomicradius == 0)
{

cerr << " ERROR. One of the atoms is not recognized.\nExiting.\n";
exit(1);

}

for (int j = 0; j < 3; j++)
{

if (min[j] > scalefactor*(xyz[i][j] - atomicradius))
min[j] = scalefactor*(xyz[i][j] - atomicradius);

if (max[j] < scalefactor*(xyz[i]j] + atomicradius))
maxU] = scalefactor*(xyz[i][j] + atomicradius);

}
}

for (int i = 0; i < 3; i++)
Nsteps[i] = int(ceil((max[i]-min[i])/stepsize));

char cubefile[1 6];
strcpy(cubefile,basefiles[k].cqstro);
char append3[] = ".gcub";
if (solvf lag == 's')
append3[1] = 's';

if (solvflag == 'x')
append3[1] = ';

if (solvf lag == 'c')
append3[1] = 'C';

if (ipcmflag == 'I')
append3[3] =';

strcat(cubefile, append3);
ofstream ofileobj(inputfile, ios::app);
if (of ileobj == 0)

exit(1);
of ileobj.precision(6);
ofileobj.setf(ios::fixed);
if (solvf lag == 'x'I | solvf lag == 'c')
ofileobj << "midi/" << cubefile << endl;
else
ofileobj << "jobsDx/" << cubefile << endl;

of ileobj << setw(5) << "07" << setw(12) << min[0] << setw(12) << min[1]
<< setw(12) << min[2] << endl;

of ileobj << setw(5) << Nsteps[0] << setw(12) << stepsize << setw(12)
<< 0.0 << setw(12) << 0.0 << endl
<< setw(5) << Nsteps[1] << setw(12) << 0.0 << setw(12)
<< stepsize << setw(12) << 0.0 << endl
<< setw(5) << Nsteps[2] << setw(12) << 0.0 << setw(12) << 0.0
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<< setw(12) << stepsize << endi << endl;

for (int i = 0; i < Npts; i++)
delete [] xyz[i]; // memory management

delete [] atoms;
I
delete [] basefiles; // memory management

return 0;
I

int GET_N_MOLEC(string filelist)
{

int N = 0;
ifstream infile(filelist.c-stro, ios::in);
if (!infile)
{

cerr << "\nWhere is "' << filelist << '"??
<< I can't find it.\nExiting.\n\n";

exit(1);
I
string dummy;
while (infile >> dummy)

N++;
cout << "\nN molec =" < N;
return N;

}

void READFILENAMES(int N, string filelist, string *filenames)
{

ifstream infile(filelist.c-stro, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << filelist << "'??"

<< "I can't find it.\nExiting.\n\n";
exit(1);

}
for (int i = 0; i < N; i++)

infile >> filenames[i];
}

int FIND_N_PTS(char filename[])
{

int N=0;
ifstream infile(filename, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << filename <<'?

<< "\nExiting.\n\n";
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exit(1);
}
infile >> N;
return N;

}

void READXYZDATA(double **xyz, string *atoms, char filename[])
{

ifstream infile(filename, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << filename <<"'??

<< "\nExitingAn\n";
exit(1);

}

int N = 0;
infile >> N;
for (int i = 0; i < N; i++)
{
infile >> atoms[i];
for (int j = 0; j < 3; j++)

infile >> xyz[i][];
}

getiso.pro
device, retain=2, decomposed=0
isodensity = 0.0004 ;units = [electrons/bohr3]
isodensityl = 0.0001 ;units = [electrons/bohrA3]

filename ="
read, filename, prompt='Enter filename without the .cub suffix:
cubefile = filename + '.ccub'
ivfile ="
ivfile = filename + '.cic'
ivfilel = "
ivfilel = filename + '.cicl'
ncfile =1"

ncfile = filename + '.cnc'

openr, 1, cubefile
header = strarr(2)
readf, 1, header ;put 2 comment lines in var header
print, "" + header + ""

readf, 1, n_atoms, zO, yO, xO
n_atoms = fix(n-atoms) ; conversion to integer
readf, 1, zdim, delz
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readf, 1, ydim, dummy, dely
readf, 1, xdim, dummy, dummy, delx
nuclei = make-array(5, natoms, /double, value = 0)
readf, 1, nuclei

for i = 0, n-atoms-1 do begin $ ;convert to angstroms
for j = 2,4 do nuclei(j,i) = nuclei(j,i)*0.529177
endfor

