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Abstract

In human motion control applications, the mapping between a control specification
and an appropriate target motion often defies an explicit encoding. This thesis
presents a method that allows such a mapping to be defined by example, given that the
control specification is recorded motion. The method begins by building a database
of semantically meaningful instances of the mapping, each of which is represented
by synchronized segments of control and target motion. A dynamic programming
algorithm can then be used to interpret an input control specification in terms of
mapping instances. This interpretation induces a sequence of target segments from
the database, which is concatenated to create the appropriate target motion. The
method is evaluated on two examples of indirect control. In the first, it is used to
synthesize a walking human character that follows a sampled trajectory. In the sec-
ond, it is used generate a synthetic partner for a dancer whose motion is acquired
through motion capture.

Thesis Supervisor: Jovan Popovid
Title: Assistant Professor
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Chapter 1

Introduction

Authoring human motion is difficult for computer animators, as humans are excep-

tionally sensitive to the slightest of errors. This process involves an animator provid-

ing a control specification which is mapped to a target motion by some means. In

traditional keyframe animation, for instance, the keyframes are the control specifica-

tion, and the target motion is achieved through spline interpolation.

Due to advances in data acquisition technology and computational power, tech-

niques have been developed that allow desired target motion to be specified using a

human performance. This is natural for traditional keyframe animators, who often

use recorded or live human motion for reference. Motion capture is the most direct

method to map performances to animated humans, as it is essentially an identity

mapping. However, a generalization of this approach to allow for more indirect map-

pings creates an array of fantastic possibilities, such as mapping voice signals to facial

motion [Bra99] or gestural actions to animated reactions [JP99].

Indirect mappings, however, must still be encoded in some way. Manually, this can

be an exceptionally challenging task requiring detailed, domain-specific knowledge.

Consider a partner dance scenario in which an animator wishes to control a follower

using the captured motion of a leader. The mapping from leader to follower motion

must minimally encode a significant amount of knowledge about the structure of the

dance; this knowledge, unfortunately, would be out of reach to an animator who is

not a skilled dancer. Indeed, it would still be difficult for a skilled dancer to state the
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precise mapping. Human dancers learn their skills by observation and practice; the

objective of this work is to emulate this process on a computer for situations, such as

partner dance when the control specification takes the form of one dancer's motion.

To learn indirect mappings, a memory-based approach is adopted which implic-

itly encodes the desired mapping with a database of semantically meaningful example

instances. These instances store segments of synchronized control and target motion,

which provide examples of how the mapping should be applied to input control mo-

tions. In partner dance, an instance might contain an example control motion of a

leader pushing his or her partner forward. The corresponding example target motion

would be that of the follower, taking a step backward in response.

A new input control motion can be interpreted as a sequence of rigidly transformed

and temporally stretched control segments from the mapping database. Through the

mapping instances, a given interpretation also corresponds to a sequence of target

segments that can be assembled to form a target motion. Dynamic programming is

used to select a sequence that balances the quality of interpretation with the conti-

nuity of the induced target motion. Various postprocessing techniques can be then

be applied to smooth and adjust the desired target motion.

The approach is evaluated on two applications. In the first, its ability to map

low-dimensional input to high-dimensional motion is exhibited by controlling walk

motion from mouse trajectories. In the second, its ability to handle complex, stylized

mappings is shown by controlling a dance follower using the motion of a dance leader.

14



Chapter 2

Background

Performance-driven animation, or computer puppetry, derives its broad appeal from

its ability to map human performances automatically to animated characters [Stu98].

While these mappings can be as simple as a direct copy of joint angles, the ability to

discover more complex mappings gives the approach a tremendous amount of power

and flexibility. In online techniques [JP99], computational speed and instantaneous

results are of paramount importance; offline techniques [Bra99l allow quality and

global optimality to take precedence. The method in this thesis falls into the latter

category.

