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Abstract

Non-muscle cell shape change and motility depend primarily on the dynamics and
distributions of cytoplasmic actin. In cells, actin cycles between monomeric and
polymeric phases tightly regulated by actin binding proteins that control cellular
architecture and movement. Here, we characterize actin remodeling in shear stress
stimulated endothelial cells and in actin networks reconstituted with purified proteins.

Fluid shear stress stimulation induces endothelial cells to elongate and align in the
direction of applied flow. Alignment requires 24 h of exposure to flow, but the cells
respond within minutes to flow by diminishing their movements by 50%. Although
movement slows, actin filament turnover times and the amount of polymerized actin in
cells decreases, increasing actin filament remodeling in individual cells composing a
confluent endothelial monolayer to levels used by disperse, non-confluent cells for rapid
movement. Hours later, motility returns to pre-shear stress levels, but actin remodeling
remains highly dynamic in many cells. We conclude that shear stress initiates a
cytoplasmic actin remodeling response that is used to modify endothelial cell shape
instead of bulk cell translocation.

We determine the steady state dynamics of purified actin filament networks in the
entangled state and after orthogonal cross-linking with filamins using a novel, non-
perturbing fluorescence system. Human filamin A or Dictyosteliun discoidium filamin
slow actin filament turnover by 50% and recruit much of a significant population of
actin oligomers that we measure are present in polymerized purified actin solutions into
the immobile filament fraction. Surprisingly, these observations occur at very low
stoichiometry to actin, approximately requiring only one filamin molecule bound per
actin filament, similar to the amount required for actin filament gelation in vitro.
Networks formed with filamin truncates localize this activity to the actin binding domain
and reveal that dimerization and orthogonal cross-linking are not required for dynamic
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stabilization. Re-expression of filamin A with or without the actin binding domain in
human melanoma cells that naturally lack this protein support the findings in purified
actin networks. These results indicate that filamin cross-linking stabilizes filament
dynamics by, slowing filament subunit cycling rates and by either decreasing spontaneous
filament fragmentation or promoting filament annealing.
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Title: Professor of Mechanical Engineering, MIT
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Goals of this Thesis

The fundamental goals of this Thesis are to explore the dynamics and regulatory controls
of actin-based processes in an effort to further understand the molecular events governing
non-muscle cell shape change and movement. Within this context, the work presented
here focuses on two specific entities: the shear stress-induced shape change response of
endothelial cells (Chapter II) and the effect of the filamin family of actin filament cross-
linking proteins on the actin cycle (Chapter III). The individual goals of each
investigation are as outlined below.

Endothelial cells in confluent monolayers subjected to steady, laminar fluid shear stress
change shape by elongating and aligning in the direction of applied flow, a process driven
by dynamic changes in the actin cytoskeleton. Despite this striking morphological change
and its well-described relationship to the cytoskeleton, the dynamics of actin during this
process are unknown. How is the endothelial actin remodeling response modulated in
single cells before, during, and after endothelial cells accommodate their shapes to
the imposed fluid shear stress?

Filamins are known for their ability to create stiff actin networks by cross-linking
neighboring actin filaments. However, even in cross-linked networks, actin filaments
exchange subunits at their ends over time with the unpolymerized actin pool. Filamin
binding interactions with actin filaments, in addition to its cross-linking effect, may alter
the dynamic properties of actin filaments by unknown mechanisms. How does the
filamin family of actin filament cross-linking proteins affect actin filament diffusion,
turnover, length, and the extent of polymerization?
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Chapter I

Background and Literature Review

Non-muscle cells move and change shape by activating cascades of signals and molecular

events that require the integrated function of a large number of independent proteins [2-

71. Despite this complexity, these events all converge to influence the cytoplasmic protein

actin, which is the final substrate in this pathway. Inside the cell, actin coexists in a

dynamic exchange between monomeric and polymeric states [8-1 11. Actin polymers are

bound together by accessory proteins to construct a dense three-dimensional network

1121. This actin polymer network, commonly referred to as the actin cytoskeleton,

dictates the underlying mechanical structure of the cell and determines both coarse and

fine aspects of cellular shape [13, 14]. Actin polymers incorporated into the cytoskeleton

are not simply mechanical struts, but exhibit a highly dynamic component in which

monomeric subunits 'turnover' by adding and subtracting from the different polymer

ends 115, 161. External biological, chemical, and mechanical stimuli can significantly

modulate a cell's baseline cytoskeleton organization and dynamics 1121. Understanding

these changes underpins the efforts to decipher the vast array of physiologic and

pathophysiologic events that rely on cell shape and movement 1171.
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Actin monomer

Actin is a highly conserved, globular 42 kDa protein 118, 191 that is one of the most

abundant proteins contained within the cytoplasm of eukaryotic cells 1201. Actin is of

considerable biological significance due to its involvement in many integral cellular

functions involving cell shape, mechanics, vesicle transport, and motility. Six isoforms of

actin exist in cells: uc-cardiac, a-skeletal, -vascular smooth muscle, f-non-muscle, y-

non-muscle, and y-smooth muscle 121], all of which are - 375 amino acids in length and

are highly homologous except near their amino terminus, which may confer isoform-

specific properties. While a- isoforms are found predominately in muscle cells and the P-

and y- in non-muscle cells, each isoform may be expressed to varying degrees in spatially

and temporally regulated patterns in many different cells [221.

From x-ray crystallography, an actin monomer is approximately 6.7 nm x 4.0 nm x 3.7

nm in size 123, 241, split into a large and small domain separated by a binding pocket that

accepts a divalent cation and nucleotide. Actin monomer has one high-affinity divalent

cation (e.g. Ca2+ or Mg2+) binding site and four low-affinity binding sites [251. The

conformation and properties of the actin monomer are different depending on whether

Mg2+ or Ca2 + occupies this site 126, 271. In vivo, the high-affinity site is believed to be

predominately Mg2+-bound, since the polymerization kinetics of actin are enhanced for

Mg2+-actin over Ca2+-actin 1271. Actin monomers are also bound to one of three

nucleotide species, ATP, ADP-Pi, or ADP, which greatly influence its dynamics, protein

binding affinities, structure, and regulation.
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Polymerization of purified actin

At physiologic ionic strength, purified actin monomers (globular or G-actin) will slowly

self-associate into trimeric nuclei, an unstable intermediate, which serve as nucleation

sites for further assembly of monomers 128, 291. Trimer formation is the rate-limiting

step in polymerization, since the addition of actin filament seeds (pre-formed nucleation

sites) eliminates the time lag prior to elongation. Once a trimer develops, it rapidly

elongates by sequential monomer addition onto its ends forming a helical polymer

(filamentous or F-actin). The kinetics of filament elongation are strongly influenced by

the nucleotide species bound to actin monomers 130-321. If unperturbed, polymerization

proceeds until only a small concentration of actin monomer, the critical concentration,

remains unpolymerized, which for ATP-bound monomers is -0.1 EtM 131, 331.

Eventually, purified actin solutions reach a steady state in which there is no net change in

the unpolymerized and polymerized actin monomer concentrations and therefore,

assembly and disassembly events perfectly balance.

Actin filaments

Actin filaments are helical polymers stabilized by multiple, noncovalent contacts between

adjacent monomeric subunits [34]. The actin filament structure can be described by either

a one-start left-handed genetic helix of 5.9 nm pitch or a two-start right-handed helix of

72 nm pitch with a filament diameter of -7 nm 135, 361. Actin filaments are polarized

structures, where the two ends of the polymer can be differentiated both by conformation
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and biochemistry. By electron microscopy, filaments labeled with myosin subfragment-1,

a proteolytic fragment of heavy meromyosin, take on an arrowhead appearance leading to

the classic definitions of filament ends as 'barbed' and 'pointed'. Biochemically, the

kinetics that govern monomer addition at opposite ends of the actin filament are distinct:

addition of monomers to the barbed filament end occurs approximately ten times faster

than at the pointed end 115, 301.

Actin filament turnover

At steady state, the actin filament lengths are stable since monomer addition at one

filament end counters loss at the opposite end [16]. If ATP is in excess, actin filaments

slowly elongate from their barbed ends and shrink from their pointed ends due to

differences in the affinities for monomers at the barbed and pointed filament ends [15].

This directed growth results in a net flux or 'turnover' of F-actin monomers from the

barbed to the pointed end. Actin filament turnover is a cyclic process that relies on ATP

hydrolysis to provide sufficient chemical energy to maintain the different filament end

kinetics 1311.

Turnover in its simplest form functions as a molecular treadmill (Fig. I-1) [15]. In this

scheme, unpolymerized actin monomers bound to ATP assemble onto the barbed

filament ends, hydrolyze ATP into an unstable ADP-Pi intermediate internally on the

filament, and, following inorganic phosphate dissociation, remain bound to ADP in the

core of the filament until they eventually disassemble from the pointed end [311. Once
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free from the filament, ADP-G-actin

monomers recycle their ADP for

ATP to repeat the cycle.

The time required for an F-actin

* ~ '~ -- O subunit to traverse a filament from

Fig. I-i1. Actin filament treadmilling. After assembly at the
barbed end, ATP-actin monomers () are hydrolyzed to the barbed to the pointed end
ADPoPi-actin () as they flux through the actin filament,
and disassemble as ADP-actin (O) at the pointed end. provides estimates of the

characteristic lifetime of the actin filament. Turnover is governed by the association and

dissociation kinetics of actin at the filament ends, properties that depend heavily on the

nucleotide profiles of subunits at the filament termini and internally on the polymer

chains [321. In purified actin networks, filament subunit recycling requires hours 1371, but

the pace can be accelerated to seconds or minutes in cells by the actions of associated

actin binding proteins [ 1, 11,38-411.

The actin cytoskeleton

In cells, actin filaments are linked together to form a three-dimensional support structure

that fills the cytoplasmic space (Fig. 1-2). This dense meshwork of actin polymer and

bound regulatory proteins forms the actin cytoskeleton, which gives the cell shape,

stiffness, and provides a mechanical scaffold that helps to fix the position of organelles

and facillitate pathways for intracellular transport. The inter-filament spacing of the

cortical actin cytoskeleton has been modeled as an orthogonal lattice with a pore size of
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transports cytoplasmic solute and proteins.

The cytoskeleton is organized by cross-

linking, bundling, and branching proteins into

functional subdomains based on their structure

and dynamics. Some of the structures are

relatively static, such as epithelial brush

border microvilli, hair cell stereocilia,

Drosophila neurosensory bristles, and non-

muscle cell stress fibers 1441, while others like
Fig. 1-2. The actin ctoseleton. Act i n
filaments are crosslinked together to form a lamellipodia, filopodia, and membrane ruffles
dense meshwork of interconnected polymers.
Many actin binding proteins are associated
with this insoluble cellular fraction. Bar, 200 are highly dynamic. The majority of cellular
nm. Image courtesy of J. H. Hartwig.

actin filaments are fixed in space by cross-

linking proteins to form stiff gels 114]; however, there is some evidence that small actin

filaments are able to diffuse through cytoskeletal pores [401 and are mobile near the

plasma membrane [45].

Regulation of actin remodeling by actin binding proteins

In the cellular environment, a large cast of actin binding proteins establish spatial and

temporal regulation of actin by influencing the unpolymerized and polymerized phases in

order to tightly control the distribution, location, and kinetics of cytoplasmic actin 1461.

The control mechanisms utilized by actin binding proteins can be generalized according

17
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to their mechanism of action: barbed (gelsolin, capping protein) and pointed

(tropomodulins, the Arp2/3 complex) end capping, barbed end anti-capping

(Ena/VASPs), acceleration of filament depolymerization (ADF/cofilins), filament

severing (gelsolin, ADF/cofilins), filament nucleation (the Arp2/3 complex), nucleotide

exchange (profilin), and monomer sequestration (thymosins). Other actin binding

proteins regulate cytoskeletal geometry by forming filament bundles (c-actinin),

dendritic branches (the Arp2/3 complex), and orthogonal networks (filamins). To achieve

the dynamic cycling rates and localized structural control of actin, many of these

mechanisms behave synergistically [1, 32, 47, 48]. A few important actin binding

proteins will be discussed here as examples of these general mechanisms of actin

regulation.

Gelsolin

Gelsolin is an actin filament severing and barbed end capping protein 149]. When

activated by M calcium concentration, gelsolin binds to the side of an actin filament,

interdigitates, and severs it with unmatched potency. After severing, gelsolin remains

associated with the barbed filament end forming a tight cap. A severing/capping

mechanism rapidly dissolves cytoskeletal networks by creating an increased number of

short actin filaments that cannot anneal or rapidly elongate. Gelsolin can also initiate

rapid actin filament polymerization and membrane protrusion through interactions with

plasma membrane polyphosphoinositides that release gelsolin from the barbed ends 50,

511. Gelsolin null mice exhibit deficiencies in wound healing, inflammation, and

18



thrombosis 152, 531. Cells from these animals crawl poorly and organize pronounced

stress fibers consistent with a diminished capability to sever actin filaments 52, 531.

C)ver-expression of gelsolin produces the opposite effect leading to increased membrane

ruffling and chemotaxis 1541. Gelsolin also plays an important role in apoptosis as a

substrate for caspase-3, which cleaves gelsolin to constituitively activate its severing

function [55, 561. In support, apoptotic cell death is delayed in cells that do not express

gelsolin 1561..

The Arp2/3 complex

The Arp2/3 complex binds to a preexisting actin filament, mimics a free barbed end, and

nucleates a daughter filament at a 70° angle 571. Nucleation by the Arp2/3 complex is

activated by WASp/SCAR proteins 1581 and may require the exposure of binding sites at

barbed filament ends 159-611, although other reports maintain that nucleation can occur

on the side of the parent filament 162-641. The Arp2/3 complex also caps pointed

filament ends with nM affinity 1571, and is essential for rogue actin polymerization and

the rocketing propulsion of the bacterial pathogens Listeria and Shigella 651. Due to its

ability to form a barbed end nucleation site, the Arp2/3 complex has been implicated in

numerous models of cell membrane protrusion involving the formation of branched,

dendritic actin networks 162, 66, 671. However, branched actin filament networks created

by the Arp2/3 complex alone are unlikely to account for the coherence of the leading

edge of crawling cells, as the dendritic structures formed by the Arp2/3 complex are
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unable to gel filament networks in vitro unless the potent actin filament cross-linking

protein filamin is present [681.

ADF/cofilins

When barbed ends are capped, actin filament disassembly is slow, but it can be

accelerated by actions of the ADF/cofilin protein family [691. ADF/cofilin binds

cooperatively to the sides of filaments 1701, predominately at ADP-bound subunits which

are in excess near the pointed filament end, and enhances the rate of pointed end subunit

disassembly up to -25-fold in vitro 1711. The depolymerization activity of ADF/cofilins

is regulated by phosphorylation of serine-3. Phosphorylation of this residue by LIM

kinase inactivates ADF/cofilin by inhibiting its ability to bind to actin filaments 172, 731.

This inhibition has been shown to be reversed by the Slingshot phosphatase 1741.

Membrane phospholipids can also inactivate ADF/cofilins by inhibiting its ability to bind

F-actin 1751. Kinetic analysis of actin filament dynamics in vitro reveals that accelerated

filament turnover by ADF/cofilins produce net filament depolymerization in the presence

of sequestering proteins 171], which, in cooperation with barbed end capping, has been

postulated to account for the high rates of actin filament turnover observed in vivo 1761].

ADF/cofilins have also been shown to be weak severing agents, fragmenting filaments

near the pointed end, which increases end numbers and accelerates depolymerization if

the newly formed barbed ends are capped [77-79] or polymerization if these ends remain

free 1801. Recent studies support ADF/cofilin's proposed severing function, where local
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uncaging of cofilin in cells increases barbed end exposure, F-actin content, locomotion,

and determines the direction of cell migration 811.

Profilin

The intrinsic rate of nucleotide exchange on a free actin monomer can be accelerated by

profilin, which binds to monomers in solution with high affinity [821, exchanges ADP for

ATP -140x faster than a monomer alone, and shuttles ATP-bound monomer to uncapped

barbed ends 183, 841. Profilin is inactivated by the membrane polyphosphoinositide PIP,

1851. Since the intrinsic rate of nucleotide exchange by actin during rapid filament

turnover may be limiting in certain cases [321, profilin provides a mechanism to

overcome this energetic barrier.

Ena/VASPs

Ena/VASPs interact with barbed filament ends at sites of actin assembly, such as the tips

of lamelllipodia and filopodia, where they antagonize the activity of barbed end capping

proteins, supporting F-actin assembly and causing filaments to grow longer and become

less branched [86, 871. This mechanism accounts for the diverse ability of these proteins

to negatively regulate motility in fibroblasts [881, but accelerate the movement of Listeria

in in vitro motility assays 165, 891. The activity of Ena/VASP proteins are regulated by

phosphorylation at serine 157 by cAMP dependent protein kinase 189, 90].

Phosphorylation at this site increases Ena/VASP binding to F-actin by about 40-fold.
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Tropormodulins

Although most widely studied for their function capping the thin filaments of muscle

sarcomeres, tropomodulins are also present in non-muscle cells where they cap actin

filament pointed ends, a process that is dramatically enhanced in the presence of

tropomyosins 191, 921. The association of tropomodulins with pointed ends is transient,

slowing polymerization at this end, which increases the levels of ADP-bound subunits at

filament termini and leads to net depolymerization [931. In endothelial cells,

tropomodulin 3 expression negatively regulates cell movement, and results in a decrease

in F-actin content and the number of free barbed ends [911, indicating that these events

are regulated in a coordinated fashion during cell locomotion.