bigcube = make-array(xdim,ydim,zdim, /double, value = 0)
readf, 1, bigcube ;cube units, distance = [bohr]
close, 1 ;density = [electrons/bohrA3]

xd = xdim ;look at "slices"
yd = ydim
zd = zdim

cube = makearray(xd,yd,zd, /double, value = 0)
cube = bigcube[0:xd-1, 0:yd-1, O:zd-1]
maxdim = xdim
if ydim > maxdim then maxdim = ydim
if zdim > maxdim then maxdim = zdim
s = size(cube)
scale3, xrange=[0,maxdim], yrange=[0,maxdim], $
zrange=[0,maxdim], ax=0, az=45

;find 1st isosurface

shadevolume, cube, isodensity, v, p, /low
yjimage = polyshade(v, p, /t3d)
tv, yjimage
nframes = 50
for i = 0, nframes-1 do begin & $
t3d, tr=[-.5,-.5,-.5], rot=[-360./nframes, -180./nframes, 120./nframes] & $
t3d, tr=[.5,.5,.5] & $
tv, polyshade(v,p,/t3d) & $

endfor

size-v = size(v)
v_bohr = make-array(3, size-v(2), /double, value = 0)
v_ang = make-array(3, size-v(2), /double, value = 0)

;in the following for loop, the indices for the
;vertices are corrected to correspond to the
;standard orientation of the nuclear positions

for i = 0, sizev(2)-1 do begin ;convert to bohr
v_bohr(2,i) = v(0,i)*delx + xO
v_bohr(1,i) = v(1,i)*dely + yO
v_bohr(0,i) = v(2,i)*delz + zO
v_ang(0,i) = v-bohr(0,i)*0.529177 ;convert to angstroms
v_ang(1,i) = v-bohr(1,i)*0.529177
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vyang(2,i) = v-bohr(2,i)*0.529177
endfor

lengthv = string(size-v(2), format='(i6)')
openw, 2, ivfile
printf, 2, v-ang, format='(3f12.6)'
close, 2
print, length-v +' isosurface vertices printed to file '+ ivfile

;find 2nd isosurface

shadevolume, cube, isodensityl, v1, p1, /low
yjimagel = polyshade(vl, p1, /t3d)
tv, yjimagel

for i = 0, nframes-1 do begin & $
t3d, tr=[-.5,-.5,-.5], rot=[-180./nframes, -120./nframes,O] & $
t3d, tr=[.5,.5,.5] & $
tv, polyshade(vl,pl,/t3d) & $
endfor

size_vi = size(vl)
v_bohrl = makearray(3, sizevl (2), /double, value = 0)
v-angi = makearray(3, sizevl (2), /double, value = 0)

;in the following for loop, the indices for the
;vertices are corrected to correspond to the
;standard orientation of the nuclear positions

for i = 0, size-v1 (2)-1 do begin ;convert to bohr
v_bohrl (2,i) = v1 (0,i)*delx + x0
v_bohrl (1,i) = v1 (1,i)*dely + y0
v_bohrl (0,j) = v1 (2,i)*delz + zO
vang (0,i) = v bohrl (Q,i)*0.529177 ;convert to angstroms
v-ang1 (1,i) = v-bohrl (1,i)*0.529177
v-ang1 (2,i) = v-bohrl (2,i)*0.529177
endfor

length-vl = string(sizev1 (2), format='(i6)')
openw, 2, ivfile1
printf, 2, v ang1l, format='(3f12.6)'
close, 2
print, length-v1 + ' isosurface vertices printed to file ' + ivfile1

; the following function rewrites the nuc coord file

length-a = string(natoms, format='(i3)')
openw, 3, ncfile
printf, 3, natoms
printf, 3
for i = 0, n_atoms-1 do begin $
if nuclei(0,i) eq 1 then printf, 3, format='("H ", 3f12.6)', nuclei(2,i), nuclei(3,i), nuclei(4,i)
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if nuclei(0,i)
if nuclei(0,i)
if nuclei(0,i)
if nuclei(0,i)
if nuclei(0,i)
if nuclei(0,i)
if nuclei(0,i)
if nuclei(0,i)
if nuclei(0,i)