Complex mappings often defy purely physical or mathematical encodings. As a

result, many methods assume that mappings are described by parametric probabilistic

models [Bra99, DB01, DYP03, JP99]. An advantage of these techniques is their

ability to generalize to a variety of inputs. However, this comes at a price: statistical

learning often necessitates large volumes of training data or severe restrictions on

model complexity. For certain applications, this a worthwhile tradeoff, but for others,

it can result in impractically long training times or loss of important detail. Our

memory-based approach does not suffer from these disadvantages.

An important benefit of this design choice is the ability to use segments, rather

than frames, as the primitive unit of motion. This allows for explicit preservation of

higher-level motion semantics. Kim et al. demonstrate that a semantically guided

segmentation of rhythmic motion allows for highly realistic motion synthesis, even

15



using simple transition models [KPS03]. This work also uses partner dance for eval-

uation, but it does not address the problem of generating a follower given the motion

of a leader.

In the segment modeling domain, the method in this thesis is most similar to

that of Pullen and Bregler [PB02]. While Pullen and Bregler's method was shown

to be an effective solution for the chosen application of texturing keyframed motion,

its applicability to our problem is limited by several factors. First, their method

assumes no spatial dependencies between the control (keyframed curves) and the

target (textured motion). Second, there is no enforcement of motion continuity,

other than a heuristic for consecutively observed segments. Our approach generates

target motion segments that are amenable to simple blending. Finally, their method

assumes that the input motion can be presegmented analogously to the examples,

which is achieved in their work by observing sign changes in velocity. One could

extend this approach for rhythmic motions using the automated approach of Kim

et al. [KPS03]. In the general case, however, a control motion may not admit any

intuitive presegmentation. One may wish, for instance, to generate walk motion from

a constant-velocity trajectory. Our method requires no presegmentation; moreover,

it produces a semantically guided segmentation as part of the optimization. In this

context, the algorithm could be viewed as an extension of speech recognition methods

that use connected word models [RJ93].

Arikan et al. describe an example-based approach to synthesizing human motion

that satisfies sparse temporal annotation and pose constraints [AF003]. Although

their work differs from ours in intent, they also employ a dynamic programming

algorithm that optimizes a weighted combination of interpretation and motion con-

tinuity. Our formulation differs in two subtle but important ways. First, our notion

of continuity is dependent on the interpretation; that is, the continuity between two

motion segments is undefined until a candidate interpretation specifies a coordinate

frame for their comparison. Second, their objective function is defined over frames

instead of segments. As a result, they must use coarse-to-fine iterations of their dy-

namic programming algorithm to gain the temporal consistency that is intrinsic to
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our segment-based approach.

Other related methods based on motion capture clip rearrangement include work

by Kovar et al. [KGP02], Lee et al. [LCR+02], and Arikan and Forsyth [AF02].

Although these do not aim to discover control by example, they have nevertheless

provided inspiration for our work. An additional distinction is that these methods

do not use continuous control from human performance and focus on sparser speci-

fications such as keyframes and nontemporal paths. Our method is not designed to

handle such control specifications and therefore should be viewed as an alternative to

these approaches, rather than a replacement.

Many motion rearrangement techniques are derived from previous work in texture

synthesis. Here, we consider our work most similar in intent to image analogies

[HJO+01]. This method, given an unfiltered and filtered version of the same image,

applies an analogous filter to a new unfiltered image. Our method, given a set of

synchronized control and target motions, applies an analogous mapping to a new

input control motion. Image analogies was shown to be an elegant method with

some unexpected applications like texture transfer, texture-by-numbers, and super-

resolution. It is our hope that our method will have the same versatility for motion.

Our dance evaluation suggests an alternative view of our method as one of inter-

action modeling. In this domain, techniques have been developed that specify the

mappings between character motions with explicit models of character interaction.