Tlvmnosins

Thymosins are present in high concentrations in cells where they bind free monomers

stoichiometrically and inhibit polymerization 941. By sequestering cytoplasmic

monomer at concentrations much higher than the critical concentration of purified actin,

thymosins maintain large pools of unpolymerized actin available for the cell to

incorporate into filaments as needed. A sequestered monomer has a higher affinity for the

unpolymerized state than for polymerization at pointed actin filament ends, but not at

barbed ends 1941. Therfore, as barbed ends are exposed, thymosin-sequestered monomer

can polymerize specifically at these sites.
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Filamins

Filamin family proteins are responsible for the creation and stabilization of actin filament

networks [131. Filamins are large, elongated, bivalent, flexible homodimers -160 nm in

length that bind and cross-link neighboring actin filaments into an orthogonal junction

195, 96]. Structurally, filamins are composed of an N-terminal actin binding domain

followed by 24 repeat motifs having a 13-barrel structure [97], where the terminal repeat

at the C-terminus forms the dimerization domain [95, 981. Filamins organize the

cytoskeletal architecture from sites deep within the cell body up to the leading edge

where they bind and affix the cytoskeleton to integral membrane proteins including 31

and P7 integrins and GPlbc 198, 991. With a large and continually growing list of

binding partners already discovered, filamins are likely to play a unique role as

organizing centers for local cytoskeletal rearrangements [131.

Three filamin isoforms exist in humans, encoded by independent genes on different

chromosomes and differentially expressed depending on the tissue of origin 11001. In

non-muscle cells, filamin-A and filamin-B are the predominant isotypes 1131, which

abundantly localize to lamellipodia, promoting the formation of orthogonal filament

arrays [114, 961, and also localize at the base of filopodia 11011. The importance of

filamin-A in cytoskeletal organization and structure has been established in a natural

occurring line of human melanoma cells that lack this protein [102, 1031. Despite

expressing approximately wild-type levels of gelsolin, a-actinin, profilin, fodrin, and the

Arp2/3 complex, filamin-A deficient cells are unable to crawl and have a surface replete
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with spherical aneurysms (blebs) indicating a lack of cortical stability in the absence of

FL,Na 1102, 1031. Rescuing these cells with filamin-A cDNA results in the reappearance

of lamellar protrusions and membrane ruffles and restores a normal motile phenotype

11031, as well as protecting them against apopototic cell death when mechanically

stimulated on their surface by pulling on magnetic beads 1104-1061. In humans,

mutations of filamin-A, which is located on the X chromosome, result in severe

congenital malformations of the brain, skeleton, viscera, and urogenital tract due to a

putative gain of function effect 11071. Complete deletion of filamin-A is male embryonic

lethal. Female filamin-A heterozygotes survive with the disease periventricular

heterotopia, which is characterized by abnormal brain development, seizures, and

vascular complications [11081.

Cell crawling

To move, a cell must selectively build, compress, and destroy its actin-based structures in

discrete regions. At the leading edge of a motile cell, actin polymerization drives

membrane protrusion 109, 1101. As polymerization continues, actin filaments formed at

the periphery transport into the cell's interior where they are depolymerized to recycle

actin monomers for assembly elsewhere 110, 11, 38, 111, 1121. At steady state, cells

crawl by balanced actin polymerization and depolymerization under the control of actin

binding proteins 116, 761. The ratio of actin monomer to polymer, the average

cytoskeleton filament length, and the filament turnover time are determining factors that

modulate the speed at which a cell moves across a substrate 11, 401. For example, as
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endothelial cells and fibroblasts crawl faster their filament turnover times and

polymerized actin fractions decrease 11, 401. The measured correlations between cell

speed and actin dynamics provide strong evidence supporting a direct link between

cytoskeleton remodeling and cell locomotion.

Fluorescence techniques for measuring actin dynamics

Actin dynamics can be measured in single cells with variable precision. Two analogous

fluorescence techniques provide some of the best estimates of parameters that describe

the dynamic nature of actin networks: photoactivation of fluorescence (PAF) and
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Fig. 1-3. Schematic design of a l'A'/FRAP microscopy systenm. Sample photoactivation
or photobleaching is performed by two opposing light sources focused to a narrow
rectangular band. Global excitation of the fluorophore for monitoring purposes is
achieved with a third, perpendicular light source. Fluorescence emission is collected by
a computer controlled intensified CCD camera.
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fluorescence recovery after photobleaching (FRAP) (Fig. 1-3). In PAF, a non-fluorescent,

caged precursor actin molecule is selectively uncaged by exposure to ultraviolet (UV)

light in a small spot or rectangular region within the cell 140, 113, 1141. FRAP is the

inverse technique, in which the fluorescence of a labeled actin molecule is quenched with

high-intensity light at the excitation wavelength of the fluorophores 1115]. While PAF

has inherent signal-to-noise advantages over FRAP 1 16], the advent of green fluorescent

proteins and its colored variants are allowing new and exciting applications for FRAP

technology using molecular fusion proteins [1 171. Once the fluorescent actin derivative is

uncaged or bleached, the fluorescence decay or recovery at the center of the

photoactivated or photobleached region, respectively, is monitored over time. Using an

interpretive model that describes the actin remodeling processes underlying the

fluorescence evolution, appropriate physical parameters can be extracted and analyzed

11161.

A mathematical description of actin dynamics

One mathematical model describing PAF- and FRAP-based actin dynamics, the Tardy

Model, provides simultaneous estimates of the translational diffusion coefficient of actin

monomer, the fraction of total actin polymerized, and the actin filament turnover time

11161, and has been used to quantitate actin dynamics in various cell types such as

endothelium, fibroblasts, and melanoma cells [1, 401, yielding results consistent with

those previously published by other investigators [11, 38, 39, 411. Although this model

was developed to analyze cellular actin dynamics, the simplified rectangular cell

26



geometry and assumptions (e.g. homogeneous sample, no nucleus or organelles) inherent

in the theory are equally suited for probing the dynamics of purified actin preparations.

The general mathematical problem defined by the Tardy Model involve one-dimensional,

unsteady, coupled partial differential equations that describe actin monomer diffusion and

filament turnover in a model cell. The general solution is represented as an infinite series

for both actin monomer and filament concentrations. The result is a biphasic response,

where the short-term dynamics are primarily due to monomer diffusion and the long-term

to filament turnover, that depend strongly the ratio of the monomer diffusion and filament

turnover times [1161. Under certain conditions when monomer diffusion is rapid

compared to filament turnover, as typically is the case in purified actin solutions, the

general solution to the long-term fluorescence can be simplified to a decaying

exponential, where the y-intercept represents the 'immobile' fluorescence fraction and

the decay constant is the filament turnover time [1161.

Potential deleterious effects of photoactivation and photobleaching

While PAF and FRAP are generally non-invasive techniques that require only short

exposures to light to initiate experiments, phototoxicity, photodissolution, and local

heating of actin during uncaging, bleaching, and fluorescence excitation remain important

factors to consider. These destructive processes can potentially induce actin filament and

monomer crosslinking, denature actin protein structure, and/or break actin filaments.

Estimation of the photoactivation (100 kW/m2 ) and excitation (10 kW/m2)
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fluorescence intensities at the sample [1 18] classifies these light levels as low excitation

intensities (< 5 MW/m 2) according to Vigers and colleagues 11191. At low light excitation

levels, both actin and microtubules have the potential to fracture and dissolve after as

short as -1 min of continuous illumination i1 19, 1201. To mitigate these effects, light

exposure must be minimized during sampling. Surface heating of the actin solution is less

problematic, since even at the high laser intensities (> 5 MW/m2) used to photobleach

samples for FRAP experiments, the amount of sample heating is estimated to be less than

0.1 °C 11211. Finally, the best evidence that F-actin phototoxicity is minimal after light

exposure is measurements that photobleached or photoactivated actin filament lifetimes

are similar to previously published values using alternative methods [161.

Endothelial cells

Endothelial cells, which line the inner surface of the vasculature, depend on proper actin

cytoskeletal structure and dynamics. Situated at the barrier between flowing blood and

soft tissue, the endothelium senses fluid forces and extracellular, soluble chemical signals

in the blood to regulate macromolecule permeability, maintain vascular tone, and provide

a surface resistant to blood clot formation [122]. Damage to the endothelial lining

promotes thrombotic episodes, potentially resulting in myocardial infarction and stroke.

In response to vascular wounding and signals promoting angiogenesis, endothelial cells

are stimulated to move, redefining and remodeling their actin cytoskeletons. The fraction

of total cellular actin incorporated into filaments, the lifetime of these filaments, the

structure of the actin cytoskeleton, and the linkages between actin and cell-substrate
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adhesion sites determine the cell's shape, stiffness, potential to crawl, and integrity of

attachment to the artery wall, all of which affect endothelial function in vivo.

Endothelial cells are constantly subjected to mechanical forces that oscillate with variable

magnitude and direction as blood is pumped over them during each cardiac cycle [1221.

The hemodynamic environment and mechanical forces experienced by endothelial cells

in vivo at different regions within the arterial system strongly influence their function

11221 . The wall shear stress, one component of the applied force, has been shown to be

particularly important in regulating endothelial cell function and has been postulated as a

key parameter that modulates atherogenesis 1122, 123]. Atherosclerotic lesions develop

predominately at regions within the arterial tree where large fluctuations and gradients in

the wall shear stress occur, such as highly curved or bifurcating blood vessels 11241. In

vitro models of the in vivo environment have been used successfully for many years in

order to decipher the mechanisms responsible for endothelial sensation and response to

fluid flow 1125-1291.

The most striking aspect of the endothelial shear stress sensitivity is the marked shape

change that occurs when shear stress is chronically applied to its apical surface [1291. In

static culture, endothelial cells form a tightly packed, cobblestone monolayer. Subjecting

these cells to laminar, steady fluid flow is sufficient to cause them to align and elongate

in the direction of applied flow forming torpedo shapes and developing similarly

oriented, prominent actin stress fibers 1129, 1301. This occurs through a cascade of events

that ultimately drives reorganization of the underlying actin filament network [122, 1311.

These morphological changes are the eventual result of mechanisms that transduce

29



mechanical surface perturbations into intracellular chemical and molecular signals that

impinge on the actin cytoskeleton 1122, 1231.

Endothelial cell actin dynamics in static culture

When a small region within an endothelial cell monolayer is denuded, adjacent cells

migrate into the wound at speeds proportional to their distance from the wound edge 11.

The fastest cells are situated within the wound unimpeded by surrounding cells, while the

slowest are far from the wound edge in the intact confluent monolayer. Filament turnover

and polymer content correlate with cell speed such that the fastest cells contain the least

amount of polymerized actin and exhibit the most rapid rates of filament turnover (Fig. I-

4) 111. While depolymerization coupled with accelerated filament turnover has been

attributed to the ADF/cofilin family of actin binding proteins 69, 71], slower moving

endothelial cells in static culture contain more F-actin associated cofilin. Since lack of
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Fig. 1-4. Actin dynamics correlate with cell speed. Endothelial cells that crawl faster
have more rapid filament turnover rates (, - ) and less total actin polymerized (F).
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similar correlation. Adapted from reference [1].
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gelsolin in dermal fibroblasts from gelsolin knockout mice slows their speed and actin

dynamics in a similar fashion to endothelial cells, it has been postulated that the motile

transition in endothelial cells is controlled by a gelsolin-mediated severing mechanism

that liberates new pointed ends for ADF/cofilin to rapidly depolymerize 1 .
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Abstract

Fluid shear stress stimulation induces endothelial cells to elongate and align in the direction

of applied flow. Alignment requires 24 h of exposure to flow, but the cells respond within

minutes to flow by diminishing their movements by 50%. Although movement slows, actin

filament turnover times and the amount of polymerized actin in cells decreases, increasing

actin filament remodeling in individual cells composing a confluent endothelial monolayer

to levels used by disperse, non-confluent cells for rapid movement. Hours later, motility

returns to pre-shear stress levels, but actin remodeling remains highly dynamic in many

cells. We conclude that shear stress initiates a cytoplasmic actin remodeling response that is

used to modify endothelial cell shape instead of bulk cell translocation.
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Introduction

Atherosclerotic lesions develop at predictable locations in the arterial vascular network,

primarily forming where vessels branch and bend while largely sparing nearby straight

vessel segments 1l. Vessel bending and branching locally disturbs normal blood flow

patterns, generating complex regions of flow separation and recirculation that alter the

magnitude, direction, and frequency of forces applied to the vessel wall 12-41. Endothelial

cells, which line the vessel wall and function to regulate vascular homeostasis, are

exquisitely sensitive to the forces produced by flowing blood [5-71. The blood flow profiles

present at atherogenic regions cause endothelial injury and chronic dysfunction, leading to

the accumulation of lipids in the vessel wall that eventually form atherosclerotic plaques 18,

91.

One of the most obvious markers of endothelial dysfunction in vivo is a disorganization of

cell shapes. Endothelial cells that populate atheroprotective regions are elongated into

torpedo shapes that point into the direction of flow 110, while those located at atherogenic

regions are more cuboidal 1111. These observations are reproduced in vitro by exposing

primary endothelial cell cultures to fluid shear stress using different flow profiles 17, 12-

141. Such studies, combined with computational modeling efforts, have confirmed that it is

the arterial regions with the lowest shear stress that correlate with aberrant endothelial cell

shapes and are at greatest risk of atherosclerotic lesion development 19].

Although the mechanosensitive molecular mechanisms that determine shear stress-mediated

endothelial shape change remain controversial, a growing body of evidence supports a

decentralized, integrated signaling network in which cytoskeletal polymers transmit apical

shear forces to membrane attachment sites where conformational changes in connected
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proteins initiate signaling events 115]. Recently, heterogeneous pim-scale displacements of

cytoskeletal structures have been described in endothelial cells that, when converted to

strain maps, reveal an apical to basal gradient of force transmission [161. Changes in the

number, type, and structure of cytoskeletal connections will alter the location and magnitude

of transmitted forces and may modify the specific endothelial phenotype, depending on the

spatial and temporal microstimuli that each endothelial cell senses 1171.

Of the three types of cytoskeletal polymers - actin filaments, intermediate filaments, and

microtubules - that determine endothelial cell shape, actin filaments are the most abundant

and are located in closest proximity to the cell membrane. Confluent endothelial cells

assemble -70% of their 100 FM total actin into a rich meshwork of just over 50,000 actin

filaments that are on average -3 yjm long [181. In the cell cortex, cross-linking proteins

organize actin filaments into viscoelastic gels that connect to transmembrane proteins and

signaling complexes located at intercellular and extracellular matrix adhesion sites. Of

particular importance are the direct connections of actin filaments to P integrin tails by talin

1191 and filamins 1201, and to cadherins by vinculin and catenins 1211. During cell

locomotion and shape change events, the actin cytoskeleton is extensively remodeled 118,

221, primarily by adding and subtracting subunits at free filament ends.

Investigators have extensively studied structural actin cytoskeletal remodeling in response to

fluid shear stress in endothelial cells. Basally-located dense peripheral bundles of actin

filaments (stress fibers) dissolve shortly after shear stress exposure only to reform hours

later just under the apical membrane, aligned with the long axis of the cell [23-261. The

abundant microvilli present on the apical endothelial surface under static conditions

disappear, leaving a smooth, glassy contour 231. These structural alterations reduce the

peak shear stresses imposed on individual cells [27, 281 and cause elongated endothelial
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cells to become more resistant to micropipette surface deformations [291. While these

experiments reveal novel insights into the modification of cytoskeletal structures by fluid

shear stress, the theory and experimental techniques used in these studies are of limited

utility in understanding the dynamic nature of the actin cytoskeleton remodeling process.

Experiments tracing tagged actin molecules in living endothelial cells are required to directly

determine how actin distributes and remodels during fluid shear stress mechanostimulation.

This paper reports measurements of the temporal evolution of actin cytoskeleton remodeling

in living endothelial cells stimulated with laminar, steady fluid flow using the

complementary techniques of photoactivation of fluorescence (PAF) and fluorescence

recovery after photobleaching (FRAP). These techniques allow us to simultaneously

measure the amount of polymerized actin and the rate of actin filament subunit turnover in

individual endothelial cells, which are then correlated with migration rate. We show for the

first time that fluid shear stress rapidly enhances endothelial actin remodeling to levels

measured in the most dynamic endothelial cells under static conditions. Increased filament

subunit turnover precedes a drop in the amount of polymerized actin, revealing that net actin

cytoskeleton depolymerization characterizes the earliest phase of the endothelial shear stress

response. In contrast to endothelial cells in static culture that enhance actin remodeling in

proportion to their rate of migration across a substrate 1181, we find that the shear stress-

induced enhancement of actin remodeling is initially decoupled from increased endothelial

motility. While migration rates eventually recover to pre-shear stress levels, actin

cytoskeletal remodeling remains activate in many endothelial cells after shear stress

accommodation.
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Results

Fluorescent actin analogs function similar to native actin in endothelial cells

Fluorescently tagged actin monomers were introduced into individual bovine aortic

endothelial cells (BAECs) forming confluent monolayers for use as tracers of actin

cytoskeltal dynamics in PAF and FRAP experiments. For PAF, BAECs were microinjected

with caged-resorufin iodoacetamide-labeled rabbit muscle actin (CR-actin) at a final

concentration estimated to account for < 2% of total actin and photoactivated. CR-actin has

been shown previously to incorporate into the cytoskeleton of various cell types and

function as a reliable marker during actin remodeling [18, 221. FRAP studies were

performed by photobleaching BAECs transiently transfected with a vector encoding a

human -actin EGFP fusion protein (EGFP-actin). EGFP-actin co-localizes with native

actin filaments after staining with Alexa® 546 phalloidin in fixed and permeabilized BAECs

(Fig. II-1 A), where it both concentrates at the cell cortex and incorporates into actin

filament bundles spanning the cell. In living BAECs, EGFP-actin is diffusely present

throughout the cell cytoplasm and becomes particularly enriched in regions of active

membrane ruffling and lamellipodial extension (Videos 1 and 2, Supplemental materials).