eq
eq
eq
eq
eq
eq
eq
eq
eq

6 then printf, 3, format='("C ", 3f12.6)', nuclei(2,i), nuclei(3,i), nuclei(4,i)
7 then printf, 3, format='("N ", 3f12.6)', nuclei(2,i), nuclei(3,i), nuclei(4,i)
8 then printf, 3, format='("O ", 3f12.6)', nuclei(2,i), nuclei(3,i), nuclei(4,i)
9 then printf, 3, format='("F ", 3f12.6)', nuclei(2,i), nuclei(3,i), nuclei(4,i)
15 then printf, 3, format='("P ", 3f12.6)', nuclei(2,i), nuclei(3,i), nuclei(4,i)
16 then printf, 3, format='("S ", 3f 12.6)', nuclei(2,i), nuclei(3,i), nuclei(4,i)
17 then printf, 3, format='("CI ", 3f12.6)', nuclei(2,i), nuclei(3,i), nuclei(4,i)
35 then printf, 3, format='("Br ", 3f12.6)', nuclei(2,i), nuclei(3,i), nuclei(4,i)
53 then printf, 3, format='("I ", 3f12.6)', nuclei(2,i), nuclei(3,i), nuclei(4,i)

endfor
close, 3
print, length-a +' nuclei positions printed to file ' + ncfile
print, ' (all output units are in angstroms)'

end

intfieldset.c
// compile with point.c using, e.g.:
// g++ -o intfieldset intfieldset.c point.c

#include <iostream>
#include <string>
#include <fstream>
#include <math.h>
#include <iomanip>
#include <cstdlib>
#include "point.h"

/ the updated assert() fn

using namespace std;

int GET_N_MOLEC(string);
void READFILENAMES(int, string, string *);
int FIND_N_TESS(string);
int FIND_N_NUC(string);
void READNUCDATA(int, point *, string *, string);
void READTESSDATA(int, point *, string);
void READ-U_E_DATA(int, double *, point *, string);
void DISTANCETEST(int, int, point *, string *, point *, double *, point *);
void CALCNORMAL(int, int, point *, int, point *, point &, double &);
void WRITELOG(string, string, int, int, point *, double *, point *, point *, double *, double *);

int maino
{

int Nmolec = 0; // number of molecules
int Nnuc = 0; // number of nuclei
int Ntess = 0; // number of isosurface tessarae points
double bohr2ang = 0.529177; // convert distances in au to Angstroms
cout.setf(ios::fixed);
string filelist = "filelist.dat"; // filename of molec name data

184



string logfile = "intfieldset.log"; / filename of diagnostic log
string outfile = "intfieldset.out"; / filename for output

N_molec = GET_N_MOLEC(filelist);
string app-nuc;
cout << "\nenter the nuclear geometry file suffix (e.g. 'cnc')\n? ";
cin >> app-nuc;
string appid;
cout << "\nenter the field data file suffix (e.g. 'cfd')\n? ";
cin >> app_fd;

string *basefiles; // vector of molec names
basefiles = new string[N-molec];
READ_FILENAMES(Nmolec, filelist, basefiles);
ofstream logfileobj(logfile.c-stro, los::out); // clear the current logf ie
logfileobj.closeo;
ofstream outfileobj(outfile.c stro, ios::out); // clear the current outfile
outfileobj << "\nEscale = [ ... % [Ntess IE*UI E*U U*U]\n";
outfileobj.closeo;

cout << "\nEscale = [ ... % [Ntess IE*UI E*U U*U]\n";
for (int k = 0; k < Nmolec; k++)
{

string nucfile, fdfile;
nucfile = basefiles[k]; // define nuclear data filename
nucfile.append("." );
nucfile.append(app-nuc);
fdfile = basefiles[k]; // define field data filename
fdfile.append(".");
fdfile.append(appjd);

N_tess = FIND_N_TESS(fdfile); / find number of solv surface tess
N_nuc = FIND_NNUC(nucfile); / find number of nuclei
// allocate a bunch of dynamic mem; points are initialized to 0 by default
point *nuc;
nuc = new point[N-nuc]; // cartesian locations of nuclei
string *nuctype;
nuctype = new string[N-nuc]; // names of nuclei
point *tess;
tess = new point[Njtess]; // cartesian locations of tesserae
point *n;
n = new point[Njtess]; // unit normal vectors of tesserae
double *ane;
ane = new double[Njtess]; // index of active (counted) normal