Adaptive autonomous characters have used rules to exhibit complex flocking, herding,

and locomotory behaviors [Rey87, TT94]. Approaches to explicit interaction model-

ing have included layered architectures [BG95], procedural descriptions [PG96], and

even cognitive models [FTT99]. In this context, the work in this thesis might be

viewed as a competency module that enhances the skills of characters to enable their

participation in complex interactive performances.
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Chapter 3

Database Construction

We begin by acquiring examples of synchronized control motions A and target mo-

tions B. Each frame of motion is encoded by a point cloud. For human motion, we

use skeletal joint positions, since this representation provides a more intuitive space

than joint angle representations for comparing poses [KGP02]. Furthermore, point

cloud representations allow for generalization to control motions without skeletal rep-

resentations, such as mouse input.

The examples are divided into control segments a,... , aN and target segments

bl,. . . , bN, where ai and bi are synchronized motions that together represent a prim-

itive semantic instance of the mapping. Our dance motions are segmented into two-

beat rhythm units, since they are a basic unit of interaction for the specific type of

dance (Lindy Hop), as shown in Figure 3-1. Our walk motions, on the other hand,

are segmented according to gait cycles. In both cases, we use manual transcription,

since each example motion must only be segmented once. Methods exist to automate

this process if desired. Dance motion could be segmented using motion beat analysis

[KPSO3]. More general motions could be segmented using annotation [AFO03] or

curve clustering [CGMS03].

This database of mapping instances will be used by a dynamic programming algo-

rithm to simultaneously interpret a new control motion and generate an appropriate

target. The usage of semantic primitives restricts the search space to natural target

motions. This, however, is an application-specific choice. Using segments that are too
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Figure 3-1: Segmentation of Lindy Hop motion into two-beat rhythm units.

short may result in motion that lacks coherence, while using segments that are too

long will prevent the algorithm from generalizing to control motions that significantly

differ from the examples. In general, the choice of the best segmentation is flexible.
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Chapter 4

Algorithm Description

Given a control motion x with T frames, our goal is to generate an appropriate target

motion. This is achieved by selecting a sequence of appropriate target segments from

the database. To make the database motions more flexible, we allow each selected

target segment to be spatially transformed and uniformly stretched in time. The

proper selection of segments can be achieved using an efficient dynamic programming

algorithm.

4.1 Single Segment

Before developing our general algorithm, we address the simpler problem of inter-

preting the input as a single control segment from the database. We quantify the

similarity of the input motion x and a control segment a, with a distance function:

D(x, aT) =- j|x - M(x, a T)aT 112(41

Here, aT represents the control segment a., uniformly stretched in time to T frames,

and M(x, aT) is a rigid transformation that optimally aligns x and aT:

M(x, aT) = argmin lix - MaTI12 . (4.2)
M
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This optimization is the solution to the Procrustes problem, which has several efficient

numerical solutions [ELF97]. Since our example dance and walk motions only differ

by ground translation and vertical rotation, our implementation uses a closed form

solution [KGP02].

To compute the optimal interpretation, we determine the segment a,. that is most

similar to the input motion:

s* = arg min D(x, aT). (4.3)

The index s* also identifies, by construction of the database, an appropriate target

b,. to both the control segment a,. and the input motion x. The stretch T completes

the specification of the optimal interpretation, M(x, a'.)a'*, and the optimal target,

M(x, a'.)b'.. This is illustrated in Figure 4-1.

The optimal target may not precisely satisfy desired physical or kinematic con-

straints. However, given a descriptive database, it can provide a good approximation

which can be adjusted appropriately during post-processing.

In practice, we limit the allowed amount of uniform time stretch by a constant

factor since the distance metric does not distinguish between motions of varying speed.

A dancer that pushes his partner slowly, for instance, will elicit quite a different

response if he pushes quickly. Limiting the amount of stretch also has the practical

benefit of reducing the search space of the general algorithm.

4.2 Multiple Segments

In general, we must handle the case where the optimal control and target consist of a

sequence of segments. We can specify this sequence analogously to the single segment

case by the number of segments L*, the segment indices s*,... , s*, and the segment

durations d*,. . . , d*.