Detergent treatment of confluent BAECs with Triton X-100 followed by high-speed

centrifugation (>100,000 g) separates actin into soluble and insoluble fractions that

represent bulk measurements of monomer and filament populations, respectively.

Immunoblots of these fractions with an anti-GFP polyclonal antibody reveals that EGFP-

actin is detectable only in transfected cells and partitions into the cytoskeleton in a similar

ratio as compared with native actin (Fig. II-1 B). Densitometric analysis of these

immunoblots shows that 51 + 2% of EGFP-actin is Triton insoluble (n = 4), a value only
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modestly lower than the 58 + 6% Triton insoluble actin measured previously in confluent

BAECs using similar techniques [18]. Using the total EGFP-actin mass present in whole

cell lysates of BAECs, the fraction of total BAECs positive for EGFP-actin expression, and

a 2x 10- " l1 geometric estimate for the cytoplasmic volume, the average expression level was

calculated to be -0.6 pg EGFP-actin per cell. Since BAECs forming a confluent monolayer

contain -6.6 pg endogenous actin per cell 1181, this corresponds to an average increase in

the total actin content of -10% per cell expressing the EGFP-actin vector. This level of

overexpression is not likely to have a significant effect on global actin organization or

dynamics, given the excess of actin monomer sequestering proteins present in non-muscle

cells. Taken together, the evidence shows that the EGFP-actin fusion protein functions

similar to endogenous actin in endothelial cells, a finding supported by the characterization

of EGFP-actin expression in other cell types 301.

Shear stress alters the dynamics of actin remodeling in endothelial cells

We measured the temporal shear stress response of actin remodeling in BAECs with PAF

and FRAP. Photobleached or photoactivated regions marked within BAECs change more

rapidly after fluid shear stress mechanostimulation than those not exposed to fluid flow

(Fig. 11-2, A and B). Quantitation of the fluorescence recovery in FRAP experiments shows

that mechanostimulation increases both the extent and rate of EGFP-actin fluorescence

recovery into the depleted region (Fig. II-2 C). Since EGFP-actin is a tracer of actin

cytoskeleton remodeling events, enhanced fluorescence photobleaching recovery kinetics

indicate that actin remodeling is increased in BAECs after challenge with shear stress. PAF

fluorescence decay measurements, the inverse of FRAP, provided quantitatively equivalent

relationships between shear stress stimulation and enhanced fluorescence dynamics (data

not shown).
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Actin fluorescence recovery and decay curves are biphasic

The shape of the FRAP recovery curves indicates that the evolution of EGFP-actin

fluorescence recovery into the depleted band is biphasic (Fig. II-2 C) and can be

decomposed into fast (early) and slow (late) dynamic components. Previous work has

shown that the fast dynamics primarily represent EGFP-actin monomer diffusion into the

bleached region, while the slow dynamics depend on the rate of actin filament turnover as

the bleached filaments replace non-fluorescent subunits with fluorescent ones, a process

regulated by actin polymerization and depolymerization events 118, 31, 321. A two-

compartment model describing this biphasic behavior was used to interpret the fluorescence

recovery into the photobleached or photoactivated region in FRAP and PAF experiments,

respectively, allowing determination of the fraction of total actin that is polymerized and the

average actin filament turnover time [321. The polymerized fraction represents the

percentage of total actin that is incorporated into filaments and is determined primarily by

the relative amount of fast and slow fluorescence dynamics. In endothelial cells, actin

filament dynamics are not limited by the rate of monomer diffusion [311, which is very

rapid, and therefore the slow dynamics are primarily determined by the filament turnover

time, the inverse of the filament subunit turnover rate.

Endothelial cells respond rapidly to shear stress by net depolymerization of their

cytoskeletons

At baseline under static culture conditions, previous studies have shown that BAECs

forming confluent monolayers maintain 73 + 11% of their total actin in polymer and

turnover actin filaments slowly with an average of 38.9 1 minute lifetimes [ 18]. We

confirm these measurements in the current study. Using PAF and FRAP, respectively, with

CR-actin and EGFP-actin, we find that individual BAECs forming confluent monolayers

48



polymerize 68 ± 12% of their total actin and have average filament lifetimes of 35.2 _ 7.1

min prior to shear stress exposure (n = 10). Treatment with 1 PM jasplakinolide, a potent

cell membrane permeant actin polymerizing agent, for 30 min increases the percent of actin

polymerized to 95 ± 4% and halts actin filament turnover (n = 10), indicating that nearly all

of the EGFP-actin expressed in BAECs is functional.

Individual BAECs in a confluent monolayer respond to 12 dyn/cm2 fluid shear stress first

by increasing their rate of actin filament turnover. While filament lifetimes decrease in a

majority of cells minutes after applying shear stress (Fig. II-3 A), there is large cell-to-cell

variability. Despite the individuality of the specific response, as a population the average

filament turnover time in confluent BAECs decreases to a minimum of 12.2 10.0 min

between 30 and 60 minutes after shear stress stimulation. This level of actin filament

turnover is similar to the most rapid turnover rates measured previously in the fastest

moving endothelial cells [18]. Filament turnover times remain low for 26 h after the onset of

fluid shear mechanostimulation (Fig. II-3 B).

The initial decrease in the average lifetime of cytoplasmic actin filaments after shear stress

stimulation is followed by a net loss of polymerized actin. Despite the apparent individual

variability in the enhancement of filament turnover, all BAECs show net depolymerization of

their cytoskeletons in response to a shear stress challenge (Fig. II-3 C). At 30 to 60 minutes

after shear stress application when actin filament turnover times are at a minimum, the

percentage of total actin polymerized decreases to an average value of 43 10% per

endothelial cell. While the filament turnover time stabilizes at this lower value, the amount of

actin polymer continues to fall, reaching a minimum amount of 34 ± 4% after approximately

3 to 3.5 hours of shear stress stimulation (Fig. 11-3 D, p < 0.01 compared to the 30 - 60
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min time period). At 5 hours, the polymer content tends to recover slightly to 55 + 19%, but

remains below pre-shear stress levels.

Actin remodeling is transiently decoupled from motility during shear stress

exposure

Because endothelial cell motility correlates positively with enhanced filament turnover and

decreased polymer content under static conditions 1181, we examined the movement of

endothelial cells to determine whether this relationship holds during shear stress-induced

actin cytoskeleton remodeling. In the absence of fluid shear stress, BAECs crawl at the

relatively slow rate of 0.35 + 0.09 m/min. Instead of accelerating motility in response to

accelerated actin dynamics, shear stress exposed BAECs transiently decrease their rate of

translocational movement after starting fluid flow (Fig. 1I-4). The slowing in movement

occurs on the same time scale that bulk actin remodeling reaches a maximum, decreasing to

a minimum speed of 0.14 + 0.04 /m/min at 30 to 60 min after shear stress exposure and

then remaining decreased for an additional 5 h. This is in stark contrast to measurements of

actin remodeling in sparse endothelial cells under no-flow conditions, where non-confluent

endothelial cells move -3-fold faster with depleted F-actin content and accelerated subunit

turnover rates 181. Experiments on human umbilical vein and mouse lung endothelial cells

handled under identical conditions show a similar shear stress-dependent decrease in cell

speed on the same time scale (data not shown), implying that these observations are not

species or cell line specific.
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Actin remodeling remains enhanced in many endothelial cells after shear stress-

induced endothelial shape change

In the presence of continual shear stress stimulation, BAECs become elongated and aligned

in the direction of fluid flow in an accommodation response to the applied force. In

individual BAECs, the shear stress-induced actin remodeling response is highly variable.

While the polymerized fraction recovers to near pre-shear stress levels in most cells, some

BAECs continue to have enhanced rates of actin filament subunit turnover, while others are

more dynamically stable (Fig. II-5 A). This reveals that there is less correlation between

polymer content and filament turnover in shear stress accommodated BAECs, as compared

to the relationship observed in unstressed cells.

Despite the nature of the shear stress response in individual aligned cells, as a population

shear stress accommodated BAECs maintain relatively enhanced levels of actin remodeling

(Fig. II-5 B). The polymerized fraction falls slightly short of returning to pre-shear stress

levels, averaging 57 + 13% between 22 and 24 h, or -10% less polymer than is present

under static conditions. The filament turnover time during the same period recovers to a

lesser extent at 26.0 + 19.7 min, with the large variability representing differences in the

activation of individual cells.
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Discussion

We have measured the temporal dynamics of the actin cytoskeleton that underlie the

dramatic shape change response of endothelial cells during exposure to fluid shear stress.

We show that shear stress is a potent stimulator of actin filament turnover and leads to

significant depolymerization of the cytoskeleton within minutes. In direct contrast to

endothelial cells under static conditions where actin dynamics, shape change, and motility

are tightly coupled, the cellular energy expended for shear stress-induced actin remodeling

is thus largely funneled to effect shape change over movement, which transiently slows

during the first 30 min of shear stress exposure. Later, as the cytoskeleton remodels and the

cell changes shape, motility recovers but many of the cells remain in a partially activated

state of actin remodeling that depends on the individual cell measured, even after

morphological accommodation to the applied force. Based on this work, we define three

temporal phases of dynamic actin cytoskeleton remodeling during shear stress stimulation

that each likely utilize a unique combination of actin-based mechanisms.

Short term response to shear stress (0 - 30 min)

Actin cytoskeleton remodeling reaches maximum levels -30 min after shear stress

stimulation. In confirmation of previous work using bulk DNase assays on endothelial cell

lysates 1331, we find that shear stress-induced actin remodeling results in net cytoskeletal

depolymerization. In addition, we report that endothelial cytoskeletal depolymerization

occurs in response to accelerated actin filament turnover.

For purified actin, filament turnover depends primarily on the distribution of filament

lengths, the number of free filament ends available for subunit exchange, and the rate of

subunit addition and loss from these ends. Attempts to isolate the individual influences
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modulating filament turnover are difficult, but recent comprehensive efforts modeling the

kinetics of the actin cycle are providing new insights into the relative importance of these

processes [341. These efforts have shown that, as actin cycling becomes more dynamic, it

tends towards the depolymerized state 1341, as observed in our studies. In cells, actin

binding proteins, often with overlapping mechanisms of action, modulate these parameters

and provide multiple access points at which the cell can influence filament turnover.

Complicating matters further, different combinations of these parameters can produce

ostensibly similar effects on filament turnover. However, for filament turnover-mediated

depolymerization, the rate-limiting factor is the loss of subunits from the pointed filament

end 1351. In this case, mechanisms that influence pointed end kinetics and exposure, but do

not alter barbed end capping, can result in depolymerization of the actin cytoskeleton and a

net loss of polymerized actin.

The most obvious depolymerization mechanism is to increase the rate of subunit

dissociation from the pointed ends of actin filaments. ADF/cofilins perform this function in

vitro by accelerating the kinetics of ADP-filament subunit depolymerization up to -25-fold

1351. The depolymerization activity of ADF/cofilin is regulated by phosphorylation of

serine-3. Phosphorylation of this residue by LIM kinase inactivates ADF/cofilin by

inhibiting its ability to bind to actin filaments 136, 371. This inhibition has been shown to be

reversed by the Slingshot 1381 and TEST2 phosphatases.

Although cofilin dephosphorylation is attractive, evidence as to the role ADF/cofilins play in

the initial shear stress response is inconclusive. The Rho GTPases Rac, Rho, and Cdc42,

which activate LIM kinase, are differentially activated within the first 15 min of shear stress

139-411 and there is a progressive cofilin phosphorylation and inactivation beginning at -30

min after shear stress initiation 142]. Since the burst of shear stress-induced filament

53



turnover and depolymerization occurs during the 30 min time interval prior to cofilin

deactivation, cofilin activity may be important in this process. However, to sustain this new

equilibrium of diminished polymer with a higher filament subunit cycling rate, cofilin must

remain active or other mechanisms must be called into play. Results in endothelial cells

under static conditions suggest there may not be a simple one-to-one correspondance

between cofilin activation and increased filament turnover. Endothelial cells in a confluent

monolayer under static conditions have ample amounts of F-actin associated cofilin but

maintain high polymer fractions with slow rates of filament turnover 1181. Furthermore,

cofilin association with the actin cytoskeleton actually decreases in endothelial cells with the

most dynamic actin cytoskeletons and fastest rates of movement 1181.

Increasing the number of free pointed filament ends available for disassembly is another

way to accelerate actin filament turnover to cause net depolymerization in populations of

actin filaments. This can be accomplished passively by spontaneous mechanical filament

fragmentation or actively by filament severing, filament nucleation and release, and/or

pointed end uncapping. Of these mechanisms, fragmentation and severing are at an

advantage over uncapping or nucleation and release for mediating rapid depolymerization

events in that they increase the number of free filament ends while simultaneously

decreasing filament lengths. In vitro, actin filaments spontaneously fragment and anneal

1431, a process which may be accelerated in vivo by fluid shear stress if the forces imposed

on the cross-linked filament network exceed the mechanical strength of the individual

filament. Theoretical estimates predict that this is unlikely 144].

A more plausible way to rapidly generate an increased number of short actin filaments is by

active filament severing [451. ADF/cofilin and the gelsolin family of proteins are the most

widely studied filament severing proteins, and of the two, gelsolin is the most potent 146,
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471. The severing activity of gelsolin is calcium regulated 1461. Since one of the earliest

responses to fluid shear stress is a transient oscillatory rise in free cytoplasmic calcium

concentrations [48, 491 and cytoplasmic calcium chelation blocks shear stress-induced

depolymerization in bulk endothelial lysates [33], gelsolin-mediated actin filament severing

may also be important during the initial shear stress response. Under static conditions,

however, gelsolin and cofilin appear to work synergistically to regulate endothelial cell actin

dynamics and movement 1181, and therefore both activities may be important during the

shear stress response.

The accessibility of pointed filament ends may also be modulated in cells. Tropomodulin-3

caps actin filament pointed ends, and when overexpressed negatively regulates endothelial

cell motility under static conditions [501. The Arp2/3 complex can also cap pointed ends,

however its major response is the formation of dendritic branching structures by de novo

nucleation from the barbed filament end 1511. These branches can then release from the

sides of filaments to create new free pointed filament ends.

Relationship between shear stress-induced actin remodeling and endothelial cell

motility

The factors contributing to the migrational properties of individual endothelial cells are

complicated, depending on the origin of the cells, the type of substrate, and, most

importantly, the density of cells on the surface. Endothelial cells are more motile in sparse

culture presumably because they establish few contacts with their neighbors. When cells

incorporate into a confluent monolayer, they diminish their movements and slow their

cytoplasmic actin filament turnover rate [181. We have found that the application of shear

stress further decreases the rate of endothelial migration in these confluent monolayers in

confirmation of Blackman et al. 52], but in contrast to others 153]. Since subconfluent
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endothelial cells respond differently to fluid shear stress, by increasing cell speed [54-561, it

is possible that the studies reporting increased cell speed following shear stress were less

densely confluent and quiescent than in our study.

Under static conditions, endothelial cells have an upper limit on their rates of movement and

the bulk dynamics of their cytoskeletons, where movement and dynamics are directly

coupled 118]. The observation that motility slows and remains depressed for hours after

fluid shear stress stimulation before recovering, while actin remodeling is enhanced, reveals

that actin remodeling is initially decoupled from productive motility in shear stress

stimulated endothelium. Increased intercellular and/or substrate adhesion is one possible

means to achieve this decoupling, since adhesion is an important determinant of cell speed

1571. Alternatively, the connections between actin filaments and transmembrane adhesion

molecules may change, such as that shown for increased filamin binding to 13 integrin tails

which negatively regulates cell movement 1581. Regulation of myosin-based cell contraction

may also be important in this process.