// estimates for each normal average
double *U;
U = new double[Njtess]; // scalar potential, au
point *E;
E = new point[Njtess]; // vector coordinates of E field, au
double *EI;
El = new double[Njtess]; // normal E field vector lengths, au
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for (int i = 0; i < Ntess; i++) / initialization of U
{

U[i] = 0.0;
ane[i] = 20;

}

READNUCDATA(Nnuc, nuc, nuctype, nucfile);
READTESSDATA(Njtess, tess, fdfile);
READ_U_EDATA(Ntess, U, E, fdfile);

DISTANCETEST(Nnuc, Ntess, nuc, nuctype, tess, U, E);

for (int i= 0; i < Ntess; i++)
{

if (E[i] != 0)
CALCNORMAL(i, Njtess, tess, Nnuc, nuc, n[i], ane[i]);

El[i] = n[i].dot(E[i]); // scalar projection of E onto n
I

// write some diagnostic stats to a log file
WRITELOG(logfile, basefiles[k], N-nuc, Ntess, nuc, ane, n, E, El, U);

// integrate over SAS
double Pla = 0.0;
double Plb = 0.0;
double Plc = 0.0;
double Pid = 0.0;
double Ubar = 0.0;

for (int i = 0; i < Ntess; i++)
Ubar = Ubar + U[i];

Ubar = Ubar/Njtess;

for (int i = 0; i < Ntess; i++)
{

Pla = Pla + sqrt(pow(E[i]*U[i],2.0));
// Plb = Plb + sqrt(pow(U[i] - Ubar,2.0)); // Brink method
Plb = Plb + EI[i]*U[i];
Plc = Plc + U[i]*U[i];

}

cout.precision(2);

ofstream outfileobj(outfile.c-stro, ios::app);
outfileobj.setf(ios::fixed);
outfileobj.precision(2);

cout << "[" << Ntess << setw(8) << 3.1462*Pla << setw(8) << 3.1462*Plb
<< setw(8) << 1.8631 *Plc;

outfileobj << "[" << Ntess << setw(8) << 3.1462*Pla << setw(8) << 3.1462*Plb
<< setw(8) << 1.8631 *Plc;
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if (k < Nmolec-1)
{

cout << "]; setw(3) << "% " << basefiles[k] << endl;
outfileobj << "]; .. " << setw(3) << "% " << basefiles[k] << endl;

}
else
{

cout << "]]; " << setw(3) <<"%" << basefiles[k] << endl;
outfileobj << "]]; I<< setw(3) << "% " << basefiles[k] << endl;

}
outfileobj.closeo;

delete [] nuc; // free allocated memory
delete [] tess;
delete [] U;
delete [] E;
delete [] El;
delete [] n;

}
delete [] basefiles;

return 0;
}

int GET_N_MOLEC(string filelist)
{

int N = 0;
ifstream infile(filelist.c-stro, ios::in);
if (!infile)
{

cerr << "\nWhere is ' << filelist <<
<< " can't find itAnExiting.\n\n";

exit(1);
I
string dummy;
while (infile >> dummy)

N++;
cout << "\nN molec = << N << " found in database" << filelist << endl;
return N;

}

void READFILENAMES(int N, string filelist, string *filenames)
{

ifstream infile(filelist.c str(, ios::in);
if (!infile)
{

cerr << "\nWhere is "' << filelist <<
<< "I can't find it.\nExiting.\n\n";

exit(1);
I

187



for (nt i = 0; i < N; i++)
infile >> filenames[i];

I

int FIND_N_TESS(string data)
{

int N = 0;
ifstream infile(data.c-stro, ios::in);
if (!infile)
{
cerr << "\nWhere the heck is "' << data.c-strO < "'?!!