As in the single segment case, the distance metric D evaluates the interpretation

quality of each segment in the sequence. However, the quality of the interpretation
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alone does not account for the continuity of the target motion, as shown in Figure 4-

2. To offset this problem, we introduce a function which measures the continuity

between segments v and w:

C(v, w) = ||w(v) - a(w)112. (44)

Here, a and w represent the head and tail functions, which respectively extract the

positions of the first and last frame of a segment.

Given a sequence specification L, si,..., SL, and di, ... , dL, we define a scoring

function accounts both for the quality of interpretation and the continuity of the

target:
L L-1

D(xi, af d) + k C (Mibi, Maib d+ . (4.5)
i=1 i=1

Here, xi is the subinterval of the input that is implied by the segment durations

di,..., di. These in turn induce the transformations Mi = M(xi, di). The user-

specified constant k defines the balance of interpretation and continuity.

The optimal substructure property of the score function, as defined by the fol-

lowing recurrence, can be used to find a globally optimal solution using dynamic

programming:

Qs,d[t] min Qr,c[t - d] + D(xd,t, a.) (4.6)r,c

+ k C(M,c,t-db,, Ms,d,tbd)

Qs,d[d] = D(xd,d,a). (4.7)

Here, Xd,t represents the subsequence of input frames starting at frame t - d and

ending at frame t, which in turn induces the alignment matrix Ms,d,t = M(xd,t, ad).

Qs,d[t] is defined as the score of the optimization on the subsequence xt,t, given that

the last segment is indexed by s and stretched to duration d. By minimizing Qs,d[T]

over all s and d, we can compute the score of the optimal sequence specification and

recover it by backtracking. In the following section, we describe this process in more

detail.
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Figure 4-1: An example instance from the database is stretched and transformed to

align the control segment with the input motion. The same stretch and transform

can then be applied to the target segment.

2

1

3

3

4

4

1 5 4

Figure 4-2: A good interpretation may not account for the continuity of the target

(middle). Our scoring function strikes a balance between the two (bottom).
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4.3 Implementation

To solve the recurrence efficiently, values of Q are stored in a two-dimensional array.

Cells in this array are indexed by the time t on one axis and by all legal combinations

of s and d on the other (recall from Section 4.1 that the amount of allowed stretch is

limited). First, all legal values of QS,dd] are initialized according to the base case given

in Equation 4.7, and all other array cells are set to infinity. The algorithm proceeds

by iterating forward through time. At each time t, all non-infinite cells are located

and scores are conditionally propagated forward in time according to Equation 4.6.

More specifically, suppose that we are currently processing the array cell Qr,c[t].

For each legal combination of s and d, the candidate value z is computed:

Z = Qr,c[t] + D(xd,t+d, ad) + kC(Mctb;, Ms,d,t+db ). (4.8)

If the value in the array cell QS,d[t + d] is greater than z, we set it to z and store

a backpointer to cell Qr,c[t]. By continuing this process, the entire array is filled.

Since the indexing of each cell encodes a segment identifier and duration, the optimal

sequence specification can be recovered by following backpointers from the best score

at time T.

4.4 Efficiency

At each time t, O(P) noninfinite cells are processed, where P is the number of legal

combinations of s and d. Since processing an individual cell is an O(P) operation,

the total asymptotic time complexity of the algorithm is O(P 2 T). To increase its

efficiency, we apply several heuristic optimizations. It is important to note that none

of them will improve the quality of the results, only the speed at which the results

are obtained. This is in contrast to the approach of Arikan et al. which relies on

heuristics to obtain coherent motion [AF003].
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4.4.1 Beam Search

Rather than process all O(P) noninfinite cells at each time t, we only process cells

with scores less than min,,d QS,d[t] + w, where w is a user-specified constant. This

technique is known as beam search, and w is known as the beam width. This is

motivated by the fact that cells with worse scores are unlikely to be on the optimal

backtracking path, and thus can be pruned from the search.

