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Abstract

In recent years, mixed-signal designs have become more pervasive, due to their ef-
ficient use of area and power. Unfortunately, with sensitive analog and fast digital
circuits sharing a common, non-ideal substrate, such designs carry the additional
design burden of electromagnetic coupling between contacts.

This thesis presents a method that quickly extracts the electroquasistatic coupling
resistances between contacts on a planar, rectangular, two-layer lossy substrate, using
an FFT-accelerated multi-domain surface integral formulation. The multi-domain
surface integral formulation allows for multi-layered substrates, without meshing the
volume. This method has the advantages of easy meshing, simple implementation,
and FFT-accelerated iterative methods. Also, a three-dimensional variant of this
method allows for more complex substrate geometries than some other surface integral
techniques, such as multilayered Green's functions; this three-dimensional problem
and its solution are presented in parallel with the planar substrate problem and
solution. Results from a C++ implementation are presented for the planar problem.

Thesis Supervisor: Jacob K. White
Title: Professor
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Chapter 1

Introduction

In recent years, mixed-signal designs have become more pervasive, due to their ef-

ficient use of area and power. Unfortunately, since sensitive analog and fast digital

circuits share a common non-ideal substrate, such designs carry the additional design

burden of electromagnetic coupling between contacts.

This thesis presents a method that quickly extracts the coupling resistances be-

tween contacts on a two-layer lossy substrate, using an FFT-accelerated multi-domain

surface integral formulation. This thesis also addresses the same extraction problem

when the substrate has some three-dimensional features, such as isolation rings; such

features are accommodated by specializing the precorrected-FFT method [2]. Much

of the work for the planar problem was originally introduced in [1].

In this chapter, we will first motivate the problem and then briefly identify previous

research efforts in this area. The problem of interest will be introduced, as well

highlights of our methodology. This method will then be compared with some other

available methods. Finally a short overview of the thesis contents is given.
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1.1 Background

1.1.1 Substrate coupling

A non-ideal substrate has non-zero conductivity and permittivity, which couples the

contacts resistively and capacitively, respectively. At higher frequencies, in excess

of a gigahertz, the coupling relationship is better described by a complex coupling

impedance. However, for lower frequencies and most substrates, for which the dielec-

tric relaxation time is short, the resistive model is appropriate [5].

Such coupling resistances are detrimental to performance, as switching digital

currents will bias sensitive analog components, even when these digital and analog

blocks are separated by a large distance. Equation 1.1 describes the resistive substrate

coupling for a design with M contacts. V and I are the vectors corresponding to

contact potentials and currents, respectively, both of size the M x 1 . Y denotes

the unknown coupling conductance matrix, of size M x M; IY, = 1, the coupling

resistance between contacts i and j.

YV=I (1.1)

In order to find the jth column of Y, we apply a 1V potential to the jth contact, and

set all other contacts to ground. We assign non-contact surfaces a boundary condition

of zero current. Hence, in order to find the entire coupling resistance matrix, we must

be able to quickly model the resultant currents due to an applied voltage vector. This

modeling will be done M times, once for each column of the conductance matrix.

With the conductance matrix found, the coupling effects can then be simulated by

designers by using a lumped-element simulator, such as SPICE.

Similar matrix problems and methodologies exist for extracting either electroqua-

sistatic capacitances or full-wave complex impedances, and some of methods will be

discussed below; however, this thesis is devoted to the extraction of resistances only.

14



1.1.2 Previous research

Researchers have modeled substrate coupling with many different approaches, either

for capacitance, resistance or full-wave impedance extraction. A finite difference ap-

proach is taken in [11], [12]. Although allowing for almost arbitrarily inhomogeneous

media, this method requires the discretization of the entire volume of the substrate,

plus some of the exterior domain. This volume discretization makes such methods

unnecessarily expensive, both in memory and in computational effort. Furthermore,

artificial boundary conditions must be employed to truncate the compuational do-

main.

A finite-element method is presented in [10]. This work relies on a hierarchical

extraction using volumetric filaments, and has the same drawback of finite-differnence

method: it requires the discretization of the entire volume.

Numerous researchers, including [8],[9], have presented work on multilayer Green's

functions. Most of these methods require the discretization of contact surfaces only,

albeit with a regular, rectangular grid. Some variations and improvements on these

works have also been developed. In [13], a hybrid two-dimensional FEM/three-

dimensional BEM method is presented. Reference [14], improves the finite differ-

ence method by sparsifying the system matrix via a wavelet basis. Reference [9]

implements the multilayer Green's function with an FFT-accelerated matrix-vector

product.

1.2 Problem and methodology

1.2.1 Problem statement

This thesis addresses the problem of coupling resistance extraction for a two-layer

substrate, where the two rectangular volumes have conductivities o and oa. The

contacts are restricted to the top and bottom surfaces of the substrate. Although

15



arbitrary boundary conditions could be applied to the bottom surface, this thesis

will consider either a grounded or floating backplane. Such a geometry is shown in

Figure 1-1, and we will subsequently refer to it as the planar geometry. We describe

the coupling in the quasistatic limit, which suffices for operating frequencies to a few

gigahertz, and for most substrate material properties.

SStop

mid

Sbot

Figure 1-1: Planar problem geometry.

Some three-dimensional features, such as isolation rings, will also be considered.

Such a geometry is shown in Figure 1-2. The rings or other three-dimensional features

considered here are limited to rings, or other geometric variations in the top surface,

such that any indentations do not extend into the lower substrate layer. More general

three-dimensional features could be considered with an adaptation of our method, but

we restrict the geometry for clarity of presentation. Furthermore, for convenience, we

will limit ourselves to contacts only on the top planar surface, and set any indented

surface to have a no-current flow condition.

1.2.2 Methodology

The work is motivated by the recent application of a similar FFT-accelerated multi-

domain surface integral formulation developed in the area of biomolecular modeling

16



Stop

Smid

Sbot

Figure 1-2: Three-dimensional problem geometry.

[4].

Our solution makes use of a surface integral formulation derived from Laplace's

equation for each homogeneous layer in the substrate; this system is derived as found

in [4], [3], [5]. We discretize this coupled system using the method of moments tech-

nique [6] on a uniform, rectangular grid overlaid on the surfaces of the substrate, and

its interface between layers. The resultant matrix is solved using a Krylov-subspace

iterative method, with a block-diagonal right preconditioner. The Krylov-subspace

method requires a fast matrix-vector product. For the planar problem we implement

this product using two-dimensional Fast Fourier Transforms (FFTs), as discussed in

[7]; the three-dimensional problem requires a matrix-vector product accelerated by

an adaptation of the precorrected FFT method (pFFT), as presented in [2].

The methodology is easily extensible to structures with more than two layers, but

for greater clarity, such a derivation is omitted and we restrict our work to a two-

layer problem. The methodology is also extensible to full-wave analysis, for situations

when the operating frequency is greater than a few gigahertz, however, as mentioned

previously, we restrict our attention to the resistance problem.