<< I can't find it.\nA program needs data to run, you know..."
<< "\nExiting.\n\n";

exit(1);
I
string dummyl, dummy2;
while (infile >> dummyl)
{

if (dummyl == "Properties" && dummy2 == "Electrostatic")
{
while (infile >> dummyl && dummyl != "Calculate")

if (dummyl == "Read-in")
N++;

I
dummy2 = dummyl;

I
infile.closeo;
return N;

}

int FIND_N_NUC(string filename)
{

ifstream infile(filename.c-stro, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << filename.c strO << "'?? "

<< "I can't find it.\nExiting.\n\n";
exit(1);

I
int N;
infile >> N;
infile.closeo;
return N;

I

void READNUCDATA(int N, point *nuc, string *nucname, string filename)
{

ifstream infile(filename.cqstr(, ios::in);
if (!infile)
{

cerr << "\nWhere is '" <<filename.c_str() <<"'?? "
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<< "I can't find it.\nExiting.\n\n";
exit(1);

}
string dummy;
infile >> dummy;
for (int i = 0; i < N; i++)
{
infile >> nucname[i];
infile >> nuc[i];

}
infile.closeo;

}

void READTESSDATA(int Ntess, point *tess, string icfile)
{

ifstream infile(icfile.c stro, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << icfile.cstrO << '"?? "

<< "I can't find it.\nExiting.\n\n";
exit(1);

}

string dummyl, dummy2;
while (infile >> dummyl)
{

if (dummy2 == "Read-in" && dummyl == "Center")
{

int i = 0;
while (i < Njtess)
{
infile >> dummyl;
if (dummyl == "at")
{
infile >> tess[i]; // already in units of angstroms
i++;

}
}
if (i == Ntess-i)
infile.closeo;

}
dummy2 = dummyl;

}
infile.closeo;

}

void READ_U_E_DATA(int Ntess, double *U, point *E, string fdfile)
{

ifstream infile(fdfile.c-stro, ios::in);
if (!infile)
{
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cerr << "\nWhere is file "' << fdfile.cstrO <<'??"
<< "I can't find it.\nExiting.\n\n";

exit(1);
}
string dummyl, dummy2;
while (infile >> dummyl)
{

if (dummyl == "-------------------------------------------------------------" && dummy2 ==-)
{

int i = 0;
int flag = 0;
infile >> dummyl;
while (i < N-tess)
{

if (flag == 0)
{

infile >> dummyl;
if (dummyl == "Atom")

infile
infile
infile
infile
infile

dummyl;
dummyl;
dummyl;
dummyl;
dummyl;

else
{
flag = 1;
U[i] = atof(dummyl.cstro);
infile >> E[i];
infile >> dummyl;
// cout << "\nU[" << i << "] = " << U[i]; /first point
// cout << "\nE[" << i << "] = " << E[i];

}
}
if (flag == 1)
{
infile >> U[i];
infile >> E[i];
infile >> dummyl;
i++;

}
if (i == Njtess)
infile.closeo;

}
}
dummy2 = dummyl;

}
infile.close();

}
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void DISTANCETEST(int Nnuc, int Njtess, point *nuc, string *nuctype, point *tess, double *U,
point *E)
{
point origin;
for (nt i = 0; i < N-nuc; i++)
{
double atomicradius = 0;

if (nuctype[i] == "H")
atomicradius = 1.06;

else if (nuctype[i] == "C")
atomicradius = 1.53;

else if (nuctype[i] == "Cl")
atomicradius = 1.75;

else if (nuctype[i] == "N")
atomicradius = 1.46;

else if (nuctype[i] == "0")
atomicradius = 1.42;

else if (nuctype[i] == "F")
atomicradius = 1.40;

else if (nuctype[i] == "S")
atomicradius = 1.80;

else if (nuctype[i] == "B")
atomicradius = 1.65;

else if (nuctype[i] == "Br")
atomicradius = 1.87;

else if (nuctype[i] == "I")
atomicradius = 2.04;

else if (nuctype[i] == "P")
atomicradius = 1.86;

else
{
cerr << " ERROR. One of
exit(1);

/ Bondi calculated radii in angstroms

the atoms is not recognized.\nExiting.\n";

}
double distance = 0.0;
for (int j = 0; j < Njtess; j++)
{

if (tess[j].dist(nuc[i]) < 0.5*atomicradius)
{

cout << "Tessera " << j << " is " << tess[j].dist(nuc[i])
<< "Ang from " << nuctype[i] << ", U = " << U[j]
<< ".U and E values rejected." << endl;

U[j] = 0.0; // suppress potential to zero
E[j] = 0.0; // suppress elect field to zero