4.4.2 Clustering

In Chapter 3, we described the construction of a motion database by storing all

instances derived from the examples. Since the time complexity of the algorithm

scales quadratically with the database size, this leads to inefficiency when the number

of instances is large. To resolve this issue, redundant instances are eliminated using

complete-linkage clustering [DHSOO]. In this algorithm, each instance begins in its

own cluster. Larger clusters are formed iteratively by merging the two closest clusters,

where the distance between clusters is defined as the maximum distance between any

two instances in either cluster. We define the distance between two instances using

Equation 4.1.

The advantage of complete-linkage clustering over other methods (such as k-

means) is that it explicitly limits the distance of any two instances in a cluster by a

user-defined threshold. After clusters are formed, a representative instance is chosen

at random from each cluster to remain in the database, and all other instances are

discarded. An additional benefit of this process is that it helps beam search; since

clustering reduces ambiguity in interpretation, a larger proportion of search paths can

be pruned.

4.4.3 Downsampling

High sampling rates are common for systems such as motion capture, but they are

generally unnecessary for interpreting the input control motion. By downsampling

motions by a user-chosen constant, we can effectively reduce the length of the input

26



sequence. However, the resulting optimal sequence specification will also be at the

lower frame rate, and it is generally desirable to have it at the frame rate of the original

input. Simple upsampling often introduces slight but undesirable temporal errors.

To remedy this, we run a highly constrained version of our dynamic programming

algorithm that only adjusts the durations appropriately. Constraints can be easily

encoded by making appropriate cells in the Q array illegal. For instance, we can force

the result to contain a certain target segment b8 at some time t by disallowing any

processing on cells Qr,c[u], where r 7 s and u - c < t < u.
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Chapter 5

Postprocessing

As described in Section 4, the output of our optimization is a specification of an

appropriate target motion in terms of target segments in a database. More specifically,

it provides a sequence of target segment indices s*., sL and durations d*,..., d*

The corresponding target segments can be copied out from the database, stretched,

transformed by the induced matrices M*,... , M*, and concatenated. The results

is a moving point cloud that approximates the desired result. Of course, the same

selections, stretches, and transformations can just as easily be applied to the source

motions that generated the point cloud.

From the perspective of motion synthesis, the main problem with our approach

is that the raw result will generally contain some kinematic errors. In our dance

example, footplant and handhold constraints are never explicitly enforced by our

algorithm. For such constraints, existing methods can be applied to postprocess the

data [KSG02], but such methods often require some amount of manual constraint

annotation. Similarly to other motion capture clip rearrangement techniques, we can

propagate constraints by example. In other words, each example instance can be

annotated with constraints which can be transferred to the target motion. This is

demonstrated by our propagation of handhold constraints, as shown in Figure 5-1.

We do not aim to introduce novel solutions for motion blending or constraint

satisfaction. Instead, our goal is to provide motion that is amenable to postprocessing

with these approaches. To demonstrate our method's capabilities in this regard, we
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4 5 6

Figure 5-1: A handhold constraint, indicated by the line connecting the characters,
was propagated from annotated examples to this generated motion. Here, the leader

begins in an open crosshand stance and pulls the follower in (1,2). The follower

releases handhold and performs an inside turn toward the leader (3,4). Nearing

completion of the spin, the follower prepares to catch the leader's hand and enter

embrace (5), and handhold is reestablished in closed stance (6). This sequence spans

two beats.

show that it can generate realistic and compelling motion, even with extremely simple

postprocessing. Our results, shown in the following section and in our accompanying

video, are filtered with a basic smoothing operation that linearly adjusts motion

curves to match across segment boundaries.

30
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Chapter 6

Results and Evaluation

We evaluate our technique with two examples. In the first, we animate a realistic

walking human from time-sampled mouse movement. Walk motions, however, do

not show the full ability of our technique to discover complex mappings. To better

demonstrate this aspect, we apply our method to a partner dance called Lindy Hop.

Specifically, we use the complex motion of the dance leader to drive the motion of

the follower.

In the following sections, all human motions were acquired in a motion capture

studio and standard commercial tools were used to estimate joint positions [Vic03].