17



1.2.3 Comparison

The method presented has, like all methods, its advantages and disadvantages. We

will see that the method makes use of the free-space Green's function, as opposed

to a more specialized multilayered Green's function. This makes the implementation

of the method much simpler, as evaluating and integrating this free-space kernel is a

relatively easy problem, whereas many multilayered Green's functions require much

more sophisticated techniques for their evaluation.

The regular, rectangular meshing also adds to the simplicity of the implementa-

tion, as it requires no commercial mesher, but rather, a very simple home-grown mesh-

ing code. Unlike volumetric approaches such as finite-difference and finite-element

techniques [11], [12], [10], our method requires the meshing of only surfaces, not

the entire substrate volume, which makes our method more efficient with respect to

memory and computation.

Another advantage is that our method can be adapted to accommodate three-

dimensional features such as the isolation rings of our three-dimensional problem.

These advantages are tempered slightly by a few disadvantages. First, unlike

many multilayered Green's function techniques, we are required to mesh the entire

surface of the substrate, as well as the interfaces between layers. Multilayer Green's

function techniques require only the meshing of the contacts. However, for dense

designs, where most of the surface is covered by contacts, this consideration does not

weigh as heavily.

The simplicity of the meshing presents another disadvantage, because the fineness

of the mesh must be chosen to accommodate the smallest feature on the substrate.

If this proved prohibitively expensive, however, this disadvantage could be overcome

by using a nonuniform mesh, and employing a pre-corrected FFT method.

The surface nature of the method does not allow for irregular material inhomo-

geneity. However, for many applications, our assumption of a layered medium is

appropriate. This disadvantage is shared by all surface integral techniques, including

18



most multilayered techniques [8], [9].

Finally, the method employs a small geometric assumption about the aspect ratio

of the substrate. We assume that the thickness of the substrate is much smaller than

its length and width. For most substrate coupling applications, this assumption is

valid.

1.3 Thesis overview

The second chapter of this thesis introduces the problem geometry in greater detail

and derives the multi-domain surface integral equations that describe the coupling of

the two-layer structure. The third chapter illustrates the discretization of the surface

integral equations, as well as the iterative solution of the resultant matrix equation.

We will demonstrate that a solution can be found with an iterative method, requir-

ing only an efficient means for computing the matrix-vector product, and a simple

preconditioner. The fourth chapter discusses the acceleration of this matrix-vector

product using two-dimensional FFTs. This chapter will also address the impact of

three-dimensional features on this matrix-vector product. The fifth chapter presents

numerical results of the C++ implementation of our method for the planar problem.
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Chapter 2

Multi-domain surface integral

formulation

In this chapter we derive the coupled system of integral equations that govern the

potentials and conductive currents of our coupling problems, for both planar and

three-dimensional geometries. We first derive the equations governing our planar

problem. In the second part of the chapter, we adapt the same derivation to han-

dle three-dimensional features such as isolation rings. A summary of the system of

equations is given at the end of the chapter.

2.1 Planar problem

In this section we will derive the equations describing the planar problem. We begin

by introducing the geometry involved. We then find a surface integral equation for

each of the two homogeneous substrate volumes, using Green's second identity. Next,

these two equations are coupled using continuity relations. Finally, using imposed

Dirichlet and Neumann boundary conditions, we are able to specify the entire system

of equations governing the behavior of the substrate.

21



Stop

Smid - UI

CF

Sbot

Figure 2-1: Geometry of a planar substrate

2.1.1 Geometry

Consider the planar problem geometry shown in Figure 2-1.

We will refer to the upper and lower homogeneous volumes shown as Q" and Q1,

respectively. DQ, and &Q, will refer to the surfaces bounding these two volumes, and

au, a, to their conductivities.

Note that the top, interface and bottom planar surfaces are denoted as Stp, Smid,

and Sbot, respectively. The normals to these surfaces point inward,as shown in the

figure. The normals on the sides of the substrate (not shown in the figure) are oriented

inwards.

Note that the width and depth of the substrate are assumed to be much larger

than the height of the substrate (>= lOx). This assumption will be used later to

simplify the form of the integral equation. Also, the locations of the contacts are

assumed to be far from the edges of the substrate.

2.1.2 Coupled surface integral equations

We begin by deriving the surface integral equation for the homogeneous upper volume;

this process can then be repeated for the lower volume. We then introduce the

22



continuity equations and boundary equations. A similar derivation is found for a

biomolecular modeling problem in [4], and for Laplace's Equation in [5] and [3].

Surface integral equations for a homogeneous volume

For all three-dimensional points r in the upper volume, QO, Laplace's equation for

the potential, 0(r), holds.

V 205(r) = 0, r E Q" (2.1)

The subscript u emphasizes the fact that the evaluation point, r, is in the upper

volume, as opposed to the lower volume.

The fundamental solution to this equation, for a impulse source at the point r', is

the Green's function

G(r, r') = . (2.2)
47 1 r - r'

Computing the Laplacian of G and multiplying by the potential yields,

q(r')V2 G(r, r') = #(r') 6(r, r'). (2.3)

Taking the volume integral over r' E QU, and using the sifting property of the

dirac delta function, we have:

I I /QU (r')V2G(r, r')dV = /u(r), Vr E Q (2.4)

Using Green's second identity, and recognizing that V20u(r) = 0 in the volume,

f , 8q$(r'), aG(r, r')
#s (r) = - J G(r, r') dr +] u(r) r', Vr E s, (2.5)

Jan. On anu On(25

where OQ8 denotes the boundary of volume Qu; note that the normal direction is

defined inward. Taking the limit of this relationship as r approaches a point on 8OQ

2G(r, r') ( dr' + &G(r') G(r, r') dr', Vr E smooth. (2.6)
2 JaQU On L" an I (26

In this equation Qsmooth denotes the smooth portions of the boundary surface.

The coefficient on the left-hand size of the equations differ for points on a sharp edge

or corner, however, we will see later that we are not concerned with such portions.
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We make use of our geometrical assumptions to approximate equation 2.6. Under

the assumption that the linear dimensions of the problem are much greater than the

depth of the substrate, and that the contacts are sufficiently far from the edges of

the substrate, we will neglect the contributions to the surface integral that arise from

integration of the sides. This allows us to simplify equation 2.6 to

(r) - G(r, r') dr + #(r/ dr'. (2.7)
2 s]t pUSmid On StopUSmid On

Hence, we have the approximate surface integral relationship that governs field

points immediately on the interior of the top volume.

The same derivation can be used to find the surface integral relationship governing

the lower volume; note that some of the signs are changed as a result of the different

normal orientations. A subscript I is used to emphasize the fact that r is a field point

immediately on the interior of the lower volume.

01()= fG(,r,,rl 00 ) dr' - #1 Ir)(r r) dr' (2.8)2 SmidUSbot On Js.MUSbot On

Continuity relations

Continuity of potential and of current allow us to relate the potential and its normal

derivative at the interface surface.