}
}
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void CALCNORMAL(int k, int Ntess, point *tess, int Nnuc, point *nuc, point &n, double
&estindex)
{
point origin; // de
double pi = 3.14159265;
/ first find points which defin
point al = 2*tess[k]; // tc
point a2 = 2*tess[k];
point a3 = 2*tess[k];
point a4 = 2*tess[k];
point a5 = 2*tess[k];
point a6 = 2*tess[k];
for (int i = 0; i < Ntess; i++)
{

fault constructor assigns 0,0,0

e the local surface
be closest local grid points

if (tess[i].dist(tess[k]) < tess[k].dist(al) && i != k)
{

a6 = a5;
a5 = a4;
a4 = a3;
a3 = a2;
a2 = al;
al = tess[i];

I
else if (tess[i].dist(tess[k]) < tess[k].dist(a2) && i != k)
{

a6 = a5;
a5 = a4;
a4 = a3;
a3 = a2;
a2 = tess[i];

}
else if (tess[i].dist(tess[k]) < tess[k}.dist(a3) && i != k)
{

a6 = a5;
a5 = a4;
a4 = a3;
a3 = tess[i];

}
else if (tess[i].dist(tess[k]) < tess[k].dist(a4) && i != k)
{

a6 = a5;
a5 = a4;
a4 = tess[i];

I
else if (tess[i].dist(tess[k]) < tess[k].dist(a5) && i 1= k)
{

a6 = a5;
a5 = tess[i];

else if (tess[i].dist(tess[k]) < tess[k].dist(a6) && i != k)
a6 = tess[i];
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}

/ locate nearest nucleus
point nearnuc = nuc[0];
for (int i = 1; i < N_nuc; i++)

if (tess[k].dist(nuc[i]) < tess[k].dist(near-nuc))
nearnuc = nuc[i];

// cout << "nearest nuc = " << nearnuc << endl;
// evaluate normal vector, n, of point k
int N_nest = 20;
point n-est[20];
n-est[0] = xmult(al -a2,a2-a3);
n-est[1] = xmult(al -a2,a2-a4);
n-est[2] = xmult(al -a2,a2-a5);
n-est[3] = xmult(al -a2,a2-a6);
n-est[4] = xmult(al -a3,a3-a4);
n-est[5] = xmult(al -a3,a3-a5);
n-est[6] = xmult(al -a3,a3-a6);
n-est[7] = xmult(al -a4,a4-a5);
n-est[8] = xmult(al -a4,a4-a6);
n-est[9] = xmult(al -a5,a5-a6);
n-est[10] = xmult(a2-a3,a3-a4);
n-est[1 1] = xmult(a2-a3,a3-a5);
n-est[12] = xmult(a2-a3,a3-a6);
n-est[13] = xmult(a2-a4,a4-a5);
n-est[14] = xmult(a2-a4,a4-a6);
n-est[15] = xmult(a2-a5,a5-a6);
n-est[1 6] = xmult(a3-a4,a4-a5);
n-est[17] = xmult(a3-a4,a4-a6);
n-est[18] = xmult(a3-a5,a5-a6);
n-est[1 9] = xmult(a4-a5,a5-a6);

// make sure each normal vector estimate is pointing "outwards"
for (int i = 0; i < N nest; i ++)
// if (n-estl.dot(tess[k]-near nuc) < 0)

if (origin.dist(n-est[i]+tess[k]-near nuc) < origin.dist(tess[k]-near-nuc))
n_est[i] = -n-est[i];

for (int i = 0; i < Nnest; i ++)
n_est[i] = (1/n-est[i].dist(origin))*n-est[i]; // normalize normal est's

for (int i = 0; i < Nnest; i ++)
n = n + n-est[i]; // take prelim average of normals

assert(n != origin); // make sure something is there
n = (1/n.dist(origin))*n; // normalize prelim avg

// if any of the vector estimates differs from avg by > 20 deg, bury it.
for (int i = 0; i < Nnest; i ++)

if (acos(n.dot(nest[i])/(n.dist(origin)*n-est[i].dist(origin))) > 2*pi/1 8)
{

n_est[i] = origin;
estindex = estindex - 1;
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}

/ for (nt i = 0; i < Nnest; i ++) // how many did we bury?
// cout << "n-est[" << i << "] = " << n-est[i] << endl;
for (int i = 0; i < N-nest; i ++)

n = n + nest[i]; / take average of normal estimates
assert(n != origin); // make sure something is there
n = (1/n.dist(origin))*n; // normalize the final normal vector