Actin dynamics during the phase of decreased endothelial cell movement (1 - 6 h)

After the initial phase of the shear stress response characterized by net cytoskeletal

depolymerization, a new steady state of actin remodeling is achieved where the polymer

fractions remain low and the filament turnover times are enhanced, but with reduced cell

motility. This phase requires different mechanisms to maintain, e.g. one that promotes

enhanced filament turnover without a net change in actin polymer content. Since most

studies have focused on early and late end points, data to support a mechanism during this

intermediate phase of the actin response is limited. A portion of total cofilin is

phosphorylated and therefore inactivated at 2 h after shear stress 42]. Cap G, a member of

the gelsolin superfamily that caps barbed ends but does not sever filaments, becomes
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increasingly associated with the cytoskeleton after shear stress exposure, beginning at 2 h

and remaining elevated over static controls at 24 h 1591. Since cells vigorously protect the

number of barbed ends exposed, this work implies that shear stress exposed endothelial

cells contain an increased number of actin filaments, a finding consistent with observations

that average actin filament lengths decrease in endothelial cells with fast actin dynamics

under static conditions 118]. Additionally, since Cap G capping events are calcium

dependent, basal calcium levels may be chronically elevated as compared to no flow

conditions; however, studies examining the long term calcium response after shear stress

exposure have yet to be performed. In steady state filament populations of the same length

undergoing no net polymerization, kinetic modeling predicts that filament turnover is

accelerated to the greatest extent by simultaneously increasing the off rate of ADP-subunits

at the pointed filament end, the rate of Pi dissociation from ADP-Pi-subunits after ATP

hydrolysis, and the combination of accelerated ATP/ADP exchange rates on actin

monomers with shuttling of these ATP-monomers to the barbed filament end 1341.

Additional investigations must be performed at the intermediate stages of the shear stress-

induced endothelial shape change response to address the complex regulatory events

controlling actin remodeling during this phase.

Actin remodeling in shear stress accomodated endothelium (-24 h)

We measure that shear stress accommodated endothelial cell actin cytoskeletons do not

completely recovery to their pre-stressed state, but rather, despite their return to baseline cell

speed, these cells reach a new steady state of slightly decreased polymer fraction with highly

variable rates of filament turnover. The observation that the amount of polymerized actin

after 24 h shear stress is less than unstressed cells reveals that increased cytoskeletal

polymer content is not required to resist shear stress forces in chronically stimulated
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endothelium; rather, it is the architectural organization of the cytoskeleton that is optimized.

The large variability in the rate of filament turnover, even in cells with similar elongated

shapes and polymer fractions, suggests that cytoskeletal rearrangement is a continuous,

heterogeneous response of the endothelial cell to comply with the force pattern imposed on

its surface and maintain its optimized morphology [27, 281.

The observation that the endothelial response to shear stress is heterogeneous at the level of

the individual cell is consistent with heterogeneous subcellular spatial differences in fluid

shear stress stimulation on the endothelial surface [171. Since the endothelial surface of an

individual cell is wavy, not smooth, topographic differences determined by the

submembrane actin filament network architecture create microvariations in the fluid profile

(and hence the fluid shear stress) that locally change the distribution of shear stress 127,

281. Remodeling of actin is an important mechanism for the cell to regulate the stress it

experiences by optimizing its structure against the mechanical load on its surface as well as

altering its connections with molecules at the membrane surface that may participate in

signaling events. In this way, depending on their surface topography, neighboring

endothelial cells in a confluent monolayer can have radically different phenotypes given

their specific force stimulation. Indeed, this is observed in vivo where endothelial cell shape

and arterial atherogenicity are markedly different between cells located just a few cell

diameters away from each other. Therefore, changes in the actin network structure and

connections mediated by remodeling events may have a significant impact on cellular

mechanotransduction and the atherogenic process.
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Materials and methods

Reagents

pEGFP human 3-actin, purified recombinant GFP, and anti-GFP polyclonal antibody were

obtained from Clontech; DMEM, Lipofectin®, Opti-MEM I, and Leibovitz's L-15 Media

were obtained from Invitrogen; Alexa® 546 phalloidin, Alexa® 488 dextran, and

jasplakinolide were obtained from Molecular Probes; anti-actin monoclonal antibody was

obtained from Sigma-Aldrich; HRP-labeled goat anti-mouse secondary antibody was

obtained from Bio-Rad Laboratories.

Cell culture, microinjection, and transfection

Primary BAECs were purchased from VEC Technologies and cultured in uncoated flasks in

low glucose DMEM supplemented with 10% FCS and 100 U/ml penicillin and

streptomycin. For experiments, BAECs between passages two and ten were plated on glass

coverslips coated with 0. 1% gelatin.

CR-actin was synthesized according to the method of Theriot and Mitchison [221, diluted to

I mg/ml in Injection Buffer (mM Hepes, 0.2 mM MgCI2, 0.5 mM ATP, pH 7.4)

containing 5 M Alexa® 488 dextran (10 kD), and microinjected into BAECs. Prior to

experiments, microinjected BAECs were allowed to recover for 1 hour.

EGFP-actin was transfected into 70% confluent BAECs using a ratio of 2 g/ml cDNA to

20 il/ml Lipofectin® diluted in serum-free Opti-MEM® I and incubated for 5 h at 37°C

and 5% CO2 after which the transfection solution was replaced with normal growth media.

BAECs expressed detectable levels of EGFP-actin by 48 hours after transfection, and were
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used for experiments between 48 and 72 hours. The transfection efficiency was 13 e 4% of

total BAECs, measured by counting the number of positively reporting cells in paired DIC

and fluorescent images at 72 hours post-transfection (n = 8).

Immunofluorescence

BAECs were fixed with 4% paraformaldehyde for 20 min at RT, followed by

permeabilization with 0.2% Triton X-100 in PBS for 5 min. Samples were incubated with 

yM Alexa® 546 phalloidin for 10 min to stain actin filaments, washed three times in PBS,

and mounted (Aqua Polymount; Polysciences) onto glass microscope slides. Images were

digitally recorded with a cooled CCD camera (Orca II ER; Hamamatsu) on a Nikon Eclipse

TE2000 microscope with a 63X oil immersion objective and MetaMorph® software

(Universal Imaging Corporation).

SDS-PAGE and immunoblotting

BAECs were grown to confluence in 60 mm Petri dishes, extracted with 200 /l of Triton

Lysis Buffer (60 mM Pipes, 25 mM Hepes, 10 mM EGTA, 2 mM MgCl, 1% Triton X-

100, mM PMSF, 1/M phallacidin, and 0.1 mg/ml aprotinin, leupeptin, and benzamidine,

pH 6.9) at 4"C, and collected from the surface using a rubber scraper. Samples were

solubilized with equal amounts of SDS-PAGE Sample Buffer in total for whole cell lysates

or after separation into Triton soluble and insoluble fractions by cetrifugation for 30 min at

215,000 g and 4°C. Triton soluble and insoluble fractions were matched for total protein,

loaded on a modified 11 % acrylamide Laemmli slab gel 601, and separated by SDS-PAGE.

Whole cell lysates were loaded at 50% of the matched total protein value. Proteins were

transferred to PVDF membranes (Millipore) for 60 min using a Trans-Blot® cell (Bio-Rad

Laboratories) at 100V. PVDF membranes were blocked in PBS with 0.02% Tween 20 and
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5% Carnation nonfat dry milk, pH 7.4. Blocked membranes were incubated with a 1:1000

dilution of primary antibody for 1 h at RT, washed three times with PBS, and probed with a

1:5000 dilution of HRP-labeled goat anti mouse secondary antibody for 1 h. Washed

membranes were developed using SuperSignal® West Pico Chemiluminescent Substrate

(Pierce Biotechnology), digitized, and densitometrically analyzed. For GFP immunoblots,

purified recombinant GFP standards were used to quantitate the amount of GFP present.

Shear stress

Steady, laminar shear stress at 12 dyn/cm2 was applied to confluent BAECs using a parallel

plate flow chamber as previously described 149]. Briefly, the chamber consisted of two

stainless steel plates maintained at 370 C by a copper heating block that were separated by a

0.5 mm silicone sheet (Allied Biomedical) with a 5 x 50 mm rectangular section removed to

create a flow channel. Confluent BAECs grown overnight on a 25 mm diameter coverslip

coated with 0.1% gelatin were placed in a recess milled into the surface of the bottom

stainless steel plate and the flow chamber was assembled. A Materflex® peristaltic pump

(Cole-Parmer) was used to pump DMEM containing 10% FCS at 370 C and 5% CO2 from

a reservoir through the flow chamber. A second sealed reservoir was placed between the

pump and the flow chamber to eliminate pulsations. Since the flow through the channel can

be approximated as two-dimensional fully developed laminar flow with a parabolic velocity

profile, the wall shear stress was determined as a linear function of the volume flow rate

pumped through the chamber.

PAF and FRAP

PAF and FRAP experiments were performed on individual BAECs forming confluent

monolayers contained within a parallel plate flow chamber using a Zeiss Axiovert 405M
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microscope with a 100X oil immersion objective. For PAF, BAECs microinjected with CR-

actin were located by a co-injected Alexa 488 dextran volumetric tracer and the CR-actin

was photoactivated in a 7- 10 m wide strip spanning the cell width using the 365 nm line

of a mercury arc lamp as previously described 131]. For FRAP, a 1 - 2 pm wide band was

photobleached across one dimension of individual BAECs expressing EGFP-actin with a

100 mW argon ion laser (Melles Griot) at 488 nm. The photoactivation and photobleaching

times were < 1 s for PAF and FRAP experiments. The evolution of fluorescence at the

center of the photoactivated or photobleached region was measured over time and analyzed

with a two-compartment mathematical model describing actin monomer and polymer

dynamics as previously described 131, 321. Control experiments were performed under

static conditions, after which fluid flow was initiated and experiments were performed

during shear stress stimulation at selected times up to 24 h. For certain static control

experiments, BAECs were incubated with 1 M jasplakinolide for 30 min at 37°C prior to

photobleaching.

Motility

Cell motility was measured by quantitative time lapse video microscopy. Digital images of

BAECs within confluent monolayers were captured every 2 min under static conditions and

during exposure to 12 dyn/cm2 fluid shear stress for 24 h on a Zeiss IM-35 microscope

with a 10X phase contrast objective and CCD camera (C2400-77; Hamamatsu). Mean-

square-displacements were calculated by tracking nuclear trajectories in each video frame.

Root-mean-square cell speed was determined by fitting mean-square-displacements to a

formula describing cell dispersion as a function of time and cell persistence as previously

described 18, 611.
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Online supplemental material

Time lapse video of a subconfluent BAEC expressing EGFP-actin was digitally captured

every 2 s for 5 min with an Orca II ER CCD camera on a Nikon Eclipse TE2000

microscope using a 63X oil immersion objective and MetaMorph® software. At each time

point, paired DIC and fluorescent images were recorded. During the video, the cell was

maintained at 37°C using a temperature controller (Harvard Apparatus) in Leibovitz's L-15

Media without phenol red supplemented with 10% FCS.
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Figure legends

Figure II-i. EGFP-actin localization and distribution in endothelial cells. (A)

BAECs expressing a human 3-actin EGFP fusion protein 60 h after transfection were fixed,

permeabilized with Triton X-100, and stained with Alexa® 546 phalloidin to label total actin

filaments. The condition for each panel is labeled next to the image. Arrowheads in the

merged image indicate co-localization of EGFP-actin and phalloidin fluorescence on a long

F-actin bundle. Bar, 10 m. (B) Confluent monolayers of BAECs transfected with EGFP-

actin (+) or control (-) were extracted in 0.2% Triton X- 100 and either separated into Triton

soluble supernatant (s) and Triton insoluble pellet (p) by centrifugation or maintained as

total cell lysates (t). Immunoblots of GFP or actin are shown in the top and bottom panels,

respectively.

Figure 11-2. Endothelial cell fluorescent actin dynamics are modified by 12 dyn/cm2

fluid shear stress. (A and B) Panels of fluorescence images from representative FRAP

and PAF experiments on individual BAECs in a confluent monolayer under static

conditions or exposed to shear stress for (A) 30 min or (B) 1 h. (A) FRAP experiments

were performed on BAECs transfected with EGFP-actin. (B) For PAF experiments,

BAECs were microinjected with CR-actin. Photobleaching and photoactivation were

performed at 0 s. For images of BAECs exposed to shear stress, the direction of applied

fluid flow is from left to right. Bars, 10 m. (C) FRAP fluorescence recovery curves

measured at the center of the photobleached band for the cells shown in (A) under static

conditions (red circles) or after exposure to shear stress for 30 min (green triangles).

Figure 11-3. Short term shear stress response of endothelial cell actin remodeling.

(A) Filament turnover time and (C) polymer fraction measured during the first hour of shear
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stress stimulation with PAF (red triangles) and FRAP (green circles) in individual BAECs

within a confluent monolayer. Fluid shear stress was applied to BAECs at 0 min. The grey

dashed lines represent average values for the combined PAF and FRAP data. (B and D)

PAF and FRAP data measured in individual BAECs was averaged in 30 min intervals over 6

h after exposure to 12 dyn/cm 2 fluid shear stress beginning at 0 h (mean + SD, n 2 5). p 

0.05 for data from (B) 0 to 6 h and (D) 0 to 5 h in comparisons with static control, t test.

Figure 11-4. Endothelial cell motility during shear stress stimulation. Digitized time-

lapse video images of confluent BAECs were recorded under static conditions and after

exposure to fluid shear stress starting at 0 h and the root-mean-square cell speed calculated.

Cell speeds are were grouped into 30 min intervals and averaged (mean + SD, n = 25).

Figure II-5. Actin remodeling response of endothelial cells after accommodation to

shear stress. (A) 24 h after the application of shear stress, BAECs become elongated and

aligned in the direction of applied fluid flow (left to right). FRAP experiments on two

representative elongated, aligned BAECs after -24 h of shear stress exposure are shown in

the fluorescence panels, where green represents EGFP-actin. Photobleaching was

performed at 0 s. Fluorescence recovery curves for cell 1 (green triangles) and cell 2 (red

circles) are shown to the right of the fluorescence panels. Analysis of these recovery curves

reveals that both cells contain -50% polymerized actin despite a 10-fold faster rate of

filament turnover in cell 1. Bar, 10 m. (B and C) Averages of polymer fraction and

filament turnover time measured in individual BAECs within a confluent monolayer under

static conditions or after exposure to fluid shear stress for 22 - 24 h (mean ± SD, n = 23).

· , p _ 0.05, comparisons with static control, t test.
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Online supplemental material

BAEC expressing EGFP-actin crawling across a glass surface. (Video 1) Time lapse

DIC video of a subconfluent BAEC expressing EGFP-actin 48 h after transfection. (Video

2) Corresponding time lapse fluorescence video of the same cell, where green represents

EGFP-actin fluorescence. Frames were captured every 2 s for a total of 5 min. The video

frame rate is 10 frames/s. Bars, 10 m.
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Chapter III

Filamin Cross-linking Stabilizes Actin Filament Dynamics
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Summary

Non-muscle cell shape change and motility depend primarily on the dynamics and

distribution of cross-linked cytoplasmic actin polymer. We determine the steady state

dynamics of purified actin filament networks in the entangled state and after orthogonal

cross-linking with filamins using a novel, non-perturbing fluorescence system. Human

filamin A or Dictyosteli um discoidium filamin slow actin filament tunover by -50% and

recruit much of a significant population of actin oligomers that we measure are present in

polymerized purified actin solutions into the immobile filament fraction. Surprisingly, these

observations occur at very low stoichiometry to actin, approximately requiring only one

filamin molecule bound per actin filament, similar to the amount required for actin filament

gelation in vitro. Networks formed with filamin truncates localize this activity to the actin

binding domain and reveal that dimerization and orthogonal cross-linking are not required

for dynamic stabilization. Re-expression of filamin A with or without the actin binding

domain in human melanoma cells that naturally lack this protein support the findings in

purified actin networks. These results indicate that filamin cross-linking stabilizes filament

dynamics by slowing filament subunit cycling rates and by either decreasing spontaneous

filament fragmentation or promoting filament annealing.
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Introduction

Actin filaments fill the cytoplasmic space of cells, determining cellular morphology, and

provide motility through coordinated remodeling events. Certain actin-regulatory proteins

govern the dynamic nature of actin by controlling the kinetics and access of monomers to

filament ends, nucleating or severing filaments, sequestering monomers, or altering

monomer nucleotide exchange II1, 21. Other proteins cross-link adjacent actin filaments,

creating structures that ultimately define the architecture and mechanical properties of

cytoplasm 13, 41.

One cross-linking protein family, the filamins, are essential for non-muscle cell motility [5-

71. The most extensively studied family member is human Filamin A (FLNa'), which self-

associates at its C-terminus to form a large (560 kDa) flexible homodimer [81. FLNa

organizes actin filaments into orthogonal networks by linking neighboring filaments

together with its N-terminal actin binding domains 18, 91, and affixes the network to the

plasma membrane through specific glycoprotein interactions at the C-terminus [101. With

many binding partners now described that may modulate its activity, FLNa participates in

signaling cascades by spatially collecting and concentrating signaling proteins near the

plasma membrane, possibly as an organizing center for local actin network rearrangements

131.

A homologous protein to FLNa found in amoeba, Dictyosteliuni discoidium filamin

(ddFLN) has been shown to be an effective actin filament crosslinking protein in vitro that

is essential to Dictyosteliumn cortical actin network structure 111-161. ddFLN is a miniature

version of the human counterpart, self-associating to form elongated dimers that bind

adjacent actin filaments and assembling a three-dimensional filament network analogous to
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FLNa 117, 181. Cells that lack ddFLN exhibit defects in motility, chemotaxis, and

phagocytosis 111, 14, 151 that can be rescued by ddFLN re-expression 116].