#u (r) = #(r), r E Smid (2.9)

a#s(r) _ ___r)

auo o0, r E Smid (2.10)
On On

Coupled surface integral equations

Using the continuity relations, we eliminate #1 and '90 at Smid from equation 2.8.

The final system of coupled surface integral equations is then given by:
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-I G(r,r') 8 dr'
'stoG On

+ ' #(r'dr'
sf- On

G(r,s mid

- I

+ 1
s mic

v' 8 dv+' ,r o (r' dr' +
On

8G(r, r') Ou(r')dv' -
On

jsbot

sbot

G(r, r') 00,(r') dr'
On

OG(r, r')

G (r, r') 80(r') dr'
On

OG(r,r ) dr
On

In equation (2.12), a represents the conductivity ratio of -, to ol.

2.1.3 Boundary conditions

We now have two unknowns on each of the three planar surfaces.

#un(r), , Vr E StopOn
8q5 (r)

#u(r), , Vr ESmid
On

Oq#i(r)#O(r), , Vr ESbot
On

(2.13)

(2.14)

(2.15)

The interface surface has two surface integral equations that govern the behavior,

however, in order to constrain the system properly, Dirichlet or Neumann boundary

conditions, or a mix of both, must be specified for the top and bottom surfaces of the

substrate.

The top boundary condition is given by:

a(r)qu(r) + b(r) =O f (r), r E St,On
(2.16)

where for each position, r, on the top surface, a(r) = 1 and b(r) = 0 if r is on a contact;

a(r) = 0 and b(r) = 1 otherwise. The function f(r) = 0 if r is not on a contact and

25
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is either one or zero depending on which column of the coupling conductance matrix

is being computed.

The bottom boundary condition is:

ci(r)+d = 0, r G Sbot (2.17)
49n

where c = 1, d = 0 for a grounded backside substrate and c = 0, d = 1 for an

insulated backside.

2.2 Three-dimensional problem

2.2.1 Geometry

We show the three-dimensional geometry in Figure 2-2, part (i). Note that it is very

similar to the original geometry, only now, a trench shape has been carved out of the

top substrate layer. We define Q,, as the entire homogeneous upper volume, and a9Q&
as its boundary surface. Since the lower volume has not changed, the definitions of

Q, and &Q, given previously will still hold.

To tackle the problem efficiently, it is important to describe the geometry in terms

of some subsurfaces. We will first identify each of these subsurfaces.

We define any three-dimensional feature of the geometry, in our case, the 3D

trench shape shown in Figure 2-2, part (iv), as S3D. The section shown in part (ii),

is defined as before, in the planar case: the top surface St0 p, the middle surface Smid

and the bottom surface Sbot. The flat ring shown in part(iii) is defined as S,; this

corresponds to any part of Stop that does not actually appear in our geometry. For

later convenience, we also define the surfaces St0p, = Stp0 \ S, and S1 = Stop' U S3D-

2.2.2 Coupled surface integral equations

Now that the geometry has been introduced, we will find the governing integral

equations for this geometry. The easist part, since nothing has changed in the lower
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Figure 2-2: Geometry of a three dimensional substrate

volume, is the derivation for the lower volume's integral equation. We still have, as

in equation 2.8

$i (r) =
2 JsmidUSbot

G(r, r ) dr' -
an

(2.18)
.smidUSbot

We now tackle the top volume. The previous derivation holds, up until equation 2.6,

which states:

aoq (r') IG(r, r') a dr + qu(r') &G(r, r') dr', Vr
On

We again use the geometric assumptions to approximate the integral as follows.

S1 USmid
G(r, r') dr'+

For computational convenience later, we break down the top integral over S1.

- JStOP/S3DUSmid
G(r, r') n dr'

dr' + StpUS3DUSmid
&G(r, r') dr(2.21)

(r') ' (2n

Using the same continuity equation as before, we are again able to eliminate #1 and

"0 at Smid from equation 2.18.
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# (r) _
2 , IdQ,

#5 (r) -
2

UE (2.19)

IS1 smid

# (r) =
2

(2.20)

aG(r, r') ,r#1(r') '-- d -

#u(r') OG ') dr'
an



The final system of coupled surface integral equations for the three-dimensional

case is then given by:

G(r, r') ) dr' - JS3D

G(r, r') , (r')dr'+ IS3D
an r dr+

G(r,r') n dr' -
'Smid

G(r, r')W
#ur' dr'+ fSmid

= aJSmzi G(r, r) (n dr' + G(r, r')
s bot

aG(r, r') q1(r')dr'.
On- f~bt

2.2.3 Boundary conditions

We now have two unknowns on each of the three planar surfaces, and on one nonplanar

surface.

(r), On , Vr E St0p,

aqs2(r)#u (r), ,n Vr E S3D

aqs(r)
Ou (r), an, Vr E Smid

0 1 (r), a , Vr E Sbotan

(2.24)

(2.25)

(2.26)

(2.27)

The boundary equation for Sto, is the same as it was for Stop:

a(r)#u(r) + b(r) 0
On

= f(r), r E Stop', (2.28)

where for each position on the top surface, a(r) = 1 and b(r) = 0 if r is on a contact;

a(r) = 0 and b(r) = 1 otherwise. The function f(r) = 0 if r is not on a contact and

is either one or zero depending on which column of the coupling conductance matrix

is being computed.
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#U (r)
2 Istop,

+f
s top/

and

01 (r)
2

G (r,r') Ondr'

aG(r, r) 0u(r')d4.22)
On

- 'Smid

aG(r, r') ,
an

n dr'

(2.23)



The three-dimensional parts are set, for convenience, to be non-contact surfaces,

and hence, a no-current boundary condition is imposed.

= 0, Vr E S3D
On

(2.29)

As before, the bottom is allowed to be either a floating or grounded backplane.

2.3 Equation summary

2.3.1 Planar problem

For this problem we have six unknowns and six equations.

The six unknowns are:

&8&2(r)#('r), , r Vr EStopan
&q$ (r)

#2.(r), O ,VTE Sai
On

&#i (r)
0# (r), , Vr E Sbot.

an

(2.30)

(2.31)

(2.32)

(2.33)

The six equations are:

a(r)Ou(r) + b( OOU(r)
On

= f (r), Vr C Stop

8#i(r)
co, (r) + d = 0, Vr C Sbot

On

#O = - 'stop G(r,r') 9 dr'
On

aG (r, 'r') (r')dr' +
On fsmid

f G(r,r') a dr'
Jsmid On

ac(r, r') /

a( , qu(r')dr', Vr E StopOn
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(2.35)

+ f/ stop
(2.36)



(r) = - Jstop

OG(r, r')
an

aG(r, r')
afn

a(r) = sid

OG(r, r') q
On

G(r, r') 00"( dr'
On

(r')dr' + S

G s(r')
G(r, r') af

an

u(r') dr' - iso

a#u(r')d,
G(r, r') dr'

(r')dr' Sbot

- 'Smid
G(r, r') dr'

On

~(r, r')
'n /$O(r')dr', Vr E SmidOn

dr' + ISbot G(r, r') On dr'

G(r, r') #1(r')dr', Vr E Smid
On

+ j G(r, r')0 r) dr'
( ,bot G
(r, ')q0i(r'W)dr, Vr c Sbot.
an

2.3.2 Three-dimensional problem

We now have eight unknowns and eight equations for the three-dimensional problem.