I

void WRITELOG(string logfile, string molecname, int Nnuc, int Ntess, point *nuc, double
*ane, point *n, point *E, double *El, double *U)
{

ofstream outfile(logfile.c-stro, ios::app);
if (outfile == 0)
exit(1);

outfile.setf(ios::fixed);
outfile << "INTEGRATION SUMMARY FOR "<< molecname.c-str() <<"." << endl;
point origin;
int nucflag = 1;
for (int i = 0; i < N_nuc; i++)
{

if (nuc[i] != origin);
nucflag = 0;

iuclei were found for this solute.\n";

I
if (nucflag == 1)
outfile << "WARNING. Noi

cout.precision(4);
int anetensum = 0;
int anefivesum = 0;
int Enullflag = 0;
int Elnullflag = 0;
int Elbigflag = 0;
int EInanflag = 0;
int Unullflag = 0;
for (int i = 0; i < Ntess; i++)
{

// check for NaN

if (ane[i] < 10)
anetensum++;

if (ane[i] < 5)
anefivesum++;

if (E[i] == origin)
Enullflag++;

if (EI[i] == 0)
Elnullflag++;

if (EI[i] > 1)
Elbigflag++;

if (EI[i] != El[i])
{

Elnanflag++;
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cout << "Failed projection of E[" << i << " = " < E[i] << "\nis at n =" < n[i] << ". E
projection rejected at this point." << endl;

El[i] = 0;
I
if (U[i] == 0)

Unullflag++;
I

outfile << endl << anetensum
<< " normals contained fewer than 10 estimates.\n"
<< anefivesum << " normals contained fewer than 5

if (Enullflag != 0 11 Elnullflag != 0 11 Unullflag != 0)
{
outfile << "WARNING.\n"

<< endl << ElnullfI
<< endl << UnullfI

if (Elbigflag != 0)
outfile << "WARNING.\n"

if (EInanflag != 0)
outfile << "WARNING.\n"

outfile << "

estimates.\n";

<< Enullflag << " E vectors were found to be zero."
ag <<" E projections were found to be zero."
ag <<" U points were found to be zero.\n";

<< Elbigflag <<" E projections were greater than 1.\n";

<< Elnanflag <<" E projections were NaN.\n";

outfile.closeo;

dipoleset.c
#include <iostream>
#include <string>
#include <fstream>

// This code simply extracts calculated dipole moments from gaussian output files.

using namespace std;

int GET_N_MOLEC(string);
void READFILENAMES(int, string, string *);
void READDIPOLE(string, string, char, double &);

int maino
{

int Nmolec = 0; // number of molecules
string filelist = "filelist.dat"; / filename of molec name data
N_molec = GET_N_MOLEC(filelist);
string logfile = "dipoleset.log"; // logged output filename
string suffix;
cout << "\n\nEnter the file suffix (e.g. spot)\n? ";
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cin >> suffix;
char sf lag;
cout << "\nSelect (g)as or (s)olvent phase calculation\n? ";
cin >> sf lag;
string *basefiles; // vector of molec names
basefiles = new string[N-molec];
READ_FILENAMES(Nmolec, filelist, basefiles);

cout << "\ndipole = [ ... % (Debyes)" << endl;
for (int k = 0; k < N_molec; k++)
{
double dipole = 0;
READDIPOLE(basefiles[k], suffix, sflag, dipole);
cout.precision(3);
cout << "[" << dipole << "; %" << basefiles[k] << endl;
I
return 0;
}

int GET_N_MOLEC(string filelist)
{

int N = 0;
ifstream infile(filelist.c-stro, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << filelist << "'??"

<< I can't find it.\nExiting.\n\n";
exit(1);
I
string dummy;
while (infile >> dummy)

N++;
cout << "\nN molec = << N;
return N;

}

void READFILENAMES(int N, string filelist, string *filenames)
{
ifstream infile(filelist.c-str(, ios::in);
if (!infile)
{
cerr << "\nWhere is "' << filelist <<"'??"