While most studies investigating cross-linking protein function have focused on their

architectural and mechanical influences on actin filament networks, even in the highly cross-

linked gel state, actin filaments are not static cellular structures, but exhibit dynamic

'turnover' through addition and loss of monomeric subunits from their ends [19, 201.

Therefore, direct binding interactions between cross-linking proteins and actin filaments

may also influence the local dynamic stability and kinetic properties of the individual

filaments composing the structures they create. Indeed, evidence that the actin filament

bundling proteins (x-actinin and the 30 kDa Dictyosteliunm discoidium actin-bundling

protein slow actin filament depolymerization in vitro have been suggested to account for at

least some portion of the remarkable stability of extracted, Triton-insoluble actin

cytoskeletons 121-231. Determining the influence of cross-linking on actin filament

dynamics in individual cells will allow further understanding of the stability of subcellular

structural domains of the cytoskeleton.

Here, we use a combination of reconstituted, purified actin network experiments and cellular

studies to determine the effects of the filamin family of actin filament cross-linking proteins

on the dynamics of actin networks. We develop a novel photoactivation of fluorescence

(PAF) system for studying reconstituted, purified actin filament network dynamics based on

simple physical relations governing purified actin filaments. This system measures the

dynamics of steady state filament networks in situ with only minimal light perturbation, a

clear advantage over other techniques that require mechanical sample manipulation and

extrapolation of transient measurements to infer steady state dynamics. Using this system,

we observe that polymerized solutions of purified actin filaments turnover very slowly and
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contain a population of oligomers in excess of the amount of monomeric actin. Compared

to these entangled filament networks, orthogonal cross-linking of actin filaments with

filamins further decreases their rate of filament turnover and immobilizes a large percentage

of the rapidly diffusing oligomers, an observation that, similar to the stoichiometries needed

for actin filament gelation 1241, only requires -1 filamin molecule bound per actin filament.

Using truncated filamin proteins, we localize these effects to the actin binding domain,

independent of filamin dimerization and actin filament cross-linking activities. In support of

the measurements in reconstituted actin networks, we show with PAF and fluorescence

recovery after photobleaching (FRAP) that filament subunit cycling decreases in human

melanoma cells spontaneously lacking FLNa when full-length FLNa is restored, but not if

FLNa lacks the actin binding domain.
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Experimental procedures

Caged resorufin iodoacetamide-labeled actin (CR-actin)

CR-actin was synthesized according to the method of Theriot and Mitchison [191. Prior to

labeling, rabbit muscle actin isolated as previously described [251 was further purified to

remove contamination by Cap Z 126] with fast protein liquid chromatography on a Superose

6 column (Amersham Biosciences) and verified to be Cap Z free by immunoblotting with a

polyclonal antibody that recognizes both the ao and f3 subunits of Cap Z. Purified CR-actin

was diluted to 70 M in Buffer A (2 mM Tris-HC1, 0.2 mM CaCl2, 0.5 mM 1-

mercaptoethanol, 0.5 mM ATP, pH 7.4), frozen in liquid nitrogen, and stored at -80 °C. The

day before experiments, CR-actin was thawed, diluted to 10 YM in Buffer A, and placed at 4

°C overnight in the dark to equilibrate. Equilibrated CR-actin was centrifuged at 300,000 x

g for 30 min at 4 °C and the supernatant was removed and stored in the depolymerized form

at 4 C.

Functionally. CR-actin is polymerization competent and rivals the assembly rate, lag time,

and steady state fluorescence of equivalent experiments with unlabeled actin in a

fluorescence-based actin assembly assay (data not shown). Briefly, these experiments were

performed by mixing equal parts of monomeric CR-actin and 10% pyrene-labeled G-actin

at a final concentration of 2 uM in Buffer B (10 mM Tris-HCl, 2 mM MgCI 2, 100 mM

KCI, 0.1 mM EGTA, 0.5 mM -mercaptoethanol, 0.5 mM ATP, pH 7.4) and monitoring

the change in pyrene-actin fluorescence as actin filaments polymerize with a luminescence

spectrometer (model LS-50B; PerkinElmer) at excitation and emission wavelengths of 366

nm and 388 nm, respectively.

83



Filamin purification

FLNa-AN153, a fusion protein lacking the first 153 amino acids of FLNa, was prepared

using the polymerase chain reaction. A cDNA fragment encoding FLNa-AN153 was

amplified using pFASTBAC FLNa 124J as the template, a forward primer,

GAAGAGCFCATGTGGGACGAGGAGGAGGATG, containing a SacI site, and a reverse

primer, CACACTCGGTGCCCACCTTCACTTC. The 1.3 kbp of the amplified fragment

was purified, SacI/BstBI-digested, ligated into the SacI(Sstl)lBstBI(NspV) sites of the

pFASTBACl vector (Invitrogen) to generate pFASTBAC1-AN153/BstBI, and confirmed

by sequencing. The 3'-site of FLNa cDNA was prepared by cutting pREP4 FLNa 271

with BstBI and XbaI, and subsequently ligated into the pFASTBAC 1-AN 1 53BstBI opened

with BstBI and XbaI to create pFASTBAC1 FLNa-AN153.

FLNa-AC 112, a fusion protein lacking 112 amino acids at the C-terminus, was prepared by

cutting pREP4-FLNa-AC1 12 1271 (prepared in dam+E.coli) with ClaI and XbaI, and ligated

into the pFASTBAC FLNa (prepared in dam+E.coli) after opening with ClaI and XbaI,

thereby generating pFASTBAC 1 FLNa-AC 112.

Human recombinant FLNa, FLNa-AN153, and FLNa-AC1 12 were expressed using a

Baculovirus Expression System (Invitrogen) in Sf9 insect cells and purified as previously

described 1241. ddFLN was purifed from AX2 cells as detailed elsewhere 1281. All purified

filamins were stored in aliquots at -80 C.

F-actin co-sedimentation

Purified FLNa or FLNa-AN153 was incubated with or without 10 yM G-actin for I h at 23

°C in PHEM buffer (60 mM PIPES, 25 mM Hepes, 10 mM EGTA, 2 mM MgCI2, pH 6.9)
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containing 0.75% Triton X-100, followed by centrifugation at 100,000 x g for 20 min.

Pellets were resuspended in the starting assay volume and equal volumes of supernatants

and pellets were loaded onto 9% SDS-polyacrylamide slab gels where the proteins were

electrophoretically separated and then visualized by staining with Coomassie Brilliant Blue.

Measurement of filament network gelation

Filamin-induced network gelation was determined using a miniature falling ball viscometer

[291. 2 /M rabbit muscle G-actin was polymerized by adding Buffer B in the presence of

different concentrations of FLNa, FLNa-AC 112, FLNa-AN 153, or ddFLN. The mixtures

were immediately drawn into vertically positioned 100 yul glass micropipettes (Fisher

Scientific) and incubated at 23 C for 60 min. Apparent viscosity was calculated by

measuring the time required for a 0.7 mm diameter stainless steel ball to fall 5 cm in the

micropipette.

Critical concentration

The steady state critical concentration of CR-actin, unlabeled actin, or unlabeled actin with

1:20 FLNa was determined by measuring the 24 h fluorescence of F-actin solutions at

different concentrations containing a 1:5 mixture of 10% pyrene-labeled actin and CR-actin

in Buffer B at 23 C with a PerkinElmer luminescence spectrophotometer. Samples of

unlabeled actin and unlabeled actin with FLNa were polymerized de novo at the appropriate

final concentration, whereas CR-actin samples were prepared from serial dilutions of a 2

[tM F-actin solution.
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Reconstitution of purified actin filament networks

Rectangular, borosilicate glass microcapillary tubes (Friedrich and Dimmock) of

dimensions 0.05 mm x 0.5 mm x 50 mm were sealed onto the end of a 100 ul glass

micropipette with melted wax. A ml syringe fitted with a two-way stopcock was connected

to the other end of the micropipette by a length of silicone tubing and used to load the

microcapillary tubes with the purified protein solutions. Prior to sample loading, the

microcapillary tubes were coated with I mg/ml BSA for 2 min at 37°C to block actin

adsorption to the glass surface. At this BSA concentration, < 1% of total actin was detected

bound to the glass surface by SDS-polyacrylamide gel electrophoresis and Coomassie

Brilliant Blue staining (data not shown). CR-actin was diluted to 2 [tM in either Buffer A

for G-actin experiments or Buffer B to induce actin polymerization for filament studies, and

loaded into the BSA coated microcapillary tubes. For experiments including additional

purified proteins, different concentrations of phallacidin, FLNa, ddFLN, FLNa-AN153, or

FLNa-ACI 12 were mixed with CR-actin prior to sample loading. The tube was released

from the micropipette by breaking it above the wax seal and the ends were sealed with seal-

ease® clay (Beckton Dickinson). CR-actin was allowed to reach steady state (overnight) at

room temperature in the dark.

Cell culture, motility, microinjection, and transfection

Human melanoma cells were cultured as previously described 151 in minimal essential

medium (Invitrogen) supplemented with 8% newborn calf serum, 2% fetal bovine serum,

and 100 U/ml penicillin/streptomycin. 0.5 mg/ml G41,,, (Invitrogen) was added to the growth

media of FLNa expressing cells. For experiments, human melanoma cells were plated at

K30% confluence on uncoated glass coverslips. Cell motility was measured by quantitative

time lapse video microscopy as previously described 201.
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CR-actin was diluted to 1 mg/ml in Injection Buffer (lmM Hepes, 0.2 mM MgCl 2, 0.5 mM

ATP, pH 7.4) containing 5 M Alexa® 488 dextran (10 kDa; Molecular Probes), and

microinjected into melanoma cells. Prior to experiments, microinjected melanoma cells were

allowed to recover for 1 hour.

A plasmid encoding a fusion protein of human -actin and enhanced green fluorescent

protein (EGFP-actin; Clontech) was transfected into 70% confluent melanoma cells using a

ratio of 2 yug/ml cDNA to 6 il/ml Lipofectamine-2000( (Invitrogen) diluted in serum-free

Opti-MEMC) I (Invitrogen) and incubated for 5 h at 37C and 5% CO2 after which the

transfection solution was replaced with normal growth media. Melanoma cells expressed

detectable levels of EGFP-actin by 48 hours after transfection, and were used for

experiments between 48 and 72 hours. The transfection efficiency was -15% (data not

shown).

Reconstituted actin network theory and simulations

In PAF experiments on steady state reconstituted actin networks, monomer diffusion,

filament diffusion, and filament turnover determine the fluorescence decay of photoactivated

bands of actin. Since the photoactivated band is bounded above and below by the

microcapillary tube wall, diffusion is limited to one-dimension on a time scale

of TL) - (o2/D, where o is the band width and D, is the diffusion coefficient for m or f,

representing monomers or filaments, respectively. For : = 100 m and D,, = 71.5 jm 2/s

1301, monomer diffuses from the band within minutes. Regardless of whether filaments

diffuse by worm-like reptation 131, 32] or similar to rigid rods [331, the mobility of

filaments above a critical length along their longest contours are orders of magnitude less

than monomer, with proportionately longer diffusion times.
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Despite the complexity of the actin cycle, filaments turnover by a net flux of subunits from

the 'barbed' to the 'pointed' filament end, where, at steady state, subunit assembly must

exactly balance disassembly 1341. When filaments are long and turnover is slow compared

to the rate of ATP hydrolysis on subunits, filament turnover is limited primarily by the rate

of ADP-bound subunit dissociation at the pointed end (-,), expressed as , - L,, /k,,,

where Lg is the number-average filament length. As an upper limit, a 2 /m actin filament

with /,, = 0.3 s' [351 will completely recycle subunits in -40 min.

Since monomer diffusion is markedly faster than both filament diffusion and turnover,

filament dynamics dominate the long-term fluorescence evolution in photoactivated bands,

starting only minutes after photoactivation. Additionally, since filament diffusion, but not

turnover, depends on co, filament turnover exclusively dominates the long-term fluorescence

dynamics when co becomes large. To test these limits, simulations of PAF experiments were

performed for different values of o to generate theoretical spatial fluorescence intensity

profiles across the width of the photoactivated band using a dual-compartment mathematical

model describing diffusion and turnover 136] in Matlab (version 5.2.1; The Mathworks) on

a Macintosh G4 computer (Apple) with -T = 40 min and D/ = 1.8 Pm 2/s (calculated from

1331 for a 2 Arm rigid rod). 30 tm wide simulations exhibit spatial intensity profiles that

simultaneously broaden, the hallmark of filament diffusion, and decay, a product of filament

diffusion and turnover (Fig. III-IA). Simulations of 230 Mm photoactivated bands show

spatial fluorescence profiles that decay over time without broadening (Fig. III-IB),

indicating the slow rate of filament diffusion from the photoactivated band as predicted.
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PAF and FRAP

PAF and FRAP experiments were performed with a microscopy system that was modified

from a previous design 1371 to include an additional illumination path for photobleaching at

488 nm with a 100 mW argon ion laser (543-AP; Melles Griot). For melanoma cells, PAF

and FRAP studies were performed essentially as previously described 120, 371 and analyzed

with a two-compartment mathematical model that simultaneously determines the

polymerized fraction (PF), the filament turnover time (,), and the monomer diffusion

coefficient (D,) [361. During the experiments, melanoma cells were maintained at 37 °C

using a temperature controller (Harvard Apparatus) in Leibovitz's L-15 Media (Invitrogen)

without phenol red supplemented with 10% FCS. For certain controls, melanoma cells were

pre-treated with 1 M jasplakinolide (Molecular Probes) for 30 min at 37 C prior to

photobleaching.

For PAF experiments on reconstituted actin networks, CR-actin was photoactivated by a 5 -

10 s 365 nm light pulse to produce a 30 tm or 230 [tm wide rectangular region spanning

the microcapillary tube and images were captured over time with a Gen III Image Intensifier

(VS4-1845; Video Scope) and CCD camera (C2400-77; Hamamatsu) on a Zeiss IM-35

microscope using a 16X multi-immersion objective (NA = 0.5). The evolution of

fluorescence at the center and across the width of the photoactivated region was measured

with NIH Image software (developed at the U.S. National Institutes of Health and available

on the Internet at http://rsb.info.nih.gov/nih-image/), corrected for photobleaching as

detailed elsewhere 1371 using a rate constant of 38.5 s, and stored for later analysis (see

below). All reconstituted actin network experiments were performed at 23 C.

Monomer diffusion coefficients were calculated from PAF experiments on unpolymerized

CR-actin using the diffusive component of the two-compartment model [36] by setting t =
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oo to eliminate filament turnover and PF = 0 such that the entire actin pool is unpolymerized.

Filament turnover times were calculated from the long-term fluorescence decay of PAF

experiments in reconstituted actin networks using a simplified version of the two-

compartment model 1361, in which the fluorescence decay was fit by an exponential of the

form F* = F(t)/F, = /e -i ', where I is the 'immobile' fluorescence fraction and Fo is the

initial fluorescence intensity; however, for this interpretation to be valid, three conditions

must be satisfied. The first condition, o << , is satisfied since o 230 m and f = 50

mm, the length of the microcapillary tube. The second condition, i << 2/(l + y), where

T /= T/T, and y is the ratio of polymerized to monomeric actin (10 for pure actin), is

satisfied given that we measure K < 0.1 for all experiments (data not shown). The final

condition is that filament diffusion, visualized as photoactivated band broadening, must

contribute a negligible amount to the fluorescence decay. This condition was considered

satisfied if the photoactivated band did not exceed 10% of its original width, calculated from

filtered spatial fluorescence intensity profiles as the distance between points at opposite

edges of the band that were 50% of the maximum profile intensity.

Actin cycle kinetic model

Results obtained from reconstituted actin network experiments were analyzed and compared

with predictions from a comprehensive mechanistic model describing the steady state actin

cycle 134], available on the Internet at http://mcgrathlab.urmc.rochester.edu/actincycle/. For

computations, the total actin concentration was c, = 2 M, barbed and pointed ends were

completely uncapped ( = = 1), profilin and 34-thymosin activities were disabled (P = B

= 0), and a random hydrolysis model was assumed. Using experimental measurements of

L,,, and PF, either the filament length or filament concentration was fixed and /,,) was
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manipulated to simulate PAF experiments on reconstituted actin networks with and without

filamin according to our estimates of this parameter from experimentally determined actin

filament lifetimes. The critical concentration ( 1 - cl/c, ), polymer fraction ( c /c,, ), average

filament length (c /In), and filament lifetime (T, = L,, /) predicted by the model were

compared to experimental observations. Here, c is the F-actin concentration, n is the

concentration of actin filaments, and q is the subunit flux through filaments.

Fluorescence measurement of actin assembly

Melanoma cells were grown on 0.1% gelatin coated borosilicate glass tubes to a desired

density in standard culture medium, detergent extracted with 0.1% Triton X-100, and the

assembly of I M pyrene-labeled actin on free cytoskeletal filament ends was assayed as

previously described 1201. Experiments were repeated in the presence of 2 tM cytochalasin

B to determine cellular barbed and pointed end content as detailed elsewhere [381. Cell

density was calculated in control glass tubes maintained in parallel culture by trypsinizing

the cells from the surface and counting them with a hemocytometer.