The eight unknowns are:

aqs2(r)
Ou (r), ar , Vr E StOPI

aq5s(r)
#u (r), af Vr G Smid

0 1 (r), a , VE Sbot

q5 (r), ,(r) Vr S3D-

(2.40)

(2.41)

(2.42)

(2.43)

The eight equations, ordered in this fashion for later convenience, are:

a (r) (r) + b (,r) O (r) f (r), Vr E Stop,
) (rOn

co, (r)(+ d = 0,Vr C S botcq$(r)d n

(2.44)

(2.45)
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+ / stop

- ISmid

(2.37)

(2.38)

(2.39)- 'Smid

#u(r) = a sm a



#u (r) = stop-
2

G(r,r') a0sr dr' - J G(r,r') 0(r)dr' -
On s 3D OnSi d

G(r,r') O dr'

aG(r, r') 0,(r')dr'
On +s3D

± (r')dr +
On Ismd

- a G (r, r ) f r' - G (T, r ) U(r)

S stop, On s 3D O
-G~ Jr'P G8Gr' ar( L 'T - DaaG(r, r/) ou(r')dr'j+ aG(r (r')dr'+ 'm

On s3D Omid

ac(r, r')(r')dr/, Vr C St,y
an

(2.46)

dr' - 'smid G(r, r') n dr'

ac(r, r') Ou (r')dr/, Vr E Smid
an

(2.47)

a '(r, r/)# (r')dr', Vr E 5 mid
On

G(r r fru, W dr' +
9n sbot

G(r, r ) drOn
aG(r, r) i, (r')dr' - I

an f
aG(r r')~(~I ~Q

n' (r')dr, Vr E Sbot
On

G(r, 0U(ra dr' - D
On s3D

G(r, r') n dr' - 'smid

aG(r, r') q$(W)dr' +
On fmid

G(r, r') / dr'
O

aG(r r') ,)dV e 3OG(r ) u(r/ )dr', Vr E S3D
On

(2.50)

00u (= 0, Vr E S3D
On

(2.51)

In the next chapter, we will develop the discretization of these equations; this

method will yield an equivalent matrix equation describing the discretized problem.
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+

#u(r)
2

+
S stop/

q (r) = a ' mid G (r, r') 0 dr'+
(n sbot

aG(r, r') O(r')dr' - fSbot
On- 'smid

a(r ) =

G(r, r') dr'On

(2.48)

- JSmid

u(r) =
2

+f s to,/

(2.49)

aG(r, r') Ou(rl)dr'+
On s3D

Jstop/
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Chapter 3

Problem discretization

In this chapter, we begin with the planar problem. We introduce the meshing of

this geometry, as well as the basis functions used to expand <0(r) and 0 on the

surfaces. We discretize our system of equations into an analagous matrix form using

these expansions and a centroid-collocation scheme. We subsequently develop the

modifications of this procedure needed to model three-dimensional features. The

chapter ends with a discussion of the iterative method that will be used to solve the

system matrix equation.

3.1 Discretization of planar problem

3.1.1 Geometric mesh and basis functions

The top, middle and bottom surface layers are each discretized with an N, x Ny grid

of regular, rectangular panels, generating a total number of panels, Np = 3NNy =

3Nppl. Such a meshing is shown in Figure 3-1. We label each panel with an integer

index, which is shown as a subscript, and with a superscript label to indicate which

layer the panel resides on. The integer indexing is done sequentially along the x-

direction first, then the y-direction.

Each panel provides the local support for a piece-wise constant basis function,ga (r),
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as defined in equation 3.1, where the symbol <""' indicates the panel indexed by

integer i on the layer labelled by layer.

glayer(,) =,r <ayer

gae "(r) = 0, otherwise (3.1)

On each surface we expand the unknowns #(r) and a9(r) in terms of this basis.

This is shown in equations 3.2 - 3.7. Notice that our choice assumes that a constant

basis is a good representation for the potential and the conductive currents. For this

reason, the discretization must be fine enough to ensure this hypothesis is correct.

Therefore we must ensure that for a given frequency, the panel size is on the order of

A/10 or smaller.

Nppl

Ou (r) = pOg" "(r), r E Stop (3.2)
i=1

Nppl

u(r) = pi (r), r E Smid (3.3)
i=1

1(r) = p g (r), r E Sbot (3.4)
i=1

& ) " gP(r), r E Stop (3.5)
On 7i=1

1: qZ gf (r),r C Smid (3.6)
i=1

=~(r NE q~o jgo (r), r E Sbot (3.7)

The problem is now reduced to finding the six unknown weight vectors of our

expansions: ptopI, pmid , PbotI qtop qmidI qbot (we drop the subscript to denote the vector

of weights). In the next section, we derive the matrix equation that governs these

unknowns.
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Figure 3-2: Unknown vector for planar problem

3.1.2 System matrix equation

To complete the descretized description, we insert the discretized representation of

O(r) and '90() into equations 2.34 - 2.39, and test at the centroids of the panels, whichan

yields the analogous matrix equation

Ax = b. (3.8)

The unknown solution vector sought, x, is a column vector, of size N = 6Npj,

which has a blocked row structure. Each block row of size Np,, corresponds to an

unknown weight vector. This blocked structure is shown in Figure 3-2. The right-

hand side, b, is all zeros, except for the first block row, of size Nppl, which contains

non-zeros on the panels that have a non-zero applied voltage.

Figure 3-3 shows the block pattern of our system matrix A. Note that each sub-

matrix block indicated in the figure is of size Np,/ x Nppi. The first two block rows of

the matrix correspond to the boundary conditions tested at St0 p and Sbat. The third
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Figure 3-3: System matrix structure for the planar problem

through sixth block rows correspond to testing the surface integral equations 2.36 -

2.39, respectively.

In this block structure, the matrix entries are given by:

Mi(ij) = -i/ G(?oPri)dr'= -
jrcotopj

= - Jr'C

M 2 (ij) =
Jr/ .a

M 3 (i, j) = - J o
Jrt 3

M 4 (i, j) = -
f/ rO id

M 5 (ij) = jrEOmid
3

G(rMid r )( ' dr'=
a

G(Pnid , r') dr'=

Jr/cK7id3

- r' 0

OG(&t, r')I dr' = -
an - r'EOt

OtG ( -', r') dr'bot

3

OG( " , r') dr'
an

mid

OG(fnid, r')dr'
n dr'

G(rot, r')dr' = I G( 7i", r')dr'
j tgg3

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

In these equations, the notation r'i indicates the centroid of the ith panel.
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Figure 3-4: Breakdown of three-dimensional problem geometry into different compo-

nents

3.2 Discretization of three-dimensional problem

3.2.1 Geometric mesh and basis functions

We again begin by discretizing the mesh, as shown in Figure 3-4 (i). As in Chapter

2, we break down the top boundary surface, S1, as a combination of three surfaces,

S,, S3D and St,p, and define Stp, = St, \ S,. The meaning of Smid and Sbot remain

the same as in the planar problem.