For the point cloud representation of body motion, we used only the positions of

the hands and feet, as we found that these end-effectors were sufficient to evaluate

interpretation and continuity in both evaluations. To generate the motion, we applied

the resulting sequence specification to the source motion and used basic smoothing.

All timings were performed on a workstation with dual 2.4 Ghz Intel Xeon pro-

cessors. Where applicable, we state the clock times for the dynamic programming

algorithm (Section 4.3), upsampling (Section 4.4), and postprocessing (Section 5).

The continuity constant, defined in Section 4.2, and the stretch limit were chosen

experimentally.
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6.1 Walk

We acquired 2 minutes of motion captured walk footage at 30 Hz. The subject was

directed to walk within the capture area with random changes in direction and speed.

We artificially constructed a synchronized example control motion by projecting the

positions of the hip joints onto the floor and normalizing their distance. As stated

previously, the target motions were represented by end-effector positions.

The walk footage was transcribed manually according to the gait cycle. More

specifically, a segmentation point was manually placed at each footplant. From this

process, we created 200 segments, which was reduced to 70 using clustering. For

our tests, we downsampled these motions to 10 Hz and allowed each segment to be

stretched ±0.2 seconds.

Our first evaluation involved creating control motions from new walk motions

that were not in the database. As before, we projected the hip joints onto the ground

and normalized their distance. We ran our algorithm on these control motions and

compared our results to the original source motions. Experimentally, we found that

larger values of the continuity constant were more effective. For short walks, the

generated motion was highly realistic. The frequency of the generated gait cycle

nearly matched the frequency of the source, but phase differed. In more concrete

terms, the generated motion might choose to start on the left foot, whereas the

original source motion might start on the right. This was expected, as the control

signals did not encode any phase information.

For longer walk motions, however, we were surprised to discover that the generated

motions often kept in nearly perfect phase with the source. The reason for this was

that the subject preferred to make sharp turns with the same footwork pattern. These

served as synchronizing signals for the dynamic programming algorithm which were

propagated throughout the generated gait cycle due to the global optimization.

For timing tests, we used a 57 second control motion. We first ran the algorithm

without the beam search optimization. The dynamic programming algorithm took

12.5 seconds, upsampling from 10 Hz to 30 Hz took 0.4 seconds, and postprocessing
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spacing f~.............

Figure 6-1: A synthetic character walks along a trajectory from mouse input. The

spacing of points indicates the speed.

took 1.1 seconds. With the beam search optimization on, we were able to reduce

the clock time of the algorithm to 1.2 seconds (47 seconds of input processed per

second of clock time) while retaining visually perfect results. The upsampling and

postprocessing times remained the same. We ran the algorithm on shorter and longer

inputs and experimentally confirmed the asymptotic linear dependency of running

time on input length, described in Section 4.4.

In our second evaluation, we built an interface that allowed users to draw paths

using mouse input, as shown in Figure 6-1. The position of the mouse pointer was

sampled at 30 Hz, and Frenet frames were used to generate a control motion. For

a wide variety of user inputs, our method was capable of generating highly realistic

walking motion. Since the timing of the path was important, we found that users

required minor training to understand the concept of performing a path instead of

drawing it. It was often tempting, for instance, to rapidly move the mouse to draw

a straight line. This would correspond to a impossibly fast run, well beyond the

capabilities of a human. To resolve these issues, our interface allows a user to overlay

the playback of an existing motion on the drawing canvas to get a sense of speed.

Furthermore, it provides options to smooth the trajectory spatially and temporally.

The speed of the algorithm allows for rapid feedback.
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6.2 Dance

Our choice of partner dance as a demonstration was primarily motivated by the com-

plexity of its style and mappings. From a small segmented set of example instances,

we generate a follower's motion to accompany a leader's motion. Generating partner

dance motion would be a difficult trial for both physical methods, which would yield

underdetermined systems; and statistical methods, which would typically require a

very large database in place of our small segmented one. Swing dance also allows for a

more principled evaluation of our results than most types of motion, since the perfor-

mance of the algorithm at generating valid mappings can be evaluated independently

of style considerations or subjective judgments of motion quality.