Measurement of actin filament lengths

In reconstituted actin networks, the number-average filament length L = ( nii)/(I ni),

where n, is the number of actin filaments at length i, was determined for each experiment

by negative staining with 2% uranyl acetate and electron microscopy as previously

described 181 on samples prepared in parallel to those loaded into microcapillary tubes for

PAF studies. This technique was chosen over others because it requires no pipetting steps

during sample manipulation and therefore minimizes artifacts from filament fragmentation.

Negatively stained actin filaments were visualized at 5000X and 25000X on a transmission

electron microscope (model JEM-1200EX; JEOL) with an accelerating voltage of 80 kV.
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Photographic negatives were digitized, further magnified, and the contour lengths of at least

100 actin filaments were measured using NIH Image. Filaments in which both ends could

not be discriminated were skipped. The shortest actin filament measured was 0.15 pm (-54

monomers); filaments 0.2 pm long were routinely measured. The weight-average filament

length, L = ( ni)/(ni i), was calculated and used to determine the polydispersity index

( L /Lw ) to characterize the spread of the filament length distribution.

In melanoma cell cytoskeletons, the average filament length was calculated with

L,, = (N 4PFrtn,)/(aMn), where N. is Avagadro's constant, PF is the polymer fraction, a

= 370 monomers per tm filament length [391, M= 42 kDa for monomeric actin 1401, and ny

is the number of filaments per cell. The actin mass per cell (m,,) was calculated as 1 % of

total cellular protein 151 using a bicinchoninic acid protein assay (Pierce Biotechnology).

Immunofluorescence

BAECs were fixed with 2% formaldehyde for 20 min at 23 C, followed by

permeabilization with 0.2% Triton X-100 in PBS for 5 min. Samples were incubated with 

/M Alexa® 546 phalloidin for 10 min to stain actin filaments, washed three times in PBS,

and mounted (Aqua Polymount; Polysciences) onto glass microscope slides. Images were

digitally recorded with a cooled CCD camera (Orca II ER; Hamamatsu) on a Nikon Eclipse

TE2000 microscope with a 63X oil immersion objective and MetaMorph® software

(Universal Imaging Corporation).
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Results

Monomer diffusion and the amount of polymerized actin in reconstituted networks

PAF experiments with unpolymerized actin establish the diffusivity of CR-actin monomer

as D, = 58 + 24 [tm
2 /s in a low salt (Buffer A) aqueous solution at 23 C. This

measurement is consistent with published values by other investigators of D,, = 49 - 81

Vim
2/s using dynamic light scattering and FRAP 130, 41-441. Uncaged monomeric actin

diffuses from a 230 Etm wide fluorescent region within seconds, and the entire

photoactivated band is uniformly dispersed minutes following photoactivation (Fig. 111-2).

Given this time course, monomer diffusion from the photoactivated band is > 95% complete

by -5 min following photoactivation; therefore, subsequent fluorescence changes in the

photoactivated band result from filament dynamics.

To determine whether CR-labeling and cross-linking affect the distribution between

unpolymerized and polymerized actin, we measure the critical concentration required for

actin filament self-assembly using classical techniques. In a high salt (Buffer B) aqueous

solution at 23 °C, the critical concentration of CR-actin is 0.18 + 0.03 ,M (Fig. 111-3), a

value that is similar to unlabeled actin (0.15 + 0.01 /IM) and in good agreement with

published reports for other labeled and unlabeled actins 1[45, 46]. In the presence of FLNa

cross-linker at actin gelling concentrations, the critical concentration is 0.19 ± 0.01 pM

(Fig. 111-3). Since the critical concentration is essentially unaffected by filament cross-

linking, entangled and cross-linked reconstituted actin networks contain equivalent fractions

of total actin polymerized, calculated as PF = (c, - c,.)c, _ 0.92, where c,, = 2 pM, the total

actin concentration.
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Actin dynamics in reconstituted networks of entangled purified filaments

To establish experimental conditions where filament turnover dominates filament diffusion

in the long-term fluorescence decay, we examine different widths of photoactivated bands

based on the predicted time scales of these two processes (see experimental procedures).

For 30 tm wide photoactivated bands, the fluorescence simultaneously decays as the band

broadens (Fig. III-4A), a relationship that reflects both filament diffusion and turnover in

mathematical simulations (Fig. III-IA). In contrast, the fluorescence liberated within 230 tm

wide photoactivated bands decays over time without an appreciable increase in width (Fig.

11I-4A), as predicted in simulations where filament turnover dominates (Fig. III-IB).

Interpreting the center-line fluorescence intensities, we measure that the fraction of immobile

actin is 0.65 + 0.03 and 0.65 + 0.02 in 30 pm and 230 pm wide photoactivated bands,

respectively (Fig. III-4B). If all filaments were immobile, the immobile fraction would equal

the polymer fraction. Since the polymer fraction greatly exceeds the immobile fraction, the

difference represents a population of oligomers that diffuse on the same time scale as actin

monomers. For filaments to diffuse rapidly, they must be composed of few subunits, since

longer, rod-like filaments are significantly less mobile than globular monomers.

Experimentally, it has been observed that 10-mer filaments diffuse similar to rigid rods 1471,

indicating that the oligomers we detect in entangled filament networks are likely < 10

subunits (-27 nm) in length.

From experiments with 230 m wide photoactivated bands where filament turnover

dominates, we measure that purified filament turnover occurs slowly with an average lifetime

of 6.1 + 0.7 h (Fig. III-4C). To validate whether the fluorescence decay is due to filament

turnover, CR-actin was polymerized to steady state in the presence of equimolar phallacidin,

a compound that reduces the critical concentration at both filament ends to nearly zero 1481.
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With phallacidin, nearly all of the actin becomes immobilized (0.98 0.02) and

photoactivated bands of CR-actin show only marginal fluorescence decay 6 h after

photoactivation (data not shown), corresponding to extremely long filament turnover times

(Fig. III-4, B and C). These results are consistent with the stabilizing effect of phallacidin-F-

actin subunit complexes, which promote increased incorporation of actin monomers into

polymer and decrease the recycling rate of filament subunits 1481.

The number-average actin filament length measured from electron micrographs of

negatively stained actin filaments is 2.1 ± 1.8 jym in purified filament networks. The

distribution of filament lengths is broad with a polydispersity index of 0.58 and skewed

towards shorter filaments (Fig. III-4D), consistent with the exponential distributions

observed in other studies and by different methods [8, 49-511. As expected, adding

phallacidin causes filaments to significantly lengthen to 3.4 ± 1.5 ypm in comparison to actin

alone (p < 0.01) and results in a length distribution that is more compact (data not shown),

characterized by a polydispersity index of 0.84.

Effect of cross-linking on reconstituted network actin dynamics

Unlike entangled networks, 30 [tm photoactivated bands of CR-actin assembled in the

presence of purified human FLNa or ddFLN fail to broaden with time (Fig. III-SA). Since

photoactivated filament diffusion is greatly hindered in the presence of cross-linker, we

directly measure the filament turnover time from the long-term fluorescence decay over a

range of FLNa concentrations to determine the effects of filamin-mediated cross-linking on

the dynamic cycling of filament subunits. At a ratio of 1 FLNa per 500 actin monomers,

there is a sharp increase in the average filament lifetime to 12.0 + 1.0 h (Fig. 111-5B),

corresponding to a -50% decrease in the filament turnover rate compared to purified

filaments in the entangled state (p < 0.01). The addition of more cross-linker does not
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further increase the filament turnover time, which remains slowed to a similar extent up to a

molar ratio of 1:5 FLNa to actin monomers. Given the low stoichiometry, the dose-response

relationship suggests that relatively few FLNa molecules are required to maximally decrease

the rate of purified filament turnover.

In addition to its stabilizing effect on filament turnover, FLNa binding to actin filaments

dose-dependently increases the immobile fluorescence fraction (Fig. III-5C), bringing it

closer to the total polymer content measured directly from the critical concentration of CR-

actin and implying that oligomers become trapped within the cross-linked network. Despite

the requirement of at least 1 FLNa per 800 actin monomers to induce network gelation (Fig.

111-3, inset), we observe that even at low stoichiometries the addition of FLNa to

reconstituted networks tends to immobilize more actin than without cross-linker. In filament

gels above a molar ratio of 1 FLNa to 500 actin monomers, the percentage of immobile actin

increases on average by -15 - 20% over actin alone (p < 0.05). At the highest concentration

tested, the immobile fraction reaches a maximum average value of 0.87 + 0.03 when I FLNa

molecule is present for every 5 actin monomers.

Similar to the observations with FLNa, we measure that reconstituted actin networks cross-

linked with 1:100 or 1:20 purified ddFLN exhibit longer filament turnover times and have

more of their actin immobilized when compared to actin alone (Fig. 111-5, B and C). At a

molar ratio to actin of 1:20, ddFLN cross-linked filaments contain 0.85 + 0.02 of their F-

actin in the immobile fluorescence pool (p < 0.01) and slowly turnover subunits in 8.7 _ 1.4

h. Since ddFLN and FLNa similarly affect purified actin remodeling, stabilization of actin

dynamics and oligomer trapping may be a general property of filamin family proteins.

To further understand the fate of oligomers immobilized by filamins, we compare the

lengths of actin filaments in cross-linked and entangled filament networks. In the presence
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of FLNa or ddFLN the percentage of filaments < 1 jm decreases from -30% in entangled

networks to -5% after cross-linking (Fig. 111-5, D and E), resulting in an increase in the

number-average length to 3.5 + 1.8 /im and 2.4 + 1.2 jum for FLNa and ddFLN,

respectively, and more compact filament length distributions (polydispersity indices -0.80).

While some lengthening of filaments is expected in cross-linked networks since turnover

slows, this can only explain a portion of the lengthening effect, implying that filamins either

decrease filament fragmentation by quenching the spontaneous generation of oligomers or

enhance oligomer annealing onto the free ends of longer filaments in the network.

Localization of the stabilizing effect of filamins on purified actin dynamics

To investigate whether stabilization of actin dynamics and oligomeric incorporation depend

on FLNa-mediated filament cross-linking and/or F-actin subunit binding, we employ amino

acid truncates of the full-length FLNa molecule that lack either actin-binding capacity

(FLNa-AN153) or the ability to self-associate into dimers (FLNa-AC1 12). In a F-actin co-

sedimentation assay, FLNa-AN153 is absent from the pellet after centrifugation at 100,000

x g in contrast to the full-length FLNa molecule (Fig. III-6A), revealing that FLNa-AN153

is unable to bind F-actin. Both truncated FLNa molecules, even at high stoichiometry to

actin, do not form stiff gels (Fig. III-6B), as demonstrated by classic gel point

measurements.

In reconstituted actin networks, FLNa-AC112 slows filament turnover to 15.4 + 0.3 h

compared to measurements on entangled actin filaments (p < 0.01) but FLNa-AN153 does

not (Fig. III-6C), thus localizing this activity to the actin binding domain. Similarly, only the

FLNa-ACI12 truncate retains the ability to immobilize oligomers (Fig. III-6D), indicating

that filamin dimerization and filament cross-linking activities are not required to stabilize

filament turnover and trap oligomers.
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Rate constants for filament turnover in entangled and cross-linked filament

networks

We use a first-order treadmilling model to estimate the F-actin disassembly kinetics at the

pointed filament end. While the true nature of actin cycling is more complex, the

treadmilling model of filament turnover is valid for actin concentrations near the critical

concentration of ATP-bound subunits at the pointed end (-0.6 ]PM), similar to that used in

these studies 35, 45, 46]; under these circumstances, filament elongation is observed

exclusively at the barbed end 521. Of the three F-actin subunit species (ATP-, ADPoPi-,

and ADP-bound) that dissociate from pointed ends, the predominate species is ADP-bound

actin 1341 since purified filament turnover is slow and the filaments are relatively long at

steady state in reconstituted actin networks. For a steady state treadmilling model, by

definition, monomer assembly at the barbed end must exactly balance disassembly at the

pointed end. Therefore, we use the simple relationship , = L,,/k, to estimate k,,, the

dissociation rate constant for ADP-bound subunits from the pointed end. Since our

technique determines actin filament subunit disassembly rates in a true steady state actin

network free from mechanical perturbation, it therefore provides the best estimates to date of

steady state rate constants.

Using this relationship we estimate that k) = 0.042 + 0.005 s' for purified actin filaments,

consistent with the lowest values reported by other investigators in purified actin

preparations 153]. For cross-linked actin networks with FLNa or ddFLN per 100 actin

monomers, the treadmilling model predicts that k decreases to 0.031 0.008 s' and

0.027 0.004 s', respectively. Since the rates are indistinguishable, these homologous

proteins likely utilize similar mechanisms to slow filament subunit loss. However, because
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treadmilling is an incomplete description of the complex kinetic events governing actin

cycling, these values may represent an upper limit for -,,.

To address these issues and validate our experimental findings, we use a comprehensive

mathematical model that provides a complete kinetic description of the steady state actin

cycle 1341 to simulate our data and derive parameters that describe purified actin remodeling

(Table III-I). At a constant filament concentration, decreasing hA) results in a marked

increase in actin filament lifetimes, as observed in our studies including filamin cross-linker;

but, in contrast to our measurements, changing Az- produces little change in the average

filament length. Holding filament length constant and decreasing k/z also results in longer

filament lifetimes, which further increase if filaments lengthen. These results indicate that

changes in -p,, alone cannot account for the significantly longer filaments present in cross-

linked networks, in support of a filamin-mediated fragmentation/annealing mechanism to

explain these observations. In addition, these simulations show that the predicted polymer

fraction, and therefore the critical concentration, are not only similar to our experimental

measurements, but are relatively insensitive to changes in /Ap of this magnitude, confirming

our observations.

Effect of FLNa on cellular actin dynamics

It has been well established that human melanoma cells discovered to spontaneously lack

FLNa expression (hereafter referred to as M2 cells) translocate poorly compared to their

FLNa rescued counterparts (A7 cells) [5]. Our results confirm this work, as we measure

that A7 cells crawl at a speed of 0.34 _ 0.17 m/min, while the net movement of M2 cells is

undetectable in our assay. Despite a failure to move efficiently, M2 cells rapidly form and
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retract large blebs from their surfaces that are lost in A7 cells. We sought to determine the

basis for the FLNa- M2 cell's uncontrolled protrusive behavior.

M2 and A7 cells were microinjected with CR-actin or transfected with EGFP-actin such that

their actin dynamics may be probed with PAF or FRAP, respectively. For PAF experiments,

CR-actin incorporates into the actin cytoskeleton where it functions as a reliable tracer of

actin remodeling events [19, 201. For FRAP studies, EGFP-actin co-localizes extensively

with F-actin, as visualized by Alexa®-546 phalloidin staining, in fixed, detergent extracted

M2 and A7 cells (Fig. III-7A). The actin fluorescence pattern observed in M2 cells is more

homogeneous and diffuse than that of the FLNa-expressing A7 cells, which localize actin to

the cortical region at the cell edge. In contrast to A7 cells whose periphery is replete with

filopodia, the periphery of M2 cells contains numerous circular fluorescent rings of EGFP-

actin, which in living M2 cells expressing EGFP-actin are identified as spherical blebs that

rapidly extend and retract from the cell surface (supplemental videos A and B).

Since previous reports reveal that M2 and A7 cell F-actin content is time-dependent after

plating and correlates inversely with cytoplasmic stability measured by the presence of

surface blebbing 151, we use PAF and FRAP to measure actin dynamics in these cells

before (24 h) and after ( 72 h) the surfaces of melanoma cells have stabilized. In

confirmation of previous work [6, 54], we measure that the F-actin content increases in M2

and A7 cells residing on the substrate for a longer period of time and that FLNa- M2 cells

consistently polymerize more of their total actin than FLNa+ A7 cells (Fig. III-7B),

reaching a polymer fraction of 0.62 + 0.04 and 0.49 + 0.03, respectively, 2 72 h after

plating. Cl melanoma cells that do not express detectable FLNa by immunoblot (data not

shown) support the M2 cell observations since they also contain more actin polymer than

A7 cells. Pre-treatment of M2 and A7 cells for 30 min with 1 iM jasplakinolide, a potent
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cell membrane permeant actin polymerizing agent, elevates the polymer fractions in excess

of 90% in both phenotypes, indicating that nearly all of the expressed EGFP-actin is

functional.

Despite their lack of efficient translational locomotion, we measure that M2 cells exhibit

similar filament lifetimes when compared to their FLNa expressing A7 counterparts (Fig.

III-7C). During the phase when their surfaces are most unstable -24 h after plating, M2

cells turnover filaments more rapidly than A7 cells, with lifetimes of 6.6 + 1.2 min. Despite

their radically different motile phenotypes and distributions of monomer and polymer,

eventually M2 and A7 cells achieve equivalent -18 min filament lifetimes.

While other cell types increase their actin remodeling in proportion to their crawling speed

1201, melanoma cells lacking FLNa do not follow this convention. To better understand

actin dynamics in these two cell lines, we determine the average length of cellular actin

filaments from measurements of pointed end numbers in permeabilized cells and total actin

content (Table 111-2). Biochemical assays measuring the rate of pyrene-labeled actin

assembly onto Triton X-100 permeabilized cell cytoskeletons reveal that M2 cells contain

-60% less pointed filament ends per cell (44,700 + 11,900) than A7 cells. While the

number of free pointed ends is the best estimate of the total number of actin filaments per

cell, this value may underestimate the filament number if a significant portion of pointed

filament ends are capped by tropomodulins 1551 or the Arp2/3 complex 561. Not

surprisingly, A7 cells also have fewer filaments with uncapped barbed ends, 5,210 + 1,530.