We will label all of the panels on Stop, Smid and Sbot as before, with a layer super-

script and an index subscript from 1 to Nppl, with the ordering done consistently along

the x-direction first, then the y-direction. Panels on surface S3D will be denoted with

a superscript 3D. The number and ordering of these additional three-dimensional

panels is decided by the the mesher, and this ordering, once chosen, does not affect
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the problem. We will denote the total number of three-dimensional panels as N3D-

Each panel on Stop, Smid, Sbot and S3D is assigned a piecewise constant basis

function, defined as in equation 3.1 .

Our unknowns are the potential and its normal derivative on the surfaces Stop,,

Smid, Sbot and S3D. We expand these unknowns as follows.

Nppi

(r) = 1: pliog (r), r E stop, (3.14)
i=1,04iEstop/

Nppl

(r) =i g"(r), r E Smid (3.15)

Nppi

() bopg), ot E Sbot (3.16)
i=1

N3D

#(r) 3 p3 g3 D(r), r E S3D (3-17)
i=1

On__ - qtPg(r),r Stop' (3.18)

E qi g (r), r ESmid (3.19)
n i=1

00(r) -NPP1 ogo
nq ) (r),r E Sbot (3.20)

8n _

8y(r) q D D(r), r E S3D (3.21)

The problem is now reduced to finding the eight unknown weight vectors of our

expansions :pto', p top' qmid qbot q3 D. We use ptOP' and qtOP' to denote

the weight vectors for panels in the intersection of Stop and Stop. For elements in

these vectors, both of length NMop, < Nppi, the index, i given to the element may not

correspond to its position within the vector. The vectors Ptop and qtop, both of length

Nppl, have the same meaning as it did in the planar problem. These choices will be

motivated in greater detail in the next chapter.
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Figure 3-5: Unknown vector for three-dimensional problem

3.2.2 System matrix equation

We now plug our expanded unknowns into equations 2.44 - 2.51 and test the equations

at the centroids of the panels. This process again yields a matrix equation, given as

Ai = I. (3.22)

We use the tildes to differentiate from the variables used in the planar matrix equation,

which were of a different size and structure.

The unknown solution vector sought, ;', is a column vector, of size N = 2Nt0 p, +

4NyPP + 2N3D, that can be broken into blocks corresponding to each of the unknown

weight vectors. This blocked structure is shown in Figure 3-5.

Figure 3-6 shows the block pattern of our system matrix A. The first two block

rows of the matrix correspond to the boundary conditions tested at the Stop, and

Sbt. The third through seventh block rows correspond to testing the surface integral

equations 2.46-2.50, respectively. The final row correponds to discretizing equation

2.51, the boundary condition at the surface S3D-

In this block structure, the matrix entries are given by:

M1(ij) = ft G(rop, r')dr' = - , G(r7idr')dr'
3 3
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Figure 3-6: System matrix structure for the three-dimensional problem

= -JrE/ot G( Ot , r')dr'

Mi (i, j) = M 1(i, j)
OG(r"mid, r')

On dr'=J

oG(r"'t, r') dr' = -

OG(n4t r')
On dr

rornid3

OG( lop r')
On

M 21(i, j) = M 2(i, j)

/ e G(r-'O, r')dr'
Mr'E.=id

MW'(i, j) = Wi, j)

ir'E ot

= J

o9G(, ni' dr'

On

otG( 0 "id, r')dr'

O ' dr'
an

MW(i,j) = -

M(i,j) = Ir/E* D
OG(rid* ' dr'

On

41
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DD

2' - -'6

M 2(ij) =

M 3 (ij) = - fr'E C

M 4(i, j) = - IIE(>mid

M 5(ij) =

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

M(i,j) = i/E* D
ro3D

r'Eo o

fc mdG (ri "t, r') dr'
J '~ id

frEj G (40P, r') dr'
JrE3D



M(ij) = j D G ( ( r')dr' (3.34)

Mii(itj) = p 'dr' (3.35)

M12 (i, 1) j G( ' r)dr' (3.37)

M 1 3 (ij) = jrEmid G(riD, r/)dr' (3.38)

M 14 (ij) = > r. ' dr' (3.39)

M5(i, ),r)d (3.40)

3.3 Iterative method for matrix solution

Both the planar and three-dimensional matrix equations are solved using the General-

ized Conjugate Residual(GCR) algorithm, a Krylov-subspace based iterative method

that requires only one matrix-vector product at each iteration. In the next chapter,

we will discuss the details of accelerating this matrix-vector product, and show that

its memory usage is O(N) and its computational complexity is O(Nlog(N)).

However, two things must be noticed regarding the expense of the iterative method.

First, we note that for each iteration, two vectors of size O(N) must be stored, mean-

ing that the memory required by the iterative method grows linearly with the number

of iterations, k. This problem could be avoided using a transpose-free quasi-minimal

residual method (QMR), however, for this thesis, we restrict our attention to the

GCR method.

Second, the computational time required for a solution grows with the number

of iterations, k. For these two reasons we will need to ensure that the number of

iterations does not grow rapidly with problem size, or k is 0(1); otherwise, the

problem will become prohibitively expensive to solve.
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Figure 3-7: Preconditioner sparsity pattern for planar problem

We ensure this rapid convergence by using a block-diagonal right preconditioner.

The sparsity pattern of the planar problem preconditioner is shown in Figure 3-7,

and the three-dimensional problem preconditioner is shown in Figure 3-8. Note that

the memory usage and computational effort needed to store and calculate the LU

factorization of this matrix P is minimal, because of its sparsity; this result will be

shown later in the final chapter.
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Figure 3-8: Preconditioner sparsity pattern for three-dimensional problem
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Chapter 4

FFT acceleration of matrix-vector

products

As discussed in the previous chapter, our discretized coupled integral equations give

rise to a matrix equation that we will solve using a Krylov-subspace iterative method,

GCR. At the heart of this solver is the need for a fast matrix-vector product. We will

see in this chapter that the matrix is never explicity formed, but rather, because of

the regular grid and translation-invariance of the Green's function, we can use FFTs

to accelerate the planar problem's matrix-vector product, and eliminate the need for

storing all N2 matrix entries. We then demonstrate how this idea can be adapted

with those of the pFFT method in order to accelerate the matrix-vector product of

the three-dimensional problem's matrix-vector product.

4.1 Planar problem

Our goal stated goal for this section is: given a vector v, return w = Av efficiently. We

will approach this goal by breaking down the matrix-vector product into submatrix-

subvector products. We then discuss the acceleration of one of these submatrix-

subvector products using FFTs. Finally, we will give a quasicode description of the
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Figure 4-1: Matrix-vector product in block form, for the planar problem

overall matrix-vector product.