Lindy Hop is a subgenre of swing dance that, at a basic level, can be described as

a state machine. A dance couple moves between four basic stances: open (U), closed

(i), open crosshand (o), and closed crosshand (*). Open and closed refer to whether

the couple is apart or in embrace, respectively. Crosshand refers to the case when the

leader and follower hold right hands (we could also refer to it as a handshake).

Basic Lindy Hop motions switch between these four stances by means of transi-

tions: an inside turn (n), when the follower spins towards the leader, an outside turn

(n), when the follower spins away from the leader, and a simple step (-+). At the end

of each transition, the dancers may also change their handhold to instantly transition

between crosshand states (0, e) and non-crosshand states (U, -). Figure 5-1 shows

a couple transitioning from open crosshand stance to closed stance using an outside

turn: ocv. Each of these transitions occurs over four beats of music, which are

assembled from two-beat segments; this was our motivation for performing two-beat

segmentation, as described in Section 3. Figure 5-1 shows only the last two beats of

a four-beat transition that starts with a two-beat rocking motion.

Skilled Lindy Hop dancers use a greater variety of moves, ranging from more

complex transitions such as double outside turns to complex aerial maneuvers. We did

not include the entire range of motions. Instead, we constructed a smaller database

with seven basic 8-beat dance patterns that every Lindy Hop dancer knows (first
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Database Patterns Test Patterns
1 ->7-+ 1 5-+mo 8 ons->i
2 5->r~-o 2 -+in5 9 onirE
3 5-*-> 3 i-.i-+i 10 on--o

4 O->n 4 *->@fs 11 O-@nO

5 - 5 *-> nr 12 onjno
6 *->-*5 6 .-- +o 13 n
7 on-- 7 s-er_ 14 5--->o

Table 6.1: A notational description of the dance patterns stored in the database and
the novel test patterns performed in our three test dances. Our technique adapts
by rearranging the segments in the database to recreate the patterns it has not seen
before.

column of Table 6.1). We constructed the motion database from a set of 12 short

dances, each containing the seven basic 8-beat patterns, giving a total of 5 minutes

of motion. These dances were segmented into 364 two-beat mapping instances, with

lengths varying from approximately 0.6 seconds to 1 second due to different music.

For our evaluations, we captured three longer test dances (approximately 2-3 min-

utes each) in which the dancers were instructed to improvise with the transition and

stances included in the database. Their improvisation led to dances which included

thirteen new 8-beat patterns not found in the database (shown in the last column

of Table 6.1) as well as some repeats of patterns in the database. These test dances

spanned a tempo range from about 120 beats per minute to about 190 beats per

minute. We used the motion of the leader to control a synthetic follower, which was

then compared with the actual follower.

Visually, the results exhibited the fluidity, grace, and style of the original dancer.

Some footskate and handhold violations are visible because we wanted to show the

output in its almost raw form with smoothing applied just for visual coherence. In

a direct comparison with the actual follower motions, we found that the synthetic

follower matched very well in closed stances. In open stances, the follower was much

more free to include stylistic variations, so the generated motions often differed vi-

sually from the actual motions. Additionally, the synthesized dancers were almost

always in perfect rhythm with the leader.