The average lengths of actin filaments comprising the cytoskeletal network in M2 and A7

cells averge average 4.7 [tm and 1.4 gtm, respectively, calculated from the polymer fraction,

filament number, and total actin mass per melanoma cell2. These results suggest that M2
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cells increase the average lengths of their actin filaments in an attempt to create more rigid

networks and restore the mechanical stability that FLNa imparts to their actin cytoskeleton.

A first-order model of steady state actin filament dynamics predicts that F-actin subunit loss

from the filament end is directly proportional to the length of the actin filament undergoing

depolymerization. Our findings show that M2 cells compensate for FLNa loss by

increasing both basal filament concentration and filament length. Since both melanoma cell

phenotypes exhibit nearly identical filament turnover times, and if we assume that the cells

are on average at a steady state, then to turnover at the same rate the longer filaments that

populate the M2 cell cytoskeleton must depolymerize significantly faster than those in the

A7 cell, implying that filaments lose subunits -3X faster in the absence of FLNa. While a

steady state assumption is not likely to be true in cells, the correlation between FLNa

expression and filament turnover stabilization observed in reconstituted actin networks

holds in the melanoma cells.

To determine whether the actin binding activity of FLNa is required to stabilize actin

dynamics in M2 cells as observed in reconstituted networks, we use M2 cell clones stably

transfected with a human FLNa cDNA lacking the actin binding domain (C5 cells), which

was generated by removing amino acids 23 - 233 near the N-terminus of full-length FLNa

1571. Loss of actin binding ability does not rescue C5 melanoma cells from the M2

phenotype; C5 cells continue to produce blebs at their surface and do not productively crawl

(supplemental video C). We measure that C5 cells have turnover times and polymer

fractions similar to M2 cells, indicating that it is the actin binding activity of filamin that

promotes the stability of filament turnover, consistent with the loss of turnover stabilizing

function observed in reconstituted networks with FLNa truncates that are unable to bind F-

actin.
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Discussion

Filamins have long been recognized as important organizers of the cytoskeletal architecture,

linking filaments into three-dimensional lattices that govern cell mechanics and shape. We

reveal an additional role for filamins as modulators of actin filament dynamic stability and

kinetics. Along with their potent gelation activity, filamins slow the rate of actin filament

turnover to further stabilize filaments in cross-linked actin networks. In addition, filamins

immobilize oligomers present in purified actin preparations, incorporating them into existing

filaments which grow longer than would be predicted solely for decreased rates of cycling,

revealing that filamins promote annealing and/or decrease spontaneous fragmentation of

filaments. These properties occur at low stoichiometries, only requiring -1 FLNa molecule

bound per actin filament. Filamin-induced filament stabilization may play an important role

in cell movement and shape change by stabilizing existing cytoplasmic gels in the bulk

cytoskeleton and newly formed networks at the active sites of membrane protrusion in the

cell cortex.

Significance of the purified protein PAF system for studying reconstituted actin

networks

Here, we utilize PAF for the first time to analyze actin remodeling in purified reconstituted

actin networks at steady state. In these experiments, the long-term fluorescence in

photoactivated bands of actin decays due to two competing mechanisms that rearrange the

actin network - filament diffusion and filament turnover - which can be isolated from each

other simply by using different widths of photoactivated bands. This system measures the

dynamics of steady state actin filament networks in situ with only minimal light

perturbation, which represents a clear advantage over previous techniques relying on
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mechanical sample manipulations and extrapolation of transient measurements to infer

steady state dynamics. Under certain conditions, this system can be used to estimate the

pointed end ADP-bound subunit dissociation rate constant, a range of published values dor

purified actin that currently span an order of magnitude. Parameters describing actin

dynamics that are obtained with this purified system can then be tested against theoretical

actin model predictions and values obtained in cellular experiments to further understand the

mechanisms by which actin regulatory proteins influence actin remodeling. In this work, we

have evaluated the effect of two orthogonal filament cross-linking proteins, ddFLN and

FLNa, on purified actin dynamics in reconstituted networks as a model system for

understanding aspects of the cellular actin cytoskeleton.

Cross-linking stabilizes actin filament turnover

Forming a gel with ddFLN or FLNa hinders diffusion in 30 Etm wide photoactivated bands

of CR-actin and unexpectedly, these cross-linked actin gels also exhibit decreased rates of

filament turnover, but only if the actin binding activity of filamin is intact. The actin-binding

domain of filamin binds multiple actin monomers in the long-pitch helix groove of actin

filaments as evidenced by competition of filamin-actin binding by tropomyosin 1581 and by

the stoichiometry of filamin-actin binding 159]. When actin polymerizes in the presence of

FLNa, perpendicular branching of actin filaments occurs producing X- and T-shaped

junctions as filaments are recruited into the actin network by filamin. At T-junctions, pointed

filament ends abut the sides of other filaments [81. As monomeric subunits cycle from

entrapped filaments in the actin network, filaments shorten from their pointed ends and

eventually encounter bound filamin molecules. Binding of overlapping adjacent F-actin

subunits at the pointed ends of actin filaments by filamin could stabilize these ends,

reducing ADP-F-actin subunit dissociation and decreasing the filament cycling rates. Since
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FLNa and ddFLN share homologous actin binding domains, and the estimated dissociation

constants are indistinguishable, these sequence related but structurally different proteins

function similarly.

Experiments in melanoma cells with or without FLNa reveal a similar relationship between

the presence of FLNa and the cycling rate of actin filaments given a model based on first-

order turnover kinetics. The effect of FLNa expression on actin filament length and number

as determined here with PAF and biochemical actin nucleation experiments is also directly

observable by electron microscopy 1-541. M2 cells attempt to compensate for their deficient

ability to gel actin filaments by increasing their polymer fraction and actin filament lengths

in order to increase the rigidity of their actin network. They also may activate accessory

actin binding proteins to accelerate actin filament turnover rates to levels observed in cells

expressing FLNa that have much shorter actin filaments on average. The stabilizing effect of

FLNa on the actin network in A7 cells may decrease the turnover rate of actin filaments, as

observed in cross-linked reconstituted actin networks of purified actin and FLNa.

In confirmation of measurements in the reconstituted networks, experiments in melanoma

cells expressing FLNa truncates lacking the actin binding domain behave phenotypically

and dynamically identical to M2 cells, indicating the importance of actin binding activity for

filamin-induced filament stabilization. Since the vast majority of FLNa binding partners

interact near the C-terminus 131, signaling intermediates acting through FLNa in M2 cells

expressing the FLNa actin binding truncate are unable to compensate for loss of FLNa

binding; however, without the actin binding domain FLNa is likely unable to localize to

appropriate subcellular domains.
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Filamins may function as a molecular 'clutch'

In many other cell types, the pace of actin dynamics correlates positively with the speed of

cell movement 1201. Straying from this relationship, loss of FLNa in melanoma cells

eliminates cell movement but actin cycling continues unimpeded at an enhanced rate since

M2 cells must turnover significantly longer filaments. At the other end of the spectrum, one

report reveals that increased binding of FLNa to -integrin tails negatively regulates cell

motility 160], implying a parabolic relationship between cell crawling behavior and levels of

cytoplasmic FLNa, as observed previously in M2 cell clones induced to express different

amounts of FLNa [51. In this way, we observe that FLNa is an important coupling factor

between actin remodeling and productive cellular locomotion, and may engage and

disengage the dynamic cytoskeleton similar to a molecular 'clutch' to regulate cell

translocation. While there is evidence that phosphorylation modulates filamin's activity 61-

641, the regulatory mechanisms controlling the interactions of filamin with the cytoskeleton

remain largely unknown.

Filamins trap actin oligomers in reconstituted actin networks by altering filament

fragmentation and/or annealing

Filaments diffuse in purified actin solutions, but at different rates depending on their length.

Since polymerization is unregulated in purified actin preparations, the steady state filament

length distribution is polydisperse, containing filaments with a wide range of mobilities.

Some filaments are small enough to diffuse similar to actin monomers, and therefore are

excluded from the immobile fraction of longer filaments in PAF experiments. Published

studies provide ample evidence for the existence of populations of stable actin oligomers in

purified actin solutions 130, 41, 42, 65, 66], which when isolated by gel filtration were

identified primarily to be actin dimers [301.

106



We measure the presence of a significant population of oligomers in steady state purified F-

actin preparations, a large fraction of which disappear after filamin binding. Oligomer

trapping by filamins occurs without an appreciable change in the amount of monomeric

actin, as determined by the critical concentration. Since filaments grow longer and the length

distribution changes in the presence of cross-linker, these oligomers are incorporated into

the immobile fraction. The slowing of F-actin subunit turnover by filamins could

theoretically cause filaments to grow longer, but kinetic modeling predicts an insignificant

change in filament length under our conditions. Therefore, to increase filament length

significantly as observed in our studies, filamins must either stabilize filaments against

breakage or promote the annealing of oligomers onto filament ends.

The spectrin superfamily of cross-linking proteins influence the dynamic stability

of cytoplasmic gels

Other investigators have implicated cross-linking proteins as mediators of actin filament

stability in an attempt to explain the remarkable longevity of portions of the actin

cytoskeleton following detergent extraction [22, 231. Compared to the size and functional

diversity of this broad class of proteins, relatively few studies, all with filament bundling

proteins at high stoichiometries to actin, have been performed to address the influence of

filament cross-linking proteins on actin dynamics 121, 23]. The effects of filamin observed

here occur at doses well below those employed in these studies on well-defined steady state

networks with purified proteins.

Members of the spectrin superfamily of actin cross-linking proteins (-spectrin, dystrophin,

filamin, fimbrin, plectin, (x-actinin, and utrophin) are structurally diverse but contain

conserved actin binding regions at their NH,-termini 141 which complex with F-actin

through calponin homology domains 1671. Spectrin, a(-actinin, and filamin have a single
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actin binding region with two calponin hornology domains, one that is required for filament

binding and one that is not required but may increase the binding affinity 168, 691. While

similarities exist between their actin binding regions, many of these related proteins are

believed to have additional F-actin interaction sites and/or the ability to modulate their

calponin hornology domains to express differential functions 701. Regardless of their

plasticity, we observe that both FLNa and ddFLN, two closely related proteins, decrease the

rate of purified filament turnover to similar extents. Since ca-actinin and 30 kD

Dictyostelium actin bundling protein also slow depolymerization, other proteins in the

spectrin superfamily may share similar filament stabilization mechanisms.

Compared to filaments bundles which disassemble slowly 711, dynamic cellular structures

like lamellipodia, filopodia, and membrane ruffles likely require a different set of cross-

linking proteins with unique properties to form, such as the Arp2/3 complex and filamin.

However, despite expressing nearly wild-type levels of gelsolin, c-actinin, profilin, fodrin,

and the Arp2/3 complex, among others, M2 cells develop a continuous array of abnormal

spherical protrusions from their surface are unable to crawl 15, 54]. Therefore, actin

filaments organized into high-angle dendritic arrays and parallel bundles by the Arp2/3

complex and -actinin, respectively, are insufficient to stabilize the cortical cytoplasm of

these cells. Rescuing M2 cells with FLNa repairs these defects 151. We conclude that one

aspect of this repair mechanism may involve the dynamic stabilization of actin filaments by

FLNa.
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Footnotes

'Abbreviations used are: FLNa, filamin A; ddFLN, Dictyostelium discoidium filamin; F-

actin, filamentous actin; G-actin, monomeric actin; PAF, photoactivation of fluorescence;

CR-actin, caged resorufin iodoacetamide-labeled actin; PF, polymer fraction; r,, filament

turnover time; D,,, monomer diffusion coefficient; c, critical concentration; A',, pointed end

ADP-bound F-actin subunit dissociation rate constant

2Actin accounts for 1 1% of the total cellular protein mass in melanoma cells, independent of

FLNa expression 151. Therefore, from total protein measurements, the total actin mass is 4.0

+ 0.3 pg/cell and 3.9 + 0.2 pg/cell in M2 and A7 cells, respectively, assuming that -20% of

the cell volume is non-cytoplasmic using previous measurements of M2 (2.45 pl) and A7

(2.57 pl) cell volumes 1721.
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Figure legends

Figure III-1. Simulations of PAF experiments with 30 plm and 230 ljm wide

photoactivated bands. A, spatial fluorescence profiles across the width of a 30 m wide

or B, 230 Jim wide photoactivated band were simulated using a two-compartment

mathematical model that provides a mathematically description of combined diffusion and

turnover. For 30 pm wide photoactivated bands, filament diffusion and turnover occur on a

similar time scale. For 230 /m wide photoactivated bands, filament diffuse on a slower time

scale than subunits turnover. The insets show measurements of the width of the

photoactivated band at half-maximum fluorescence intensity over time. In both simulations,

PF 0.95, DI = 1.8 Pm 2/s, and x, = 40 min.

Figure I1-2. Actin monomer diffusion from a 230 pm wide photoactivated band. A,

microcapillary tubes loaded with 2 M monomeric CR-actin were photoactivated and image

sequences captured to monitor the fluorescence evolution at the band center-line

(arrowhead) and across the width (arrow). B, spatial fluorescence profiles spanning the

photoactivated band. C, Fluorescence intensity measured at the center of the photoactivated

region, used to calculate D,, the diffusion coefficient of actin monomers. For this

experiment, D, = 57 jm 2/s.

Figure 111-3. Steady state critical concentration of CR-actin and the effect of filamin

cross-linking. Actin (blue circles), actin with 1:20 FLNa (green squares), or CR-actin (red

triangles) was mixed with 10% pyrene-labeled actin, incubated at 23 °C for 24 h, and the

steady state fluorescence measured as a function of increasing total actin concentration (for

each condition, n = 3). The critical concentration is the minimum concentration of actin

required for filament formation. The inset shows apparent viscosity of actin networks

measured with a miniature falling ball assay after polymerization with different
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concentrations of human recombinant FLNa. The sharp increase in apparent viscosity at -I1

FLNa to 800 actin monomers is operationally defined as the gel point.

Figure III1-4. Characterization of actin dynamics in reconstituted networks of

purified, entangled actin filaments. A, 2 /iM CR-actin was polymerized in

microcapillary tubes with or without equimolar phallacidin, photoactivated in 30 /m or 230

/m wide regions across one-dimension of the tube, and images were collected for analysis.

The fluorescence intensity was measured at the center of the band for mathematically

interpretation and across the width (arrows) to identify evidence of band broadening due to

fluorescent filament diffusion. B, the low-mobility fraction represents the fraction of

fluorescent actin that remains 5 min after photoactivation after the high mobility

components have escaped. C, the fluorescence decay constant was determined from an

exponential curve fit, which for 230 /m bands, represents the filament turnover time of

purified actin filaments (for each width band, n 2 6). D, the lengths of purified actin

filaments were measured (n = 2,631) by tracing the contours of individual filaments from

digitized electron micrographs of negatively stained filaments, a representative image of

which is shown in the inset. Bar, 200 nm.

Figure 111-5. Filamin-induced cross-linking stabilizes reconstituted actin network

dynamics. A image sequences from PAF experiments on 2 jM CR-actin polymerized in

the presence of either 1:20 human recombinant FLNa or ddFLN. B, the filament turnover

time and C, low-mobility fraction were measured from center-line photoactivated band

fluorescence intensities at increasing ratios of filamin to actin (for each condition, n 2 5). D

and E, actin filament lengths were measured (for each condition, n 2> 100) in cross-linked

reconstituted networks from electron micrographs of negatively stained filaments under

identical conditions to PAF experiments. Bars, 200 nm.
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Figure III-6. Actin binding, but not dimerization or cross-linking, is required for

filamin-mediated dynamic stabilization of purified actin filaments. A, 10 PiM G-

actin was polymerized in the presence of different concentrations of purified recombinant

full-length FLNa or FLNa-AN153, which lacks 153 amino acids at the N-terminus

overlapping the putative actin binding domain. After centrifugation, co-sedimentation of

FLNa or FLN-AN153 with F-actin was determined by Coomassie Brilliant Blue staining of

SDS-polyacrylamide gel electrophoresed supernatants (S) and pellets (P). B, measurements

of the apparent viscosity of actin polymerized in the presence of different concentrations of

FLNa (black circles), FLNa-AN153 (green squares), or FLNa-ACI 12 (red triangles) in

which the dimerization domain at repeat 24 of FLNa was deleted (for each condition, n = 5).

C and D, PAF experiments on reconstituted actin networks with 2 /yM CR-actin

polymerized in the absence or presence of 1 molecule of FLNa, ddFLN, FLNa-ACI 12, or

FLNa-AN 153 per 20 actin monomers were analyzed and the filament turnover times and

low-mobility fractions calculated from the center-line fluorescence intensities in

photoactivated bands.