4.1.1 Decomposition of matrix-vector product

We approach the matrix-vector product by breaking down the matrix and input vector

into blocks, as shown in Figure 4-1. This will allow us to consider the matrix-vector

product as a composition of many submatrix-subvector products.

We can rewrite the result of this matrix-multiplication as:

21= D2 v1 ± Dav4  (4.1)

w2= D4v3 + Dsv6  (42

= Divi + M2 v2 + Miv4 + M3v5  (4.3)

w4= M2vi + Div2 + Mav4 + M1 v5  (4.4)

= D 1v2 + M4 v3 - cM 1v5 + MWv6  (4.5)

o a= M4 v2 + Dr + x-Mevt - Mv (4.6)

(4.7)

Calculating w and w2 are very simple as these results involve only submatrix-
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4.2 Three-dimensional problem

We now tackle the more complex matrix-vector product associated with the three-

dimensional problem. We again approach the problem by decomposing the matrix-

vector product into different submatrix-subvector products. We will first look at

the submatrix-subvector products which describe interactions between planar source

panels and test points on the planar panels. We'll see that a simple modification of our

previous algorithm can handle these parts of the matrix-vector product. Next, we will

look at the parts of the matrix-vector product that involve panels on the S3D surface,

either as source panels, test points, or both. We'll present a modified version of the

precorrected FFT method that can be used to calculate such submatrix-subvector

products. Finally, we will present the overall matrix-vector product algorithm used

for the three-dimensional problem.

4.2.1 Decomposition of matrix-vector product

We show the matrix-vector product, Av' = w' as a composition of blocks in Figure

4-2. The sections corresponding to planar to planar interactions are demarcated

with a bold line; everything above this line indicates a part of the matrix-vector

product which involves a planar source panel scattered to a test centroid on a planar

panel. We will consider this part of the matrix-vector product first. Then we will

discuss the parts of the matrix-vector product below this line, which correspond to

scattering involving panels on S3D. These parts of the matrix will be handled using

an adaptation of the precorrected-FFT method.

4.2.2 Accelerating planar to planar scattering

We will make use of our previously developed planar matrix-vector black box to handle

planar panel to planar panel interactions. We pad the vectors v' and v, with zeros at

those indices that correspond to the "deleted panels" on the surface S, to form v, and
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Once these values have been precomputed, we can implement a black-box matrix-

vector code, which takes in an input vector v, and returns the matrix-vector product

w. Notice that the inverse DFT matrices are factored out of each submatrix-subvector

product, and applied only once to each block row in step 3.

Matrix-vector black box

1. Calculate fi, 172, 173, 174, 175, f76 by reshaping input subvectors and applying two-

dimensional FFTs.

2. Compute W3, W 4 , W5, W defined as:

a. W3 =H 2. * f72 + 1. * 14 + H3. * V 5

b. W4 = k 2 . * fi + k 3 . * 4 + 1 . * E5

c. W= H 4 .* 3 - aH. * V5 + H5 . * 6

d. W6 = H4. *12 + 5 . * 6 + H 1 . * f 6

3. Compute W3, W 4, W 5 , W6 using two-dimensional inverse FFTs:

4. Lift out the relevant parts of W 3 , W 4, W5 , W6 , and reshape into vectors, w3 , W4 , W5 , w6

5. Add contributions due to diagonal submatrix, D 1.

a. w 3 + = Div,

b. w 4 +- = DIv2

c. w5+ = D1 v2

d. w6+ = DIv3

6. Compute simple diagonal submatrix-subvector products to find w,

D3v 4, w2 = D 4v 3 + D5v 6 -

= D 2vI +
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2. Zero pad and reshape the subvector v4 into a matrix, V4. Calculate its two-

dimensional FFT V4 = FN, V4 FNy-

3. Component-wise multiply f 1 and 4.

4. Calculate the inverse two-dimensional FFT of the result in 3.

5. Keep the N x Ny submatrix that corresponds to test points on the grid (the results

of the convolution will extend past the test points of interest) and reshape these

values into a vector of size N Ny.

The main computational expense lies in the two-dimensional transforms, each

with a cost of O(NNylog(NNy)). This is much cheaper than the original expense

of O((NNy) 2). Now we have an efficient means of computing the dense submatrix-

subvector products in our planar problem.

4.1.3 Accelerated matrix-vector product

In order to compute the entire matrix-vector product efficiently, we must compute

each of the dense submatrix-subvector products using the previously introduced ap-

proach.

For each of these dense submatrices, we need only its corresponding kernel matrix

in the discrete fourier domain. Therefore, we will compute H1,H 2,H 3,H4,H5 just

once and store them, in lieu of computing and storing each element of the dense

submatrices. The cost for one such computation is only O(NNy) to fill the kernel

matrix, and O(N,\Nylog(N2Ny)) to compute its frequency-domain description. The

memory cost is O(N2Ny) to store the entries associated with this 2N, x 2Ny size

matrix. This is much cheaper than the original cost of calculating and then storing a

dense matrix, both of which require O((NNy) 2) complexity. We will also precompute

the entries of the diagonal matrices, at a cost of O((N2Ny) memory storage.
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subvector products with diagonal matrices, and hence can be done with O(N) com-

plexity and memory. However, all of the other components of w require three dense

submatrix-subvector products that require O(N 2 ) computational cost, if unacceler-

ated. However, although each of the submatrices involved is dense, each submatrix-

subvector product can be thought of a as a discrete two-dimensional convolution.

This is a result of the shift invariance of the two kernels G,(r, r') and Go(r, r'), as wellOn
as the regular gridding of all of the surfaces. We discuss in the next section how to

accelerate one such dense submatrix-subvector product.

4.1.2 Accelerating dense submatrix-subvector products

In this section we will consider the acceleration of one submatrix-subvector product.

For illustrative purposes, we choose the product M1v 4. This submatrix-subvector

product can be thought of as the result of a discrete 2D convolution between a 2N, x

2Ny "kernel matrix" H1 and a 2N_ x 2NY zero-padded version of the subvector V4.

This is a result of the shift-invariance of the kernel and the regular grid. As presented

in [7], such a convolution of two matrices can be done very inexpensively.

The entries of the kernel matrix are the NNy unique values of M1 arranged in

such a fashion as to represent the two-dimensional discrete "impulse response" due

to a uniform source panel.