<< "I can't find it.\nExiting.\n\n";
exit(1);
}
for (int i = 0; i < N; i++)
infile >> filenames[i];
i

void READ_DIPOLE(string basefile, string suffix, char sflag, double &dipole)
{

196



string molecfile;
molecfile = basefile;
molecfile.append(". 1);

molecf ile.append(suff ix);
ifstream infile(molecfile.c-stro, ios::in);
if (!infile)
{

cerr << "\nWhere is "' << molecfile.cstrO << "'? "
<< "I can't find it.\n\nExiting.\n\n";

exit(1);
}
string dummyl, dummy2, dummy3;
if (sf lag == 'g')
{
while (infile >> dummyl)
{

if (dummy2 == "Dipole" && dummyl == "moment")
{

while (infile >> dummyl)
{

if (dummyl == "Tot=")
{

infile >> dipole;
break;

}
}

}
dummy2 = dummy1;

}
}

if (sflag == 's')
{
while (infile >> dummyl)
{

if (dummy3 == "SOLUTION" && dummy2 == "Dipole" && dummyl == "moment")
{

while (infile >> dummyl)
{

if (dummyl == "Tot=")
{

infile >> dipole;
break;

}
}

}
dummy3 = dummy2;
dummy2 = dummy1;

}
}

}
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point.h
/ file point.h

#include <iostream>
#include <assert.h>
using namespace std; // to define function names of std c++

class point
{
friend class rect;
friend ostream &operator<<(ostream &out, const point &p);
friend istream &operator>>(istream &in, point &p);
friend point operator*(const double &s, const point &p); // scalar mult
friend point operator*(const point &p, const double &s); // scalar mult
friend point xmult(const point &n, const point &p); // cross mult
public:
point (double a = 0.0, double b = 0.0, double c = 0.0); // default constructor
point (const point &p);
-pointo{};
double getxo;
double gety(;
double getzo;
void print(;
point operator+(const point &p); / + operator
point operator-(); // "unary minus" operator
point operator-(const point &p); // subtraction operator
point &operator=(const point &p); // = operator
bool operator==(const point &p) const; // == operator
bool operator!=(const point &p) const; // != operator
double dist(const point &p); / find distance to point2
double dot(const point &p); // dot product

private:
double x, y, z;

};

point.c
// file point.c
// a pretty good point class. it is designed to hold
// and manipulate 3-d (cartesian) vectors and points.
// compile syntax is> g++ -o foo foo.c point.c

#include <iostream>
#include <iomanip>
#include <math.h>
#include "point.h"

point::point(double a, double b, double c) { x = a; y = b; z = c; }
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point::point(const point &p) { x = p.x; y = p.y; z = p.z; }
double point::getx( { return x; }
double point::gety( { return y; }
double point::getz( { return z; }
void point::print() { cout << "(" << x << , << y << ", << z << ")\n"; }

// math member functions
point point::operator+(const point &p2) // input is const (see below)
{ return point(x+p2.x, y+p2.y, z+p2.z); }
point point::operator-() { return point(-x, -y, -z); }
point point::operator-(const point &p2) // input is const (see below)
{ return point(x-p2.x, y-p2.y, z-p2.z); }
point &point::operator=(const point &p2) // input to member fn is CONST so
{ //that member fns can be nested.
if (this != &p2)
{
x = p2.x;
y = p2.y;
z = p2.z;
}
return *this;
}
bool point::operator==(const point &p-sim) const
{

if (p-sim.x == x && p-sim.y == y && p-sim.z == z)
return true;

else
return false;

}
bool point::operator!=(const point &p-sim) const
{ return ! (*this == p-sim); }
double point::dist(const point &p2)
{ return ( sqrt(pow((x - p2.x),2) + pow((y - p2.y),2) + pow((z -
double point::dot(const point &p2) { return (x*p2.x + y*p2.y +

/ friend functions

point operator*(const
{
point h;
h.x = s*p.x;
h.y = s*p.y;
h.z = s*p.z;
return h;

}

p2.z),2))); }
z*p2.z); }

double &s, const point &p) // scalar mult from front

point operator*(const point &p, const double &s) // scalar mult from back
{
point h;
h.x = s*p.x;
h.y = s*p.y;
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h.z = s*p.z;
return h;

}

point xmult(const point &p1, const point &p2) // cross mult
{

}

point h;
h.x = p1.y*p2.z - p1.z*p2.y;
h.y = p1.z*p2.x - p1.x*p2.z;
h.z = p1.x*p2.y - p1.y*p2.x;
return h;

ostream &operator<<(ostream &out, const point &p)
{
out.precision(4);
out << p.x << setw(9) << p.y << setw(9) << p.z;
return out; }

istream &operator>>(istream &in, point &p)
{ in >> p.x >> p.y >> p.z; return in; }
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