Figure 111-7. FLNa modulates actin dynamics in melanoma cells. A, M2 and A7 cells

expressing a human -actin EGFP fusion protein -65 h after transfection were fixed,

permeabilized with 0.2% Triton X-100, and stained with Alexa® 546 phalloidin to label total

actin filaments. The condition for each panel is labeled above each image column. Bar, 10

/um. B and C, PAF and FRAP experiments were performed with CR-actin or EGFP-actin on

melanoma cells that do not express FLNa (M2 and C1 cells), express full-length FLNa (A7

cells), or express a FLNa construct with the actin binding domain removed (C5 cells), and

the fluorescence decay or recovery intensities were mathematically interpreted to determine

the actin polymer fraction and average filament turnover time.
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Supplemental videos

M2 cell expressing EGFP-actin. (Video A) Time lapse DIC video of a FLNa- M2 cell

expressing EGFP-actin 48 h after transfection. (Video B) Corresponding time lapse

fluorescence video of the same cell, where green represents EGFP-actin fluorescence.

Frames were captured every 2 s for a total of 5 min. The video frame rate is 10 frames/s.

Bars, Oi/m.

M2 cells expressing a FLNa truncate lacking the actin binding domain. (Video C)

Time lapse DIC video of a C5 cell 18 - 24 h after plating. Frames were captured every 2 min

for a total of 6 h. The video frame rate is O frames/s. Bar, 10 m.
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Tables

Table III-1. Predictions of purified actin dynamics with a mechanistic model of the actin

cycle. Using a comprehensive model of the actin cycle 1341, reconstituted network

experiments were simulated by either fixing n or L,, and altering A,,, to mimic filamin-

induced slowing of filament turnover. For simulations, the total actin concentration was 2

/xM, pointed and barbed filament ends were 100% uncapped, and profilin and 4-thymosin

were inactivated. The filament concentration in reconstituted networks was calculated from

experimental measurements of the critical concentration and the number-average filament

length. Boxes shaded gray indicate parameters that were held constant during the

simulation. T;, filament turnover time; PF, polymer fraction; c,, critical concentration; n,

filament concentration; L,,,, average filament length; kAt, pointed end ADP-bound F-actin

subunit dissociation rate.

Simulated experiment n (M) L,,vg (m) pD (s') t,(h) PF c, (MM)

actin 1.70 2.94 0,035 16.3 0.93 0.15

actin + 1:100 FLNa 1.70 2.98 0.023 29.5 0.94 0.13

actin 2.41 2.06 0.035 12.8 0.92 0.16

actin + I:00 FLNa 2.45 2.06 0.023 23.6 0.94 0.13

actin+ I:100FLNa 1.90 2.67 0.023 27.5 0.94 0.13

actin + 1:100 FLNa 1.47 2.98 0.023 32.5 0.94 0.13
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Table 111-2. Characterization of filament ends and lengths in melanoma cell cytosheletons.

Melanoma cells were permeabilized with 0.1% Triton X-100, 1 M pyrene-labeled actin

was added, and the change in fluorescence was measured over time as fluorescent actin

assembles onto free filament nuclei within the cytoskeleton matrix. Experiments were

repeated in the presence of 2 FM cytochalasin B to preferentially block barbed ends.

Assuming the number of pointed ends represents the number of filaments, the average

filament length (L,,g) populating melanoma cytoskeletons was calculated. Errors are

reported as S.E.

Pointed end Barbed end %free barbed L,,g (tm)
nuclei per cell nuclei per cell ends per cell

M2 cells 44,700 11,900 5,210 1,530 11.7 4.7

A7 cells 114,000 + 25,100 16,200 + 2,080 14.2 1.4
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Chapter IV

Discussion and Future Directions

This Thesis addresses important aspects of actin-based processes, focusing on the

dynamics and control mechanisms that are at the core of the morphological changes and

directed migration of non-muscle cells. Specifically, this work defines actin remodeling

events in endothelial cells stimulated with fluid shear stress at their apical surfaces and in

reconstituted actin networks with purified actin binding proteins. Together, these

complementary approaches are used to further understand endothelial cell actin

dynamics, shape change, and motility. A summary of the main conclusions presented in

this Thesis is as follows.

In response to fluid shear stress, endothelial cells change their shape, driven by dynamic

remodeling of the actin cytoskeleton, to assume an elongated morphology with their long

axes aligned parallel to the direction of applied fluid flow 11-31. From this work, three

temporal phases of shear stress-induced endothelial actin dynamics have been identified

based on the response of individual cells: (1) turnover-mediated cytoskeletal

depolymerization, 0 - 30 min; (2) maintenance of enhanced actin remodeling in the

setting of decreased cell movement, 1 - 6 h; (3) partial cytoskeletal recovery in shear
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stress-accommodated endothelial cells with recovered motility, -24 h. These findings

indicate that the morphological accommodation process begins early in the endothelial

shear stress response, and that enhanced cytoskeletal remodeling occurs continually

throughout the shape change response, remaining activated in some cells even after

morphological accommodation.

To decipher the role of actin binding proteins outside of the complex cellular

environment, a novel photoactivation of fluorescence (PAF) system was employed to

analyze the dynamics of reconstituted actin networks. This system is an improvement

over existing in vitro measurement techniques since it does not require mechanical

sample perturbation and the kinetic measurements can be performed on actin networks

under true steady state conditions. Increasing the width of the photoactivated region

isolates filament turnover from diffusion, which, based on first-order kinetic models for

purified actin filaments, allows calculation of the pointed end actin filament subunit

dissociation rate.

Measurements on purified actin reveal that filaments turnover slowly and that

reconstituted actin networks contain a significant fraction of oligomers at steady state.

Introducing filamin causes previously entangled actin networks to become cross-linked,

stabilizing filament turnover and immobilizing much of the oligomer by a mechanism

involving decreased fragmentation and/or enhanced oligomer annealing to longer

filaments. This activity only requires -1 filamin molecule bound per actin filament and is

localized to the actin binding domain of the filamin molecule, independent of its cross-

linking activity. Correlations between filamin expression and actin remodeling in
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melanoma cells support the in vitro findings. These results suggest that FLNa stabilizes

actin networks in three distinct ways: (1) cross-linking actin filaments to form a gel, (2)

promoting filament annealing and/or inhibiting fragmentation, and (3) decreasing

filament subunit cycling.

Dissecting the endothelial mechanotransduction cascade

By defining testable endpoints during the shear stress-induced endothelial shape change

process, it is now possible to intelligently identify and dissect the molecular mechanisms

responsible for control of actin remodeling during each phase of the endothelial response.

Since sparse data is available in the literature to support actin-dependent mechanisms

beyond the first minutes following shear stress exposure, the first task will be to identify

candidate actin binding proteins that change their association with the cytoskeleton

during these times. Once these have been established, each candidate protein can be

manipulated using knockdown and knockout technologies and its effect on endothelial

actin dynamics, motility, and morphological accommodation examined.

In addition, with the advent of a comprehensive mathematical description of the steady

state actin cycle 141, available on the Internet at

htti://imcralhlab. urmc.rochester.edu/actincycle/, it is now possible to theoretically test

predicted effects of actin binding proteins on the actin cycle. The model allows the user

discrete control over actin binding protein mechanisms of action - capping, severing,

nucleotide exchange, accelerated disassembly, sequestration, profilin - and solves the
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entire nucleotide profile of subunits within the actin filament. This extensive effort

provides a significant new tool to advance the understanding of actin dynamics and its

control.

Based on theoretical considerations and previous work on endothelial cells in our

laboratory 151, gelsolin and ADF/cofilin may be important players in the endothelial

shear stress mechanoresponse, particularly in the initial filament turnover-mediated

depolymerization phase. With the barbed end capped, ADF/cofilin-mediated acceleration

of pointed filament end subunit disassembly results in F-actin depolymerization 161. This

process is amplified by gelsolin, which increases the number of free pointed ends

available for depolymerization by severing filaments and then capping the newly formed

barbed ends 15, 71. Evidence from endothelial cells in static culture suggests that gelsolin

is required to facilitate ADF/cofilin activity as endothelial cells crawl faster 151. In

addition, since oscillatory Ca2+ transients represent one of the earliest responses of

endothelial cells to fluid shear stress [8, 91, gelsolin, whose severing activity is Ca2+-

dependent [101, may play an important role in disassembling the cytoskeleton during this

initial phase. The control mechanisms governing the later stages of the endothelial shear

stress response are less clear at this time.

Once candidate shear stress-responsive proteins have been isolated, their individual and

combined effects on steady state actin dynamics can be tested using the PAF-based

reconstituted actin network system with purified proteins, allowing direct examination of

the functions of these proteins in vitro. The reconstituted system is the perfect companion

to the steady state actin cycle model, which together can be utilized to validate and target
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additional experiments. In this way, proteins important to shear stress sensation by

endothelium can be tested directly on purified actin networks, and mechanisms observed

in this system can then be used to probe cells.

Endothelial shear stress-sensing mechanisms

Endothelial cells sense fluid shear stress by unknown mechanisms. The diversity,

complexity, and molecular robustness of the endothelial response to fluid shear stress

have made elucidation of a single mechanism difficult [1, 11 . Despite this, numerous

mechanisms have been postulated, which can be categorized according to centralized

(single receptors) and decentralized (interconnected matrices) responses [1, 121.

However, most likely, the convergence of multiple shear stress-responsive mechanisms

initiates a more integrated endothelial response when challenged with fluid flow.

Centralized responses are perhaps the most obvious, involving direct mechanical

displacement of surface receptors by the shear force. Candidates include integrins [131,

mechanosensistive ion channels 141, G protein-coupled receptors 1151, mitogen-

activated receptors [ 11 11, and others [16]. These may be grouped into functional units at

specialized locations on the cell surface, such as caveolae [141. One interesting new

theory implicates PECAM-1, an endothelium specific intercellular adhesion molecule,

which is rapidly phosphorylated in response to mechanical stimulation, including fluid

shear stress 171.
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Recently, however, the focus has shifted more to decentralized signaling mechanisms

involving distributed systems that transmit force to attached/associated molecules that

initiate signaling 1121. Proposed decentralized sensors include cytoplasmic cytoskeletal

polymers (actin filaments, intermediate filaments, and microtubules) connected to

integrins and cadherins 1181, the apical fibrous glycocalyx meshwork 1191, and microvilli

that are present on the surface of unstressed endothelial cells in static culture but are lost

after morphological accommodation 1201. Direct cytoskeletal force transmission has been

implied by recent reports that show rapid intracellular cytoskeletal structural movement

in response to shear stress 1181. These studies have allowed creation of strain maps that

reveal the presence of cytoskeletal strain gradients throughout the cytosol [211.

Filamin-A, a shear stress mechanosensor?

One candidate protein that may play a role in shear stress mechanotransduction and actin

remodeling is the dimeric actin filament cross-linking protein filamin-A (FLNa), which

forms stiff actin gels in vitro at low stoichiometry [22, 231. Similar to PECAM-1, FLNa

is a mechanosensitive molecule that is phosphorylated in response to mechanical force

and becomes recruited to sites of applied tension 124-261. In addition, FLNa protects cells

against apoptotic death after mechanical perturbation 124-261. However, unlike PECAM-

1, the primary functions of FLNa are to bind F-actin, organize structural features of the

cytoskeleton 127, 28], and stabilize the dynamics of actin filaments as described in this

Thesis. As well, while PECAM-1 is a transmembrane protein localized to intercellular

junctions 1291, FLNa is cytoplasmic and found throughout the actin cortex of non-muscle
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cells in intimate contact with the apical plasma membrane [271, the site of maximal shear

stress stimulation [121.

In addition to its proximity to the membrane and potent F-actin binding capacity, FLNa

has other properties that may be advantageous for a shear stress mechanosensor, such as a

large size (560 kDa), an elongated shape (-160 nm), and significant flexibility

(persistence length -15 nm 301). Structurally it has been described as resembling a

'molecular leaf spring' 130, 311, implying its mechanical properties. As well, a growing

number of binding partners interact with FLNa, predominately near the C-terminus

opposite the actin binding domains, such that FLNa has been postulated as a signaling

scaffold and organizing center for binding partners to mediate local actin rearrangements

[271. Of particular importance for shear stress transduction are FLNa's association with

-integrins for force transmission 1321 and Racl, RhoA, Cdc42, and RalA for actin

rearrangements 133, 341.

FLNa dynamics in endothelium

To determine if FLNa responds to fluid shear stress, fluorescence recovery after

photobleaching (FRAP) studies were performed in single endothelial cells expressing a

fusion protein between FLNa and enhanced green fluorescent protein (EGFP-FLNa).

This technique determines the amount of immobile (e.g. cytoskeletal) FLNa before and

after stimulation with fluid shear stress.
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Prior to experiments, the distribution of EGFP-

FLNa was determined by fluorescence microscopy

in living and fixed cells (Fig. 4-1). EGFP-FLNa

incorporates into the actin cytoskeleton of living

endothelial cells and has both a cortical and stress

fiber-related distribution (Fig. IV-1, A and A'). In

fixed cells, EGFP-FLNa co-localizes with F-actin

(Fig. IV-1, B), staining small ruffles at the cell edge.

Preliminary evidence suggests that FLNa is

responsive to fluid shear stress on the same time

scale as actin dynamics are enhanced (Fig. IV-i, C).

Under static conditions, -50% of the total FLNa is

immobile in a molar ratio of -1:75 with F-actin

subunits, based on the total amount of F-actin.

Approximately 30 min after fluid shear stress

stimulation, despite a -30% decrease in F-actin

content, only -10 % of FLNa dissociates from the

Fig. IV-1. EGFrP-fLNa oca/izaion and dynamics in
endotheialcells. (A and A') Live endothelial cell transfected
with EGFP-FLNa imaged by DIC and fluorescence,
respectively. (B) Fixed endothelial cell expressing EGFP-
FLNa stained with Alexa-546 phalloidin to label actin
filaments. (C) Low-mobility EGFP-FLNa fraction as
measured with FRAP. The ratio of FLNa to F-actin subunits
is marked on the bars at selected time ponts. A = actin.

90
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cytoskeleton. Thus, the FLNa to actin ratio increases to 1:50 in response to fluid shear

stress. After 1 h of fluid flow, the amount of immobilized FLNa increases to pre-shear

stress levels even though the polymer content remains depleted, indicating that the ratio

of FLNa to F-actin subunits increases even further.

Therefore, FLNa appears to be involved in mechanical sensing, increasing its cytoskeletal

association when stimulated with fluid shear stress, in a similar manner to the FLNa

recruitment observed in integrin-ligated magnetic bead pulling experiments 124, 251.

While further targeted studies are required, these results reveal that FLNa may indeed

play a role in shear stress mechanosensation and, possibly, signal transduction.

A molecular 'Clutch' or an adhesive 'Trap'?

During the maintenance phase of the shear stress response, enhanced actin filament

turnover is not converted into increased cell motility, as measured in single endothelial

cells in static culture 51. Instead, beginning -1 h after shear stress stimulation,

endothelial cells slow their movements in the face of accelerated actin dynamics. There

are two alternative hypotheses for this behavior. The first is a 'Trap' mechanism in which

increased substrate and/or intercellular adhesion counteracts the accelerated pace of the

actin motor. The second is a 'Clutch' mechanism in which the cytoskeletal motor is

decoupled from adhesion and movement.

FLNa may participate in cells either by a 'Trap' mechanism or as a molecular 'Clutch'.

Evidence supporting a FLNa-mediated 'Trap' comes from reports that increased binding
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of FLNa to f3 integrin tails negatively regulates cell motility 1351. Evidence supporting a

FLNa-mediated 'Clutch' mechanism is observed in melanoma cells studies where loss of

FLNa inhibits cell movement despite enhanced actin cycling 136-381.

Due to the observed compensatory increase in cytoskeletal FLNa shortly after shear stress

stimulation, a 'Trap' mechanism may be favored over a 'Clutch' in the endothelial shear

stress-response. However, if FLNa association with the cytoskeleton after shear stress

exposure is compartmentalized away from integrin binding sites at the plasma membrane,

a 'Clutch' mechanism may be possible. Studies on FLNa- melanoma cells transfected

with FLNa engineered to lack 13 integrin binding activity may provide interesting insights

into the coupling between actin dynamics, cell motility, and FLNa function.

Building an actin motor

The necessary components required to reconstitute the 'rocketing' motility of the

intracellular pathogens Listeria and Shigella have been identified, requiring precious few

molecules - actin, the activated Arp2/3 complex, ADF/cofilin, and capping protein 391.

To achieve maximal propulsion, at-actinin, profilin, and VASP (for Listeria) are also

required.

Recently, an extensive effort using RNAi to knockdown -90 different proteins in

Drosophila S2 cells has determined the molecular components required for lamella

formation 401. Similar to Listeria and Shigella movement, S2 cell actin-based lamellae

formation requires the activated Arp2/3 complex (with SCAR), capping protein, cofilin,
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and profilin, but, in addition, two other proteins are necessary, Aipl and cyclase-

associated protein.

These studies illustrate a simple toolbox of important components to test in reconstituted

actin networks and demonstrate the feasibility of such an approach. However, other

molecular players are with no doubt required to coordinate actin dynamics and maintain

coherence of the leading edge in mammalian cells.

As described in this Thesis, the mechanisms of individual actin binding proteins can be

addressed directly by reconstituting actin networks in vitro with purified regulatory

proteins. The ultimate goal of building the purified protein system is to recapitulate the

reactions that mediate filament turnover in cells and build a high-performance actin

motor. The work presented here has laid a foundation for understanding actin dynamics

ill purified actin networks and made progress towards reconstituting an actin filament

recycling system that mimics cellular dynamics.
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