To convolve the two matrices Hmat and Vmat, we can use the following result from

[7].

conv(H1 ,V 4 ) = FK1 ((FNX H1FN). * (FNX V4 FNY ))F = F 1(H1. * 4)F- (4.8)

In this equation, Fn is the one-dimensional discrete Fourier transform (DFT)

matrix of size n, and F-1 its inverse transform. Applying these matrices can be done

very cheaply using the Fast Fourier Transform (FFT) algorithm. Therefore, given

H 1, we need only do the following:

1. Calculate the two-dimensional FFT of H1 : H1 = FNx H1 FN -

47



D D

- W2

D - 5
M M iv 6  M 7  V

MT 2T M 3~V- 4

D :\D
M -a T M M

M M 4

M 1 0 M M 2 M1  M1 M1  W

- vD6 W
\ w6

-- 8

Figure 4-2: Matrix-vector product in block form, for the three-dimensional problem

v4, respectively. We then define v as the concatenation of vectors vi, v2, v3 , v4, v5 , V5.

We apply the previously developed matrix-vector black-box to this vector to find the

vector wPanar = Av. Later, we will retain only those elements of Wplanar and Wplanar

that correspond to testing at panels on St,y, that is wpl"nr'' and wplanar'

4.2.3 Accelerating three-dimensional interactions using pFFT

We now have to consider the remaining portions of the matrix-vector product. We will

consider three different sections, each of which will be handled in a slightly different

fashion.

Three-dimensional panel to planar panel scattering via projection

The first part we will consider are the contributions of sources on S3D to test points

on Stpf and Smid. We will denote these contributions as wID and w D, respectively,

and they are given by:

W3D = M7v7 + Msv8 (4.9)
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and

D+ M1 v8 . (4.10)

To accelerate the dense submatrix-subvector products involved in these terms, we

will borrow the concept of projection from the pFFT method. We first divide the

planar top and mid surface uniform grids (Stp0 and Smid) into pFFT cells. Each cell

contains a k x k block of panels on Stp0 and another k x k block of panels on Smid.

For each three-dimensional panel source, either a monopole source in v8 or a dipole

source in v7, we will find equivalent uniform monopole sources on the planar panels

in the enclosing cell. We choose the weights of these planar sources such that the

field is approximated well for points outside of the cell. These weights are chosen by

matching the original field due to the three-dimensional source with the field due to

the projected sources. This matching is done at at points on a collocation sphere.

Reference [2] provides an in-depth explanation of this process.

We show in Figure 4-3 a three-dimensional panel, as well as the surrounding planar

panels which comprise its cell. The cell size shown is k = 4. The collocation points

are also shown in this picture.

This projection from three-dimensional sources to planar sources can be written in

terms of four projection matrices. While these matrices are never explicitly formed,

it is a useful device to write the projection in this manner.

~pro3 = pproj,d ±porn
V4 = op -P V 7,d'd + Ptpos jV 8(4.11)

Pro3 . PProj,d~ +Pr)r,

V5 = -P V7"i + Pmd'"'"V8 (4.12)

The process of computing these four projection matrices is the same as the proce-

dure outlined in [2], although here we use uniform sources on the grid panels, instead

of grid point charges. As outlined in this reference, the cost of projecting a vector of

three-dimensional sources is O(N3D)- The projection also requires a one-time O(N3D)

setup cost.
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Once these projected source vectors are formed, we can scatter them to planar

panel centroids in the same manner as before: by using the FFT to accelerate the

scattering. Finally, the near-field interactions of three-dimensional sources to nearby

planar panels must be done directly. We add precorrection matrices that eliminate

the effect of projected sources and add in this direct calculation. These correction

matrices are indicated with a C.

The final equations which describe the three-dimensional to planar scattering are

then given by:

33D = MJVpri + M 3 o* C ,to~v + top (4.13)
3~ M 4ro + M3Vg~ 0 + Coj , dV7 +~ C~rj,mV8 (.3

and

w4D M 3Vi + MV + C"jdv7 + Cp,mV8 . (4.14)

Three-dimensional panel to planar panel scattering via projection

We now work with the parts of the matrix-vector product that correspond to planar

sources scattering to the test points on S3D. This part of the product is given as:

planar _+(.5

W7t = Muv'1 + M12V2 + M 13v' + M 1 4 v5 . (4.15)

Again, we use a concept from the pFFT method: interpolation. We assume that

the potential at a test point on S3D can be interpolated from the potentials at nearby

points in Stop and Smid. We have these potentials already: Wplanar and Wp""" .

As shown in reference [2], we can write this interpolation as follows, using four

interpolation matrices to indicate the process of interpolation. Precorrection terms

are also included to correct for any inaccuracies in the near-field interactions, and are

indicated with a C.

wplanar planar + I rwlanar + Ciep + Cme,.V2 (4.16 )
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Three-dimensional panel to three-dimensional panel scattering

Finally, we have to compute the components of the matrix-vector product that cor-

respond to three-dimensional sources in v8 and v7 scattering to test points on S3D-

We will denote this part of the matrix-vector product as:

w7D M 15v 7 + M 1 6 v8 . (4.17)

We now combine both the concepts used in the previous section. We will use both

projection and interpolation to approximate the far-field interactions for this type of

scattering. We will interpolate the results found using projected sources.

w7D ( 4  + M3 V5 ) + Imid(MV 4  + M 5iV5o) + Cboth,dV7 + Cboth,mV8

(4.18)

Notice that we already have computed all of the variables in this equation, with

the exception of the precorrection matrices.

4.2.4 Accelerated matrix-vector product

We show here the overall computations needed to implement an accelerated matrix-

vector black-box for the three-dimensional problem.

In addition to the "kernel matrices" required for the planar problem, we must

precompute some values before calling the black-box matrix-vector product for the

three-dimensional problem. The cost associated with this setup is O(N3D)-

Setup computations

1. Projection matrices: PproJ'd pPro,m pr Od proi M

2. Interpolation matrices: Itop, Imid
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aC oj,m, C"ojd, Cp"o,m, Cp," , nterp, Cierp, Cboth,d,

Cboth,m

Now we give an overview of the matrix-vector black box algorithm, which takes

v' and produces w' = Av'.

Matrix-vector black box

1. Compute planar to planar scattering: Find v via zero-padding, and wpana, = Av

using planar black-box matrix-vector product.

2. Compute three-dimensional to planar scattering

proj = PtoP + pV4  proj,d + P roj,m

proj =pmid VPmidV5  proj,dV + proj',mV8

W 3D = MV +proj M-r +Ci+op
43D =1Vo + MiiV + CprojdV7 + C" mV.

3D 7 jproj ~proj + 0 mid + rmid
=4 Mv3 V 4 + iv 1 V5 + pro , dV7 ~proj,mV5.

3. Compute planar to three-dimensional scattering via interpolation

wplanar planar lanar + Cp v1' ++CqHV2

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

4. Compute three-dimensional to three-dimensional scattering

W3D0=po M 3 Vpr, ) + + -1--
W7 = Ao( MiV 4  + + Imid MV + M1VrO) + Cboth,dV7 + Cboth,mV

(4.24)

5. Combine results, and apply diagonal matrices, to yield subvectors w

Wi = D 2v 1 + D3v 4

W2= D 4v3 + D5v 6

W3 = Wplanar + W 3DW w 3 + 3

(4.25)

(4.26)

(4.27)
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W4 = wpana + wD (4.28)

wplanar (4.29)

6 6 planar (4.30)

W7 = planar + w3D (4.31)

W8 = D6vs (4.32)

(4.33)

6. Discard elements of w, and w 4 that do not correspond to panels on Stp, to yield

w'/ and w' respectively. Concatenate w', w2, w3, w4 ,w5 ,w6,w7 and ws to yield

w'.
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Chapter 5

Computational results

In this chapter we present computational results from a C++ implementation of

our algorithm for the planar problem. All results were run on a 800 MHz Itanium

processor with 32GB of RAM.