Our algorithm ably recreated the semantics of the leader to follower mapping,
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Figure 6-2: On the top, a clip of an actual dance is displayed. Here, the leader
performs a regular handhold change during a step transition. This transition never
occurs in our motion database. In response to the same motion cue, our algorithm
generates a leaping outside turn, as show on the bottom. This is one of five two-
beat segments (out of 380 two-beat segments in our three test dances), where the
algorithm differs in its selection of response from an experienced dance follower. In
other instances of this regular handhold change during a step transition in the test
data, the algorithm correctly sequences motions to discover this novel vocabulary
element.

even for novel patterns. When the algorithm encountered a pattern that was not

in the database (one of 14 such patterns shown in table), it was able to correctly

reconstruct the novel sequence by rearranging the two-beat segments. Of the 91

patterns (21 unique) in our three test dances the synthetic dancer matched the pattern

of the actual dancer in all but 5 cases, one of which is shown in Figure 6-2. When

the algorithm did differ from the real dancer in the composition of the pattern, the

leader and follower still executed a valid Lindy Hop pattern. In these misinterpreted

instances, the leader's motion is quite similar across two different follower patterns.

To disambiguate these, we might add information to the control signal, such as force-

plate readings, or we might accept these rare mismatches because they are in fact

valid mappings. Furthermore, all 5 mismatched patterns differed by a single two-

beat segment, so of 91 x 4 = 364 two-beat segments in the test dances, the technique

misinterpreted the signal in 5 cases for an error rate of less than 2%.

For all our evaluations and timing tests, we reduced the size of the database from

364 to 168 with clustering, downsampled to 7.5 Hz, and allowed a segment stretch

of +0.15 seconds. We cite our efficiency figures for generating, from leader motion
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only, a particular 150 second dance motion. Without beam search, the dynamic

programming algorithm ran for 78 seconds, 2 seconds were spent on upsampling, and

26 seconds were spent on postprocessing. With beam search enabled with modest

parameters, we were able to drive the runtime of the dynamic programming to 10

seconds while maintaining excellent visual and semantic results. As with our walk

motion evaluation, we found that clock times scaled linearly with the length of the

input.
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Chapter 7

Conclusion

This thesis has presented a method for example-based performance control of human

motion. The dynamic programming algorithm uses segments of motion along with

an objective function that accounts for both the quality of control interpretation

and the continuity of the target motion to generate visually and semantically correct

motions. The semantic accuracy of the generated motion was evaluated in the setting

of partner dance, where the follower's motion is generated from the leader's motion.

The algorithm generated semantically correct partner motion even from test sequences

of leader motions that did not appear in the training set.

The dynamic programming algorithm performs a global optimization, which pre-

cludes the local decisions that are required for online applications. However, as

demonstrated in the evaluations, it can compute results significantly faster than input

motion can be recorded, thus making it suitable for rapid-feedback motion authoring

applications. This implies that segmental approaches like ours hold great promise for

real-time performance-driven animation, and consider it a promising area of future

research.

To preserve spatial dependencies in mappings, we apply rigid transformations to

optimally align control segments with input control motions. Target segments inherit

these transformations. This approach is effective for our applications or whenever

the control signal indicates appropriate spatial and temporal cues. It is also possible

to select other transformations for applications outside the domain of human mo-
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tion control. For instance, allowing arbitrary homogeneous transformations in two

dimensions might form an alternative segmental solution to the curve analogies prob-

lem [HOCS02]. Eliminating transformations entirely might also be appropriate for

applications such as synthesis of facial motion from speech signals [Bra99].

In the process of generating target motion, the dynamic programming algorithm

performs a semantically guided segmentation of the input control motion. The entire

process, however, relies on the availability of semantically segmented examples. For

our evaluations, we were able to perform this segmentation manually by tapping a

key in response to the rhythm of music or the gait pattern of a walk cycle. While

specific methods exist to automate this segmentation for the cases of dance and walk,

a more general method is desirable. For this, we could begin with a few manually

segmented examples and grow the set of example instances by iterative application

of our algorithm. This approach would be similar in spirit to the semiautomatic

SVM-based annotation approach of Arikan et al. [AF003].

The annotation propagation we describe above suggests that our method could

be used for interpretation rather than control. Paralleling our automatic annotation

of handholds, it is possible to annotate any new control motion given a set of labeled

example instances. This could be used to transcribe the motion into a symbolic

representation, such as the one used in this paper, or even Laban notation [Hut73].

Such a representation could then be analyzed or summarized using natural language

processing techniques.
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