5.1 Code summary

The solution of the resulting currents due to applied voltages (that is one right-hand

side) involves the following steps. In the case of a resistance extraction, where a

solution is found for multiple right-hand sides, the first three steps are done only

once, while the GCR iterative solve is done once for each right-hand side. Later, we

will compare the relative costs of these steps.

Solve for currents

Mesh Problem

Precompute convolution FFTs

Precompute preconditioner and its LU factorization

Solve system using GCR
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The iterative solve involves the following algorithm. Later we compare the relative

CPU costs of these steps.

GCR algorithm

Compute initial residual, r

At each iteration k,

Backsolve with LU factorization of preconditioner to find z

Compute matrix-vector product, Ar

Update new search direction, by orthogonalizing Ar

wrt to all k-1 previous search directions

Check new residual to see if converged

Backsolve solution with LU factorization to find true solution

Return result

Finally, the matrix-vector-product black box used at each iteration of GCR has

a number of steps associated with it. We will later show the relative costs of these

subtasks:

Matrix-vector-product black box

Forward transform input vector, via FFTs

Convolution of input vector with Green's Function

done via frequency domain calcuations

Inverse transformation of results

Applying boundary conditions

5.2 Test cases

For testing, we choose a standard geometry of a 0.1 cm x 0.1 cm square substrate with

a height of 0.01cm. We choose a top conductivity of 0.01, and bottom conductivity
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Figure 5-1: Three different top boundary conditions for problem: two-contact (left),

random (center), striped (right)

of 0.05, with the interface of these layers at 0.008cm.

To show robustness under different boundary conditions, we show convergence

under three types of boundary conditions, illustrated in Figure 5.2. These boundary

conditions correspond to different applied voltages on the top surface, either two

contacts, randomly selected voltages between OV and 1V, and alternating stripes of

-lV and 1V. Also, the backplane is either given as a ground plane or floating back

plane.

5.3 Results

5.3.1 Convergence: iteration counts

First we demonstrate robustness of the solver for different top and bottom boundary

conditions. Table 5.1 shows that for all of our boundary condtion types, the iteration

counts grow slowly with problem size, indicating that our precondtioner choice is

effective.
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Table 5.1: Iteration counts for solution of nominal problem under different boundary

conditions and discretizations.
Problem Size (N, x Ny)/

Boundary Conditions (64x64) (128x128) (256x256) (512x512) (1024x1024)

Contacts/GND 21 27 36 48 63

Random/GND 31 41 54 71 93

Striped/GND 25 32 43 58 74

Contacts/Float 22 31 42 57 63

Random/Float 28 37 50 66 94

Striped/Float 23 31 42 55 74

5.3.2 Computational complexity

We next demonstrate that our total computational complexity grows slowly with

problem size. This result is shown in Table 5.2.

5.3.3 Computational complexity of program subtasks

We demonstrate the relative costs of various aspects of our algorithm. As is readily

apparent in Table 5.3, the iterative matrix solver is the costliest task, with all others

being neglible for most practical problem sizes.

5.3.4 Computational complexity of iterative method

We next illustrate the relative costs of various aspects of our iterative method. As

shown in Table 5.4, the cost of the iterative matrix solver is dominated by the matrix-

vector product, although the back orthogonalization becomes more and more expen-

sive with larger problems and their resulting slower convergence. For that reason, it

might be better to switch to a different iterative method that does not require such

orthogonalization, such as QMR.
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Table 5.2: Total CPU times (ms) for solution of nominal problem under different

boundary conditions and discretizations.

Problem Size(N x N,)/

Boundary Conditions (64x64) (128x128) (256x256) (512x512) (1024x1024)

Contacts/GND 1.5e4 8.5e5 5.3e5 3.3e6 2.0e7

Random/GND 2.4e4 1.5e5 9.7e5 6.1e6 3.7e7

Striped/GND 1.8e4 1.1e5 7.0e5 4.5e6 2.6e7

Contacts/Float 1.6e4 1.0e5 6.7e5 4.4e6 2.0e7

Random/Float 2.1e4 1.3e5 8.7e5 2.0e6 3.8e7

Striped/Float 1.7e4 1.0e5 6.8e5 2.1e6 2.6e7

Table 5.3: Total time per task for setup and

Contacts/GND boundary conditions.

solution of nominal problem, with

63

Problem #UKs Meshing FFT Setup Precond GCR Solve

Size Time Setup

(64x64) 2.5e3 1.9e2 4.1e2 1.5e 1.4e4

(128x128) 9.8e4 7.5e2 1.5e3 7.1e2 8.2e4

(256x256) 3.9e5 3.0e3 6.8e3 3.0e3 5.3e5

(512x512) 1.6e6 1.2e4 2.7e4 1.5e4 3.3e6

(1024x1024) 6.3e6 4.8e4 8.9e4 6.1e4 2.0e7



Table 5.4: Total CPU times spent on substasks of iterative solver, GCR, for nominal

problem, with Contacts/GND boundary conditions.

Problem #UKs Matrix-vector Back Preconditioner

Size (N x Ny) / #UKs product orthogonalization backsolve

(64x64) 2.5e3 8.5e3 4.3e3 6.4e2

(128x128) 9.8e4 4.5e4 3.0e4 3.7e3

(256x256) 3.9e5 2.6e5 2.2e5 2.3e4

(512x512) 1.6e6 1.5e6 1.6e6 1.4e5

(1024x1024) 6.3e6 8.0e6 1.1e7 7.1e5

Table 5.5: Total CPU times spent on subtasks of matrix-vector product function of

nominal problem, with Contacts/GND boundary conditions.

Problem Freq. Domain

Size(N x Ny)/ #UKs Forward FFTs Calcs. Inverse FFTs BCs

(64x64) 2.5e3 2.0e3 4.6e3 1.3e3 2.0e2

(128x128) 9.8e4 1.1e4 2.4e4 7.2e3 1.0e3

(256x256) 3.9e5 7.1e4 1.3e5 4.6e4 5.6e3

(512x512) 1.6e6 4.4e5 6.6e5 2.9e5 3.1e4

(1024x1024) 6.3e6e6 2.4e6 3.5e6 1.6e6 1.6e5

5.3.5 Computational complexity of matrix-vector product

Finally, we demonstrate that the main cost of the matrix vector product lies in the

transformations , which have a cost that grows as O(N2Nylog(NNy)), and the and

frequency domain calcuations, which grow as O(NNy). This result is given in Table

5.5.
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